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ABSTRACT

DEVELOPING OPTIMUM OPERATION STRATEGIES FOR
WIND-HYDRO HYBRID SYSTEMS

Ercan, Eray

M.S., Department of Civil Engineering

Supervisor: Prof. Dr. Elçin Kentel Erdoğan

June 2020, 124 pages

In today’s world, energy is one of the most important drivers for the continuation

of civilization. Until recent years, the energy demands of the countries have been

mainly supplied by fossil fuels. However, the negative effects of using fossil fuels

in energy generation shifted the focus to renewable energy resources. In addition to

this, the popularity of renewable energy resources increased as their costs decreased

and efficiencies increased. Therefore, the integration of renewable energy systems to

national grids increased in recent years. However, this integration is challenging due

to the intermittent nature of renewable energy sources. In addition to the uncertainty

in the generation of energy from the renewables, the uncertainty in the electricity spot

markets increases the difficulty in the management of the renewables. To deal with

the intermittent nature of the renewables, energy storage systems have to be imple-

mented. Pumped storage hydropower is currently the most viable form of large scale

energy storage. The operation of renewable systems, together with pumped stor-

age hydropower plants, increases the efficiency of the hybrid system. In this study,

a wind-hydro hybrid system (WHHS) is considered, and optimum daily operation

strategies for a hypothetical case study is developed. To increase the revenue of the
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WHHS, a long short-term memory (LSTM) network is developed to forecast electric-

ity prices in the day-ahead spot electricity market. Apart from the LSTM network,

an optimization model is developed to obtain optimum operation schedules and the

maximum revenue of the WHHS by using the electricity price and available wind en-

ergy as inputs. To investigate the effects of the LSTM network and the optimization

model, different scenarios are created and run. According to the results, it is observed

that wind turbines compensate the loss due to the poor forecasting of the electricity

price. Thus, the higher the installed capacity of wind turbines in the WHHS, the bet-

ter compensation it provides. However, within the studied range (i.e., 25 MW to 500

MW), the operation schedules of the pump and the hydro turbine of the WHHS are

not affected from increasing the installed capacity of wind turbines. Once enough en-

ergy is generated by wind turbines to be used to pump the water to the upper reservoir,

the rest of the wind energy is directly sold to the grid.

Keywords: Renewable Energy, Optimization, LSTM, Electricity Price Forecasting,

Wind-Hydro Hybrid Systems
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ÖZ

RÜZGAR-HİDRO HİBRİT SİSTEMLER İÇİN OPTİMUM ÇALIŞMA
STRATEJİLERİNİN GELİŞTİRİLMESİ

Ercan, Eray

Yüksek Lisans, İnşaat Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Elçin Kentel Erdoğan

Haziran 2020 , 124 sayfa

Günümüz dünyasında enerji, uygarlıkların devamı için en önemli unsurlardan biridir.

Geçtiğimiz yıllara kadar ülkelerin enerji talepleri çoğunlukla fosil yakıtlar tarafın-

dan karşılanmıştır. Ancak, fosil yakıtların enerji üretiminde kullanılmasının olumsuz

etkileri, ilgiyi yenilenebilir enerji kaynaklarına kaydırmıştır. Buna ek olarak, yenile-

nebilir enerji kaynaklarının popülaritesini maliyetlerdeki düşüş ve verimlilikteki artış

olumlu etkilemiştir. Bu nedenle, yenilenebilir enerji sistemlerinin elektrik şebekele-

rine entegrasyonu son yıllarda artış göstermiştir. Ancak, yenilenebilir enerji kaynakla-

rının sürekli olmaması entegrasyonu zorlu bir hale getirmektedir. Yenilenebilir enerji

kaynaklarındanki belirsizliğe ek olarak, elektrik spot piyasalarındaki belirsizlik, ye-

nilenebilir enerji kaynaklarının yönetimindeki zorluğu arttırmaktadır. Yenilenebilir

enerji kaynaklarının süreksizliği ile başa çıkmak için enerji depolama sistemlerinin

uygulanması gerekmektedir. Pompaj depolamalı hidroelektrik santralleri şu anda bü-

yük ölçekli enerji depolamanın en uygun şeklidir. Yenilenebilir enerji sislemlerinin

pompaj depolamalı hidroelektrik santraller ile birlikte çalıştırılması hibrit sistemle-

rin verimliliğini arttırmaktadır. Bu çalışmada, bir rüzgar-hidro hibrit sistemi (RHHS)
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ele alınmış ve varsayımsal bir vaka çalışması için optimum çalışma stratejileri ge-

liştirilmiştir. RHHS’nin gelirini artırmak için, gün öncesi spot elektrik piyasasındaki

elektrik fiyatlarını tahmin etmek için uzun kısa vadeli hafıza (UKVH) ağı gelişti-

rilmiştir. UKVH ağının yanı sıra, elektrik fiyatını ve mevcut rüzgar enerjisini girdi

olarak kullanarak optimum çalışma programları sunan ve RHHS’nin maksimum geli-

rini elde eden bir optimizasyon modeli geliştirilmiştir. UKVH ağının ve optimizasyon

modelinin etkilerini araştırmak için farklı senaryolar oluşturulmuş ve çalıştırılmıştır.

Elde edilen sonuçlara göre, rüzgar türbinlerinin elektrik fiyatının başarısız tahminin-

den kaynaklanan kaybı telafi ettiği görülmektedir. Bu nedenle, rüzgar türbini sayısın-

daki artış, kaybın azalmasını sağlamaktadır. Ancak, bu çalışmada analiz edilen rüzgar

türbin enerji aralığında (10 MW ile 500 MW arası), RHHS’deki pompa ve hidrolik

türbinin operasyonel programlarının değişmediği görülmüştür. Rüzgar türbinleri ta-

rafından üretilen enerji, suyu üst rezervuara pompalamak için kullanıldıktan sonra

geriye kalanının doğrudan şebekeye satıldığı gözlemlenmiştir.

Anahtar Kelimeler: Yenilenebilir Enerji, Optimizasyon, UKVH, Elektrik Fiyat Tah-

mini, Rüzgar-Hidro Hibrit Sistemler
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CHAPTER 1

INTRODUCTION

The development of nations depends on the energy used. Thus, energy demand is

increasing continuously. Conventional energy sources do not exist everywhere, and

they will be even scarcer in the future. Also, due to the negative impacts of con-

ventional energy sources on the environment, their use keeps on decreasing globally

(Panwar, Kaushik and Kothari, 2011). One of the most current concerns of the World

is climate change. One of the reasons for climate change is greenhouse gases that

are the result of fossil fuel power plants. Instead of conventional energy sources, re-

newable energy sources have risen to prominence in recent years. Currently, many

governments support renewable energy investments since they are environmentally

friendly and infinite. Also, the integration of renewable energy into the energy bud-

get of a country increases its energy security by reducing energy imports from other

countries. However, renewable energy sources depend on season, weather conditions,

and time. Likewise, energy demand is variable. Thus, the storage of renewable energy

sources is a necessity, and their direct storage is not possible.

The cost of renewable energy systems was higher than the cost of fossil fuels, so

renewable energy systems could not compete in the market for many years (Timmons,

Harris and Roach, 2014). Only hydropower has competed with fossil fuels for a

long time, but unless the necessary precautions are taken, hydropower projects have

some negative social and ecological effects on people and the project area (Kentel and

Alp, 2013; Somaraki, 2003). On the other hand, they have many benefits such as flood

control, water supply, low-cost energy generation, and recreation lands (Hogeboom,

Knook and Hoekstra, 2018).

Apart from hydropower, wind energy become a key renewable energy option due
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to technology advancement and cost reduction in its establishment (IRENA, 2019).

However, the intermittent nature of the wind brings serious problems and decreases

the efficiency of energy systems. It negatively affects the grid stability and decreases

the revenue of the energy seller due to not fulfilling the proposed operational schedule

in the electricity spot market (Angarita and Usaola, 2007). The operation of wind

power plants should be coupled with energy storage systems in a hybrid manner to

provide the maximum benefit.

Energy storage systems are powerful solutions to cope with the intermittent nature of

wind power. They allow storage of the generated wind energy to be used whenever

needed or the most beneficial. Currently, there are many energy storage technolo-

gies, including pumped storage hydropower, thermal energy storage, compressed

air energy storage, flow battery storage, flywheel energy storage, superconductor

magnetic energy storage, supercapacitor energy storage and electrochemical batter-

ies (Antal, 2014). However, pumped storage hydropower among all is the only

commercially proven large scale energy storage technology (Deane, Gallachóir and

McKeogh, 2010; Kapsali and Kaldellis, 2010; Sivakumar, Das, Padhy, Kumar and

Bisoyi, 2013). In this study, the pumped storage hydropower is used as the stor-

age system. In pumped storage hydropower, water is pumped to the upper reservoir

to allow the storage of surplus electricity in the form of the potential energy, and

water is released through a turbine to allow the transformation back to electricity

(Gimeno-Gutiérrez and Lacal-Arántegui, 2013). In this way, the pumped storage hy-

dropower sells the energy when the prices and the demand are high, and buys the

energy when the prices and the demand are low to make a profit. When the pumped

storage hydropower and the wind power are combined in a system, the pumped stor-

age hydropower can benefit the availability of free energy generated by wind turbines

to pump the water to the upper reservoir (Ghaisi Rad, Rahmani, Gharghabi, Zoghi,

Hossein Hosseinian and Hossein, 2017). The described system, which is called the

wind-hydro hybrid system (WHHS), provides the efficient management of wind en-

ergy. In addition to that, it increases the revenue of the pumped storage hydropower

plant by decreasing the energy that is bought from the grid.

In Turkey, according to OECD (2019), energy import satisfies more than 80% of

the total energy demand. To decrease the energy import, the integration of the wind
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and other renewables to the national grid is important. One of the alternatives to the

convenient integration of wind power is WHHS that can be built by using current

cascade hydropower plants or building new pumped storage hydropower plants.

In the scope of this thesis, a hypothetical WHHS is considered, and an optimization

model is developed to maximize the revenue of the WHHS. Moreover, to increase the

performance of the WHHS in the electricity spot market, a long short-term memory

network (LSTM) is developed, and electricity prices in the market are forecasted. In

the electricity spot market, only day-ahead operations are considered to maximize

the revenue. In addition to that, the designed WHHS is assumed to be a closed-loop

(off-stream) system. In other words, all inflows and outflows to and from the system

are ignored.

To investigate the results of the optimization model and LSTM network, different

scenarios are created and run. It is found that the LSTM network is beneficial when

the electricity prices do not have abrupt changes and increases revenue. However, in

Turkey, the abrupt changes are very common, and future electricity price prediction

is challenging. Second, it is observed that the increasing penetration of the wind

turbines decreases the grid dependency and increases the revenue of the WHHS.

The thesis consists of six chapters. In Chapter 2, the literature review is presented.

In Chapter 3 the methodology of developed models and mathematical representations

are provided. In Chapter 4, an implementation of the methodology on a case study

is presented. Results and discussions of the case study are provided in Chapter 5 and

finally, conclusions are given in Chapter 6.
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CHAPTER 2

LITERATURE REVIEW

In the scope of this thesis, an optimization model to determine the best daily operation

strategy is developed for a WHHS. The optimization model takes hourly electricity

price and hourly wind energy as inputs. The first input, hourly electricity prices are

declared in the Turkish Electricity Market. We forecast the electricity prices with the

LSTM, which is a special type of artificial neural network. The second input, the

wind energy, is taken from NASA MERRA-2 database. A brief information about

these concepts and previous studies are presented in this chapter. In Section 2.1,

pumped storage hydropower plants, wind power plants and WHHS are explained.

The energy generated or used in power plants can be bought or sold in the electricity

spot markets. In Section 2.2, Turkish Electricity Spot Markets are described. The

LSTM model, which is used to forecast the electricity prices in the spot market, is

introduced Section 2.3. Lastly, a literature review of the wind-hydro optimization

model is presented in Section 2.4.

2.1 Pumped Storage Hydropower Plants, Wind Power Plants, Wind-Hydro

Hybrid Systems

Pumped storage hydropower plants are the most viable large scale electricity storage

alternatives. They are especially necessary to regulate the intermittent character of

renewable energy sources such as wind and solar. Wind power plants are used for

converting the mechanical energy of wind to electricity. Wind energy is a renewable

energy resource that has less environmental impact compared to fossil fueled power

plants. WHHS combines the pumped storage hydropower plant and wind power plant
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and provides more efficient energy generation. These power plants are explained in

the following sections.

2.1.1 Pumped Storage Hydropower Plants

Pumped storage hydropower plant (PSHP) has two reservoirs unlike conventional

hydropower plants. Water moves from the lower reservoir to the upper one or vice

versa. This can be achieved by a pump hydro turbine. A pump hydro turbine is a

machine that can work in the turbine mode or the pump mode. The key idea behind

PSHPs is that when electricity prices are low, it pumps the water from the lower

reservoir to the upper reservoir, and when electricity prices are high, it turbines the

water from the upper reservoir. In this way, although the net energy generation is

negative, more revenue can be achieved from the same amount of water.

A typical PSHP layout, shown in Figure 2.1, has the following components: Two

reservoirs that are linked, turbine shutoff valves, tunnels for water movement in

reservoirs, a transmission switchyard, transmission link and hydro machinery that in-

cludes transformers, a motor-generator and a pump-turbine (U.S. Army Corps of En-

gineers, 2009). Motor-generator is used to convert electrical energy into mechanical

energy or vice versa. Pump-turbine moves fluids or extracts energy from it depending

on the working mode.

Figure 2.1. Typical PSHP Layout (U.S. Army Corps of Engineers, 2009)

PSHPs are net energy consumers. Yang and Jackson (2011) states that typical PSHP
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recaptures 70-80% of the input energy. So, it means that if water with a potential of

100 MWh energy exists, approximately 70 to 80 MWh will be recaptured after the

PSHP operations. The main reason for this loss is friction losses in waterways and

pump-turbine equipment. Since PSHPs generate negative energy overall, they can be

thought as transmission facilities (Miller, 2009).

Formerly, PSHPs are used to provide a balanced load on a system. They help to man-

age considerable energy generated from thermal power plants. According to Miller

(2009), it is the largest and most effective grid energy storage. It also provides net-

work frequency control by adjusting power operations immediately.

There are two main types of PSHP, pure PSHP and pump-back PSHP (Deane et al.,

2010). Pure PSHP is named as ’closed-loop’ or ’off-stream’, as well. In the pure

PSHP, there is no inflow to the upper reservoir other than water pumped from the

lower reservoir. A pure PSHP could be fully separated from the natural water sys-

tem. Pump-back PSHP uses both the natural flows and pumped water to fill its upper

reservoir. Types of PSHPs are shown in Figure 2.2. In this thesis, added value of

electricity price estimation on the revenue of a closed-loop PSHP is evaluated. Since

it is simpler to model a closed-loop, and research on wind hydro hybrid systems for

Turkey is limited, we choose to initially work on this system.

Figure 2.2. Pure PSHP on left and pump-back PSHP on right (?)

According to IHA (2018), there exist a high interest in PSHPs in many countries, es-

pecially in China. PSHPs are thought of as key elements to integrate renewable energy

sources into grid systems. The total global capacity of PSHP was stated as roughly
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161 GW in the World by IHA (2018). Figure 2.3 shows 5 largest total PSHP installed

capacities. Due to planned high integration of wind and solar energy resources, there

will be a need for operational flexibility. To provide this flexibility, the total installed

capacity of PSHP is expected to increase. Figure 2.4 shows projected PSHPs installed

capacities by IHA (2018) up to 2030. Also, PSHPs will be installed in Turkey in order

to eliminate the constraints of increasing renewable energy on the grid, as stated in

the eleventh development plan (Presidency of the Republic of Turkey, 2019).

Figure 2.3. PSHP Installed Capacities Trend in the World (IHA, 2018)

2.1.2 Wind Power Plants

The wind turbine is a machine that is used for converting the natural energy resource,

wind into electricity. It is kwown as one of the oldest energy resources, and used for

drainage and irrigation purposes, initially (Ragheb, 2012). A typical modern wind

turbine’s capacity changes in the range of 1.5 to 5 MW. Wind turbines having larger

capacities are used in a large grid system, frequently in the United States and Europe

(James F. Manwell, Jon G. McGowan, 2009).

Wind creates an aerodynamic force on the rotating shaft that leads to the production of

torque and mechanical energy. This mechanical energy is converted to electricity by
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Figure 2.4. PSHP Projected Installed Capacities in the World (IHA, 2018)

a generator. The wind turbine can generate electricity instantly if enough wind speed

exists. However, wind energy can not be stored to be used afterward, unlike most

other fossil-fueled power plants. Therefore, energy generated from wind turbines os-

cillates parallel to wind speed. A typical wind turbine has the following components:

the rotor (includes the support hub and blades), the electrical system (includes ca-

bles, switchgear, transformers, electronic power converters), the drive train (includes

shafts, gearbox, mechanical brake, and the generator), the main frame, the tower and

the foundation. The main components of the wind turbine are shown in Figure 2.5.

A typical wind turbine power curve is shown in Figure 2.6. To generate useful energy

from a wind turbine, there should be a minimum sufficient wind speed, the cut-in

speed. The maximum power output from a wind turbine is named as rated wind speed.

There is a cubic relationship between wind speed and energy. That is, as wind speed

doubles, the turbine generates eight times more power. However, during the blowing

of high wind speed, there could be machine damage, so the turbine’s maximum speed

is limited by the cut-out speed. These cut-in, rated and cut-out speeds are determined

by engineering designs considering safety constraints.
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Figure 2.5. Main Components of a Wind Turbine (James F. Manwell, Jon G. Mc-

Gowan, 2009)

According to GWEC (Wind Global Council Energy) (2019), the global wind energy

capacity is 591 GW in 2018. Figure 2.7 shows the total wind power plant installations

by countries for onshore and offshore types. China and the United Kingdom has

the largest shares for the onshore and offshore installations, respectively. Figure 2.8

shows the historic development of wind power plants total installations in the World.

While Compound Annual Growth Rate (CAGR) is decreasing with years, share of

offshore in total installations increases. In Turkey, 497 MW onshore wind power

plant installations is added in 2018. The total installed capacity of Turkey is 7370

MW, with no offshore installations.

2.1.3 Wind-Hydro Hybrid Systems

Wind power plants and PSHPs can be operated as a combined system with the joint

operation. This joint operation is called a WHHS. WHHS has many advantages when
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Figure 2.6. Typical Wind Turbine Curve (Zayas et al., 2015)

compared to the uncoordinated operations of PSHP and wind power plant. In this

section, the working mechanism of the WHHS is explained, and some example stud-

ies are presented. Figure 2.9 shows a typical WHHS. It includes a higher reservoir, a

lower reservoir, a pump-turbine, penstocks, and wind turbines (Anagnostopoulos and

Papantonis, 2012).

Korpaas, Holen and Hildrum (2003) points out that wind energy is an important sup-

port for conventional energy resources. However, the intermittency characteristic of

wind power limits its maximum integration to the grids. Wind power plant owners

can not foresee the hourly production amounts, and this creates a compelling situa-

tion during the market operations. An energy storage system will give flexibility to

the owner, and market operations can be carried out in an improved manner.

To increase the efficiency of PSHP and to overcome to the storage of wind energy

problem, the WHHS is a powerful alternative solution. According to Benitez, Benitez

and van Kooten (2008), to provide power, when the wind is not blowing and there is a

need for peak-load power, wind power plant with hydraulic energy storage is an ideal

system. In this way, continuous energy supply to the grid can be achieved.
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Figure 2.7. Total Installations of Wind Power Plants (onshores at the top, offshores

at the bottom) (GWEC, 2019)

Typically, during the daytime, hourly electricity prices are low while they are high

in the nighttime. So, if the energy generated from wind turbines is used to pump the

water to the upper reservoir during low electricity price hours, and energy generated

through releasing the water from the upper reservoir to the lower reservoir is sold to

the grid when the prices are high, then more revenue can be achieved.

Integration of wind turbines to the storage facilities provides the following benefits

(Loutan and Hawkins, 2007): making more revenue by taking advantage of the price

difference in off-peak and on-peak hours, providing ancillary services like regulation,

giving flexibility to grid operations and mitigating large wind energy ramps. More-

over, storing energy smooths the system demand curve, and make a more stable grid

(see Figure 2.10). Storing energy when the system demand is low, decreases the peak
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Figure 2.8. Development of Wind Power Plant Total Installations (GWEC, 2019)

demand. Smoother system demand curve provides easier management of the grid and

integration of wind energy to the grid (Ibrahim et al., 2011).

There are existing and ongoing studies about WHHS both in the World and Turkey.

In the following paragraphs, example studies are presented. These studies explain the

advantages of WHHS through case studies.

Jaramillo, Borja and Huacuz (2004) investigated hypothetical facilities in Mexico.

They studied the performance of the WHHS by taking into account the capacity fac-

tors of the wind farm and the hydroelectric power plant. They concluded that the

renovation of hydro projects with wind energy integration is an important opportu-

nity for WHHS in Mexico.

Bueno and Carta (2006) proposed the installation of a wind power integrated PSHP

on the Island of Gran Canaria. Their main purpose was to solve the problem of re-

stricted penetration of wind sources to the grid system. They created an economically

optimal model for the wind-powered hydro pump system by using existing water

reservoirs. They specified that when all alternative external approaches were ana-

lyzed, the proposed system is the most efficient one, also it is clean energy. They

suggested applying these systems in the other Canary Islands as well.

Al Zohbi, Hendrick, Renie, Bouillard and Zohbi (2015) presented a wind power inte-
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Figure 2.9. Schematic Representation of WHHS (Anagnostopoulos and Papantonis,

2012)

grated PSHP to supply energy demand in Lebanon. Their study is the first application

of wind-hydro PSHP in Lebanon. They specified that the proposed system performed

well in terms of supplying energy demand. They claimed that the integration of wind

power enhanced the sustainability of the Lebanese electricity system.

Kapsali and Kaldellis (2010) applied a wind-hydro model for the Island of Lesbos.

Their model solves restricted wind energy contribution problem, and exploits wind

energy rejection by the help of the PSHP. The authors specified that this model paves

the way for future wind energy investments in the Island.

Papaefthymiou, Karamanou, Papathanassiou and Papadopoulos (2010) investigated

the operation of the hybrid power station with a simulation model in Ikaria for 2012.

They run the simulations for different hydrological and wind scenarios. Their work

showed that wind energy penetration in the Island’s energy balance is highly efficient

with the hybrid power station. Also, they stated that instead of expensive conventional

peak power plants, the hybrid power station could provide the firm capacity to the
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Figure 2.10. Effect of Energy Storage on System Demand (Ibrahim et al., 2011)

Island.

As can be seen from the studies that are presented in the above paragraphs, wind-

hydro hybrid applications were analyzed in Islands, mostly. Since islands are isolated

systems, hybrid systems can be applied in an easier way. In general, islands have

high wind energy potential, and they can benefit from the sea for the pumped storage

hydropower plant. In addition to that, since islands have smaller grid systems, WHHS

can be integrated smoothly. In this thesis, the WHHS is suggested for a region in

Turkey. Since Turkey has a much more complicated grid system compared to an

island, the integration of these hybrid systems to the grid is more compelling. This

is one of the reasons for the evaluation of a closed-loop PSHP in this project. A few

studies about the WHHS in Turkey are presented in the following paragraphs.

Dursun, Alboyaci and Gokcol (2011) evaluated the efficiency of a combined WHHS

to the Marmara region intending to supply the energy demand. In their system, after

meeting the demand, excess energy is stored to be used when it is needed. It is

realized that the proposed system fulfills the energy demand with less cost compared
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to the existing systems. This study is the first scientific study of a WHHS in Turkey.

Kose and Kaya (2013) proposed a WHHS to supply the energy demand of the Konya

water treatment plant. They found that their proposed hybrid model can cover the

energy demand of the plant. They noticed that the energy demand in 10 months in a

year could be provided only from the hydropower plant operation. For the other two

months, the wind power plant operation is necessary. Also, just 4 of 10 months, the

hydropower plant can provide the energy demand with 10% safety margin. Therefore,

they stated that the hybrid system operation is essential to guarantee uninterrupted

energy production for the demand.

Kaya (2012) studied on supplying of the energy need of Alibeyhüyüğü irrigation

pumps by a WHHS. He determined the most efficient wind turbine and PSHP ca-

pacity. In addition to that, a feasibility study was performed. He concluded that the

WHHS is quite a suitable solution to prevent fluctuations in wind energy. In Turkey,

there is not any WHHS yet, and research on efficiency of these systems is limited.

Also, a limited research study exists about these systems. Therefore, we think that

this study will be important guidance for the integration of these systems in Turkey.

2.2 Turkish Electricity Spot Markets

There are two main challenges of electricity. Firstly, its storage is difficult and expen-

sive. Secondly, supply and demand amounts must be equal all the time (Yarici, 2018).

To balance the supply and demand considering the system constraints, there should

be spot markets. Turkish electricity spot market consists of three markets; intraday,

day-ahead and balancing markets. While the balancing market is operated by TEIAS,

day-ahead and intraday markets are operated by EPIAS. TEIAS is the market opera-

tor, and TEIAS is the transmission operator in Turkey.

In the day-ahead market, all the trading activities are performed for the next day. The

purpose of this market is to plan and balance the generation and consumption values

in the previous day (i.e., one day ahead). In the day-ahead market, energy sellers

deliver their offers for each hour of the next day. In the same manner, energy buyers

submit their needs for each hour of the next day. The market operator takes these
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bids, and sort them from the lowest to the highest for each hour. After intersecting

the supply and demand curves, shown in Figure 2.11, Market Clearing Price (MCP)

is determined. The day-ahead market offer period covers 24 hours of the next day

from 00.00 to the following day 24.00. The due date for the submission of the offers

is today’s 12.30. The results are announced at 13.30. After half an hour of objection

time, final results are declared at 14.00 (Yarici, 2018).

Figure 2.11. Determination of MCP (Kur, 2019)

The intraday market provides additional opportunities to market players. It is the

extension of the day-ahead market. Its main purpose is the mitigation of imbalances.

Agreements in the intraday market could be performed up to one hour before the

physical delivery. Market players have a chance to adjust their positions after the

day-ahead market closes. The intraday market opens four hours after the final results

are announced in the day-ahead market. In the intraday market, market players offer

new prices and quantities for desired hours.

The balancing market’s primary purpose is to guarantee system security. After system

supply and demand are balanced in the day-ahead market, energy producers could
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face some problems (i.e., malfunctioning of turbines or other equipment, etc.), and

they could not fulfill their commitment. In this case, imbalances occur in the system.

TEIAS operates the balancing market, so that system frequency is kept in the desired

value. The market players that are capable of buying or selling a minimum of 10

MW within 15 minutes are compulsory to take part in the balancing market. Trading

operations in the balancing market are performed with System Marginal Price (SMP).

An example timeline for the spot markets is shown in Figure 2.12. This timeline

shows the market operations schedule for 02.01.2020.

Figure 2.12. Scheduling of Market for 02.01.2020

If the system has an energy surplus, MCP is greater than SMP; otherwise, SMP is

greater than MCP. If offered productions in the day ahead and balancing markets

could not be fulfilled, then some penalties are applied to the market players who

cause the imbalances. Market players get maximum revenue by fulfilling their offers

in the day ahead and balancing markets (Aksoy, Eryigit, Hashimova, Isbilir, Avsar,

Koksal and Terciyanli, n.d.).

2.3 Long Short-Term Memory Networks

Conventional artificial neural networks (ANN) have been used for the solution of real-

life problems for a long time. They are powerful tools to simulate non-linear relation-

ships. A recurrent neural network (RNN) is a type of ANN. RNN creates feedback

connections in input data, and this provides significant improvements compared to

conventional ANN. RNN has the ability to execute more complicated computations
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(Garrido, 2012) and RNN has been widely used to predict time series.

RNN is trained using input data that are in the form of a sequence. It can learn

time-dependent relationships in different sections of the input. For instance, when a

sentence is given as an input, RNN can recognize the relationship between different

words. In this way, it can learn the grammar rules of the used language (Veselý,

Burget and Grézl, 2010).

During the training of standard RNN, some problems may occur, such as vanishing

or exploding of the gradients (Pascanu, Mikolov and Bengio, 2012). Gradients are

the sum of the derivatives of the cost function, which measure the performance of the

network, with respect to the model parameters such as weights and biases through

timesteps. Gradients are used to update the model parameters and are propagated

from the last layer to the initial layer in a backward sweep. They are exposed to

many matrix multiplications due to the chain rule. When they are carried to earlier

layers, if they are smaller than one, they have the potential to shrink exponentially.

This leads to the vanishing gradient problem, and learning of the model becomes

impossible. The other scenario occurs when the gradient has a value larger than one,

then it has the potential to get too large. This creates an exploding gradient problem.

These problems decrease the capability of RNN’s learning of long time relations in

the input patterns. To suppress these problems, Hochreiter and Schmidhuber (1997)

developed a special type of RNN, which is the LSTM. Operations in LSTM networks

are controlled by its gates, and this prevents the gradient problems. LSTM network

also has the capability to build a relationship between a wide range of time steps, even

in noisy data by making use of short term dependencies.

Roche and Mcnally (2016) applied RNN and LSTM models to predict the price of

Bitcoin. The LSTM model achieved a higher accuracy value than the standard RNN.

They also implemented a popular ARIMA model for the same data. Non-linear mod-

els, LSTM and RNN, outperformed the ARIMA model.

Sak, Senior and Beaufays (2014) compared the performance of the deep neural net-

work (DNN) and LSTM networks on a large vocabulary speech recognition project,

which is the Google English Voice Search. This is the first implementation of LSTM

networks on an extensive vocabulary speech recognition. They indicated that LSTM
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architecture resulted in better performance than the DNN model.

Mandal, Senjyu, Member and Urasaki (2007) tried to forecast short-term electricity

prices using RNN based on similar days (SD) method in PJM, which is a regional

transmission organization in the District of Columbia. SD method takes the infor-

mation of days similar to the forecast day. So, the authors create an architecture that

integrates the RNN model with the SD method to obtain better results. At the end

of their study, they found that the RNN technique outperforms the SD method. The

proposed RNN model is capable of forecasting the peak values but not the large ones.

Also, they notice that the model predicts weekend better than weekdays due to high

volatility in PJM prices.

Jiang and Hu (2018) used an LSTM model for 24 hours ahead of price forecast in

Australia and Singapore markets. They used system demands, historical prices, hour

of the day, day of the week, week of the year and holidays information as inputs. The

performance of the LSTM model is compared with the performance of four popular

methods, which are BP-ANN, WT-ANN, PSO-ANFIS and SARIMA. The results

indicated that the LSTM model outperforms the other methods.

Anbazhagan and Kumarappan (2013) applied an RNN model to forecast electric-

ity market prices in Spain. The created RNN model is compared with different ap-

proaches to evaluate its accuracy. They used 16 different sets of lagged prices as input

features based on correlation analysis. According to their results, the RNN model is

selected as the best model in terms of accuracy, computation time and model com-

plexity. In this thesis, various models are built using different lagged prices and eval-

uated in terms of their price estimation performances. The one that shows higher

performance is used for the optimization model input.

Hong and Hsiao (2001) developed three RNN models to forecast locational marginal

prices (LMP) on weekdays, Saturday and Sunday. They selected historical LMPs,

system loads, system operating conditions, transaction periods and net-tie flows as

inputs of the RNN model. Due to the similar shape of the LMP pattern on weekdays,

Saturdays and Sundays individually, three different models were created. It was found

that the proposed RNN models could efficiently forecast LMPs.
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2.4 Optimization Models for Wind-Hydro Hybrid Systems

To analyze benefits of WHHS, many studies are performed in the literature. This

section briefly explains the important points of these previous studies.

Crespo-Vazquez, Carrillo, Diaz-Dorado, Martinez-Lorenzo and Noor-E-Alam (2018)

developed a model to attend to the day-ahead, intraday and balancing markets under

the uncertainties of intermittent wind and unforeseen electricity prices. They generate

scenarios for market prices. The scenario based on LSTM network model performed

the best results in terms of net income. Scenarios are also generated for wind energy.

Their analysis showed that both uncertainties in wind energy and market price affect

the net income in a similar manner. They explored that the proposed scenario gen-

eration techniques could be combined with a model predictive control framework to

create a dynamic decision-making tool for an extensive pool market. They also sug-

gested that scenario generation methods combined with machine learning techniques

are powerful to cope with uncertainties in wind speed and electricity prices.

Castronuovo and Lopes (2004a) created an optimization model to maximize the 24-h

operational profit of the wind-hydro power plant. The solution of the optimization

problem gives an operational schedule of wind, hydro turbine and pump units for the

next 24 hours. Since the system is assumed to be a closed-loop system, no inflow and

outflow are considered. The wind power was assumed to be a stochastic quantity with

two hourly series, such as average and standard deviation of the wind power. Based

on the model, random samples are generated. Each sample represented a wind power

scenario. For each scenario, the optimization model was solved. The integration of

the water storage increased the wind power plant profit. While during the high price

periods, the hydro generation supports the wind park to provide more energy to the

grid, during the low price periods, the pump units increased the water reservoir level.

Benitez et al. (2008) proposed an optimization model to evaluate the integration of

intermittent energy into the grid. Their model firstly found the best allocation of

power generation from a variety of sources by minimizing the total operational costs.

Secondly, the energy storage capabilities of reservoirs and the intermittency of wind

power was integrated with the constrained optimization method. Since storage facil-
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ities are necessary for wind penetrations to the grid, the model leads to the design

of profitable electricity systems. Thirdly, the model predicts the best level of new

capacity for any level of wind penetration.

Ghaisi Rad et al. (2017) suggested a new approach to determine the optimum number

of wind turbines to be integrated with the hydro pump storage unit, to get maximum

net income. To generate wind and price data, the Monte Carlo method was applied,

and the scheduled operation presented. The shorter payback period of the pump stor-

age power plant enhanced the longer payback period of the wind power plant. The

approach was applied to various electricity prices and wind energies. It is concluded

that the results of the study can help the wind hydro hybrid plant owners to find the

exact electricity price and wind energy.

Castronuovo and Lopes (2004b) described an optimization model to find the best op-

eration strategy of combined wind-hydro pumping storage power plants. The solution

to the optimization problem gave the hourly operation of wind-hydro pumping stor-

age power plants. They concluded that the proposed model could be used to help

the hydraulic design of the plant by computing the optimal equipment properties by

neglecting all inflows and outflows.

Cruz, Pousinho, Melício and Mendes (2014) proposed a mixed-integer linear pro-

gramming model to have the optimal scheduling of a closed-loop pumped-hydro sys-

tem with a wind farm. The results showed that this coordinated operation provides

more profit to the generation company during trading in the day-ahead market. Addi-

tionally, the proposed model highly reduces wind energy curtailments and decreases

penalty risks due to energy deviations.

Song, Zhang, Li, Zeng and Zhang (2013) depicted the joint operation mode of the

wind farm and the closed-loop pumped storage hydropower plant to cope with errors

in predicting wind power values that affect wind power integration negatively. The

purpose of their study was to reduce the operational risks and increase financial ben-

efits. Also, the proposed optimization models showed that total revenues are higher

in the joint operation mode rather than independent operations.
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Kaldellis and Kavadias (2001) developed a methodology for the optimal closed-loop

wind-hydro solution to find the most beneficial configuration of renewable stations.

The study showed that this methodology has multiple advantages. Firstly, the poten-

tial for renewable energy penetration reaches high values. Secondly, exchange losses

were minimized, including fuel imports. Thirdly, the environmental effects of com-

bustion engines were mitigated. Lastly, a high amount of the wind energy surplus was

diverted to the desalination plant to be used in clean-water production.

Hering, Mošna, Janecek and Hrycej (2013) compared the use of a hydropower plant

with a reservoir and pumped storage hydropower (PSH) in a WHHS. Selection among

these two options depends on the average load to supply, the cost of energy and hy-

drological constraints. The authors stated that PSH is efficient for minimizing costs.

Also, PSH brings environmental benefits. For instance, the same installed capacity

PSH uses less reservoir area and can be operated with smaller reservoir volume.

García-González, de la Muela, Santos and Gonzalez (2008) demonstrated an opti-

mization model for the joint operation of a wind farm and a closed-loop pumped

storage hydropower plant. To deal with uncertainties in the spot market, a two-stage

stochastic programming approach was suggested as a powerful tool for the decision-

making process. The proposed model could guide the investors about the wind farm

and pumped storage facilities during the market operations.
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CHAPTER 3

METHODOLOGY

In the scope of this thesis, an optimization model is built to determine the daily op-

eration schedule of a WHHS to obtain maximum revenue. Figure 3.1 shows the

flowchart of the methodology. The two important inputs of the optimization model

are hourly available wind energy and hourly electricity price. The first input, hourly

wind energy, is derived using wind speed data that is taken from NASA Modern-Era

Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), which

is available on the Internet database. The second input, hourly electricity price, is

forecasted by a LSTM network, which is a special type of recurrent neural network.

Calculating wind energy from wind speed is described in Section 3.1. Forecasting

hourly electricity prices with the LSTM network is explained in detail in Section 3.2.

Lastly, the development of the optimization model for the WHHS is presented in

Section 3.3.
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Figure 3.1. Methodology Flowchart

3.1 Calculation of Wind Energy from Wind Speed Data

The sun is the beginning source of the earth’s wind resource. Solar radiation in-

duces unbalanced heating of the earth, and that generates pressure differences across

the earth’s surface. These pressure differences on earth’s surface constitute winds.

Movement of air in the atmosphere, due to unbalanced heating of the earth, is af-

fected by the rotational movement of the earth. In addition to that, variations in the

atmosphere movements are increased by seasonal changes (James F. Manwell, Jon G.

McGowan, 2009). Eventually, wind speeds change with respect to both the location

and the time. To obtain wind energy to be used in the optimization model, MERRA-2

data is used as the source of wind speed at the desired location. In the following para-

graphs, information about MERRA-2 data, wind speed extrapolation and estimation

of wind energy are explained.
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MERRA-2 data covers data from 1980’s to a few weeks behind real-time. MERRA-2

uses a modern satellite database for the meteorological data assimilation (Aeronautics

and Information, 2017). MERRA-2 data contains a large number of products. Among

all products, we used M2T1NXSLV (MERRA-2 tavg1_2d_slv_Nx: 2d, 1-Hourly,

Time-Averaged, Single-Level, Assimilation, Single-Level Diagnostics V5.12.4) for

the wind speed. The spatial resolution of the data is 0.5° × 0.625°. This resolution

is quite low to be used in a wind power plant system design. However, since this

study deals with the comparative evaluation of the revenue of a hypothetical WHHS

when electricity prices are estimated by an LSTM network, low-resolution wind data

was sufficient. MERRA-2 data set has been used in the literature for similar studies

(Ritter, Shen, Cabrera, Odening and Deckert, 2015; Olauson and Bergkvist, 2015).

Wind speed data is in the netCDF format, and NASA’s Goddard Earth Sciences Data

and Information Services Center (GES DISC) website allows us to download files in

a subset form. The desired time and the spatial coverage or points are specified, and

then the website creates download links for each day for the defined time interval.

Each netCDF file contains 24 records and five parameters, which are the latitude, the

longitude, the time, the eastward wind speed at 50 meters (U50M), and the northward

wind speed at 50 meters (V50M). After all netCDF files are downloaded, wind speed

data for September 2017 to August 2018 period are extracted with a Python code.

The main library used in the Python code is defined in Table 3.1.

Table 3.1. Used Library for Wind Speed Data Extraction

Library Description Application

netCDF4 Python interface to the netCDF C library. Wind speed data is extracted from MERRA-2 netCDF file.

As explained in Aeronautics and Information (2017), the downloaded wind data is

composed of eastward and northward wind vectors at 50 meters, respectively U50 and

V50. The U wind component is parallel to the x-axis, which is the longitude. Positive

U wind values represent the wind coming from the west, and negatives represent the

wind coming from the east. The V wind component is parallel to the y-axis, which is

the latitude. Positive V wind values represent the wind coming from the south, and

negatives represent the wind coming from the north. Wind vector components are
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shown in Figure 3.2. Wind speeds are calculated using the Pythagorean Theorem:

Wind Speed =
√
U2 + V 2 (3.1)

Figure 3.2. Wind Vector Components

According to Kragh and Fleming (2012), to extract the maximum possible amount

of energy from the wind, the wind turbine should adjust its alignment so that the

rotor axis is aligned with the wind direction. In the modern wind turbines, there are

instruments for this adjustment. They adjust the nacelle, providing that the rotating

blades are always facing directly into the wind. In this way, the maximum possible

energy is generated. In this study, the calculated wind speeds are directly used in

wind energy estimation without considering their direction since it is assumed that

wind turbines adjust their alignment according to the direction of wind speed.

The attained wind speeds are at 50 meters above the surface. They need to be ex-

trapolated to the height of the wind turbine hub. To extrapolate the wind speed to the

hub height, the power-law expression is used in this study. The power law is a simple

model used to calculate the vertical wind speed profile. The power law is defined by

the following equation (James F. Manwell, Jon G. McGowan, 2009):

U(z)

U(zr)
=

(
z

zr

)α
(3.2)

where U(z) is the wind speed at height z, U(zr) is the reference wind speed at the ref-
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erence height zr, and α is the power-law exponent. The power-law exponent changes

with many parameters, such as elevation, time of the day, season, nature of the terrain,

wind speed, temperature, and several thermal and mechanical parameters. However,

these parameters affect the power-law exponent in a complicated manner, so they re-

duce the simplicity and applicability of the power law (James F. Manwell, Jon G.

McGowan, 2009). Therefore, an empirical expression proposed by Justus (1978) is

used in this study:

α =
0.37− 0.088 ln(U(zr))

1− 0.088 ln
( zr

10

) (3.3)

where the unit of U(zr) is m/s, and the unit of zr is m.

After wind speeds are extrapolated to the hub height, they can be used for calculating

wind energy to be used in the optimization model. Wind power of a turbine changes

with wind speed, and every wind turbine has a unique power curve that depends on

the technical details of the turbine. By using a power curve, the energy production of

a wind turbine can be determined without technical calculations of each component

of the wind turbine (e.g., the wind turbine rotor, electrical generator, gearbox gear

ratios). Wind turbine manufacturers derive a wind power curve for each manufactured

wind turbine by carrying out field tests. In this study, the power curve of a selected

wind turbine, General Electric (GE) 2.5 MW wind turbine (General Electric, n.d.), is

found from the catalog of the wind turbine manufacturers and used to calculate wind

energy. Wind energy is calculated by multiplying the power by the time interval.

In this study, the time interval equals one hour. For example, the power of 2 MW

in the one hour time interval produces 2 MWh energy. A Python code is written

to fit a polynomial function to the wind power curve (see Table 3.2). By using this

polynomial function, available wind energy is obtained for all time intervals of the

downloaded MERRA-2 wind speed data (i.e., from September 2017 to August 2018).

Table 3.2. Used Library to Fit a Function to the Power Curve

Library Description Application

NumPy Python package for scientific computing. A polynomial function is fitted to the power curve.
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3.2 Electricity Price Forecasting

The second input of the optimization model is hourly electricity prices. Hourly elec-

tricity prices are forecasted by using an LSTM network. The developed LSTM net-

work forecasts 24-hours time period forward (i.e., for the next day) by using 48-hour

time series. One LSTM network is developed to forecast electricity prices at each

hour of the next day. Thus, 24 LSTM networks are developed. However, all LSTM

networks have the same architecture and use the same input (i.e., electricity prices of

past 48 hours). The only difference is the output. First, some definitions are given

for a better understanding of the LSTM network. Then the selected hyperparameters

for this study are given. The hyperparameters are selected based on a trial-and-error

procedure and considering the duration of the simulations of the LSTM network.

Time series size specifies the number of hourly electricity prices that will be used in

forecasting. In this study, the time series size is selected as 48 hours. So, the LSTM

network takes 48 hours of hourly electricity prices as inputs to forecast the next day’s

electricity prices (see Figure 3.3). A diagram explaining the LSTM network is given

in Figure 3.4. In Figure 3.4, the second subscript of the xxx and hhh vectors, ranging

between 1 and S, represents the time series size. In our problem S = 48.

Figure 3.3. LSTM Networks Input and Output

Batch size is the number of samples per gradient update (Chollet et al., 2015). All

training data is not preferred to be passed at once as suggested in Tan, Xiang and Zhou

(2015) and Merity, Keskar and Socher (2017) (see Figure 3.5). Thus, the training

dataset is divided into batches. The number of batches or the batch size is a parameter

that needs to be specified by the user. Also, it controls the frequency of the weight
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Figure 3.4. LSTM Diagram (Long Short-Term Memory Networks, n.d.)

update. At the end of each batch, the LSTM network updates the weights. In our

problem, we are using a total of 49680 patterns for training, and the batch size of the

LSTM network is selected as 128 based on trial and error. So, in one complete pass

of the training dataset, the weights are updated around 388 times.

The number of the LSTM units determines the size of the LSTM network output (see

Figure 3.4). It affects the learning capacity of the network. A large number of LSTM

units provides a higher number of learned parameters, such as weights and biases.

In Figure 3.4, the first subscript of the h, ranging between 1 and D, represents the

number of LSTM units. In our problem, three LSTM units are used to build the

LSTM network, so D = 3.

The number of the features is called the input dimension, as well. It is used to spec-

ify how many features affect the LSTM network output. The developed LSTM

model takes four inputs. In this study, lagged time serieses of electricity prices

are used as inputs. In Figure 3.4, the first subscript of the x, shown as C, repre-

sents the number of features. If the architecture given in Figure 3.4 is used (i.e,

yj = f(yt, yt−1, ..., yt−48) for j = t + 12, t + 13, ..., t + 36) then the LSTM network
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Figure 3.5. Batch Size and Time Series Schematic View

has one feature. If a series of e hour lagged price values are added as a second input

(i.e, yj = f((yt, yt−1, ..., yt−48), (yt−e, yt−e−1, ..., yt−e−48)), then the LSTM network

has two features. We used unlagged plus three additional lagged price time series as

inputs, so, in our problem, the number of features, C is four.

The number of epoch controls the number of the forward and backward pass of all

training samples in the LSTM network. For instance, one epoch means one forward

and one backward pass of all batches to update the weight matrix. In our problem,

the number of the epoch of the developed LSTM network is set to 5000. So, if all

epochs are completed, the number of updates of the weight matrix can be found by

multiplying the number of batches by 5000. However, a property of the coding library,

called early stopping, is used in this study. Early stopping is used to end the training of

the network if training is below a set threshold rate. That is, if the training loss, which

is the measurement of the discrepancy between the real value and the forecasted value

(Smola and Vishwanathan, 2008), cannot be improved, the LSTM network stops the

training and restore the best model weights. In this LSTM network, the value of the

early stopping is set to 25. That means, if the LSTM network cannot improve the loss

value more than the set threshold in 25 consecutive iterations, then it stops. The effect

of the number of epochs is investigated to avoid overfitting, as explained in Section
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5.1.

The LSTM network is trained using the default optimizer of the library, Adam opti-

mizer, and mean square error (MSE) loss function. MSE is defined in Equation (3.4).

During the training, the best model parameters that minimizes the training data error

are found.

MSE =
1

K

K∑
i=1

(xi − yi)2 (3.4)

where xi is the real value, yi is the output of the LSTM network and K is the total

number of the outputs or samples in a batch.

The LSTM Architecture

The LSTM network is introduced by Hochreiter and Schmidhuber (1997), and ex-

plained in this section. LSTM networks can be thought of as a chain that is formed by

repeated LSTM cells. The length of the chain is determined by time series size. An

LSTM cell can carry out its state over time, and includes systems of gating units to

control the flow of information (Goodfellow, Bengio and Courville, 2016). The main

idea of the LSTM is to keep under control the cell state (ct), which is the memory of

the LSTM, with input, forget, and output gates. Gates consist of sigmoid and point-

wise multiplication operators. The cell state information is controlled by adding or

multiplying the input data by the hidden state (ht), which is the output of the current

LSTM cell. The structure of an LSTM cell is shown in Figure 3.6.

In a neural network, to obtain an output, forward and backward passes are carried

out. The forward pass computes values from inputs to the output. The backward pass

performs backpropagation that starts at the end of the forward pass and updates the

weights by minimizing the error between the real value and the output of the forward

pass. During the forward pass, the cell state ct and the hidden state ht, output, of the

LSTM cell at timestep t are calculated as follows (Fischer and Krauss, 2017):

• In the first step, the LSTM cell decides which information should be discarded

from its previous cell states (ct−1). The activation values of the forget gates at

timestep t are calculated based on the current input and the output of the LSTM
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Figure 3.6. Structure of a LSTM Cell

cell at the previous timestep (ht−1). After that, the sigmoid function scales all

activation values into the range between zero, which means completely forget,

and one, which means completely remember (see Equation (3.5)).

• In the second step, the LSTM cell decides which information should be added

to the cell state (ct). This decision depends on two computations. First, the

candidate cell state that has potentitial to be added to the cell state is calcu-

lated using Equation (3.6). Second, the activation values of the input gate is

calculated using Equation (3.7).

• In the third step, the new cell state is calculated based on the results of the

previous two steps with the Hadamard product (see Equation (3.8)).

• In the last step, the hidden state, the output of the LSTM cell, is computed by

Equations (3.9) and (3.10).

Forward pass equations are collectively provided as follows (Fischer and Krauss,

2017):

ft = sigmoid(Wfxt + Ufht−1 + bf ) (3.5)
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at = tanh(Waxt + Uaht−1 + ba) (3.6)

it = sigmoid(Wixt + Uiht−1 + bi) (3.7)

ct = ft � ct−1 + it � at (3.8)

ot = sigmoid(Woxt + Uoht−1 + bo) (3.9)

ht = ot � tanh(ct) (3.10)

where xt is the input vector at timestep t; ct is the cell state; at is the candidate cell

state that preserves the information of the hidden state across the time steps (i.e., adds

information to the cell state); it is the input gate that defines which information to add

to the cell state; ft is the forget gate that defines which information to remove from

the cell state; ot is the output gate that defines which information from the cell state

to use as output; Wi is the weight matrix for the input gate for the input vector; Wa

is the weight matrix for the candidate cell state for the input vector; Wf is the weight

matrix for the forget gate for the input vector; Wo is the weight matrix for the output

gate for the input vector; Ui is the weight matrix for the input gate for the hidden

state; Ua is the weight matrix for the candidate cell state for the hidden state; Uf is

the weight matrix for the forget gate for the hidden state; Uo is the weight matrix for

the output gate for the hidden state; bi is the bias for the input gate; ba is the bias for

the candidate cell state; bf is the bias for the forget gate; bo is the bias for the output

gate. The element-wise or Hadamard product is represented by �.

After completion of the forward pass, the backward pass computations of the LSTM

network to update the weights are carried out as follows:

• In the first step, the difference in the hidden state (the output) is found (see

Equation (3.11)). This difference is composed of five components. The first
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component ∆t is the derivative of the loss function, which is the mean square

error, with respect to the hidden state at t. Summation of other components

corresponds to the difference in the hidden state at t+ 1.

• In the second step, the differences in the output gate, the cell state, the forget

gate, the input gate and the candidate cell state are computed using Equations

(3.12), (3.13), (3.14), (3.15) and (3.16), respectively.

• In the last step, the cell state, weight matrices for the input vector, weight ma-

trices for the hidden state, and biases are updated to their new values by using

the computed differences in gates. The differences in the candidate cell state

weight matrix, the input gate weight matrix, the forget gate weight matrix and

the output gate weight matrix for the input vector are computed using Equa-

tions (3.17), (3.18), (3.19), and (3.20), respectively. Next, the differences in

the candidate cell state weight matrix, the input gate weight matrix, the forget

gate weight matrix and the output gate weight matrix for the hidden state are

computed using Equations (3.21), (3.22), (3.23) and (3.24), respectively. Next,

the differences in the bias for the candidate cell state, the input gate, the forget

gate and the output gate are computed using Equations (3.25), (3.26), (3.27)

and (3.28), respectively.

Backward pass equations are collectively provided as follows (Greff, Srivastava, Kout-

nik, Steunebrink and Schmidhuber, 2017):

δht = ∆t + UT
a δat+1 + UT

i δit+1 + UT
f δft+1 + UT

o δot+1 (3.11)

δot = δht � tanh(ct)� ot � (1− ot) (3.12)

δct = δht � ot � (1− tanh2(ct)) + δct+1 � ft+1 (3.13)

δft = δct � ct−1 � ft � (1− ft) (3.14)
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δit = δct � at � it � (1− it) (3.15)

δat = δct � it � (1− a2t ) (3.16)

δWa =
T∑
t=0

δat ⊗ xt (3.17)

δWi =
T∑
t=0

δit ⊗ xt (3.18)

δWf =
T∑
t=0

δft ⊗ xt (3.19)

δWo =
T∑
t=0

δot ⊗ xt (3.20)

δUa =
T−1∑
t=0

δat+1 ⊗ ht (3.21)

δUi =
T−1∑
t=0

δit+1 ⊗ ht (3.22)

δUf =
T−1∑
t=0

δft+1 ⊗ ht (3.23)

δUo =
T−1∑
t=0

δot+1 ⊗ ht (3.24)

δba =
T∑
t=0

δat (3.25)
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δbi =
T∑
t=0

δit (3.26)

δbf =
T∑
t=0

δft (3.27)

δbo =
T∑
t=0

δot (3.28)

where δht is the difference in the hidden state; ∆t is the derevative of the loss function

with respect to ht at t; UT
a is the transpoze of the candidate cell state weight matrix

for the hidden state; UT
i is the transpoze of the input gate weight matrix for the hidden

state; UT
f is the transpoze of the forget gate weight matrix for the hidden state; UT

o

is the transpoze of the output gate weight matrix for the hidden state; δat+1 is the

difference in the candidate cell state at t + 1; δit+1 is the difference in the input gate

at t+ 1; δft+1 is the difference in the forget gate at t+ 1; δit+1 is the difference in the

output gate at t + 1; δot is the difference in the output gate at t; δct is the difference

in the cell state at t; δft is the difference in the forget gate at t; δat is the difference in

the candidate cell state at t; δWa is the difference in candidate cell state weight matrix

for the input vector to update; δWi is the difference in the input gate weight matrix

for the input vector to update; δWf is the difference in the forget gate weight matrix

for the input vector to update; δWo the difference in is the output gate weight matrix

for the input vector to update; δUa is the difference in the candidate cell state weight

matrix for the hidden state to update; δUi the difference in is the input gate weight

matrix for the hidden state to update; δUf the difference in is the forget gate weight

matrix for the hidden state to update; δUo the difference in is the output gate weight

matrix for the hidden state to update; δba is the difference in the bias for the candidate

cell state to update; δbi is the difference in the bias for the input gate to update; δbf is

the difference in the bias for the forget gate to update; δbo is the difference in the bias

for the output gate to update; T is the number of timesteps.
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Sigmoid and hyperbolic tangent functions(tanh) are defined as:

sigmoid(x) =
1

1 + e−x
(3.29)

tanh(x) =
ex − e−x

ex + e−x
(3.30)

Curves corresponding to sigmoid and hyperbolic tangent functions are shown in Fig-

ure 3.7.

Figure 3.7. Sigmoid and Hyperbolic Tangent Curves

The total number of parameters N in an the LSTM layer is found by using the fol-

lowing expression:

N = 4 nu(nu + nd + 1) (3.31)

where nu is the number of LSTM units in the LSTM layer; nd is the input dimension
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or the number of features.

In our problem, the LSTM layer is developed for a four-dimensional input vector and

has three units, so the total number of parameters is 96. At the end of the network,

there is a dense layer that is connected to the LSTM layer. The dense layer takes the

output vector of the LSTM layer and produces the final output of the LSTM network.

The dense layer of this LSTM network has one unit and a sigmoid activation function.

So, the dense layer takes three-dimensional output vector (i.e., the number of LSTM

units equals to three) of the LSTM layer, applies the element-wise product with the

weight of the dense layer, adds the bias of the dense layer, and passes through the

element-wise sigmoid function. As a result, it produces one value as the output. The

number of parameters of the dense layer is four, three from the weights and one from

the bias. Thus, in our problem the total number of parameters of the LSTM network

is 96+4=100.

An LSTM code is developed in the Python environment, and libraries given in Table

3.3 are used in the code. The developed LSTM network code executes the following

main steps:

• Hourly electricity price data is splitted into three parts, as data for training,

validation and test.

• All data is normalized to a range [0,1] to prevent the effect of the scale of the

data.

• The normalized data is converted to the necessary format according to the time

series size, the input dimension and the batch size.

• The LSTM network is trained by trying various hyperparameters (e.g., number

of LSTM units, batch size, number of epoch) to improve the forecasting perfor-

mance of the validation data. The hyperparameters that show the best forecast

performance are determined and fixed as final hyperparameters of the LSTM

network.

• Final LSTM network model is used to simulate the test data which is not seen

by the trained model previously.
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Table 3.3. Used Libraries for the LSTM Network

Library Description Application

NumPy Python package for scientific computing. Data operations are carried on to create the right formats.

Matplotlib Comprehensive Python library to create visualizations. Results of the simulations are plotted.

Pandas Powerful Python library for data analysis and manipulation. Inputs and results of the simulations are tabulated and organized.

Scikit-learn Python library for machine learning. Data is scaled between zero and one.

Keras Python library for high-level neural networks. LSTM network model is built and simulated.

3.3 The Optimization Model

In the scope of this thesis, an optimization model is developed to maximize the daily

revenue of a WHHS. The WHHS considered here is a closed-loop systems. In other

words, all inflows to and outflows from the reservoir are neglected; thus it is an iso-

lated system. Available wind energy is calculated based on MERRA-2 data since it

is a reliable database that provides hourly wind speed data. The optimization model

takes wind energies and forecasted market prices for each hour in a day (i.e., practi-

cally the next day), and finds the daily schedule of the WHHS that maximizes the net

revenue of that day. The schedule of the WHHS includes the amount of energy to be

bought or sold to the grid, energy productions of wind turbines and hydro turbines,

and the amount of energy used to pump water from the lower reservoir to the upper

reservoir in each hour of the day. The optimization model does not allow to sell or buy

energy from the grid at the same hour. This is valid for pump and turbine operations,

as well.

Mathematical Formulation

The daily schedule of the WHHS that maximizes the net revenue of the day can be

obtained from the solution of the following optimization problem modified from the

formulation developed by Cruz et al. (2014):

Max. Z =
23∑
t=0

λt pt (3.32)

s.t.
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pt = pwdirectt + phydrot − pfgridt (3.33)

pwdirectt + phydrot ≤ (pwmax + phydromax )yt ∀ yt (3.34)

pfgridt ≤ pfgridmax (1− yt) ∀ yt (3.35)

pwt = pwdirectt + pwpumpt (3.36)

ppumpt = pwpumpt + pfgridt (3.37)

0 ≤ pwt ≤ pwmax (3.38)

0 ≤ phydrot ≤ phydromax (1− xt) ∀ xt (3.39)

0 ≤ ppumpt ≤ ppumpmax xt ∀ xt (3.40)

phydrot ≤ min{(Et − Emin)ηhydro, phydromax } (3.41)

ppumpt ≤ min{(Emax − Et)
1

ηpump
, ppumpmax } (3.42)

Et+1 = Et + ηpump p
pump
t+1 −

1

ηhydro
phydrot+1 t = 0, 1, ..., 22 (3.43)

E0 = Einitial + ηpump p
pump
0 − 1

ηhydro
phydro0 (3.44)
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Emin ≤ Et ≤ Emax (3.45)

yt ∈ {0, 1} (3.46)

xt ∈ {0, 1} (3.47)

phydrot , pwdirectt , pfgridt , pwpumpt , ppumpt , pWt , Et ≥ 0 (3.48)

where the set is:

t ε {0, 1, 2, .., 23} the duration of each interval, hour;

where the variables are:

pt the energy output injected into the grid minus energy bought from the grid

in t;

λt the electricity price in t;

pwdirectt the energy output of wind turbines that is sold directly to the grid in t;

phydrot the energy output of the hydro turbine that is sold directly to the grid in t;

pfgridt the energy bought from the grid in t;

pwt the wind energy that is generated in t;

pwpumpt the energy that is generated by wind turbines and is used by the pump in t;

ppumpt the energy that is used for pumping in t;

Et the energy stored in the upper reservoir at the end of t;

yt the binary variable that represents the buying or selling mode of the system

in t where yt = 0 is the buying mode, and yt = 1 is the selling mode;

xt the binary variable that represents the turbine or pump modes in t where

xt = 0 is the turbine mode, and xt = 1 is the pump mode;

and the corresponding parameters are:
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pwmax the maximum energy that can be generated by the wind turbines in an hour;

phydromax the maximum energy that can be generated by the hydro turbine in an hour;

pfgridmax the maximum energy that can be bought from the grid in an hour;

ppumpmax the maximum energy that can be used as pumping input in an hour;

Emin the minimum energy level in the upper reservoir;

Emax the maximum energy level that can be stored in the upper reservoir;

ηhydro the efficiency for the turbine mode;

ηpump the efficiency for the pump mode;

Einitial the initial energy in the upper reservoir.

Equation (3.32) is the objective function of the optimization problem. It aims to

maximize the revenue of one day. Equation (3.33) defines the net energy sold to the

grid, which is the energy sold minus the energy bought. When pwdirectt and phydrot

are positive values, pfgridt cannot be a positive value. Because selling and buying

energy from the grid at the same time is illogical and not allowed. This is achieved

by Equations (3.34) and (3.35). If yt equals one, the system sells energy to the grid

in t; if it equals zero, the system buys energy from the grid in t. The wind energy

that is generated in t pwt , can be sold directly to the grid or used to pump the water

to the upper reservoir. This is defined in Equation (3.36). The energy that is used for

pumping in t ppumpt , can be supplied by wind turbines or can be bought from the grid.

Equation (3.37) presents this constraint. The wind energy that is generated in t pwt ,

has a minimum value of zero, and its upper bound cannot exceed pwmax as defined in

Equation (3.38). The energy output of the hydro turbine in t phydrot , and the energy

used for pumping in t ppumpt cannot be larger than their maximum installed capacities.

Also, they cannot be positive values at the same hour since it is not possible to run

the pump and the turbine at the same time. These limitations are defined in Equations

(3.39) and (3.40).

The energy output of the hydro turbine in t phydrot is limited by two components

in Equation (3.41). In the first component, Et − Emin represents the energy in the

upper reservoir than can be used to generate energy by the hydro turbine. When it is

multiplied by nhydro, it becomes the energy output of the hydro turbine. The second

component is the maximum capacity of the hydro turbine. So, phydrot is restricted to

be at most the minimum of these two terms.
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The energy that is used for pumping in t ppumpt is limited by two components in

Equation (3.42). In the first component, Emax − Et represents the available empty

energy storage that can be filled by the water. When it is divided by npump, it becomes

the pumping energy input. The second component is the maximum energy input for

the pump. So, ppumpt is restricted to be at most the minimum of these two terms.

The energy balance of the upper reservoir is defined in Equation (3.43). The energy

stored in the upper reservoir at the end of t+1 is composed of three components. The

first component is the stored energy from the previous hour. The second component is

the energy used for pumping the water from the lower reservoir to the upper reservoir

in t+ 1. The third component is the energy spend to run the hydro turbine to generate

electricity in t+ 1. So, Et+1 equals the summation of the first two components minus

the third component. For the first hour, t = 0, the energy stored in the upper reservoir

is initialized based on the starting energy storage in the upper reservoir E−1. Lastly,

Et must be between Emin and Emax, and that is defined in Equation (3.45).

Except binary variables, yt and xt, units of all decision variables (pt, pwdirectt , phydrot ,

pfgridt , pwpumpt , ppumpt , pwt , Et) are MWh. Units of all parameters (phydromax , phydromin , ppumpmax ,

ppumpmin , pWmin, pwmax, pfgridmax , Einitial, Emax, Emin) are MWh, except a few ones. The unit

of λt is TL/MWh, and ηhydro and ηpump are unitless.

The optimization model involves three assumptions. First, head losses in the piping

system of WHHS are not included explicitly. They are assumed to be included in

the efficiency values of the turbine and pump modes. Second, there is no inflow to

or outflow from the reservoir. So, the system is assumed to be a closed-loop system.

Third, the cost of pumping operation is assumed to be the same value as the electricity

price at that hour (Cruz et al., 2014).

The following modifications to the mathematical formulation suggested by Cruz et al.

(2014) are carried out in this study:

• The energy that is generated by the wind turbines is allowed to be used for

pumping and direct selling, and stored in two different variables (see Equation

(3.36)).

• The energy that is used for pumping is allowed to be obtained from wind tur-
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bines and grid, and stored in two different variables (see Equation (3.37)).

• To prevent buying and selling at the same time in each hour, a binary variable

is defined (see Equations (3.34) and (3.35)).

• Considering the minimum and maximum water levels in the upper reservoir,

water can be pumped or released from the upper reservoir, and the energy stored

in the upper reservoir is updated (see Equations (3.41) and (3.42)).

• Equations (13) and (14) in Cruz et al. (2014) are not used since they are satisfied

by Equations (3.41) and (3.42).

• In Cruz et al. (2014), the final energy level of the upper reservoir is taken as a

fixed value. However, in our study, we used the reservoir level of the last hour

of the previous day.

The formulated optimization problem is a mixed-integer linear programming problem

since two of the decision variables (i.e., xi and yi) are restricted to be binary values.

To solve the optimization problem, a code is written in Python. The code uses Coin-

or branch and cut solver which is developed by Forrest, Ralphs, Vigerske, LouHafer,

Kristjansson, Jpfasano, EdwinStraver, Lubin, Santos, Rlougee and Saltzman (2018).

To apply this solver in Python, Google OR-Tools library is included in the code. Main

libraries to write the Python code is given in Table 3.4.

Table 3.4. Used Libraries for the Optimization Model

Library Description Application

NumPy Python package for scientific computing. Data operations are carried on to create the right formats.

Matplotlib Comprehensive Python library to create visualizations. Results of the simulations are plotted.

Pandas Powerful Python library for data analysis and manipulation. Inputs and results of the simulations are tabulated and organized.

OR-Tools
Python library for optimization, integer and linear programming,

and constraint programming.
Optimization model is built and simulated.
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CHAPTER 4

CASE STUDY

A hypothetical WHHS as a case study is designed to demonstrate application of the

models developed in this study. The hypothetical WHHS is assumed to be a wind

farm integrated to the existing Uluabat Hydropower Plant. Moreover, the Uluabat

Hydropower Plant is assumed to be a closed-loop system. There are two main pur-

poses of this study. The first one is to forecast hourly electricity prices in the day-

ahead market for each hour of the next day with the LSTM network. The second one

is to produce an optimum daily schedule of the WHHS that maximizes the daily rev-

enue by using the forecasted hourly electricity prices. The methodology introduced

in Chapter 3 is applied for the hypothetical WHHS introduced in this chapter. This

chapter describes the case study with the following sections; location of the WHHS,

analysis of hourly electricity prices and hourly wind energy at the case study site, the

LSTM network and the optimization model.

4.1 Location of the WHHS

Uluabat Hydropower Plant with its 100 MW installed capacity is located at Susurluk

Basin on Orhaneli River in the Marmara Region of Turkey. Water at Çınarcık Dam’s

reservoir is released to Lake Uluabat to generate electricity. In this study, we con-

sidered a hypothetical case. Çınarcık Dam and Lake Uluabat are thought of as the

upper reservoir and the lower reservoir of a pumped storage hydropower plant, re-

spectively. In addition, it is assumed that there are wind turbines near the hydropower

plant site owned and operated by the same company. Pumped storage hydropower

plant plus wind turbines compose the hypothetical WHHS. Although Çınarcık Dam
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and Uluabat Hydropower Plant are located on a river, it is assumed that the hypothet-

ical WHHS is a closed-loop. That is, all inflows and outflows to and from Çınarcık

Dam are neglected. The location of the Uluabat Hydropower Plant is shown in Figure

4.1.

Figure 4.1. Location of the Case Study Site

4.2 Analysis of the Input Data

Two types of data are used in the case study. These are hourly wind speed data and

hourly electricity price data. Hourly wind speed data is used to estimate hourly wind

energy that can be generated by wind turbines. After hourly wind energy values are

calculated, they are used as input to the optimization model. On the other hand,

48



historical hourly electricity price data is used as the input of the LSTM network. The

output of the LSTM network is the second input of the optimization model. The

optimization model is run from September 2017 to August 2018, so the wind speed

data is obtained for this time interval. Hourly electricity price data is obtained for the

interval between January 2011 and August 2018. Since hourly electricity price data

is used to train the LSTM network, the time interval of it is wider than the wind speed

data.

4.2.1 Analysis of the Hourly Wind Speed Data

The hourly wind speed data is obtained from the NASA MERRA-2 database, which

is described in Chapter 2. Figure 4.2 shows the variations in hourly wind speed data

between September 2017 and August 2018. This distribution shows that the median

of wind speeds are higher in afternoon hours, such as 14:00 and 15:00, and the number

of outliers at this hours is lower than the other hours. So, it can be inferred that more

electricity can be generated during the afternoon hours of most of the days.

Figure 4.2. Variations in Hourly Wind Speed Data between 09/2017 and 08/2018

Varitions in hourly wind speed data for each month are investigated, as well. Since

wind speed is affected by meteorological factors (e.g., temperature, moisture, atmo-

spheric pressure) it has different characteristics in each month. Hourly wind speed
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variations for each month from September 2017 to August 2018 are presented in

Figures 4.3 to 4.14, respectively. As can be seen from these figures, in September,

May, June, July and August, wind speeds are higher in the afternoon hours, between

14:00 and 16:00. Also, there are not any outliers in May, whereas there are many in

September. In November, the median values of the midnight hours, between 01:00

and 06:00, are higher. Wind speeds in December and March are higher than those in

other months. Also, they do not have any outlier. In February, the variations of mid-

day hours, between 11:00 and 13:00, are higher when compared to the other hours of

the day and months. Wind speeds in April have smaller values. Also, the ranges of

variations are smaller. As can be seen from Figures 4.3 to 4.14, hourly wind speed

data show very large variations and there are many outliers. Based on these observa-

tions it is concluded that estimation of the future hourly wind speeds may not carried

out effectively. Thus, instead of estimating wind speed data for future hours it is

preferred to use previous years wind speed data in the optimization model.

Figure 4.3. Hourly Wind Speed Variations in September
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Figure 4.4. Hourly Wind Speed Variations in October

Figure 4.5. Hourly Wind Speed Variations in November
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Figure 4.6. Hourly Wind Speed Variations in December

Figure 4.7. Hourly Wind Speed Variations in January
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Figure 4.8. Hourly Wind Speed Variations in February

Figure 4.9. Hourly Wind Speed Variations in March
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Figure 4.10. Hourly Wind Speed Variations in April

Figure 4.11. Hourly Wind Speed Variations in May
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Figure 4.12. Hourly Wind Speed Variations in June

Figure 4.13. Hourly Wind Speed Variations in July
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Figure 4.14. Hourly Wind Speed Variations in August

In addition to the hourly distributions of the wind speeds, correlations between wind

speed at an hour and at previous hours are investigated, and presented in Figure 4.15.

In Figure 4.15, the y-axis indicates the correlation coefficient, which is expressed as

follows:

R =

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑
i=1

(xi − x̄)2
√

n∑
i=1

(yi − ȳ)2
(4.1)

where n is the sample size, xi and yi the individual sample points with index i, x̄ and

ȳ are mean values of the samples. As can be seen in Figure 4.15, the correlation has a

decreasing trend up to 60 hours before. After that, there is effectively no correlation

(i.e., lower than 0.2). It shows a high correlation with the previous few hours and the

correlation decreases rapidly. Thus, wind speeds especially for the future few hours

might have been estimated using an LSTM network. However, the correlation drops

below 0.6 for after 8 hours. Based on these observations, instead of estimating hourly
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wind speeds for the coming 24 hours, previous years wind speed data is used in this

study. If hourly wind speed estimations become available from other sources such

as State Meteorological Organization, they can be used as input in the optimization

model.

Figure 4.15. Variation in Wind Speed Correlation Coefficient with respect to Previous

Hours

4.2.2 Analysis of the Hourly Electricity Price Data

The hourly electricity price data is obtained from EPİAŞ, which operates Turkish

energy markets. Data from January 2011 to August 2017 is used to train the LSTM

network, and the remaining data (i.e., from September 2017 to August 2018) is used

for testing. The outputs of the LSTM network is used as the input of the optimization

model. Variations in hourly electricity prices are presented for each year from 2011

to 2018 in Figures 4.16 to 4.23, respectively. In 2012, during daytime hours, many

outliers are observed. At these hours (i.e., 11:00, 13:00, and 15:00), eight times

higher daily median prices are observed. In 2015, quite low (i.e., close to zero) prices

are observed at the hours from 00:00 to 12:00. 2018 includes the highest number
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of outliers among all years. The prices in four months (i.e., September, October,

November and December) of 2017 and eight months (i.e., January, February, March,

April, May, June, July and August) of 2018 are forecasted via the developed LSTM

network. Due to the high number of outliers in 2017 and 2018, they are the most

challenging year to be forecasted.

Figure 4.16. Variations in Electricity Prices in 2011

58



Figure 4.17. Variations in Electricity Prices in 2012

Figure 4.18. Variations in Electricity Prices in 2013
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Figure 4.19. Variations in Electricity Prices in 2014

Figure 4.20. Variations in Electricity Prices in 2015
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Figure 4.21. Variations in Electricity Prices in 2016

Figure 4.22. Variations in Electricity Prices in 2017
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Figure 4.23. Variations in Electricity Prices in 2018

To better understand the change in electricity prices through time, monthly average

values are calculated and presented in Figure 4.24. As shown in Figure 4.24, there

are many abrupt variations in electricity prices. Especially, the last slope of the curve

in 2018 is considerably sharp. These abrupt changes in the electricity prices may be

due to different factors such as fuel prices, availability in generating units, hydro or

wind generation of the country and network congestions (Dong, Li, Wallin, Avelin,

Zhang and Yu, 2019).

Mean electricity prices, for each month, are shown in Figure 4.25 and used to investi-

gate the seasonal effect. It is clear that electricity prices in the winter and the summer

seasons are higher than those in the spring and the autumn seasons.
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Figure 4.24. Monthly Averaged Electricity Prices

Figure 4.25. Monthly Mean Electricity Prices

Mean electricity prices for each day of the week are presented in Figure 4.26. Ex-

cept Sunday, other days have similar mean electricity prices. Due to low demand in

Sunday, it has the lowest mean electricity price.
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Figure 4.26. Daily Mean Electricity Prices

To see the relation between hourly electricity prices, the variation of the correlations

between prices of the previous hours is plotted in Figure 4.27. As can be seen from

Figure 4.27, the curve follows a cyclic pattern, and electricity prices have high corre-

lations around multiplication of 24 hours (i.e., same hours of the previous days). This

correlation graph is used in selecting the inputs of variables of the LSTM network

that is explained in Section 4.4.

Figure 4.27. Variation of Electricity Price Correlation Coefficient with respect to

Previous Hours
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4.3 Hourly Wind Energy Estimations

The wind energy is the second input of the optimization model. In the scope of the

case study, the 2.5 MW wind turbine, which is manufactured by General Electric

(GE), is used. To obtain the available hourly wind energy, the power curve of the

wind turbine is acquired from General Electric (n.d.), and presented in Figure 4.28.

The wind turbine has 103 meters rotor diameter, 85 meters hub height, 3 m/s cut-in

speed and 25 m/s cut-out speeds (General Electric, n.d.).

To calculate available hourly wind energy, a curve is fitted to the power curve, as

shown in Figure 4.29. This curve is composed of five parts as given in Equation (4.2).

The first part is constrained by the cut-in speed, 3.0 m/s. The middle segment of the

curve includes two polynomial functions to express the power curve in a more accu-

rate way. The polynomial functions are given in Equation (4.2) where x is the wind

speed and f(x) is the hourly wind energy. The last part of the curve is constrained

by the cut-out speed, 25 m/s as given in Equation (4.2). Wind speed data, between

September 2017 and August 2018, which is first extrapolated to a height of 85 meters,

is converted to the available hourly wind power by using the power equation given in

Equation (4.2). Lastly, the available hourly wind energy is obtained by multiplying

the available hourly wind power by one hour.

Figure 4.28. GE 2.5 MW Wind Turbine Power Curve (General Electric, n.d.)
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Figure 4.29. Power Curve of the Wind Turbine

f(x) =



0 x ≤ 3

0.001x3 + 0.025x2 − 0.182x+ 0.291 3 < x ≤ 8.859

0.003x3 − 0.168x2 + 2.83x− 12.511 8.859 < x ≤ 12.791

2.5 x > 12.791

0 x > 25

(4.2)

4.4 The LSTM Network

The LSTM network that is developed in this study is used to forecast electricity prices

in the Turkish day-ahead spot electricity market. The obtained electricity price data

is split into three parts, such as training, validation and test data. The intervals of the

training, validation, and test data are from 01.01.2011 to 31.08.2016, from 01.09.2016

to 31.08.2017 and from 01.09.2017 to 31.08.2018, respectively. After the validation

process (i.e., determination of the hyperparameters) is completed, the validation data
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is added to the training data. In this way, the LSTM network can perform better since

it can learn from the most recent observations.

In the day-ahead market, the electricity providers must submit their bids until 12:30

of the bidding day for all the hourly prices of the next day (i.e., from 00:00 to 24:00).

So, we should forecast the electricity price of each hour in the next day by using

the hourly electricity price data before 12:30 of the bidding day. Thus, 24 different

LSTM models are developed with the same architecture, to forecast electricity price

for each hour in the next day.

During the validation process of the LSTM network, different number of epochs, time

series size, batch sizes, number of LSTM units, and number of features are evaluated.

After many simulations, the number of epochs is fixed to 5000 with an early stopping

value of 25, the time series size is set to 48, and the number of LSTM units is set to

three by considering the performance of the LSTM network and the simulation time.

Once the number of epochs and the number of LSTM units are fixed, 24 different

models are generated using different batch sizes, number of features and seed values

to determine the hyperparameters of the final LSTM network. Batch size values of

16, 32, 64 and 128; the number of features 4 and 16; the seed value of 20, 350 and

2019 are simulated. Indeed, the seed is not a hyperparameter of the LSTM network.

It is a random value to initialize the initial weights of the LSTM network. However,

to see the effects of the initial weight assignment, three different seeds are tried. Last

24 simulations are evaluated based on the errors.

4.4.1 The Architecture of the LSTM Network

The time series size of the LSTM network is selected as 48 hours. It means that each

of the 24 LSTM networks takes as the unlagged time series, the electricity prices of

the previous 48 hours in the day-ahead market as inputs, and forecasts the electricity

price of the 24 each hours in the next day. For example, to forecast the electricity

prices of each hour for February 15, the bid should be submitted on February 14 at

12:00. Since 48 hours prior electricity prices are going to be used for the LSTM

network, the first input of the unlagged series for the LSTM network is the electricity

price at 12:00 of February 12. Following 47 hours are used as the remaining inputs
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of the LSTM network. To summarize, the LSTM networks use the electricity prices

on February 12 at 12:00 and February 14 at 12:00 to forecast each hourly electricity

price on February 15 from 00:00 to 24:00.

The number of features of the LSTM network equals to four. These features are

composed of one unlagged and three lagged (i.e., 23-hours lagged, 24-hours lagged,

and 168-hours lagged) hourly electricity price time series. These lagged prices are

selected based on the correlation coefficients between the hourly electricity price and

their values in previous hours in 2011 data. As shown in Figure 4.27, the variation

of electricity price correlation coefficient plots show similar trends for all the years.

To identify the inputs of the LSTM network, the variation of the electricity price

correlation coefficient in 2011 is investigated in detail. The value of 0.75 is used

as the threshold. According to Figure 4.27, the correlation coefficients between the

electricity price at time t and t − 23, t − 24 and t − 168 are equal or greater than

0.75, so they are selected as input features of the LSTM network. For the example

given in the previous paragraph, to forecast the electricity prices of February 15,

following time intervals of the electricity price input time series are used as inputs

for the LSTM network: from 12:00 of February 12th to 12:00 of February 14th; from

13:00 of February 11th to 13.00 of February 13th; from 12:00 of February 11th to

12.00 of February 13; from 12:00 of February 4th to 12:00 of February 6th.

The LSTM network architecture is shown in Figure 4.30. The first subscript of the h

is the LSTM unit number, the second subscript of h, and x is the time step in the time

series, and the first subscript of the x is the feature number.
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Figure 4.30. The LSTM Network Flow Diagram

4.5 The Optimization Model

The developed optimization model that is introduced in Chapter 3 is used to deter-

mine optimum operation strategies for the WHHS. The optimization model aims to

maximize the daily revenue of the WHHS. The optimum operating schedules of wind

turbines, the hydro turbine, the pump, and the energy trade with the grid that max-

imize the daily revenue are found. The optimization model uses available hourly

wind energies and hourly electricity prices in the day-ahead market as inputs. Hourly

electiricity prices are estimated by 24 LSTM networks. The optimization model is

run from September 2017 to August 2018. To evaluate the performance of the LSTM

network and the optimization model, different scenarios (see Section 5.2.1) are tested.

4.5.1 Parameters of the Optimization Model

The optimization model has eight parameters, which are the maximum energy that

can be generated by wind turbines in an hour, the maximum energy that can be gen-

erated by the hydro turbine in an hour, the maximum energy that can be bought from

the grid in an hour, the maximum energy that can be consumed by the pump in an

hour, the minimum energy level in the upper reservoir, the maximum energy level that
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can be stored in the upper reservoir, the efficiency for the turbine mode and the effi-

ciency for the pump mode. The maximum energy that can be generated by the wind

turbines pwmax in an hour equals to the available hourly wind energy. Its calculation is

explained in Section 4.3.

Currently, the installed capacity of the hydro turbine in the Uluabat Hydropower Plant

is 100 MW (Akenerji, 2005). We used the same installed capacity by changing the

hydro turbine with a hydro pump-turbine. So, for this case study, the system can work

either as a hydro turbine or a pump. Thus, the maximum energy that can be generated

by the hydro turbine in an hour phydromax and the maximum energy that can be consumed

by pumping in an hour ppumpmax equal to 100 MWh.

The maximum energy that can be bought from the grid in an hour is not limited. Thus,

this parameter equals positive infinity. The schematic view of Çınarcık Dam, Uluabat

Hydropower Plant, and Lake Uluabat are shown in Figure 4.31. The minimum energy

level in the upper reservoir and the maximum energy level that can be stored in the

upper reservoir is computed based on the elevation-area curve of the dam by using

the following expression:

Ep = 2.778× 10−10 pghV (4.3)

where Ep is the potential energy of the fluid in MWh, V is the volume of the fluid in

m3, p is the density of the fluid in kg/m3, g is the acceleration due to gravity inm/s2,

h is the height of the fluid in m. The minimum energy level in the upper reservoir

Emin, and the maximum energy level that can be stored in the upper reservoir Emax

are computed as 138233.8 MWh and 298624.1 MWh, respectively. The initial energy

level Einitial is fixed to Emin, 138233.8 MWh.

The efficiency of the turbine mode and the efficiency of the pump mode are assumed

as 0.88 and 0.85, respectively, based on the study by Cruz et al. (2014).
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Figure 4.31. The Schematic View of Çınarcık Dam, Uluabat Hydropower Plant and

Lake Uluabat
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CHAPTER 5

RESULTS AND DISCUSSIONS

In this chapter, the results of the LSTM network and the optimization model are

presented and discussed. In this study, the LSTM network is developed to forecast

electricity prices as accurately as possible. After the most accurate electricity prices

are obtained, they are used in the optimization model to identify the best operation

schedule for WHHS that maximizes the daily revenue.

5.1 The LSTM Network Results

As discussed in Section 4.4, 24 simulations for each hour of the bidding day are

executed to determine the hyperparameters of the final form of the LSTM network.

Twenty-four simulations using various combinations of four batch size values (i.e.,

16, 32, 64, and 128), two numbers of features (i.e., 4 and 16), and three seed values

(i.e., 20, 350 and 2019) are carried out and the results are shown in Table 5.1. Thus,

each row in Table 5.1 summarizes results of 24 simulations.
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Table 5.1. The Summary Table of 24 LSTM Network Simulations

Run

No

Batch

Size
Seed

Number of

Features

Min.1 MSE 2

(Training)

Min. MSE

(Validation)

Max.3 MSE

(Training)

Max. MSE

(Validation)

Avg.4 MSE

(Training)

Avg. MSE

(Validation)

1 16 2019 16 470.32 485.26 2124.14 14638.36 837.28 2874.21

2 32 2019 16 480.59 421.46 2141.85 15373.73 813.99 2418.33

3 64 2019 16 447.13 461.64 2062.25 9524.69 846.61 2122.03

4 128 2019 16 460.80 443.25 2120.31 9812.39 925.71 2261.13

5 16 2019 4 479.14 421.29 1975.88 9712.53 991.12 2255.25

6 32 2019 4 461.97 414.50 2427.10 14638.15 1037.76 2535.76

7 64 2019 4 495.02 421.34 2356.12 8891.80 1084.21 2144.29

8 128 2019 4 497.96 449.04 2186.21 9153.45 1105.26 2128.56

9 16 350 16 385.92 461.91 1018.99 24398.91 673.02 3063.89

10 32 350 16 424.59 455.49 1257.14 11789.21 707.61 2900.81

11 64 350 16 464.91 438.71 1241.98 8383.21 722.05 2096.21

12 128 350 16 457.58 492.67 1309.37 13413.79 781.42 2534.72

13 16 350 4 488.56 423.91 2536.85 12180.83 1039.91 2518.60

14 32 350 4 504.78 421.43 2631.57 11292.51 1032.36 2437.35

15 64 350 4 500.22 414.04 2376.22 12336.05 1038.39 2440.82

16 128 350 4 507.61 453.20 2213.65 8270.37 1101.43 1986.28

17 16 20 16 412.48 462.91 1036.81 19783.35 668.04 2912.49

18 32 20 16 460.70 474.46 1333.74 15510.65 721.43 3170.12

19 64 20 16 461.87 479.00 1556.57 11349.75 758.20 2663.02

20 128 20 16 464.78 443.31 1952.34 13582.81 893.14 2375.31

21 16 20 4 428.48 465.79 2182.64 13067.01 886.76 2767.95

22 32 20 4 464.41 432.19 2662.72 14872.81 969.29 3200.57

23 64 20 4 493.22 403.10 1860.99 13050.23 923.56 2495.37

24 128 20 4 509.18 395.12 1652.58 12105.63 952.39 2439.02

1 Minimum, 2 Mean Square Error, 3 Maximum, 4 Average

In Table 5.1, Min. MSE (Training) column shows the minimum mean square error

(MSE) for training data set among all 24 LSTM configurations. Other columns rep-

resent maximum and average MSE for training and validation data sets among all 24

configurations. The final LSTM network hyperparameters are selected based on the

average MSE of the validation (i.e., last column of Table 5.1). Thus, hyperparameters

of Run No = 16 are selected for the final LSTM hyperparameters. That is, the batch

size equals 128, and the number of features equals four. Although the seed is not a

hyperparameter, we select the seed value in Run No = 16, which is 350. To check if

overfitting occurs, the number of epochs versus error for the training and validation

periods are plotted for Run No =16 and t = 12 hr, as shown in Figure 5.1. As can

be seen from Figure 5.1, there are not enough weights in the LSTM network to cause

overfitting.
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Figure 5.1. MSE vs. Number of Epochs Curve

The final form of the LSTM network is run 24 times for the bidding day (i.e., run once

for each hour of the bidding day) to forecast the test data, and results are presented

in Table 5.2. It can be noticed that each hour has a different number of epochs due to

the early stopping property. For example, the LSTM network at t = 20 hr reaches the

tolerance in 733 epochs, whereas the LSTM network at t = 7 hr reaches the tolerance

in 1802 epochs. The summary statistics of these 24 runs is given in Table 5.3. It can

be noticed that training errors are different when compared to the training errors in

Run No = 16 in Table 5.1. The reason for this discrepancy is that different training

data is used in these runs. The training data in the final LSTM network includes the

initial training data set plus the validation data set. The validation data is added to

the training data to introduce the behaviour of the most recent data in the calibration

process.

Table 5.2. The Summary Table of the Final LSTM Network Hourly Simulations

t

(hr)

Batch

Size
Seed

Number of

Features

Number of

Epochs

MSE

(Training)

MSE

(Test)

01 128 350 4 1122 525.29 1717.73

02 128 350 4 1173 640.02 1482.01
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Table 5.2 continued from previous page

t

(hr)
Batch Size Seed

Number of

Features

Number of

Epochs

MSE

(Training)

MSE

(Test)

03 128 350 4 998 873.26 1086.9

04 128 350 4 1282 952.27 848.18

05 128 350 4 1411 902.65 1371.27

06 128 350 4 1370 831.15 1061.03

07 128 350 4 1802 1017.17 1543.33

08 128 350 4 1139 1364.29 1910.7

09 128 350 4 1001 1299.68 2136.89

10 128 350 4 912 1179.12 1578.4

11 128 350 4 1173 2087.84 5267.77

12 128 350 4 1308 2251.82 8403.58

13 128 350 4 1062 1249.4 1368.17

14 128 350 4 1436 1374.37 3948.69

15 128 350 4 1098 2727.56 9495.05

16 128 350 4 818 1738.99 1176.83

17 128 350 4 818 1320.92 1262.46

18 128 350 4 829 1858.65 1038.31

19 128 350 4 792 1330.89 855.58

20 128 350 4 733 763.37 1301.49

21 128 350 4 842 555.3 1258.04

22 128 350 4 1198 491.69 1815.07

23 128 350 4 881 582.97 1317.89

24 128 350 4 1003 718.9 1592.61

Table 5.3. The Summary Table of the Final LSTM Network Simulation

Batch

Size
Seed

Number of

Features

Min. MSE

(Training)

Min. MSE

(Test)

Max. MSE

(Training)

Max. MSE

(Test)

Avg. MSE

(Training)

Avg. MSE

(Test)

128 350 4 491.69 848.18 2727.56 9495.05 1193.23 2284.92

MSE (Training) and MSE (Test) columns of Table 5.2 are plotted in Figure 5.2. As

can be seen from this plot, the LSTM network has the largest MSE at t = 15 hr in both

training and test processes. The minimum MSE is at t = 4 hr for the test process, and

at t = 22 hr for the training process. As expected the performance of training is better

than that of test. Actually, for t = 11, 12, 14 and 15 hours trained LSTM perform very

poorly (i.e., errors are at least doubled from training to test for these hours).
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Figure 5.2. The Final LSTM Network Hourly MSE Plot

Figure 5.3 shows the forecasted and real electricity prices in the training process for t

= 22 hr. Although t = 22 hr is the best LSTM network based on the training results, it

does not perform with the same efficiency for the test data. In terms of the test data, t

= 4 hr has the best results, and they are presented in Figure 5.4. Especially before day

250, the forecasted values follows the trend of real values, and it estimates many peak

values successfully. However, after day 250, the real values change abruptly, and the

LSTM network does not perform well in forecasting these peaks. The real electricity

prices are affected by many factors, such as fluctuations in the price of the dollar,

change in the contribution of various types of power plants to the energy budget of

the country, other economic and political issues. These unexpected issues result in

abrupt changes in the price of electricity which makes it very hard to predict.
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Figure 5.3. Training Process Results of the LSTM Network for t = 22 hr

In Figure 5.5, the results of the LSTM network for the worst performing hour of the

training process is shown, which is t = 15 hr. At this hour of the training days, there are

many extreme values that lead to low training performance. Nevertheless, forecasts

follow the general trend, and some of the extreme values are simulated correctly.

Also, the test process has the worst performance at t = 15 hr, and the results are

presented in Figure 5.6. As can be seen from Figure 5.6, it underestimates real prices

almost every day at t = 15 hr.
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Figure 5.4. Test Process Results of the LSTM Network for t = 4 hr

Figure 5.5. Training Process Results of the LSTM Network for t = 15 hr
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Figure 5.6. Test Process Results of the LSTM Network for t = 15 hr

In Figure 5.7, the forecasted electricity prices versus the corresponding real prices are

presented for the test process of the LSTM network. Especially, the prices at the noon

hours could not be forecasted well. As can be seen from Figure 4.23, there are many

outliers in these hours. However, most of the hours, the forecasted prices are close to

real prices.

Figure 5.7. Scatter Plot of Forecasted and Real Prices
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5.2 The Optimization Model Results

In this section, the scenarios of the optimization models are introduced, and the results

for these scenarios are represented for the pumped storage hydropower plant and the

WHHS. After the results are represented for each scenario, they are discussed.

5.2.1 The Scenarios

In order to explain the scenarios some definitions are provided first:

The bidding day: As explained in Section 2.2, the power plant owner submits bids

for each hour of the next day. Thus, the day in which the bids are submitted is referred

to as the bidding day.

The operation day: This is the day on which the bids are submitted, and it follows

the bidding day.

The previous day: In the bidding day, the most recent realized electricity prices

belongs to this day. In other words, if an LSTM network is not available to estimate

the bidding day’s electricity prices, the electricity prices of this day (i.e., the previous

day) would be available to the operator of the power plant to decide on the bids for

the bidding day (i.e., the next day).

For example, if today is 5th of May 2020 and this is the bidding day, then the operation

day will be the 6th of May 2020 (i.e., tomorrow). The electricity prices of 4th of May

2020 are the most recent realized electricity prices, and these prices can be used by

the operator of the power plant to decide on the bids (i.e., the operation schedule of

the power plant) of the bidding day (i.e., 6th of May 2020) if the LSTM network is

not available to predict the prices.

The optimization model is run to determine the optimum operation schedule for the

system. In order to evaluate the performance of the LSTM network’s electricity price

estimations, three different scenarios are considered:

1. Scenario 1: Ideal_Opt
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This scenario corresponds to an ideal case, where the realized prices of the

operation day are assumed to be known in the bidding day. The revenue ob-

tained for this case presents the upper bound of the revenue. Of course, it is

not possible to make this revenue in real life since the operation day’s prices

are not known in the bidding day. This ideal revenue will be referred to as the

Ideal-Revenue from here after.

2. Scenario 2: PrevDay_Opt

This scenario considers the following situation: An LSTM network is not avail-

able to the operator of the power plant. So the most recent realized electricity

prices (i.e., electricity prices of the previous day) are used in the optimization

model to generate the optimum operation schedule for the power plant. The

revenue of the power plant based on the previous day’s electricity prices will be

referred to as PrevDay-Revenue from here after. PrevDay-Revenue is a hypo-

thetical revenue as well since the realized prices will be different than previous

day’s prices. The real revenue of the power plant that will occur in the operation

day (i.e., the revenue that will occur due to the execution of the optimized oper-

ation schedule of PrevDay_Opt with realized electricity prices of the operation

day) will be referred to as the PrevDay-RealRevenue.

3. Scenario 3: LSTM_Opt

This scenario considers the following situation: In the bidding day, the LSTM

network is run and electricity prices of the operation day are estimated. Then

the optimization model is run, and the optimum operation schedule for the

power plant is obtained. The revenue of the power plant based on LSTM price

estimations and the optimization model is only a hypothetical revenue, and it

will be referred to as LSTM-Revenue from here after. In real life, the realized

electricity prices will be different than those estimated by the LSTM network;

thus the real revenue of the power plant will be different than LSTM-Revenue.

The real revenue of the power plant that will occur in the operation day (i.e., the

revenue that will occur due to the execution of the optimized operation sched-

ule of LSTM_Opt with realized electricity prices of the operation day) will be

referred to as the LSTM-RealRevenue from here after.
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All three scenarios and the revenues corresponding to different sets of prices are de-

picted in Figure 5.8. In addition to these, all scenarios are run with different number

of wind turbines. First, the revenue of the system without a wind turbine (i.e., pumped

storage hydropower plant) is evaluated. Then different number of wind turbines (i.e.,

10, 50, and 200 each 2.5 MW) are used to see the effect of the installed capacity of

wind turbines on the revenue.

Developed optimization models generate the daily schedule of the WHHS to max-

imize the daily revenue of the system. For each scenario, eight plots are prepared

using the results of the optimization models. These eight plots are hourly electric-

ity price (i.e., price used in the optimization model), the pumping energy input (i.e.,

the energy consumed for pumping the water from the lower reservoir to the upper

reservoir), the wind turbines output (i.e., the energy generated by the wind turbines),

the hydro turbine output (i.e., the energy generated by the hydro turbine), the energy

bought from the grid, the net energy output injected to the grid (i.e., the net energy

sold to the grid), the energy stored in the upper reservoir and the daily revenue. The

test period is selected as one year (from 9th of Sep 2017 to 31st of Aug 2018). Thus,

these eight plots represent the change of these variables with respect to time (i.e., for

each hour of the test period).

Figure 5.8. Optimization Model Scenarios
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5.2.2 Pumped Storage Hydropower Plant Results

Here, the results of the optimization model for the pumped storage hydropower plant

(i.e., no wind turbine case) are presented for all three scenarios.

5.2.2.1 Results of Ideal_Opt

The results of the ideal case (i.e., the case where the real prices of the operation day

are assumed to be known in the bidding day) are presented in Figure 5.9. As can be

seen in Figure 5.9(c), since there are no wind turbines for this case, the wind turbine

output is zero all the time, and hydro turbine output given in Figure 5.9(d) represents

the positive output in the net energy output injected to the grid in Figure5.9(f). As

can be seen from Figure 5.9(b), the pump operates at its maximum capacity in most

of the hours during pump mode, while turbine works at varying capacities during

turbine mode as shown in Figure 5.9(d). Also, there are many hours when the plant is

idle. The net energy output injected to the grid is negative at some hours (i.e., pumped

storage hydropower plant buys electricity from the grid in these hours) and positive

in others (i.e., pumped storage hydropower plant sells electricity to the grid in these

hours) as can be seen in Figure 5.9(f). According to the schedule given in Figure

5.9(h), the total revenue of the pumped storage hydropower plant in the test period of

one year is 3,975,820 TL. This revenue is the upper bound of the revenue since real

prices are assumed to be known in the bidding day. In practice, the real electricity

prices of the operation day would be unknown to the operator of the system, and

the optimization model cannot be run using the real values. If an LSTM network

to predict the operation day’s electricity prices does not exist, the second-best set

of prices that can be used in the optimization model are the electricity prices of the

previous day. The results for this case are given in the following sub-section.
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Figure 5.9. Results of Ideal_Opt for the Pumped Storage Hydropower Plant
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5.2.2.2 Results of PrevDay_Opt

In this scenario, the optimization model is run for the pumped storage hydropower

plant using the electricity prices of the previous day, and the optimum schedule and

the revenue corresponding to this schedule are obtained (these are represented as Pre-

vDay_Opt schedule and PrevDay-Revenue, respectively in Figure 5.8). The results

of this case are presented in Figure 5.10. In Figure 5.10(a), the plotted hourly elec-

tricity price is two days shifted version of the prices that are used in Figure 5.9(a). As

shown in Figure 5.8, a second revenue, PrevDay-RealRevenue is calculated for this

scenario for comparison purposes. The optimum schedule obtained from the opti-

mization model (i.e., PrevDay_Opt schedule) is simulated using the realized prices of

the operation day to calculate PrevDay-RealRevenue. In real life, the revenue of the

system will be PrevDay-RealRevenue since the execution of the optimum schedule

will be realized with the electricity prices of the operation day instead of the pre-

vious day’s electricity prices which were used in the optimization model. Thus, in

Figure 5.10(h) the results of PrevDay-RealRevenue are given in orange in addition to

PrevDay-Revenue for comparison purposes. The results for the whole test period are

summarized in Table 5.4.
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Figure 5.10. Result of PrevDay_Opt for the Pumped Storage Hydropower Plant
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Table 5.4. Revenues of PrevDay_Opt and Ideal_Opt

PrevDay-

Revenue

(TL)

PrevDay-

RealRevenue

(TL)

Ideal-

Revenue

(TL)

Error in real revenue

with respect to

the estimated revenue

(%)

Error in real revenue

with respect to

the ideal revenue

(%)

3,978,708 -955,905 3,975,820 124 124

When the operation schedules of Ideal_Opt and PrevDay_Opt (i.e., Figure 5.9 and

5.10) are compared, it can be noticed that they are quite similar. The reason for this

similarity is hourly electricity prices that are used in PrevDay_Opt and Ideal_Opt.

There is two days difference between the inputs of PrevDay_Opt and Ideal_Opt,

so two days difference exists in the schedules, as well. PrevDay_Opt follows the

Ideal_Opt from two days behind. For instance, the schedule of energy stored in upper

reservoirs for both Ideal_Opt and PrevDay_Opt is shown in Figure 5.11 where the

similarity can be seen clearly. In addition to this, although PrevDay_Opt uses the

electricity prices that are realized two days ago, it presents a rather incorrect opti-

mum schedule. As can be seen in Table 5.4, PrevDay-Revenue is higher than Ideal-

Revenue. That is, PrevDay_Opt can misguide the operator to determine the operation

schedule of the pumped storage hydropower plant. For example, as shown in Figure

5.11, the use of the electricity prices that are realized two days ago in the schedule of

the upper reservoir leads to a significant error in the revenue estimation although only

two days lag exist in the prices.
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Figure 5.11. Energy Stored in the Upper Reservoir in Ideal_Opt and PrevDay_Opt

The errors in Table 5.4 are calculated using the following equation:

|
∑

n x−
∑

n y|∑
n y

× 100 (5.1)

where x is PrevDay-RealRevenue, and y is PrevDay-Revenue and Ideal-Revenue for

the 4th and 5th columns of Table 5.4, respectively and n is the total number of hours

in the test period.

As can be seen in Table 5.4, when the previous day’s electricity prices are used in

the optimization model, the total revenue (i.e., PrevDay-Revenue) is estimated as

3,978,708 TL. However, the realized revenue of the system is -955,905 TL. This

shows that the utilization of the previous day’s electricity prices leads to 124% error

in the revenue estimation. In other words, the owner of the system was hoping to

make 3,978,708 TL but actually loses 955,905 TL in one year of the test period (from

9th of Sep 2017 to 31st of Aug 2018). As can be seen in Table 5.4, for the ideal case,

the revenue of the system (i.e., Ideal-Revenue) is 3,975,820 TL, which is an upper

bound for the revenue and the model error with respect to the ideal case is 124% as

well. These results indicate that the utilization of the previous day’s electricity prices

results in misleading revenues.
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5.2.2.3 Results of LSTM_Opt

The optimization model is run for the pumped storage hydropower plant using the

electricity prices that are forecasted by the LSTM network in this scenario. The op-

timum schedule (i.e., LSTM_Opt in Figure 5.8) and the corresponding schedule (i.e.,

LSTM-Revenue in Figure 5.8) are obtained. The results of the obtained schedule are

represented in Figure 5.12. In addition to LSTM-Revenue, the optimum schedule

(i.e., LSTM_Opt schedule) is simulated using the realized prices to obtain LSTM-

RealRevenue. To compare LSTM-Revenue and LSTM-RealRevenue, the results of

LSTM-RealRevenue are given in orange in Figure 5.12(f). It can be noticed that in the

last part of Figure 5.12(f) (i.e., around t = 8000 hr), there is a significant discrepancy

between LSTM-Revenue and LSTM-RealRevenue. The reason for this discrepancy

is that the LSTM network cannot forecast this part successfully due to abrupt changes

in the electricity prices in this time duration (see Figure 4.24). Also, the summary of

the results for the whole test period is given in Table 5.5.
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Figure 5.12. Result of LSTM_Opt for the Pumped Storage Hydropower Plant
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Table 5.5. Revenues of LSTM_Opt and Ideal_Opt

LSTM-

Revenue

(TL)

LSTM-

RealRevenue

(TL)

Ideal-

Revenue

(TL)

Error in real revenue

with respect to

the estimated revenue

(%)

Error in real revenue

with respect to

the ideal revenue

(%)

4,339,821 -757,083 3,975,820 117.5 119.0

The errors are calculated using the Equation (5.1) where x is LSTM-RealRevenue

and y is LSTM-Revenue and Ideal-Revenue for the 4th and 5th columns of Table 5.5,

respectively.

According to Table 5.5, the total revenue (i.e., LSTM-Revenue) is estimated as 4,339,821

TL when the electricity prices that are forecasted by the LSTM network are used in

the optimization model. Besides, the real revenue of the system is -757,083 TL. It can

be inferred that the use of the LSTM network leads to 117.5% error in the revenue

estimation. As shown in the Table 5.5, the revenue of the ideal case (i.e., Ideal-

Revenue) is 3,975,820 TL. When the error is calculated with respect to the ideal case,

it equals to 119%. So, these results indicate that the utilization of the LSTM prices

does not improve the results significantly compared to the utilization of the previous

day’s electricity prices when the system does not have any wind turbine (i.e., only

pumped storage hydropower).

To investigate the effects of the wind turbine integration to the pumped storage hy-

dropower plant, similar simulations are conducted for the WHHS and presented in

the next section.

5.2.3 WHHS Results

In this subsection, the results of the optimization model of the WHHS are presented

for Ideal_Opt, PrevDay_Opt and LSTM_Opt, respectively.
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5.2.3.1 Results of Ideal_Opt

The results of the ideal case are presented for the WHHS with 10, 50 and 200 wind

turbines in Figures 5.13, 5.14, 5.15, respectively. As can be seen in Figures 5.13(c),

5.14(c) and 5.15(c), since wind turbines outputs exist in these scenarios, they con-

tribute to the WHHS both for pumping and direct energy selling. Negative values

of the net energy output injected to the grid are decreasing as the number of wind

turbines are increasing as can be seen in Figures 5.13(f), 5.14(f), 5.15(f). It can be

noticed that the schedule of pumping energy input, hydro turbine output, and energy

stored in the upper reservoir are not affected by the number of wind turbines. They

are the same in all three figures. The reason is that the operations of the pumped

storage hydropower plant is governed by the electricity prices, and there is an upper

bound - dictated by the capacity of the upper reservoir - of the revenue of the pumped

storage hydropower plant with the given electricity prices. Wind turbines prevent the

pumped storage hydropower plant from buying the energy from the grid. According

to the optimum operation, if the system decided to pump water to the upper reservoir,

it accomplishes this by buying the energy from the grid or taking it from the wind

turbines if it is available. After wind turbines provide the necessary energy to the

system, if extra wind energy exists, then it is sold to the grid. Thus, as the number of

wind turbines increases, the revenue that is provided by the direct sell of wind energy

increases as expected, and the energy bought from the grid decreases. According to

the schedules given in Figures 5.13, 5.14 and 5.15, the total revenues are 11,278,263

TL, 40,488,038 TL and 150,024,694 TL, respectively. These revenues are the upper

bounds of the revenues of the WHHS.
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Figure 5.13. Results of Ideal_Opt for the WHHS with 10 Wind Turbines
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Figure 5.14. Results of Ideal_Opt for the WHHS with 50 Wind Turbines

95



Figure 5.15. Results of Ideal_Opt for the WHHS with 200 Wind Turbines
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5.2.3.2 Results of PrevDay_Opt

In this scenario, the optimization model is run for the WHHS with 10, 50, 200 wind

turbines using the electricity prices of the previous day, and the optimum schedules

and the revenues corresponding to these schedules are obtained. The results of these

schedules are presented in Figures 5.16, 5.17 and 5.18, respectively. The obtained

optimum schedules are simulated using the realized prices of the operation day, and

PrevDay-RealRevenues are calculated. The orange line in Figures 5.16(h), 5.17(h)

and 5.18(h) shows the results of PrevDay-RealRevenue. The summary of the results

is presented in Table 5.6.
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Figure 5.16. Result of PrevDay_Opt for the WHHS with 10 Wind Turbines

98



Figure 5.17. Result of PrevDay_Opt for the WHHS with 50 Wind Turbines
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Figure 5.18. Result of PrevDay_Opt for the WHHS with 200 Wind Turbines
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Table 5.6. Revenues of PrevDay_Opt and Ideal_Opt

Number of

Wind Turbine

PrevDay-

Revenue

(TL)

PrevDay-

RealRevenue

(TL)

Ideal-

Revenue

(TL)

Error in real revenue

with respect to

the estimated revenue

(%)

Error in real revenue

with respect to

the ideal revenue

(%)

10 11,659,180 6,326,841 11,278,263 45.7 43.9

50 42,381,067 35,531,262 40,488,038 16.2 12.2

200 157,588,146 144,911,061 150,024,694 8.0 3.5

As shown in Table 5.6, the total revenues (i.e., PrevDay-Revenues) are estimated as

11,659,180 TL, 42,381,067 TL and 157,588,146 TL for 10, 50 and 200 wind turbines,

respectively. On the other hand, the realized revenues of the WHHS are 6,326,841

TL for 10 wind turbines, 35,531,262 TL for 50 wind turbines and 144,911,061 TL

for 200 wind turbines. These results correspond to 45.7%, 16.2%, and 8.0% errors in

the revenue estimation for 50, 100, and 200 wind turbines, respectively. Also, Ideal-

Revenues are shown in Table 5.6, and the errors with respect to the ideal case are

43.9%, 12.2%, and 3.5% for 10, 50 and 200 wind turbines, respectively. It can be

inferred that increasing integration of the wind turbines decreases the errors. There

are two main reasons for this. Firstly, a higher number of wind turbines provide higher

revenues such that the share of the pumped storage hydropower operations in revenue

becomes very small compared to the share of the wind turbine operations. Since the

errors are originated from the pumped storage hydropower operations, they can be

reduced with the decreasing share of the pumped storage hydropower in the revenue.

The operation of the wind turbine does not affect the error directly since after the

energy need of the WHHS is provided, the energy generated by the wind turbine is

sold to the grid regardless of the electricity prices. Secondly, the energy bought from

the grid at incorrect hours leads to the loss. However, if the WHHS takes the energy

from the wind turbines instead of the grid, the loss is prevented. In this way, the wind

turbine compensates for the error emerging from an incorrect schedule of the WHHS.
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5.2.3.3 Results of LSTM_Opt

The optimization model is run for the WHHS with 10, 50 and 200 wind turbines using

the electricity prices that are forecasted by the LSTM network in this scenario. The

optimum schedules and the revenues corresponding to these schedule are obtained.

The optimum schedules correspond to 10, 50 and 200 wind turbines are presented

in Figures 5.19, 5.20 and 5.21, respectively. In addition to LSTM-Revenue, LSTM-

RealRevenue is calculated for all wind turbine cases, and they are shown in orange

in Figures 5.19(h), 5.20(h) and 5.21(h). In Table 5.6, the summary of the results is

presented.
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Figure 5.19. Result of LSTM_Opt for the WHHS with 10 Wind Turbines
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Figure 5.20. Result of LSTM_Opt for the WHHS with 50 Wind Turbines
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Figure 5.21. Result of LSTM_Opt for the WHHS with 200 Wind Turbines
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Table 5.7. Revenues of LSTM_Opt and Ideal_Opt

Number of

Wind Turbine

LSTM-

Revenue

(TL)

LSTM-

RealRevenue

(TL)

Ideal-

Revenue

(TL)

Error in real revenue

with respect to

the estimated revenue

(%)

Error in real revenue

with respect to

the ideal revenue

(%)

10 11,986,931 6,545,361 11,278,263 45.4 42.0

50 42,575,370 35,755,136 40,488,038 16.0 11.7

200 157,282,016 145,291,791 150,024,694 7.6 3.2

According to Table 5.7, the total revenues (i.e., LSTM-Revenues) are estimated as

11,986,931 TL, 42,575,370 TL and 157,282,016 TL for 10, 50 and 200 wind tur-

bines, respectively. The realized revenues of the WHHS are 6,545,361 TL for 10

wind turbines, 35,755,136 TL for 50 wind turbines and 145,291,791 TL for 200 wind

turbines. The errors in revenue estimations are computed as 45.4%, 16.0%, and 7.6%

for 10, 50, and 200 wind turbines, respectively. In addition to this, the errors with

respect to the ideal case are 42.0% for 10 wind turbines, 11.7% for 50 wind turbines

and 3.2% for 200 wind turbines. So, the increase in the number of wind turbines

decreases both errors. Apart from this, when the error columns of Tables 5.6 and

5.7 are compared, it can be seen that the errors in the scenario of LSTM_Opt are

smaller than PrevDay_Opt even if the differences are small. Therefore, to use the

LSTM_Opt in the operation of the WHHS is beneficial theoretically. However, when

the computational load of the LSTM network is considered, its performance is not

successful enough compared to PrevDay_Opt. Especially the time durations when

abrupt changes occur in electricity prices, LSTM_Opt results in poor performance

compared to PrevDay_Opt. This is because the LSTM network is not trained by the

data that includes these abrupt changes, or its architecture is not powerful to catch

the abrupt changes. Thus, it is beneficial to use PrevDay_Opt when unusual trends

in electricity prices are observed. Nevertheless, if a more comprehensive LSTM net-

work (i.e., the LSTM network includes input features that creates abrupt changes in

electricity prices) is used in LSTM_Opt, it is expected to perform better than the

current one and PrevDay_Opt.
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5.2.4 Comparison of Pumped Storage Hydropower Plant and WHHS

Results of Ideal_Opt, PrevDay_Opt and LSTM_Opt are summarized and given in

Tables 5.8, 5.9 and 5.10, respectively. It can be inferred that the schedules are not

affected by the change in the number of wind turbines. The schedules change with

the electricity prices that are used in the optimization model. Therefore, they are

different in each scenario (i.e., Ideal_Opt, PrevDay_Opt and LSTM_Opt). It can be

noticed that different number of wind turbines corresponds to different total pump

and turbine hours in the schedule for a each scenario. The minor changes in total

pump and turbine hours as the number of wind turbines change is due to round-off

errors that occur in the optimization process.

Table 5.8. Summary Schedule of Ideal_Opt

Number of

Wind

Turbine

Pumping

Input Energy

(MWh)

Wind Energy

for Direct Sell

(MWh)

Wind Energy

for Pumping

(MWh)

Hydro Turbine

Output

(MWh)

Energy Bought

from Grid

(MWh)

Net Energy

Injected to

Grid (MWh)

Total

Pump

Hours

Total

Turbine

Hours

0 137848.77 0.00 0.00 103110.64 137848.77 -34738.13 1400 3763

10 137848.77 32766.75 7895.90 103110.64 129952.87 5924.52 1423 3793

50 137848.77 167185.31 36527.97 103110.64 101320.80 168975.15 1421 3792

200 137848.77 746743.67 66909.45 103110.64 70939.32 778914.99 1411 3792

Table 5.9. Summary Schedule of PrevDay_Opt

Number of

Wind

Turbine

Pumping

Input Energy

(MWh)

Wind Energy

for Direct Sell

(MWh)

Wind Energy

for Pumping

(MWh)

Hydro Turbine

Output

(MWh)

Energy Bought

from Grid

(MWh)

Net Energy

Injected to

Grid (MWh)

Total

Pump

Hours

Total

Turbine

Hours

0 138548.77 0.00 0.00 103634.33 138548.77 -34914.44 1407 3767

10 138548.77 34368.18 6304.74 103634.33 132244.03 5758.48 1423 3803

50 138548.77 173689.65 29974.95 103634.33 108573.82 168750.16 1422 3803

200 138548.77 752279.80 61578.58 103634.33 76970.19 778943.95 1418 3803

Table 5.10. Summary Schedule of LSTM_Opt

Number of

Wind

Turbine

Pumping

Input Energy

(MWh)

Wind Energy

for Direct Sell

(MWh)

Wind Energy

for Pumping

(MWh)

Hydro Turbine

Output

(MWh)

Energy Bought

from Grid

(MWh)

Net Energy

Injected to

Grid (MWh)

Total

Pump

Hours

Total

Turbine

Hours

0 111198.64 0.00 0.00 83176.19 111198.64 -28022.45 1157 4126

10 111198.64 35974.41 4779.97 83176.19 106418.67 12731.94 1157 4192

50 111198.64 181175.38 22596.54 83176.19 88602.10 175749.48 1157 4192

200 111198.64 767456.36 47631.35 83176.19 63567.29 787065.26 1157 4192
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5.2.5 Further Comparisons

Bar plots of three realized revenues (i.e., LSTM-RealRevenue, PrevDay-RealRevenue

and Ideal-Revenue) with no wind turbine case and three different numbers (i.e., 10,

50 and 200) of wind turbines are shown in Figure 5.22. The integration of the wind

turbines to the system clearly decreases the negative effect induced by the difference

between the estimated prices and occurred prices. This is because the share of the

pumped storage hydropower operations in the revenue is reducing with the increasing

number of wind turbines. In other words, the importance of the electricity price fore-

casting disappears. As a result, the owner of the pumped storage hydropower plant

has two choices. First, he or she can have a very powerful LSTM network to forecast

electricity prices with high accuracy. Second, he or she can have enough number of

the wind turbines so that the errors in consequence of the incorrect schedule of the

pumped storage hydropower plant can be compensated by wind turbines.

Figure 5.22. Revenues of LSTM-RealRevenue, Prevday-RealRevenue and Ideal-

Revenue (TL)

Error variations through hours of the year in revenues of LSTM-RealRevenue with

respect to Ideal-Revenue, and PrevDay-RealRevenue with respect to Ideal-Revenue

are computed, and presented in Figure 5.23. We can say that the error ranges of
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the LSTM-RealRevenue are smaller than PrevDay-RealRevenue. Also, the positive

effect of the wind integration can be seen in these figures, as well. In other words,

errors are decreasing with the number of wind turbines.

Figure 5.23. Error Variations of LSTM-RealRevenue and PrevDay-RealRevenue with

respect to Ideal-Revenue

In addition to yearly analysis of the revenues, monthly analyses are conducted as well

to see the effect of the seasonal change in the electricity price and presented in Figure

5.24. In the first plot (i,e., there is no wind turbine), monthly revenues are negative

from January to August since both LSTM_Opt and PrevDay_Opt cannot predict the

real price accurate enough. This leads to purchase of electricity in wrong hours (i.e.,

when the prices are high) and consequently results in revenue loss. Especially, the loss

of LSTM-RealRevenue is very high in August due to abrupt changes in the electricity

prince in this month (see Figure 4.24). The integration of wind turbines turns the loss

into the positive revenue. However, abrupt changes in the electricity price in August

lead to the lowest revenues of LSTM-RealRevenue in all wind turbine scenarios (i.e.,

10, 50, and 200). Apart from August, LSTM-RealRevenue brings more revenue than

PrevDay_Opt-RealRevenue in all months and wind turbine scenarios. The WHHS has

more revenue in January, February, March, December, and August than other months

in all three optimization scenarios (i.e., Ideal_Opt, PrevDay_Opt and LSTM_Opt).
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Figure 5.24. Monthly Revenues of Ideal-Revenue, LSTM-RealRevenue and PrevDay-

RealRevenue (TL)
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Another important point is that electricity prices affect the pump need of the WHHS

directly. Each optimization model scenario uses a different amount of pumping en-

ergy according to their schedule. Input energy for the pump and its sources (i.e., from

the grid or wind turbines) are plotted and represented in Figure 5.25. For all three

optimization model scenarios, the pump operation does not change as the number

of wind turbines increases. However, the dependency of the WHHS to the grid de-

creases with an increasing number of wind turbines. Plots in Figure 5.25 show that if

a sufficient number of wind turbines is provided, the WHHS may not buy the energy

from the grid at all.

The schedule of the pump energy input of the WHHS changes according to the opti-

mization model scenario. For all three optimization model scenarios, the schedule of

the pump input energy is presented in Figure 5.26. Each optimization model scenario

has different schedules of pump input energy. The important point is that the schedule

does not change with the number of wind turbines. It is same for no wind turbine case

and all wind turbine numbers (i.e., 10, 50, 200). The number of wind turbines only

changes the source of the pump input energy (i.e., from the grid or wind turbines).

Apart from the scenarios discussed in the previous sub-sections, the optimization

model simulated using only wind turbines by ignoring all turbine and pump opera-

tions, as well. In other words, all energy generated by wind turbines is sold directly

to the grid. This is not a common practice in electricity spot markets. Because the

amount of energy to be sold to the grid is specified in advance, and wind power plant

operators must obey these amounts. Otherwise, they will be penalized. This scenario

is simulated to compare it with the hybrid system. As expected, only the wind turbine

scenario has lower revenue than the scnearios of the WHHS. For example, the rev-

enue of Ideal_Opt of the WHHS with 10 wind turbines is 11.3 million TL, whereas

the revenue of 10 wind turbines is 7.3 million TL in a year.
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Figure 5.25. Plots for the Input Energy of the Pump in the Scenarios

Figure 5.26. Schedules of the Pump Input Energy in the Scenarios
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CHAPTER 6

CONCLUSION

In this thesis, the optimum operation schedule of a WHHS is investigated. In the

scope of the thesis, first, an LSTM network is developed to forecast the electricity

prices in the day-ahead spot electricity market. Then, an optimization model is devel-

oped to maximize the revenues of the WHHS. To investigate the optimization model

and the LSTM network, different scenarios are created and run. Optimum operation

schedules of the WHHS are obtained with these runs.

The significant findings of this thesis are given below:

• When the proposed LSTM network is used to estimate electricity prices, closer

to actual revenues are obtained compared to those obtained by using previous

day prices at most of the times. However, it brings a computational load.

• LSTM network does not perform effectively for periods where abrupt changes

occur. In Turkey, the electricity prices are affected from many reasons, so it

highly oscillates at certain time intervals. Therefore, using the previous days’

prices is more beneficial than the prices forecasted by the LSTM network for

these intervals in the optimization model. However, since it is not possible to

know the exact timing of these abrupt changes, the overall efficiency of the

model has to be considered.

• Especially, in the case of the pumped storage hydropower plant, poor forecast-

ing of the electricity prices considerably affects the revenue of the energy seller.

Although a profit is estimated for the operation day, a loss may occur.

• Increase in the number of wind turbines provides higher revenue since the

WHHS buys less energy from the grid, and the surplus energy is directly sold
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to the grid after the pump’s need is met. Therefore, the integration of the wind

turbines to the WHHS decreases the grid dependency of the WHHS.

• The number of wind turbines in the WHHS does not change the operation

schedules of the pump input, the hydro turbine output and the energy stored

in the upper reservoir within the studied range of installed capacities. This is

because these schedules are determined based on the electricity price, which is

the input of the optimization model.

• The integration of the wind power to the pumped storage hydropower plant

reduces two types of estimation errors. The first one is the error between the

planned revenue and the realized revenue. The second one is the error between

the maximum revenue in the ideal condition and the realized revenue. The first

reason for the decrease in these errors is that the energy generated by wind

turbines increases the total revenue, so the share of the pump and the hydro

turbine operations in the revenue decreases. Since the majority of these errors

are originated from the pumping cost, when its contribution decreases, the total

error decreases, as well. Furthermore, the pump has a chance to use energy

from wind turbines instead of using the energy from the grid in incorrectly

predicted hours (i.e., the hours when the schedule of the pump operation is

determined incorrectly). In this way, the loss is prevented, so the errors are

decreased.

• Since it is challenging to predict future electricity prices with high accuracy,

some buffer should be introduced to the calculated installed capacity of a wind

power plant when a WHHS is designed. This provides compensation for the

inefficient operation of the pumped storage hydropower plant due to the unpre-

dictable electricity price oscillations. In addition to this, the additional energy

generated from wind turbines will be sold in the grid, which will increase the

revenue.

Some recommendations for the future studies are listed below:

• In this study, the MERRA-2 database is used for wind speed data. If better wind

speed forecasts are available, then more realistic schedules can be predicted.
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The optimization model can be run with a range of wind speed predictions in a

stochastic manner, and a range of revenues can be obtained.

• The LSTM network, which is used to forecast electricity prices, can be im-

proved by including more input features and a more extended training data set.

• In the scope of this study, an investigation of the initial cost to build a WHHS

is not conducted. For further study, feasibility research can be carried out, and

the rate of return for the WHHS may be calculated to convert existing cascade

hydropower plant to a WHHS or build a WHHS from scratch.

• The studied optimization model in this thesis is based on 24 hours of simula-

tions. However, this time interval can be extended to investigate the behavior

of the optimization model in the long term (i.e., seasons of a year). To carry

out the described investigation may be challenging due to the curse of dimen-

sionality since it will include a lot more variable than the studied optimization

model in this thesis.

• The losses in the hydraulic equipment of the WHHS (pump, hydro turbine,

pipelines, etc.) are not evaluated explicitly in this study. For future research,

hydraulic calculations may be carried out. Then, the design values of the hy-

draulic equipment can be determined to obtain the maximum revenue and op-

erational schedule of the WHHS.

• In this study, a closed-system system is taken into consideration, so all inflows

and outflows from and to the reservoir are ignored. The inclusion of inflows

and outflows from the reservoir will result in more realistic representations of

hybrid systems.
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