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ABSTRACT

DEVELOPING OPTIMUM OPERATION STRATEGIES FOR
WIND-HYDRO HYBRID SYSTEMS

Ercan, Eray
M.S., Department of Civil Engineering
Supervisor: Prof. Dr. Elcin Kentel Erdogan

June 2020, [124] pages

In today’s world, energy is one of the most important drivers for the continuation
of civilization. Until recent years, the energy demands of the countries have been
mainly supplied by fossil fuels. However, the negative effects of using fossil fuels
in energy generation shifted the focus to renewable energy resources. In addition to
this, the popularity of renewable energy resources increased as their costs decreased
and efficiencies increased. Therefore, the integration of renewable energy systems to
national grids increased in recent years. However, this integration is challenging due
to the intermittent nature of renewable energy sources. In addition to the uncertainty
in the generation of energy from the renewables, the uncertainty in the electricity spot
markets increases the difficulty in the management of the renewables. To deal with
the intermittent nature of the renewables, energy storage systems have to be imple-
mented. Pumped storage hydropower is currently the most viable form of large scale
energy storage. The operation of renewable systems, together with pumped stor-
age hydropower plants, increases the efficiency of the hybrid system. In this study,
a wind-hydro hybrid system (WHHS) is considered, and optimum daily operation

strategies for a hypothetical case study is developed. To increase the revenue of the



WHHS, a long short-term memory (LSTM) network is developed to forecast electric-
ity prices in the day-ahead spot electricity market. Apart from the LSTM network,
an optimization model is developed to obtain optimum operation schedules and the
maximum revenue of the WHHS by using the electricity price and available wind en-
ergy as inputs. To investigate the effects of the LSTM network and the optimization
model, different scenarios are created and run. According to the results, it is observed
that wind turbines compensate the loss due to the poor forecasting of the electricity
price. Thus, the higher the installed capacity of wind turbines in the WHHS, the bet-
ter compensation it provides. However, within the studied range (i.e., 25 MW to 500
MW), the operation schedules of the pump and the hydro turbine of the WHHS are
not affected from increasing the installed capacity of wind turbines. Once enough en-
ergy is generated by wind turbines to be used to pump the water to the upper reservoir,

the rest of the wind energy is directly sold to the grid.

Keywords: Renewable Energy, Optimization, LSTM, Electricity Price Forecasting,
Wind-Hydro Hybrid Systems
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0z

RUZGAR-HIDRO HIBRIT SISTEMLER ICIN OPTIMUM CALISMA
STRATEJILERININ GELISTIRILMESI

Ercan, Eray
Yiiksek Lisans, in§aat Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. El¢in Kentel Erdogan

Haziran 2020 , [124]sayfa

Giiniimiiz diinyasinda enerji, uygarliklarin devamai icin en dnemli unsurlardan biridir.
Gectigimiz yillara kadar iilkelerin enerji talepleri ¢cogunlukla fosil yakitlar tarafin-
dan kargilanmigtir. Ancak, fosil yakitlarin enerji iiretiminde kullanilmasinin olumsuz
etkileri, ilgiyi yenilenebilir enerji kaynaklaria kaydirmigtir. Buna ek olarak, yenile-
nebilir enerji kaynaklarinin popiilaritesini maliyetlerdeki diisiis ve verimlilikteki artis
olumlu etkilemistir. Bu nedenle, yenilenebilir enerji sistemlerinin elektrik sebekele-
rine entegrasyonu son yillarda artig gostermistir. Ancak, yenilenebilir enerji kaynakla-
rinin siirekli olmamasi entegrasyonu zorlu bir hale getirmektedir. Yenilenebilir enerji
kaynaklarindanki belirsizlige ek olarak, elektrik spot piyasalarindaki belirsizlik, ye-
nilenebilir enerji kaynaklarinin yonetimindeki zorlugu arttirmaktadir. Yenilenebilir
enerji kaynaklarinin siireksizligi ile basa ¢ikmak icin enerji depolama sistemlerinin
uygulanmasi gerekmektedir. Pompaj depolamali hidroelektrik santralleri su anda bii-
yiik olcekli enerji depolamanin en uygun seklidir. Yenilenebilir enerji sislemlerinin
pompaj depolamali hidroelektrik santraller ile birlikte ¢alistiritlmasi hibrit sistemle-

rin verimliligini arttirmaktadir. Bu calismada, bir riizgar-hidro hibrit sistemi (RHHS)
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ele alinmis ve varsayimsal bir vaka calismasi i¢in optimum calisma stratejileri ge-
listirilmistir. RHHS nin gelirini artirmak i¢in, giin 6ncesi spot elektrik piyasasindaki
elektrik fiyatlarini tahmin etmek i¢in uzun kisa vadeli hafiza (UKVH) ag1 gelisti-
rilmistir. UKVH agimin yam sira, elektrik fiyatin1 ve mevcut riizgar enerjisini girdi
olarak kullanarak optimum ¢alisma programlart sunan ve RHHS nin maksimum geli-
rini elde eden bir optimizasyon modeli gelistirilmistir. UKVH aginin ve optimizasyon
modelinin etkilerini arastirmak i¢in farkli senaryolar olusturulmus ve calistirilmigtir.
Elde edilen sonuclara gore, riizgar tiirbinlerinin elektrik fiyatinin bagarisiz tahminin-
den kaynaklanan kayb telafi ettigi goriilmektedir. Bu nedenle, riizgar tiirbini sayisin-
daki artig, kaybin azalmasini saglamaktadir. Ancak, bu ¢calismada analiz edilen riizgar
tiirbin enerji araliginda (10 MW ile 500 MW aras1), RHHS deki pompa ve hidrolik
tiirbinin operasyonel programlarinin degismedigi goriilmiistiir. Riizgar tiirbinleri ta-
rafindan iiretilen enerji, suyu iist rezervuara pompalamak i¢in kullanildiktan sonra

geriye kalaninin dogrudan sebekeye satildig1 gozlemlenmistir.

Anahtar Kelimeler: Yenilenebilir Enerji, Optimizasyon, UKVH, Elektrik Fiyat Tah-

mini, Riizgar-Hidro Hibrit Sistemler
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CHAPTER 1

INTRODUCTION

The development of nations depends on the energy used. Thus, energy demand is
increasing continuously. Conventional energy sources do not exist everywhere, and
they will be even scarcer in the future. Also, due to the negative impacts of con-
ventional energy sources on the environment, their use keeps on decreasing globally
(Panwar, Kaushik and Kothari, 2011). One of the most current concerns of the World
is climate change. One of the reasons for climate change is greenhouse gases that
are the result of fossil fuel power plants. Instead of conventional energy sources, re-
newable energy sources have risen to prominence in recent years. Currently, many
governments support renewable energy investments since they are environmentally
friendly and infinite. Also, the integration of renewable energy into the energy bud-
get of a country increases its energy security by reducing energy imports from other
countries. However, renewable energy sources depend on season, weather conditions,
and time. Likewise, energy demand is variable. Thus, the storage of renewable energy

sources 1s a necessity, and their direct storage is not possible.

The cost of renewable energy systems was higher than the cost of fossil fuels, so
renewable energy systems could not compete in the market for many years (Timmons,
Harris and Roach, 2014). Only hydropower has competed with fossil fuels for a
long time, but unless the necessary precautions are taken, hydropower projects have
some negative social and ecological effects on people and the project area (Kentel and
Alp, 2013; Somaraki, 2003). On the other hand, they have many benefits such as flood
control, water supply, low-cost energy generation, and recreation lands (Hogeboom,

Knook and Hoekstra, 2018).

Apart from hydropower, wind energy become a key renewable energy option due



to technology advancement and cost reduction in its establishment (IRENA, 2019).
However, the intermittent nature of the wind brings serious problems and decreases
the efficiency of energy systems. It negatively affects the grid stability and decreases
the revenue of the energy seller due to not fulfilling the proposed operational schedule
in the electricity spot market (Angarita and Usaola, 2007). The operation of wind
power plants should be coupled with energy storage systems in a hybrid manner to

provide the maximum benefit.

Energy storage systems are powerful solutions to cope with the intermittent nature of
wind power. They allow storage of the generated wind energy to be used whenever
needed or the most beneficial. Currently, there are many energy storage technolo-
gies, including pumped storage hydropower, thermal energy storage, compressed
air energy storage, flow battery storage, flywheel energy storage, superconductor
magnetic energy storage, supercapacitor energy storage and electrochemical batter-
ies (Antal, 2014). However, pumped storage hydropower among all is the only
commercially proven large scale energy storage technology (Deane, Gallach6ir and
McKeogh, 2010; Kapsali and Kaldellis, 2010; Sivakumar, Das, Padhy, Kumar and
Bisoyi, 2013). In this study, the pumped storage hydropower is used as the stor-
age system. In pumped storage hydropower, water is pumped to the upper reservoir
to allow the storage of surplus electricity in the form of the potential energy, and
water is released through a turbine to allow the transformation back to electricity
(Gimeno-Gutiérrez and Lacal-Arantegui, 2013). In this way, the pumped storage hy-
dropower sells the energy when the prices and the demand are high, and buys the
energy when the prices and the demand are low to make a profit. When the pumped
storage hydropower and the wind power are combined in a system, the pumped stor-
age hydropower can benefit the availability of free energy generated by wind turbines
to pump the water to the upper reservoir (Ghaisi Rad, Rahmani, Gharghabi, Zoghi,
Hossein Hosseinian and Hossein, 2017). The described system, which is called the
wind-hydro hybrid system (WHHS), provides the efficient management of wind en-
ergy. In addition to that, it increases the revenue of the pumped storage hydropower

plant by decreasing the energy that is bought from the grid.

In Turkey, according to OECD (2019), energy import satisfies more than 80% of

the total energy demand. To decrease the energy import, the integration of the wind



and other renewables to the national grid is important. One of the alternatives to the
convenient integration of wind power is WHHS that can be built by using current

cascade hydropower plants or building new pumped storage hydropower plants.

In the scope of this thesis, a hypothetical WHHS is considered, and an optimization
model is developed to maximize the revenue of the WHHS. Moreover, to increase the
performance of the WHHS in the electricity spot market, a long short-term memory
network (LSTM) is developed, and electricity prices in the market are forecasted. In
the electricity spot market, only day-ahead operations are considered to maximize
the revenue. In addition to that, the designed WHHS is assumed to be a closed-loop
(off-stream) system. In other words, all inflows and outflows to and from the system

are ignored.

To investigate the results of the optimization model and LSTM network, different
scenarios are created and run. It is found that the LSTM network is beneficial when
the electricity prices do not have abrupt changes and increases revenue. However, in
Turkey, the abrupt changes are very common, and future electricity price prediction
is challenging. Second, it is observed that the increasing penetration of the wind

turbines decreases the grid dependency and increases the revenue of the WHHS.

The thesis consists of six chapters. In Chapter [2| the literature review is presented.
In Chapter [3|the methodology of developed models and mathematical representations
are provided. In Chapter @] an implementation of the methodology on a case study
is presented. Results and discussions of the case study are provided in Chapter [5] and

finally, conclusions are given in Chapter [6]






CHAPTER 2

LITERATURE REVIEW

In the scope of this thesis, an optimization model to determine the best daily operation
strategy is developed for a WHHS. The optimization model takes hourly electricity
price and hourly wind energy as inputs. The first input, hourly electricity prices are
declared in the Turkish Electricity Market. We forecast the electricity prices with the
LSTM, which is a special type of artificial neural network. The second input, the
wind energy, is taken from NASA MERRA-2 database. A brief information about
these concepts and previous studies are presented in this chapter. In Section [2.1]
pumped storage hydropower plants, wind power plants and WHHS are explained.
The energy generated or used in power plants can be bought or sold in the electricity
spot markets. In Section [2.2] Turkish Electricity Spot Markets are described. The
LSTM model, which is used to forecast the electricity prices in the spot market, is
introduced Section [2.3] Lastly, a literature review of the wind-hydro optimization

model is presented in Section [2.4]

2.1 Pumped Storage Hydropower Plants, Wind Power Plants, Wind-Hydro
Hybrid Systems

Pumped storage hydropower plants are the most viable large scale electricity storage
alternatives. They are especially necessary to regulate the intermittent character of
renewable energy sources such as wind and solar. Wind power plants are used for
converting the mechanical energy of wind to electricity. Wind energy is a renewable
energy resource that has less environmental impact compared to fossil fueled power

plants. WHHS combines the pumped storage hydropower plant and wind power plant

5



and provides more efficient energy generation. These power plants are explained in

the following sections.

2.1.1 Pumped Storage Hydropower Plants

Pumped storage hydropower plant (PSHP) has two reservoirs unlike conventional
hydropower plants. Water moves from the lower reservoir to the upper one or vice
versa. This can be achieved by a pump hydro turbine. A pump hydro turbine is a
machine that can work in the turbine mode or the pump mode. The key idea behind
PSHPs is that when electricity prices are low, it pumps the water from the lower
reservoir to the upper reservoir, and when electricity prices are high, it turbines the
water from the upper reservoir. In this way, although the net energy generation is

negative, more revenue can be achieved from the same amount of water.

A typical PSHP layout, shown in Figure 2.1} has the following components: Two
reservoirs that are linked, turbine shutoff valves, tunnels for water movement in
reservoirs, a transmission switchyard, transmission link and hydro machinery that in-
cludes transformers, a motor-generator and a pump-turbine (U.S. Army Corps of En-
gineers, 2009). Motor-generator is used to convert electrical energy into mechanical
energy or vice versa. Pump-turbine moves fluids or extracts energy from it depending

on the working mode.

Transmission
Connection

Upper
Reservoir

Upper Water

Lower
Conduit

Reservoir

\7 Lower Water

Conduit

Power
Plant

Figure 2.1. Typical PSHP Layout (U.S. Army Corps of Engineers, 2009)

PSHPs are net energy consumers. Yang and Jackson (2011) states that typical PSHP
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recaptures 70-80% of the input energy. So, it means that if water with a potential of
100 MWh energy exists, approximately 70 to 80 MWh will be recaptured after the
PSHP operations. The main reason for this loss is friction losses in waterways and
pump-turbine equipment. Since PSHPs generate negative energy overall, they can be

thought as transmission facilities (Miller, 2009).

Formerly, PSHPs are used to provide a balanced load on a system. They help to man-
age considerable energy generated from thermal power plants. According to Miller
(2009), it 1s the largest and most effective grid energy storage. It also provides net-

work frequency control by adjusting power operations immediately.

There are two main types of PSHP, pure PSHP and pump-back PSHP (Deane et al.,
2010). Pure PSHP is named as ’closed-loop’ or ’off-stream’, as well. In the pure
PSHP, there is no inflow to the upper reservoir other than water pumped from the
lower reservoir. A pure PSHP could be fully separated from the natural water sys-
tem. Pump-back PSHP uses both the natural flows and pumped water to fill its upper
reservoir. Types of PSHPs are shown in Figure 2.2] In this thesis, added value of
electricity price estimation on the revenue of a closed-loop PSHP is evaluated. Since
it is simpler to model a closed-loop, and research on wind hydro hybrid systems for

Turkey is limited, we choose to initially work on this system.

Upper Resevoir

\

Upper Resevoir Upper Dam

Lower

Penstock Resevoir

Lower Dam

,/l
Powerplant

Figure 2.2. Pure PSHP on left and pump-back PSHP on right (?)

According to IHA (2018), there exist a high interest in PSHPs in many countries, es-
pecially in China. PSHPs are thought of as key elements to integrate renewable energy

sources into grid systems. The total global capacity of PSHP was stated as roughly
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161 GW in the World by THA (2018). Figure[2.3|shows 5 largest total PSHP installed
capacities. Due to planned high integration of wind and solar energy resources, there
will be a need for operational flexibility. To provide this flexibility, the total installed
capacity of PSHP is expected to increase. Figure[2.4]shows projected PSHPs installed
capacities by IHA (2018) up to 2030. Also, PSHPs will be installed in Turkey in order
to eliminate the constraints of increasing renewable energy on the grid, as stated in

the eleventh development plan (Presidency of the Republic of Turkey, 2019).
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Figure 2.3. PSHP Installed Capacities Trend in the World (IHA, 2018)

2.1.2 Wind Power Plants

The wind turbine is a machine that is used for converting the natural energy resource,
wind into electricity. It is kwown as one of the oldest energy resources, and used for
drainage and irrigation purposes, initially (Ragheb, 2012). A typical modern wind
turbine’s capacity changes in the range of 1.5 to 5 MW. Wind turbines having larger
capacities are used in a large grid system, frequently in the United States and Europe

(James F. Manwell, Jon G. McGowan, 2009).

Wind creates an aerodynamic force on the rotating shaft that leads to the production of

torque and mechanical energy. This mechanical energy is converted to electricity by
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Figure 2.4. PSHP Projected Installed Capacities in the World (IHA, 2018)

a generator. The wind turbine can generate electricity instantly if enough wind speed
exists. However, wind energy can not be stored to be used afterward, unlike most
other fossil-fueled power plants. Therefore, energy generated from wind turbines os-
cillates parallel to wind speed. A typical wind turbine has the following components:
the rotor (includes the support hub and blades), the electrical system (includes ca-
bles, switchgear, transformers, electronic power converters), the drive train (includes
shafts, gearbox, mechanical brake, and the generator), the main frame, the tower and

the foundation. The main components of the wind turbine are shown in Figure [2.5]

A typical wind turbine power curve is shown in Figure 2.6] To generate useful energy
from a wind turbine, there should be a minimum sufficient wind speed, the cut-in
speed. The maximum power output from a wind turbine is named as rated wind speed.
There is a cubic relationship between wind speed and energy. That is, as wind speed
doubles, the turbine generates eight times more power. However, during the blowing
of high wind speed, there could be machine damage, so the turbine’s maximum speed
is limited by the cut-out speed. These cut-in, rated and cut-out speeds are determined

by engineering designs considering safety constraints.
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Figure 2.5. Main Components of a Wind Turbine (James F. Manwell, Jon G. Mc-
Gowan, 2009)

According to GWEC (Wind Global Council Energy) (2019), the global wind energy
capacity is 591 GW in 2018. Figure[2.7|shows the total wind power plant installations
by countries for onshore and offshore types. China and the United Kingdom has
the largest shares for the onshore and offshore installations, respectively. Figure [2.8
shows the historic development of wind power plants total installations in the World.
While Compound Annual Growth Rate (CAGR) is decreasing with years, share of
offshore in total installations increases. In Turkey, 497 MW onshore wind power
plant installations is added in 2018. The total installed capacity of Turkey is 7370

MW, with no offshore installations.

2.1.3 Wind-Hydro Hybrid Systems

Wind power plants and PSHPs can be operated as a combined system with the joint

operation. This joint operation is called a WHHS. WHHS has many advantages when

10



Rated wind speed
Typical average wind speed Cut-out wind speed

Cut-in wind speed (storm protection shutdown)

i
I 1
| 1
| 1
e 1 | | |
| 1 ] |
1 1 1 1
g I [ |
I | 1
= 15 - gt g e ...
E 1 ] I [
| 1 I
g ] I I 1
& 104 : -t - e
1 | [
1 | |
Hl[ 30 PEE—— O | . |
] 1 |
I | |
| | |
0.0 —— 7 I T 2l
8] 5 10 15 20 25

Wind Speed (m/s)

Figure 2.6. Typical Wind Turbine Curve (Zayas et al., 2015)

compared to the uncoordinated operations of PSHP and wind power plant. In this
section, the working mechanism of the WHHS is explained, and some example stud-
ies are presented. Figure 2.9 shows a typical WHHS. It includes a higher reservoir, a
lower reservoir, a pump-turbine, penstocks, and wind turbines (Anagnostopoulos and

Papantonis, 2012).

Korpaas, Holen and Hildrum (2003) points out that wind energy is an important sup-
port for conventional energy resources. However, the intermittency characteristic of
wind power limits its maximum integration to the grids. Wind power plant owners
can not foresee the hourly production amounts, and this creates a compelling situa-
tion during the market operations. An energy storage system will give flexibility to

the owner, and market operations can be carried out in an improved manner.

To increase the efficiency of PSHP and to overcome to the storage of wind energy
problem, the WHHS is a powerful alternative solution. According to Benitez, Benitez
and van Kooten (2008), to provide power, when the wind is not blowing and there is a
need for peak-load power, wind power plant with hydraulic energy storage is an ideal

system. In this way, continuous energy supply to the grid can be achieved.
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at the bottom) (GWEC, 2019)

Typically, during the daytime, hourly electricity prices are low while they are high
in the nighttime. So, if the energy generated from wind turbines is used to pump the
water to the upper reservoir during low electricity price hours, and energy generated
through releasing the water from the upper reservoir to the lower reservoir is sold to

the grid when the prices are high, then more revenue can be achieved.

Integration of wind turbines to the storage facilities provides the following benefits
(Loutan and Hawkins, 2007): making more revenue by taking advantage of the price
difference in off-peak and on-peak hours, providing ancillary services like regulation,
giving flexibility to grid operations and mitigating large wind energy ramps. More-
over, storing energy smooths the system demand curve, and make a more stable grid

(see Figure[2.10)). Storing energy when the system demand is low, decreases the peak
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demand. Smoother system demand curve provides easier management of the grid and

integration of wind energy to the grid (Ibrahim et al., 2011).

There are existing and ongoing studies about WHHS both in the World and Turkey.
In the following paragraphs, example studies are presented. These studies explain the

advantages of WHHS through case studies.

Jaramillo, Borja and Huacuz (2004) investigated hypothetical facilities in Mexico.
They studied the performance of the WHHS by taking into account the capacity fac-
tors of the wind farm and the hydroelectric power plant. They concluded that the
renovation of hydro projects with wind energy integration is an important opportu-

nity for WHHS in Mexico.

Bueno and Carta (2006) proposed the installation of a wind power integrated PSHP
on the Island of Gran Canaria. Their main purpose was to solve the problem of re-
stricted penetration of wind sources to the grid system. They created an economically
optimal model for the wind-powered hydro pump system by using existing water
reservoirs. They specified that when all alternative external approaches were ana-
lyzed, the proposed system is the most efficient one, also it is clean energy. They

suggested applying these systems in the other Canary Islands as well.
Al Zohbi, Hendrick, Renie, Bouillard and Zohbi (2015) presented a wind power inte-
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Figure 2.9. Schematic Representation of WHHS (Anagnostopoulos and Papantonis,
2012)

grated PSHP to supply energy demand in Lebanon. Their study is the first application
of wind-hydro PSHP in Lebanon. They specified that the proposed system performed
well in terms of supplying energy demand. They claimed that the integration of wind

power enhanced the sustainability of the Lebanese electricity system.

Kapsali and Kaldellis (2010) applied a wind-hydro model for the Island of Lesbos.
Their model solves restricted wind energy contribution problem, and exploits wind
energy rejection by the help of the PSHP. The authors specified that this model paves

the way for future wind energy investments in the Island.

Papaefthymiou, Karamanou, Papathanassiou and Papadopoulos (2010) investigated
the operation of the hybrid power station with a simulation model in Ikaria for 2012.
They run the simulations for different hydrological and wind scenarios. Their work
showed that wind energy penetration in the Island’s energy balance is highly efficient
with the hybrid power station. Also, they stated that instead of expensive conventional

peak power plants, the hybrid power station could provide the firm capacity to the
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Figure 2.10. Effect of Energy Storage on System Demand (Ibrahim et al., 2011)

Island.

As can be seen from the studies that are presented in the above paragraphs, wind-
hydro hybrid applications were analyzed in Islands, mostly. Since islands are isolated
systems, hybrid systems can be applied in an easier way. In general, islands have
high wind energy potential, and they can benefit from the sea for the pumped storage
hydropower plant. In addition to that, since islands have smaller grid systems, WHHS
can be integrated smoothly. In this thesis, the WHHS is suggested for a region in
Turkey. Since Turkey has a much more complicated grid system compared to an
island, the integration of these hybrid systems to the grid is more compelling. This
is one of the reasons for the evaluation of a closed-loop PSHP in this project. A few

studies about the WHHS in Turkey are presented in the following paragraphs.

Dursun, Alboyaci and Gokcol (2011) evaluated the efficiency of a combined WHHS
to the Marmara region intending to supply the energy demand. In their system, after
meeting the demand, excess energy is stored to be used when it is needed. It is

realized that the proposed system fulfills the energy demand with less cost compared
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to the existing systems. This study is the first scientific study of a WHHS in Turkey.

Kose and Kaya (2013) proposed a WHHS to supply the energy demand of the Konya
water treatment plant. They found that their proposed hybrid model can cover the
energy demand of the plant. They noticed that the energy demand in 10 months in a
year could be provided only from the hydropower plant operation. For the other two
months, the wind power plant operation is necessary. Also, just 4 of 10 months, the
hydropower plant can provide the energy demand with 10% safety margin. Therefore,
they stated that the hybrid system operation is essential to guarantee uninterrupted

energy production for the demand.

Kaya (2012) studied on supplying of the energy need of Alibeyhiiyiigii irrigation
pumps by a WHHS. He determined the most efficient wind turbine and PSHP ca-
pacity. In addition to that, a feasibility study was performed. He concluded that the
WHHS is quite a suitable solution to prevent fluctuations in wind energy. In Turkey,
there is not any WHHS yet, and research on efficiency of these systems is limited.
Also, a limited research study exists about these systems. Therefore, we think that

this study will be important guidance for the integration of these systems in Turkey.

2.2 Turkish Electricity Spot Markets

There are two main challenges of electricity. Firstly, its storage is difficult and expen-
sive. Secondly, supply and demand amounts must be equal all the time (Yarici, 2018).
To balance the supply and demand considering the system constraints, there should
be spot markets. Turkish electricity spot market consists of three markets; intraday,
day-ahead and balancing markets. While the balancing market is operated by TEIAS,
day-ahead and intraday markets are operated by EPIAS. TEIAS is the market opera-

tor, and TEIAS is the transmission operator in Turkey.

In the day-ahead market, all the trading activities are performed for the next day. The
purpose of this market is to plan and balance the generation and consumption values
in the previous day (i.e., one day ahead). In the day-ahead market, energy sellers
deliver their offers for each hour of the next day. In the same manner, energy buyers

submit their needs for each hour of the next day. The market operator takes these
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bids, and sort them from the lowest to the highest for each hour. After intersecting
the supply and demand curves, shown in Figure [2.11] Market Clearing Price (MCP)
is determined. The day-ahead market offer period covers 24 hours of the next day
from 00.00 to the following day 24.00. The due date for the submission of the offers
is today’s 12.30. The results are announced at 13.30. After half an hour of objection

time, final results are declared at 14.00 (Yarici, 2018).

Supply curve

------------------ Equilibrium

Market price

Equilibrium quantity Quantity

Figure 2.11. Determination of MCP (Kur, 2019)

The intraday market provides additional opportunities to market players. It is the
extension of the day-ahead market. Its main purpose is the mitigation of imbalances.
Agreements in the intraday market could be performed up to one hour before the
physical delivery. Market players have a chance to adjust their positions after the
day-ahead market closes. The intraday market opens four hours after the final results
are announced in the day-ahead market. In the intraday market, market players offer

new prices and quantities for desired hours.

The balancing market’s primary purpose is to guarantee system security. After system

supply and demand are balanced in the day-ahead market, energy producers could
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face some problems (i.e., malfunctioning of turbines or other equipment, etc.), and
they could not fulfill their commitment. In this case, imbalances occur in the system.
TEIAS operates the balancing market, so that system frequency is kept in the desired
value. The market players that are capable of buying or selling a minimum of 10
MW within 15 minutes are compulsory to take part in the balancing market. Trading
operations in the balancing market are performed with System Marginal Price (SMP).
An example timeline for the spot markets is shown in Figure 2.12] This timeline

shows the market operations schedule for 02.01.2020.

01.01.2020 02.01.2020
I I I

00:00 12:30 13:30  14:00 18:00 00:00 12:00 23:00 00:00

Dgejl'ime for Announcement of
Submission of Offers Final Results

for Each Hour of
02.01.2020 starting
from 00:00 to 24:00
Announcement of I I
Results

l | | Balancing Market |
Day Ahead Market Intraday Market

Figure 2.12. Scheduling of Market for 02.01.2020

If the system has an energy surplus, MCP is greater than SMP; otherwise, SMP is
greater than MCP. If offered productions in the day ahead and balancing markets
could not be fulfilled, then some penalties are applied to the market players who
cause the imbalances. Market players get maximum revenue by fulfilling their offers
in the day ahead and balancing markets (Aksoy, Eryigit, Hashimova, Isbilir, Avsar,
Koksal and Terciyanli, n.d.).

2.3 Long Short-Term Memory Networks

Conventional artificial neural networks (ANN) have been used for the solution of real-
life problems for a long time. They are powerful tools to simulate non-linear relation-
ships. A recurrent neural network (RNN) is a type of ANN. RNN creates feedback
connections in input data, and this provides significant improvements compared to

conventional ANN. RNN has the ability to execute more complicated computations
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(Garrido, 2012) and RNN has been widely used to predict time series.

RNN is trained using input data that are in the form of a sequence. It can learn
time-dependent relationships in different sections of the input. For instance, when a
sentence is given as an input, RNN can recognize the relationship between different
words. In this way, it can learn the grammar rules of the used language (Vesely,

Burget and Grézl, 2010).

During the training of standard RNN, some problems may occur, such as vanishing
or exploding of the gradients (Pascanu, Mikolov and Bengio, 2012). Gradients are
the sum of the derivatives of the cost function, which measure the performance of the
network, with respect to the model parameters such as weights and biases through
timesteps. Gradients are used to update the model parameters and are propagated
from the last layer to the initial layer in a backward sweep. They are exposed to
many matrix multiplications due to the chain rule. When they are carried to earlier
layers, if they are smaller than one, they have the potential to shrink exponentially.
This leads to the vanishing gradient problem, and learning of the model becomes
impossible. The other scenario occurs when the gradient has a value larger than one,
then it has the potential to get too large. This creates an exploding gradient problem.
These problems decrease the capability of RNN’s learning of long time relations in
the input patterns. To suppress these problems, Hochreiter and Schmidhuber (1997)
developed a special type of RNN, which is the LSTM. Operations in LSTM networks
are controlled by its gates, and this prevents the gradient problems. LSTM network
also has the capability to build a relationship between a wide range of time steps, even

in noisy data by making use of short term dependencies.

Roche and Mcnally (2016) applied RNN and LSTM models to predict the price of
Bitcoin. The LSTM model achieved a higher accuracy value than the standard RNN.
They also implemented a popular ARIMA model for the same data. Non-linear mod-

els, LSTM and RNN, outperformed the ARIMA model.

Sak, Senior and Beaufays (2014) compared the performance of the deep neural net-
work (DNN) and LSTM networks on a large vocabulary speech recognition project,
which is the Google English Voice Search. This is the first implementation of LSTM

networks on an extensive vocabulary speech recognition. They indicated that LSTM
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architecture resulted in better performance than the DNN model.

Mandal, Senjyu, Member and Urasaki (2007) tried to forecast short-term electricity
prices using RNN based on similar days (SD) method in PJM, which is a regional
transmission organization in the District of Columbia. SD method takes the infor-
mation of days similar to the forecast day. So, the authors create an architecture that
integrates the RNN model with the SD method to obtain better results. At the end
of their study, they found that the RNN technique outperforms the SD method. The
proposed RNN model is capable of forecasting the peak values but not the large ones.
Also, they notice that the model predicts weekend better than weekdays due to high
volatility in PJM prices.

Jiang and Hu (2018) used an LSTM model for 24 hours ahead of price forecast in
Australia and Singapore markets. They used system demands, historical prices, hour
of the day, day of the week, week of the year and holidays information as inputs. The
performance of the LSTM model is compared with the performance of four popular
methods, which are BP-ANN, WT-ANN, PSO-ANFIS and SARIMA. The results
indicated that the LSTM model outperforms the other methods.

Anbazhagan and Kumarappan (2013) applied an RNN model to forecast electric-
ity market prices in Spain. The created RNN model is compared with different ap-
proaches to evaluate its accuracy. They used 16 different sets of lagged prices as input
features based on correlation analysis. According to their results, the RNN model is
selected as the best model in terms of accuracy, computation time and model com-
plexity. In this thesis, various models are built using different lagged prices and eval-
uated in terms of their price estimation performances. The one that shows higher

performance is used for the optimization model input.

Hong and Hsiao (2001) developed three RNN models to forecast locational marginal
prices (LMP) on weekdays, Saturday and Sunday. They selected historical LMPs,
system loads, system operating conditions, transaction periods and net-tie flows as
inputs of the RNN model. Due to the similar shape of the LMP pattern on weekdays,
Saturdays and Sundays individually, three different models were created. It was found

that the proposed RNN models could efficiently forecast LMPs.
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2.4 Optimization Models for Wind-Hydro Hybrid Systems

To analyze benefits of WHHS, many studies are performed in the literature. This

section briefly explains the important points of these previous studies.

Crespo-Vazquez, Carrillo, Diaz-Dorado, Martinez-Lorenzo and Noor-E-Alam (2018)
developed a model to attend to the day-ahead, intraday and balancing markets under
the uncertainties of intermittent wind and unforeseen electricity prices. They generate
scenarios for market prices. The scenario based on LSTM network model performed
the best results in terms of net income. Scenarios are also generated for wind energy.
Their analysis showed that both uncertainties in wind energy and market price affect
the net income in a similar manner. They explored that the proposed scenario gen-
eration techniques could be combined with a model predictive control framework to
create a dynamic decision-making tool for an extensive pool market. They also sug-
gested that scenario generation methods combined with machine learning techniques

are powerful to cope with uncertainties in wind speed and electricity prices.

Castronuovo and Lopes (2004a) created an optimization model to maximize the 24-h
operational profit of the wind-hydro power plant. The solution of the optimization
problem gives an operational schedule of wind, hydro turbine and pump units for the
next 24 hours. Since the system is assumed to be a closed-loop system, no inflow and
outflow are considered. The wind power was assumed to be a stochastic quantity with
two hourly series, such as average and standard deviation of the wind power. Based
on the model, random samples are generated. Each sample represented a wind power
scenario. For each scenario, the optimization model was solved. The integration of
the water storage increased the wind power plant profit. While during the high price
periods, the hydro generation supports the wind park to provide more energy to the

grid, during the low price periods, the pump units increased the water reservoir level.

Benitez et al. (2008) proposed an optimization model to evaluate the integration of
intermittent energy into the grid. Their model firstly found the best allocation of
power generation from a variety of sources by minimizing the total operational costs.
Secondly, the energy storage capabilities of reservoirs and the intermittency of wind

power was integrated with the constrained optimization method. Since storage facil-
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ities are necessary for wind penetrations to the grid, the model leads to the design
of profitable electricity systems. Thirdly, the model predicts the best level of new

capacity for any level of wind penetration.

Ghaisi Rad et al. (2017) suggested a new approach to determine the optimum number
of wind turbines to be integrated with the hydro pump storage unit, to get maximum
net income. To generate wind and price data, the Monte Carlo method was applied,
and the scheduled operation presented. The shorter payback period of the pump stor-
age power plant enhanced the longer payback period of the wind power plant. The
approach was applied to various electricity prices and wind energies. It is concluded
that the results of the study can help the wind hydro hybrid plant owners to find the

exact electricity price and wind energy.

Castronuovo and Lopes (2004b) described an optimization model to find the best op-
eration strategy of combined wind-hydro pumping storage power plants. The solution
to the optimization problem gave the hourly operation of wind-hydro pumping stor-
age power plants. They concluded that the proposed model could be used to help
the hydraulic design of the plant by computing the optimal equipment properties by

neglecting all inflows and outflows.

Cruz, Pousinho, Melicio and Mendes (2014) proposed a mixed-integer linear pro-
gramming model to have the optimal scheduling of a closed-loop pumped-hydro sys-
tem with a wind farm. The results showed that this coordinated operation provides
more profit to the generation company during trading in the day-ahead market. Addi-
tionally, the proposed model highly reduces wind energy curtailments and decreases

penalty risks due to energy deviations.

Song, Zhang, Li, Zeng and Zhang (2013) depicted the joint operation mode of the
wind farm and the closed-loop pumped storage hydropower plant to cope with errors
in predicting wind power values that affect wind power integration negatively. The
purpose of their study was to reduce the operational risks and increase financial ben-
efits. Also, the proposed optimization models showed that total revenues are higher

in the joint operation mode rather than independent operations.
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Kaldellis and Kavadias (2001) developed a methodology for the optimal closed-loop
wind-hydro solution to find the most beneficial configuration of renewable stations.
The study showed that this methodology has multiple advantages. Firstly, the poten-
tial for renewable energy penetration reaches high values. Secondly, exchange losses
were minimized, including fuel imports. Thirdly, the environmental effects of com-
bustion engines were mitigated. Lastly, a high amount of the wind energy surplus was

diverted to the desalination plant to be used in clean-water production.

Hering, MoSna, Janecek and Hrycej (2013) compared the use of a hydropower plant
with a reservoir and pumped storage hydropower (PSH) in a WHHS. Selection among
these two options depends on the average load to supply, the cost of energy and hy-
drological constraints. The authors stated that PSH is efficient for minimizing costs.
Also, PSH brings environmental benefits. For instance, the same installed capacity

PSH uses less reservoir area and can be operated with smaller reservoir volume.

Garcia-Gonzélez, de la Muela, Santos and Gonzalez (2008) demonstrated an opti-
mization model for the joint operation of a wind farm and a closed-loop pumped
storage hydropower plant. To deal with uncertainties in the spot market, a two-stage
stochastic programming approach was suggested as a powerful tool for the decision-
making process. The proposed model could guide the investors about the wind farm

and pumped storage facilities during the market operations.
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CHAPTER 3

METHODOLOGY

In the scope of this thesis, an optimization model is built to determine the daily op-
eration schedule of a WHHS to obtain maximum revenue. Figure shows the
flowchart of the methodology. The two important inputs of the optimization model
are hourly available wind energy and hourly electricity price. The first input, hourly
wind energy, is derived using wind speed data that is taken from NASA Modern-Era
Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), which
is available on the Internet database. The second input, hourly electricity price, is
forecasted by a LSTM network, which is a special type of recurrent neural network.
Calculating wind energy from wind speed is described in Section [3.1] Forecasting
hourly electricity prices with the LSTM network is explained in detail in Section [3.2]
Lastly, the development of the optimization model for the WHHS is presented in
Section[3.3
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Figure 3.1. Methodology Flowchart

3.1 Calculation of Wind Energy from Wind Speed Data

The sun is the beginning source of the earth’s wind resource. Solar radiation in-
duces unbalanced heating of the earth, and that generates pressure differences across
the earth’s surface. These pressure differences on earth’s surface constitute winds.
Movement of air in the atmosphere, due to unbalanced heating of the earth, is af-
fected by the rotational movement of the earth. In addition to that, variations in the
atmosphere movements are increased by seasonal changes (James F. Manwell, Jon G.
McGowan, 2009). Eventually, wind speeds change with respect to both the location
and the time. To obtain wind energy to be used in the optimization model, MERRA-2
data is used as the source of wind speed at the desired location. In the following para-

graphs, information about MERRA-2 data, wind speed extrapolation and estimation

of wind energy are explained.
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MERRA-2 data covers data from 1980’s to a few weeks behind real-time. MERRA-2
uses a modern satellite database for the meteorological data assimilation (Aeronautics
and Information, 2017). MERRA-2 data contains a large number of products. Among
all products, we used M2TINXSLV (MERRA-2 tavgl_2d_slv_Nx: 2d, 1-Hourly,
Time-Averaged, Single-Level, Assimilation, Single-Level Diagnostics V5.12.4) for
the wind speed. The spatial resolution of the data is 0.5° x 0.625°. This resolution
is quite low to be used in a wind power plant system design. However, since this
study deals with the comparative evaluation of the revenue of a hypothetical WHHS
when electricity prices are estimated by an LSTM network, low-resolution wind data
was sufficient. MERRA-2 data set has been used in the literature for similar studies

(Ritter, Shen, Cabrera, Odening and Deckert, 2015; Olauson and Bergkvist, 2015).

Wind speed data is in the netCDF format, and NASA’s Goddard Earth Sciences Data
and Information Services Center (GES DISC) website allows us to download files in
a subset form. The desired time and the spatial coverage or points are specified, and
then the website creates download links for each day for the defined time interval.
Each netCDF file contains 24 records and five parameters, which are the latitude, the
longitude, the time, the eastward wind speed at 50 meters (USOM), and the northward
wind speed at 50 meters (VS0M). After all netCDF files are downloaded, wind speed
data for September 2017 to August 2018 period are extracted with a Python code.
The main library used in the Python code is defined in Table[3.1]

Table 3.1. Used Library for Wind Speed Data Extraction

Library Description Application
netCDF4 | Python interface to the netCDF C library. | Wind speed data is extracted from MERRA-2 netCDF file.

As explained in Aeronautics and Information (2017), the downloaded wind data is
composed of eastward and northward wind vectors at 50 meters, respectively U50 and
V50. The U wind component is parallel to the x-axis, which is the longitude. Positive
U wind values represent the wind coming from the west, and negatives represent the
wind coming from the east. The V wind component is parallel to the y-axis, which is
the latitude. Positive V wind values represent the wind coming from the south, and

negatives represent the wind coming from the north. Wind vector components are
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shown in Figure[3.2] Wind speeds are calculated using the Pythagorean Theorem:

Wind Speed = VU? + V2 (3.1)

N(0°), 90°
y

Wind Speed

v

W (270°), 180° E (90°), 0°

X

S (180°), 270°

Figure 3.2. Wind Vector Components

According to Kragh and Fleming (2012), to extract the maximum possible amount
of energy from the wind, the wind turbine should adjust its alignment so that the
rotor axis is aligned with the wind direction. In the modern wind turbines, there are
instruments for this adjustment. They adjust the nacelle, providing that the rotating
blades are always facing directly into the wind. In this way, the maximum possible
energy is generated. In this study, the calculated wind speeds are directly used in
wind energy estimation without considering their direction since it is assumed that

wind turbines adjust their alignment according to the direction of wind speed.

The attained wind speeds are at 50 meters above the surface. They need to be ex-
trapolated to the height of the wind turbine hub. To extrapolate the wind speed to the
hub height, the power-law expression is used in this study. The power law is a simple
model used to calculate the vertical wind speed profile. The power law is defined by

the following equation (James F. Manwell, Jon G. McGowan, 2009):

V) _ (i> ) (3.2)

where U (z) is the wind speed at height z, U(z,) is the reference wind speed at the ref-
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erence height z,., and « is the power-law exponent. The power-law exponent changes
with many parameters, such as elevation, time of the day, season, nature of the terrain,
wind speed, temperature, and several thermal and mechanical parameters. However,
these parameters affect the power-law exponent in a complicated manner, so they re-
duce the simplicity and applicability of the power law (James F. Manwell, Jon G.
McGowan, 2009). Therefore, an empirical expression proposed by Justus (1978) is
used in this study:

~0.37 - 0.088 n(U(2,))

Q= Z
1—0.0881 (—)
"\10

(3.3)

where the unit of U(z,) is m/s, and the unit of z, is m.

After wind speeds are extrapolated to the hub height, they can be used for calculating
wind energy to be used in the optimization model. Wind power of a turbine changes
with wind speed, and every wind turbine has a unique power curve that depends on
the technical details of the turbine. By using a power curve, the energy production of
a wind turbine can be determined without technical calculations of each component
of the wind turbine (e.g., the wind turbine rotor, electrical generator, gearbox gear
ratios). Wind turbine manufacturers derive a wind power curve for each manufactured
wind turbine by carrying out field tests. In this study, the power curve of a selected
wind turbine, General Electric (GE) 2.5 MW wind turbine (General Electric, n.d.), is
found from the catalog of the wind turbine manufacturers and used to calculate wind
energy. Wind energy is calculated by multiplying the power by the time interval.
In this study, the time interval equals one hour. For example, the power of 2 MW
in the one hour time interval produces 2 MWh energy. A Python code is written
to fit a polynomial function to the wind power curve (see Table [3.2). By using this
polynomial function, available wind energy is obtained for all time intervals of the

downloaded MERRA-2 wind speed data (i.e., from September 2017 to August 2018).

Table 3.2. Used Library to Fit a Function to the Power Curve

Library Description Application

NumPy | Python package for scientific computing. | A polynomial function is fitted to the power curve.
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3.2 Electricity Price Forecasting

The second input of the optimization model is hourly electricity prices. Hourly elec-
tricity prices are forecasted by using an LSTM network. The developed LSTM net-
work forecasts 24-hours time period forward (i.e., for the next day) by using 48-hour
time series. One LSTM network is developed to forecast electricity prices at each
hour of the next day. Thus, 24 LSTM networks are developed. However, all LSTM
networks have the same architecture and use the same input (i.e., electricity prices of
past 48 hours). The only difference is the output. First, some definitions are given
for a better understanding of the LSTM network. Then the selected hyperparameters
for this study are given. The hyperparameters are selected based on a trial-and-error

procedure and considering the duration of the simulations of the LSTM network.

Time series size specifies the number of hourly electricity prices that will be used in
forecasting. In this study, the time series size is selected as 48 hours. So, the LSTM
network takes 48 hours of hourly electricity prices as inputs to forecast the next day’s
electricity prices (see Figure[3.3). A diagram explaining the LSTM network is given
in Figure In Figure the second subscript of the x and h vectors, ranging

between 1 and S, represents the time series size. In our problem S = 48.

24 LSTM Networks

time
(hour)

t-48 t t+12 t+36
|

f

Input of the LSTM Network: Outputs of the LSTM Networks:

48 Hours of Hourly Electricity 24 Hours of Hourly Electricity
Prices Time Series Prices

Figure 3.3. LSTM Networks Input and Output

Batch size is the number of samples per gradient update (Chollet et al., 2015). All
training data is not preferred to be passed at once as suggested in Tan, Xiang and Zhou
(2015) and Merity, Keskar and Socher (2017) (see Figure [3.5). Thus, the training
dataset is divided into batches. The number of batches or the batch size is a parameter

that needs to be specified by the user. Also, it controls the frequency of the weight
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Figure 3.4. LSTM Diagram (Long Short-Term Memory Networks, n.d.)

update. At the end of each batch, the LSTM network updates the weights. In our
problem, we are using a total of 49680 patterns for training, and the batch size of the
LSTM network is selected as 128 based on trial and error. So, in one complete pass

of the training dataset, the weights are updated around 388 times.

The number of the LSTM units determines the size of the LSTM network output (see
Figure [3.4)). It affects the learning capacity of the network. A large number of LSTM
units provides a higher number of learned parameters, such as weights and biases.
In Figure the first subscript of the h, ranging between 1 and D, represents the
number of LSTM units. In our problem, three LSTM units are used to build the
LSTM network, so D = 3.

The number of the features is called the input dimension, as well. It is used to spec-
ify how many features affect the LSTM network output. The developed LSTM
model takes four inputs. In this study, lagged time serieses of electricity prices
are used as inputs. In Figure [3.4] the first subscript of the x, shown as C, repre-
sents the number of features. If the architecture given in Figure [3.4] is used (i.e,

Yi = f(Yes Y1, .o, Ye—as) for j = t + 12, 4+ 13, ..., + 36) then the LSTM network
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has one feature. If a series of e hour lagged price values are added as a second input
(e, yj = f((Ye: Y155 Yi-a8), (Yt—e) Yt—e—1, -+ Yt—c—a8)), then the LSTM network
has two features. We used unlagged plus three additional lagged price time series as

inputs, so, in our problem, the number of features, C'is four.

The number of epoch controls the number of the forward and backward pass of all
training samples in the LSTM network. For instance, one epoch means one forward
and one backward pass of all batches to update the weight matrix. In our problem,
the number of the epoch of the developed LSTM network is set to 5000. So, if all
epochs are completed, the number of updates of the weight matrix can be found by
multiplying the number of batches by 5000. However, a property of the coding library,
called early stopping, is used in this study. Early stopping is used to end the training of
the network if training is below a set threshold rate. That is, if the training loss, which
is the measurement of the discrepancy between the real value and the forecasted value
(Smola and Vishwanathan, 2008), cannot be improved, the LSTM network stops the
training and restore the best model weights. In this LSTM network, the value of the
early stopping is set to 25. That means, if the LSTM network cannot improve the loss
value more than the set threshold in 25 consecutive iterations, then it stops. The effect

of the number of epochs is investigated to avoid overfitting, as explained in Section
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The LSTM network is trained using the default optimizer of the library, Adam opti-
mizer, and mean square error (MSE) loss function. MSE is defined in Equation (3.4)).
During the training, the best model parameters that minimizes the training data error

are found.

K
_ 1 2
MSE = — ;(g; — i) (3.4)

where z; is the real value, y; is the output of the LSTM network and K is the total

number of the outputs or samples in a batch.

The LSTM Architecture

The LSTM network is introduced by Hochreiter and Schmidhuber (1997), and ex-
plained in this section. LSTM networks can be thought of as a chain that is formed by
repeated LSTM cells. The length of the chain is determined by time series size. An
LSTM cell can carry out its state over time, and includes systems of gating units to
control the flow of information (Goodfellow, Bengio and Courville, 2016). The main
idea of the LSTM is to keep under control the cell state (c;), which is the memory of
the LSTM, with input, forget, and output gates. Gates consist of sigmoid and point-
wise multiplication operators. The cell state information is controlled by adding or
multiplying the input data by the hidden state (h;), which is the output of the current
LSTM cell. The structure of an LSTM cell is shown in Figure 3.6

In a neural network, to obtain an output, forward and backward passes are carried
out. The forward pass computes values from inputs to the output. The backward pass
performs backpropagation that starts at the end of the forward pass and updates the
weights by minimizing the error between the real value and the output of the forward
pass. During the forward pass, the cell state ¢; and the hidden state h,, output, of the
LSTM cell at timestep ¢ are calculated as follows (Fischer and Krauss, 2017):

o In the first step, the LSTM cell decides which information should be discarded
from its previous cell states (c;_1). The activation values of the forget gates at

timestep ¢ are calculated based on the current input and the output of the LSTM
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Figure 3.6. Structure of a LSTM Cell

cell at the previous timestep (h;_1). After that, the sigmoid function scales all
activation values into the range between zero, which means completely forget,

and one, which means completely remember (see Equation (3.5)).

In the second step, the LSTM cell decides which information should be added
to the cell state (c;). This decision depends on two computations. First, the
candidate cell state that has potentitial to be added to the cell state is calcu-
lated using Equation (3.6). Second, the activation values of the input gate is
calculated using Equation (3.7).

In the third step, the new cell state is calculated based on the results of the

previous two steps with the Hadamard product (see Equation (3.8)).

In the last step, the hidden state, the output of the LSTM cell, is computed by

Equations (3.9) and (3.10).

Forward pass equations are collectively provided as follows (Fischer and Krauss,

2017):

fi = sigmoid(Wyxy + Urhy—1 + by) (3.5)
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a; = tanh(Woxy + Ughy—1 + b,) (3.6)

iy = sigmoid(Wixy + Uihy—1 + b;) (3.7)
a=fO0c 1+ Oa (3.8)

o = sigmoid(Wozy + Uyhy—1 + b,) (3.9)
hy = 0y ® tanh(c;) (3.10)

where x; is the input vector at timestep t; c; is the cell state; a; is the candidate cell
state that preserves the information of the hidden state across the time steps (i.e., adds
information to the cell state); ¢, is the input gate that defines which information to add
to the cell state; f; is the forget gate that defines which information to remove from
the cell state; o; is the output gate that defines which information from the cell state
to use as output; W; is the weight matrix for the input gate for the input vector; W,
is the weight matrix for the candidate cell state for the input vector; Wy is the weight
matrix for the forget gate for the input vector; W, is the weight matrix for the output
gate for the input vector; U; is the weight matrix for the input gate for the hidden
state; U, is the weight matrix for the candidate cell state for the hidden state; Uy is
the weight matrix for the forget gate for the hidden state; U, is the weight matrix for
the output gate for the hidden state; b; is the bias for the input gate; b, is the bias for
the candidate cell state; b; is the bias for the forget gate; b, is the bias for the output

gate. The element-wise or Hadamard product is represented by ©.
After completion of the forward pass, the backward pass computations of the LSTM
network to update the weights are carried out as follows:

e In the first step, the difference in the hidden state (the output) is found (see

Equation (3.11))). This difference is composed of five components. The first
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component 4\, is the derivative of the loss function, which is the mean square
error, with respect to the hidden state at . Summation of other components

corresponds to the difference in the hidden state at ¢ + 1.

e In the second step, the differences in the output gate, the cell state, the forget

gate, the input gate and the candidate cell state are computed using Equations

(3.12)), (3.13), (3.14)), (3.13) and (3.16), respectively.

o In the last step, the cell state, weight matrices for the input vector, weight ma-
trices for the hidden state, and biases are updated to their new values by using
the computed differences in gates. The differences in the candidate cell state
weight matrix, the input gate weight matrix, the forget gate weight matrix and
the output gate weight matrix for the input vector are computed using Equa-
tions (3.17), (3.18)), (3.19), and (3.20), respectively. Next, the differences in

the candidate cell state weight matrix, the input gate weight matrix, the forget

gate weight matrix and the output gate weight matrix for the hidden state are
computed using Equations (3.21)), (3.22)), (3.23) and (3.24), respectively. Next,

the differences in the bias for the candidate cell state, the input gate, the forget

gate and the output gate are computed using Equations (3.25)), (3.26), (3.27)
and (3.28), respectively.

Backward pass equations are collectively provided as follows (Greff, Srivastava, Kout-

nik, Steunebrink and Schmidhuber, 2017):

Shy = Ay + U] 041 + U igsr + Uf 6 frr + U 0011 (3.11)
do; = 0hy ® tanh(c) @ 0y © (1 — 0y) (3.12)

5cy = 6hy ® 0y © (1 — tanh®(c;)) + 6cip1 © fryn (3.13)

0fi =0 O 1 ® [ ©(1— f) (3.14)
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(3.19)
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T
ob; =Y biy (3.26)
t=0

T

oby =Y _4f, (3.27)
t=0
T

Sby = 0, (3.28)
t=0

where dh; is the difference in the hidden state; A\, is the derevative of the loss function
with respect to h; at t; U! is the transpoze of the candidate cell state weight matrix
for the hidden state; U/ is the transpoze of the input gate weight matrix for the hidden
state; UfT is the transpoze of the forget gate weight matrix for the hidden state; UZ
is the transpoze of the output gate weight matrix for the hidden state; da,.; is the
difference in the candidate cell state at ¢t + 1; 7, is the difference in the input gate
att+ 1; 0 f;11 is the difference in the forget gate at ¢ + 1; 04, is the difference in the
output gate at ¢ + 1; do; is the difference in the output gate at ¢; d¢; is the difference
in the cell state at t; ¢ f; is the difference in the forget gate at ¢; da, is the difference in
the candidate cell state at t; W, is the difference in candidate cell state weight matrix
for the input vector to update; 6W; is the difference in the input gate weight matrix
for the input vector to update; dW; is the difference in the forget gate weight matrix
for the input vector to update; 61V, the difference in is the output gate weight matrix
for the input vector to update; dU, is the difference in the candidate cell state weight
matrix for the hidden state to update; dU; the difference in is the input gate weight
matrix for the hidden state to update; 0U; the difference in is the forget gate weight
matrix for the hidden state to update; 0U, the difference in is the output gate weight
matrix for the hidden state to update; db, is the difference in the bias for the candidate
cell state to update; db; is the difference in the bias for the input gate to update; db; is
the difference in the bias for the forget gate to update; db, is the difference in the bias

for the output gate to update; 7" is the number of timesteps.
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Sigmoid and hyperbolic tangent functions(tanh) are defined as:

1
sigmoid(z) = = (3.29)
e x
et — o7
tanh(zr) = — 3.30
anh(x) pr— (3.30)

Curves corresponding to sigmoid and hyperbolic tangent functions are shown in Fig-

ure 3.7
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Figure 3.7. Sigmoid and Hyperbolic Tangent Curves

The total number of parameters N in an the LSTM layer is found by using the fol-

lowing expression:

N =4n,(n, +nq+1) (3.31)

where n,, is the number of LSTM units in the LSTM layer; n, is the input dimension
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or the number of features.

In our problem, the LSTM layer is developed for a four-dimensional input vector and
has three units, so the total number of parameters is 96. At the end of the network,
there is a dense layer that is connected to the LSTM layer. The dense layer takes the
output vector of the LSTM layer and produces the final output of the LSTM network.
The dense layer of this LSTM network has one unit and a sigmoid activation function.
So, the dense layer takes three-dimensional output vector (i.e., the number of LSTM
units equals to three) of the LSTM layer, applies the element-wise product with the
weight of the dense layer, adds the bias of the dense layer, and passes through the
element-wise sigmoid function. As a result, it produces one value as the output. The
number of parameters of the dense layer is four, three from the weights and one from
the bias. Thus, in our problem the total number of parameters of the LSTM network

is 96+4=100.

An LSTM code is developed in the Python environment, and libraries given in Table
[3.3]are used in the code. The developed LSTM network code executes the following

main steps:

e Hourly electricity price data is splitted into three parts, as data for training,

validation and test.

e All data is normalized to a range [0,1] to prevent the effect of the scale of the

data.

e The normalized data is converted to the necessary format according to the time

series size, the input dimension and the batch size.

e The LSTM network is trained by trying various hyperparameters (e.g., number
of LSTM units, batch size, number of epoch) to improve the forecasting perfor-
mance of the validation data. The hyperparameters that show the best forecast
performance are determined and fixed as final hyperparameters of the LSTM

network.

e Final LSTM network model is used to simulate the test data which is not seen

by the trained model previously.
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Table 3.3. Used Libraries for the LSTM Network

Library Description Application

NumPy Python package for scientific computing. Data operations are carried on to create the right formats.
Matplotlib | Comprehensive Python library to create visualizations. Results of the simulations are plotted.

Pandas Powerful Python library for data analysis and manipulation. | Inputs and results of the simulations are tabulated and organized.
Scikit-learn | Python library for machine learning. Data is scaled between zero and one.

Keras Python library for high-level neural networks. LSTM network model is built and simulated.

3.3 The Optimization Model

In the scope of this thesis, an optimization model is developed to maximize the daily
revenue of a WHHS. The WHHS considered here is a closed-loop systems. In other
words, all inflows to and outflows from the reservoir are neglected; thus it is an iso-
lated system. Available wind energy is calculated based on MERRA-2 data since it
is a reliable database that provides hourly wind speed data. The optimization model
takes wind energies and forecasted market prices for each hour in a day (i.e., practi-
cally the next day), and finds the daily schedule of the WHHS that maximizes the net
revenue of that day. The schedule of the WHHS includes the amount of energy to be
bought or sold to the grid, energy productions of wind turbines and hydro turbines,
and the amount of energy used to pump water from the lower reservoir to the upper
reservoir in each hour of the day. The optimization model does not allow to sell or buy
energy from the grid at the same hour. This is valid for pump and turbine operations,

as well.

Mathematical Formulation

The daily schedule of the WHHS that maximizes the net revenue of the day can be
obtained from the solution of the following optimization problem modified from the

formulation developed by Cruz et al. (2014):

23

Maz.Z =Y A (3.32)

t=0

s.t.
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where the set is:

te{0,1,2,..,23} the duration of each interval, hour;

where the variables are:

Pt

At

wdirect

by

hydro
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ptfgm'd

w
by
wpump

Dy
A
E;

Yt

Ty

the energy output injected into the grid minus energy bought from the grid
in t;

the electricity price in ¢;

the energy output of wind turbines that is sold directly to the grid in ¢;

the energy output of the hydro turbine that is sold directly to the grid in ¢;
the energy bought from the grid in ¢;

the wind energy that is generated in ¢;

the energy that is generated by wind turbines and is used by the pump in ¢;
the energy that is used for pumping in ¢;

the energy stored in the upper reservoir at the end of ¢;

the binary variable that represents the buying or selling mode of the system
in ¢ where y; = 0 is the buying mode, and y; = 1 is the selling mode;

the binary variable that represents the turbine or pump modes in ¢ where

2 = 0 1s the turbine mode, and x; = 1 is the pump mode;

and the corresponding parameters are:
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Dy the maximum energy that can be generated by the wind turbines in an hour;
hwdro  the maximum energy that can be generated by the hydro turbine in an hour;

max

Jarid  the maximum energy that can be bought from the grid in an hour;

pumP the maximum energy that can be used as pumping input in an hour;
E,in, the minimum energy level in the upper reservoir;

E,e:  the maximum energy level that can be stored in the upper reservoir;
Nhydro  the efficiency for the turbine mode;

Npump  the efficiency for the pump mode;

Einitiqr  the initial energy in the upper reservoir.

Equation (3.32)) is the objective function of the optimization problem. It aims to
maximize the revenue of one day. Equation (3.33)) defines the net energy sold to the

wdirect hydro

grid, which is the energy sold minus the energy bought. When p; and p;
are positive values, p{ 974 cannot be a positive value. Because selling and buying
energy from the grid at the same time is illogical and not allowed. This is achieved
by Equations (3.34) and (3.35). If 4 equals one, the system sells energy to the grid
in t; if it equals zero, the system buys energy from the grid in . The wind energy
that is generated in ¢ p;’, can be sold directly to the grid or used to pump the water
to the upper reservoir. This is defined in Equation (3.36). The energy that is used for
pumping in ¢ pi", can be supplied by wind turbines or can be bought from the grid.
Equation presents this constraint. The wind energy that is generated in ¢ p}’,
has a minimum value of zero, and its upper bound cannot exceed p;. .. as defined in
Equation (3.38)). The energy output of the hydro turbine in ¢ p? vdre " and the energy
used for pumping in ¢ p{“™* cannot be larger than their maximum installed capacities.

Also, they cannot be positive values at the same hour since it is not possible to run

the pump and the turbine at the same time. These limitations are defined in Equations
(3-39) and (3.40).

The energy output of the hydro turbine in ¢ p/*"° is limited by two components

in Equation (3.41)). In the first component, £, — E,,;, represents the energy in the
upper reservoir than can be used to generate energy by the hydro turbine. When it is
multiplied by 7440, it becomes the energy output of the hydro turbine. The second
component is the maximum capacity of the hydro turbine. So, p/*"" is restricted to

be at most the minimum of these two terms.

44



The energy that is used for pumping in ¢ p"” is limited by two components in

Equation (3.42). In the first component, E,,,, — E; represents the available empty
energy storage that can be filled by the water. When it is divided by 72y, it becomes
the pumping energy input. The second component is the maximum energy input for

the pump. So, p/“""" is restricted to be at most the minimum of these two terms.

The energy balance of the upper reservoir is defined in Equation (3.43). The energy
stored in the upper reservoir at the end of £ + 1 is composed of three components. The
first component is the stored energy from the previous hour. The second component is
the energy used for pumping the water from the lower reservoir to the upper reservoir
in t 4+ 1. The third component is the energy spend to run the hydro turbine to generate
electricity in ¢ 4 1. So, £, equals the summation of the first two components minus
the third component. For the first hour, ¢ = 0, the energy stored in the upper reservoir
is initialized based on the starting energy storage in the upper reservoir £_;. Lastly,

E; must be between F,,;,, and E,,,., and that is defined in Equation (3.45).

. . . .. . . hud
Except binary variables, y; and x;, units of all decision variables (p;, p@rect, p;**",

grid _wpump __pump

plorid , PP pv . E,) are MWh. Units of all parameters (plvdre, phvdro ppumyp

max ’pmin > Pmax

ump w vd .
min. > Ponins Diovaass pﬁ{’;; s Binitiats Emazs Emin) are MWh, except a few ones. The unit

of A\; is TL/MWh, and 1p,4r, and 1), are unitless.

The optimization model involves three assumptions. First, head losses in the piping
system of WHHS are not included explicitly. They are assumed to be included in
the efficiency values of the turbine and pump modes. Second, there is no inflow to
or outflow from the reservoir. So, the system is assumed to be a closed-loop system.
Third, the cost of pumping operation is assumed to be the same value as the electricity

price at that hour (Cruz et al., 2014).

The following modifications to the mathematical formulation suggested by Cruz et al.

(2014) are carried out in this study:

e The energy that is generated by the wind turbines is allowed to be used for

pumping and direct selling, and stored in two different variables (see Equation

(.-39)).

e The energy that is used for pumping is allowed to be obtained from wind tur-
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bines and grid, and stored in two different variables (see Equation (3.37)).

e To prevent buying and selling at the same time in each hour, a binary variable

is defined (see Equations (3.34) and (3.35))).

e Considering the minimum and maximum water levels in the upper reservoir,

water can be pumped or released from the upper reservoir, and the energy stored

in the upper reservoir is updated (see Equations (3.41) and (3.42))).

e Equations (13) and (14) in Cruz et al. (2014) are not used since they are satisfied
by Equations (3.41)) and (3.42).

e In Cruz et al. (2014), the final energy level of the upper reservoir is taken as a
fixed value. However, in our study, we used the reservoir level of the last hour

of the previous day.

The formulated optimization problem is a mixed-integer linear programming problem
since two of the decision variables (i.e., x; and y;) are restricted to be binary values.
To solve the optimization problem, a code is written in Python. The code uses Coin-
or branch and cut solver which is developed by Forrest, Ralphs, Vigerske, LouHafer,
Kristjansson, Jpfasano, EdwinStraver, Lubin, Santos, Rlougee and Saltzman (2018).
To apply this solver in Python, Google OR-Tools library is included in the code. Main
libraries to write the Python code is given in Table 3.4

Table 3.4. Used Libraries for the Optimization Model

Library Description Application

NumPy Python package for scientific computing. Data operations are carried on to create the right formats.
Matplotlib | Comprehensive Python library to create visualizations. Results of the simulations are plotted.

Pandas Powerful Python library for data analysis and manipulation. Inputs and results of the simulations are tabulated and organized.

Python library for optimization, integer and linear programming, L X X .
OR-Tools Optimization model is built and simulated.
and constraint programming.
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CHAPTER 4

CASE STUDY

A hypothetical WHHS as a case study is designed to demonstrate application of the
models developed in this study. The hypothetical WHHS is assumed to be a wind
farm integrated to the existing Uluabat Hydropower Plant. Moreover, the Uluabat
Hydropower Plant is assumed to be a closed-loop system. There are two main pur-
poses of this study. The first one is to forecast hourly electricity prices in the day-
ahead market for each hour of the next day with the LSTM network. The second one
is to produce an optimum daily schedule of the WHHS that maximizes the daily rev-
enue by using the forecasted hourly electricity prices. The methodology introduced
in Chapter [3]is applied for the hypothetical WHHS introduced in this chapter. This
chapter describes the case study with the following sections; location of the WHHS,
analysis of hourly electricity prices and hourly wind energy at the case study site, the

LSTM network and the optimization model.

4.1 Location of the WHHS

Uluabat Hydropower Plant with its 100 MW installed capacity is located at Susurluk
Basin on Orhaneli River in the Marmara Region of Turkey. Water at Cinarcik Dam’s
reservoir is released to Lake Uluabat to generate electricity. In this study, we con-
sidered a hypothetical case. Cinarcik Dam and Lake Uluabat are thought of as the
upper reservoir and the lower reservoir of a pumped storage hydropower plant, re-
spectively. In addition, it is assumed that there are wind turbines near the hydropower
plant site owned and operated by the same company. Pumped storage hydropower

plant plus wind turbines compose the hypothetical WHHS. Although Cinarcik Dam
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and Uluabat Hydropower Plant are located on a river, it is assumed that the hypothet-
ical WHHS is a closed-loop. That is, all inflows and outflows to and from Cinarcik

Dam are neglected. The location of the Uluabat Hydropower Plant is shown in Figure

Lake UIuabat

Uluabat Hydropower PI nt

Tt '-

.
& “
R

Cinarcik Dam

]

Figure 4.1. Location of the Case Study Site

4.2 Analysis of the Input Data

Two types of data are used in the case study. These are hourly wind speed data and
hourly electricity price data. Hourly wind speed data is used to estimate hourly wind
energy that can be generated by wind turbines. After hourly wind energy values are

calculated, they are used as input to the optimization model. On the other hand,
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historical hourly electricity price data is used as the input of the LSTM network. The
output of the LSTM network is the second input of the optimization model. The
optimization model is run from September 2017 to August 2018, so the wind speed
data is obtained for this time interval. Hourly electricity price data is obtained for the
interval between January 2011 and August 2018. Since hourly electricity price data
is used to train the LSTM network, the time interval of it is wider than the wind speed

data.

4.2.1 Analysis of the Hourly Wind Speed Data

The hourly wind speed data is obtained from the NASA MERRA-2 database, which
is described in Chapter 2] Figure [4.2] shows the variations in hourly wind speed data
between September 2017 and August 2018. This distribution shows that the median
of wind speeds are higher in afternoon hours, such as 14:00 and 15:00, and the number
of outliers at this hours is lower than the other hours. So, it can be inferred that more

electricity can be generated during the afternoon hours of most of the days.
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Figure 4.2. Variations in Hourly Wind Speed Data between 09/2017 and 08/2018

Varitions in hourly wind speed data for each month are investigated, as well. Since
wind speed is affected by meteorological factors (e.g., temperature, moisture, atmo-

spheric pressure) it has different characteristics in each month. Hourly wind speed
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variations for each month from September 2017 to August 2018 are presented in
Figures [4.3] to [4.14] respectively. As can be seen from these figures, in September,
May, June, July and August, wind speeds are higher in the afternoon hours, between
14:00 and 16:00. Also, there are not any outliers in May, whereas there are many in
September. In November, the median values of the midnight hours, between 01:00
and 06:00, are higher. Wind speeds in December and March are higher than those in
other months. Also, they do not have any outlier. In February, the variations of mid-
day hours, between 11:00 and 13:00, are higher when compared to the other hours of
the day and months. Wind speeds in April have smaller values. Also, the ranges of
variations are smaller. As can be seen from Figures to hourly wind speed
data show very large variations and there are many outliers. Based on these observa-
tions it is concluded that estimation of the future hourly wind speeds may not carried
out effectively. Thus, instead of estimating wind speed data for future hours it is

preferred to use previous years wind speed data in the optimization model.
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Figure 4.3. Hourly Wind Speed Variations in September
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Figure 4.4. Hourly Wind Speed Variations in October
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Figure 4.5. Hourly Wind Speed Variations in November
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Figure 4.7. Hourly Wind Speed Variations in January
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Figure 4.10. Hourly Wind Speed Variations in April
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Figure 4.11. Hourly Wind Speed Variations in May
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Figure 4.12. Hourly Wind Speed Variations in June
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Figure 4.13. Hourly Wind Speed Variations in July
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Figure 4.14. Hourly Wind Speed Variations in August

In addition to the hourly distributions of the wind speeds, correlations between wind
speed at an hour and at previous hours are investigated, and presented in Figure d.13]
In Figure @.15] the y-axis indicates the correlation coefficient, which is expressed as

follows:

> = )3 — )

\/z@ . )\/Z(y — g

where n is the sample size, x; and y; the individual sample points with index ¢, & and

R:

(4.1)

y are mean values of the samples. As can be seen in Figure[d.15] the correlation has a
decreasing trend up to 60 hours before. After that, there is effectively no correlation
(i.e., lower than 0.2). It shows a high correlation with the previous few hours and the
correlation decreases rapidly. Thus, wind speeds especially for the future few hours
might have been estimated using an LSTM network. However, the correlation drops

below 0.6 for after 8 hours. Based on these observations, instead of estimating hourly
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wind speeds for the coming 24 hours, previous years wind speed data is used in this
study. If hourly wind speed estimations become available from other sources such
as State Meteorological Organization, they can be used as input in the optimization

model.
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Figure 4.15. Variation in Wind Speed Correlation Coefficient with respect to Previous

Hours

4.2.2 Analysis of the Hourly Electricity Price Data

The hourly electricity price data is obtained from EPIAS, which operates Turkish
energy markets. Data from January 2011 to August 2017 is used to train the LSTM
network, and the remaining data (i.e., from September 2017 to August 2018) is used
for testing. The outputs of the LSTM network is used as the input of the optimization
model. Variations in hourly electricity prices are presented for each year from 2011
to 2018 in Figures [4.16) to 4.23] respectively. In 2012, during daytime hours, many
outliers are observed. At these hours (i.e., 11:00, 13:00, and 15:00), eight times
higher daily median prices are observed. In 2015, quite low (i.e., close to zero) prices

are observed at the hours from 00:00 to 12:00. 2018 includes the highest number
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of outliers among all years. The prices in four months (i.e., September, October,
November and December) of 2017 and eight months (i.e., January, February, March,
April, May, June, July and August) of 2018 are forecasted via the developed LSTM
network. Due to the high number of outliers in 2017 and 2018, they are the most

challenging year to be forecasted.
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Figure 4.16. Variations in Electricity Prices in 2011
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Figure 4.18. Variations in Electricity Prices in 2013
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Figure 4.20. Variations in Electricity Prices in 2015
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Figure 4.21. Variations in Electricity Prices in 2016
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Figure 4.22. Variations in Electricity Prices in 2017
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Figure 4.23. Variations in Electricity Prices in 2018

To better understand the change in electricity prices through time, monthly average
values are calculated and presented in Figure #.24] As shown in Figure 4.24] there
are many abrupt variations in electricity prices. Especially, the last slope of the curve
in 2018 is considerably sharp. These abrupt changes in the electricity prices may be
due to different factors such as fuel prices, availability in generating units, hydro or
wind generation of the country and network congestions (Dong, Li, Wallin, Avelin,

Zhang and Yu, 2019).

Mean electricity prices, for each month, are shown in Figure [4.25]and used to investi-
gate the seasonal effect. It is clear that electricity prices in the winter and the summer

seasons are higher than those in the spring and the autumn seasons.
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Figure 4.25. Monthly Mean Electricity Prices

Mean electricity prices for each day of the week are presented in Figure 4.26] Ex-
cept Sunday, other days have similar mean electricity prices. Due to low demand in

Sunday, it has the lowest mean electricity price.
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Figure 4.26. Daily Mean Electricity Prices

To see the relation between hourly electricity prices, the variation of the correlations
between prices of the previous hours is plotted in Figure #.27] As can be seen from
Figure .27] the curve follows a cyclic pattern, and electricity prices have high corre-
lations around multiplication of 24 hours (i.e., same hours of the previous days). This
correlation graph is used in selecting the inputs of variables of the LSTM network

that is explained in Section 4.4
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4.3 Hourly Wind Energy Estimations

The wind energy is the second input of the optimization model. In the scope of the
case study, the 2.5 MW wind turbine, which is manufactured by General Electric
(GE), 1s used. To obtain the available hourly wind energy, the power curve of the
wind turbine is acquired from General Electric (n.d.), and presented in Figure [4.28]
The wind turbine has 103 meters rotor diameter, 85 meters hub height, 3 m/s cut-in

speed and 25 m/s cut-out speeds (General Electric, n.d.).

To calculate available hourly wind energy, a curve is fitted to the power curve, as
shown in Figure[d.29] This curve is composed of five parts as given in Equation (.2)).
The first part is constrained by the cut-in speed, 3.0 m/s. The middle segment of the
curve includes two polynomial functions to express the power curve in a more accu-
rate way. The polynomial functions are given in Equation where z is the wind
speed and f(x) is the hourly wind energy. The last part of the curve is constrained
by the cut-out speed, 25 m/s as given in Equation (4.2)). Wind speed data, between
September 2017 and August 2018, which is first extrapolated to a height of 85 meters,
is converted to the available hourly wind power by using the power equation given in
Equation (4.2)). Lastly, the available hourly wind energy is obtained by multiplying

the available hourly wind power by one hour.
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Figure 4.28. GE 2.5 MW Wind Turbine Power Curve (General Electric, n.d.)
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4.4 The LSTM Network

The LSTM network that is developed in this study is used to forecast electricity prices
in the Turkish day-ahead spot electricity market. The obtained electricity price data
is split into three parts, such as training, validation and test data. The intervals of the
training, validation, and test data are from 01.01.2011 to 31.08.2016, from 01.09.2016
to 31.08.2017 and from 01.09.2017 to 31.08.2018, respectively. After the validation

process (i.e., determination of the hyperparameters) is completed, the validation data
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is added to the training data. In this way, the LSTM network can perform better since

it can learn from the most recent observations.

In the day-ahead market, the electricity providers must submit their bids until 12:30
of the bidding day for all the hourly prices of the next day (i.e., from 00:00 to 24:00).
So, we should forecast the electricity price of each hour in the next day by using
the hourly electricity price data before 12:30 of the bidding day. Thus, 24 different
LSTM models are developed with the same architecture, to forecast electricity price

for each hour in the next day.

During the validation process of the LSTM network, different number of epochs, time
series size, batch sizes, number of LSTM units, and number of features are evaluated.
After many simulations, the number of epochs is fixed to 5000 with an early stopping
value of 25, the time series size is set to 48, and the number of LSTM units is set to
three by considering the performance of the LSTM network and the simulation time.
Once the number of epochs and the number of LSTM units are fixed, 24 different
models are generated using different batch sizes, number of features and seed values
to determine the hyperparameters of the final LSTM network. Batch size values of
16, 32, 64 and 128; the number of features 4 and 16; the seed value of 20, 350 and
2019 are simulated. Indeed, the seed is not a hyperparameter of the LSTM network.
It is a random value to initialize the initial weights of the LSTM network. However,
to see the effects of the initial weight assignment, three different seeds are tried. Last

24 simulations are evaluated based on the errors.

4.4.1 The Architecture of the LSTM Network

The time series size of the LSTM network is selected as 48 hours. It means that each
of the 24 LSTM networks takes as the unlagged time series, the electricity prices of
the previous 48 hours in the day-ahead market as inputs, and forecasts the electricity
price of the 24 each hours in the next day. For example, to forecast the electricity
prices of each hour for February 15, the bid should be submitted on February 14 at
12:00. Since 48 hours prior electricity prices are going to be used for the LSTM
network, the first input of the unlagged series for the LSTM network is the electricity

price at 12:00 of February 12. Following 47 hours are used as the remaining inputs
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of the LSTM network. To summarize, the LSTM networks use the electricity prices
on February 12 at 12:00 and February 14 at 12:00 to forecast each hourly electricity
price on February 15 from 00:00 to 24:00.

The number of features of the LSTM network equals to four. These features are
composed of one unlagged and three lagged (i.e., 23-hours lagged, 24-hours lagged,
and 168-hours lagged) hourly electricity price time series. These lagged prices are
selected based on the correlation coefficients between the hourly electricity price and
their values in previous hours in 2011 data. As shown in Figure the variation
of electricity price correlation coefficient plots show similar trends for all the years.
To identify the inputs of the LSTM network, the variation of the electricity price
correlation coefficient in 2011 is investigated in detail. The value of 0.75 is used
as the threshold. According to Figure the correlation coefficients between the
electricity price at time ¢ and ¢ — 23, t — 24 and ¢t — 168 are equal or greater than
0.75, so they are selected as input features of the LSTM network. For the example
given in the previous paragraph, to forecast the electricity prices of February 15,
following time intervals of the electricity price input time series are used as inputs
for the LSTM network: from 12:00 of February 12th to 12:00 of February 14th; from
13:00 of February 11th to 13.00 of February 13th; from 12:00 of February 11th to
12.00 of February 13; from 12:00 of February 4th to 12:00 of February 6th.

The LSTM network architecture is shown in Figure The first subscript of the i
is the LSTM unit number, the second subscript of /, and x is the time step in the time

series, and the first subscript of the x is the feature number.
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Figure 4.30. The LSTM Network Flow Diagram

4.5 The Optimization Model

The developed optimization model that is introduced in Chapter [3] is used to deter-
mine optimum operation strategies for the WHHS. The optimization model aims to
maximize the daily revenue of the WHHS. The optimum operating schedules of wind
turbines, the hydro turbine, the pump, and the energy trade with the grid that max-
imize the daily revenue are found. The optimization model uses available hourly
wind energies and hourly electricity prices in the day-ahead market as inputs. Hourly
electiricity prices are estimated by 24 LSTM networks. The optimization model is
run from September 2017 to August 2018. To evaluate the performance of the LSTM
network and the optimization model, different scenarios (see Section are tested.

4.5.1 Parameters of the Optimization Model

The optimization model has eight parameters, which are the maximum energy that
can be generated by wind turbines in an hour, the maximum energy that can be gen-
erated by the hydro turbine in an hour, the maximum energy that can be bought from
the grid in an hour, the maximum energy that can be consumed by the pump in an

hour, the minimum energy level in the upper reservoir, the maximum energy level that
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can be stored in the upper reservoir, the efficiency for the turbine mode and the effi-
ciency for the pump mode. The maximum energy that can be generated by the wind
turbines p; . in an hour equals to the available hourly wind energy. Its calculation is

explained in Section4.3]

Currently, the installed capacity of the hydro turbine in the Uluabat Hydropower Plant
is 100 MW (Akenerji, 2005). We used the same installed capacity by changing the
hydro turbine with a hydro pump-turbine. So, for this case study, the system can work

either as a hydro turbine or a pump. Thus, the maximum energy that can be generated

hydro
mazx

by the hydro turbine in an hour p and the maximum energy that can be consumed

by pumping in an hour p?"? equal to 100 MWh.

max

The maximum energy that can be bought from the grid in an hour is not limited. Thus,
this parameter equals positive infinity. The schematic view of Cinarcik Dam, Uluabat
Hydropower Plant, and Lake Uluabat are shown in Figure The minimum energy
level in the upper reservoir and the maximum energy level that can be stored in the
upper reservoir is computed based on the elevation-area curve of the dam by using

the following expression:

E, =2.778 x 1071 pghV (4.3)

where £, is the potential energy of the fluid in MW h, V' is the volume of the fluid in
m3, pis the density of the fluid in kg/m?, g is the acceleration due to gravity in m/s?,
h is the height of the fluid in m. The minimum energy level in the upper reservoir
Ein, and the maximum energy level that can be stored in the upper reservoir E,,,;
are computed as 138233.8 MWh and 298624.1 MWh, respectively. The initial energy
level Einitial i fixed to B, 138233.8 MWh.

The efficiency of the turbine mode and the efficiency of the pump mode are assumed

as 0.88 and 0.85, respectively, based on the study by Cruz et al. (2014).
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Figure 4.31. The Schematic View of Cinarcik Dam, Uluabat Hydropower Plant and
Lake Uluabat

71



72



CHAPTER 5

RESULTS AND DISCUSSIONS

In this chapter, the results of the LSTM network and the optimization model are
presented and discussed. In this study, the LSTM network is developed to forecast
electricity prices as accurately as possible. After the most accurate electricity prices
are obtained, they are used in the optimization model to identify the best operation

schedule for WHHS that maximizes the daily revenue.

5.1 The LSTM Network Results

As discussed in Section {.4] 24 simulations for each hour of the bidding day are
executed to determine the hyperparameters of the final form of the LSTM network.
Twenty-four simulations using various combinations of four batch size values (i.e.,
16, 32, 64, and 128), two numbers of features (i.e., 4 and 16), and three seed values
(i.e., 20, 350 and 2019) are carried out and the results are shown in Table [5.1} Thus,

each row in Table 5.1l summarizes results of 24 simulations.
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Table 5.1. The Summary Table of 24 LSTM Network Simulations

Run | Batch Seed Number of | Min.! MSE ? | Min. MSE | Max.? MSE | Max. MSE | Avg.! MSE | Avg. MSE
No Size Features (Training) (Validation) | (Training) (Validation) | (Training) | (Validation)
1 16 | 2019 16 470.32 485.26 2124.14 14638.36 837.28 2874.21
2 32 | 2019 16 480.59 421.46 2141.85 15373.73 813.99 2418.33
3 64 | 2019 16 447.13 461.64 2062.25 9524.69 846.61 2122.03
4 128 | 2019 16 460.80 443.25 2120.31 9812.39 925.71 2261.13
5 16 | 2019 4 479.14 421.29 1975.88 9712.53 991.12 2255.25
6 32 | 2019 4 461.97 414.50 2427.10 14638.15 1037.76 2535.76
7 64 | 2019 4 495.02 421.34 2356.12 8891.80 1084.21 2144.29
8 128 | 2019 4 497.96 449.04 2186.21 9153.45 1105.26 2128.56
9 16 350 16 385.92 461.91 1018.99 24398.91 673.02 3063.89
10 32 350 16 424.59 455.49 1257.14 11789.21 707.61 2900.81
11 64 350 16 464.91 438.71 1241.98 8383.21 722.05 2096.21
12 128 | 350 16 457.58 492.67 1309.37 13413.79 781.42 2534.72
13 16 350 4 488.56 42391 2536.85 12180.83 1039.91 2518.60
14 32 350 4 504.78 421.43 2631.57 11292.51 1032.36 2437.35
15 64 350 4 500.22 414.04 2376.22 12336.05 1038.39 2440.82
16 128 | 350 4 507.61 453.20 2213.65 8270.37 1101.43 1986.28
17 16 20 16 412.48 462.91 1036.81 19783.35 668.04 2912.49
18 32 20 16 460.70 474.46 1333.74 15510.65 721.43 3170.12
19 64 20 16 461.87 479.00 1556.57 11349.75 758.20 2663.02
20 128 20 16 464.78 443.31 1952.34 13582.81 893.14 2375.31
21 16 20 4 428.48 465.79 2182.64 13067.01 886.76 2767.95
22 32 20 4 464.41 432.19 2662.72 14872.81 969.29 3200.57
23 64 20 4 493.22 403.10 1860.99 13050.23 923.56 2495.37
24 128 20 4 509.18 395.12 1652.58 12105.63 952.39 2439.02

! Minimum, 2 Mean Square Error, 3 Maximum, * Average

In Table [5.1) Min. MSE (Training) column shows the minimum mean square error
(MSE) for training data set among all 24 LSTM configurations. Other columns rep-
resent maximum and average MSE for training and validation data sets among all 24
configurations. The final LSTM network hyperparameters are selected based on the
average MSE of the validation (i.e., last column of Table[5.1)). Thus, hyperparameters
of Run No = 16 are selected for the final LSTM hyperparameters. That is, the batch
size equals 128, and the number of features equals four. Although the seed is not a
hyperparameter, we select the seed value in Run No = 16, which is 350. To check if
overfitting occurs, the number of epochs versus error for the training and validation
periods are plotted for Run No =16 and t = 12 hr, as shown in Figure As can
be seen from Figure[5.1] there are not enough weights in the LSTM network to cause

overfitting.
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Figure 5.1. MSE vs. Number of Epochs Curve

The final form of the LSTM network is run 24 times for the bidding day (i.e., run once
for each hour of the bidding day) to forecast the test data, and results are presented
in Table[5.2] It can be noticed that each hour has a different number of epochs due to
the early stopping property. For example, the LSTM network at t = 20 hr reaches the
tolerance in 733 epochs, whereas the LSTM network at t = 7 hr reaches the tolerance
in 1802 epochs. The summary statistics of these 24 runs is given in Table[5.3] It can
be noticed that training errors are different when compared to the training errors in
Run No = 16 in Table The reason for this discrepancy is that different training
data is used in these runs. The training data in the final LSTM network includes the
initial training data set plus the validation data set. The validation data is added to
the training data to introduce the behaviour of the most recent data in the calibration

process.

Table 5.2. The Summary Table of the Final LSTM Network Hourly Simulations

t Batch Seed Number of Number of MSE MSE
(hr) Size Features Epochs (Training) (Test)
01 128 350 4 1122 525.29 1717.73
02 128 350 4 1173 640.02 1482.01
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Table 5.2 continued from previous page

t Batch Size Seed Number of Number of MSE MSE

(hr) Features Epochs (Training) (Test)
03 128 350 4 998 873.26 1086.9
04 128 350 4 1282 952.27 848.18
05 128 350 4 1411 902.65 1371.27
06 128 350 4 1370 831.15 1061.03
07 128 350 4 1802 1017.17 1543.33
08 128 350 4 1139 1364.29 1910.7
09 128 350 4 1001 1299.68 2136.89
10 128 350 4 912 1179.12 1578.4
11 128 350 4 1173 2087.84 5267.77
12 128 350 4 1308 2251.82 8403.58
13 128 350 4 1062 1249.4 1368.17
14 128 350 4 1436 1374.37 3948.69
15 128 350 4 1098 2727.56 9495.05
16 128 350 4 818 1738.99 1176.83
17 128 350 4 818 1320.92 1262.46
18 128 350 4 829 1858.65 1038.31
19 128 350 4 792 1330.89 855.58
20 128 350 4 733 763.37 1301.49
21 128 350 4 842 555.3 1258.04
22 128 350 4 1198 491.69 1815.07
23 128 350 4 881 582.97 1317.89
24 128 350 4 1003 718.9 1592.61

Table 5.3. The Summary Table of the Final LSTM Network Simulation

Batch Seed Number of | Min. MSE | Min. MSE | Max. MSE | Max. MSE | Avg. MSE | Avg. MSE
ee
Size Features | (Training) (Test) (Training) (Test) (Training) (Test)
128 350 4 491.69 848.18 2727.56 9495.05 1193.23 2284.92

MSE (Training) and MSE (Test) columns of Table[5.2] are plotted in Figure[5.2] As
can be seen from this plot, the LSTM network has the largest MSE at t = 15 hr in both
training and test processes. The minimum MSE is at t = 4 hr for the test process, and
at t = 22 hr for the training process. As expected the performance of training is better
than that of test. Actually, fort=11, 12, 14 and 15 hours trained LSTM perform very

poorly (i.e., errors are at least doubled from training to test for these hours).
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Figure 5.2. The Final LSTM Network Hourly MSE Plot

Figure [5.3]shows the forecasted and real electricity prices in the training process for t
=22 hr. Although t =22 hr is the best LSTM network based on the training results, it
does not perform with the same efficiency for the test data. In terms of the test data, t
=4 hr has the best results, and they are presented in Figure[5.4] Especially before day
250, the forecasted values follows the trend of real values, and it estimates many peak
values successfully. However, after day 250, the real values change abruptly, and the
LSTM network does not perform well in forecasting these peaks. The real electricity
prices are affected by many factors, such as fluctuations in the price of the dollar,
change in the contribution of various types of power plants to the energy budget of
the country, other economic and political issues. These unexpected issues result in

abrupt changes in the price of electricity which makes it very hard to predict.
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Figure 5.3. Training Process Results of the LSTM Network for t = 22 hr

In Figure 5.5 the results of the LSTM network for the worst performing hour of the
training process is shown, which is t = 15 hr. At this hour of the training days, there are
many extreme values that lead to low training performance. Nevertheless, forecasts
follow the general trend, and some of the extreme values are simulated correctly.
Also, the test process has the worst performance at t = 15 hr, and the results are
presented in Figure[5.6] As can be seen from Figure[5.6] it underestimates real prices

almost every day at t = 15 hr.
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Figure 5.6. Test Process Results of the LSTM Network for t = 15 hr
In Figure[5.7] the forecasted electricity prices versus the corresponding real prices are
presented for the test process of the LSTM network. Especially, the prices at the noon
hours could not be forecasted well. As can be seen from Figure 4.23] there are many
outliers in these hours. However, most of the hours, the forecasted prices are close to

real prices.
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5.2 The Optimization Model Results

In this section, the scenarios of the optimization models are introduced, and the results
for these scenarios are represented for the pumped storage hydropower plant and the

WHHS. After the results are represented for each scenario, they are discussed.

5.2.1 The Scenarios

In order to explain the scenarios some definitions are provided first:

The bidding day: As explained in Section the power plant owner submits bids
for each hour of the next day. Thus, the day in which the bids are submitted is referred

to as the bidding day.

The operation day: This is the day on which the bids are submitted, and it follows
the bidding day.

The previous day: In the bidding day, the most recent realized electricity prices
belongs to this day. In other words, if an LSTM network is not available to estimate
the bidding day’s electricity prices, the electricity prices of this day (i.e., the previous
day) would be available to the operator of the power plant to decide on the bids for

the bidding day (i.e., the next day).

For example, if today is Sth of May 2020 and this is the bidding day, then the operation
day will be the 6th of May 2020 (i.e., tomorrow). The electricity prices of 4th of May
2020 are the most recent realized electricity prices, and these prices can be used by
the operator of the power plant to decide on the bids (i.e., the operation schedule of
the power plant) of the bidding day (i.e., 6th of May 2020) if the LSTM network is

not available to predict the prices.

The optimization model is run to determine the optimum operation schedule for the
system. In order to evaluate the performance of the LSTM network’s electricity price

estimations, three different scenarios are considered:

1. Scenario 1: Ideal_Opt
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This scenario corresponds to an ideal case, where the realized prices of the
operation day are assumed to be known in the bidding day. The revenue ob-
tained for this case presents the upper bound of the revenue. Of course, it is
not possible to make this revenue in real life since the operation day’s prices
are not known in the bidding day. This ideal revenue will be referred to as the

Ideal-Revenue from here after.

. Scenario 2: PrevDay_Opt

This scenario considers the following situation: An LSTM network is not avail-
able to the operator of the power plant. So the most recent realized electricity
prices (i.e., electricity prices of the previous day) are used in the optimization
model to generate the optimum operation schedule for the power plant. The
revenue of the power plant based on the previous day’s electricity prices will be
referred to as PrevDay-Revenue from here after. PrevDay-Revenue is a hypo-
thetical revenue as well since the realized prices will be different than previous
day’s prices. The real revenue of the power plant that will occur in the operation
day (i.e., the revenue that will occur due to the execution of the optimized oper-
ation schedule of PrevDay_Opt with realized electricity prices of the operation

day) will be referred to as the PrevDay-RealRevenue.

. Scenario 3: LSTM_Opt

This scenario considers the following situation: In the bidding day, the LSTM
network is run and electricity prices of the operation day are estimated. Then
the optimization model is run, and the optimum operation schedule for the
power plant is obtained. The revenue of the power plant based on LSTM price
estimations and the optimization model is only a hypothetical revenue, and it
will be referred to as LSTM-Revenue from here after. In real life, the realized
electricity prices will be different than those estimated by the LSTM network;
thus the real revenue of the power plant will be different than LSTM-Revenue.
The real revenue of the power plant that will occur in the operation day (i.e., the
revenue that will occur due to the execution of the optimized operation sched-
ule of LSTM_Opt with realized electricity prices of the operation day) will be

referred to as the LSTM-RealRevenue from here after.
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All three scenarios and the revenues corresponding to different sets of prices are de-
picted in Figure [5.8] In addition to these, all scenarios are run with different number
of wind turbines. First, the revenue of the system without a wind turbine (i.e., pumped
storage hydropower plant) is evaluated. Then different number of wind turbines (i.e.,
10, 50, and 200 each 2.5 MW) are used to see the effect of the installed capacity of

wind turbines on the revenue.

Developed optimization models generate the daily schedule of the WHHS to max-
imize the daily revenue of the system. For each scenario, eight plots are prepared
using the results of the optimization models. These eight plots are hourly electric-
ity price (i.e., price used in the optimization model), the pumping energy input (i.e.,
the energy consumed for pumping the water from the lower reservoir to the upper
reservoir), the wind turbines output (i.e., the energy generated by the wind turbines),
the hydro turbine output (i.e., the energy generated by the hydro turbine), the energy
bought from the grid, the net energy output injected to the grid (i.e., the net energy
sold to the grid), the energy stored in the upper reservoir and the daily revenue. The
test period is selected as one year (from 9th of Sep 2017 to 31st of Aug 2018). Thus,
these eight plots represent the change of these variables with respect to time (i.e., for

each hour of the test period).

Optimization Model

Y v Y
Electricity prices Electricity prices Electricity prices
estimated by LSTM of the operation day ofthe previous day
¥ ¥
LSTM_Opt Ideal_Opt PrevDay_Opt
Schedule Schedule Schedule
‘ LSTM-Revenue ‘ ‘ PrevDavy-Revenue |
v
| LSTM-RealRevenue | ! ‘ PrevDav-RealRevenue ‘
| Ideal-Revenue ‘
Scenario 3 Scenario 1 Scenario 2

Figure 5.8. Optimization Model Scenarios
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5.2.2 Pumped Storage Hydropower Plant Results

Here, the results of the optimization model for the pumped storage hydropower plant

(i.e., no wind turbine case) are presented for all three scenarios.

5.2.2.1 Results of Ideal_Opt

The results of the ideal case (i.e., the case where the real prices of the operation day
are assumed to be known in the bidding day) are presented in Figure[5.9] As can be
seen in Figure [5.9|(c), since there are no wind turbines for this case, the wind turbine
output is zero all the time, and hydro turbine output given in Figure [5.9(d) represents
the positive output in the net energy output injected to the grid in Figure5.9(f). As
can be seen from Figure [5.9(b), the pump operates at its maximum capacity in most
of the hours during pump mode, while turbine works at varying capacities during
turbine mode as shown in Figure[5.9(d). Also, there are many hours when the plant is
idle. The net energy output injected to the grid is negative at some hours (i.e., pumped
storage hydropower plant buys electricity from the grid in these hours) and positive
in others (i.e., pumped storage hydropower plant sells electricity to the grid in these
hours) as can be seen in Figure [5.9(f). According to the schedule given in Figure
[5.9(h), the total revenue of the pumped storage hydropower plant in the test period of
one year 1s 3,975,820 TL. This revenue is the upper bound of the revenue since real
prices are assumed to be known in the bidding day. In practice, the real electricity
prices of the operation day would be unknown to the operator of the system, and
the optimization model cannot be run using the real values. If an LSTM network
to predict the operation day’s electricity prices does not exist, the second-best set
of prices that can be used in the optimization model are the electricity prices of the

previous day. The results for this case are given in the following sub-section.
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Figure 5.9. Results of Ideal_Opt for the Pumped Storage Hydropower Plant
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5.2.2.2 Results of PrevDay_Opt

In this scenario, the optimization model is run for the pumped storage hydropower
plant using the electricity prices of the previous day, and the optimum schedule and
the revenue corresponding to this schedule are obtained (these are represented as Pre-
vDay_Opt schedule and PrevDay-Revenue, respectively in Figure [5.8). The results
of this case are presented in Figure [5.10] In Figure [5.10|(a), the plotted hourly elec-
tricity price is two days shifted version of the prices that are used in Figure[5.9(a). As
shown in Figure @ a second revenue, PrevDay-RealRevenue is calculated for this
scenario for comparison purposes. The optimum schedule obtained from the opti-
mization model (i.e., PrevDay_Opt schedule) is simulated using the realized prices of
the operation day to calculate PrevDay-RealRevenue. In real life, the revenue of the
system will be PrevDay-RealRevenue since the execution of the optimum schedule
will be realized with the electricity prices of the operation day instead of the pre-
vious day’s electricity prices which were used in the optimization model. Thus, in
Figure[5.10(h) the results of PrevDay-RealRevenue are given in orange in addition to
PrevDay-Revenue for comparison purposes. The results for the whole test period are

summarized in Table 5.4
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Figure 5.10. Result of PrevDay_Opt for the Pumped Storage Hydropower Plant
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Table 5.4. Revenues of PrevDay_Opt and Ideal_Opt

Error in real revenue Error in real revenue
PrevDay- PrevDay- Ideal-
with respect to with respect to
Revenue RealRevenue Revenue
the estimated revenue the ideal revenue
(TL) (TL) (TL)
(%) (%)
3,978,708 -955,905 3,975,820 124 124

When the operation schedules of Ideal_Opt and PrevDay_Opt (i.e., Figure and
[5.10) are compared, it can be noticed that they are quite similar. The reason for this
similarity is hourly electricity prices that are used in PrevDay_Opt and Ideal_Opt.
There is two days difference between the inputs of PrevDay_Opt and Ideal_Opt,
so two days difference exists in the schedules, as well. PrevDay_Opt follows the
Ideal_Opt from two days behind. For instance, the schedule of energy stored in upper
reservoirs for both Ideal_Opt and PrevDay_Opt is shown in Figure where the
similarity can be seen clearly. In addition to this, although PrevDay_Opt uses the
electricity prices that are realized two days ago, it presents a rather incorrect opti-
mum schedule. As can be seen in Table PrevDay-Revenue is higher than Ideal-
Revenue. That is, PrevDay_Opt can misguide the operator to determine the operation
schedule of the pumped storage hydropower plant. For example, as shown in Figure
[5.11] the use of the electricity prices that are realized two days ago in the schedule of
the upper reservoir leads to a significant error in the revenue estimation although only

two days lag exist in the prices.
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Figure 5.11. Energy Stored in the Upper Reservoir in Ideal_Opt and PrevDay_Opt

The errors in Table [5.4]are calculated using the following equation:

[0 ”'Z_yz” Y 100 (5.1)

where x is PrevDay-RealRevenue, and y is PrevDay-Revenue and Ideal-Revenue for
the 4th and Sth columns of Table[5.4] respectively and n is the total number of hours

in the test period.

As can be seen in Table [5.4] when the previous day’s electricity prices are used in
the optimization model, the total revenue (i.e., PrevDay-Revenue) is estimated as
3,978,708 TL. However, the realized revenue of the system is -955,905 TL. This
shows that the utilization of the previous day’s electricity prices leads to 124% error
in the revenue estimation. In other words, the owner of the system was hoping to
make 3,978,708 TL but actually loses 955,905 TL in one year of the test period (from
9th of Sep 2017 to 31st of Aug 2018). As can be seen in Table[5.4] for the ideal case,
the revenue of the system (i.e., Ideal-Revenue) is 3,975,820 TL, which is an upper
bound for the revenue and the model error with respect to the ideal case is 124% as
well. These results indicate that the utilization of the previous day’s electricity prices

results in misleading revenues.
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5.2.2.3 Results of LSTM_Opt

The optimization model is run for the pumped storage hydropower plant using the
electricity prices that are forecasted by the LSTM network in this scenario. The op-
timum schedule (i.e., LSTM_Opt in Figure[5.8)) and the corresponding schedule (i.e.,
LSTM-Revenue in Figure[5.8) are obtained. The results of the obtained schedule are
represented in Figure [5.12] In addition to LSTM-Revenue, the optimum schedule
(i.e., LSTM_Opt schedule) is simulated using the realized prices to obtain LSTM-
RealRevenue. To compare LSTM-Revenue and LSTM-RealRevenue, the results of
LSTM-RealRevenue are given in orange in Figure[S.12(f). It can be noticed that in the
last part of Figure[S.12(f) (i.e., around t = 8000 hr), there is a significant discrepancy
between LSTM-Revenue and LSTM-RealRevenue. The reason for this discrepancy
is that the LSTM network cannot forecast this part successfully due to abrupt changes
in the electricity prices in this time duration (see Figure [4.24). Also, the summary of
the results for the whole test period is given in Table [5.5]
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Figure 5.12. Result of LSTM_Opt for the Pumped Storage Hydropower Plant
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Table 5.5. Revenues of LSTM_Opt and Ideal_Opt

Error in real revenue Error in real revenue
LSTM- LSTM- Ideal-
with respect to with respect to
Revenue RealRevenue Revenue
the estimated revenue the ideal revenue
(TL) (TL) (TL)
(%) (%)
4,339,821 -757,083 3,975,820 117.5 119.0

The errors are calculated using the Equation (5.1) where = is LSTM-RealRevenue
and y is LSTM-Revenue and Ideal-Revenue for the 4th and 5th columns of Table[5.5]

respectively.

According to Table[5.5] the total revenue (i.e., LSTM-Revenue) is estimated as 4,339,821
TL when the electricity prices that are forecasted by the LSTM network are used in
the optimization model. Besides, the real revenue of the system is -757,083 TL. It can
be inferred that the use of the LSTM network leads to 117.5% error in the revenue
estimation. As shown in the Table [5.5] the revenue of the ideal case (i.e., Ideal-
Revenue) is 3,975,820 TL. When the error is calculated with respect to the ideal case,
it equals to 119%. So, these results indicate that the utilization of the LSTM prices
does not improve the results significantly compared to the utilization of the previous
day’s electricity prices when the system does not have any wind turbine (i.e., only

pumped storage hydropower).

To investigate the effects of the wind turbine integration to the pumped storage hy-
dropower plant, similar simulations are conducted for the WHHS and presented in

the next section.

5.2.3 WHHS Results

In this subsection, the results of the optimization model of the WHHS are presented

for Ideal_Opt, PrevDay_Opt and LSTM_Opt, respectively.
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5.2.3.1 Results of Ideal_Opt

The results of the ideal case are presented for the WHHS with 10, 50 and 200 wind

turbines in Figures [5.13] [5.14] [5.15] respectively. As can be seen in Figures [5.13|c),
[5.14(c) and [5.15|c), since wind turbines outputs exist in these scenarios, they con-

tribute to the WHHS both for pumping and direct energy selling. Negative values
of the net energy output injected to the grid are decreasing as the number of wind

turbines are increasing as can be seen in Figures [5.13|f), [5.14(f), [5.15(f). It can be

noticed that the schedule of pumping energy input, hydro turbine output, and energy
stored in the upper reservoir are not affected by the number of wind turbines. They
are the same in all three figures. The reason is that the operations of the pumped
storage hydropower plant is governed by the electricity prices, and there is an upper
bound - dictated by the capacity of the upper reservoir - of the revenue of the pumped
storage hydropower plant with the given electricity prices. Wind turbines prevent the
pumped storage hydropower plant from buying the energy from the grid. According
to the optimum operation, if the system decided to pump water to the upper reservoir,
it accomplishes this by buying the energy from the grid or taking it from the wind
turbines if it is available. After wind turbines provide the necessary energy to the
system, if extra wind energy exists, then it is sold to the grid. Thus, as the number of
wind turbines increases, the revenue that is provided by the direct sell of wind energy
increases as expected, and the energy bought from the grid decreases. According to
the schedules given in Figures[5.13| [5.14]and [5.15] the total revenues are 11,278,263
TL, 40,488,038 TL and 150,024,694 TL, respectively. These revenues are the upper
bounds of the revenues of the WHHS.
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Figure 5.13. Results of Ideal_Opt for the WHHS with 10 Wind Turbines
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