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ABSTRACT

MAXIMAL PAGE CROSSING NUMBER OF EMBEDDED CLOSED
LEGENDRIAN SURFACES IN CLOSED CONTACT 5-MANIFOLDS

Ersen, Ozlem
Ph.D., Department of Mathematics Department, METU
Supervisor: Assoc. Prof. Dr. M.Firat Arikan

March 2020, [74] pages

The main purpose of this thesis is to introduce a new Legendrian isotopy invariant
for any closed orientable Legendrian surface L embedded in a closed contact 5- man-
ifold (M, &) which admits an "admissable" open book (B, f) (supporting &) for L.
We show that to any such L and a fixed page X, one can assign an integer M Px (L),
called "Relative Maximal Page Crossing Number of L with respect to X", which is
invariant under Legendrian isotopies of L. We also show that one can extend this
to a page-free invariant, i.e., one can assign an integer MPp r(L), called "Abso-
lute Maximal Page Crossing Number of L with respect to (B, f)", which is invari-
ant under Legendrian isotopies of L. In particular, this new invariant distinguishes
Legendrian surfaces in the standard five-sphere which can not be distinguished by

Thurston-Bennequin invariant.

We give definitions of M Px (L) and MPp (L) and show that the invariants are
well defined. Also, we show that they are preserved under Legendrian isotopies of L.

Finally, we give an example about these invariants.



Keywords: Legendrian surface, open book, contact structure, symplectic, maximal

page crossing number
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0z

KAPALI KONTAKT 5-MANIFOLDLARDA GOMULU KAPALI
LEGENDRIAN YUZEYLERIN MAKSIMUM SAYFA GECISME SAYISI

Ersen, Ozlem
Doktora, Matematik Boliimii

Tez Yoneticisi: Dog¢. Dr. M.Firat Arikan

Mart 2020 , [74] sayfa

Amacimiz; bir kapali, kontakt 5-manifoldun (B, f), open book yapisini kullanarak,
her bir kapali, yonlendirilebilir Legendrian alt yiizeyi i¢in yeni bir Legendrian izotopi
degismezi tanimlamaktir. Boyle bir Legendrian alt manifoldu L ve sabit bir X sayfasi
icin Legendrian izotopiler altinda degigsmez olan ve bagil maksimum sayfa gecisme
sayist olarak adlandirilan bir tamsay1 atanabilecegini gostermek istiyoruz. Ayrica, bu
degismezin sayfadan bagimsiz yeni bir degismeze genisletilebilecegini gostermek is-
tiyoruz. Yani bdyle bir Legendrian alt manifoldu icin Legendrian izotopiler altinda
degismez olan ve mutlak maksimum sayfa gecisme sayis1 olarak adlandirilan bir tam-
say1 atanabilecegini gosterece8iz. Bu yeni degismez Thurston-Bennequin degismezi
tarafindan ayirt edilemeyen standart 5-kiirelerin Legendrian yiizeylerini ayirt etmeye

yardimct olur.

Bu degismezlerin tanimini verip iyi tanimli olduklarini gsterdik. Ayrica, tanimlanan
bu sayilarin Legendrian izotopiler altinda korundugunu gésterdik. Son olarak tanim-

lanan bu degismezler i¢in bir 6rnek verdik.
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Anahtar Kelimeler: Legendrian yiizey, acik kitap, kontakt yapi, simplektik, maksi-

mum sayfa gecisme sayisi
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CHAPTER 1

INTRODUCTION

Contact geometry is the study of an odd dimensional manifolds unlike symplectic
geometry which is defined on some even-dimensional manifolds. Contact and sym-
plectic geometry are motivated by the classical mechanics, where one can think either
the even-dimensional phase space of a mechanical system or constant-hypersurface
which is odd-dimension. Contact geometry has many uses in different areas in physics,
like as geometrical optics, classical mechanics, thermodynamics, integrable systems
etc. The relation between a contact geometry and a dynamical systems comes from
the notion of the Reeb vector field of a contact form in the contact geometry. Contact
geometry also has applications to mathematics, especially in low dimensional topol-
ogy; for example to prove the property P conjecture by Kronheimer and Mrowka [[19]]

and to define invariants of knots by Lenhard Ng [20].

One of the most useful topological tools to study manifolds is open book decomposi-
tions. It is relevant to contact structures. Thurston and Winkelnkemper [27]] showed
that every open book admits a contact structure. Ibort, Martinez-Torres and Presas
[1] showed that supporting open books with Weinstein pages always exist for all
closed contact 5-manifolds and that monodromies can be assumed to be symplecto-
morphisms of the pages. Moreover, there is one-to-one correspondence between the
set of supporting open books which arise from the work of Ibort, Martinez-Torres and
Presas up to positive stabilizations and the set of supported contact structures up to
isotopies. These results are given by a famous theorem of Giroux [14] for n > 5. By
this theorem, contact geometry can be studied from a topological viewpoint and we
can see contact structures as topological objects. Etnyre and Ozbagci [[12]] defined

new invariants of contact structures in terms of open book decompositions.



The most interesting subspaces of a contact manifold are its Legendrian subman-
ifolds. In fact, Legendrian submanifolds are counterpart to Lagrangian submani-
folds of symplectic manifolds. Legendrian submanifolds are very hard objects. Be-
cause there are infinitely many Legendrian isotopy classes of embeddings which are
smoothly isotopic. One can use relative contact homology which provides invariants
of Legendrian submanifolds to distinguish different Legendrian submanifolds that are

smoothly isotopic.

Legendrian knots inside a contact 3-manifold is the simplest example of Legendrian
submanifolds. Legendrian knots are very important. Because we can learn geometry
and topology of the underlying manifold with their contribution. Many inequivalent
Legendrian knots can be distinguished by their Thurston-Bennequin invariants and
rotation number, which are together known as the classical invariants of Legendrian
knots. Y. Kanda used Legendrian knots to distinguish contact structures in [18]] and
L. Rudolph used Legendrian knots to detect topological properties of knots in the
[22]. Many examples are known about Legendrian non-isotopic knots with the same
classical invariants. Also, in higher dimensions, there are interesting examples of
non-trivial Legendrian knots when the contact manifold has more topology on it [9].
The Thurston-Bennequin invariant of any Legendrian surface of a contact manifold
measures the twisting of contact structure around this Legendrian surface [[11] . This
invariant was originally defined by Bennequin [3] and independently, Thurston when

n =1 and generalized to higher dimensions by Tabachnikov [26].

To distinguish two or more topological objects by using some invariants has always
been very important. Hence the notion of invariant sounds good. For this reason,
many mathematicians would like to discover some new invariant. Any orientable
Legendrian submanifold in any contact manifold comes with a canonical contact
framing, called Thurston-Bennequin framing. More precisely, if L* c (M?"+1 €)
is an orientable Legendrian submanifold, then its contact framing is determined by
a smooth vector field which is every transverse to &|,. If we further assume that L
is null-homologous (i.e., if L = OC for some (n + 1)-chain C' ¢ M), then we can
compare the contact framing on L with the one determined by C, and so one can
identify it with an integer tb( L) called Thurston-Bennequin number of L. In the past

two decades new Legendrian isotopy invariants have been defined and studied (see for



instance, [23], [23]], [24]) due to insufficiency of tb( L) in distinguishing non-isotopic
Legendrian submanifolds in certain cases. Most of these new invariants are based on

differential graded algebras and very difficult to compute.

Returning back to dimension five, it has been known (see [24], for instance) that
tb(L) can not distinguish Legendrian surfaces in the standard contact R% or S® which
are smoothly (but not Legendrian) isotopic. The reason for this is that ¢tb(L) coin-
cides with a topological invariant for these cases, i.e., it does not carry any informa-
tion about the Legendrian embedding of L into R® or S°. On the other hand, the
new invariants introduced in this thesis can distinguish such Legendrian surfaces by
means of classical computations relatively more visual and simpler than those used
in computing other Legendrian isotopy invariants. For this reason, my thesis prob-
lem comes to the light. We define two new Legendrian isotopy invariants for any
closed orientable Legendrian surface in closed contact 5-manifolds using “essentially

intersecting” pages of “admissable” open book decompositions.

In Chapter 2, we give a review of background information on contact 5-manifolds,
symplectic manifolds, almost complex manifolds, Liouville manifolds, Weinstein
manifolds, Stein manifolds, open book decompositions, Legendrian submanifolds,

Thurston-Bennequin invariant and handle decompositions of Stein surfaces.

In Chapter 3, we define a new invariant explicitly: For a given closed, orientable Leg-
endrian surface L in a closed contact 5-manifold, we consider an “admissable” open
book decomposition for L with a page X = X, whose double D(X) = X, Uy X3
“essetially intersects” L. (Here X, is the dual page of X;). One may assume that L
and the binding intersect transversely. Then for any L’ which is Legendrian isotopic
to L and transverse to D(X), we consider all the components of the link of trans-
verse intersection of L’ and D(X). Sketch the Legendrian arcs constructing these
components in the Stein diagrams of X and X, and calculate Thurston-Bennequin
number of each of these arcs. By summing all of these numbers, we obtain an integer
called the “page crossing number” of L’. Finally, maximum of these numbers (among
all such L”’s) give us a number which we will call “Relative Maximal Page Crossing

Number of L with respect to X".

In Chapter 4, we will study two kinds of Legendrian isotopies and prove the following



theorem:

Theorem 1.0.1 One can associate an integer MPx (L), called “Relative Maximal
Page Crossing Number of L with respect to X", which is invariant under Legendrian

isotopies of L.

In Chapter 5, using the relative invariant, we show that under an additional assump-
tion on admissable open books, one can also define an absolute invariant which is
independent of pages of the open book at hand. Namely, assuming that an admiss-
able open book (B, f) for L also “essentially intersects” L, we prove the following

theorem:

Theorem 1.0.2 One can associate an integer MPp 5y(L), called “Abolute Maximal
Page Crossing Number of L with respect to (B, f)", which is invariant under Legen-

drian isotopies of L.

In the last chapter, we give a concrete example for the invariants.



CHAPTER 2

BACKGROUND

In this chapter, we will recall some basic definitions and facts about contact/symplec-
tic geometry and topology in dimension five. In section 2.1, we will define contact
structures and give some examples that will be used throughout the thesis. After dis-
cussing symplectic manifolds and almost complex manifolds in section 2.2, we will
define Liouville, Weinstein and Stein manifold. Open book decompositions and their
relations with contact structures will be considered in section 2.4. After we give an
overview of Legendrian submanifolds and Thurston-Bennequin invariant, we will re-
call handle decompositions of Stein domains and their relations with contact surgery

diagrams in section 2.6 and we will finish this chapter.

2.1 Contact 5-Manifolds

Let us start with defining a contact structure on (necessarily) odd dimensional man-
ifolds. Due to the nature of this thesis, most of the time we restrict our attention on
dimension five. More discussions and details about contact structures can be found,

for instance, in [[10] and [[15]].

Definition 2.1.1 A pair (M?>,§) is called a contact manifold where M is a smooth
manifold and £*c T M is totally non-integrable 4-plane field distrubution on M. A
contact structure on M is the distrubution & where & is said to be co-oriented if it is
the kernel of a globally defined 1-form . « has the property a A (da)? # 0. Such «

is called a contact form on M.



Since a A (da)? # 0, a contact manifold M5 must be oriented. So o A (da)? # 0

defines the given orientation on M.

Remark Observe that « is a contact form if o A (da)? is a volume form on M.
That is, o A (da)? is a nowhere vanishing top dimensional differential form. If « is
globally defined, then it is called co-oriented. o can be defined locally or globally.
If £ = Ker(a) and a A (da)? > 0, then & is called a co-oriented positive contact

structure. In general, we assume that £ is co-oriented positive contact structure.

Remark 1) The condition o A (da)? # 0 is independent of the specific choice of .

2) The 2-form dov, is nondegenerate on ¢, for all p € M.

Now we will restrict ourself to contact 5-manifolds and give some examples.

Example 2.1.1 Consider the standard Cartesian coordinates (x1,y1, T2, Y2, 2) in R?
and 1-form oy = dz + x1dy; + x2dys. Since aq A (day)? = (dz + x1dy; + T2dys) A
(dxy Adyy + dag Adys)? =2dz Adzy Adyy Adzy Adys # 0, & = ker(ay) is a contact
structure on R®. This &, is called the standard contact structure on R5.

See Figure 2.1 for the 3-dimensional case.

I

Figure 2.1: The standard contact structure ker(dz + xdy) on R3.



Example 2.1.2 Similarly, consider R® with the standard coordinates (x1,y1, T2, Y2, 2)
and the 1-form oy = dz+x1dy; —y1dxy + Todys —yadxs. &5 = ker(an) is also a contact

structure on R5.

Example 2.1.3 Let S° be the unit 5-sphere in RS with standard coordinates
(1,91, %2, Y2, T3,y3) and 1-form az = x1dy; — y1dzy + xodys — yodrs + x3dys — ysdas,
which is restricted to S°. This contact form defines a standard contact structure on

S5. So we have &3 = ker(az).

Example 2.1.4 Consider R® with the polar coordinates (r;, ¢;), in the (x;,y;) plane

j =1,2. The following 1-form is a contact form on R5.
ay =dz +ridey +ridoy = dz + x1dy; — y1dxy + Tadys — Yodxy
This contact form defines a contact structure &, on R5. That is &, = ker(ay).

Example 2.1.5 Consider R®, endowed with cartesian coordinates (x1,y1,2,Ya,2)
and the 1-form o = dz — y,dxy — yodzo. This contact form defines a contact structure

on R5.
Remark In fact, this contact form is not different from the contact forms a, s, oy, as.

The following definitions describe the equivalence of contact structures and forms.

Definition 2.1.2 A diffeomorphism 1 : (My,& = ker(ay)) - (M, & = ker(as))
between two contact 5-manifolds is called contactomorphism if its differential T'f :
TM, — TM; maps the contact structure & on M, to the contact structure & on
Mo, i.e. if there is a function \ : My — R~ {0} with f*as = Aay. Two contact
5-manifolds (M,&) and (Ms, &) are said to be contactomorphic if there exists a

contactomorphism between them. That is, 1. (&1) = .

Definition 2.1.3 Two contact structures & and & on a 5-manifold M are isotopic if
there is a contactomorphism ¢ : (M, &) — (M, &) such that 1) is isotopic to the
identity. On the other hand, two contact structures & and &; on a 5-manifold M are

called homotopic if they are homotopic as tangent plane distributions.

7



Two different contact structures can be homotopic but not isotopic. Hence, classifica-

tion of contact structures is made up to isotopy.

Example 2.1.6 The contact manifolds (R5,&; = ker(ay)) and (R?, & = ker(ag))
from the first two examples are contactomorphic. An explicit contactomorphism f is

given by

X+y y-Xx zZ+Xy
f(xay72)=(7777 5 )

where x = (x1,22), ¥ = (Y1,y2) and xy = x1y1 + T2yo. Clearly, f*ay = .
For completeness, we prove:

Proposition 2.1.4 For any point p € S®, the two contact manifolds (S°\{p},&s) and

(R5,&,) are contactomorphic.

Proof By using Geiges’ proof, we can give a following proof for S° and R>:

&3 = Ker(ag) = Ker(zidy, — yhday + xadys — yodas + w3dys — ysdas)
& = Ker(as) = Ker(dw + uydvy — viduy + usdvg — vadus) or

& = Ker(ag) = Ker(dw + ridb; +r3dfs)

Here (r1,6,) is the polar coordinates in the (u;,v;)-plane and (73,65) is the polar
coordinates in the (us,vs)-plane. Let’s choose the point p = (0,0,0,0,0,+1). Sup-
pose that ¢ : S?\{p} — R? is the stereographic projection from p. Also assume that
(21,91, %2, Y2, T3,y3) and (u1,v1, uz, vo, w) are the coordinates in S® and R, respec-

tively. This map is given by

Inverse map of v is given by

Pt RS — 5%\ {p}

8



x1 = Aug, U= vy, To = Aug, Y2 = AUy
T3 = AW, ys=1-MA
2

with \ = T 5 3 3 S0 we have
1+ w? +uf +vy +uj+v;

¢_1(ulavlyu27 V2, w) = ()\ula >\U17 )\u2a )\U27 Awa 1- >‘)

(1)*(as) = N2[r2dOy + r2d0s + wridry + wradrs + 2(1+w? = r? - r2)dw].

In fact,
(¥ ~1)*(a3) = Ady

where dy = [r3df; + r2d0s + wridry + wradrs + £(1+w? —r? = r3)dw]. Let’s find a

diffeomorphism f of R5 such that f*as = di. We can find a suitable f as:

f:R5—>R5

f(rl77ﬂ27 617 027w) = (Tl)r27 01 —w, 02 - w, %w(l + %/LUQ + T% + T% )
When we calculate f* (), we find ay. More precisely,

[ (a2) = f*(dw +r2d0y +13dbs) = d(5w + gw? + Jwr? + Jwr}) + r2d(6, - w) +

r2d(0; - w) = (5 + 3w? — 572 = 3r2)dw + wridry + wradry + r3d0y + r3d0y
As aresult, f*(az) = dy. Now, we have the following equation:
(071)* () = Naa = A2 f*(az).
If we compose both of this equation by ¢* from the left side, we can find
ag = (A f o)) (az).

Hence A2 f o9 is a contactomorphism between (S°\{p},&3) and (R, &;). O

From the preceding remark and the above proposition, (R?,&;), (R &), (R3,£&,),

(R>,&5) and (S5\{p}, &3) are contactomorphic. Hence any of these contact structures
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Figure 2.2: The standard tight contact structure on R3.

&,1=1,2,3,4,5 are used as the standard contact structure on R> and denoted by &,.

Theorem 2.1.5 (Darboux’s Theorem) Let M be a 5-dimensional manifold and x a
point on M. Then there is a neighborhood U of x in M such that (U, & |) is contac-

tomorphic to (R5, Eq).

A neighborhood U as in the above theorem is said to be a Darboux ball. In dimension

three, there are two kinds of contact structures on 3-contact manifolds:

Definition 2.1.6 If there is an embedded disk D in (M3,€) such that T,(0D) € €, at
every point p € 0D, then £ is called an overtwisted contact structure. That is, contact
plane is tangent to OD. D is called an overtwisted disk. Otherwise £ is called a tight

contact structure.

Example 2.1.7 Let o = dz — ydx on R? with cartesian coordinates and 3 = cosrdz +
rsinrdf in R3 with cylindrical coordinates. Then Ker(«) is the standard tight con-
tact structure on R3. Also Ker([3) is an overtwisted contact structure. These are

visualized in Figure 2.2 and 2.3, respectively.
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Figure 2.3: An overtwisted contact structure on R3.

Definition 2.1.7 Corresponding to a contact form o € Q1 (M), one has the so called
Reeb vector field R, uniquely defined by the equations

eda(R,,-) =0.

ea(R,) =1

Example 2.1.8 The Reeb vector field of the contact form oy = dz + x1dy; + T2dys on
R5 is 0,.

A vector field X on a contact manifold is said to be a contact vector field if it satisfies

Lxa=fa

for some function f : M — R. That is, if we have a contact vector field, then its flow

preserves the contact distrubution.

2.2 Symplectic Manifolds and Almost Complex Manifolds

For more details about definitions and facts given below, we refer the reader [3], [15]],

and [21].
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Definition 2.2.1 Given a manifold M, a symplectic structure on M is a 2-form w €
Q2(M) such that

e w is nondegenerate.

(i. e. Vo e T,M,v #0,3u e T, M such that w,(v,u) # 0)

o w is a closed form.

(i. e. dw=0)

The pair (M,w) is called a symplectic manifold.

Note that any symplectic manifold (M, w) is even dimensional and oriented. In fact,
the first condition of the above definition is equivalent to w" = w AW A ... Aw # 0 if

dim (M) = 2n. Also w™ # 0 is called a canonical volume form.

Example 2.2.1 Consider R?" with Cartesian coordinates (1, ..., Tp,Y1,...,Yn). The
symplectic form wg = idx,» A dy; is the standard symplectic form on R?".

i=1
Definition 2.2.2 A submanifold X of (M,w) is called symplectic if w, restricted to
T,.X is symplectic for all x € X and isotropic if w, restricted to T, X is 0 for all
x € X. An isotropic submanifold of (M,w) which has half dimension of M is said to
be Lagrangian.

Definition 2.2.3 A symplectic vector space is a finite dimensional real vector space
V' with a nondegenerate, skew symmetric bilinear form w : V x V — R such that

1) w(v,u) = —w(u,v)

2) w(v+cu,t) =w(v,t) + cw(u,t),Vee Ryv,ut e V

w(v,u)=0,YVueV =0v=0

Theorem 2.2.4 Let (V,w) be a symplectic vector space of dimension 2n. Then there

exists a basis {e1, f1,€2, fa, ..., €n, fn} such that
w(ei7€j):O:w(fi7fj)’ w(emfj):(sw

Definition 2.2.5 A symplectomorphism is a diffeomorphism 1 : (M,w) - (M',w")
between symplectic manifolds (M,w) and (M',w") with V*w" = w.
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Definition 2.2.6 A complex structure on a (real) vector space V' is an automorphism

J:V — V such that J? = -Id.

In fact, a complex structure on V' enables us to "multiply v/-1" on V" and thus convert

V' into a complex vector space.

Definition 2.2.7 An almost complex structure J on a manifold M is an assignment
of complex structures J,, on the tangent spaces T),M which depends smoothly on p.
The pair (M, J) is called an almost complex manifold.

In other words, an almost complex structure on M is a (1,1) tensor field J : TM —

TM so that J? = -1d.

Remark As in the symplectic case, an almost complex manifold must be 2 dimen-
sional and orientable. On the other hand, there exists even dimensional orientable

manifolds which admit no almost complex structure.

Let (M,w) be a symplectic manifold and .J an almost complex structure on M. Then
at each tangent space 7, M we have linear symplectic structure w, and linear complex

structure J,,.

Definition 2.2.8 A symplectic structure w, is compatible with an almost complex
structure Jp, : T,M — T, M if

1) wy(u,v) = wy(Ju, Jv) for all u,v € T,M.

That is, J preserves w.

2) wy(u, Jyu) > 0 for all nonzero u € T,M. This means, w, is positive on the complex
lines. This condition is called the taming condition.

Or equivalently,

Ip(u,v) = wy(u, Jyv)

is an inner product on T,,M.

Definition 2.2.9 An almost complex structure J on M is compatible with a symplec-
tic structure w on M if at each p, J, is compatible with w,,.

Equivalently, J is compatible with w if and only if
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Gp: TyM xT,M - R, g,(u,v) = wy(u, Jy)

defines a Riemannian structure on M.

Theorem 2.2.10 Let (M,w) be a symplectic manifold, and Jy, J; two almost com-
plex structures compatible with w. Then there is a smooth family J;, 0 <t < 1, of

compatible almost complex structures joining Jy to J;.

The space of compatible complex structures on (V,w) is denoted by J(V,w).

Corollary 2.2.11 The set of all compatible almost complex structures on a symplectic

manifold is path connected.

Theorem 2.2.12 The space J(V,w) is contractible, and hence non-empty.

The above theorem is due to Gromov [17] (for a proof see also [[13]] or [21]]) and pro-

vides a very useful connection between symplectic and (almost) complex geometry.

Definition 2.2.13 Let (M,w) be a symplectic manifold and f : M — R a smooth
function. f is called a Hamiltonian on M. A vector field X on (M,w) is said to be
symplectic if Lxw = 0. That is, the flow of X preserves w. Observe that by Cartan’s
formula, X is symplectic if and only if i xw is closed where i denotes interior product.

A vector field X on (M,w) is called Hamiltonian if i xw is exact.

2.3 Liouville, Weinstein and Stein Manifolds

Now we recall special families of symplectic manifolds in which we are interested.

More details about definitions and facts given below can be found in [4] and [21]].

Definition 2.3.1 Ler (X,w) be a compact, symplectic 2n-manifold such that 0X =

M_u M, 0.X = M, is said to be convex boundary if there exists a Liouville
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vector field 7 for w defined near M, such that Lzw = w and Z is pointing outwards
along M, . Similarly, 0_-X = M_ is the concave boundary if Z is defined near
M_ and pointing inwards along M_. In such a case, oy = (izw)|m, is a contact
form on M., and (X,w) is called a symplectic cobordism from (M_, Ker(a_)) to
(M,, Ker(ay)).

Definition 2.3.2 A cobordism X between a manifold M and the empty set is called
a filling. A symplectic cobordism from the empty set to a contact manifold (M, &) is
called a strong symplectic filling (or a convex filling). On the other hand, a symplec-
tic cobordism from a contact manifold (M, &) to the empty set is called a concave
filling of (M, ¢). Also a symplectic manifold (X,w) is said to be a weak symplectic
filling of a contact manifold (M, €) if

(i) 0X = M and the boundary orientation on 0X and the orientation on M agree,

and

(ii) w |¢ is nondegenerate, i.e., wl¢ > 0.

In this case, a contact manifold (M, £) is called a weakly symplectically fillable.

Theorem 2.3.3 ([8]) Any weakly symplectically fillable contact 3-manifold is tight.

Definition 2.3.4 A Liouville cobordism is a symplectic cobordism (X,w) from 0_X =
M_to 0, X = M, with a Liouville structure. A Liouville structure means that there
is a 1-form o on X such that w = da and the w-dual vector field Z of o is a Liouville
vector field for w transversely pointing inward (resp. outward) along the boundary
component 0_X (resp. 0, X ). A Liouville cobordism with 0_X = @ is called a Liou-
ville domain.

When X is an open manifold, if we assume that the flow of Z exists for all times and
there exists an exhaustion X = Uze; X* by compact domains X* c X such that each
(X* a|xx) is a Liouville domain with convex boundary (0X*, a|yxr) for all k > 1,
then (X, «) is called a Liouville manifold. Since w and Z uniquely determine «
(namely, « = 1zw), one can also use the notation (X,w, Z) for Liouville cobordism-

s/domains/manifolds.
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Definition 2.3.5 The core (or skeleton) of the Liouville domain/manifold (X, «) is
defined as follows: If Z=t : V' -V denotes the contracting flow of Z, then

Core(X,a) = [JNZ 1 (X").
k=1t>0
By putting more conditions on Liouville manifolds, one can consider the class of
Weinstein/Stein manifolds. For these manifolds the core contains all Morse theoritical
data as we will observe below. To define Weinstein and Stein manifolds, we need

some basic definitions:

Definition 2.3.6 (i) A vector field Z on a smooth manifold X is said to gradient-like
for a smooth function ¢ : X - R if Z - ¢ = Lz¢ > 0 away from the critical point of ¢.
(ii) A real-valued function is said to be exhausting if it is proper and bounded from
below.

(iii) An exhausting function ¢ : X — R on a symplectic manifold (X ,w) is said to be
w-convex if there exists a complete Liouville vector field Z which is gradient-like for
.

(iv) Suppose that (X, J) is an almost complex manifold. Then a smooth map ¢ : X —
R is said to be J-convex if w, = —d(d¢ o J) is nondegenerate (i.e., wy(v, Jv) > 0 for

all v #0), and so symplectic.

Definition 2.3.7 A Weinstein manifold (X,w, Z, ¢) is a symplectic manifold (X, w)
which admits a w-convex Morse function ¢ : X — R whose complete gradient-like
Liouville vector field is Z. The triple (w, Z,¢) is called a Weinstein structure on
X. A Weinstein cobordism (X,w,Z,¢) is a Liouville cobordism (X,w, Z) whose
Liouville vector field Z is gradient-like for a Morse function ¢ : X — R which is
constant on the boundary 0X. A Weinstein cobordism with 0_X = & is called a

Weinstein domain.

Any Weinstein manifold (X,w, Z, ¢) can be exhausted by Weinstein domains
X = {(b*l(—oo, dk]} cX

where {d}} is an increasing sequence of regular values of ¢, and therefore, any We-

instein manifold is a Liouville manifold. In particular, any Weinstein domain is a
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Liouville domain. Also note that any Weinstein domain (X, w, Z, ¢) has the convex

boundary (0X, Ker((tzw)|ax))-

The following topological characterization of Weinstein domains will be important

for us.

Theorem 2.3.8 ([28]], see also Lemma 11.13 in [4]) Any Weinstein domain of dimen-

sion 2n admits a handle decomposition whose handles have indices at most n.

Now we give a definition of Stein manifolds. Originally they are defined as the class
of manifolds which can be holomorphically embedded into some complex space CV
for NV large enough, and hence they are complex manifolds. In terms of the structure

of the present paper, they can be defined as follows:

Definition 2.3.9 A Stein manifold is a triple (X, J, ¢) where J is an almost complex
structure on X and ¢ : X — R is an exhausting J-convex Morse function which is
also wy-convex. A Stein cobordism (X, J, ¢) is a Weinstein cobordism (X, wy, Z, ).

A Stein cobordism with 0_X = @ is called a Stein domain.

It is not hard to observe that there is an underlying a Weinstein structure for any given

Stein structure. Indeed, it has been shown that the converse is also true:

Theorem 2.3.10 ([4]) Any Weinstein structure on a manifold X can be deformed to

another one which is the underlying Weinstein structure of some Stein structure on

X.

Definition 2.3.11 A contact manifold (M,§) is called Stein fillable (or holomor-
phically fillable if there is a Stein domain (X, J,¢) such that 0X = M and § =
Ker(-(dgo J)|M).

It clearly follows from Theorem that

Theorem 2.3.12 Any Stein fillable contact 3-manifold is tight.
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2.4 Open Book Decompositions

Open book decompositions are topological structures and they have a strong relation-
ship with contact structures. More details about definitions and facts given below can

be found in [29] and [15]]

Definition 2.4.1 An (embedded or non-abstract) open book (decomposition) of a
closed (2n+1)-manifold M is determined by a pair (B, [ ) where B is a codimension
2 submanifold with trivial normal bundle and f : M ~ B — S is a fiber bundle
projection such that the normal bundle has a trivialization B x D?, where the angle
coordinate on the disk agrees with the fibration map f. The (2n — 1)-manifold B is
called the binding and for any to € S, the 2n-manifold X = f~'(to) (a fiber of ) is
called a page of the open book.

An alternative definition of an open book decomposition can be given as follows:

Definition 2.4.2 An open book (B, f) determines an abstract open book (X, h)
where X denotes the closure of a page X in M, and h : X — X is the self-
diffeomorphism (which is identity near the binding B = 0X ) defined by the time-one
map of the flow lines along the S'-direction. The map h is called the monodromy of

the open book decomposition.

In fact, the two notions of open book decomposition are closely related. The differ-
ence is that when discussing open books (non-abstract), we can discuss the binding
and pages up to isotopy in M, whereas when discussing abstract open books we can

only discuss them up to diffeomorphism.

Example 2.4.1 The 2-dimensional sphere S? has an open book decomposition with
page a closed interval and trivial monodromy up to isotopy (see Figure[2.4). Further-

more, the open book decomposition of S? is unique up to isotopy.

Example 2.4.2 The 3-dimensional sphere S3 has an open book decomposition with

page a disc and trivial monodromy. Think S as the one point compactification of R?
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B (binding of the open book)

N\

B (binding of the open book)

3" (page of the open book)

Figure 2.4: The open book decomposition of the 2-sphere.

and extend the binding and pages in the following figure along the z-axis. To be more

precise, choose polar coordinates (r,0) on the xy-plane and define
B:={z=y=0}u{oo}, 7:93\B > S!
by sending (r,0, z) to 0, where we identify S3 = R3 U {co}.

An abstract open book can be defined by mapping torus as follows (see Figure [2.5)):
Let Y. be a compact (n — 1) manifold with boundary 03 and ¢ : 3 — ¥ a self
diffeomorphism of ). such that ¢ | y=identity on N for some neighborhood N of 0 }.
The mapping torus of ¢ is denoted by 3, and defined by

Yo =2 x[0,1]/~
where ~ is the relation (z,1) ~ (¢(x),0) for all z € . It is obvious that
A(X4) = (0%) x[0,1]/(2,1) ~ (¢(2),0) = (O F) x S
Take (,0) € (O%) x S'. Set

Mz g) = X U(O X xD?)[ ~
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Figure 2.5: An open book decomposition.

We say that (Y, ¢) is an open book decomposition of a closed n-manifold M if M
is diffeomorphic to My 4).

Definition 2.4.3 Two abstract open book decompositions (3.1, ¢1) and (X5, ¢2) are
called equivalent if there is a diffeomorphism h : Y; - Y5 such that h o ¢ = ¢ o h.

The following definition is given by Giroux:

Definition 2.4.4 ([14]) A contact structure  on a closed (2n+1)-manifold M is said
to be supported by (or carried by, or compatible with) an open book (B, f) on M if

there exists a contact form « for & such that

(i) (B, Ker(a|rg)) is a contact (2n — 1)-manifold,
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(ii) foranyt e S, the page (X = f~1(t),da|rx) is a symplectic 2n-manifold, and

(iii) if X denotes the closure of a page X in M, then the orientation on B = 0X
induced by its contact form o|rp coincides with its orientation as the convex

boundary of (X, dal|rx).

Remark If an open book has Weinstein pages, then each page has its core as any
Weinstein manifold is Liouville. The core is not a manifold. In fact, it is a CW-
complex, and it carries a topological information of the page and the open book.
Furthermore, its dimension is half of the dimension of the page (Theorem [2.3.8§).
Hence, for our case (i.e., when a page is 4-dimensional), the dimension of the core is

2. We will make use of the following facts:

Proposition 2.4.5 ([14]) Two contact structures supported by the same open book

are isotopic.

Theorem 2.4.6 ([14]) Every contact structure on a closed manifold is compatible

with some open book decomposition with Weinstein (and so Stein) pages.

Theorem 2.4.7 Every oriented contact structure on a closed oriented manifold M?*"+!
is compatible with some open book decomposition (X, ¢). Moreover, X may be as-

sumed to be a Weinstein manifold and ¢ a symplectomorphism.

Remark From this result, one concludes that there is always open book whose pages

are Stein because we know that Weinstein manifolds are Stein by Eliashberg (see [4)]).

We now explain how the page and the monodromy of an open book changes under a

certain process called stabilization.

Definition 2.4.8 ([14]) Let D™ ¢ Y°" be an n-dimensional disc embedded into the
2n-dimensional page of an open book (¥, ¢) of an odd dimensional manifold M such
that D™ meets O Y. transversely and exactly in its boundary OD™ and such that the
normal bundle of 0D™ in 0 is trivial. Attach an n-handle H to Y, along O D™ in such

a way that the normal bundle of the sphere S™ = D"Ucore(H) is isomorphic to T*S™.
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Then the open book (Y, UH, ¢ o T) is called a positive stabilization of (Y., ¢), where
T denotes a right-handed Dehn twist along the sphere S™. Similarly, we can also
define negative stabilization using left-handed Dehn twists instead of right-handed
1

Dehn twists. That is, (Y, UH, ¢ o 771) is called negative stabilization where 77" is a

left-handed Dehn twist along the sphere S™.

Remark Observe that the original open book (3, ) and the stabilized open book
(X UH, ¢ o) give rise (up to diffeomorphism) to the same manifold /. Indeed, the
sphere 9D" c 9, = B c (3, ¢) is a sphere with trivial normal bundle in M, since
the binding B has trivial normal bundle by definition. Attaching handles to each page
is equivalent to a surgery along dD™. The manifold M obtained by that surgery
carries the open book structure (Y, UH, ¢). Performing the Dehn twist 7 along S™ is

equivalent to a surgery cancelling the one corresponding to the handle attachment.

Contact structures are geometric objects while open book decompositions are topo-

logical objects. Giroux found a relation between them as stated below:

Theorem 2.4.9 ([14]) Let M be a closed (2n + 1)-manifold. Then there is one to
one correspondence between co-oriented contact structures on M up to isotopy and
open book decompositions of M with Weinstein (and so Stein) pages up to positive

stabilization.

This correspondence between oriented contact structures and open book decomposi-
tions is called Giroux Correspondence. We note that if an open book Weinstein (or

Stein) pages, then all of its stabilizations have also Weinstein (or Stein) pages.

Theorem 2.4.10 ([14]) Two open books with Weinstein (or Stein) pages supporting
the same contact manifold (M, &) are related by positive stabilizations, that is, they

have a common positive stabilization.

2.5 Legendrian Submanifolds and Thurston-Bennequin Invariant

Legendrain submanifolds are the most interesting ones in contact manifolds. Al-

though they are defined in any odd dimensions, we restrict our attention mostly to

22



dimension five and three. The non-integrability condition of contact 5-manifold en-
sures that there is no submanifold of dimension greater than or equal to 3 which is
tangent to the contact distribution. However, we can find 2-dimensional submanifolds
whose tangent spaces lie inside the contact field. Legendrian submanifolds are anal-
ogous to Lagrangian submanifolds of symplectic manifolds. The Legendrian knots
inside a contact 3-manifold are the simplest example of Legendrian submanifolds. In
fact, locally a Legendrian knot is an embedding of an arc (called a Legendrian arc)

into R3, which is everywhere tangent to the standard contact structure on R3.

Definition 2.5.1 Letr (M3,£) be a contact manifold. A submanifold L of (M?,§) is
called an isotropic submanifold if T),L c §, for all points p € L. An isotropic sub-
manifold of dimension two (an isotropic surface) is called a Legendrian submanifold
(Legendrian surface). (More generally, Legendrian submanifold is an embedding
of a n-dimensional manifold into (2n + 1)-dimensional that is always tangent to the
contact hyperplanes.) A Legendrian embedding is an embedding ¢ : 2 — (M5 ,§)
of a smooth manifold >? such that the image 1? = ¢(X?) is an embedded Legendrian
surface. A smooth I-parameter family of embedded Legendrian surfaces is called
a Legendrian isotopy. Two Legendrian submanifolds L, L' are called Legendrian
isotopic if there is a smooth 1-parameter family Ly, t € [0,1], such that Ly = L
and Ly = L'. Equivalently, a Legendrian isotopy is a smooth 1-parameter family

¢ 2 22 > (M5, €) of Legendrian embeddings.

Indeed all the terms in the above definitions can be restated for Legendrian knots
as well. In particular, two Legendrian knots are equivalent if they are isotopic via
a family of Legendrian knots. Inequivalent nullhomologous Legendrian knots can
be distinguished by their Thurston-Bennequin number and rotation number, which
are Legendrian isotopy invariants. The following invariant was originally defined by
Bennequin [3]] and independently, Thurston when n = 1 and generalized to higher

dimensions by Tabachnikov [26].

Given an orientable, connected, nullhomologous, Legendrian submanifold L” in an
oriented contact (2n + 1)-manifold (M, £), we present an invariant tb( L) (see, for in-

stance, [24]), called the Thurston-Bennequin number (invariant) of L. It is defined
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with the help of the linking number as follows:

Pick an orientation on L. Let X be a Reeb vector field for ¢ and push L slightly off
of itself along X to get another oriented submanifold L’ ( Legendrian copy of L )
disjoint from L. The Thurston-Bennequin number of L is the linking number of L

and L', that is, we have
to(L) =1lk(L, L")

where [k denotes the linking number.

For the linking number, take any (n + 1)-chain C' in M such that 0C' = L. Then
lk(L, L") equals the algebraic intersection number of C' with L’. Intuitively, the
Thurston-Bennequin invariant (number) of L measures the twisting of £ around L.

We note that tb(L) is a Legendrian isotopy invariant in any odd dimension.

Remark (i) Note that tb(L) is independent of the choice of orientation on L since

changing it changes also the orientation of L’.

(i) For any orientable, connected, nullhomologous, Legendrian submanifold L in

a contact manifold, we have tb(L) € Z.

Example 2.5.1 Consider Legendrian knot L in (R3,{yq) where £gq = ker(dz+xdy).
Take its front projection, i.e., its projection to the yz-plane. The front projection has
no vertical tangencies. Because if the projection had vertical tangency, then ?‘l_z =
x would be equal to +oo. L can be approximated by another Legendrian knot for
which the projection has only transverse double points and cusp singularities. EP is
a transverse vector field to the contact plane 4 in R3. Hence, we can take a parallel
copy L' of L by slightly pushing it in the positive z-direction. Thurston-Bennequin
invariant, tb(L) is defined as the twisting of L', the framing of L given by the contact

planes relative to L', relative to the framing given by the Seifert surface of L.

Let L be a Legendrian nullhomologous knot. Its Thurston-Bennequin number can be

computed as follows: We have

tb(L) = tk(L', L")
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where L/ and L" are pushoffs of L with respect to Seifert framing and contact fram-
ing, respectively. Contact framing is obtained by pushing L in a direction transverse
to &, and Seifert framing is obtained by pushing L along a Seifert surface of L. More-
over, if we fix an orientation on L, i.e., if we get an oriented Legendrian knot L, then

tb(L) can be computed as:
1
tb(L) =w(L) - §C(L)

where w(L) is the writhe of L; i.e., the sum of the signs of the crossings with respect
to the following Figure and c(L) is the number of cusps in the front projection of
L. The cusp is the singular point in the front diagram of L. Here, w(L) is independent

of the choice of the orientation of L while it depends on the projection.

+1

Figure 2.6: Positive and negative crossings.

Definition 2.5.2 For an oriented Legendrian knot K in (R3, &y = Ker(dz+xdy)) (or

equivalently in (S3,&s)), its rotation number rot(K) is defined as
1
rot(K) = §(D -U)

where D (resp. U) denotes the number of down (resp. up) cusps in the front projection

of K.

Example 2.5.2 In Figure[2.7], there are front diagrams of a Legendrian representa-
tives of unknot and trefoil knot. The Thurston-Bennequin number and the rotation
number of unknot is —1 and 0, respectively. Similarly, The Thurston-Bennequin num-

ber and the rotation number of trefoil knot is 1 and 0, respectively.
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O

Figure 2.7: A Legendrian unknot (on the left) and a trefoil knot (on the right).

Remark Thurston-Bennequin number and rotation number are known as the classi-
cal invariants of Legendrian knots. Note that inequivalent Legendrian knots can be

distinguished by these invariants.

Definition 2.5.3 Let L be an oriented Legendrian knot in the standard contact struc-
ture &q on R3. When we modify the front projection of L by adding a down cusp, we
get the positive stabilization of a Legendrian knot L, which is denoted by S, (L). In
a similar way, when we modify the front projection of L by adding a up cusp, we get

the negative stabilization of a Legendrian knot L, which is denoted by S_(L).

.’.\\-
Sy /{/ -
/

_>

Figure 2.8: The positive and negative stabilizations of L.

Remark For a fixed topological knot type, different Legendrian representatives might
have different Thurston Bennequin and rotation numbers. By adding more cusps, one
can obtain new Legendrian representatives realizing any pregiven integer as a rota-
tion number. However, although Thurston Bennequin number can be made arbitrarly
small, it is not possible to increase forever. That is, stabilizing a Legendrian knot L
changes the classical invariants as tb( S+ (L)) = tb(L)-1and rot(S=(L)) = rot(L)*1.
There are some relations between the Thurston—-Bennequin and the rotation numbers

of Legendrian realisations of a given knot type K. One of them is the Bennequin
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inequality (due to Bennequin and Eliashberg) which holds in any tight contact mani-
fold and for any nullhomologous Legendrian knot. This inequality provides an upper
bound for the Thurston Bennequin number for nullhomologous Legendrian knots in

tight contact 3-manifolds:

Theorem 2.5.4 (Bennequin inequality) Let K be a Legendrian knot in a tight 3-
manifold (M, &) which bounds a surface > c M. Then

th(K)+ | rot(K) |< =x(%)

where x(X) denotes the Euler characteristic of Y.

2.6 Handle Decompositions of Stein Surfaces

Let’s recall language of handlebodies. A copy of D¥xDm™* that is attached to the
boundary of an n-manifold along its attaching region 9 D¥ x D"~* is called a handle of
index k or k-handle. We begin with a 0-handle, in fact empty set, and attach handles
to built a (smooth or topological) handlebody. For the smooth case, we glue each
handle by a smooth embedding of its attaching region, after smoothening the resulting
corners. These corners can be along 9D*xD" %, One can find the details in [16].
Conversely, starting from a real-valued Morse function on a manifold X, one can
obtain its handlebody description which is also referred to as a handle decomposition
of X. In fact, an ¢-handle is the smooth analogue of an ¢-cell. Note that every manifold
(with or without boundary) is a handlebody. That is, it has an expression as a union of
handles. A handlebody decomposition introduce the manifold up to homeomorphism.
Furthermore, in dimension 4, they describe the smooth structure if the attaching maps

are smooth. Following results will be used:

The phrase “a Stein surface” will refer to a Stein domain of real dimension 4. Pictures
of handlebody diagrams of Stein surfaces (Stein diagrams for short) were studied
extensively by Gompf [15]. He gave description of 1-handles in the setting of Stein
surfaces and a standard form for Legendrian links in #n.S! x S?(= Boundary of the 0-
handle u n 1-handles). From this description, one can define and compute Thurston-

Bennequin invariant.
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Definition 2.6.1 A Legendrian link diagram in standard form, like in the Figure 2.9,
is given by the following way:

e n [-handles, showed by horizontal ball pairs

e A collection of n horizontal distinguished segments coresponding to each ball pair
e A front projection of a generic Legendrian tangle (i.e., disjoint union of Legendrian

knots and arcs) with endpoints touching the segments.

Legendrian
tangle

Figure 2.9: A Legendrian link diagram.

Similar to how it is defined for Legendrian knots in the standard contact three-space,
the Thurston-Bennequin number of a Legendrian knot /K in a boundary of a Stein

surface can be defined as
1
to(K) =w(K) - §C(K)

with the help of a Legendrian tangle (see [15]). The following result will be used

later:

Theorem 2.6.2 ([7], [15]) An oriented, compact, connected 4-manifold X is a Stein
surface if and only if it has a handlebody diagram which formed by a Legendrian link

diagram such that 2-handles attached to link components L;’s with framing tb(L;)—1.
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A band in (R3,&,) is called Legendrian band if its boundary consists of any Leg-
endrian curve and push-off of it in the z-direction. For any two oriented Legendrian
knot L; and L5, the connected sum of the knots by a Legendrian band is called Leg-
endrian connected sum. Here any band can be used. However, its intersection with
the rest of the link must be empty. When the orientation is consistent, this Legendrian
sum is called a Legendrian handle addition. Otherwise we get a Legendrian handle

substraction. In the [6]], there are details about this.

Theorem 2.6.3 ([[7,/16]) An oriented 4-manifold admits a Stein structure if and only
if it is diffeomorphic to the interior of a handlebody whose handles all have index
< 2, and for which each 2-handle is attached along a Legendrian knot with framing

obtained from the contact framing by adding one left twist.
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CHAPTER 3

RELATIVE PAGE CROSSING NUMBER

In this chapter, we give a definition of a Legendrian isotopy invariant step by step and

also we give a proof of Spider Lemma.

We study Legendrian embeddings of a closed orientable Legendrian submanifold in a
closed contact 5-manifold whose contact structure is supported by an open book with

Weinstein (and so Stein) pages.

3.1 Spider Lemma

Let (M5,¢ = Ker(a)) be a closed, contact 5-manifold where « is a (global) contact
form with the Reeb vector field R that is compatible with an open book (B, f) on
M. £ is a positive contact structure, in other words, a A (da)? > 0 with respect
to a given orientation on M. Since (M, ¢) is a contact manifold, £ determines a
canonical orientation on M. So M is oriented 5-manifold. B is the binding of an
associated abstract open book OB( X, h) where X is the page, B = 90X and h is the
monodromy. Thus, (B3,¢|p = Ker(a|g)) is the convex boundary of each symplectic
page (X%, da|p), and so it is a 3-dimensional tight contact (sub)manifold. (a|p is a
contact form on B.) Let L be a closed orientable Legendrian surface of (M, ¢), and
so there is a Legendrian embedding ¢ : 3 — (M € ) such that ¢(X) = L where X is a
2-dimensional surface which determines the topological type of L. For the invariants
that we will define, one first need to know that L and B intersect transversely, and the
pages are Weinstein. To this end, we define the following class of supporting open

books:
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Definition 3.1.1 Let L be a closed, oriented, Legendrian submanifold of a closed
contact 5-manifold (M, ). An open book (B, f) on M supporting £ is called an ad-
missable open book for L if it has simply-connected Weinstein pages and L intersects

B transversely.

Let us start with showing that one can always find an open book whose binding in-
tersects a given Legendrian surface transversely. For similar arguments, we refer the

reader to [2]].

Lemma 3.1.2 (Spider Lemma) Let (M, £) be a closed contact 5-manifold and (B, f)
an open book on M supporting & with Weinstein pages. Also let L be a closed ori-
entable Legendrian surface of M. Then there exists an isotopy (B, fi),t € [0,1] of
open books all of which supporting & such that (B, fo) = (B, f), (B1, f1) = (B’, ),

and L intersects B’ transversely.

Proof If L and B transversely intersect, then there is nothing to prove. If they don’t
intersect transversely, then consider a neighborhood of B in M which can be iden-
tified with B x D2, Nearby generic B’ ¢ B x D? (which is a copy of B) intersects
L transversely. Then we can isotope B to B’ (and accordingly the pages of the open
book (B, f)) using the flow of an appropriate contact vector field compactly sup-
ported in B x D2. (See Figure 3.1]) So, we obtain a family of open books {(B;, f;)}
for M such that (By, fo) = (B, f), (B, f1) = (B’, f'). Finally, we note that at any
time ¢ € [0, 1] compatibility conditions in Definition are satisfied by the open

book ( By, f;) since the isotopy is based on a contact vector field. O

3.2 Definition of Relative Maximal Page Crossing Number

Assuming Spider Lemma have been already applied, we may start with a supporting
open book (B, f) such that L } B for a given closed, compact, orientable Legendrian
surface L in a closed contact 5-manifold M. Since they intersect transversely, we
have dim(L 4 B) = 0, and so they intersect along a finite number of points. Later
we will be interested in minimal geometric intersection. Take any orientation on the

Legendrian surface L. If the orientations of L and B are consistent at a transverse
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isotopy of
open books

B x D?
(neighborhood of B)

Figure 3.1: Isotoping a given open book so that the new binding B’ intersects L

transversally.

intersection point, then mark the point with plus (+), otherwise mark the point with

minus (—). Continue this procedure until all the intersection points have labelled.

Remark e Since we need an open book structure, M must be closed.

¢ Since L and B are compact, their intersection consists of finitely many points. Note
B is compact because of the open book structure.

e Homology intersection of L and B is 0. This is because B is the boundary of X.
So B has zero homology class.

¢ By Eliashberg, stein fillability implies tightness. Hence the contact structure on B

is tight.

From the above remark, the intersection of L and B consists of even number of points.
The number of plus points is equal to the number of minus points because homology

intersection is 0.

Consider the pages Xy = f~1(0),X; = f~1(0 + m) for § € S'. By genericity, we
may assume L transversally intersects Xy, X; and their common boundary B. Let
D(X) = Xy Uy X1 be the double of the page X, union of the pages X, and X such
that Xy 2 X = Xj. That is, X, and X are dual pages of each other. Clearly, D(X)
is closed. (X, day) and (X1, day) are Stein domains. (Recall from the explanation
in the background that there exists always an open book whose pages are Stein.)

Consider the handle decompositions as in Figure[3.2]
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8)
« dual of the 0-hele of X
3 — hdles | < duals of 1-hdles of X
2 —hdles | 4 duals of 2-hdles of X,
= B

2 — hdles \

common houndary Stein domain (X, dag) Stein domain (X1, day)

1 - hdles (upside-down D(X)\ Xp)
NS

D(X) =X, Uy Xy
Figure 3.2: a) Handle decomposition of the double D(X), union of the pages X, and
Xj. b) The Stein domains (X, dag) and (X1, day).

Note that dim(L) = 2 and dim(X) = 4, so dim(L 4 D(X)) = 1. That is, L and
D(X) intersect at 1-dimensional curves generically. Let’s first assume, for simplicity,
that L §, X consists of a single curve K. Also let L n Xy = kg, L n X7 = k;. That is,
K = kg U k;. For ko, take orientation from plus point to the minus point. Similarly,

for &y, take orientation from minus point to the plus point. See Figure|3.3

Sketch the Legendrian arcs for kj and &, in the Stein diagrams of X and X1, respec-
tively, and calculate Thurston-Bennequin numbers of these two arcs. Summing these

two numbers will give us an integer, denoted by th(K ). In other words, we define
th(K) = th(ko) + tb(ky).

In the general case, the intersection of L and D (X ') may consist of finite number of
curves, say Ki, Ky, ..., K.. (Note that /;’s are disjoint by transversality theorem.)

That is, Let us assume that

L4D(X)=||K;.
i=1
Again one can sketch the Legendrian arcs constructing the knot components of the
link of the intersection of L with the double D(X) in the Stein diagrams of X, and

X, and therefore, we obtain a diagram in Figure describing the transverse inter-

section L § D(X).
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X1 (= Xp4nx)

>
S

Xo (= Xo)

Figure 3.3: Embedded Legendrian surface L intersecting transversally the binding B

and a pair of pages X, and X;. A typical knot component K = kg U k; of the link of
intersection of L with the double D(X) = Xy Uy X;.

For all knot components K; = kY u k], we calculate ﬁ)(KZ) as above. Summing all
these together and taking the maximum of such sums by changing L in its Legendrian

isotopy class, one can define a number. First, we need some preliminary definitions:

Definition 3.2.1 Let L — (M5,£) be a closed orientable Legendrian surface. Fix an
admissable open book (B, f) for L. Consider

[L]={L'c(M,E)|L"is Legendrian isotopic to L}

This class is called the Legendrian isotopy class of L. Fix a page X of the open book
(B, f), and L' which is Legendrian isotopic to the L and trasversally intersecting the

double D(X). Then the page crossing number of L' with respect to X is defined as

Py(L) = Y I(E,).

i=1
Lastly, we say that the double D(X) essentially intersects L if we have
L'nD(X)+o, VL e[L].
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Figure 3.4: Legendrian arcs (in red) constructing the knot components of the link of

L with the double D(X) = Xy Uy X.
We are ready to define our first invariant:

Definition 3.2.2 Let L — (M?5,£) be a closed orientable Legendrian surface. Fix
an admissable open book (B, f) for L and a page X of (B, f) such that D(X)

essentially intersects L. Then

MPx(L) = Maz {Px(L') | L’ € [L] and L’ D(X)}
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is called the relative maximal page crossing number of L with respect to X.

Remark We immediately note that (relative maximal) page crossing number can be
defined for at least 5-dimensional contact manifolds: By definition of the binding, B
is (2n — 1)-dimensional when M is (2n + 1)-dimensional, and so L" n B is (n — 2)-
dimensional. Hence, if M is 3-dimensional, then L n B must be (—1)-dimensional.

And it is clear that this is impossible.

Well-definedness of MPx (L) will be discussed in Chapter 4| Until then, M Px (L)
will be assumed to be well-defined. The following facts indicate that the most prac-
ticle way of computing MPx (L) is working in the case of geometrically minimal

intersection.

Lemma 3.2.3 Let K = ko U ki be a component of the link of intersection of L with
the double D(X) = X, Uy X, constructed using the minimal geometric intersection
points of L and B. Suppose -y is an arc on the attaching sphere S of the 1-handle of X;
connecting the boundary points Ok;. Then the circle k; U~y can not be a homotopically

trivial in X; for each 1 =0, 1.

Proof Take i = 1 (the case ¢ = 0 is similar). The statement of the lemma is equivalent
to say that k; U v can not bound a disc in X;. Suppose there exists such a disk D c
X;. Then using the flow of a suitable contact vector field (compactly supported in a
neighborhood of D in M which is indeed some Darboux ball ID®), we can Legendrian
isotope L until the arc k; disappears (i.e., the whole k£ is transformed into X). This
means that the +-intersection points corresponding to 0k; is canceling pair. Since
in the new Stein pictures, there would be a less number of intersection point, this

contradicts to the minimality. (See Figure[3.5]) O

Remark In Lemma [3.2.3] the path ~ is chosen away from the points where other
knots and arcs meet with S. Also in Figure for simplicity, k; is drawn with a
single left cusp, but more number of cusps are also possible and threated in the same

way as long as the disk D exists. When we move £, this cusp (and hence the pair of
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Stein domain (X, deg) Stein domain (X7, dey )
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pair of intersection
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N A K, tangle N _ N _ tangle N _

C
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Stein domain (X, dag) Stein domain (X7, dey)

Figure 3.5: Realizing a Legendrian isotopy of L (cancelling a pair of intersection
points in L n B) by isotoping L (through the disk D c X, enclosed by k; and the path
~ on the attaching sphere S of the 1-handle of X joining the points "+" and "-") in
the Stein diagrams (X, dag) and (X7, day).

intersection points "+" and "-") will disappear. Note that after such a canceling a pair

of intersection, th doesn’t change. That is,
tb(ko) + tb(k1) = tb(k{) + tb(k}) = tb(k{)(or = tb(k}) in the case i = 0).

Lemma 3.2.4 Let K = kg U ki be a component of the link of intersection of L with
the double D(X) = X Uy Xy constructed using (not necessarily minimal) geometric

intersection points of L and B. Suppose K is homotopically trivial in D(X). Then

th(K) = tb(ko) + th(ky) < -1.
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Proof By assumption there exists a disk D ¢ D(X) with K = 9D. There are two

cases: Either by = @ or ky #+ @. If ky = @ holds, then K = kj is a Legendrian
unknot inside the Legendrian tangle in the Stein diagram of X,. Therefore, it can
be considered as a Legendrian unknot bounding the disk D inside the Stein fillable
(and so tight) boundary 0.X,. But then Theorem implies that tb(K) < -1. If
k1 # @ holds, then this means that D = Dy u D; where D, D, are disks in X, X,
respectively, which meet along an arc v on the attaching spheres of the corresponding
1-handles of X, and X;. Then applying Lemma [3.2.3] one can transform K to K’
which lies in X,. Recall that £b(K) = tb(K"), that is the number b does not change
under the move described in the proof of Lemma (Figure [3.5). Therefore, we
are again in the first case above, i.e., tb(K) = tb(K') < -1. 0

Lemma 3.2.5 Let k[ u ki be a component of the link of intersection of L with the
double D(X) = Xo Uy X1 constructed using (not necessarily minimal) geometric
intersection points of L and B. If the knot k[ U k! is homotopically trivial in both L
and the double D(X), then it can be ignored while computing MPx (L). That is,

MP)((L) > Px(L)

Proof Suppose there exists such a pair of Legendrian arcs £ and k] in the Stein
diagrams of X, and X; whose union is homotopically trivial in both L and the double
D(X). Therefore, there are disks D; ¢ X; such that the union Dy u D; c D(X)
(enclosed by k{ U k) is not punctured by the rest of L n D(X) and the attaching
circles of the 2-handles of X, and X, and also there is a disk D c L bounded by
k{ u ki (Figure[3.6). Then one can get rid of the intersection arcs £, A} (and so the
corresponding intersection points p, ¢) by isotoping B (and the pages of the open
book) in a neighborhood of the 3-disk enclosed by the disk D c L and Dyu Dy in M
(which is some Darboux ball D?) using the flow of an appropriate contact vector field
compactly supported in N = D®. (See Figure[3.7})

By Spider Lemma (Lemma [3.1.2) and the genericity, one can think of these isotopy
results in a new open book (with the same monodromy) such that X; transformed
to a new page X/ and B transformed to a new binding B’. Note that this contact

isotopy eliminates £/, k. Now we rewind this isotopy to move all the points inside
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X1 (= Xo4n)

Xo (= X)

Figure 3.6: A (geometrically) cancelling pair of points (p and ¢) of intersection be-

tween L and the binding B.

X{ (= Xéw)

Figure 3.7: Isotoping the binding B and correspondingly all the pages of the open

book using the flow of a compactly supported contact vector field.
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the Darboux ball D back to the their original positions (at the initial time). While
this transform X, X{ and B’ back to their original positions, the part of L in D5
will be pushed further, and we get a Legendrian isotopic copy L’ of L which does not
intersect BB along k(,, k]. Since the isotopy is compactly supported near £, k1, the arcs
describing L’ in the Stein digrams of X, and X, coinsides with the ones describing
L outside the Darboux ball D°. Therefore, to picture L’ in these diagrams, we simply
erase the arcs k(, k] from the diagrams, and hence ignore their contributions to tb.

That is, we have
(L") = (L) - [tb(kp) + tb(k})].

On the other hand, by Lemma|[3.2.4] we have tb(k{) + tb(k;) < 0, and so, combining
this with the above equality we get

Px(L’) > Px(L).

Hence, Px (L) can not be maximum, and so it is strictyly less than MPx(L). O
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CHAPTER 4

PROOF OF THEOREM 1.0.1

In this chapter, we will show that the number M Px (L), which we define in Chapter
Bl is preserved under Legendrian isotopies, and also explain why it is well-defined.
We give definitions of two types of Legendrian isotopies and deal with M Py (L) by
considering possible types of Legendrian isotopies with respect to a fixed page. First,

assuming the number M Py (L) is well-defined, one can easily observe the following:

Lemma 4.0.1 The number MPx (L) is invariant under Legendrian isotopies of L.

Proof Consider any Legendrian isotopy L; (¢ € [0,1]) between L = Ly and L;. Let X
be a fixed page of an admissable open book (B, f) for L such that D(X) essentially

intersects L. Suppose that L’ € [ L] is a representative maximizing Py, that is,
MPx (L) =Px(L").

Since L; is Legendrian isotopic to L, we have [L;] = [L], that is, their Legendrian
isotopy classes are the same. Therefore, L’ is maximizing Px among all represen-

taives in [ L1 ] as well, that is,
MPx(Ly) =Px(L").
Hence, MPx(L1) = Px (L") = MPx (L) as required. O
In order to show that MPx (L) is well-defined, first of all, one needs to understand
how Px (L) changes under possible types of Legendrian isotopies of L. For a fixed

page X, there are two types of Legendrian isotopies of a given Legendrian surface L

which are called a regular isotopy and an irregular isotopy.
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Let L — (M?,¢) be a closed orientable Legendrian surface. Take an admissable open
book (B, f) for L. Fix a page X of the open book (B, f) such that L is transversely
intersecting the double D(X'). (By genericity, this is possible.) we define:

Definition 4.0.2 A regular isotopy of L with respect to D(X) is a Legendrian iso-
topy L, (t € [0,1]) of L = Lo such that L, transversely intersects D(X) for all
te[0,1].

Under the assumptions introduced above, we have

Proposition 4.0.3 The number Px (L) is invariant under regular Legendrian iso-

topies of L with respect to D(X).

Proof Consider a regular Legendrian isotopy L; (¢ € [0,1]) of L = Ly. By definition
L, transversely intersects D(X) for all ¢ € [0,1]. We need to show that Px(L') =
Px (L) where L' = L is the Legendrian copy of L at time ¢ = 1.

Let K = kyUk; be any knot component in L , D(X). Since L, transversely intersects
D(X) for all ¢ € [0, 1], during the isotopy, K is transformed through knots K; € L; 4
D(X) to a knot component K’ = kj Uk} ¢ L' {, D(X) as depicted in Figure
(Here we think K = Ky, K’ = K;.)

Observe that Ky, t € [0,1] indeed defines a Legendrian isotopy from K to K’ when
we consider their arcs to be embedded Legendrian arcs inside Stein diagrams of X

and X;. (See Figure [4.2]for a sample picture.)
Therefore, since their union are isotopic via Legendrian moves, the arcs constructing
K and K" satisfies

tb(ko) + th(ky) = tb(kh) + th(k}),

and so, tb(K) = tb(IK"). This implies that Px (L) = Px (L’) because each summand
of Px (L) agrees with the corresponding summand of Py (L’) by the above discus-

sion.
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Figure 4.1: A regular Legendrian isotopy L, taking Ly = L to another Legendrian
Ly = L’ which is still intersecting the double D(X) = X Uy X transversally, but the

new points of intersection in L/ N B are possibly different than the older ones.

Observe that Ky, t € [0, 1] indeed defines a Legendrian isotopy from K to K’ when
we consider their arcs to be embedded Legendrian arcs inside Stein diagrams of X

and X;. (See Figure 4.2) for a sample picture.)

Therefore, since their union are isotopic via Legendrian moves, the arcs constructing
K and K satisfies

tb(ko) + tb(ky) = tb(k{) + tb(k}),

and so, tb(K) = tb(JK"). This implies that Px (L) = Px (L’) because each summand
of Px (L) agrees with the corresponding summand of Py (L’) by the above discus-

sion. O
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Figure 4.2: Realizing a regular Legendrian isotopy L; (¢ € [0, 1]) taking Ly = L to
another Legendrian L; = L’ in the Stein diagrams of X and X ;. The Legendrian arcs
(in red) describing L n D(X') are Legendrian isotopic to those (in blue) describing
L' n D(X) through a Legendrian isotopy K; = L, n D(X), t € [0,1].

Remark Observe that all the arguments in the proof of Proposition4.0.3|work when-
ever we take a Legendrian representative L from the Legendrian isotopy class [L]
which transversely intersects the double D(X). In particular, if L (which we start
with at the beginning of the proof) is itself maximazing all such possible page cross-

ing numbers, i.e., if

MPx(L) = Px (L),

then the same will be also true for L/. As a result, we have MPx (L) = MPx(L').
Hence, this reproves Lemma [4.0.1] in the case of regular Legendrian isotopies with

respect to D(X).
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Once again let L — (M?®,¢) be a closed orientable Legendrian surface. Take an
admissable open book (B, f) for L. Fix a page X of the open book (B, f) such that
L is transversely intersecting the double D(.X ). We define:

Definition 4.0.4 An irregular isotopy of L with respect to D(X) is a Legendrian
isotopy Ly (t € [0,1]) of L = Lg such that L' = Ly still transversely intersects D(X)
but the new intersection set L' n D(X) is obtained from L n D(X) via a sequence of

births or deaths of intersection knots or due to degenerations of knots in L n D(X).

Proposition 4.0.5 During irregular Legendrian isotopies of L with respect to D(X),
there can not be any births or deaths of nontrivial intersection knots with D(X).
Moreover, under such isotopies, the number Px (L) makes only finite jumps due to

births or deaths of unknots and degenerations of knots in L n D(X).

Proof Consider an irregular Legendrian isotopy L; (¢ € [0,1]) of L = Ly. By def-
inition, L, does not transversely intersect D(X) for all ¢ € [0,1]. But generically
almost all intersection will be transverse. After a small perturbation of the isotopy L
(if necessary) but still calling the resulting isotopy L;, one may assume that there are
numbers 0 < ¢y < t; < --- < t, < 1 so that except finitely many L., (i = 0,1,...,7),
any other L, intersects D(X) transversely. Therefore, for the second statement, one

needs to show that there exists /V € N such that
|Px(L,) - Px(L)| <N
where L' = L is the Legendrian copy of L at time ¢ = 1.

Let us consider the case when we pass from time ¢ = 0 to ¢ = £y + € for € < t; — t;. (the
discussion for passing t = t; —e to t = t; + € is similar.) First of all, comparing to those
in Ln D(X) if there are new unknots (births) in L;,,.n D (X) (they necesarrily bound
disks in D(X) by admissibility assumption), then these births arise as an unknot K
which may (or may not) bound a disk D’ in L., but they must bound a disk D
in D(X) as depicted in Figure The existence of the disk D and Lemma
implies that tb of all these unknots are negative, and so whenever such an unknot

arises, this will decrease the number Py. Similarly, comparing to those in L n D(X)
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Figure 4.3: A birth of an unknot K during an irregular Legendrian isotopy L; (t €
[0,1]). K bounds a disk D’ in L;,,. and a disk D in D(X).

if there are missing unknots (deaths) in L;,,. n D(X) (which were bounding disks in

D(X)), then these will increase the number Pyx.

Note that these births can not be non-trivial knots in L, .. and none of the new knots
can link to a knot in Ly, N D(X') which was also in L n D(X) because otherwise
there would be a time s € (0,ty + €) such that L is not an embedding which is a
contradiction. Similarly, none of the missing knots (deaths) in L, .. n D(X) can be
a non-trivial knot and can link to a knot in L n D(X) at the time ¢ = 0. To sum up,
births and deaths in L. n D(X) can occur only along unknots, say Uy, .., U, are the
births and U7, .., U], are the deaths. Note the total number of these births and deaths is
finite due to smoothness and compactness arguments. Therefore, when passing from

t=0tot =1y + e, the change in Py due to births and deaths can be at most
[ED(U) + -+ + b(Uy) = (Tb(UY) + -+ tb(U))|.

Next, we will discuss the case when there are degenerations transforming some col-
lection of knots in L n D(X') to new ones in L;,.. n D(X). Degenerations may arise
as either unifications or separations which are exactly the opposite of each other, and
so it suffices to understand one of them. A typical situtation of unification is the fol-
lowing: Suppose that the intersection knots K7, Ky € L n D(X) degenerate during
the isotopy and a new intersection knot K € L’n D(X) arises while K, K5 disappear
(unify) as depicted in Figure 4.4 and Figure .5 where for simplicity we assume that

there is a single degeneration and take L' = L; ... In the Stein diagrams of X and
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X, this degeneration and the creation of K correspond to bringing the +, — points
together on the attaching spheres of 1-handles, and then taking a Legendrian connect
sum of K, K along an appropriate Legendrian band. (See Figure 4.5]) We note that
such a degeneration may also appear away from the binding, that is, it can occur in
the Legendrian tangle of one of the Stein diagrams of either X, or X;.

Observe that during an unification (resp. a separation), the number tb decreases (resp.
increases) by 1. More precisely, in Figure 4.6] some different ways of obtaining
a Legendrian connected sum of the knots K; and K along appropriate Legendrian
bands (in red) are given. Any Legendrian band connecting K; and K, may arise when
K1, K5 unify (and a new intersection knot K borns as K;#K5) during an irregular
Legendrian isotopy. Eqivalently, any Legendrian band can occur when K separates
and decomposes as the disjoint union of K, /5. It is not hard to show that no mat-
ter which Legendrian band is used (arises) during a creation (resp. separation) of
K = K1#K5), the number ¢b always decreases (resp. increases) by 1 because gluing
with a Legendrian band always introduces one additional left cusp (see Figure {4.6).

That is, the following always holds:
th(K) = th( K \#K,) = th(K,) + th(K) - 1.

To summarize, when passing from time ¢ = 0 to ¢ = # + ¢, if there are M, unifications
and M, separations (note the total number of degenerations is again finite by smooth-
ness and compactness arguments), then the change in Px due to these degenerations
can be at most

M, - M,|.

Combining with the births and deaths argument above, we conclude that the change

in Px (when passing from time ¢ = 0 to ¢ = ¢y + €) is finite and satisfies
[Px (Lige) =Px (L)] < No 1= [tb(Uy) ++++tb(Uy) = (1b(U7) +++-+Eb(U1) ) |+ Mo = M.
As a result, repeating the above argument for each ¢; with 0 <ty <ty <---<t. <1, we

conclude that during the irregular Legendrian isotopy L, (¢ € [0, 1]), the total change

in Py is finite. More precisely, we have
[Px (L) = Px(L)| = [Px(L1) = Px(Lo)| < N
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Figure 4.4: A typical degeneration (unification) during an irregular Legendrian iso-
topy L, taking L = L to another Legendrian L; = L’ which also intersects the double
D(X) = X, Up X; transversally, but the new arcs of intersection in L' n D(X) are
possibly different than the older ones. Note that traveling in the opposite direction

(i.e., from ¢ = 1 to ¢ = 0) describes a typical separation of K into K; and K.

where N := Ny + -+ N; +---+ N,. Here, for each ¢ = 1,...,r, the bound ; is

isotopic copy of
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obtained (similarly to ¢ = 0 case above) by analyzing corresponding births/deaths and

degenerations occuring when passing from ¢ =¢; —etot =t; +€. O

Theorem 4.0.6 The number MPx (L) is well-defined.

Proof Recall the definition of relative invariant:
MPx(L):=Max{Px(L'")| L' €[L] and L'} D(X)}

where (B, f) is an admissable open book for L and a page X is chosen so that D(X')
essentially intersects L. Therefore, for any L’ € [L], the intersection L' n D(X) is

non-empty which implies that the set
Px([L]) ={Px(L")| L' e[L] and L' { D(X)}cZ

is a non-empty subset. In order to check well-definedness of MPx (L), we need to
verify that the set Px([L]) attains its maximum value. That is, one needs to show

that there exists L, € [ L] such that
Maz(Px([L])) = Px(Lmaz) < 0.

Equivalently, we need to show that the number Px (L) can not be made arbitrarly
large under Legendrian isotopies of L. By Proposition Px (L) is invariant,
and so, can not be made arbitrarly large under regular Legendrian isotopies of L.
Therefore, it suffices to consider irregular Legendrian isotopies of L. By Proposition
we know that the jump in Px (L) under any irregular isotopy is finite. Consider
the subset

[L]min © [L]

of all Legendrian representatives of L in the class [ L] which intersects D(X) trans-
versely and minimally. In other words, for any L € [L]min, the set JA D(X)isa
link in D(X') contains no unknot components due to a birth which may arise during
an irregular Legendrian isotopy. Clearly, by undoing any such isotopy (if needed)

one can get rid of any such unknots (i.e., replacing any birth with the corresponding
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Figure 4.5: Realizing a degeneration (unification) of K;, Ky € L n D(X) and the
creation of K € L’ n D(X) during an irregular Legendrian isotopy L, ¢ € [0,1].
(Lo=L,L; = L"and Ly, is not transverse to D(X).)
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Figure 4.6: Some possible ways (but not all) of obtaining a Legendrian connected

sum K # K of the knots K| and K, along appropriate Legendrian bands (in red).

death), any Legendrian representative L € [ L] intersecting D(X) transversely can be

transformed to some L € [ L] min- That is, there is a map
Ui [L] — [Llmin.  W(L) =L

From its construction, it is clear that Px(L’) < Px(W(L')) for any L’ € [L] with
L’ § D(X). Therefore, we have Maxz(Px([L])) = Max(Px([L]min)), and hence,
it suffices to focus on the set [ L], i.€., if Lyqq exists, then L,q, € [ L]min- Equiva-

lently, one needs to show that there exists Ly,qs € [ L]min such that

Mal‘(Px([L]mm)) = PX(Lmax) < 00.

Now inside [ L],.:,, consider the subset [L]° . c [ L], Which consists of all Legen-

min

drian representative of Le [ L ]min such that there exists a knot component K in the
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link Z n D(X) (of transverse minimal intersections) which separates into two knots
K, and K, (via some irregular Legendrian isotopy with respect to D( X)) such that
at least one of K;’s (say K5) is a homotopically nontrivial unknot in L and does not
link to any other components of the resulting link of intersection. Equivalently, K5
does not bound a disk in L but it bounds a disk D in D(X) = X, Uy X; which is
not punctured with any other knot in the Stein diagrams of X and X;. Such a knot
component K will be called decomposable. Given L € [L]°,. , find all decomposable
knots K € L n D(X') and the corresponding K>’s and D’s mentioned above. Com-
posing irregular Legendrian isotopies separating /’s into /;’s and K5’s with suitable
Legendrian isotopies compactly supported in small neighboorhoods of D’s, one can

get rid of all these K5’s, and repeating this argument (if necessary) eventually we

obtain a Legendrian representative

L e[L]min~[L]S

min-

Recall that separation of a link component increases th by 1, and also erasing a Leg-
endrian unknot (corresponding K5) from Stein diagrams increases th at least by 1.

Therefore, for any L obtained from T, € [L]gm as above, the following always holds:
Px(L) < Px(L).

This means that if L,,,, exists, then it must be true that L., € [L]yin N [L]2,;,-

Equivalently, in order to prove the theorem, one needs to show that there exists L, €

[L]min N [L]2,;,, such that

Max(Px([L]min ™ [L]2in)) = Px (Lmaz) < 0.

To proceed further, we need a partial order relation on the set of equivalence classes
of links in D(X) consisting of all possible intersections of D(X) with elements in
[L]min N [L]°,, . More precisely, consider the set of links in D(X') defined by

min’

A={L } D(X)|Le[Llmin~[L]2, ).

min

As discussed in the earlier sections, every element (link) K € A can be realized as the

union of collections kg, k1 of Legendrian arcs drawn in the Stein diagrams of X, X1,
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respectively. We will write | K| = | K'|| and say that two links K, K’ € A are isotopy
equivalent if each corresponding collections k;, k] (i = 0, 1) are related via Legendrian

Reidemeister moves and their modifications (the ones which does not change tb) for

Stein digrams described in [135]].

Remark Note that from the definition of page crossing number, for any L € [ L], ~
[L]e . , we have

min’

Px (L) =th(L 4 D(X)) = th(K).

Therefore, showing the existence of an L,,q. € [L]min N [L]°,,, maximizing Py is

min

equivalent to showing the existence of a K., € A maximizing tb.
Next we will define a partial order relation on the set
A={ [K| | KeA}.

Definition 4.0.7 Let Ky, K| € A, so there exist Ly,Ly € [L]in ~ [L]°,;, so that
K;=L; h D(X). We will write | Ko < | K1| if

(I) There is a regular or an irregular Legendrian isotopy L, (t € [0,1]) with re-
spect to D(X') having only separating degenerations such that whenever Ly is

transverse to D(X), we have

Ly € [Lmin ~ [L]S

man*

(II) Px(Lo) < Px(Ly) (or equivalently, tb(Ky) < th(K).)
Lemma 4.0.8 The pair (A, <) is a partially ordered set.

Proof Reflexivity: For a given | K| € A, consider any representative K € || K| and
corresponding L € [L]in N [L]2,;,, 1.€., K = L 4 D(X). Then one can consider

the trivial Legendrian isotopy fixing all the points on L for all time . The second

condition is also clear. Therefore,
| K] =<K
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Anti-symmetry: Suppose | K| < | K] and | K| < | Kol for | K], | /1] € A. Imme-
diately, we observe tb(K) < tb(K;) and tb(K;) < tb(K,), and so

BB(Ky) = ().

Consider any representatives Ky € | Kq|, K7 € | K| and the corresponding L, L; €
[L]min ~ [L]°,;,, which are connected via a Legendrian isotopy L, such that whenever

L, is transverse to D(X'), we have L; € [ L] N [L]°

min°®

If L; is a regular Legendrian isotopy with respect to D(X'), then L, transversely in-
tersects D (X)) for all £. In particular, this implies that L; 1 D(X') is minimal and has
no decomposable components for all ¢ because Ly € [ L]nin \[L]9,;,,- Also observe L;
induces an isotopy K; := L; 4 D(X) (between K, and K) whose respective restric-

tions K; n X; (2 = 0,1) defines Legendrian isotopies between componets of K, [y

in Xy, X1, respectively. In other words, || K| = || /|| = | K], so we are done in this

case.

Now suppose L, is an irregular Legendrian isotopy (of L) with respect to D(X)
having only separating degenerations. As in the proof of Proposition #.0.5] suppose
there are numbers 0 < ¢; < t; < -+ < t, < 1 so that except finitely many L., (i =
0,1,...,7), any other L, is an element of [L],,, \ [L]%,,. By assumption, during
L, no births or deaths can arise, and only degenerations are separations. Recall that
separations increase Py and so th by 1. Therefore, one easily conclude that for any ¢

when passing from ¢ = ¢; — € to t = t; + €, there can not be any separations of knots in

Ky, = Ly, & D(X) because otherwise we would have
th(Ko) $ th(Ky,ve) <th(K).

So, L; must be a regular Legendrian isotopy indeed, and hence | K| = || K| as dis-

cussed above.

Transivity: Suppose || Kol < |K;| and | K| < | Ks| for | Ko, | K|, |Kz| € A. Im-
mediately, we observe tb(K,) < tb(K;) and tb(K;) < tb(K), and so

BB(Ky) = ().
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For each i = 0, 1,2, consider any representative K; € |K;| and the corresponding
L; € [L]min ~ [L]°,,,- By assumption, there are Legendrian isotopies L; from L, to
L, and L; from L; to Ly with the prescribed conditions in Definition part (I).
Then one easily concludes that L} o L, is a Legendrian isotopy from L to Lo with the

desired properties. Thus, | Ky| < | Ks|.

Returning back to the proof of the theorem, next we will show that every chain in

(A, <) has an upper bound in A. To this end, suppose that we are giving a chain
[ Kol < [ K] = [ K] <o = | Kl < -on.

Since regular Legendrian isotopies does not change the isotopy equivalence classes, it
suffices to consider irregular Legendrian isotopy (with respect to D( X)) having only
separating degenerations. We need to show that under such isotopies, separations
must eventually stop after a finite step, and when it stops the corresponding b must

be finite.

Let L;’s be Legendrian representatives in [ L], N [L]°,,. such that, for each i > 0,
we have K; = L; 4 D(X) and L;,; is the image of L; under an irregular Legendrian
isotopy L! satifying the condition (I) of Definition Suppose the the link K;
consists of r; knot components. (Recall by compactness there must be finite number
of components for each K;.) By Proposition 4.0.5|and from the assumptions K; € A
and L; € [L]in ~[L]%,;,» we know that each isotopy L! consists only of finitely many

separations, and Px (and so tb) has a finite jump (increment) during each L. That is,

we have
To<T1<Tg< - <1;<eee

with 0 < ;.1 — r; < 00, and
th(Ko) < th(Ky) < th(K>) < - < th(K;) < -

with tb(Ki,1) — th(K;) < oo.
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Now observe that during the separations of any L!, knot components in K split
into “simpler” knot components (which form the link K;,1) which are still disjointly
embedded simple closed curves in the resulting Legendrian suface L;,;. From our
choices, knot components in any K; can not bound disks in L; and can not be de-
composable. Therefore, there must exist some %,,,, € N such that we can not proceed

further. That is, we have
rog<ry <rg <o <Py <<y
where the sequence stops at r;, . < oo, and
th(Ky) < th(K1) < th(Ky) < - < th(K;) < - < tb(K;, )

where the sequence stops at %(Ki ) < o0.

max

Therefore, every chain in (A, <) has an upper bound in A, and hence, by Zorn’s
Lemma, the partially ordered set (A, <) has at least one maximal element, say | K. | €
A. Then by the definition of the partial order relation “<”, for a chosen represen-
tative K,az € || Kmaz|, the number %(Km%) < oo (exists) and is the maximum
value among all possible values obtained from such links of transverse intersections.
Then for a corresponding Legendrian representative, say Loz € [L]min N [L]%m-
one obtains Px (L., ) is finite and maximal among all, i.e., the relative invariant

MPx(L) = Px(Lmaz) is well-defined.
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CHAPTER 5

ABSOLUTE PAGE CROSSING NUMBER AND PROOF OF THEOREM 1.0.2

In this chapter we introduce page-free version of maximal page crossing number and
show that this number is well-defined and invariant under Legendrian isotopies of a

Legendrian surface L.

Definition 5.0.1 Ler L — (M?5,€) be a closed orientable Legendrian surface. Fix an
admissable open book (B, [) for L essentially intersecting L which means that the
double of every page of (B, f) essentially intersects L. Fix any page X of (B, f).
Then

M'P(B’f)(L) = MP)((L)

is called the absolute maximal page crossing number of L with respect to (B, f).

We start with the following fact which will be useful in proving well-definedness of
MPs.1)(L):

Lemma 5.0.2 The relative invariant MPx (L) does not change under (small) pertur-

bations of the double D (X ) transverse to a Legendrian representative in | L] realizing

MPx(L).

Proof Suppose that L’ € [ L] realizes MPx(L). In other words, D(X) transversely

intersects the Legendrian isotopic copy L’ of L and we have

MPx(L)=Px(L").
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We want to show that MPx (L) = MPx/ (L) for any pair X, X’ of pages such that
their doubles are isotopic to each other via a 1-parameter family of doubles of pages

transverse to L’. Equivalently, need to show that

Px(L) = Pxi(L)).
To this end, suppose X = Xy, X’ = Xy is such a pair of pages. Let K = ky U ky be
any knot component of L/ 4 D(X). Then as depicted in Figure |5.1| that a new knot
component K’ € L’ § D(X') is (Legendrian) isotopic to the older one K. So, the

contribution of K’ to Px/(L') is the same as the contribution of K to the Py (L').

Thus, the claim follows. O

@ X(.)/+7\.

K _--== / Xotn

’

’, & K kl Y
7 N _

B /

+ .

‘ 1 ko '
U 1
U 1
: k/ 1
¢ 0 : X
1 1

K\ . |

e L

Figure 5.1: Replacing Xy = Xy (resp. X; = Xy, ) with a nearby (Stein) page Xy
(resp. Xy, ) which are still intersecting L’ transversely. A new knot component
K’ = k[ u ki (isotopic to older one K) of the link of intersection of L’ with the new

double X@/ Us ng_ﬂ-.

Now with the help of the results from previous chapters, one can easily prove the

following:
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Proposition 5.0.3 Let L. — (M?5,£) be a closed orientable Legendrian surface. Fix
an admissable open book (B, f) for L. Then the number MP g 5y(L) is well-defined

and invariant under Legendrian isotopies of L.

Proof Recall the definition of MPp 5y (L):
MPp.p(L) = MPx(L)

where X is any page of (B, f), or equivalently,

MPg n(L);= MPx,(L) for a fixed § € S*.

By assumption, D(Xj) essentially intersects L for all § € S'. For each 0 € S*, by
Lemma the number M Px,(L) takes the same value on some small enough
neighborhood Uy of # in S*, and so the collection {Uy | 6 € S*} is an open cover for
S, By compactness of S?, there exists a finite subcover, i.e., there exist 01,0, ..., 0, €
S1 such that

St = Uy, uUp, U--UU,.

After renaming (if necessary), one may assume that for any two consecutive arcs, we
have Up, nUy,., # @. Since MPx, (L) and MPx, (L) take constant values on their

domains, they must agree on Uy, n Uy, ,,, and hence M Px,(L) takes a constant value

on Uy, u Uy, ,,. Repeating the argument (by changing ¢ one by one), we conclude that
MPx, (L) takes the same value on the whole S*. Hence, MP (5 s)(L) = MPx,(L)
is independent of #, and, in particular, is well-defined.

Finally, the fact that A/P( r)(L) is invariant under Legendrian isotopies just follows

from its definition combined with Lemma[4.0.1l O

Hence, Theorem [.0.2]is proved.
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CHAPTER 6

EXAMPLE FOR THE INVARIANTS

Example 6.0.1 Let C3 be the complex space with the complex coordinates

(217 22, 23) = (Tla 9177’2, 927 T3, 93)7

where z; = 1;¢%i (j = 1,2,3) are the polar coordinates, and S be the unit 5-sphere in
C3, ie.,

S° = {(21, 22, 28) | |21 + |2 + |22 = 1}
The restriction of the 1-form (a primitive of the standard symplectic form on C3)
At = T%del + T%dgg + T§d€3_

on S® is a contact form and defines the standard contact structure 5 on S°. So we
have a closed contact manifold (S°, &5 = Ker(as)) where o = gss.
We will consider an open book supporting & which is admissable for a Legendrian

surface we pick later inside (S, &5). Consider the standard 3-sphere
S$° = {(21,22723) €S|z = 0} cSP

as a contact submanifold of S® as follows:
(5%, = Ker(as)) = (5°,&)

where a3 = 13d02 + r2d03(= aslss) is the contact form (defining &s3).

Consider the most standard open book on S° which can be explicitly described as

follows:
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T:SP\S§3 — S1

(7’1,9177“2,92,7"3793) — 0.

Note that the standard S? is the binding, and a typical page Xy, = 7=1(01) is an open
4-ball (simply connected and Weinstein). The closure of X, (still denoted by Xy, for

simplicity) can be parametrized by

X, =77 1(01) :
{f : DY — S5, (p17¢1ap27¢2) — (\/ 1 —P% ‘93,91701,¢1702,¢2)}-

(Clearly, Xy, is diffeomorphic to D*, and note 0 < p? + p2 < 1.) One can easily
check that the embedded open book (S?,m) on S® supports &5 and the corresponding
abstract open book is (D*,idp1) (with a trivial monodromy).

Let’s now pick a Legendrian surface L inside (S®,&5). For a fixed constant k, consider

the Clifford torus (a well-known and well-studied surface) defined by
L= ,I']C = {(21,22723) eC? | |Zl|2 = |ZQ|2 = |23|2 = %, 01 + 02 + 93 = ]{3} cS°

(note in polar coordinates we have r? = r3 = r3 = %.) Clearly Ty, is a surface inside S°.
One needs to check that Ty, is Legendrian (S°,5). To this end, consider the following

parametrization for T), where @1, 9 are angular coordinates on an abstract torus T?:

Ti: 6(p1,p2) = (%Aﬁ,%v%,%,k—@l ~ ) €S

0 0
5., =< 0,1,0,0,0,-1>= — - 2
O-QO1 <V, 1,0,0,0, > 891 893
0 0
5y =< 0,0,0,1,0,-1 >= — — ——
0-302 < ) 9 9 P > 802 893

Then, we easily see that

(673 |Tk: %dﬁl + %d@g + %d@g

Qs |Tk (5—901) =0=as |Tk (5_902)'

Therefore, Ty, is a Legendrian torus in (S°,&5). Let’s understand how T}, intersects

with the binding S? and a typical page Xy, ~ D*:
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For T, n'S3, we have
={(21,20,23) €C3| 2y =0} = {r3 +75 = =0}.

But on Ty, r1 = % # 0. Hence, T, n'S3 = @. In particular, this shows that the binding

of the open book (S?, ) intersects Tj, transversely.

For Kgl = Tk n Xgl,

{F(P1>¢1,P2>¢2 \/1 ,01 02,91,P1>¢1,P2>¢2)}

Ty : 0-(901 ()02) ( 373017 \/§79027\/§7k ¥1 - 902)

Equating the corresponding coordinates, one gets the equations defining the intersec-

tion Ky, :

1—Pf—f)§zﬁa 01 =1, PlZ%, b1 = P2, P2=%, P2 =k -1 - o

If we let g1 = w9 = 0, then we obtain the parametrization of Ky, given by

Ko : 7:51->8° #(0)= (% ! =, 0, k—01—9).

1
V3’

%I

Note that the parameter 0 appears in two distinct angular coordinates with opposite
signs, and so Ky, is an embedded unknot in S° sitting as a (1,-1)-torus knot on
the Clifford torus Ty.. Note that following the same steps, one can also consider
Ko, 1r == Ty 0 Xg,1r which is also a (1,-1)-torus knot on the Clifford torus T}, (a
paralel copy of Kp,). Hence, we conclude that the double D(X) = Xp, Uy Xg, 4r

intersects T}, transversely and essentially along the (un)link D(X)NTy = Ko, UKy, 4

Now observe that

o0
892 005’

_ 1 1
Q3 |K91 = §d92 + §d93,

(0) =< 0,0,0,1,0,-1 >
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50 a3 |k, (r(0)) = 0. Hence, one can think of Ky, , Ky, . as Legendrian unknots in

(SS, 53).

Moreover, we also have

s |x,, = T*(as) = d(1 - p} = p3) A dby + prde + psdes = piddy + p3dds, and so
-0

d(as [x,,) = d(pider + pidds) = 2p1dp1 A dy + 2padps A ds
from which we compute

d(as |x,,) [ko, = d(s |7nx,,) = %dpl Adoy + %dpz A ds, and also
(5 [xp, )iy, = 31 + 5dda(= 5dB5 + 5dB3)

= (a3 |X91)|K91(7:’(«9)) =3-3=0.

These veriy that Ky, , Ky, .+, are isotropic unknots in every (simply-connected) We-
instein (so Stein) page (Xo,,d(s |x,, )), and every page of the open book (S?,)
essentially intersects Ty. As a result, we conclude that (S, ) is an essentially inter-
secting admissable open book for the Clifford torus Ty,. See Figure[6.1|for a schematic

picture for the front projection of T.

61/\61 +
Iy

Xo (= Xo,) Bl X1 (= Xoy4x)

Figure 6.1: A schematic picture of the front projection of the Legendrian Clifford
torus 7}, c (S°,&5) onto R3 with coordinates z, ¥, y2. The components K7, Ky (in
red) of the (un)link of intersection of 7} with the double Xy Uy X; ~ S* of a page
X ~ D* of the trivial open book on S°. (Note: B~ S3 and T}, 4, B = @.)

Next, we set K1 = Ky, , Ky = Ky, .r and also Xy = Xy, and X, = Xy, .r, so that the
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(un)link of intersection Ty, with the double D(X) = X Uy X1 is given by
Tk 4 D(X) = KluKQ

With respect to the notation introduced in Chapter@ we have K1 = kY ¢ X (no k})
and Ky = k) ¢ Xy (no k9). Also recall T, n'S® = @. Hence, T}, § D(X) is an unlink
with two components kY, k3 which can be realized in Stein diagrams of (Xo, das|x,)

and (X1, dos|x,) as in Figure[6.2]

—1 -1
K =k Ky =k}
\_/ NN \_/
Stein domain X, & D* Stein domain X; & D*

Figure 6.2: Realizing the (un)link of transverse intersection of the Legendrian Clif-
ford torus T}, with the double X, Uy X ~ S* of a page X ~ D* in the Stein diagrams
of (Xg, dO(5|X0) and (Xl, dO{5|X1 )

Now we can calculate our invariants by using Stein diagrams. Using the notations

introduced, we have
th(K,) =th(k9) = -1  and tb(K,) = th(k}) = -1.

So, the page crossing number Px (L") for any page X of (S3, ) and any L' € [T},] is

computed as
Px (L) = th(K,) + th(Ky) = ~2.

(Because with respect to any page, minimal link of intersection set has always two
components as depicted in Figure[6.2]) As a result, the absolute and relative maximal

page crossing numbers are computed as

MPsa (L) = MPx(L) = -2.
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Remark Thurston-Bennequin number of any Legendrian torus L (regardless of how
it is embedded in (S°,&5)) is computed as tb(L) = 0 since it coincides with a topo-
logical invariant (see [24]). So it is not possible to distinguish them using Thurston-
Bennequin invariant. On the other hand, since the new invariants defined here keep
track Legendrian embeddings, they distinguish not only their smooth embedding type

but also Legendrian isotopy types of such embedded Legendrian tori.
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