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ABSTRACT

ON PASSWORD-BASED AUTHENTICATED KEY EXCHANGE (PAKE)
PROTOCOLS

Tonga, Meryem

M.S., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Ali Doğanaksoy

Co-Supervisor : Dr. İsa Sertkaya

June 2020, 78 pages

Authentication and key agreement protocols play an important role in today’s digital
world. Key agreement methods mostly mimic Diffie-Hellman key exchange protocol,
but unfortunately they are susceptible to man-in-the-middle attacks. Password based
authenticated key exchange (PAKE) protocols promise to handle these key agreement
and authentication without requiring existence of certificate authorities or trusted third
parties. More importantly, PAKE protocols enable agreement on low-entropy pass-
words rather than high-entropy cryptographic keys shared by only involved parties.
Even if PAKE protocols are not widely used in practice, they are already included in
IEFT (RFC), ISO security standards and TLS cryptographic suite. In this thesis, by
following these recent developments, we first present these PAKE protocols in three
forms, namely balanced PAKE protocols, augmented PAKE protocols and password
authenticated key retrieval (PAKR) protocols and within both single and multi server
settings. Particularly, we revisit EKE, SPEKE, PAK, PPK, J-PAKE, SPAKE, SES-
PAKE balanced, and SRP, AugPAKE, OPAQUE, B-SPEKE augmented protocols.
Then, we summarize security attacks to these protocols. Afterwards, detailed expla-
nations of the attacks against these protocols are given. We further present current
state of the art for PAKE protocols. Finally, we draw attention to possible extensions
for PAKE protocols and state currently open questions about the subject.
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ÖZ

PAROLA TABANLI KİMLİĞİ DOĞRULANMIŞ ANAHTAR DEĞİŞİM
PROTOKOLLERİ ÜZERİNE

Tonga, Meryem

Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Ali Doğanaksoy

Ortak Tez Yöneticisi : Dr. İsa Sertkaya

Haziran 2020, 78 sayfa

Kimlik doğrulama ve anahtar anlaşması protokolleri günümüz dijital dünyasında önem-
li bir rol oynamaktadır. Anahtar anlaşması yöntemleri çoğunlukla Diffie-Hellman
anahtar değişim protokolünü taklit ederler fakat maalesef aradaki korsan saldırıla-
rına duyarlıdırlar. Parola tabanlı kimliği doğrulanmış anahtar değişim (PAKE) proto-
kolleri, bu anahtar anlaşması ve kimlik doğrulamasının üstesinden gelmeyi sertifika
yetkililerinin veya güvenilir üçüncü tarafların varlığına ihtiyaç duymadan vaadeder.
Daha da önemlisi PAKE protokolleri, sadece ilgili tarafların paylaştığı yüksek entropi
kriptografik anahtarlardan ziyade düşük entropi şifreler üzerine anlaşmayı mümkün
kılar. Uygulamada PAKE protokolleri yaygın bir şekilde kullanılmasa da halihazırda
IEFT(RFC), ISO güvenlik standartları ve TLS kriptografik paketinde yer almakta-
dır. Bu tez çalışmasında güncel gelişmeleri takip ederek ilk olarak PAKE protokol-
lerini; dengeli PAKE protokolleri, genişletilmiş PAKE protokolleri ve parola doğru-
lamalı anahtar geri alımı (PAKR) protokolleri olarak üç şekilde, tekli ve çoklu su-
nucu ortamlarında takdim ediyoruz. Özellikle dengeli protokollerden EKE, SPEKE,
PAK, PPK, J-PAKE, SPAKE ve SESPAKE’nin; genişletilmiş protokollerden SRP,
AugPAKE, OPAQUE ve B-SPEKE’nin üzerinden geçiyoruz. Sonra bu protokollere
yapılan güvenlik saldırılarını özetliyoruz. Daha sonra bu protokollere karşı yapılan
saldırıların detaylı açıklamaları verilir. Ayrıca PAKE protokollerinin güncel gelişmiş
halini sunuyoruz. Son olarak PAKE protokolleri için olası eklemelere dikkat çekiyor

ix



ve konuyla ilgili çözümlenmemiş soruları belirtiyoruz.

Anahtar Kelimeler: Kriptografi, Kriptografik protokoller, Parola Tabanlı Kimliği Doğ-
rulanmış Anahtar Değişim (PAKE) Protokolleri, Genişletilmiş PAKE, Dengeli PAKE,
PAKE Protokolleri Analizi
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Saygı, Assoc. Prof. Dr. Oğuz Yayla and Assoc. Prof. Dr. Fatih Sulak for their
advices.

I would like to express my special thanks to my husband Muhammed Tonga for his
endless support and patience. He undertook correction of my thesis and helped me in
every moment of this process.

xiii



xiv



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . xxii

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Cryptographic Primitives . . . . . . . . . . . . . . . . . . . 12

2.2.1 Some Definitions . . . . . . . . . . . . . . . . . . 12

xv



2.3 Computational Assumptions . . . . . . . . . . . . . . . . . . 15

2.3.1 Diffie-Hellman Key Exchange . . . . . . . . . . . 15

3 PAKE PROTOCOLS . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 EKE : Encrypted Key Exchange Protocol . . . . . . . . . . . 19

3.1.1 EKE . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.2 RSA-EKE . . . . . . . . . . . . . . . . . . . . . . 22

3.1.3 DH-EKE . . . . . . . . . . . . . . . . . . . . . . 23

3.1.4 ElGamal-EKE . . . . . . . . . . . . . . . . . . . . 24

3.2 SPEKE : Simple Password Exponential Key Exchange . . . . 25

3.3 B-SPEKE : “B ”Extension of SPEKE Protocol . . . . . . . . 28

3.4 SPAKE : Simple Password-Based Encrypted Key Exchange
Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 SRP : Secure Remote Password Protocol . . . . . . . . . . . 31

3.6 AugPAKE : Efficient Augmented Password-Only Authenti-
cation Key Exchange . . . . . . . . . . . . . . . . . . . . . 34

3.7 J-PAKE : Password Authenticated Key Exchange by Juggling 37

3.7.1 J-PAKE Protocol Over a Finite Field . . . . . . . . 37

3.7.2 J-PAKE Protocol up over an Elliptic Curve . . . . 39

3.7.3 Three-Pass Variant of J-PAKE Protocol . . . . . . 39

3.8 OPAQUE Protocol . . . . . . . . . . . . . . . . . . . . . . . 40

3.9 PAK and PPK Protocols . . . . . . . . . . . . . . . . . . . . 43

3.10 SESPAKE : Security Evaluated Standardized Password Au-
thenticated Key Exchange . . . . . . . . . . . . . . . . . . . 46

xvi



4 ANALYSIS OF PAKE PROTOCOLS . . . . . . . . . . . . . . . . . 49

4.1 Analysis of EKE . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.1 Number Theoretic Attack on RSA-EKE . . . . . . 49

4.1.2 Number Theoretic Attack on DH-EKE . . . . . . . 50

4.1.3 Number Theoretic Attack on the ElGamal-EKE . . 51

4.2 Analysis of SPEKE . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Analysis of SPAKE . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Analysis of SRP . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.1 Use of SRP Protocol for TLS . . . . . . . . . . . . 57

4.4.2 Content of Handshake Message . . . . . . . . . . 58

4.4.2.1 SRP extension . . . . . . . . . . . . . 58

4.4.2.2 Server Certificate and Key Exchange . 58

4.4.2.3 Client Key Exchange . . . . . . . . . 59

4.4.3 The Pre-master Secret . . . . . . . . . . . . . . . 59

4.4.4 New Message Contents . . . . . . . . . . . . . . . 60

4.4.4.1 Client Key Exchange . . . . . . . . . 60

4.4.4.2 Server Key Exchange . . . . . . . . . 61

4.5 Analysis of AugPake . . . . . . . . . . . . . . . . . . . . . 62

4.6 Analysis of J-PAKE . . . . . . . . . . . . . . . . . . . . . . 64

4.7 Analysis of OPAQUE . . . . . . . . . . . . . . . . . . . . . 66

4.8 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

xvii



5 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1 Current Directions . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

xviii



LIST OF TABLES

Table 4.1 Balanced PAKE Proposals Overview . . . . . . . . . . . . . . . . . 68

Table 4.2 Balanced PAKE Proposals Computational Costs . . . . . . . . . . . 69

Table 4.3 Augmented PAKE Proposals Overview . . . . . . . . . . . . . . . . 69

Table 4.4 Augmented PAKE Proposals Computational Costs . . . . . . . . . . 70

xix



LIST OF FIGURES

Figure 2.1 Diffie-Hellman Key Exchange . . . . . . . . . . . . . . . . . . . . 16

Figure 2.2 Man-in-the-middle attack on DH . . . . . . . . . . . . . . . . . . 17

Figure 3.1 The Complete EKE Protocol . . . . . . . . . . . . . . . . . . . . . 21

Figure 3.2 RSA-EKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 3.3 DH-EKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 3.4 ElGamal-EKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 3.5 SPEKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 3.6 B-SPEKE Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 3.7 SPAKE1 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 3.8 SRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 3.9 AugPAKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 3.10 J-PAKE Protocol over a finite field . . . . . . . . . . . . . . . . . 38

Figure 3.11 OPAQUE Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 3.12 PAK Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 3.13 PPK Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 3.14 SESPAKE Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 4.1 Impersonation attack on SPEKE [29] . . . . . . . . . . . . . . . . 53

Figure 4.2 Key-malleability attack on SPEKE [29] . . . . . . . . . . . . . . . 54

Figure 4.3 Handshake Message Flow for SRP authentication . . . . . . . . . . 58

Figure 4.4 Pre-master key from server [58] . . . . . . . . . . . . . . . . . . . 59

xx



Figure 4.5 Pre-master key from client [58] . . . . . . . . . . . . . . . . . . . 59

Figure 4.6 Client hello message [58] . . . . . . . . . . . . . . . . . . . . . . 60

Figure 4.7 Client key exhange message [58] . . . . . . . . . . . . . . . . . . 60

Figure 4.8 Server key exhange message [58] . . . . . . . . . . . . . . . . . . 61

xxi



LIST OF ABBREVIATIONS

A-EKE Augmented Encrypted Key Exchange

AKE Authenticated Key Exchange

aPAKE Augmented (Asymmetric) Password Authenticated Key Ex-
change

AMP Authentication via Memorable Password

AugPAKE Efficient Augmented Password-Only Authentication Key Ex-
change

B-SPEKE ’B’ Extension of SPEKE Protocol

CA certificate Authority

CDH Computational Diffie-Hellman Key Exchange

CPSA Cryptographic Protocol Shapes Analyzer

DDH Decisional Diffie-Hellman Key Exchange

DH Diffie-Hellman Key Exchange

DH-OPRF Diffie-Hellman Oblivious Pseudo Random Function

ECC Elliptic Curve Cryptography

EKE Encrypted Key Exchange

J-PAKE Password Authenticated Key Exchange by Juggling

KDF Key Derivation Function

KE Key Exchange

MAC Message Authentication Code

OPRF Oblivious Pseudo Random Function

PAK Password Authenticated Key exchange

PAKE Password Authenticated Key Exchange

PAKR Password-Authenticated Key Retrieval

PIN Personal Identification Numbers

PKI Public Key Infrastructure

PPK Password Protected Key exchange

PRF Pseudo Random Function

RA Registration Authority

xxii



RLWE Ring-Learning-with-Errors

RSA Rivest, Shamir and Addlemen

SESPAKE Security Evaluated Standardized Password Authenticated Key
Exchange

SNP Schnorr NIZK(non-interactive zero-knowledge) Proof

SPAKE Simple Password-Based Encrypted Key Exchange

SPEKE Simple Password Exponential Key Exchange

S-PCCDH Set Password Based Chosen-basis Computational Diffie-Hellman

SRP Secure Remote Password

TLS Transport Layer Security

TTP Trusted Third Party

UKS Unknown Key-Share

ZKP Zero Knowledge Proof

3PAKE Three-party PAKE protocol

xxiii



xxiv



CHAPTER 1

INTRODUCTION

In a network communication, parties try to exchange data or information over a se-

cure channel and this is done by encrypting messages. Hence, involved parties need

to agree on a common key to encrypt and decrypt these messages. "The key ex-

change", also known as key establishment, is a cryptographic mechanism where the

communicating parties exchange cryptographic keys by using symmetric or public

key cryptography.

In many key exchange systems, one of the parties produces the key and sends it to

other who does not have any effect on it. "The key agreement" is a form of key ex-

change where each of communicating parties contribute to computation of the shared

key value.

First key agreement protocol, which is commonly called Diffie-Hellman (DH) key

exchange, was proposed in paper [20], It provides two parties with establishment of

a secret key over an insecure channel without giving information about each other.

After that, consequent communications are encrypted by using this key along with a

symmetric key cryptography.

DH key exchange is utilized in many authentication protocols as a basis and also in

Transport Layer Security’s (TLS) short-lived modes to provide perfect forward se-

crecy [42]. However, it does not provide authentication itself; thus, it can not prevent

a man-in-the-middle attack [39]. An attacker who applies the man-in-the-middle at-

tack can eavesdrop and re-encrypt messages in order to send them to again. Therefore,

the parties should authenticate each other in order to prevent this kind of attack. For
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details of DH and the man-in-the-middle-attack, please see Section 2.3.1.

The general key exchange protocols need to satisfy "forward secrecy" and "security

of session" which are explained below [11].

Forward secrecy: Forward secrecy, which is also named as perfect forward secrecy,

provides a protection for past sessions in order not to reveal the secret keys or pass-

words even if the session’s private keys are compromised afterwards.

Security of session key: Security of session key means that the session key estab-

lished in a key exchange protocol must be known only by related parties.

The process of proving of identity of a user is called as authentication.. This process

runs at the beginning of the application with two different phases which are identifi-

cation and actual authentication. In the identification phase, the user’s identity (user

ID) is provided to the security system so that security system searches user logs in.

In the authentication stages, the user’s identity is checked whether it belongs to the

claimed user. The authentication runs based on three factors:

• Something users know: password, PIN, challenge response parameter.

• Something users have: ID card, security token, smartcard.

• Something users are: fingerprint, voice, biometric.

In general, the authentication is maintained by a certificate authority (CA) trusted

third party (TTP). A TTP is an entity of communities that all parties in the commu-

nity rely to execute a desired service. In some services, TTP should protect and store

a long-term secrets, but it may cause a security flaw when these secrets are compro-

mised. This means that all past and future communications preserved by these secrets

may reveal [4]. A certificate authority (CA) is a foundation or company who assures

the identities of the communicating parties by attaching them to cryptographic keys

via digital certificates. CA is an important part of PKI (see Chapter 2) and it acts as a

TTP.

The traditional communication networks use the concept of client-server interaction

where a user sends his password or hash of the password and the value is stored in
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server’s database. But it gives attacker an opportunity to make an offline dictionary

search and tries possible passwords against the hash value of the true password [66].

The authenticated key exchange (AKE) aims to prevent such vulnerabilities and also

provides authentication of the parties in order to protect information while communi-

cating over insecure networks. The general AKE protocols use digital signatures and

public key encryption which may need higher cost for particular applications [69].

Contrarily, the password-based authentication key exchanges (PAKE) are based on

passwords since they are easier and more convenient to remember rather than high

entropy secret keys so PAKEs do not require any gadgets like smart cards [69]. Also,

they do not require CA or TTP existence.

PAKE protocols generally involves methods such as:

• Balanced password-authenticated key exchange (Balanced PAKE): In bal-

anced PAKE protocols, the server stores the password and this password is

used to establish and authenticate a common secret key by the parties. How-

ever, these protocols can not protect password if the server is compromised.

Examples of balanced PAKE protocols are listed below:

– EKE [9]

– SPEKE [34], [29]

– PAK and PPK [13]

– J-PAKE [31]

– EC-SRP or SRP5 [72]

– SPAKE1 and SPAKE2 [3]

– SESPAKE [54]

EKE and SPEKE are insecure protocols against cryptographic attacks and J-

PAKE, SPAKE1, SPAKE2, SESPAKE, PAK and PPK are known as secure

protocols.

EC-SRP protocol, or called as SRP5, is an implementation of SRP protocol

over elliptic curve cryptography (ECC) groups and it is also a secure PAKE

protocol.
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• Augmented password-authenticated key exchange (Augmented PAKE): In

Augmented PAKE protocols, the client generates a couple of keys which con-

sists of his public and private key by using his password. The public key is

generally the password’s a hashed value and the server uses it to authenticate

the client. Since the server has not any information about a plaintext password

and does not store it, these protocols can provide more security rather than bal-

anced PAKE protocols. But they are also more complex and computationally

expensive to implement.

Examples of Augmented PAKE protocols are:

– SRP [63]

– AugPAKE [52]

– OPAQUE [37]

– Augmented-EKE [10]

– B-SPEKE [12]

– AMP [12]

The Augmented EKE protocol is a variant of EKE protocol that is proposed

by Bellovin and Merrit [10]. Similary, the B-SPEKE and AMP protocols are

two variants of Diffie-Hellman based on EKE protocol. For further information

about B-SPEKE and AMP protocols, reader may see [12].

• Password-authenticated key retrieval (PAKR) protocol: It provides distribu-

tion of the password of the client in n servers while each server holds a partial

share of private keys, such as the Ford and Kaliski methods. Ford and Kaliski

[23] suggested the-first multi-server PAKE protocol and later it is named as

Password-Authenticated Key Retrieval (PAKR). Hence, PAKR protocols can

protect passwords and static keys from compromises of the server which means

that the attacker can not verify a single guessed password and learn anything

about private key, even if he captures management of up to n− 1 servers.

In general, the PAKE protocols, classified as above, applied in two different settings,

namely the single-server setting and multi-server setting.

4



In the single-server setting, the client and server create a common secret key by using

a key exchange protocol. This key is utilized key to mutually authenticate the parties

and also derive keys for symmetric encryption. There are three models of PAKE

which are stated in the paper [66]:

• The password-only model is the first model. Bellovin and Merritt [9] intro-

duced the first example of this model which is called "Encrypted Key Exchange

(EKE)" protocol. In EKE protocol, the communicating parties use a password

as a secret key and use this key in a key exchange process.

• The PKI-based model is the second model presented by Gong et al. [25], and

defined formally by [27]. In this model, the client stores the server’s public key

and shares a password with the server by public key encryption. In this way,

the communication can resist offline dictionary attacks.

• The ID-based model is the third PAKE model that was first given by Yi et al.

[67], [68]. The client is in need of recalling a password with identity of the

server and the server stores the password with a private key which has informa-

tion about its identity [66].

Multi-server PAKE protocols was proposed to be a solution to the compromise of

server of single-server systems. In single-server PAKE protocols, all passwords are

stored in a single server and this causes disclosure of all passwords when the server is

compromised. In multi-server setting, the password is distributed between more than

one server, so it can be protected when one of the server is compromised.

The multi-server PAKE protocols can be categorized as follows:

Threshold PAKE: Ford and Kaliski [23] introduced the first PKI-based threshold

PAKE protocol in which the client’s password is shared with n servers and they col-

laborate in order to generate independent session keys with the client and procure

authentication of the client. This protocol maintains security provided that compro-

mise of t− 1 or fewer servers [66]. Furthermore, the password-only threshold PAKE

protocol, which given by Di Raimondo and Gennaro [19], is in need of compromise

of less than one third of the servers.

5



Two-server PAKE: Two-server PKI-based PAKE protocol was first suggested by

Brainard [14] in which two servers collaborate for the client’s authentication and the

password is protected until compromise of one of the servers. In addition, Katz et

al. [40] introduced a two-server password-only PAKE protocol where two servers

symmetrically authenticate the client. Lately, an ID-based two server PAKE protocol

is presented by Yi et al. [65].

The general two-party PAKE protocols require a collection of enormous numbers

of passwords from every client and thus they limit scope of key exchange [16]. To

address this problem, Steiner et al. [55] first suggested three-party PAKE protocol.

In-three party PAKE protocol, there are a trusted server and two clients sharing a

human-memorable password. For authentication of themselves, two clients consult

to this trusted server when they wish to construct a session key.

The cryptographic attacks that are mentioned in this thesis are summarized below

[11]:

Man-in-the-middle attack: The attacker manages the communication by imperson-

ating two parties while they believe that they make a connection directly over a private

connection.

Offline dictionary attack: The attacker intercepts the information by eavesdropping

the communication and tries to guess the correct password in an offline manner. The

offline dictionary attack can not be detected because it does not require an client-

server participation and a limitation of number of guessed.

Online dictionary attack: There are two types of online dictionary attack which are

called as "undetectable" and "detectable" online dictionary attack. In the undetectable

online dictionary attack, the attacker verifies the guessed password in many times in

an online manner, but the parties can not notice a failed attempt. In the detectable

online dictionary attack, the attacker verifies the guessed password by using an answer

of the server. Thus, a failed attempt of the attacker can be noticed by the parties.

Replay attack: In the replay attack, also called as playback attack, the attacker can

repeat a previous message and/or delay messages.
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Impersonation attack: The attacker impersonates one of the communicating parties

by assuming the identity of that party and tries to cheat other party.

1.1 Related Works

The first PAKE protocol that is named as EKE was introduced by Bellovin and Merrit

[9] in 1992 where the parties carry out an encrypted version of DH. Then, Bellovin

and Rogaway [8] improve their idea and proposed the first formal security model for

authenticated key exchange protocol . Later, M. Abdalla and D. Pointcheval [3] and

V. Boyko, P. MacKenzie, and S. Patel [13] presented their works that have proof in

the random oracle model.

PAKE protocols are simple and efficient to use in the communication areas since they

are in need of only a human-memorable password. However, this property makes

them vulnerable to online and offline dictionary attacks because passwords are gen-

erally selected from a relatively small dictionary. But online dictionary attack can be

prevented by limiting count of login failures.

Besides two-party PAKE protocols, many researchers studied in three-party PAKE

(3PAKE) protocols. The first proposal of 3PAKE protocol was given by Steiner et

al.[55] in 1995. Subsequently, Ding and Horster [22] indicated that this protocol can

not withstand undetectable online dictionary attack in 1995.

In 2000, Lin et al. showed that Steiner et al.’s protocol is also susceptible to offline

dictionary attack and proposed improved protocol [43] in which public key of the

server is used. Moreover, many researchers study on three-party PAKE protocols (e.g

[11], [16], [43], [44]).

In addition, Ford and Kaliski [23] presented the first multi-server PAKE which is

called as Password-Authenticated Key Retrieval (PAKR) in 2000. PAKR protocol

in [23] confides in prior server-authenticated secure channel like SSL and TLS to

provide a protection against offline dictionary attacks, but it can be susceptible to

phishing attacks and web-spoofing attack [53]. For this problem, Jablon [36] sug-

gested a PAKR protocol in 2001 where multiple servers do not require a previous

server-authenticated secure channel.
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M. Bellare, D. Pointcheval, and P. Rogaway presented many alternative, secure PAKE

protocols. In this area, there have been works about variations and security proofs.

These techniques’ present standards can be summarized as follows [60]:

• IETF RFC 2945 includes SRP protocol

• RFC 5931 includes EAP Protocol

• RFC 6124 includes EAP Protocol

• RFC 6617 includes Secure Pre-Shared Key (PSK) Authentication method

• RFC 6628 includes AugPAKE protocol

• RFC 6631 includes Password Authenticated Connection Establishment (PACE)

• IEEE Std 1363.2-2008 includes PAK and SRP protocol

• ISO-IEC 11770-4:2006 includes J-PAKE protocol and AugPAKE protocol

X.Yi et al. [66] presented ID2S PAKE protocol in 2016. They introduced two compil-

ers which provide conversion of any two-party PAKE protocol to a two-server PAKE

protocol based on identity based cryptography. In ID2S PAKE, a password of a client

is respectively divided among two servers so that these servers do not know the pass-

word and the client is authenticated by collaborating servers. Moreover, X.Yi et al.

prove the security of ID2S PAKE protocol without using random oracles. Later, in

2016, Lin Zhang and Zhenfeng Zhang [70] presented an existing related-key attack

for ID2S PAKE protocol. They showed that if one of the servers is compromised, it is

possible to reproduce the key. Moreover, they offered a solution to avoid this threat.

In most of PAKE protocols, the server needs to store a password of the client to

authenticate him but it may cause disclosure of the password if the server is com-

promised. By addressing this problem, in 2017, N. Shafnamol and K.Simi Krishna

[50] introduced a threshold version of ID2S PAKE which is named as signature-based

multi-server PAKE protocol. In [50], the client’s password is divided among n dis-

tinctive servers and then m out of these servers collaborate to authenticate the client

by using signatures.
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Known PAKE protocols can not satify security in IoT setting because they can no

resist to side-channel attacks. For this reason, O.Rua et al. [49] suggested the first

leakage-resilient PAKE (LR-PAKE) protocol in 2017. Their protocol consists of DH

key exchange, LR storage and LR refreshing of LRS and they also prove the security

of the protocol in the standard model.

Mochetti, Resende and Aranha [46] proposed an augmented PAKE protocol which

is called as zkPAKE. It is believed that zkPAKE is convenient especially for banking

implementations in which the server needs to store only hashed value of a password.

Then, [7] introduced an offline dictionary attack against zkPAKE in 2019 and showed

that the protocol is not secureto be used a PAKE protocol.

In addition, in 2019, Hoang et al. [33] proposed Password-based Signcryption Key

Exchange (PSKE) which supplies efficient computation to some proposed PAKE pro-

tocols, like EKE, SRP and J-PAKE, by satisfying all necessities of security. PSKE

protocol can also be used to authenticate users in IoT setting.

1.2 Our Contributions

In recent years, PAKE protocols are popular topics in cryptography. They play an

important role in network communication and many researchers have been working

on them.

In this thesis, we gather these protocols and examine their latest statuses. To do so, we

tabulate properties of some balanced and augmented PAKE protocols with security

analyses of them. That is, we examine EKE, SPEKE, SPAKE, J-PAKE, PAK, SES-

PAKE protocols of which form is balanced PAKE and B-SPEKE, SRP, AugPAKE,

QPAQUE protocols of which form is augmented PAKE. Also, we indicate proposed

cryptographic attacks that are performed on EKE namely "number theoretic attack"

and on SPEKE namely "exponential-equivalence attack", "impersonation attack" and

"key-malleability attack". Moreover, we emphasized which protocols are included in

standards and calculated computational cost of these protocols.

Therefore, we provide accessible, easy to follow and comparable compilation of

PAKE protocols. This study can be considered as an extensive survey on PAKE pro-

9



tocols in recent years. Moreover, by giving algorithm and analysis of each protocol,

detailed examination about PAKE protocols is achieved and presented.

1.3 Organization

The rest of this thesis is organized as follows:

In Chapter 2, we give some notations and cryptographic primitives which are used

in the thesis. We give necessary definitions and then state Diffie-Hellman Key Ex-

change.

In Chapter 3, we introduce some PAKE protocols and their properties. The PAKE pro-

tocols given in this chapter are EKE, SPEKE, B-SPEKE, SPAKE, SRP, AugPAKE,

J-PAKE, OPAQUE, PAK, PPK and SESPAKE.

Augmented EKE protocol is a variant of EKE protocol that is proposed by Bellovin

and Merrit [10]. Similary, the B-SPEKE and AMP protocols are two variants of DH-

EKE protocol. We explain EKE and DH-EKE protocols in Chapter 3, hence we do

not include Augmented EKE protocol and AMP protocol. For further information

about B-SPEKE and AMP protocols, reader may see [12].

Moreover, EC-SRP protocol, or called as SRP5, is an implementation of SRP protocol

over elliptic curve cryptography (ECC) groups. We give details of SRP protocol in

Chapter 3 and reader may get information about EC-SRP in [72].

In Chapter 4, we analyze security of PAKE protocols that are mentioned in Chapter 3.

Moreover, we show how SRP and OPAQUE protocols can be used in TLS protocol.

Then, we give an overview for the protocols and compare computational costs of

them.

In Chapter 5, we present a summary of the thesis and discuss some possible future

work.
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CHAPTER 2

PRELIMINARIES

In this chapter, we first set the notations and give necessary definitions that are going

to be needed in the following chapters. For further details, reader may refer to [39].

2.1 Notation

The list of common notations in this thesis is given below. The notations are special

to the protocol stated at the beginning of the protocol description.

• p : a public large prime number. Unless otherwise stated, all computations are

performed modulo p.

• q : a large prime factor of p− 1

• g : a public primitive root of modulo p (often called as generator)

• Zp : a multiplicative group of integers modulo p

• G : a finite cyclic group with prime order

• x,Gx : a factor of p− 1, a subgroup of Z∗p

• H : a one way hash function

• H′ : a one way hash function mapping arbitrary string into G

• P : a secret password

• K : a session key or common secret key established in the protocol
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In this thesis, the terms client and server are denoted as C and S. The client is gener-

ally an ordinary computer user who can remember only short passwords. The server

is a service or a network program which accepts requests from the client. In some

protocols, we use the classical characters Alice, Bob and Eve and instead of these

terms we denote them as A, B, E respectively.

2.2 Cryptographic Primitives

2.2.1 Some Definitions

Hash function: A cryptographic hash function is a mathematical function that con-

verts a numeric input value (message) to another numeric value (hash output). Hash

function’s input has any size while hash function’s output is always constant sized.

The main property of hash function is being a one-way function; that is, finding in-

verse of the function is computationally infeasible. It also deterministic, means that

hash output of same message is always the same. Moreover, finding two distinct

messages with the same hash output is not possible.

Cryptographic hash functions are quite useful and used in many information security

applications like digital signatures, message authentication (MACs) and authentica-

tion applications.

Throughout the thesis, we denote the hash functions as H: {0, 1}∗ → {0, 1}(Oλ), λ
being the security parameter, which is a collision resistant hash function.

Key Derivation Function: A key derivation function (KDF) is a hash function that is

used to obtain secret keys from a password, a master key or some other secret value.

Furthermore, KDFs can be used to extend the length of a key to enhance security.

Digital signatures: A digital signature is a mathematical method used to verify au-

thenticity of a digital message, software or document. They are used for financial

transaction, software distribution and implementations of electronic signatures.

Digital signatures work on public key cryptography to supply messages’, transmit-

ted over a insecure channel, validation and security. Moreover, they provide non-

repudiation property which means that user (signer) can not claim he did not sign a
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message.

Public key infrastructure: Public key infrastructure (PKI) is a system of procedures,

policies, hardware and software that provides security for public key cryptography.

The main purpose of PKI is to enhance the number of e-services of private and gov-

ernment applications and ensure some cryptographic requirements like strong authen-

tication, non-repudiation, data confidentiality and data integrity.

PKI involves two main functions that are certification and validation. In the certifi-

cation function, the value of the public key is authentically bound an entity. In the

validation function, the certifications are verified whether they are still valid or not.

A complete PKI consists of the following components [5]:

1. Certificate Authority (CA): A certificate is a data model which includes public

key value with corresponding private key value. Every public key certificate

has a digital signature that is related to individual CA. The lifetime of the cer-

tificate is one or two years and it should be abolished when the private key is

compromised.

2. Registration Authority (RA): A registration authority is used to verify demands

of a user for a digital certificate and submit to CA to issue it. RA has one super

administrator who has the access authority for all functions of RA.

3. Certificate generation and Key: RA constitutes a key holder identity so that the

owner of key or CA can transfer the private key to the key holder.

4. Signature generation: The public key certificate is signed with the signature

data by the holder of key.

5. Certificate validation: The cancellation status of the certificate must be con-

trolled by a trusted party.

Zero Knowledge Proof: A zero-knowledge proof (ZKP), or also called as zero-

knowledge protocol, is a mathematical approach which allows verifying data without

revealing any information of that data. That is, the prover can prove a value x to

the verifier without giving anything else about the value x. The purpose of ZKP is
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the prover can demonstrate that they can establish a secure communication without

giving information about input data or computational process.

To illustrate ZKP, suppose B is red-green color-blind and A is not. A has two balls

of different colors, say red and green. She tries to prove to B that they are different

colored without telling which ball is which color. Firstly, she gives balls to B and

he puts the balls behind his back. Then, he selects one of them and displays it to A.

Next, he again puts it behind his back and selects one of the balls to show it to A. He

asks A, the question that "Did I switch the ball?". A can say they were the same color

or not.

The probability of identification of switch or non switch situation is 50% and if they

repeat this processs multiple times (e.g 100), B will be really persuaded that the balls

are in different colors.

A complete ZKP needs to satisfy three features:

• Completeness: If the information is true, the honest prover should convince the

verifier of truth of the information.

• Soudness: If the information is false, the honest prover can not convince the

verifier that the information is true.

• Zero-knowledge: The verifier should not learn anything about the prover’s in-

formation.

Oblivious Pseudo Random Function (OPRF): Oblivious Pseudorandom Function

is a protocol that consists of pseudorandom function family F which is defined be-

tween a S and a C. In the protocol, the S’s input is a key k for PRF function F and

and in domain of F , C’s input is a value x. When the protocol is completed, the client

learns F (k;x) (where k and x are inputs) but does not learn anything about x while

the S learns nothing from the protocol execution [37].
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2.3 Computational Assumptions

The PAKE protocols that are mentioned in this thesis are based on security of crypto-

graphic hash functions and discrete logarithm problem.

A cryptographic hash function is secure if it fulfils three basic properties: collision

resistance, pre-image resistance and second pre-image resistance.

• Being pre-image resistant means that it is difficult to find any message m such

that H = Hash(m) for a given a hash function H.In other words, a crypto-

graphic hash function should be one-way function.

• Being second-pre image resistant implies that it is difficult to find a different

message m2 for a given message m1 such that H(m1) = H(m2).

• Finally, being collision resistant means that it is difficult to find two different

messages m1 and m2 satisfying H(m1) = H(m2).

The discrete logarithm problem may be defined as follows problem’s definition can

be as follows: Suppose that g is a group and < g > is the cyclic group of G generated

by g. For a given g ∈ G and a ∈< g >, the problem aims to find an integer x which

satisfies gx = a.

The discrete logarithm problem’s hardness comes from choice of groups. In crypto-

graphic systems, Z∗p is chosen as a group where p is a prime number, but if p − 1

is product of small prime numbers, the discrete logarithm problem can be solved by

using the Pohlig-Hellman algorithm.

2.3.1 Diffie-Hellman Key Exchange

Diffie-Hellman (DH) key exchange is a cryptographic protocol that enables establish-

ing a shared secret key between two parties and used in order to exchange messages

over an insecure public channel. It was first introduced by Whitfield Diffie and Mar-

tin Hellman [20] and it is known as non-authenticated key agreement protocol but is

used in TLS ephemeral modes to supply forward secrecy and a base for authenticated

protocols.
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As in Figure 2.1, let p and g are publicly known values where p is a large prime

number and g is a generator of a cylic group G in modulo p. At the beginning,

A selects a private random number RA ∈ [0, p − 1] and calculates her public key

A = gRA mod p. Likewise, B selects a private random number RB ∈ [0, p − 1] and

calculates his public keyB = gRB mod p. After sending the public keys to each other,

A calculates the key K = (gRB)RA mod p and B calculates the key K = (gRA)RB

mod p.

A B

secret: RA, K secret: RB, K

A = gRA mod p
g,p,A−−−→ B = gRB mod p

K = BRA mod p B←− K = ARB mod p

(K = (gRB)RA mod p) (K = (gRA)RB mod p)

Figure 2.1: Diffie-Hellman Key Exchange

The security of Diffie-Hellman key exchange arises from difficulty of solving discrete

logarithms if a finite cyclic group G and the g are chosen appropriately. However,

since Diffie-Hellman algorithm does not include authentication of the parties, it has a

vulnerability to man-in-the-middle attack.

To explain the attack, assume there is an attacker E who applies man-in-the-middle

attack:

• A selects a private key RA and sends her public key A = gRA mod p.

• E intercepts A’s message A. She picks a private random number RC and cal-

culates C = gRB mod p then sends her public key C to B with identity of

A.

• B gets A’s E identity with public key C. Thus, B stores A’s client identity with

E’s public key C.

• E sends the public key C to A.

• A calculates a secret key K1 = CRA mod p.
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• E calculates K1 = ARC mod p as well. Therefore, the key K1 is shared by A

and E.

• B calculates a secret key K2 = CRB mod p.

• E calculates K2 = BRC mod p as well. Therefore, the key K2 is shared by B

and E.

• Finally, A thinks that she shared the key K1 with B and similarly B also pre-

sumes that he shared the key K2 with A. But there is no common secret key

between them and E can start to manage messages shared between them.

A E B

A = gRA mod p
A,identityA−−−−−−→ C = gRC mod p

C,identityA−−−−−−→ store C, identityA
B←− B = gRB mod p

K1 = CRA mod p C←− K1 = ARC mod p

K2 = BRC mod p K2 = CRB mod p

Figure 2.2: Man-in-the-middle attack on DH

Figure 2.2 shows man-in-the-middle attack on DH. Moreover, DH is sensitive to the

replay attack and the impersonation attack [39].
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CHAPTER 3

PAKE PROTOCOLS

In this chapter, we introduce some PAKE Protocols and their properties.

3.1 EKE : Encrypted Key Exchange Protocol

3.1.1 EKE

Encrypted Key Exhange (EKE) protocol is the first PAKE protocol introduced by

Bellovin and Merrits [9]. It is a balanced PAKE protocol which is merging of sym-

metric key and public key cryptography. Two parties use a mutual password to ex-

change secret messages which is authenticated with the help of this protocol.

Bellovin and Merrits [9] claims that EKE protects password from offline dictionary

attacks. Here, we show general algorithm of EKE and variants of EKE which are

RSA-EKE, Diffie-Hellman EKE and ElGamal EKE. Then, we describe attacks on

them.

Firstly, we introduce classical key agreement:

• A and B share a secret which is called password P.

• A generates a random key K and computes P(K). Then, she sends the result

P(K) to B.

• B decrypt P(K) and get K, then he sends K(challenge) to A.

Here P(K) a message such that the keyK is encrypted by P by using a symmetric-key

algorithm which the parties agreed on.

19



Note that, if there is an eavesdropper who can record these messages, he can ap-

ply a dictionary attack on P(K) with candidate password P′ and compute K ′ =

P′−1(P(K)) in order to obtain K(challenge). Therefore, this classical negotiation

is sensitive to offline dictionary attack and replay attack. In addition, it shows that all

classical two-party key agreement protocols are impressible to these attacks.

EKE uses public keys to strengthen the classical key agreement. The extended version

of protocol is explained below:

• A generates a public keyEA and a private keyDA randomly. Then, she encrypts

EA in a symmetric cryptosystem by using P, generates P(EA) and sends the

result to B.

• Since they shared password P at the beginning of the protocol, B can obtain EA

from P−1(P(EA)) = EA. After that, he randomly generates a secret key K and

it is encrypted in the symmetric cryptosystem with public keyEA so that he can

produce EA(K). Subsequently, he encrypts EA(K) with password P and sends

the result P(EA(K)) to A.

• A knows P and private key DA, she uses them to obtain K from the equation

DA(P
−1(P(EA(K)))) = K.

• Now, A and B both know public keyEA and secret keyK, B sendsR(challenge)

to A.

However, if there is an eavesdropper who can acquire the values P(EA), P(EA(K))

and K(challenge), he can decrypt P(EA) by using a candidate password P′ and de-

rive a candidate public key E ′A from E ′A = P′−1(P(EA)). However, deciding whether

E ′A is the correct public key makes sense provided that a secret key K ′ is present

and E ′A(K
′) = EA(K) and K ′−1(K(challenge)) are satisfied. Consider that EA and

K are randomly selected from wide key spaces, so even if the space of password is

small, such attacks are expensive to apply [9].

The basic algorithms that are mentioned above are not secure against attacks; thus,

they are enhanced by adding random challenges.

The complete protocol of EKE is described below and indicated in Figure 3.1:
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• A randomly generates a public key EA and uses it to produce P(EA) in a sym-

metric cryptosystem then she sends P(EA) along with her identity (name) to B.

Here, A sends her name in clear form.

• Since they shared password before, B decrypts P(EA) and gets EA. Then, he

produces a secret key K randomly and it is encrypted by using EA then that

results in encryption of P(EA(K)). Afterwards, he sends the result P(EA(K))

to A.

• A decrypts P(EA(K)) and obtains K. She chooses a matchless challenge

challengeA and encrypts it with K to get K(challengeA). Then, she trans-

mits K(challengeA) to B.

• B decrypts message and gets challengeA. He chooses a matchless challengeB

and encrypts two challenges with K to produce K(challengeA, challengeB).

Then, he transmits K(challengeA, challengeB) to A.

• A decrypts message and gets challenges then she compares challengeA with her

own challenge. If there is a matching, she encrypts challengeB and produces

K(challengeB). Then, she sends K(challengeB) to B.

• B decrypts K(challengeB) and compares challengeB with his own challenge.

If it matches, the login process is called successful and login session continues

in the symmetric cryptosystem under the protection of session key K [9].

A B

1. generate EA, P(EA)
P(EA),A−−−−−→

2. decrypt P(EA)
P(EA(K))←−−−−− generate K, P(EA(K))

3. decrypt P(EA(K))

generate challengeA
compute K(challengeA)

K(challengeA)−−−−−−−−→
4. decrypt K(challengeA)

generate challengeB
K(challengeA,challengeB)←−−−−−−−−−−−−−−− K(challengeA, challengeB)

5. decrypt K(challengeA, challengeB)

generate K(challengeB)
K(challengeB)−−−−−−−−→

6. decrypt K(challengeB)

Figure 3.1: The Complete EKE Protocol
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Now, we briefly present three variants of EKE that are presented in [9] and attacks on

them.

3.1.2 RSA-EKE

RSA cryptosystem is composed of a couple of numbers e and n where e is called as

public key while d is private value. n is the multiplication of two large primes p and

q and e is relatively prime to ϕ(n) where

ϕ(n) = ϕ(p)ϕ(q) = (p− 1)(q − 1)

The number d is calculated from ed = 1 (mod(p − 1)(q − 1)). The equations for

message m and ciphertext c are described respectively as c = me mod n and m = cd

mod n.

The design of RSA-EKE is explained below and indicated in Figure 3.2:

• A randomly picks a public value e and a private value d. Since she has RSA’s

public key (e, n), she encrypts e with a common shared password P and sends

her name A, n and P(e) to B.

• B decrypts P(e) by using P and obtains e. Then, a random session key K is

chosen and P(Ke) mod n is calculated using the public key. He transmits result

P(Ke) to A.

• A obtains Ke from the equation P−1(P(Ke))) = Ke and then by using her

private key e, she gets the session key K.

A B

1. public: (e, n)

compute P(e)
P(e),n,A−−−−→

2. decrypt P(e), choose K
P(Ke)←−−− compute P(Ke) mod n

3. compute Ke = P−1(Ke))

4. use K for challenge-response use K for challenge-response

Figure 3.2: RSA-EKE
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Now both A and B has the session key K and they use it to start general challenge-

response process so that they authenticate K.

3.1.3 DH-EKE

The implementation of Diffie-Hellman key exchange is given in Section 2.3.1. It is

a powerful method because solving gRARB mod p is substantially difficult without

knowing the values RA and RB. However, DH can not resist man-in-the-middle

attack. The EKE version of DH can solve this vulnerability.

The implementation of DH-EKE is described below and shown in Figure 3.3:

• A computes (gRA mod p) and encrypts it by password P. Then, she sends P(gRA

mod p) to B with her name A along with the parameters the p and g. Consider,

she transmits her name in clear form.

• Similarly, B computes (gRB mod p) then decrypts P(gRA mod p) by using the

shared password P and produces the session key K from K = (gRA)RB mod

p. At this time, B generates a random challenge challengeB and sends the

parameters P(gRB (mod p)), K(challengeB) to A.

• A decrypts P(gRB (mod p)) and retrieves the value gRB . She also derived the

session keyK fromK = (gRB)RA mod p and uses it to decryptK(challengeB).

Next, she randomly generates a challenge challengeA and producesK(challengeA,

challengeB) then sends it to B.

• B decryptsK(challengeA, challengeB) and checks that if challengeB matches

with his own challenge. If there is a matching, he sends K(challengeA) to A.

• A decrypts K(challengeA) and similarly verifies challengeA.
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A B

1. computes gRA mod p

and P(gRA mod p)
P(gRA ),A−−−−−→

p,g

2. compute gRB mod p
decrypt P(gRA mod p)

compute K = (gRA)RB mod p
compute P(gRB mod p)

K(challengeB)←−−−−−−−−
P(gRB )

generate challengeB

and K(challengeB)

3. decrypt P(gRB mod p)
compute K = (gRB)RA mod p

generate challengeA
and K(challengeA, challengeB)

K(challengeA,challengeB)−−−−−−−−−−−−−−−→

4. verifies K(challengeB)
K(challengeA)←−−−−−−−− send K(challengeA)

5. verifies K(challengeA)

Figure 3.3: DH-EKE

If there is an eavesdropper who can obtain gRA and gRB , he can not approve password

becauseRA andRB are generated randomly. That is, the values (gRA mod p) and (gRB

mod p) also show up randomly. Moreover, it is not feasible to calculate the session

key (K = gRAgRB mod p) even though gRA and gRB are correctly guessed. Thanks

to that reason, DH-EKE can avoid man-in-the-middle attack.

3.1.4 ElGamal-EKE

The ElGamal cryptosystem is a public key cryptosystem which is on the basis of

Diffie-Hellman key exchange. The major property of the system is providing compli-

cation of finding discrete logarithm in a cyclic group.

At first, A and B settle on the parameters p and g. Then, A randomly picks a num-

ber RA, computes H = gRA mod p and she publishes the public key parameters

(G, p, g, h) while keeping RA as a private key.

B randomly picks a number k from 1, ..., g − 1 and generates y1 ≡ gk mod p and

y2 ≡ m(gRA)k mod p where m is an encrypted message. Next, A gets the ciphertext

message (y1y2) and obtains the message m from m = y2(y
RA
1 )−1 mod p.
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Figure 3.4 shows ElGamal-EKE.

A B

1. compute P(gRA mod p)
p,g−−−−−−−−−→

P(gRA modp),A

2. compute (gk mod p)
compute (KgRAk mod p)

X←− X = P(gk mod p, KgRAk mod p)

3. decrypt X
obtain K

4. continue with classical EKE continue with classical EKE

Figure 3.4: ElGamal-EKE

Now, we present the description of ElGamal-EKE:

• A and B agreed on the parameters which are mentioned above. Initially, A

generates P(gRA mod p) by using the password P and sends it with her name

E, the prime p and the generator g.

• B randomly picks a number k then generates (gk mod p) and (KgRAk mod p)

where K is the session key. Subsequently, he encrypts the parameters by P and

sends the result P(gk mod p, KgRAk mod p) to B.

• A decrypts the message P(gk mod p, KgRAk mod p) and obtains the session key

K. Now, she sends her challenge message and they continue with authentica-

tion of the session key K as described in the classical EKE protocol.

If there is an eavesdropper during the operation of the protocol, he can not find the

password since the values RA, K and k are selected randomly; thus, (gRA mod p), (gk

mod p) and KgRAk are also generated randomly.

3.2 SPEKE : Simple Password Exponential Key Exchange

Simple Password Exponential Key Exchange (SPEKE) is a balanced PAKE protocol

that was proposed by D.Jablon [34] and it is recovered version of EKE protocol based

on its weaknesses. It has been currently used in Entrust’s TruePass end-to-end web
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products and Blackberry phones [29]. Moreover, it was included in standard of ISO

11770-4 [1] and IEEE P1363 [26].

We discuss limitations, benefits and security of SPEKE and also present attacks on

the protocol. There are so many attacks on SPEKE, but we especially focus on three

attacks that are called "the exponential-equivalence attack" [71], "the impersonation

attack" and "the key-malleability attack" [29].

The SPEKE protocol uses the following extra notations:

• f(P) : computes a group generator such that g = f(P) = P2 mod p

• EK() : a symmetric encryption function uses key K

The SPEKE protocol is composed of two stages which are called the key exchange

stage and the key confirmation stage. The protocol is shown in Figure 3.5.

The key exchange stage is based on DH key exchange [34]:

• A randomly chooses a uniform secret value RA from Z∗p = {1, ..., p− 1}, com-

putes QA = f(P)RA mod p and sends it to B.

• Likewise, B randomly chooses a uniform secret valueRB from Z∗p = {1, ..., p−
1}, computes QB = f(P)RB mod p and sends it to A.

• A generates the session keyK = H(QRA
B mod p) and B also generates the same

session key K = H(QRB
A mod p).

Note that, the key exchange stage is symmetric and it simplifies security of the stage.

The key confirmation stage is performed to supply parties with the same session key

K [34] :

• A selects a number CA randomly, computes EK(CA) and transmits it to B.

• B selects a number CB randomly, computes EK(CB, CA) and transmits it to A.

• A checks whether CA is the same with her own number, computes EK(CB) and

transmits it to B.
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A B

key exchange stage
select RA ∈ Z∗p select RB ∈ Z∗p

compute QA = f(P)RA mod p
QA−−→ compute QB = f(P)RB mod p

generate K = H(QRA
B mod p)

QB←−− generate K = H(QRB
A mod p)

key confirmation (optional)
select random CA

compute EK(CA)
EK(CA)−−−−→

select random CB
EK(CA,CB)←−−−−−−− compute EK(CA, CB)

verify CA
compute EK(CB)

EK(CB)−−−−−→
verify CB

alternative

compute H(H(K))
H(H(K))−−−−−−→
proof of K

verify H(H(K))

if verification fails
H(K)←−−− abort the stage

verify H(K)

if verification fails
abort the stage

Figure 3.5: SPEKE

• Similarly, B checks CB whether it is the correct number.

The key confirmation stage may be optional and it can be applied by using the session

key K for both encryption and decryption of messages:

• A computes H(H(K)) and transmits proof of K.

• B checks whether H(H(K)) is correct and if it is not, he should aborts the

confirmation stage. Otherwise, he sends H(K).

• A checks whether H(K) is correct and if it is not, she should aborts the confir-

mation stage.
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In the SPEKE protocol, the p − 1 must satisfy the property of having a large prime

factor q in order to protect the protocol from discrete logarithm computations.

In addition, the function f creates a primitive base which may be dangerous to use.

Because the values QA and QB are not encrypted, the attacker can try to test all

candidates in smaller subgroups if f(P) is chosen arbitrary from Gp−1 [34].

3.3 B-SPEKE : “B ”Extension of SPEKE Protocol

B-SPEKE protocol is an augmented PAKE protocol that is introduced by Jablon [35].

Hablon creates “B ”extension of his own SPEKE protocol [34] by using Bellovin

and Merritt’s A-EKE protocol [10] as a basis. In his extended protocol, DH is used

to demonstrate knowledge of the password instead of digital signature. Moreover,

the purpose of the protocol is to prevent an eavesdropper and the man-in-the-middle

attack.

The algorithm of B-SPEKE protocol is given below [12] and Figure 3.6:

A B

1. P1 = H(P)2

select RA ∈ {1, ..., 2L}
compute A = PRA

1 mod p A−→

2. select RB, R′B ∈ {1, ..., 2L}
compute Z = A2RB mod p

B = PRB
1 , B′ = gR

′
B mod p

(B,B′,VB)←−−−−−− VB = H1(A,B,Z,P1)

ZAB = P
R′B
2

3. compute Z = B2RA mod p
verify VB
ZAB = B′P

VA = H2(A,B,Z, ZAB,P1)
vA−→

4. compute K = H0(Z) verify VA
compute K = H0(Z)

Figure 3.6: B-SPEKE Protocol
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1. At the beginning of the protocol, B stores two password images such that

P1 = H(P)2 and P2 = gP. A begins with selecting a random number RA ∈
{1, ..., 2L} where L is a security parameter and computes a public parameter

A = PRA
1 mod p. Then, she sends A to B.

2. B picks numbers RB, R′B ∈ {1, ..., 2L} randomly and computes Z = A2RB

such thatZ 6≡ −1, 0 or 1 mod p. Then, he computesB = PRB
1 mod p,B′ = gR

′
B

mod p, also a verifier VB = H1(A,B,Z,P1) and ZAB = P
R′B
2 . The parameters

B,B′ and VB are sent.

3. A generates Z = B2RA mod p such that Z 6≡ −1, 0 or 1 mod p and verifies VB.

To respond, she must send a knowledge of the DH key ZAB = B′P , but it may

cause a dictionary attack on P when the value ZAB is used with a challenge

value B′. Thus, A sends a hash result VA = H2(A,B,Z, ZAB,P1) that makes

possible to check knowledge of P and Z so SPEKE protocol is extended to

B-SPEKE protocol with this method.

4. B verifies VA and if the verification does not fail, he generates K = H0(Z).

5. Finally, A also generates K = H0(Z).

The security of B-SPEKE protocol depends on DH and the discrete logarithm prob-

lem. However, Jablon [35] does not state formal security proof for the protocol.

3.4 SPAKE : Simple Password-Based Encrypted Key Exchange Protocol

Simple Password-based Key Exchange (SPAKE) is a balanced PAKE protocol that

was introduced by Abdalla and Pointcheval [3]. The purpose of this two-party PAKE

protocol is decreasing the usage of random oracles in the security proof. Abdalla

and Pointcheval expressed two variants of SPAKE which are SPAKE1 and SPAKE2

whose security can be demonstrated under assumption of the difficulty of the com-

putational Diffie-Hellman (CDH) problem in the random oracle model. Also, they

introduce new variant of Diffie-Hellman assumptions and use them to prove security

of their protocols.

Furthermore, since SPAKE1 and SPAKE2 are not in need of ideal ciphers onto a
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group or full domain hash functions, they are easier to implement than other two-

party PAKE protocols.

SPAKE1 is a non-concurrent PAKE protocol that is subject to multi-dimensional ver-

sion of set password-based chosen basis CDH problem (S-PCCDH) in [3]. In the

protocol, the values MA, MB ∈ G are fixed public values such that they ensure the

values of m and m′ are calculated only once. Moreover, IDA and IDB denote the

identities of parties.

The protocol runs with an only key agreement stage after a secret password P ∈ Zq
is shared between the parties:

• A picks aRA ∈ Zq randomly and calculatesA = gRA mod p. Then, she produces

her public value m = MP
AA mod p and sends it to B. Likewise, B picks a

RB ∈ Zq randomly, calculates B = gRB mod p and his public value m′ =MP
BB

mod p. Next, he sends message m′.

• A computes KA = (m′/MP
B)

RA and uses it to produce a session key Ks =

H(IDA, IDB,m,m
′, KA). Similarly, B computes KB = (m/MP

A)
RB and the

session key Ks = H(IDA, IDB,m,m
′, KB). Note that, KA = KB = gRARB .

A shared password P B

select RA ∈ Zq select RB ∈ Zq
compute A = gRA mod p m−→ compute B = gRB mod p

m =MP
AA mod p m′←− m′ =MP

BB mod p

compute KA = (m′/MP
B)

RA KB = (m/MP
A)

RB

Ks = H(IDA, IDB,m,m
′, KA) Ks = H(IDA, IDB,m,m

′, KB)

Figure 3.7: SPAKE1 Protocol

Figure 3.7 shows SPAKE1 protocol. SPAKE2 is a concurrent PAKE protocol which

is based on the CDH problem. SPAKE2 is exactly the same with SPAKE1 protocol.

The only difference is that the production of session key K includes the password P,

that is K = H(IDA, IDB,m,m
′,P, K).
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3.5 SRP : Secure Remote Password Protocol

The SRP protocol is augmented PAKE protocol that was proposed by Thomas Wu

[63]. It is known as a zero-knowledge proof protocol where S does not have to pre-

serve hashed version of the password and C can authenticate S securely. Especially,

C does not send a password itself or any other information, that can be derived from

the password, while authenticating S.

The SRP protocol allows C to authenticate herself to a S without need of transmitting

the password and without trusting third party. Also, it provides to generating a secure

session key so that the parties can transmit encrypted data providing higher security

on top of TLS. Additionally, SRP withstands online and offline dictionary attacks.

Moreover, it ensures forward secrecy [63].

In the protocol, S stores the password in a form {clientname, v, s} where v is a

password verifier and s is a random string utilized as salt of C. The password entries

(x, v) are generated as follows:

x = H(s,P)

v = gx mod p

Note that, the parameter P is C’s password and parties use SHA hash function to

generate the session key K.

The SRP protocol is described below and given in Figure 3.8:

1. C sends his clientname clientname.

2. S gets salt s from password file and transmits s to C. Also, C computes a long

term private key x using password file.

3. After identifying himself to S, C randomly generates a number a ∈ (1, p) and

calculates an ephemeral public key A = ga mod p then transmits it to S.

4. S randomly generates a number b and u, calculates an ephemeral public key

B = v + gb mod p and transmits it to C with the parameter u. The parameter u

is a 32-bit unsigned integer and it is first 32-bits of H(B).
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5. C computes the common S = (B−gx)a+ux mod p and S computes S = (Avu)b.

Actually, the common value S is S = gab+bux mod p.

6. The parties produce the session key K by using K = H(S).

7. Finally, they have to prove that their keys are identical. To ensure this, C sends

M1 = H(A,B,K). Then, S computes his own M1 and compares it with C’s

M1.

8. If there is a matching between M1s, S sends M2 = H(A,M,K) to C. Then, C

verifies M2s and ıf the verification fails, C aborts the authentication [63].

C S

1. clientname−−−−−−→ {clientname, v, s}
2. compute private x = H(s,P)

s←−
3. select a ∈ (1, p)

compute public key A = ga mod p A−→
4.

(B,u)←−−− select b and u

compute public key B = v + gb mod p

5. compute S = (B − gx)a+ux compute S = (Avu)b

(S = gab+bux) (S = gab+bux)

6. compute K = H(S) compute K = H(S)

7. compute M1 = H(A,B,K)
M1−−→ verify M1

8. verify M2
M2←−− M2 = H(A,M1, K)

Figure 3.8: SRP

The authentication is aborted by C if B ≡ 0 mod n and is aborted from S if A ≡ 0

mod p. The parameters p and g can be set at first or C can provide them for C by

sending them in the first message along with the salt s. Moreover, the parameter p

should be a safe prime such that p = 2q + 1 where q is a prime number.

The value B (B = gb + v) plays an important key role in the protocol against an

active dictionary attack. Suppose that there is an attacker who masquerades S and

persuades C to make an authentication attempt and also suppose the value B is just

calculated as B = gb mod p.

• C sends his clientname to the attacker.
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• The attacker has the salt s which was snooped earlier and sends it to C.

• C sends his public exponential residue A.

• The attacker selects random values b and u, computes his own exponential

residue B and sends B to C along with u.

• C generates his own session key K from the S = Ba+ux mod p and sends a

proof of that K to the attacker.

• The attacker imitates network failure or inform C that the password is not cor-

rect.

• The attacker has the valueA, b and a proof ofK. Now, he can guess a password

P′ and compute x′ and v′. Then, he can produce S ′ from S ′ = (Av′u)b and com-

pute K ′ using the formula K ′ = H(S ′). Finally, the attacker checks whether

K ′ is equal to C’s proof of K or not. If they match, the guessed password P′ is

valid [63].

In addition, the value u plays an important role against attacks. Assume, the attacker

has attained value v and masquerades as a fake C and presume that, the value u is

somehow captured.

• The attacker sends C’s clientname to S.

• S sends C’s salt s to the attacker.

• The attacker generates A = gav−u mod p and sends it to S.

• S computes B = v + gb mod p and sends it to the attacker.

• The attacker generates the session key K by using the formula

K = H((B − v)a mod p)

Then, he sends a proof of this K to C.

• S computes his session key :

S = (Avu)b = (gav−uvu)b = gab
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This attack works because the value S does not depend on the long term keys. Hence,

the attacker can calculate it and when the attacker has the same session key, he can

easily imitate C. For this reason, if the value u is publicly known, the protocol be-

comes vulnerable to this attack [63].

SRP protocol is also known as SRP-3 and is included in IEEE P1363 standard [26].

Later, Wu [62] proposed a variant of SRP-3 which is SRP-6 protocol and it is also

standardised in IEEE P1363 standard [26] and ISO standard [59].

For the security analysis of SRP protocol, please see Section 4.4

3.6 AugPAKE : Efficient Augmented Password-Only Authentication Key Ex-

change

AugPAKE protocol is an augmented PAKE protocol that was given by Shin and Ko-

bara [52]. In the general PAKE protocols, the password is chosen from a relatively

small dictionary and it makes them susceptible to offline dictionary attacks. Specif-

ically, the attacker can obtain the password by applying exhaustive searches. The

Augmented PAKE protocol (AugPAKE) is a two-party password authenticated key

exchange protocol such that C keeps low-entropy password secret and the verifier of

the password is registered in S. It provides "resistance to server compromise" which

means that the attacker can not masquerade as C without applying offline dictionary

attack on the verifier of password even if he obtains the verifier from S. Besides pro-

tection for server compromise, it provides security against passive, active and offline

dictionary attacks [52]. Furthermore, it was standardised in the ISO 11770-4 [1].

Before introducing the protocol description, we give notations for the protocol:

• CI : the identity of client such that U ∈ {0, 1}∗ where {0, 1}∗ denotes a set of

finite binary strings.

• SI : the identity of S such that S ∈ {0, 1}∗.

• 0x : a hexadecimal value.

• P : the password of C. It can be used by way of H′(0x00‖CI‖SI‖P).
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• W : the password’ verifier in S. The value W is produced in two ways : W =

gP mod p where w is the clear form of password or W = gP
′ mod p where

P′ = H′(0x00‖CI‖SI‖P).

• M(x) : the function which converts integer x to binary string.

The AugPake protocol comprises of two stages which are called initialization and

protocol execution.

The parties should carry out initialization part securely at the beginning of the pro-

tocol. Firstly, C computes (W = gP
′ mod p) and sends W to S. S registers W as a

verifier of the password w′.

The protocol execution works as follow and it is shown in Figure 3.9:

• C begins with selecting x ∈ Z∗q . Then, C computes (X = gx mod p) and

transmits the 1st message (CI,X) to S. Note that, the public value X is a DH

value of C.

• S checks that CI 6≡ 0, 1 or −1 in modulo p. If it is so, the protocol is ter-

minated by S. Otherwise, S randomly selects a number y ∈ Z∗q and cal-

culates (Y = (X.W r)y mod p) where the number r is produced from r =

H′(0x01‖CI‖SI‖M(X)). Next, S transmits the 2nd message (SI, Y ) to C.

• C verifies that SI 6≡ 0, 1 or −1 in modulo p then generates (K = Y z mod p)

where z = 1
(x+(Pr))

mod q and r = H′(0x01‖CI‖SI‖M(X)). Moreover, C

produces an "authenticator" Vu where

Vu = H(0x02‖CI‖SI‖M(X)‖M(Y )‖M(K))

and sends the 3rd message Vu.

• Now, S verifies that CI 6≡ H(0x02‖CI‖SI‖M(X)‖M(Y )‖M(K)) where

(K = gy mod p) and produces an "authenticator" Vs where

Vs = H(0x03‖CI‖SI‖M(X)‖M(Y )‖M(K))

and sends the 4th message Vs to C. Also, the session key

Sk = H(0x04‖CI‖SI‖M(X)‖M(Y )‖M(K))
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is produced in this stage.

• Finally, C verifies that Vs 6≡ H(0x03‖CI‖SI‖M(X)‖M(Y )‖M(K)) and pro-

duces the session key

Sk = H(0x04‖CI‖SI‖M(X)‖M(Y )‖M(K)).

When the generating of Sk is completed, the parties should delete all the inter-

nal states from memory.

Note that, if verifications can not result in success at all stages, the protocol execution

is terminated by related party. Also, the session key Sk can be produced by using a

key derivation functions.

C S

1. select x ∈ Z∗q
compute X = gx mod p

(CI,X)−−−−→

2. check CI 6≡ 0, 1,−1 mod p
select y ∈ Z∗q mod p

(S,Y )←−−− compute Y = (XW r)y mod p

3. check SI 6≡ 0, 1,−1 mod p

compute K = Y z mod p, and Vu
Vu−→

4. verify Vu
Vs←− compute Vs and Sk

5. verify Vs
compute Sk

Figure 3.9: AugPAKE

It is important that the messages should be sent sequentially in the protocol execution

in order to prevent possible attacks. For instance, if the 2nd message (CI, Y ) and

the 4th message Vs are sent together by S, it becomes possible to derive the valid

password P by applying offline dictionary attacks.

In the protocol, the parameters p and q should be chosen as large primes which satisfy

that q is a denominator of ((p− 1)/2) and every multiplier of ((p− 1)/2) are primes

to q comparably in length. The prime p is named as secure prime and it provides
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computational gains for the protocol. That is, the parties do not need to check order

of the parameters they received [52].

3.7 J-PAKE : Password Authenticated Key Exchange by Juggling

J-PAKE is a balanced PAKE protocol that was introduced by F.Hao and P.Ryan [31]

and it is used over a finite field and elliptic curves. It was standardised in the ISO-

11770-4 [1].

3.7.1 J-PAKE Protocol Over a Finite Field

We describe the two rounds of the protocol at first [30]:

Before starting to key exchange, A and B close on the parameters p, q and g by using

the method in NIST FIPS 186-4 [32].

Let s ∈ [1, q − 1] be a secret key that is obtained from mutual low-entropy password

of A and B. In J-PAKE s, s+ q, s+ 2q,... are conceived equivalent values; therefore,

the range of secret key s is a necessary condition for the protocol setup [31].

In the first round of J-PAKE protocol, A selects uniformly two ephemeral random

keys x1 and x2 such that x1 ∈ [0, q − 1] and x2 ∈ [1, q − 1]. B also randomly

picks two ephemeral random private keys x3 and x4 such that x3 ∈ [0, q − 1] and

x4 ∈ [1, q − 1] as well.

A computes the parameters g1 and g2 where g1 = gx1 mod p and g2 = gx2 mod p;

then, she sends the parameters with zero knowledge proofs for x1 and x2. Likewise,

B computes the g3 and g4 where g3 = gx3 mod p and g4 = gx4 mod p; then, he sends

the parameters with zero knowledge proofs for x3 and x4.

One of the methods to use the zero knowledge proof is Schnorr NIZK proof [28].

For example, A aims to send zero knowledge proof for D = gd mod p. The pa-

rameters of Schnorr NIZK proof for D are client id, which is unique identity of A,

a uniform random number V such that V ∈ [0, q − 1] and output of hash function

H(g‖V ‖D‖ClientID). The uniqueness of C id means that A should use a unique

identity when communicating with more than one party. After receiving a Schnorr

NIZK proof, A checks whether B’s C id is a valid identity and it is not the same with
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her own identiy. In the J-PAKE protocol, each party should guarantee that identity of

other party has remained the same until the end of the protocol.

At the end of first round, A verifies zero knowledge proof of the parameters x3 and x4

and also checks that g4 6= 1 mod p. B verifies zero knowledge proof of the parameters

x1 and x2 and checks that g2 6= 1 mod p as well [28].

In the second round of protocol, A computes A = (g1g3g4)
x2s mod p and transmits A

to B along with zero knowledge proof for x2s. Similarly, B computesB = (g1g2g3)
x4s

mod p and transmits B with zero knowledge proof for x4s.

The zero knowledge proofs of the parameters x2s and x4s can be computed in the

same way but consider that the generators (g1g3g4) and (g1g2g3) are used instead of

g respectively by A and B. At this point, A and B only need to guarantee whether

g1g3g4 6= 1 mod p and g1g2g3 6= 1 mod p. There is a small possibility for these

inequalities to occur, even if C is in communication with an opposer.

To complete the second round, A and B verify zero knowledge proofs of the parame-

ters which they received. Then, A calculatesKA = (B/gx2s4 )x2 mod p and B computes

KB = (A/gx4s2 )x4 mod p where KA = KB = g((x1+x3)x2x4s) mod p. After agreeing

on the the same key K = KA = KB, they compute the common session key from K

by applying a KDF.

C S

first round
1. select random x1 and x2 select random x3 and x4

2. compute g1 = gx1 mod p
(x1,x2,ZKPs)−−−−−−−−→ compute g3 = gx3 mod p

and g2 = gx2 mod p
(x3,x4,ZKPs)←−−−−−−−− and g4 = gx4 mod p

3. verify ZKPs of x3 and x4 verify ZKPs of x1 and x2
check g4 6≡ 1 mod p check g2 6≡ 1 mod p

second round

4. compute A = (g1g3g4)
x2s mod p

(A,ZKP )−−−−−→ compute B = (g1g2g3)
x4s mod p

(B,ZKP )←−−−−−
5. verify ZKP of x4s verify ZKP of x2s

6. compute KA = (B/gx2s4 )x2 mod p KB = (A/gx4s2 )x4 mod p

(KA = KB = g((x1+x3)x2x4s) mod p) (KA = KB = g((x1+x3)x2x4s) mod p)

Figure 3.10: J-PAKE Protocol over a finite field

38



Figure 3.10 describes J-PAKE protocol over a finite field.

3.7.2 J-PAKE Protocol up over an Elliptic Curve

The J-PAKE protocol also works over an elliptic curve and the only difference is that

an additive group is used instead of multiplicative group over a finite field.

Consider an elliptic curve E(Fp) such that it is identified over a finite field Fp and

Gr is a generator for the subgroup over E(Fp) of a prime order n. We denote scalar

multiplication of an elliptic curve point P with a scalar b over E(Fp) as [b]P ; that is,

P + P + · · ·+ P︸ ︷︷ ︸
b times

. The curves which are used in the protocol can be chosen from the

NIST curves. As in the protocol over a finite field, let s ∈ [1, n − 1] be a secret key

between A and B.

A selects uniformly two ephemeral private keys x1 and x2 such that x1, x2 ∈ [1, n−1]

and B also selects two ephemeral private keys x3 and x4 such that x3, x4 ∈ [1, n− 1].

Then, A computes Gr1 = [x1]Gr and Gr2 = [x2]Gr and sends Gr1 and Gr2 to B

with zero knowledge proofs of x1 and x2. Similarly, B computes Gr3 = [x3]Gr and

Gr4 = [x4]Gr and sends them to A with zero knowledge proofs of x3 and x4. To

complete first round, A and B verify the zero knowledge proofs that they received

[28]. Moreover, each party needs to check that other’s C id is different from its own

id and is valid. In the second round of protocol over an elliptic curve, A sends the

value A and x2s to B where A = ([x2s](Gr1 + Gr3 + Gr4). Likewise, B sends to A

the valueB and x4s whereB = ([x4s](Gr1+Gr2+Gr3)). When the second round is

finished, the zero knowledge proofs of the parameters are verified by A and B. Note

that, verification of the parameters is done as in the former round but this time, the

generator of A is (Gr1+Gr3+Gr4) and the generator of B is (Gr1+Gr2+Gr3). If the

verification is completed successfully, A calculates Ka = ((B − ([x2]Gr4)[x2]) and

B calculates Kb = ((A− ([x4]Gr4)[x4]). Consequently, they settle over the common

key K where K = Ka = Kb and use it to create a session key by applying a KDF.

3.7.3 Three-Pass Variant of J-PAKE Protocol

The two round of J-PAKE protocol is a symmetric protocol; thus, security analysis

is significantly simple. In the protocol, one party sends parameters and the other
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responds in the same way. Hence, the protocol can be expanded to three passes with

keeping it secure.

Let the protocol work over an finite field, A selects uniformly two ephemeral keys

x1, x2 and computes g1 = (gx1 mod p) and g2 = (gx2 mod p). Afterwards„ she sends

the parameters g1 and g2 to B with zero knowledge proofs of x1 and x2. Similarly, B

selects uniformly two ephemeral keys x3, x4 and computes g3 = (gx3 mod p), g4 = (gx4

mod p) and B = ((g1g2g4)
x4s mod p). Then, he sends the parameters g3, g4 and B to

A with zero knowledge proofs of x3, x4 and x4s.

After obtaining the parameters, A computes A = ((g1g3g4)
x2s mod p) and sends it

to B A with zero knowledge proof of x2s. Finally, the verification and agreement of

session key is the same as previous process.

3.8 OPAQUE Protocol

In an augmented (asymmetric) PAKE protocol, S stores C’s password under a hash

function without storing plaintext form of the password and without using Public

Key Infrastructure (PKI) protocol. Although many of aPAKE protocols are called

PKI-free, they are not secure against pre-computation attacks. The reason for that

is these protocols generally do not use a secret salt. The salt is sent from S to C in

cleartext when they are used. Hence, secrecy of the salt can not be ensured against

pre-computation attacks.

OPAQUE protocol’s design comes from a work of Ford and Kaliski [23] and it is

described in [37]. It is the first PKI-free aPAKE protocol which supports mutual

authentication with the ability of being secure against pre-computation attack while

using a secret salt.

OPAQUE consists of two functional properties that are an Oblivious Pseudo Random

Function (OPRF) and a key-exchange protocol. For OPRF, please see Section 2.2.

OPAQUE protocol uses a specific function of OPRF which is called DH-OPRF. Firstly,

we introduce protocol setup for DH-OPRF with notations.

• DH-OPRF domain: any random string into G
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• DH-OPRF operation: F (k;x) = H(x, v,H ′(x)k)

The process of DH-OPRF computation is given below:

• C chooses random r ∈ [0, q − 1] and sends a = H ′(x).gr to S.

• S responds with v = gk and b = ak.

• After obtaining the values b and v, C generates PRF output H(x, v, bv−1).

• Finally, the parameters (a, b, v) are checked whether they are non-unit elements

in G [37].

Now, we introduce the protocol setup for OPAQUE protocol. OPAQUE consists of

OPRF protocol and a key exchange (KE) protocol. Before execution of the protocol,

the parties agree on which KE protocol to be used [41].

Let C have private and public keys that are denoted as u1 and u2 respectively. Simi-

larly, S has private key and public key s1 and s2 respectively.

Initially, the password registration process works between C and S. It is considered

that S can be authenticated by C throughout the password registration process [41] :

• C chooses a password pu with the parameters u1 and u2 before coming to an

agreement on a key exchange protocol.

• S randomly chooses a OPRF key ku with the parameters s1 and s2. Also, S

computes v = gku and sends the parameter s2 to C. Note that the parameter ku

is randomly chosen such that it is independent for each C.

• C and S run OPRF function F (ku, pu).

• Only C learns the result which is called "randomized password" and denoted

by ru.

• C generates an envelope function Envu such that Envu = AutEnc(ru,

u1, u2, s2, v) where AutEnc is an authenticated encryption function in [37].

In this equation, all the parameters except v require authentication and only
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u1 is encrypted. Also, there are some inferences about the parameters in this

equation. For example, if u2 is rearranged from u1, it can be omitted with v

from the equation. Note that, S needs to send v with its OPRF response in this

situation.

• C sends Envu with u2 to S and deletes pu, ru and all keys.

• S stores (Envu, s1, s2, u2, ku, v) in a C-specific record. The parameters s1 and

s2 can be kept individually and removed from the record if they are assigned to

distinguished Cs.

C S

password registration
1. private u1, public u2 private s1, public s2

select password pu

2. select a OPRF key ku
s2←− compute V = gku

3. run OPRF function F (ku, pu) run OPRF function F (ku, pu)

4. generate Envu
(v,OPRF response)←−−−−−−−−−−−

delete pu, ru, all keys
(Envu,u2)−−−−−−→

5. store (Envu, s1, s2, u2, ku, v)

protocol execution

6.
account information−−−−−−−−−−−−→

7. run OPRF function OPRF function and get ru

8. Envu←−−−

9. decrypt Envu
authenticate s2

10. run key-exchange protocol run key-exchange protocol

Figure 3.11: OPAQUE Protocol

At the end of this step, registration part is completed and the parties can operate the

protocol [41]:

• C sends account information to S in order for S to take C’s information back.

• C and S execute OPRF function and S obtains the value ru.
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• S sends Envu to C.

• C decrypts Envu by using ru and obtains C’s private and public keys while

authenticating S’s public key.

• The parties run the key exchange protocol by using the public and private keys

of each party.

The complete protocol of OPAQUE is given in Figure 3.11.

3.9 PAK and PPK Protocols

The PAK (Password Authenticated Key exchange) protocol is a balanced PAKE pro-

tocol that was proposed by V.Boyko et al. [13]. It provides mutual explicit authenti-

cation while using the Diffie-Hellman exchange and security against all passive and

active attacks. Moreover, it consists of a key agreement stage and a key authentica-

tion stage. The most known variants of PAK protocols are PPK and PAK-X that are

introduced in [13] and we will mention the PPK (Password Protected Key exchange)

variant in this section. There are more variants of this protocol like PAK-EC, PAK-R,

PAK-Y and they are given in [45].

Assume that κ is a main security parameter of hash functions such that it consists of

128 or 160 bits. ` > κ is the security parameter for discrete-log-based public keys

such that it consists of 1024 or 2048 bits.

Also, the set of finite binary strings and the set of binary strings of length n are

denoted by {0, 1}∗ and {0, 1}n respectively. In the protocol, H1 : {0, 1}∗ → {0, 1}n

where n ≥ ` + κ is the derivation function and H2a,H2b,H3 : {0, 1}κ → {0, 1}∗ are

random hash functions.

The PAK protocol is presented as follows and it is given Figure 3.12:

• A and B share a secret password P that ensures the equation H1(A‖B‖P) 6= 0,

H2a(A‖B‖P) 6= 0 and H2b 6= 0 where the pair (A,B) denotes identities of Cs.

• A randomly picks a secret value RA and computes X = gRA mod p. Similarly,

B randomly picks a secret value RB and computes Y = gRB mod p. Note that,
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gRA and gRB are Diffie-Hellman values.

• A computes the message m = gRA(H1(A‖B‖P))r and sends it to B.

• B verifies that m 6≡ 0 mod p and he aborts the procedure if m = 0. After ver-

ification, he computes σ = ( m
(H1(A‖B‖P))r )

RB and k = H2a(A‖B‖m‖Y ‖σ‖P)
then sends k with the value Y .

• A computes σ = Y RA and verifies that k = H2a(A‖B‖m‖Y ‖σ‖P) . Then,

she also computes k′ = H2b(A‖B‖m‖Y ‖σ‖P) with the session key K =

H3(A‖B‖m‖Y ‖σ‖P) and send k′ to B.

• B verifies that k′ = H2b(A‖B‖m‖Y ‖σ‖P) and computesK = H3(A‖B‖m‖Y ‖σ‖P).

If all of the verifications are completed successfully, the parties authenticate each

other and produce the session key. Otherwise, the protocol fails.

A share password P B

1. select random RA select random RB

compute X = gRA mod p compute Y = gRB mod p

2. m = gRA(H1(A‖B‖P))r
m−→

3. verify m 6≡ 0 mod p

σ = ( m
(H1(A‖B‖P))r )

RB

(Y,k)←−−− k = H2a(A‖B‖m‖Y ‖σ‖P)
4. compute σ = Y RA

verify k = H2a(A‖B‖m‖Y ‖σ‖P)

k′ = H2b(A‖B‖m‖Y ‖σ‖P)
k′−→

K = H3(A‖B‖m‖Y ‖σ‖P)

5. verify k′ = H2b(A‖B‖m‖Y ‖σ‖P)
K = H3(A‖B‖m‖Y ‖σ‖P)

Figure 3.12: PAK Protocol

Moreover, Ra and Rb which are Diffie-Hellman parameters should be minimum 384

bits, the outputs of hash functions H1 and H2a should have 1152 bits while H2b and H3

should have 128 bits. In addition, the prime p and the session key K should be 1024

and 128 bits long respectively [15].

In the PAK protocol, the parties share the secret key and other values; thus, the pro-

tection and managing these values are important. If there is a potential attacker such
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that he can represent himself as one of the parties, he can apply discrete logarithm

attack on the multiplicative group of congruences mod p. Then, he can produce a

discrete logarithms’ table in order to use it as a dictionary. Hence, the parameters p

and g should be chosen sufficiently large to prevent such attacks.

The PPK Protocol consists of implicit authentication which ensures the key is ob-

tained by only one of the parties who claims to be. The PPK protocol is more useful

than the PAK protocol because it does not need explicit authentication and it has only

two rounds. The protocol description [13] is given below and is shown in Figure 3.13:

• Initially, two parties share a secret password P then A selects a secret value RA

randomly, calculates X = gRA mod p and m = gRA(H1(A‖B‖P))r and sends

m.

• B verifies whether m 6≡ 0 mod p and after selection of a random secret RB,

he calculates Y = gRB(H1(A‖B‖P))r and sends Y . Also, he calculates σ =

( m
(H1(A‖B‖P))r )

RB . Next, he produces the session keyK = H3(A‖B‖m‖Y ‖σ‖P).

• A verifies Y 6≡ 0 mod p and calculates σ = ( Y
(H1(A‖B‖P))r )

RA then she produces

the session key K = H3(A‖B‖m‖Y ‖σ‖P).

A share a password P B

1. select random RA

compute X = gRA mod p

m = gRA(H1(A‖B‖P))r
m−→

2. verify m 6≡ 0 mod p

select random RB

Y←− Y = gRB(H1(A‖B‖P))r

σ = ( m
(H1(A‖B‖P))r )

RB

K = H3(A‖B‖m‖Y ‖σ‖P)

3. verify Y 6≡ 0 mod p
compute σ = ( Y

(H1(A‖B‖P))r )
RA

K = H3(A‖B‖m‖Y ‖σ‖P)

Figure 3.13: PPK Protocol

PAK protocol’ security is based on DH assumptions and V.Boyko et al. [13] proved
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the protocol’ security in Shoup’s simulation model in which the hash functions are

used as random oracles. Furthermore, the PAK protocol is included in some standards

such as ITU [2], IETF [15] and IEEE P1363 [26].

3.10 SESPAKE : Security Evaluated Standardized Password Authenticated Key

Exchange

The SESPAKE protocol is a balanced PAKE protocol that was introduced by V.Smyshlyaev

et al. [54]. It consists of a key agreement step and a key confirmation step. It is con-

firmed in the standardization system of the Russian Federation.

In SESPAKE protocol, the parties use DH to exchange keys in the key agreement step

while they exchange strings that are subject to the generated key in the key confirma-

tion step. The notatations of the protocol are listed below [54]:

• Vn : the set of all strings of length n and with elements from GF (2)

• E : a subgroup of prime order q

• P : a generator of E

• m : the order of the group

• F : a key derivation function (PBKDF2) is given in [38]

• τ : a run time for computing multiple points in the group of elliptic curve points

• ID : an identity of the party with length N (ID = V N
8 )

• P : a password of C such that P ∈ V k
8

• l : a random positive integer

• ind : a number such that ind ∈ {1, . . . l}

• s : a salt such that s ∈ V64

• TA, TB : open constant strings of the parties

• src : denotes scalar point multiplication
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C keeps his password P secret and S stores a point QP as a secret where QP =

F (P, salt, 2000)·Qind. Additionally, they publicly stores l+1 provable pseudorandom

points P and Q1 . . . Ql.

The protocol’s description is shown in Figure 3.14 [54].

A B

1. AID, P AID−−→ BID, QP, ind, s
BID,ind,s←−−−−−

2. flag zA = 0

compute QA
P = F (P, s, 2000) · Qind

select random α ∈ {1, . . . , q − 1}
compute u1 = [α]P −QA

P
u1−→

3. if u1 /∈ E → finish
flag zB = 0

compute QB = u1 +QP

select β ∈ {1, . . . , q − 1}
if [m

q
]QB = 0E → QB = P, zB = 1

src = [m
q
· β mod q]QB

KB = H256(src)
u2←− u2 = [β]P +QP

4. if u2 /∈ E → finish
compute QA = u2 −QA

P

if [m
q
]QA = 0E → QA = P, zA = 1

src = [m
q
· α mod q]QA

KA = H256(src)

tagA = (TA‖AID‖ind‖s‖u1‖u2)
MA = HMACKA

(tagA)
MA−−→

5. set tag = (TA‖AID‖ind‖s‖u1‖u2)
compute M = HMACKB(tag)

if M 6=MA or zB 6= 0→ finish
tagB = (TB‖BID‖ind‖s‖u1‖u2)

MB←−− MB = HMACKB
(tagB)

6. set tag = (TB‖BID‖ind‖s‖u1‖u2)
compute M = HMACKA(tag)

if M 6=MB or zA 6= 0→ finish

Figure 3.14: SESPAKE Protocol

The identities AID, BID are used against an impersonation attack; the flags (zA, zB)

and assignments (QA = P, QB = P ) are implemented in constant time to avoid

side channel attack. Finally the operations QA = u2 − QA
P and QB = u1 + QP are

performed to avoid impersonation attack.
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SESPAKE protocol’s security relies on the ROM. V.Smyshlyaev et al. proved the

protocol’ security under two subjects defined in [54]: a threat of distinguishing a

session key from a random string and the decisional version of the false authentication

threat.

Moreover, hash functions used in the protocol should be chosen such that hashlen ≤
log2(q) + 4 where hashlen denotes the length of output of the hash function.

The points P and (Q1, Q2, . . . , Qn) should be chosen in the manner that they satisfy

provable pseudorandomness. That is, each point Qi should be generated such that

factor of any point under any other point is unknown [48].
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CHAPTER 4

ANALYSIS OF PAKE PROTOCOLS

In this chapter, we analyse PAKE Protocols that are mentioned in Chapter 3.

4.1 Analysis of EKE

4.1.1 Number Theoretic Attack on RSA-EKE

Suppose there is an attacker who is called querying attacker in [47] and impersonated

A. He generates RSA modulus n and the password encrypted public key X instead

of P(e) without knowing the password P. B receives e from P−1(X). There is an

assumption [47] that we somehow know e is in the form of e = 3k for some value k.

B randomly selects a R and computes P(Re) which corresponds to P(R3k). Then, the

attacker applies a dictionary attack on P′−1(P(R3k))) with candidate password P′ and

tries to obtain (R3k)′ in order to decide whether this number is a cubic residue. He

continues with different candidate password P′ unless it is a cubic residue.

Approximately one ninth of the passwords on average gives a matching for cubic

residue mod (n = pq), the rest can be eliminated in another sessions [47]. Con-

sequently, it is impossible to reduce valid passwords’ space to one at a logarithmic

rate.

If e is not in the form of e = 3k, the process can be repeated as described above

with several random numbers e and different random number X . For example, if the

selected e does not have 3 as a factor, it is considered as there is no candidate that

creates a cubic residue. Therefore, it is known that e does not have 3 as a factor.
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It is repeatedly tried to have a unique password that always creates cubic residues.

Average three e to obtain the desired e is needed because one third random e will

possess factors of 3.

At this stage, we need to verify that (Re)′ is a cubic residue mod n and it is a cubic

residue mod p and mod q. It can be done by selecting p such that p − 1 has factors

of 3 and selected q where q − 1 has factor of 3. Then, if e possesses a 3 as a factor,

the number p−1
3

mod p will equal to 1 according to Fermat’s theorem that is (Re)′
p−1
3

mod p ≡ (R3k)′
p−1
3 mod p ≡ (Rk)p−1 mod p [47] .

This number theoretic attack on RSA-EKE can find the password in only tens of

sessions. After each 1/9 of the password in the dictionary, there is still possible valid

candidates. Assume that the numberW is the length of the dictionary and the number

i is an average query such that (1
9
)iW = 1. [47] claims that three random e can be

found in about six sessions where the dictionary size is one million and the password

is broken after trying eighteen sessions [47].

For further details about the number theoretic attack and facts of Number Theory, see

the paper [47].

4.1.2 Number Theoretic Attack on DH-EKE

Theorem 4.1.1. [47] Let p be a prime such that p − 1 has integer d as a factor. The

congruence xd ≡ a mod p has a solution and a is a dth power residue when a
p−1
d ≡ 1

mod p, else the congruence does not have a solution and a is a dth power non-residue

when a
p−1
d 6= 1 mod p.

Corollary 4.1.1.1. [47] The number of dth power residues mod p is equal to p−1
d

.

An attacker who does not have the password P can impersonate A by sending his g, p

and a random value X instead of sending P(gRA mod p). After B receives message,

he randomly generates a number RB and computes (gRB mod p). Finally, he encrypts

it with password P and then sends the result P(gRB mod p) to A.

Although the parameters RB, gRB mod p and P(gRB mod p) are random values, [47]

claims the attacker can achieve the password under the condition that the numbers g

and p are reasonable choices.

50



To illustrate, the attacker sends gd and p in which d is a low prime and a factor of

p − 1. Now, B computes a = (gd)RB mod p which equals to gRBd mod p. It is clear

that, the number a is a dth power residue and according to Theorem 4.1.1, we have

a
p−1
d ≡ 1 mod p if d is a factor of p − 1. Also, (gRBd)

p−1
d ≡ (gRB)p−1 mod p and

(gRB)p−1 ≡ 1 mod p by Fermat’s theorem.

In the number theoretic attack, the attacker gets encrypted password P(gRBd mod p),

struggles to decrypt it with different candidate passwords and enhances the decrypted

number to p−1
d

mod p. If it does not result in 1, the candidate password is refused.

Corollary 4.1.1.1 implies that p−1
d

numbers out of p − 1 numbers will be dth power

residues so 1
d

numbers will be equivalent to 1 mod p if they are power to p−1
d

. Note

that, the candidate password space is decreased to 1
d

and the valid password space

narrows to one logarithmically [47].

4.1.3 Number Theoretic Attack on the ElGamal-EKE

An attacker, who pretends A, sends the values gd, p and X instead of the actual

message P(gRA mod p). Consider that p − 1 has a factor d like in the theoretic attack

on the DH-EKE. When B receives the values, he computes ((gd)k mod p) and decrypts

X from Y = P−1(X). Moreover, he computes (RY k mod p) and produces P(gkd mod

p, RY k mod p) then sends it to the attacker. He uses different candidate passwords

P′ in order to decrypt the message received from B. If the candidate password P′ is

the valid password then the equality (gkd)
p−1
d ≡ 1 mod p is always true. Hence, the

candidate P′ which does not satisfy this equality can be refused. In particular, this

process continues with logarithmic rate until the valid password space is narrowed to

one [47].

4.2 Analysis of SPEKE

Firstly, we present "the exponential-equivalence attack" proposed in [71]. This attack

is based on exponential relation of two passwords. To illustrate, assume there are two

distinct passwords P and P′ such that P′ = Pr mod p for an arbitrary integer r 6= 1. If

there is an exponential relation among all the passwords, the attacker can exclude two

passwords. However, if the password is in PIN form, this attack may be disputable. In
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order to avoid this problem, Zhang [71] suggested to using the hash of the password

instead of applying square operation on it. That is, the password mapping function

can be used as f(P) = (H(P))2 mod p. Hence, it becomes hard for an attacker to find

passwords that are exponentially related to hashed passwords.

There are three proposals for attack on SPEKE illustrated by Tang and Mitchell [57].

The first attack is known as Unknown Key-Share (UKS) attack and it is based on

sharing the password with multiple servers. To apply this attack, the computation of

g needs to include identity of the server, but this requirement damages the symmetry

of the protocol. The second attack is about swapping of two sessions. The attacker

swaps two messages of two sessions and causes the parties to confuse which message

belongs to which session at the end of the protocol. The last attack is actually the same

with Zhang’s attack [71]. The only difference is that they offer to use the generator

g as a hash of the identities with the password i.e g = H(P‖A‖B) where the values

A and B are identities of the parties. Moreover, this attack does not provide the

symmetrical feature of the protocol.

Secondly, we present a new attack which is described in [29]: "the impersonation

attack". The attacker E impersonates B. Here, instead of B, E communicates with A in

parallel sessions in order to convince A that B is the one who she is in communication

with even though B is not in the communication at all. The steps of attack are given

below and in Figure 4.1:

1. A selects a secret exponent value x and calculates X = gx mod p, then sends

X to B with identity value A.

2. E receives all messages instead of B. She selects an exponent value z where

Xz ∈ {2, ..., p− 2}2 then starts the parallel session by transmitting her identity

value B and Xz to A.

3. A continues with the second session, selects an exponent value y and calculates

Y = gy mod p. Then, she transmits Y with identity value A.

4. E gets the message and calculates Y z = (gy)z mod p. Afterwards, E sends Y z

to A with the value B in the first session.
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5. A calculates the key K = H((Y z)x) = H(gxyz) and the key confirmation

parameter H(H(K)) then transmits it to E.

6. From the first session, E receives the key confirmation parameter of A and sends

it back to A in the second session.

7. A sends the challenge value H(K).

8. At the last stage, E receives A’s message from the second session and responds

it in the first session in order to complete key confirmation process.

A E

session 1
select x ∈ Z∗q select z

compute X = gx mod p
1.(A,X)−−−−→

compute K = (Y z)x)
4.(B,Y z)←−−−−−

start key confirmation: H(HH(K))
5.(H(H(K))−−−−−−→

verify key confirmation
8.H(K)←−−−−

session 2

select y ∈ Z∗q
2.(B,Xz)←−−−−−

compute Y = gy mod p
3.(A,Y )−−−−→ compute Y z = (gy)z mod p

verify key confirmation
6.H(H(K))←−−−−−− receive key confirmation parameter

from first session and send back

reply key confirmation
7.H(K)−−−−→

Figure 4.1: Impersonation attack on SPEKE [29]

"The impersonation attack" indicates that SPEKE protocol has a serious vulnerability

in the authentication process. The protocol needs to include the key confirmation

message in the first session in order to protect itself from this attack. However, the

standards ISO 11770-4 [1] and IEEE P1363 [26] allow parties to initiate the key

confirmation process in any order [29].

Finally, the paper [29] presents a new attack "the key malleability attack" which is

based on the man-in-the-middle:

• A selects a secret exponent value x ∈ Z∗q , computes X = gx mod p and sends
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it with the identity A. Likewise, B selects a secret exponent value y ∈ Z∗q ,

computes Y = gy mod p and sends (B, Y ).

• E, who intercepts the message pairs (A,X) and (B, Y ), selects an arbitrary

number z and generates Y z mod p and Xz mod p. Then, he respectively sends

the messages Y z and Xz to A and B.

• Hence, the parties generates the common session key K = H(gxyz) without

realizing that the messages are changed.

A E B

select x ∈ Z∗q y ∈ Z∗q
compute X = gx mod p

(A,X)−−−→ (B,Y )←−−− compute Y = gy mod p
select z

compute Y z mod p
(B,Y z)←−−−− compute Xz mod p

(A,Xz)−−−−→
generate K = H(gxyz) generate K = H(gxyz)

Figure 4.2: Key-malleability attack on SPEKE [29]

Figure 4.2 indicates key malleability attack on SPEKE. The original paper of SPEKE

protocol claims that security of the protocol is subject to Decisional Diffie-Hellman

(DDH) or Computational Diffie-Hellman (CDH). However, "key malleability attack"

shows that DDH and CDH are not sufficient to satisfy the security of authentication.

These assumptions require independent secret values on the exponent. For instance,

suppose the output of arbitrary function f(.) can be in the form of z = f(gx, gy);

therefore, a possible correlation between the exponents makes DDH and CHD as-

sumption inapplicable.

4.3 Analysis of SPAKE

The security of SPAKE protocol is based on new variants of DH assumption which

are introduced by Abdalla and Pointcheval in [3]. Abdalla and Pointcheval explained

security of variants SPAKE1 and SPAKE2 through theorems. For details of the vari-

ants of DH assumption and relations between them, please see the paper [3].

Before the theorems, we need to state definition advantage function and Lemma 4.3.1.
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Suppose there is an adversary A in the key exchange protocol P that can access

to queries of Reveal, Execute, Send and Test defined in [3]. Let SUCC be an

event where the adversary A is said to be successful. The ake-advantage of an A in

violating semantic security of the protocol P is

AdvakeP,D(A) = 2 · Pr[SUCC]− 1

and the advantage function of the protocol P when passwords are received from dic-

tionary D with time complexity at most t and using resources at most R is

AdvakeP,D(t, R) = maxA{AdvakeP,D(A)}

Lemma 4.3.1. [3] Assume G = (G, g, p) is a represented group, n and s are integers,

and also assume P is a public injective map from {1, . . . , n} into Zp.

Advs−pccdhG,n,s (t,P) ≥ 1

n
+ ε =⇒ AdvcdhG (t′) ≥ n2ε6

214
− 2s4

p
,

in which t′ = 4t + (18 + 2s)τ and τ expresses the time for an exponentiation in G.

Apparently,

Advs−pccdhG,n,s (t,P) ≥ 1

n
+ ε ≥ 1

n
×
(
1 +

8(ns)2/3

p1/6

)
=⇒ AdvcdhG (t′) ≥ n2ε6

215
.

Theorem 4.3.2. [3] Assume G is a represent group and D is a uniformly distributed

dictionary of size |D|. Then, for any numbers t, qstart, qAsend, q
B
send, qH , qexe, with

SPAKE1 as given in Figure 3.7

AdvakeSPAKE,D(t, qstart, q
A
send, q

B
send, qH , qexe)

≤ 2.(qAsend + qBsend. Adv
s−pccdh
G,|D|,qH(t

′,P)+

2.

(
(qexe + qsend)

2

2p
+ qH AdvcdhG (t+ 2qexeτ + 3τ)

)
where qH represents the number of queries to the H oracle; qexe represents the num-

ber of queries to the Execute oracle; qstart and qAsend represent the number of queries to

the Send oracle with respect to the initiator A; qBsend represents the number of queries

to the Send oracle with respect to the responder B; qsend = qAsend + qBsend+, qstart;

t′ = t+O(qstartτ); and τ is the time to compute one exponentiation in G.
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According to Theorem 4.3.2, the SPAKE1 protocol is secure in the random oracle

model relying on S-PCCDH problem which is hard in G.

Corollary 4.3.2.1. [3] Assume G is a represent group and D be is uniformly dis-

tributed dictionary of size |D|. Then, for any numbers t, qstart, qAsend, q
B
send, qH , qexe,

with SPAKE1 as given in Figure 3.7

AdvakeSPAKE,D(t, qstart, q
A
send, q

B
send, qH , qexe)

≤ 2 ·

(
qAsend + qBsend
|D|

+ 6

√
214

|D|2
AdvcdhG (t′) +

215q4H
|D|2p

)
+

2 ·
(
(qexe + qsend)

2

2p
+ qHAdv

cdh
G (t+ 2qexeτ + 3τ)

)
,

where t′ = 4t+O((qstart+ qHτ) and the other parameters are defined as in Theorem

4.3.2.

Corollary 4.3.2.1 indicates a relation between S-PCCDH and CDH problems. There-

fore, [3] also says SPAKE1 is a secure PAKE protocol under assumption that CDH

problem is hard in G.

Theorem 4.3.3. [3] Assume G is a represent group and D is a uniformly distributed

dictionary of size |D|. Then, for any numbers t, qstart, qAsend, q
B
send, qH , qexe, with

SPAKE2 as given in Section 3.4.

AdvakeSPAK2E,D(t, qstart, q
A
send, q

B
send, qH , qexe)

≤ 2 ·
(
qAsend + qBsend

n
+

(qexe + qsend)
2

2p

)
+

2 ·
(
qHAdv

cdh
G (t+ 2qexeτ + 3τ) + q2HAdv

cdh
G (t+ 3τ)

)
,

where the parameters are defined in Theorem 4.3.2.

In addition, Theorem 4.3.3 says that the SPAKE2 protocol is secure in the random

oracle model provided that CDH problem is hard in G.

4.4 Analysis of SRP

The SRP protocol eliminates need of sending password in the clear text form and

provides security against passive and active attacks. In the protocol, S stores the
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password as a password file; therefore, attacker can not easily find the password as a

password even if he can discover password database. Since he still needs to perform

an expensive dictionary attack in order to find out passwords. The attacker can not

carry out a man-in-the-middle attack unless he has C’s password. The attacker who

does not know the values x (private key) or v (verifer) can not fool S or C, so man-in-

the-middle attack fails.

The paper [63] also claims that the protocol resists Denning-Sacro Attack [18] in

which an eavesdropper captures the session key K and tries to masquerade as C or

perform a brute force attack to password of C. The values M1 and M2 can be gener-

ated from publicly known data and K; therefore, the eavesdropper can not discover

new information by using the values M1, M2 and K.

The SRP protocol does not have a proof model for security. Recently, a formal analy-

sis of SRP has been introduced by T.Sherman et al. [51]. In [51], SRP is analysed by

using Cryptographic Protocol Shapes Analyzer (CPSA) and this analysis found that

the structure of protocol does not have a major weakness such as leakage of secrets.

However, T.Sherman also emphasize that SRP is vulnerable to pre-computation dic-

tionary attack since the salt value s is transmitted publicly.

Moreover, T.Sherman suggested a first attack on SRP which depends on leakage of

verifier. In this suggestion, attacker who has the values v and b can masquerade as

client since being comprised of the server makes attacker learn these values.

4.4.1 Use of SRP Protocol for TLS

In TLS protocol, public key certificates Kerberos or preshared keys are used to pro-

vide authentication. However, these methods remain incapable when using in the

TLS. In this section, we briefly describe how SRP authentication method is used for

TLS. Especially, we mention a new handshake message process which is described

in [58] using the SRP authentication without going into detail.

Let the clientname, the salt, public key of C and public key of S be expressed as C, s,

A and B respectively.

Handshake Message Flow for SRP authentication
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Figure 4.3: Handshake Message Flow for SRP authentication

Figure 4.3 indicates the handshake message flow for SRP authentication. Certificate

part of flow is indicated by (*) that means that it is an optional or situation dependent

message.

Before proceeding to handshake message flow, we give details about the client name

extension which is referred as "SRP extension".

4.4.2 Content of Handshake Message

4.4.2.1 SRP extension

Firstly, if a C decides resumption of session which utilizes SRP authentication, the

SRP extension must be contained in the client hello message. If current session is

agreed to continue, the information the client hello message’s SRP extension must be

disregarded by S, but exception is that if it is involved in the finished message hashes.

4.4.2.2 Server Certificate and Key Exchange

When C agrees with S to use an SRP cipher suite, S must transmit a certificate which

supplies a further authentication with of a digital signature. Which cipher suites are

allowed are described in [58].

The server key exchange message consists of parameters (N, g, s, B) where N and g

are group parameters such that N is a safe prime of the form N = 2q + 1 (q is also

a prime) and q is a generator of group. Public value of S B is generated from the

equation B = kv + gb mod N and the salt s came from SRP password file that is

received in the "client hello message".
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The valid SRP group parameters are given [58] and C should accept valid parameters

to ensure security. If the parameters which are sent from S are not valid, C must abort

handshake process.

4.4.2.3 Client Key Exchange

The client key exchange message contains public key A of C that is calculated from

A = ga mod N and it must be transmitted before the server key exchange message.

4.4.3 The Pre-master Secret

The pre-master secret is result of the shared secret S from the calculations.

C generates the pre-master secret as follows [58]:

Figure 4.4: Pre-master key from server [58]

The S generates the pre-master secret as follows:

Figure 4.5: Pre-master key from client [58]

The finished messages carry out the same function with messages M1 and M2 given

in [61]. The parties abort the process if one of them calculates an incorrect pre-master

secret.
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4.4.4 New Message Contents

To structure the new message transmitted during a handshake, the value "srp" is de-

fined as the extension number for the extensions in both "the server hello message"

and "the client hello message" [58].

In the client hello message, the clientname C is encoded by using an extension of

"srp" as described in Figure 4.6.

Similarly, in the extended server hello message, the parameters (N, g, s) are encoded
by using an extension of type "srp".

Figure 4.6: Client hello message [58]

4.4.4.1 Client Key Exchange

C sends the ephemeral key A in the key exchange message that is encoded in a

ClientSRPPublic structure if the value of KeyExchangeAlgorithm is adjusted

to "srp" and it is shown in Figure 4.7:

Figure 4.7: Client key exhange message [58]
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4.4.4.2 Server Key Exchange

S sends the ephemeral public key B in the key exchange message that is encoded in

a ServerSRPPublic structure if the value of KeyExchangeAlgorithm is adjusted

to "srp". The encoded message is given in Figure 4.8.

To provide security, C’s private key a and S’s private key b should be chosen to be at

least 256-bit numbers. Also, the parties should make sure that the prime parameter N

is large enough to supply infeasibility of discrete logarithms. The server key exchange

is described in Figure 4.8.

Figure 4.8: Server key exhange message [58]

Because the attacker may try to contact to S and to find out a C’s password, the general

network communications restrict the authentication enterprise from a specific C or a

specific IP address.

Additionally, the "client hello message" contains the clientname of C in the clear

form. To prevent this, C should open a server-authenticated connection and then

perform SRP-authenticated connection.

61



4.5 Analysis of AugPake

As stated in the Section 3.6, AugPAKE protocol promises security against passive at-

tacks, active attacks and offline dictionary attacks and also resists server compromise.

In this section, we explain that how the AugPake prevents these attacks [52].

The AugPake protocol provides security against "passive attacks" since an eavesdrop-

per can not generate an authenticated session key even if he obtains the exchanged

messages. Suppose that the eavesdropper can attain the messages (CI,X), (SI, Y ),

Vu and Vs and he tries to compute the session key Sk. That is, he tries to find the

accurate session key Sk from the values X and Y as the hash functions are secure.

Consider the following two equations where t = w′r mod q

X = gx mod p

Y = (XW r)y = XyW ry = Xy (gy)t = XyKt

The number t is specified from possible passwords with the value X and the attacker

can only derive the session key K from X and Y by computing Xy. But the param-

eters x and y are selected randomly from Z∗q , so it is assumed that the probability

of computing Xy has a negligible rate. For this reason, we can say that AugPAKE

protects itself from passive attacks [52].

The AugPAKE protocol provides security against "active attacks" because the at-

tacker can not generate an authenticated session key even if he obtains the exchanged

messages. That is, the probability of computing the session key by an active attack

is bounded by the online dictionary attacks and it depends on number of interactions

with the honest party linearly. Note that, C (or S) calculates the session key Sk if the

authenticator value Vs (or Vu) is valid. Three situations where active attacks can be

performed in are described below [52]:

• The attacker can masquerade as C by computing the session key Sk under the

condition that Vu is valid. Suppose that the authenticator Vu is a valid value,

then the attacker needs to calculate the correct K from the numbers X and Y

due to of secure hash functions. The attacker has the discrete logarithm x of

X and from the password dictionary, he finds a password w′′. However, he can
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obtain the correct K only if w = w′′. Hence, the AugPAKE protocol prevents

impersonation attacks on C because of restriction of impersonation attack from

the online dictionary attack.

• The attacker can also masquerade as S by computing the same session key

Sk if the authenticator Vs is the correct value. As in the previous attack, the

attacker needs to calculate valid K from the parameters X and Y due to secure

hash functions. Firstly, he selects a random number y and from the password

dictionary, he predicts a password w′′ then computes Y from the equality

Y = (X.W ′r)y = Xy.W ′r = Xy.(gy)t

where (t = w′′.r mod q). Computation of the correct K’s probability is again

restricted by the probability of w = w′′. Moreover, the attacker can check if w′′

equals to w′ by using the authenticator Vu. Yet, the probability of computing

correct K is negligible because the attacker needs to find the discrete logarithm

x. Thus, this attack is bounded by the online dictionary attacks and it implies

that the AugPAKE protocol provides security against impersonation attacks on

S.

• The attacker can perform the man-in-the-middle attack and produce the same

session key Sk, if the authenticator Vu or Vs is valid, by transmitting the ex-

changed messages. He needs to calculate the correct K from the values X and

Y in order to produce a valid authenticator Vu or Vs so the conditions that are

described above are also valid for the man-in-the-middle attack.

The AugPAKE protocol provides security against "offline dictionary attacks" because

the attacker who can control the exchanged messages can not narrow possible pass-

word candidates as well as in online dictionary attacks. As mentioned before, the

derivation of K is independent from the guessed password; thus, a passive attacker

can not compute Xy and K = gy mod p from the received messages X and Y even

if he can guess a password. Additionally, suppose that there is an active attacker and

he performs the man-in-the-middle attack is previously described. However, the im-

portant point of AugPAKE protocol shows that if authentication fails, execution of

protocol is terminated and no further message is sent. In this way, the protocol pre-
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vents testing more than one password. Consequently, both active and passive attacks

can not reduce the possible password candidates easier than online dictionary attacks.

The paper [52] presents two limitations of AugPAKE protocol: Firstly, the password

and its verifier have the same entropy, thus the attacker can obtain the correct pass-

word from the verifier by performing offline dictionary attacks. Secondly, the attacker

can obtain sufficient information in order to impersonate S so the impersonation of S

with the verifier is a an efficient and possible attack. On the other hand, the attacker

can not masquerade as C without applying offline dictionary attacks on the password

verifier W in the protocol.

Suppose that there is an attacker with theW and struggles to masquerade as C without

applying offline dictionary attacks on W . At first, he selects two random numbers c

and d such that c ∈ Z∗q and d ∈ Z∗q then computes (X = gcW d mod p) and sends the

first message (CI,X) to S. The attacker needs to generate correct (K = gy mod p)

in order to impersonate C. That is, he tries to get a number e which yields (K = Y e

mod p).

loggY
e = loggK mod q

(c+ (w′d) + (w′r)) ye = y mod q

(c+ w′(d+ r)) e = 1 mod q

From above equation (e =
1

c
mod q) and (d = −r mod q). Note that, the attacker

does not apply offline dictionary attacks on W . Moreover, he can not find out the

value r from the equation r = H′(0x01‖CI‖SI‖M(X)) because of a secure hash

function. Hence, AugPAKE resists the server compromise [52].

4.6 Analysis of J-PAKE

The authentication and key confirmation in two round J-PAKE protocol (or three-

pass variant) are implicit [56]. The two parties can utilize derived key to authenticate

each other at the beginning of communication. Moreover, they can decrypt and read

messages if both have the same derived session key.

To make an explicit authenticaiton, two parties should perform an additional key con-

firmation that provides certain assurance about having derived the same key [56] .
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There are many methods to attain explicit key confirmation. We explain two examples

of these methods as follow:

The first method is based on the key confirmation of SPEKE Protocol [34] (See Sec-

tion 3.2). Suppose that, A starts the key confirmation by sending H(H(k′)) to B and

then B verifies H(H(k′)). If the verification is completed successfully, B sends H(k′)

to A and then A verifies H(k′).

Key confirmation scheme which is given in NIST SP 800-56A Revision 1 is base for

the second method. [6]. In this method, A and B send MAC tag to each other a and

verify it accordingly. Let k′ = KDF (K ‖ "JPAKE - KC").

The method works in the finite field as follow :

• A sends MacTagA = MAC (k′, "KC-1-U " ‖ A ‖ B ‖ g1 ‖ g2 ‖ g3 ‖ g4) to B .

• B sends MacTagB = MAC (k′, "KC-1-U " ‖ B ‖ A ‖ g3 ‖ g4 ‖ g1 ‖ g2) to A.

The method works in the elliptic curve as follow :

• MacTagA = MAC (k′, "KC-1-U " ‖ A ‖ B ‖ Gr1 ‖ Gr2 ‖ Gr3 ‖ Gr4).

• MacTagA = MAC (k′, "KC-1-U " ‖ A ‖ B ‖ Gr1 ‖ Gr2 ‖ Gr3 ‖ Gr4).

k′ is the recommended key that is different from the session key and it provides stay-

ing indistinctive from random for the session key after the key confirmation process

[6].

The explicit key confirmation ensures an explicit and immediate confirmation. As

mentioned in Chapter 1, a secure PAKE protocol should satisfy properties such as

online and offline dictionary attack resistance, security of session key and forward

secrecy. It has been proven in [30] that all these security requirements are satisfied by

J-PAKE protocol based on assumptions of difficulty of the Decisional Diffie-Hellman

problem and security of the Schnorr NIZK proof [28].

To sum up, J-PAKE protocol may be considered more useful PAKE protocol in com-

parison with EKE, SPEKE or SRP-6 (See Section 3.1, 3.2, 3.5 respectively.). Because
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besides having security proofs, it has quite different design approach from other pro-

tocols [30] . Also, J-PAKE protocol works in both finite field and elliptic curve. It

is not required that usage of additional base to hash passwords to an assigned ellip-

tic curve. Moreoever, real-world applications like Firefox, Pale Moon and Google

Nest products have been used J-PAKE protocol. Some open source libraries such as

OpenSS, Network Security Services (NSS) and the Boundary Castle include J-PAKE

protocol.

4.7 Analysis of OPAQUE

As mentioned before, OPAQUE protocol does not rely on PKI and does not use plain-

text password in the clear form at S where the other aPAKE protocols do not satisfy

these properties.

The attacker can learn the password by only observing a session at S and applying

an exhaustive offline dictionary attack. Thus, OPAQUE can resist pre-computation

attacks.

In additon to these fundamental properties, OPAQUE can utilize different key-exchange

protocols in practice and provide different performance tradeoffs. It also supports a

unique functionality so that it allows to store and retrieve C’s secrets [37]. OPAQUE

further promotes password hardening so that the cost of offline dictionary attacks is

increased.

Additionally, [37] states the security proof of the protocol in random oracles and

demonstrates how OPAQUE protocol can be used with TLS 1.3:

The general mechanism for password authentication of TLS relies on Public Key In-

frastructure and it causes disclosure of passwords to S while TLS decryption. The

integrating OPAQUE with TLS supplies aims to eliminate this vulnerability and pro-

tects TLS from PKI failures. In particular, the integrating OPAQUE with TLS 1.3 is

straightforward if we ignore the protection of C account information [37].

In TLS mechanism, C’s private key u1 is attained from S as a signature key for TLS

authentication and the Diffie-Hellman key exhange is reused.
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• The first message of the integrated protocol is TLS’s "client hello" message

which is enhanced with account information of C and the first message of DH-

OPRF that is a.

• S replies to the second regular TLS 1.3 message with "server hello" and the

second message of DH-OPRF that consists of the values b, v and Envu. Also,

S sends the private key s1 along with public key s2 for TLS signature.

• Finally, C sends a general "client finished" message and authenticates himself

by using C signature which is generated from private key s1 and verified by

public key s2.

To protect C’s account information, the account information is attached to the first

handshake message and its encryption is done under the pre-shared key. Then, the

protocol continues as described above.

If there is no continuous session or pre-shared key, C account protection needs to

use server certificate. Then, the TLS 1.3 handshake is enhanced by using the two

OPAQUE messages that are operated alternately between second and third part of the

ordinary TLS handshake.

4.8 Overview

In this section, we review PAKE protocols which are stated in this thesis. We em-

phasize important points of them and give an overview in tables. Also, we include

computational costs of them.

Firstly, we summarize balanced PAKE protocols and present their major properties in

Table 4.1 and Table 4.2.

EKE is a first PAKE protocol which uses public key and symmetric key cryptography

together. It aims to prevent offline dictionary attacks and ensure forward secrecy.

Protocol’s security arises from discrete logarithm problem of DH in a cyclic group

but there is no formal security proof model for it. EKE has three broken variants

which are RSA-EKE, DH-EKE and ElGamal EKE. In Table 4.1, we give an overview

for DH-EKE because it has been basis for other protocols like SPEKE and B-SPEKE.
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SPEKE is a balanced PAKE protocol that depends on computational assumptions

of DDH and CDH. SPEKE’s security proof was given in random oracle model but

last known attacks which are "the exponential-equivalence attack" [71], "the imper-

sonation attack" and "the key-malleability attack" [29] were performed in 2018 and

they show that SPEKE can not satisfy forward secrecy. Furthermore, The SPEKE

protocol has been currently used in Entrust’s TruePass end-to-end web products and

Blackberry phones [29].

SPAKE aims to decrease usage of random oracle in the security proof. It is easier

to implement than other two-party PAKE protocols since it does not require ideal

ciphers onto a group or full domain hash functions. However, it does not satisfy

forward secrecy. It has two variants named as SPAKE1 and SPAKE2 and we include

SPAKE1 in Table 4.1.

J-PAKE can work over a finite field and elliptic curves. The difference between J-
PAKE and other PAKE protocols is that the parties send it to each other zero knowl-
edge proofs of Diffie-Hellman parameters. It ensures security for online and offline
dictionary attacks and satisfies forward secrecy. Furthermore, it was included in stan-
dard of ISO 11770-4 [1].

4.1: Balanced PAKE Proposals Overview
Computational Proof Known Standard

assumption model attack

DH-EKE DH 7 [47] 7

SPEKE DDH, CDH ROM [29], [71] ISO 11770-4 [1]

IEEE P1363 [26]

SPAKE1 CDH ROM 7 7

J-PAKE DDH ROM 7 ISO 11770-4 [1]

SNP [28]

PAK DDH ROM 7 ITU [2], IETF [15]

IEEE P1363 [26]

SESPAKE CDH ROM 7 Russian Federation

« SNP* : Schnorr NIZK Proof

PAK is an improved version of DH-EKE protocol which provides explicit authentica-

tion while resisting passive and active attacks. It was standardized in ITU [2], IETF

[15] and IEEE P1363 [26]. There are many variants of PAK protocols such as PPK,

PAK-X [13] and PAK-EC, PAK-R, PAK-Y [45]. We give PPK protocol that is more

efficient than PAK protocol since it supplies implicit authentication in two rounds.
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SESPAKE consists of a key agreement and a key confirmation stage and works over
elliptic curves. The purpose of SESPAKE is to avoid impersonation attacks. More-
over, it is confirmed in the standardization system of the Russian Federation.

4.2: Balanced PAKE Proposals Computational Costs

Exponentiation Exponentiation Total
(C) (S)

DH-EKE 2 2 4

SPEKE 2 2 4

SPAKE1 4 4 8

J-PAKE 4 4 8

PAK 3 2 5

Lastly, we give a summary for augmented PAKE protocols and state major properties

of them in Table 4.3 and Table 4.4.

B-SPEKE is an extension of SPEKE protocol so that DH is used to demonstrate

knowledge of the password instead of digital signature. It aims to provide security

against an eavesdropper and a man-in-the-middle attack. The security of B-SPEKE

depends on difficulty of discrete logarithm problem of DH.

SRP is known as zero-knowledge proof protocol in which S does not need to store

hashed version of the password. It ensures forward secrecy and offers resistance to

dictionary attacks, a man-in-the-middle attack and Denning-Sacro Attack [18]. It has

no security proof model but there is a formal analysis of SRP which is presented by

[51] in 2020. Additionally, it was standardized as a TLS cipher suit and included in

IEEE P1363 standard [26]. AugPAKE relies on difficulty of DH assumptions and

4.3: Augmented PAKE Proposals Overview

Computational Proof Known Standard
assumption model attack

B-SPEKE DH 7 7 7

SRP 7 7 7 IEEE P1363 [26]

AugPAKE DH ROM 7 ISO 11770-4 [1]

OPAQUE DH-OPRF ROM 7 7

its security is proven in random oracles. It resists server compromise and dictionary

attacks. Also, the standard ISO 11770-4 [1] includes AugPake protocol.
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OPAQUE is the first PKI-free augmented protocol that remains secure against pre-
computation attacks while being able to use a secret salt and it satisfies forward se-
crecy with explicit authentication. The protocol consists of OPRF protocol in which
DH-OPRF is used as a function and as key exchange protocol. Also, [37] states
OPAQUE and TLS 1.3 can be combined and shows examples of possible schemes.

4.4: Augmented PAKE Proposals Computational Costs

Exponentiation Exponentiation Total
(C) (S)

B-SPEKE 3 4 7

SRP 3 3 6

AugPAKE 2 2 4

OPAQUE * * *

*OPAQUE’s computational cost depends on the the
OPRF function’s cost, a regular DH exchange’s cost
and cost of key exchange protocol which is deter-
mined to use.
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CHAPTER 5

SUMMARY

5.1 Current Directions

Most of PAKE protocols use Diffie-Hellman key exchange as a basis in their algo-

rithms, therefore they also rely on discrete logarithm problem. However, the security

of these PAKE protocols has become controversial recently with the development of

quantum computers.

To illustrate, X.Gao et al. [24] presented a post-quantum version of SRP protocol

which is based on Ring-Learning-with-Errors (RLWE) problem and called this proto-

col as RLWE-SRP. They showed that 209-bit RLWE-SRP’s implementation is three

times faster than 112-bit original SRP protocol and also five and half times faster than

80-bit J-PAKE protocol.

J.Ding et al. [21] presented two-lattice-based PAKE protocols which are lattice-based

version of PAK and PPK protocols. It is believed that PAK and PPK can be conve-

niently replaced by these protocols, which are based on RLWE problem, in post-

quantum world. The new lattice-based RLWE-PAK protocol that is similar with PAK

consists of three phase and supplies mutual explicit authentication, whereas RLWE-

PPK protocol that is similar with PPK consists of two phase and ensures implicit

authentication.

D.Xu et al. [64] introduced the first lattice based three-party PAKE protocol and

called this new protocol as RLWE-3PAKE. They use RLWE-PAK protocol as a basis

in their protocol and implemented it by using LatticeCrypto. They analyzed per-

formance of RLWE-3PAKE protocol and also proved the security of the protocol in
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random oracle model.

Additionally, there is another three-party PAKE protocol proposed by R.Choi et al.

[17] which is named as AtLast. They combined J.Ding et al.’s RLWE-PPK protocol

with Abdalla’s method and compared their protocol with RLWE-3PAKE protocol.

5.2 Conclusion

In this thesis, we compiled some proposal PAKE protocols and examined their prop-

erties with security analysis of them.

Firstly, we gave information about a key exchange and a key agreement protocol. We

explained weakness of Diffie-Hellman key exchange and the importance of authenti-

cation in key exchange systems. Then, we introduced PAKE protocols and presented

main features of them such as methods and type of settings.

Next, we stated algorithms of some proposal PAKE protocols and mentioned their

security. We presented attacks on variants of EKE which is "number theoretic attack"

and attacks on SPEKE which are "exponential-equivalence attack", "impersonation

attack" and "key-malleability attack". Furthermore, we mentioned the usage of SRP

and OPAQUE protocols in TLS.

Finally, we summarized features of these protocols by mentioning their important

points and gave an overview for balanced and augmented PAKE protocols separately

and also showed their computational costs. Current state of the art was included as

well.

As already noted, there is formal methods analysis of SRP protocol [51]. As a fu-

ture work, OPAQUE and J-PAKE protocols may be investigated in terms of formal

methods analysis.
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