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June 2020, 109 pages 

The Phasor Measurement Units (PMUs) are recently utilized in the real-time 

monitoring, control and protection applications in electrical power systems. PMUs 

contribute the better understanding of modern power systems by rendering time 

synchronized voltage and current measurements thanks to their high-resolution and 

high-precision compared to the conventional SCADA measurements.  

State estimation is one of the most important monitoring means in power systems. 

State estimation can be performed solely at substation level by utilization of 

synchrophasor PMU measurements. By substation level state estimation, erroneous 

measurements can be filtered at substation level and the computational burden of 

control centers may be reduced.  

Topological errors cause biased state estimates, which may have catastrophic results 

for power system operation. Therefore, detection and identification of topological 

errors is critical. Despite its criticality, topological error processing has a significant 

computational burden for centralized control centers. Thus, performing topology 

error processing task at substation level can improve the computational performance. 

Performing state estimation and topology error processing tasks at substation level 

will improve the monitoring capabilities and the situational awareness of electric 

power systems. 
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This thesis proposes a substation level state estimator and topology error processor. 

The proposed method relies on the presence of PMU measurements and solves the 

estimation problem with the well-known Weighted Least Squares (WLS) estimator. 

The proposed method is validated with real substation topologies. The method can 

provide accurate system state estimates, filter the bad data and detect topological 

inconsistencies at the substation. 

Keywords: State Estimation, Substation, Bad Data Processing, Topological Error 

Processing, Smart Grids 
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ÖZ 

 

TRAFO MERKEZİ DÜZEYİNDE DURUM KESTİRİMİ VE TOPOLOJİ 

HATASI İŞLEME 

 

 

Saruhan, Erdi 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği 

Tez Yöneticisi: Doç. Dr. Murat Göl 

 

 

Haziran 2020, 109 sayfa 

Fazör Ölçüm Birimleri (PMU) son zamanlarda elektrik güç sistemlerinde gerçek 

zamanlı izleme, kontrol ve koruma uygulamalarında kullanılmaktadır. PMU'lar, 

geleneksel SCADA ölçümlerine kıyasla yüksek çözünürlük ve yüksek hassasiyetleri 

sayesinde zaman senkronize gerilim ve akım ölçümleri yaparak modern güç 

sistemlerinin daha iyi anlaşılmasına katkıda bulunur. 

Durum kestirimi, güç sistemlerindeki en önemli izleme araçlarından biridir. Durum 

kestirimi, senkrofazör PMU ölçümleri kullanılarak yalnızca trafo merkezi düzeyinde 

gerçekleştirilebilir. Trafo merkezi seviyesinde durum kestirimi ile hatalı ölçümler 

trafo merkezi düzeyinde filtrelenebilir ve kontrol merkezlerinin hesaplama yükü 

azaltılabilir. 

Topolojik hatalar, güç sisteminin çalışması için yıkıcı sonuçlara yol açabilecek yanlı 

sistem durumu tahminlerine neden olur. Bu nedenle, topolojik hataların tespiti ve 

teşhisi oldukça kritiktir. Topolojik hata işleme, kritikliğine rağmen merkezi kontrol 

merkezleri için önemli bir hesaplama yüküne sahiptir. Bu nedenle, trafo merkezi 

düzeyinde topoloji hata işleme fonksiyonunun gerçekleştirilmesi hesaplama 

performansını geliştirebilir. Trafo merkezi düzeyinde durum kestirimi ve topoloji 

hata işleme fonksiyonlarının gerçekleştirilmesi, elektrik güç sistemlerinin izleme 

yeteneklerini ve durumsal farkındalığını geliştirecektir. 
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Bu tez, trafo merkezi düzeyinde durum kestirimcisi ve topoloji hata işlemcisi 

önermektedir. Önerilen yöntem PMU ölçümlerinin varlığına dayanır ve iyi bilinen 

Ağırlıklı En Küçük Kareler (WLS) tahmincisi ile durum kestirimi problemini çözer. 

Önerilen yöntem, gerçek trafo merkezi topolojileri ile doğrulanmıştır. Yöntem, 

doğru sistem durumu tahminleri sağlayabilir, kötü verileri filtreleyebilir ve trafo 

merkezindeki topolojik tutarsızlıkları tespit edebilir. 

Anahtar Kelimeler: Durum Kestirimi, Trafo Merkezi, Kötü Veri İşleme, Topolojik 

Hata İşleme, Akıllı Şebekeler 
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CHAPTER 1  

1 INTRODUCTION  

State estimation (SE) is a process of estimating the state of the network based on the 

available measurements and on the assumed system model. State estimators give 

most possible system states by processing available measurements. Bus voltage 

magnitudes and bus voltage angles are the primary system states through which the 

electrical systems can be represented completely. In short, the state of the network 

in other words operating conditions of electrical systems are determined by state 

estimation applications [1].  

A topology processor gathers status data of the circuit breakers and switching 

devices, and configures the one-line diagram of the electrical network. Later, this 

one-line diagram is utilized by a state estimator as a system connectivity. Since 

topology processors are based on the topological data in other words the statuses of 

switching devices, erroneous status of circuit breakers or switching devices can cause 

inaccurate system topology. Consequently, the state estimator utilizes incorrect 

system topology and gives inaccurate system estimates as output [1]. Topology error 

process is the method of detecting and identifying of topological errors. In other 

words, topology error processors can detect and identify erroneous switching device 

statuses. 

State estimation was firstly performed at control centers at transmission level by 

using the measurements coming from power substations. Thus, bad data detection-

identification and topology error processing tasks were all performed centrally. 

Initially, state estimation cannot be performed solely at substation level due to lack 

of measurement redundancy and absence of time synchronization between 

measurements. There were methods which conduct state estimation in two stage 
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which are substation level stage and central level stage. At first stage, state estimation 

was performed at substation level. Later, estimates of substation level was combined 

at second stage [9-11]. The problem of these methods was that due to lack of time 

synchronization between measurements, every substation had their own reference 

angle. Thus, as stated earlier state estimation cannot be performed solely at 

substation level in the past.  However, with the advent of PMU devices, redundancy 

and accuracy of substation level measurements have increased greatly, and the time 

synchronization issues between measurements are resolved [8]. PMU devices 

provide more accurate measurements compared to SCADA measurements, and the 

refresh rate of PMU measurements is much higher than SCADA measurements [28]. 

Since PMU measurements are time-stamped with GPS signals and they have 

improved the redundancy at substations, substation level state estimation is now 

possible.  

The main motivation of this thesis is the utilization of state of art PMU devices and 

PMU measurements by performing state estimation and topology error process at 

substation level. State estimators determine the most possible system states by 

processing the available measurements and help system operators to determine the 

operating conditions of electrical power systems. In other words, state estimation 

applications increase the situational awareness of power systems. Since complexity 

of electric systems have increased substantially with the growth in the size of electric 

systems and the penetration of renewable energy sources, importance of state 

estimation as a monitoring tool has increased as well. On the other hand, smartness 

in electrical power systems are also growing just like increasing complexity of 

electric systems. Since most of control actions and protective decisions   are taken at 

power substations, and electrical quantities are measured at power substations 

through RTUs, IEDs and PMUs, it can be stated that most of the smartness of 

electrical systems exists at power substations [7]. Thus, secure and reliable operation 

of power substations have great importance. States of electrical networks are 

estimated by state estimation, similarly operating conditions and system states at 

substations can be determined by state estimation. Just like central state estimation 
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applications, implementation of state estimation procedure to power substations will 

improve the situational awareness of substations which are one of the most important 

parts of electrical grids. Central state estimators utilize the measurements coming 

from power substations. Thus, by performing state estimation at substation level 

inconsistencies in analog measurements and substation topology can be eliminated 

at substation level, and filtered and corrected measurement sets can be transmitted 

to control centers for central state estimation [11]. Moreover, refresh rates of PMU 

devices are higher compared to conventional SCADA measurements, therefore 

central state estimators have to run much more frequently in the presence of PMU 

measurements. In addition, amount of data and redundancy in the presence of PMU 

measurements are also much higher than SCADA only systems. Thus, computational 

burden of central state estimators is also much higher in the presence of PMUs. 

Performing state estimation at substation level can also decrease the computational 

and communicational burden of central control centers and central state estimators. 

Similar to substation level state estimation process, topology error process has 

crucial importance for improving substation level awareness and power system 

monitoring tasks. Nowadays, much more control actions take place at power 

substations due to the increased complexity of power systems. Thus, possibility of 

topological errors is increasing as well. To handle this problem, power systems have 

to be monitored in a better way through measurement devices. However, most of 

electrical grids are deprived of advanced monitoring capabilities. Topology error 

processors can detect and identify topological inconsistencies at substations by 

utilizing redundant measurements and statuses of switching devices, and with that 

improve the monitoring capabilities of electrical power systems. 

In literature, substation level state estimation process and topology error process are 

handled separately with different algorithms. In this thesis, both substation level state 

estimation process and topology error process are solved with same proposed 

Weighted Least Squares based algorithm. Performing substation level state 

estimation and topology error process together by utilization of PMUs constitutes 

the main contribution of this thesis to the literature. 
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1.1 Power System State Estimation 

The idea of state estimation in power systems were firstly proposed by Fred 

Schweppe at the late of 1960s. Power system state estimation is matured in the last 

five decades. In the 1970s, state estimation was just a mathematical curiosity, in the 

1980s its usage increased but compared to today’s wide application area of state 

estimation it was still quite limited. In the 1990s, the role of state estimation in the 

power systems increased but the role was not a central role as today [1]. In 2000s 

and 2010s, application area of state estimation expanded from transmission level to 

distribution and substation levels with the advances in power system technology and 

the increased redundancy in all levels of power systems owing to new measurement 

devices and increase in the number of measurement devices. 

State estimation provides optimal estimates or most possible system states based on 

the available measurements and on the assumed system model [1]. A power system 

can be fully described by system states electrically. In other words, if a power system 

is considered as a function, the system states are the variables of that function. Just 

like functions are represented by their variables, power systems can be fully 

represented by system states. Voltage magnitudes and voltage angles constitute the 

fundamental system states in power networks. If the voltage phasors (voltage 

magnitudes and voltage angles) of every bus in the system, the system model (system 

parameters; resistance values, impedance values, transformer taps etc.) and the 

system connectivity are known, all other electrical values such as power flows 

between buses, power injections at buses, current flows on lines etc. can be easily 

found. 

Operating conditions of a power system, which are normal (secure/insecure), 

emergency and restorative states, have fundamental importance in terms of power 

system security and reliability. Operating conditions of a power system are 

determined based on the system model and system states. Thus, system states have 

crucial importance for determination of operating conditions. The biggest potential 

failure in a power system area is blackout which is the complete loss of power in 
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electrical systems. After blackouts, brownouts and regional power outages come as 

biggest threat to secure operation of a power system [19]. In power system history, 

even though occurrence of major power outages is quite rare, it still constitutes one 

of the major threats to the operation of power systems both electrically and 

economically. Those power outages leave millions of people powerless and cause 

damage in power system equipment and loss of billions of dollars. One of the most 

important causes of those outages is incorrect operating conditions which means that 

incorrect information about the power networks or erroneous systems states. This 

fact makes state estimation which gives most accurate system states quite important 

for reliability and security of power system operations [20]. 

Power system operators manage power systems from the power system control 

center. The main task of the operator is to maintain the power system in the normal 

secure operating states for changes in the daily characteristics and operating 

conditions of power systems. System operators continuously monitor system 

operating conditions, and for this task determine system states and in case of normal 

insecure, emergency and restorative operating conditions take necessary precautions 

and actions. All these tasks constitute the security analysis function of the power 

system. Since operating conditions of power systems are determined based on system 

states, it can be said that state estimators are in the core of online security analysis of 

power systems [1]. 

Power system operators generally have deep experience, instinct and understanding 

about the nature and the operation of power systems. But as the need for electricity 

ramp up with increasing populations and growing economies, power systems as a 

whole become more complex and hard to operate. This make manual operation and 

monitoring of power systems more difficult task to accomplish. Power system state 

estimators take part in the center of the solution of those challenges. Most possible 

system states, which give information about the operating conditions of power 

systems, are determined by the state estimator in the power system. Thus, power 

system state estimators are among the fundamental building blocks of modern 

control centers and are found almost at every power system control centers. 
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Figure 1.1. The Fundamental EMS System Structure 

State estimators take raw measurement data, which are analog measurements and 

digital measurements (switching device statuses), and system model as input, 

process them and give most possible system states as output. In conventional power 

systems, raw measurement data are acquired by remote terminal units (RTU) which 

are devices that collect measurements at the substation and transmit them to the 

control center. Nowadays, in addition to RTUs, usage of Intelligent Electronic 

Devices (IEDs) and Phasor Measurement Units (PMUs) getting more popular. In 

conventional power system structures, data are collected by current transformers, 

voltage transformers etc. through RTUs and IEDs at substations. RTUs and IEDS 

transmit collected data to control centers via a local area network (LAN) through 

SCADA front end computers. In Figure 1.1, a typical conventional EMS structure is 

shown. Conventional state estimators at control centers are the core of Energy 

Management Systems. Energy management systems (EMS) are automation systems 

that collect measurement data from the field and making it available to users through 

graphics, online monitoring tools, and energy quality analyzers, thus enabling the 

management of energy resources [2]. Contingency analysis, automatic generation 
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control, load forecasting, fault location and optimal power flow are some of the 

important EMS functions. All these functions use system states as their input and 

perform their task based on that system states. State estimators process available data 

and filter measurement noise and bad data in the measurements, and give most 

accurate system states to EMSs. In brief, as being the cornerstone of modern control 

centers, taking part in the core of online security analysis functions and in the core 

of the EMSs functions, state estimation makes operation of major power markets 

possible [1]. 

In conventional state estimation methods, measurements in substations are collected 

by RTUs and then those measurements are transmitted to central control centers via 

SCADA system infrastructure. At the central control center, the state estimation is 

performed centrally especially at transmission level by using measurements coming 

from substations and system model. Filtering and processing of raw data by state 

estimation through bad data and topology error processing procedures are all 

performed centrally. Although conventional state estimation approach made a 

breakthrough in the past for monitoring and control of power systems by providing 

true system states to EMS functions, now conventional state estimation has some 

drawbacks. Conventional state estimators cannot satisfy the requirements of modern 

power system operations. Firstly, number and type of measurements, and 

redundancy at substation level have increased enormously. Transmitting those huge 

amount of data can create communicational and computational problems at central 

level state estimation process [9]. Secondly, not all the measurements at substations 

are sent to the central level due to above constraints. In other words, variety and 

abundance of measurements at substations are higher than the central level [7].  

Moreover, central level state estimators take substations as just a node which causes 

the lack of utilization of the overall information at the substation level [27]. 

Furthermore, bad data in the power systems are generally found at substations, thus 

performing bad data detection-identification and topology error processing tasks at 

substation level can give better results for system reliability [6]. Finally, in addition 

to PMUs which provide GPS synchronized phasor measurements, the advent of 



 

 

8 

advanced communication protocols and standards (such as IEC 61850) which 

facilitates data exchange and integration within substation systems and introduction 

of smart grid concept are the other factors which make state estimation solely at 

substation level possible.  

This thesis facilitates advances in the power systems technology and structures 

especially at substation level improvements and proposes a method for substation 

level state estimation which performs bad data detection-identification and topology 

error detection tasks by using a nonlinear weighted least squares method. 

1.2 Literature Review 

The advent of Intelligent Electronic Devices (IEDs), Phasor Measurement Units 

(PMUs), new generation of Remote Terminal Units (RTUs), etc., give rise to 

availability of huge amount of measurements at the substation level. Although 

increasing the amount of measurements at the substation level improves the 

redundancy of substations, formidable amount of measurements also brings 

computational and communicational burden to control centers. These issues are 

tackled by the introduction of the global communication standards for substation 

automation systems such as IEC61850. Improvements in measurement redundancy 

and communicational standards call for the implementation of a substation level state 

estimator. In recent years, research and application interests on substation level state 

estimation have increased dramatically and those applications have been proposed 

in [3–12]. 

One of the most important properties of smart grids is the fitting of various digital 

devices capable of communicating with each other and/or with a control center. At 

the transmission level this smartness exists almost entirely at substations [7]. Thus, 

for improving the transmission level state estimation, the redundant data available at 

substation level have to be utilized. In the literature, there are two different 

applications in which substation level state estimation is implemented which are 

single stage substation state estimation and hierarchical two-stage state estimation. 

Both of these approaches fundamentally aim to give more reliable system states to 
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EMS functions. In [3-8], single stage substation state estimation implementations are 

presented. In [9-11], hierarchical two-stage state estimation applications are 

presented. 

The problem of including detailed substation models in state estimation at the least 

possible cost was analyzed in [3]. At that implementation bad data and topological 

error processing were carried out simultaneously by using the generalized state 

estimation (GSE) approach. In generalized state estimation algorithm, in order to 

estimate CB statuses, the modelling involves detailed physical modelling of whole 

substation which is called breaker-oriented modelling. In GSE, in addition to voltage 

magnitudes and voltage angles of buses at the substation, power flows on CBs are 

also taken as system state variables. To compensate this extra states, null power 

flow/voltage drop equality constraints are taken into account by using information 

of open/closed statuses of CBs. Moreover, zero-injection constraints are also taken 

into consideration at the substation level state estimation. 

Implementation of a system that simulates collecting and processing of data at the 

substation level was presented in [4]. This implementation is called Substation State 

Estimator. IEDs facilitate collection and sharing of data within the substation, such 

as analog and digital measurements. This easiness and increased redundancy in the 

substation makes that implementation possible. Although it is called substation state 

estimator, its core algorithm is different than other implementations. There is no 

mathematical algorithm, weighted least squares (WLS), generalized state estimation 

etc. beneath it. Instead of mathematical concepts, the algorithm includes some 

consistency checking methods. In spite of that feature, this substation state estimator 

still can do data collection and processing tasks like [3]. Processed data by the 

substation state estimator may be used locally and/or delivered to remote sites 

(neighboring sites and/or control centers). 

A local three-phase generalized state estimator which performs substation data 

validation task was presented in [5]. That application locally processes and filters 

huge amount of data available at substations and transmits the processed data to 
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Energy Management System. Many substation level state estimators are single phase 

and takes only positive sequence components of voltage magnitudes and voltage 

angles as state variables. Single phase applications exclude inconsistencies and 

unbalances between phases and accept the network as balanced. Implementation 

performed in [5], overcomes that deficiency of single phase estimators. Moreover, 

in that application, substation topology is also checked by using ideas recently 

introduced by GSE, which includes modelling of switching elements in detail. Being 

a three phase estimator and using ideas introduced by generalized state estimation 

approach brings large amount of data and needs great processing and communication 

capability. These issues are tackled by improvements in IEDs and increased 

computational capacities of modern computers. Bad data and topology error 

detection and identification tasks, which validate both analog measurements and CB 

statuses, were also performed in that application.  

Papers in [3-5] were written at the beginning of 2000s. Usage of PMUs at power 

substations is still too low compared to widespread usage of RTUs. Thus, these 

applications could only utilize data coming from RTUs and IEDs which are not GPS 

synchronized. On the other hand, in [6] measurements coming from both RTU and 

PMU are utilized in the estimation process. Usage of PMUs at substation level 

improves local redundancy and accuracy enormously due to the GPS synchronized 

more precise phasor measurements provided by PMUs. In that application, 

substation state estimation was carried out on three-phase breaker oriented model 

using Kirchhoff’s Current Law (KCL). Measurement functions are established 

according to KCL for zero impedance branches. In the application, bad data and 

topology error identification were decoupled. Since the application is based on three-

phase state estimation, it provides real-time three-phase unbalanced degree 

monitoring at substation level. Like other existing applications, by removing analogy 

and topology errors at substation level this implementation also provides more 

accurate data for EMS functions at control centers.  

With the advent of IEDs, local redundancy at substation level has been increased 

significantly.  This increased redundancy also brings formidable amount of data as 
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well. In order to deal with this huge amount of data available at substations, new 

system architectures have to be proposed. This problem was overcome by usage of 

local area network-based systems which use advanced IEDs instead of usage of 

centralized systems which are based on RTUs [7]. The global communication 

standard for substation automation system (IEC 61850) defines the communication 

rules between IEDs and specifies other system requirements.  

Smart grids and also EMSs require fast, secure and error free high quality data for 

reliable system operation. Bad data on measurements is one of the biggest threats for 

secure system operation. From its earliest days, bad data detection is one of the most 

researched topic of state estimation. Although most of bad data detection algorithms 

are applied at central level, bad data in power systems generally exists at substation 

level. Centralized state estimators cannot eliminate overall the bad data exist at 

substation level. With the introduction of IEC 61850, data sharing within substation 

become more flexible and transparent allowing more sophisticated management of 

data quality [8]. In that paper, a substation level bad data detection method which 

uses linear WLS state estimation algorithm was presented. By that method bad data 

from failing current transformers (CT) can be detected. This method takes advantage 

of IEC 61850 standard and GPS synchronized IEDs such as PMUs. 

In [9-11], two-level hierarchical state estimation methods are presented. The two-

stage substation level state estimation methods resemble the classical multi-area state 

estimation problem, oriented to the regional or multi-TSO case. A two-level PMU-

based linear state estimator was presented in [9]. The main contribution of that paper 

is the application of topology processing and bad data detection-identification 

functions at each substation rather than the control center. As stated in the paper, if 

all analog data were synchronized complex current and voltage measurements, then 

the state estimation would be linear and there will be no convergence issue. To meet 

that increasing redundancy level, in addition to RTUs, installation of more IEDS and 

PMUs are required. At that implementation, substation and control center level state 

estimators are linear. In some regions of China, higher penetration of PMU 

technologies are already available today. Thus, that application is specific to those 
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regions only. In short, topology processing and bad data detection-identification 

tasks are performed locally, then processed more accurate data transmitted to control 

centers. The first level of this estimator is called Substation Level State Estimator or 

Zero Impedance Estimator. 

A two-level state estimation with local measurement pre-processing methodology is 

presented in [10]. Raw measurements at substations are processed and filtered locally 

at the first level (local state estimator) and then only a manageable set of 

measurements are handled at the second level (conventional state estimator). In that 

application, each area reduces to a single electrical bus and no impedances are 

handled by local state estimator. Thus, the first level state estimator is linear. On the 

other hand, the second level state estimator is nonlinear. Application of a two-level 

state estimator which locally processes the raw measurements and uses only a 

manageable amount of data at the second level not only improves the reliability of 

state estimation of the whole system but also reduces the communication bandwidth. 

A hierarchical state estimation based on state and topology co-estimation at 

substation level are presented in [11]. This paper introduces a hierarchical 

decentralized state estimation architecture in which lower level estimation is 

performed at each substation. At this local level, both state variables and substation 

topology are estimated together, and this processed data are delivered to regional 

control centers. In the higher level, utilization of locally processed data and tie line 

power flows between substations are carried out. As a result of higher level state 

estimation, system wide state estimates can be obtained. This proposed algorithm, 

reduces the deployment of huge amount of data from substations to control centers 

and like other substation level state estimators improves the system reliability.  

A method of supervisory monitoring of substations which uses state estimation is 

presented in [12]. In that paper, a state estimation method is applied to double bus 

double breaker distribution substations which are common in the Korean power 

system. The supervisory monitoring consists of topology processing and normal state 

estimation. In topology processing process, errors in the switching elements are 
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detected, after that connectivity matrix is constructed with that error free topology 

information. In state estimation part, conventional WLS algorithm is applied and bad 

data are detected by using Chi squares test. Results of bad data detection-

identification processes are used to detect the degradation or malfunction of various 

analog sensors. Although there are enormous developments in sensors technology 

and measurement devices, it is still hard to detect anomalies on those devices 

automatically in the supervisory monitoring system. Thus, unlike other common 

state estimation applications, the object of this application is not mainly state 

estimation, but the supervisory detection of malfunction or degradation of the 

electrical devices. 

The need for topology error processing was first proposed in 1980 [21]. In this paper 

Lugtu et al suggested the approach of using state estimation results for topology error 

detection. Since this time numerous methods have been proposed for detection and 

identification topological errors in power systems. Tree search algorithm [22, 23], 

sequential search method through the network graph [24], Bayesian-based 

hypothesis testing [25] etc. constitute some of the implemented topology error 

processing methods. Moreover, GSE and LAV based topology error processors are 

amongst the commonly used methods. Both of these methods explicitly model 

switching elements and bus configurations in the model used by state estimation 

process [26].  

In addition to above topology error processing methods, results of normalized 

residual test (rN) for bad data in state estimation is used for the detection of topology 

errors [13]. State estimation algorithm implements the electrical model provided by 

the topology processor. Some of the state estimation algorithms, like conventional 

WLS algorithms, accept topology of the examined system is correct and estimation 

process is carried out with this assumption. Thus, errors in switching status of 

breakers not only results in errors in the output of topology processor but also errors 

in state estimation outputs. In this paper, use of normalized residuals, which are 

results of the state estimation process, utilized for the detection of topology errors. 

The rN (normalized residual) test for bad data processing is used for the detection of 
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topology errors from the measurement data of the breaker statuses [13]. Moreover, 

the sensitivity matrix relating the normalized residuals and branch flows is derived 

for the identification of topology errors. 

A method which carries out state estimation of voltage and phase-shift transformer 

tap settings are presented in [14]. As stated in that paper, state estimation algorithms 

have treated each transformer tap setting (voltage transformer turns ratio or phase-

shift transformer angle) as a fixed parameter of the network, even though the real 

time measurement may be in error or non-existent. This approach can lead to errors 

in state estimation applications. In that paper, a transformer tap estimation technique 

is presented which takes turn ratios and phase angle values as measurements and 

each transformer tap setting as an independent system state variable. 

1.3 Scope and Contribution of the Thesis 

The main objective of this thesis is developing a substation level state estimator and 

a topology error processor which work together. Execution of state estimation 

process and topology error process simultaneously at the substation level constitutes 

the main contribution of this thesis to the literature. There are substation level state 

estimators already implemented in the literature, however those implementations do 

not perform topology error processing tasks at the same time, they only perform state 

estimation process. Topology error processing task is handled separately on 

applications in the literature. Moreover, most of the implemented substation level 

state estimators are part of two-stage or hierarchical state estimators. On those 

applications at first stage, the system states are estimated with respect to the reference 

angles of each substation due to lack of time synchronization between measurements. 

Later, at second stage the system states are calculated with respect to single reference 

angle. On the other hand, there are state estimators in the literature that perform state 

estimation solely at the substation level. Time-synchronized PMU devices and PMU 

measurements make independent state estimation solely at substation level possible. 
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The substation level state estimator proposed in this thesis also utilizes the PMU 

measurements. 

In order for better understanding of contribution of this thesis to the literature, 

differences between state of art PMU measurements and conventional SCADA 

measurements have to be stated clearly. Before the advent of PMU measurements, 

only SCADA measurements were available as measurement sets for state estimators. 

PMU based measurement technology is a younger technology compared to SCADA 

based measurement technology. PMU device technology exists in the electricity 

market since 1988, however the history of SCADA systems is much older. Although, 

PMU devices are used in electrical grids more than three decades, their 

implementation rates were low due to their expensive cost. However, with the 

developing technology prices of PMUs decrease. Moreover, as power systems are 

becoming more complex, the need for PMU devices increases and as a result 

deployment rates of PMU devices are growing as well. PMU devices provide high-

precision and high-resolution measurements compared to SCADA measurements. In 

other words, accuracy and refresh rate of PMU measurements are higher than 

SCADA measurements. Unlike SCADA measurements, PMU devices provide time 

synchronized phasor measurements.  Synchrophasors measurements represent both 

the magnitude and phase angle of voltage and current measurements which are time 

synchronized. In addition to supplying measurements having better accuracy and 

increased redundancy, providing time synchronized phasor measurements is the 

most important feature of PMU devices. Before the advent of PMUs, due to lack of 

time synchronization between measurements solely substation level state estimation 

was not possible. But with the synchrophasor measurement supply capability of 

PMUs, independent substation level state estimation has become possible.  

In Turkish Electric Systems, deployment rate of PMUs are increasing for improving 

the monitoring, control and protection capabilities of the national electric grid. By 

implementation of a sophisticated state estimator, situational awareness of the grid 

can be improved too. In this thesis, a Weighted Least Squares based substation level 

state estimation algorithm is proposed by the utilization of PMU measurements. In 



 

 

16 

addition to proposition of substation level state estimation process, proposed 

algorithm can also perform topology error process task. Topology error processor 

can detect topological inconsistencies and errors by utilization of statuses of 

switching devices. With the simultaneous implementation of substation level state 

estimation process and topology error process which is the main contribution of this 

thesis to the literature, situational awareness and monitoring capabilities of Turkish 

national grid can be enhanced greatly. 

1.4 Thesis Outline 

This thesis consists of five chapters. In the first chapter, i.e. introduction chapter, 

power system state estimation problem is presented and the necessity of a substation 

level state estimator and topology error processor is justified. Moreover, literature 

review of substation level state estimation and topology error processing, and the 

scope of this thesis are explained in detail as well. 

Chapter 2 provides background information about power substations, power system 

state estimation, bad data processing and topology error processing subjects. 

Importance of power substations for power systems, substation components and 

configurations are explained. Moreover, substation layouts in power systems and 

implemented substation layouts in Turkish Electric System are given. Local 

measurement redundancy at substations and importance of utilization of PMUs, 

which give time synchronized phasor measurements, in terms of substation level 

state estimation are presented too. In order to provide background for readers, power 

systems state estimation and WLS method which is the applied state estimation 

solution method in this thesis is represented in this chapter. In addition, mathematical 

fundamentals of WLS method, important functions of that method such as the 

measurement function and the measurement Jacobian are stated. Then, mathematical 

fundamentals of bad data detection and identification tasks in WLS state estimation 

method is presented. Finally, the methodology of the applied topology error 

processor is explained.  
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In Chapter 3, proposed substation level state estimation and topology error 

processing method is explained in detail. Substation measurements and system states 

which are fundamental inputs and outputs of the substation level state estimation 

algorithm are stated. Then, building blocks of the proposed substation level WLS 

state estimation algorithm and their formulations are presented. Topology processor, 

observability analysis function, state estimation solver, bad data processing function 

and topology error processing function constitute the building blocks of the proposed 

substation level state estimation method given in this thesis. 

In Chapter 4, performed simulations and their results are presented. Substation level 

state estimation and topology error processing method is applied for various 

substations for different test cases. The proposed substation level state estimation 

and topology processing method is numerically validated with the generated test 

cases by examining the performance metrics and simulation graphs.  

Chapter 5 summarizes the main contributions of proposed substation level state 

estimation and topology error processing method to the literature and to the 

monitoring capabilities of Turkish Electric System.  
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CHAPTER 2  

2 BACKGROUND REVIEW 

In the first chapter, power system state estimation concept and the importance of state 

estimators and topology error processors with regard to power system operation is 

explained. Then, literature review about substation level state estimators and topology 

error processors are represented. Later, the scope and the contribution of the thesis is 

stated. Finally, thesis outline is given. This chapter introduces the technical background 

of the proposed algorithm, which will lead the reader to understand the presented study. 

Firstly, the importance of power substations for power systems, power substation 

components and configurations are explained. Then, substation layouts in power 

systems and implemented substation layouts in Turkish Electric System are given. In 

addition, local measurement redundancy at substations and importance of utilization 

of PMUs, which give time synchronized phasor measurements, in terms of substation 

level state estimation are presented. Secondly, mathematical basis and solution 

procedure of WLS algorithm, which is the applied state estimation solution 

methodology in this thesis, are presented. In third and fourth parts of the chapter, 

fundamentals of the bad data detection-identification function in WLS and topology 

error processing function in WLS are expressed respectively. 

2.1 Power Substations 

Substations are the points in the power network where transmission lines and 

distribution feeders are connected together through circuit breakers or switches via 

busbars and transformers [15]. In other words, they are junction points in a distribution 

or transmission system. Substations in power network are used to [16]: 
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• Switch circuit to control power flow 

• Switch circuit for maintenance purposes 

• Isolate faulty sections of the system 

• Split the system to maintain fault levels 

• Provide system flexibility 

In addition to the above items, substations are also centers where the measurement 

data are collected and some control actions are taken. In central state estimator 

concept, collected data at substations are directly sent to central control centers. 

Advancements in substation technology, advents of IEDs and PMUs, and also 

introduction of advanced communication protocols and standards make state 

estimation solely at substation level possible. As a result, data obtained at the 

substation are processed within the substation, and then filtered data are sent to 

regional control centers or central control centers. 

2.1.1 Substation Components 

Substations are connections points in the electrical grid in which generation, 

transmission and distribution systems are connected.  Moreover, since substations 

have many functions in power networks, they have switching, control and protection 

equipment. In Figure 2.1, elements within a substation are shown in detail. 

 

Figure 2.1. Elements of a Power Substation [17] 
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A: Primary power lines' side B: Secondary power lines' side 

1. Primary power lines 2. Ground wire 3. Overhead lines 4. Voltage transformer 

5. Disconnect switch 6. Circuit breaker 7. Current transformer 8. Lightning arrester 

9. Main transformer 10. Control building 11. Security fence 12. Secondary power 

lines 

Feeders or circuits at substations are connected to busbars through circuit breakers and 

disconnecting switches. Substations are the junction points in electrical power 

networks, similarly busbars are the junction points at substations. Power or current at 

a substation is carried from circuit to circuit through busbars since they have many 

connections with the circuits at a substation.  

Circuit breakers are also one of the most important substation elements. They have 

three main functions at power substations which are related to protection, maintenance 

and control of power flow issues. Circuit breakers can interrupt current under short 

circuit conditions. Thus, if a fault occurs at the substation, the circuit breaker on the 

faulty path opens automatically and isolate faults from the rest of the power grid. If 

the maintenance will be carried out in a feeder, circuit breakers can be opened with 

disconnecting switches and isolate this feeder from the rest of the power network at 

the substation. Disconnecting switches are also switching elements at substations. 

Unlike CBs, disconnecting switches cannot interrupt current under short circuit 

conditions but they provide visual isolation for technical personnel at a substation for 

maintenance issues and faulty operations. Furthermore, by changing switching 

configuration of CBs, power flow in a substation can be controlled. Substation 

connectivity in other words substation topology are determined with respect to circuit 

breaker statuses which makes circuit breakers quite crucial in substation level state 

estimation. 

Power transformers connect different voltage level equipment and feeders at a 

substation. Furthermore, in generation systems, transformers connect generators to 

transmission systems. In state estimation aspects, they bring nonlinearity to substation 
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level state estimation procedure. Transformers taps are used for voltage control in 

other words reactive power control in power systems. Just like circuit breaker statuses, 

transformer tap positon data can be erroneous and this problem can be overcome by 

taking transformer tap positions as system state variables in substation level state 

estimation. 

Instrument transformers, current and voltage transformers, are also quite important 

components of power substations. They measure currents and voltages at the 

substation and these measured values are used at substations for control actions and 

are also sent to control centers. In addition to instrument transformers, PMUs are also 

used for measurement purposes. Since these measurement devices provide 

measurement data to the state estimation function, they will be explained in detail in 

following sections. 

2.1.2 Substation Layouts 

There are several configurations in which switching equipment and busbars can be 

connected at substations. The selection of configurations depends on the following 

[16]: 

• The degree of flexibility required. 

• Importance of loads. 

• Economic considerations, including availability and cost. 

• Provision of extension. 

• Protective zones. 

• Maintenance and safety of personnel. 

In this section, some substation configurations, in other words substation layouts will 

be briefly explained. Layouts will be compared in terms of the reliability, flexibility, 

complexity, maintenance and cost aspects. 
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2.1.2.1 Single Busbar Configuration 

This is the simplest busbar layout in power networks. Feeders or circuits in a 

substation are connected to a single busbar through a single circuit breaker in this 

configuration  as shown in Figure 2.2. In addition to being the most economical layout, 

it is also the least secure and the least reliable configuration as well. Any faults on the 

busbar will leave all feeders and connected networks to that feeders powerless. 

Moreover, total shutdown is required for any maintenance situation. Because of these 

reasons, this configuration type is not common in power networks.  

 

Figure 2.2. Single Busbar Configuration 

2.1.2.2 Double Busbar Single Circuit Breaker Configuration 

In this layout, each circuits are connected to two busbars through one circuit breaker. 

As seen in Figure 2.3, upper busbar is called main busbar and the below one is called 

reserve or transfer busbar. Bus coupler or coupling feeder connects main and transfer 

buses. Since there is one more busbar in the layout, it is more expensive than single 

busbar configuration. Moreover, addition of transfer bus also makes this layout more 

reliable in possible faulty operations and in any possible maintenance situations. It is 

one of the most commonly used layouts in power networks. 
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Figure 2.3. Double Busbar Single Circuit Breaker Configuration 

2.1.2.3 One and a Half Breaker Configuration 

In this layout, two circuits are connected to two busbars through three circuit breakers, 

in other words each circuit has one and a half circuit breakers as shown in Figure 2.4. 

This layout is more expensive and reliable than single busbar and double busbar one 

circuit breaker configurations. Thus, it is used in more important high voltage 

substations. 

 

Figure 2.4. One and Half Breaker Configuration 
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2.1.2.4 Double Busbar Double Circuit Breaker Configuration 

In this layout, each circuit has two circuit breakers and each circuit is connected to 

two busbars through these two circuit breakers as shown in Figure 2.5. This 

configuration is again more expensive and more reliable than above layouts. Thus, it 

is used for substantially important substations. Maintenance issues and faulty 

conditions are easily handled in this configuration. This configuration is also one of 

the most popular substation layouts in power networks. 

 

Figure 2.5. Double Busbar Double Breaker Configuration 

2.1.2.5 Ring Busbar Configuration 

Ring busbar configuration provides more operational flexibility and increased 

security. As seen in Figure 2.6, the power can flow through many routes which make 

this layout more flexible and secure for continuity of supply aspect. If a fault occurs, 

the faulty section can be separated from the rest of the network. 
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Figure 2.6. Ring Busbar Configuration 

2.1.2.6 Interconnected Mesh Corners Configuration 

Interconnected mesh corners layout provides maximum security against busbar faults. 

The structure of interconnected mesh corners layout is shown in Figure 2.7. 

 

Figure 2.7. Mesh Configuration 
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2.1.3 Local Measurement Redundancy 

Conventional state estimation is carried out based on analog measurements, digital 

measurements (switch statuses) and system connectivity data. In other words, those 

data are main inputs of state estimation. Analog measurements are captured remotely 

at substations and collected periodically by SCADA systems via Remote Terminal 

Units (RTUs). On the other hand, measurements that are transmitted to the central 

state estimator do not contain all the data that exist at power substations [4]. Moreover, 

the advent of IEDs, PMUs, new generation RTUs and smart grid concept give rise to 

huge amount of data at power substations. This huge amount of data and advanced 

communication protocols facilitate the implementation of substation state estimation. 

In short, the increasing local redundancy is the main motivation behind substation 

level state estimation applications. 

 

Figure 2.8. One-line diagram of a typical substation layout with measurement device allocation [4] 
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In modern substation architectures as seen in Figure 2.8, number of measurement 

points is numerous and the achieved redundancy level is also quite obvious. Current 

and voltage values at a substation can be measured by multiple devices. For example, 

current values on a feeder can be measured by both measurement current transformer 

and protective current transformer. In addition to measurements obtained from 

instrument transformers, IEDs and PMUs also provide measurements at the 

substation. PMU measurements include both magnitude and angle values of voltage 

and current measurements.  

If all the redundant data at substations can be successfully integrated to the substation 

state estimator, bad data in analog measurements and erroneous circuit breaker 

statuses can easily be detected and identified. Moreover, malfunction in instrument 

transformers, circuit breakers, etc. can be detected as well.  All those tasks are the 

main motivation behind substation level state estimation applications. 

In addition to increased redundancy, the huge amount of data available at power 

substations cause several problems in the implementation of substation data 

integration. Those problems are listed below [4]: 

• Great variety of devices for measurement and data acquisition tasks. Different 

measurement devices give different type of outputs which can be RMS values, peak 

values and phasors. 

• Synchronization problems due to differences in frequency of data arrivals. 

• Correlation between measurements makes state estimation and bad data 

identification difficult.  

There are various solution methods for the above problems in power system literature. 

Output differences of measurement devices can be handled locally at substation level 

by appropriate pre-processing algorithms. The synchronization problem especially 

exists between SCADA and PMU measurements. PMUs measurements are updated 

30–60 times a second, SCADA measurements are updated once in every few seconds.  

Hybrid state estimators, which employs pseudo-injection measurements during this 
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unobservable duration exist in literature. Since those challenges are beyond the scope 

of this thesis, further details have been intentionally left out to the readers. 

2.1.4 Substation Layouts in Turkish Electric System 

In the above sections, possible substation layouts in power systems are shown. They 

are compared with respect to their reliability, flexibility, complexity, maintenance and 

cost aspects. Not all the substation layouts in practice exist in Turkey. Single busbar, 

double busbar single CB and double busbar double breaker configurations are the most 

implemented substation configurations in Turkey. Especially, double busbar single 

CB and double busbar double breaker configurations and their derivatives are the most 

applied ones in Turkish electrical power networks. In Turkish Electric System, 

substation layouts can be grouped more specifically unlike the above classification. 

There are four main substation layouts in operation in Turkish electrical power 

networks. Although more detailed grouping is possible based on the number of buses, 

number of circuit breakers and number of earthing switches, these four substation 

configurations are sufficient for representing the substation structures in Turkish 

Electric System. 

1. Single Busbar Configuration 

2. A Main Bus and A Transfer Bus Configuration 

3. Two Main Buses Configuration 

4. Two Main Buses and A Transfer Bus Configuration 

The examples of the implementations of those layouts are shown below. 
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Figure 2.9. A Single Busbar Configuration Example 

 

 

Figure 2.10. A Main Bus and a Transfer Bus Configuration Example 
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Figure 2.11. A Two Main Buses Configuration Example 

 

 

Figure 2.12. A Two Main Buses and a Transfer Bus Configuration Example 
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2.2 WLS Based State Estimation Algorithm 

There are several state estimation methods in the literature such as Weighted Least 

Squares (WLS) based estimators, LAV (Least Absolute Value) based estimators and 

Kalman Filter based estimators, etc. In this thesis, the scope of state estimation is 

limited to the substation level state estimation. Detailed modelling of substation 

equipment and topology increases the computational burden and this task is more 

complex than the transmission level state estimation. After a careful survey, it is found 

that WLS method is the most suitable state estimation method for power substations. 

WLS method is the most common state estimation solution method in the literature. It 

is simple to implement and its computational burden is low. Thus, it is a fast method. 

Moreover, WLS gives unbiased estimates in the presence of Gaussian errors. 

Power system measurements can be represented in terms of system states by 

measurement function, h with certain measurement residual. Weighted Least Squares 

method is the optimization method which estimates the system states by minimizing 

the weighted sum of squares of the measurement residuals. This procedure can be 

expressed as the solution of the below optimization problem for the state vector x: 

            
minimize ∑𝑊𝑖𝑖

𝑚

𝑖=1

𝑟𝑖
2 

(2.1)              

  

            subject to 𝑧𝑖 = ℎ𝑖(𝑥) + 𝑟𝑖,    𝑖 = 1,… ,𝑚 (2.2)             

where:  

𝑧𝑖  : ith measurement 

𝑥𝑇  : [𝑥1, 𝑥2, … , 𝑥𝑛] is the system state vector 

ℎ(𝑥) is the nonlinear measurement function which relates measurement i to state 

vector 𝑥 

𝑟𝑖: residual value of measurement i 
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𝑊𝑖𝑖: ith diagonal entry of the weighting matrix 

𝑚 : number of measurements 

In the following sections, mathematical basis and implemented assumptions are given 

for constructing a WLS based state estimator. 

2.2.1 Mathematical Basis of WLS Estimators 

The relation between the measurement vector, the system state vector and the 

measurement error vector can be written as shown below. 

            

𝑧 =  

[
 
 
 
 
𝑧1

𝑧2

.

.
𝑧𝑚]

 
 
 
 

 = 

[
 
 
 
 
ℎ1(𝑥1, 𝑥2, … , 𝑥𝑛)
ℎ2(𝑥1, 𝑥2, … , 𝑥𝑛)

.

.
ℎ𝑚(𝑥1, 𝑥2, … , 𝑥𝑛)]

 
 
 
 

 + 

[
 
 
 
 
𝑒1

𝑒2

.

.
𝑒𝑚]

 
 
 
 

 = ℎ(𝑥) + 𝑒  

 

(2.3)              

where 𝑒𝑇  : [𝑒1, 𝑒2, … , 𝑒𝑛] is the measurement error vector 

Expected value of measurement errors is assumed to be zero. Moreover, measurement 

errors are assumed to be independent. These assumptions are shown mathematically 

as below. 

E(𝑒𝑖) = 0    &    E[𝑒𝑖𝑒𝑗] = 0    𝑖 = 1, 2…  𝑚     

Thus, Cov(e) = E[𝑒𝑒𝑇] = R = {𝜎1
2,𝜎2

2, … , 𝜎𝑚
2 } 

where:  

R: measurement error covariance matrix 

The standard deviation σi of each measurement i reflects the expected accuracy of the 

corresponding measurement. 

Weighted Least Squares based estimators minimize the objective function below: 
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𝐽(𝑥) =  ∑

(𝑧𝑖 − ℎ𝑖(𝑥))2

𝑅𝑖𝑖
⁄

𝑚

𝑖=1

   
(2.4)              

            𝐽(𝑥) =  [𝑧 − ℎ(𝑥)]𝑇[𝑅]−1[𝑧 − ℎ(𝑥)]   (2.5)              

The derivative of the objective function, which is denoted by 𝑔(𝑥), should be set to 

zero since the first-order optimality conditions have to be satisfied at the minimum. 

            
 𝑔(𝑥) =  

𝜕𝐽(𝑥)

𝜕𝑥
=  −𝐻𝑇𝑅−1[𝑧 − ℎ(𝑥)] = 0  

(2.6)              

 

  where 𝐻(𝑥) = [
𝜕ℎ(𝑥)

𝜕𝑥
]     

The matrix, H(x) is the measurement Jacobian matrix. As seen in the above equation, 

𝐻(𝑥) is calculated based on the derivatives of measurement function with respect to 

system states.  

Firstly, the non-linear function 𝑔(𝑥) is expanded to its Taylor series around the state 

vector xk. 

                  𝑔(𝑥) = 𝑔(𝑥𝑘) + 𝐺(𝑥𝑘) (𝑥 − 𝑥𝑘) + ⋯ = 0                   

Then, neglecting the higher order terms in the above series leads to Gauss-Newton 

method which is an iterative solution method. 

                  𝑔(𝑥) = 𝑔(𝑥𝑘) + 𝐺(𝑥𝑘) (𝑥 − 𝑥𝑘)  = 0 

                  𝑥𝑘+1 = 𝑥𝑘 − 𝐺(𝑥𝑘)−1 𝑔(𝑥𝑘) 

                  where 𝑘: 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥                   
 

                  

                  𝑥𝑘 ∶ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑎𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑘                   
 

                  

 

            
𝐺(𝑥𝑘) =

𝜕𝑔(𝑥𝑘)

𝜕𝑥
= 𝐻𝑇 (𝑥𝑘). 𝑅−1. 𝐻(𝑥𝑘)  

(2.7)              

 

   𝑔(𝑥𝑘) = −𝐻𝑇 (𝑥𝑘). 𝑅−1. (𝑧 − (𝑥𝑘))     
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The gain matrix, 𝐺(𝑥𝑘), is a sparse and symmetric matrix. It is generally a non-

negative definite matrix, and positive definite if the system is fully observable. 

Although the gain matrix is a sparse matrix, its inverse is generally a full matrix. Thus, 

this matrix is generally not inverted. Instead of inversion process, triangular 

factorization method is used at each iteration k: 

            𝐺(𝑥𝑘)Δ𝑥𝑘+1 = 𝐻𝑇 (𝑥𝑘). 𝑅−1. [𝑧 − ℎ(𝑥𝑘)]    (2.8)              

where Δ𝑥𝑘+1 = 𝑥𝑘+1 − 𝑥𝑘. This value represents the change in the state vector 

between consecutive iterations. The set of equations given by Equation (2.8) is 

referred as the Normal Equations. 

2.2.2 WLS State Estimation Algorithm 

WLS state estimation method is an iterative solution method and it utilizes Normal 

Equations shown in Equation (2.8). The solution procedure starts with an initial guess 

of the state vector x0. In this initial guess, bus voltages are assumed to be 1.0 per unit 

and the bus voltage angles are in phase with each other.  

The iterative solution procedure of the WLS state estimation method can be outlined 

as below [1]: 

1. Initiate iterations with the iteration number k = 0. 

2. Initialize the state vector xk (flat start). 

3. Write the measurements in terms of system states in h(x). 

4. Calculate the measurement Jacobian, H(x) by taking derivatives of each 

measurements with respect to each system states. 

5. Calculate the gain matrix, G(xk).  

6. Calculate the right hand side tk = H(xk)R-1(z - h(xk)). 

7. Solve Normal Equation as given in Equation (2.8) for Δxk. 
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8. Test for convergence, max {Δxk} ≤ ε? 

9. If no, update xk+1 = xk + Δxk; k = k+1 and go to step 3. Else, stop. 

Construction of the measurement function h(xk), the measurement Jacobian matrix 

H(xk) and gain matrix G(xk) will be presented in the explanation section of the Chapter 

3 which is about the proposed WLS based substation level state estimation and 

topology error processing application. 

2.3 Bad Data Detection and Identification in WLS 

Bad data detection and identification functions are one of the most important tasks of 

state estimation. Measurements can be erroneous due to different reasons such as 

limited accuracies of measurement devices, telemetry problems, incorrect wiring of 

measurement devices, malfunction in devices, etc. Since measurements are main 

inputs of state estimation, erroneous measurements can lead to large deviations in the 

estimated system states. If the measurement set is redundant enough, bad data can be 

detected, and if possible identified and eliminated.  

Some bad data in measurement sets can be quite obvious. Negative voltage and current 

measurements due to incorrect wiring, measurements that are quite smaller or larger 

than expected values, large differences between incoming and leaving measurements 

at a connection node are some examples of obvious bad data. Those bad data can be 

detected and eliminated by pre-processing techniques, in other words, by simple 

consistency or plausibility checks. On the other hand, not all bad data types are simple 

to handle. Thus, in addition to simple plausibility checks, more advanced bad data 

detection and identification functions are accompanied to state estimators. 

The structure of bad data detection and identification functions depend on which state 

estimation method is applied. Since proposed substation level state estimation and 

topology error processing method is conducted based on WLS based algorithm, bad 

data detection and identification procedures for WLS method are explained in this 

section. 
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Bad data detection and identification functions in the WLS estimation methods are 

performed after the state estimation process by processing the measurement residuals. 

Bad data detection and identification functions are fundamentally based on the 

properties of measurement residuals.  

The classification of bad data depends on the type, the location and the number of 

measurements that are in error. There are two main types of bad data which are single 

bad data and multiple bad data [1].  

1. Single bad data: Only one measurement has gross error in a measurement set. 

2. Multiple bad data: More than one measurement has gross error in a 

measurement set. 

Detection of multiple bad data is more difficult compared to detection of single bad 

data due to appearance of errors in more than one measurement. Depending on 

whether the residuals of erroneous measurements are correlated and conforming, 

multiple bad data can be classified into three types. 

1. Multiple non-interacting bad data: Measurement residuals of multiple bad data 

are weakly correlated. 

2. Multiple interacting but non-conforming bad data: Measurement residuals of 

multiple bad data are strongly correlated and their errors are not consistent with each 

other. 

3. Multiple interacting and conforming bad data: Measurement residuals of 

multiple bad data are strongly correlated and their errors consistent with each other. 

The interaction between measurements and analysis of errors can be performed based 

on sensitivities of measurement residuals to measurement errors. Thus, classification 

of measurements and also properties of measurement residuals for WLS state 

estimation method are reviewed below. 
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2.3.1 Classification of Measurements 

Power systems include different kinds of measurements. These measurements will 

show different properties and affect the outcome of the state estimation accordingly, 

depending upon not only their values but also their location. Thus, measurements are 

categorized as below [18]: 

Critical measurement: A measurement whose elimination from measurement sets 

makes system unobservable is called critical measurement. The measurement residual 

of a critical measurement is always zero. Moreover, the column of the residual 

covariance matrix Ω, corresponding to a critical measurement is also zero.  

Redundant measurement: A measurement which is not critical is called as redundant 

measurement. Only redundant measurements may have nonzero measurement 

residuals. 

Critical pair: Two redundant measurement whose simultaneous removal from the 

measurement set make the system unobservable. 

Critical k-tuple: It contains k redundant measurements, where removal of all of them 

make the system unobservable. None of these k measurements belong to a critical 

tuple of lower order. Those k columns of the residual covariance matrix Ω, 

corresponding to the elements of this critical k-tuple are linearly dependent. 

2.3.2 Bad Data Detection and Identification 

Bad data detection refers to determination of whether or not measurement set contains 

any bad data. Identification refers to the determination of which specific 

measurements contains bad data. Bad data detection and identification capabilities 

depend on the configuration of the overall measurement set in a given power system. 
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Bad data can be detected if removal of the corresponding measurement does not make 

the system unobservable.  In other words, bad data appearing in critical measurements 

cannot be detected. 

A single measurement containing bad data can be detected and identified if and only 

if: 

 it is not critical 

 it does not belong to critical pair or critical k-tuple. 

2.3.3 Properties of Measurement Residuals 

Below equations will be performed based on linearized measurement equations: 

            ∆𝑧 = 𝐻𝑥 + 𝑒    (2.9)              

where E(e) = 0 and Cov(e) = R, which is a diagonal matrix based on the assumption 

that measurement errors are not correlated. On the other hand, measurement residuals 

can be correlated even if the measurement errors are independent. 

The estimated state vector is given by the below formula: 

            ∆�̂� = (𝐻𝑇𝑅−1𝐻)−1𝐻𝑇𝑅−1∆𝑧     (2.10)              

= 𝐺−1𝐻𝑇𝑅−1∆𝑧                  

and the estimated measurement vector ∆𝑧: 

            ∆�̂� = 𝐻�̂� = 𝐾∆𝑧    (2.11)              

where K = 𝐻𝐺−1𝐻𝑇𝑅−1 and it is called  hat matrix for putting a hat on ∆𝑧. 

A rough idea about the measurement redundancy of a meter can be deduced by using 

K matrix. If a diagonal entry in a row is larger than off diagonal elements in the same 

row, the corresponding measurement estimate to that raw is mainly estimated by that 

measurement value. In other words, local redundancy is poor for that measurement 
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point. Measurement residuals and residual sensitivity matrix are found by the help of 

K matrix; therefore, properties of K matrix are shown below. 

            𝐾.𝐾. 𝐾 …𝐾 = 𝐾       (2.12)              

            𝐾.𝐻 = 𝐻                     (2.13)              

            (𝐼 − 𝐾)𝐻 = 0              (2.14)              

Now, an expression for measurement residuals can be found. 

𝑟 = ∆𝑧 − ∆�̂� 

       = (𝐼 − 𝐾)∆𝑧 

                     = (𝐼 − 𝐾)(𝐻∆𝑥 + 𝑒) 

   = (𝐼 − 𝐾)𝑒 

            = 𝑆𝑒        (2.15)              

S matrix is called residual sensitivity matrix and represents sensitivity of measurement 

residuals to measurement errors. Measurement residual covariance matrix are 

calculated using S. Thus, properties of S matrix are given below. 

 It is not a symmetric matrix unless the covariance of errors or standard 

deviation of measurements are same, i.e. R = kI, where k is any scalar. 

 𝑆. 𝑆. 𝑆 … 𝑆 = 𝑆 

 𝑆𝑅𝑆𝑇 = 𝑆𝑅 

In WLS estimation, measurement errors are assumed distributed in Gaussian 

distribution as given below: 

ei  ~ N(0, Rii) for all i 

Using the relation between measurement residuals and measurement errors, the mean, 

the covariance, and thus the probability distribution of measurement residuals can be 

found as below: 

            𝐸(𝑟) = 𝐸(𝑆𝑒) = 𝑆. 𝐸(𝑒) = 0 (2.16)              
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 𝐶𝑜𝑣(𝑟) = Ω = 𝐸(𝑟𝑟𝑇)                            

Ω = 𝑆𝐸(𝑒𝑒𝑇)𝑆𝑇                                       

Ω = 𝑆𝑅𝑆𝑇    𝑤ℎ𝑒𝑟𝑒 (𝑅 = 𝐸(𝑒𝑒𝑇))      

             Ω = 𝑆𝑅                                                      (2.17) 

              

We get mean and covariance of measurement residuals formulas, hence we can obtain 

the probability distribution of measurement residuals as shown below.  

r ~ N(0, Ω )  

In this section, formulas of measurement residual, sensitivity and covariance matrices 

of measurement residuals are found. Those formulas and matrices are quite important 

for detection and identification of bad data in measurement sets. 

2.3.4 Bad Data Detection 

The first step of bad data detection and identification function is the detection of bad 

data in measurement sets. Firstly, bad data are detected, then it is identified and 

eliminated or corrected for obtaining unbiased system states. In this part, bad data 

detection methods and their mathematical background are reviewed. Chi-squares 

distribution and normalized residuals are the two mathematical means for detection of 

bad data. 

2.3.4.1 Chi-squares x2 Distribution 

Consider a set of N independent random variables each is distributed in Standard 

Normal Distribution:  

     Xi ~ N(0,1) 

Now, a new random variable Y can be defined by: 
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       𝑌 =  ∑𝑋𝑖
2

𝑁

𝑖=1

 

have a x2  distribution with N degrees of freedom, i.e. 

Y ~ 𝑋𝑁
2  

The degrees of freedom represent the number of linearly independent variables in the 

sum of squares. 

The function f(x), represented in terms of measurement errors. 

            
𝑓(𝑥) = ∑𝑅𝑖𝑖

−1𝑒𝑖
2

𝑚

𝑖=1

= ∑(
𝑒𝑖

√𝑅𝑖𝑖

)2

𝑚

𝑖=1

= ∑(𝑒𝑖
𝑁)2

𝑚

𝑖=1

   
(2.18) 

              

 

ei is the ith measurement error, Rii is variance of the ith measurement error and m is 

the number of measurements. If just like Xi, ei are normally distributed random 

variables with zero mean and Rii variance, 𝑒𝑖
𝑁will have a Standard Normal Distribution 

as below. 

𝑒𝑖
𝑁 ~ 𝑁(0,1) 

Then, just like Y f(x) will have a x2 distribution with at most (m-n) degrees of freedom. 

Since at least n measurements have to satisfy the power balance equations in a power 

system, at most (m-n) errors will be linearly independent. Thus, the largest degree of 

freedom can be (m-n) where m is the number of measurements and n is the number of 

system states. 

2.3.4.2 Use of x2 Distribution for Bad Data Detection 

A x2 probability density function (p.d.f.) example is shown in Figure 2.13. The area 

under the curve represents the probability of finding random variable X in a specified 

region by below formula: 
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𝑃𝑟{𝑋 ≥ 𝑥𝑡} = ∫ 𝑥2

∞

𝑥𝑡

(𝑢). 𝑑𝑢   
(2.19) 

              

 

 

Figure 2.13. x2 Probability Density Function 

This formula represents the probability of X being larger than a specified xt threshold. 

As xt increases, the area between xt and curve in other words probability of X being 

larger than threshold xt decreases. If a probability of error is chosen as 0.05, xt 

threshold can be set such that: 

𝑃𝑟{𝑋 ≥ 𝑥𝑡} = 0.05 

For 0.05 probability error, xt  is found as 25 which is shown in the Figure 2.13. In state 

estimation context, xt represents the largest acceptable value for X that does not have 

any bad data. If X value is greater than, xt with 0.95 probability, X value does not have 

a x2
distribution in other words X value can be erroneous. 

In this thesis, Chi-squares x2 values for different degrees of freedom are found by 

Matlab’s statistical toolbox. 
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2.3.4.3 x2 Test for Detecting Bad Data in WLS State Estimation 

The WLS state estimation objective function J(x) can be approximated to f(x) function 

given above. After that bad data detection process can be performed by Chi squares 

test. 

Chi squares based bad data detection process is given below: 

1. Solve the WLS state estimation problem and calculate 𝐽(�̂�). 

𝐽(�̂�) =
(𝑧𝑖 − ℎ𝑖(�̂�))2

𝜎𝑖
2  

where: 

 �̂� : estimated state vector. 

 ℎ𝑖(�̂�) : estimated measurement i. 

𝑧𝑖  : measured value of measurement i. 

𝜎𝑖
2: Rii : variance of the error in measurement i. 

𝑚 : number of measurements 

2. Calculate the detection confidence probability p (e.g. 95%) for (m-n) degrees of 

freedom which is represented by x2
(m-n),p. 

p = Pr(𝐽(�̂�) ≤ 𝑥(𝑚−𝑛),𝑝
2 ) 

3. If 𝐽(�̂�) ≥ x2
(m-n),p, the measurement set can involve bad data. Else, measurement 

set does not involve bad data. 

2.3.4.4 Use of Normalized Residuals for Bad Data Detection   

x2 test is not quite accurate due to the approximation of errors in equation 2.10. In 

some cases, it could not detect existence of bad data. A more accurate method of bad 
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data detection function utilizes the normalized residuals. Similar to the measurement 

error, normalized residual value of a measurement can be found by dividing the 

absolute value of residual to corresponding diagonal entry of residual covariance 

matrix: 

            
𝑟𝑖

𝑁 =
|𝑟𝑖|

√𝛺𝑖𝑖

= 
|𝑟𝑖|

√𝑅𝑖𝑖𝑆𝑖𝑖

    
(2.20) 

              

 

Now, normalized residual vector have a Standard Normal distribution, i.e. 

𝑟𝑖
𝑁 ~ 𝑁(0,1) 

Then, largest element rN in can be compared with a specified threshold for detection 

of existence of bad data. This threshold can be selected for the desired level of 

detection accuracy. 

2.3.5 Bad Data Identification 

Bad data in measurement sets are identified by processing measurement residuals just 

like bad data detection methods. There are various identification methods in literature 

such as Largest Normalized Residual (𝑟𝑚𝑎𝑥
𝑁 ) Test, Hypothesis Testing Identification 

(HTI) method, etc. Since in this thesis normalized residuals test is applied, it will be 

described below. 

2.3.5.1 Largest Normalized Residual (𝒓𝒎𝒂𝒙
𝑵 ) Test 

Largest normalized residual test method identifies the bad data in a measurement set 

by using properties of normalized residuals. Identification process of a single bad data 

is shown below. If there is more than one single data in the measurement set, each one 

can be identified subsequently at a time. 

1. Solve the WLS estimation and get the measurement residual vector: 
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𝑟𝑖 = 𝑧𝑖 − ℎ𝑖(�̂�),        𝑖 = 1,… ,𝑚 

2. Then, calculate the normalized residuals with below formula: 

𝑟𝑖
𝑁 =

|𝑟𝑖|

√𝛺𝑖𝑖

                𝑖 = 1,… ,𝑚 

3. Find largest normalized value rk
N corresponding to k-th measurement. 

4. If the largest normalized residual is greater than specified identification threshold  

(rk
N > c), k-th measurement can be erroneous. Else, there is no bad data in the 

measurement set. In this thesis identification threshold c is set as 3. 

5. If k-th measurement is erroneous, eliminate the erroneous measurement or remove 

bad data from that measurement. Then, go to step 1. 

2.3.5.2 Removal of the Identified Bad Data 

After identification of bad data, erroneous measurement can be extracted from 

measurement set or it can be corrected. Complete removal of erroneous measurement 

can damage the redundancy of measurement set. Thus, in this thesis erroneous 

measurement are corrected by subtracting the estimated error from the erroneous 

measurement as described below. 

Assume that measurement i is erroneous and can be represented as below: 

            𝑧𝑖 + 𝑒𝑖 = 𝑧𝑖
𝑏𝑎𝑑 (2.21) 

              

where zi is the true measurement value, zi
bad is the erroneous measurement and ei is 

the gross error of measurement i. Then, by using the linear relation between 

measurement residuals and measurement errors shown in (2.7), measurement 

residuals can be approximated as below: 

            𝑧𝑖
𝑏𝑎𝑑 − ℎ𝑖(�̂�) = 𝑟𝑖

𝑏𝑎𝑑 ≈ 𝑆𝑖𝑖𝑒𝑖 (2.22) 
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where is �̂� the estimated system states computed based on the measurement set which 

includes erroneous measurement. Thus, only an approximated value can be found for 

the error ei. 

𝑧𝑖 ≈ 𝑧𝑖
𝑏𝑎𝑑 −

𝑅𝑖𝑖

𝛺𝑖𝑖
 𝑟𝑖

𝑏𝑎𝑑                        

2.4 Topology Error Processing in WLS 

Topology processor configures the one-line diagram of the electrical network by 

utilizing the status data of circuit breakers and disconnecting switches. Topology 

processors convert detailed node-breaker models to compact and more useful bus-

branch models, and this bus-branch model is used by other functions such as state 

estimation, observability analysis process, load flow studies etc. Moreover, topology 

processors are responsible for the allocation of analog measurements to the bus-branch 

model [27]. 

State estimators give most possible system states by processing available 

measurements and the system model provided by topology processors. State 

estimators utilize outputs of topology processors in their calculations and assume that 

the network topology and parameters are perfectly known. Thus, well-implemented 

and well-functioning topology processor are quite important in terms of state 

estimation process. Topology processors constitute network connectivity or network 

topology incorrectly due to erroneous circuit breaker statuses. As a result, system 

connectivity and allocation of measurements to system model will contain 

inconsistencies. Since state estimators utilizes output of topology processor, erroneous 

CB statuses will distort the output of state estimators in other words system states and 

state estimators will give incorrect or biased results.  
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The most of the time of system operation, breaker statuses are correctly known. 

However, in some rare cases, CB statuses can be erroneous. The reasons for incorrect 

breaker statuses are manifold such as telemetry problems, operator entry errors, 

malfunction in devices, mechanical failure of signaling devices etc. Although, 

occurrence of CB status errors is rare, topology errors severely effect state estimation 

results. Since EMS functions use the system states as their input, topological errors 

effect the functioning of all EMS functions poorly. In order to overcome the potential 

problems arising from erroneous CB statuses, topological errors have to be detected 

and identified. Topology error processing function perform this task and it is one of 

the most important tasks of state estimation process.  

The structure and the methodology of topology error processing functions depend on 

which state estimation method is applied. In this thesis substation level state estimation 

is conducted based on WLS based algorithm, thus just like bad data detection 

functions topology error processing function is determined conveniently with WLS 

estimation methodology.  

The proposed substation level state estimation application uses breaker oriented model 

and utilizes circuit breaker statuses at the substation. Based on substation topology 

and breaker statuses, virtual voltage and virtual current measurements are generated 

and those measurements also used by state estimation solver. Topology error 

processor can detect topological errors by utilizing results of largest normalized 

residuals test function just like bad data processor function and it is performed after 

the state estimation process by processing the measurement residuals. If there is a 

topological inconsistency at a substation, the measurement residual value of 

corresponding virtual measurements, which is related to topological error point, will 

be larger than other measurements. As a result of normalized test, topological errors 

at power substations can be detected. Implementation details of topology error 

processing function are given in the next chapter. 
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2.5 Chapter Summary and Comments 

In this chapter, technical background of this thesis is constituted. Firstly, the 

importance and functionality of power substations with regard to the power system 

operation is expressed. Then, local measurement redundancy at substations and 

importance of utilization of PMUs, which give time synchronized phasor 

measurements, are examined in terms of their contribution to substation level state 

estimation applications. In the following parts of this chapter, mathematical 

fundamentals of the proposed power system state estimation and topology error 

processing methodology are presented. Firstly, mathematical basis of state estimation 

solver which is based on WLS method and its solution procedure is given. Then, 

fundamentals of the bad data detection-identification function in WLS and topology 

error processing function in WLS are expressed respectively. The implementation 

details of proposed substation level state estimation and topology error processing 

method are presented in the next chapter. 
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CHAPTER 3  

3                 SUBSTATION LEVEL STATE ESTIMATION AND TOPOLOGY ERROR 

PROCESSING 

The general introduction and the literature review of the proposed substation level 

state estimation and topology error processing method is presented in the first chapter. 

Then, the required technical background for helping the reader to understand the concept 

is reviewed in the second chapter. In this chapter, the methodology and the 

implementation details of the proposed substation level state estimation and topology 

error processing method is explained in detail. Firstly, the substation measurements 

and the system states which are fundamental inputs and outputs of the substation level 

state estimation algorithm are stated. Then, the building blocks of the proposed 

substation level WLS state estimation and topology error processing algorithm and 

their formulations are presented in their execution order. Topology processor, 

observability analysis function, state estimation solver, bad data processing function 

and topology error processing function constitute the building blocks of the proposed 

substation level state estimation and topology error processing method. 

3.1 Introduction 

The complexity of electric power systems has increased enormously due to the advent 

of smart grid concept, the introduction and the continuous growth of renewable energy 

sources to the power systems. In parallel to the increased complexity, intelligence in 

power system has also increased too. Most of this intelligence exists at power 

substations.  Thus, most of monitoring, control and protection actions are taken at 

power substations for reliability and security of power systems. Increased importance 

of substations in the power systems increases the attention to power substations. For 

these reasons, control actions taken at substations have more importance in terms of 
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operation of power systems. Just like truly knowing the operating conditions of power 

systems, accurate knowledge of the measurements and the topology of the substations 

are quite important for reliable operation of power systems. Thus, we have to 

accurately know the operating conditions and the topology of power substations.  

Measurements collected at substations are transmitted to the transformer stations and 

to the regional/central control centers. System states are determined by the state 

estimators exist at control centers based on measurements received from substations 

and system model. Those system states are given to EMSs and many EMSs functions, 

which are substantially important for the control of power system operations, are 

performed based on system states, i.e., indirectly based on substations measurements. 

Thus, the correctness of substation measurements is quite important both for the 

operation of substations, and reliable and secure operation of whole power networks. 

In order to attain accurate substation measurements, a filtration process is quite 

crucial. There are some consistency checking or plausibility checking methods in the 

literature for correction of substation measurements. In addition to those methods, 

state estimation can be applied at substation level for measurement filtration, checking 

the topology of substation and getting system states at substations correctly. Before 

going into more details about the substation level estimation, explaining substation 

configurations, available measurements at substations and topology of substations will 

provide better understanding to readers. 

3.1.1 The Measurements 

Substations are the connection points in the electric power systems. Transmission lines 

and feeders which have different or same voltage levels are connected via busbars 

through transformers, protection and measurement devices. Generator outputs, loads, 

busbar voltages and busbar voltage angles, active and reactive power flows on feeders, 

current magnitudes and current angles on feeders, statuses of switching devices (CBs 

and DSs), transformer tap values are some of the available measurements at power 

substations which are measured by voltage transformers, current transformers, power 
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quality analyzer, PMUs, etc. Those measurements are attained through 

communication channel at power substations and collected by RTUs and IEDs.  

Voltages at substations are measured by voltage transformers which are connected to 

busbars. Current magnitudes, active and reactive power flows on transmission lines or 

feeders are measured by current transformers on them. Actually, active and reactive 

power flows are achieved by multiplication of busbar voltages and feeder currents. 

In addition to analog measurements, digital measurements in other words statuses of 

CBs and DSs are also attained at the substation level. By using switching statuses of 

CBs and DSs, the topology and the connectivity of substations are determined. Those 

measurements are obtained manually and their refresh rate is slower compared to 

refresh rates of analog measurements. 

Analog measurements at substations can be erroneous due to many reasons which can 

be malfunction in CTs, VTs and RTUs, incorrect wiring, telemetry failures etc. These 

erroneous measurements badly effect many functions and control actions both at 

substations and at upper levels such as distribution and transmission levels, and EMS 

functions, etc. In addition to analog measurements, statuses of switching devices 

namely digital measurements are also quite critical for control actions and functions 

in the power systems. Digital measurements can be incorrect and do not represent the 

actual system configuration due to slow refresh rate of switching devices and possible 

problems in the communication channels, etc.  

Available measurements at substations are the main input of control actions at power 

substations. Moreover, they are one of the main inputs of EMS functions through state 

estimators at control centers. Since the beginning of the first implementations of 

transmission level state estimation, substation measurements are quite important part 

of state estimation. Nowadays, power systems are more dynamic with respect to past 

applications due to increased complexity in the power networks. In the future, 

applications of smart grid concept and penetrations of renewables in power networks 

will spread and as a result the complexity of power systems will proceed to increase. 

Due to complex operation of power systems and bilateral flow of power in power 
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systems, more control actions will be taken at power substations. Thus, there will be 

more data at substations and control of power substations will be more complex. This 

complexity and availability of huge amount of data at substations will make 

substations more prone to occurrence of incorrect analog and digital measurements. 

The smart grid concept, the increased penetration of renewable sources to power 

networks and the advanced communication opportunities in power networks are the 

main reason and the motivation of substation level smartness and intelligence. All 

these challenges and potentials presented by modern power systems allow for 

implementations of substation level state estimation and topology error processing 

applications for handling bad measurements and incorrect topological data at 

substation level. 

3.1.2 The System States 

Busbar voltage magnitudes, feeder current magnitudes, active and reactive power 

flows on feeders or between different substations are the main analog measurements 

at substations in SCADA systems. All these measurements are transmitted to the 

control centers. The state estimator at the control center, which is a transmission level 

state estimator, especially deal with substation voltages and power flows between 

substations. Thus, busbar voltage magnitudes and busbar voltage angles are chosen as 

system states in transmission level state estimators. By using the busbar voltage 

magnitudes and the busbar voltage angles, transmission system and its variables can 

be easily described.  

At the substation level, busbar magnitudes, active and reactive power flows at high 

level and low level sides of transformers, current magnitudes of feeders, active and 

reactive power injections through the feeders are the main analog measurements. 

Active and reactive power flows between substations at the transmission systems are 

represented as active and reactive power injections at substation level since only one 

side of power flows exist at a substation and the other side of power flows exist at 
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another substation. Since state estimation is performed at the substation level, active 

and reactive power injections at a substation cannot be represented by just the voltage 

magnitudes and the voltage angles. Thus, the current magnitudes of feeders and the 

current angles of feeders are also taken as systems states in order to represent active 

and reactive power injections at substation level. Moreover, the feeders are connected 

to the busbars via DSs and CBs through more than one branch. In case of a malfunction 

in a main busbar, the second bus or the transfer bus can feed the circuits connected to 

that feeder or sometimes two busbars can feed a feeder simultaneously. Two or three 

busbars having two or three branches feeding a feeder provide more secure and 

reliable system operation. Since the power can flow through all these branches, current 

flows on all these branches feeding the same feeder are taken as system states. 

Moreover, those current magnitude and current angle states will be quite beneficial 

for topological error detection tasks. In addition to current states, voltage magnitudes 

and voltage angles of the main and the transfer busbars are also taken as system states 

similar to the applications of conventional state estimators.  

Just like capacitors and reactors, tap changing transformers are amongst voltage 

control equipment which control reactive power flow in the system by regulating 

voltages of busbars in the power systems. There are two different kinds of tap 

changing transformers which are voltage magnitude changer and voltage phase 

changer. In Turkish Electric System, there are no phase shifting transformers in 

operation. There is only voltage magnitude tap changer transformers in the system. 

Traditionally, most of the state estimation algorithms have treated each transformer 

tap setting as a fixed parameter, even though the real time measurement may be 

erroneous or non-existent. Since transformer taps are quite important for voltage 

control or reactive power control at the substations, an assumption which takes 

transformer taps as a fixed parameter can cause a solution which does not match the 

actual real time monitoring requirements. Thus, in order to overcome these problems 

and to improve the overall quality of substation level state estimation process, 

transformer tap values are also added to the system states. 
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In Turkish Electric System, installation rate of PMUs are increasing day by day in 

order to improve the monitoring capabilities, the reliability and the security of the 

national power network. PMUs provide GPS synchronized real time voltage and 

current phasor measurements. Therefore, system states are directly measured in a 

PMU installed substation and this increases the linearity and the speed of the 

estimation process. In order to use opportunities and measurement data given by PMU 

devices, proposed state estimation algorithm is designed to handle both PMU and 

SCADA measurements. Therefore, voltage and current states which were represented 

in polar form as magnitude and angle values are now represented in rectangular form 

as real and imaginary parts of voltage and current phasors. These changes facilitate 

the representation of measurements in terms of system states. Furthermore, by these 

state changes the linearity of the state estimation method increases and computational 

burden decreases which also accelerates the estimation process.  

After above changes, real part of voltage phasors of busbars, imaginary part of voltage 

phasors of busbars, real part of current phasors of feeders, imaginary part of current 

phasors of feeders and transformers tap values constitute the system states. These 

system states are represented by x vector which is shown below. 

𝑥𝑇 = [𝑉𝑟
1𝑉𝑟

2 …𝑉𝑟
𝑁𝑉𝑖

1𝑉𝑖
2 …𝑉𝑖

𝑁𝐼𝑟
1𝐼𝑟

2 … 𝐼𝑟
𝑀𝐼𝑖

1𝐼𝑖
2 …𝐼𝑖

𝑀𝑎𝑚𝑛
1 𝑎𝑚𝑛

2 …𝑎𝑚𝑛
𝐾 ] 

𝑉𝑟
𝑘: Real part of voltage phasors of busbar k 

𝑉𝑖
𝑘: Imaginary part of voltage phasors of busbar k 

𝐼𝑟
𝑙: Real part of current phasors of feeder bay l 

𝐼𝑖
𝑙: Imaginary part of current phasors of feeder bay l 

𝑎𝑚𝑛: Transformer tap values of the transformer between node m and n 

𝑁: Number of busbars at the substation 

𝑀: Number of feeder bays connected to measured feeders at the substation 

𝐾: Number of transformers at the substation 
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3.2 WLS State Estimation Algorithm at Substation Level 

In this thesis WLS state estimation method is selected as substation level state 

estimation solver due to its prevalence both in the literature and in the practice, the 

simplicity of implementation and its fastness which is the results of low computational 

burden. Moreover, measurement sets in power substations have Normal (Gaussian) 

error distribution and WLS gives unbiased estimates, in the presence of Gaussian 

errors.  

State estimation process generally includes below functions [1]. 

• Topology processor 

• Observability analysis 

• State estimation solution 

• Bad data processing 

• Parameter and structural error processing 

Firstly, based on the connectivity data and the statuses of CBs and DSs, the topology 

of the system is formed in the topology processor function. After that, whether the 

system is observable or not are determined by the observability analysis function. 

Observability tells that whether there is a full or partial solution for the entire system. 

State estimation solution is the core of state estimation process and gives most possible 

system states as output. The bad data processing function can detect and identify gross 

errors if there is sufficient measurement redundancy in the measurement sets. Finally, 

transformer taps, shunt reactor or capacitor parameters and erroneous breaker statuses 

are estimated by the parameter and structural error processing function if there is 

sufficient measurement redundancy. 

State estimation functions listed above is applied to the substation level WLS state 

estimator proposed in this thesis. Firstly, the topology of the substation is formed by 

using the connectivity data and the statuses of CBs and DSs in the topology processor 
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function. Later, the observability of the substation for state estimation process are 

determined by examining the rank of the Measurement Jacobian Matrix, H. Rank is 

the number of linearly independent column or row vectors of the matrix. Then, the 

state estimation solution, here WLS method, is performed at the substation level. Since 

WLS applications are not robust against the bad data in measurement sets, even a 

single bad measurement can bias the system estimates. Therefore, the bad data 

detection-identification tasks are performed after the completion of state estimation 

process. Finally, whether there is a topology error or not are determined by the 

properties of measurement residuals like in the bad data processing function. In 

addition, transformer tap values are also determined by the proposed substation level 

state estimation and topology error processing algorithm. 

In Figure 3.1, the overall structure and the process of the proposed substation level 

state estimation and topology error processing algorithm is shown. In following 

sections, details of sub-functions of the proposed method are explained in detail. 

 

Figure 3.1. Substation Level State Estimation and Topology Error Processing Flow Chart 
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3.2.1 Topology Processor 

There are three data sets which constitute inputs of the substation level state estimator. 

They are measurement data set, connectivity data set and model data set. The 

measurement data set includes three phase power measurements and standard 

deviation values of those measurements. The connectivity data set gives the type of 

branches, branch statuses and connection nodes of branches. The model data set gives 

nodes in the substation, their voltage zones and their types. In addition, the model data 

set includes necessary transformer and reactor data. The topology of a substation is 

formed by using the connectivity and the model data sets of that substation.  

Transmission level state estimation methods use conventional bus-branch model 

which is generated by the topology processor. On the other hand, substation level state 

estimators use bus section-switch model, i.e., breaker oriented model, in which CBs 

are modeled in detail. Since the topology of substations is quite important and crucial 

for the estimation process, detailed modelling of substations is essential. Active and 

reactive power flows in a substation follow through busbars-feeder bays-feeders path. 

Active and reactive flow measurements in other words for substation level active and 

reactive power injection measurements are achieved by multiplication of current states 

on that feeder and the busbar voltage states of the busbar which that feeder connects. 

Thus, nodes at which active and reactive power injection measurements are taken in a 

substation, feeder bays or feeder branches reaching that nodes and the starting busbar 

nodes of feeder bays must be connected through a path. The topology processor 

performs this task and connects the busbar nodes, the feeder bays and the measurement 

nodes. TP connects measurements to system states by using connectivity data and 

CB/DS statuses and as a result creates breaker oriented model. The main busbars and 

the transfer busbars are connected by transfer feeder and coupling feeders. There is no 

analog measurement in the transfer and coupling feeders. There are only digital 

measurements (CB and DS statuses) of those feeders. In other words, there is no 

measurement redundancy for transfer and coupling feeders. CB and DS statuses of 

transfer and coupling feeders can be erroneous and due to lack of redundancy these 
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errors cannot be detected and identified. In order to deal with this problem, TP 

generates the connectivity of transfer and coupling feeders separately. By the help of 

busbar voltage measurements, virtual voltage and current measurements, and created 

transfer and coupling feeder configurations, errors in transfer and coupling feeders can 

be detected. The topology error detection process proposed in this thesis will be 

explained in detail in the topology error processing section of this chapter. In short, 

TP creates topology of a substation in breaker oriented model by regarding CB statuses 

and this topology is used by the proposed substation level state estimator as input. 

3.2.2 Observability Analysis 

Observability analysis function tells that whether the system is fully observable or 

partial observable. In other words, the observability analysis function states that 

whether there is a unique solution or not as a result of the estimation process. There 

are two methods for observability analysis which are numerical observability analysis 

and topological observability analysis. If the system is unobservable, these methods 

give unobservable branches and observable islands. These islands have their own 

reference angles and the state estimation can be performed on these observable islands. 

Moreover, by measurement placement unobservable systems can be made observable 

too. Numerical observability analysis methods are suitable for large size power 

networks and topological observability analysis methods are suitable for small size 

power networks. Both of these methods are generally applied for transmission level 

power networks. Since substation level power networks are rather small compared to 

transmission level power networks and partial observability is not meaningful for 

substation level state estimation, both of those methods are not applied at substation 

level. Instead of usage of these methods, observability of a substation is determined 

by rank of Jacobian matrix, H of that substation. Rank is the number of linearly 

independent row or independent column vectors in a matrix. For the Jacobian matrix, 

H, rank is the number of linearly independent row vectors in the H matrix.  
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In a substation, if the number of system states is n, there should be n independent 

measurements for observability and for a unique system estimates. If the rank of the 

H matrix is smaller than the number of system states, the observed system is rank 

deficient in other words this system is unobservable. If the rank of the H matrix is 

equal to the number system states, it can be said that this system is an observable 

system and a unique system estimate can be found for this system. In short, the rank 

of the H matrix tells that whether the measurement set is redundant enough for the 

state estimation process. Thus, based on the result of the observability analysis 

function, it is determined that whether the state estimation can be performed. If the 

substation is not observable, i.e., rank deficient, state estimation in substation level 

cannot be performed. If the substation is fully observable, the state estimation at 

substation level can be performed. 

The number of measurements is not directly related with observability. The type and 

the location of measurements, and the topology of the networks are quite important 

factors for the observability of power systems. Rather than the number of 

measurements, the number of linearly independent measurements are the determining 

metrics of the observability analysis function. The independency of the measurements 

is related with their type, location and topology of the power networks. 

3.2.3 State Estimation Solution 

State estimation solution determines most possible and accurate system states based 

on the system topology and the available measurements of the analyzed system. 

Moreover, the system measurements can be calculated and represented more precisely 

with obtained more accurate system states. 

3.2.3.1 The Measurement Function, h(xk) 

Measurements can be of a variety of types. Most commonly used measurements are 

active and reactive line flows, bus power injections, bus voltage magnitudes and line 

current flow magnitudes. Since in this thesis, state estimation is performed at 
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substation level, only the measurements in a single substation are used as a 

measurement set. In Turkish Electric System, most of the available measurements in 

the system are SCADA measurements and the implementation of PMUs as 

measurement units is still quite limited. However, the implementation of PMUs to the 

power substations is increasing gradually for better monitoring of the power 

substations and Turkish Electric System as a whole. Thus, the implemented substation 

level state estimator is designed to handle both SCADA only and SCADA/PMU 

measurements. For these reasons, in addition to SCADA measurements, PMU 

measurements are also involved in the used measurement data set. After the inclusion 

of PMU data set to SCADA based measurement data set, measurement data set 

consists of below listed measurements. 

|V|: Busbar voltage magnitudes 

θ : Busbar voltage phase angles 

|I|: Feeder current magnitudes 

δ : Feeder current phase angles 

Pi : Three-phase active power injection measurements 

Qi : Three-phase reactive power injection measurements 

Pij : Three-phase active power flows through transformers in the substation 

Qij : Three-phase reactive power flows through transformers in the substation 

SCADA measurements do not involve the voltage angle measurements of busbars and 

the current angle measurements of feeders. Since PMU devices take the voltage and 

the current phasor measurements, the busbar voltage phase angle and the feeder 

current phase angle measurements are found in the PMU installed substations. 

Inclusion of those angle measurements to the measurement data set improves the 

substation level accuracy and redundancy enormously.  

All these SCADA and PMU measurements can be expressed in terms of the state 

variables either using the rectangular or the polar coordinates.  

The expressions for each of above types of measurements are given below.  
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 Real and imaginary parts of voltage phasor measurements at bus m: 

𝑉𝑟
𝑚 = 𝑉𝑟

𝑘 

𝑉𝑖
𝑚 = 𝑉𝑖

𝑘 

 Real and active power injection at feeder i: 

𝑃𝑖 = ∑(𝑉𝑟
𝑘 ∗ 𝐼𝑟

𝑘  +  𝑉𝑖
𝑘 ∗ 𝐼𝑖

𝑘)

𝑡

𝑘=1

∗ 𝑆𝑘 

𝑄𝑖 = ∑(𝑉𝑖
𝑘 ∗ 𝐼𝑟

𝑘 − 𝑉𝑟
𝑘 ∗ 𝐼𝑖

𝑘) ∗ 𝑆𝑘

𝑡

𝑘=1

 

where 𝑡 is the number of branches feeding a feeder and Sk is the status of kth branch 

feeding the feeder. 

 Real and active power flows through a transformer/transformers which is/are 

between bus m and bus n: 

𝑃𝑓𝑙𝑜𝑤 = ∑(𝑉𝑖
𝑚 ∗ 𝑉𝑟

𝑛 − 𝑉𝑟
𝑚 ∗ 𝑉𝑖

𝑛) ∗

𝑡

𝑗=1

𝑏

𝑥 ∗ 𝑐 ∗ 𝑎𝑚𝑛

 

𝑄𝑓𝑙𝑜𝑤 = ∑((𝑉𝑟
𝑚)2 + (𝑉𝑖

𝑚)2) ∗
𝑏2

𝑥 ∗ 𝑎𝑚𝑛
2 ∗ 𝑐2

− (𝑉𝑖
𝑚 ∗ 𝑉𝑖

𝑛 + 𝑉𝑟
𝑚 ∗ 𝑉𝑟

𝑛)

𝑡

𝑗=1

∗
𝑏

𝑥 ∗ 𝑎𝑚𝑛 ∗ 𝑐
 

where:  

𝑡: the number of transformers between mth and nth nodes 

𝑥: per unit impedance value of the transformer which is between mth and nth nodes 

𝑏: low voltage side rated voltage value of transformer / low voltage side zone voltage 

𝑐: high voltage side rated voltage value of transformer / high voltage side zone voltage 

𝑉𝑟
𝑘: Real part of voltage phasors of busbar k 

𝑉𝑖
𝑘: Imaginary part of voltage phasors of busbar k 
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𝐼𝑟
𝑙: Real part of current phasors of feeder bay l 

𝐼𝑖
𝑙: Imaginary part of current phasors of feeder bay l 

𝑎𝑚𝑛: Transformer tap values of the transformer between node m and n 

Above types of measurements are fundamental parts of the measurement function, h 

of the state estimation process. Since the substation level state estimation is based on 

the breaker-oriented model, utilization of breaker statuses for the state estimation 

procedure will improve capabilities of the substation level state estimator and the 

accuracy of system estimates. The measurements which are generated based on the 

statuses of breakers are called virtual measurements. There will be both current and 

voltage virtual measurement placements which will be explained in detail in below 

sections. In addition to breaker status related virtual measurements, by utilizing the 

KCL formula there will be KCL related measurement placement as well. 

Before expressing the virtual current and voltage measurements, examining a small 

piece of a substation will be quite explanatory. The configuration and the detail of 

virtual measurements are shown below.  

 

Figure 3.2. Current and Voltage States in a Substation 
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As shown in Figure 3.2, the current measurements at a substation are measured on the 

feeders through the current transformers. Moreover, there is no measurement on any 

feeder bays or branches that leaves buses and reaches feeders. Furthermore, the 

voltage measurements in a substation are measured by the voltage transformers 

located on the buses at the substation. In addition to the analog current and voltage 

measurements at a substation, the digital measurements (breaker statuses) are also 

available at the substation level. 

 Virtual voltage measurements in feeder bays: 

If there is a short circuit between the feeder bays in other words more than one 

disconnecting switches leaving buses are closed, the real and imaginary virtual voltage 

measurements for the buses of the closed feeder bays are generated. If there is a short 

circuit path between mth and nth buses, then the real and imaginary virtual voltage 

measurements added to the measurement function, h as shown below: 

0 = 𝑉𝑟
𝑚 − 𝑉𝑟

𝑛 

0 = 𝑉𝑖
𝑚 − 𝑉𝑖

𝑛 

As shown in Figure 3.2, more than one feeder bays feed a feeder. Although there are 

no analog measurements on the feeder bays, the breaker statuses of feeder bays are 

known. Thus, those breaker statuses can be utilized by taking currents passing through 

branches on those feeder bays as system states. This assumption will improve the 

redundancy of power substations. Moreover, these virtual current measurements will 

help the detection of topological errors at the substations. Formulation and structure 

of generated real and imaginary virtual current measurements are shown below: 

 Virtual current measurements in feeder bays: 

𝐼𝑟
𝑚 = ∑ 𝐼𝑟

𝑘 ∗ 𝑆𝑘 

𝑛

𝑘=1

 

𝐼𝑖
𝑚 = ∑ 𝐼𝑖

𝑘

𝑛

𝑘=1

∗ 𝑆𝑘 
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𝐼𝑟
𝑚

𝑡
∗ 𝑆𝑘 = 𝐼𝑟

𝑘 

𝐼𝑖
𝑚

𝑡
∗ 𝑆𝑘 = 𝐼𝑖

𝑘 

where n is the number of branches feeding a feeder, t is the number of closed feeder 

bays and Sk is the status of kth branch feeding a feeder. 

 

Figure 3.3. A Transfer Feeder Configuration in a Substation 

In Figure 3.3, a transfer feeder configuration is shown as an example. Different buses 

at a substation are physically and electrically connected through transfer feeders and 

bus couplers. Like on feeder bays, there are no voltage and current measurements on 

transfer feeders and bus couplers. However, the statuses of breakers inside transfer 

feeders and bus couplers are available. Thus, by utilizing them we can add new virtual 

voltage measurements to the measurement function, h. The virtual voltage addition 

process is similar to the addition of virtual voltage measurements on feeder bays. If 

some of the buses are connected in transfer feeders or in bus couplers, a short circuit 

path is formed between those connected buses. Thus, voltage equality relations are 

generated both for real and imaginary parts of those buses as shown below. 

 Virtual voltage measurements in transfer buses and bus couplers: 

0 = 𝑉𝑟
𝑚 − 𝑉𝑟

𝑛 

0 = 𝑉𝑖
𝑚 − 𝑉𝑖

𝑛 
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Kirchhoff’s Current Law (KCL) states that the algebraic sum of the currents in a node 

in a network is zero. If there are current measurements on all feeders connected to the 

buses of the same voltage level, KCL formula can be utilized and based on this formula 

a real current measurement and an imaginary current measurement can be added to 

measurement function, h as shown below. 

 KCL current measurement equations: 

0 = ∑ 𝐼𝑟
𝑘

𝑛

𝑘=1

 

0 = ∑ 𝐼𝑖
𝑘

𝑛

𝑘=1

 

where 𝑛 represents the number of feeders bays which are connected between measured 

feeders and buses having the same voltage level. 

3.2.3.2 The Measurement Jacobian, H 

The structure of the measurement Jacobian H will be as below: 

𝐻 =  

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜕𝑉𝑟
𝜕𝑉𝑟

0 0 0 0

0
𝜕𝑉𝑖

𝜕𝑉𝑖

0 0 0

0 0
𝜕𝐼𝑟
𝜕𝐼𝑟

0 0

0 0 0
𝜕𝐼𝑖
𝜕𝐼𝑖

0

𝜕𝑃𝑖

𝜕𝑉𝑟

𝜕𝑃𝑖

𝜕𝑉𝑖

𝜕𝑃𝑖

𝜕𝐼𝑟

𝜕𝑃𝑖

𝜕𝐼𝑖
0

𝜕𝑄𝑖

𝜕𝑉𝑟

𝜕𝑄𝑖

𝜕𝑉𝑖

𝜕𝑄𝑖

𝜕𝐼𝑟

𝜕𝑄𝑖

𝜕𝐼𝑖
0

𝜕𝑃𝑓𝑙𝑜𝑤

𝜕𝑉𝑟

𝜕𝑃𝑓𝑙𝑜𝑤

𝜕𝑉𝑖

0 0
𝜕𝑃𝑓𝑙𝑜𝑤

𝜕𝑎𝑚𝑛

𝜕𝑄𝑓𝑙𝑜𝑤

𝜕𝑉𝑟

𝜕𝑄𝑓𝑙𝑜𝑤

𝜕𝑉𝑖

0 0
𝜕𝑄𝑓𝑙𝑜𝑤

𝜕𝑎𝑚𝑛. . . . .
. . . . .
. . . . .
. . . . . ]
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The expressions for each partition are given below: 

 Elements corresponding real part of bus voltage phasor measurements: 

       
𝜕𝑉𝑟

𝜕𝑉𝑟
= 1,

𝜕𝑉𝑟

𝜕𝑉𝑖
= 0,

𝜕𝑉𝑟

𝜕𝐼𝑟
= 0,

𝜕𝑉𝑟

𝜕𝐼𝑖
= 0,

𝜕𝑉𝑟

𝜕𝑎𝑚𝑛
= 0 

 Elements corresponding imaginary part of bus voltage phasor measurements: 

𝜕𝑉𝑖

𝜕𝑉𝑟
= 0,

𝜕𝑉𝑖

𝜕𝑉𝑖
= 1,

𝜕𝑉𝑖

𝜕𝐼𝑟
= 0,

𝜕𝑉𝑖

𝜕𝐼𝑖
= 0,

𝜕𝑉𝑖

𝜕𝑎𝑚𝑛
= 0 

 Elements corresponding real part of feeder current phasor measurements: 

𝜕𝐼𝑟
𝜕𝑉𝑟

= 0,
𝜕𝐼𝑟
𝜕𝑉𝑖

= 0,
𝜕𝐼𝑟
𝜕𝐼𝑟

= 1,
𝜕𝐼𝑟
𝜕𝐼𝑖

= 0,
𝜕𝐼𝑟

𝜕𝑎𝑚𝑛
= 0 

 Elements corresponding imaginary part of feeder current phasor 

measurements: 

𝜕𝐼𝑖
𝜕𝑉𝑟

= 0,
𝜕𝐼𝑖
𝜕𝑉𝑖

= 0,
𝜕𝐼𝑖
𝜕𝐼𝑟

= 0,
𝜕𝐼𝑖
𝜕𝐼𝑖

= 1,
𝜕𝐼𝑖

𝜕𝑎𝑚𝑛
= 0 

 Elements corresponding to active power injection at feeder i: 

             
𝜕𝑃𝑖

𝜕𝑉𝑟
= ∑ 𝐼𝑟

𝑘

𝑡

𝑘=1

,
𝜕𝑃𝑖

𝜕𝑉𝑖
= ∑ 𝐼𝑖

𝑘,

𝑡

𝑘=1

𝜕𝑃𝑖

𝜕𝐼𝑟
= ∑ 𝑉𝑟

𝑘,

𝑡

𝑘=1

𝜕𝑃𝑖

𝜕𝐼𝑖
= ∑ 𝑉𝑖

𝑘,

𝑡

𝑘=1

𝜕𝑃𝑖

𝜕𝑎𝑚𝑛
= 0 

 Elements corresponding to reactive power injection at feeder i: 

            
𝜕𝑄𝑖

𝜕𝑉𝑟
= ∑ −𝐼𝑖

𝑘

𝑡

𝑘=1

,
𝜕𝑄𝑖

𝜕𝑉𝑖
= ∑ 𝐼𝑟

𝑘,

𝑡

𝑘=1

𝜕𝑄𝑖

𝜕𝐼𝑟
= ∑ 𝑉𝑖

𝑘 ,

𝑡

𝑘=1

𝜕𝑄𝑖

𝜕𝐼𝑖
= ∑ −𝑉𝑟

𝑘,

𝑡

𝑘=1

𝜕𝑄𝑖

𝜕𝑎𝑚𝑛
= 0 

where 𝑡 is the number of feeder bays or branches that feeds the feeder i. 

 Elements corresponding to active power flow through transformers: 

𝜕𝑃𝑓𝑙𝑜𝑤

𝜕𝑉𝑟
𝑚 = ∑(−𝑉𝑖

𝑛) ∗

𝑡

𝑘=1

𝑏

𝑥 ∗ 𝑐 ∗ 𝑎𝑚𝑛
,
𝜕𝑃𝑓𝑙𝑜𝑤

𝜕𝑉𝑖
𝑚 = ∑(𝑉𝑟

𝑛) ∗

𝑡

𝑘=1

𝑏

𝑥 ∗ 𝑐 ∗ 𝑎𝑚𝑛
 

𝜕𝑃𝑓𝑙𝑜𝑤

𝜕𝑉𝑟
𝑛 = ∑(𝑉𝑖

𝑚) ∗

𝑡

𝑘=1

𝑏

𝑥 ∗ 𝑐 ∗ 𝑎𝑚𝑛
,
𝜕𝑃𝑓𝑙𝑜𝑤

𝜕𝑉𝑖
𝑛 = ∑(− 𝑉𝑟

𝑚) ∗

𝑡

𝑘=1

𝑏

𝑥 ∗ 𝑐 ∗ 𝑎𝑚𝑛
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𝜕𝑃𝑓𝑙𝑜𝑤

𝜕𝐼𝑟
= 0,

𝜕𝑃𝑓𝑙𝑜𝑤

𝜕𝐼𝑖
= 0,

𝜕𝑃𝑓𝑙𝑜𝑤

𝜕𝑎𝑚𝑛
= ∑(𝑉𝑖

𝑚 ∗ 𝑉𝑟
𝑛 − 𝑉𝑟

𝑚 ∗ 𝑉𝑖
𝑛) ∗

𝑡

𝑘=1

𝑏

𝑥 ∗ 𝑐 ∗ 𝑎𝑚𝑛
 

 Elements corresponding to reactive power flow through transformers: 

𝜕𝑄𝑓𝑙𝑜𝑤

𝜕𝑉𝑟
𝑚 = ∑ 2𝑉𝑟

𝑚 ∗
𝑏2

𝑥 ∗ 𝑎𝑚𝑛
2 ∗ 𝑐2

− 𝑉𝑟
𝑛

𝑡

𝑘=1

∗
𝑏

𝑥 ∗ 𝑎𝑚𝑛 ∗ 𝑐
 

𝜕𝑄𝑓𝑙𝑜𝑤

𝜕𝑉𝑖
𝑚 = ∑ 2𝑉𝑖

𝑚 ∗
𝑏2

𝑥 ∗ 𝑎𝑚𝑛
2 ∗ 𝑐2

− 𝑉𝑖
𝑛

𝑡

𝑘=1

∗
𝑏

𝑥 ∗ 𝑎𝑚𝑛 ∗ 𝑐
 

𝜕𝑄𝑓𝑙𝑜𝑤

𝜕𝑉𝑟
𝑛 = ∑ − 𝑉𝑟

𝑚

𝑡

𝑘=1

∗
𝑏

𝑥 ∗ 𝑎𝑚𝑛 ∗ 𝑐
,
𝜕𝑄𝑓𝑙𝑜𝑤

𝜕𝑉𝑖
𝑛 = ∑ −𝑉𝑖

𝑚

𝑡

𝑘=1

∗
𝑏

𝑥 ∗ 𝑎𝑚𝑛 ∗ 𝑐
 

𝜕𝑄𝑓𝑙𝑜𝑤

𝜕𝐼𝑟
= 0,

𝜕𝑄𝑓𝑙𝑜𝑤

𝜕𝐼𝑖
= 0,

𝜕𝑄𝑓𝑙𝑜𝑤

𝜕𝑎𝑚𝑛
= ∑(𝑉𝑖

𝑚 ∗ 𝑉𝑖
𝑛 + 𝑉𝑟

𝑚 ∗ 𝑉𝑟
𝑛)

𝑡

𝑘=1

∗
1

(𝑎𝑚𝑛
𝑘)2

 

where 𝑡 is the number of transformers between mth and nth nodes. 

 Elements corresponding virtual voltage measurements in feeder bays: 

Instead of derivative of the virtual measurements, elements correspond to the virtual 

voltage measurements in the feeder bays and their corresponding matrix form will be 

shown by an example. In here, it is assumed that there is a short circuit path between 

the first and the second buses. Thus, real and imaginary voltages of that buses should 

be equal. Below matrices, show us this relationship in H matrix. 

0 = [1 −1 0] ∗ [

𝑉𝑟
1

𝑉𝑟
2

𝑉𝑟
𝑇

] 

0 = [1 −1 0] ∗ [

𝑉𝑖
1

𝑉𝑖
2

𝑉𝑖
𝑇

] 
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 Elements corresponding virtual current measurements in feeder bays: 

Instead of derivative of virtual measurements, elements correspond to the virtual 

current measurements in the feeder bays and their corresponding matrix form will be 

shown by an example. As shown in Figure 3.2, more than one feeder bays feed a 

feeder. Hence, the sum of the real and the imaginary branch currents, which are taken 

as system states, should be equal to the real and the imaginary current measurements 

on that feeder. Moreover, the real and the imaginary parts of the feeder bay currents 

are taken as system states for improving the redundancy by utilizing the breaker 

statuses of those branches. Then, for the detection of topological errors, the virtual real 

and the imaginary current measurements are added to the measurement function, h for 

corresponding current system states. This relationship applied in H matrix is shown in 

the below matrices. 

[
 
 
 
𝐼𝑟
𝑚

𝐼𝑟
1

𝐼𝑟
2

𝐼𝑟
3 ]
 
 
 

= [

1 1 1
1 0 0
0 1 0
0 0 1

] ∗ [

𝐼𝑟
1

𝐼𝑟
2

𝐼𝑟
3

] 

[
 
 
 
 
𝐼𝑖
𝑚

𝐼𝑖
1

𝐼𝑖
2

𝐼𝑖
3 ]
 
 
 
 

= [

1 1 1
1 0 0
0 1 0
0 0 1

] ∗ [

𝐼𝑖
1

𝐼𝑖
2

𝐼𝑖
3

] 

 

 Elements corresponding the virtual voltage measurements in transfer buses 

and in bus couplers: 

Instead of derivative of virtual measurements, elements correspond to the virtual 

voltage measurements in transfer buses or bus couplers and their corresponding matrix 

form will be shown by an example. In here, it is assumed that there is a short circuit 

path between first bus and transfer bus. Thus, the real and the imaginary parts of the 

first bus and the transfer bus should be equal. This relationship applied in H matrix is 

shown in the below matrices. 
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0 = [1 0 −1] ∗ [

𝑉𝑟
1

𝑉𝑟
2

𝑉𝑟
𝑇

] 

0 = [1 0 −1] ∗ [

𝑉𝑟
1

𝑉𝑟
2

𝑉𝑟
𝑇

] 

 Elements corresponding KCL current measurement equations: 

0 = [1 ⋯ 1] ∗ [
𝐼𝑟
1

⋮
𝐼𝑟
𝑛
] 

0 = [1 ⋯ 1] ∗ [
𝐼𝑖
1

⋮
𝐼𝑖
𝑛
] 

 

3.2.3.3 The Gain Matrix, G 

The gain matrix is constructed using the measurement Jacobian H and the 

measurement error covariance matrix R. The measurement error covariance matrix R 

is assumed to be diagonal and its diagonal entries consist of measurement variances. 

Gain matrix is formed as a result of the below formula: 

𝐺(𝑥𝑘) = 𝐻𝑇 𝑅−1𝐻   

Gain matrix has following properties: 

1. It is structurally and numerically symmetric. 

2. It is sparse, yet less sparse compared to H. 

3. It is generally a non-negative definite matrix and it is positive definite if the network 

is fully observable. 
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3.2.3.4 Solution of Normal Equations 

The proposed state estimation solution methodology traces an iterative solution 

procedure due to the nonlinearity of transformers at the substations. Firstly, the 

iteration number is set as k = 0. Then, the state vector xk is initialized with flat start. 

The real part of voltage and current states, and the transformer taps are initialized as 

1. The imaginary part of voltage and current states are initialized as zero. 

𝑉𝑟
𝑇 = [1 ⋯ 1]𝑘 k: number of busbars at a substation 

𝑉𝑖
𝑇 = [0 ⋯ 0]𝑘 

𝐼𝑟
𝑇 = [1 ⋯ 1]𝑙  l: number of feeder bays connected to measured feeders at a substation 

𝐼𝑖
𝑇 = [0 ⋯ 0]𝑙 

𝑎𝑚𝑛
𝑇 = [1 ⋯ 1]𝑡 t: number of transformers at a substation 

Measurements are expressed in terms of the system states by applying the formulas of 

each type of measurements stated in the measurement function, h(x). Later, the 

measurement Jacobian, H(x) is calculated by taking the derivatives of each 

measurements with respect to each system states. Then, the gain matrix is calculated 

based on the measurement Jacobian, H(x) matrix and the measurement error 

covariance matrix, R. Now, every matrix is ready for the solution of the Normal 

Equations which is shown below once again for better understanding. 

𝐺(𝑥𝑘)Δ𝑥𝑘+1 = 𝐻𝑇 (𝑥𝑘). 𝑅−1             

where Δ𝑥𝑘+1 = 𝑥𝑘+1 − 𝑥𝑘                  

Solution of Normal Equations give the changes in the system states as output. Then, 

convergence of the change in system states are compared with the specified accuracy 

limit. If the convergence is reached, the state estimation solver part of the proposed 

algorithm stops and then the system estimates enter into bad data processing function. 

If the convergence is not reached, system states are updated and new iteration process 

starts from the calculation of measurement function, h(x) and goes on as stated above. 
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3.2.4 Bad Data Processing 

WLS based state estimators are vulnerable to the bad data exists in measurement sets. 

Thus, bad data processing functions of WLS based state estimators start after the 

completion of the state estimation procedure. Applied bad data processing function 

can detect and identify bad data in measurement sets if there is sufficient measurement 

redundancy in measurement sets. The methodology of the proposed bad data processor 

is shown in Figure 3.4. 

Firstly, the system estimates are attained from the state estimation solution function. 

The estimated system states are processed firstly for the determination of existence of 

bad data in measurement sets through Chi Squares Test. Before performing this test, 

Chi Squares Test threshold value is calculated by chi2inv function of Matlab program. 

This Matlab function determines the threshold based on the desired accuracy level 

(0.95 in this application) and the differences between the number of measurements 

and the number of system states which is called degrees of freedom. In addition to the 

specified threshold, the objective function value of the system is calculated with the 

latest system estimates. If the objective function value is smaller than the specified 

threshold, then it is concluded that there is no bad data in the measurement set. If the 

objective function is greater than specified threshold, it is said that the measurement 

set may contain bad data. Since Chi Squares test is based on assumptions, it may fail 

to detect the bad data for certain cases. Thus, largest normalized residual test, which 

is a more accurate method, is also applied for the detection of bad data. If rk
N is greater 

than chosen identification factor c (3 in this application), it is said that there is bad 

data in the measurement set. If rk
N is smaller than chosen identification factor c, it is e 

said that there is no bad data in the measurement set. Furthermore, the bad data in the 

measurement set can be identified with that method by finding the index of the largest 

normalized residuals which is greater than identification factor, c. After the 

identification of bad data, the erroneous measurement can be corrected by subtracting 

the estimated error from the erroneous measurement or the erroneous measurement 

can be removed from the measurement set. After the removal of the bad data or 

correction of the erroneous measurement, WLS based state estimation procedure is 
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started again and the estimation procedure is carried out with the corrected 

measurement data set. 

 

Figure 3.4. Flow Chart of the Bad Data Processor 

3.2.5 Topology Error Processing 

Topology processors constitute the one-line diagram of electrical networks based on 

the connectivity data and the circuit breaker statuses, and the generated network 

topology is used by state estimators as input. The occurrence of erroneous breaker 

statuses is rare and most of the time the breaker statuses are known correctly. 

However, in the presence of the circuit breakers having incorrect status data, topology 

processors will generate locally incorrect network topology and these topological 

errors cause the state estimate to be biased significantly. Thus, there is a need to 

develop effective methods intended to detect and identify the topological errors. 

Topology error processing functions perform these tasks [1]. 

Chi Squares Test

Largest Normalized 
Residual Test

There is no bad data.
Publish &

Update Dataset &
Restart

There is no bad data.
Publish &

Update Dataset &
Restart

Measurements

State Estimator (WLS)

System States

𝐽(𝑥) > ε  

 

 

𝑟𝑘
𝑁 > 𝑐 

 

Start

NO

NO
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Topological Error 
?

There is topological 
error.

Publish &
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Restart
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There is analog 
measruement error.

Correct Bad Data and go 
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In this thesis, substation level state estimation algorithm is proposed based on WLS 

estimation methodology. Since WLS based state estimators are vulnerable to both the 

topological errors and the bad data in analog measurement sets, topology error 

processing functions in WLS based state estimators start after the completion of the 

state estimation procedure just like the bad data processing functions in WLS based 

estimators.  

Conventional SCADA measurements, synchrophasor PMU measurements and digital 

measurements (CB and disconnecting switch statuses) are all available at the 

substation level. By utilization of time synchronized PMU measurements, state 

estimation can be performed solely at substation level. Substation level state 

estimators can perform state estimation process by using more detailed substation 

models unlike centralized state estimators which utilize bus-branch model and can 

experience computational difficulties while implementing more detailed substation 

models. For complete utilization of substation level smartness and abundant 

measurement sets, the proposed substation level state estimation application uses 

breaker oriented substation model. In that node-breaker oriented model CB statuses 

are also utilized. 

In this thesis, instead of using another topology error processing method, the results 

of the state estimation are used for the topology error processing task. The largest 

normalized residual test (rN) which is used for the detection and identification of 

analog bad data is also utilized for the detection of topological errors. Thus, the digital 

measurements in other words CB statuses have to be utilized in the state estimation 

solver and measurements based on CB statuses have to be inserted into the 

measurement function (h) and the measurement Jacobian matrix (H). In order to 

perform this task, CB statuses and the connectivity based virtual measurements are 

formed. Four type of virtual measurements are created based on the substation 

configuration.  

1. Virtual voltage measurements in feeder bays 

2. Virtual current measurements in feeder bays 
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3. Virtual voltage measurements in transfer buses and bus couplers 

4. KCL current measurement equations 

Busbar voltage magnitudes and busbar voltage angles are the fundamental system 

states in state estimation applications. For the representation of active and reactive 

power measurements in terms of system states and for the utilization of CB statuses 

in the proposed substation level state estimation and topology error processing 

algorithm, current magnitude and current angle values on feeder bays feeding the same 

feeder are taken as system states. The second and the fourth virtual measurements 

listed above utilize CB statuses and form the virtual measurements related to the 

current magnitudes and the current angles. The first and the third virtual measurements 

listed above utilize CB statuses and form the virtual measurements related to the 

voltage magnitudes and the voltage angles. 

In short, before the execution of topology error processing function based on the 

substation topology and breaker statuses, the virtual voltage and virtual current 

measurements are generated and then added to the measurement function, h and to the 

measurement Jacobian, H. Thus, the redundancy of the power substations is improved 

with this process. The indexes of the virtual measurements are stored separately for 

the detection of topological error. After the implementation of the virtual 

measurements in the state estimation solver and later on the execution of state 

estimation process, topology error processing function can be performed.  

In this thesis, the topology error processing is performed by the utilization of largest 

normalized residual test. Thus, the topology error processing task is actually a part of 

the bad data processing function. Firstly, the virtual and the analog measurements are 

processed in the state estimation solver, then the system estimates are attained based 

on the measurements. Later, measurement residuals and the objective function (J) are 

calculated after the completion of the state estimation process. After that, the bad data 

processing function is started. Just like the analog measurements, the virtual 

measurements which are generated based on the CB statuses are processed in the bad 

data processing function. Firstly, the virtual and the analog measurements are 
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processed in the Chi Squares Test for detection of the bad data. Later, all measurement 

set is processed by using the Largest Normalized Residual Test which is a more 

accurate test for the detection of bad data. If residuals of any measurement whether 

virtual or analog measurement are greater than identification factor c (3 in this 

application), it is said that there is bad data in the measurement set. Indexes of the 

analog measurements and the virtual measurements are kept separately for the 

differentiation of the bad data in the analog measurement sets and the topological 

errors. After the detection of the bad data in the complete measurement set, the index 

of the measurement which has the highest normalized residual value are checked for 

the determination of whether there is a bad data in the analog measurements or there 

is a CB status error in other words there is a topological error.  

In brief, the topology error processor can detect topological errors by utilizing the 

results of the largest normalized residuals test function inside the bad data processor 

function. If there is a topological inconsistency at a substation, the measurement 

residual value of the corresponding virtual measurements will be larger than the other 

measurements. Since in this case, the index of the bad data amongst the indexes of 

virtual measurements, the algorithm states that there is a topology error in the system. 

Although the method can find that in which feeder there is a topological error, the 

exact location of topological error in other words openness/closeness information of 

which feeder bay is erroneous cannot be determined since virtual measurements on 

feeder bays behave similar to k-tuple critical measurements. Similar to k-tuple critical 

measurements, the detection of topological errors for virtual measurements is possible 

but the identification of topological errors for virtual measurements is not possible at 

substation level. 
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3.3 Chapter Summary and Comments 

The details of the proposed WLS based substation level state estimation and topology 

error processing method is given in this chapter. Firstly, the importance and the 

necessity of substation level state estimators and topology error processors are 

reviewed briefly. Later, substation measurements and system states, which are the 

primary inputs and outputs of a state esimator, are stated. After that, the methodology 

of the applied WLS based substation level state estimation and topology error 

processing method is explained in detail. Topology processor, observability analyzer, 

state estimation solver, bad data detection-identification function and topology error 

processing function are the sub functions of the proposed method. In this chapter, 

formulas and details of sub functions of the proposed substation level state estimator 

and topology error processor are stated as well.  

The proposed algorithm can perform the substation level state estimation task, the bad 

data detection and identification tasks, and the topology error detection task 

successfully. However, the algorithm cannot perform the topology error identification 

task exactly. The exact location of topological errors in other words erroneous circuit 

breaker statuses cannot be identified since virtual current and voltage measurements 

on normal feeder bays and transfer buses, bus couplers constitute a structure similar 

to the k-tuple critical measurements. Thus, although with the proposed method the 

topological inconsistencies can be detected and even in which feeder there is a 

topological inconsistency present can be stated, the identification of the exact location 

of topological errors is not possible similar to k-tuple critical measurements. 
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CHAPTER 4  

4 NUMERICAL VALIDATION 

In this chapter, performed simulations and their results are examined in terms of the 

proper functionality of the proposed method and the convenience of results to the 

determined performance metrics and the success criterion. For these reasons, 

substation level state estimation and topology error processing method was applied 

for various substation scenarios for different test cases. Two main substation test 

scenarios are formed which are called Large Scale Substation Scenario and Small 

Scale Substation Scenario. The generated test cases are implemented to these 

substation scenarios. The requirements and the design of the proposed algorithm are 

verified through results of test cases. 

4.1 Simulation Scenarios 

In the study of the algorithm, two main substation scenarios are generated for the test 

of events with general and special cases. They are called large scale substation 

scenario and small scale substation scenario. These scenarios are formed for the testing 

of performance and the functionality analysis of the proposed substation level state 

estimation and topology error processing method. The scenarios are based on a real 

substation configuration exists in Turkish Electric System which is one of the biggest 

substations in Turkish Electric System.  

The single line diagram of the base substation in Turkish Electric System is shown in 

Figure 4.1. As seen in the figure, this substation is a big transmission level substation. 

It contains busbars having three different voltage levels which are 380 kV, 154 kV 

and 33 kV. Thus, there are autotransformers and transformers at the substation, and 

by modelling this equipment transformer tap values are estimated. Moreover, there are 
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three busbars at 380 kV and 154 kV voltage levels, the first and second busbars are 

main busbars, and the third busbars at both levels are transfer busbars. Furthermore, 

there are transfer feeders which connect main busbars and transfer busbars at 380 kV 

and 154 kV voltage levels. By utilization of transfer feeders, the redundancy at 

substation level has increased and their models are used for bad data analysis and 

topology error processing tasks. As seen in the figure, current feeders are connected 

to all three busbars at 380 kV and 154 kV voltage levels through circuit breakers and 

disconnecting switches. All these branches connecting current feeders to busbars and 

statuses of CBs and DSs are utilized in the proposed algorithm for improving the 

redundancy and the detection of analog measurement errors and topological 

inconsistencies at the substation. 

Large Scale Substation Scenario: This scenario was generated by drawing one of 

the largest substations in Turkish Electric System in the DIgSILENT PowerFactory 

program. The measurement set for this scenario was attained by utilizing the power 

flow solution function of DIgSILENT program. Connectivity and model information 

data are created manually.  

Small Scale Substation Scenario: This scenario was generated by partially drawing 

one of the largest substations in Turkish Electric System in the DIgSILENT 

PowerFactory program.  The measurement set for this scenario was attained by 

utilizing the power flow solution function of DIgSILENT program. Connectivity and 

model information data are created manually.  
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Figure 4.1. Base Substation Configuration 
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4.2 Test Cases and Results 

Test scenarios are generated based on the validation of two different criteria which are 

proper functioning of algorithm functions and whether the algorithm performs the 

desired tasks within the expected performance accuracy. Through test cases whether 

the algorithm design is implemented properly and whether the algorithm meets the 

specified requirements and the accuracy of performance metrics are demonstrated.  

In this section, the simulation graphs and results of test cases, which are implemented 

on large scale substation scenario and small scale substation scenario, are shown. The 

actual system states and estimated systems states are compared through graphs for 

different cases. Moreover, performance metrics are formed for the determination of 

system performance and the system accuracy. The performance metrics and their 

definitions are listed below. 

1. Mean Absolute Error (MAE): State estimators give most possible system states by 

processing available measurements. The measurements can be many type and some 

system states can be measured directly such as voltage phasor values, current phasor 

values and transformer tap values. Thus, comparison of estimated system states with 

true system states in other words measured values of system states can give significant 

information about the performance and the accuracy of the applied state estimator. In 

statistics Mean Absolute Error (MAE) is a measure of error between the estimated and 

observed values. The utilization of MAE for system states as performance metric will 

assist the determination of the performance and the accuracy of the proposed 

substation level state estimation and topology error processing method. MAE metric 

is the sum of absolute differences between the true system states and the estimated 

system states divided by number of system states. Thus, as MAE of the system 

decreases, system states start to converge to true system states. In other words, small 

MAE for a system means that system states are closer to most possible system states 

with respect to the same system which has higher MAE value. The formula of this 

performance metric is shown below in Equation (4.1). 
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𝑀𝐴𝐸 =
∑ |�̂�𝑖 − 𝑥𝑖|

𝑁
𝑖=1

𝑁
   (4.1) 

where: 

 �̂�𝑖 : estimated system states 

𝑥𝑖 : true system states 

𝑁 : number of system states 

2. Objective Function Value: As shown in Equations (2.1) and (2.2), the main aim of 

WLS algorithm is the minimization of the weighted sum of the squares of the 

residuals. Equation (4.2) shows this aim as a formula. Similar to MAE metric, small 

objective function value means more accurate system estimates. 

𝐽(�̂�) = ∑
(𝑟𝑖)

2

𝑅𝑖𝑖

𝑚

𝑖=1

        (4.2) 

Algorithm performance metric results for base case error free large and small scale 

substation scenarios are given in Table 4.1. These performance metrics are calculated 

in the absence of bad data and topological inconsistencies. Thus, MAE and objective 

function values for both scenarios are remarkably small, in other words nearly zero. 

These facts mean that proposed substation level state estimation and topology error 

processing method operate properly in the desired accuracy. 

Table 4.1. Algorithm Performance Metric Results for the Scenarios 

Metrics Small Scale Substation Large Scale Substation 

Mean Absolute Error 9.2465e-06 8.4923e-06 

Objective Function Value 2.4436e-05 3.3322e-05 

 

System states of the proposed substation level state estimation and topology error 

processing method consists of real part of voltage phasors of busbars, imaginary part 

of voltage phasors of busbars, real part of current phasors of feeders, imaginary part 

of current phasors of feeders and transformers tap values. The x axes of below graphs 
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represent those system states. For distinguishing the system states and better 

understanding of the effects of bad data on related system states, the system states and 

corresponding system state numbers are explained in Table 4.2. 

Table 4.2 System State Numbers and Corresponding System States Types for the Scenarios 

System State Types System State Numbers for 

Small Scale Scenario 

System State Numbers Large 

Scale Scenario 

Real part of busbar voltage phasors                   1…7                     1…7 

Imaginary part of busbar voltage 

phasors 

8…14 8…14 

Real part of feeder current phasors 15…27 15…33 

Imaginary part of feeder current 

phasors  

28…40 34…52 

Transformer tap values 41…43 53…55 

 

The results of algorithm performance metrics are given in Table 4.1. These metrics, 

MAE and objective function values, give information about the general performance 

and the accuracy of the state estimator. The individual situation of the estimated 

system states compared to true system states and their deviations from the true system 

states cannot be achieved by just examining the proposed performance metrics. Thus, 

in order to perform this task, estimated system states and true system states, and their 

differences have to be compared and demonstrated individually. The estimate of each 

system states and their corresponding true values are compared in Figure 4.2 and in 

Figure 4.4, respectively for small scale substation and large scale substation scenarios. 

As shown in these figures, values of each system states and their corresponding true 

values are nearly the same. The differences between the estimate of each system states 

and their corresponding true values are shown in Figure 4.3 and in Figure 4.5, 

respectively for small scale substation and large scale substation scenarios. These 

figures give deeper insight about the comparison of true system states and estimated 

system states. If those figures are examined carefully, it is seen that the biggest 

differences between the true system states and the estimated system states exist among 

the transformer tap values. The reason for this fact is that the redundancy of 
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transformer tap values are smaller compared to voltage and current system states, and 

there are only transformer active and reactive power measurements which are related 

to transformer tap values. Moreover, the differences between the true current related 

system states and the estimated current related system states are higher compared to 

voltage related system states, the reason for this situation is that higher standard 

deviation values are assigned to current measurements, as a result weight of current 

measurements are smaller than weight of voltage measurements in the measurement 

sets. Thus, current related measurements have smaller weight and as a results current 

related system states have higher deviation from the true system states. Although, 

there are differences between true system states and estimate of system states, once 

the below four figure are examined carefully, it is seen that true system states and 

estimated system states are nearly equal, and the differences between true system 

states and estimated system states are quite small, in other words almost zero for each 

system states. As a result, in consideration of above mentioned extractions and below 

figures, it can be said that proposed substation level state estimation and topology 

error processing method operate properly and with a quite well accuracy in 

fundamental bad data and topological error free base case for both scenarios. These 

results and conclusions comprehend the base test case, which is observable, bad data 

and topological error free case, and mainly related to proper functionality of the state 

estimation solver, which is the core of proposed algorithm. The proper functionality, 

simulation results and performance metrics of other functions of the proposed 

algorithm, which are topology processer function, observability analysis function, bad 

data processing function and topology error processing function, are analyzed and 

shown in the following sub-sections in detail. 
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Figure 4.2 Small Scale Scenario Base Case - Comparison of True System States and Estimated System 

States 

 

Figure 4.3 Small Scale Scenario Base Case - Differences Between True System States and Estimated 

System States 
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Figure 4.4 Large Scale Scenario Base Case - Comparison of True System States and Estimated System 

States 

 

Figure 4.5 Large Scale Base Case - Scenario Differences Between True System States and Estimated 

System States 
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4.2.1 Topology Processor Correctness Test and Results 

Proper functioning of the topology processor function of the proposed substation level 

state estimation and topology error processing method is controlled by Topology 

Processor Correctness Test. This test was carried out using the connectivity data of 

the large scale substation scenario and the small scale substation scenario. The output 

of the topology processor is compared with the single line diagrams of the large scale 

substation and the small scale substation scenarios. 

Topology processor generates system topology by using the connectivity data of a 

substation. Substation level topology processer proposed in this thesis connects 

system states to system measurements. Feeders, feeder bays and busbars are connected 

together by topology processor. In this manner, system measurements and system 

states are processed in state estimation solver function. The output of the topology 

processor represents a modified single diagram of a substation in a matrix form. If this 

modified single diagram is compared with the single line diagrams of the large scale 

substation or the small scale substation scenarios, it can be seen that the algorithm can 

form the substation level system topology correctly. 

4.2.2 Observability Analysis Test and Results 

Observability analysis ability of the proposed substation level state estimation and 

topology error processing method is controlled by Observability Analysis Test. The 

test was performed by utilizing the redundant and irredundant measurement sets of the 

large scale substation scenario and the small scale substation scenarios as input to the 

proposed method. 

Observability analysis function determines whether the system is fully observable or 

partially observable. In other words, this function express that whether there is a 

unique solution for state estimation process. This function performs observability 

analysis by using the rank of Jacobian matrix, H. The test was performed with the 

redundant and irredundant measurement sets for two scenarios. Rank of H matrix is 
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equal to number of system states, n for redundant measurement sets which means that 

the system is observable. On the other hand, rank of H matrix is smaller than number 

of system states, n for irredundant measurement sets which means that the system is 

unobservable. As a result of these tests, it is seen that the algorithm determines the 

systems which do not have sufficient measurement redundancy, that is, the systems 

which are not observable. 

4.2.3 Bad Data Detection-Identification Test and Results 

Bad data analysis ability of the proposed substation level state estimation and topology 

processing method is controlled by Bad Data Detection-Identification Test. The test 

was performed by utilizing the measurement sets including bad data for the large scale 

substation scenario and the small scale substation scenario as input to the proposed 

method. 

Bad data detection and identification function performs the detection of bad data and 

identification of bad data tasks if the system has sufficient measurement redundancy. 

Bad data appearing in critical measurements cannot be detected and identified. 

Moreover, bad data appearing in critical pair measurements and critical k-tuple 

measurements can be detected but cannot be identified. These are the detection and 

identification limits of the bad data analysis function. In this thesis, measurements sets 

of scenarios are intentionally disarranged and bad data involving measurement sets 

are generated. Many bad data including measurement combinations are formed and 

bad data detection-identification capabilities of the proposed algorithm were tested on 

those measurement sets for both scenarios.  

Proposed substation level state estimation and topology error processing algorithm 

can detect and identify bad data if bad data is not in the critical, critical pair and critical 

k-tuple measurements. Moreover, after the detection and identification of bad data, 

proposed algorithm corrects the erroneous measurement by subtracting the estimated 

error from the erroneous measurement. 
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Bad data detection-identification function performs its task on many test cases. Some 

of the results of these tests are shown below. In that cases, one of the voltage 

measurements of both scenarios are intentionally corrupted. The true and the corrupted 

measurement values are shown in Table 4.3. The real part of voltage phasor 

measurement of the second main busbar at 380 kV level includes bad data at small 

scale substation scenario. On the other hand, the real part of voltage phasor 

measurement of the first main busbar at 380 kV level includes bad data at large scale 

substation scenario. 

The state estimation is firstly operated for error free measurement sets for both 

scenarios. After that state estimation is carried out for measurement sets with bad data 

for both scenarios. Finally, the estimation process is completed with the measurement 

sets whose bad data are corrected for both scenarios. The results of the state estimation 

for error free measurement sets constitute reference points for the comparison of 

performance metrics for bad data including measurement sets. Performance metrics, 

MAE and objective function value, are calculated for all these three cases for 

determination and comparison of the system performance in the presence of bad data. 

Simulations of both scenarios and results of simulations are shown below. 

Table 4.3. BD Analysis Test Case Erroneous Voltage Values for the Scenarios 

Scenario Real Part of Voltage Phasor  

Without Bad Data 

Real Part of Voltage Phasor  

With Bad Data 

Small Scale Substation 215.005 235.005 

Large Scale Substation 219.393 249.393 

 

4.2.3.1 Simulation Graphs for the Test Cases 

In this part, simulation results of measurement sets including bad data and 

measurements sets with corrected bad data for both scenarios are compared with the 

true system states in order to evaluate the performance and the accuracy of the 

proposed method in the presence of bad data. The estimated system states for 
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measurement set including bad data and measurement sets with corrected bad data are 

compared with true system states in Figure 4.6 and in Figure 4.8, respectively for small 

scale substation and large scale substation scenarios. The deviation of system states 

for measurement set including bad data and measurement sets with corrected bad data 

from the true system states are shown in Figure 4.7 and in Figure 4.9, respectively for 

small scale substation and large scale substation scenarios. As shown in the figures, 

values of each system states and their corresponding true values are nearly the same 

except from erroneous measurement related system states for measurement set 

including bad data and measurement sets with corrected bad data. As deviation of each 

system states from corresponding true system states are examined, the biggest 

deviations occurs at erroneous measurement related system states, which are second 

voltage system state for small scale scenario and first voltage system state for large 

scale scenario.  

The system states, especially erroneous measurement related system states, diverge 

from true system states in the presence of bad data in the measurement sets, since 

weighted least squares method is not robust against bad data. In this thesis, this 

problem is tackled by the bad data correction process in which erroneous measurement 

are corrected by subtracting the estimated error from the erroneous measurement. The 

effect of bad data correction process can be seen from the below figures. After the 

correction of bad data all system states, including erroneous measurement related 

system states, converge to true system states and deviation of the estimated system 

states from the true system states decrease significantly.  
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Figure 4.6. Small Scale Substation Scenario Bad Data Analysis - Comparison of System State Values 

 

Figure 4.7. Small Scale Substation Scenario Bad Data Analysis - Comparison of Deviation of System 

States 
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Figure 4.8. Large Scale Substation Scenario Bad Data Analysis - Comparison of System State Values 

 

Figure 4.9. Large Scale Substation Scenario Bad Data Analysis - Comparison of Deviation of System 

States 
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4.2.3.2 Results of Performance Metrics 

The performance and the accuracy of substation level state estimation and topology 

error processing method can be evaluated by examining the specified performance 

metrics. Performance metrics of scenarios and their values are shown in Table 4.4. As 

shown in the below table, MAE and objective function values for the error free case 

are quite small compared to other two cases, since system states are estimated quite 

accurately for error free case. If there is erroneous measurement in the measurement 

sets, MAE and objective function values increase enormously for both scenarios and 

estimated system states diverge from true system states.  After the correction of bad 

data in the measurement sets, MAE and objective function values decrease compared 

to measurements including bad data case and estimated system states converge to true 

system states with relatively good accuracy. However, even after the correction of bad 

data from measurement sets, performance metric values are still quite bigger than error 

free measurement sets. As seen in performance metrics and simulation graphs of 

system states, bad data in measurement sets causes deviation from true system states 

and decreases the accuracy of estimation. This side effect is eliminated and decreased 

by the correction of bad data process as shown in the figures and below table. 

Table 4.4. Bad Data Analysis Performance Metrics for the Scenarios 

Scenarios State of Bad Data J (Objective Function 

Value) 

MAE (Mean Absolute 

Error) 

 

Large Scale Substation 

Without Bad Data 3.3322e-05 8.4923e-06 

With Bad Data 9478.4 0.0114 

Bad Data Corrected 0.2506 5.7853e-05 

 

Small Scale Substation 

Without Bad Data 2.4436e-05 9.2465e-06 

With Bad Data 69.9713 0.0050 

Bad Data Corrected 2.0505 8.2831e-04 
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4.2.4 Topology Error Detection Test and Results 

Topology error detection ability of the proposed substation level state estimation and 

topology error processing method is controlled by Topology Error Detection Test. The 

test was performed by utilizing the measurement sets including topological error and 

topological error free measurement sets of the large scale substation scenario as input 

to the proposed method. 

Topology error detection function of the proposed substation level state estimation 

and topology error processing method detects the topological inconsistencies at a 

substation if the measurement set is redundant enough. In large scale substation 

scenario, first and second busbars at 380 kV level have two voltage magnitudes and 

two voltage angle measurements. On the other hand, in small scale substation scenario, 

the first and second busbars at 380 kV level have only one voltage magnitudes and 

one voltage angle measurements. If there are topological inconsistencies at the 

substation, virtual current or voltage related measurements are generated based on CB 

and DSs statuses. If there is only one topological error at the substation, virtual 

measurements will have two components which are real part and imaginary part of 

current or voltage virtual measurements. These virtual measurements are related to 

current or voltage related system states. In large scale scenario, number of analog 

measurements of first and second busbars at 380 kV level are twice the number of 

virtual measurements related to those busbars. In small scale scenario, number of 

analog measurements of first and second busbars at 380 kV level equal to the number 

of virtual measurements related to those busbars. Thus, redundancy of small scale 

substation scenario is less than large scale substation scenario. Since small scale 

substation scenario does not have sufficient measurement redundancy for topological 

error processing, topology error detection test is only performed on large scale 

substation scenario. 

The generated virtual current and voltage measurements in the presence of topological 

error at the substation depend on more than one CB statuses. Virtual voltage 

measurements in feeder bays, virtual current measurements in feeder bays, virtual 
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voltage measurements in transfer buses and bus couplers, and KCL current 

measurement equations all are created based the openness and closeness relation of at 

least two branches. In addition, CB statuses of these branches does not have different 

weights and weight of their statuses are equal. Thus, similar to k-tuple critical 

measurements, for virtual measurements the detection of topological errors is possible 

but the identification of topological errors is not possible due to coupling between CB 

statuses of at least two branches. These are the detection and identification limits of 

the topology error detection function. 

In this thesis, different topological errors are generated for the determination of the 

performance of the topology error processing function of the proposed algorithm. 

Many topological error including measurement combinations are formed and 

topological error detection capabilities of proposed algorithm were tested on those 

measurement sets for large scale substation scenario. Some of the results of these tests 

are shown below. In that cases, some of the CB statuses are intentionally given as 

erroneous. Firstly, CB statuses of the transfer feeder at 380 kV level are given 

incorrectly. Secondly, CB statuses of one of the feeders at 380 kV level are given 

incorrectly. The true and the erroneous CB statuses of test cases are given in detail in 

Table 4.5.  

Table 4.5 Topology Error Detection Analysis Topological Error Locations and Branch Statuses 

Topological 

Error Location 

True Statuses Erroneous Statuses 

 

 

 

Transfer Feeder 

From Node To Node Status 

1 11 0 

2 11 0 

3 11 0 

 

From Node To Node Status 

1 11 1 

2 11 1 

3 11 0 

 

 

 

 

Feeder Bays 

From Node To Node Status 

1 6 0 

2 6 1 

3 6 0 

 

From Node To Node Status 

1 4 0 

2 4 0 

3 6 0 

 



 

 

97 

 

The state estimation is firstly performed for topological error free measurement set for 

large scale substation scenario. Then, state estimation is carried out for above 

described topological error including measurement sets. The results of the state 

estimation for topological error free measurement sets constitute reference points for 

the comparison of performance metrics for topological error including measurement 

sets. Performance metrics, MAE and objective function value, are calculated for all 

these three test cases for determination and comparison of the system performance in 

the presence of topological error. Simulations of test cases for large scale substation 

scenario and results of simulations are shown below. 

4.2.4.1 Simulation Graphs for the Test Cases 

In this part, simulation results of measurement sets having topological errors at 

different locations are compared with the true system states in order to evaluate the 

performance and the accuracy of the proposed method in the presence of topological 

error. The estimated system states for measurement sets including erroneous CB 

statuses are compared with true system states in Figure 4.10 and in Figure 4.13, 

respectively for topological error at transfer feeder and topological error at feeder bays 

test cases. The deviation of system states for measurement sets including topological 

errors from the true system states are shown in Figure 4.11and in Figure 4.14, 

respectively for topological error at transfer feeder and topological error at feeder bays 

test cases. Finally, normalized residual values of measurements for test cases having 

topological error at transfer feeder and topological error at feeder bays test cases are 

show in Figure 4.12 and in Figure 4.15. 

As shown in the figures, values of each system states and their corresponding true 

values are nearly the same except from topological error related system states for two 

topological error including test cases of large scale substation scenario. The first 

busbar and the second busbar at 380 kV level at large scale substation scenario have 
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different voltage measurement values. Thus, their true states also have different 

values.  

In the first test case, according to transfer feeder statuses which is given incorrectly, 

the real and imaginary part of voltage states of those busbars should be equal. In order 

to represent the topological data given in transfer feeder, virtual busbar voltage 

measurements equating specified busbars are generated based on the status data on the 

transfer feeder. Then, these virtual measurements are added to the measurement 

function, h and the measurement Jacobian, H. As shown in Figure 4.10 and in Figure 

4.11, values of each system states and their corresponding true values are nearly the 

same and the biggest deviations from true system states occurs amongst topological 

error related system states, which are first and second system states representing the 

real part of busbar voltage of first and second busbars at 380 kV level, and transformer 

tap values related to those busbars. As shown in Figure 4.12, the measurement having 

the biggest normalized residual value is the 95th measurement which is the virtual 

measurement generated based on the equality in the transfer feeder.  

In the second test case, according to feeder bay statuses which are given incorrectly, 

the real and imaginary part of voltage states of those busbars should be equal to zero. 

In order to represent the topological data given in feeder bays, virtual current feeder 

measurements are generated based on the status data on the feeder bays. Then, these 

virtual measurements are added to the measurement function, h and the measurement 

Jacobian, H. As shown in Figure 4.13 and in Figure 4.14, values of each system states 

and their corresponding true values are nearly the same and the biggest deviations 

from true system states occurs amongst topological error related system states, which 

are current states representing the real and imaginary part of feeder bay branch 

currents of the erroneous feeder bays. As shown in Figure 4.15, the measurements 

having the biggest normalized residual value are the 21th,28th, 29th and 30th 

measurements which are the virtual current measurements generated based on the 

statuses data of the feeder bays feeding the same feeder. 
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As a result, in consideration of above mentioned extractions and below figures, it can 

be said that the biggest deviation in system states occur at system states related to 

topological errors and the system states, especially erroneous measurement related 

system states, diverge from true system states in the presence of topological error in 

the measurement sets. The proposed algorithm can detect the topological errors by 

utilizing the virtual measurements and normalized residual test. As shown in the 

figures, the biggest normalized residuals values for each topology error including test 

cases correspond to the virtual measurements which are generated based on erroneous 

CB statuses. By the utilization of this fact and the normalized residual test, topological 

error in the test cases are detected and due to the specified structure of topological 

virtual measurements exact location of topological errors cannot be identified. Since 

the topological errors cannot be identified, topological inconsistencies in the 

measurement set cannot be removed or corrected.  

 

Figure 4.10 Large Scale Substation Scenario Topology Error Detection - Comparison of True System 

States and Estimated System States for Topological Error in Transfer Feeder 
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Figure 4.11 Large Scale Substation Scenario Topology Error Detection - Differences Between True 

System States and Estimated System States for Topological Error in Transfer Feeder 

 

Figure 4.12 Large Scale Substation Scenario Topology Error Detection - Normalized Residual Values 

of Measurements for Topological Error in Transfer Feeder 
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Figure 4.13 Large Scale Substation Scenario Topology Error Detection - Comparison of True System 

States and Estimated System States for Topological Error in Feeder Bays 

 

Figure 4.14 Large Scale Substation Scenario Topology Error Detection - Differences Between True 

System States and Estimated System States for Topological Error in Feeder Bays 
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Figure 4.15 Large Scale Substation Scenario Topology Error Detection - Normalized Residual Values 

of Measurements for Topological Error in Feeder Bays 

4.2.4.2 Results of Performance Metrics 

The performance and the accuracy of substation level state estimation and topology 

error processing method can be evaluated by examining the specified performance 

metrics. The performance metric values for topology error processing test cases are 

shown in Table 4.6.  

Table 4.6. Topology Error Detection Analysis Performance Metrics for the Test Cases 

Topological Error Location J (Objective Function 

Value) 

MAE (Mean Absolute 

Error) 
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Topological Error in Transfer 

Feeder 

202.6659 0.0012 

Topological Error inside a Feeder 4.9576e+04 0.0763 

0.00E+00

2.00E+01

4.00E+01

6.00E+01

8.00E+01

1.00E+02

1.20E+02

1.40E+02

1.60E+02

1.80E+02

1 4 7 1013161922252831343740434649525558616467707376798285889194

N
o

rm
al

iz
e

d
 R

e
si

d
u

al
 V

al
u

e
s

System Measurements

Normalized Residual Values of Measurements



 

 

103 

As shown in the table, MAE and objective function values for the error free case are 

quite small compared to topological error including test cases, since system states are 

estimated quite accurately for topological error free case. If there is CB status error in 

the measurements, MAE and objective function values increase enormously for both 

topological error including test cases and the estimated system states diverge from true 

system states.  As seen in performance metrics and simulation graphs of system states, 

topological error in measurement sets causes deviation from true system states and 

decreases the accuracy of estimation. 

4.3 Chapter Summary and Comments 

In this chapter, the proper functionality, the performance and the accuracy of the 

proposed substation level state estimation and topology error processing method are 

analyzed numerically by the utilization of different test cases on generated scenarios. 

The performance metrics, MAE (Mean Absolute Error) and J (Objective function 

value), are formed for the determination of system performance and the system 

accuracy. First of all, the algorithm performance metrics are calculated for bad data 

free and topological error free base test cases for both scenarios. The performance 

metrics for both scenarios are figured out as nearly zero. In addition to the performance 

metrics, true system states and estimated system states are nearly equal, and the 

differences between them are quite small, in other words almost zero for each system 

states. These facts mean that the state estimation solver of the proposed algorithm 

function properly with a quite well accuracy. 

After the testing the proper functionality and the performance of the core of the 

proposed algorithm, the state estimation solver, with fundamental bad data and 

topological error free measurement sets for both scenarios, the proper functionality, 

simulation results and performance metrics of the sub functions of the proposed 

algorithm are analyzed and validated numerically.  
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Firstly, the topology processor function is tested by comparing of the output of this 

function, which is a modified single diagram of a substation in a matrix form, with the 

single line diagrams both scenarios.  

Secondly, the observability analysis function is tested by utilization of the rank of 

Jacobian matrix, H to the redundant and irredundant measurement sets of both 

scenarios. Rank of H matrix is equal to number of system states, n for redundant 

measurement sets i.e., for observable systems and is smaller than number of system 

states, n for irredundant measurement sets i.e., for unobservable systems. 

Thirdly, the bad data detection-identification function is tested by utilizing the 

measurement sets including bad data for both scenarios. This function performs the 

detection and identification of bad data tasks if the system has sufficient measurement 

redundancy. The proposed algorithm can detect and identify bad data if bad data is not 

in the critical, critical pair and critical k-tuple measurements. Moreover, the proposed 

algorithm corrects the erroneous measurement by subtracting the estimated error from 

the erroneous measurement. In the presence of bad data, the performance metric 

values grow and get worse, the deviations of estimated system states from true system 

states increase as well. In short, the estimated system states, especially bad data related 

system states, diverge from true system states and the substation level state estimator 

gives biased system estimates as output in the presence of bad data. 

Lastly, the topology error detection function is tested by utilizing the measurement 

sets including topological error for the large scale substation scenario. This function 

performs the detection topology error task if the system has sufficient measurement 

redundancy. The exact location of topological errors cannot be identified since virtual 

measurements behave similar to k-tuple critical measurements. In the presence of 

topological error, the performance metric values grow and get worse, the deviations 

of estimated system states from true system states increase as well. In short, the 

estimated system states, especially topological error related system states, diverge 

from true system states and the substation level state estimator gives biased system 

estimates as output in the presence of CB status errors. 
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CHAPTER 5  

5 CONCLUSION 

State estimation has made online power system monitoring possible by 

instantaneously estimating the system states. State estimation applications obtain all 

system states based on solely at substation level computations was not possible in 

the past due to the lack of time synchronization between measurements. However, 

the time synchronization issue of measurements is overcome by the advent of PMUs.   

This thesis proposes a substation level state estimator and topology error processor. 

The proposed method relies on the presence of PMU measurements and solves the 

estimation problem with the well-known Weighted Least Squares (WLS) estimator 

due to its prevalence in literature, simplicity in implementation, low computational 

burden and speed. WLS estimators give the most possible system states by 

minimizing the weighted sum of squares of the residuals. 

In literature, substation level state estimation and topology error process are handled 

separately with different algorithms. In this thesis, both substation level state 

estimation process and topology error process are combined and solved with same 

WLS based algorithm. Performing substation level state estimation and topology 

error process together by utilization of PMUs constitutes the main contribution of 

this thesis to the literature.  

The method utilizes both the synchrophasor PMU measurements and conventional 

SCADA measurements. In addition to analog measurements, digital measurements 

in other words breaker statuses are also utilized by the proposed method. Since PMU 

measurements are available at substation level and breaker statuses are utilized by 

the method, instead of voltage magnitude and voltage angles, real part of voltage 

phasors of busbars, imaginary part of voltage phasors of busbars, real part of current 

phasors of feeders, imaginary part of current phasors of feeders and transformers tap 
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values are taken as system states. After that, the estimation problem is reformulated 

with respect to the utilized measurements and chosen system states. The method can 

provide accurate system state estimates, filter the bad data and detect topological 

inconsistencies. The method utilizes the largest normalized residual test for the bad 

data detection-identification and topology error processing tasks. Although the 

method can find that in which feeder there is a topological error, the exact location 

of topological error cannot be determined since virtual measurements on feeder bays 

behave similar to k-tuple critical measurements. Similar to k-tuple critical 

measurements, the detection of topological errors for virtual measurements is 

possible but the identification of topological errors for virtual measurements is not 

possible if the required measurement redundancy is not achieved.  

The computational burden of control centers will be reduced thanks to the proposed 

method, since the topology error processing task which is computationally heavy for 

overall system is performed for each substation individually and the measurements 

which are transmitted to control centers are filtered at substation level. Since 

substation level filtered measurement data is transmitted to regional control centers 

and topological inconsistencies at substations are detected, with the proposed 

algorithm EMS functions will use more accurate data and as a result power system 

will operate better. Moreover, control actions taken in substations will be much more 

precise.  As a result, mainly power substations in power systems and power systems 

as a whole will perform and operate better with the capabilities of the proposed WLS 

based substation level state estimation and topology error processing method. 

Two level state estimation methods propose more reliable systems states than central 

transmission level state estimation methods since they utilize the substation level 

smartness and complete substation level data sets. For these reasons, a two level state 

estimation application which can estimate the power systems in transmission level 

can be utilized as future work. The first level of hierarchical state estimation is 

implemented in this thesis; later state estimation will be performed centrally for 

whole power system with the implementation of the second level of hierarchical state 

estimation as a future work. 
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