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submitted by HANDE FENDOĞLU in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in Mathematics Department, Middle East
Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Yıldıray Ozan
Head of Department, Mathematics

Prof. Dr. Canan Bozkaya
Supervisor, Mathematics, METU

Prof. Dr. Münevver Tezer-Sezgin
Co-supervisor, Mathematics, METU

Examining Committee Members:

Prof. Dr. Nevzat Güneri Gençer
Electrical and Electronics Engineering, METU

Prof. Dr. Canan Bozkaya
Mathematics, METU

Prof. Dr. Ayhan Aydın
Mathematics, Atılım University

Prof. Dr. Niyazi Şahin
Mathematics, Ankara Yıldırım Beyazıt University

Prof. Dr. Ömür Uğur
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ABSTRACT

BEM SOLUTION OF UNSTEADY CONVECTION-DIFFUSION TYPE
FLUID FLOW PROBLEMS

Fendoğlu, Hande

Ph.D., Department of Mathematics

Supervisor: Prof. Dr. Canan Bozkaya

Co-Supervisor: Prof. Dr. Münevver Tezer-Sezgin

May 2020, 131 pages

The time-dependent convection-diffusion-reaction (CDR) type equations with con-

stant and variable convective coefficients are solved by using two different boundary

element methods (BEM), namely dual reciprocity BEM (DRBEM) and domain BEM

(DBEM), in the spatial discretization while an implicit backward finite difference

scheme is used in time. In the applications of DRBEM and DBEM, the fundamen-

tal solutions of both CDR equation and the modified Helmholtz (mH) equation are

made use of. This results in some leftover terms (e.g. time derivative of the un-

known) in the equations; and consequently some leftover domain integrals after the

weighting process of the differential equations with each aforementioned fundamen-

tal solutions. The treatment of these leftover domain integrals generates different

BEM formulations. That is, the DRBEM arises following the transformation of these

domain integrals into equivalent boundary integrals by using radial basis functions,

while keeping these domain integrals and computing them numerically, produce the

DBEM. The physical applications of the present techniques are mainly on the solu-

tions of some fluid dynamics problems which are governed by time-dependent CDR
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type equations.

In this respect, first the time-dependent magnetohydrodynamic (MHD) flow equa-

tions which are actually convection-diffusion type equations with constant convec-

tive coefficients, are solved in ducts with straight and perturbed walls of variable

electrical conductivities in the presence of an inclined magnetic field. It is found

that for MHD duct flow problems, the DBEM results are almost invariant to the use

of the fundamental solutions of either convection-diffusion (CD) or mH equations,

while DRBEM with the fundamental solution of CD equation gives reasonably good

results. Both methods capture good the well-known MHD flow characteristics for

increasing values of Hartmann number. Secondly, the problems governed by Navier-

Stokes and/or energy equations are considered in order to extend the application of

the present method to the non-linear CD type equations with variable convective coef-

ficients. Thus, the DBEM with the fundamental solution of CD equation is employed

for the solution of the benchmark problems of fluid dynamics and heat transfer such

as lid-driven cavity, natural and MHD-natural convection flow in cavities and chan-

nels. It is observed that, the obtained numerical findings are quite compatible with

the physics of the fluid flow and the temperature distribution for moderate values of

Reynolds, Rayleigh and Hartmann numbers.

Keywords: Convection-diffusion-reaction equation, MHD flow, DRBEM, DBEM
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ÖZ

ZAMANA BAĞLI KONVEKSİYON-DİFÜZYON TİPİNDEKİ AKIŞKAN
AKIMI PROBLEMLERİNİN SINIR ELEMANLARI METODU İLE

ÇÖZÜMÜ

Fendoğlu, Hande

Doktora, Matematik Bölümü

Tez Yöneticisi: Prof. Dr. Canan Bozkaya

Ortak Tez Yöneticisi: Prof. Dr. Münevver Tezer-Sezgin

Mayıs 2020 , 131 sayfa

Bu tezde, zamana bağlı konveksiyon-difüzyon-reaksiyon (CDR) tipinde olan, sabit

veya değişken konvektif katsayilara sahip denklemler, iki farklı sınır elemanları me-

todu ile çözülmüştür. Bu metodlar sırasıyla, karşılıklı sınır elemanları yöntemi (DR-

BEM) ve bölge sınır elemanları yöntemidir (DBEM) ve bu metodlar uzaydaki ayrık-

laştırma için kullanılmıştır. Zaman düzleminin ayrıklaştırılmasında ise kapalı olan

geri yönde sonlu fark şeması kullanılmıştır. DRBEM ve DBEM uygulamalarında

hem CDR hem de modifiye edilmiş Helmholtz (mH) denklemlerinin temel çözüm-

lerinden faydalanılmıştır. Bahsedilen temel çözümler yardımıyla diferensiyel denk-

lemlerin ağırlıklandırılma işlemi sırasında denklemdeki bazı terimler (bilinmeyenin

zamana bağlı türevi gibi) sürece dahil edilmemektedir ve bunun sonucunda bu terim-

lerden oluşan bölge integralleri artakalmaktadır. Birbirinden farklı sınır elemanları

yöntemlerinin doğuşu, artakalan bu bölge integrallerini ele alış biçimlerinin farklı-

lığından kaynaklanmaktadır. Öyle ki, DRBEM bu bölge integrallerinin radyal baz

fonksiyonları yardımıyla eşdeğer sınır integrallerine dönüştürülmesi sonucunda or-
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taya çıkarken, DBEM ise bu bölge integrallerinin mevcut integral denklemi içerisinde

tutularak nümerik şekilde hesaplanması ile doğmuştur. Kullanılan tekniklerin başlıca

uygulama alanları bazı akışkanlar mekaniği problemlerinin çözümleri üzerine olup

bu problemler zamana bağlı CDR tipindeki denklemlerle ifade edilmektedir.

Bu bağlamda, ilk olarak konveksiyon-difüzyon tipindeki denklemlerin sabit konvek-

tif katsayılara sahip bir örneği olan zamana bağlı magnetohidrodinamik (MHD) akış

problemlerinin nümerik çözümleri araştırılmıştır. MHD akış problemleri, değişken

elektrik iletkenliği olan düz yüzeye yada engebeli yüzeye sahip kanallarda, eğimli

bir manyetik alanın etkisi altında nümerik olarak çözülmüştür. DBEM, CD ve mH

denklemlerinin temel çözümlerinin her ikisinin kullanımında da oldukça iyi sonuçlar

verirken DRBEM, CD denkleminin temel çözümünün kullanılmasıyla makul sonuç-

lar vermektedir. Metodların her ikisi de Hartmann sayısının büyüyen değerlerinde, li-

teratürde bilinen MHD akış karakteristiğiyle örtüşen sonuçlar vermiştir. Tezin ikinci

kısmında, kullandığımız nümerik metodlar, lineer olmayan CD tipindeki değişken

konvektif katsayılı denklemlerin nümerik çözümlerinin bulunması için uygulanmış-

tır. Bu sebeple, akışkanlar mekaniği ve ısı transferi problemlerine örnek olarak, üst

kapağı hareketli kanal akış problemi, doğal konveksiyon ve MHD-doğal konveksiyon

kanal akış problemleri, DBEM ile CD denkleminin temel çözümü kullanılarak çö-

zülmüştür. Elde edilen nümerik sonuçlar belirli değerlerdeki Reynolds, Rayleigh ve

Hartmann sayıları için akışkanlar mekaniği ve ısı dağılım problemlerinin genel fizik

yapısıyla uyum içerisindedir.

Anahtar Kelimeler: Konveksiyon-difüzyon-reaksiyon denklemi, Magnetohidrodina-

mik akış, Karşılıklı sınır elemanları yöntemi, Bölge sınır elemanları yöntemi
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û particular solution

u∗ fundamental solution

q∗ normal derivative of u∗

V velocity

w vorticity

α thermal diffusivity

αj(t), ϕj(t), λj(t) set of time-dependent undetermined coefficients

β inclination angle of the externally applied magnetic field

β̄ thermal expansion coefficient

Γ boundary of the domain

γ Euler constant

∆ Dirac delta

∆T temperature difference between surfaces on the fluid

δ Kronecker delta function

ε diffusion coefficient

εΩ, εΓ1 , εΓ2 Residuals

λ variable wall conductivity parameter

µ dynamic viscosity

xxiii



µ0 permeability of free space (= 4π × 10−7)

ν kinematic viscosity (= µ
ρ
)

ξ perturbation parameter

ρ fluid density

σ electrical conductivity

σ(t, x) reaction coefficient

ψ stream function

Ω spatial domain

CDR convection-diffusion-reaction

CD convection-diffusion

mH modified Helmholtz

FDM finite difference method

FEM finite element method

FVM finite volume method

BEM boundary element method

DBEM domain boundary element method

DRBEM dual reciprocity boundary element method

MHD Magnetohydrodynamics

NS Navier-Stokes

xxiv



CHAPTER 1

INTRODUCTION

Fluid dynamics, as a discipline, studies the behavior of fluid in motion (e.g. mov-

ing liquids or gases), where the fluid flow may be steady or unsteady, uniform or

nonuniform, laminar or turbulant; one, two or three dimensional. Fluid dynamics has

a wide range of scientific applications, ranging from designing canal, dam or piping

systems, to modelling aerodynamics of supersonic airplanes. As such, it also relates

to our daily lives. For instance, fluid dynamics principles can explain [2]:

•why airplanes must have streamlined smooth surface to have an efficient flight while

golf balls need to have rough surfaces (dimpled) to have efficient throw;

•why we observe the surface of the water sometimes smoothly and sometimes roughly

when it flows from the faucet;

• why it is impossible for the human ear to hear the supersonic airplane until it has

gone past;

• how aerodynamic designs of cars effect the running of gasoline.

The list of applications can be continued. The main point is; fluid dynamics is a very

important and practical subject. The principles of fluid dynamics; conservation of

mass, conservation of momentum and conservation of energy, can provide a sound

foundation of the fundamental aspects of fluid dynamics.

To solve a fluid dynamics problem, we need to take into account various properties of

the fluid, such as flow velocity, pressure, density and temperature, each as a function

of space and time. The governing equations of fluid dynamics problem are nonlin-

ear partial differential equations. In general, this type of equations does not have a

tractable analytical solution and requires the use of some numerical techniques. The

numerical techniques which are conventionally used, are based on domain discretiza-
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tion, i.e. the finite difference method (FDM), the finite volume method (FVM) and the

finite element method (FEM) [3, 4, 5]. These methods discretize the whole domain

of the problem with elements or cells. However, these methods have difficulties in

handling the curved geometries and the boundary conditions. Such applications are

either not possible (for FDM) or practically infeasible or computationally enormously

costly since discretizing the whole domain requires processing very large quantities

of data. Moreover, modelling infinite regions or moving boundary problems are other

difficulties the FEM faces with.

The boundary element method (BEM) provides a remedy to such difficulties [1]. It

is an efficient alternative to domain discretization techniques (FDM, FVM or FEM),

by requiring a smaller system of equations due to the discretization of the boundary

of the computational domain; and thus being computationally much less costly. It

is a boundary-only nature scheme and needs only the boundary values to provide a

solution to the problem under consideration. The BEM has a wide range applica-

tions in engineering, such as torsion of noncircular bars, deflection of elastic mem-

branes, bending of simply supported plates, heat transfer and fluid flow problems.

Formally, BEM transforms a given set of differential equations defined in the domain

into equivalent integral equations on the boundary by using the fundamental solution

of the whole governing equation. In most of the cases, the fundamental solution for

the whole governing equation is not available. In this case, some alternative BEM

techniques are developed, namely the dual reciprocity BEM (DRBEM) and the do-

main BEM (DBEM), which use the fundamental solution corresponding not all but

some of the terms of the governing equations. Thus, the basic integral equations of

the DRBEM and DBEM involve domain integrals due to the leftover terms not used

in the fundamental solutions. In DRBEM, these domain integrals are approximated

and also transformed by radial basis functions, while in DBEM they are kept in the

integral equation and then computed numerically.

This chapter proceeds as follows: First, the definition of the problem and motivation

are explained and then governing equations of the considered problems are given;

namely magnetohydrodynamic (MHD) flow equations, Navier-Stokes (NS) and natu-

ral convection flow equations. Before we conclude, the literature survey is given, and

the chapter is concluded with the originality and the plan of the thesis.
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1.1 Motivation and Problem Definition

Convection-diffusion-reaction (CDR) type equations have attracted considerable in-

terest from many researchers due to their various applications in biology, ecology, en-

gineering and medicine. Convection represents the movement of a substance within

a medium (e.g. water or air). Diffusion refers to the movement of the substance from

a medium of high concentration to the low concentration, providing the uniform dis-

tribution of the substance. A chemical reaction represents the process that gives the

interconversion of chemical substances. These type of equations represent quantities

such as population size or concentration of nutrients, pollutants and other chemicals in

the atmosphere, groundwater and surface water (subject to given constraints). For ex-

ample, self-purification of a river can be formulated in terms of biological demand for

oxygen and the dissolved oxygen concentration by using CDR equations [6]. Models

concerning tumour invasion, tumour angiogenesis and bacterial pattern formation are

also described by CDR type equations [7].

Solving CDR type equation is a difficult task due to the nature of the equation which

includes first and second order partial derivatives with respect to space. Accord-

ing to the value of the diffusion coefficient, the CDR equation becomes parabolic

(diffusion-dominated) or hyperbolic (convection-dominated). Traditional FDM and

FEM generally give accurate results for the former but not the latter, in which case

oscillations and smoothing of the wave front are introduced [1]. When BEM is ap-

plied to these equations it can be seen that BEM seems to be relatively free from these

problems. Thus, DRBEM and DBEM will be employed in this thesis to solve the

convection-dominated CDR equations with different fundamental solutions namely:

the fundamental solution of Laplace, convection-diffusion-reaction (CDR) and mod-

ified Helmholtz (mH) equations. As a consequence, the importance of analysis of

numerical methods for the accurate solution of CDR equation has motivated this the-

sis.

Time-dependent CDR equations with constant convective coefficients are used to ex-

press not only concentration of nutrients problem but also MHD duct flow problems.

Further, time-dependent CDR equations with variable convective coefficients are used

to explain the fluid flow and the fluid dynamics problems which include Navier-
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Stokes equations in channels, lid-driven cavity flow and natural convection flow, etc.

Both type of CDR equations have a significant spot in the literature. Therefore, in this

thesis, the emphasis is given not only to the time-dependent CDR type equations with

constant convective coefficients, but also the convection-diffusion (CD) type equa-

tions with variable convective coefficients.

1.2 Governing Equations for the Considered Problems

This section focuses on the mathematical models of the problems which will be solved

in the present thesis. As mentioned before, the aim is to numerically solve the prob-

lems which are governed by time-dependent CDR equations using two boundary el-

ement methods with different fundamental solutions. In this respect, some fluid dy-

namics problems with or without the effect of an externally applied magnetic field

are considered since the governing equations of these problems are actually time-

dependent or steady CD/CDR type equations with either constant or variable convec-

tive coefficients.

1.2.1 Magnetohydrodynamic Flow Equations

Magnetohydrodynamics is a branch of science which studies the motion of electri-

cally conducting fluids under magnetic fields. The main idea of the MHD is based on

the mutual interaction of fluid flow and magnetic fields; the fluid motion generates the

magnetic field (through Ohm’s Law) and the effect of magnetic fields creates a force

on the fluid which causes a change on the magnetic field [8]. As CDR problems,

the MHD flow problem in channels has also a wide range of engineering applica-

tions such as power generation, acceleration, geothermal energy extraction, conduct-

ing plasma in physics, producing liquid metals, nuclear fusion, etc. [9]. The MHD

flow is a challenging area due to its simultaneous consideration of the fluid mechanics

equations and electromagnetic equations which results in interaction of velocity and

magnetic field. The other difficulty of the MHD flow problem is the satisfaction of

the divergence-free conditions on the velocity and induced magnetic field.

The governing MHD equations consist of Navier-Stokes equations and Maxwell’s
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equations of electromagnetism through Ohm’s law. The velocity can be expressed as

V = (0, 0, V ′(x′, y′, t′)) indicating the action only in the z-direction and the induced

magnetic field takes the form B = (B0 sin β,B0 cos β,B′(x′, y′, t′)) under the effect

of a constant and uniform oblique magnetic field of strength B0 making an angle β

with the positive y-axis. The z-axis is chosen as the axis of the duct. The transient,

laminar, fully developed flow of an incompressible, viscous and electrically conduct-

ing fluid in a rectangular duct subject to oblique magnetic field can be expressed in

the following dimensional form [10]:

µ∇2V ′ +
B0

µ0

sin β
∂B′

∂x′
+
B0

µ0

cos β
∂B′

∂y′
=

∂P

∂z′
+ ρ

∂V ′

∂t′

in Ω (1.1)
1

σµ0

∇2B′ +B0 sin β
∂V ′

∂x′
+B0 cos β

∂V ′

∂y′
=

∂B′

∂t′

where µ0 is the permeability of free space (= 4π × 10−7H/m), σ is the electrical

conductivity of the fluid, ρ is the fluid density, P is the pressure in the fluid and 1
σµ0

represents magnetic diffusivity. Introducing dimensionless variables [8],

x =
x′

L0

, y =
y′

L0

, t =
t′U0

L0

, V =
V ′

U0

, B =
B′

U0µ0
√
σµ

(1.2)

where L0 is characteristic length, µ is the viscosity and

U0 = −L2
0(
∂P

∂z′
)/µ (1.3)

is the characteristic velocity, and substituting in Equation (1.1), the non-dimensional

form of the MHD equations (1.1) are obtained as

∇2V +M sin β
∂B

∂x
+M cos β

∂B

∂y
= −1 +

∂V

∂t

in Ω (1.4)

∇2B +M sin β
∂V

∂x
+M cos β

∂V

∂y
=

∂B

∂t

for t > 0. Here, M is Hartmann number which is defined by

M =
B0L0

√
σ

√
µ

(1.5)

and it is the magnitude of the vector
−→
M = (Mx,My) with components given as

Mx = M sin β, My = M cos β. (1.6)
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Thus, Equations (1.4) are reduced to

∇2V +Mx
∂B

∂x
+My

∂B

∂y
= −1 +

∂V

∂t

in Ω (1.7)

∇2B +Mx
∂V

∂x
+My

∂V

∂y
=

∂B

∂t

for t > 0.

1.2.2 Fluid Dynamics Equations

Fluid dynamics is a discipline of fluid mechanics that describes the flow of fluids.

An important application area for numerical simulation is the investigation of the

behavior of fluid flow. The behavior of fluids (liquids or gases) can be observed

in almost all areas of life ranging from complex technical applications to the more

ordinary situations of daily life. To understand the interesting phenomena associated

with fluid dynamics, one must consider the fundamental principles that govern the

motion of fluid particles. The main physical principles of fluid dynamics are the

continuity, momentum and energy equations. In this section, these principles are

presented for the two-dimensional flow.

1.2.2.1 Conservation of Mass

The fundamental rule of conservation of mass is that mass can neither be created nor

destroyed. Conservation of mass requires that the mass of a system remain constant

as the system moves through the flow field which means time rate of change of the

system mass is equal to zero. If one consider the mass flux through differential control

volume it can be stated that, rate of mass flux out of control volume must be equal to

the rate of accumulation of mass within control volume which is expressed as [11, 12],

∂ρ

∂t′
+ u′

∂ρ

∂x′
+ v′

∂ρ

∂y′
+ ρ(

∂u′

∂x′
+
∂v′

∂y′
) = 0 (1.8)

where V = (u′, v′) is the fluid velocity field. In general, D
Dt′

denotes the rate of change

which is
D

Dt′
=

∂

∂t′
+ u′

∂

∂x′
+ v′

∂

∂y′
(1.9)
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in cartesian coordinates. Thus, Equation (1.8) can be written as

Dρ

Dt′
+ ρ∇ · V = 0. (1.10)

This is known as the most general form of the continuity equation. For incompressible

fluids, the fluid density ρ is a constant throughout the flow field which is the case

considered in this thesis. Thus, Equation (1.10) becomes

∇ · V = 0 (1.11)

or
∂u′

∂x′
+
∂v′

∂y′
= 0 (1.12)

1.2.2.2 Conservation of Momentum (Newton’s Second Law)

Newton’s second law of motion states that, time rate of change of the linear momen-

tum of the system is equal to the sum of the external forces acting on the system. By

conservation of momentum law, the momentum equations are given by [2, 12]

ρ
Du′

Dt′
= ρgx −

∂P ′

∂x′
+ µ(

∂2u′

∂x′2
+
∂2u′

∂y′2
) (1.13)

ρ
Dv′

Dt′
= ρgy −

∂P ′

∂y′
+ µ(

∂2v′

∂x′2
+
∂2v′

∂y′2
) (1.14)

where g = (gx, gy) is gravitational acceleration vector. When these two equations

above are combined with the continuity equation (1.12), the problem becomes well-

posed. Equations (1.13) and (1.14) can be expressed in a compact form as [11]

ρ
DV
Dt′

= ρg−∇P ′ + µ∇2V. (1.15)

1.2.2.3 Energy Equation

A statement of this principle is the first law of thermodynamics: Rate of change of

energy inside the fluid element is equal to the summation of net heat flux into the

element and rate of work done on the element due to the body and surface forces.

By the principle of conservation of energy and Fourier laws in a control volume the

energy equation is given by [13],

∂T ′

∂t′
+ V · ∇T ′ = k

ρcp
∇2T ′ (1.16)
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in which cp and k represent the specific heat and the thermal conductivity, respec-

tively. When the temperature of the fluid is under the influence of external forces

these additional force terms are involved in the energy equation. The non-dimensional

form of energy equation is derived as follows

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

1

PrRe
∇2T (1.17)

by using the dimensionless variable T = T ′−Tc
Th−Tc

in which Tc and Th represent cold and

heated wall temperatures, respectively.

1.2.3 Navier-Stokes Equations

The Navier-Stokes (NS) equations are at the heart of the fluid flow modeling and are

named by mathematicians L. M. H. Navier (1785-1836) and Sir G. G. Stokes (1819-

1903) who derived the mathematical formulations. NS equations have a wide range of

engineering applications such as motion of stars, blood flow, ocean current, modeling

the weather, fluid flow in channels, air flow around a wing, pollution dispersion, the

design of power stations, aircrafts and cars etc. They provide a mathematical model

of physical conservation law of mass, momentum, energy and species concentration

which results in continuity and momentum equations. These equations consist of

non-linear partial differential equations which can be written in terms of primitive

physical variables or dependent ones. The nonlinearity causes certain difficulties to

solve these equations analytically. Analytical solutions are obtained for only some

cases with simplified physical assumptions. Thus, NS equations are needed to be

solved using numerical techniques for most of the real life physical problems.

The continuity equation (1.11) and the momentum equation (1.15) can be written as

a pair of simultaneous partial differential equations in velocity-pressure form which

are nonlinear and second-order by neglecting body forces as follows

∇ · V = 0 (1.18)

ρ
DV
Dt′

= µ∇2V−∇P ′. (1.19)
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The non-dimensional form of NS equations can be expressed as [14]
∂u

∂x
+
∂v

∂y
= 0 (1.20)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=

1

Re
∇2u− ∂P

∂x
(1.21)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
=

1

Re
∇2v − ∂P

∂y
(1.22)

by using the non-dimensional variables given below

u =
u′

U0

, v =
v′

U0

, P =
P ′

ρU2
0

, t =
t′U0

L0

, x =
x′

L0

, y =
y′

L0

(1.23)

where U0, Re = ρU0L0

µ
and µ denote characteristic velocity, Reynolds number and dy-

namic viscosity, respectively. The velocity-pressure form of NS equations has some

disadvantages due to the fact that the boundary condition of pressure field does not

exist. Therefore, we define the Navier-Stokes equations in new variables to avoid

the pressure term. The stream function-vorticity formulation can be defined as an

efficient form of NS equations due to the elimination of pressure term and automatic

satisfaction of continuity equation. However, some difficulties associated with the

solution of these equations arise from the nonlinearity of vorticity transport equa-

tion and the unknown boundary conditions of vorticity. In order to obtain the stream

function-vorticity form of NS equations (1.20)-(1.22) the stream function ψ is defined

as

u =
∂ψ

∂y
, v = −∂ψ

∂x
(1.24)

which satisfies the continuity equation (1.12) automatically. To be able to derive the

stream function equation, we use the definition of vorticity as w = ∇× u

w =
∂v

∂x
− ∂u

∂y
=

∂

∂x
(−∂ψ

∂x
)− ∂

∂y
(
∂ψ

∂y
) = −∇2ψ. (1.25)

Equations (1.21) and (1.22) are differentiated with respect to y and x, respectively

and the Equation (1.21) is subtracted from the Equation (1.22). Then, one can obtain

the vorticity transport equation as follows
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
=

1

Re
∇2w. (1.26)

Thus, the time-dependent Navier-Stokes equations in stream function-vorticity form

become

∇2ψ = −w (1.27)
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
=

1

Re
∇2w. (1.28)
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1.2.4 Natural Convection Flow

Heat transfer due to convection includes the energy exchange between a surface and

an adjacent fluid. This heat transfer can be classified as forced convection, natural

convection and mixed convection. In the forced convection, the fluid motion is gener-

ated by an external force (lid, fan or pump). For instance, lid-driven cavity problems

are the most famous examples for the forced convection. On the other hand, the nat-

ural convection is a type of flow, of motion of a liquid or a gas, in which the fluid

motion is not generated by any external source (like a pump, fan, suction device, etc.)

but by some parts of the fluid being heavier than other parts. Changes in tempera-

ture cause variations in the fluid density which arises the Buoyancy forces. Buoyancy

forces induce the motion (e.g. hot fluid tends to rise, cold to fall) and it produces

the convection naturally. In nature, convection cells formed from air raising above

sunlight-warmed land or water are a major feature of all weather systems. Convec-

tion is also seen in the rising plume of hot air from fire, plate tectonics, oceanic

currents and sea-wind formation. A very common industrial application of natural

convection is free air cooling without the aid of fans: this can happen on small scales

(computer chips) to large scale process equipment, energy storage, meteorology and

climatology. The ventilation between indoors and outdoors and the design of double

glazing are some applications of natural convection that we see in daily life.

Natural convection flow arises from the addition of energy equation to NS equations.

The non-dimensional stream function-vorticity-temperature formulation are given as

[15]

∇2ψ = −w (1.29)
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
= Pr∇2w +RaPr

∂T

∂x
(1.30)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= ∇2T . (1.31)

where T , Pr and Ra are the temperature, Prandtl number and Rayleigh number, re-

spectively. Equations (1.29), (1.30) and (1.31) must be considered simultaneously.

Thus, it is difficult to solve these equations analytically. The addition of energy equa-

tion to the NS equations necessities the inclusion of the force term RaPr ∂T
∂x

to the
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vorticity transport equation with the new dimensionless quantities [14],

Prandtl number : Pr =
ν

α
(1.32)

Rayleigh number : Ra =
gβ̄∆TL3

0

αν
(1.33)

where ν = µ
ρ

is the kinematic viscosity, α is the thermal diffusivity, β̄ is thermal

expansion coefficient, ∆T is the temperature difference between surface and the fluid.

The Prandtl number describes the relative strength of the diffusion of momentum to

that of heat. Typical values are taken as 0.71 for air, around 7 for water and around

0.015 for mercury [16].

1.3 Literature Survey

The convection–diffusion-reaction equation describes physical phenomena where en-

ergy, particles or other physical quantities are moving inside a physical system. The

domain discretization techniques such as finite difference method and finite element

method have been widely used for the solution of both steady and transient convection

or diffusion-dominated problems.

There have been many studies on the steady case, however, the works carried only

on the transient problems will be mentioned here, since this thesis focuses on the

solution of transient equations. Clavero and Gracia [17] have solved the transient

convection-diffusion problem by using FDM while a combined FDM-FEM has been

employed by Douglas and Russell [18]. They indicate that these schemes have much

smaller time-truncation errors than those of standard methods.

On the other hand, FEM has been used for the discretization of time-dependent

convection-diffusion-reaction equations by Tezduyar et al. [19]. They observe ac-

curate results with minimal oscillations while John and Schmeyer [20] use FEM with

small diffusion parameter. Burman and Fernández [21] are interested in CDR prob-

lems in which the advection dominates, and they obtain stable results using a sym-

metric, weakly consistent stabilization while Codina and Blasco [22] use FEM to

solve CDR equation based on the decomposition of the unknowns into resolvable and

subgrid scales. Furthermore, a discontinuous Galerkin FEM has been proposed for
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the space-time discretization of a CDR equation in the work [23]. In [24], a com-

parison of some FEM approaches, such as streamline-upwind Petrov-Galerkin and

least-squares, has been presented to solve the CDR problems.

On the other hand, the boundary element method (BEM) which is an efficient alterna-

tive to domain discretization techniques due to its boundary-only nature, has been re-

cently employed for the solution of convection-diffusion type equations in the works

[25, 26, 27] by Grigoriev and Dargush. They present the high-order BEM solutions

for CD problems and obtain good accuracy even for predominantly convective flows.

The transient CD problem has been studied by Cunha et al. [28] using both DBEM

and time domain BEM (TDBEM) and obtained results are compared with FEM so-

lutions; and good agreement is observed between BEM and FEM results. Singh and

Tanaka [29] provide DRBEM results with two kinds of fundamental solutions of CD

equations and they obtain accurate results. AL-Bayati and Wrobel [30] present a

novel formulation of the DRBEM for solving two-dimensional transient CDR prob-

lems with spatial variable velocity field. This new formulation is devoted to handle

the time derivation and the variable velocity field; and hence an excellent agreement

with the analytical solution is observed. Moreover, an Eulerian-Lagrangian BEM

technique has been proposed in the work [31].

In the first part of the thesis, the numerical solutions of the convection-diffusion type

equations with constant convective coefficients are obtained by DBEM and DRBEM

with the fundamental solutions of convection-diffusion and modified Helmholtz equa-

tions. The application of DBEM with the fundamental solution of CD equation to

CDR equation is a new contribution to the field which is not previously explored in

the literature. In this respect, the unsteady CDR equation in a square cavity for which

the analytical solution is available, is considered as a first application of our numerical

methods.

Another important application area of the convection-diffusion type equations with

constant convective coefficients is the MHD duct flow problems which is considered

as a second physical application of the thesis. Steady MHD flows have been studied

widely compared to the transient MHD flows in regular domains like rectangular/tri-

angular ducts with straight boundaries (e.g. [32, 33, 34]) and in complex geometries
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like annular-like domains in [35].

However, an extensive literature survey on the time-dependent MHD flow problems

will be given here since the thesis focuses on the time-dependent CDR type equations.

The unsteady MHD flow equations have been studied using the finite element method

(FEM) in two-dimensional rectangular, circular and triangular pipes by Singh and Lal

[36]. They observed that when the wall conductivity and Hartmann number increase,

the flux through a section is reduced and the steady-state is approached at a faster rate.

Salah et al. [37] developed a solution algorithm for the three-dimensional coupled

MHD flow. This method is valid for both high and low magnetic Reynolds numbers.

Seungsoo and Dulikravich [38] have given a finite difference method (FDM) for

three-dimensional unsteady MHD flow in a rectangular channel along with a tem-

perature variation. Additionally, Sheu and Lin [39] proposed CDR model for solving

unsteady MHD flow with a FDM on non-staggered grids using a transport scheme

in each ADI spatial sweep. Their results are in good agreement with the analytical

solutions and show high rate of convergence. Some meshless methods have also been

proposed for solving MHD flow equations in channels of different cross-sections and

for arbitrary wall conductivities.

Dehghan and Mirzaei [40, 41], and Loukopoulos et al. [42], presented meshless local

boundary integral equation method, meshless Local Petrov Galerkin method and lo-

calized meshless point collocation method, respectively, for solving unsteady MHD

flow equations.

A numerical scheme which is a combination of the dual reciprocity BEM for space

and the differential quadrature method (DQM) for the time discretization, is proposed

by Bozkaya and Tezer-Sezgin [43] for the solution of unsteady MHD flow problem

in a regular rectangular duct with insulated walls. Thus, the solution is obtained at

any required time level without the need of step-by-step computation with respect

to time. For the unsteady MHD flow in a duct with arbitrary wall conductivity, the

BEM formulation with time-dependent fundamental solution is presented by Bozkaya

and Tezer-Sezgin [44], and the numerical solutions are obtained for higher values of

Hartmann numbers compared to some previous studies.
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On the other hand, the time-dependent MHD flow in a rectangular duct with a per-

turbed boundary subject to an external magnetic field is considered as a physically

challenging problem but studied rarely. The effect of the boundary perturbation on

the fluid flow has been given in the work of Mahabaleshwar et al. [45] and for the

steady MHD flow, in the study of Marušić-Paloka and Pažanin [46] for the Darcy-

Brinkman flow and for incompressible viscous flow by Jäger [47]. In the work of

Aydın and Tezer-Sezgin [48], the MHD flow direct and Cauchy problems in a rectan-

gular duct with a perturbed slipping upper boundary are solved asymptotically with

the use of DRBEM to recover the slip length on the perturbed boundary through the

slip boundary conditions for relatively small values of Hartmann number.

When MHD equations are solved with DRBEM, fundamental solution of Laplace

equation is widely used in the literature [43, 44, 48]. However, in the present thesis,

the DRBEM with the fundamental solutions of CD and mH equations are used, for

the first time to solve the unsteady MHD flow in both regular and irregular ducts with

variable wall conductivities. Moreover, the use of domain BEM technique is also a

further contribution to the solution of the same problem for the purpose of comparison

of the results obtained by both techniques.

In the second part of the thesis, we deal with the convection-diffusion type equations

with variable convective coefficients. Specifically, some fluid dynamics problems

which are governed by the time-dependent NS equations are considered. Some stud-

ies about these problems are summarized below. Since in this thesis we consider NS

equations in stream function-vorticity formulation, only the studies which solve the

NS equations in this formulation are mentioned here.

Starting with earlier studies, 2-D incompressible NS equations are solved by Ghia et

al. [49] to discuss the effectiveness of the coupled strongly implicit multigrid method

(CSI-MG) in the determination of high-Re fine-mesh flow solutions while Onishi et

al. [50] present a new type of boundary conditions on vorticity which are convenient

for boundary elements. The direct BEM technique is employed for solving nonlinear

flow equations by simple iterations. In computational scheme, they use the boundary

element upwind technique to increase the order of stability.

Ghadi et al. [51] has given solution incompressible Navier-Stokes problem by the use
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of continuous Lagrange finite elements technique. This technique splits the vorticity

into two components. Semi-discretization is used for time and classical characteristic

method in the discretization of advective terms. Later, they improve this technique

by linearizing the advective term and uncoupling both variables in [52], and so they

overcome the difficulty which arises from the lack of the boundary conditions for the

vorticity. The lid-driven cavity flow problem is considered with classical piecewise

linear FEM, and numerical results give better accuracy than their previous work. Tez-

duyar et al. [19] presented the streamline upwind/Petrov-Galerkin method to solve

the NS equations in stream function-vorticity formulation. Both viscous and inviscid

cases are considered. They use the implicit-explicit and grouped element-by-element

iteration techniques to increase the accuracy. The obtained results show good agree-

ment with the published ones until that time.

Sousa and Sobey [53] developed global iteration matrix formulation to examine the

effect on numerical stability of different numerical schemes for vorticity boundary

conditions. Luo and Jiang [54] established reduced-order extrapolated Crank–Nicol-

son finite spectral element method to solve the NS equations by using the proper

orthogonal decomposition for reducing the order of the coefficient vector of the clas-

sical Crank–Nicolson finite spectral element method. This new method is tested by

employing some numerical examples; and results reveal that the effectiveness and

feasibility of the reduced-order extrapolated Crank–Nicolson finite spectral element

method is quite well.

A messless method which is based on least squares techniques is applied by Lashckar-

bolok and Jabbari [55] to the 2-D incompressible NS equations. As an example,

lid-driven cavity flow is considered for different Reynolds number. Kim et al. [56]

employed meshfree collocation method to solve the NS equations in stream function-

vorticity form. To obtain the vorticity boundary conditions, meshfree approximation

is used. Effectiveness and accuracy of the method are examined by some examples

which includes lid-driven cavity flow.

Considering the number of the studies which investigate the solution of 2-D incom-

pressible NS equations in stream function-vorticity form, boundary element tech-

niques have limited number of studies when compared the other techniques. Ramsak
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et al. [57] developed the subdomain based BEM technique for modelling of 2-D un-

steady laminar flow using stream function–vorticity formulation of the Navier–Stokes

equations. The subdomain technique aims to combine the known BEM accuracy

with the computational efficiency of other numerical techniques like FEM or FVM.

Ghadimi and Dashtimanesh [58] developed coupled numerical algorithm which com-

bines FDM and DRBEM. In this algorithm, vorticity transport equation is solved by

FDM while Poisson equation is solved by the DRBEM. One-sided lid-driven cavity

flow problem is investigated and they obtained reasonable results for higher values of

Reynolds number (Re = 10.000).

Another attractive research field is natural convection heat flow in fluid flow mod-

elling. The natural convection flow in a square cavity is investigated by Shu and Xue

[15]. The generalized differential quadrature method is employed to obtain the solu-

tion. Neumann and Dirichlet type boundary conditions are employed on the cavity

walls and different approaches are used to handle them.

The meshless local Petrov–Galerkin method (MLPG) is expressed by Sheikhi et al.

[59] to solve natural convection heat transfer in turbulent regimes which is governed

by NS and energy equations and they are incorporated with the Spalart–Allmaras

model which governs the turbulent viscosity. Moving least-squares interpolation has

been used to approximate the fluid variables. This study includes three different cav-

ity of natural heat transfer as in a square cavity, between two concentric cylinders

of square outer and circular inner walls and through a fluid bounded by two concen-

tric circular cylinders. Results are obtained for higher values of Rayleigh numbers.

MLPG is also employed by Arefmanesh et. al. [60] to simulate the buoyancy-driven

fluid flow and heat transfer in a differentially-heated square cavity having a wavy

baffle attached to its higher temperature side wall.

Liang and Zhang [61] used two-grid finite element method to solve the natural con-

vection problem while Šarler et al. [62] used DRBEM with fundamental solution of

Laplace equation to solve the steady natural convection problem in a porous medium.

As it can be seen, the fluid dynamics problems governed by the NS equation in

stream function-vorticity form and/or energy equation are extensively studied in dif-

ferent computational domains by several numerical techniques including DRBEM
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with the fundamental solution of Laplace equation. However, since these equations

can be considered with variable convective coefficients, we employ both DBEM and

DRBEM for the solutions of NS equations as an extension of the first part of the the-

sis. It is observed that the use of DBEM and DRBEM with the fundamental solution

of CD is an alternative scheme for the solution of these kind of problems.

1.4 Originality of the Thesis

In this thesis, we solve the time-dependent convection-diffusion-reaction type equa-

tions with constant and variable convective coefficients by using the numerical tech-

niques, namely, DRBEM and DBEM. In particular, we study the DRBEM and DBEM

with two distinct fundamental solutions of CDR and mH equations. To the best of

authors’ knowledge, we are the first to use the DBEM with the fundamental solution

based on CDR equation. Moreover, we obtain solutions for the convection-dominated

cases as well, which is a challenging task given that, other widely-celebrated numer-

ical techniques generally fall short of providing a solution for such cases.

An additional novelty of the thesis is that the DBEM and DRBEM with the fundamen-

tal solutions of CDR and mH equations are applied for the first time to the transient

MHD flow problems in ducts not only with flat but also with perturbed walls. The

rectangular duct with straight boundaries are subject to inclined magnetic field, but

in the case of the perturbed boundary ducts the external magnetic field is applied

vertically. Further, the no-slip walls are considered to be either insulated or conduct-

ing with variable conductivity, thus, it can be said that the general type of boundary

conditions are employed for the induced magnetic field.

In the second part of the thesis, the applications of the DBEM and DRBEM are ex-

tended to the solution of CD type equations with variable convective coefficients. As

physical applications, some basic fluid dynamics problems governed by NS equa-

tions, namely lid-driven cavity, natural convection, MHD natural convection and

channel flow are solved since these equations are of the form of CD equations with

variable coefficients involving the unknown velocity components. Then, DBEM with

the fundamental solution of CD equation is employed in the thesis as a new contribu-
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tion for the solution of these nonlinear equations.

1.5 The Outline of the Thesis

In Chapter 2, DRBEM and DBEM formulations are provided with different funda-

mental solutions. At first, DRBEM with fundamental solutions of Laplace, convection-

diffusion-reaction and modified Helmholtz equations are expressed. Then, DBEM

with fundamental solutions of convection-diffusion-reaction and modified Helmholtz

equations are explained elaborately.

In Chapter 3, the time-dependent CDR type equations with constant convective coeffi-

cients are investigated numerically. That is, both DRBEM and DBEM are employed

to solve these equations with fundamental solutions of either convection-diffusion

or modified Helmholtz equations. Basically, two types of problems are considered.

First, the CDR equation, for which the exact solution is available, is considered in

order to validate our numerical simulations and computer codes. Then, the analysis

is carried for the main interest of this chapter, which are the time-dependent MHD

flow problems in either regular or irregular ducts with perturbed walls under vari-

ous types of boundary conditions. Specifically, we consider MHD duct flow problem

with insulated and/or variable conductivity wall conditions under the effect of either

horizontal, vertical or oblique magnetic field. The obtained numerical results are an-

alyzed and compared with respect to efficiency of the numerical methods, suitability

of the used fundamental solutions and the type of computational domain.

In Chapter 4, solutions of time-dependent CD type equations with variable convective

coefficients are obtained by using both DRBEM and DBEM with fundamental solu-

tion of convection-diffusion equation. As in Chapter 3, the application of the methods

are explained through the CD equation with variable coefficients and the codes are

validated by the exact solution of the heat conduction problem which is governed by

the CD equation with varying coefficients in a square computational domain. Then,

the techniques are implemented for some fluid dynamics problems, namely, lid-driven

flow, natural convection flow, channel flow and MHD natural convection flow in a

porous medium. All these problems are governed by the NS equations and energy
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equation in the presence of a heat source, in which the momentum and energy equa-

tions can be treated as CD type equations involving variable convective coefficients

which are functions of the unknown.

In Chapter 5, the important numerical findings of the considered problems are sum-

marized.
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CHAPTER 2

THE DRBEM AND THE DBEM FORMULATIONS

The boundary element method is a well-established numerical technique which gives

the solution for wide-range of the engineering problems such as torsion of noncircular

bars, deflection of elastic membranes, bending of simply supported plates, heat trans-

fer and fluid flow problems, etc. Also, it provides an efficient alternative to the other

numerical techniques such as finite difference method and finite element method. The

main advantage of the BEM is the much smaller system of equations compared to do-

main discretization techniques, i.e. FDM, FEM. Moreover, there is a considerable

reduction in the data required to run a problem by BEM since it is a boundary-only

nature scheme and needs only the boundary values to provide the solution to the prob-

lem under consideration. Thus, the dimensionality of the problem is reduced by one

which results in less computational and data preparation effort than the other domain

discretization techniques.

The aim of the BEM is to transform the given differential equations defined in the do-

main into equivalent integral equations defined only on the boundary of the problem.

The weighted residual formulations are employed to produce these direct integral

equations. BEM procedure requires inherent use of the fundamental solutions for the

whole governing equations. Such fundamental solutions are not generally available

and this is the initial restriction of the BEM. Moreover, the nonhomogeneous terms

in the governing equations of the problem result in domain integrals in the formula-

tion of BEM and BEM suffers to eliminate them. Thus, some alternative techniques,

namely dual reciprocity BEM and domain BEM, in which the fundamental solutions

apply only to a piece of the governing equations, have been developed. The appli-

cation of these alternative BEM techniques deals with a leftover domain integral in
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the integral equation. In DRBEM, the leftover domain integral is transformed into an

equivalent boundary integral by means of radial basis functions while it is preserved

and evaluated by the use of numerical integration in DBEM.

The formulations of these boundary element methods will be explained by using the

time-dependent convection-diffusion-reaction equation which is given by

∂u

∂t
− ε∇2u+ ~a · ∇u+ σu = h in (0, T ]× Ω (2.1)

where u(x, t) is the solution, ~a = (a1, a2) denotes the convection coefficient with

constant terms, σ(t, x) is the reaction coefficient, h is a potential source term in a

considered finite time interval (0, T ]. To be able to have a well-defined problem, the

boundary conditions can be taken as Dirichlet type (u = ū), Neumann type (∂u
∂n

= q̄)

or mixed type (αu + µ∂u
∂n

= g) on the boundary Γ of the spatial domain Ω. Here, α

and µ are constants and ū = ū(x, y, t), q̄ = q̄(x, y, t) and g = g(x, y, t) are given

functions. On the other hand, the initial condition is given as

u = u0 in Ω× {t = 0}. (2.2)

Section 2.1 is devoted to the DRBEM formulation of Equation (2.1) using three dif-

ferent fundamental solutions, namely, fundamental solution of Laplace equation (Sec-

tion 2.1.1), fundamental solution of convection-diffusion-reaction equation (Section

2.1.2) and fundamental solution of modified Helmholtz equation (Section 2.1.3). Sec-

tion 2.2 deals with the DBEM formulations of Equation (2.1). The DBEM with the

fundamental solution of convection-diffusion-reaction equation (Section 2.2.1) and

the DBEM with the fundamental solution of modified Helmholtz equation (Section

2.2.2) are presented elaborately.

2.1 The Dual Reciprocity Boundary Element Method

Dual reciprocity BEM is one of the alternative boundary element technique which

aims to overcome the difficulties that BEM confronts. DRBEM transforms the do-

main integrals into equivalent boundary integrals by using a suitable fundamental

solution which corresponds to the steady-state problem. The terms except the ones

that we use for the fundamental solution are considered as nonhomogeneous terms,

and these are approximated by means of radial basis functions.
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2.1.1 DRBEM with the fundamental solution of Laplace equation

This section is devoted to the application of DRBEM with the fundamental solution of

Laplace equation [1] for the time-dependent convection-diffusion-reaction Equation

(2.1). All the terms except the Laplacian are considered as the inhomogeneity, which

is denoted by b, and they are approximated by means of radial basis functions in order

to transform the differential equation into an equivalent boundary integral equation.

In order to show the application in a compact form, Equation (2.1) is rewritten in a

form of Poisson’s equation as follows

∇2u = b(x, y, t, u, ux, uy, ut) in Ω. (2.3)

The general boundary conditions are taken as

u = ū on Γ1 (2.4)

q =
∂u

∂n
= q̄ on Γ2 (2.5)

where ū and q̄ are given functions, ~n is the outward normal vector and Γ = Γ1 ∪ Γ2.

Γ2

q = q̄

Γ1

u = ū

Ω

~n

�

/

/

Figure 2.1: The computational domain and boundary conditions

Following the method of weighted residuals as in the application of BEM [1], the er-

rors between the exact and approximate solutions (u and ũ) and their normal deriva-

tives (q and q̃) can be minimized by orthogonalizing the errors with respect to weight

functions [1].

The residuals are defined as
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εΩ = ∇2ũ− b 6= 0 in Ω, (2.6)

εΓ1 = ũ− ū 6= 0 on Γ1, (2.7)

εΓ2 = q̃ − q̄ 6= 0 on Γ2. (2.8)

These residuals can be weighted by weight functions u∗, ū∗ and ¯̄u∗ as∫
Ω

εΩu
∗dΩ +

∫
Γ1

εΓ1ū
∗dΓ +

∫
Γ2

εΓ2
¯̄u∗dΓ = 0 (2.9)

or ∫
Ω

(∇2ũ− b)u∗dΩ +

∫
Γ1

(ũ− ū)ū∗dΓ +

∫
Γ2

(q̃ − q̄)¯̄u∗dΓ = 0. (2.10)

The purpose of this procedure is to force the residuals to be zero in an average sense.

Applying the Green’s second identity successively two times to the domain integral

in (2.10); and by choosing ū∗ = ∂u∗

∂n
and ¯̄u∗ = −u∗, we get the following equation

∫
Ω

ũ∇2u∗dΩ+

∫
Γ1

u∗
∂ũ

∂n
dΓ1−

∫
Γ2

q∗ũdΓ2−
∫

Γ1

q∗ūdΓ1+

∫
Γ2

u∗
∂ū

∂n
dΓ2 =

∫
Ω

bu∗dΩ.

(2.11)

The weight function u∗ is chosen as the fundamental solution of Laplace equation to

eliminate the domain integral on the left hand side of Equation (2.11). That is, u∗ is

chosen as the function satisfying the equation

∇2u∗ = −∆(r − ri) (2.12)

where ∆ is the Dirac delta1 function and r and ri are the positions vectors of the

field point (x, y) and the source point (xi, yi), respectively. Hence, u∗ and its normal

derivative q∗ are [1]

u∗ =
1

2π
ln

1

|r − ri|
, q∗ = − 1

2π

(r − ri).~n
|r − ri|2

. (2.13)

1 For any continuous function f(x) at xi, Dirac delta function is defined with the properties

∆(x−xi) =

{
∞, x = xi
0, x 6= xi

,

∫
Ω

∆(x−xi)dΩ = 1 and
∫

Ω

f(x)∆(x−xi)dΩ =

{
f(xi), xi ∈ Ω
0, xi /∈ Ω.
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To be able to rewrite the Equation (2.11) in a more compact form, we define the

boundary conditions as

u =

 ū on Γ1

ũ on Γ2

q =

 q̄ on Γ1

q̃ on Γ2

where ũ and q̃ are the unknown approximate values.

Then, Equation (2.11) becomes

−ciui −
∫

Γ

q∗udΓ +

∫
Γ

u∗qdΓ =

∫
Ω

bu∗dΩ (2.14)

where ui = u(xi, yi) and the source point (xi, yi) may be either an interior or a bound-

ary node. Here,
∫

Ω
u∇2u∗dΩ =

∫
Ω
u∆(r − ri)dΩ = −ciui and ci is the constant

defined by

ci =

 θi
2π
, i ∈ Γ

1, i ∈ Ω \ Γ

with the internal angle θi at the point i = (xi, yi) in radians (see Figure 2.2)

ε

(xi, yi)
θi

Figure 2.2: Configuration of the constant ci

The leftover domain integral on the right hand side of Equation (2.14) will be trans-

formed into an equivalent boundary integral by means of radial basis functions. That

is, the solution of Equation (2.3) can be expressed as the sum of the homogeneous

solution (since the fundamental solution of Laplace equation is used) and a particular

solution û such that

∇2û = b. (2.15)
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Generally, it is difficult to find a particular solution û especially for the time-dependent

or non-linear equations. In this case, DRBEM aims to use series of particular solu-

tions ûj instead of a single function û. The number of the particular solutions ûj

composes of the sum of boundary and interior nodes, i.e. there are totally N + L

particular solutions, where N and L represent the number of boundary and interior

nodes, respectively. Then, the inhomogeneity b is approximated as

b ≈
N+L∑
j=1

αj(t)fj(x, y) (2.16)

where αj(t) is a set of time-dependent undetermined coefficients and fj are the radial

basis functions which are linked to the particular solutions ûj as

∇2ûj = fj. (2.17)

The fj functions are defined as geometry-dependent and there is no restriction on

these functions. That is, there are different types of radial basis functions and each

of which results in a different particular solution ûj for the Poisson equation (2.17).

In Equation (2.16), b is expressed by an approximation of radial basis functions; and

DRBEM idea will be constructed by pursuing this approximation. Although the ap-

proximation is still valid, in practice, the equality sign (=) will be used instead of

approximation sign (≈) starting from Equation (2.18) in order to be compatible with

the literature [1].

Substituting Equation (2.17) into Equation (2.16) yields

b =
N+L∑
j=1

αj(t)(∇2ûj) (2.18)

which can be substituted into the Equation (2.14) to give the following expression

ciui +

∫
Γ

q∗udΓ−
∫

Γ

u∗qdΓ = −
N+L∑
j=1

αj(t)

∫
Ω

(∇2ûj)u
∗dΩ. (2.19)

When the Green’s second identity is also applied to the right hand side of Equation

(2.19), we obtain the following integral equation defined only on the boundary of the

domain Ω for each source node i,
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ciui +

∫
Γ

q∗udΓ−
∫

Γ

u∗qdΓ =
N+L∑
j=1

αj(t)(ciûji +

∫
Γ

q∗ûjdΓ−
∫

Γ

u∗q̂jdΓ) (2.20)

where the normal derivative q̂j of ûj is defined as

q̂j =
∂ûj
∂n

=
∂ûj
∂x

∂x

∂n
+
∂ûj
∂y

∂y

∂n
. (2.21)

In order to solve the integral Equation (2.20), the boundary is discretized by dividing

it into N segments or elements. Constant, linear, or higher order elements can be

used to discretize the boundary. For easiness, we use constant boundary element to

explain the formulations. The points where the unknown values are considered are

called "nodes" and if they are taken in the middle of the elements, the formulation is

called the BEM with constant elements (see Figure 2.3).

Nodes

Element

Figure 2.3: Discretization of boundary with constant elements

The values u and q are assumed to be constant over each element and equal to the

value at the mid-element node. Hence, the values of u and q can be taken out of

the integrals as constant uk and qk for each element k. Then, Equation (2.20) can

be discretized with summation over the constant boundary elements and expressed as

follows

ciui +
N∑
k=1

uk

∫
Γk

q∗dΓ −
N∑
k=1

qk

∫
Γk

u∗dΓ (2.22)

=
N+L∑
j=1

αj(t)(ciûji +
N∑
k=1

∫
Γk

q∗ûjdΓ−
N∑
k=1

∫
Γk

u∗q̂jdΓ).
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Since û and q̂ are known functions when f is defined, there is no need to approxi-

mate them within each boundary element as done for u and q. Integrating over each

boundary element, Equation (2.22) can be written as

ciui+
N∑
k=1

Hikuk−
N∑
k=1

Gikqk =
N+L∑
j=1

αj(t)(ciûji+
N∑
k=1

Hikûkj−
N∑
k=1

Gikq̂kj). (2.23)

The index k is used for the nodes which are the field points. By the use of the collo-

cation technique, Equation (2.23) is expressed as

Hu−Gq =
N+L∑
j=1

αj(t)(Hûj −Gq̂j). (2.24)

The components of the matrices H and G are

Hij = ciδij −
1

2π

∫
Γj

(r − ri).~n
|r − ri|2

dΓj, (2.25)

Gij =
1

2π

∫
Γj

ln
1

|r − ri|
dΓj, (2.26)

Hii = ci, (2.27)

Gii ≈
l

2π
(ln

2

l
+ 1) (2.28)

where i, j = 1, ..., N , l is the length of each boundary element and δij is the Kronecker

delta function defined by

δij =

 1, if i = j

0, if i 6= j.

The diagonal entries of the matrix H are directly equal to ci, since ∂r
∂n

= 0 along

a constant element in the integral (2.25), while Gii are evaluated analytically taking

care of the singularity [1].

Finally, after consideration of the vectors ûj and q̂j to be one column of the matrices Û

and Q̂, respectively, Equation (2.24) can be rewritten without summation to produce

Hu−Gq = (HÛ −GQ̂)α (2.29)

where α is the vector containing αj(t).
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In the formulations of DRBEM, several types of fj can be chosen. The only restriction

is that the matrix F of size (N + L) × (N + L), which is obtained by taking fj as

columns, must be nonsingular. Throughout the thesis, the polynomial type radial

basis functions are employed in the application of DRBEM. The polynomial type

radial basis functions are [1]

fj = p1 + p2rj + p3r
2
j + ...+ pm+1r

m
j (2.30)

and corresponding particular solutions û and their normal derivatives q̂ are (from

Equation (2.17) and (2.21))

û = p1

r2
j

4
+ p2

r3
j

9
+ ...+ pm+1

rm+2
j

(m+ 2)2
, (2.31)

q̂ = (p1
rj
2

+ p2

r2
j

3
+ ...+ pm+1

rm+1
j

m+ 2
)
∂r

∂n
(2.32)

where pi are arbitrarily chosen constant coefficients (mostly they are taken as pi =

1). Alternatively, logaritmic type radial basis function and corresponding particular

solution û and its normal derivative q̂ are given as [63]

fj = r2
j ln rj, û = ln rj

r4
j

16
−
r4
j

32
, q̂ = (ln rj

r3
j

4
+
r3
j

16
)
∂r

∂n
. (2.33)

Equation (2.29) is the basis for the application of the dual reciprocity boundary ele-

ment method and involves discretization of the boundary only. Defining the interior

nodes is not necessary to obtain the boundary solution. However, arbitrary number

of interior points are taken to obtain the solution both on the boundary and in the

interior.

As it was expressed in Equation (2.16), b is approximated by radial basis functions

fj . If the value of b is computed at N + L different points, a set of equations can be

obtained in matrix form as [1]

b = Fα (2.34)

which can be inverted as

α = F−1b(x, y, t, u, ux, uy, ut) (2.35)
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where b is the function involving u and its partial derivatives, therefore α cannot be

calculated explicitly.

By Equation (2.1) and (2.3), b can be written as

b =
1

ε

∂u

∂t
+
a1

ε

∂u

∂x
+
a2

ε

∂u

∂y
+

1

ε
σu− 1

ε
h. (2.36)

Then, by substituting it into Equation (2.35) we obtain

α = F−1b = F−1(
1

ε

∂u

∂t
+
a1

ε

∂u

∂x
+
a2

ε

∂u

∂y
+

1

ε
σu− 1

ε
h). (2.37)

To relate the nodal values of u to nodal values of its derivatives ∂u
∂x

and ∂u
∂y

, a mech-

anism needs to be constructed. Considering the approximation given in Equation

(2.16), u is also approximated by the same coordinate functions fj(x, y) as follows

u ≈
N+L∑
j=1

βj(t)fj(x, y) (2.38)

where βj 6= αj and it can also be expressed in matrix form

u = Fβ. (2.39)

Differentiating (2.39) with respect to x and y, respectively, produces the space deriva-

tives of the solution u

∂u

∂x
=
∂F

∂x
F−1u,

∂u

∂y
=
∂F

∂y
F−1u (2.40)

and Equation (2.37) results in

α = F−1(
1

ε

∂u

∂t
+
a1

ε

∂F

∂x
F−1u+

a2

ε

∂F

∂y
F−1u+

1

ε
σu− 1

ε
h). (2.41)

Equation (2.29) can be written as follows for the solution at boundary nodes

HBSuBS −GBSqBS = (HBSÛBS −GBSQ̂BS)α (2.42)

and for the solution at interior nodes

IuIS = −HISuBS +GISqBS + (IÛIS +HISÛBS −GISQ̂BS)α (2.43)
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where BS and IS denote boundary and interior solutions, respectively. One global

scheme is obtained by combining the Equation (2.42) and Equation (2.43) as an en-

larged system

HBS

(N ×N)

HIS
(L×N)

0

N × L

I
L× L

uBS

N × 1

uIS

L× 1

−
GBS

(N ×N)

GIS
(L×N)

0

N × L

0
L× L

qBS

N × 1

0
L× 1

=

HBS

(N ×N)

HIS
(L×N)

0

N × L

I
L× L

ÛBS

N × (N + L)

ÛIS
L× (N + L)

−
GBS

(N ×N)

GIS
(L×N)

0

N × L

0
L× L

Q̂BS

N × (N + L)

0
L× (N + L)

BS

+

IS

H u G q

H Û G Q̂ α

Figure 2.4: Enlarged DRBEM system of equations

which can be expressed by the following (N +L)× (N +L) matrix-vector equation

Hu−Gq = (HÛ −GQ̂)α. (2.44)

Substituting α vector from Equation (2.41) we obtain

ε(Hu−Gq) = (HÛ −GQ̂)F−1(
∂u

∂t
+a1

∂F

∂x
F−1u+a2

∂F

∂y
F−1u+σu−h) (2.45)

which can be expressed in terms of a first order system of a ordinary differential

equations in time

Cu̇+ H̃u− G̃∂u
∂n
− Ch = 0. (2.46)

Here, the matrices C, H̃ and G̃ are

C = −(HÛ −GQ̂)F−1, (2.47)

H̃ = εH + CR1 + CR2 + Cσ, (2.48)

G̃ = εG (2.49)
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and

R1 = a1
∂F

∂x
F−1, R2 = a2

∂F

∂y
F−1. (2.50)

The time derivative u̇ = ∂u
∂t

in Equation (2.46) is discretized by using implicit back-

ward finite difference approximation as

∂u

∂t

(m+1)

=
u(m+1) − u(m)

∆t
(2.51)

and the Equation (2.46) becomes

(H̃ +
C

∆t
)u(m+1) − G̃∂u

∂n

(m+1)

=
C

∆t
u(m) + Ch(m) (2.52)

where m denotes the time iteration.

After the insertion of boundary conditions and the rearrangement, the system results

in a linear system

Az = d (2.53)

where A is a full matrix of size (N + L) × (N + L), d is a known vector and z

is the solution vector which involves the unknown values of both u and q = ∂u
∂n

on

the boundary and interior of the problem domain according to the given boundary

conditions.

2.1.2 DRBEM with the fundamental solution of convection-diffusion-reaction

equation

In this section, DRBEM is employed to solve Equation (2.1) by using the fundamental

solution of convection-diffusion-reaction equation. Therefore, the terms in Equation

(2.1) except the convection, diffusion and reaction terms are treated as nonhomogene-

ity. Similar to the DRBEM application given in Section 2.1.1, we start with applying

weighted residual formulations as

∫
Ω

ε∇2uu∗dΩ −
∫

Ω

(a1
∂u

∂x
+ a2

∂u

∂y
)u∗dΩ−

∫
Ω

σuu∗dΩ (2.54)

+

∫
Γ1

ε(ũ− ū)q∗dΓ−
∫

Γ2

ε(q̃ − q̄)u∗dΓ =

∫
Ω

(
∂u

∂t
− h)u∗dΩ.
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When the Green’s second identity is applied to the first domain integral in (2.54)

successively two times and to the second domain integral once, we obtain

∫
Ω

(ε∇2u∗ + a1
∂u∗

∂x
+ a2

∂u∗

∂y
− σu∗)udΩ− ε

∫
Γ

q∗udΓ + ε

∫
Γ

u∗
∂u

∂n
dΓ (2.55)

−
∫

Γ

(a1u
∗nxu+ a2u

∗nyu)dΓ =

∫
Ω

(
∂u

∂t
− h)u∗dΩ.

Then, to eliminate the domain integral on the right hand side of Equation (2.55) u∗ is

chosen as the fundamental solution of convection-diffusion-reaction equation 2. That

is [1],

u∗ =
1

2πε
exp(−a1rx + a2ry

2ε
)K0(sr) (2.56)

where K0(sr) is the modified Bessel function of the second kind and of order zero.

Its normal derivative is

q∗ =
1

2πε
exp(−a1rx + a2ry

2ε
)[−sK1(sr)

∂r

∂n
− 1

2ε
(a1nx + a2ny)K0(sr)]. (2.57)

whereK1(sr) is the modified Bessel function of the second kind and of order one and

s =

√
σ
ε

+
a2

1+a2
2

4ε2
. Thus, Equation (2.55) is reduced to

ciui+ε

∫
Γ

q∗udΓ−ε
∫

Γ

u∗
∂u

∂n
dΓ+

∫
Γ

(a1u
∗nxu+a2u

∗nyu)dΓ = −
∫

Ω

(
∂u

∂t
−h)u∗dΩ

(2.58)

with i denoting the source point (xi, yi). The domain integral on the right hand side

of Equation (2.58) is approximated by radial basis functions fj as

∂u

∂t
− h ≈

N+L∑
j=1

ψj(t)fj(x, y) (2.59)

where ψj(t) is a set of time-dependent undetermined coefficients and the radial basis

functions fj are linked to the particular solutions ûj with
2 u∗ is the fundamental solution of convection-diffusion-reaction equation. That is, u∗ satisfies

ε∇2u∗ + a1
∂u∗

∂x
+ a2

∂u∗

∂y
− σu∗ = −∆(r − ri).
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ε∇2ûj − a1
∂ûj
∂x
− a2

∂ûj
∂y
− σûj = fj. (2.60)

Substitution of Equation (2.60) into Equation (2.59) and then into Equation (2.58),

gives

ciui + ε

∫
Γ

q∗udΓ − ε

∫
Γ

u∗
∂u

∂n
dΓ +

∫
Γ

(a1u
∗nxu+ a2u

∗nyu)dΓ (2.61)

= −
∫

Ω

N+L∑
j=1

ψj(t)(ε∇2û− a1
∂û

∂x
− a2

∂û

∂y
− σû)u∗dΩ.

Application of Green’s second identity also to the domain integral on the right hand

side of Equation (2.61) results in an integral equation defined only on the boundary

ciui + ε

∫
Γ

q∗udΓ− ε
∫

Γ

u∗
∂u

∂n
dΓ +

∫
Γ

(a1u
∗nxu+ a2u

∗nyu)dΓ (2.62)

=
N+L∑
j=1

ψj(t)(ciuji + ε

∫
Γ

q∗ûdΓ− ε
∫

Γ

u∗
∂û

∂n
dΓ +

∫
Γ

(a1u
∗nxû+ a2u

∗nyû)dΓ).

Here, the particular solutions can be taken as [29]

ûj = r3
j , (2.63)

ûj =
r2
j

4
+
r3
j

9
, (2.64)

ûj =
r4
j

32
(2 log rj − 1) +

r2
j

4
+
r3
j

9
(2.65)

with their normal derivatives

q̂j = (3r2
j )
∂r

∂n
, (2.66)

q̂j = (
rj
2

+
r2
j

3
)
∂r

∂n
, (2.67)

q̂j = (
1

4
r3
j log rj −

1

16
r3
j +

1

3
r2
j +

1

2
rj)

∂r

∂n
. (2.68)

Then, the corresponding radial basis functions fj are obtained as follows:
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fj = 9εrj − (3rj)(a1rx + a2ry)− σr3
j , (2.69)

fj = ε(1 + rj)− (
1

2
+
rj
3

)(a1rx + a2ry)−
σ

36
(9r2

j + 4r3
j ), (2.70)

fj = ε(1 + rj + r2
j log rj)− (

1

4
r2
j log rj −

1

16
r2
j +

1

3
rj +

1

2
)(a1rx + a2ry)

− σ(
r4
j

32
(2 log rj − 1) +

r2
j

4
+
r3
j

9
) (2.71)

through Equation (2.60). Discretizing the boundary using constant elements, we can

write the Equation (2.62) in matrix-vector form as

Hu−Gq = (HÛ −GQ̂)ϕ (2.72)

where ϕ is the vector which includes ϕj(t). Collocating (∂u
∂t
−h) at (N +L) different

points, a set of equations (∂u
∂t
− h) = Fϕ can be obtained where F is the coordinate

matrix obtained by taking fj as columns. Then, one arrives at

ϕ = F−1(
∂u

∂t
− h) (2.73)

and using Equation (2.72) the following system is obtained

Hu−G∂u
∂n

= (HÛ −GQ̂)F−1(
∂u

∂t
− h) (2.74)

where

Hij = ciδij (2.75)

− 1

2π

∫
Γj

exp(−a1rx + a2ry
2ε

)[sK1(sr)
∂r

∂n
− (

a1

2ε
nx +

a2

2ε
ny)K0(sr)]dΓj,

Gij =
1

2π

∫
Γj

exp(−a1rx + a2ry
2ε

)K0(sr)dΓj. (2.76)

Hii and Gii need special treatment which are calculated analytically by taking care of

the singularity. Since ∂r
∂n

= 0 in Equation (2.75) due to the normal ~n and the distance r

from the source point are always perpendicular to each other,K1 vanishes in Equation

(2.75) and in Equations (2.75) and (2.76) only the function K0 is approximated as

K0(sr) ≈ −(ln(1
2
sr) + γ) in which γ is the Euler constant [64]. Then, the diagonal

entries Hii and Gii become
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Hii = ci +
1

2π

∫
Γi

(ln
1

r
− ln

s

2
− γ)dΓi(

a1nx + a2ny
2ε

), (2.77)

Gii =
1

2π

∫
Γi

(ln
1

r
− ln

s

2
− γ)dΓi. (2.78)

To be able to integrate the above expressions, a change of coordinates (see Figure 2.5)

r =

∣∣∣∣ l2ξ
∣∣∣∣ , dΓ = dr =

l

2
dξ (2.79)

is used where l is the length of the element Γi.

n

Γi

node (i)

(1) (2)

ξ = −1 ξ = 0 ξ = 1

|| |l/2 l/2

l| |

Figure 2.5: Constant element coordinate system [1]

Equation (2.78) can be expressed as

Gii =
1

2π

∫ Point(2)

Point(1)

(ln
1

r
− ln

s

2
− γ)dΓi (by symmetry) (2.80)

=
1

π

∫ Point(2)

node(i)

(ln
1

r
− ln

s

2
− γ)dr (2.81)

=
l

2π

∫ Point(2)

node(i)

(ln
2

lξ
− ln

s

2
− γ)dξ (2.82)

=
l

2π
(ln

2

l
− ln

s

2
− γ +

∫ 1

0

ln
1

ξ
dξ). (2.83)

Since the last integral in Equation (2.83) is equal to 1

(that is,
∫ 1

0

ln
1

ξ
dξ = lim

a→0+

∫ 1

a

ln
1

ξ
dξ = 1 (using integration by parts)), we arrive at

Hii ≈ ci +
l

2π
(ln

2

l
− ln

s

2
− γ + 1)(

a1nx + a2ny
2ε

), (2.84)

Gii ≈
l

2π
(ln

2

l
− ln

s

2
− γ + 1). (2.85)
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In Equation (2.74), the time derivative is again discretized by using implicit backward

difference approximation (see Equation (2.51)) giving the following iterative matrix-

vector equation

(H +
C

∆t
)u(m+1) −G∂u

∂n

(m+1)

=
C

∆t
u(m) + Ch(m) (2.86)

where m represents the time iteration and

C = −(HÛ −GQ̂)F−1. (2.87)

Inserting the boundary conditions into Equation (2.86) gives the linear system of

equations Az = d where A is the coefficient matrix of size (N + L) × (N + L),

d is a known vector and z is the solution vector, containing the unknown values of u

and ∂u
∂n

either on the boundary and/or interior of the domain depending on the given

boundary conditions.

2.1.3 DRBEM with the fundamental solution of modified Helmholtz equation

In this section, our focus is on the numerical discretization of Equation (2.1) by the

DRBEM which makes use of the fundamental solution of modified Helmholtz equa-

tion. For this, the convection-diffusion-reaction equation (2.1) with constant convec-

tion coefficient ~a = (a1, a2) is first transformed into the modified Helmholtz equation

by using a time-dependent exponential type transformation [28]

u(x, y, t) = exp(
a1rx + a2ry

2ε
)φ(x, y, t). (2.88)

This reduces Equation (2.1) to an inhomogeneous modified Helmholtz equation

∇2φ− s2φ =
1

ε
(
∂φ

∂t
− h1) (2.89)

where

h1 = h exp(−a1rx + a2ry
2ε

), s =

√
σ

ε
+
a2

1 + a2
2

4ε2
. (2.90)

Here, r is the magnitude of the position vector ~r = (rx, ry) between the source point

(xi, yi) and the field point (x, y).
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The method of weighted residual will be pursued as in the previous sections. By

weighting Equation (2.89) with the fundamental solution u∗ and applying the Green’s

second identity two times, one can obtain the following integral equation [1]

∫
Ω

(∇2u∗− s2u∗)φdΩ−
∫

Γ

q∗φdΓ +

∫
Γ

u∗
∂φ

∂n
dΓ =

∫
Ω

1

ε

(
∂φ

∂t
− h1

)
u∗dΩ. (2.91)

To eliminate the domain integral on the left hand side of Equation (2.91), u∗ is chosen

as the fundamental solution of modified Helmholtz equation3 [28]

u∗ =
1

2π
K0(sr) (2.92)

with its normal derivative q∗ given by

q∗ =
−s
2π
K1(sr)

∂r

∂n
. (2.93)

Then, we obtain

ciφi +

∫
Γ

q∗φdΓ−
∫

Γ

u∗
∂φ

∂n
dΓ = −

∫
Ω

1

ε

(
∂φ

∂t
− h1

)
u∗dΩ (2.94)

Following the DRBEM idea, the domain integral on the right hand side of Equation

(2.94) is approximated by using radial basis functions fj as

1

ε
(
∂φ

∂t
− h1) ≈

N+L∑
j=1

λj(t)fj(x, y) (2.95)

in which λj(t) is a set of time-dependent undetermined coefficients and the radial

basis functions fj are linked to the particular solutions ûj of modified Helmholtz

equation now

∇2ûj − s2ûj = fj. (2.96)

Substitution of Equation (2.96) into Equation (2.95) results in

3 u∗ is chosen as the fundamental solution of modified Helmholtz equation. That is, u∗ satisfies

∇2u∗ − s2u∗ = −∆(r − ri).
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1

ε
(
∂φ

∂t
− h1) =

N+L∑
j=1

λj(t)(∇2ûj − s2ûj) (2.97)

and further substitution of Equation (2.97) into Equation (2.94) gives

ciφi +

∫
Γ

q∗φdΓ−
∫

Γ

u∗
∂φ

∂n
dΓ = −

N+L∑
j=1

λj(t)

∫
Ω

(∇2ûj − s2ûj)u
∗dΩ (2.98)

at the source point i with φi = φ(xi, yi). When the Green’s second identity is also

applied to the right hand side of Equation (2.98), it will be an integral equation defined

only on Γ

ciφi+

∫
Γ

q∗φdΓ−
∫

Γ

u∗
∂φ

∂n
dΓ =

N+L∑
j=1

λj(t)(ciûji+

∫
Γ

q∗ûjdΓ−
∫

Γ

u∗q̂jdΓ). (2.99)

There are some different ways to find suitable functions fj which satisfy the non-

homogeneous modified Helmholtz Equation (2.96). First, we start by taking û as a

polynomial

ûj = a0 + a1r + a2r
2 + a3r

3 + · · ·+ amr
m

then we calculate the corresponding normal derivative q̂ = ∂û
∂n

and fj (using Equation

(2.96)). For example, by taking a0 = a1 = 0 [63], fj , û and q̂ are obtained as

fj = 4a2 + 9a3rj + · · ·+m2amr
m−2
j − s2(a2r

2
j + a3r

3
j + · · ·+ amr

m
j ), (2.100)

ûj = a2r
2
j + a3r

3
j + · · ·+ amr

m
j , (2.101)

q̂j = (2a2rj + 3a3r
2
j + · · ·+mamr

m−1
j )

∂r

∂n
. (2.102)

Equations (2.100)-(2.102) show that there are several possibilities of fj , ûj and q̂j

depending on the choice of am.

On the other hand, a linear combination of thin plate splines [65] can be also used to

obtain the logarithmic type radial basis functions fj = r2n
j log rj for n = 1, 2, 3, 4, 5

[66].
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The use of constant boundary elements for the discretization of the boundary (see

Figure 2.3) leads to the corresponding matrix-vector form of Equation (2.99)

Hφ−G∂φ
∂n

= (HÛ −GQ̂)λ (2.103)

where λ is the vector which contains λj(t). Using Equation (2.95), λ can be written

as

λ = F−1(
1

ε

∂φ

∂t
− 1

ε
h1) (2.104)

and then we obtain the system

Hφ−G∂φ
∂n

= (HÛ −GQ̂)F−1(
1

ε

∂φ

∂t
− 1

ε
h1). (2.105)

Here, the components of H and G are

Hij = ciδij −
1

2π

∫
Γj

sK1(sr)
∂r

∂n
dΓj, (2.106)

Gij =
1

2π

∫
Γj

K0(sr)dΓj. (2.107)

The diagonal entries Hii are equal to ci (i.e. Hii = ci) since ∂r
∂n

= 0 in Equation

(2.106) as the normal ~n and the distance r from the source point are always perpen-

dicular to each other, whereas the diagonal entries of G matrix are calculated ana-

lytically in a similar manner given in Section 2.1.2 thorough Equations (2.80-2.83).

Thus, they are obtained as

Gii ≈
l

2π
(ln

2

l
− ln

s

2
− γ + 1). (2.108)

When the time derivative in Equation (2.105) is discretized by using the implicit back-

ward finite difference approximation (see Equation (2.51)), the DRBEM discretized

system of equations becomes

(H +
C

ε∆t
)φ(m+1) −G∂φ

∂n

(m+1)

=
C

ε∆t
φ(m) +

C

ε
h

(m)
1 (2.109)

m denoting the time level tm and

C = −(HÛ −GQ̂)F−1. (2.110)
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Here the coordinate matrix F is computed by using one of the type of the aforemen-

tioned radial basis functions. The insertion of boundary conditions results in a linear

system Az = d, where A is a full matrix. Once this system is solved, the interior

values of φ at the selected internal nodes, and the unknown values of φ and ∂φ
∂n

on the

boundary according to given boundary conditions are obtained. Finally, the original

unknown is obtained by using the transformation given in Equation (2.88).

2.2 The Domain Boundary Element Method (DBEM)

The application of the DBEM, which is another type of boundary element method,

will be given for the discretization of the unsteady convection-diffusion-reaction Equa-

tions (2.1). DBEM also aims to transform the given differential equation into equiv-

alent integral equation by weighting the equation with the fundamental solution that

corresponds to the steady-state problem as in the case of DRBEM. Thus, the basic

integral equation of the method involves a domain integral of the time derivative. If

the domain integral is kept in the integral equations and is computed numerically,

then the DBEM arises [28]. The DBEM discretization with different fundamental so-

lutions, namely fundamental solution of convection-diffusion-reaction equation and

fundamental solution of modified Helmholtz equation, will be explained in Section

2.2.1 and Section 2.2.2, respectively.

2.2.1 DBEM with the fundamental solution of convection-diffusion-reaction

equation

Here, the application of DBEM with the fundamental solution of convection-diffusion-

reaction equation to Equation (2.1) is explained. Similar to DRBEM application with

the fundamental solution convection-diffusion-reaction equation explained in Section

2.1.2, one can obtain the same BEM integral Equation (2.58) through the weighted

residual method. Equation (2.58) can be written in matrix-vector form as

Hu−Gq = −
∫

Ω

u∗
∂u

∂t
dΩ +

∫
Ω

hu∗dΩ (2.111)
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where H and G are the same matrices of which entries are given in Equations (2.75)-

(2.85).

Unlikely of DRBEM, the domain integral on the right hand side of Equation (2.111)

will be kept and it will be computed numerically by using the composite trapezoidal

rule taking the end points of the constant elements as integration points (see Section

2.2.1.1).

When the time derivative on the right hand side of Equation (2.111) is discretized by

using again backward finite difference approximation (see Equation (2.51)), Equation

(2.111) becomes

(H +
1

∆t
M1)u(m+1) −G∂u

∂n

(m+1)

=
1

∆t
M1u

(m) +M2 (2.112)

where M1 is the diagonal matrix for which the diagonal entries (M1)ii are computed

by

(M1)ii =

∫
Ω

u∗dΩ (2.113)

and M2 is a vector with the entries

(M2)i =

∫
Ω

hu∗dΩ. (2.114)

at each node i. Finally, after the insertion of boundary conditions to the system (2.112)

we obtain a linear system of equations which needs to be solved iteratively for increas-

ing time levels.

2.2.1.1 Composite trapezoidal rule in 2-D

We consider the double integral

I =

∫∫
Ω

f(x, y)dxdy, (2.115)

where Ω = {(x, y) ∈ R2 : a ≤ x ≤ b, r(x) ≤ y ≤ s(x)}.

The integral can be written in iterated form as
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I =

∫ b

a

(∫ s(x)

r(x)

f(x, y)dy

)
dx. (2.116)

At first, we approximate the inner integral with the one-dimensional composite trape-

zoidal rule in which x is fixed and then we approximate the outer integral also by

one-dimensional rule. More precisely, we apply the composite trapezoidal rule in

2-D.

F (x) :=

∫ s(x)

r(x)

f(x, y)dy ⇒ I =

∫ b

a

F (x)dx. (2.117)

Then, I is approximated by composite trapezoidal rule as [67]

I ≈ T (F, h) =
h

2

n∑
j=1

(F (xj−1) + F (xj)) (2.118)

where xj = a+ jh and h = b−a
n

. To be able to calculate F (xj) we approximate again

F (xj) =

∫ s(xj)

r(xj)

f(xj, y)dy ≈ T (f(xj), hj) (2.119)

=
hj
2

nj∑
k=1

(f(xj, yj,k−1) + f(xj, yj,k))

where

yj,k = r(xj) + khj hj =
s(xj)− r(xj)

nj
(2.120)

In general, nj is chosen such that h ≈ hj for all j, to minimize the computational

cost. The general formula can be written as

I ≈ hhj
4

n∑
j=0

nj∑
k=0

wj,kf(xj, yj,k) (2.121)

where wj,k is equal to 4 in the interior, equal to 2 on the boundary, and equal to 1

at the corner points. The points (xj, yj,k) are taken as the end points of the constant

elements.
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2.2.2 DBEM with the fundamental solution of modified Helmholtz equation

Similar to the application of DRBEM with the fundamental solution of modified

Helmholtz equation (Section 2.1.3), first we transform the time-dependent CDR Equa-

tion (2.1) into the following inhomogeneous modified Helmholtz equation

∇2φ− s2φ =
1

ε
(
∂φ

∂t
− h1) (2.122)

where

h1 = h exp(−a1rx + a2ry
2ε

), s =

√
σ

ε
+
a2

1 + a2
2

4ε2
(2.123)

by using time-dependent exponential type transformation (2.88). When the funda-

mental solution of modified Helmholtz Equation (2.92) is employed to weight the

Equation (2.122), we end up with the integral Equation (2.94) which contains a do-

main integral involving a time derivative. However, in DBEM this domain integral

is preserved [28] and it is computed by numerical integration. Thus, Equation (2.94)

takes the form

Hφ−G∂φ
∂n

=
−1

ε
(

∫
Ω

u∗
∂φ

∂t
dΩ−

∫
Ω

h1u
∗dΩ) (2.124)

where H and G are the same BEM matrices given in Equations (2.106)-(2.108).

When the time derivative is discretized by using implicit backward finite difference

approximation (2.51), Equation (2.124) results in

(H +
1

∆t
M1)φ(m+1) −G∂φ

∂n

(m+1)

=
1

∆t
M1φ

(m) +M2 (2.125)

where M1 is constructed as a diagonal matrix of which the diagonal entries (M1)ii

are computed from

(M1)ii =
1

ε

∫
Ω

u∗dΩ (2.126)

while M2 is a vector with entries

(M2)i =
1

ε

∫
Ω

h1u
∗dΩ. (2.127)
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at each node i. The domain integrals are computed numerically by using composite

trapezoidal rule as explained in Section 2.2.1.1. Insertion of the boundary conditions

results in a linear system to be solved iteratively for increasing time levels. The

solution in the original variable u is obtained by back substitution of φ into Equation

(2.88) as in the application of DRBEM (see Section 2.1.3).
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CHAPTER 3

NUMERICAL SOLUTION OF TIME-DEPENDENT

CONVECTION-DIFFUSION-REACTION TYPE EQUATIONS WITH

CONSTANT COEFFICIENTS

Solving the CDR type equation always attracts the researchers due to its various ap-

plications in biology, ecology, engineering and medicine. These equations describes

physical systems in which either particles, energy or other physical quantities are

transferring. The time-dependent CDR equations include the time derivative of the

unknown and its first and second-order space derivatives making the solution pro-

cedure a challenging task. According to the magnitude of diffusion coefficient, the

CDR equation can be either diffusion-dominated or convection-dominated. The later

is difficult to solve due to the oscillations in the solutions. These cases are considered

and solved by numerical techniques through this chapter.

The general time-dependent CDR equation is given in Equation (2.1) as

∂u

∂t
− ε∇2u+ ~a · ∇u+ σu = h (3.1)

where u(x, t) is the unknown function, h is the source function; and ε, ~a = (a1, a2),

σ are diffusion, convection and reaction coefficients, respectively.

The general boundary and initial conditions are

αu+ µ
∂u

∂n
= g on (0, T ]× Γ; u(x, 0) = u0, x ∈ Ω (3.2)

where α, µ are constants and g = g(x, y, t) is a given function as mentioned previ-

ously in Chapter 2.

This chapter is devoted on the numerical solution of Equation (3.1) by both DRBEM
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and DBEM which make use of various type of fundamental solutions, namely funda-

mental solutions of Laplace, convection-diffusion-reaction and modified Helmholtz

equations, in spatial discretization. On the other hand, an implicit backward finite

difference scheme is applied for the time discretization. Equation (3.1) is kept in its

original form in the cases when the fundamental solutions of Laplace and convection-

diffusion-reaction equations are taken into account. However, it is transformed into

the modified Helmholtz equation by using the time-dependent exponential type trans-

formation

u(x, y, t) = exp(
a1rx + a2ry

2ε
)φ(x, y, t) (3.3)

which is given in Equation (2.88) to be able to use the fundamental solution of mod-

ified Helmholtz equation through the application of DRBEM and DBEM. Thus, the

resulting reduced modified Helmholtz equation becomes

∇2φ− s2φ =
1

ε
(
∂φ

∂t
− h1) (3.4)

as given in Equation (2.89). Here, h1 = h exp(−a1rx+a2ry
2ε

) and s =

√
σ
ε

+
a2

1+a2
2

4ε2
.

Furthermore, another application area that one can face with the convection-diffusion

type equations is the magnetohydrodynamics (MHD) which studies the flow resulting

from the interaction between the magnetic field and electrically conducting moving

fluids. The governing equations of MHD flow coupled in the velocity and the induced

magnetic field are derived from the Navier-Stokes equations of fluid dynamics and

Maxwell’s equations of electromagnetism through Ohm’s law [8, 9, 10]. The MHD

flow problem in channels has also a wide range of engineering applications such as

power generation, acceleration, geothermal energy extraction, conducting plasma in

physics, producing liquid metals, nuclear fusion, etc.

In this chapter, we consider specifically the MHD duct flow which is governed by

the transient flow of an incompressible, viscous, electrically conducting fluid in a

rectangular duct subject to an externally applied uniform inclined magnetic field of

intensity B0 making an angle β with the positive y-axis. The flow is driven by a

constant pressure gradient in the axial direction. Thus, the non-dimensional form of

the time-dependent MHD duct flow equations given in Equation (1.7) is [10, 68]
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∇2V +Mx
∂B

∂x
+My

∂B

∂y
= −1 +

∂V

∂t

in Ω (3.5)

∇2B +Mx
∂V

∂x
+My

∂V

∂y
=

∂B

∂t

for t > 0. The general boundary conditions for variable wall conductivity λ and

no-slip walls are given as

∂B

∂n
+ λB = 0 and V = 0 on [0, T ]× Γ (3.6)

where V (x, y) is the velocity and B(x, y) is the induced magnetic field. Hartmann

number M is the modulus of the vector
−→
M = (Mx,My) (Mx = M sin β and My =

M cos β). The walls of the duct are insulated (i.e. B = 0) when λ tends to infinity

and they are perfectly conducting (i.e. ∂B
∂n

= 0) when λ = 0 on the walls. The walls

which are perpendicular to applied magnetic field are called Hartmann walls, while

the walls which are parallel to the magnetic field are called side walls.

The system (3.5), which is coupled in velocity and induced magnetic field, can be

transformed into two decoupled convection-diffusion equations as follows

∇2w1 +Mx
∂w1

∂x
+My

∂w1

∂y
= −1 +

∂w1

∂t

in Ω, (3.7)

∇2w2 −Mx
∂w2

∂x
−My

∂w2

∂y
= −1 +

∂w2

∂t

for t > 0, and by defining

w1 = V +B and w2 = V −B. (3.8)

Then, the corresponding boundary conditions become

For insulated walls : w1 = 0, w2 = 0, (3.9)

For variable conductivity walls : w2 = −w1,
∂w2

∂n
=
∂w1

∂n
+ 2λw1.

It is noted that, the equations for w1 and w2 in Equation (3.7) are the convection-

diffusions equations which are compatible with Equation (3.1) where ε = 1, ~a =

(∓Mx,∓My), σ = 0 and h = 1.
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The resulting convection-diffusion equations (3.7), can be further transformed into

two transient modified Helmholtz equations by using the exponential type transfor-

mation given in Equation (3.3), that is,

w1 = exp(−Mxrx +Myry
2

)u1 and w2 = exp(
Mxrx +Myry

2
)u2 (3.10)

with ~a = (a1 = ∓Mx, a2 = ∓My) and ε = 1. Thus, the equations in the new

variables u1, u2, and the corresponding boundary conditions become

∇2u1 − s2u1 = − exp(
Mxrx +Myry

2
) +

∂u1

∂t

in Ω, (3.11)

∇2u2 − s2u2 = − exp(−Mxrx +Myry
2

) +
∂u2

∂t

For insulated walls : u1 = 0, u2 = 0,

For variable conductivity walls : u2 = − exp(−(Mxrx +Myry))u1, (3.12)
∂u2

∂n
= exp(−(Mxrx +Myry))(

∂u1

∂n
+ 2λu1).

The equations for u1 and u2 in (3.11) are also compatible with the modified Helmholtz

equation (3.4) with s =

√
M2
x+M2

y

4
and h1 = exp(∓Mxrx+Myry

2
). Here, the boundary

conditions are coupled in u1 and u2 for the case when the walls have variable con-

ductivity. Once Equation (3.7) or Equation (3.11) is solved for (w1, w2) or (u1, u2),

respectively, the original unknowns V and B can be obtained with the back substitu-

tions

V =
1

2
(w1 + w2), B =

1

2
(w1 − w2)

for the system of convection-diffusion type Equations (3.7) and

V =
1

2
(u1 exp(−Mxrx +Myry

2
) + u2 exp(

Mxrx +Myry
2

)),

(3.13)

B =
1

2
(u1 exp(−Mxrx +Myry

2
)− u2 exp(

Mxrx +Myry
2

))

for the system of modified Helmholtz equations (3.11).

To conclude, the MHD duct flow equations are basically convection-diffusion type

equations which can be treated in the same manner with the general convection-
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diffusion-reaction equation (3.1) by using the present techniques explained elabo-

rately in Chapter 2. Thus, the MHD duct flow problem, which is an attractive research

area, is also taken as an application in the present chapter.

In the first part of the chapter (Section 3.1) the applications of the dual reciprocity and

domain boundary element methods for the general time-dependent CDR equation are

briefly explained for each type of fundamental solutions. The numerical simulations

are carried out for two test problems in Section 3.2. First, the time-dependent CDR

equation, for which the exact solutions is available, is solved by both DRBEM and

DBEM with each aforementioned fundamental solutions in Section 3.2.1. Then, the

time-dependent MHD flow, which is governed by the coupled convection-diffusion

type equations in terms of velocity and induced magnetic field, is solved by both

DRBEM and DBEM in Section 3.2.2. The results are analyzed according to the

values of Hartmann number under the no-slip velocity, insulated and/or variable con-

ductivity wall conditions. Moreover, the calculations are performed not only in a

regular problem domain of square duct but also in an irregular domain of a duct with

a perturbed boundary, which enables a comparative study on the effect of the compu-

tational domain on MHD flow.

3.1 Application of DRBEM and DBEM to CDR Equation with Constant Coef-

ficients

The details how to dicsretize the general time-dependent CDR equation (3.1) by a

combined technique namely, DRBEM and DBEM with different fundamental solu-

tions in space, and implicit backward finite difference approximation in time, are

given in Chapter 2. Thus, in this section only basics steps through the application of

the numerical methods will be given. The boundary element approach transforms the

differential Equation (3.1) into the following equivalent integral equations

εciui + ε

∫
Γ

q∗udΓ− ε
∫

Γ

u∗qdΓ = −
∫

Ω

bu∗dΩ (3.14)

and

ciui+ε

∫
Γ

q∗udΓ−ε
∫

Γ

u∗
∂u

∂n
dΓ+

∫
Γ

(a1u
∗nxu+a2u

∗nyu)dΓ = −
∫

Ω

bu∗dΩ. (3.15)
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by weighting Equation (3.1) with the fundamental solution u∗(= 1
2π

ln 1
|r−ri|) of the

Laplace equation and the fundamental solution u∗(= 1
2πε

exp(−a1rx+a2ry
2ε

)K0(sr)) of

the convection-diffusion-reaction equation, respectively, over the whole domain Ω

and applying the Green’s second identity. Similarly, Equation (3.4), which is the

modified Helmholtz equation form of Equation (3.1), reduces to

ciφi +

∫
Γ

q∗φdΓ−
∫

Γ

u∗
∂φ

∂n
dΓ = −

∫
Ω

bu∗dΩ (3.16)

when the fundamental solution u∗(=
1

2π
K0(sr)) of modified Helmholtz equation is

employed through the Green’s second identity.

In (3.14)-(3.16), b involves the leftover terms in Equation (3.1) and in Equation (3.4)

according to the used fundamental solution u∗, that is the terms except the Laplacian,

the convection-diffusion-reaction and the modified Helmholtz operators, respectively.

As mentioned previously, the domain integrals on the right hand side of Equations

(3.14, 3.15, 3.16) are transformed into boundary integrals by means of radial basis

functions fj in DRBEM while they are preserved and evaluated by the use of numer-

ical integration in DBEM.

3.1.1 DRBEM formulation

In order to transform the domain integrals in Equations (3.14), (3.15) and (3.16) into

boundary integrals, the inhomogeneity b is approximated as

b ≈
N+L∑
j=1

αj(t)fj(x, y) (3.17)

by radial basis functions fj where αj(t) is a set of time-dependent coefficients as

given in Equation (2.16). When the Green’s second identity is also applied to the

right hand sides of Equations (3.14), (3.15) and (3.16), one ends up with the following

boundary-only integral equations:

εciui+ε

∫
Γ

q∗udΓ−ε
∫

Γ

u∗qdΓ =
N+L∑
j=1

αj(t)(ciûji+

∫
Γ

q∗ûjdΓ−
∫

Γ

u∗q̂jdΓ), (3.18)
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and

ciui + ε

∫
Γ

q∗udΓ− ε
∫

Γ

u∗
∂u

∂n
dΓ +

∫
Γ

(a1u
∗nxu+ a2u

∗nyu)dΓ (3.19)

=
N+L∑
j=1

αj(t)(ciuji + ε

∫
Γ

q∗ûdΓ− ε
∫

Γ

u∗
∂û

∂n
dΓ +

∫
Γ

(a1u
∗nxû+ a2u

∗nyû)dΓ)

and

ciφi +

∫
Γ

q∗φdΓ−
∫

Γ

u∗
∂φ

∂n
dΓ =

N+L∑
j=1

αj(t)(ciûji +

∫
Γ

q∗ûjdΓ−
∫

Γ

u∗q̂jdΓ) (3.20)

as given, respectively in Equation (2.20), Equation (2.62) and Equation (2.99).

In DRBEM application, we consider three types of fundamental solutions namely,

fundamental solutions of Laplace, convection-diffusion-reaction and modified Helm-

holtz equations. Thus, ûj are the particular solutions which are linked to fj through

the equations

∇2ûj = fj, ε∇2ûj − a1
∂ûj
∂x
− a2

∂ûj
∂y
− σûj = fj, ∇2ûj − s2ûj = fj (3.21)

respectively, when the fundamental solution of Laplace, convection-diffusion-reaction

and modified Helmholtz equations are employed. In approximations, the polynomial

or logarithmic type radial basis functions, the corresponding particular solutions and

their normal derivatives are taken as follows for each fundamental solutions:

• Case 1 (Fundamental solution of Laplace equation):

fj = 1 + rj, û =
r2
j

4
+
r3
j

9
, q̂ = (

rj
2

+
r2
j

3
)
∂r

∂n
. (3.22)

• Case 2 (Fundamental solution of CDR equation) [29]:

fj = ε(1 + rj)− (
1

2
+
rj
3

)(a1rx + a2ry)−
σ

36
(9r2

j + 4r3
j ), (3.23)

ûj =
r2
j

4
+
r3
j

9
, q̂j = (

rj
2

+
r2
j

3
)
∂r

∂n
.

• Case 3 (Fundamental solution of modified Helmholtz (mH) equation) [63]:

The polynomial type radial basis functions:

fj = 1− rj + r2
j − r3

j − s2(
r2
j

4
−
r3
j

9
+
r4
j

16
−
r5
j

25
), (3.24)

ûj =
r2
j

4
−
r3
j

9
+
r4
j

16
−
r5
j

25
, q̂j = (

rj
2
−
r2
j

3
+
r3
j

4
−
r4
j

5
)
∂r

∂n
.
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The logarithmic type radial basis functions:

ûj =


− 4

s4
(K0(sr) + log r)− r2 log r

s2
− 4

s4
, r > 0

4

s4
(γ + log(

s

2
))− 4

s4
, r = 0

(3.25)

q̂j =


(

4

s4
(sK1(sr)− 1

r
)− 1

s2
(2r log r + r))

∂r

∂n
, r > 0

0, r = 0

(3.26)

fj =

r
2 log r, r > 0

0, r = 0
(3.27)

Finally, by the use of constant elements in the discretization of the boundary and

employing properly the backward finite difference approximation for the time deriva-

tive (as explained in Sections (2.1.1), (2.1.2) and (2.1.3), respectively for each case

mentioned above), one can obtain the general matrix-vector form of the discretized

DRBEM equations as follows

(H̄ +
C

∆t
)ū(m+1) − Ḡ∂ū

∂n

(m+1)

=
C

∆t
ū(m) + Ch̄(m). (3.28)

Here,m denotes the time iteration, ū is the unknown and the analogous of the matrices

H̄ , Ḡ, C and the vector h̄ are given in:

• Equation (2.52) for Case 1, when we apply the fundamental solution of Laplace

equation. Thus, the above variables correspond to

C = −(H̄Û − ḠQ̂)F−1, ū = u, H̄ = H̃, Ḡ = G̃ and h̄ = h (3.29)

in Equation (2.52).

• Equation (2.86) for Case 2 when the fundamental solution of CDR equation is

applied. For this case:

C = −(H̄Û − ḠQ̂)F−1, ū = u, H̄ = H, Ḡ = G and h̄ = h. (3.30)

• Equation (2.109) for the Case 3 when the fundamental solution of mH equation is

employed. The corresponding terms for the above variables are as follows:

C = −1

ε
(H̄Û − ḠQ̂)F−1, ū = φ, H̄ = H, Ḡ = G and h̄ = h1. (3.31)
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Here, F is the coordinate matrix taking fj as columns, Û and Q̂ are the matrices which

take the particular solutions ûj and their normal derivatives q̂j (given in Equations

(3.22)-(3.24)) as columns, respectively.

3.1.2 DBEM formulation

In DBEM application, the domain integral on the right hand side of the Equations

(3.14), (3.15) and (3.16) are kept and computed numerically by composite trapezoidal

rule (see Section 2.2.1.1). When we follow the procedure given in Sections 2.2.1 and

2.2.2, we obtain the following equation in matrix-vector form

(H̄ +
1

∆t
M1)ū(m+1) − Ḡ∂ū

∂n

(m+1)

=
1

∆t
M1ū

(m) +M2 (3.32)

where M1 is a diagonal matrix and M2 is a vector.

The analogous of the unknown ū, the matrices H̄ , Ḡ, M1 and the vector M2 are given

in:

• Equation (2.112) when the fundamental solution of CDR equation is used. That is,

the above variables correspond to

ū = u, H̄ = H, Ḡ = G, (M1)ii =

∫
Ω

u∗dΩ and (M2)i =

∫
Ω

hu∗dΩ (3.33)

in Equation (2.112).

• Equation (2.125) when the fundamental solution of mH equation is employed. Thus,

the corresponding terms in Equation (2.125) for the above variables are as follows:

ū = φ, H̄ = H, Ḡ = G, (M1)ii =
1

ε

∫
Ω

u∗dΩ and (M2)i =
1

ε

∫
Ω

h1u
∗dΩ.

(3.34)

In each case, after the insertion of boundary conditions, the system (3.32) is trans-

formed into a linear system of equations which will be solved iteratively for increas-

ing time levels.
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3.2 Numerical Results for the Time-dependent CDR type Equation with Con-

stant Coefficients

In this section, we present the applications of DRBEM and DBEM to the CDR type

equations and investigate the effects of the use of different fundamental solutions on

the accuracy and the efficiency of the solution process. Two test problems governed

by the time-dependent CDR equations are considered. In Section 3.2.1, the time-

dependent CDR equation is solved and the obtained numerical results are compared

with the analytical solutions in order to validate our numerical codes for DBEM and

DRBEM with various fundamental solutions. Then in Section 3.2.2, the unsteady

MHD flow is solved again by DBEM and DRBEM in ducts with straight and per-

turbed walls of different conductivity for several values of Hartmann number.

3.2.1 CDR equation with exact solution

The problem of transient convection-diffusion-reaction given by

∂u

∂t
− ε∇2u+ ~a · ∇u+ σu = h, in (0, T ]× Ω, (3.35)

u = 0 on [0, T ]× Γ, (3.36)

u(0, x) = u0(x) in Ω (3.37)

is considered. Here, {Ω = (x, y) : 0 ≤ x, y ≤ 1} and (0, T ) = (0, 0.5), ~a =

(a1, a2)T = (2, 3)T and σ = 1. The exact solution of the problem is [20]

u(t, x, y) = 16 sin(πt)x(1− x)y(1− y)

×
[

1

2
+

arctan(2ε−1/2(0.252 − (x− 0.5)2 − (y − 0.5)2))

π

]
. (3.38)

The forcing term h and the initial condition u0 are set such that Equation (3.38) satis-

fies the boundary value problem.

The solution to this problem obtained by DRBEM with the fundamental solution

of Laplace Equation is visualized in Section 3.2.1.1. Then, the results not only by

DRBEM but also by DBEM with the fundamental solutions of CDR and mH equa-

tions are given in Sections 3.2.1.2 and 3.2.1.3, respectively.
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3.2.1.1 DRBEM with the fundamental solution of Laplace equation

First, the comparison of present result with the exact solution is shown in Figure

3.1 in terms of time evolution of the solutions up to T = 7.5 along the points at

the center and close to the corners. In Figure 3.1, Node 1 represents the center point

(0.5, 0.5), Node 2 represents the corner points: (0.74, 0.74), (0.26, 0.26), (0.74, 0.26),

(0.26, 0.74); and Node 3 represents the corner points: (0.86, 0.86), (0.14, 0.14), (0.86,

0.14), (0.14, 0.86). It is well observed that at each points the oscillating analytical so-

lution agrees very well with the obtained DRBEM solution with an relative error of

23 × 10−4 as time advances. The relative error is evaluated by
∣∣∣∣uexacti − ui

uexacti

∣∣∣∣, where

i = 1, ..., N + L.

Relative error=23× 10−4

So
lu

tio
n

Time

Figure 3.1: Time evolution of the exact and DRBEM solutions at central point (Node

1) and at some corner points (Node 2, Node 3) up to T = 7.5: ε = 1.

Then, the effect of diffusion coefficient ε on the numerical solution is investigated.

For the discretization of the computational domain, N = 100 constant boundary

elements and L = 625 interior nodes are taken for ε = 10, 1, 10−1, 10−2 while N =

200, L = 1600 and N = 300, L = 9025 are used for smaller values of ε = 10−3 and

ε =10−4, respectively. The comparison of the exact and DRBEM solutions at T = 0.5

for several values of diffusion coefficient are displayed along the horizontal centerline

(y = 0.5, 0 ≤ x ≤ 1) in Figure 3.2. It is observed that the DRBEM solutions are in

good agreement with the corresponding exact ones, especially when ε = 10, 1, 10−1,

10−2, 10−3. However, as ε decreases to 10−4, slight differences between the exact

and DRBEM solutions, especially where u takes its maximum and minimum values,
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arise following the fact that the equation becomes convection-dominated for smaller

values of ε. Thus, the DRBEM code which uses the fundamental solution of diffusion

equation (i.e. Laplacian equation), loses its efficiency. Moreover, a decrease in the

diffusion coefficient ε has an increasing effect on the values of concentration u.

ε = 10 ε = 1

ε = 10−1 ε = 10−2

ε = 10−3 ε = 10−4

relative error = 2.1× 10−4 relative error = 23× 10−4

relative error = 56× 10−4 relative error = 74× 10−4

relative error = 13× 10−3 relative error = 44× 10−3

Figure 3.2: Effect of ε on the DRBEM solution with the fundamental solution of

Laplace equation along horizontal centerline y = 0.5 at T = 0.5.
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3.2.1.2 DBEM and DRBEM with the fundamental solution of CDR equation

As in Section 3.2.1.1, we investigate the effect of diffusion coefficient ε (= 10, 1,

10−1, 10−2) on the solution u. In Figure 3.3, the obtained results by both DBEM

and DRBEM with the fundamental solution of CDR equation are drawn along the

horizontal centerline (y = 0.5, 0 ≤ x ≤ 1) to compare them with the analytical so-

lution. Maximum N = 180 and L = 2025 nodes are used in discretization through

the application of DBEM and DRBEM. It is observed that for ε = 10, the results

obtained by both DBEM and DRBEM are in good agreement with the exact ones.

However, when ε ≤ 1, DBEM has difficulties in giving accurate results compared

to DRBEM. Furthermore, for smaller values of ε ≤ 10−3, Equation (3.35) becomes

more convection-dominated, and thus both DBEM and DRBEM suffer to give rea-

sonable results.

ε = 10 ε = 1

ε = 10−1 ε = 10−2

DBEM relative error = 12× 10−3

DRBEM relative error = 2.1× 10−4

DBEM relative error = 71× 10−3

DRBEM relative error = 24× 10−4

DBEM relative error = 92× 10−3

DRBEM relative error = 52× 10−4

DBEM relative error = 14× 10−2

DRBEM relative error = 11× 10−3

Figure 3.3: Effect of ε on the DBEM and DRBEM solutions with the fundamental

solution of CDR equation along horizontal centerline y = 0.5 at T = 0.5.
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3.2.1.3 DBEM and DRBEM with the fundamental solution of modified Helmholtz

equation

Finally, to investigate the effect of the diffusion coefficient ε (= 10, 1, 10−1, 10−2)

on the solution when the fundamental solution of mH equation is used in DBEM and

DRBEM, the variation of u along the horizontal centerline y = 0.5, 0 ≤ x ≤ 1 is

drawn in Figure 3.4 at T = 0.5. For the smallest value of ε, maximum N = 300,

L = 5625 and N = 100, L = 625 points are used in the discretization with DBEM

and DRBEM, respectively. As expected we need to take more number of boundary

elements for smaller values of ε (i.e. in the convection-dominated case) to deal with

the resulting discrepancies between the exact and present numerical results.

ε = 10 ε = 1

ε = 10−1 ε = 10−2

DBEM relative error = 12× 10−3

DRBEM relative error = 1.9× 10−4

DBEM relative error = 22× 10−3

DRBEM relative error = 2× 10−3

DBEM relative error = 28× 10−3 DBEM relative error = 11× 10−3

Figure 3.4: Effect of ε on the DBEM and DRBEM solutions with the fundamental

solution of mH equation along horizontal centerline y = 0.5 at T = 0.5.

Figure 3.4 show that the DBEM gives quite compatible results with the analytical

solution not only for high but also small values of ε (= 10−1, 10−2) while DRBEM
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gives reasonable results only for ε ≥ 1. On the other hand, for smaller values of ε ≤
10−3, both techniques suffer from computational difficulties due to the overflow of the

argument in the exponential function located in the exponential type transformation

(3.3).

In this section which is devoted to solve the transient CDR type equations, we are able

to validate our computer codes by testing the problems with available exact solutions.

One can notice that, DRBEM with fundamental solution of Laplace equation gives

the most accurate results for even smaller values of ε. On the other hand, the use

of the fundamental solution of CDR equation results in better accuracy than the use

of the fundamental solution of mH equation by DRBEM while in DBEM a reverse

situation is observed.

3.2.2 Magnetohydrodynamic Duct Flow

As mentioned previously, the problem of MHD duct flow given in Equations (3.5-3.6)

is taken as the second test problem since the MHD equations are basically convection-

diffusion type equations coupled in the velocity of the fluid and induced magnetic

field. For the solution of these equations, DBEM and DRBEM are employed by us-

ing the fundamental solutions of convection-diffusion (CD) and modified Helmholtz

equations.

In this section, we focus on the solution of MHD flow problems in two different

problem domains namely, regular square duct with straight walls in Section 3.2.2.1

and irregular duct with a perturbed upper wall in Section 3.2.2.2, subject to various

boundary conditions for the induced magnetic field under an externally applied mag-

netic field at different inclination angles.

3.2.2.1 MHD Flow in a Regular Square Cavity with Straight Walls

The MHD duct flow problem is solved in a computational domain of a regular square

duct to analyze the effects of various combination of wall conductivities and inclina-

tion angle on the flow and magnetic fields for increasing values of Hartmann number.

The physical configuration of the MHD duct flow with straight walls is displayed in

Figure 3.5.
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0

Ω
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Figure 3.5: Geometry of MHD duct flow with straight walls and boundary conditions.

To discretize the boundary of the square duct with straight boundaries, maximum

N = 360 constant boundary elements and L = 8100 interior nodes are taken for the

highest value of Hartmann number M = 200 used in the application of DBEM with

both CD and mH fundamental solutions. On the other hand, in the application of

DRBEM maximum N = 300, L = 5625 nodes are used to discretize the computa-

tional domain when M = 80.

3.2.2.1.1 Insulated duct walls under horizontal magnetic field

First, we investigate the MHD duct flow with insulated walls (B = 0) under a uni-

form transverse magnetic field (β = π/2) for which the steady-state exact solution is

available [10] in order to compare the present DBEM and DRBEM results with the

corresponding analytical solutions at the steady-state. Thus, we specifically consider

the MHD flow subject to a uniform horizontally applied external magnetic field (i.e.

β = π/2, Mx = M and My = 0 in Equation (3.5)) which is given by

∇2V +M
∂B

∂x
= −1 +

∂V

∂t

in Ω, (3.39)

∇2B +M
∂V

∂x
=

∂B

∂t

under no-slip (V = 0) boundary conditions for the velocity.
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The decoupled form of Equation (3.39) is obtained by using transformation (3.8) and

considering Mx = M and My = 0 in Equation (3.7). Thus, we have the following

governing convection-diffusion type equations

∇2w1 +M
∂w1

∂x
= −1 +

∂w1

∂t

in Ω (3.40)

∇2w2 −M
∂w2

∂x
= −1 +

∂w2

∂t

with the boundary conditions

w1 = w2 = 0 on Γ. (3.41)

On the other hand, Equation (3.40) is further transformed into two transient modified

Helmholtz equations as given in Equation (3.11) by using the transformation (3.10).

Thus, the Equations (3.40) become

∇2u1 −
M2

4
u1 = − exp(

M

2
rx) +

∂u1

∂t

in Ω (3.42)

∇2u2 −
M2

4
u2 = − exp(−M

2
rx) +

∂u2

∂t

with

u1 = u2 = 0 on Γ (3.43)

which enables one to use the fundamental solution of modified Helmholtz equation

in DBEM and DRBEM applications.

To be able to compare the present numerical results with the steady-state exact so-

lutions, the numerical results are obtained at different time levels to determine when

the steady-state is reached at a fixed M = 10. Thus, the velocity and the induced

magnetic field along the horizontal centerline y = 0, 0 ≤ x ≤ 1 as time advances

are drawn in Figure 3.6 when the fundamental solutions of both CD and mH equa-

tions are used in DBEM. It is well observed that, the values of the velocity and the

induced magnetic field show no significant change at approximately T = 0.9 and

T = 0.4, respectively for the fundamental solutions of CD and mH, which indicates
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that the steady-state is reached for both V and B. Furthermore, the time evolutions

of equivelocity and current lines are also drawn in Figure 3.7 for the same case, and

the visualized results confirm the obtained time levels T ≈ 0.9 and T ≈ 0.4 when the

steady-state is reached for V and B. Thus, in the subsequent numerical computations

of the present section, the equivelocity and current lines are drawn at time level T = 1

when the steady-state has been already reached. On the other hand, the time evolution

of V and B when DRBEM is employed is not displayed here since the application of

DRBEM gives very similar results compared to DBEM.

V B

(a)

(b)

Figure 3.6: Velocity and induced magnetic field along horizontal centerline y = 0 at

increasing time levels by DBEM with the fundamental solutions of (a) CD and (b)

mH equations: M = 10, β = π
2
.
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T = 0.005 T = 0.05 T = 0.9 T = 1

Vmax = 0.008

Bmax = 0.001

Vmax = 0.04

Bmax = 0.012

Vmax = 0.097

Bmax = 0.061

Vmax = 0.097

Bmax = 0.061

V

B

T = 0.005 T = 0.05 T = 0.4 T = 1

Vmax = 0.014

Bmax = 0.010

Vmax = 0.071

Bmax = 0.048

Vmax = 0.097

Bmax = 0.061

Vmax = 0.097

Bmax = 0.061

Figure 3.7: Time evolutions of the velocity and induced current by DBEM with the

fundamental solutions of (a) CD and (b) mH equations: M = 10, β = π
2
.

The effect of Hartmann number M (= 40, 80, 200) on the steady-state velocity and

induced magnetic field obtained by DBEM and DRBEM with the fundamental solu-

tions of CD and mH equations is shown in Figure 3.8 and Figure 3.9, respectively.

The corresponding exact solutions are also illustrated in order to compare them qual-

itatively with the present numerical results, and a quantitative error is given in terms

of relative error calculated on the entire domain. As Hartmann number increases, it is

seen from Figure 3.8 that the velocity become stagnant at the center of the duct and

the boundary layers are formed along the walls of the duct. Moreover, the velocity

decreases indicating the well-known retarding effect of the intensity of the magnetic
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field as M increases. On the other hand, Figure 3.9 shows that, an increase in M

results in formation of boundary layers along the horizontal walls especially in the

regions close to the corners of the duct for the induced magnetic field.

D
B

E
M

D
R

B
E

M
D

B
E

M
D

R
B

E
M

(a)

(b)

M = 200M = 80M = 40

relative error = 251× 10−4 relative error = 304× 10−4 relative error = 88× 10−4

relative error = 503× 10−4 relative error = 614× 10−4

relative error = 249× 10−4 relative error = 122× 10−4 relative error = 88× 10−4

relative error = 21× 10−4

Figure 3.8: Effect of M on the velocity obtained by DBEM and DRBEM with the

fundamental solution of (a) CD and (b) mH equations: M = 40, 80, 200, β = π
2
,

T = 1.
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(a)

(b)

M = 200M = 80M = 40

relative error = 77× 10−4 relative error = 118× 10−4 relative error = 44× 10−4

relative error = 336× 10−4 relative error = 147× 10−3

relative error = 76× 10−4 relative error = 46× 10−4 relative error = 44× 10−4

relative error = 30× 10−4

Figure 3.9: Effect ofM on the induced current obtained by DBEM and DRBEM with

the fundamental solution of (a) CD and (b) mH equations: M = 40, 80, 200, β = π
2
,

T = 1.

Furthermore, using the fundamental solutions of either CD or mH equations in either

DBEM or DRBEM does not cause a significant change in the profiles of equivelocity

and current lines; and an accuracy of order 10−4 is obtained between the exact and
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numerical solutions in terms of relative error for each value of M for which the nu-

merical solutions can be obtained. Moreover, the DBEM with both of the fundamental

solutions enables one to obtain accurate solutions for the values of Hartmann number

up to 200 whereas DRBEM suffers from computational difficulties for high values of

M . That is, reasonably well results for V and B can be obtained using DRBEM for

small values of M ≤ 40 by the use fundamental solution of mH equation, while the

use of fundamental solution of CD equation increases the Hartmann number up to

moderate values of M ≤ 80. The reason for this observation is that, the exponential

terms (exp(−a1rx+a2ry
2ε

)) are computed in domain integrals when the fundamental so-

lution of CD is employed, which results in some computational advantage in DRBEM

especially at higher values of M . On the other hand, these exponential terms are in-

volved by the exponential transformation (3.3) when the fundamental solution of mH

equation is used, and hence they are computed outside the domain integral treated as

coefficients. This may results in very large values causing overflows in computations,

that the DRBEM results are obtained for smaller values of M when compared with

the results of DBEM.

3.2.2.1.2 Insulated duct walls under oblique magnetic field

This section studies the effect of the oblique external magnetic field on the velocity

and induced magnetic field behaviors for the MHD flow in a duct with insulated walls

(i.e. B = 0, λ → ∞). That is, the equations and the corresponding boundary con-

ditions of the problem are taken as given in Equations (3.7-3.9) and Equations (3.11-

3.12), respectively, when the fundamental solution of CD and mH are employed. As

in the previous Section 3.2.2.1.1, the solutions are drawn at T = 1 since for this

insulated duct problem the steady-state is also reached before T = 1 as expected.

The effect of inclination angle β(= π
6
, π

4
, π

3
) on the velocity and induced magnetic

field is displayed respectively in Figure 3.10 and Figure 3.11 for a fix M = 30. It is

observed that the equivelocity lines extend and form a circulation in the direction of

externally applied magnetic field. The velocity increases as β decreases from π
3

to π
4
,

and a further decrease to β = π
6

results in a decrease in the velocity. On the other hand,

two vortices are formed in the profiles of current lines, however, the symmetry about
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the y-axis observed when β = π
2

(see Figure 3.9) is deteriorated with the application

of the inclined magnetic field. It is observed that at M = 30, DRBEM and DBEM

results obtained by using both of the fundamental solutions are compatible to each

other for each β.
D
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M
D
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M

(a)

(b)
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β = π
6

β = π
4

β = π
3

Figure 3.10: Effect of β on the velocity obtained by DBEM and DRBEM with the

fundamental solution of (a) CD and (b) mH equations: β = π
6
, π

4
, π

3
, M = 30, T = 1.
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Figure 3.11: Effect of β on the induced current obtained by DBEM and DRBEM with

the fundamental solution of (a) CD and (b) mH equations: β = π
6
, π

4
, π

3
, M = 30,

T = 1.

Figures 3.12 and 3.13 display the DBEM and DRBEM solutions in terms of equiv-

elocity and current lines, respectively for increasing values of Hartmann number

(30 ≤ M ≤ 200) at a fixed β = π
3
, T = 1. The well-known characteristics of

the velocity and the induced magnetic field are well-captured by both DBEM and

DRBEM at the computed values of M . That is, as M increases the velocity decreases
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and the fluid becomes stagnant at the center of the duct. Thus, boundary layers are

formed near the corners and the flow is aligned in the direction of applied magnetic

field. Moreover, the flattening tendency of the flow and induced magnetic field is still

well-observed as M increases. As in Section 3.2.2.1.1, the DBEM results are almost

invariant to the type of the fundamental solutions for each M up to M ≤ 200.
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Figure 3.12: Effect of M on the velocity obtained by DBEM and DRBEM with the

fundamental solution of (a) CD and (b) mH equations: M = 30, 80, 200, β =
π

3
,

T = 1.
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On the other hand, it restricts the results by DRBEM up to M ≤ 30 when the funda-

mental solution of mH equation is employed while one can obtain reasonably well re-

sults up to M ≤ 80 with the use of fundamental solution of CD equation in DRBEM.

Thus, DRBEM works more properly with the use of the fundamental solution of CD

equation.
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Figure 3.13: Effect of M on the induced current obtained by DBEM and DRBEM

with the fundamental solution of (a) CD and (b) mH equations: M = 30, 80, 200,

β =
π

3
, T = 1.
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3.2.2.1.3 Variably conducting duct walls under oblique magnetic field

In this section, we consider the MHD duct flow problem (3.5) when the duct walls

have variable conductivity (i.e.
∂B

∂n
+λB = 0). That is, the MHD equations given by

Equation (3.7) in CD form and by Equation (3.11) in mH form are solved with vari-

able wall conductivity conditions given in Equations (3.9) and (3.12), respectively.

The DBEM and DRBEM solutions with the fundamental solutions of the convection-

diffusion and the modified Helmholtz equations will be given for several values of λ

at a fixed β =
π

2
in order to see the pure effect of wall conductivity on the solution.

V B

(a)

(b)

Figure 3.14: Velocity and induced magnetic field along horizontal centerline y = 0

at increasing time levels by DBEM with the fundamental solution of (a) CD and (b)

mH equations: M = 20, λ = 10, β = π
2
.

The velocity and induced magnetic field obtained from the application of DBEM

with fundamental solutions of convection-diffusion and modified Helmholtz equa-

tions along the horizontal centerline (y = 0, 0 ≤ x ≤ 1) at M = 20, λ = 10, β =
π

2
are displayed in Figure 3.14 at increasing time levels (0.05 ≤ T ≤ 1.5) in order to

see when the steady-state is reached. It is noticed that after T ≈ 0.9, the values of

velocity and induced magnetic field are not changing significantly, which indicates
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that the steady-state is reached for both of the cases. The results of T ≈ 0.9 are also

confirmed by the behavior of equivelocity and current lines drawn in Figure 3.15 for

the same fundamental solution cases. Thus, in all the subsequent computations the

steady-state is taken as T = 1.
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T = 0.05 T = 0.2 T = 0.9 T = 1.5

Vmax = 0.0202

Bmax = 0.0253

Vmax = 0.0215

Bmax = 0.0403

Vmax = 0.0211

Bmax = 0.0430

Vmax = 0.0211

Bmax = 0.0430

Vmax = 0.0080

Bmax = 0.0198

Vmax = 0.0182

Bmax = 0.0386

Vmax = 0.0215

Bmax = 0.0431

Vmax = 0.0215

Bmax = 0.0431

Figure 3.15: Time evolutions of velocity and induced current by DBEM with the

fundamental solution of (a) CD and (b) mH equations: M = 20, λ = 10, β = π
2
.

The effect of the wall conductivity parameter λ(= 0, 10, 100) is displayed atM = 20,

β =
π

2
in terms of equivelocity lines in Figure 3.16 and current lines in Figure 3.17,

respectively. The current lines are perpendicular to the horizontal walls y = ∓1 in the

case of perfectly conducting duct walls (λ = 0). As λ increases they circulate forming

two oppositely signed vortices symmetrically along the vertical centerline and behave
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as if the solution of the MHD flow with insulated walls (λ→∞). On the other hand,

from the equivelocity lines, we observe that the flow has the circular behavior at the

center of the duct and separated symmetrically about the horizontal centerline y = 0

in the case of perfectly conducting duct walls (λ = 0). As λ increases, the vortices

disappear gradually and we obtain the behavior of the solution of MHD flow with

insulated walls (λ → ∞: see Figure 3.8 at T = 1). As in the previous cases, DBEM

enables one to obtain similar results by the use of different fundamental solutions

while DRBEM fails to obtain accurate results by the use of the fundamental solution

of mH equation. Therefore, in Figures 3.16 and 3.17 the DRBEM results are only

given for the case in which the fundamental solution of CD equation is used.
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(b)

λ = 0 λ = 10 λ = 100

Figure 3.16: Effect of λ on the velocity obtained by DBEM and DRBEM with the

fundamental solution of (a) CD and (b) mH equations: λ = 0, 10, 100, M = 20,

β = π
2
, T = 1.
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λ = 0 λ = 10 λ = 100

Figure 3.17: Effect of λ on the induced current obtained by DBEM and DRBEM with

the fundamental solution of (a) CD and (b) mH equations: λ = 0, 10, 100, M = 20,

β = π
2
, T = 1.

A comparison between DBEM and DRBEM with the fundamental solutions of CD

is also displayed in terms of equivelocity lines in Figure 3.18 and current lines in

Figure 3.19, respectively, for several values of M at a fix λ = 10 and β =
π

2
. The

DBEM solution with the fundamental solution of modified Helmholtz equation is

also included in terms of equivelocity and current lines in Figure 3.18 and Figure

3.19, respectively. One can notice that DBEM is more efficient for higher values of

M (up to M = 150) than DRBEM (up to M = 20), when the fundamental solution

of convection-diffusion equation is applied. On the other hand, with the use of fun-

damental solution of mH equation, DBEM gives results for only smaller values of M

(up to M = 20) while DRBEM fails to give reasonably well results even for small
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values of M . It is observed that as M increases, the flow is separated symmetrically

in the y-direction as a result of both the variable conductivity (λ = 10) and the di-

rection of the applied magnetic field (β =
π

2
). Moreover, with an increase in M the

separation is more pronounced and the fluid becomes stagnant at the center of the duct

while boundary layers are formed close to the horizontal walls. On the other hand, the

boundary layers observed along the vertical walls when λ → ∞ (see Figure 3.9) in

current lines disappear with the conducting walls. Moreover, the vortices occurred in

the current line profiles extend vertically becoming dense at the corners of horizontal

walls.

D
B

E
M

D
R

B
E

M
D

B
E

M

(a)

(b)

M = 150M = 20M = 10

M = 20M = 10

Figure 3.18: Effect of M on the velocity obtained by DBEM and DRBEM with the

fundamental solution of (a) CD and (b) mH equations: M = 10, 20, 150, λ = 10,

β = π
2
, T = 1.
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Figure 3.19: Effect of M on the induced current obtained by DBEM and DRBEM

with the fundamental solution of (a) CD and (b) mH equations: M = 10, 20, 150,

λ = 10, β = π
2
, T = 1.

To summarize, the numerical results reveal that, MHD flow in a rectangular duct with

insulated and/or variably conducting walls under an oblique external magnetic field,

can be solved with DBEM to a good accuracy for high values of Hartmann number. In

addition, there is no significant difference observed in the results between the use of

the fundamental solution of CD or mH equations. On the other hand, DRBEM gives

reasonably well results for rather small values of Hartmann number observing that the

use of fundamental solution of CD equation is better than employing the fundamental

solution of mH equation in the sense of increasing Hartmann number.
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3.2.2.2 MHD Flow in an Irregular Duct with a Perturbed Wall

In this section, MHD flow is solved numerically in an irregular duct with a perturbed

upper wall in order to analyze the effect of computational domain on the behavior

of velocity and induced magnetic field. The unsteady MHD duct flow subject to a

uniform vertically applied external magnetic field (i.e. taking β = 0, Mx = 0 and

My = M in Equation (3.5)) is considered. Thus, the governing equations become

∇2V +M
∂B

∂y
= −1 +

∂V

∂t

in Ω (3.44)

∇2B +M
∂V

∂y
=

∂B

∂t

with the no-slip velocity boundary conditions V = 0 on Γ. The side walls (which are

parallel to the applied magnetic field) are taken to be insulated (B = 0), while the

Hartmann walls (which are perpendicular to the applied magnetic field) are perfectly

conducting (∂B
∂n

= 0). The upper wall of the duct is perturbed as shown in Figure

3.20, [45]. Thus, the duct Ω is defined as

Ω = {(x, y) ∈ IR2 : −c < x < c,−1 < y < 1− ξf(x)} (3.45)

where ξ is the perturbation parameter arbitrarily small (0 < ξ � 1), while f is

assumed to be an arbitrary smooth perturbation function and c is a constant.

x

y

y = 1− ξf(x)

B0

c

−1

−c

1

V = B = 0

V = 0, ∂B∂n = 0

V = B = 0

V = 0, ∂B∂n = 0

0

Figure 3.20: Cross-section of a perturbed duct with boundary conditions

The present techniques DBEM and DRBEM are employed for the discretization of

Equation (3.44) in either CD form given in Equation (3.7) or mH form as in Equation
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(3.11) by taking Mx = 0 and My = M with the corresponding boundary conditions.

The main concentration will be on the use of DBEM with both of these fundamen-

tal solutions as a tool for the solution of the problem under consideration, since it

is observed in previous Section 3.2.2.1 that the DBEM gives more accurate results

compared to DRBEM for moderate and large values of Hartmann number.

First, the accuracy of the results obtained by DBEM either with the fundamental so-

lution of modified Helmholtz or convection-diffusion equations is validated by com-

paring the obtained results with the ones given in the work [45] in terms of surface

plots of velocity V and induced magnetic field B in Figure 3.21. In this test problem,

the perturbation function is taken as f = − cos(πx
4

) for ξ = 0.1 and M = 5. The

results are in well agreement with the results given in [45] (see Figure 14 and Figure

18 in [45]).

(a) Modified Helmholtz (b) Convection-Diffusion

V

B

Figure 3.21: The level curves of velocity and induced current obtained by DBEM

with the fundamental solution of (a) mH and (b) CD equations: M = 5, ξ = 0.1,

f = − cos(πx
4

), T = 1.

Figure 3.22: Velocity profile along the vertical lines x = −1.0 (left), x = 0 (middle)

and x = 1.0 (right).
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Figure 3.23: Induced magnetic field profile along the vertical lines x = −1.0 (left),

x = 0 (middle) and x = 1.0 (right).

Furthermore, for the same test problem the variations of the velocity and the induced

magnetic field along the vertical lines x = ∓1.0, 0 are drawn in Figure 3.22 and

Figure 3.23, respectively. The agreement of the present results with the ones given in

[45] (see Figures 12,13,16,17 in [45]) is also well observed.

In the rest of the present section, we will focus on the effect of the perturbation func-

tion f (= − cos(2πx
3

)) with several perturbation parameters ξ(= 0, 0.1, 0.3, 0.5) and

Hartmann numbers (5 ≤ M ≤ 150) on the flow and the induced magnetic field. In

order to determine, when the solution reaches to the steady-state, the velocity and

induced magnetic field are drawn along the horizontal centerline (y = 0, 0 ≤ x ≤ 2)

in Figure 3.24 for M = 30 and ξ = 0 at several time levels (0.05 ≤ T ≤ 1) with

straight walls by DBEM. It is clear that, after T ≥ 0.4 the steady-state is reached for

both the velocity and induced magnetic field.

V B

Figure 3.24: Velocity and induced magnetic field along horizontal centerline y = 0 at

transient levels by DBEM with the fundamental solution of CD equation: M = 30,

ξ = 0.
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Further, the DBEM solutions with the fundamental solution of convection-diffusion

equation are illustrated in Figure 3.25 for transient levels T = 0.05, 0.1, 0.4, 1 when

M = 30, f = − cos(2πx
3

) and ξ = 0.1. It can also be seen from Figure 3.25 that

the solution reaches steady-state when T ≥ 0.4 which is compatible with centerline

plots in Figure 3.24. Thus, all the subsequent graphs are drawn at T = 1 (as in the

previous Section 3.2.2.1) which was also the steady-state for the MHD flow in a duct

with straight walls.

V

B

T = 0.05 T = 0.1 T = 0.4 T = 1

Vmax = 0.012 Vmax = 0.01 Vmax = 0.008 Vmax = 0.008

Bmax = 0.026 Bmax = 0.032 Bmax = 0.035 Bmax = 0.035

Figure 3.25: Time evolutions of velocity and induced current by DBEM with the

fundamental solution of CD equation: M = 30, f = − cos(2πx
3

), ξ = 0.1.

(a) Modified Helmholtz (b) Convection-Diffusion

M
=

10
M

=
20

M
=

30
M

=
35

Vmax = 0.0275

Vmax = 0.0124

Vmax = 0.0082

Vmax = 0.0068

Vmax = 0.0276

Vmax = 0.0130

Vmax = 0.0084

Vmax = 0.0071

Bmax = 0.1007

Bmax = 0.0531

Bmax = 0.0354

Bmax = 0.0312

Bmax = 0.0987

Bmax = 0.0522

Bmax = 0.0354

Bmax = 0.0305

Figure 3.26: Effect of M on the velocity and induced current obtained by DBEM

with the fundamental solution of (a) mH and (b) CD equations: M = 10, 20, 30, 35,

f = − cos(2πx
3

), ξ = 0.1, T = 1.
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First, the effect of the use of different fundamental solutions in the application of

DBEM on the velocity and induced magnetic field is depicted in Figure 3.26 for

M=10, 20, 30, 35 by taking f = − cos(2πx
3

) and ξ = 0.1. When M ≤ 30, both of the

fundamental solutions provide the same results with a good accuracy. However, when

M > 30 DBEM with the fundamental solution of modified Helmholtz equation has

difficulties in giving accurate results and some disruptions occur along the perturbed

wall while the use of the fundamental solution of convection-diffusion results in ac-

ceptable results. Thus, the subsequent computations are performed by using DBEM

with the fundamental solution of convection-diffusion equation.

ξ=
0

ξ=
0.

1
ξ=

0.
3

ξ=
0.

5

M=5 M=10 M=30

Vmax = 0.0686 Vmax = 0.0279 Vmax = 0.0083

Vmax = 0.0663 Vmax = 0.0276 Vmax = 0.0084

Vmax = 0.0616 Vmax = 0.0266 Vmax = 0.0083

Vmax = 0.0601 Vmax = 0.0252 Vmax = 0.0079

Figure 3.27: Effect of ξ on the velocity obtained by DBEM with the fundamental

solution of CD equation: ξ = 0, 0.1, 0.3, 0.5, M = 5, 10, 30, f = − cos(2πx
3

), T = 1.

The effect of the perturbation parameter ξ on the velocity and the induced magnetic

field is displayed, respectively, in Figures 3.27 and 3.28. It is seen that the magni-

tude of the induced magnetic field increases with an increase in ξ, whereas there is a

decrease in the velocity when M=5, 10. When M = 30 the increase rate in the mag-
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nitude of induced magnetic field becomes very small compared to the cases when

M = 5, 10; and there is almost no change in the velocity. Moreover, the fluid flows

in terms of two eddies close to the side walls. It is well observed that at small val-

ues of Hartmann number (M = 5, 10) an additional vortex is formed at the center of

the cavity and this vortex moves upwards due to the expansion of the computational

domain with an increase in ξ. A further increase in Hartmann number results in a re-

tardation in the fluid flow at the center of the cavity and the fluid flows completely in

terms of two side layers weakening the effect of the perturbation. On the other hand,

current lines fill the region due to the perturbed upper boundary obeying its boundary

conditions, and start to form side layers as M increases.

ξ=
0

ξ=
0.

1
ξ=

0.
3

ξ=
0.

5

M=5 M=10 M=30

Bmax = 0.1598 Bmax = 0.0928 Bmax = 0.0337

Bmax = 0.1713 Bmax = 0.0987 Bmax = 0.0354

Bmax = 0.1915 Bmax = 0.1153 Bmax = 0.0426

Bmax = 0.2063 Bmax = 0.1298 Bmax = 0.0479

Figure 3.28: Effect of ξ on the induced current obtained by DBEM with the funda-

mental solution of CD equation: ξ = 0, 0.1, 0.3, 0.5, M = 5, 10, 30, f = − cos(2πx
3

),

T = 1.
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M = 10

M = 20

M = 50

M = 100

M = 150

Vmax = 0.0279

Vmax = 0.0131

Vmax = 0.0050

Vmax = 0.0023

Vmax = 0.0016

Bmax = 0.0928

Bmax = 0.0496

Bmax = 0.0205

Bmax = 0.0104

Bmax = 0.0069

Figure 3.29: Effect of M on the velocity and induced current in a rectangular duct

with straight walls obtained by DBEM with the fundamental solution of CD equation:

M = 10, 20, 50, 100, 150, T = 1.

Further, the effect of the Hartmann number on the velocity and the induced mag-

netic field is presented in Figure 3.29 for a rectangular duct with straight walls and in

Figure 3.30 for a duct with perturbed upper wall (f = − cos(2πx
3

)), respectively. It

is observed that, for straight or perturbed upper wall cases, as M increases the flow

is separated into two vortices near the side walls, the velocity drops and the fluid

becomes stagnant at the center of the duct. Moreover, boundary layer formation is

observed on the insulating parts of the boundary for both the velocity and the induced

magnetic field asM increases. As Hartmann number increases toM = 50, Hartmann
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layers are developed for the equivelocity lines, however, with a further increase in M

to 150 the Hartmann layers are weakened and finally vanish. Moreover, the induced

M = 10

M = 20

M = 50

M = 100

M = 150

Vmax = 0.0276

Vmax = 0.0130

Vmax = 0.0049

Vmax = 0.0023

Vmax = 0.0016

Bmax = 0.0987

Bmax = 0.0522

Bmax = 0.0216

Bmax = 0.0110

Bmax = 0.0076

Figure 3.30: Effect of M on the velocity and induced current in a rectangular duct

with perturbed upper wall obtained by DBEM with the fundamental solution of CD

equation: M = 10, 20, 50, 100, 150, f = − cos(2πx
3

), ξ = 0.1, T = 1.

magnetic field is antisymmetric with respect to x-axis and the current lines are per-

pendicular to the conducting walls as expected. The magnitude of the induced mag-

netic field increases for each Hartmann number when the upper wall of the duct is

perturbed. On the other hand, a decrease in the velocity is well-observed for moder-

ate values of M(≤ 50) in the perturbed duct when compared to the velocity in the
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duct with regular straight walls. This velocity drop is not seen for Hartmann number

values M > 50 since the flattening flow is the dominating case as M increases.

M = 10

M = 20

M = 50

M = 100

M = 150

Vmax = 0.0284

Vmax = 0.0131

Vmax = 0.0050

Vmax = 0.0025

Vmax = 0.0016

Bmax = 0.0939

Bmax = 0.0496

Bmax = 0.0206

Bmax = 0.0104

Bmax = 0.0070

Figure 3.31: Effect of M on the velocity and induced current in a rectangular duct

with straight walls obtained by DRBEM with the fundamental solution of CD equa-

tion: M = 10, 20, 50, 100, 150, T = 1.

In addition, DRBEM is also employed to solve the unsteady MHD flow with per-

turbed boundary by using the fundamental solution of convection-diffusion equation.

As mentioned before, the previous Section (3.2.2.1) shows that the DRBEM with the

fundamental solution of modified Helmholtz equation performs poorly in all cases,

and hence, in DRBEM the numerical simulations are performed only with the funda-
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mental solution of convection-diffusion equation. The results are obtained for several

values of Hartmann number, and are presented in Figure 3.31 and Figure 3.32, for

rectangular duct with straight walls and with a perturbed upper wall, respectively.

The results are almost the same with the DBEM results for straight and perturbed

upper wall with f = − cos(2πx
3

) and ξ = 0.1. Maximum 1200 boundary elements are

used in DRBEM for highest value of Hartmann number, while 500 boundary elements

are taken in DBEM. Thus, DRBEM is in need of using more boundary elements than

the DBEM to achieve accurate results. This indicates that the DRBEM is computa-

tionally less efficient than DBEM as Hartmann number increases.
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M = 20

M = 50

M = 100

Vmax = 0.0280

Vmax = 0.0129

Vmax = 0.0049

Vmax = 0.0025

Bmax = 0.1006

Bmax = 0.0525

Bmax = 0.0216

Bmax = 0.0109

Figure 3.32: Effect of M on the velocity and induced current in a rectangular duct

with perturbed upper wall obtained by DRBEM with the fundamental solution of CD

equation: M = 10, 20, 50, 100, f = − cos(2πx
3

), ξ = 0.1, T = 1.
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Finally, we obtain the solution of MHD duct flow in duct with a different shape of

upper boundary which is determined by the perturbation function f . We consider

basically two different shapes of upper wall, that is either concave down or concave

up around vertical centerline of the duct. Figure 3.33 shows that the flow is divided

into two vortices forming side layers and becoming stagnant at the center when the

upper curve boundary is concave down at its middle part (for f = − cos(πx
4

) and

f = − cos(2πx
3

)). On the other hand when the curved boundary is concave up (i.e.

f = cos(2π(1 − x2)) and f = sin(2π(1 − x2))) at the middle part, the flow covers

almost all the duct and the side layer formation is retarded. However, the induced

magnetic field profiles are not altered much in both cases.
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Bmax = 0.0957

Bmax = 0.0975

Figure 3.33: Effect of perturbation function f on the velocity and induced current in a

rectangular duct with perturbed upper wall obtained by DBEM with the fundamental

solution of CD equation: M = 10, ξ = 0.1, T = 1.
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3.3 Summary of the Obtained Results in Chapter 3

In this chapter, the CDR type equations are solved numerically by using DBEM and

DRBEM approaches which employ basically either the fundamental solution of CD

or mH equations. The results obtained for two test problems, namely concentration

and MHD duct flow problems, are visualized in terms of qualitative comparison be-

tween the use of fundamental solutions of CD and mH equations. It is found that:

• For the CDR equation (concentration problem), the fundamental solution of

CDR equation with both DRBEM and DBEM gives results with good accuracy

while the fundamental solution of mH equation gives reasonably well results

with only DBEM in the sense of decreasing diffusion parameter which makes

the system convection dominated.

• Similarly, for the second test problem (namely, MHD duct flow), the DBEM

results are almost invariant to the use of fundamental solution of either CD or

mH equations, especially in the case of duct with straight walls, while DRBEM

with the fundamental solution of CD equation gives reasonably well results for

increasing values of M , β and λ. Moreover, in some cases (i.e. for the MHD

flow in a duct with variably conducting walls), DRBEM with the fundamental

solution of mH equation fails to obtain results even for small values of M .

• At small values of M(= 5, 10), in a perturbed duct the velocity drops while the

magnitude of induced magnetic field increases when compared to the case in

ducts with straight walls. The effect of perturbation on the flow and magnetic

field is weakened for higher values of M(≥ 30). On the other hand, current

lines fill the region due to the perturbed upper boundary obeying its boundary

conditions, and start to form side layers as M increases.

• The well-known physical characteristics of MHD flow , namely flattening ten-

dency of the flow and the formation of boundary layers for both the velocity and

induced current asM increases, are well-captured by both DBEM and DRBEM

especially with the fundamental solution of CD equation.
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CHAPTER 4

NUMERICAL SOLUTION OF TIME-DEPENDENT

CONVECTION-DIFFUSION TYPE EQUATION WITH VARIABLE

COEFFICIENTS

In this chapter we deal with the time-dependent convection-diffusion type equations

with variable coefficients. The main difference from Chapter 3 is that the coefficients

of the convection terms vary with respect to either only space variables or containing

the unknown as well. That is, in the present chapter we consider the general time-

dependent CDR equation given in Equation (3.1) which is reduced to

∂u

∂t
− ε∇2u+ ~a · ∇u = h (4.1)

with no reaction term (i.e. σ = 0) under suitable boundary conditions. Moreover,

the coefficients of convection terms, ~a, are not just constants but they are functions of

space variables, unknown u and/or its spatial derivatives (i.e. ~a = (a1(x, y, u, ux, uy),

a2(x, y, u, ux, uy))).

First, the applications of DBEM and DRBEM to Equation (4.1) with the fundamental

solution of CD equation is explained in Section 4.1 giving attention basically on the

differences encountered through the numerical procedures due to the variable con-

vection terms. Then, the numerical results obtained for the problems governed by

Equation (4.1) are given in Section 4.2 with some discussions. In this respect, we first

consider the two-dimensional time-dependent heat conduction problem governed by

Equation (4.1) with coefficients of convection terms depending on space variables

only in Section 4.2.1. Then, the investigation is extended for the problems which

are governed by Equation (4.1) with coefficients of convection terms depending on

not only the space variables but also the unknown itself in Section 4.2.2. In this

section, we consider some fluid dynamics problems which are mainly governed by
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the Navier-Stokes (NS) equations. Due to the nonlinearity of these equations, the

analytical solution is not available. Thus, it is inevitable to employ some numerical

techniques for the solution of the NS equations. We use the DBEM and DRBEM

with the fundamental solution of CD equation to discretize the NS equations in dif-

ferent computational domains under various boundary conditions. Specifically, we

first consider the unsteady NS equations in a square cavity for which the analytical

solution is available in order to validate our computer codes in Section 4.2.2.1. Then,

the lid-driven cavity flow of which the top-lid is moving with a constant velocity and

the natural convection flow which is governed by the NS equation combined with the

energy equation are considered in Section 4.2.2.2 and Section 4.2.2.3, respectively.

Further, in Section 4.2.2.4, the pressure driven fluid flow in a channel between the two

parallel plates is solved by DBEM. Finally, the MHD natural convection flow under

the effect of an externally applied magnetic field is investigated in a square cavity

filled with a porous medium in Section 4.2.2.5.

4.1 Applications of DRBEM and DBEM to CD Equation with Variable Coeffi-

cients

In Chapter 3, the applications of DRBEM and DBEM to the unsteady CDR equation

with constant coefficients by using the fundamental solution of CD equation have

been given. The present section is devoted to point out briefly the crucial steps which

indicate the differences from Section 3.1 in the applications of DBEM and DRBEM

to the CD type equations due to the variable coefficients. Thus, when Equation (4.1)

is weighted by the fundamental solution u∗ of the CD equation

u∗ =
1

2πε
exp(−a1rx + a2ry

2ε
)K0(sr) (4.2)

where s =

√
a2

1+a2
2

4ε2
, one can obtain the following integral equation (as given in Equa-

tion (3.15))

ciui+ε

∫
Γ

q∗udΓ−ε
∫

Γ

u∗
∂u

∂n
dΓ+

∫
Γ

(a1u
∗nxu+a2u

∗nyu)dΓ = −
∫

Ω

bu∗dΩ (4.3)

after applying Green’s second identity two times.

In Equation (4.3), b represents the leftover terms in Equation (4.1) except the CD

operator, due to the employed fundamental solution u∗.
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4.1.1 DRBEM formulation

In DRBEM application, the domain integral on the right hand side of Equation (4.3) is

transformed into the equivalent boundary integral by means of radial basis functions

fj as follows (see Equation (3.19) in Section 3.1.1)

ciui + ε

∫
Γ

q∗udΓ− ε
∫

Γ

u∗
∂u

∂n
dΓ +

∫
Γ

(a1u
∗nxu+ a2u

∗nyu)dΓ (4.4)

=
N+L∑
j=1

αj(t)(ciuji + ε

∫
Γ

q∗ûdΓ− ε
∫

Γ

u∗
∂û

∂n
dΓ +

∫
Γ

(a1u
∗nxû+ a2u

∗nyû)dΓ).

It is important to note here that, the fundamental solution u∗ and its normal derivative

q∗ contain the variable coefficients a1 and a2 which are functions of x, y and/or u,

ux, uy. However, when the boundary is discretized using constant elements, in each

source point i(= (xi, yi)), these coefficients can be taken as constants when a1 and a2

are functions of space variables only, that is,

a1 = a1(xi, yi), a2 = a2(xi, yi). (4.5)

On the other hand, when they also depend on the unknown u, Equation (4.1) be-

comes nonlinear and an iterative scheme should be employed for the solution. Since

Equation (4.1) is time-dependent, the iterative process is performed through the time

integration denoted by m. Thus, to obtain the solution u at the (m + 1)-st time level

tm+1, we use the values of u at the m-th time level tm to remove the nonlinearity in

Equation (4.1) due to the variable coefficients of convection terms. That is, a1 and a2

are evaluated as

a1 = a
(m)
1 (xi, yi, u

(m)(xi, yi, tm), u(m)
x (xi, yi, tm), u(m)

y (xi, yi, tm)), (4.6)

a2 = a
(m)
2 (xi, yi, u

(m)(xi, yi, tm), u(m)
x (xi, yi, tm), u(m)

y (xi, yi, tm)). (4.7)

So, a1 and a2 again become constant at each node i and time level m. In this sense,

Equation (4.4) is just reduced to Equation (3.19) which is its correspondence in Sec-

tion 3.1.1. Therefore, after the discretization of time derivative by using the back-

ward finite difference scheme (see Equation (2.51)), the matrix-vector form of the

discretized DRBEM equation becomes

(H(m) +
C

∆t

(m)

)u(m+1) −G(m) ∂u

∂n

(m+1)

=
C

∆t

(m)

u(m) + C(m)h(m) (4.8)
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as given in Equation (3.28). When the fundamental solution of CD equation is used,

the components of H(m) and G(m) are

Hij = ciδij −
1

2π

∫
Γj

exp(−a
(m)
1 rx + a

(m)
2 ry

2ε
) (4.9)

×[s(m)K1(s(m)r)
∂r

∂n
− (

a
(m)
1

2ε
nx +

a
(m)
2

2ε
ny)K0(s(m)r)]dΓj,

Gij =
1

2π

∫
Γj

exp(−a
(m)
1 rx + a

(m)
2 ry

2ε
)K0(s(m)r)dΓj (4.10)

and

Hii ≈ ci +
l

2π
(ln

2

l
− ln

s(m)

2
− γ + 1)(

a
(m)
1 nx + a

(m)
2 ny

2ε
), (4.11)

Gii ≈
l

2π
(ln

2

l
− ln

s(m)

2
− γ + 1) (4.12)

and C(m) = −(H(m)Û −G(m)Q̂)F−1. The coordinate matrix F is obtained by using

the radial basis functions fj [29]

fj = ε(1 + rj)− (
1

2
+
rj
3

)(a1rx + a2ry) (4.13)

which are linked to the convection-diffusion equation

ε∇2ûj − a1
∂ûj
∂x
− a2

∂ûj
∂y

= fj. (4.14)

The corresponding particular solution and its normal derivative are taken as follows

ûj =
r2
j

4
+
r3
j

9
, q̂j = (

rj
2

+
r2
j

3
)
∂r

∂n
. (4.15)

Here, matrices Û and Q̂ are obtained by taking each of the vectors û and q̂ as columns,

respectively. However, in Equation (4.8) the matrices H and G on the left hand side

and the matrix C are changing at each iteration level when ~a is a function of u, and

hence they are recalculated at each iteration. For that reason, we also put (m) on top

of the matrices H , G and C as superscript. On the other hand, when ~a is a function

of space variables, the matrices H and G are not changing at each iteration as in the

case when the convection terms have constant coefficients.

To conclude, we use an initial guess for the unknown and for its space derivatives, i.e.

u(0), u(0)
x , u(0)

y , to start the iterative process, and the coefficient ~a is computed at each

node i as a constant. The iteration is terminated when a required time or a preassigned

tolerance between two successive iteration is reached.
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4.1.2 DBEM formulation

The variable coefficients a1 and a2 occurring in Equation (4.3) and in the fundamental

solution (4.2), are also treated as explained in Section 4.1.1. The only difference in

DBEM application is that the domain integrals on the right hand side of Equation

(4.3) is preserved and calculated by using composite trapezoidal rule (see Section

2.2.1.1). When the constant elements are used for the discretization of the boundary

and the backward finite difference scheme is employed for the time integration, the

resulting DBEM matrix-vector equation becomes

(H(m) +
1

∆t
M

(m)
1 )u(m+1) −G(m) ∂u

∂n

(m+1)

=
1

∆t
M

(m)
1 u(m) +M

(m)
2 (4.16)

as given in Equation (3.32). The matrices H(m) and G(m) are the same with the

ones given in Section 4.1.1 and recalculated at each iteration. Similarly, the domain

integrals (M1)
(m)
ii =

∫
Ω
u∗

(m)
dΩ and (M2)

(m)
i =

∫
Ω
hu∗

(m)
dΩ, which also change

at each time level, are calculated by using composite trapezoidal rule at each iteration

when the convection term coefficients depend on the unknown u.

4.2 Numerical Results for the Time-dependent CD Equation with Variable Co-

efficients

The present section is devoted to the applications of DRBEM and DBEM to the CD

type equations with variable coefficients. In Section 4.2.1, the time-dependent heat

conduction problems which are governed by CD equation with variable coefficients

containing only space variables, are solved to validate our numerical codes for DBEM

and DRBEM, since their analytical solutions are available. Then, in Section 4.2.2

some fluid dynamics problems, which are governed mainly by the Navier-Stokes

equations, are investigated again by the present numerical schemes. In these prob-

lems, the coefficients of the convection terms contain not only space variables but

also the unknown function.
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4.2.1 Two-Dimensional Heat Conduction Problems with Variable Coefficients

The unsteady 2-D heat conduction problem which is mathematically modelled as [69]

a(x, y)∇2u+ ax
∂u

∂x
+ ay

∂u

∂y
= h(x, y, t) +D(x, y, t)

∂u

∂t
(4.17)

is considered in an isotropic non-homogeneous medium. Here, u(x, y) is the un-

known temperature, a(x, y) is a known variable thermo-conductivity coefficient with

components ax = ∂a
∂x

and ay = ∂a
∂y

, D(x, y, t) is a given function and h(x, y, t) is a

known heat source. The general boundary conditions are taken as

u(x, y, t) = ū(x, y, t), x ∈ Γ1 (4.18)

q(x, y, t) =
∂u

∂n
= q̄(x, y, t) x ∈ Γ2 (4.19)

where ū and q̄ are given functions.

The numerical simulations are carried out by considering two test problems by DBEM

and DRBEM which employ the fundamental solution of CD equation. In order to val-

idate our numerical codes, we specifically consider the problems for which the exact

solutions are available. The coefficients a(x, y), D(x, y, t), the function h(x, y, t) and

the exact solutions are taken as given in Table 4.1 [69].

Table 4.1: The problem parameters used for the solution of the 2-D heat conduction

problem

Test Problem 1 Test Problem 2

a(x, y) = x+ y x+ y

D(x, y, t) = 1 1 + t

h(x, y, t) = 6(x+ y)− 4 9(x2 + y2) + 12xy − 1− t
uexact = x2 + y2 + 4t x3 + y3 + t

The corresponding boundary conditions and the initial values at t = 0 are obtained

from the exact solutions, and the geometric configurations of the test problems are

displayed in Figure 4.1.
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y

x

1

2

1 2

u = x2 + 1 + 4t

u = x2 + 4 + 4t

q = −2 q = 4

Test Problem 1

y

x

1

2

1 2

u = x3 + 1 + t

u = x3 + 8 + t

q = −3 q = 12

Test Problem 2

Figure 4.1: Geometries of the time-dependent heat conduction problems

In Figure 4.2, a qualitative comparison of the exact solution with numerical results

obtained by both DBEM and DRBEM are visualized in terms of isotherms for Test

Problem 1. Solutions are illustrated at a fixed time level T = 1 with the time step

∆t = 0.01. It is well observed that the DBEM and DRBEM results are in quite well

agreement with the exact solutions, which is also confirmed by the relative errors of

order 10−3, however, some deviations are observed especially along the walls which

have Neumann type boundary conditions. Further, the temperature distribution along

the horizontal centerline y = 1.5 (1 ≤ x ≤ 2) shown in Figure 4.3 confirms the

accuracy of the present numerical results obtained by DBEM and DRBEM.

DBEM DRBEM

rel. error = 6× 10−3 rel. error = 8× 10−3

Figure 4.2: Comparison of the exact solution with the results of DBEM and DRBEM

in terms of isotherms.
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DBEM DRBEM

Figure 4.3: Temperature distribution along the line y = 1.5 by DBEM and DRBEM.

As a second test problem, the DBEM and DRBEM are employed to solve the heat

transfer problem which involves time-dependent source function h(x, y, t) and coef-

ficient D(x, y, t). As in Problem 1, the comparison of the exact solution with the

DBEM DRBEM

rel. error = 13× 10−3 rel. error = 9× 10−3

Figure 4.4: Comparison of the exact solution with the results of DBEM and DRBEM

in terms of isotherms.

DBEM DRBEM

Figure 4.5: Temperature distribution along the line y = 1.5 by DBEM and DRBEM.
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present numerical results are displayed in Figure 4.4 and Figure 4.5, respectively,

in terms of isotherms and the temperature distribution along the horizontal center-

line y = 1.5 of the problem domain. It is also well observed that, both DBEM and

DRBEM results are in good agreement with the exact solution in each case which is

compatible with the results of Problem 1.

4.2.2 Some Fluid Dynamics Problems

The time-dependent Navier-Stokes equations in terms of stream function-vorticity

formulation subject to an external force f are given as (see Equations (1.27) -(1.28))

∇2ψ = −w (4.20)
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
=

1

Re
∇2w + f (4.21)

when the stream function ψ and the vorticity w are defined as

u =
∂ψ

∂y
, v = −∂ψ

∂x
, (4.22)

w =
∂v

∂x
− ∂u

∂y
. (4.23)

The vorticity equation can be thought as an unsteady CD type equation with variable

coefficients containing the unknown ψ, i.e. a1 = u = ∂ψ
∂y

and a2 = v = −∂ψ
∂x

, which is

the reason to consider the NS equations in the present chapter. The NS equations are

coupled and highly nonlinear equations which require an iterative numerical solution

between the stream function and vorticity equations by taking an initial value for the

vorticity.

In the iterative solution procedure, the stream function equation is discretized by us-

ing DRBEM with the fundamental solution of Laplace equation while the vorticity

equation which is the CD type equation with variable coefficients is solved by using

both DRBEM and DBEM with the fundamental solution of CD equation as explained

in Section 4.1.1 and Section 4.1.2, respectively.
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Numerical algorithm:

(i) First, we solve the stream function equation (4.20) by using DRBEM with the

fundamental solution of Laplace equation with an initial value of vorticity, w(0).

Thus, the matrix-vector form of DRBEM is as follows

H̃ψ(m) − G̃∂ψ
∂n

(m)

= (H̃Û − G̃Q̂)F̃−1(−w(m)) (4.24)

where the components of G̃ and H̃ are as given in Equations (2.25-2.28) in

Chapter 2. The coordinate matrix F̃ is obtained by taking the radial basis func-

tions fj = 1 + rj , which are linked to Poisson equation∇2ûj = fj , as columns.

The solution of Equation (4.24) gives the values of the stream function at the

m-th iteration, i.e. we obtain ψ(m).

(ii) After obtaining the values of stream function for all boundary and interior nodes,

the x and y-derivatives of ψ at each node (xi, yi), i = 1, ..., N + L, are ob-

tained numerically by using the coordinate matrix F̃ , that is: u(m) = ∂ψ
∂y

(m)
=

∂F̃
∂y
F̃−1ψ(m) and v(m) = −∂ψ

∂x

(m)
= −∂F̃

∂x
F̃−1ψ(m) as given in Chapter 2 (see

Equation 2.40).

(iii) Once the vorticity equation (4.21) is weighted by the fundamental solution of

CD equation (4.2) with a1 = u = ∂ψ
∂y

, a2 = v = −∂ψ
∂x

and ε = 1
Re

, and Green’s

second identity is employed, Equation (4.21) becomes

ciwi +
1

Re

∫
Γ

q∗wdΓ− 1

Re

∫
Γ

u∗
∂w

∂n
dΓ +

∫
Γ

(uu∗nxw + vu∗nyw)dΓ

= −
∫

Ω

(
∂w

∂t
− f)u∗dΩ. (4.25)

The above integral equation is nonlinear since the unknown w is multiplied by

the derivatives of the other unknown ψ. However, when the values of u(m) =

∂ψ
∂y

(m)
and v(m) = −∂ψ

∂x

(m)
at the m-th iteration obtained in step (ii) are inserted

in Equation (4.25), the nonlinearity is removed.

(iv) Finally, when we use the constant elements to discretize the boundary, and back-

ward finite difference for the time integration, one can get the matrix-vector

form of DRBEM discretized system

(H(m) +
C

∆t

(m)

)w(m+1) −G(m)∂w

∂n

(m+1)

=
C

∆t

(m)

w(m) + C(m)f (m) (4.26)
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for the vorticity as given in Equation (4.8), and the matrix-vector form of DBEM

discretized system is

(H(m) +
1

∆t
M

(m)
1 )w(m+1) −G(m)∂w

∂n

(m+1)

=
1

∆t
M

(m)
1 w(m) +M

(m)
2 (4.27)

as given in Equation (4.16). The coefficients of matrices H(m), G(m), C(m),

M
(m)
1 and M (m)

2 are the same as given in Section 4.1 in which the coefficients

ε, a1 and a2 correspond to ε = 1
Re

, a1 = u(m) and a2 = v(m).

(v) Boundary conditions for vorticity: In general, the boundary conditions for the

vorticity are not known physically. To obtain the vorticity boundary conditions,

one can use coordinate matrix F̃ given in step (i) by considering the stream

function equation (4.20) (∇2ψ = −w) as

w = −(
∂F̃

∂x
F̃−1∂F̃

∂x
F̃−1 +

∂F̃

∂y
F̃−1∂F̃

∂y
F̃−1)ψ. (4.28)

(vi) After the insertion of the vorticity boundary conditions into Equations (4.26)

and (4.27), and the system is rearranged by moving the columns of H and G

from one side to the other according to known boundary conditions. When all

unknowns are passed to the left hand side, one can obtain a linear system of

AX = D in both DRBEM and DBEM. Here, the vector X contains only the

unknown values of ∂w
∂n

on the boundary and unknown interior w values, and D

is the known right hand side vector containing the information from the m-th

time level. Once this linear system is solved, the vorticity values at the interior

nodes are obtained at the (m+ 1)-st time level.

(vii) In order to accelerate the convergence to steady-state, when Equations (4.26)

and (4.27) are solved, a relaxation parameter 0 < βw ≤ 1 is employed for

variable w as follows

w(m+1) = (1− βw)w(m) + βww
(m+1). (4.29)

(viii) Then, the values of vorticity obtained in step (vii) are used in the solution of

stream function equation (4.20), and the solution procedure is repeated starting

from the step (i). The iterative process is performed up to a preassigned time

level or a preassigned tolerance between two successive iterations is reached.
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4.2.2.1 Navier-Stokes equations in a square cavity with exact solution

As mentioned before, we first consider the time-dependent Navier-Stokes equations

governed by

∇2ψ = w (4.30)
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
=

1

Re
∇2w + f (4.31)

in a square cavity Ω = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} for which the analytical

solution is given in [70] as follows:

u = π sin t sin(2πy) sin2(πx) (4.32)

v = −π sin t sin(2πx) sin2(πy) (4.33)

when the force function f is taken as

f = −π2 cos t(cos 2πx+ cos 2πy − 2 cos 2πx cos 2πy)

+π4 sin2 t sin 2πx sin 2πy(cos 2πx− cos 2πy)

− 4

Re
π4 sin t(cos 2πx+ cos 2πy − 4 cos 2πx cos 2πy). (4.34)

The boundary conditions for ψ and w are taken from the analytical solution accord-

ingly as follows

ψ = − sin t sin2 πx sin2 πy (4.35)

w = −π2 sin t(cos 2πx+ cos 2πy − 2 cos 2πx cos 2πy). (4.36)

The numerical simulations are carried out for several values of Reynolds number

(Re = 500, 1000, 2000) to analyze the effect of Re on the flow. The streamlines and

vorticity contours obtained by DBEM and DRBEM with the fundamental solution of

CD equation are drawn, respectively, in Figure 4.6 and Figure 4.7. To discretize the

spatial domain, N = 120 constant boundary elements and L = 900 interior nodes

are used for the highest value of Reynolds number with the time step ∆t = 0.001 in

the applications of both DBEM and DRBEM. The calculated relative errors between

the numerical and exact solutions reveal that DBEM and DRBEM results are quite

compatible with the analytical solutions. Although, there is no significant difference

in the obtained DBEM and DRBEM results, the DBEM results are slightly more
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accurate than the ones obtained by DRBEM. Thus, in the subsequent problems of

fluid flows we concentrate on the solution by DBEM with the fundamental solution

of CD equation. Moreover, it is well-observed from figures that the results indicate

that the obtained flow patterns are independent of the Reynolds number for both the

stream function and the vorticity for the present fluid flow problem.

wψ
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=
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×
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×
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−
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e

=
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R
e

=
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R
e
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Figure 4.6: Effect of Re on the stream function and vorticity by DBEM: Re =

500, 1000, 2000, T = 0.05.
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Figure 4.7: Effect of Re on the stream function and vorticity by DRBEM: Re =

500, 1000, 2000, T = 0.05.

4.2.2.2 Lid-driven cavity flow

The second problem governed by the NS equations (4.20) and (4.21) with f = 0, is

a benchmark problem of fluid dynamics which is called the lid-driven cavity flow in

a square domain Ω = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. The upper wall of the

cavity is moving with a constant horizontal velocity to the left (u = −1) while other

104



three walls have no motion. The movement of the lid generates the fluid motion in

the cavity. The corresponding boundary conditions for ψ and velocities are given in

Figure 4.8. On the other hand, the unknown boundary conditions for the vorticity

are obtained by using the coordinate matrix as given in Equation (4.28) through the

application of the present numerical technique.

x

y

J

1

1

ψ = 0

u = 0

v = 0

ψ = 0

u = 0

v = 0

ψ = 0, u = 0, v = 0

ψ = 0, u = −1, v = 0

0

Figure 4.8: Geometry and the boundary conditions for the lid-driven cavity flow.

wψ

Figure 4.9: The stream function and vorticity along y = 0.9 at increasing time levels

by DBEM with the fundamental solution of CD equation at Re = 10.

To determine when the steady-state is reached at fixed Re = 10, the numerical results

are obtained at different time levels. The variations of the stream function and the

vorticity along the line y = 0.9 as time advances are illustrated in Figure 4.9. It is

observed that there is no change in the values of stream function and vorticity after

T = 0.4, which indicates that the steady-state is reached for ψ andw at approximately

T = 0.4.
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Figure 4.10: Effect of Re on the stream function and vorticity by DBEM: Re =

10, 100, 200.

In Figure 4.10, the streamlines and vorticity contours at steady-state (i.e. T = 1) are

drawn for several values of Re = 10, 100, 200. In the application of DBEM with

the fundamental solution of CD equation, N = 100 constant boundary elements and

L = 625 interior nodes are used to discretize the computational domain while the

time step is taken as ∆t = 0.01. A primary vortex formed centrally close to the

upper wall when Re = 10, moves to the left wall with an increase in Re to 100.

Moreover, as Re increases to 100 the values of stream function decrease. In addition,
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secondary vortices start to form at the lover left and right corners of the cavity with

an increase in Re, especially around Re = 500 as shown in Figure 4.11. On the other

hand, the effect of the driven lid on vorticity is more pronounced at high values ofRe.

That is, the vorticity contours are almost symmetric at Re = 10 and this symmetry is

deteriorated due to the strong vorticity gradient to the left atRe = 100 andRe = 200.

These results are compatible with the available results given in [71, 72].

However, through the solution procedure of DBEM some difficulties arise in using

the fundamental solution (u∗ = Re
2π

exp(−Re
2

(urx + vry))K0(sr)) which contains the

velocity components in the exponential terms, i.e. the unknowns u and v. Moreover,

velocity components u and v are appearing as nonlinearity in the convection terms.

Thus, the DBEM results which are in quite good agreement with results in [71, 72],

can be obtained for the Reynolds number up to 200 when the iterative scheme is

initiated with an arbitrary initial value for the vorticity. However, if we start with a

well-educated initial value for the vorticity, which is obtained by using DRBEM with

the fundamental solution of Laplace equation, one can obtain reasonably well results

for higher values of Reynolds number, e.g. Re = 500, as shown in Figure 4.11.

wψ

R
e

=
50

0

Figure 4.11: The streamlines and vorticity lines by DBEM when Re = 500.

4.2.2.3 Natural convection flow

In the case of heat flux, we need to extend the Navier-Stokes equations (given in

Equations (4.20-4.21)) by adding the energy equation. Thus, the governing equations

of the natural convection flow are given as (see Equations (1.29)-(1.31)) [15, 73]
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∇2ψ = −w (4.37)
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= ∇2T (4.38)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
= Pr∇2w +RaPr

∂T

∂x
(4.39)

where T , Pr and Ra are the temperature, Prandtl number (see Equation (1.32)) and

Rayleigh number (see Equation (1.33)), respectively. The energy equation is in the

same form with the vorticity transport equation; and hence the discretization of it by

DBEM can be performed in the same manner as given in Section 4.1.2.

x

y

1

1

T = 0

u = 0

v = 0

T = 1

u = 0

v = 0

Ty = 0, u = 0, v = 0

Ty = 0, u = 0, v = 0

0

Figure 4.12: Geometry and the boundary conditions for the natural convection flow.

The boundary conditions of stream function and temperature are taken as

ψ = 0,
∂ψ

∂x
= 0, T = 1 at x = 0, 0 ≤ y ≤ 1, (4.40)

ψ = 0,
∂ψ

∂x
= 0, T = 0 at x = 1, 0 ≤ y ≤ 1, (4.41)

ψ = 0,
∂ψ

∂y
= 0,

∂T

∂y
= 0 at y = 0, 1, 0 ≤ x ≤ 1 (4.42)

while the boundary conditions of vorticity are derived from the coordinate matrix as

given in Equation (4.28). The computational domain and the corresponding boundary

conditions of the natural convection flow are displayed in Figure 4.12.

The iterative solution procedure:

• First, we solve the stream function equation (4.37) by DRBEM with the funda-

mental solution of Laplace equation to obtain ψ(m) by using w(m).
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• At each iteration, u and v are computed at the m-th level by means of radial

basis functions and are inserted into the energy equation (4.38) and vorticity

transport equation (4.39) to remove the nonlinearity of these equations caused

by the variable coefficients of convection terms. As a result of this insertion, the

coefficients of Equation (4.38) and Equation (4.39) become constants at each

node i and time level m.

• Further, energy equation (4.38) is solved by DBEM with the fundamental so-

lution of CD equation as explained in Section 4.1.2; and as a result T (m+1) is

obtained.

• The vorticity transport equation (4.39) involves the x-derivative of the temper-

ature (∂T
∂x

) which is computed by using the forward difference approximation

as follows
∂T

∂x
=
Ti+1,j − Ti,j

∆x
(4.43)

where ∆x is the increment in the x-direction. Then, we solve the vorticity

transport equation by DBEM with the fundamental solution of CD equation

and we get w(m+1), as explained in Section 4.1.2.

• When we obtain w at the (m + 1)-st time level, we use this value in the pro-

ceeding iterations to obtain the new value of the stream function in Equation

(4.37). This process is repeated iteratively until we reach the desired time level

or the preassigned convergence tolerance.

The streamlines, vorticity and temperature contours obtained by DBEM are drawn in

Figure 4.13 for several values of Ra(= 103, 104, 105) at T = 3 with ∆t = 0.01. In

computations, N = 120 constant boundary elements and L = 900 interior nodes are

used for the highest value of Rayleigh number. A circular vortex formed at the center

of the cavity for streamlines atRa = 103 extends diagonally forming an elliptic shape

with an increase inRa up to 105. The isotherms which are almost vertical through the

cavity tend to become horizontal especially at the center of the cavity asRa increases,

which indicates that the heat transfer is dominated by convection. Moreover, the

vorticity becomes stagnant at the center of the cavity for higher values of Ra, which

results in a boundary layer formation along the vertical walls. Similarly, one can
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observe the boundary layer formation along the vertical walls in isotherm profiles as

well with an increasing Ra. It is also important to note here that obtained results are

in good agreement with the results given in the literature [15, 73, 74].
ψ w T

R
a

=
10

3
R
a

=
10

4
R
a

=
10

5

Figure 4.13: Effect of Ra on the stream function, vorticity and isotherms by DBEM:

Ra = 103, 104, 105.

The results given in Figure 4.13 are obtained by taking the initial guess for the

unknowns from the results of DRBEM solution using the fundamental solution of

Laplace equation. If the iteration starts with an almost zero initial guess some diffi-

culties arise in the use of the fundamental solution containing the velocity components

in the exponential terms which cause nonlinearity through the convection terms.
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4.2.2.4 Channel flow

The NS equations (4.20) and (4.21) with f = 0 is consider here for the fluid flow

driven not in a square cavity but in an infinitely long channel formed by two parallel

plates i.e. Ω = {(x, y) : 0 ≤ x ≤ L, 0 ≤ y ≤ 1} where L is a constant as shown in

Figure 4.14. The corresponding boundary conditions of ψ on all the walls and of w

for only three walls are given in Figure 4.14. The unknown boundary conditions for

w along the upper wall are also obtained by using the coordinate matrix as given in

Equation (4.28).

x

y

L

1

∂ψ

∂n
= 0

∂w

∂n
= 0

ψ = y

w = 0

ψ = 0, w = 0

ψ = 1

0

Figure 4.14: Geometry and the boundary conditions for the channel flow.

The numerical results for the channel flow are obtained at steady-state by using

DBEM with the fundamental solution of CD equation. The variations of ψ and w

along the horizontal lines y = 0.9 and y = 1, are displayed, respectively, in Figure

4.15 for Re = 10 and in Figure 4.16 for Re (= 10, 50). The value of stream func-

tion starts from along 0.8, and then it increases slowly up to 1 for both Re = 10 and

Re = 50. On the other hand, the vorticity shows a rapid decrease in magnitude up to

5 for Re = 10 and up to 10 for Re = 50. These are the well known characteristics of

ψ and w [75], and they could be captured by DBEM with the fundamental solution

of CD equation. It is also observed that the channel length can be taken longer, i.e.

L = 10, for the small values of Re = 10 while one needs to take a channel with

shorter length, i.e. L = 5 for Re = 50, to obtain reasonable results for the DBEM

solution of the channel flow. Thus, to be able to see the variation of the solution with

respect to Reynolds number, the streamlines and isotherms are further drawn in the
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channel with L = 5 for Re = 10, 50 in Figure 4.16. It is observed that no significant

change occurs in streamlines as Re increases, whereas the drop observed in the value

of vorticity at Re = 10 is reduced with an increase in Re to 50.

w

ψ

Figure 4.15: Vorticity (at y = 1) and stream function (at y = 0.9) by DBEM: Re =

10.

ψ w

R
e

=
10

R
e

=
50

Figure 4.16: Stream function (at y = 0.9) and vorticity (at y = 1) by DBEM: Re =

10, 50.
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4.2.2.5 MHD Natural Convection in a Square Cavity Filled with a Porous

Medium

Finally, we consider the MHD natural convection flow in a square enclosure filled

with a saturated porous medium. The geometry of the problem under consideration

is illustrated in Figure 4.17. The left vertical wall of the cavity is heated while the

right vertical wall is cooled, and the top and bottom horizontal walls are taken as to be

adiabatic (i.e. thermally insulated). The external, uniform magnetic field is applied

vertically with an intensity B0.

x

y

1

1

ψ = 0

T = 0

ψ = 0

T = 1

ψ = 0, ∂T
∂y = 0

ψ = 0, ∂T
∂y = 0

B0

0

Porous Medium

Figure 4.17: Geometry and the boundary conditions for the problem.

In this problem,

• the flow is incompressible and laminar which is assumed to obey Darcy law1.

• the porous medium and fluid have a thermal equilibrium and also has isotropic

and homogenous permeability.

• all of the physical properties of the fluid are assumed to be constant except

the density variation in the body force term in the momentum equation which

employs the Boussinesq approximation.

Under these assumptions, the dimensional conservation equations for the MHD nat-

ural convection flow can be written as [77, 78]:
1 Darcy law is an equation that defines the ability of a fluid to flow through a porous media [76].
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Continuity Equation :
∂u

∂X
+
∂v

∂Y
= 0 (4.44)

Momentum Equations : u = −K
µ

∂p

∂X
+
B2

0Kσ

µ
u, (4.45)

v = −K
µ

∂p

∂Y
+
T̄ − Tc
ν

Kgβ̄ (4.46)

Energy Equation : u
∂T̄

∂Y
+ v

∂T̄

∂X
= α(

∂2T̄

∂X2
+
∂2T̄

∂Y 2
) (4.47)

where µ, B0, σ, α, ρ, cp and Tc represent the dynamic viscosity, intensity of the

uniform magnetic field, electrical conductivity, thermal diffusivity, density, specific

heat at constant pressure and cold wall temperature, respectively. When the pressure

terms in the momentum equations (4.45) and (4.46) are eliminated, we obtain

∂u

∂Y
− ∂v

∂X
=
B2

0Kσ

µ

∂u

∂Y
− Kgβ̄

ν

∂T̄

∂X
(4.48)

in which the K, g, β̄ and ν are permeability of porous media, gravity, coefficient of

thermal expansion, kinematic viscosity, respectively. The boundary conditions are

taken as:

at X = 0, u = 0, v = 0 T̄ = Th at X = L, u = 0, v = 0, T̄ = Tc (4.49)

at Y = 0, u = 0, v = 0,
∂T̄

∂y
= 0 at Y = L, u = 0, v = 0,

∂T̄

∂Y
= 0. (4.50)

By defining u = ∂ψ
∂Y

and v = − ∂ψ
∂X

the continuity equation (4.44) is automatically

satisfied. By the use of non-dimensional parameters

x =
X

L
, y =

Y

L
, ψ =

ψ∗

α
, T =

T̄ − Tc
Th − Tc

(4.51)

the dimensionless governing equations of the MHD natural convection flow under the

effect of a vertically applied magnetic field can be obtained as [79]

∇2ψ = −Ra∂T
∂x
−M2∂

2ψ

∂y2
(4.52)

∇2T = u
∂T

∂x
+ v

∂T

∂y
(4.53)
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where

Darcy-modified Rayleigh number: Ra =
gβ̄∆TKL

να
, (4.54)

Hartmann number for porous medium: M2 =
B2

0Kσ

µ
. (4.55)

To obtain the solution, Equation (4.53) is solved by DBEM with the fundamental

solution of CD equation while stream function equation (4.52) is solved by DRBEM

with the fundamental solution of Laplace equation. The stream function equation

(4.52) involves the x derivative of the temperature ∂T
∂x

and is computed by forward

difference approximation (see Equation (4.43)).

Tψ

M
=

50
M

=
70

Figure 4.18: Effect of M on the stream function and temperature by DBEM: M =

50, 70, Ra = 100.

To be able to observe the temperature distribution and flow patterns, the isotherms

and streamlines are drawn in Figure 4.18, respectively for M = 50 and M = 70,

when Ra = 100. Following the temperature difference between the hot left and cold

right walls, a negative vortex is formed in the fluid motion by the effect of buoyancy

115



forces. As M increases the streamlines decrease in magnitude which is the well-

known flattening tendency of the flow in the presence of external magnetic field. On

the other hand, there is no significant change on the isotherm profiles as M increases,

that is, isotherms are almost vertical line showing the dominance of conduction in the

heat transfer.

4.3 Summary of the Obtained Results in Chapter 4

In this chapter, numerical solutions of CD type equations with variable coefficients

are obtained by using DBEM and DRBEM with the fundamental solution of CD equa-

tion. As mentioned before, the main difference between Chapter 3 and present chapter

is that the former investigates the CD type equations with constant coefficients while

in the latter the CD type equations with variable coefficients are considered. The ob-

tained results are illustrated for two kinds of test problems, namely heat conduction

and fluid flow problems, for which some notes can be written down as follows:

• For the heat conduction problems involving variable coefficients of space vari-

able, the use of both DBEM and DRBEM with the fundamental solution of CD

equation results in reasonably well compatible results with the exact solutions.

• It can also be said that for the fluid dynamics problems governed by either NS

equations or NS and energy equations, the DBEM with the fundamental solu-

tion of CD equation can be performed as an alternative numerical technique

which gives quite well results for small and moderate values of problem phys-

ical parameters, namely Reynolds, Rayleigh and Hartmann numbers for each

test problems.
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CHAPTER 5

CONCLUSION

In this thesis, the time-dependent CDR type equations with constant and variable

convective coefficients are solved numerically. The spatial derivatives are discretized

by two BEM techniques, namely DRBEM and DBEM, while the implicit backward

finite difference is employed for the time integration. The application of DRBEM

and DBEM with the fundamental solution of CDR and mH equations are presented

for several fluid flow problems.

First, we provide numerical solutions of time-dependent CDR equations with con-

stant convective coefficients. DRBEM and DBEM are used to obtain the numerical

solution with the fundamental solutions of CDR and mH equations. We validate the

accuracy of our numerical simulations by comparing them with the exact solution of

the CDR equation (commonly known as the concentration problem). The results in-

dicate the followings: (i) the fundamental solution of CDR equation provides a good

agreement with the exact solution offering an acceptable degree of accuracy for both

DBEM and DRBEM; and (ii) the fundamental solution of mH equation yields good

accuracy for only DBEM in the sense of decreasing diffusion parameter which causes

convection-dominated system.

Moreover, as a CD type equation with constant coefficients, transient magnetohydro-

dynamic flow problems in ducts are solved by using DRBEM and DBEM with the

aforementioned fundamental solutions. The MHD duct flow problems are studied

either with insulated or conducting walls with variable conductivity, under the in-

clined or vertically applied magnetic field with no-slip walls, and in ducts with flat or

perturbed walls. Numerical solutions are illustrated for several values of Hartmann

number M , inclination angle β and conductivity parameter λ, and well-known be-
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haviors are observed. The results indicate that DBEM with fundamental solutions of

both CD and mH equations performs quite well even for higher values of Hartmann

number M . Yet, DRBEM with the fundamental solution of CD equation gives com-

patible results for rather small values of M . Lastly, for some cases, DRBEM with

the fundamental solution of mH equation may fail to yield reasonable results even for

small values of M .

Moreover, when the effect of a perturbed boundary on the numerical results is exam-

ined by using DBEM and DRBEM with the fundamental solution of CD equation,

both techniques provide similar results. That is, additional vortices occur at small

values of Hartmann number (e.g. M = 5, 10) and these vortices move upward with

an increase in the perturbation parameter ξ. For higher values of M , the side layer

formations are observed, and the fluid becomes stagnant at the center of the cavity.

Therefore, the effect of the perturbation can be well observed for smaller values of

M(≤ 30). On the other hand, current lines (equal induced magnetic field lines) oc-

cupy all the region with a good harmony with the perturbed boundary.

In the second part of the thesis, the nonlinear CD type equations with variable con-

vective coefficients are solved by the proposed numerical techniques with the funda-

mental solution of CD equation. These variable coefficients can contain either only

the space variables or the unknowns as well. When they include the unknowns, the

CD equation become nonlinear. Thus, as applications of the time-dependent fluid

dynamics problems governed by NS equation or NS and energy equations, such as

lid-driven cavity flow, natural convection flow, MHD natural convection flow and

channel flow, are solved by DBEM with fundamental solution of CD equation. It is

observed that the well-known behaviors of the fluid flow and temperature distribution

are well-captured for moderate values of Reynolds, Rayleigh and Hartmann numbers.

To conclude, it can be said that both DBEM and DRBEM, the techniques within the

scope of the thesis, especially with the fundamental solution of CD equation, and

in some cases with the fundamental solution of mH equation, are effective numeri-

cal techniques for the solution of time-dependent CD type equations governing some

fluid dynamics problems in the presence/absence of magnetic field. Reasonably well

results which capture the physical behavior of the fluid flow are obtained for moder-
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ate/high values of problem parameters.

As a continuation of the thesis, the problem of nanofluid/ferrofluid flows and heat

transfer problems, which are also governed by nonlinear CD type equations, can be

considered and solved by using the DBEM with the fundamental solution of CD equa-

tion. Moreover, the study can be extended by using DBEM with time-dependent fun-

damental solution which is called time-domain boundary element method (TDBEM)

for the solution of the problems considered in the thesis.
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