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Mathematics Department, METU

Assoc. Prof. Dr. Elif Dalyan
Mathematics Department, Hitit University

Date:



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Özlem Erşen
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ABSTRACT

MAXIMAL PAGE CROSSING NUMBER OF EMBEDDED CLOSED
LEGENDRIAN SURFACES IN CLOSED CONTACT 5-MANIFOLDS

Erşen, Özlem

Ph.D., Department of Mathematics Department, METU

Supervisor: Assoc. Prof. Dr. M.Fırat Arıkan

March 2020, 74 pages

The main purpose of this thesis is to introduce a new Legendrian isotopy invariant

for any closed orientable Legendrian surface L embedded in a closed contact 5- man-

ifold (M,ξ) which admits an "admissable" open book (B,f) (supporting ξ) for L.

We show that to any such L and a fixed page X , one can assign an integer MPX(L),

called "Relative Maximal Page Crossing Number of L with respect to X", which is

invariant under Legendrian isotopies of L. We also show that one can extend this

to a page-free invariant, i.e., one can assign an integer MP(B,f)(L), called "Abso-

lute Maximal Page Crossing Number of L with respect to (B,f)", which is invari-

ant under Legendrian isotopies of L. In particular, this new invariant distinguishes

Legendrian surfaces in the standard five-sphere which can not be distinguished by

Thurston-Bennequin invariant.

We give definitions of MPX(L) and MP(B,f)(L) and show that the invariants are

well defined. Also, we show that they are preserved under Legendrian isotopies of L.

Finally, we give an example about these invariants.

v



Keywords: Legendrian surface, open book, contact structure, symplectic, maximal

page crossing number

vi



ÖZ

KAPALI KONTAKT 5-MANİFOLDLARDA GÖMÜLÜ KAPALI
LEGENDRİAN YÜZEYLERİN MAKSİMUM SAYFA GEÇİŞME SAYISI

Erşen, Özlem

Doktora, Matematik Bölümü

Tez Yöneticisi: Doç. Dr. M.Fırat Arıkan

Mart 2020 , 74 sayfa

Amacımız; bir kapalı, kontakt 5-manifoldun (B,f), open book yapısını kullanarak,

her bir kapalı, yönlendirilebilir Legendrian alt yüzeyi için yeni bir Legendrian izotopi

değişmezi tanımlamaktır. Böyle bir Legendrian alt manifoldu L ve sabit birX sayfası

için Legendrian izotopiler altında değişmez olan ve bağıl maksimum sayfa geçişme

sayısı olarak adlandırılan bir tamsayı atanabileceğini göstermek istiyoruz. Ayrıca, bu

değişmezin sayfadan bağımsız yeni bir değişmeze genişletilebileceğini göstermek is-

tiyoruz. Yani böyle bir Legendrian alt manifoldu için Legendrian izotopiler altında

değişmez olan ve mutlak maksimum sayfa geçişme sayısı olarak adlandırılan bir tam-

sayı atanabileceğini göstereceğiz. Bu yeni değişmez Thurston-Bennequin değişmezi

tarafından ayırt edilemeyen standart 5-kürelerin Legendrian yüzeylerini ayırt etmeye

yardımcı olur.

Bu değişmezlerin tanımını verip iyi tanımlı olduklarını gösterdik. Ayrıca, tanımlanan

bu sayıların Legendrian izotopiler altında korunduğunu gösterdik. Son olarak tanım-

lanan bu değişmezler için bir örnek verdik.
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Anahtar Kelimeler: Legendrian yüzey, açık kitap, kontakt yapı, simplektik, maksi-

mum sayfa geçişme sayısı

viii



To my family and fiance

ix



ACKNOWLEDGMENTS

First of all, I would like to express my deepest gratitude to my supervisor Assoc.

Prof. Dr. Mehmet Fırat Arıkan for his understanding, encouragement, patience, end-

less support and constant guidance during my thesis. I learned a lot of things about

research and I am still learning. It was a great honor to work with him and our coop-

eration influenced my academical and world view highly.

I would also like to sincerely thank to the rest of my thesis committee members,

especially Prof. Dr. Yıldıray Ozan and Assoc. Prof. Dr. Sinem Çelik Onaran for

their helpful suggestions, feedback and valuable comments. In particular, I wish to

express my appreciation to Assoc. Prof. Dr. İbrahim Ünlü and Assoc. Prof. Dr. Elif
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Dr. Ali Ulaş Özgür Kişisel, Assoc. Prof. Dr. Mehmetçik Pamuk, Assoc. Prof. Dr.

Semra Pamuk, Assoc. Prof. Dr. Ahmet Beyaz, Assoc. Prof. Dr. Emre Coşkun,
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Çalışkan for their support, patience and endless help all the time. I have always felt

their support and I always felt like they were with me. Also, I want to express my

many thanks to my friends for their all support throughout this long and sometimes

very exhausting Ankara adventure. Thanks to them, I never felt alone in Ankara.

x



I would also like to thank to the staff of the Department of Mathematics in METU,

especially Nesim Akyol, Adem Bulat, Güldane Gümüş and Burcu Yayla, for their
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nical Research Council of Turkey.

xi



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Contact 5-Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Symplectic Manifolds and Almost Complex Manifolds . . . . . . . . 11

2.3 Liouville, Weinstein and Stein Manifolds . . . . . . . . . . . . . . . . . 14

2.4 Open Book Decompositions . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Legendrian Submanifolds and Thurston-Bennequin Invariant . . . . . 22

2.6 Handle Decompositions of Stein Surfaces . . . . . . . . . . . . . . . . 27

3 RELATIVE PAGE CROSSING NUMBER . . . . . . . . . . . . . . . . . . . . 31

3.1 Spider Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Definition of Relative Maximal Page Crossing Number . . . . . . . . 32

4 PROOF OF THEOREM 1.0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 43

xii



5 ABSOLUTE PAGE CROSSING NUMBER AND PROOF OF THEOREM
1.0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 EXAMPLE FOR THE INVARIANTS . . . . . . . . . . . . . . . . . . . . . . 63

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

xiii



LIST OF FIGURES

FIGURES

Figure 2.1 The standard contact structure ker(dz + xdy) on R3. . . . . . . . 6

Figure 2.2 The standard tight contact structure on R3. . . . . . . . . . . . . . 10

Figure 2.3 An overtwisted contact structure on R3. . . . . . . . . . . . . . . 11

Figure 2.4 The open book decomposition of the 2-sphere. . . . . . . . . . . 19

Figure 2.5 An open book decomposition. . . . . . . . . . . . . . . . . . . . . 20

Figure 2.6 Positive and negative crossings. . . . . . . . . . . . . . . . . . . . 25

Figure 2.7 A Legendrian unknot (on the left) and a trefoil knot (on the right). 26

Figure 2.8 The positive and negative stabilizations of L. . . . . . . . . . . . . 26

Figure 2.9 A Legendrian link diagram. . . . . . . . . . . . . . . . . . . . . . . 28

Figure 3.1 Isotoping a given open book so that the new binding B′ inter-

sects L transversally. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 3.2 a) Handle decomposition of the double D(X), union of the

pages X0 and X1. b) The Stein domains (X0, dα0) and (X1, dα1). . . . 34

Figure 3.3 Embedded Legendrian surface L intersecting transversally the

binding B and a pair of pages X0 and X1. A typical knot component

K = k0 ∪ k1 of the link of intersection of L with the double D(X) =
X0 ∪∂ X1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

xiv



Figure 3.4 Legendrian arcs (in red) constructing the knot components of

the link of L with the double D(X) =X0 ∪∂ X1. . . . . . . . . . . . . . 36

Figure 3.5 Realizing a Legendrian isotopy of L (cancelling a pair of in-

tersection points in L ∩ B) by isotoping L (through the disk D ⊂ X1

enclosed by k1 and the path γ on the attaching sphere S of the 1-handle

of X1 joining the points "+" and "-") in the Stein diagrams (X0, dα0)
and (X1, dα1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 3.6 A (geometrically) cancelling pair of points (p and q) of intersec-

tion between L and the binding B. . . . . . . . . . . . . . . . . . . . . . 40

Figure 3.7 Isotoping the bindingB and correspondingly all the pages of the

open book using the flow of a compactly supported contact vector field. 40

Figure 4.1 A regular Legendrian isotopy Lt taking L0 = L to another Leg-

endrian L1 = L′ which is still intersecting the double D(X) =X0∪∂X1

transversally, but the new points of intersection in L′ ∩B are possibly

different than the older ones. . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 4.2 Realizing a regular Legendrian isotopy Lt (t ∈ [0,1]) taking

L0 = L to another Legendrian L1 = L′ in the Stein diagrams of X0 and

X1. The Legendrian arcs (in red) describing L ∩D(X) are Legendrian

isotopic to those (in blue) describing L′ ∩D(X) through a Legendrian

isotopy Kt = Lt ∩D(X), t ∈ [0,1]. . . . . . . . . . . . . . . . . . . . . . 46

Figure 4.3 A birth of an unknot K during an irregular Legendrian isotopy

Lt (t ∈ [0,1]). K bounds a disk D′ in Lt0+ε and a disk D in D(X). . . . 48

Figure 4.4 A typical degeneration (unification) during an irregular Legen-

drian isotopy Lt taking L0 = L to another Legendrian L1 = L′ which

also intersects the double D(X) = X0 ∪∂ X1 transversally, but the new

arcs of intersection in L′ ∩D(X) are possibly different than the older

ones. Note that traveling in the opposite direction (i.e., from t = 1 to

t = 0) describes a typical separation of K into K1 and K2. . . . . . . . . 50

xv



Figure 4.5 Realizing a degeneration (unification) ofK1,K2 ∈ L∩D(X) and

the creation of K ∈ L′ ∩D(X) during an irregular Legendrian isotopy

Lt, t ∈ [0,1]. (L0 = L,L1 = L′ and Lt0 is not transverse to D(X).) . . . 52

Figure 4.6 Some possible ways (but not all) of obtaining a Legendrian con-

nected sum K1#K2 of the knots K1 and K2 along appropriate Legen-

drian bands (in red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 5.1 Replacing X0 = Xθ (resp. X1 = Xθ+π ) with a nearby (Stein)

page Xθ′ (resp. Xθ′+π ) which are still intersecting L′ transversely. A

new knot component K ′ = k′0 ∪ k′1 (isotopic to older one K) of the link

of intersection of L′ with the new double Xθ′ ∪∂ Xθ′+π. . . . . . . . . . . 60

Figure 6.1 A schematic picture of the front projection of the Legendrian

Clifford torus Tk ⊂ (S5, ξ5) onto R3 with coordinates z, y1, y2. The

components K1,K2 (in red) of the (un)link of intersection of Tk with

the double X0 ∪∂ X1 ≈ S4 of a page X ≈D4 of the trivial open book on

S5. (Note: B ≈ S3 and Tk ⋔ B = ∅.) . . . . . . . . . . . . . . . . . . . . . 66

Figure 6.2 Realizing the (un)link of transverse intersection of the Legen-

drian Clifford torus Tk with the double X0∪∂X1 ≈ S4 of a page X ≈D4

in the Stein diagrams of (X0, dα5∣X0) and (X1, dα5∣X1). . . . . . . . . . 67

xvi



CHAPTER 1

INTRODUCTION

Contact geometry is the study of an odd dimensional manifolds unlike symplectic

geometry which is defined on some even-dimensional manifolds. Contact and sym-

plectic geometry are motivated by the classical mechanics, where one can think either

the even-dimensional phase space of a mechanical system or constant-hypersurface

which is odd-dimension. Contact geometry has many uses in different areas in physics,

like as geometrical optics, classical mechanics, thermodynamics, integrable systems

etc. The relation between a contact geometry and a dynamical systems comes from

the notion of the Reeb vector field of a contact form in the contact geometry. Contact

geometry also has applications to mathematics, especially in low dimensional topol-

ogy; for example to prove the property P conjecture by Kronheimer and Mrowka [19]

and to define invariants of knots by Lenhard Ng [20].

One of the most useful topological tools to study manifolds is open book decomposi-

tions. It is relevant to contact structures. Thurston and Winkelnkemper [27] showed

that every open book admits a contact structure. Ibort, Martinez-Torres and Presas

[1] showed that supporting open books with Weinstein pages always exist for all

closed contact 5-manifolds and that monodromies can be assumed to be symplecto-

morphisms of the pages. Moreover, there is one-to-one correspondence between the

set of supporting open books which arise from the work of Ibort, Martinez-Torres and

Presas up to positive stabilizations and the set of supported contact structures up to

isotopies. These results are given by a famous theorem of Giroux [14] for n ≥ 5. By

this theorem, contact geometry can be studied from a topological viewpoint and we

can see contact structures as topological objects. Etnyre and Ozbagci [12] defined

new invariants of contact structures in terms of open book decompositions.
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The most interesting subspaces of a contact manifold are its Legendrian subman-

ifolds. In fact, Legendrian submanifolds are counterpart to Lagrangian submani-

folds of symplectic manifolds. Legendrian submanifolds are very hard objects. Be-

cause there are infinitely many Legendrian isotopy classes of embeddings which are

smoothly isotopic. One can use relative contact homology which provides invariants

of Legendrian submanifolds to distinguish different Legendrian submanifolds that are

smoothly isotopic.

Legendrian knots inside a contact 3-manifold is the simplest example of Legendrian

submanifolds. Legendrian knots are very important. Because we can learn geometry

and topology of the underlying manifold with their contribution. Many inequivalent

Legendrian knots can be distinguished by their Thurston-Bennequin invariants and

rotation number, which are together known as the classical invariants of Legendrian

knots. Y. Kanda used Legendrian knots to distinguish contact structures in [18] and

L. Rudolph used Legendrian knots to detect topological properties of knots in the

[22]. Many examples are known about Legendrian non-isotopic knots with the same

classical invariants. Also, in higher dimensions, there are interesting examples of

non-trivial Legendrian knots when the contact manifold has more topology on it [9].

The Thurston-Bennequin invariant of any Legendrian surface of a contact manifold

measures the twisting of contact structure around this Legendrian surface [11] . This

invariant was originally defined by Bennequin [3] and independently, Thurston when

n = 1 and generalized to higher dimensions by Tabachnikov [26].

To distinguish two or more topological objects by using some invariants has always

been very important. Hence the notion of invariant sounds good. For this reason,

many mathematicians would like to discover some new invariant. Any orientable

Legendrian submanifold in any contact manifold comes with a canonical contact

framing, called Thurston-Bennequin framing. More precisely, if Ln ⊂ (M2n+1, ξ)
is an orientable Legendrian submanifold, then its contact framing is determined by

a smooth vector field which is every transverse to ξ∣L. If we further assume that L

is null-homologous (i.e., if L = ∂C for some (n + 1)-chain C ⊂ M ), then we can

compare the contact framing on L with the one determined by C, and so one can

identify it with an integer tb(L) called Thurston-Bennequin number of L. In the past

two decades new Legendrian isotopy invariants have been defined and studied (see for

2



instance, [23], [25], [24]) due to insufficiency of tb(L) in distinguishing non-isotopic

Legendrian submanifolds in certain cases. Most of these new invariants are based on

differential graded algebras and very difficult to compute.

Returning back to dimension five, it has been known (see [24], for instance) that

tb(L) can not distinguish Legendrian surfaces in the standard contact R5 or S5 which

are smoothly (but not Legendrian) isotopic. The reason for this is that tb(L) coin-

cides with a topological invariant for these cases, i.e., it does not carry any informa-

tion about the Legendrian embedding of L into R5 or S5. On the other hand, the

new invariants introduced in this thesis can distinguish such Legendrian surfaces by

means of classical computations relatively more visual and simpler than those used

in computing other Legendrian isotopy invariants. For this reason, my thesis prob-

lem comes to the light. We define two new Legendrian isotopy invariants for any

closed orientable Legendrian surface in closed contact 5-manifolds using “essentially

intersecting” pages of “admissable” open book decompositions.

In Chapter 2, we give a review of background information on contact 5-manifolds,

symplectic manifolds, almost complex manifolds, Liouville manifolds, Weinstein

manifolds, Stein manifolds, open book decompositions, Legendrian submanifolds,

Thurston-Bennequin invariant and handle decompositions of Stein surfaces.

In Chapter 3, we define a new invariant explicitly: For a given closed, orientable Leg-

endrian surface L in a closed contact 5-manifold, we consider an “admissable” open

book decomposition for L with a page X = X0 whose double D(X) = X0 ∪∂ X1

“essetially intersects” L. (Here X1 is the dual page of X0). One may assume that L

and the binding intersect transversely. Then for any L′ which is Legendrian isotopic

to L and transverse to D(X), we consider all the components of the link of trans-

verse intersection of L′ and D(X). Sketch the Legendrian arcs constructing these

components in the Stein diagrams of X0 and X1, and calculate Thurston-Bennequin

number of each of these arcs. By summing all of these numbers, we obtain an integer

called the “page crossing number” of L′. Finally, maximum of these numbers (among

all such L′’s) give us a number which we will call “Relative Maximal Page Crossing

Number of L with respect to X".

In Chapter 4, we will study two kinds of Legendrian isotopies and prove the following

3



theorem:

Theorem 1.0.1 One can associate an integer MPX(L), called “Relative Maximal

Page Crossing Number of L with respect to X", which is invariant under Legendrian

isotopies of L.

In Chapter 5, using the relative invariant, we show that under an additional assump-

tion on admissable open books, one can also define an absolute invariant which is

independent of pages of the open book at hand. Namely, assuming that an admiss-

able open book (B,f) for L also “essentially intersects” L, we prove the following

theorem:

Theorem 1.0.2 One can associate an integerMP(B,f)(L), called “Abolute Maximal

Page Crossing Number of L with respect to (B,f)", which is invariant under Legen-

drian isotopies of L.

In the last chapter, we give a concrete example for the invariants.
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CHAPTER 2

BACKGROUND

In this chapter, we will recall some basic definitions and facts about contact/symplec-

tic geometry and topology in dimension five. In section 2.1, we will define contact

structures and give some examples that will be used throughout the thesis. After dis-

cussing symplectic manifolds and almost complex manifolds in section 2.2, we will

define Liouville, Weinstein and Stein manifold. Open book decompositions and their

relations with contact structures will be considered in section 2.4. After we give an

overview of Legendrian submanifolds and Thurston-Bennequin invariant, we will re-

call handle decompositions of Stein domains and their relations with contact surgery

diagrams in section 2.6 and we will finish this chapter.

2.1 Contact 5-Manifolds

Let us start with defining a contact structure on (necessarily) odd dimensional man-

ifolds. Due to the nature of this thesis, most of the time we restrict our attention on

dimension five. More discussions and details about contact structures can be found,

for instance, in [10] and [15].

Definition 2.1.1 A pair (M5, ξ) is called a contact manifold where M is a smooth

manifold and ξ4⊂ TM is totally non-integrable 4-plane field distrubution on M . A

contact structure on M is the distrubution ξ where ξ is said to be co-oriented if it is

the kernel of a globally defined 1-form α. α has the property α ∧ (dα)2 ≠ 0. Such α

is called a contact form on M .
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Since α ∧ (dα)2 ≠ 0, a contact manifold M5 must be oriented. So α ∧ (dα)2 ≠ 0

defines the given orientation on M .

Remark Observe that α is a contact form if α ∧ (dα)2 is a volume form on M .

That is, α ∧ (dα)2 is a nowhere vanishing top dimensional differential form. If α is

globally defined, then it is called co-oriented. α can be defined locally or globally.

If ξ = Ker(α) and α ∧ (dα)2 > 0, then ξ is called a co-oriented positive contact

structure. In general, we assume that ξ is co-oriented positive contact structure.

Remark 1) The condition α ∧ (dα)2 ≠ 0 is independent of the specific choice of α.

2) The 2-form dαp is nondegenerate on ξp for all p ∈M .

Now we will restrict ourself to contact 5-manifolds and give some examples.

Example 2.1.1 Consider the standard Cartesian coordinates (x1, y1, x2, y2, z) in R5

and 1-form α1 = dz + x1dy1 + x2dy2. Since α1 ∧ (dα1)2 = (dz + x1dy1 + x2dy2) ∧
(dx1 ∧ dy1 + dx2 ∧ dy2)2 = 2dz ∧ dx1 ∧ dy1 ∧ dx2 ∧ dy2 ≠ 0, ξ1 = ker(α1) is a contact

structure on R5. This ξ1 is called the standard contact structure on R5.

See Figure 2.1 for the 3-dimensional case.

Figure 2.1: The standard contact structure ker(dz + xdy) on R3.
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Example 2.1.2 Similarly, consider R5 with the standard coordinates (x1, y1, x2, y2, z)
and the 1-form α2 = dz+x1dy1−y1dx1+x2dy2−y2dx2. ξ2 = ker(α2) is also a contact

structure on R5.

Example 2.1.3 Let S5 be the unit 5-sphere in R6 with standard coordinates

(x1, y1, x2, y2, x3, y3) and 1-form α3 = x1dy1 −y1dx1 +x2dy2 −y2dx2 +x3dy3 −y3dx3,

which is restricted to S5. This contact form defines a standard contact structure on

S5. So we have ξ3 = ker(α3).

Example 2.1.4 Consider R5 with the polar coordinates (rj, φj), in the (xj, yj) plane

j = 1,2. The following 1-form is a contact form on R5.

α4 = dz + r21dφ1 + r22dφ2 = dz + x1dy1 − y1dx1 + x2dy2 − y2dx2

This contact form defines a contact structure ξ4 on R5. That is ξ4 = ker(α4).

Example 2.1.5 Consider R5, endowed with cartesian coordinates (x1, y1, x2, y2, z)
and the 1-form α5 = dz −y1dx1 −y2dx2. This contact form defines a contact structure

on R5.

Remark In fact, this contact form is not different from the contact forms α1, α2, α4, α5.

The following definitions describe the equivalence of contact structures and forms.

Definition 2.1.2 A diffeomorphism ψ ∶ (M1, ξ1 = ker(α1)) → (M2, ξ2 = ker(α2))
between two contact 5-manifolds is called contactomorphism if its differential Tf ∶
TM1 → TM2 maps the contact structure ξ1 on M1 to the contact structure ξ2 on

M2, i.e. if there is a function λ ∶ M1 → R ∖ {0} with f∗α2 = λα1. Two contact

5-manifolds (M1, ξ1) and (M2, ξ2) are said to be contactomorphic if there exists a

contactomorphism between them. That is, ψ∗(ξ1) = ξ2.

Definition 2.1.3 Two contact structures ξ1 and ξ2 on a 5-manifold M are isotopic if

there is a contactomorphism ψ ∶ (M,ξ1) → (M,ξ2) such that ψ is isotopic to the

identity. On the other hand, two contact structures ξ1 and ξ2 on a 5-manifold M are

called homotopic if they are homotopic as tangent plane distributions.
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Two different contact structures can be homotopic but not isotopic. Hence, classifica-

tion of contact structures is made up to isotopy.

Example 2.1.6 The contact manifolds (R5, ξ1 = ker(α1)) and (R5, ξ2 = ker(α2))
from the first two examples are contactomorphic. An explicit contactomorphism f is

given by

f(x, y, z) = (x+y
2
,

y-x
2
,
z + xy

2
)

where x = (x1, x2), y = (y1, y2) and xy = x1y1 + x2y2. Clearly, f∗α2 = α1.

For completeness, we prove:

Proposition 2.1.4 For any point p ∈ S5, the two contact manifolds (S5/{p}, ξ3) and

(R5, ξ2) are contactomorphic.

Proof By using Geiges’ proof, we can give a following proof for S5 and R5:

ξ3 =Ker(α3) =Ker(x1dy1 − y1dx1 + x2dy2 − y2dx2 + x3dy3 − y3dx3)
ξ2 =Ker(α2) =Ker(dw + u1dv1 − v1du1 + u2dv2 − v2du2) or

ξ2 =Ker(α2) =Ker(dw + r21dθ1 + r22dθ2)

Here (r1, θ1) is the polar coordinates in the (u1, v1)-plane and (r2, θ2) is the polar

coordinates in the (u2, v2)-plane. Let’s choose the point p = (0,0,0,0,0,+1). Sup-

pose that ψ ∶ S5/{p}Ð→ R5 is the stereographic projection from p. Also assume that

(x1, y1, x2, y2, x3, y3) and (u1, v1, u2, v2,w) are the coordinates in S5 and R5, respec-

tively. This map is given by

u1 =
x1

1 − y3
, v1 =

y1
1 − y3

, u2 =
x2

1 − y3
,

v2 =
y2

1 − y3
, w = x3

1 − y3

Inverse map of ψ is given by

ψ−1 ∶ R5 Ð→ S5/{p}
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x1 = λu1, y1 = λv1, x2 = λu2, y2 = λv2
x3 = λw, y3 = 1 − λ

with λ = 2

1 +w2 + u21 + v21 + u22 + v22
. So we have

ψ−1(u1, v1, u2, v2,w) = (λu1, λv1, λu2, λv2, λw,1 − λ)

(ψ−1)∗(α3) = λ2[r21dθ1 + r22dθ2 +wr1dr1 +wr2dr2 + 1
2(1 +w2 − r21 − r22)dw].

In fact,

(ψ−1)∗(α3) = λ2α̃2

where α̃2 = [r21dθ1 + r22dθ2 +wr1dr1 +wr2dr2 + 1
2(1 +w2 − r21 − r22)dw]. Let’s find a

diffeomorphism f of R5 such that f∗α2 = α̃2. We can find a suitable f as:

f ∶ R5 Ð→ R5

f(r1, r2, θ1, θ2,w) = (r1, r2, θ1 −w, θ2 −w, 12w(1 + 1
3w

2 + r21 + r22)).

When we calculate f∗(α2), we find α̃2. More precisely,

f∗(α2) = f∗(dw + r21dθ1 + r22dθ2) = d(1
2w + 1

6w
3 + 1

2wr
2
1 + 1

2wr
2
2) + r21d(θ1 −w) +

r22d(θ2 −w) = (1
2 + 1

2w
2 − 1

2r
2
1 − 1

2r
2
2)dw +wr1dr1 +wr2dr2 + r21dθ1 + r22dθ2

As a result, f∗(α2) = α̃2. Now, we have the following equation:

(ψ−1)∗(α3) = λ2α̃2 = λ2f∗(α2).

If we compose both of this equation by ψ∗ from the left side, we can find

α3 = (λ2f ○ ψ)∗(α2).

Hence λ2f ○ ψ is a contactomorphism between (S5/{p}, ξ3) and (R5, ξ2). ◻

From the preceding remark and the above proposition, (R5, ξ1), (R5, ξ2), (R5, ξ4),

(R5, ξ5) and (S5/{p}, ξ3) are contactomorphic. Hence any of these contact structures
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Figure 2.2: The standard tight contact structure on R3.

ξi, i = 1,2,3,4,5 are used as the standard contact structure on R5 and denoted by ξstd.

Theorem 2.1.5 (Darboux’s Theorem) Let M be a 5-dimensional manifold and x a

point on M . Then there is a neighborhood U of x in M such that (U, ξ ∣U) is contac-

tomorphic to (R5, ξstd).

A neighborhood U as in the above theorem is said to be a Darboux ball. In dimension

three, there are two kinds of contact structures on 3-contact manifolds:

Definition 2.1.6 If there is an embedded disk D in (M3, ξ) such that Tp(∂D) ⊆ ξp at

every point p ∈ ∂D, then ξ is called an overtwisted contact structure. That is, contact

plane is tangent to ∂D. D is called an overtwisted disk. Otherwise ξ is called a tight

contact structure.

Example 2.1.7 Let α = dz − ydx on R3 with cartesian coordinates and β = cosrdz +
rsinrdθ in R3 with cylindrical coordinates. Then Ker(α) is the standard tight con-

tact structure on R3. Also Ker(β) is an overtwisted contact structure. These are

visualized in Figure 2.2 and 2.3, respectively.
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Figure 2.3: An overtwisted contact structure on R3.

Definition 2.1.7 Corresponding to a contact form α ∈ Ω1(M), one has the so called

Reeb vector field Rα, uniquely defined by the equations

●dα(Rα,−) = 0.

●α(Rα) = 1.

Example 2.1.8 The Reeb vector field of the contact form α1 = dz + x1dy1 + x2dy2 on

R5 is ∂z.

A vector fieldX on a contact manifold is said to be a contact vector field if it satisfies

LXα = fα

for some function f ∶M → R. That is, if we have a contact vector field, then its flow

preserves the contact distrubution.

2.2 Symplectic Manifolds and Almost Complex Manifolds

For more details about definitions and facts given below, we refer the reader [5], [15],

and [21].
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Definition 2.2.1 Given a manifold M , a symplectic structure on M is a 2-form ω ∈
Ω2(M) such that

● ω is nondegenerate.

(i. e. ∀v ∈ TxM,v ≠ 0,∃u ∈ TxM such that ωx(v, u) ≠ 0)

● ω is a closed form.

(i. e. dω = 0)

The pair (M,ω) is called a symplectic manifold.

Note that any symplectic manifold (M,ω) is even dimensional and oriented. In fact,

the first condition of the above definition is equivalent to ωn = ω ∧ ω ∧ ... ∧ ω ≠ 0 if

dim (M) = 2n. Also ωn ≠ 0 is called a canonical volume form.

Example 2.2.1 Consider R2n with Cartesian coordinates (x1, ..., xn, y1, ..., yn). The

symplectic form ω0 =
n

∑
i=1
dxi ∧ dyi is the standard symplectic form on R2n.

Definition 2.2.2 A submanifold X of (M,ω) is called symplectic if ωx restricted to

TxX is symplectic for all x ∈ X and isotropic if ωx restricted to TxX is 0 for all

x ∈ X . An isotropic submanifold of (M,ω) which has half dimension of M is said to

be Lagrangian.

Definition 2.2.3 A symplectic vector space is a finite dimensional real vector space

V with a nondegenerate, skew symmetric bilinear form ω ∶ V × V Ð→ R such that

1) ω(v, u) = −ω(u, v)
2) ω(v + cu, t) = ω(v, t) + cω(u, t),∀c ∈ R, v, u, t ∈ V
3) ω(v, u) = 0,∀u ∈ V Ô⇒ v = 0

Theorem 2.2.4 Let (V,ω) be a symplectic vector space of dimension 2n. Then there

exists a basis {e1, f1, e2, f2, ..., en, fn} such that

ω(ei, ej) = 0 = ω(fi, fj) , ω(ei, fj) = δij .

Definition 2.2.5 A symplectomorphism is a diffeomorphism ψ ∶ (M,ω) → (M ′

, ω
′)

between symplectic manifolds (M,ω) and (M ′

, ω
′) with ψ∗ω′ = ω.
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Definition 2.2.6 A complex structure on a (real) vector space V is an automorphism

J ∶ V Ð→ V such that J2 = −Id.

In fact, a complex structure on V enables us to "multiply
√
−1" on V and thus convert

V into a complex vector space.

Definition 2.2.7 An almost complex structure J on a manifold M is an assignment

of complex structures Jp on the tangent spaces TpM which depends smoothly on p.

The pair (M,J) is called an almost complex manifold.

In other words, an almost complex structure on M is a (1,1) tensor field J ∶ TM →
TM so that J2 = −Id.

Remark As in the symplectic case, an almost complex manifold must be 2n dimen-

sional and orientable. On the other hand, there exists even dimensional orientable

manifolds which admit no almost complex structure.

Let (M,ω) be a symplectic manifold and J an almost complex structure on M . Then

at each tangent space TpM we have linear symplectic structure ωp and linear complex

structure Jp.

Definition 2.2.8 A symplectic structure ωp is compatible with an almost complex

structure Jp ∶ TpM → TpM if

1) ωp(u, v) = ωp(Ju, Jv) for all u, v ∈ TpM .

That is, J preserves ω.

2) ωp(u, Jpu) > 0 for all nonzero u ∈ TpM . This means, ωp is positive on the complex

lines. This condition is called the taming condition.

Or equivalently,

gp(u, v) ∶= ωp(u, Jpv)

is an inner product on TpM .

Definition 2.2.9 An almost complex structure J on M is compatible with a symplec-

tic structure ω on M if at each p, Jp is compatible with ωp.

Equivalently, J is compatible with ω if and only if
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gp ∶ TpM × TpM → R, gp(u, v) ∶= ωp(u, Jpv)

defines a Riemannian structure on M .

Theorem 2.2.10 Let (M,ω) be a symplectic manifold, and J0, J1 two almost com-

plex structures compatible with ω. Then there is a smooth family Jt, 0 ≤ t ≤ 1, of

compatible almost complex structures joining J0 to J1.

The space of compatible complex structures on (V,ω) is denoted by J(V,ω).

Corollary 2.2.11 The set of all compatible almost complex structures on a symplectic

manifold is path connected.

Theorem 2.2.12 The space J(V,ω) is contractible, and hence non-empty.

The above theorem is due to Gromov [17] (for a proof see also [13] or [21]) and pro-

vides a very useful connection between symplectic and (almost) complex geometry.

Definition 2.2.13 Let (M,ω) be a symplectic manifold and f ∶ M → R a smooth

function. f is called a Hamiltonian on M . A vector field X on (M,ω) is said to be

symplectic if LXω = 0. That is, the flow of X preserves ω. Observe that by Cartan’s

formula, X is symplectic if and only if iXω is closed where i denotes interior product.

A vector field X on (M,ω) is called Hamiltonian if iXω is exact.

2.3 Liouville, Weinstein and Stein Manifolds

Now we recall special families of symplectic manifolds in which we are interested.

More details about definitions and facts given below can be found in [4] and [21].

Definition 2.3.1 Let (X,ω) be a compact, symplectic 2n-manifold such that ∂X =
M− ⊔ M+. ∂+X = M+ is said to be convex boundary if there exists a Liouville
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vector field Z for ω defined near M+ such that LZω = ω and Z is pointing outwards

along M+ . Similarly, ∂−X = M− is the concave boundary if Z is defined near

M− and pointing inwards along M−. In such a case, α± = (iZω)∣M±
is a contact

form on M±, and (X,ω) is called a symplectic cobordism from (M−,Ker(α−)) to

(M+,Ker(α+)).

Definition 2.3.2 A cobordism X between a manifold M and the empty set is called

a filling. A symplectic cobordism from the empty set to a contact manifold (M,ξ) is

called a strong symplectic filling (or a convex filling). On the other hand, a symplec-

tic cobordism from a contact manifold (M,ξ) to the empty set is called a concave

filling of (M,ξ). Also a symplectic manifold (X,ω) is said to be a weak symplectic

filling of a contact manifold (M,ξ) if

(i) ∂X =M and the boundary orientation on ∂X and the orientation on M agree,

and

(ii) ω ∣ξ is nondegenerate, i.e., ω∣ξ > 0.

In this case, a contact manifold (M,ξ) is called a weakly symplectically fillable.

Theorem 2.3.3 ([8]) Any weakly symplectically fillable contact 3-manifold is tight.

Definition 2.3.4 A Liouville cobordism is a symplectic cobordism (X,ω) from ∂−X =
M− to ∂+X = M+ with a Liouville structure. A Liouville structure means that there

is a 1-form α on X such that ω = dα and the ω-dual vector field Z of α is a Liouville

vector field for ω transversely pointing inward (resp. outward) along the boundary

component ∂−X (resp. ∂+X). A Liouville cobordism with ∂−X = ∅ is called a Liou-

ville domain.

When X is an open manifold, if we assume that the flow of Z exists for all times and

there exists an exhaustion X = ⋃∞
k=1X

k by compact domains Xk ⊂ X such that each

(Xk, α∣Xk) is a Liouville domain with convex boundary (∂Xk, α∣∂Xk) for all k ≥ 1,

then (X,α) is called a Liouville manifold. Since ω and Z uniquely determine α

(namely, α = ιZω), one can also use the notation (X,ω,Z) for Liouville cobordism-

s/domains/manifolds.

15



Definition 2.3.5 The core (or skeleton) of the Liouville domain/manifold (X,α) is

defined as follows: If Z−t ∶ V → V denotes the contracting flow of Z, then

Core(X,α) ∶=
∞
⋃
k=1
⋂
t>0
Z−t(Xk).

By putting more conditions on Liouville manifolds, one can consider the class of

Weinstein/Stein manifolds. For these manifolds the core contains all Morse theoritical

data as we will observe below. To define Weinstein and Stein manifolds, we need

some basic definitions:

Definition 2.3.6 (i) A vector field Z on a smooth manifold X is said to gradient-like

for a smooth function φ ∶X → R if Z ⋅ φ = LZφ > 0 away from the critical point of φ.

(ii) A real-valued function is said to be exhausting if it is proper and bounded from

below.

(iii) An exhausting function φ ∶ X → R on a symplectic manifold (X,ω) is said to be

ω-convex if there exists a complete Liouville vector field Z which is gradient-like for

φ.

(iv) Suppose that (X,J) is an almost complex manifold. Then a smooth map φ ∶X →
R is said to be J-convex if ωφ ∶= −d(dφ ○ J) is nondegenerate (i.e., ωφ(v, Jv) > 0 for

all v ≠ 0), and so symplectic.

Definition 2.3.7 A Weinstein manifold (X,ω,Z,φ) is a symplectic manifold (X,ω)
which admits a ω-convex Morse function φ ∶ X → R whose complete gradient-like

Liouville vector field is Z. The triple (ω,Z,φ) is called a Weinstein structure on

X . A Weinstein cobordism (X,ω,Z,φ) is a Liouville cobordism (X,ω,Z) whose

Liouville vector field Z is gradient-like for a Morse function φ ∶ X → R which is

constant on the boundary ∂X . A Weinstein cobordism with ∂−X = ∅ is called a

Weinstein domain.

Any Weinstein manifold (X,ω,Z,φ) can be exhausted by Weinstein domains

Xk = {φ−1(−∞, dk]} ⊂X

where {dk} is an increasing sequence of regular values of φ, and therefore, any We-

instein manifold is a Liouville manifold. In particular, any Weinstein domain is a
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Liouville domain. Also note that any Weinstein domain (X,ω,Z,φ) has the convex

boundary (∂X,Ker((ιZω)∣∂X)).

The following topological characterization of Weinstein domains will be important

for us.

Theorem 2.3.8 ([28], see also Lemma 11.13 in [4]) Any Weinstein domain of dimen-

sion 2n admits a handle decomposition whose handles have indices at most n.

Now we give a definition of Stein manifolds. Originally they are defined as the class

of manifolds which can be holomorphically embedded into some complex space CN

for N large enough, and hence they are complex manifolds. In terms of the structure

of the present paper, they can be defined as follows:

Definition 2.3.9 A Stein manifold is a triple (X,J,φ) where J is an almost complex

structure on X and φ ∶ X → R is an exhausting J-convex Morse function which is

also ωφ-convex. A Stein cobordism (X,J,φ) is a Weinstein cobordism (X,ωφ, Z, φ).

A Stein cobordism with ∂−X = ∅ is called a Stein domain.

It is not hard to observe that there is an underlying a Weinstein structure for any given

Stein structure. Indeed, it has been shown that the converse is also true:

Theorem 2.3.10 ([4]) Any Weinstein structure on a manifold X can be deformed to

another one which is the underlying Weinstein structure of some Stein structure on

X .

Definition 2.3.11 A contact manifold (M,ξ) is called Stein fillable (or holomor-

phically fillable if there is a Stein domain (X,J,φ) such that ∂X = M and ξ =
Ker(−(dφ ○ J)∣M).

It clearly follows from Theorem 2.3.3 that

Theorem 2.3.12 Any Stein fillable contact 3-manifold is tight.
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2.4 Open Book Decompositions

Open book decompositions are topological structures and they have a strong relation-

ship with contact structures. More details about definitions and facts given below can

be found in [29] and [15]

Definition 2.4.1 An (embedded or non-abstract) open book (decomposition) of a

closed (2n+1)-manifoldM is determined by a pair (B,f) whereB is a codimension

2 submanifold with trivial normal bundle and f ∶ M ∖ B → S1 is a fiber bundle

projection such that the normal bundle has a trivialization B ×D2, where the angle

coordinate on the disk agrees with the fibration map f . The (2n − 1)-manifold B is

called the binding and for any t0 ∈ S1, the 2n-manifold X = f−1(t0) (a fiber of f ) is

called a page of the open book.

An alternative definition of an open book decomposition can be given as follows:

Definition 2.4.2 An open book (B,f) determines an abstract open book (X̄, h)
where X̄ denotes the closure of a page X in M , and h ∶ X̄ → X̄ is the self-

diffeomorphism (which is identity near the binding B = ∂X̄) defined by the time-one

map of the flow lines along the S1-direction. The map h is called the monodromy of

the open book decomposition.

In fact, the two notions of open book decomposition are closely related. The differ-

ence is that when discussing open books (non-abstract), we can discuss the binding

and pages up to isotopy in M , whereas when discussing abstract open books we can

only discuss them up to diffeomorphism.

Example 2.4.1 The 2-dimensional sphere S2 has an open book decomposition with

page a closed interval and trivial monodromy up to isotopy (see Figure 2.4). Further-

more, the open book decomposition of S2 is unique up to isotopy.

Example 2.4.2 The 3-dimensional sphere S3 has an open book decomposition with

page a disc and trivial monodromy. Think S3 as the one point compactification of R3

18



∑
(page of the open book)

B (binding of the open book)

B (binding of the open book)

Figure 2.4: The open book decomposition of the 2-sphere.

and extend the binding and pages in the following figure along the z-axis. To be more

precise, choose polar coordinates (r, θ) on the xy-plane and define

B ∶= {x = y = 0} ∪ {∞}, π ∶ S3 ∖B → S1

by sending (r, θ, z) to θ, where we identify S3 = R3 ∪ {∞}.

An abstract open book can be defined by mapping torus as follows (see Figure 2.5):

Let ∑ be a compact (n − 1) manifold with boundary ∂∑ and φ ∶ ∑ → ∑ a self

diffeomorphism of∑ such that φ ∣N=identity on N for some neighborhood N of ∂∑.

The mapping torus of φ is denoted by ∑φ and defined by

∑φ = ∑×[0,1]/ ∼

where ∼ is the relation (x,1) ∼ (φ(x),0) for all x ∈ ∑. It is obvious that

∂(∑φ) = (∂∑) × [0,1]/(x,1) ∼ (φ(x),0) = (∂∑) × S1

Take (x, θ) ∈ (∂∑) × S1. Set

M(∑,φ) = ∑φ ∪(∂∑×D2)/ ∼

19



θ

π

B

Σ = π−1(θ)

S1

Figure 2.5: An open book decomposition.

We say that (∑, φ) is an open book decomposition of a closed n-manifold M if M

is diffeomorphic to M(∑,φ).

Definition 2.4.3 Two abstract open book decompositions (∑1, φ1) and (∑2, φ2) are

called equivalent if there is a diffeomorphism h ∶ ∑1 → ∑2 such that h ○ φ2 = φ1 ○ h.

The following definition is given by Giroux:

Definition 2.4.4 ([14]) A contact structure ξ on a closed (2n+1)-manifoldM is said

to be supported by (or carried by, or compatible with) an open book (B,f) on M if

there exists a contact form α for ξ such that

(i) (B,Ker(α∣TB)) is a contact (2n − 1)-manifold,
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(ii) for any t ∈ S1, the page (X = f−1(t), dα∣TX) is a symplectic 2n-manifold, and

(iii) if X̄ denotes the closure of a page X in M , then the orientation on B = ∂X̄
induced by its contact form α∣TB coincides with its orientation as the convex

boundary of (X̄, dα∣TX).

Remark If an open book has Weinstein pages, then each page has its core as any

Weinstein manifold is Liouville. The core is not a manifold. In fact, it is a CW-

complex, and it carries a topological information of the page and the open book.

Furthermore, its dimension is half of the dimension of the page (Theorem 2.3.8).

Hence, for our case (i.e., when a page is 4-dimensional), the dimension of the core is

2. We will make use of the following facts:

Proposition 2.4.5 ([14]) Two contact structures supported by the same open book

are isotopic.

Theorem 2.4.6 ([14]) Every contact structure on a closed manifold is compatible

with some open book decomposition with Weinstein (and so Stein) pages.

Theorem 2.4.7 Every oriented contact structure on a closed oriented manifoldM2n+1

is compatible with some open book decomposition (X,φ). Moreover, X may be as-

sumed to be a Weinstein manifold and φ a symplectomorphism.

Remark From this result, one concludes that there is always open book whose pages

are Stein because we know that Weinstein manifolds are Stein by Eliashberg (see [4]).

We now explain how the page and the monodromy of an open book changes under a

certain process called stabilization.

Definition 2.4.8 ([14]) Let Dn ⊂ ∑2n be an n-dimensional disc embedded into the

2n-dimensional page of an open book (∑, φ) of an odd dimensional manifoldM such

that Dn meets ∂∑ transversely and exactly in its boundary ∂Dn and such that the

normal bundle of ∂Dn in ∂∑ is trivial. Attach an n-handleH to∑ along ∂Dn in such

a way that the normal bundle of the sphere Sn =Dn∪core(H) is isomorphic to T ∗Sn.
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Then the open book (∑∪H,φ ○ τ) is called a positive stabilization of (∑, φ), where

τ denotes a right-handed Dehn twist along the sphere Sn. Similarly, we can also

define negative stabilization using left-handed Dehn twists instead of right-handed

Dehn twists. That is, (∑∪H,φ ○ τ−1) is called negative stabilization where τ−1 is a

left-handed Dehn twist along the sphere Sn.

Remark Observe that the original open book (∑, φ) and the stabilized open book

(∑∪H,φ ○ τ) give rise (up to diffeomorphism) to the same manifold M . Indeed, the

sphere ∂Dn ⊂ ∂∑ = B ⊂ (∑, φ) is a sphere with trivial normal bundle in M , since

the binding B has trivial normal bundle by definition. Attaching handles to each page

is equivalent to a surgery along ∂Dn. The manifold M
′ obtained by that surgery

carries the open book structure (∑∪H,φ). Performing the Dehn twist τ along Sn is

equivalent to a surgery cancelling the one corresponding to the handle attachment.

Contact structures are geometric objects while open book decompositions are topo-

logical objects. Giroux found a relation between them as stated below:

Theorem 2.4.9 ([14]) Let M be a closed (2n + 1)-manifold. Then there is one to

one correspondence between co-oriented contact structures on M up to isotopy and

open book decompositions of M with Weinstein (and so Stein) pages up to positive

stabilization.

This correspondence between oriented contact structures and open book decomposi-

tions is called Giroux Correspondence. We note that if an open book Weinstein (or

Stein) pages, then all of its stabilizations have also Weinstein (or Stein) pages.

Theorem 2.4.10 ([14]) Two open books with Weinstein (or Stein) pages supporting

the same contact manifold (M,ξ) are related by positive stabilizations, that is, they

have a common positive stabilization.

2.5 Legendrian Submanifolds and Thurston-Bennequin Invariant

Legendrain submanifolds are the most interesting ones in contact manifolds. Al-

though they are defined in any odd dimensions, we restrict our attention mostly to
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dimension five and three. The non-integrability condition of contact 5-manifold en-

sures that there is no submanifold of dimension greater than or equal to 3 which is

tangent to the contact distribution. However, we can find 2-dimensional submanifolds

whose tangent spaces lie inside the contact field. Legendrian submanifolds are anal-

ogous to Lagrangian submanifolds of symplectic manifolds. The Legendrian knots

inside a contact 3-manifold are the simplest example of Legendrian submanifolds. In

fact, locally a Legendrian knot is an embedding of an arc (called a Legendrian arc)

into R3, which is everywhere tangent to the standard contact structure on R3.

Definition 2.5.1 Let (M5, ξ) be a contact manifold. A submanifold L of (M5, ξ) is

called an isotropic submanifold if TpL ⊂ ξp for all points p ∈ L. An isotropic sub-

manifold of dimension two (an isotropic surface) is called a Legendrian submanifold

(Legendrian surface). (More generally, Legendrian submanifold is an embedding

of a n-dimensional manifold into (2n + 1)-dimensional that is always tangent to the

contact hyperplanes.) A Legendrian embedding is an embedding φ ∶ Σ2 ↪ (M5, ξ)
of a smooth manifold Σ2 such that the image L2 = φ(Σ2) is an embedded Legendrian

surface. A smooth 1-parameter family of embedded Legendrian surfaces is called

a Legendrian isotopy. Two Legendrian submanifolds L, L′ are called Legendrian

isotopic if there is a smooth 1-parameter family Lt, t ∈ [0,1], such that L0 = L

and L1 = L′. Equivalently, a Legendrian isotopy is a smooth 1-parameter family

φt ∶ Σ2 ↪ (M5, ξ) of Legendrian embeddings.

Indeed all the terms in the above definitions can be restated for Legendrian knots

as well. In particular, two Legendrian knots are equivalent if they are isotopic via

a family of Legendrian knots. Inequivalent nullhomologous Legendrian knots can

be distinguished by their Thurston-Bennequin number and rotation number, which

are Legendrian isotopy invariants. The following invariant was originally defined by

Bennequin [3] and independently, Thurston when n = 1 and generalized to higher

dimensions by Tabachnikov [26].

Given an orientable, connected, nullhomologous, Legendrian submanifold Ln in an

oriented contact (2n+1)-manifold (M,ξ), we present an invariant tb(L) (see, for in-

stance, [24]), called the Thurston-Bennequin number (invariant) of L. It is defined
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with the help of the linking number as follows:

Pick an orientation on L. Let X be a Reeb vector field for ξ and push L slightly off

of itself along X to get another oriented submanifold L′ ( Legendrian copy of L )

disjoint from L. The Thurston-Bennequin number of L is the linking number of L

and L′, that is, we have

tb(L) = lk(L,L′)

where lk denotes the linking number.

For the linking number, take any (n + 1)-chain C in M such that ∂C = L. Then

lk(L,L′) equals the algebraic intersection number of C with L′. Intuitively, the

Thurston-Bennequin invariant (number) of L measures the twisting of ξ around L.

We note that tb(L) is a Legendrian isotopy invariant in any odd dimension.

Remark (i) Note that tb(L) is independent of the choice of orientation on L since

changing it changes also the orientation of L′.

(ii) For any orientable, connected, nullhomologous, Legendrian submanifold L in

a contact manifold, we have tb(L) ∈ Z.

Example 2.5.1 Consider Legendrian knot L in (R3, ξstd) where ξstd = ker(dz+xdy).

Take its front projection, i.e., its projection to the yz-plane. The front projection has

no vertical tangencies. Because if the projection had vertical tangency, then
−dz
dy

=
x would be equal to ±∞. L can be approximated by another Legendrian knot for

which the projection has only transverse double points and cusp singularities.
∂

∂z
is

a transverse vector field to the contact plane ξstd in R3. Hence, we can take a parallel

copy L′ of L by slightly pushing it in the positive z-direction. Thurston-Bennequin

invariant, tb(L) is defined as the twisting of L′, the framing of L given by the contact

planes relative to L′, relative to the framing given by the Seifert surface of L.

Let L be a Legendrian nullhomologous knot. Its Thurston-Bennequin number can be

computed as follows: We have

tb(L) = lk(L′, L′′)

24



where L′ and L′′ are pushoffs of L with respect to Seifert framing and contact fram-

ing, respectively. Contact framing is obtained by pushing L in a direction transverse

to ξ, and Seifert framing is obtained by pushing L along a Seifert surface of L. More-

over, if we fix an orientation on L, i.e., if we get an oriented Legendrian knot L, then

tb(L) can be computed as:

tb(L) = w(L) − 1

2
c(L)

where w(L) is the writhe of L; i.e., the sum of the signs of the crossings with respect

to the following Figure 2.6, and c(L) is the number of cusps in the front projection of

L. The cusp is the singular point in the front diagram of L. Here, w(L) is independent

of the choice of the orientation of L while it depends on the projection.

+1 -1

Figure 2.6: Positive and negative crossings.

Definition 2.5.2 For an oriented Legendrian knotK in (R3, ξ0 =Ker(dz+xdy)) (or

equivalently in (S3, ξst)), its rotation number rot(K) is defined as

rot(K) = 1

2
(D −U)

whereD (resp. U ) denotes the number of down (resp. up) cusps in the front projection

of K.

Example 2.5.2 In Figure 2.7 , there are front diagrams of a Legendrian representa-

tives of unknot and trefoil knot. The Thurston-Bennequin number and the rotation

number of unknot is −1 and 0, respectively. Similarly, The Thurston-Bennequin num-

ber and the rotation number of trefoil knot is 1 and 0, respectively.
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Figure 2.7: A Legendrian unknot (on the left) and a trefoil knot (on the right).

Remark Thurston-Bennequin number and rotation number are known as the classi-

cal invariants of Legendrian knots. Note that inequivalent Legendrian knots can be

distinguished by these invariants.

Definition 2.5.3 Let L be an oriented Legendrian knot in the standard contact struc-

ture ξstd on R3. When we modify the front projection of L by adding a down cusp, we

get the positive stabilization of a Legendrian knot L, which is denoted by S+(L). In

a similar way, when we modify the front projection of L by adding a up cusp, we get

the negative stabilization of a Legendrian knot L, which is denoted by S−(L).

Figure 2.8: The positive and negative stabilizations of L.

Remark For a fixed topological knot type, different Legendrian representatives might

have different Thurston Bennequin and rotation numbers. By adding more cusps, one

can obtain new Legendrian representatives realizing any pregiven integer as a rota-

tion number. However, although Thurston Bennequin number can be made arbitrarly

small, it is not possible to increase forever. That is, stabilizing a Legendrian knot L

changes the classical invariants as tb(S∓(L)) = tb(L)−1 and rot(S∓(L)) = rot(L)∓1.

There are some relations between the Thurston–Bennequin and the rotation numbers

of Legendrian realisations of a given knot type K. One of them is the Bennequin
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inequality (due to Bennequin and Eliashberg) which holds in any tight contact mani-

fold and for any nullhomologous Legendrian knot. This inequality provides an upper

bound for the Thurston Bennequin number for nullhomologous Legendrian knots in

tight contact 3-manifolds:

Theorem 2.5.4 (Bennequin inequality) Let K be a Legendrian knot in a tight 3-

manifold (M,ξ) which bounds a surface Σ ⊂M . Then

tb(K)+ ∣ rot(K) ∣≤ −χ(Σ)

where χ(Σ) denotes the Euler characteristic of Σ.

2.6 Handle Decompositions of Stein Surfaces

Let’s recall language of handlebodies. A copy of Dk×Dn−k that is attached to the

boundary of an n-manifold along its attaching region ∂Dk ×Dn−k is called a handle of

index k or k-handle. We begin with a 0-handle, in fact empty set, and attach handles

to built a (smooth or topological) handlebody. For the smooth case, we glue each

handle by a smooth embedding of its attaching region, after smoothening the resulting

corners. These corners can be along ∂Dk×Dn−k. One can find the details in [16].

Conversely, starting from a real-valued Morse function on a manifold X , one can

obtain its handlebody description which is also referred to as a handle decomposition

ofX . In fact, an i-handle is the smooth analogue of an i-cell. Note that every manifold

(with or without boundary) is a handlebody. That is, it has an expression as a union of

handles. A handlebody decomposition introduce the manifold up to homeomorphism.

Furthermore, in dimension 4, they describe the smooth structure if the attaching maps

are smooth. Following results will be used:

The phrase “a Stein surface” will refer to a Stein domain of real dimension 4. Pictures

of handlebody diagrams of Stein surfaces (Stein diagrams for short) were studied

extensively by Gompf [15]. He gave description of 1-handles in the setting of Stein

surfaces and a standard form for Legendrian links in #nS1 ×S2(= Boundary of the 0-

handle ∪ n 1-handles). From this description, one can define and compute Thurston-

Bennequin invariant.
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Definition 2.6.1 A Legendrian link diagram in standard form, like in the Figure 2.9,

is given by the following way:

● n 1-handles, showed by horizontal ball pairs

● A collection of n horizontal distinguished segments coresponding to each ball pair

● A front projection of a generic Legendrian tangle (i.e., disjoint union of Legendrian

knots and arcs) with endpoints touching the segments.

Figure 2.9: A Legendrian link diagram.

Similar to how it is defined for Legendrian knots in the standard contact three-space,

the Thurston-Bennequin number of a Legendrian knot K in a boundary of a Stein

surface can be defined as

tb(K) = w(K) − 1

2
c(K)

with the help of a Legendrian tangle (see [15]). The following result will be used

later:

Theorem 2.6.2 ([7], [15]) An oriented, compact, connected 4-manifold X is a Stein

surface if and only if it has a handlebody diagram which formed by a Legendrian link

diagram such that 2-handles attached to link components Li’s with framing tb(Li)−1.
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A band in (R3, ξstd) is called Legendrian band if its boundary consists of any Leg-

endrian curve and push-off of it in the z-direction. For any two oriented Legendrian

knot L1 and L2, the connected sum of the knots by a Legendrian band is called Leg-

endrian connected sum. Here any band can be used. However, its intersection with

the rest of the link must be empty. When the orientation is consistent, this Legendrian

sum is called a Legendrian handle addition. Otherwise we get a Legendrian handle

substraction. In the [6], there are details about this.

Theorem 2.6.3 ([7, 16]) An oriented 4-manifold admits a Stein structure if and only

if it is diffeomorphic to the interior of a handlebody whose handles all have index

≤ 2, and for which each 2-handle is attached along a Legendrian knot with framing

obtained from the contact framing by adding one left twist.
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CHAPTER 3

RELATIVE PAGE CROSSING NUMBER

In this chapter, we give a definition of a Legendrian isotopy invariant step by step and

also we give a proof of Spider Lemma.

We study Legendrian embeddings of a closed orientable Legendrian submanifold in a

closed contact 5-manifold whose contact structure is supported by an open book with

Weinstein (and so Stein) pages.

3.1 Spider Lemma

Let (M5, ξ = Ker(α)) be a closed, contact 5-manifold where α is a (global) contact

form with the Reeb vector field R that is compatible with an open book (B,f) on

M . ξ is a positive contact structure, in other words, α ∧ (dα)2 > 0 with respect

to a given orientation on M . Since (M,ξ) is a contact manifold, ξ determines a

canonical orientation on M . So M is oriented 5-manifold. B is the binding of an

associated abstract open book OB(X,h) where X is the page, B = ∂X and h is the

monodromy. Thus, (B3, ξ∣B =Ker(α∣B)) is the convex boundary of each symplectic

page (X4, dα∣B), and so it is a 3-dimensional tight contact (sub)manifold. (α∣B is a

contact form on B.) Let L be a closed orientable Legendrian surface of (M,ξ), and

so there is a Legendrian embedding φ ∶ Σ ↪ (M,ξ) such that φ(Σ) = L where Σ is a

2-dimensional surface which determines the topological type of L. For the invariants

that we will define, one first need to know that L and B intersect transversely, and the

pages are Weinstein. To this end, we define the following class of supporting open

books:
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Definition 3.1.1 Let L be a closed, oriented, Legendrian submanifold of a closed

contact 5-manifold (M,ξ). An open book (B,f) on M supporting ξ is called an ad-

missable open book for L if it has simply-connected Weinstein pages and L intersects

B transversely.

Let us start with showing that one can always find an open book whose binding in-

tersects a given Legendrian surface transversely. For similar arguments, we refer the

reader to [2].

Lemma 3.1.2 (Spider Lemma) Let (M,ξ) be a closed contact 5-manifold and (B,f)
an open book on M supporting ξ with Weinstein pages. Also let L be a closed ori-

entable Legendrian surface of M . Then there exists an isotopy (Bt, ft), t ∈ [0,1] of

open books all of which supporting ξ such that (B0, f0) = (B,f), (B1, f1) = (B′, f ′),

and L intersects B′ transversely.

Proof If L and B transversely intersect, then there is nothing to prove. If they don’t

intersect transversely, then consider a neighborhood of B in M which can be iden-

tified with B ×D2. Nearby generic B′ ⊂ B ×D2 (which is a copy of B) intersects

L transversely. Then we can isotope B to B′ (and accordingly the pages of the open

book (B,f)) using the flow of an appropriate contact vector field compactly sup-

ported in B ×D2. (See Figure 3.1.) So, we obtain a family of open books {(Bt, ft)}
for M such that (B0, f0) = (B,f), (B1, f1) = (B′, f ′). Finally, we note that at any

time t ∈ [0,1] compatibility conditions in Definition 2.4.4 are satisfied by the open

book (Bt, ft) since the isotopy is based on a contact vector field. ◻

3.2 Definition of Relative Maximal Page Crossing Number

Assuming Spider Lemma have been already applied, we may start with a supporting

open book (B,f) such that L ⋔ B for a given closed, compact, orientable Legendrian

surface L in a closed contact 5-manifold M . Since they intersect transversely, we

have dim(L ⋔ B) = 0, and so they intersect along a finite number of points. Later

we will be interested in minimal geometric intersection. Take any orientation on the

Legendrian surface L. If the orientations of L and B are consistent at a transverse
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B′

B

B ×D2

B′

B

N ′
B

isotopy of
open books

(neighborhood of B)

pages pages
new

Figure 3.1: Isotoping a given open book so that the new binding B′ intersects L

transversally.

intersection point, then mark the point with plus (+), otherwise mark the point with

minus (−). Continue this procedure until all the intersection points have labelled.

Remark ● Since we need an open book structure, M must be closed.

● Since L and B are compact, their intersection consists of finitely many points. Note

B is compact because of the open book structure.

● Homology intersection of L and B is 0. This is because B is the boundary of X .

So B has zero homology class.

● By Eliashberg, stein fillability implies tightness. Hence the contact structure on B

is tight.

From the above remark, the intersection of L andB consists of even number of points.

The number of plus points is equal to the number of minus points because homology

intersection is 0.

Consider the pages X0 = f−1(θ),X1 = f−1(θ + π) for θ ∈ S1. By genericity, we

may assume L transversally intersects X0,X1 and their common boundary B. Let

D(X) = X0 ∪∂ X1 be the double of the page X , union of the pages X0 and X1 such

that X0 ≅ X ≅ X1. That is, X0 and X1 are dual pages of each other. Clearly, D(X)
is closed. (X0, dα0) and (X1, dα1) are Stein domains. (Recall from the explanation

in the background that there exists always an open book whose pages are Stein.)

Consider the handle decompositions as in Figure 3.2.
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0− hdle

4− hdle

duals of 2-hdles of X0

duals of 1-hdles of X0

dual of the 0-hdle of X0

3− hdles

2− hdles

2− hdles

1− hdles

B

X0

X1

D(X) = X0 ∪∂ X1

common boundary

a)

Stein domain (X0, dα0)

0− hdle

2− hdles

1− hdles

B

Stein domain (X1, dα1)

0− hdle

2− hdles

1− hdles

B
b)

(upside-down D(X) \X0)

Figure 3.2: a) Handle decomposition of the double D(X), union of the pages X0 and

X1. b) The Stein domains (X0, dα0) and (X1, dα1).

Note that dim(L) = 2 and dim(X) = 4, so dim(L ⋔ D(X)) = 1. That is, L and

D(X) intersect at 1-dimensional curves generically. Let’s first assume, for simplicity,

that L ⋔ X consists of a single curve K. Also let L ∩X0 = k0, L ∩X1 = k1. That is,

K = k0 ∪ k1. For k0, take orientation from plus point to the minus point. Similarly,

for k1, take orientation from minus point to the plus point. See Figure 3.3.

Sketch the Legendrian arcs for k0 and k1 in the Stein diagrams of X0 and X1, respec-

tively, and calculate Thurston-Bennequin numbers of these two arcs. Summing these

two numbers will give us an integer, denoted by t̃b(K). In other words, we define

t̃b(K) ∶= tb(k0) + tb(k1).

In the general case, the intersection of L and D(X) may consist of finite number of

curves, say K1, K2, ..., Kr. (Note that Ki’s are disjoint by transversality theorem.)

That is, Let us assume that

L ⋔D(X) =
r

⊔
i=1
Ki.

Again one can sketch the Legendrian arcs constructing the knot components of the

link of the intersection of L with the double D(X) in the Stein diagrams of X0 and

X1, and therefore, we obtain a diagram in Figure 3.4 describing the transverse inter-

section L ⋔D(X).
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+

−B

L

X0 (= Xθ)

X1 (= Xθ+π)

k0

k1

K

Figure 3.3: Embedded Legendrian surface L intersecting transversally the binding B

and a pair of pages X0 and X1. A typical knot component K = k0 ∪ k1 of the link of

intersection of L with the double D(X) =X0 ∪∂ X1.

For all knot components Ki = k0i ∪ k1i , we calculate t̃b(Ki) as above. Summing all

these together and taking the maximum of such sums by changing L in its Legendrian

isotopy class, one can define a number. First, we need some preliminary definitions:

Definition 3.2.1 Let L ↪ (M5, ξ) be a closed orientable Legendrian surface. Fix an

admissable open book (B,f) for L. Consider

[L] = {L′ ⊂ (M,ξ) ∣ L′ is Legendrian isotopic to L}

This class is called the Legendrian isotopy class of L. Fix a page X of the open book

(B,f), and L′ which is Legendrian isotopic to the L and trasversally intersecting the

double D(X). Then the page crossing number of L′ with respect to X is defined as

PX(L′) =
r

∑
i=1
t̃b(Ki).

Lastly, we say that the double D(X) essentially intersects L if we have

L′ ∩D(X) ≠ ∅, ∀L′ ∈ [L].
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Figure 3.4: Legendrian arcs (in red) constructing the knot components of the link of

L with the double D(X) =X0 ∪∂ X1.

We are ready to define our first invariant:

Definition 3.2.2 Let L ↪ (M5, ξ) be a closed orientable Legendrian surface. Fix

an admissable open book (B,f) for L and a page X of (B,f) such that D(X)
essentially intersects L. Then

MPX(L) ∶=Max{PX(L′) ∣ L′ ∈ [L] and L′ ⋔D(X)}
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is called the relative maximal page crossing number of L with respect to X .

Remark We immediately note that (relative maximal) page crossing number can be

defined for at least 5-dimensional contact manifolds: By definition of the binding, B

is (2n − 1)-dimensional when M is (2n + 1)-dimensional, and so Ln ∩B is (n − 2)-

dimensional. Hence, if M is 3-dimensional, then L ∩ B must be (−1)-dimensional.

And it is clear that this is impossible.

Well-definedness of MPX(L) will be discussed in Chapter 4. Until then, MPX(L)
will be assumed to be well-defined. The following facts indicate that the most prac-

ticle way of computing MPX(L) is working in the case of geometrically minimal

intersection.

Lemma 3.2.3 Let K = k0 ∪ k1 be a component of the link of intersection of L with

the double D(X) = X0 ∪∂ X1 constructed using the minimal geometric intersection

points of L andB. Suppose γ is an arc on the attaching sphere S of the 1-handle ofXi

connecting the boundary points ∂ki. Then the circle ki∪γ can not be a homotopically

trivial in Xi for each i = 0,1.

Proof Take i = 1 (the case i = 0 is similar). The statement of the lemma is equivalent

to say that ki ∪ γ can not bound a disc in X1. Suppose there exists such a disk D ⊂
Xi. Then using the flow of a suitable contact vector field (compactly supported in a

neighborhood of D in M which is indeed some Darboux ball D5), we can Legendrian

isotope L until the arc k1 disappears (i.e., the whole k1 is transformed into X0). This

means that the ±-intersection points corresponding to ∂k1 is canceling pair. Since

in the new Stein pictures, there would be a less number of intersection point, this

contradicts to the minimality. (See Figure 3.5.) ◻

Remark In Lemma 3.2.3, the path γ is chosen away from the points where other

knots and arcs meet with S. Also in Figure 3.5, for simplicity, k1 is drawn with a

single left cusp, but more number of cusps are also possible and threated in the same

way as long as the disk D exists. When we move k1, this cusp (and hence the pair of

37



Legendrian

tangle

Stein domain (X0, dα0) Stein domain (X1, dα1)
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tangle

Legendrian isotopy canceling a
pair of intersection

Legendrian

tangle

Stein domain (X0, dα0) Stein domain (X1, dα1)

+

−

Legendrian

tangle

+

−

k0

k1

k′0

D

S

S

γ

Figure 3.5: Realizing a Legendrian isotopy of L (cancelling a pair of intersection

points in L∩B) by isotoping L (through the disk D ⊂X1 enclosed by k1 and the path

γ on the attaching sphere S of the 1-handle of X1 joining the points "+" and "-") in

the Stein diagrams (X0, dα0) and (X1, dα1).

intersection points "+" and "-") will disappear. Note that after such a canceling a pair

of intersection, t̃b doesn’t change. That is,

tb(k0) + tb(k1) = tb(k′0) + tb(k′1) = tb(k′0)(or = tb(k′1) in the case i = 0).

Lemma 3.2.4 Let K = k0 ∪ k1 be a component of the link of intersection of L with

the double D(X) =X0 ∪∂ X1 constructed using (not necessarily minimal) geometric

intersection points of L and B. Suppose K is homotopically trivial in D(X). Then

t̃b(K) = tb(k0) + tb(k1) ≤ −1.
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Proof By assumption there exists a disk D ⊂ D(X) with K = ∂D. There are two

cases: Either k1 = ∅ or k1 ≠ ∅. If k1 = ∅ holds, then K = k0 is a Legendrian

unknot inside the Legendrian tangle in the Stein diagram of X0. Therefore, it can

be considered as a Legendrian unknot bounding the disk D inside the Stein fillable

(and so tight) boundary ∂X0. But then Theorem 2.5.4 implies that t̃b(K) ≤ −1. If

k1 ≠ ∅ holds, then this means that D = D0 ∪D1 where D0,D1 are disks in X0,X1,

respectively, which meet along an arc γ on the attaching spheres of the corresponding

1-handles of X0 and X1. Then applying Lemma 3.2.3, one can transform K to K ′

which lies in X0. Recall that t̃b(K) = t̃b(K ′), that is the number t̃b does not change

under the move described in the proof of Lemma 3.2.3 (Figure 3.5). Therefore, we

are again in the first case above, i.e., t̃b(K) = t̃b(K ′) ≤ −1. ◻

Lemma 3.2.5 Let k′0 ∪ k′1 be a component of the link of intersection of L with the

double D(X) = X0 ∪∂ X1 constructed using (not necessarily minimal) geometric

intersection points of L and B. If the knot k′0 ∪ k′1 is homotopically trivial in both L

and the double D(X), then it can be ignored while computing MPX(L). That is,

MPX(L) > PX(L).

Proof Suppose there exists such a pair of Legendrian arcs k′0 and k′1 in the Stein

diagrams ofX0 andX1 whose union is homotopically trivial in both L and the double

D(X). Therefore, there are disks Di ⊂ Xi such that the union D0 ∪ D1 ⊂ D(X)
(enclosed by k′0 ∪ k′1) is not punctured by the rest of L ∩ D(X) and the attaching

circles of the 2-handles of X0 and X1, and also there is a disk D ⊂ L bounded by

k′0 ∪ k′1 (Figure 3.6). Then one can get rid of the intersection arcs k′0, k
′
1 (and so the

corresponding intersection points p, q) by isotoping B (and the pages of the open

book) in a neighborhood of the 3-disk enclosed by the disk D ⊂ L and D0 ∪D1 in M

(which is some Darboux ball D5) using the flow of an appropriate contact vector field

compactly supported in N ≅ D5. (See Figure 3.7.)

By Spider Lemma (Lemma 3.1.2) and the genericity, one can think of these isotopy

results in a new open book (with the same monodromy) such that Xi transformed

to a new page X ′
i and B transformed to a new binding B′. Note that this contact

isotopy eliminates k′0, k′1. Now we rewind this isotopy to move all the points inside
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Figure 3.6: A (geometrically) cancelling pair of points (p and q) of intersection be-

tween L and the binding B.
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Figure 3.7: Isotoping the binding B and correspondingly all the pages of the open

book using the flow of a compactly supported contact vector field.
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the Darboux ball D5 back to the their original positions (at the initial time). While

this transform X ′
0,X

′
1 and B′ back to their original positions, the part of L in D5

will be pushed further, and we get a Legendrian isotopic copy L′ of L which does not

intersectB along k′0, k′1. Since the isotopy is compactly supported near k′0, k′1, the arcs

describing L′ in the Stein digrams of X0 and X1 coinsides with the ones describing

L outside the Darboux ball D5. Therefore, to picture L′ in these diagrams, we simply

erase the arcs k′0, k
′
1 from the diagrams, and hence ignore their contributions to t̃b.

That is, we have

t̃b(L′) = t̃b(L) − [tb(k′0) + tb(k′1)].

On the other hand, by Lemma 3.2.4, we have tb(k′0) + tb(k′1) < 0, and so, combining

this with the above equality we get

PX(L′) > PX(L).

Hence, PX(L) can not be maximum, and so it is strictyly less than MPX(L). ◻
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CHAPTER 4

PROOF OF THEOREM 1.0.1

In this chapter, we will show that the number MPX(L), which we define in Chapter

3, is preserved under Legendrian isotopies, and also explain why it is well-defined.

We give definitions of two types of Legendrian isotopies and deal with MPX(L) by

considering possible types of Legendrian isotopies with respect to a fixed page. First,

assuming the numberMPX(L) is well-defined, one can easily observe the following:

Lemma 4.0.1 The number MPX(L) is invariant under Legendrian isotopies of L.

Proof Consider any Legendrian isotopy Lt (t ∈ [0,1]) between L = L0 and L1. LetX

be a fixed page of an admissable open book (B,f) for L such that D(X) essentially

intersects L. Suppose that L′ ∈ [L] is a representative maximizing PX , that is,

MPX(L) = PX(L′).

Since L1 is Legendrian isotopic to L, we have [L1] = [L], that is, their Legendrian

isotopy classes are the same. Therefore, L′ is maximizing PX among all represen-

taives in [L1] as well, that is,

MPX(L1) = PX(L′).

Hence, MPX(L1) = PX(L′) =MPX(L) as required. ◻

In order to show that MPX(L) is well-defined, first of all, one needs to understand

how PX(L) changes under possible types of Legendrian isotopies of L. For a fixed

page X , there are two types of Legendrian isotopies of a given Legendrian surface L

which are called a regular isotopy and an irregular isotopy.
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Let L↪ (M5, ξ) be a closed orientable Legendrian surface. Take an admissable open

book (B,f) for L. Fix a page X of the open book (B,f) such that L is transversely

intersecting the double D(X). (By genericity, this is possible.) we define:

Definition 4.0.2 A regular isotopy of L with respect to D(X) is a Legendrian iso-

topy Lt (t ∈ [0,1]) of L = L0 such that Lt transversely intersects D(X) for all

t ∈ [0,1].

Under the assumptions introduced above, we have

Proposition 4.0.3 The number PX(L) is invariant under regular Legendrian iso-

topies of L with respect to D(X).

Proof Consider a regular Legendrian isotopy Lt (t ∈ [0,1]) of L = L0. By definition

Lt transversely intersects D(X) for all t ∈ [0,1]. We need to show that PX(L′) =
PX(L) where L′ = L1 is the Legendrian copy of L at time t = 1.

LetK = k0∪k1 be any knot component in L ⋔D(X). Since Lt transversely intersects

D(X) for all t ∈ [0,1], during the isotopy, K is transformed through knots Kt ∈ Lt ⋔
D(X) to a knot component K ′ = k′0 ∪ k′1 ∈ L′ ⋔ D(X) as depicted in Figure 4.1.

(Here we think K =K0, K ′ =K1.)

Observe that Kt, t ∈ [0,1] indeed defines a Legendrian isotopy from K to K ′ when

we consider their arcs to be embedded Legendrian arcs inside Stein diagrams of X0

and X1. (See Figure 4.2 for a sample picture.)

Therefore, since their union are isotopic via Legendrian moves, the arcs constructing

K and K ′ satisfies

tb(k0) + tb(k1) = tb(k′0) + tb(k′1),

and so, t̃b(K) = t̃b(K ′). This implies that PX(L) = PX(L′) because each summand

of PX(L) agrees with the corresponding summand of PX(L′) by the above discus-

sion.
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L′

k′0
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Figure 4.1: A regular Legendrian isotopy Lt taking L0 = L to another Legendrian

L1 = L′ which is still intersecting the double D(X) =X0 ∪∂ X1 transversally, but the

new points of intersection in L′ ∩B are possibly different than the older ones.

Observe that Kt, t ∈ [0,1] indeed defines a Legendrian isotopy from K to K ′ when

we consider their arcs to be embedded Legendrian arcs inside Stein diagrams of X0

and X1. (See Figure 4.2) for a sample picture.)

Therefore, since their union are isotopic via Legendrian moves, the arcs constructing

K and K ′ satisfies

tb(k0) + tb(k1) = tb(k′0) + tb(k′1),

and so, t̃b(K) = t̃b(K ′). This implies that PX(L) = PX(L′) because each summand

of PX(L) agrees with the corresponding summand of PX(L′) by the above discus-

sion. ◻
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Figure 4.2: Realizing a regular Legendrian isotopy Lt (t ∈ [0,1]) taking L0 = L to

another Legendrian L1 = L′ in the Stein diagrams of X0 and X1. The Legendrian arcs

(in red) describing L ∩D(X) are Legendrian isotopic to those (in blue) describing

L′ ∩D(X) through a Legendrian isotopy Kt = Lt ∩D(X), t ∈ [0,1].

Remark Observe that all the arguments in the proof of Proposition 4.0.3 work when-

ever we take a Legendrian representative L from the Legendrian isotopy class [L]
which transversely intersects the double D(X). In particular, if L (which we start

with at the beginning of the proof) is itself maximazing all such possible page cross-

ing numbers, i.e., if

MPX(L) = PX(L),

then the same will be also true for L′. As a result, we have MPX(L) = MPX(L′).

Hence, this reproves Lemma 4.0.1 in the case of regular Legendrian isotopies with

respect to D(X).
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Once again let L ↪ (M5, ξ) be a closed orientable Legendrian surface. Take an

admissable open book (B,f) for L. Fix a page X of the open book (B,f) such that

L is transversely intersecting the double D(X). We define:

Definition 4.0.4 An irregular isotopy of L with respect to D(X) is a Legendrian

isotopy Lt (t ∈ [0,1]) of L = L0 such that L′ = L1 still transversely intersects D(X)
but the new intersection set L′ ∩D(X) is obtained from L∩D(X) via a sequence of

births or deaths of intersection knots or due to degenerations of knots in L ∩D(X).

Proposition 4.0.5 During irregular Legendrian isotopies of L with respect toD(X),

there can not be any births or deaths of nontrivial intersection knots with D(X).

Moreover, under such isotopies, the number PX(L) makes only finite jumps due to

births or deaths of unknots and degenerations of knots in L ∩D(X).

Proof Consider an irregular Legendrian isotopy Lt (t ∈ [0,1]) of L = L0. By def-

inition, Lt does not transversely intersect D(X) for all t ∈ [0,1]. But generically

almost all intersection will be transverse. After a small perturbation of the isotopy Lt

(if necessary) but still calling the resulting isotopy Lt, one may assume that there are

numbers 0 < t0 < t1 < ⋯ < tr < 1 so that except finitely many Lti , (i = 0,1, ..., r),

any other Lt intersects D(X) transversely. Therefore, for the second statement, one

needs to show that there exists N ∈ N such that

∣PX(L′) −PX(L)∣ < N

where L′ = L1 is the Legendrian copy of L at time t = 1.

Let us consider the case when we pass from time t = 0 to t = t0 + ε for ε < t1 − t0. (the

discussion for passing t = ti − ε to t = ti + ε is similar.) First of all, comparing to those

in L∩D(X) if there are new unknots (births) in Lt0+ε∩D(X) (they necesarrily bound

disks in D(X) by admissibility assumption), then these births arise as an unknot K

which may (or may not) bound a disk D′ in Lt0+ε, but they must bound a disk D

in D(X) as depicted in Figure 4.3. The existence of the disk D and Lemma 3.2.4

implies that t̃b of all these unknots are negative, and so whenever such an unknot

arises, this will decrease the number PX . Similarly, comparing to those in L ∩D(X)
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D(X)

Lt0+ǫ

D

D′

D(X)

L0 = L

K

Figure 4.3: A birth of an unknot K during an irregular Legendrian isotopy Lt (t ∈
[0,1]). K bounds a disk D′ in Lt0+ε and a disk D in D(X).

if there are missing unknots (deaths) in Lt0+ε ∩D(X) (which were bounding disks in

D(X)), then these will increase the number PX .

Note that these births can not be non-trivial knots in Lt0+ε and none of the new knots

can link to a knot in Lt0+ε ∩D(X) which was also in L ∩D(X) because otherwise

there would be a time s ∈ (0, t0 + ε) such that Ls is not an embedding which is a

contradiction. Similarly, none of the missing knots (deaths) in Lt0+ε ∩D(X) can be

a non-trivial knot and can link to a knot in L ∩D(X) at the time t = 0. To sum up,

births and deaths in Lt0+ε ∩D(X) can occur only along unknots, say U1, .., Ub are the

births and U ′
1, .., U

′
d are the deaths. Note the total number of these births and deaths is

finite due to smoothness and compactness arguments. Therefore, when passing from

t = 0 to t = t0 + ε, the change in PX due to births and deaths can be at most

∣t̃b(U1) +⋯ + t̃b(Ub) − (t̃b(U ′
1) +⋯ + t̃b(U ′

d))∣.

Next, we will discuss the case when there are degenerations transforming some col-

lection of knots in L∩D(X) to new ones in Lt0+ε ∩D(X). Degenerations may arise

as either unifications or separations which are exactly the opposite of each other, and

so it suffices to understand one of them. A typical situtation of unification is the fol-

lowing: Suppose that the intersection knots K1,K2 ∈ L ∩D(X) degenerate during

the isotopy and a new intersection knot K ∈ L′∩D(X) arises while K1,K2 disappear

(unify) as depicted in Figure 4.4 and Figure 4.5 where for simplicity we assume that

there is a single degeneration and take L′ = Lt0+ε. In the Stein diagrams of X0 and
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X1, this degeneration and the creation of K correspond to bringing the +,− points

together on the attaching spheres of 1-handles, and then taking a Legendrian connect

sum of K1,K2 along an appropriate Legendrian band. (See Figure 4.5.) We note that

such a degeneration may also appear away from the binding, that is, it can occur in

the Legendrian tangle of one of the Stein diagrams of either X0 or X1.

Observe that during an unification (resp. a separation), the number t̃b decreases (resp.

increases) by 1. More precisely, in Figure 4.6, some different ways of obtaining

a Legendrian connected sum of the knots K1 and K2 along appropriate Legendrian

bands (in red) are given. Any Legendrian band connectingK1 andK2 may arise when

K1,K2 unify (and a new intersection knot K borns as K1#K2) during an irregular

Legendrian isotopy. Eqivalently, any Legendrian band can occur when K separates

and decomposes as the disjoint union of K1,K2. It is not hard to show that no mat-

ter which Legendrian band is used (arises) during a creation (resp. separation) of

K = K1#K2), the number t̃b always decreases (resp. increases) by 1 because gluing

with a Legendrian band always introduces one additional left cusp (see Figure 4.6).

That is, the following always holds:

t̃b(K) = t̃b(K1#K2) = t̃b(K1) + t̃b(K2) − 1.

To summarize, when passing from time t = 0 to t = t0 + ε, if there are Mu unifications

and Ms separations (note the total number of degenerations is again finite by smooth-

ness and compactness arguments), then the change in PX due to these degenerations

can be at most

∣Mu −Ms∣.

Combining with the births and deaths argument above, we conclude that the change

in PX (when passing from time t = 0 to t = t0 + ε) is finite and satisfies

∣PX(Lt0+ε)−PX(L)∣ < N0 ∶= ∣t̃b(U1)+⋯+ t̃b(Ub)−(t̃b(U ′
1)+⋯+ t̃b(U ′

d))∣+ ∣Mu−Ms∣.

As a result, repeating the above argument for each ti with 0 < t0 < t1 < ⋯ < tr < 1, we

conclude that during the irregular Legendrian isotopy Lt (t ∈ [0,1]), the total change

in PX is finite. More precisely, we have

∣PX(L′) −PX(L)∣ = ∣PX(L1) −PX(L0)∣ < N
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Figure 4.4: A typical degeneration (unification) during an irregular Legendrian iso-

topy Lt taking L0 = L to another Legendrian L1 = L′ which also intersects the double

D(X) = X0 ∪∂ X1 transversally, but the new arcs of intersection in L′ ∩D(X) are

possibly different than the older ones. Note that traveling in the opposite direction

(i.e., from t = 1 to t = 0) describes a typical separation of K into K1 and K2.

where N ∶= N0 + ⋯ + Ni + ⋯ + Nr. Here, for each i = 1, ..., r, the bound Ni is
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obtained (similarly to i = 0 case above) by analyzing corresponding births/deaths and

degenerations occuring when passing from t = ti − ε to t = ti + ε. ◻

Theorem 4.0.6 The number MPX(L) is well-defined.

Proof Recall the definition of relative invariant:

MPX(L) ∶=Max{PX(L′) ∣ L′ ∈ [L] and L′ ⋔D(X)}

where (B,f) is an admissable open book for L and a page X is chosen so that D(X)
essentially intersects L. Therefore, for any L′ ∈ [L], the intersection L′ ∩D(X) is

non-empty which implies that the set

PX([L]) ∶= {PX(L′) ∣ L′ ∈ [L] and L′ ⋔D(X)} ⊂ Z

is a non-empty subset. In order to check well-definedness of MPX(L), we need to

verify that the set PX([L]) attains its maximum value. That is, one needs to show

that there exists Lmax ∈ [L] such that

Max(PX([L])) = PX(Lmax) <∞.

Equivalently, we need to show that the number PX(L) can not be made arbitrarly

large under Legendrian isotopies of L. By Proposition 4.0.3, PX(L) is invariant,

and so, can not be made arbitrarly large under regular Legendrian isotopies of L.

Therefore, it suffices to consider irregular Legendrian isotopies of L. By Proposition

4.0.5, we know that the jump in PX(L) under any irregular isotopy is finite. Consider

the subset

[L]min ⊂ [L]

of all Legendrian representatives of L in the class [L] which intersects D(X) trans-

versely and minimally. In other words, for any L̃ ∈ [L]min, the set L̃ ⋔ D(X) is a

link in D(X) contains no unknot components due to a birth which may arise during

an irregular Legendrian isotopy. Clearly, by undoing any such isotopy (if needed)

one can get rid of any such unknots (i.e., replacing any birth with the corresponding
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Figure 4.5: Realizing a degeneration (unification) of K1, K2 ∈ L ∩ D(X) and the

creation of K ∈ L′ ∩ D(X) during an irregular Legendrian isotopy Lt, t ∈ [0,1].
(L0 = L,L1 = L′ and Lt0 is not transverse to D(X).)
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Figure 4.6: Some possible ways (but not all) of obtaining a Legendrian connected

sum K1#K2 of the knots K1 and K2 along appropriate Legendrian bands (in red).

death), any Legendrian representative L ∈ [L] intersecting D(X) transversely can be

transformed to some L̃ ∈ [L]min. That is, there is a map

Ψ ∶ [L]Ð→ [L]min, Ψ(L) = L̃.

From its construction, it is clear that PX(L′) ≤ PX(Ψ(L′)) for any L′ ∈ [L] with

L′ ⋔ D(X). Therefore, we have Max(PX([L])) = Max(PX([L]min)), and hence,

it suffices to focus on the set [L]min, i.e., if Lmax exists, then Lmax ∈ [L]min. Equiva-

lently, one needs to show that there exists Lmax ∈ [L]min such that

Max(PX([L]min)) = PX(Lmax) <∞.

Now inside [L]min consider the subset [L]omin ⊂ [L]min which consists of all Legen-

drian representative of L̃ ∈ [L]min such that there exists a knot component K in the
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link L̃ ∩D(X) (of transverse minimal intersections) which separates into two knots

K1 and K2 (via some irregular Legendrian isotopy with respect to D(X)) such that

at least one of Ki’s (say K2) is a homotopically nontrivial unknot in L̃ and does not

link to any other components of the resulting link of intersection. Equivalently, K2

does not bound a disk in L̃ but it bounds a disk D in D(X) = X0 ∪∂ X1 which is

not punctured with any other knot in the Stein diagrams of X0 and X1. Such a knot

component K will be called decomposable. Given L̃ ∈ [L]omin, find all decomposable

knots K ∈ L̃ ∩D(X) and the corresponding K2’s and D’s mentioned above. Com-

posing irregular Legendrian isotopies separatingK’s intoK1’s andK2’s with suitable

Legendrian isotopies compactly supported in small neighboorhoods of D’s, one can

get rid of all these K2’s, and repeating this argument (if necessary) eventually we

obtain a Legendrian representative

L̄ ∈ [L]min ∖ [L]omin.

Recall that separation of a link component increases t̃b by 1, and also erasing a Leg-

endrian unknot (corresponding K2) from Stein diagrams increases t̃b at least by 1.

Therefore, for any L̄ obtained from L̃ ∈ [L]omin as above, the following always holds:

PX(L̃) < PX(L̄).

This means that if Lmax exists, then it must be true that Lmax ∈ [L]min ∖ [L]omin.

Equivalently, in order to prove the theorem, one needs to show that there exists Lmax ∈
[L]min ∖ [L]omin such that

Max(PX([L]min ∖ [L]omin)) = PX(Lmax) <∞.

To proceed further, we need a partial order relation on the set of equivalence classes

of links in D(X) consisting of all possible intersections of D(X) with elements in

[L]min ∖ [L]omin. More precisely, consider the set of links in D(X) defined by

Λ ∶= {L ⋔D(X) ∣ L ∈ [L]min ∖ [L]omin}.

As discussed in the earlier sections, every element (link) K ∈ Λ can be realized as the

union of collections k0, k1 of Legendrian arcs drawn in the Stein diagrams of X0,X1,
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respectively. We will write ∥K∥ = ∥K ′∥ and say that two links K,K ′ ∈ Λ are isotopy

equivalent if each corresponding collections ki, k′i (i = 0,1) are related via Legendrian

Reidemeister moves and their modifications (the ones which does not change tb) for

Stein digrams described in [15].

Remark Note that from the definition of page crossing number, for any L ∈ [L]min∖
[L]omin, we have

PX(L) = t̃b(L ⋔D(X)) = t̃b(K).

Therefore, showing the existence of an Lmax ∈ [L]min ∖ [L]omin maximizing PX is

equivalent to showing the existence of a Kmax ∈ Λ maximizing t̃b.

Next we will define a partial order relation on the set

A ∶= { ∥K∥ ∣ K ∈ Λ }.

Definition 4.0.7 Let K0,K1 ∈ Λ, so there exist L0, L1 ∈ [L]min ∖ [L]omin so that

Ki = Li ⋔D(X). We will write ∥K0∥ ⪯ ∥K1∥ if

(I) There is a regular or an irregular Legendrian isotopy Lt (t ∈ [0,1]) with re-

spect to D(X) having only separating degenerations such that whenever Lt is

transverse to D(X), we have

Lt ∈ [L]min ∖ [L]omin.

(II) PX(L0) ≤ PX(L1) (or equivalently, t̃b(K0) ≤ t̃b(K1).)

Lemma 4.0.8 The pair (A,⪯) is a partially ordered set.

Proof Reflexivity: For a given ∥K∥ ∈ A, consider any representative K ∈ ∥K∥ and

corresponding L ∈ [L]min ∖ [L]omin, i.e., K = L ⋔ D(X). Then one can consider

the trivial Legendrian isotopy fixing all the points on L for all time t. The second

condition is also clear. Therefore,

∥K∥ ⪯ ∥K∥.
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Anti-symmetry: Suppose ∥K0∥ ⪯ ∥K1∥ and ∥K1∥ ⪯ ∥K0∥ for ∥K0∥, ∥K1∥ ∈ A. Imme-

diately, we observe t̃b(K0) ≤ t̃b(K1) and t̃b(K1) ≤ t̃b(K0), and so

t̃b(K0) = t̃b(K1).

Consider any representatives K0 ∈ ∥K0∥,K1 ∈ ∥K1∥ and the corresponding L0, L1 ∈
[L]min∖ [L]omin which are connected via a Legendrian isotopy Lt such that whenever

Lt is transverse to D(X), we have Lt ∈ [L]min ∖ [L]omin.

If Lt is a regular Legendrian isotopy with respect to D(X), then Lt transversely in-

tersects D(X) for all t. In particular, this implies that Lt ∩D(X) is minimal and has

no decomposable components for all t because L0 ∈ [L]min∖[L]omin. Also observe Lt

induces an isotopy Kt ∶= Lt ⋔ D(X) (between K0 and K1) whose respective restric-

tions Kt ∩Xi (i = 0,1) defines Legendrian isotopies between componets of K0,K1

in X0,X1, respectively. In other words, ∥K0∥ = ∥Kt∥ = ∥K1∥, so we are done in this

case.

Now suppose Lt is an irregular Legendrian isotopy (of L0) with respect to D(X)
having only separating degenerations. As in the proof of Proposition 4.0.5, suppose

there are numbers 0 < t0 < t1 < ⋯ < tr < 1 so that except finitely many Lti , (i =
0,1, ..., r), any other Lt is an element of [L]min ∖ [L]omin. By assumption, during

Lt no births or deaths can arise, and only degenerations are separations. Recall that

separations increase PX and so t̃b by 1. Therefore, one easily conclude that for any i

when passing from t = ti − ε to t = ti + ε, there can not be any separations of knots in

Kti−ε ∶= Lti−ε ⋔D(X) because otherwise we would have

t̃b(K0) ≨ t̃b(Kti+ε) ≤ t̃b(K1).

So, Lt must be a regular Legendrian isotopy indeed, and hence ∥K0∥ = ∥K1∥ as dis-

cussed above.

Transivity: Suppose ∥K0∥ ⪯ ∥K1∥ and ∥K1∥ ⪯ ∥K2∥ for ∥K0∥, ∥K1∥, ∥K2∥ ∈ A. Im-

mediately, we observe t̃b(K0) ≤ t̃b(K1) and t̃b(K1) ≤ t̃b(K2), and so

t̃b(K0) = t̃b(K2).
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For each i = 0,1,2, consider any representative Ki ∈ ∥Ki∥ and the corresponding

Li ∈ [L]min ∖ [L]omin. By assumption, there are Legendrian isotopies Lt from L0 to

L1 and L′t from L1 to L2 with the prescribed conditions in Definition 4.0.7 part (I).

Then one easily concludes that L′t ○Lt is a Legendrian isotopy from L0 to L2 with the

desired properties. Thus, ∥K0∥ ⪯ ∥K2∥.

Returning back to the proof of the theorem, next we will show that every chain in

(A,⪯) has an upper bound in A. To this end, suppose that we are giving a chain

∥K0∥ ⪯ ∥K1∥ ⪯ ∥K2∥ ⪯ ⋯ ⪯ ∥Ki∥ ⪯ ⋯.

Since regular Legendrian isotopies does not change the isotopy equivalence classes, it

suffices to consider irregular Legendrian isotopy (with respect to D(X)) having only

separating degenerations. We need to show that under such isotopies, separations

must eventually stop after a finite step, and when it stops the corresponding t̃b must

be finite.

Let Li’s be Legendrian representatives in [L]min ∖ [L]omin such that, for each i ≥ 0,

we have Ki = Li ⋔ D(X) and Li+1 is the image of Li under an irregular Legendrian

isotopy Lti satifying the condition (I) of Definition 4.0.7. Suppose the the link Ki

consists of ri knot components. (Recall by compactness there must be finite number

of components for each Ki.) By Proposition 4.0.5 and from the assumptions Ki ∈ Λ

and Li ∈ [L]min∖[L]omin, we know that each isotopy Lti consists only of finitely many

separations, and PX (and so t̃b) has a finite jump (increment) during each Lti. That is,

we have

r0 < r1 < r2 < ⋯ < ri < ⋯

with 0 < ri+1 − ri <∞, and

t̃b(K0) < t̃b(K1) < t̃b(K2) < ⋯ < t̃b(Ki) < ⋯

with t̃b(Ki+1) − t̃b(Ki) <∞.
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Now observe that during the separations of any Lti, knot components in Ki split

into “simpler” knot components (which form the link Ki+1) which are still disjointly

embedded simple closed curves in the resulting Legendrian suface Li+1. From our

choices, knot components in any Ki can not bound disks in Li and can not be de-

composable. Therefore, there must exist some imax ∈ N such that we can not proceed

further. That is, we have

r0 < r1 < r2 < ⋯ < ri < ⋯ < rimax

where the sequence stops at rimax <∞, and

t̃b(K0) < t̃b(K1) < t̃b(K2) < ⋯ < t̃b(Ki) < ⋯ < t̃b(Kimax)

where the sequence stops at t̃b(Kimax) <∞.

Therefore, every chain in (A,⪯) has an upper bound in A, and hence, by Zorn’s

Lemma, the partially ordered set (A,⪯) has at least one maximal element, say ∥Kmax∥ ∈
A. Then by the definition of the partial order relation “⪯”, for a chosen represen-

tative Kmax ∈ ∥Kmax∥, the number t̃b(Kmax) < ∞ (exists) and is the maximum

value among all possible values obtained from such links of transverse intersections.

Then for a corresponding Legendrian representative, say Lmax ∈ [L]min ∖ [L]omin,

one obtains PX(Lmax) is finite and maximal among all, i.e., the relative invariant

MPX(L) = PX(Lmax) is well-defined.
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CHAPTER 5

ABSOLUTE PAGE CROSSING NUMBER AND PROOF OF THEOREM 1.0.2

In this chapter we introduce page-free version of maximal page crossing number and

show that this number is well-defined and invariant under Legendrian isotopies of a

Legendrian surface L.

Definition 5.0.1 Let L ↪ (M5, ξ) be a closed orientable Legendrian surface. Fix an

admissable open book (B,f) for L essentially intersecting L which means that the

double of every page of (B,f) essentially intersects L. Fix any page X of (B,f).

Then

MP(B,f)(L) ∶=MPX(L)

is called the absolute maximal page crossing number of L with respect to (B,f).

We start with the following fact which will be useful in proving well-definedness of

MP(B,f)(L):

Lemma 5.0.2 The relative invariantMPX(L) does not change under (small) pertur-

bations of the doubleD(X) transverse to a Legendrian representative in [L] realizing

MPX(L).

Proof Suppose that L′ ∈ [L] realizes MPX(L). In other words, D(X) transversely

intersects the Legendrian isotopic copy L′ of L and we have

MPX(L) = PX(L′).
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We want to show that MPX(L) = MPX′(L) for any pair X,X ′ of pages such that

their doubles are isotopic to each other via a 1-parameter family of doubles of pages

transverse to L′. Equivalently, need to show that

PX(L′) = PX′(L′).

To this end, suppose X = Xθ, X ′ = Xθ′ is such a pair of pages. Let K = k0 ∪ k1 be

any knot component of L′ ⋔ D(X). Then as depicted in Figure 5.1 that a new knot

component K ′ ∈ L′ ⋔ D(X ′) is (Legendrian) isotopic to the older one K. So, the

contribution of K ′ to PX′(L′) is the same as the contribution of K to the PX(L′).

Thus, the claim follows. ◻

+

−B

L

Xθ

Xθ+π

k0

k1K

Xθ′

Xθ′+π

k′0

k′1K ′

Figure 5.1: Replacing X0 = Xθ (resp. X1 = Xθ+π ) with a nearby (Stein) page Xθ′

(resp. Xθ′+π ) which are still intersecting L′ transversely. A new knot component

K ′ = k′0 ∪ k′1 (isotopic to older one K) of the link of intersection of L′ with the new

double Xθ′ ∪∂ Xθ′+π.

Now with the help of the results from previous chapters, one can easily prove the

following:
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Proposition 5.0.3 Let L ↪ (M5, ξ) be a closed orientable Legendrian surface. Fix

an admissable open book (B,f) for L. Then the number MP(B,f)(L) is well-defined

and invariant under Legendrian isotopies of L.

Proof Recall the definition of MP(B,f)(L):

MP(B,f)(L) ∶=MPX(L)

where X is any page of (B,f), or equivalently,

MP(B,f)(L);=MPXθ(L) for a fixed θ ∈ S1.

By assumption, D(Xθ) essentially intersects L for all θ ∈ S1. For each θ ∈ S1, by

Lemma 5.0.2, the number MPXθ(L) takes the same value on some small enough

neighborhood Uθ of θ in S1, and so the collection {Uθ ∣ θ ∈ S1} is an open cover for

S1. By compactness of S1, there exists a finite subcover, i.e., there exist θ1, θ2, ..., θr ∈
S1 such that

S1 = Uθ1 ∪Uθ2 ∪⋯ ∪Uθr .

After renaming (if necessary), one may assume that for any two consecutive arcs, we

have Uθi ∩Uθi+1 ≠ ∅. Since MPXθi(L) and MPXθi+1(L) take constant values on their

domains, they must agree on Uθi ∩Uθi+1 , and hence MPXθ(L) takes a constant value

on Uθi ∪Uθi+1 . Repeating the argument (by changing i one by one), we conclude that

MPXθ(L) takes the same value on the whole S1. Hence, MP(B,f)(L) = MPXθ(L)
is independent of θ, and, in particular, is well-defined.

Finally, the fact that MP(B,f)(L) is invariant under Legendrian isotopies just follows

from its definition combined with Lemma 4.0.1. ◻

Hence, Theorem 1.0.2 is proved.
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CHAPTER 6

EXAMPLE FOR THE INVARIANTS

Example 6.0.1 Let C3 be the complex space with the complex coordinates

(z1, z2, z3) = (r1, θ1, r2, θ2, r3, θ3),

where zj = rjeiθj(j = 1,2,3) are the polar coordinates, and S5 be the unit 5-sphere in

C3, i.e.,

S5 = {(z1, z2, z3) ∣ ∣z1∣2 + ∣z2∣2 + ∣z3∣2 = 1} .

The restriction of the 1-form (a primitive of the standard symplectic form on C3)

αst = r21dθ1 + r22dθ2 + r23dθ3.

on S5 is a contact form and defines the standard contact structure ξ5 on S5. So we

have a closed contact manifold (S5, ξ5 =Ker(α5)) where α5 ∶= αst∣S5 .

We will consider an open book supporting ξ5 which is admissable for a Legendrian

surface we pick later inside (S5, ξ5). Consider the standard 3-sphere

S3 = {(z1, z2, z3) ∈ S5 ∣ z1 = 0} ⊂ S5

as a contact submanifold of S5 as follows:

(S3, ξ3 =Ker(α3))↪ (S5, ξ5)

where α3 = r22dθ2 + r23dθ3(= α5∣S3) is the contact form (defining ξ3).

Consider the most standard open book on S5 which can be explicitly described as

follows:
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π ∶ S5 ∖ S3 Ð→ S1

(r1, θ1, r2, θ2, r3, θ3)z→ θ1.

Note that the standard S3 is the binding, and a typical page Xθ1 = π−1(θ1) is an open

4-ball (simply connected and Weinstein). The closure of Xθ1 (still denoted by Xθ1 for

simplicity) can be parametrized by

Xθ1 = π−1(θ1) ∶
{Γ⃗ ∶D4 Ð→ S5, (ρ1, φ1, ρ2, φ2)z→ (

√
1 − ρ21 − ρ22, θ1, ρ1, φ1, ρ2, φ2)}.

(Clearly, Xθ1 is diffeomorphic to D4, and note 0 ≤ ρ21 + ρ22 ≤ 1.) One can easily

check that the embedded open book (S3, π) on S5 supports ξ5 and the corresponding

abstract open book is (D4, idD4) (with a trivial monodromy).

Let’s now pick a Legendrian surfaceL inside (S5, ξ5). For a fixed constant k, consider

the Clifford torus (a well-known and well-studied surface) defined by

L = Tk = {(z1, z2, z3) ∈ C3 ∣ ∣z1∣2 = ∣z2∣2 = ∣z3∣2 = 1
3 , θ1 + θ2 + θ3 = k} ⊂ S5

(note in polar coordinates we have r21 = r22 = r23 = 1
3 .) Clearly Tk is a surface inside S5.

One needs to check that Tk is Legendrian (S5, ξ5). To this end, consider the following

parametrization for Tk where ϕ1, ϕ2 are angular coordinates on an abstract torus T 2:

Tk ∶ σ⃗(ϕ1, ϕ2) = ( 1√
3
, ϕ1,

1√
3
, ϕ2,

1√
3
, k − ϕ1 − ϕ2) ∈ S5

σ⃗ϕ1 =< 0,1,0,0,0,−1 >= ∂

∂θ1
− ∂

∂θ3

σ⃗ϕ2 =< 0,0,0,1,0,−1 >= ∂

∂θ2
− ∂

∂θ3

Then, we easily see that

α5 ∣Tk= 1
3dθ1 + 1

3dθ2 + 1
3dθ3

α5 ∣Tk (σ⃗ϕ1) = 0 = α5 ∣Tk (σ⃗ϕ2).

Therefore, Tk is a Legendrian torus in (S5, ξ5). Let’s understand how Tk intersects

with the binding S3 and a typical page Xθ1 ≈D4:
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For Tk ∩ S3, we have

S3 = {(z1, z2, z3) ∈ C3 ∣ z1 = 0} = {r22 + r23 = 1, r1 = 0}.

But on Tk, r1 = 1√
3
≠ 0. Hence, Tk ∩ S3 = ∅. In particular, this shows that the binding

of the open book (S3, π) intersects Tk transversely.

For Kθ1 ∶= Tk ∩Xθ1 ,

Xθ1 ∶ {Γ⃗(ρ1, φ1, ρ2, φ2) = (
√

1 − ρ21 − ρ22, θ1, ρ1, φ1, ρ2, φ2)}

Tk ∶ σ⃗(ϕ1, ϕ2) = ( 1√
3
, ϕ1,

1√
3
, ϕ2,

1√
3
, k − ϕ1 − ϕ2).

Equating the corresponding coordinates, one gets the equations defining the intersec-

tion Kθ1:

√
1 − ρ21 − ρ22 = 1√

3
, θ1 = ϕ1, ρ1 = 1√

3
, φ1 = ϕ2, ρ2 = 1√

3
, φ2 = k − ϕ1 − ϕ2.

If we let φ1 = ϕ2 = θ, then we obtain the parametrization of Kθ1 given by

Kθ1 ∶ r⃗ ∶ S1 → S5, r⃗(θ) = ( 1√
3
, θ1,

1√
3
, θ, 1√

3
, k − θ1 − θ).

Note that the parameter θ appears in two distinct angular coordinates with opposite

signs, and so Kθ1 is an embedded unknot in S5 sitting as a (1,−1)-torus knot on

the Clifford torus Tk. Note that following the same steps, one can also consider

Kθ1+π ∶= Tk ∩ Xθ1+π which is also a (1,−1)-torus knot on the Clifford torus Tk (a

paralel copy of Kθ1). Hence, we conclude that the double D(X) = Xθ1 ∪∂ Xθ1+π

intersects Tk transversely and essentially along the (un)linkD(X)∩Tk =Kθ1⊔Kθ1+π.

Now observe that

r⃗′(θ) =< 0,0,0,1,0,−1 >= ∂

∂θ2
− ∂

∂θ3
,

α3 ∣Kθ1=
1
3dθ2 + 1

3dθ3,
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so α3 ∣Kθ1 (r⃗′(θ)) = 0. Hence, one can think of Kθ1 ,Kθ1+π as Legendrian unknots in

(S3, ξ3).

Moreover, we also have

α5 ∣Xθ1= Γ∗(α5) = d(1 − ρ21 − ρ22´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

) ∧ dθ1 + ρ21dφ1 + ρ22dφ2 = ρ21dφ1 + ρ22dφ2, and so

d(α5 ∣Xθ1) = d(ρ
2
1dφ1 + ρ22dφ2) = 2ρ1dρ1 ∧ dφ1 + 2ρ2dρ2 ∧ dφ2

from which we compute

d(α5 ∣Xθ1) ∣Kθ1= d(α5 ∣Tk∩Xθ1) =
2√
3
dρ1 ∧ dφ1 + 2√

3
dρ2 ∧ dφ2, and also

(α5 ∣Xθ1)∣Kθ1 =
1
3dφ1 + 1

3dφ2(= 1
3dθ2 + 1

3dθ3)

⇒ (α5 ∣Xθ1)∣Kθ1(r⃗′(θ)) =
1
3 − 1

3 = 0.

These veriy that Kθ1 ,Kθ1+π are isotropic unknots in every (simply-connected) We-

instein (so Stein) page (Xθ1 , d(α5 ∣Xθ1)), and every page of the open book (S3, π)
essentially intersects Tk. As a result, we conclude that (S3, π) is an essentially inter-

secting admissable open book for the Clifford torus Tk. See Figure 6.1 for a schematic

picture for the front projection of Tk.

B

θ1 θ1 + π

X1 (= Xθ1+π)X0 (= Xθ1)

K1 K2

Figure 6.1: A schematic picture of the front projection of the Legendrian Clifford

torus Tk ⊂ (S5, ξ5) onto R3 with coordinates z, y1, y2. The components K1,K2 (in

red) of the (un)link of intersection of Tk with the double X0 ∪∂ X1 ≈ S4 of a page

X ≈D4 of the trivial open book on S5. (Note: B ≈ S3 and Tk ⋔ B = ∅.)

Next, we set K1 = Kθ1 ,K2 = Kθ1+π and also X0 = Xθ1 and X1 = Xθ1+π, so that the
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(un)link of intersection Tk with the double D(X) =X0 ∪∂ X1 is given by

Tk ⋔D(X) =K1 ⊔K2

With respect to the notation introduced in Chapter 3, we have K1 = k01 ⊂ X0 (no k11)

and K2 = k12 ⊂ X1 (no k02). Also recall Tk ∩ S3 = ∅. Hence, Tk ⋔ D(X) is an unlink

with two components k01, k
1
2 which can be realized in Stein diagrams of (X0, dα5∣X0)

and (X1, dα5∣X1) as in Figure 6.2.

Stein domain X0
∼= D4 Stein domain X1

∼= D4

K1 = k01

−1 −1

K2 = k12

Figure 6.2: Realizing the (un)link of transverse intersection of the Legendrian Clif-

ford torus Tk with the double X0 ∪∂ X1 ≈ S4 of a page X ≈ D4 in the Stein diagrams

of (X0, dα5∣X0) and (X1, dα5∣X1).

Now we can calculate our invariants by using Stein diagrams. Using the notations

introduced, we have

t̃b(K1) = tb(k01) = −1 and t̃b(K2) = tb(k12) = −1.

So, the page crossing number PX(L′) for any page X of (S3, π) and any L′ ∈ [Tk] is

computed as

PX(L′) = t̃b(K1) + t̃b(K2) = −2.

(Because with respect to any page, minimal link of intersection set has always two

components as depicted in Figure 6.2.) As a result, the absolute and relative maximal

page crossing numbers are computed as

MP(S3,π)(L) =MPX(L) = −2.
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Remark Thurston-Bennequin number of any Legendrian torus L (regardless of how

it is embedded in (S5, ξ5)) is computed as tb(L) = 0 since it coincides with a topo-

logical invariant (see [24]). So it is not possible to distinguish them using Thurston-

Bennequin invariant. On the other hand, since the new invariants defined here keep

track Legendrian embeddings, they distinguish not only their smooth embedding type

but also Legendrian isotopy types of such embedded Legendrian tori.
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