
SYNTHESIS OF PAST TIME SIGNAL TEMPORAL LOGIC FORMULAS
USING MONOTONICITY PROPERTIES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MERT ERGÜRTUNA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

JUNE 2020

Approval of the thesis:

SYNTHESIS OF PAST TIME SIGNAL TEMPORAL LOGIC FORMULAS
USING MONOTONICITY PROPERTIES

submitted by MERT ERGÜRTUNA in partial fulfillment of the requirements for the
degree of Master of Science in Computer Engineering Department, Middle East
Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün
Head of Department, Computer Engineering

Assist. Prof. Dr. Ebru Aydın Göl
Supervisor, Computer Engineering, METU

Examining Committee Members:

Prof. Dr. Halit Oğuztüzün
Computer Engineering, METU

Assist. Prof. Dr. Ebru Aydın Göl
Computer Engineering, METU

Assoc. Prof. Dr. Hüsnü Yenigün
Computer Science & Engineering, Sabancı University

Date: 11.06.2020

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Mert Ergürtuna

Signature :

iv

ABSTRACT

SYNTHESIS OF PAST TIME SIGNAL TEMPORAL LOGIC FORMULAS
USING MONOTONICITY PROPERTIES

Ergürtuna, Mert

M.S., Department of Computer Engineering

Supervisor: Assist. Prof. Dr. Ebru Aydın Göl

June 2020, 63 pages

Due to its expressivity and efficient algorithms, Signal Temporal Logic (STL) is

widely used in runtime verification, formal control and analysis of time series data.

While it is relatively easy to define an STL formula, simulate the system and mark

the unexpected behaviors according to the formula as in the testing process, finding

an STL formula that would detect the underlying cause of the errors is a complicated

process. The main motivation of this thesis is to find a method that would explain the

events that lead to the erroneous behavior in the system in an automated, efficient and

human-readable way. Since the aim is to find the events the lead to the error in the

system, past time signal temporal logic (ptSTL) which deals with the past events is

used in the study.

This thesis presents a novel method to find temporal properties that lead to unexpected

behaviors from a dataset. The dataset consists of system traces that are labeled at each

time point. First, monotonicity properties for ptSTL over the considered dataset is

developed. Next using these monotonicity properties, an efficient parameter synthesis

method for ptSTL is proposed. Finally, the parameter synthesis method is used in an

iterative unguided formula synthesis framework that combines optimized formulas.

v

In addition, the extension of the proposed approach to a dataset with a single label

for each trace is developed. In this part, it is shown that the previously defined mono-

tonicity properties hold and the framework is adapted.

Keywords: Signal Temporal Logic, Formal Methods, Formula Synthesis, Monotonic-

ity, Classification

vi

ÖZ

MONOTONLUK ÖZELLİKLERİ KULLANILARAK GEÇMİŞ ZAMANLI
SİNYAL ZAMANSAL MANTIK FORMÜLLERİ SENTEZLENMESİ

Ergürtuna, Mert

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Ebru Aydın Göl

Haziran 2020 , 63 sayfa

Sinyal Zamansal Mantık(Signal Temporal Logic - STL) verilmli algoritmaları ve an-

latım gücü sayesinde çalışma zamanında doğrulama, formel kontrol ve zaman serisi

verilerinin analizinde yaygın olarak kullanılmaktadır. Bir STL formülü tanımlayıp,

sistemi simüle edip, test süreçlerindeki gibi beklenmeyen davranışları bu formüle

göre işaretlemek görece kolayken, hataların altında yatan sebebi bulacak bir STL for-

mülü bulmak karmaşık bir süreçtir. Bu tezin ana motivasyonu, bir sistemde meydana

gelen hatalı davranışa sebep olan olayları otomatikleştirilmiş, verimli ve insan tara-

fından okunabilir şekilde açıklayacak bir yöntem bulmaktır. Bu çalışmada amaç sis-

temde hatalara yol açan durumları bulmak olduğundan, geçmiş olayları tanımlamakta

kullanılan geçmiş zamanlı sinyal sayısal mantık (past time Signal Temporal Logic -

ptSTL) kullanılmıştır.

Bu tez bir veri kümesinden, beklenmeyen davranışlara sebep olan zamansal özellik-

leri bulacak yeni bir yöntem sunmaktadır. Belirtilen veri kümesi her zamanda etiket-

lenmiş sistem izlerinden oluşmaktadır. İlk olarak, ptSTL formüllerinin bu veri kümesi

üzerindeki monotonluk özellikleri tanımlanmıştır. Ardından monotonluk özellikleri

vii

kullanılarak, ptSTL için verimli bir parametre sentezi yöntemi önerilmiştir. Son ola-

rak, parametre sentezi yöntemi ile bulunan optimize formülleri birleştiren yinelemeli

ve rehbersiz bir formül sentezleme yapısı geliştirilmiştir.

Ek olarak, önerilen yaklaşımın her iz için tekil etiketi olan veri kümeleri için ge-

nişletilmesi sağlanmıştır. Bu kısımda, önceden tanımlanan monotonluk özelliklerinin

korunduğu gösterilip, yapı uyarlanmıştır.

Anahtar Kelimeler: Sinyal Zamansal Mantık, Formel Metotlar, Formül Sentezleme,

Monotonluk, Sınıflandırma

viii

To my family...

ix

ACKNOWLEDGMENTS

First of all, I would like to thank to my advisor Assist. Prof. Dr. Ebru Aydın Göl

for her endless support. I was able to complete this study with her knowledge and

guidance.

I would also like to thank my thesis committee members Prof. Dr. Halit Oğuztüzün

and Assoc. Prof. Dr. Hüsnü Yenigün not only for accepting my invitation but also for

their helpful and encouraging comments.

I want to also express my gratitude to my parents and my sister for their endless

support and for standing by me on every aspect of my life. I would like to thank

to my cousin Buse Aslan for always being with me my whole life. Lastly, I would

like to express my profound appreciation to my girlfriend Fatmanur Beşli for her

encouragement, patience and support throughout this study and my life.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xvii

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation and Problem Definition 1

1.2 Proposed Methods and Models . 2

1.3 Contributions and Novelties . 3

1.4 The Outline of the Thesis . 3

2 RELATED WORK AND BACKGROUND 5

2.1 Background Information . 5

2.1.1 Linear Temporal Logic . 5

2.1.2 Signal Temporal Logic . 6

2.1.3 Past Time Signal Temporal Logic 7

xi

2.1.4 Monotonicity of Parametric Signal Temporal Logic 9

2.2 Related Work . 9

3 PROBLEM FORMULATION . 15

4 PROPOSED METHOD . 19

4.1 Monotonicity of Parametric Signal Temporal Logic 20

4.2 Parameter Optimization Method . 25

4.3 Iterative Formula Construction Method 31

5 EXPERIMENTS AND RESULTS . 37

5.1 Case Studies . 37

5.1.1 Aircraft Dataset . 37

5.1.1.1 Dataset Generation . 37

5.1.1.2 Algorithm Inputs . 39

5.1.1.3 Results . 40

5.1.2 Traffic System Dataset . 41

5.1.2.1 Dataset Generation . 42

5.1.2.2 Algorithm Inputs . 42

5.1.2.3 Results . 44

6 EXTENSION OF THE METHOD FOR SINGLE LABEL DATASET 47

6.1 Monotonicity Properties . 48

6.2 Proposed Method . 49

6.3 Case Study . 50

7 CONCLUSION . 55

7.1 Future Studies . 57

xii

REFERENCES . 59

xiii

LIST OF TABLES

TABLES

Table 4.1 Monotonicity relations for Positive Labels 23

Table 4.2 Monotonicity relations for Negative Labels 23

Table 6.1 Most Commonly Arrived Ports and Number of Trips that Ended in

the Corresponding Port . 50

xiv

LIST OF FIGURES

FIGURES

Figure 3.1 An example from CPU usage dataset which consists CPU usage

rate signal and label. Label is scaled for clear view. 17

Figure 3.2 A sample signal x, it’s label l, and the labels lφ obtained by

evaluating φ along x. Both label l and evaluation result lφ are scaled for

better view. In this example, the evaluation matches the signal label at

each time point. 17

Figure 4.1 Proposed Method . 20

Figure 4.2 Number of positives with changing values of p3 24

Figure 4.3 Number of negatives with changing values of p3 25

Figure 4.4 Number of true positives for each possible combination of p1

and p2 . 29

Figure 4.5 Number of false positives for each possible combination of p1

and p2. Instances FP#(φ(v),D) ≥ B are marked with red and rest is

marked with green. 30

Figure 4.6 Number of true positives for each possible combination of p1

and p2. Instances FP#(φ(v),D) ≥ B are marked with red and rest

(candidate solutions) is marked with green. Also evaluated combina-

tions of p1 and p2 by the diagonal search are marked with arrows. 31

Figure 4.8 Signal and the label generated by evaluating the formula φ on

the signal . 36

xv

Figure 5.1 Aircraft Longitudinal Flight Control Example. 38

Figure 5.2 alpha0 − alpha1 and generated label l 39

Figure 5.3 Traffic network containing 2 signals and 6 links. 41

Figure 5.4 Number of vehicles on each link. 43

Figure 5.5 Number of vehicles on link x1 and assigned label. 44

Figure 6.1 Routes of the vessels that cruises in Mediterranean Sea. 51

Figure 6.2 Location of Tuzla Port (purple) and destination points of vessels

that are classified using only φ1 (red), using only φ2 (blue) and classified

by both φ1 and φ2 (yellow). 53

xvi

LIST OF ABBREVIATIONS

ABBREVIATIONS

Alg Algorithm

Fig Figure

Eq Equation

Prob Problem

LTL Linear Temporal Logic

STL Signal Temporal Logic

ptSTL Past Time Signal Temporal Logic

CPU Central Processing Unit

DAG Directed Acyclic Graph

CPS Cyber-Physical System

SVM Support Vector Machine

ROI Region of Interest

xvii

xviii

CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Design and verification of cyber-physical systems that have to perform complex tasks

are challenging processes. The final system is usually, complex and it contains sub-

models such as Simulink models [1]. After the development of the model, in the

verification phase, usually, the system’s outputs/traces that are generated by simulat-

ing the model are used for checking whether the system satisfies it’s requirements.

Using the requirements of the developed system and traces, it is a relatively easy task

to mark the traces where an unexpected behavior is observed. On the other hand, one

of the challenging problems in the field is to identify the errors in the system which

cause unexpected behaviors. It is important to note that as the system gets more com-

plex, it gets harder for a human to understand the events that caused an erroneous

behavior.

Our purpose in this work is to develop a method that identifies the root causes of a

failure in an automated and efficient way. We also would like our method to be system

independent. We do not require any implementation detail of the system. Only a set

of system traces is required. Our method will help the system engineer to locate the

modeling errors by explaining the events that lead to an erroneous behavior in the

system. Thus, it is also important to represent these root causes in a human-readable

way.

The problem that we concentrate on in this thesis is that given a set of labeled traces

of a cyber-physical system, where the label indicates whether there is an unexpected

behavior or not, express the root causes of the erroneous behavior of the system in an

1

automated, human-readable and efficient way.

1.2 Proposed Methods and Models

In this work, we propose a novel method to find temporal properties that lead to

unexpected behaviors in the system by using labeled system traces in an automated

way. The properties generated by our approach can give an insight into the underlying

cause and help the system engineer to identify the corresponding modeling errors. To

achieve this goal, we synthesize a formula that contains temporal properties such that

evaluation of the synthesized formula mimics the labels in the given traces. In our

work temporal properties are expressed with Signal Temporal Logic (STL) for it’s

expressive power and human-readable structure. STL is a rich specification language

which is developed for describing properties of real valued signals [2] and it is an

extension to Linear Temporal Logic [3]. Because of it’s expressiveness and efficient

calculation methods, STL is used in many areas such as: formal control [4], analysis

of time series data [5] and run-time verification [6].

STL formula synthesis problem has been studied in the literature in different forms

such as: differentiation of the good and the bad behavior of a system by finding an

STL formula [7, 8, 9], finding an STL formula which is satisfied by all traces of the

system [10, 11] or finding a formula which identifies the bad behavior at the time they

occur [12] which is very similar to our case. Since our aim is to find the root causes

of the erroneous behavior, we use past time signal temporal (ptSTL) logic where only

past time temporal operators are used.

A ptSTL formula is constructed by connecting inequalities over the system variables

with temporal and Boolean operators. For example, ptSTL formula P[0,4]x > 5 re-

quires x to exceed 5 within the last 4 seconds at least once. By combining boolean

and temporal operators, more complex STL formulas can be generated. To give an

example, consider the following specification “within the last 5 seconds, x goes be-

low 10, and since then, within every 4 seconds, y goes above 2". The specification is

expressed as ptSTL formula P[0,4] y > 2 S[0,5] x < 10.

For signals that has a label at each time point where the label specifies whether the

2

system meets it’s requirements at the corresponding time point, we propose an iter-

ative method to synthesize a ptSTL formula in an efficient manner. The proposed

method generates a set of ptSTL formulas up to a predefined formula length and it-

eratively combines them to synthesize a ptSTL formula to describe the label in the

given dataset in an unguided way. For generating the set of ptSTL formulas, we de-

fine a novel approach that extends the monotonicity properties of STL and using these

monotonicity properties we employ an efficient search algorithm.

1.3 Contributions and Novelties

Monotonicity properties for parameters in an STL formula were first defined in [10].

In their study, they required an ordering between the parameters in the formula. As a

consequence of this ordering, the parameters are optimized in the given order, which

causes the parameters with the lower orders to be optimized according to the results

of the previously optimized parameters. In our work, there is no such ordering thus a

global optimum can be found. Also in [8], an iterative formula generation method is

defined as in our case but [8] is valid for only a sub-class of STL formulas whereas

our method includes all STL formulas. In addition, our iterative formula construction

method allows us to generate complex formulas in an efficient manner which was not

achieved in [12].

To conclude, our contributions are as follows:

• We extend the monotonicity definition of STL

• We present an efficient parameter synthesis algorithm

• We develop an iterative STL formula synthesis method

1.4 The Outline of the Thesis

In the introduction chapter, first we state our motivation for this study. Then we in-

formally present the problem studied in this thesis. Furthermore, we introduce our

formula synthesis method for solving the problem. Lastly we state our contributions

3

in this area by briefly comparing our work with previous works. In Chapter 2 we

will continue by providing the preliminary information on signal temporal logic and

it’s extensions such as past time signal temporal logic and parametric signal temporal

logic. Then, we will introduce the related studies. Since we do parameter optimiza-

tion using monotonicity properties of STL in our work, we will also introduce the

works that uses monotonicity of STL. In Chapter 3, we will formally define our for-

mula synthesis problem. In Chapter 4, we will introduce proposed method in three

parts by providing running examples in each part. In Chapter 5 we present results on

two case studies and compare them with similar works. In Chapter 6, we will extend

the formula synthesis problem for single labeled signals and approach to this prob-

lem as a classification problem, propose a solution to the problem and provide a case

study. Lastly in Chapter 7 we will summarize our work and conclude the thesis.

4

CHAPTER 2

RELATED WORK AND BACKGROUND

2.1 Background Information

2.1.1 Linear Temporal Logic

Linear Temporal Logic formulas are generated by using atomic propositions, boolean

operators and temporal operators. Boolean conjunction, negation and true are denoted

with ∨, ¬ and T, respectively. Other operators such as disjunction (∧) or implication

(→) can be obtained by combining the three basic operators. There are two temporal

operators in LTL which are Next(X) and Until (U). An LTL formula (φ) over a set

of atomic propositions (O) can be formally defined recursively using the following

syntax where φ,φ1 and φ2 are LTL formulas and o ∈ O is an atomic proposition.

φ = o | T | φ1 ∨ φ2 | ¬φ | Xφ | φ1Uφ2 (2.1)

Two temporal operators which are commonly used Globally(G) and Eventually(F)

are defined by using 2.1 as follows:

Fφ = TUφ (2.2)

Gφ = ¬F¬φ (2.3)

For a word w = w(1)w(2)w(3) . . . ∈ (2O)w, satisfaction of formula φ at position

k ∈ N+, denoted by w(k) |= φ over a set of propositions O is defined as follows:

• w(k) |= T

• w(k) |= o for some o if o ∈ w(k)

• w(k) |= ¬φ if w(k) 6|= φ

5

• w(k) |= φ1 ∧ φ2 if w(k) |= φ1 and w(k) |= φ2

• w(k) |= Xφ if w(k + 1) |= φ

• w(k) |= φ1Uφ2 if there exists j ≥ k such that w(j) |= φ2 and for all k ≤ i <

j, we have w(i) |= φ1

To make the formal definition understood better, following informal definitions can

be observed:

• Xφ is satisfied at the current step if φ is satisfied in the next step

• φ1Uφ2 is satisfied if φ1 is satisfied until a φ2 is satisfied

• Gφ is satisfied if φ is satisfied at all steps

• Fφ is satisfied if φ is satisfied at some time in the future

2.1.2 Signal Temporal Logic

Signal Temporal Logic is an extension to LTL. In STL real valued signals and real

valued constraints are used. A Signal Temporal Logic (STL) formula is recursively

defined as follows:

φ = T|xi ∼ c|¬φ|φ1 ∧ φ2|φ1 ∨ φ2|φ1U[a,b]φ2|F[a,b]φ|G[a,b]φ (2.4)

where T is boolean true, xi corresponds to the ith signal variable, ∼∈ {>,<}, and c

is a real valued constant. U[a,b] (until), F[a,b] (eventually), and G[a,b] (globally) are

bounded temporal operators with time bound [a, b].

In our scope an n-dimensional discrete signal x is a mapping from time domain N+

to the real numbers Rn. A signal with finite length K + 1 can be seen as a sequence

such as: x = x0, x1, ..., xK . We use notation xit to specify the ith dimension of the

signal (i.e. ith signal variable) at time t.

Informally, for signal x, at time t semantics are as follows:

• F[a,b]φ is satisfied if φ is satisfied in time interval [t+ a, t+ b] at least once

6

• G[a,b]φ is satisfied if φ is satisfied in time interval [t+ a, t+ b] at all points

• φ1U[a,b]φ2 is satisfied if φ2 is satisfied at some time t′ ∈ [t + a, t + b] at least

once and φ1 is satisfied at each point between [t, t+ t
′
)

(x, t) |= φ notation means that formula φ is satisfied at time t for signal x. Formal

semantics for satisfaction of an STL formula is defined as:

(x, t) |= T

(x, t) |= xi ∼ c iff xit ∼ c,∼∈ {>,<}

(x, t) |= φ1 ∧ φ2 iff (x, t) |= φ1 and (x, t) |= φ2

(x, t) |= φ1 ∨ φ2 iff (x, t) |= φ1 or (x, t) |= φ2

(x, t) |= F[a,b]φ iff ∃t′ ∈ [t+ a, t+ b], (x, t′) |= φ (2.5)

(x, t) |= G[a,b]φ iff ∀t′ ∈ [t+ a, t+ b], (x, t′) |= φ

(x, t) |= φ1U[a,b]φ2 iff ∃t′ ∈ [t+ a, t+ b], (x, t′) |= φ2,

∀t′′ ∈ [t′, t](x, t′′) |= φ1,

Note that the Eventually (F) and Globally (G) operators are the special cases of the

until operator where:

F[a,b]φ := T U[a,b]φ (2.6)

G[a,b]φ := ¬F[a,b]¬φ. (2.7)

2.1.3 Past Time Signal Temporal Logic

Past Time Signal Temporal Logic (ptSTL) is an extension to STL. While STL focuses

on future events, ptSTL deals with past events. A Past Time Signal Temporal Logic

(ptSTL) formula is recursively defined as follows:

φ = T|xi ∼ c|¬φ|φ1 ∧ φ2|φ1 ∨ φ2|φ1S[a,b]φ2|P[a,b]φ|A[a,b]φ (2.8)

where T, xi, ∼∈ {>,<}, c, ∧,∨ and ¬ are defined as in (2.4). S[a,b] (since), P[a,b]

(previously) and A[a,b] (always in the past) are bounded past temporal operators

with time bound [a, b].

Informally, for signal x, at time t semantics are as follows:

7

• P[a,b]φ is satisfied if φ is satisfied in time interval [t− b, t− a] at least once

• A[a,b]φ is satisfied if φ is satisfied in time interval [t− b, t− a] at all points

• φ1S[a,b]φ2 is satisfied if φ2 holds at some time t′ ∈ [t − b, t − a] and φ1 holds

since then.

(x, t) |= φ notation means that formula φ is satisfied at time t for signal x. Formal

semantics for satisfaction of a ptSTL formula is defined as:

(x, t) |= T

(x, t) |= xi ∼ c iff xit ∼ c,∼∈ {>,<}

(x, t) |= φ1 ∧ φ2 iff (x, t) |= φ1 and (x, t) |= φ2

(x, t) |= φ1 ∨ φ2 iff (x, t) |= φ1 or (x, t) |= φ2

(x, t) |= P[a,b]φ iff ∃t′ ∈ I(t, [a, b]), (x, t′) |= φ (2.9)

(x, t) |= A[a,b]φ iff ∀t′ ∈ I(t, [a, b]), (x, t′) |= φ

(x, t) |= φ1S[a,b]φ2 iff ∃t′ ∈ I(t, [a, b]), (x, t′) |= φ2,

∀t′′ ∈ [t′, t](x, t′′) |= φ1,

where I(t, [a, b]) = [t− b, t− a] ∩ [0, t]

Note that the Previously (P) and Always (A) operators are the special cases of the

since operator where:

P[a,b]φ := T S[a,b]φ (2.10)

A[a,b]φ := ¬P[a,b]¬φ (2.11)

Parametric Signal Temporal Logic is an extension of STL[13]. In parametric signal

temporal logic, parameters are used instead of numeric constants in predicates and

time intervals. An STL formula can be generated by assigning values to all parameters

in an parametric STL formula. As an example, consider the parametric ptSTL formula

φ(p1, p2, p3) = F[p1,p2]x < p3. Assigning valuation v = (p1 7→ 3, p2 7→ 5, p3 7→
10.2) to parametric STL formula φ(p1, p2, p3) STL formula φ(v) = F[3,5]x < 10.2 is

obtained. Parametric ptSTL formulas are defined in a similar way.

8

2.1.4 Monotonicity of Parametric Signal Temporal Logic

Monotonicity properties for parametric signal temporal logic was first defined in [10].

Parametric STL formula φ(p1, p2, . . . pn) is monotonically increasing with parame-

ter pi if (2.12) is satisfied along any signal x. Similarly parametric STL formula

φ(p1, p2, . . . pn) is monotonically decreasing with parameter pi if (2.13) is satisfied

along any signal x where v(p) denotes the valuation of parameter p in formula φ

for all v, v′ with v(pi) < v′(pi) and v′(pj) = v(pj) for each i 6= j,

(x, t) |= φ(v) =⇒ (x, t) |= φ(v′) (2.12)

for all v, v′ with v(pi) > v′(pi) and v′(pj) = v(pj) for each i 6= j,

(x, t) |= φ(v) =⇒ (x, t) |= φ(v′) (2.13)

Informally, for a parametric STL formula φ with parameters p1, p2, . . . pn, φ is said to

be monotonically increasing with pi if the valuation does not change from satisfying

to not satisfying when the value of pi is increased and the rest of the parameters are

kept the same. Similarly, if a parametric STL formula φ is monotonically decreasing

with parameter pi, valuation can not change from satisfying to not satisfying when the

value of pi is decreased and the other parameters are kept the same. As an example

consider the parametric STL formula φ = P[0,5]x > px. It can be clearly seen that

each time point that P[0,5]x > 3 is satisfied will also be satisfied by formula P[0,5]x >

1 on any signal. Since decreasing the value of the px can not cause this formula’s

valuation to change from satisfying to not satisfying, φ is said to be monotonically

decreasing with parameter px

2.2 Related Work

Temporal logic is widely used in formal verification [14] and system monitoring [15]

thanks to its expressive power and effective algorithms. These algorithms allows

for real time monitoring (or verification) of a system against a given temporal logic

formula. In recent years, synthesis of such temporal logic formulas from a dataset of

system traces is studied quite extensively. Following the pioneering study in the area

[10], many studies has been done in the literature in different forms such as finding a

9

formula that would be satisfied by all system traces [10, 11, 7] or finding a formula

that would categorize the time series data which is labeled as positive or negative

[16, 8, 9, 12, 17]. Studies in the literature also differ by the dataset labeling process,

while [17, 12] assume a label is assigned to each time point for each signal, [16, 9]

assume that a single label is assigned to each signal. Another aspect is the employed

temporal logic, while [10, 13, 9] use Signal Temporal Logic (STL),[17, 18, 19, 20, 21]

use past time STL (ptSTL).

Synthesis of a formula from a given dataset requires defining patterns observed in

the system traces as a temporal logic formula. For metric logics, such as Signal

Temporal Logic, formula synthesis involves identifying formula structure and finding

time bounds and signal thresholds. The introduction of Parametric Signal Temporal

Logic [13] formalized this distinction. In particular, in a parametric STL formula,

parameters can be used instead of numerical constants for time bounds and metric

thresholds. Parametric STL allows researchers to define common signal behaviors as

template formulas, which simplifies requirement writing process [22]. Some of the

signal patterns defined in [22] are Spike, Overshoot, Settling Time, Rise Time and

Steady State Error.

For example authors defines the steady state error and overshoot behavior in paramet-

ric STL form as in (2.14) and (2.15) respectively.

F[T,T] | x− xref |> a (2.14)

F[0,T](step(xref , r) ∧ F(x− xref > c)) (2.15)

where step(y, r) = y(t+ ε)− y(t) > r

While (2.14) states that if the difference between the followed signal x and the ref-

erence (xref) signal is greater then a predefined error margin a at time horizon T , a

steady state error exists, (2.15) states, for a step input (with amplitude at least r) at

time t, if x exceeds the given reference xref by a quantity greater than c at any time

in the future, an overshoot scenario is encountered.

With the ability to explain certain signal patterns as parametric STL formulas, the

early works on formula synthesis focused on finding valuations for parameters, i.e.,

10

optimizing these parameters, for a given parametric formula.In [23, 24] authors state

that in model-based development, not only verifying/falsifying formal system spec-

ifications but also exploring properties that the system satisfies is a desirable action.

In [23], authors proposed a method to optimize a parametric STL formula which in-

cludes one unknown parameter. They defined robustness functions to optimize the

parameter and showed that these robustness functions are monotonic with respect to

search parameter. Using stochastic optimization methods [25, 26, 27] provided in S-

TaLiRo [28] tool, they iteratively optimize the unknown parameter by analyzing the

trace of the given system. In [24], the method given in [23] is extended for multiple

parameters. It is stated that optimizing multiple parameters is a problem in the form

of Pareto Front. Their method can optimize multiple parameters using S-TaLiRo [28]

tool with the condition that the robustness function of the optimized parameter has the

same monotonicity with respect to all parameters in the formula. Thus the method is

valid for a sub-class of STL formulas. The STL parameter synthesis problem is also

studied in [10], where the authors utilize the monotonicity properties of parameters

over the quantitative valuation semantics. Their method requires an ordering over the

unknown parameters. In particular, the parameters are synthesized in the given order

using monotonicity properties.

The above mentioned approaches require an expert to write a parametric formula for

the considered system. On the other hand, recent works consider the synthesis of

both formula structure, i,e, a parametric formula, and its parameters. These studies

are conducted with the assumption that the structure of the solution is not known. In

[29, 8], approaches based on directed acyclic graphs (DAG) are developed. In [29]

authors fist convert set of STL formulas to Directed Acyclic Graph (DAG). Then us-

ing simulated annealing [30] they estimate the parameters. Then they iteratively grow

the nodes while pruning the nodes with high cost where high cost means this formula

does not fit the observed data. In [8] authors define the problem as an anomaly de-

tection problem and proposed an unsupervised learning algorithm. They use the one

class support vector machine (SVM) optimization to lift the input data to a higher

dimension and separate the normal data from the anomalous data [31] by adapting

the objective function of one class SVM to an optimization function. Using this op-

timization function they follow the approach given in [29] for optimization of the

11

parameters. They also added a heuristic tightness function while estimating the pa-

rameters which basically penalizes the time parameters(τ) since they will use the

method for monitoring purposes.

Another approach that is used to solve the formula synthesis problem in the litera-

ture is using decision tree based approaches. In [9], authors approach the problem

as a binary classification problem. The dataset they used consists of a set of labeled

signals where label states which class the signal belongs to (whether desired or unde-

sired behavior). They define misclassification rate as the ratio of false positives and

false negatives to total number of signals. They first build a binary decision tree that

would classify the signals by minimizing the misclassification rate. Then they built a

mapping between a fragment of STL and decision trees. Lastly, using this mapping

they converted this decision tree to an STL formula.

In [16] a binary classification problem as in [9] is considered. First, they found regions

of interest (ROI) in the form of spatial predicates that basically represents the desired

and undesired behaviors. Then using these ROIs they obtain a representative set of

signal formulas for the dataset. Using these representative set, they run a decision tree

based logical clustering algorithm which generates an STL formula that minimizes

the misclassification rate.

Another study [21] follows the decision tree based approaches. The dataset used in

this study contains continuously labeled signals while [9, 16] uses a single label for

each signal. The labels in the dataset mark the moments of the undesired behavior

at the time they occur. In [21], the authors first transform the dataset into another

dataset using windowing and applying min-max filters of different lengths. Then

using Quinlan’s C4.5 decision tree algorithm [32] in WEKA [33] they form a decision

tree from the transformed dataset. Lastly they generate the ptSTL formula from the

decision tree.

In [12], a grid search based method to find the monitoring rules for a system is pro-

posed. In the system, dataset contains continuously labeled signals. First all possible

parametric ptSTL formulas for given system variables up to a predefined number of

operators are generated using the recursive definition of the ptSTL formulas. Then

using these generated formulas, all possible values of parameters are evaluated using

12

a greedy search on the dataset and the result that fits the dataset best is returned as the

optimal formula.

In this thesis, monotonicity properties of STL formulas are employed as in [10]. How-

ever, there is no ordering assumption between the parameters, as a consequence a

global optimum can be found. Also different from [24], this method is valid for all

STL formulas. Lastly, in [8], an iterative formula synthesis approach is followed as

in this work but this iterative approach can be used for a sub-class of STL formulas

(iPSTL). Different from [8], our method includes all STL formulas. Another benefit

of the iterative construction is to be able to generate complex formulas efficiently that

could not be achieved in previous studies [12].

13

14

CHAPTER 3

PROBLEM FORMULATION

As stated in Chapter 1, our aim in this work is to find the events that lead to erroneous

behavior in a system. In addition, to identify these events, we aim at developing a

system independent method. In particular, we do not require any information on the

system such as implementation of the system, on what platform the system runs or the

model of the system. In our work, we only need a labeled set of sample traces (runs)

that can be acquired by running or simulating the system. A sample trace is a time

series data over the system variables and the label. Essentially, the label is a binary

variable which is the indicator of whether the system satisfies the specifications or

not. If the specifications are satisfied, the label should be 0. If there is an erroneous

behavior, the label should be 1. For a signal with continuous label, we formally define

our dataset as follows:

D = {(x, l) | x =x0, x1, . . . , xK , (3.1)

l =l0, l1, . . . , lK , and

xt ∈Rn, lt ∈ {0, 1}, t = 0, . . . , K},

where lt = 1 means that, an erroneous behavior is occurred on signal x at time t.

Informally, our goal is to synthesize a ptSTL formula φ such that, the label (lφ =

lφ0 , l
φ
1 , . . . , l

φ
N) that will be acquired by evaluating φ at each time point on signal x

matches the label l in the dataset (3.1).

By evaluating the synthesized ptSTL formula φ on signal x = x0, . . . , xK , lφ is gen-

15

erated as follows:

lφt =

1 if (x, t) |= φ

0 otherwise
(3.2)

After providing the information on our dataset D and the generation of lφ, we can

define our problem formally as follows:

Problem 3.0.1 Given a dataset D as in (3.1), find a ptSTL formula φ such that for

any (x, l) ∈ D and t ∈ [0, K], lt = lφt , where lφt is generated as defined in (3.2).

To clarify Problem 3.0.1, an example dataset and its solution is given in Example

3.0.1.

Example 3.0.1 Consider a monitoring system where we monitor the CPU usage rate

and measure the temperature of the CPU. If the processor temperature goes above a

certain threshold (which is considered as an unwanted event), the data is labeled with

1. A sample run of the system is shown in Figure 3.1.

According to our problem definition (3.0.1), our goal is to find a ptSTL formula φ

such that, by evaluating this formula on signal x, we would like to generate a label lφ

as in (3.2) that matches the label l.

A perfect match of l and lφ is shown in Figure 3.2 where φ = A[0,2](x > 30) which

simply tells us, if the CPU usage rate exceeds 30 % for the last three time steps, an

unwanted event (in this case, CPU temperature increases above the critical threshold)

occurs.

16

Figure 3.1: An example from CPU usage dataset which consists CPU usage rate

signal and label. Label is scaled for clear view.

Figure 3.2: A sample signal x, it’s label l, and the labels lφ obtained by evaluating

φ along x. Both label l and evaluation result lφ are scaled for better view. In this

example, the evaluation matches the signal label at each time point.

17

18

CHAPTER 4

PROPOSED METHOD

In this chapter, the proposed method for solving Problem 3.0.1 will be explained in

detail. The overall procedure for the proposed method is given in Figure 4.1. There

are 2 main inputs in the method which are, a dataset D as defined in (3.1) and a set

of parametric ptSTL formulas which is denoted with Φ. Φ can be generated either

recursively by using the semantics of ptSTL formulas or can be provided by a field

expert. Using the datasetD and Φ, parameter optimization method (Diagonal Search)

optimizes the parameters for each parametric formula given in Φ and synthesizes

optimized formulas. Then an iterative algorithm generates the final formula which is

in the following form:

φ = φ1 ∨ φ2 ∨ . . . φp (4.1)

Our method assumes that the erroneous behavior in the system can be caused by a

number of different events. Our aim in the parameter optimization part is to find these

events that led to the erroneous behavior efficiently and then in iterative construction

method, final formula is constructed via disjunction operator. Parameter optimization

method uses the monotonicity properties of the parameters in a parametric ptSTL

formula and synthesizes a ptSTL formula in an efficient way.

In Chapter 4.1 extension of the monotonicity properties for STL will be discussed.

Then using these monotonicity properties, a novel parameter optimization method

will be explained in Chapter 4.2. Lastly in Chapter 4.3, the iterative formula con-

struction method which combines STL formulas by disjuction will be explained.

19

Figure 4.1: Proposed Method

4.1 Monotonicity of Parametric Signal Temporal Logic

In this study, we extend the work in [10]. In [10], monotonicity was defined between

a parameter value in an STL formula and the satisfaction of this STL formula. We

extend this monotonicity property by defining the monotonicity between a parameter

value in a ptSTL formula and the number of positive/negative labels [34], which is

obtained by evaluating the ptSTL formula on a dataset.

For a signal x with length K + 1, the number of positive labels P#(φ,x) (4.2) and

the number of negative labels N#(φ,x) (4.3) are defined as follows:

P#(φ,x) =
K∑
i=0

lφi (4.2)

20

N#(φ,x) =
K∑
i=0

¬lφi (4.3)

where lφ is generated as defined in (3.2).

Also note that

P#(φ,x) +N#(φ,x) = K + 1 (4.4)

For a parametric ptSTL formula φ with parameters [p1, p1, . . . pm], we define the

monotonicity between a parameter pi and P#(φ, ·) or N#(φ, ·).

For P#(φ, ·) to be monotonically increasing with pi, the satisfaction value of φ should

also be monotonically increasing with pi. i.e., for any signal x, if (2.12) holds,

then (4.5) holds too.

for all v, v′ with v(pi) < v′(pi), v
′(pj) = v(pj) for each i 6= j,

P#(φ(v),x) ≤ P#(φ(v′),x) (4.5)

Similarly, for P#(φ, ·) to be monotonically decreasing with pi, the satisfaction value

of φ should also be monotonically decreasing with pi. Specifically, for any signal

x, (4.6) holds when (2.13) holds:

for all v, v′ with v(pi) > v′(pi), v
′(pj) = v(pj) for each i 6= j,

P#(φ(v),x) ≤ P#(φ(v′),x) (4.6)

It is clear to see that, by using the information in (4.4), P#(φ, ·) and N#(φ, ·) should

have the opposite monotonicity property, which means that if P#(φ, ·) is monotoni-

cally increasing with pi then N#(φ, ·) have to be monotonically decreasing with pi.

The number of positive labels P#(φ,D) of a ptSTL formula φ for a dataset D is

simply defined as the sum of positive labels for each signal,label pair in the dataset

which is derived from (4.2) as follows:

P#(φ,D) =
K∑

(x,l)∈D

P#(φ,x) (4.7)

21

The number of negative labels denoted withN#(φ,D) is defined similarly as follows:

N#(φ,D) =
K∑

(x,l)∈D

N#(φ,x) (4.8)

As either a positive (1) or a negative (0) label is assigned to each data point, the

equality |D| × (K + 1) = P#(φ,D) +N#(φ,D) trivially holds.The number of cor-

rectly identified positive instances (True Positives), incorrect positive instances (False

Positives), correctly identified negative instances (True Negatives) and incorrect neg-

ative instances (False Negatives) with respect to the labels generated by the formula

φ using (3.2) and the dataset labels are defined respectively as follows:

TP#(φ,D) =
∑

(x,l)∈D

K∑
i=0

li ∧ lφi (4.9)

FP#(φ,D) =
∑

(x,l)∈D

K∑
i=1

¬li ∧ lφi (4.10)

TN#(φ,D) =
∑

(x,l)∈D

K∑
i=0

¬li ∧ ¬lφi (4.11)

FN#(φ,D) =
∑

(x,l)∈D

K∑
i=1

li ∧ ¬lφi (4.12)

The derivations of TP#(·, ·), FP#(·, ·), TN#(·, ·) and FN#(·, ·) preserves mono-

tonicity properties (4.5) and (4.6). As a result, if P#(·, ·) is monotonically increasing

(or decreasing) with a parameter pi, then both TP#(·, ·) and FP#(·, ·) are increas-

ing (or decreasing) with pi. Same rule holds for negatives too, i.e. if N#(·, ·) is

monotonically increasing (or decreasing) with a parameter pi, then both TN#(·, ·)
and FN#(·, ·) are increasing (or decreasing) with pi

Notation M(p, φ, P) is used to denote the monotonicity (increasing or decreasing)

of parameter p in parametric ptSTL formula φ for the number of positives (P#(·, ·),

22

TP#(·, ·) or FP#(·, ·):

M(p, φ, P) =

I if p is monotonically increasing in φ

D if p is monotonically decreasing in φ
(4.13)

Similarly notationM(p, φ,N) is used to denote the monotonicity (increasing or de-

creasing) of parameter p in parametric ptSTL formula φ for the number of negatives

(N#(·, ·), TN#(·, ·) or FN#(·, ·)

Monotonicity properties for each parameter that can appear in a basic parametric

ptSTL formula for positive and negative labels are shown in Table 4.1 and in Table

4.2 respectively.

Table 4.1: Monotonicity relations for Positive Labels

φ M(p, φ, P) φ M(p, φ, P)

x > p D x < p I

A[c,p]ϕ D A[p,c]ϕ I

P[c,p]ϕ I P[p,c]ϕ D

ϕ1S[c,p]ϕ2 I ϕ1S[p,c]ϕ2 D

Table 4.2: Monotonicity relations for Negative Labels

φ M(p, φ,N) φ M(p, φ,N)

x > p I x < p D

A[c,p]ϕ I A[p,c]ϕ D

P[c,p]ϕ D P[p,c]ϕ I

ϕ1S[c,p]ϕ2 D ϕ1S[p,c]ϕ2 I

Note that these derivations are based on simple parametric ptSTL formulas. For com-

plex formulas, a parameter’s monotonicity is decided by checking the syntax tree

of the formula. For finding the monotonicity property of a parameter in a formula,

one should follow the path from the root node to corresponding parameter node.Each

23

negation operator (¬) that occurs in the syntax tree inverts the monotonicity property.

For example, whileM(p,A[a,b]x < p, P) is I,M(p,¬(A[a,b]x < p), P) is D.

An example which shows monotonicity properties for a parameter in a simple para-

metric ptSTL formula is given in Example 4.1.1.

Example 4.1.1 Consider parametric ptSTL formula

φ = A[p1,p2](x > p3) (4.14)

Monotonicity properties of p1, p2 and p3 according to Table 4.1 and Table 4.2 are:

M(p1, φ, P) = I,M(p2, φ, P) = D,M(p3, φ, P) = D,

M(p1, φ,N) = D,M(p2, φ,N) = I,M(p3, φ,N) = I.

Using the dataset in Example 3.0.1, monotonicity properties of parameter p3 will

be examined. For observing the monotonicity of p3, p1 and p2 are set to 0 and 3

respectively in formula 4.14. Then P#(φ,D), TP#(φ,D), FP#(φ,D), N#(φ,D),

TN#(φ,D) and FN#(φ,D) are computed for each p3 ∈ [0, 1, . . . 40]. The number

of positives and negatives for different values of p3 are given in Figures 4.2 and 4.3

respectively.

Figure 4.2: Number of positives with changing values of p3

24

Figure 4.3: Number of negatives with changing values of p3

These results show that, as expected, the number of negative labels increases with

the increasing value of p3 sinceM(p3, φ,N) = I and the number of positive labels

decreases with the increasing value of p3 sinceM(p3, φ, P) = D.

4.2 Parameter Optimization Method

In this section, parameter optimization method called diagonal search will be pre-

sented. Aim of the diagonal search is to synthesize a ptSTL formula φ from a para-

metric ptSTL formula such that evaluation of the formula φ on a dataset D gives a

high number of TP#(φ,D). It should be noted that these synthesized formulas will

be combined with each other via disjunction operator in the following phase. The

disjunction operator carries error to the resulting formula (error is FP#(φ,D) in this

case). Therefore while synthesizing a ptSTL formula φ:

• TP#(φ,D) should be maximized

• FP#(φ,D) should be bounded

Formal definition of this optimization problem is given in Prob. 4.2.1.

25

Problem 4.2.1 Given a labeled dataset D (3.1), a parametric ptSTL formula φ with

n parameters p1, p2, . . . , pn, lower and upper bounds li, ui for each parameter pi,

an error bound B ∈ N, find the valuation v within the given limits that maximizes

TP#(φ(v),D) while guaranteeing that FP#(φ(v),D) ≤ B.

To solve Problem 4.2.1, first diagonal search algorithm which takes a parametric pt-

STL formula with exactly two parameters will be explained. Then, this algorithm will

be extended for parametric ptSTL formulas with more than two parameters.

Diagonal search algorithm adapts search problem of the product of an m element

chain and an n element chain[35] for ptSTL parameter optimization. The diagonal

search algorithm requires

• φ: Parametric ptSTL formula with parameters p1 and p2

• B: Bound on FP#(φ(v),D)

• D: Dataset as defined in (3.1)

• li, ui, δi: lower bound, upper bound and step size for parameter pi, i ∈ {1, 2}

In this method, an error constraint is defined:

FP#(φ(v),D) < B (4.15)

Diagonal search algorithm starts with a initial valuation v with v(p1) is the bound on

p1 that maximizes TP#(φ,D) (i.e. either l1 or u1 according to the monotonicity of the

parameter p1 in formula φ) and v(p2) is the bound on p2 that minimizes TP#(φ,D).

Then, the algorithm iteratively changes the value of a parameter with following rules:

• v(p2) is changed by δ2 in the direction which increases P#(φ,D) if error con-

straint holds at v. This step simply increases both TP#(φ,D) and FP#(φ,D).

Since error constraint is satisfied in the current valuation, algorithm searches

for a higher number of TP#(φ,D).

• Otherwise v(p1) is changed by δ1 in the direction which decreases P#(φ,D). If

error constraint is not satisfied, it means that number of maximum FP#(φ,D)

bound is reached. Both TP#(φ,D) and FP#(φ,D) is decreased in this step.

26

This algorithm simply changes the values of parameters p1 and p2 according to mono-

tonicity properties of the parameters and moves along the diagonal of the product

of the discretized parameter domains while trying to find an evaluation where the

TP#(φ,D) is maximized while FP#(φ,D) is less then the bound B. A summary of

this method is given in Alg. 1

Algorithm 1 DiagonalSearch(φ,B,D, l1, u1, δ1, l2, u2, δ2)

Ensure: vbest = arg maxv{TP#(φ(v),D) | FP#(φ(v),D) < B}
1: ifM(p1, φ) == I then

2: v(p1) = u1, δ̄1 = −δ1
3: else

4: v(p1) = l1, δ̄1 = δ1

5: end if

6: ifM(p2, φ) == I then

7: v(p2) = l1, δ̄2 = δ2

8: else

9: v(p2) = u1, δ̄2 = −δ2
10: end if

11: vbest = [], TPbest = 0

12: while l1 ≤ v(p1) ≤ u1 ∧ l2 ≤ v(p2) ≤ u2 do

13: if B < FP#(φ(v),D) then

14: v(p1) = v(p1) + δ̄1

15: else

16: if TP#(φ(v),D) ≥ TPbest then

17: TPbest = TP#(φ(v),D), vbest = v

18: end if

19: v(p2) = v(p2) + δ̄2

20: end if

21: end while

22: return vbest

In lines 1-10 of Alg. 1, the initial values for the parameters p1 and p2 are selected

together with their update direction according to the monotonicity properties of the

27

parameters. Then main loop of the algorithm starts (lines 12-21). At each iteration

one parameter value is updated. If the error constraint (line 13) is not satisfied, pa-

rameter p1 which is initialized with the purpose of maximizing the TP#(φ,D) is

changed by δ̄ to reduce FP#(φ(v),D). If the error constraint is satisfied, the cur-

rent parameter assignment becomes a candidate solution. This candidate solution is

checked against the currently best known solution (line 16). If candidate solution is

better than the current best known solution, best solution is updated as the candidate

solution. Then, parameter p2 is changed by δ̄2 to increase TP#(φ(v),D). This itera-

tion continues while both of the parameters are in the given bounds. When iteration

ends, vbest holds the evaluation which has the highest TP#(φ,D) with the constraint

FP#(φ(v),D) < B. As a result, O(m1 + m2) formula evaluations are done, where

m1 = u1−l1
δ1

,m2 = u2−l2
δ2

.

In our work, a parameter appears only once in a parametric ptSTL formula. Therefore,

the considered formulas are monotonic in each parameter, i.e., either monotonically

increasing or monotonically decreasing.

An example that illustrates the Alg. 1 is provided in Example 4.2.1

Example 4.2.1 Consider the dataset D from Ex. 3.0.1 and a template ptSTL formula

φ = A[0,p2]x > p1. According to Table 4.1, monotonicities of p1 and p2 are as follows:

M(p1, φ, P) = D

M(p2, φ, P) = D

According to Prob. 4.2.1, the aim is to find an evaluation v such that, TP#(φ(v),D)

is maximized while keeping FP#(φ(v),D) below a bound. Since both p1 and p2 are

monotonically decreasing, TP#(φ,D) and FP#(φ(v),D) are expected to decrease

with increasing values of p1 and p2. TP#(φ(v),D) and FP#(φ(v),D) with respect

to each possible combination of p1 and p2 are given in Fig.4.4 and Fig.4.5 respec-

tively. Note that possible solutions where FP#(φ(v),D) = 0 that satisfies the error

constraint are marked with green in Fig. 4.5 where

• B = 1

28

• l1 = 0, δ1 = 10, u1 = 40

• l2 = 0, δ2 = 1, u2 = 4

Figure 4.4: Number of true positives for each possible combination of p1 and p2

According to Alg. 1, starting point is selected as v(p1) = 0 and v(p2) = 4. Then

diagonal search starts by checking whether the current evaluation satisfies the error

constraint or not and continues to iteratively update v(p1) or v(p2). This way instead

of trying all possible evaluations, only the evaluations that lies in the diagonal of the

parameter space are evaluated. In Fig. 4.6, starting point, the evaluations that was

done while Alg. 1 is run and candidate solutions for the problem are shown.

When Alg. 1 is run, resulting formula that has the highest TP#(φ(v),D) is shown in

(4.16).

φ = (A[0,2](x0 > 30)) (4.16)

Lastly in this chapter, a method to solve Prob. 4.2.1 will be explained. For a paramet-

ric ptSTL formula φ with n parameters p1, . . . , pn,

29

Figure 4.5: Number of false positives for each possible combination of p1 and p2.

Instances FP#(φ(v),D) ≥ B are marked with red and rest is marked with green.

• If n = 1, optimal value is found with binary search

• If n = 2, optimal value is found by directly using DiagonalSearch method

described in Alg. 1

• If n > 2, DiagonalSearch is run for p1 and p2 for all possible combinations

of the remaining n− 2 parameters, and the optimal parameters are returned.

This whole algorithm is referred as ParameterSynthesis(φ,B,D).

In literature, the earlier works that finds the optimal parameter valuation without addi-

tional constraints (e.g. parameter ordering as in [10]) enumerate the parameter space

and perform a grid search [12]. That results in a complexity of f(D) = kn for |pi| = k

and a formula with n parameters on the dataset D.

With ParameterSynthesis(φ,B,D) method, complexity analysis is as in (4.17).

30

Figure 4.6: Number of true positives for each possible combination of p1 and p2.

Instances FP#(φ(v),D) ≥ B are marked with red and rest (candidate solutions) is

marked with green. Also evaluated combinations of p1 and p2 by the diagonal search

are marked with arrows.

f(D) =

k
n−1 if n ≥ 2

log k if n = 1
(4.17)

4.3 Iterative Formula Construction Method

Final step of the solution to the main problem (Prob. 3.0.1) i.e., a method to find a

ptSTL formula that explains all of the labeled events in the dataset, is explained in

this section. Label 1 is considered to be marking an unexpected event. Generally, an

unexpected event can occur due to a number of different reasons in a system. The

method aims to find each distinct cause and then by iteratively combining these rea-

sons, explains the events that causes the erroneous behavior as a ptSTL formula. In

this method, each distinct cause is represented as a ptSTL formula and these causes

31

are combined using disjunction (∨) operator. The main purpose at each operation is

to add a ptSTL formula to the final formula where added ptSTL formula classifies a

subset of the unwanted events while limiting the incorrectly labeled instances (False

Positives in this case) since incorrectly labeled instances propogates with the disjunc-

tion operator. First, the set of all parametric formulas are defined as in [12], and

parameter optimization is performed on each of them using ParameterSynthesis

method. Then these formulas are iteratively combined until there is no increase on

True Positive numbers or a predefined formula length is reached or all labeled events

are explained in the resulting formula (no False Negative).

Given the set of system variables, {x1, . . . , xn}, and a bound on the number of op-

erators N , the set of all parametric ptSTL formulas with up to N operators F≤N is

recursively defined as:

F0 = {xi ∼ pi |∼∈ {<,>}, i = 1, . . . , n} ∪ {T} (4.18)

FN = {¬φ,P[a,b]φ,A[a,b]φ | φ ∈ FN−1}∪
n−1⋃
i=1

{φ1 ∧ φ2, φ1 ∨ φ2, φ1S[a,b]φ2 |

φ1 ∈ F i, φ2 ∈ FN−i−1}

F≤N = ∪Ni=0F i

The proposed formula synthesis approach is summarized in Alg. 2. This synthesis

method takes:

• Labeled dataset D as defined in (3.1)

• Bound on the number of ptSTL formulas p

• Bound on the number of false positives B

• Set of parametric formulas F

Method generates a ptSTL formula φ? in the form of (4.1) as a result. Note that gen-

erated ptSTL formula contains at most p sub-formulas and TP#(φ?,D) is maximized

while FP#(φ?,D) < B ∗ p error constraint is satisfied. Bound B is the maximum

32

Algorithm 2 FormulaSynthesis(F , B,D, p)
Require: F : a set of parametric ptSTL formulas, B: bound on the number of false

positives, D: a dataset as in (3.1), p: upper bound on the number of formulas

concatenated with disjunction.

1: Fv = {φ(v) = ParameterSynthesis(φ,B,D) | φ ∈ F}
2: i = 0, TPprev = 0, TP = 1, Φ = false

3: while TP > TPprev and i < p do

4: φ(v)∗ = arg maxφ(v)∈Fv TP#(Φ ∨ φ(v),D)

5: Φ = Φ ∨ φ(v)∗

6: i = i+ 1

7: TPprev = TP , TP = TP#(Φ,D)

8: end while

9: return Φ

number of False Positives that is allowed for each sub-formula. Since at most p for-

mulas are allowed to be concatenated, resulting formula can have at most B ∗ p False

Positives. The set of parametric ptSTL formulas that will be used in the algorithm can

be autonomously provided by recursively defining them as in (4.18), or, they can be

provided by an expert of the considered system. Firstly, in the algorithm, each para-

metric ptSTL formula φ ∈ F are optimized on given datasetD with error constraintB

with the purpose of maximizing TP#(φ,D) (line 1). Then starting with Φ = false,

the formula φ(v)? maximizing the valuation of the combined formula Φ ∨ φ(v)? is

selected from the set of ptSTL formulasFv iteratively until maximum number of sub-

formulas allowed (p) is reached or the number of True Positives does not increase (i.e.

adding a new formula to the result does not improve the result)(lines 3-8). Note that

as proposed in (4.1), at each iteration a new formula is added to Φ using disjunction

(∨) operator.

ParameterSynthesis(φ,B,D) method is run only once for each parametric ptSTL

formula φ ∈ F in Alg. 2. Then only TP#(Φ∨ φ(v),D) is computed for each φ(v) ∈
Fv to pick the formula φ? which gives the highest number of True Positives at each

iteration. Thus it should be noted that the selected formula φ? using the iterative

synthesis approach might not be optimal formula. Basically, highest fitness of the

formula can be obtained by optimizing each parameter of the formula in the form of

33

(4.1). But this computation would not be feasible for large formulas because of the

complexity of the parameter synthesis algorithm.

Example 4.3.1 Consider the CPU monitoring example from Ex. 3.0.1 where if the

processor temperature goes above a certain threshold, the data is labeled with 1.In

this example, dataset D that was used in Ex. 3.0.1 is modified by changing some

of the labels from 0 to 1. Parametric formulas over the system variables {x0} with

at most 1 parameters F≤1 are generated using (4.18). Parameter domains of each

parameter are defined as follows:

pa, pb ∈ {i | i = 0, . . . , 5} for A[pa,pb],P[pa,pb],

px0 ∈ {10i | i = 0, . . . , 5},
Bound is set to B = 1 and sub-formula limit is set to p = 2. Then Alg. 2 is run with

the dataset D defined.

Resulting formula by running FormulaSynthesis(F , B,D, p) is shown in (4.19).

φ = φ1 ∨ φ2 (4.19)

φ1 = (A[0,2](x0 > 30))

φ2 = (x0 > 40)

Each sub-formula found at (4.19) gives information about the events that caused tem-

perature to go above a certain level. Formula φ1 states that if cpu usage (x0) was

higher than 30 for last 3 time steps, the processor temperature goes above the cer-

tain threshold. Formula φ2 states if cpu usage is higher than 40 at the current time

step, processor temperature goes above the certain threshold. For each sub-formula

φ1 and φ2, generated labels on the dataset is shown in Fig. 4.7. In this example

all the parametric ptSTL formulas generated according to (4.18) are optimized using

FormulaSynthesis(F , B,D, p) method. Then among these optimized formulas, 2

formulas that mimics the label in the given dataset are combined so that the combi-

nation of them gives the highest True Positive rate. In Fig. 4.1, it can be seen that

evaluations of φ1 and φ2 generates different labels which results TP#(φ1,D) = 40,

FP#(φ1,D) = 0, TP#(φ2,D) = 68, FP#(φ2,D) = 0.

Total mismatch count of 300 points is computed as 0 which leads to an accuracy of

100%. A sample trace x and the generated label lφ using formula φ is given in Fig.

34

(a) Label generated by evaluating φ1 on dataset D

(b) Label generated by evaluating φ2 on dataset D

Figure 4.7: (a) (b)

35

4.8

Figure 4.8: Signal and the label generated by evaluating the formula φ on the signal

This example shows that if an unwanted event occurs due to a number of different

reasons, the proposed formula synthesis method finds these different reasons and

combines them to find a ptSTL formula such that this formula mimics the label in

the dataset.

36

CHAPTER 5

EXPERIMENTS AND RESULTS

In this chapter, results obtained by using the proposed method to solve Prob. 3.0.1

are presented on different case studies. For each case study, the system model, the

dataset generation process and results obtained by running the propsed method will

be explained in detail.

5.1 Case Studies

5.1.1 Aircraft Dataset

In this case study, Aircraft Longitudinal Flight Control model from Simulink [1] is

used. Pilot’s command (pilot) given from stick is the input and this input is set as

the target point of the aircraft. Controller tries to reach the target point by generating

internal commands according to the current pitch angle (alpha) of the aircraft. Ad-

ditionally, this system can be perturbed by a simplified Dryden wind gust model that

generates the gust values which are denoted with qGust and wGust in the model.

A sample trace of the system generated by simulation which contains pilot, alpha,

qGust and wGust system variables is given in Fig 5.1.

5.1.1.1 Dataset Generation

In this case study, the aim is to find the causes which would disturb the aircraft’s

longitudinal motion. If the difference between the alpha angles which are obtained

by simulating the not perturbed and perturbed system is above a given threshold, these

37

Figure 5.1: Aircraft Longitudinal Flight Control Example.

instances are labeled with 1. For this purpose, two scenarios are created. In the first

one, normal operation (in which the environment does not contain wind) is simulated

by setting the noise power of the white noise generator (noise) to 0 and supplied

a sinosoidal input from pilot input. The longitudinal angle alpha of the aircraft is

collected (denoted as alpha0). In the second scenario, noise power and sample time

of the white noise generator are set to 1000 and 2 seconds respectively. Longitudinal

angle of the aircraft is again collected and it is denoted as alpha1. The difference

between alpha1 and alpha0 is computed for each time point where this difference

can be interpreted as how much the aircraft is disturbed. If this difference is above a

threshold at a time t (which is controlled by whether 5.1 is satisfied or not), a label

with value 1 is assigned to the time point t. Label 0 is assigned for the remaining time

points.

|alpha0 − alpha1| > 0.06 (5.1)

Generation of datasetD is done by simulating the model 5 times for each trace with a

length of 600 by setting the seed parameter of the Band-Limited White Noise gener-

ator to k for kth trace. Signal x in dataset D contains the pilot stick command (pilot),

aircraft’s pitch angle (alpha) and the output signals of the Dryden Wind Gust Model

38

(wGust and qGust) as shown in (5.2):

xi = {piloti, alpha1i , wGusti, qGusti} (5.2)

Then dataset is labeled according to 5.1, and in the end, out of 3000, 477 of the data

points are labeled with 1 and rest is labeled with 0.

An example that shows the difference (alpha0 − alpha1) and the label assigned ac-

cording to (5.1) is shown in Fig. 5.2.

Figure 5.2: alpha0 − alpha1 and generated label l

5.1.1.2 Algorithm Inputs

Parametric formulas over the system variables {alpha, pilot, wGust, qGust} with

at most 2 parameters F≤2 are generated using (4.18). Parameter domains of each

parameter are defined as:

pa, pb ∈ {2i | i = 0, . . . , 15} for A[pa,pb],P[pa,pb],

palpha ∈ {−0.5 + 0.05i | i = 0, . . . , 20},
ppilot ∈ {−0.5 + 05i | i = 0, . . . , 20},

39

pwGust ∈ {−240 + 30i | i = 0, . . . , 15},
pqGust ∈ {−0.4− 0.05i | i = 0, . . . , 14}.

Bound is set to B = 5 and sub-formula limit is set to p = 4.

5.1.1.3 Results

Resulting formula is given in (5.3) when Alg. 2 is run with the dataset defined.

φ = φ1 ∨ φ2 ∨ φ3 ∨ φ4 (5.3)

φ1 = (P[4,10](qGust < 0)) ∧ (wGust < −120)

φ2 = (wGust > 120) ∧ (A[14,14](pilot > −0.4))

φ3 = P[2,2]((alpha < 0.3) ∧ (wGust < −120))

φ4 = (A[4,16](qGust > 0.1)) ∧ (pilot < −0.4)

Each sub-formula found at (5.3) gives information about the events that caused dis-

turbance in this system. Resulting formula states that a disturbance will occur if any

of these following events is encountered:

• φ1: qGust was lower than 0 for some time between the last 10 time steps to last

4 time steps at least once and wGust is less than −120 in current time step

• φ2: wGust is greater than 120 and 14 time steps ago pilot was greater then

−0.4

• φ3: alpha was less than 0.3 and two steps ago wGust was less than -120

• φ4: qGust was higher than 0.1 for each step between last 4 and 16 steps and

pilot is less than −0.4 in the current step

According to the formula φ found as 5.3, out of 3000 data points in D, 437 points are

labeled with 1. TP, FP, TN and FN evaluations are as follows:

• TP#(φ,D) = 419

40

• FP#(φ,D) = 18

• TN#(φ,D) = 2505

• FN#(φ,D) = 58

Total mismatch count of 3000 points is computed as 76 which leads to an accuracy

of 97.46%. Resulting formula φ is computed in 3350 seconds on a PowerEdge T430

machine with Intel Xeon E5-2650 12C/24T processor. It it also important to point out

that resulting formula is defined over 4 system variables, includes 11 operators and 15

parameters. Existing formula synthesis methods in the field are validated on simpler

formulas because of the computational complexity. This example is an evidence that

this method can synthesize complex formulas from labeled dataset efficiently.

5.1.2 Traffic System Dataset

This case study is a traffic system which consists 6 links (roads) and 2 traffic signals

(traffic lights) and modeled as a piecewise affine system. The traffic system is shown

in Fig. 5.3. The state vector of this model consists the number of vehicles (denoted

with xi) on link i, configuration of traffic signals (denoted with sj) on link j. Details

of this system is given in [36].

Figure 5.3: Traffic network containing 2 signals and 6 links.

In this system capacity of the links which states the maximum number of vehicles that

can be on link i are defined as 40 and 20 for horizontal links (denoted with 0, 1 and

41

2 on Fig. 5.3) and vertical links (denoted with 3, 4 and 5 on Fig. 5.3), respectively.

Thus the number of vehicles on link i denoted with xi can take values as follows:

• xi ∈ [0, 40] for i ∈ {0, 1, 2}

• xi ∈ [0, 20] for i ∈ {2, 3, 4}

Configuration of traffic signals sj can be 0 or 1. sj being 0 and 1 means that traffic is

allowed in horizontal and vertical direction, respectively. The aim in this case study

is to find the reasons that causes congestion on link x1.

5.1.2.1 Dataset Generation

In this case study, dataset D is generated as follows:

• System is simulated 20 times with random initial conditions for 100 steps.

• Each simulation trace is labeled according to (5.4)

lt =

1 if (x1t > 30)

0 otherwise
(5.4)

Which means that at time t, if number of vehicles on link 1 is more than 30 (75%

of the link capacity), this time point is labeled with 1. The generated dataset consists

2000 data points where 456 time instances are labeled with 1. Fig. 5.4 shows a sample

trace of the system. The label assigned to the signal according to (5.4) is given in Fig.

5.5.

5.1.2.2 Algorithm Inputs

Parametric formulas over the system variables {xi | i = 0, . . . , 5} ∪ {s0, s1} with at

most 2 operators F≤2 are generated using (4.18). The parameter domains are defined

as:

42

Figure 5.4: Number of vehicles on each link.

pa, pb ∈ {i | i = 0, . . . , 5} forA[pa,pb],P[pa,pb],

px ∈ {5i+ 10 | i = 0, . . . , 6} for x ∈ {0, 1, 2},
px ∈ {5i+ 5 | i = 0, . . . , 4} for x ∈ {3, 4, 5}.

Since the aim in this case study is to find the reasons that lead to congestion, para-

metric formulas generated (F≤2) are modified as in (5.5).

F≤2,s = {P[1,1]φ | φ ∈ F≤2} (5.5)

By adding P[1,1] to the root node of the syntax tree of each parametric formula φ ∈
F≤2, evaluation of the new formula on the current step is shifted by 1 time step to the

past. This way, each optimized formula will detect the congestion on the link 1 time

step before it happens.

Alg. 2 is run with the traffic system datasetD, the parametric formula set F≤2,s, error

bound B = 20, and formula bound p = 3.

43

Figure 5.5: Number of vehicles on link x1 and assigned label.

5.1.2.3 Results

The optimal formula φ that the algorithm returns 1 is given in (5.6) when Alg. 2 is run

with the dataset defined.

φ = φ1 ∨ φ2 ∨ φ3 (5.6)

φ1 = P[1,1]((x
1 > 15) ∧ (s1 = 1) ∧ (s0 = 0))

φ2 = P[1,1]((x
1 > 25) ∧ (s1 = 1))

φ3 = P[1,1]((x
4 < 10) ∧ (s1 = 1) ∧ (s0 = 0))

Each sub-formula from (5.6) gives information about the events that caused conges-

tion on link 1. Each sub-formula states that a congestion will occur in the next time

step if any of these events is encountered in the system.

• φ1: if s1 blocks link 1 while s0 allows flow of vehicles from link 0 to link 1
1 The inequalities over the signals are written as equalities to simplify the presentation. si > 0 is equivalent

to si = 1 since si ∈ {0, 1}.

44

when there are more than 15 vehicles on link 1

• φ2: if s1 blocks link 1 when there are more than 25 vehicles on it

• φ3: if s1 blocks link 1 while s0 allows flow of vehicles from link 0 to link 1

when there are less than 10 vehicles on link 0

According to formula φ given in 5.6, out of 2000 data points in D, 484 points are

labeled with 1. TP, FP, TN and FN evaluations are as follows:

• TP#(φ,D) = 454

• FP#(φ,D) = 30

• TN#(φ,D) = 1514

• FN#(φ,D) = 2

Total mismatch count of 2000 points is computed as 32 which leads to an accuracy of

98.4%. Formula φ is computed in 1205 seconds on a PowerEdge T430 machine with

Intel Xeon E5-2650 12C/24T processor.

45

46

CHAPTER 6

EXTENSION OF THE METHOD FOR SINGLE LABEL DATASET

The dataset D (3.1) that was used in Prob. 3.0.1 had continuously labeled signals.

For a signal x in continuously labeled dataset, at each time step a label is assigned

as defined in (3.1). In some cases, it might not be possible to perform an evaluation

and assign a label at each time point. Rather a single label can be assigned to the

signal according to the satisfaction of a property or occurence of an event along the

signal. In this part, the problem given in Prob. 3.0.1 will be extended for datasets that

has a single label for each signal. This problem can be thought as a standard binary

classification problem since there is only one label (either 0 or 1) for each signal. The

label specifies whether the signal x is in the class 0 or 1. The dataset for signals that

has a single label is defined as in (6.1).

D = {(x, l) | x =x0, x1, . . . , xK , l ∈ {0, 1} and (6.1)

xt ∈Rn, t = 0, . . . , K},

From a classification point of view, signals x with label l = 1 belongs to class 1 and

signals x with label l = 0 belongs to class 0.

Another difference of the single labeled dataset from the continuous labeled dataset

is the generation of a label (lφ) by evaluation of a ptSTL formula φ on the signal x.

Generation of the label (lφ) by evaluating a formula φ on a signal x is given in (6.2)

lφ =

1 if ∃t′ ∈ [0, 1, . . . K] : (x, t
′
) |= φ

0 otherwise
(6.2)

The difference in the generation of the label for single labeled signals (6.2) from

continuous labeled signals (3.2) is that, in (3.2) at each time step, formula φ is being

47

evaluated and a label is assigned each time step. But as shown in (6.2), for single

labeled signals if there is a single time step that the formula is satisfied on signal x,

label 1 is assigned to signal x. Thus as soon as the formula is satisfied at any time on

signal x no further computation is required.

Informally, the goal in this part is to synthesize a ptSTL formula φ such that, the

label (lφ) that will be acquired by evaluating φ on signal x matches the label l in the

dataset (3.1) which simply means the formula φ classifies the signals given in dataset

D correctly.

After providing the information for single labeled dataset and the generation of the

label (lφ), the problem in this chapter is formally defined as in Prob. 6.0.1.

Problem 6.0.1 Given a dataset D as in (6.1), find a ptSTL formula φ such that for

any (x, l) ∈ D, l = lφ, where lφ is generated as defined in (6.2).

6.1 Monotonicity Properties

In this part, monotonicity properties that were defined for continuous labeled dataset

will be extended for single labeled dataset. Firstly, Positive(P#(φ,D)), Negative

(N#(φ,D)) True Positive (TP#(φ,D)), False Positive (FP#(φ,D)), True Negative

(TN#(φ,D)) and False Negative (FN#(φ,D)) numbers that are computed by eval-

uation of the formula φ on dataset D are defined as in (6.3).

P#(φ,D) =
∑

(x,l)∈D

lφ (6.3)

N#(φ,D) =
∑

(x,l)∈D

¬lφ

TP#(φ,D) =
∑

(x,l)∈D

l ∧ lφ

FP#(φ,D) =
∑

(x,l)∈D

¬l ∧ lφ

TN#(φ,D) =
∑

(x,l)∈D

¬l ∧ ¬lφ

FN#(φ,D) =
∑

(x,l)∈D

l ∧ ¬lφ

48

The existential operator (∃) used in label generation (6.2) preserves the monotonicity

properties.Thus monotonicity properties for parameters that can appear in a para-

metric ptSTL formula given in Table 4.1 and Table 4.2 for continuous labeled sig-

nals are also applicable for single labeled signals. Thus, total number of positives

(P#(φ,D)) and total number of negatives (N#(φ,D)) that is computed by evaluat-

ing a formula φ on dataset D increases with parameters that are monotonically in-

creasing and decreases with parameters that monotonically decreasing. Also, since

TP#(φ,D), FP#(φ,D), TN#(φ,D) and FN#(φ,D) defined in Eq. (6.3) are the

masked versions of P#(φ,D) and N#(φ,D), they also preserves the monotonicity

properties [37].

6.2 Proposed Method

The proposed method to solve Prob. 6.0.1 is the same method that was used for solv-

ing Prob. 3.0.1 with the exception of positive and negative label calculation for a

formula φ on the dataset D as given in (6.2). Proposed method for single labeled

dataset also assumes that classification of signals might depend on more than one

rule, thus the iterative construction approach (by disjunction of formulas given as in

(4.1)) remains the same and FormulaSynthesis(F , B,D, p) (Alg. 2) is used for

iterative construction. Note that only the calculation of the True Positives in Line

4 of Alg. 2 is changed by definition for single labeled datasets. For finding the

sub-formulas (φi) again set of parametric ptSTL formulas is defined as in (4.18) and

optimization of the parameters in these formulas is performed. Since monotonicity

properties that was defined for continuous labeled dataset is preserved for single la-

beled dataset, parameter optimization methods ParameterSynthesis(φ,B,D) and

DiagonalSearch(φ,B,D, l1, u1, δ1, l2, u2, δ2) (Alg. 1) remains the same.Note that

only computation of TP#(φ,D) (Line 16 of Alg. 1) and FP#(φ,D) (Line 13 of

Alg. 1) is changed by definition for single labeled dataset.

49

6.3 Case Study

In this case study, a dataset that contains the information and vessel positions of the

transport vessels that cruises in the Mediterranean Sea [38] is used. The raw dataset

contains:

• trip id that is defined uniquely for each trip

• speed, longitude and latitude position, course and heading informations of the

vessels with timestamp

• departure and arrival ports of the each trip

• ship id and ship type

• calculated arrival time to destination

There are 755 trips in this dataset and the purpose in this case study is to correctly

classify the vessels whose destination port is Tuzla Port. For better understanding of

the dataset, most commonly arrived ports and number of trips that has ended in these

ports are given in Table 6.1

Table 6.1: Most Commonly Arrived Ports and Number of Trips that Ended in the

Corresponding Port

Destination Port Total Number of Trips

BARCELONA 126

PALMA DE MALLORCA 103

VALENCIA 99

LIVORNO 51

GENOVA 47

TUZLA 32

VALLETTA 30

While preparing the dataset that will be used in this case study, signals (x) are gen-

erated by using the longitude (denoted with lon) and latitude (denoted with lat) in-

formation of the vessels with timestamp. Then label l of the signal is set to 1 if the

50

corresponding trip destination is Tuzla Port and it is set to 0 otherwise. Then 32 trips

whose final destination is Tuzla Port and 32 trips (chosen randomly) whose final des-

tination is not Tuzla Port are selected from these 755 trips and dataset D is composed

using these 64 trips. The routes of the vessels that appears in the generated dataset D
after the preprocessing is shown in Fig. 6.1.

Figure 6.1: Routes of the vessels that cruises in Mediterranean Sea.

Parametric formulas over the system variables {lon, lat} with at most 3 parameters

F≤3 are generated using (4.18). Parameter domains for each parameter are defined

as:

pa, pb ∈ {200i | i = 0, . . . , 5} for A[pa,pb],P[pa,pb],

plon ∈ {29° + 3′ × i | i = 0, . . . , 12},
plat ∈ {40° + 30′ × i | i = 0, . . . , 4},
Bound is set to B = 0 and sub-formula limit is set to p = 2.

Resulting formula is given in (6.4) when Alg. 2 is run with the dataset (D).

51

φ = φ1 ∨ φ2 (6.4)

φ1 = (lat < 41°30′ ∧ lat > 40° ∧ lon > 29°15′)

φ2 = (lon > 29°6′) ∧ (A[0,200](lon < 29°9′))

Each sub-formula found at (6.4) gives information about the classification rules. Ac-

cording to result, if any of the following conditions is satisfied at any time during the

trip, this trip will is labeled with 1 and it is classified as it’s final destination is Tuzla

Port.

• φ1: If a vessel’s latitude is between 40° and 41°30′ and it’s longitude is greater

than 29°15′

• φ2: If a vessel’s longitude is greater than 29°6′ and if this vessel’s longitude

was less than 29°9′ for last 200 minutes

Location of Tuzla port, destination points of vessels that are classified by only φ1, by

only φ2 and both by φ1 and φ2 is shown in Fig. 6.2.

According to the formula φ found in (5.3), out of 64 signals inD, 32 points are labeled

with 1. TP, FP, TN and FN evaluations are as follows:

• TP#(φ,D) = 32

• FP#(φ,D) = 0

• TN#(φ,D) = 32

• FN#(φ,D) = 0

Total mismatch count of 64 points is computed as 0 which leads to an accuracy of

100%.

To comment on the results, sub-formula φ1 simply defines an area and states that, if

a vessel appears appears between the stated latitudes and comes further east then the

29°15′, it will arrive to Tuzla Port. Sub-formula φ2 explains the situation if a vessel’s

52

Figure 6.2: Location of Tuzla Port (purple) and destination points of vessels that are

classified using only φ1 (red), using only φ2 (blue) and classified by both φ1 and φ2

(yellow).

longitude further east from 29°6′ at current time step and it’s longitude was further

west from 29°9′ for last 200 time steps it will arrive to Tuzla Port. Sub-formula φ2

simply classifies the vessels that goes from west to easy direction in the area. Vessels

that started their cruise from Tuzla Port and goes to west are not considered as going

to Tuzla Port with the (A[0,200](lon < 29°9′) formula. Lastly, when the resulting

formula given in (6.4) is evaluated on the whole dataset which contains 755 trips,

total mismatch is computed as 13.

In this chapter, classification of single labeled time series data using tempral logic is

studied. Monotonicity properties that was defined for datasets with signals that are

continious labeled is extended for datasets with signals that have a single label. And

classification is achieved using efficient algorithms. Lastly proposed method is shown

on a case study.

53

54

CHAPTER 7

CONCLUSION

Finding the cause of the erroneous behaviors in cyber-physical systems that performs

complex tasks is a challenging process. As the system gets more complex, it becomes

harder to locate the errors manually. In this study, the main aim was to find a method

that would explain the root causes of the erroneous behaviour in a system. One of

the important features of the method is that it should provide a human-readable and

intuitive answer with the purpose of helping the system engineer to understand the

underlying cause of the erroneous behaviour. Another feature that the method should

have is that the method should be efficient in computation. In addition, the method

should be system independent. i.e., it should be straight-forward to apply the method

to different systems.

Since one of the main concerns of the method is to be intuitive and human readable,

temporal logic is used because of its expressiveness and its resemblance to natural

language. Also since aim of the method is to find the root causes of the erroneous be-

haviour, a past time extension of the temporal logic, Past Time Signal Temporal Logic

(ptSTL) is used. In Chapter 2 preliminary information about temporal logic (Linear

Temporal Logic, Signal Temporal Logic and Past Time Signal Temporal Logic) is

provided. In order to attain a system independent approach, a data-driven method is

developed. In particular, a set of labeled system traces is used to analyze the cause of

errors. Thus, the main problem is defined as finding a ptSTL formula that explains

the labeled events (errors) in the dataset.

In Chapter 3 both the dataset, which is basically trace of the considered system, and

problem is formally defined. In Chapter 4, the proposed method to solve the main

problem is explained in detail. Firstly, previously defined monotonicity properties be-

55

tween a parameter value and satisfaction of the STL formula are extended by defining

the monotonicity between the parameter and the number of positive/negative labels

that is obtained by evaluation of the formula on a dataset. Then, success measures

are defined for the method and using these success measures and extended mono-

tonicity properties, a parameter optimization method is proposed. This parameter

optimization method basically optimizes the parameters in a parametric ptSTL for-

mula such that it maximizes the number of true positives while keeping the error

(false positives) under a predefined bound which allows the method to produce an

output in controllable error margins. In the parameter optimization method, thanks

to the monotonicity properties, computational complexity of the optimization is de-

creased drastically. Then using an assumption such as an erroneous behaviour might

be caused by many reasons, an iterative formula construction method is provided.

With the iterative construction method, instead of optimizing a long and complex

formula, sub-formulas could be optimized and combined with each other, which also

decreases the computational complexity of the computation. Iterative construction ap-

proach can generate quite complex and long formulas such that the formula synthesis

methods from literature were not able to generate that complex/long formulas due to

the computational complexity. Each main issue (monotonicity properties, parame-

ter optimization method and iterative formula construction method) are supported by

simple and intuitive examples with the purpose of clarifying the concepts.

In Chapter 5, two case studies (Aircraft Longitudinal Flight Control Model and Traffic

System) are provided. On these case studies, the efficiency of the method and ability

to generate complex ptSTL formulas with high accuracy are shown.

Lastly in Chapter 6, the main problem given in the thesis is modified. Up until this

part, the problem was defined for continuously labeled signals. In Chapter 6, label

of the signal is changed from continuous to single. Preservation of the monotonic-

ity properties that was defined for continuously labeled datasets on single labeled

datasets is shown. In the end, with the change of the labeling in the dataset, evalua-

tion of a formula on a signal is defined and the approach to solve the problem is kept

the same. Extension of the proposed method for this version is shown on a case study

which again showed the ability of the proposed method to classify the signals with

high accuracy, intuitive and human-readable way.

56

To summarize, main contributions of this study are:

• Monotonicity properties in the literature is extended.

• With the extended monotonicity properties, an efficient parameter synthesis

algorithm is implemented.

• An iterative formula construction method which decreases the computational

complexity and controls the error that can appear in the final result is presented.

7.1 Future Studies

In the current study, the iterative construction method constructs the final formula

by iteratively combining sub-formulas with each other using disjunction operator by

maximizing the correctly identified positive instances (True Positives) and limiting

the incorrectly identified positive instances (False Positives). A future research direc-

tion is to handle the complementary problem. Instead of disjunction, cunjunction of

sub-formulas will be carried by maximizing the correctly identified negative instances

(True Negatives) and limiting the incorrectly identified negative instances(False Neg-

atives). Another future research plan is to improve the classification method presented

in Chapter 6. It is planned to add a cost function to the method with the purpose of

early detection of the classification of signal.

57

58

REFERENCES

[1] MATLAB, version (R2016b). Natick, Massachusetts: The MathWorks Inc.,

2016.

[2] A. Donze, “On signal temporal logic,” in RV 2013, LNCS 8174. (A. Legay and

S. Bensalem, eds.), pp. 382–383, Springer Berlin Heidelberg, 2013.

[3] C. Baier, J.-P. Katoen, and K. G. Larsen, Principles of Model Checking. 2008.

[4] V. Raman, A. Donzé, D. Sadigh, R. M. Murray, and S. A. Seshia, “Reactive

synthesis from signal temporal logic specifications,” in Proceedings of the 18th

International Conference on Hybrid Systems: Computation and Control, HSCC

’15, (New York, NY, USA), pp. 239–248, ACM, 2015.

[5] M. Vazquez-Chanlatte, J. V. Deshmukh, X. Jin, and S. A. Seshia, “Logical clus-

tering and learning for time-series data,” in Computer Aided Verification (R. Ma-

jumdar and V. Kunčak, eds.), (Cham), pp. 305–325, Springer International Pub-

lishing, 2017.

[6] E. Bartocci, J. Deshmukh, A. Donzé, G. Fainekos, O. Maler, D. Ničković,

and S. Sankaranarayanan, Specification-Based Monitoring of Cyber-Physical

Systems: A Survey on Theory, Tools and Applications, pp. 135–175. Cham:

Springer International Publishing, 2018.

[7] E. Bartocci, L. Bortolussi, and G. Sanguinetti, “Data-driven statistical learning

of temporal logic properties,” in FORMATS 2014, LNCS, vol 8711, pp. 23–37,

Springer International Publishing, 2014.

[8] Z. Kong, A. Jones, A. Medina Ayala, E. Aydin Gol, and C. Belta, “Temporal

logic inference for classification and prediction from data,” HSCC ’14, (New

York, NY, USA), pp. 273–282, ACM, 2014.

[9] G. Bombara, C.-I. Vasile, F. Penedo, H. Yasuoka, and C. Belta, “A decision tree

approach to data classification using signal temporal logic,” in Proceedings of

59

the 19th International Conference on Hybrid Systems: Computation and Con-

trol, HSCC ’16, (New York, NY, USA), pp. 1–10, ACM, 2016.

[10] X. Jin, A. Donze, J. V. Deshmukh, and S. A. Seshia, “Mining requirements from

closed-loop control models,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 34, pp. 1704–1717, Nov 2015.

[11] S. Jha, A. Tiwari, S. A. Seshia, T. Sahai, and N. Shankar, “Telex: learning signal

temporal logic from positive examples using tightness metric,” Formal Methods

in System Design, Jan 2019.

[12] E. Aydin Gol, “Efficient online monitoring and formula synthesis with past stl,”

in 5th IEEE International Conference on Control, Decision and Information

Technologies (Codit), 2018.

[13] E. Asarin, A. Donze, O. Maler, and D. Nickovic, “Parametric identification of

temporal properties,” in Proceedings of the Second International Conference

on Runtime Verification, RV’11, (Berlin, Heidelberg), pp. 147–160, Springer-

Verlag, 2012.

[14] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled, Model Checking. Cambridge,

MA, USA: MIT Press, 1999.

[15] A. Donzé, T. Ferrère, and O. Maler, “Efficient robust monitoring for stl,” in

Computer Aided Verification (N. Sharygina and H. Veith, eds.), pp. 264–279,

Springer Berlin Heidelberg, 2013.

[16] C. Yoo and C. Belta, “Rich time series classification using temporal logic,” in

Proceedings of Robotics: Science and Systems, (Cambridge, Massachusetts),

July 2017.

[17] S. K. Aydin and E. Aydin Gol, “Synthesis of monitoring rules with stl,” Journal

of Circuits, Systems, and Computers., vol. Early Access, 2020.

[18] I. Saglam and E. A. Gol, “Cause mining and controller synthesis with stl,” in

2019 IEEE 58th Conference on Decision and Control (CDC), pp. 4589–4594,

2019.

60

[19] S. Kağan Aydın and E. A. Göl, “Optimizing parameters of signal temporal logic

formulas with local search,” in 2019 27th Signal Processing and Communica-

tions Applications Conference (SIU), pp. 1–4, 2019.

[20] S. K. Aydin and E. A. Gol, “On the use of genetic algorithms for synthesis of

signal temporal logic formulas,” in 2018 26th Signal Processing and Communi-

cations Applications Conference (SIU), pp. 1–4, 2018.

[21] A. Ketenci and E. A. Gol, “Synthesis of monitoring rules via data mining,” in

2019 American Control Conference (ACC), pp. 1684–1689, 2019.

[22] J. Kapinski, X. Jin, J. Deshmukh, A. Donze, T. Yamaguchi, H. Ito, T. Kaga,

S. Kobuna, and S. Seshia, “St-lib: A library for specifying and classifying model

behaviors,” in SAE Technical Paper, SAE International, 04 2016.

[23] H. Yang, B. Hoxha, and G. Fainekos, “Querying parametric temporal logic prop-

erties on embedded systems,” in Testing Software and Systems (B. Nielsen and

C. Weise, eds.), (Berlin, Heidelberg), pp. 136–151, Springer Berlin Heidelberg,

2012.

[24] B. Hoxha, A. Dokhanchi, and G. Fainekos, “Mining parametric temporal logic

properties in model-based design for cyber-physical systems,” International

Journal on Software Tools for Technology Transfer, vol. 20, pp. 1–15, 02 2017.

[25] S. Sankaranarayanan and G. Fainekos, “Falsification of temporal properties of

hybrid systems using the cross-entropy method,” in Proceedings of the 15th

ACM International Conference on Hybrid Systems: Computation and Control,

HSCC ’12, (New York, NY, USA), p. 125–134, Association for Computing Ma-

chinery, 2012.

[26] Y. S. R. Annapureddy and G. E. Fainekos, “Ant colonies for temporal logic

falsification of hybrid systems,” in IECON 2010 - 36th Annual Conference on

IEEE Industrial Electronics Society, pp. 91–96, 2010.

[27] T. Nghiem, S. Sankaranarayanan, G. Fainekos, F. Ivancić, A. Gupta, and G. J.

Pappas, “Monte-carlo techniques for falsification of temporal properties of non-

linear hybrid systems,” in Proceedings of the 13th ACM International Confer-

61

ence on Hybrid Systems: Computation and Control, HSCC ’10, (New York, NY,

USA), p. 211–220, Association for Computing Machinery, 2010.

[28] Y. Annpureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan, “S-taliro: A tool

for temporal logic falsification for hybrid systems,” in Tools and Algorithms for

the Construction and Analysis of Systems (P. A. Abdulla and K. R. M. Leino,

eds.), (Berlin, Heidelberg), pp. 254–257, Springer Berlin Heidelberg, 2011.

[29] A. Jones, Z. Kong, and C. Belta, “Anomaly detection in cyber-physical systems:

A formal methods approach,” vol. 2015, 12 2014.

[30] P. J. M. Laarhoven and E. H. L. Aarts, Simulated Annealing: Theory and Appli-

cations. USA: Kluwer Academic Publishers, 1987.

[31] H. J. Shin, D.-H. Eom, and S.-S. Kim, “One-class support vector machines—an

application in machine fault detection and classification,” Computers & Indus-

trial Engineering, vol. 48, no. 2, pp. 395 – 408, 2005.

[32] J. R. Quinlan, C4.5: Programs for Machine Learning. San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc., 1993.

[33] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten,

“The weka data mining software: An update,” SIGKDD Explor. Newsl., vol. 11,

p. 10–18, Nov. 2009.

[34] M. Ergurtuna and E. A. Gol, “An efficient formula synthesis method with past

signal temporal logic,” IFAC-PapersOnLine, vol. 52, no. 11, pp. 43 – 48, 2019.

5th IFAC Conference on Intelligent Control and Automation Sciences ICONS

2019.

[35] N. Linial and M. Saks, “Searching ordered structures,” Journal of algorithms,

vol. 6, no. 1, pp. 86–103, 1985.

[36] S. Coogan, E. A. Gol, M. Arcak, and C. Belta, “Traffic network control from

temporal logic specifications,” IEEE Transactions on Control of Network Sys-

tems, vol. 3, no. 2, pp. 162–172, 2016.

[37] M. Ergürtuna and E. A. Göl, “Classification of time-series data using ptstl,”

62

in 2020 28th Signal Processing and Communications Applications Conference

(SIU), pp. 1–4, 2020.

[38] MarineTraffic-Global Ship Tracking Intelligence, 2018 (accessed 2018-09-24).

www.marinetraffic.com.

63

www.marinetraffic.com

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Motivation and Problem Definition
	Proposed Methods and Models
	Contributions and Novelties
	The Outline of the Thesis

	Related Work and Background
	Background Information
	Linear Temporal Logic
	Signal Temporal Logic
	Past Time Signal Temporal Logic
	Monotonicity of Parametric Signal Temporal Logic

	Related Work

	Problem Formulation
	Proposed Method
	Monotonicity of Parametric Signal Temporal Logic
	Parameter Optimization Method
	Iterative Formula Construction Method

	EXPERIMENTS AND RESULTS
	Case Studies
	Aircraft Dataset
	Dataset Generation
	Algorithm Inputs
	Results

	Traffic System Dataset
	Dataset Generation
	Algorithm Inputs
	Results

	EXTENSION OF THE METHOD FOR SINGLE LABEL DATASET
	Monotonicity Properties
	Proposed Method
	Case Study

	Conclusion
	Future Studies

	REFERENCES

