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ABSTRACT

AN EMPIRICAL EVIDENCE FOR GENERALIZED SHRINKAGE METHODS:
APPLICATION OF BAGGING IN DAY-AHEAD ELECTRICITY PRICE
FORECASTING AND FACTOR AUGMENTATION

OZEN, KADIR
M.S., Department of Economics

Supervisor : Assist. Prof. Dr. Dilem Yildirim

June 2020, 67 pages

Fundamental dynamics behind electricity prices are multi-dimensional and elabo-
rate. A popular approach to forecasting electricity price is to utilize large number of
predictors. In this study, using the day-ahead electricity price data from commonly
studied markets of five major series and GEFCom2014 data, a variant of shrinkage
method, Bootstrap Aggregation (bagging) is proposed to incorporate information
from available predictors. Bagging manifests itself as a computationally simpler
alternative to commonly used Least Absolute Shrinkage and Selection Operator
(lasso) in multivariate EPF context and even shows superior forecasting ability in
some markets. Moreover, considering the significant dependence of intra-day elec-
tricity prices, we also propose factor augmentation to exploit this dependence. The
inclusion of latent factors, selected via Bayesian Information Criterion, improves
ability to forecast in multivariate modeling framework and in some cases even out-
perform sophisticated shrinkage methods as measured by the Diebold-Mariano test.
Keywords: Bagging, Shrinkage methods, Electricity price forecasting, Factor mod-

els
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Oz

GENELLESTIRILMIS SHRINKAGE MODELLERI ICIN BIR AMPIRIK
BULGU: BAGGING YONTEMININ GUN ONCESI ELEKTRIK
FIYATLARININ TAHMININE UYGULANMASI VE FAKTOR MODELLERI
ILE DESTEKLENMESI

OZEN, KADIR
Yiiksek Lisans, Iktisat Boliimii
Tez Yoneticisi : Dr. Ogr. Uyesi Dilem Yildirim

Haziran 2020, 67 sayfa

Elektrik fiyatlarin olugsmasinda temel degiskenler ¢ok boyutlu ve kapsamlh. Cok
sayida aciklayici degisken ile elektrik fiyatlarmin tahmin edilmesi gliniimiizde yaygin
kullanilan yaklagimlardan biri. Bu calismada, literatiirde siklikla kullanilan ana
elektrik piyasalarinda beg farkli seri ve GEFCom2014 yarigsma verisi kullanilarak,
bir shrinkage yontemi olan Bootstrap Aggregation (bagging) yontemiyle, mevcut
aciklayic1 degiskenlerdeki bilgilerin elde edilmesi 6nerilmektedir. Bagging yontemi,
multivariate elektrik fiyat tahmini literatiiriinde yaygin olarak kullanilan bir diger
yontem olan Least Absolute Shrinkage and Selection Operator (lasso)’e gore ¢ok
daha uygulamasi basit ve hatta bazi piyasalarda daha iyi tahmin performans goster-
mesiyle 6ne gikmaktadir. Tlaveten, glin igerisindeki elektrik fiyatlarinin birbiriyle
olan yiiksek bagimliligini modellere yansitmak adina faktor destekli modeller 6ner-
ilmektedir. Bayesian Kriteri ile secilen faktorlerin modellere eklenmesi modellerin
performanslarini iyilegtirdigi gibi, baz1 durumlarda geligmig shrinkage yontemlerinden
bile daha iyi sonuglar verdigi Diebold-Mariano testi ile gosterilmistir.

Anahtar Kelimeler: Bagging, Shrinkage, Elektrik fiyat tahmini, Faktor modelleri
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CHAPTER 1

INTRODUCTION

Forecasts of electricity prices are necessary inputs for number of institutions span-
ning from power plant operators to market operators and from transmission system
planners to power portfolio managers. Over the past decade, sophisticated fore-
cast models are derived for the day-ahead electricity prices. A detailed review is
given by Weron (2014). Number of shrinkage methods are used to estimate complex
models with explanatory variables of well above 200. Among them, Least Absolute
Shrinkage and Selection Operator (lasso) due to Tibshirani (1996), was applied
very elegantly by Ziel et al. (2015) in EPF context outperforming several compet-
itive models and since then literature has a wide consensus on it. Ludwig et al.
(2015) focuses on German electricity spot prices with weather data to formally se-
lect relevant weather stations via lasso as well as Random Forests. Uniejewski et al.
(2016) concentrates on lasso together with stepwise regression and ridge regression.
Ziel (2016) considers again lasso to capture the intra-day dependencies of prices.
Ziel (2017) estimates a number of regression models via lasso to make inferences on
the effect of renewable energy forecasting errors on intra-day electricity spot prices.
Lasso is also used to compare the effects of sixteen different variance stabilizing
transformations used in the EPF literature by Uniejewski et al. (2018). In an ex-
tensive empirical forecasting exercise to judge the performances of univariate vs.
multivariate modelling frameworks Ziel and Weron (2018) argues that, lasso is the
best model in both modelling frameworks among various other benchmark models
including Naive, Expert, AR Meanhow, VAR. Recently, Uniejewski et al. (2019) ap-
plies lasso in intra-day electricity forecasting for the first time and concluding that
it is superior to two commonly implemented benchmark models denoted by Naive

and ARX.



Nonetheless, despite its extensive application in the literature and highly improved
forecast accuracy, lasso is not the only available shrinkage method nor does it come
without disadvantages. Need for a dedicated numerical optimization procedure
and considerable dependency on the regularization parameter are clearly seen when
looked at the glass as half full. Indeed, recent research by Stock and Watson (2012)
characterizes that some forecasting methods including Pretest and Information Cri-
terion Methods, Normal Bayes Methods, Bayesian Model Average, Empirical Bayes
and Bootstrap Aggregation (bagging) asymptotically all these methods have the
same “shrinkage” representation, in which the weight on a predictor is the ordinary
least-squares (OLS) estimator times a shrinkage factor that depends on the t-statistic
of that coefficient. Given that it is asymptotically a shrinkage forecast (Huang and
Lee (2010); Jin et al. (2014)), bagging manifests itself as a computationally simpler
alternative to commonly used lasso in the EPF literature to estimate the forecast

models which incorporate large set of predictors.

When many predictors are available in a forecasting exercise, selection of appropriate
subset of statistically significant explanatory variables is notoriously a long-standing
question of econometric forecasting literature. Traditional econometric model selec-
tion procedures such as t-statistics or other data dependent methods like Akaike and
Bayesian Information Criterions all introduce instability due to the model selection
decision rules. As first explained by Breiman (1996a,b), bagging is a natural method
to eliminate the side-effects of unstable decision rules and to harvest as much infor-
mation as possible from available predictors. Theoretical advancements of bagging
are well established. See Hall et al. (1995); Bithlmann and Yu (2002); Andrews
(2004); Friedman and Hall (2007); Lee et al. (2010) among others. Lee and Yang
(2006) extends the application of bagging to time series setting with asymmetric
cost functions in a forecasting exercise of predicting signs and quantiles together
with different bagging combination weights in addition to baseline version of equal
weighting. In a recent research, Jin et al. (2014) elaborates on theoretical framework

of time series applications of bagging, in particular, dependent time series datal.

!Bagging was originally developed by Breiman (1996a,b) for independent and identically dis-



Empirical studies on bagging in forecasting macroeconomics variables is also intrigu-
ing. See Yu (2011); Bergmeir et al. (2016); Dantas and Cyrino Oliveira (2018) among
others. Inoue and Kilian (2008) shows that bagging has similar forecast performance
on U.S. Consumer Price Inflation using large number of macroeconomic series as ex-
planatory variables, among many other sophisticated shrinkage methods including
Bayesian shrinkage predictor, the ridge regression predictor, the iterated lasso pre-
dictor, or the Bayesian model average predictor based on random subsets of extra
predictors. Rapach and Strauss (2010) applies bagging elegantly to predicting U.S.
Employment Growth data with 30 potential predictors and finds motivating results
in name of bagging against various forecast combination methods. Kim and Swanson
(2014) carries out a “horse-race” on forecast of macroeconomic variables between
number of forecasting models of shrinkage techniques including bagging, diffusion
index models, factor models and some combination of different groups of forecast
models. Despite its broad application in macroeconomic forecasting literature, to
the best of our knowledge, bagging is never discussed in energy economics except
a recent research of Zhao et al. (2017), which brings bagging into energy literature
in the framework of WTI crude oil price forecasting using 198 economic series as
explanatory variables. Considering both theoretical advancements of bagging in the
time series analysis and successful empirical applications, bagging manifests itself as

a promising tool for energy forecasting area.

Our contribution to electricity price forecasting is in two dimensions. First, we con-
sider that how well the approach of baseline bagging forecast extends to the context
of electricity prices in a multivariate setting. Using the day-ahead electricity price
data from commonly studied markets of five major series and GEFCom2014 data,
our empirical results suggest that, in parallel to the generalized shrinkage theory
of Stock and Watson (2012), bagging forecast results are as accurate as lasso and
even outperforms it in some markets. One important drawback of the lasso is that

its high dependence on regularization parameter. This parameter determines the

tributed datasets. Theory of bagging was later extended to dependent data starting with “moving
block bootstrap” and “block-block bootstrap”, see Hall et al. (1995) and Andrews (2004).



shrinkage rate of the explanatory variables and even though it can be interpreted
in various ways, it has no apparent economical meaning. On the other hand, bag-
ging’s forecasting performance relies on simple ¢-statistics which is the indicator
of the statistical significance of the explanatory variable for which it is calculated.
In any econometric model, corresponding t-values are used almost unanimously for
significance levels of 1%, 5% and 10% and accepted as reasonable values. In this
work, we share the forecasting results of bagging for all significance levels mentioned
above and continuously find 1% significance level as the best performing model, in-
terpreted as only “highly significant” explanatory variables should be included in
electricity price forecasting models to obtain better forecasts. Another drawback of
lasso is that it needs rather sophisticated optimization algorithms which may not be
readily available to the forecaster. Whereas, bagging is simple to implement in any

commonly used software routine 2.

Our second contribution relates the intra-day hourly dependencies of day-ahead elec-
tricity prices to latent factors estimated from a panel of day-ahead prices by means
of augmenting existing models with that factors. Since factor augmentation cap-
tures the intra-day price dependencies as was studied by Maciejowska and Weron
(2015, 2016), we augment the traditional models with factors estimated using prin-
ciple components from the panel of intra-day prices selected via in-sample Bayesian
Information Criterion. We find that in half of the markets, factor augmented expert
model (fEXPERT) gives comparable results with the shrinkage methods. Expert
models employed with factors capture the intra-day price effects (otherwise missing
in multivariate modelling framework for expert models) and this in turn results in
superior forecast performances. We also apply the factor augmentation exercise to
multivariate large scale models with many explanatory variables. Similar results
are obtained compared to the simple model (i.e. not factor-augmented version),
proving that large scale models with many explanatory variables already contain

hourly dependencies (and other information contained in factors) which also sup-

2The replication material and the forecasting toolbox in Gauss Aptech Programming language

is available upon request by authors.



ports the findings of Ziel (2016). Overall, these findings suggest that parsimonious
models, used in EPF context should be augmented with latent factors such that
while they are is still abstract and interpretable they also capture the hourly depen-
dency dimension of the electricity prices. Furthermore, factor augmentation is an
important alternative to the univariate modeling because one of the most upcoming
feature of univariate modeling over its multivariate counterpart is its ability to cap-
ture the intra-day hourly dependencies which, at least to some extend, is missing
in the multivariate models where now we address this inadequacy through factor

augmentation.

Remaining part is organized as follows. In section 2, we discuss the details of our
data and data transformation for day-ahead hourly electricity prices. Then, in sec-
tion 3, we construct econometric models including bagging and factor-augmented
models and discuss their properties. In this section we also consider forecast per-
formance evaluation techniques. Section 4 presents forecast performances of models

and occurrence of variables. In section 5, we offer concluding thoughts.



CHAPTER 2

DATA

Our full sample is based on hourly data for 6 major electricity day-ahead price series,
see Table 1. The GEFCom2014 dataset covers a 3-year period from January 1, 2011
to December 17, 2013, the remaining datasets cover a 6-year and 9-month period
from January 1, 2013 to September 19, 2019. Five out of six datasets are from five
major markets (hereby Markets) including Nordic Power Exchange Nord Pool for
system price (NP.SYS) and for United Kingdom (NP.N2EX), Commonwealth Edison
(COMED) zone in the PJM market from United States (PJM.COMED), OTE and
OMIE which manage the Czech Republic (OTE.CZ) and Iberian market (OMIE.SP),
respectively. Finally, the last series comes from the price track of the Global Energy
Forecasting Competition 2014 (GEFCom2014). This series is included for allowing a
cross comparison between forecast models utilized in different studies on flourishing
literature of electricity price forecasting. The source of the data is not publicized by
the organizers of the competition. Reader is referred to Hong et al. (2016) for details
of this series. Price series (excluding GEFCom2014) are pre-processed to account
for missing values and changes to/from daylight-saving-time as given in Uniejewski
et al. (2016). The missing values (including the clock change in March) are set to
average of two neighbor hours as well as the doubled hours (including the clock

change in October) are averaged and substituted for the corresponding hour.

We consider 1470-day (ca.4-year) and 350-day (ca.l-year) out-of-sample period for
the evaluation of day-ahead electricity price forecast for markets and GEFCom2014,
respectively. This leaves, as estimation window, 983-day (ca.3-year) and 732-day
(ca.2-year) for markets and GEFCom2014. The market’s out-of-sample period cov-
ers from September 11, 2015 to September 19, 2019 whereas GEFCom2014’s is from
January 2, 2013 to December 17, 2013. Estimation is realized using a rolling es-

timation window following the previous literature. Rolling estimation window is



also beneficial for Diebold and Mariano (1995) test (abbreviated DM) of predictive
ability which is used extensively in the EPF literature to statistically judge the per-
formance of competing forecast models and also utilized in this study. If expanding
estimation window is employed, in the case of encompassing forecast models, i.e
when the null hypothesis of equal predictive ability is true, since the forecast errors
from competing models are equal and perfectly correlated, both numerator and de-
nominator of the DM test converges to zero, as estimation sample grows . Virtue
of the rolling window is due to the fact that number of data in estimation period
always remains finite as sample size grows which renders the above pathological case
invalid even if null of equal predictive ability is true. For further details we refer to

Giacomini and White (2006) and Diebold (2015).

Recently, though, various other estimation window selection strategies are investi-
gated as well as, in cooperation with forecast pooling approaches. Marcjasz et al.
(2018) underlies that longer windows allow for more precise estimation of forecast
models but short windows adapt changes well. They exploit the trade-off between
these two approaches and together utilizing the forecast combination methods they
propose a W AW (T') approach. Hubicka et al. (2019) further elaborates on this idea
and proposes some more specific estimation windows. Application of bagging in
different estimation windows could be an interesting forecasting exercise and is left

as a subject of future research.

Table 1: Summary of the day-ahead electricity price series

Electricity Market Acronym #of Data Points 008 Source

Nord Pool (system price) NP.SYS 58872/2453 35280/1470  nordpoolgroup.com
Nord Pool,UK NP.N2EX 58872/2453 35280/1470  nordpoolgroup.com
PJM,USA PJM.COMED 58872/2453 35280/1470  dataminer2.pjm.com
OTE price for the Czech Republic OTE.CZ 58872/2453 35280/1470 ote-cr.cz
OMIE price for Spain OMIE.SP 58872/2453 35280/1470 m.omie.es
GEFCom?2014 competition data GEFCom?2014 25968/1082 8400/350 Hong et al. (2016)

Note: The table reports the summary of the power exchange data set considered. All
series are in hourly resolution. Number of Data Points and length out-of-sample
(00s) is given for univariate/multivariate setting, respectively. The GEFCom201/
dataset covers a 3-year period from Jan 1, 2011 to Dec 17, 2013, the remaining
datasets — a 6-year and 9-month period from Jan 1, 2013 to Sep 19, 2019. NP.N2EX
price is in terms of GBP/MWh, PJM.COMED and GEFCom2014 is in terms of
USD/MWh and remaning series are in terms of EUR/MWh.



2.1 Data transformation

Electricity hourly price series exhibit severe spikes and their marginal distributions
can be quite different from normal distribution. This renders the statistical inference
of econometric models estimated using the raw series prone to severe problems and,
in turn, results in inferior forecasting performances. In particular, among other fore-
casting methodologies, bagging estimation relies on simple ¢-statistics to determine
the statistically significant explanatory variables. In this sense, inference process ef-
fects the results of bagging forecasts much more compared to other model estimation

and forecasting techniques.

There is a vast literature on data transformation in time series literature. Even
robust estimation techniques are proposed to be used in raw data which eliminate
the need for data transformation (Huber and Ronchetti (2009)). A thorough ex-
amination of data transformation techniques utilized in EPF literature comes from
Uniejewski et al. (2018). Among the proposed data transformation methods, the
logarithmic transform is one of the simpler methods which answers the need of spike
elimination and variance stabilization but it’s major drawback is that it cannot be
applied to the series where some of the prices go down to negative which is an
increasingly observed phenomena in electricity markets®. Due to the merit order ef-
fect of increased renewable sources, some base-load power plants bid negative prices
during off-peak times which is more advantageous compared to ramping down to
zero output in terms of technical operational constraints. We therefore employ, in
our empirical study in Section 4, another method called area (or inverse) hyperbolic
sine transformation which was also applied elegantly by Ziel and Weron (2018).
Define Yy, as day-ahead price at day d and hour h and y4 5, as area hyperbolic sine

transformed version of that:

3See Uniejewski et al. (2016) for an application of logarithmic transform in EPF.



asinh(z) = log(x + Va? 4+ 1) (1)

Yon—a
~) (2)

Ya,n = asinh(
where © = %{YC”1 —a}, a and b are called shift and scale parameter, respectively.
Following the Ziel and Weron (2018) and Uniejewski et al. (2018) we set the shift
parameter equal to median of the estimation sample and the scale parameter equal
to the sample median absolute deviation (MAD) around the sample median adjusted
by a factor for asymptotically normal consistency to the standard deviation. This
factor is ﬁ ~ 1.4826 where z(.75 is the 75% quantile of the normal distribution. It

is also noted that as|z| — oo asinh(z) asymptotically converges to sign(z)log(2|x|).

Models are estimated using the asinh transformed series and forecasts are calcu-
lated. Once the forecast values are obtained, we apply inverse transform (hyperbolic
sine transform) and compute the forecasted prices. Define ¢4 as the forecast of
area hyperbolic sine transformed price at day d and hour h and Ydﬁ as the inverse

transformed version of that:

Yd7h =b- Sinh(gd,h) +a (3)



CHAPTER 3

ECONOMETRIC METHODOLOGY

We consider multivariate modeling framework in which each hour of the day h =
1,...,24 is treated as a separate series and forecast next day’s day-ahead price for a
given hour h, i.e. the forecast horizon is equal to one. In what follows, denote the
complete available sample of T observations and divide it into an in-sample portion
of first R observations (estimation window) and out-of-sample period of remaining
P observations and form a series, comprised of P observations of rolling window

out-of-sample forecasts. We denote this series by {Yd +17h|d}§:—}12.

In terms of the exercises we carry out, our value added will be in introduction of
bagging estimation method in electricity price forecasting and factor augmentation
to exploit the intra-day dependencies of prices. This requires a comprehensive com-
parison of the results of newly introduced methods with commonly used and best
performing methods in existing EPF literature. In below sections we explain them

in detail.

3.1 Seasonal dummies

We define two types of dummy variables used in the econometric models. First one
is the day-of-the-week dummy for [, where [ stands for the days of the week from 0
(Sunday) to 6 (Saturday):

1,  if d is the I-th day of the week, (4)
dowﬁhh =
0, oth. (5)

Next one is the hour-of-the-week dummy for [, where [ stands for the hours of the

week from 1 (Monday, h = 1) to 168 (Sunday, h = 24):

10



1,  if 24(d — 1) + h is the I-th hour of the week, (6)
howd,h =
0, oth. (7)

3.2 Models

Let us define a simple linear regression model represented in matrix form. Let
V), denote an R-vector of observations for a given estimation window of R, ) =

!/
Ydh - yd+R17h] , X denote an R x k matrix that consists of columns of ex-

!/

planatory variables, X, = [X’d h , where X 5, is a k-vector of trans-

XZHR—l,h
formed explanatory variables at day d for a given hour h, and w; denote R-vector
with typical element €45, d = 1,2,...,T — R. Then matrix notation of econometric

model used in this study is given below:

Vn = XnBy + up (8)

where 3,, is a k-vector of coeflicients with typical element 3;, ¢ =1,2,... k.

We compute forecast of day-ahead electricity prices using the best performing and
well-known existing models in the EPF literature, as well as bagging and factor
augmented models, introduced in this study. Suppose we are interested in forming a
forecast of Y15, at time d. The procedure begins with the estimation of the general
model given in Eq.(8) for the initial estimation window of fixed length of 983 for
Markets and 732 for GEFCom2014. Using the estimated coefficients we substitute
the most up-to-date values of explanatory variables and forecast the hourly price
of first day of out-of-sample period for all 24 hours by setting the error term, wuy,
equal to its expected value of zero. This returns ;1 p; for ¢ = R and substituting
this into Eq. (3) one obtains Yt+1,h\t- Then, keeping the window lengths same, the
window is rolled forward by one day and the second day of out of sample prices are
forecasted. This procedure is repeated until the forecasts of last day of out-of-sample

period (September 19, 2019 for Markets and January 1,2013 for GEFCom2014) are

11



computed. The procedure applies to all as given in the following sections?.

3.2.1 Meanpow

This is a conventional benchmark model in the EPF literature. In this model,
forecast of the day d and hour h is estimated computing the weekly mean of corre-

sponding hour-of-week in the estimation window. meanyqy takes the form:

168

yin =Y Bihowl, +ean (9)
j=1

where €4, is an error term. It is also possible to write “day-of-the-week dummy”
version of this model utilizing Eq.(4) where forecast of the day d and hour h is
estimated computing the daily mean of corresponding days for a given hour. In
this study we consider first version since it has a superior forecasting performance

compared to the latter. More details are given in Ziel and Weron (2018).

3.2.2 Naive

This model is another benchmark model introduced to EPF literature by Nogales
et al. (2002) and classified under the similar days approach of Weron (2014). In this
model, weekdays are divided into two categories. First, category contains Saturday,
Sunday and Monday, whereas the second category contains the rest of the weekdays.
Forecasts of first category days are set to previous week’s same hour of the corre-
sponding day. Forecasts of the second category days are set to previous day’s same

hour.We denote this model by naive:

Ya—7p,  if dow!,, =1for 1 =0,1,6, (10)
Yan =
Y1, oth. (11)

4Strictly speaking, naive model, which is explained in Section 3.2.2 is not represented by the

general model given in Eq.(8), thus we exclude it from this definition.

12



As was discussed in several other studies, it was shown naive’s forecasting perfor-
mance remains superior even compared with some of the advanced models (Uniejew-

ski et al. (2016); Nogales et al. (2002); Conejo et al. (2005)).

3.2.3 Autoregressive model

Last benchmark model is the simple autoregressive model demeaned with ¥pou d.hn,
where Ypow,qa,n is the weekly mean of hourly frequency for asinh-transformed prices
estimated with ordinary least squares (OLS) using Eq. (6), for each estimation
window of 983-day (732-day for GEFCom2014). Let, p;, be the lag length for the
AR process for a given hour h, the process can be denoted by AR(pp,):

Phn
Yah = howdh +Uno+ Y Chi(Ya—ih — Thowd—in) + €dh (12)

i=1
Following Ziel and Weron (2018) we set maximum lag length, py ymq, = 8. Lag length
is chosen repeatedly for each estimation window using Akaike Information Criterion
(AIC). Detailed explanations of information criterions used throughout the text is
given in Appendix A. We estimate the model with OLS. To forecast next day’s day-
ahead price, we directly substitute corresponding prices without demeaning with
respect to their weekly mean. We denote this model by ARpow. Later in the text,

we extend this model adding estimated factors.

3.2.4 Expert

Expert models manifest themselves being abstract and parsimonious. In this sense,
they are very valuable for daily applications. There are various versions of ex-
pert models are proposed in the EPF literature after Misiorek et al. (2006)’s first
contribution. See (Weron (2006); Weron and Misiorek (2008); Kristiansen (2012);
Nowotarski et al. (2014a); Ziel (2016); Maciejowska et al. (2016); Uniejewski et al.
(2016); Uniejewski and Weron (2018); Ziel and Weron (2018) among others. Since

these models are built upon field knowledge of experts they are denoted as expert.

13



We consider below model which is also utilized by Ziel and Weron (2018)°:

Yd,h =Bn,1 + Br2Yd—1,n + Br,3Yd—2,n + BraYd—7.n

autoregressive effects

+ Bh,5Yd—1,min + Bh,6Yd—1,maz

non-linear effects

6
+ BhrYd—1,24 + Z Bh,7+idowy p, (13)
—_——

last-hour effect =1

weekday dummies
6 6

+ ) Brasridow] yya—1n + > Buio4idowl Y124 +€dn
i=1 i=1

periodic effects

where Yg—1min = min  {ys_14} and Yg—1maez = max {yg4—1,} are minimum
h= 4 h= 4

LA Ly e

and maximum of previous day’s hourly prices and, together, we call these regressors
non-linear effects. They contain information about previous day’s extreme price
levels. y4—1.24, on the other hand, represents the price of the last hour of previous
day where as recent literature shows price of early morning hours are sensitive to
the last-hour effect, as we call it (Maciejowska and Nowotarski (2016)). Day-of-week
dummies and periodic effects emphasize the short-term seasonality components of

the hourly prices.

For h = 24, we drop ¥y4—1,24 due to the multicollinearity between 3, 7 and By 2, we
also drop d0w27hyd,1,24 again due to a multicollinearity between 3, 1344 and B, 1944,
for i = 1,...,6. Consequently, we estimate 25 parameters (18 for h = 24) using
OLS. We denote this model by EXPERT. Later in the text, we extend this model

adding estimated factors.

5This version is the the most generic version of the Expert model employed in the main text of
Ziel and Weron (2018), please see Eq. (A.1) in their Appendix. Also see mAR1hm and AR2hm
models of Uniejewski et al. (2016)
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3.2.5 Large scale models and shrinkage estimation procedures

A challenging situation in a forecasting exercise is that availability of plenty of other
useful predictors to the forecaster. One way of selecting the most informative pre-
dictors among them is to rely on expert knowledge and past experiences together
with utilizing the commonly accepted results in the literature. One prominent ex-
ample of this, as we also implement in Section 3.2.4, is the Expert Models. Further
forecast improvements, however, can still be gained by harvesting useful informa-
tion by incorporating many other predictors into forecasting model. But there is
a well established literature stating that incorporating many predictors in a model
may lead overfitting and hence worse off the forecast performance. On the other
hand, selecting only a subset of available predictors may cause loss of information
and unstable and unreliable forecasts since some variables may perform better in
some periods and deteriorate the results in rest of the time (see e.g. Stock and Wat-
son (2003)). This situation is particularly relevant for the EPF literature. Thus,
there is an apparent need for a formal estimation procedure while utilizing all avail-
able variables and extracting as much information as possible and also making the
models reliable, i.e. purifying them from pathological effects of over estimation and

instability arising from predictor selection. This calls shrinkage estimation methods.

In our forecasting exercise with a large scale model, we mainly focus on Bootstrap
Aggregation, i.e. bagging procedure of Breiman (1996a,b). Bagging is a natural
method to eliminate the side-effects of unstable decision rules and to harvest as much
information as possible from available predictors and by definition it is a shrinkage
method. The key idea is to resample the original data, i.e. sampling from the
empirical distribution of the data, and constructing new datasets. Up to this part,
is the bootstrap half of the bagging. Fach newly created dataset used one at the time
to estimate the models, where each estimated model contains a different information
from the imitated dataset, leads to extraction of as much explanatory power from
the original dataset as possible. Combining (e.g. simple averaging) forecast results,
from the models estimated with imitated datasets, constitutes the remaining half of

the bagging which is called aggregation.
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Consider the general model given in Eq. (8). We begin by establishing some defini-
tions for bagging estimation procedure. Let §g 1 pjq is the forecast of yqi1 n based
on the most recent observations available. Let 3, denote the OLS estimator of 3,
in Eq. (8). Also let ¢; denote the t-statistic for which null of 3; is equal to zero in
the model where 3; is equal to i-th element of 3, i = 1,2,...,k % Form a R x [
pretested (PT) predictor matrix by deleting the i-th column of X}, if |t;| < t. and
denote it with Xf T , where 1 <[ < k and t. is the critical value of the t-test 7.
Define its corresponding row as Xi :,fl. Using PT predictor matrix, one can estimate

below compact model with OLS:

Vi =X Ty + G (14)

where 7, is a [-vector of coefficients with typical element 7;, 7 = 1,2,...,l. Then

PT forecast of y441,, is denoted by 335+T1 hld and given by the next equation:

0, if|ti] < teVi,
~PT
Yar+1,nd = / (15)
Xdpfl,h 'f’h, Oth
where 7, is the OLS estimator of n;, in Eq. (14). To compute PT forecast, first, we
fit Eq. (8) and calculate the t-statistic for each predictor and conduct a two-sided
t-test on each coefficient and discard the insignificant variables and estimate the Eq.

(14). After that, we calculate the PT forecast from Eq. (15).

We utilize from PT forecast in constructing bootstrap aggregated forecasts as follows.

Construct a R x (k + 1) matrix by combining )} and X}, as given below:

5The t-statistics for the OLS estimates of Eq. (8) are computed using Newey and West (1987)

heteroskedasticity and autocorrelation consistent (HAC) standard errors.

"In the empirical analysis,unless otherwise stated, we consider as t. values, 2.58, 1.96, and 1.65

for 1%, 5% and, 10% significance levels, respectively.
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!
Yd,h d,h

/
Yd+1,h Xd+1,h

Yd+R—1,h X:i+R—1,h_
After that, generate imitated or psuedo-samples by randomly drawing blocks of
(overlapping) size m with replacement from the above matrix and form bootstrap
samples 8

!

E
Ya,n d,h

* */
Yd+1,n d+1,h

_y§+R—1,h le—&-R—l,h_
For each psuedo-sample fit Eq. (8), apply the pretesting procedure as explained
above and estimate the Eq. (14). Forecast of each randomly generated sample is
given in (16).

P 0, if |ty < tevi,

Yd+1,h)d = — (16)
Xd-i—l h h’ Oth

X*PT

where g yd+1 Al and, 7); are bootstrap analogs of § yd+1 Bl Xd b tz, and, 7.

77/’

Finally, the bagging forecast is the expectation of the bootstrap pretested forecasts

across bootstrap samples (Inoue and Kilian (2008))?:

b A PT
Jdt1,na = E 0z, (17)

8In time series application, data dependency is an important phenomena which effects the
performance of bagging. To address the possible data dependency problem block bootstrap is
proposed instead of regular bootstrap. Given that m is the block length, in time series forecasting
applications m is set equal to forecast horizon (Gongalves and Kilian (2004)). In our empirical
analysis, we forecast for the next day’s day-ahead price, that is why following Inoue and Kilian
(2008) and Rapach and Strauss (2010) we set m = 1 implying we are effectively considering regular
bootstrap. For a textbook treatment of time series applications of bootstrap we refer Davison and

Hinkley (1997) and, Chapter 8 particularly for dependent data applications.

9We abbreviate bagging model as “BA” or “ba” in the text.
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where E* denotes the expectation operator with respect to the bootstrap probability
measure. Let B equal to total number of randomly generated psuedo-samples. In
theory, B — oo, but in our empirical study, following the Inoue and Kilian (2008)
and Rapach and Strauss (2010), we set B = 100. In application, the bootstrap

expectation may be estimated by:

B
1
b ~xPT
Yd1,na = B Z Yd+1,h0|d (18)
b—1

where Q;flTh bld is the pretested forecast computed using the b-th bootstrap sample.
Substituting the Qgil’h‘d into Eq. (3), one can easily solve for ?;’J‘il,h‘d. In Eq. (18),
i.e. in aggregation part of bagging, we assign equal weight to each bootstrapped
forecast. In principle, equal weighting is not a necessity, bagging predictor can be

estimated with data-dependent techniques, as well (see e.g. Yu (2011)).

Other shrinkage method that we study in our framework is the Least Absolute
Shrinkage and Selection Operator (lasso) due to Tibshirani (1996). Unlike bagging
lasso has been applied in various electricity price forecasting exercises and showed su-
perior forecasting performance compared to other conventional non-shrinkage meth-
ods in the EPF literature. One other prominent property of lasso is it’s ability to set
some variables equal to zero. In this sense lasso is also a variable selection procedure.
But from the forecasting performance point of view, shrinkage property does the job
(Ziel and Weron (2018)). We standardize the variables in the general forecasting
model given in Eq. (8), i.e. set variance equal to one and mean equal to zero. Let ),
and A}, be the columnwise standardized analogs of )V, and A}, respectively. Then
lasso estimator can be written in terms of standardized variables as (Hastie et al.

(2015)) 10:

B = argmin{|| YV, — X813 + AlIBy 1} (19)
Bh

1011.]|2 is the usual Euclidean norm and |3, |1 = 3¢, 6;
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where \ refers to regularization parameter of lasso. Setting A = 0, Eq. (19) turns
to be a simple OLS estimation, whereas, as A grows more and more parameters are
set to zero and in the limiting case, i.e. as A — oo, all parameters are forced to be
Zero. ﬁh’ ) can be obtained from éh, ) through rescaling. As it was mentioned earlier,
lasso estimation results highly depend the regularization parameter, A\. We consider
two different regularization parameter selection procedure. First one is using the
in-sample information criterion, which is denoted by IC', and second one is the ex-
post selection procedure denoted by Post. In Appendix B, A selection procedures

are given in detail.

We study the ability of bagging to reduce the prediction error. Formally, we are
concerned with the usefulness of bagging in forecasting time series of electricity
prices from linear multiple regression models in a multivariate setting. Together,
various extensions of lasso are also considered. Both bagging and lasso make use
of large scale models in the EPF literature in terms of selecting the most relevant
variables among many predictors thus one can incorporate all available predictors
into a general model and step back and leave the variable selection procedure to the
estimation technique used. Having said this, we propose a large scale model, i.e.
model with many predictors, which is inspired from Ziel and Weron (2018)!!. This

is called Large Scale pure-price model and defined in the next equation:

8 24 8 8
Ydh = E E Bhij1Yd—i + E Bh,i,1,2Yd—imin T § Hh,i1,3Yd—i,maz
i=1 j=1 i=1 i=1

price autoregressive effects price non-linear effects

7 7
+ Z [on,i1 adowg j, + Z [h,i,1,5d0Wg | Yd—1,avg
i=1

2 (20)
Weekday‘aummies average price effects
6 . 6 ‘
+ Z [oh,i1,6d0Wg pYd—1,h + Z [h,i1,7d0W g jYd—1,.24 +€dp-
=1 =1

price periodic effects

HGee Eq. (13) in their main text.
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where, Y4 404 is the average hourly day-ahead price at time d. The model contains
234 explanatory variables for h = 1,...,23. For the last hour of the day, we drop the
second term in “price periodic effects”, since it creates a multicollinearity with the
first term, thus we have 228 variables in total. We denote this model by BA _LS1,
BA _LS5, and BA_LS10 when it is estimated with bagging using the corresponding
t. value for 1%, 5% and, 10% significance levels, respectively. We further denote it
by LASSO_LS'C and LASSO_LSP°t when it is estimated with lasso by select-
ing regularization parameter with information criterion and with ex-post manner,

respectively.

3.2.6 Factor-augmented models

One major drawback of multivariate modeling is that it lacks intra-day hourly de-
pendencies. To capture the intra-day dependencies a VAR model can be consid-
ered, but this dramatically increases the total number of parameters needed to be
estimated which renders the estimation procedure infeasible for the small sample
sizes. Another alternative is to utilize univariate modeling. In univariate model-
ing, contrary to multivariate models, one large model is considered. This helps to
capture the intra-day hourly dependencies with a cost of accumulated errors as the
error of the previous hour’s forecast extends to the next hour’s simply because it
is used as the most up-to-date price information available. One other disadvan-
tage of univariate modeling is the increased estimation time due 24-times greater
sample size and model size compared to multivariate case. Therefore, in order to
capture those intra-day dependencies, we propose factor-augmented models. The
factor-augmented models are easy and fast to estimate and since the multivariate
structure is preserved they are more tractable. In essence, we extend the models
explained in previous sections and augment them with the factors computed from
the panel of price series, R x 24. In other words, we keep the existing predictors and
add computed factors as explanatory variables into the models. As stated above, we
propose and motivate this modeling strategy from the fact that multivariate models
lack intra-day dependencies and estimated factors capture this dependency because

intuitively they represent co-movements of hourly prices in different degrees.
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Factor models were previously employed in EPF literature by Maciejowska and
Weron (2016) and Ziel (2016) sharing the same motivation as explained here. Our
modeling and implementation strategy for factor models, however, differs from exist-
ing ones in various dimensions. First, we augment the existing models with factors,
whereas current literature directly forecast factors with AR and ARX type models,
see e.g. Eq. (15) and (16) in Ziel (2016) or PCxn and PCnX models, Eq. (9)
and (10) in Maciejowska and Weron (2016). Second, we choose the total number of
factors out of 24, using an in-sample information criterion, namely BIC, in OLS esti-
mated models. But the current literature does not propose a data-dependent factor
selection procedure, instead, fixed number of factors is considered in Maciejowska
and Weron (2016) which is equal to first five factors and Ziel (2016) exercises with

first two to twelve factors.

We estimate the latent factors for each estimation window using the panel of raw
(not transformed) price series. The Y matrix has hour of day in its twenty-four
columns with each row corresponding to price of the hour in the estimation window.
In other words, The Y is the price matrix for an est/imation window of length R
with a typical column of Y, = [Yd,h Yd—}—R—l,h} , Y = [Yl Y24}

Rx24

The factor structure is:

Y =FA+e (21)

where F' is the common latent factors, with the n-th column is equal to F,, =

Fin .. Fd+R_17n] , A is the 24 x 24 factor loadings matrix, and € is the idiosyn-
cratic variation of prices at different hours, n = 1,...,24. We also arrange factors
according to decreasing values of corresponding eigenvalues. In other words, we set
n = 1 for the factor with the highest explanatory power and n = 2 for the factor with
the second highest explanatory power and so on. We estimate the factors—commo?
drivers of price changes-by principal components. Let f, = | fy, ... forp—1n| -

be the asinh transformed version of the original factor F',. In below models, trans-

formed version of the estimated factors are considered.

The latent factors, F', do not have clean interpretations or any economic meaning. In

order to make them economically interpretable they should be identified by imposing
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constraints to factor loadings 2.

This process is called factor rotation and is a
commonly used technique at event study analysis, see for a very informative and

elegant application (Giirkaynak et al., 2004, and references therein).

We apply factor augmentation to ARpow, EXPERT, LASSO_LS!C and BA _LS1.
We denote factor-augmented ARypow model by fARpow. It forms:

Ph N
Yah = Jhowdh + Uno+ Y Uni(Yd—ih — Jhowd—in) T D nfa1m+ean  (22)
i=1 n=1

We also denote factor-augmented EXPERT model by fEXPERT and it is given

in the next equation:

Ya,h =Pni + Bn2Yd—1,n + Br3ya—2,n + BraYd—7,h + Brs5Yd—1,min + Bh.6Yd—1,maz

autoregressive effects non-linear effects
6
%
+ BhurYa—1,24 + E Bh,7+idowy p,
—_——— —
last-hour effect =1 -~
weekday dummies
6 6 N
i .
+ E Bras+idowg pyd—1,n + § Bh,19+idowg pYd—1,24 + E anfi—1,n +€an
-~
periodic effects intra-day effects

(23)

Factor-augmented BA_LS1, and LASSO_LS!® models are denoted by fBA_LS1,
and fLASSO_LS'C. Since the model structure is the same and the only thing that

changes is the estimation technique below equation holds for both models:

2Maciejowska and Weron (2016) interprets first three factors intuitively.
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8 24

24 8 8
Ydh = E Qn fa—1,n + E E Bhij1Yd—i + E Ph,i1,2Yd—imin T E h,i1,3Yd—imax
n=1 i=1 j=1 i=1 i=1

intra-day effects  price autoregressive effects price non-linear effects
7 7

+ Z Wi adowy p, + Z i1 540Wg pYd—1,avg
i—1 i—1

weekday dummies price average effects

6 6
+ Z i 1,640Wg pYd—1,n + Z [oh,i,1,7dOWg pYd—1,24 +€d -
i=1 i=1

price periodic effects

(24)

Total number of factors, i.e. IV, in the fARLow and fEXPERT, models is chosen
according to in-sample Bayesian Information Criterion. In the Large Scale pure-
price model, we insert all twenty-four factors into the model, thus factor-augmented

version of that model contains 258 parameters (252 for h = 24).

3.3 Forecast performance evaluation

In empirical analysis, we compare forecast performance of models, given in above sec-
tions, in terms of Mean Absolute Error (MAE), Root Mean Squared Error (RMSE),
and Mean of Weekly-weighted Mean Absolute Error (WMAE) 13:

1 P 24
P 24
_ 2. \2
RMSE = | | o ; ;(em) (26)

13Forecast performance evaluation techniques are vast in econometric forecasting literature. Par-
ticularly for the EPF literature, we refer reader to Hyndman and Koehler (2006); Nowotarski et al.
(2014b); Nowotarski and Weron (2016).
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1 P/7 Z'7k " 24 é: ‘
WAAE = 5z 3 (St ) @)
P/7 k=1 i=Tk—6 ijl Yij

where, P is the number of days in the out-of-sample period, €; ; = Yi’m,l —Y;; for
the out-of-sample period. Note that it is required that out-of-sample period must
be a multiple of seven or a week to calculate the WMAE. Thus, while computing
the WMAE only full weeks are taken into account. In our empirical analysis, we
consider 1470 days for markets (350 days for GEFCom2014) out-of-sample window
length which corresponds to 210 weeks (50 weeks) in total. Notice that, RMSE is
the optimal loss function for any forecast exercise we consider in this study. Recall
from above sections that we are interested in Yd+17h|d which corresponds to forecast
of Yj414, in other words, from Eq. (8), we want to find E(Ygy1,4|Xg41,,). When
a quadratic loss function is considered, this means one chooses Yd+1,h\d such that
E(Yg41,n — ?d +1,h\d)2 is minimized. This optimization process sets ?d +1,n|d €qual to
E(Yagt1,Xa41,n), i€ Yd+1,h|d = E(Yg41,1n|Xg41,). For a more detailed theoretical
exposition we refer to Hamilton (1994). In empirical application, MAE and WMAE
are more robust to outliers compared to RMSE (Uniejewski et al. (2019)). In our

forecasting exercise, we present results for each loss function, separately.

We also consider hourly performances of the models in terms of hourly Mean Abso-

lute Error (MAE},) and hourly Root Mean Squared Error (RMSEy,) forh =1,...,24:

(28)

(29)

We further evaluate forecast models in terms of forecast encompassing test. The
virtue of forecast encompassing test comes from its ability to draw formal statistical
conclusions between different forecasting models. If, say, Model-A encompasses

Model-B, this implies there is no extra information in the latter model beyond that
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contained in the first one or vice versa. If both models fail to encompass each other
this implies both of them contains valuable information absent in either model. This
procedure allows us to investigate formally whether one model outperforms other.
We consider Diebold and Mariano (1995) test (abbreviated DM) as the forecast

encompassing test.

We implement standart DM test for 24 h of the day separately. Consider the loss
differential series for Model-A and B:

A Bdn=eadan| — |l (30)

where, €x g is the prediction error of model X, X = A, B at time d for a given
hour h. Assuming that loss differential series are covariance stationary, we pair-
wise compute p-values of two one-sided tests for each dataset: where null of Hy :
E(Aa,B,dn) < 0implies that Model-A encompasses B, whereas null of Hy : E(Aa gqn) >

0 implies Model-B encompasses A for hour h. Rejection of both nulls at the same

time means failure of models to encompass each other for hour h.

Following Ziel and Weron (2018), we also consider “multivariate” DM test which
allows us to derive a single statistic for each forecasting model instead of 24. Loss

differential series for multivariate DM test is:
24 24
AaBd= Z|€A,d,z’} - Z!éB,d,i} : (31)
i=1 i=1

Again assuming that loss differential series are covariance stationary, we pairwise
compute p-values of two one-sided tests for each dataset: where null of Hy : E(A 4 p4) <
0 implies that Model-A encompasses B, whereas null of Hy : E(A4 g ,4) > 0 implies
Model-B encompasses A considering all 24 h of the day. Rejection of both nulls at
the same time means failure of models to encompass each other considering all 24 h

of the day.
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CHAPTER 4

EMPIRICAL RESULTS

4.1 Forecast results

Table 2 reports the MAE, RMSE, and WMARE results for bagging and other con-
ventional forecasting models together with factor augmented versions as defined in
Section 3.2. Results are given for six datesets over the out-of-sample period of 1470-
day for markets and 350-day for GEFCom2014. We formally compare predictive
accuracy of forecast models with DM test as explained earlier. Figure 1 shows mul-
tivariate DM test results for each datasets and Figure 2 presents standard DM test
where each cell indicates total number of hours out of 24 for which model on the
X-axis encompasses model on the Y-axis at 5% significance level. Since we observe
similar patterns for different loss metrics we compute DM test results in terms of

Mean Absolute Error.

Table 2 Panel A shows that shrinkage estimation methods (i.e. bagging and lasso)
outperform benchmark models (i.e. meanyoyw, naive, ARpow). This result is also
valid in Panel B and C. This is also confirmed by both multivariate and standard DM
test results. Benchmark models are always encompassed by the remaining models
and this holds for almost all hours of day as given in Figure 2. In sharp contrast
to benchmark models, EXPERT gives very close results to large scale shrinkage
models. Even thought it is encompassed by BA_LS1 in five of the series according

to the DM test results, it is very promising model in terms of forecast loss function.

Before comparing the forecast abilities of bagging and lasso, we discuss the effect
of regularization parameter on lasso estimation. The regularization parameter, A,
is the main determinant of the performance of the lasso estimation as explained in
above sections. We maximize in sample information criterion to determine the A

in LASSO_LS'C. But this may result in sub-optimal forecast performances and
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Table 2: Forecasting results for bagging and other conventional day-ahead price
forecasting models

Panel (A): Mean Absolute Errors (MAE)

g © z = 3 %ﬁ o A = H = (’3\ 2
Market g = = S o o S H 4 = E 2 3

g g 5 & 2 3 < - = g g 7 =

= ) < 2 ~ M M & < &

= 5 =

NP.SYS 8.306 2.991 2625 2.122 2104 2.075 2.042 2130 2.228 2375 2.156 2.166 2.054
NP.N2EX 10.154 5.951 5.055 4.768 4.618 4.591 4.620 4.668 4.779 4.917 4.745 4.634 4.653
PJM.COMED 7.811 5.113 4.077 3.594 3.461 3.431 3.325 3.313 3.349 4.183 3.462 3.367 3.388
OTE.CZ 9.918 7.466 7.329 5.366 5.306 5.272 5.246 5.262 5413 6.671 5.304 5.354 5.344
OMIE.SP 10.136 5.615 5.103 3.860 3.974 3.958 3.798 3.799 3.879 4.381 3.829 3.990 3.826

GEFCom2014 15.065 9.463 8.194 7.348 7.257 7.225 7.047 7.068 7.197 8.153 7.357 7.333 7.091

Panel (B): Root Mean Squared Error (RMSE)

NP.SYS 11.210 5.667  4.713  4.187  4.215  3.977  4.232 5.014 5.807  4.358  4.521  4.808  4.255
NP.N2EX 18.780 18.560 13.902 13.809 13.573 13.522 13.576 13.595 13.682 13.819 14.454 13.778 13.663
PJM.COMED 14.105 10.743 8.432 8.192  8.029 7.821 7.351 7.074  7.017 25425 8475 7.219 7.451
OTE.CZ 13.785 11.287 10.447 8.070 8.004 7.931 7.941 7.937 8.144  9.635 8.005 8.077  8.026
OMIE.SP 12.901 8305 7.141  5.399  5.447 5.412 5.333  5.307 5.398  6.162  5.362  5.467  5.358

GEFCom2014 31.220 18.082 16.117 15.387 15.336 15.027 13.813 13.493 13.511 17.385 15.597 15.082 14.076

Panel (C): Mean of Weekly-weighted Mean Absolute Error (WMAE)

NP.SYS 40.495 15.924 13.834 11.032 10.847 10.752 10.664 11.106 11.612 12.319 11.058 11.085 10.742
NP.N2EX 36.188 21.570 18.295 17.208 16.699 16.605 16.723 16.899 17.308 17.789 17.102 16.753 16.847
PJM.COMED 42.348 26.860 21.230 18.502 17.630 17.486 17.221 17.210 17.472 19.824 17.596 17.468 17.446
OTE.CZ 43.707 35.611 34.410 25.146 24.798 24.659 24.696 24.784 25.461 31.236 24.813 24.968 25.143
OMIE.SP 38.675 21.231 19.439 14.669 14.966 14.894 14.386 14.361 14.622 16.595 14.533 15.002 14.427

GEFCom2014 37.329 26.026 22.275 19.473 19.302 19.222 19.341 19.598 20.094 21.471 19.531 19.616 19.125

Note: The table reports the model forecasting results calculated for full out-of-sample
period as defined by Eq. (25), (26), and (27), respectively. Best performing model
result is indicated with boldface in each dataset.

may not be the best available lasso estimated model to compare with bagging. That
is why, following Uniejewski et al. (2019), we also consider a hypothetical forecast
exercise where an ex-post \ selection procedure is taken into account as details are
given in Appendix B. Ex-post selection procedure is the limiting case in the sense
that it gives one of the best feasible forecast result that can be reached by calibrating
the X. Thus, not surprisingly, LASSO_LSP°st outperforms LASSO_LS!C in Table
2, in each dataset. This result is also strengthened by DM test where for four of
the series ex-post selection procedure encompasses the IC selection procedure and

converse is not true and for NP.SYS and GEFCom2014 they have similar predictive
ability.
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Figure 1: Multivariate DM test results for each dataset as defined by the loss
differential series given in Eq. (31). p-values are given for the null hypothesis of
Hy : E(Ax,yq) < 0 which implies that the model on the X-axis encompasses the
model on the Y-axis. A heat-map is used to indicate the range of p-values with the
corresponding colorbars.

Having said this, we compare the forecast performance of LASSO_LSFPost with
bagging. Bagging estimated models are the best performing ones for five series in
terms of MAE and LASSO_LSP°st is the best for the remaining one series. A

similar pattern is also observed in Panel B and C, where in half of the series bagging
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Figure 2: Hourly DM test results for each dataset as defined by the loss differential
series given in Eq. (30). Each cell indicates total number of hours out of 24 for which
model on the X-axis encompasses model on the Y-axis at 5% significance level. A
heat-map is used to indicate the range of hours with the corresponding colorbars.

estimated models outperform the lasso estimated models in terms of loss metrics.
Forecasting ability of bagging and lasso estimated models are, however, mixed in
terms of DM test results. Null of BA_LS1 encompasses LASSO_LSPst cannot
be rejected even at 10% significance level for all datasets and converse is correct

for four of the series. This is also confirmed by hourly DM test results in Figure 2,
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where from twelve to twenty two hours of day both models encompass each other
in different series and only in NP.SYS, BA_LS1 encompasses LASSO_LSP°st for
all hours and converse is correct for only sixteen hours of day. Figure 3 presents
forecast performances of shrinkage methods separately for each 24 h of the day. As
figure clearly show BA_LS1, and LASSO_LSP°st follow almost the same trace in
terms of MAE. Overall, these results imply that bagging is highly competitive among
conventional forecast models used so far in the EPF literature. In particular, bagging
estimation has very similar forecasting ability with lasso, and, given that these two
methods can be categorized under shrinkage estimation, our findings empirically

confirm theoretical implications of Stock and Watson (2012).
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Figure 3: Hourly Mean Absolute Error for LASSO_LS'C and BA _LS1 models as
defined in Eq. (28) for full out-of-sample period. Results are given for each dataset

in separate panels.
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In last four columns of the Table 2, we share the forecast results of factor-augmented
models and we also compare them with the corresponding simple versions in Table
3. We implement factor augmentation only for autoregressive model among other
benchmark models. Factor-augmented version of autoregressive model outperform
the simple version in five of the six series in terms of MAE and in four of the
six series in terms of RMSE, and for all series in terms of WMAE. fEXPERT
model also shows a similar pattern. In four of the series factor-augmented version
of EXPERT model outperforms the simple version in terms of MAE. The same
is also true in terms of WMAE. Additionally, according to Fig. 1, in three of the
series factor-augmented version of the EXPERT model encompasses simple version
and converse is not true. We also find that fEXPERT shows equal predictive
ability with BA_LS1 in three of the series, which is not true for simple version of
it. Overall, while keeping it still abstract, factor augmentation helps to approach

forecast performance of EXPERT closer to that of large-scale shrinkage methods.

While factor-augmented version of EXPERT performs quite promisingly, the same
cannot be deduced for factor-augmented versions of shrinkage methods. In Table 3,
for LASSO_LS'C, only in one or two series factor augmentation performs better
than the simple version, depending on the loss metric. For other shrinkage method,
BA _LS1, factor-augmented model is inferior for all series in terms of all loss met-
rics. Factors mostly represents intra-day dependencies of electricity prices which
is absent in multivariate modeling framework by construction. Therefore, one can
attribute the forecast performance improvements due to this property of the factors
in autoregressive benchmark model and in EXPERT model. Since factor aug-
mentation results in inferior forecast results, this implies that large scale shrinkage
methods already include intra-day dependencies in their simple versions even if they
are multivariate models. Increased complexity of univariate modeling pays off with
superior forecast performances thanks to its viability to model the intra-day price
dependencies. Consequently, our findings imply that univariate large scale shrinkage
estimated models may be unnecessarily complex. Furthermore, for the multivariate
benchmark and expert models, factor augmentation as proposed in this study, may

be a simpler alternative to the univariate modeling framework.
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Table 3: Forecasting results for factor-augmented (fa) day-ahead price forecasting
models together with corresponding simple version.

Panel (A): Mean Absolute Errors (MAE)

Markets ARpow EXPERT LASSO_LS'® BA_LS1
simple fa simple fa simple fa simple fa
NP.SYS 2.625 2.375 2.122 2.156 2.104 2.166 2.042 2.054
NP.N2EX 5.065 4.917 4.768 4.745 4.618 4.634 4.620 4.653
PJM.COMED 4.077 4.183 3.594 3.462 3.461 3.367 3.325 3.388
OTE.CZ 7.329 6.671 5.366 5.304 5.306 5.354 5.246 5.344
OMIE.SP 5.103 4.381 3.860 3.829 3.974  3.990 3.798 3.826
GEFCom2014 8.194 8.153 7.348 7.357 7.257 7.333 7.047 7.091
Panel (B): Root Mean Squared Error (RMSE)
Markets ARpow EXPERT LASSO_LS BA_LS1
simple fa simple fa simple fa simple fa
NP.SYS 4.713 4.358 4.187 4.521 4.215 4.808 4.232 4.255
NP.N2EX 13.902 13.819 13.809 14.454 13.573 13.778 13.576 13.663
PIM.COMED 8.432 25.425 8.192 8.475 8.029 7.219 7.351 7.451
OTE.CZ 10.447 9.635 8.070 8.005 8.004 8.077 7.941 8.026
OMIE.SP 7.141 6.162 5.399 5.362 5.447 5.467 5.333 5.358
GEFCom2014 16.117 17.385 15.387 15.597 15.336 15.082 13.813 14.076

Panel (C): Mean of Weekly-weighted Mean Absolute Error (WMAE)

Markets ARpow EXPERT LASSO_LS'C BA LS1
simple fa simple fa simple fa simple fa

NP.SYS 13.834 12.319 11.032 11.058 10.847 11.085 10.664 10.742
NP.N2EX 18.295 17.789 17.208 17.102 16.699 16.753 16.723 16.847
PJM.COMED 21.230 19.824 18.502 17.596 17.630 17.468 17.221 17.446
OTE.CZ 34410 31.236 25.146  24.813 24.798 24.968 24.696 25.143
OMIE.SP 19.439 16.595 14.669 14.533 14.966 15.002 14.386 14.427
GEFCom2014 22.275 21.471 19.473 19.531 19.302 19.616 19.341 19.125

Note: The table reports the model forecasting results calculated for full out-of-sample
period as defined by Eq. (25), (26), and (27), respectively. “fa” represents the factor-
augmented version of the “simple” model as defined in Section 3.2.6. Results of the
simple models and factor-augmented versions, given in Table 2, are reproduced here
to compare with each other. Best performing model result is indicated with boldface
between simple and factor-augmented versions in each dataset.

4.2 Occurrence of variables

In this section we present the selected variables by the shrinkage methods. In Ap-
pendix C, Table 4 to 8 show the mean occurrences of variables in percentage points
across all datasets by LASSO_LSIC for full out-of-sample test period. We count
the total number of non-zero coefficients assigned by lasso in each out-of-sample

point and average over all datasets. We also share the selected variables by bagging
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estimation from Table 9 to 13. We compute the mean occurrences of variables in
bagging estimated model by counting the total number of variables selected by the

t test at 1% significance level in each out-of-sample point and average over datasets.

Our results for occurence matrix of lasso estimation are mostly in parallel with the
findings of Ziel and Weron (2018) and other studies in the EPF literature. Thus,
instead of a detailed explanation of occurrence tables we offer a comparison between
bagging and lasso occurrence tables. In terms of autoregressive part of the model,
previous day’s same hour price (i.e. diagonal part of the day: d-1 in Table 4) is
mostly selected by lasso estimation and this pattern is also valid for bagging esti-
mation in Table 9 even if it is not that apparent compared to lasso. A similar but
vanishing pattern also exists in for day: d-2 to d-8 in lasso. For bagging however,
diagonal selection completely vanishes after day: d-1, in other words diagonal part is
selected at most as the other variables selected in the autoregressive part. Another
important variable selected by lasso is the last-hour effect which corresponds to last
row of day: d-1 in Table 4. This variable is also selected by the bagging as can be
seen from the same row of Table 9. However, lasso selected hour 18 to 23 with high
percentage, as well, which is not much apparent in bagging. Even thought they are
sharper in lasso and sometimes hardly visible in bagging, one can still observe sim-
ilar patterns for daily minimums, daily maximums, day-of-week-dummies, average
prices, and periodics. These findings imply that there is no structural difference

between bagging and lasso in terms of variable selection.

We now turn our attention to the selected factors in fARow and fEXPERT where
results are given in Table 14 and Table 15, respectively. Factors are selected by
minimizing the Bayesian Information Criterion such that we include factors one
by one starting from the n = 1, first factor with highest eigenvalue, and include
next factor with second highest eigenvalue and continue until all n = 24 factors are
included to the model. After that, we find the n* which gives the smallest BIC.
We repeat above process in each out-of-sample point and count the total number of
factor and average over all datasets. Occurrence tables show that, in both models

first three factors are selected almost at all hours of day. Since we know from above

33



results that inclusion of factors improves the forecast performances of fARow and
fEXPERT one may conclude that simple versions of that models are missing some
part of the information contained in first three factors if not at all. For first three
hours of day, factors up to fourteen are selected in fA Ry ow but this number decreases
to six to ten in fEXPERT implying that for first three hours of day, explanatory
variables (not including the autoregressive part) in Eq. 23 contain information also
exists in those factors. These facts can be utilized in future research in identification

of factors through factor rotation techniques.
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CHAPTER 5

CONCLUSION

We have introduced a new shrinkage method to the EPF literature, namely bagging,
and applied this procedure in five commonly used market datasets and GEFCom2014
data. Our findings show that bagging is a very competitive and promising estimation
method for large scale models or models with many explanatory variables. It is much
simpler alternative to the widely used shrinkage methods in the electricity price
forecasting applications. Forecast performances of bagging and lasso are mixed and
they do not strictly dominate each other in terms of both forecast performances and

DM test results.

Another contribution of this study is factor augmentation to exploit the dependence
of intra-day electricity prices in a multivariate setting. The inclusion of latent factors
improves ability to forecast in multivariate modeling framework and for expert model
it helps to improve its forecast performance such that, it has comparable results
with sophisticated shrinkage methods. Our findings also suggest that large scale
models already contain, to some extend, the intra-day dependencies of electricity
prices which in turn implies that univariate modeling strategy may be unnecessarily
complex for large scale models and for the expert models, those dependencies can
be easily incorporated to the model with factor-augmentation without switching to

univariate model.

It would be interesting in future research to examine the various extensions of bag-
ging in the EPF literature such as using data dependent weight selection for each
pseudo-sample in bagging instead of equal weight and combining forecast results of
both shrinkage methods to see whether forecast ensemble further improves the results
or not. Moreover, application of bagging to datasets after decomposing them into
long term seasonal component and stochastic component can bring further perfor-

mance gains and validation of this approach is left for future research. Furthermore,
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for the factor-augmented models, identification of factors, at least for some first 4

to 6 factors, through rotation techniques is left as a future research.
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APPENDICES

A. INFORMATION CRITERIONS

In this study, we utilize different information criterions as a part of our data de-
pendent parameter and variable selection approach. Akaike Information Criterion
(AIC), Bayesian Information Criterion (BIC), and Hannan-Quinn Information Cri-

terion (HQC) are used throughout the text.

Let n be the estimation sample size, e be n-vector residuals and k be the total
number of parameters in the model (including the intercept when valid). Information

Criterions can defined as:

/
AIC = log(£5) + 2% (A.32)

n

ee

BIC =é'e+1 k
e'e+log(n) —

(A.33)

ee

HQC = e'e + 2logllog(m)(k = 1) —7—

(A.34)

where, [ in HQC refers to the number of parameters that set equal to zero in lasso

estimation, zero otherwise and log stands for the natural logarithm.

43



B. REGULARIZATION PARAMETER SELECTION

Lasso estimation results highly depend the regularization parameter, A. We consider
two different A selection procedure. In the first procedure, following Uniejewski
et al. (2019), we construct a grid of values: \; = 10775 for i = 1,...,10, and
choose the optimal A among the grid of A values with the in-sample Hannan-Quinn
Information Criterion (HQC). Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC) can be used to select the regularization parameter, as
well. Detailed explanations of information criterions are given in Appendix A. We
motivate HQC-based model due to its superior performance at Ziel and Weron (2018)
compared to AIC and BIC selection procedures. In this procedure, X is chosen for

each out-of-sample and for each hour.

As the second alternative, we opt to an ex-post A selection. In this procedure, for
each hour of the day, i.e. for each model of twenty-four, we evaluate the forecast
results for a grid of ten A values and choose the one with the best forecast per-
formance in terms of Mean Absolute Error (MAE) metric. In this procedure, only
one A value is considered for whole out-of-sample period. This is an hypothetical
forecasting exercise in the sense that, in application forecaster never knows the A

value which gives the best prediction for that hour. That is why it is called ex-post.
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C. OCCURRENCE TABLES

Table 4: Mean occurrences of the LASSO_LSIC model parameters across all six
datasets and full out-of-sample test period in percentage points. A heat-map is used
to indicate the range of occurrence values between 0 (— red ) and 100 (— green).
Continued in Table 5.

h 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Hha1,1,1
Hha121
Hh1,3,1
Hh1,4,1
Fh15,1
Hh1,6,1
Hh,1,7,1
Ph18.1
Hha19,1
Fth,1,10,1
Hh,1,11,1
Hh,1,12,1
Hh,1,13,1
Hh,1,14,1
Hh,1,15,1
Hh,1,16,1
Hh1,17,1

day: d —1

Fh,1,18,1
Hh,1,19,1
Hh,1,20,1 -
M1 39

Hh,1,22,1
Hh,1,23,1

41
51 67 54 46 47
70 58

42 53
57 50
4

67 79 71
38 54 80

Hh,1,24,1
Hh21,1
Hh,2,2,1
Hh231
Ph2,4.1
102,51
Hh,2,6,1
1h,2,7,1
Ph2,8.1
Hh,2,9.1

Hh,2,10,1

Hh,2,11,1

Hh2,12,1

Hh,2,13,1

Hh,2,14,1

Hh,2,15,1

Hh,2,16,1

Hh2,17,1

Fh,2,18,1

Hh,2,19,1

Hh,2,20,1

Hh,2,21,1 38

Mh2221 36 41

ph2231 | 800 54 62 61 62 55
fnoosn 4l 43 54 62 54 51 50 39

Note: The table reports the mean occurrences of variables in Eq. (20) estimated
with lasso where reqularization parameter is selected through information criterion
as explained in Section 3.2.5.

day: d —2
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Table 5: Mean occurrences of the LASSO_LSIC model parameters across all six
datasets and full out-of-sample test period in percentage points. A heat-map is used
to indicate the range of occurrence values between 0 (— red ) and 100 (— green).
Continued in Table 6.

h

Hh,3,1,1
Hh,3,2,1
Hh,3,3,1
Hh,3,4,1
Hh3,5,1
Hh,3,6,1
Hh3,7,1
Hh,3,8,1
Hh3,9,1
Hh,3,10,1
Hh3,11,1
Hh,3,12,1
1h,3,13,1
Hh,3,14,1
Hh,3,15,1
Hh,3,16,1
Hh,3,17,1
Hh,3,18,1
Hh,3,19,1
Hh,3,20,1
Hh,3,21,1
Hh,3,22,1
Hh,3,23,1
Hh,3,24,1
Hha,1,1
Hha21
Hha,3,1
Hhd4,1
Hha,5,1
Hha,6,1
Hha,7,1
Hha8,1
Hha4,9,1
Hh,4,10,1
Hha11,1
Hh,a,12,1
Hh,a,13,1
Hh,a,14,1
Hh,4,15,1
Hh,4,16,1
Hha17,1
Hh,a,18,1
Hh,4,19,1
Hh,4,20,1
Hh,4,21,1
Hha,22,1
Hh,4,23,1
1h,4,24,1

day: d —3

day: d —4

Note: The table reports the mean occurences of variables in Eq. (20) estimated
with lasso where reqularization parameter is selected through information criterion
as explained in Section 3.2.5.
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Table 6: Mean occurrences of the LASSO_LS'C model parameters across all six
datasets and full out-of-sample test period in percentage points. A heat-map is used
to indicate the range of occurrence values between 0 (— red ) and 100 (— green).
Continued in Table 7.

h

Hh,5,1,1
Hh5,2,1
Hh5,3,1
Hh5.4,1
Hhj5,5,1
Hh,5,6,1
Hhj5,7,1
Hh,5,8,1
Hh5,9,1
Fh,5.10,1
[h,5,11,1
Hh,5,12,1
[4h,5,13,1
Hh,5,14,1
Hh,5,15,1
Hh,5,16,1
Hh517,1
Hh5,18,1
[4h,5,19,1
Hh,5,20,1
Hh,5,21,1
Hh5,22,1
Hh5,23,1
Hh,5,24,1
Hh6,1,1
Hh,6,2,1
Hh6,3,1
Hh,6.4,1
Hh6,5,1
Hh.6,6,1
1n,6,7,1
Hh6,8,1
Hh6,9,1
Hh,6,10,1
Hh6,11,1
Hh,6,12,1
[4h,6,13,1
Hh,6,14,1
Hh,6,15,1
Hh,6,16,1
Hh,6,17,1
Hh,6,18,1
1h,6.19,1
Hh,6,20,1
Hh,6,21,1
14h,6,22,1

day: d—5

day: d—6

Hh,6,24,1

Note: The table reports the mean occurences of variables in Eq. (20) estimated
with lasso where reqularization parameter is selected through information criterion
as explained in Section 3.2.5.
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Table 7: Mean occurrences of the LASSO_LSIC model parameters across all six
datasets and full out-of-sample test period in percentage points. A heat-map is used
to indicate the range of occurrence values between 0 (— red ) and 100 (— green).

Continued in Table 8.

h

Hh,7,1,1
Hh,7,2,1
Hh,7,3,1
Hh,74,1
Hh,7,5,1
Hh,7.6,1
Hh,7,7,1
Hh,7.8,1
Hh,7,9,1
Hh,7,10,1
Hh,7,11,1
Hh,7,12,1
Hn,7,13,1
Hh,7,14,1
Hh,7,15,1
Hh,7,16,1
Hh,7,17,1
Hh,7,18,1
Hh,7,19,1
Hh,7,20,1
Hh,7,21,1
Hh,7,22,1
Hh,7,23,1
Hh,7,24,1
Hh8,1,1
Hh82,1
Hh8,3,1
Hh,84,1
Hh8,5,1
Hh,8,6,1
Hh8,7,1
Hh,8,8,1
Hh,8,9,1
Hh.,8,10,1
Hh,8,11,1
Hh,8,12,1
Hh,8,13,1
Hh,8,14,1
Hh,8,15,1
Hh,8,16,1
Hh,817,1
Hh,8,18,1
Hh,8,19,1
Hh,8,20,1
Hh,8,21,1
Hh8,22,1
Hh,8,23,1

35 35 34 36
Hh8,24,1 36 28 31 35

day: d -7

day: d — 8

Note: The table reports the mean occurences of variables in Eq.

41 51 52 66 37
34 48
39 46 55 42

(20) estimated

with lasso where reqularization parameter is selected through information criterion

as explained in Section 3.2.5.

48



Table 8: Mean occurrences of the LASSO_LS'C model parameters across all six
datasets and full out-of-sample test period in percentage points. A heat-map is used
to indicate the range of occurrence values between 0 (— red ) and 100 (— green).

h 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
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Note: The table reports the mean occurences of variables in Eq. (20) estimated
with lasso where reqularization parameter is selected through information criterion
as explained in Section 3.2.5.

49



Table 9: Mean occurrences of the BA _LS1 model parameters across all six datasets
and full out-of-sample test period in percentage points. A heat-map is used to
indicate the range of occurrence values between 0 (— red ) and 100 (— green).
Continued in Table 10.

h

Hha1,1,1
Hha1,2,1
Hha1,3,1
Hh1,4,1
Hh1,5,1
Hh,16,1
Hha1,7,1
Hh,18,1
Hh1,9,1
Hh,1,10,1
Hh1,11,1
Hh,112,1
Hh,1,13,1
Hh,1,14,1
Hh1,15,1
Hh,1,16,1
Hh1,17,1
Hh1,18,1
Hh,1,19,1
Hh,1,20,1
Hh,1,21,1
Hh1,22,1
Hh,1,23,1
Hh1,24,1
Hh2,1,1
Hh2.21
Hh23,1
Hh24,1
Hh25,1
Hh,2,6,1
Hh2,7,1
Hh,2,8,1
Hh,29,1
Hh,2,10,1
Hh211,1
Hh2,12,1
Hh,2,13,1
Hh2,14,1
Hh,2,15,1
Hh,2,16,1
Hh,2,17,1
Hh2,18,1
Hh,2,19,1
Hh,2,20,1
Hh,2,21,1
Hh2,22,1
Hh,2,23,1
Hh2,24,1

day: d—1

day: d —2

Note: The table reports the mean occurences of variables in Eq. (20) estimated with
bagging for 1% significance level as explained in Section 3.2.5.
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Table 10: Mean occurrences of the BA_LS1 model parameters across all six
datasets and full out-of-sample test period in percentage points. A heat-map is
used to indicate the range of occurrence values between 0 (— red ) and 100 (—
green). Continued in Table 11.

h

Hh3,1,1
1h,3,2,1
Hh,3,3,1
Hh3.4,1
Hh3,5,1
Hh,3.6,1
Kh3,7,1
Hh,3,8,1
Kh,3,9,1
Hh,3,10,1
Hh3,11,1
Hh,3,12,1
Hh,3,13,1
Hh,3,14,1
Hh,3,15,1
Hh,3,16,1
[h,3,17,1
Hh,3,18,1
[4h,3,19,1
Hh,3,20,1
Hh,3,21,1
Hh,3,22,1
Hh,3,23,1
Hh,3,24,1
Hha,1,1
Hha2,1
Hha,3,1
Hh44,1
Hha,5,1
Hh,a,6,1
Hha,7,1
Hh,4,8,1
Hha,9,1
[4h,4,10,1
Hh,a,11,1
Hh,a,12,1
Hh,4,13,1
Hh,a,14,1
Hh,4,15,1
Hh,4,16,1
Hh,a17,1
Hh,a,18,1
Hh,4,19,1
Hh,4,20,1
Hh,4,21,1
[4h,4,22,1
Hh,4,23,1
Hh4,24,1

day: d—3

day: d —4

Note: The table reports the mean occurences of variables in Eq. (20) estimated with
bagging for 1% significance level as explained in Section 3.2.5.
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Table 11: Mean occurrences of theBA_LS1 model parameters across all six
datasets and full out-of-sample test period in percentage points. A heat-map is
used to indicate the range of occurrence values between 0 (— red ) and 100 (—
green). Continued in Table 12.

h

Hh,5,1,1
Hh5,2,1
Hh5,3,1
Hh5,4,1
Hh5,5,1
Hh,5,6,1
Hh5,7,1
Hh5,8,1
Hh5,9,1
Hh,5,10,1
Hh5,11,1
Hh,5,12,1
Hh5,13,1
Hh,5,14,1
Hh5,15,1
Hh,5,16,1
Hh517,1
Hh5,18,1
Hh,5,19,1
Hh,5,20,1
Hh521,1
Hh5,22,1
Hh,5,23,1
Hh5,24,1
Hh6,1,1
Hh,6,2,1
Hh6,3,1
Hh,6,4,1
Hh 6,51
Hh,6,6,1
Hh6,7,1
Hh,6,8,1
1n.69,1
Hh,6,10,1
Hh6,11,1
Hh,6,12,1
Hh,6,13,1
Hh,6,14,1
Hh.6,15,1
Hh,6,16,1
Hh,6,17,1
Hh6,18,1
Hh,6,19,1
Hh,6,20,1
Hh,6,21,1
Hh6,22,1
Hh,6,23,1
1h,6,24,1

day: d—5

day: d —6

Note: The table reports the mean occurences of variables in Eq. (20) estimated with
bagging for 1% significance level as explained in Section 3.2.5.
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Table 12: Mean occurrences of the BA_LS1 model parameters across all six
datasets and full out-of-sample test period in percentage points. A heat-map is
used to indicate the range of occurrence values between 0 (— red ) and 100 (—
green). Continued in Table 13.

h

Hh,7,1,1
Fh,7,2,1
Hh,7,3,1
Hh,7,4,1
Hh,7,5,1
Hh,7.6,1
Kh,7,7,1
Hh,7,8,1
Kh,7,9,1
Hh,7,10,1
Hh,7,11,1
Hh,7,12,1
Hh,7,13,1
Hh,7,14,1
Hh,7,15,1
Hh,7,16,1
[n,7,17,1
Hh,7,18,1
Hh,7,19,1
Hh,7,20,1
Hh,7,21,1
Hh,7,22,1
Hh,7,23,1
Hh,7,24,1
Hhs8,1,1
Hh82,1
Hhs8,3,1
Hh,84,1
Hh8,5,1
Hh.8,6,1
1n,8,7,1
Hh88,1
Hh8,9,1
[4h,8,10,1
Hh,8,11,1
Hh,8,12,1
Hh,8,13,1
Hh,8,14,1
Hh,8,15,1
Hh,8,16,1
Hh,817,1
Hh,8,18,1
Hh,8,19,1
Hh,8,20,1
Hh,8,21,1
14h,8,22,1

day: d—7

day: d —8

Hh,8,24,1

Note: The table reports the mean occurences of variables in Eq. (20) estimated with
bagging for 1% significance level as explained in Section 3.2.5.
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Table 13: Mean occurrences of the BA_LS1 model parameters across all six
datasets and full out-of-sample test period in percentage points. A heat-map is
used to indicate the range of occurrence values between 0 (— red ) and 100 (—
green).

Hh,1,1,2
Hh2,12
Hh,3,1,2
Kha,12
Hhj5,1,2
Hh.6,1,2
Hh,7,1,2
Hh,z8,1,2
Hh,1,1,3
Hh21,3
Kh3,1.3
Hha1,3
Hh5,1,3
Hh6,1.3
Hh,7,1,3
1h,8,1,3
Hh1,14 63 68 58 55 56 49 41
[h,2,1,4 46 48 46 52 51 50 48
Hh3,1,4
Hha1,4
Hh5.1.4
Hh6,1,4
Hh,7,1,4
Hha,1,5
Hh2,1.5
Hh3,1,5
Hha1,5
Hh5,1,5
Hh6,1,5
Hh,7,1,5
Hh,1,1,6
Hh,2,1,6
Hh,3,1,6
Hh,a,1,6
1h,5,1,6
Hh6,1,6
Hh,1,1,7
Hh21,7
Hh3,1,7
Hh,a1,7
Hh51,7
Hh6,1,7

Daily Minimums

average price dow Dummies | Daily Maximums

Per. on y.

Per. on y, 24

Note: The table reports the mean occurences of variables in Eq. (20) estimated with
bagging for 1% significance level as explained in Section 3.2.5.
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Table 14: Mean occurrences of factors at the fAR}ow model across all six datasets
and full out-of-sample test period in percentage points. A heat-map is used to
indicate the range of occurrence values between 0 (— red ) and 100 (— green).

h 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Note: The table reports the mean occurences of factors in Eq. (22). Factors are
selected with Bayesian Information Criterion as explained in Section 3.2.6.

Table 15: Mean occurrences of factors at the fEXPERT model across all six
datasets and full out-of-sample test period in percentage points. A heat-map is used
to indicate the range of occurrence values between 0 (— red ) and 100 (— green).

h 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Note: The table reports the mean occurences of factors in Eq. (23). Factors are
selected with Bayesian Information Criterion as explained in Section 3.2.6.
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D. TURKISH SUMMARY / TURKCE OZET

Elektrik fiyat1 tahminleri (EFT) elektrik santrali operatorlerinden elektrik piyasasi
igletmecilerine, iletim sistemi planlama ¢aligmalarindan portféy yoneticilerine kadar
vazgegilmez bir girdidir. Son on yilda giin-6ncesi elektrik fiyatlarinin tahmin edilmesi
igin yiiksek kabiliyetli modeller geligtirilmistir. Bu modellerin ve kullanilan yontem-
lerin genel bir incelemesi Weron (2014) tarafindan verilmektedir. Ikiyiiz ve daha
iizeri aciklayici degiskenin yer aldigi karmasik modellerin tahmin edilebilmesi icin
son donemde shrinkage yontemleri 6n plana ¢ikmaktadir. Bunlarin arasindan Tibshi-
rani (1996) tarafindan geligtirilen, Least Absolute Shrinkage and Selection Operator
(lasso), Ziel et al. (2015) tarafindan EFT literatiiriinde uygulanmig ve birgok basaril
modelden daha iyi sonuglar verdigi gosterilmistir. Ilgili makalenin yayimlanmasindan
sonra lasso'nun bagarili bir gsekilde EFT icin uygunlanmasi hususunda literatiirde

genis bir kabul olugsmustur.

Bu kapsamda, Ludwig et al. (2015) elektrik fiyat tahmininde uygun meteoroloji
tahmin istasyonlarini se¢gmek icin Random Forests yonteminin yaninda lasso’dan
da faydalanmaktadir. Uniejewski et al. (2016) de aym sekilde stepwise regression
ve ridge regression yaninda lasso’yu da incelemektedir. Ziel (2016) giinici fiyat
bagimliliklarinin incelemek igin lasso’yu kullanmaktadir. Ziel (2017) yenilenebilir en-
erji iretim tahminlerinin giinici elektrik spot fiyat tahmin sapmalariyla ilgili gitkarimlar
yapmak icin lasso ile tahmin edilmis modelleri kullanmaktadir. Lasso ayni zamanda
EFT yaziminda onalt1 adet farkli varyans stabilize edici yontemin arasindan en iyi
sonug verenlerin segilmesinde Uniejewski et al. (2018) tarafindan kullanilmigtir. Uni-
variate ve multivariate modelleme metdolojisinin birbiriyle kiyaslanmasi i¢in yapilan
genis kapsaml bir ampirik caligmada lasso her iki modelleme yonteminde de diger
kiyaslanan Naive, Expert, AR ve VAR modellerine gore daha iyi sonuglar tirettigi
Ziel and Weron (2018) tarafindan gosterilmistir. Yakin zamanda yapilan bir bagka
caligma ise (Uniejewski et al. (2019)), lasso’yu giinici elektrik fiyatlariin tahmin
edilmesi kapsaminda ilk defa uygulamig ve literatiirde yaygin olarak kullanilan Naive

ve ARX modellerine gore daha bagarili sonuglar elde edildigini bildirilmigtir.
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Bununla beraber, EFT yazinindaki yaygin kullanimi ve ispatlanmig yiiksek kestirim
kaabiliyetine ragmen lasso bilinen tek shrinkage yontemi olmadigi gibi bir takim ek-
sik yonlerinin olmadig1 da soylenemez. Lasso metodolojisinin hayata gecirilebilmesi
icin kendine has niimerik bir optimizasyon algoritmasi gerekliligi ve lasso ile tahmin
edilen model performanslarinin regiilarizasyon parametresinin degerine ytiksek dere-
cede bagimlh olmasi bardagin bog tarafi olarak goriilebilir. Esasen, son yillardaki bir
bagka aragtirmaya gore, Stock and Watson (2012) Pretest ve Information Criterion
metodlar:, Normal Bayes metodu, Bayesian Model Average, Empirical Bayes and
Bootstrap Aggregation (bagging) yontemlerinin hepsinin asimtotik olarak shrink-
age yontemi oldugu ispatlamistir. Bu arastirmanin sonuclar1 dikkate alindiginda
ordinary least-squares (OLS) yontemiyle tahmin edilen agiklayici degiskenlerin kat-
sayilarinin ayn aciklayici degigkenin t-istatistigi degeri ile orantili olan bir shrinkage
parametresiyle carpilmasi sonucu hesaplanabilecegi ortaya ¢ikmaktadir. Buradan
hareketle ve de bir shrinkage yontemi oldugu goz 6niine alindiginda (Huang and Lee
(2010); Jin et al. (2014)) bagging yonteminin lasso’ya gére daha basit bir hesaplama
yontemine sahip olmasi agisindan EFT yazininda ¢ok fazla sayida aciklayici degigsken

igeren modellerin tahmin edilmesinde 6n plana ¢iktigi goriilmektedir.

Ekonometrik tahmin yazininda, bircok agiklayici degigkenin kullanilabilir oldugu
durumlarda bu degigkenler arasinda uygun bir alt kiimenin secilmesi, uzun za-
manlardir lizerinde aragtirmalar yapilan ve her arastirmaci tarafindan bilinmekte
olan bir konudur. Klasik ekonometri teorisinde bilinen agiklayici degisken secim
yontemleri olan t-istatistigi ve diger Akaike ve Bayesian Bilgi kriteri gibi yontemlerin
tamamu stabil olmayan model secimine sebebiyet verdigi bilinmektedir. Istatistik
ve ekonometri yazininda ilk defa Breiman (1996a,b) tarafindan gosterilen bagging
yontemi stabil parametre secim yontemlerinin yarattigl yan etkileri ortadan kaldiran
ve mevcut kullanima hazir biitiin agiklayici degigskenlerdeki bilgiden en st diizeyde
yararlanilmasini saglayan dogal bir metod olarak goriilmektedir. Yazinda bagging
yOnteminin teorik altyapisi oldukca kuvvetlidir. Bunun ic¢in diger pek c¢ok yayin
arasmdan Hall et al. (1995); Bithlmann and Yu (2002); Andrews (2004); Fried-
man and Hall (2007); Lee et al. (2010) 6rnek olarak gosterilebilir. Lee and Yang

(2006), klasik esit agirhkh katsayr yonteminin yaninda farkh agirlikli bagging kom-
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binasyonlarini da kullanarak asimetrik kayip fonksiyonlariyla olusturulan bir tah-
min caligmasinda, bagging’i zaman serileri literatiiriine uygulamigtir. Yakin za-
mandaki bir bagka aragtirma olan Jin et al. (2014), bagging yonteminin teorik
altyapisinin yiliksek bagimlilikli zaman serilerinin teorisine o uygulanmasi tizerine
yogunlagmaktadir. Bagging ilk olarak bagimsiz ve ayni dagilima sahip datasetleri
icin geligtirilmistir. Daha sonradan bagging teorisi “moving block bootstrap” ve
“block-block bootstrap” yontemleri bagimli datasetlerine genisletilmigtir. Daha de-

tayl bir incelem igin ayrica bkz. Hall et al. (1995) ve Andrews (2004).

Bagging’in ampirik uygulamalar: da ekonometri yazininda oldukga genis yer kapla-
maktadir. Digerleri arasinda Yu (2011); Bergmeir et al. (2016); Dantas and Cyrino
Oliveira (2018) caligmalar: iyi birer ampirik uygulama érnekleri olarak siralanabilir.
Inoue and Kilian (2008), Birlegik Devletler tiiketici fiyat enflasyonu (CPI) serisi i¢in
¢ok sayida makroekonomik degiskeni kullanarak gerceklestirdigi tahmin calismasinda
Bayesian shrinkage predictor, the ridge regression predictor, the iterated lasso pre-
dictor (veya the Bayesian model average) predictor based on random subsets of
extra predictors modelleri arasinda bagging’in benzer performansa sahip oldugunu
gostermistir. Rapach and Strauss (2010) bagging’i otuz farkh prediktor kullanarak
Birlegik Devletler i§giic1'i Biiylime verisine uygulamig ve birgok farkli tahmin kombi-
nasyonu yontemlerine gore daha sonuclar buldugunu rapor etmistir. Kim and Swan-
son (2014) makroekonomik degiskenlerin tahmin edilmesi tizerine gerceklestirdigi
bir yarigmada diffusion index models, factor models ve baz tahmin kombinasyon
yontemleri gibi ¢ok sayida tahmin modelinin yaninda bagging’i de ele almaktadir.
Bagging’in makroekonomi yazininda uzun yillardir yaygin olarak uygulaniyor olmasi
ve bagarili sonuclar alinmig olmasina ragmen, genig aragtirmalarimiz ve bilgimiz
dahilinde bu yontem heniiz enerji ekonomisi alaninda Zhao et al. (2017) tarafindan
gerceklestirilen ve yiizdoksansekiz aciklayici degisken kullanarak WTI ham petrol
fiyatlarinin tahmin edilmesi ¢aligmasi diginda bilinen bir uygulamasi bulunmamak-
tadir. Bagging’in zaman serileri yazimina uygulanmasiyla ilgili teorik gelismeler goz
ontine alindiginda ve birgok bagarili ampirik uygulama dikkate alindiginda, bag-
ging kendini enerji ekonomisi ve 6zellikle de elektrik fiyatlarinin tahmin edilmesinde

glivenilir bir tahmin yontemi olarak 6n plana ¢ikarmaktadir.
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Elektrik fiyat tahmini yazinina katkimiz iki boyutludur. Birincisi, klasik bagging
tahmin yOonteminin multivariate modelleme metodolojisi altinda kullanilarak elek-
trik fiyatlarinin tahmini i¢in model geligtirilmesidir. Bu kapsamda literatiirde siklikla
kullanilan ana elektrik piyasalarinda beg farkl seri ve GEFCom2014 yarigma verisi
kullanilarak giin Oncesi elektrik fiyatlar1 tahmin edilmistir. Ampirik bulgularimiza
gore, Stock and Watson (2012) genellestirilmis shrinkage teorisinin bulgularma par-
alel olarak, bagging yontemiyle elde edilen tahmin sonuglari en az lasso kadar isabetli
sonuclar verdigi gibi bircok markette lasso’dan daha iyi sonuclar elde edilmistir.
Lasso’'nun en 6nemli engeli tahmin performansinin yiiksek oranda regiilarizasyon
parametresine bagli olmasidir. Bu parametre agiklayici degigkenler tizerindeki shrink-
age etkisini belirlemekte ve her ne kadar bircok farkli anlamda yorumlanabilse de
acik bir iktisadi anlam tasimamaktadir. Diger yandan bagging’in performansi is-
tatistiki modellerde aciklayici degiskenlerin istatistiksel anlamliligini belirleyen basit
t-istatistigi degerine baghdir. Herhangi bir ekonometrik modelde ilgili ¢t-istatistigi
degeri neredeyse tamaminda significance levels of 1%, 5% ve 10% anlamhilik degerleri
dikkate alinmakta ve uygulamali ekonometri yazini tarafindan makul degerler olarak
kabul edilmektedir. Bu ¢aligmamizda yukarida anilan anlamlilik degerlerinin her biri
icin sonuclar ayr1 ayri sunulmustur ve diizenli olarak 1% anlamlilik degerinde en iyi
sonucun elde edildigi tespit edilmisgtir. Bu durum ekonometrik modelleme diizle-
minde, daha iyi tahminler gerceklestirebilmek icin sadece ¢ok yiliksek anlamliliga
sahip aciklayici degiskenlerin yapilan modelde bulundurulmasinin énemine igaret
etmektedir. Diger yandan lasso'nun bir bagka gorece zorlugu ise gelismig opti-
magzyon algoritmalarina ihtiyac duyuyor olmasidir. Bu algoritma ve yazilimlar tah-
mini gerceklestiren arastirmaci icin her zaman kolay ulagilabilir veya ulasilsa bile
kolaylikla kendi sartlarina adapte edilebilir olmamaktadir. Oysa ki bagging oldukca
basit algoritmadan olugmakta herhangi bir yazilimda 6zel bir ekstra koda ihtiyag

duyulmadan uygulanabilmektedir.

Yazina ikinci katkimiz ise giinici elektrik fiyatlarimin birbirleriyle olan bagimliliklar:
iizerinedir. Giinici elektrik fiyatlar1 birbirlerine yiiksek oranda bagimlhilik goster-
mektedirMaciejowska and Weron (2015, 2016). Multivariate modelleme yéntemi-

nin en biiylik eksikligi, tanimi geregi, giinici elektrik fiyatlar1 arasindaki bagimliligi
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icermemesidir. Giinigin elektrik fiyatlarindaki bagimliligi modelleyebilmek i¢in VAR
modelleri ele alinabilir fakat bu tahmin edilmesi gereken toplam parametre sayisini
dramatik olarak arttiracagindan diigiik veri sayisina sahip veri setlerinde modelin
tahmin edilmesini oldukga zorlagtirmaktadir. Diger bir alternatif ise univariate mod-
elleme yonteminden yararlanmaktir. Ancak bu ydnteme gore giiniin biitiin saat-
lerini igeren tek bir biiyiik model gbéz Oniine alinmaktadir, éngoriileme hatasinin
birikimli olarak artmasina ve oOzellikle giiniin son saatleri i¢in yapilan tahminlerin
kotiilesmesine sebep olmaktadir. Univariate modellemenin diger bir sorunlu tarafi
ise multivariate modellemeye gore 24 kat fazla veri sayisi kullamilarak tahmin ve
ongoriilleme yapilmak zorunda oldugunda artan bilgisayar hesaplama yiikiidiir. Bu
sebepler, bu calismada glinici elektrik fiyatlarinin birbirleriyle iligkisini modelleye-
bilmek adina faktorlerle desteklenmis modeller onerilmektedir. Bu ¢alismada Gner-
ilen faktorlerle desteklenmis modeller ayni1 zamanda multivariate modelleme yapisinin
korunuyor olmasindan dolayr hem tahmin edilmesi hizli ve kolay hem de takip
edilebilirdir. Bu kapsamda EFT yazininda kullanilan klasik modellerin faktorlerle
desteklenmesi degerlendirilmektedir. Diger bir deyisle mevcut modellerdeki agiklayici
degiskenlere ilave olarak modellere agiklayici degisken olarak faktorler eklenmekte-
dir. Yukarida da aciklandigi lizere, bu modelleme yonteminin kullanilmasindaki

motivasyon faktorlerin giinici elektrik fiyat1 degigimlerini temsil ediyor olmasidir.

Faktor modelleri daha 6nce EFT yazininda ayni motivasyonla Maciejowska and
Weron (2016) and Ziel (2016) tarafindan da ele alimmigtir. Bu galigmadaki faktorleri
degerlendirme yontemimiz ve modelleme seklimiz cesitli yonlerden mevcut literatiirle
farkliliklar gostermektedir. Ilk olarak, bu calismada faktorler aciklayic: degisken
olarak dogrudan modellerde yer verilmektedir, 6te yandan mevcut literatur AR ve
ARX tipi modeller kullanarak faktorleri dngoriilemektedir (Bunun icin Ziel (2016)
Denklem (15) ve (16) veya Maciejowska and Weron (2016) Denklem (9) and (10)
PCy ve PCnyX modelleri 6rnek olarak verilebilir.) Ikinci olarak bu caligmada
kullanilacak faktor sayisi toplam faktor sayisi olan 24 faktor igerisinde Bayesian
Bilgi Kriteri kullanilarak secilmistir. Bugiine kadarki caligmalar onceden belir-
lenmig sayida faktor kullanilmigtir, 6rnegin Maciejowska and Weron (2016) ilk beg
faktori dikkate alirken, Ziel (2016) ikiden onikiye kadar degigen sayida faktorii dikkate

60



almaktadir. Bu ¢caligmada ise veriye bagh bir se¢im yontemi kullanilarak faktor sayisi

tespit edilmistir.

Faktor modelleri icin her bir saat icin toplam 24 saatten olusan giin 6ncesi elektrik
fiyatlar1 panel verisi kullanilarak principle component yontemiyle gizli faktorler hesa-
planmig ve faktorler modelere yeni agiklayici degigkenler olarak eklendikten sonra
modeller tekrardan tahmin edilmistir. Modellere eklenen yeni faktorler Bayesian In-
formation Criterion yontemi kullanilarak tespit edilmistir. Caligilan elektrik market-
lerinin yarisinda faktorlerle desteklenmis Exper model (fEXPERT) diger shrinkage
yontemleri ile kiyaslanabilir sonuglar verdigi goriilmektedir. Faktorlerle desteklenmis
Expert modeller giinigi elektrik fiyatlar1 bagimliligini icerdigi degerlendirilebilir, bu
sayede normal Expert modele gore daha iyi sonuglar elde edilmektedir (multivari-
ate modelleme yonteminde bu bagimlhiklari yakalamak modelleme yapisi geregi her
bir giin saati i¢in ayr1 bir model olarak degerlendirildigi ve tahmin edildiginden
miimkiin olamamaktadir). Ayni zamanda fazla sayida degiskenli modellere de il-
gili faktorler uygulanmigs ve tahmin sonuclarinda kayda deger degisimler gozlen-
memistir. Bu durum ¢ok degigkenli modellerin giini¢i fiyat bagimhliklarini (ve
faktorlerin icerdigi diger bilgileri) zaten biiyiik bir 6l¢iide icerdigini kamtlamaktadir.
Bu durumda Ziel (2016) galigmasindaki bulgularla értiismektedir. Biitiin bu bulgular
birlikte degerlendirildiginde EFT literatiiriinde kullanilan sade modellerin faktorler
ile desteklenmesi o modelleri hem sade ve yorumlanabili kalmasini saglarken ayni za-
manda glini¢i fiyat bagimliliklarima icermesinin 6niinti agtiginda bu modelleri klasik
versiyonlarina gére daha basarili kilmaktadir. Dahasi, faktorlerle desteklenmis ¢ok
degiskenli modelleme yontemi tek degiskenli modelleme yontemine gore daha ter-
cih edilebilir olarak one ciktigl degerlendirilmektedir. Bunun en 6nemli sebebi tek
degiskenli modelleme yonteminin en o6nemli faydasimin giinici fiyat bagimliliklarini
igeriyor olmasidir. Oysaki gokdegiskenli yontem kullanilan modellerde faktorler ek-
lendigi zaman bu bilgi yakalanabilmektedir. Bu sayede cokdegiskenli modelleme

yontemindeki 6nemli bir eksiklik de, en azindan belli bir oranda, giderilmektedir.

Bu ¢alismada 6nerdigimiz yeni modeller ve tahmin yontemlerini ampirik olarak test

etmek ic¢in alt1 farkli elektrik piyasasindan saatlik glin-6ncesi fiyatlar: kullanilmaktadir.
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Bu veriler arasindan GEFCom2014 verisi 1 Ocak 2011°den 17 Aralik 2013’e kadar
yaklagik {i¢ yillik bir zaman dilimini kapsamaktadir. Diger beg veri seti ise 1 Ocak
2013’den 19 Eyliil 2019’a kadar yaklagik alt1 yil dokuz aylik donemi kapsamaktadir.
Bu seriler bes adet biiyiik elektrik piyasasinin verileridir. Bu piyasalar “Nordic
Power Exchange” Nord Pool sistem fiyat1 (NP.SYS)”, Birlesik Krallik (NP.N2EX),
ABD Commonwealth Edison Bolgesi (PJM.COMED), Cek Cumhuriyeti Elektrik
Piyasas1 (OTE.CZ), Ispanyol Elektrik Piyasasi (OMIE.SP). “Global Energy Fore-
casting Competition 2014 (GEFCom2014)” serisi ise Hong et al. (2016) tarafindan
diizenlenen uluslararas: 6ngoriileme yarismasinda kullanilan fiyat serisini igermektedir.
Bu fiyat serisinin hangi iilkeden alindigi yarismayi diizenleyen kurul tarafindan
aciklanmamakla beraber literatiirde ABD Elektrik Piyasalarindan elde edildigine
yonelik yaygin bir kani vardir. Bu verinin detaylar:1 i¢in okuyucular Hong et al.
(2016)’dan yararlanabilirler. Ote yandan fiyat serileri (GEFCom2014 serisi haric)
Mart ayindaki saat degisiminden kaynakli eksik veri icin komsu iki saatin verisinin or-
talamas: alinarak ve Ekim ayindaki saat degisiminden kaynaklanan birbirini tekrar-
layan iki saatin ortalamasi ilgil saat yerine konularak diizeltilmistir. Bu yontemin

detaylar: i¢in Bkz. Uniejewski et al. (2016).

Marketler ve GEFCom2014 verileri igin modellerin 6ngoriileme performanslarinin
olglilmesi amaciyla sirasiyla 1470-giin (yaklagik 4 yil) ve 350-giin (yaklagik 1 yil)
ongoriilleme donemi birakilmigtir. Elektrik marketlerinin 6ngoriilleme doénemi 11
Eyliil 2015°den 19 Eyliil 2019’a kadardir. Ote yandan GEFCom2014 icin ise 2
Ocak 2013’den 17 Aralik 2013’e kadardir. Modeller mevcut literatiirdeki konven-
siyon dikkate alinarak kayan-pencere yontemiyle tahmin edilmigtir. Kayan pencere
yontemi ayni zamanda literatiirde genig olarak yer verilen ve ve farkli tahmin metod-
larinin O6ngoriilleme yeteneginin test edilmesinde kullanilan Diebold and Mariano
(1995) testinin (DM testi) saglikli sonuglar vermesi igin de faydalidir. Eger genigleyen-
pencere yontemiyle modeller tahmin edilirse, birbirinin kapsayan éngoriileme model-
leri olugsmasi durumunda, bir bagka ifadeyle esit 6ngoriilleme performansi bog hipotezi
dogru ise bu durumda kiyaslanan modellerin ongoriileme hatalar: esit ve korele
olacagindan DM testin pay ve paydasi tahmin penceresi genigledikge sifira gide-

cektir. Buna kargilik kayan-pencere yonteminin faydasi tahmin periyodunun siirekli
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sonlu kalmasini saglamasi ve yukarida bahsedilen sorunlu durumun ortaya gikmasimni
engellemesidir. Bu konuyla ilgili daha fazla bilgi ve diger detaylari i¢in okuyucu Gi-

acomini and White (2006) ve Diebold (2015)’a yonlendirilmektedir.

Elektrik fiyat tahminlemesinde 6nemli bir diger konu ise veri doniigimudiir. Bu
konuyla ilgili yazinda en uygun transformasyon yontemlerinin aragtirildig: bilgilendirici
makaleler yer almaktadir. Hatta veri dontisiimiine gerek kalmayacak sekilde ro-
bust tahmin teknikleri bile gelistirilmistir (Huber and Ronchetti (2009)). Veri
doniigiim yontemlerinin detayh bir incelemesi igin okuyucu Uniejewski et al. (2018)’a
yonlendirilmektedir. Onerilen déniigiim yontemleri arasinda en basit ve kullamigh
olani logaritmik doniisiim yontemidir. Bu yontem, elektrik fiyat serilerinin en bili-
nen ozelliklerinden olan ani ve gegici agir1 fiyatlarin dontigtiiriilmesinde ve varyansin
stabilize edilmesinde etkilidir. Ancak bu yontem g¢ogu zaman eksi elektrik fiyatlari
icin kullamlabilir degildir. Ote yandan eksi elektrik fiyatlar1 son yillarda 6zellikle
yenilenebilir enerji santrallerinin sistemdeki oraninin artmasiyla siklikla kargilagilan
bir olaydir. Bazi saatlerde yenilenebilir enerji santrallerinin enerji iiretimi arttikca
merit-order etkisinden dolay1 baz yiik santralleri asilmasi yiiksek maliyetlere se-
bep olabilecek teknik kisitlardan dolay: iiretimlerinin belli bir seviyenin altina in-
dirmemek i¢in piyasaya eksi fiyat teklifi verebilmektedirler. Bu ¢aligmada kullanilan
serilerde de oldukca yaygin olarak eksi fiyatlar yer alabilmektedir. Bu sebeple area
(or inverse) hyperbolic sine doniigim olarak adlandirilan ve Ziel and Weron (2018)

tarafindan da basariyla kullanilan yontem dikkate alinmaktadir.

Bu calismanin 6n plana c¢ikan yonii yiksek sayida aciklayici degisken igeren mod-
elleri kullanarak ongoriileme yapilmasidir. Yiiksek sayida agiklayici degiskenin kul-
lanilmasi aymi1 zamanda bu agiklayici degiskenler arasindan en yiiksek bilgiyi iceren
ve modelin 6ngoriileme kaabiliyetini bozmayan degiskenlerin olugturdugu bir alt
kiimenin olugturumasini gerektirmektedir. Boyle bir alt kiimenin segilmesi bir yolu
tecriibeye dayali uzman bilgilerine gore en etkili agiklayici degiskenlere modellerde
yer verilmesidir. Bu modeller EFT yazininda Expert modelleri olarak anilmaktadir.
Fakat 6ngoriilemenin iyilegtirilmesi i¢in diger agiklayic1 degiskenlerdeki bilgiler kul-

lanilarak daha iyi sonuclar elde edilebilir. Fakat diger yandan da genis bir yazin

63



modellere fazla sayida ve dusiik aciklayici kaabiliyette degiskenlerin konulmasinin
modelin toplam performansini diisiirdiigiinii ifade etmektedir. Oysa bu aciklayici
degiskenlerdeki bilginin kullanilmasi 6ngoriileme performansi acgisindan 6nemlidir
zira belli bir alt kiimede yer alan aciklayici degigkenlerin siirekli kullanilmasi bazi
donemler iyi sonugclar iiretirken bazi donemler modelin 6ngoriileme performansini
¢ok diigiiriicii sonuglara sebep olabilir (Stock and Watson (2003)). Sonug olarak
hem biitiin agiklayici degiskenlerdeki bilginin kullanilmasi hem de modelleri giivenilir
kilacak formal bir tahmin yontemine ihtiya¢ oldugu aciktir. Bu durumda shrinkage

yontemlerinin kullanilmasini 6nerilmektedir.

Bu ongoriilleme caligmasinda kullanilan yiiksek sayida aciklayici degiskenin tah-
min edilmesi i¢in Breiman (1996a,b) tarafindan gelistirilen Bootstrap Aggregation
(bagging) yontemi onerilmektedir. Bagging agiklayict degiskenlerin segilmesi i¢in
kullanilan ve stabil olmayan se¢im yontemlerinin olusturdugu yan etkileri gidermekle
beraber ayni zamanda mevcut aciklayici degigkenler arasindan en yiiksek oranda bil-
giyi modele katabilme kaabiliyetine sahiptir. Bagging yontemindeki en 6nemli fikir
mevcut verinin ampirik dagilimi kullanilarak yeni veri setlerinin tekrardan yapay
olarak iiretilmesidir. Bu veri setlerinin her biri yeni bir bilgi icermektedir. Bu nok-
taya kadar olan kisim bagging’in bootstrap kismini teskil etmektedir. Yapay olarak
iiretilen her bir veri seti kullanilarak modellerin tahmin edilmekte ve bu modelle
ongoriiler hesaplanmaktadir. Ardindan, her bir yapay set icin tretilen ongoriiler
birlegtirilerek veya diger bir ifadeyle ortalamasi alinarak final 6ngorii hesaplanmak-

tadir. Bu kismi ise baggingin “aggregation” kismini olusturmaktadair.

Bu caligmada yiiksek sayida agiklayici degiskenin tahmin edilmesi i¢in kullanilan
bir diger yontem ise, EFT yazininda yogun olarak kullanilan ve suana kadarki bi-
linen en iyi tahmin ve 6ngoriileme yontemi olan ve Tibshirani (1996) tarafindan
geligtirilen Least Absolute Shrinkage and Selection Operator (lasso) yontemidir.
Bagging’in aksine lasso EFT yazininda bircok kere kullanilmig ve diger mevcut
non-shrinkage yontemlerine gore iistiin ongoriileme yetenegine sahip oldugu goster-
ilmigtir. Lasso’'nun bir diger 6ne ¢ikan yami ise bazi acgiklayici degiskenlerin kat-

sayisini sifira egitlemesidir. Bu bakig acisindan lasso ayni zamanda parametre secim
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yontemi olarak diigtiniilebilir. Fakat ongoriileme teknigi agisindan asil igi yapan

lasso’nun shrinkage 6zelligidir (Ziel and Weron (2018)).

Lasso yonteminin performansini belirleyen en 6nemli parametre regiilarizasyon parame-
tresidir, A. Bu parametrenin dogru bir sekilde secilmesi éngoriileme performansini
dogrudan etkilemektedir. Bu caligma kapsaminda iki farkli A segim yontemi Gner-
ilmektedir. Ilk secim prosediiriinde Uniejewski et al. (2019)’nin kullandig1 yéntem

19—

dikkate alinmigtir. Bu kapsamda bir A grid’i onerilmektedir: A\; = 107 "6 , ¢ =

1,...,10 ve buradan optimum A degeri Hannan-Quinn Bilgi Kriteri (HQC) kul-
lanilarak segilmektedir. Burada tabi ki Akaike ve Bayesian bilgi kriterleri de bu segim
kapsaminda kullanilabilir. HQOC yontemini kullanmaktaki motivasyonumuz Ziel
and Weron (2018) tarafindan 6nerilen ve lasso'nun daha iyi éngériileme yapmasini
sagliyor olmasidir. Bu yontemde her saat i¢in ve her 6ngoriileme periyodu igin ayri
ayr1 secilmektedir. Ikinci bir alternatif olarak ex-post A secim yontemi énerilmek-
tedir. Bu yontemde yirmidort modelin her biri i¢in ayr1 ayri on tane A degerinden
olusan grid degeri icerisinden en diisik MAE degerini verenler secilmektedir. Bu
prosediirde biitiin 6ngoriilleme periyodu icin tek bir A degeri dikkate alinmaktadir.
Uygulamada en iyi sonucu veren A\ degerini onceden hesaplamak miimkiin olmadigi
icin bu yontem tamamen regiilarizasyon parametresinin teorik sinirlarini gérebilmek

icin Onerilmis infizibil bir yéntemdir. Bu sebeple ex-post olarak anilmaktadir.

Bu calismada EFT yazini icin yeni bir shrinkage yontemi olan bagging yontemi
tanitildi ve alt1 farkli elektrik fiyat serisinde bu yontemin bagarili sonuglar iirettigi
gosterildi. Bulgularimiza gore bagging yontemi EFT igin yiiksek sayida agiklayici
degisken igeren modellerin tahmini ve 6ngériilleme yapilmasi i¢in giivenilir sonuglar
irettigi tespit edildi. Bagging EFT yazininda yogun olarak kullanilan bir bagka
shrinkage yontemi olan lasso’ya gore daha kolay hesaplama yapilabilmesini saglayan
oldukca basit bir ongoriilleme yontemi olarak tanitilabilir. Bagging ve lasso’nun
ongoriilleme performanslar: birbirine benzer sonuclar iiretmekle beraber, bazi mar-
ketlerde bagging’in daha iyi sonuclar iirettigi tespit edilmigtir. DM testi sonuglar:

acisindan bu iki yontem birbirlerine net bir Gstinliik kuramamaktadir.
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Bu caligmadaki bir diger katkimiz ise multiivariate modelleme cercevesi igerisinde
glin ici elektrik fiyatlarinin birbirleriyle olan iligkilerini modellere yansitilabilmesini
saglayan faktorlerle desteklenmis modellerin geligtirilmesidir. Faktorlerin modellere
dahil edilmesi basit modellerin 6ngériileme performansim iyilegtirdigi gibi ayn za-
manda baz1 marketlerde ¢ok sayida degiskenli modeller kullanilarak shrinkage yontem-
leri ile tahmin edilen modellerin performansina benzer sonuglar verebilmektedir.
Ayni zamanda faktorlerin eklendigi shrinkage yontemiyle tahmin edilen gok sayida
aciklayic1 degisken iceren yontemlerin bu faktorlerin eklenmesiyle 6ngoriilleme per-
formansinda dikkate deger bir artig olmadigi gibi cogunda kotiilesme oldugu da
goriilmektedir. Bu durum faktorlerde yer alana bilgilerin halihazirda bu modellerde
yer aldig1 ve buradan hareketle faktorlerdeki en 6nemli bilgi olan giinicin fiyat
bagintilarinin halihazirda bu tip modellerde yer aldigini géstermektedir. Yine bu
noktadan hareketle univariate modellerin giinigin elektrik fiyatlarindaki bagimhiliklari
temsil etmesi amaciyla tercih edilmesi 6zellikle shrinkage yontemleriyle tahmin edilen
yiiksek sayida degisken iceren modeller i¢in hesaplama yiikiinii ve kompleksligi arttirici
bir yiik getirdigi degerlendirilebilir, zira giinigi elektrik fiyatlarimin bagimliligi bu

modellerde multivariate setting icerisinde zaten yer aldig1 gosterilmistir.

Tlerideki aragtirmalar kapsamimda bagging bir¢ok farkli uzantisinin EFT yazininda
degerlendirilmesi s6z konusudur. Bunlarin arasinda her bir yapa veri setine esit
agirlik vermek yerine veriye dayali agirliklandirma, baggign ile lasso nun iiretiigi
ongoriilerin birlegtirilerek yeni ongoriilerin olugturulmasi gibi konular sayilabilir. Da-
hasi bagging’in uzun doénemli trend ile stokastik bilesenin birbirinden ayrildigr veri
setlerinde sadece stokastik bilesene uygulanmasi yontemi ile daha bagarili sonuglar
elde edilebilecegi degerlendirilmektedir. Ote yandan faktér modelleri icin burada
elde edilen bulgular kullamilarak faktor dondiirme yontemleri ile identify edilmesi ve

anlamlandirilmasi da gelecekte gergeklestirilmesi planlanan ¢aligmalar arasindadir.
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