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ABSTRACT 

 

DIRECTION OF ARRIVAL ESTIMATION IN SENSOR ARRAYS WITH 

FAULTY ELEMENTS 

 

Külbay, Tayfun 

Master of Science, Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Engin Tuncer 

 

January 2020, 82 pages 

 

During the operational lifetime of a sensor array, certain sensors cease to operate 

properly. The identification of these sensors is an important problem. Furthermore, 

the operation of the array is continued even with the faulty sensors. Therefore, new 

techniques are required in order to ensure that the system estimation performance does 

not degrade significantly. In this thesis, two different fault types in a sensor array are 

considered. The first fault type is special to MEMS microphone arrays. MEMS 

microphones are usually constructed with pairwise sensors which share the common 

data channel in positive and negative cycles of a clock signal. When one of the MEMS 

microphones is faulty, same data is seen for both of the microphone channels and 

determining the faulty sensor becomes a major problem. A new technique is developed 

to determine the faulty microphone based on the use of a source with known direction-

of-arrival (DOA). This approach can find the faulty sensor or sensors accurately in 

low SNR depending on the source position with respect to the array. In a second fault 

type, it is assumed that each sensor’s fault is associated with a probability. In other 

words, a sensor is either on or off with a probability “p” at any time. This problem is 

investigated in the literature before and G-MUSIC algorithm is proposed for a 

consistent DOA estimation. In this thesis, the problem scenario is investigated and a 
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new approach is proposed to estimate the DOA with a faulty sensor array. It is shown 

that the performance of the proposed algorithm is better than G-MUSIC. 

 

 

Keywords: DOA Estimation, missing data, faulty sensor, MEMS microphone  
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ÖZ 

 

SENSÖR  DİZİLERİNDE HATALI SENSÖRLER İLE İŞARET GELİŞ AÇISI 

KESTİRİMİ 

 

Külbay, Tayfun 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği 

Tez Danışmanı: Prof. Dr. Engin Tuncer 

 

Ocak 2020, 82 sayfa 

 

Bir sensör dizisinin operasyon zamanı boyunca, belirli sensörleri düzgün çalışmama 

durumuna geçebilir. Bu arızalı sensörlerin tespiti önemli bir sorundur. Aynı zamanda, 

hatalı sensörler bulunmasına rağmen sensör dizisinin çalışması devam etmektedir. Bu 

nedenle, sistemlerin tespit yeteneklerinde önemli bir  performans bozukluğu 

yaşanmamasının sağlanması için yeni teknikler gerekmektedir. Bu tezde, iki farklı 

arızalı sensör tipi değerlendirilmiştir. Bunlardan ilki MEMS (Mikro Elektro Mekanik 

Sistemler)  mikrofonları özelindedir. MEMS mikrofon dizileri genellikle negatif ve 

pozitif saat sinyalleri ile aynı veri kanalına sahip ikili sensörler olarak üretilirler. 

MEMS mikrofonlarından bir adeti arızalanır ise, ikili sensörlerin veri kanalından her 

ikisi için de aynı veri gözlemlenir ve hatalı sensörün tespiti büyük bir sorun haline 

gelir. Bu hatalı mikrofonun tespiti için işaret geliş açısı bilinen bir kaynak kullanılarak 

yeni bir metot geliştirildi. Bu yöntem, kaynağın sensör dizisine göre yerleşimine bağlı 

olarak düşük sinyal gürültü oranlarında oldukça başarılı sonuçlar vermektedir. İkinci 

arızalı sensör tipinde ise, her bir sensörün arıza durumunun olasılıksal olduğu 

varsayılmıştır. Başka bir deyişle, sensör herhangi bir zamanda “p” olasılığı ile 

çalışmakta veya çalışmamaktadır.  Bu problem daha önce literatürde incelenmiş ve G-

MUSIC algoritması ile tutarlı bir işaret geliş açısı kestirimi yapılabildiği önerilmiştir. 

Bu tezde ise, belirtilen problem senaryosu incelenmiş ve arızalı sensörler ile yeni bir 
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işaret geliş açısı kestirim yaklaşımı önerilmiştir. Performans kriterleri yönünden, yeni 

metodun G-MUSIC metodundan daha iyi olduğu gösterilmiştir. 

 

Anahtar Kelimeler: İşaret Geliş Açısı Kestirimi, hatalı sensör, arıza, MEMS mikrofon 
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CHAPTER 1  

 

1. INTRODUCTION 

 

1.1. Background 

Direction of Arrival (DOA) or Direction Finding (DF) estimation can be denoted as 

determining the bearing angle from a radiating emitter. It has a wide range of usage in 

many different areas for moving or stationary radiated sources, such as radar, sonar, 

navigation, wireless communication, Electronic Warfare (EW) applications. As a 

result of popular usage, there is a large DOA literature about its various methods and 

applications. One of the most popular literature work is [1] in order to get familiar 

with DOA applications and various methods with their advantages and disadvantages. 

For more specific works, [2-4] can be related with EW and Electronic Intelligence 

(ELINT) applications. In additionally, in [5-6] new algorithms and performance 

analysis for wireless communication applications take place in the literature. 

In order to estimate the DOA of an emitter, firstly there should be sensor arrays that 

receive the radiated signal from the emitter. Moreover, sensor array geometry is 

crucial for Direction Finding performance of the system. The Uniform Linear Array 

(ULA) with maximum element spacing being less than half wavelength is commonly 

used for DOA applications due to its simplicity and ambiguity resistance. The spacing 

between sensors are equal. However, for different type of applications, performance 

and platform criteria, other array geometry structures can be used such as NLA (Non-

Uniform Linear Array), UCA (Uniform Circular Array) or NCA (Non-Uniform 

Circular Array). NLA geometry is similar with ULA without having equal element 

spacing. In UCA case, the sensors in the array are positioned with equal spacing 

around a circle. Moreover, when sensors are positioned around a circle without having 

equal element spacing, array structure is called NCA.  
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Since the main topic is to estimate the bearing angle of radiated sources, DOA based 

estimation algorithms take the major part. Direction finding methods can be divided 

into two categories, classical and subspace based techniques. Classical methods 

basically estimate the DOA by scanning a beam through space and measuring the 

largest amount of power among each direction. One of the most popular classical 

method is the interferometer method which is an algorithm that estimates the DOA by 

correlating the received signal with the calibration data of the antenna that taken before 

[7]. Although classical methods are effective for DOA estimation, they have some 

disadvantages such as, they may fail completely for multiple sources. This brings us 

to the subspace based methods, in other words super-resolution techniques. MUSIC 

(Multiple Signal Classification) [8-10] and ESPRIT (Estimation of Signal Parameters 

via Rotation Invariance Techniques) [11, 12] methods are the most popular subspace 

based methods and both of them are sub-optimum methods. However, the thesis work 

focuses on MUSIC algorithm, since ESPRIT is not applicable for missing data arrays. 

The algorithm specifications of MUSIC, types, usage, advantages and disadvantages 

are explained in the related chapters. 

In practical applications, during the lifetime of the sensors, some of the array elements 

might stop to operate properly. This can be denoted as faulty sensor or missing data 

problem. Facing with faulty sensor problem can cause from many things in practical 

applications. Firstly, most of the sensors are not resistant enough for humidity, water, 

dust or other environmental causes. One of the other reasons is over-heating. Since 

the antenna elements are used in a variety of applications, they can be effected from 

other system subparts’ heat radiations. Additionally, array elements can be faced with 

physical impacts. As a result of facing with faulty sensors, faulty sensor detection and 

DOA estimation problems arise in practical applications.  
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Cases of Faulty Sensors 

There are several types of faulty sensors which are encountered in practical 

applications. Some examples of the types of faulty sensor cases can be summarized as 

follows.  

 Type 1: Sensor either operated properly (ON), or does not operate at all (OFF). 

In this case, if the sensor does not operate, output signal is zero. When the 

sensor output channel is corrupted by noise, noise can be observed at the output 

which may disguise the faulty sensor. 

 Type 2: Sensor either operated properly (ON), or does not operate at all (OFF). 

In the case of the sensor is not operating, output signal is different from the 

desired signal but correlated. When the sensor output channel is corrupted by 

noise, sum of the correlated signal and noise can be observed at the output 

which may disguise the faulty sensor. 

 Type 3: Sensor either operated properly (ON), or does not operate at all (OFF). 

In this case, if the sensor does not operate, output signal is entirely different 

from the desired signal, uncorrelated.  When the sensor output channel is 

corrupted by noise, sum of the uncorrelated signal with noise can be observed 

at the output which may disguise the faulty sensor. 

 Type 4: Sensor either operated properly (ON), or does not operate at all (OFF). 

This type of faulty sensor is special for the Micro Electro Mechanical Systems 

(MEMS) microphones and investigated in the thesis work as the deterministic 

problem. MEMS microphones are produced as pairwise sensors and these 

sensors share a common data channel with positive and negative clock cycles. 

Due to the common data channel, in the case of one of the pairwise sensors is 

not operating, output signal is the same with the pairwise operating sensor 

output signal.  

 Type 5: Each sensor’s fault is associated with a probability. In other words, a 

sensor is either operating (ON) or not operating (OFF) with a probability “p” 

at any time.  The signal output is matched with the desired signal while sensor 
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is operating properly.  However, in the case of the sensor is not operating, 

output signal is zero. When the sensor output channel is corrupted by noise, 

noise can be observed at the output which leads to detecting faulty sensor 

problems. This type of faulty sensor is investigated in the thesis work as the 

random array problem.  

 

Faulty sensor existence in the sensor array is investigated in the thesis work as in two 

ways such as deterministic and random array problems.  

In deterministic problem, one or more sensors might stop to operate completely. This 

can be seen in every kind of sensor in practical applications. However, MEMS 

microphones have a special case. MEMS microphones have a wide range of usage in 

DOA applications for localization of sound sources [13-14] since they meet the 

performance and SWAP-C (size, weight, power and cost) requirements. Because of 

MEMS microphones are produced as pairwise sensors onto a Printed Circuit Board 

(PCB) [15], these sensors share the common data channel in positive and negative 

cycles of the clock signal. When one of the pairwise MEMS microphones is faulty, 

operating microphone data is seen for both of the pairwise microphone channels. 

Therefore determining the faulty sensor becomes a major problem. 

Although in the deterministic model the faulty sensor is not operating completely, in 

random array problem each sensor operate with a probability which corresponds to 

the randomly missing data. Moreover, randomly missing data leads to DOA 

estimation performance degradation. There are several studies according to 

performance analysis and consistent DOA estimation for missing data in the literature 

[16-17]. However, existing studies are not related with improving the DOA 

performance with detecting the faulty sensors where our motivation lies.  
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1.2. Scope and Contributions of the Thesis 

In the thesis work, the missing data according to not operating sensor problem is 

investigated in two approaches, deterministic and random array approaches. 

Therefore, we proposed two methods for two different problems.  

In the deterministic case, the important aspect is that it can be faced in practical 

applications due to the production of MEMS microphones. MEMS microphones are 

produced as pairwise sensors which have common data channel with positive and 

negative clock cycles. Because of having a common data channel, if one of the 

pairwise sensor is not operating, two microphone signals became exact copies of each 

other. As a result, determination of the faulty sensor becomes a major problem. In 

order to solve the problem, utilization of DOA applications are considered. By using 

a known DOA source, the faulty sensor or sensors in the array can be detected even in 

low SNR (Signal to Noise Ratio) values. Moreover, usage of a known source leads us 

to improve the DOA performance of the sensor array by detecting the faulty sensors 

without a physical intervention. Furthermore, faulty sensor problem is observed 

during our involvement with digital MEMS microphones for the construction of a 

massive microphone array [18] and it is reported for the first time in the literature. 

In the second problem, the random array approach, each sensor element is operating 

according to a probability which is unknown. Hence, we are dealing with a random 

array whose elements are working according to an unknown probability which 

corresponds to the randomly missing data. Moreover, randomly missing data leads to 

DOA estimation performance degradation [17]. According to improving DOA 

performance in random array, several studies presented in the literature. The idea 

behind these studies is, estimating DOA by using the whole sensor array information 

without detecting operating and not operating sensors. The difference of the proposed 

method in the thesis work is improving the DOA performance by detecting the faulty 

sensors and eliminate their data. The results are shown that, proposed method achieves 
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higher DOA performances compared to the related studies. Additionally, the random 

array problem is investigated by assuming each sensor has a different operating 

probability rather than assuming equal operating probability in related studies. One of 

the other important aspect of thesis work is that, both Spectral MUSIC and Root-

MUSIC estimation methods are used as a hybrid algorithm in order to achieve less 

computational complexity and higher performances. Finally, the proposed method is 

applicable for both single and multiple source DOA estimation applications.  
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CHAPTER 2  

 

2. DIRECTION FINDING TECHNIQUES  

 

2.1. Signal Model 

The signal model for the Uniform Linear Array (ULA) geometry is introduced in this 

chapter. By using the signal model, DOA parameters are extracted which are used in 

the estimation problem. Moreover, the presented signal model is taken as a reference 

for the DOA estimation methods. 

While the signal model is defined, several assumptions are considered.   

Assumptions: 

 Far-field 

 Narrowband 

 Sensor and sources exist in the same plane 

 Sources are point emitters 

 Homogenous Propagation Medium 

 Calibrated Array 

 

2.1.1. Far-field 

In the far-field assumption, the distance between the array elements and radiating 

sources are supposed to be greater than the Rayleigh distance. Although the Rayleigh 

distance is the far-field specification limit, 10 times greater than the limit is usually 

considered to be a safe distance for assuming far-field. The Rayleigh distance equation 

is represented in Eqn. 2.1. 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 >
2𝐷2

𝜆
 

(2.1) 
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where 𝐷 is the array aperture and  𝜆 denotes the signal wavelength. The signal 

wavelength contains carrier frequency and speed of the signal in the propagation 

medium where it is shown in Eqn. 2.2. 

𝜆 =
𝑐

𝑓𝑐
 

(2.2) 

where 𝑐 represents the speed of the signal in the propagation medium and 𝑓𝑐 is the 

carrier frequency. 

As a result of far-field distance assumption, time delay of incoming signals to the 

sensors can be written as a function of direction of arrival parameters of the signal. 

 

2.1.2. Narrowband 

For narrowband assumption, Eqn. 2.3 should be satisfied. 

𝐵 𝑥 𝑇𝑚𝑎𝑥 ≪ 1 (2.3) 

 

𝐵 denotes the bandwidth of the signal in Hertz where 𝑇𝑚𝑎𝑥 is the maximum time to 

travel across the array.  

2.1.3. Homogenous Propagation Medium 

Homogenous propagation medium assumption is important since change in the 

medium can affect the signal features. For example, sound waves have different 

specifications in the sea water rather than signal waves in a homogenous propagation 

medium. Moreover, the speed of light is changeable due to the propagation medium. 

 

2.1.4. Calibrated Array 

In this assumption, the calibrated array stands for the sensors can be assumed Linear-

Time-Invariant systems and their locations are known.  
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Since the assumptions are explained, signal model parameters are introduced in the 

following. By consideration of Fig 2.1, number of array elements is 𝑀, 𝜙 is the 

azimuth angle on xy plane starting from positive x-axis in counter clockwise direction 

and 𝜃 is the elevation angle starting to measure from positive z-axis. 

  

 

Figure 2.1. The Coordinate System 

 

The received signal from 𝑀 sensors can be written as, 

𝑠𝑝𝑖(𝑡) = 𝑠𝑝(𝑡 − 𝜏𝑖) = ℜ{𝑠(𝑡 − 𝜏𝑖)𝑒
𝑗2𝜋𝑓𝑐𝑡𝑒−𝑗2𝜋𝑓𝑐𝜏𝑖}, 𝑖 = 1, 2, …𝑀 (2.4) 

 

where  

𝑠𝑝(𝑡) ≜  ℜ{𝑠(𝑡)𝑒𝑗2𝜋𝑓𝑐𝑡} (2.5) 
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is the received signal from reference point. 

𝑠(𝑡) denotes the complex envelope for a specific sample 𝑡 and 𝜏𝑖 is the time delay 

between the received signal taken from 𝑖th sensor and reference point. Notation of ℜ 

denotes the real term of the function. By using the narrowband assumption, the 

complex envelope can be written without the time delay in Eqn. 2.6.  

𝑠(𝑡) ≈ 𝑠(𝑡 − 𝜏) (2.6) 

 

Then by substituting Eqn. 2.6 into Eqn. 2.4, the received signal formulation can be 

rewritten as Eqn. 2.7. 

𝑠(𝑡) = 𝑠𝑝(𝑡 − 𝜏𝑖) =  ℜ{𝑠(𝑡)𝑒𝑗2𝜋𝑓𝑐𝑡𝑒−𝑗2𝜋𝑓𝑐𝜏𝑖} (2.7) 

 

After demodulating and lowpass filtering, the baseband signal received from 𝑀 

sensors is given by, 

𝑦𝑖(𝑡) = 𝑠(𝑡)𝑒−𝑗2𝜋𝑓𝑐𝜏𝑖 + 𝒏(𝑡), 𝑖 = 1, 2, …𝑀 (2.8) 

 

which 𝒏(𝑡) refers as additive Gaussian noise.  

Furthermore, the time delay of each sensor has (𝜏𝑖) in Eqn. 2.8 is written in Eqn. 2.9 

as a function of coordinate angle parameters {𝜙, 𝜃} and Cartesian sensor positions 

(x, y, z) by using where it is mentioned in far-field assumption in Eqn. 2.9 which is 

valid when choosing the reference point as the center of the coordinate system (0, 0, 

0). 

𝜏𝑖 =
1

𝑐
[𝑥𝑖cos(𝜃)sin(𝜙) + 𝑦𝑖sin(𝜃)sin(𝜙) + 𝑧𝑖cos(𝜃)], 𝑖 = 1, 2, . . . 𝑀 

(2.9) 

 

𝜏𝑖 =
𝒈𝑇𝒑𝑖

𝑐
 

(2.10) 
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where 

𝒈 ≜ [𝑐𝑜𝑠(𝜃)𝑠𝑖𝑛(𝜙)  𝑠𝑖𝑛(𝜃)𝑠𝑖𝑛(𝜙)  𝑐𝑜𝑠(𝜃)]𝑇 (2.11) 

 

𝒑𝑖  ≜ [𝑥𝑖  𝑦𝑖   𝑧𝑖]
𝑇  (2.12) 

 

By substituting Eqn. 2.2 and 2.10 into Eqn. 2.8, the result is as 

𝑦𝑖(𝑡) = 𝑠(𝑡)𝑒
−𝑗2𝜋𝒈𝑇𝑷𝑖

𝜆 + 𝑛(𝑡), 𝑖 = 1, 2 , …𝑀  
(2.13) 

 

From Eqn. 2.13, we can introduce array steering vector, 𝒂(𝜙, 𝜃) in Eqn. 2.14, that 

contains all the spatial characteristics of array.  

𝒂(𝜙, 𝜃) ≜

[
 
 
 
 
 
 

1

𝑒
−𝑗2𝜋𝑔𝑇𝑃1

𝜆

𝑒
−𝑗2𝜋𝑔𝑇𝑃2

𝜆

⋮

𝑒
−𝑗2𝜋𝑔𝑇𝑃𝑀−1

𝜆 ]
 
 
 
 
 
 

 

 

 

 

(2.14) 

 

So, by substituting Eqn. 2.14 into Eqn. 2.13 we get Eqn. 2.15 as, 

𝒚(𝑡) = 𝒂(𝜙, 𝜃)𝑠(𝑡) + 𝒏(𝑡),   𝑡 = 1, 2, …𝑁  (2.15) 

 

𝑁 is the snapshot number where the waveform is sampled above the Nyquist rate. For 

direction of arrival estimation, these samples are used and analyzed.  

Although, Eq. 2.14 is the single source case formulation, the model for multiple 

sources at directions (𝜙1, 𝜃1), … (𝜙𝐿 , 𝜃𝐿)  can be given as, 

 

𝒚(𝑡) = 𝑨(𝜙, 𝜃)𝒔(𝑡) + 𝒏(𝑡),   𝑡 = 1, 2, …𝑁  (2.16) 
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where 

𝑨(𝜙, 𝜃) ≜ [𝒂(𝜙1, 𝜃1) 𝒂(𝜙2, 𝜃2) … …  𝒂(𝜙𝐿 , 𝜃𝐿)] (2.17) 

 

𝑨(𝜙, 𝜃) is the array steering matrix that contains all the steering vectors for the 

multiple sources. Furthermore, in Eqn. 2.18, the parameters in Eqn. 2.16 and Eqn. 2.15 

are defined by showing their matrix sizes.  

𝒚(𝑡): 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟 (𝑀𝑥1) 

𝑨(𝜙, 𝜃): 𝑎𝑟𝑟𝑎𝑦 𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔 𝑚𝑎𝑡𝑟𝑖𝑥 (𝑀𝑥𝐿) 
𝒂(𝜙, 𝜃): 𝑎𝑟𝑟𝑎𝑦 𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔 𝑣𝑒𝑐𝑡𝑜𝑟 (𝑀𝑥1) 

𝒔(𝑡): 𝑠𝑜𝑢𝑟𝑐𝑒 𝑠𝑖𝑔𝑛𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟 (𝐿𝑥1) 

𝒏(𝑡): 𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑛𝑜𝑖𝑠𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 (𝑀𝑥1) 

𝑀:𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑛𝑠𝑜𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑎𝑟𝑟𝑎𝑦 

𝐿: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑛𝑔 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 

𝑁: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡𝑠 

 

 

 

(2.18) 

 

𝑨(𝜙, 𝜃) =  

[
 
 
 
 

1

𝑒
−𝑗2𝜋𝑔1

𝑇𝑃1,1

𝜆

⋮

𝑒
−𝑗2𝜋𝑔1

𝑇𝑃1,𝑀−1

𝜆

1

𝑒
−𝑗2𝜋𝑔2

𝑇𝑃2,1

𝜆

⋮

𝑒
−𝑗2𝜋𝑔2

𝑇𝑃2,𝑀−1

𝜆

⋯
⋯
⋮
⋯

1

𝑒
−𝑗2𝜋𝑔𝐿

𝑇𝑃𝐿,1

𝜆

⋮

𝑒
−𝑗2𝜋𝑔𝐿

𝑇𝑃𝐿,𝑀−1

𝜆 ]
 
 
 
 

 

 

 

(2.19) 

 

In Eqn. 2.19 array steering matrix is shown in detail where, 

𝒈𝑙 = [cos(𝜃𝑙)sin(𝜙𝑙)  sin(𝜃𝑙)sin(𝜙𝑙)   cos(𝜃𝑙)]
𝑇 (2.20) 

 

𝒑𝑙,𝑚 = [𝑥𝑙,𝑚  𝑦𝑙,𝑚  𝑧𝑙,𝑚]
𝑇

 (2.21) 

 

ULA Case 

By the definition of ULA, there are uniform, equally spacing between sensors in the 

array. Additionally, the sensors in the array are positioned only on one axis, otherwise 

the linearity specification could not be valid. The spacing between sensors are denoted 

as 𝑑. Consider 𝐿 = 1 single source and 𝑀, number of sensors in the ULA geometry 
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with equal spacing between them. By arranging Eqn. 2.14, array steering vector is 

obtained for 𝜙 =
𝜋

2
. 

𝒂(𝜃) = [1  𝑒
−𝑗2𝜋

𝜆
𝑑𝑠𝑖𝑛(𝜃)

  ⋯  𝑒
−𝑗2𝜋

𝜆
(𝑀−1)𝑑𝑠𝑖𝑛(𝜃)

]
𝑇

 
(2.22) 

 

In order to specify array steering vector in ULA uniquely, sensor phase difference 

should be equally less than π. By taking this into account, it is possible to compute the 

limits of the distance between the sensors in the array for an unambiguous array.  

2𝜋

𝜆
𝑑𝑠𝑖𝑛(𝜃) ≤ 𝜋 

(2.23) 

 

By eliminating 𝜋 terms, and arranging the inequality we get, 

𝑑𝑠𝑖𝑛(𝜃) ≤
𝜆

2
  (2.24) 

 

Since the value range of sinus is −1 ≤ 𝑠𝑖𝑛 (𝑥) ≤ 1, the distance between the sensors, 

𝑑, should be chosen equally less than 
𝜆

2
, in order to make the array steering vector 

unique for different angle of arrivals. This phenomena also corresponds for Shannon 

sampling theorem since, 

𝑓𝑠 =
𝑓𝑐𝑑𝑠𝑖𝑛(𝜃)

𝑐
⟹ 𝑓𝑠 ≤ 0.5 

(2.25) 

 

Unique array steering vector stands for an unambiguous array manifold. In other 

words, this is the condition for no spatial aliasing. 

Eqn. 2.24 is derived for ULA geometry with 𝑀 sensors and 𝐿 number of sources. It 

should be noted that, the steering vector has Vandermonde structure which is special 

for ULA. ULA geometry has perfect solution for coherent signals due to its 
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Vandermonde structure. Moreover, forward-backward spatial smoothing can be 

applied for Vandermonde array structures [19]. 

As a result of deriving the array steering vector for ULA, the array steering matrix can 

be easily shown in Eqn. 2.26.  

 

𝑨(𝜃) =  

[
 
 
 
 

1

𝑒
−𝑗2𝜋𝑑𝑠𝑖𝑛(𝜃1)

𝜆

⋮

𝑒
−𝑗2𝜋𝑑(𝑀−1)sin (𝜃1)

𝜆

1

𝑒
−𝑗2𝜋𝑑𝑠𝑖𝑛(𝜃2)

𝜆

⋮

𝑒
−𝑗2𝜋(𝑀−1)𝑑𝑠𝑖𝑛(𝜃2)

𝜆

⋯
⋯
⋮
⋯

1

𝑒
−𝑗2𝜋𝑑𝑠𝑖𝑛(𝜃𝐿)

𝜆

⋮

𝑒
−𝑗2𝜋(𝑀−1)𝑑𝑠𝑖𝑛(𝜃𝐿)

𝜆 ]
 
 
 
 

 

 

(2.26) 

 

2.2. Direction-Finding Algorithms 

2.2.1. General Information 

In this chapter, direction finding algorithms which are used in the thesis work are 

presented. Since DOA estimation has a wide usage in many areas, many different 

types of methods are derived. However, subspace-based methods are the most popular 

among them because of their robustness and low complexity. They are also referred 

as super resolution techniques. Top two subspace-base methods for DOA estimation 

are Multiple Signal Classification (MUSIC) [8-10] and Estimating Signal Parameter 

via Rotational Invariance Techniques (ESPRIT) [11, 12]. However, ESPRIT method 

is vulnerable for faulty sensor problems since it operates on a doublet structure, in 

other words it decomposes the sensor array into two sub-arrays. Therefore, MUSIC 

method is considered for faulty sensor problems. 

Subspace-based methods for DOA estimation basically have two partitions of the 

observed data such as noise and signal subspaces. By solving the optimization problem 

over the projection of the observed data onto signal or noise subspace, the estimation 

of DOAs can be done. 
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2.2.2. MUSIC Algorithm 

Multiple Signal Classification method is one of the most powerful methods in DOA 

estimation. There can be found many MUSIC-type estimation methods in the literature 

according to the desired goal for DOA estimation. Among these, two versions of 

MUSIC are frequently used in the thesis work. One of them is Spectral MUSIC and 

the other one is Root-MUSIC [20-21].  

 

2.2.2.1. Spectral MUSIC 

Spectral MUSIC is the most popular type of the MUSIC method family in DOA 

estimation. Spectral MUSIC algorithm uses the noise subspace and by projecting the 

observed data on the noise subspace, DOA estimations can be done. Basically it is a 

search algorithm, by searching all the angles in what range or resolution desired. As a 

result of being a search algorithm, MUSIC is not a fast algorithm, moreover 

computationally intense. However, its advantages make look the search algorithm 

disadvantages insignificant. Performance of DOA estimation, which is critical for an 

estimator, reaches the CRLB (Cramer Rao Lower Bound) [22] in ideal conditions. 

Ideal conditions stand for reaching infinite SNR value. Furthermore, one of the top 

advantages, Spectral MUSIC technique can be applied to any sensor geometry, 

without limits. Finally, Spectral MUSIC is a sub-optimum DOA estimation technique. 

So, in the following the DOA estimation based on Spectral MUSIC steps are 

presented. 

 

DOA Estimation based on Spectral MUSIC 

By remembering the signal model for ULA from previous chapter with 𝑀 sensors and 

multiple sources, as 𝐿 is the number of sources. 

𝒚(𝑡) =  𝑨(𝜃)𝒔(𝑡) +  𝒏(𝑡)  ,   𝑡 = 1, 2, …𝑁  (2.27) 
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where 𝑁 is the snapshot number. The array steering matrix is defined as Eqn. 2.28. 

𝑨(𝜃) = [𝒂(𝜃1) 𝒂(𝜃2) 𝒂(𝜃3)…   𝒂(𝜃𝐿)]  (2.28) 

 

By taking the covariance matrix of the received signal data 𝑦(𝑡) in Eqn. 2.27 

𝑹𝑦 = 𝐸[𝒚(𝑡)𝒚𝐻(𝑡)] = 𝑨(𝜃)𝒔(𝑡)𝒔𝐻(𝑡)𝑨𝐻(𝜃) + 𝒏(𝑡)𝒏𝐻(𝑡) (2.29) 

 

𝑹𝑠 = 𝐸[𝒔(𝑡)𝒔𝐻(𝑡)] = 𝜎𝑠
2𝑰 ,   𝐸[𝒏(𝑡)𝒏𝐻(𝑡)] =  𝜎𝑛

2𝑰  (2.30) 

 

In Eqn. 2.30, signal and noise powers are defined. By using these two powers, SNR 

can be computed as in Eqn. 2.31. 

𝑆𝑁𝑅 =
𝜎𝑠

2

𝜎𝑛
2
 

 

(2.31) 

By substituting Equations 2.29 and 2.30 we can rewrite the covariance matrix of the 

received signal as in Eqn. 2.32. 

𝑹𝑦 = 𝑨(𝜃)𝑹𝑠𝑨
𝐻(𝜃) + 𝜎𝑛

2𝑰 (2.32) 

 

After obtaining the covariance matrix of the observed data, it is divided into two 

partitions in order to obtain noise and signal subspace parameters. This division is 

known as eigen decomposition of the covariance matrix which is shown in Eqn. 2.33 

and 2.34.  

𝑹𝑦𝑮 = 𝑮𝝀 (2.33) 

 

𝑹𝑦  [

𝒈1

𝒈2

⋮
𝒈𝑀

]

𝑇

= [

𝒈1

𝒈2

⋮
𝒈𝑀

]

𝑇

[
 
 
 
 
 
𝜆1 0 0
0 ⋱ 0
0 0 𝜆𝐿

0

0
0 0 0
0 ⋱ 0
0 0 0]

 
 
 
 
 

 

 

 

(2.34) 
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𝒗 = [𝒈1  𝒈2  …𝒈𝑀]𝑇 (2.35) 

 

𝝀 = 𝑑𝑖𝑎𝑔{𝜆1, 𝜆2, … , 𝜆𝑀} (2.36) 

 

Above equations are valid for noise-free cases. In the presence of noise effect, noise 

contribution to the eigenvalues can be easily seen from Eqn. 2.37 by comparing with 

the noise-free case in Eqn. 2.34. Furthermore, the eigenvalues are added with noise 

variance 𝜎𝑛
2. 

𝝀 =

[
 
 
 
 
 
 
𝜆1 + 𝜎𝑛

2 0 0
0 ⋱ 0
0 0 𝜆𝐿 + 𝜎𝑛

2
0

0

𝜎𝑛
2 0 0

0 𝜎𝑛
2 0

0 0 𝜎𝑛
2]
 
 
 
 
 
 

 

(2.37) 

 

The eigenvalues can be sorted in descending way as, 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝐿 ≥ 𝜆𝐿+1 ≥

⋯ ≥ 𝜆𝑀. Moreover, eigenvectors are sorted for corresponding eigenvalues as Eqn. 

2.35. 

Number of 𝐿 eigenvalues, 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝐿, represent the eigenvalues of signal 

subspace. On the other hand, number of 𝑀 − 𝐿 eigenvalues, 𝜆𝐿+1 ≥ ⋯ ≥ 𝜆𝑀, 

represent the eigenvalues of noise subspace. It can also be seen from Eqn. 2.37 that 

noise subspace eigenvalues are consisted of only noise variances. Similar with 

eigenvalues, number of 𝐿 eigenvectors, 𝒈1, 𝒈2, … , 𝒈𝐿, represent the eigenvectors of 

signal subspace, number of 𝑀 − 𝐿 eigenvectors denote the noise subspace 

eigenvectors. 

By taking the noise subspace eigenvectors in Eqn. 2.38 and array steering matrix, 

𝑮 = [𝒈1, 𝒈2, … , 𝒈𝑀−𝐿] (2.38) 

 

MUSIC spectrum is obtained as in Eqn. 2.39. 
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𝑝𝑚𝑢𝑠𝑖𝑐(𝜃) =
1

𝑨𝐻(𝜃)𝑮𝑮𝐻𝑨(𝜃)
 

(2.39) 

 

Estimation of DOA’s can be achieved by searching through the angles that maximizes 

the cost function in Eqn. 2.39.  

 𝜃 = argmax
𝜃

1

𝑨𝐻(𝜃)𝑮𝑮𝐻𝑨(𝜃)
 

(2.40) 

 

In order to avoid ambiguities, search angles should be chosen in the range of [−
𝜋

2
,
𝜋

2
]. 

Moreover, the search angle range is found by taking into account the behavior of 

sin(𝜃) in the array steering matrix.   

 

Spectral MUSIC in practical applications 

 Compute the Sample Covariance Matrix (SCM) 

𝑹̂ =
1

𝑁
∑𝒚(𝑡)𝒚𝐻(𝑡)

𝑁

𝑡=1

 

(2.41) 

 

 Find the noise subspace eigenvectors by using the eigen decomposition of 

SCM 

𝑮̂ = [𝒈̂1, 𝒈̂2, … , 𝒈̂𝑀−𝐿] (2.42) 

 

 Solve the optimization problem by searching required angles in 𝜃, estimate 

DOA 

𝜃 = argmax
𝜃∈[−

𝜋
2
,
𝜋
2
]

1

𝑨𝐻(𝜃)𝑮̂𝑮̂𝐻𝑨(𝜃)
 

(2.43) 

 

2.2.2.2. Root-MUSIC 

Root-MUSIC is another class of MUSIC. Contrary of the Spectral MUSIC, Root-

MUSIC is not a search estimation method, so it is a fast and computationally basic 

method comparing with Spectral MUSIC. Performance comparison between the 
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Spectral-MUSIC and Root-MUSIC is similar, both of them reach the CRLB in ideal 

conditions. However, it is stated that Root-MUSIC is superior to the Spectral MUSIC 

estimation [23]. Moreover, Root-MUSIC is a sub-optimum DOA estimation method. 

Unfortunately, Root-MUSIC can be applied only for linear array geometries such as 

ULA & NLA. In this part, the estimation methods of Root-MUSIC for both ULA & 

NLA are presented.  

 

DOA Estimation based on Root-MUSIC for ULA 

Consider the received signal for ULA geometry with 𝑀 sensors and 𝐿 number of 

sources as in Eqn. 2.44. 

𝒚(𝑡) =  𝑨(𝜃)𝒔(𝑡) +  𝒏(𝑡)  ,   𝑡 = 1, 2, …𝑁 (2.44) 

 

The covariance matrix of the observed signal and its eigen decomposition steps are 

the same with the Spectrum MUSIC method. So, we have the same eigenvectors of 

the noise subspace and array steering matrix with Spectrum MUSIC.  

In Eqn. 2.45, the array steering vector for 𝑖th source is shown. 

𝒂(𝜃𝑖) = [1  𝑒
−𝑗2𝜋

𝜆
𝑑𝑠𝑖𝑛(𝜃𝑖)  …   𝑒

−𝑗2𝜋
𝜆

(𝑀−1)𝑑𝑠𝑖𝑛(𝜃𝑖)]
𝑇

 
(2.45) 

 

The array steering vector is defined as including z-parameter in Eqn. 2.46. 

𝒂(𝑧) ≜ [1  𝑧−1  𝑧−2  …  𝑧−(𝑀−1)]
𝑇
 (2.46) 

 

where 

𝑧 = 𝑒
𝑗2𝜋
𝜆

𝑑𝑠𝑖𝑛(𝜃)
 

(2.47) 

 



 

 

 

20 

 

By using the orthogonality of the noise subspace eigenvectors to array steering vector, 

a polynomial equation for Root-MUSIC is obtained in Eqn. 2.48. This is similar with 

the MUSIC Spectrum, beside of z-parameters.  

 

𝒂𝑇(𝑧−1)𝑮𝑮𝐻𝒂(𝑧) = 0, 𝑓𝑜𝑟 𝐿 < 𝑀 (2.48) 

 

Eqn. 2.48 is only valid when the number of sources, 𝐿, is less than number of sensors, 

𝑀. In noise-free case, the roots of the Eqn. 2.48 lie on the unit circle. However, the 

roots of the polynomial equation does not lie on the unit circle because of the noise 

contribution. Furthermore, we pick the 𝐿 nearest roots to the unit circle where they are 

inside the unit circle as well. By taking Eqn. 2.47 into consideration, DOA of 𝐿 sources 

can be estimated from the picked 𝐿 roots. 

𝜑𝑧𝑖̂
=

2𝜋𝑑

𝜆
sin(𝜃𝑖) 

(2.49) 

 

𝜃𝑖 = sin−1(
𝜑𝑧𝑖̂

2𝜋𝑑
𝜆)  (2.50) 

 

Root-MUSIC for ULA in practical applications 

 Compute the SCM 

𝑹̂ =
1

𝑁
∑𝒚(𝑡)𝒚𝐻(𝑡)

𝑁

𝑡=1

 

(2.51) 

 

 Find the noise subspace eigenvectors 

𝑮̂ = [𝒈̂1, 𝒈̂2, … , 𝒈̂𝑀−𝐿] (2.52) 

 

 Find the roots, 𝑧̂𝑖, of the spectrum polynomial 

𝒂𝑇(𝑧−1)𝑮̂𝑮̂𝐻𝒂(𝑧) = 0 (2.53) 

 

 Estimate the DOAs from the 𝐿(number of sources) nearest roots to the unit 

circle where they are inside the unit circle as well. 
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𝜃𝑖 = sin−1(
𝜑𝑧𝑖̂

2𝜋𝑑
𝜆)  (2.54) 

 

In order to avoid ambiguities, the roots can be eliminated to the first and the second 

quadrant of the Cartesian coordinate plane. In other words, the angle of estimated z-

parameter should be chosen in the range of 𝜑𝑧𝑖̂
∈ [−

𝜋

2
,
𝜋

2
]. 

 

DOA Estimation based on Root-MUSIC for NLA 

Different from ULA, Non-Uniform-Linear-Array geometry does not have equal 

spacings between the sensor elements in the array. Therefore, the array steering matrix 

model differs in NLA case. Furthermore, according to [21], demonstrating Root-

MUSIC with NLA results with better performance than ULA sensor array with using 

equal number of sensors. 

Consider ULA geometry with some missing sensors in Fig 2.2. 

 

Figure 2.2. Non-Uniform Linear Array Structure 

 

The array steering vector for 𝑖th source according to NLA geometry can be written as 

in Eqn. 2.55. 

𝒂𝑁𝐿𝐴(𝜃𝑖) = [𝑒
−𝑗2𝜋

𝜆
𝑐1𝑑𝑠𝑖𝑛(𝜃𝑖)  𝑒

−𝑗2𝜋
𝜆

𝑐2𝑑𝑠𝑖𝑛(𝜃𝑖)   …  𝑒
−𝑗2𝜋

𝜆
𝑐𝑀𝑑𝑠𝑖𝑛(𝜃𝑖)]

𝑇

 
(2.55) 
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𝒄 = [𝑐1, 𝑐2, … , 𝑐𝑀] (2.56) 

 

𝑐𝑚 from Eqn.2.56 is the integer values in terms of distance 𝑑 for existing sensors. 

Consider 𝒄 vector for M=6 case as, 

𝒄 = [0  2  5]  (2.57) 

 

The array steering vector of 𝑖th source is given as,  

𝒂𝑁𝐿𝐴(𝜃𝑖) = [1  𝑒
−𝑗4𝜋

𝜆
𝑑𝑠𝑖𝑛(𝜃𝑖)  𝑒

−𝑗10𝜋
𝜆

𝑑𝑠𝑖𝑛(𝜃𝑖)]
𝑇

 
(2.58) 

 

Because of NLA is constructed by eliminating some sensors in the ULA geometry, 

the sensor number 𝑀 is not valid for the array geometry. Number of sensors of NLA 

geometry has been denoted as 𝑀′ which 𝑀′ ≤ 𝑀 . The same orthogonality principle 

with Root-MUSIC for ULA is valid for Root-MUSIC for NLA, except the 𝒂(𝑧) term. 

𝒂𝑁𝐿𝐴
𝑇 (𝑧−1)𝑮𝑮𝐻𝒂𝑁𝐿𝐴(𝑧) =  0, 𝐿 < 𝑀′  (2.59) 

 

𝒂𝑁𝐿𝐴(𝑧) = [𝑧−𝑐1   𝑧−𝑐2   𝑧−𝑐3  …  𝑧−𝑐
𝑀′]𝑇 (2.60) 

 

Similar with the ULA case, roots of the polynomial do not lie on the unit circle because 

of the noise effect. By picking the 𝐿 nearest roots to the unit circle where they are 

inside the unit circle, DOA of 𝐿 sources can be estimated. Estimating DOAs from the 

chosen roots steps are the same with the Root-MUSIC ULA case.  

𝜑𝑧𝑖̂
=

2𝜋𝑑

𝜆
sin (𝜃𝑖) 

(2.61) 

 

𝜃𝑖 = sin−1(
𝜑𝑧𝑖̂

𝜆

2𝜋𝑑
) 

(2.62) 

 



 

 

 

23 

 

Root-MUSIC for NLA in practical applications 

 Compute the SCM  

𝑹̂ = ∑𝒚(𝑡)𝒚𝐻(𝑡)

𝑁

𝑡=1

 

(2.63) 

 

 Find the noise subspace eigenvectors 

𝑮̂ = [𝒈̂1, 𝒈̂2, … , 𝒈̂𝑀−𝐿] (2.64) 

 

 Get the polynomial and find the roots of it 𝑧̂𝑖 

 

𝒂𝑇(𝑧−1)𝑮̂𝑮̂𝐻𝒂(𝑧) = 0 (2.65) 

 

 Estimate the DOAs from the L nearest roots to the unit circle where they are 

inside the unit circle as well. 

𝜃𝑖 = sin−1(
𝑎𝑛𝑔(𝑧̂𝑖)

2𝜋𝑑
𝜆)  (2.66) 

 

Similar with the ULA case, in order to avoid ambiguities, the roots can be eliminated 

to the first and the second quadrant of the Cartesian coordinate plane. In other words, 

the angle of estimated z-parameter should be chosen in the range of 𝑎𝑛𝑔(𝑧̂𝑖) ∈

[−
𝜋

2
,
𝜋

2
]. 

 

2.2.2.3. G-MUSIC Algorithm 

G-MUSIC is a form of weighted MUSIC estimation method that uses a different 

optimization problem than Spectral MUSIC, Eqn. 2.39. G-MUSIC method has been 

recently suggested as a result of investigation of finite snapshot situations that can be 

done better in the general asymptotic regime [24]. The asymptotic regime stands for 

where 𝑀,𝑁 → ∞,
𝑀

𝑁
= 𝑐 where 𝑐 is a constant greater than zero (𝑀 >  𝑁). Similar 

with the previous chapters, 𝑀 is the number of sensors in the array and  𝑁 is the 

number of snapshots. Moreover, according to a statistical comparison between G-
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MUSIC and MUSIC [25], in case of closely spaced DOAs, G-MUSIC could 

consistently separate however MUSIC fails. The motivation for using G-MUSIC 

method is that, MUSIC-based DOA estimator appears to be inconsistent in the general 

asymptotic regime [26], although G-MUSIC based DOA estimates stated to be 

consistent in the general asymptotic regime for random array sensor probabilities 𝑝 ∈

(0,1) [27]. Consistent DOA estimations for random array statement is directly related 

with the problem investigated in the thesis work. Therefore, G-MUSIC DOA-based 

estimation method is utilized in the random array problem simulations in order to 

compare the performance of the proposed algorithm. 

 

DOA Estimation based on G-MUSIC 

As it is stated before, G-MUSIC solves different optimization problem rather than 

Spectral MUSIC’s. However, the steps for the MUSIC and G-MUSIC before the 

minimization (optimization) step are the same. After sorting the eigenvalues in 

descending way Eqn. 2.67 is obtained as, 

𝜆1 ≥ 𝜆2 ≥ ⋯𝜆𝐿 ≥ 𝜆𝐿+1 ≥ ⋯ ≥ 𝜆𝑀 (2.67) 

 

𝑀 is the number of sensors in the array and 𝐿 is the source number. The eigenvectors 

corresponding to 𝜆1 ≥ 𝜆2 ≥ ⋯𝜆𝐿 are represented as signal subspace eigenvectors 𝑺 =

[𝒔1, 𝒔2, … 𝒔𝐿] and corresponding to 𝜆𝐿+1 ≥ ⋯ ≥ 𝜆𝑀 eigenvalues are denoted as noise 

subspace eigenvectors 𝑮 = [𝒈1, 𝒈2, …𝒈𝑀−𝐿]. Then, 𝜇 and 𝑣 terms are obtained as the 

functions of sample eigenvalues in Eqn.2.68 and 2.69. 

𝜇(𝑠) =  ∑
𝜆𝑚+1

𝜆𝑠 − 𝜆𝑚+1
−

𝑘𝑚+1

𝜆𝑠 − 𝑘𝑚+1

𝑀−1

𝑚=𝐿

 

(2.68) 

𝑣(𝑚) = ∑
𝜆𝑖

𝜆𝑚+1 − 𝜆𝑖
−

𝑘𝑖

𝜆𝑚+1 − 𝑘𝑖

𝐿

𝑖=1

 

(2.69) 
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where 𝑘1 ≥ 𝑘2 ≥ ⋯ ≥ 𝑘𝑀 are the real valued solution of Eqn. 2.70. The real valued 

solutions of Eqn. 2.70 are sorted in descending order. 

 

∑
𝜆𝑚

𝜆𝑚 − 𝒌
=

𝑀

𝑐
= 𝑁

𝑀

𝑚=1

 

(2.70) 

 

where 𝑐 =
𝑀

𝑁
. 

In Eqn. 2.71, G-MUSIC cost function is given by using 𝜇 and 𝑣 weighting terms. 

𝑝𝑔𝑚𝑢𝑠𝑖𝑐(𝜃) = 𝑨𝐻(𝜃)(∑(1 + 𝜇(𝑠))𝒔𝑠𝒔𝑠
∗

𝐿

𝑠=1

− ∑ 𝑣(𝑚)𝒈𝑚−𝐿+1𝒈𝑚−𝐿+1
∗

𝑀−1

𝑚=𝐿

)𝑨(𝜃) 
(2.71) 

 

Estimation of DOA’s can be achieved by taking the 𝜃 angles that maximizes the G-

MUSIC spectrum 𝑝𝑔𝑚𝑢𝑠𝑖𝑐(𝜃).  

𝜃 =  argmax
𝜃 ∈[−

𝜋
2
,
𝜋
2
]

𝑝𝑔𝑚𝑢𝑠𝑖𝑐(𝜃) (2.72) 

 

G-MUSIC in practical applications 

 Compute the Sample Covariance Matrix  

𝑹̂ = ∑𝒚(𝑡)𝒚𝐻(𝑡)

𝑁

𝑡=1

 

(2.73) 

 

 Find the noise and signal subspace eigenvectors 

𝑺̂ = [𝒔̂1, 𝒔̂2, … 𝒔̂𝐿] 
 

(2.74) 

𝑮̂ = [𝒈̂1, 𝒈̂2, … 𝒈̂𝑀−𝐿] (2.75) 
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 Compute the 𝜇 and 𝑣 terms 

𝜇̂(𝑠) =  ∑
𝜆̂𝑚+1

𝜆̂𝑠 − 𝜆̂𝑚+1

−
𝑘̂𝑚+1

𝜆̂1 − 𝑘̂𝑚+1

𝑀−1

𝑚=𝐿

 

(2.76) 

𝑣(𝑚) =
𝜆̂1

𝜆̂𝑚+1 − 𝜆̂1

−
𝑘̂1

𝜆̂𝑚+1 − 𝑘̂1

 
(2.77) 

 

 Solve the optimization problem by searching required angles in 𝜃 

𝜃 =  argmax
𝜃 ∈[−

𝜋
2
,
𝜋
2
]

𝑝𝑔𝑚𝑢𝑠𝑖𝑐(𝜃) (2.78) 
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CHAPTER 3  

 

3. DETERMINISTIC APPROACH FOR FAULTY SENSOR DETECTION 

 

3.1. Problem Definition 

In this chapter, the deterministic approach for faulty sensor problem is introduced. 

Moreover, the proposed detection of faulty sensor method is explained in detail. Then, 

the performance results of the proposed method are presented. 

Detecting faulty sensors during operation of a sensor array is important since there are 

cases where the sensor malfunction due to several reasons. In addition, faulty sensor 

existence in the sensor array leads to DOA performance degradation. In the thesis 

work, Micro Electro Mechanical Systems (MEMS) microphones are assumed as 

faulty sensors and special case of them are examined. 

Faulty Sensor Problem in MEMS Microphones 

Micro Electro Mechanical Systems opened up new opportunities for microphone array 

construction and use. Especially digital MEMS microphones have several advantages 

compared to electret condenser microphones. They meet the SWAP-C (size, weight, 

power and cost) requirements in several applications. In fact, they have been recently 

used to construct massive microphone arrays which enable us to generate sharp 

beamformers for the isolation of closely spaced sound sources. Hence, MEMS 

microphones are used for DOA estimation applications [13-14].  

One of the problems of digital MEMS microphone array production is the current 

feeding for the clock and data channels. When the number of microphones is large, 

the amount of current required to drive the clock and data channels increases. 

Furthermore the number of data buffer elements, which are used to latch the data and 

clock signals in order to transfer them distances exceeding 10 cm increases. One 

approach to alleviate this problem is to produce the MEMS microphones in doublets 
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on Printed Circuit Board (PCB) which share the same clock and data channels. Typical 

stereo MEMS microphone circuit can be seen in Fig 3.1. In this case, microphone data 

share the data channel at the positive and negative cycles of the common clock signal 

[15].  In this respect, each microphone should take the data channel at its own cycle. 

In other words, the microphones are configured to separate their output signal by using 

different edge of the clock signal, positive and negative cycles of clock. If one of the 

microphones is faulty, it cannot take the data channel and the data latched by the other 

microphone is still available for read. Hence, when the microphone channels are read, 

two microphone signals became exact copies of each other.  

 

Figure 3.1. Typical digital MEMS Microphone application circuit 

 

Although producing pairwise MEMS microphones are advantageous, this leads 

detection of faulty sensors in the array problem. 
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In Fig 3.2, the timing diagram of the MEMS microphone is shown where output 

channel reads the microphone data by using the positive or negative cycle of the clock 

signal.   

 

 

 

 

Figure 3.2. Timing Diagram of MEMS microphone 

 

Faulty sensor detection can be done physically, through measuring the data channels 

of pairwise MEMS microphones with the help of an oscilloscope. In order to 

implement this task, the array elements should be uninstalled, preventing the operation 

of the sensor array. However, the desired goal is to determine the faulty sensors 

without a physical intervention to the sensor array and continue to operate. Hence, our 

motivation is to detect the faulty sensors by using a known DOA source during 

operation of the sensor array. 
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3.2. Problem Solution 

In order to detect the faulty and operating sensors, DOA-based approach is 

investigated without solving the problem by uninstalling the sensors. This can be 

achieved by using a known DOA angle source.   

In previous chapters, the signal model is presented when there is no faulty sensor in 

the array. When there are faulty sensors in the sensor array, signal model has to be 

modified. Consider one sensor is faulty and not operating in ULA structure like in Fig 

3.3. Number of sensors in the array is, 𝑀 =4, and assuming one of the first pairwise 

sensors is faulty. The known source direction angle is denoted as 𝜃. 

 

 

Figure 3.3. M=4 Sensor Array with Faulty Sensor 

 

The distance between the sensors are chosen as 𝑑 =
𝜆

2
, maximum element spacing 

without facing ambiguities. For modeling the faulty sensors, operating sensor vector 

is defined as in Eqn. 3.1 and 3.2. 

 

𝑐𝑖 =  {
1,                 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑠𝑒𝑛𝑠𝑜𝑟
0, 𝑛𝑜𝑡 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑠𝑒𝑛𝑠𝑜𝑟

 
(3.1) 

 

𝒄 = [𝑐1  𝑐2 …  𝑐𝑀]𝑇 (3.2) 
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In Eqn. 3.1 and 3.2, 𝑐𝑖 is an integer that corresponds to the number of the operating 

elements. 𝒄 vector is the operating sensor vector. Operating sensor vector denotes 

which sensor is operating or not. Note that, 𝒄 vector is the vector of true outcomes. In 

order to eliminate faulty sensors from the array steering vector, T matrix is defined. 𝑻 

matrix is obtained by taking the diagonal matrix of 𝑐𝑖, 𝑑𝑖𝑎𝑔{𝑐𝑖}, and then removing 

the 𝑖th rows corresponding to the faulty sensors in the array. T matrix is used remove 

the channel corresponding to the faulty sensors in the array. This is required in order 

have an appropriate array output and covariance matrix as in Eqn. 3.3.  

𝒂̃(𝜃) = 𝑻𝒂(𝜃) (3.3) 

 

An example of  𝒄 and 𝑻 matrices according to Fig 3.3 are shown in Eqn. 3.4 and 3.5.  

𝒄 = [1  0  1  1]𝑇 (3.4) 

 

𝑻 = [
1 0 0 0
0 0 1 0
0 0 0 1

] 
(3.5) 

 

𝒂(𝜃) = [1  𝑒
−𝑗2𝜋

𝜆
𝑑𝑠𝑖𝑛(𝜃)

  𝑒
−𝑗4𝜋

𝜆
𝑑𝑠𝑖𝑛(𝜃)

  𝑒
−𝑗6𝜋

𝜆
𝑑𝑠𝑖 𝑛(𝜃)

 ]
𝑇

 
(3.6) 

 

𝒂̃(𝜃) = [1   𝑒
−𝑗4𝜋

𝜆
𝑑𝑠𝑖𝑛(𝜃)

  𝑒
−𝑗6𝜋

𝜆
𝑑𝑠𝑖 𝑛(𝜃)

 ]
𝑇

 
(3.7) 

 

As a result of the true array steering vector in Eqn. 3.7, the number of array sensors 

are decreased. So, operating number of sensors is denoted as 𝑀′ where  𝑀′ ≤ 𝑀. 𝑀 

is the number of sensors in the array.  

When the true array steering vector, 𝒂̃(𝜃), is substituted in the array output, 𝒚(𝑡), the 

true array output is obtained as, 
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𝒚̃(𝑡) =  𝒂̃(𝜃)𝒔(𝑡) + 𝒏(𝑡) , 𝑡 = 1, 2, …𝑁 (3.8) 

 

However, the true operating sensor vector, 𝒄, is unknown in real life applications. 

Since it is assumed that only one sensor of the pairwise MEMS microphones is faulty, 

same sensor signal s observed for both of the sensor outputs. This generates a case 

where it is required to find which of the microphones is faulty. This problem can be 

resolved by considering all the possible cases of faulty sensors. Hence, we generate 

the possible operating sensor vectors, 𝒄̃. 

Consider the true operating sensor vector as 𝒄 = [1  0  1  1]𝑇 from Eqn. 3.4. Since it 

is known that the faulty sensor exist in the first pairwise sensors, the possible operating 

sensor vectors are as, 

𝒄̃𝟏 = [1  0  1  1]𝑇  (3.9) 

𝒄̃𝟐 = [0  1  1  1]𝑇  (3.10) 

 

Possible array steering vectors, 𝒂̃𝑖(𝜃), are obtained by using the possible operating 

sensors vectors and the corresponding 𝑻̃𝒊 matrix as in Eqn. 3.3.  

𝒂̃1(𝜃) = 𝑻̃1𝒂(𝜃) (3.11) 

𝒂̃2(𝜃) = 𝑻̃2𝒂(𝜃) (3.12) 

 

Beside of the example in Fig 3.3, more than one sensor can be faulty. This brings in 

more possible 𝒄̃𝑖, 𝑻̃𝑖 and 𝒂̃𝑖 vectors and matrices. Possibility number can be expressed 

as, 2𝑘. 𝑘 is the number of faulty sensors. 

In order to find the true configuration of the sensor array and the faulty sensors, DOA 

estimations, 𝜃𝑖, are found for each possible array steering vectors by using the known 

DOA of the source and  Spectral MUSIC algorithm. DOA estimations are obtained 

for each possible array steering vector, 𝑎̃𝑖, as in Eqn. 3.14 by searching through the 

angles that minimizes the MUSIC cost function given below, 
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𝑝𝑚𝑢𝑠𝑖𝑐,𝑖(𝜃) =
1

𝒂̃𝑖
𝐻(𝜃)𝑮𝑮𝐻𝒂̃𝑖(𝜃)

 
(3.13) 

 

𝜃𝑖 = argmax
𝜃

𝑝𝑚𝑢𝑠𝑖𝑐,𝑖(𝜃) (3.14) 

 

 Since the direction angle of the source is known, DOA performances can be computed 

from DOA estimations for each case. Therefore, the probability of true detection 

(PTD) of each sensor array configuration, 𝒄̃𝑖, can be obtained for all trials which 

defines the confidence values of the possible array configurations according to the 

known source angles. PTD values are found by comparing the DOA absolute errors 

of possible configurations in Eqn. 3.15, where the minimum absolute error among the 

possible configurations considered as the true detection.   

  

𝐸𝑖 = |𝜃𝑖 −  𝜃| (3.15) 

 

As a result of computing the PTD’s for each possible configurations where the true 

detection corresponds to the minimum absolute error, the best matching possible array 

configuration, 𝒄̂, is determined by picking the maximum PTD value. Furthermore, it 

is expected that the best matching possible array configuration corresponds to the true 

operating sensor vector, 𝒄 vector. This leads to the detection of faulty sensors 

corresponding to the zero values in the 𝒄̂ by using DOA-based estimation.  

The important aspect of the deterministic approach is determining the best angular 

region of the known source according to the sensor array. Because of the linear array 

structure and the faulty sensor, the DOA performance will not be the same in every 

source angle. In order to find the best angular region of the source angle, the features 

of ULA structure should be considered. Although element spacing is taken as  𝑑 =

𝜆/2 for ULA structure, the array structure with faulty elements has no longer the 

specifications of ULA. Therefore, the array structure is no longer has the ability of 

uniqueness for different angle of arrivals. In other words, instead of the right 
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configuration, the wrong possibility configurations may find the known source DOA 

correctly.  

The angular sectors for the best faulty sensor detection can be identified by 

considering the correlations between the true array steering matrix with itself and the 

false array steering matrix. This leads us to the correlation graphs of array steering 

vectors for the search angles of MUSIC spectrum.  

Define,  

𝜷(𝜃1, 𝜃2) ≜  
|𝒂𝐻(𝜃1)𝒂(𝜃2)|

𝑀
 

(3.16) 

 

where 𝜃1 is the true angle for the true array steering vector and 𝜃2 is the search angle 

for the correlated array steering vector. 

Let 𝑀 = 6 and 𝒂̃1 denotes the true array steering vector and 𝒂̃2 is the false possible 

array steering vector, corresponding to 𝒄̃1 = [1  1  0  1  1  1]𝑇 and other wrong 

possible operating sensor vector 𝒄̃2 = [1  1  1  0  1  1]𝑇 with one faulty sensor in the 

array. Correlations are obtained as in Eqn. 3.17 and 3.18 and the multi-dimensional 

plots of these correlations are presented in Fig. 3.4 and 3.5.  

𝜷𝑡𝑟𝑢𝑒(𝜃1, 𝜃2) =  
|𝒂̃𝐻

1
(𝜃1)𝒂̃1(𝜃2)|

𝑀 − 1
 

(3.17) 

 

𝜷𝑓𝑎𝑙𝑠𝑒(𝜃1, 𝜃2) =  
|𝒂̃𝐻

1
(𝜃1)𝒂̃2(𝜃2)|

𝑀 − 1
 

(3.18) 
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Figure 3.4. Correlation of True Array Steering Vector 

  
Figure 3.5. Correlation between True and False Array Steering Vectors 

In Fig 3.4 it is observed that the correlation of the true array steering vector matches 

with the scanned steering vector at those points where the search angle is close to the 

true angle at the diagonal terms of the two dimensional graphs. In addition, true array 

steering vector does not match exactly with the scanned steering vector at the diagonal 

-90 and 90 degrees where DOA performance is poor at this angular region. Moreover, 

at the boresight of the array (0 degrees), matching search angles region corresponds 

to exactly with the correct angles where DOA performance is best. In addition, there 

are no ambiguities since no largely separated angles in 𝜷𝑡𝑟𝑢𝑒(𝜃1, 𝜃2) graph. However, 

in Fig 3.5, as expected, the diagonal terms of the correlation between the true and false 

array steering vectors results nearly the same characteristics at the diagonal between -

20 and 20 degrees. As a result, at the boresight of the antenna array, all possible array 

configurations operate good enough to find the true DOAs where it is not 
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recommended to position the known source in these angles according to the array 

structure, especially in low SNR cases. Also, ambiguities might be faced by using the 

wrong array steering vector. Therefore, the best angular region for faulty sensor 

detection can be found corresponding to the highest values in Fig. 3.4 which is at the 

same time corresponding to the lowest values in Fig. 3.5. This problem can be casted 

as maximizing the following cost function, namely,  

max
𝜃2

𝜷𝑡𝑟𝑢𝑒(𝜃1, 𝜃2) + (1 − 𝜷𝑓𝑎𝑙𝑠𝑒(𝜃1, 𝜃2))  (3.19) 

 

Above problem does not require an optimization procedure and can be solved by 

considering all the possible cases easily. 𝜷𝑡𝑟𝑢𝑒(𝜃1, 𝜃2) and 𝜷𝑓𝑎𝑙𝑠𝑒(𝜃1, 𝜃2) are 

normalized to one and Fig. 3.6 shows the cost function in (3.19) for a single faulty 

sensor. The highest values in Fig. 3.6 correspond to the angles where the detection of 

faulty sensor can be made with the highest probability. If only the diagonal of this 

figure is considered, Figure 3.7 is obtained. 

 

Figure 3.6. Correlation Cost Function 
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Figure 3.7. Diagonal terms of Correlation Cost Function 

As it is shown in Fig. 3.7, the best source DOA angle is between -79 degrees and -90 

degrees as well as their positive values. Since ULA resolution performance decreases 

towards the end-fire, the best source DOA angle in case of a single faulty sensor is 

79 degrees for ULA under ideal conditions. In other words, SNR is assumed to be 

sufficiently high. If SNR is decreased, then the effect of array resolution becomes a 

factor and the best angle is shifted towards broadside. 
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CHAPTER 4  

 

4. RESULTS OF DETERMINISTIC METHOD FOR FAULTY DETECTION 

 

In this part of thesis work, several simulations are done to show the performance of 

the proposed method as well as the dependence on the source DOA angle. Different 

scenarios are implemented including different SNR values, configurations of the 

faulty sensors and sensor element numbers. In all scenarios the array structures are 

assumed to be ULA and maximum element spacing 𝑑 =
𝜆

2
. The DOA angle of the 

source is assumed to be known. Furthermore, the known source is rotated around the 

array in one degree resolution given in Fig. 4.1. At each emission point, array output 

is received by the array elements and then processed by the proposed approach to 

obtain the PTD curves. As a result, the response of the proposed approach for different 

source DOAs are evaluated. The noise vector 𝒏(𝑡) is assumed as an additive Gaussian 

white noise with zero mean 𝐸[𝒏(𝑡)] = 0. Moreover, noise and signal are assumed to 

be uncorrelated. The simulations are demonstrated in Matlab environment by 

performing 1000 Monte Carlo trials at each scenario.  

The simulation results are divided into two parts as Scenario 1 and 2. In Scenario 1, 

only one faulty sensor exists when the number of sensor in the array, M is changed. In 

this case, two values for M are considered namely, M=4 and M=6 cases. In Scenario 

2, there are two faulty sensors in the array and the number of sensors is M=6. Finally, 

the simulation results are shown as PTD percentages vs. Source angles of the true 

operating sensor 𝒄, for the corresponding scenario and number of elements in the 

array.   
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Figure 4.1. Simulation Model 

 

4.1. Scenario 1 

4.1.1. 𝑴 = 𝟒 

In the case of 𝑀 = 4 array, the results are the same for choosing the faulty sensor from 

the first and second pairwise sensors due to the symmetry of the array. Hence, the 

results are given for the faulty sensor existence in the first pairwise sensors. By taking 

into account the possibility of the faulty sensor existence in the pairwise sensors, 

simulations are presented for two cases. 

The parameters for scenario 1, 𝑀 = 4 for both versions are given in Table 4.1. 

Table 4.1. Parameters for Scenario 1, M=4 

Parameters Values 

𝑀 (Sensor number) 4 

𝒄 (operating sensor vector, Case 1) [1  0  1  1]𝑇 

𝒄 (operating sensor vector, Case 2) [0  1  1  1]𝑇 

L (Source Number) 1 
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SNR (dB) [-10,30] 

SNR Resolution (dB) 10 

# of Monte Carlo runs 1000 

Snapshots 100 

Spectral MUSIC Search Angle Resolution (deg) 1 

Spectral MUSIC Search Angle [−
𝜋

2
, 
𝜋

2
] 

 

The results for Scenario 1 M=4 case is given in Fig. 4.2 and 4.3 respectively for Case 

1 and Case 2. As it is expected, PTD gets worse as the SNR is decreased. The distinct 

feature of these figures is that there is a range of DOA angles where PTD preserves 

the highest values. It is observed that, for greater SNR values than -10dB, PTD values 

are %100 for all source angles meaning of faulty sensor detection is valid for a range 

of DOA angles. When the SNR value is equal to -10dB, the PTD values are low 

comparing to higher SNR values. However, for the SNR -10dB value, the faulty sensor 

detection is successful since the PTD values are higher than %80 when the source 

angle is between 30 and 70 degrees or -30 and -70 degrees. On the contrary, if the 

source is at the broadside or 0 degrees and at the end-fire or 90, -90 degrees, the faulty 

sensor cannot be found accurately. Note that, when the source is at the broadside, all 

the sensors have the same signals. Therefore, it is not possible to find the faulty sensor 

for this type of observation since faulty sensor channel is the replicate of the healthy 

sensor channel in our case. In case of end-fire source, array resolution is not good and 

DOA estimation for ULA is the worst. Hence the accuracy of the faulty sensor 

detection decreases. While at high SNR, there is a large range of angular sector with 

accurate detection, for low SNR, the faulty sensor can be detected more accurately 

between -30 and -70 degrees as well as 30 and 70 degrees.  
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Figure 4.2. PTD of Scenario 1, 𝑀 = 4, Case 1 

  

Figure 4.3. PTD of Scenario 1, 𝑀 = 4, Case 2 
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4.1.2. 𝑴 = 𝟔 

In the case of 𝑀 = 6 array, there is only one faulty sensor in the array. This generates 

a symmetric faulty scenario. For example, faulty sensor existence in the first pairwise 

sensors generates the same result with faulty sensor existence in the third pairwise 

sensors. So, the results are given for the faulty sensor exists in the first & second 

pairwise sensors. Case 1 & 2 are for the faulty sensor existence in the first pairwise 

sensors and Case 3 & 4 correspond to the faulty sensor existence in the second 

pairwise sensors. 

The parameters for scenario 1, 𝑀=6 for all versions are given in Table 4.2. 

Table 4.2. Parameters for Scenario 1, M=6 

Parameters Values 

𝑀 (Sensor number) 6 

𝒄 (operating sensor vector, Case 1) [1  0  1  1  1  1]𝑇 

𝒄 (operating sensor vector, Case 2) [0  1  1  1  1  1]𝑇 

𝒄 (operating sensor vector, Case 3) [1  1  0  1  1  1]𝑇 

𝒄 (operating sensor vector, Case 4) [1  1  1  0  1  1]𝑇 

L (Source Number) 1 

SNR (dB) [-30,10] 

SNR Resolution (dB) 10 

# of Monte Carlo runs 1000 

Snapshots 100 

Spectral MUSIC Search Angle Resolution (deg) 1 

Spectral MUSIC Search Angle [−
𝜋

2
, 
𝜋

2
] 

 

The results of Scenario 1 simulations, PTD percentages of the true array 

configurations has been shown in Fig. 4.4-4.7. It is observed that, as the number of 
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sensors increases, angular region where the faulty sensor cannot be detected accurately 

at the broadside increases. As it is seen from Fig. 4.6, when the source is between -20 

and 20 degrees, PTD values are significantly low. This is due to the fact that, the 

observed output for this angular sector is not sufficient for the resolution of the faulty 

sensor. Moreover, as the SNR is lowered, the outcome becomes random due to the 

noise affect. 

As a result for Scenario 1 M=6, the best faulty sensor detection angular region is 

between 40 and 80 degrees or -40 and -80 degrees.  

 

Figure 4.4. PTD of Scenario 1, 𝑀 = 6, Case 1 

-80 -60 -40 -20 0 20 40 60 80

Source Angles (Degree)

0

10

20

30

40

50

60

70

80

90

100

P
T

D
 (

%
)

PTD vs. Source Angles

SNR=-10dB

SNR=0dB

SNR=10dB

SNR=20dB

SNR=30dB



 

 

 

45 

 

 

Figure 4.5. PTD of Scenario 1, 𝑀 = 6, Case 2 

 

Figure 4.6. PTD of Scenario 1, 𝑀 = 6, Case 3 
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Figure 4.7. PTD of Scenario 1, 𝑀 = 6, Case 4 

4.2. Scenario 2 

In Scenario 2, for 𝑀 = 6 array, two faulty sensors are existed in two pairwise sensor. 

Similar with the previous scenario, the symmetry of the array geometry is taking into 

account for the results. Hence, the results are given for the faulty sensor exists in the 

first & second and first & third pairwise sensors. 

The parameters for Scenario 2, 𝑀=6 for all cases are given in Table 4.3. 

Table 4.3. Parameters for Scenario 2, M=6 

Parameters Values 

𝑀 (Sensor number) 6 

𝒄 (operating sensor vector, Case 1) [1  0  1  0  1  1]𝑇 

𝒄 (operating sensor vector, Case 2) [1  0  0  1  1  1]𝑇 

𝒄 (operating sensor vector, Case 3) [0  1  1  0  1  1]𝑇 
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𝒄 (operating sensor vector, Case 4) [0  1  0  1  1  1]𝑇 

𝒄 (operating sensor vector, Case 5) [1  0  1  1  0  1]𝑇 

𝒄 (operating sensor vector, Case 6) [1  0  1  1  1  0]𝑇 

𝒄 (operating sensor vector, Case 7) [0  1  1  1  1  0]𝑇 

𝒄 (operating sensor vector, Case 8) [0  1  1  1  0  1]𝑇 

L (Source Number) 1 

SNR (dB) [-30,10] 

SNR Resolution (dB) 10 

# of Monte Carlo runs 1000 

Snapshots 100 

Spectral MUSIC Search Angle Resolution (deg) 1 

Spectral MUSIC Search Angle [−
𝜋

2
, 
𝜋

2
] 

 

For Scenario 2 results, the PTD graphs of true array configurations are presented in 

Fig 4.7-4.14. First 4 graphs are according to the faulty sensors exist in the first and 

second pairwise sensors and the following graphs are for the first and third pairwise 

sensors have the faulty sensors. It is observed that, PTD of Case 7 has the best faulty 

sensor detection performance at the boresight region of the sensor array. This is 

because the true array configuration for Case 7 has equal spacing between operating 

sensor elements, acting like a 𝑀 = 4 ULA. So, the true array configuration has the 

best DOA performance in the boresight region comparing with other possible array 

configurations. This phenomenon does not exist for other cases.  

Compared to the single faulty sensor case in Fig. 4.6 and 4.7, the angular sector at the 

broadside where the PTD is low increases in Fig. 4.8. However, for Scenario 2, the 

best angular region for faulty sensor detection is almost similar to Scenario 1 results, 

between 40 and 80 degrees of -40 and -80 degrees.  
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Figure 4.8. PTD of Scenario 2, 𝑀 = 6, Case 1 

 

Figure 4.9. PTD of Scenario 2, 𝑀 = 6, Case 2 
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Figure 4.10. PTD of Scenario 2, 𝑀 = 6, Case 3 

 

Figure 4.11. PTD of Scenario 2, 𝑀 = 6, Case 4 
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Figure 4.12. PTD of Scenario 2, 𝑀 = 6, Case 5  

 

Figure 4.13. PTD of Scenario 2, 𝑀 = 6, Case 6 
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Figure 4.14. PTD of Scenario 2, 𝑀 = 6, Case 7 

 

Figure 4.15. PTD of Scenario 2, 𝑀 = 6, Case 8 
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CHAPTER 5  

 

5. FAULTY SENSOR DETECTION AND IMPROVED DF ESTIMATION FOR 

RANDOM ARRAYS 

 

5.1. Problem Definition 

In this chapter, the random array problem for faulty sensor is presented and examined. 

In random array problem, all of the sensors in the array are assumed to be faulty with 

an associated probability. In other words, the sensors are either operating or not 

operating according to their operating probability. In the case of the sensor is not 

operating, output signal is observed as zero. Hence, the received data in random array 

problem can be named as randomly missing data. In the related work for random array 

in [16], each sensor has the same operating probability. However we enable that each 

sensor can have different operating possibilities.  

Additionally, in random array approach, the operating sensor configuration may 

differs according to number of snapshots. For example, for a specific number of 

snapshots the operating sensor configuration remains the same, however for another 

same number of snapshots it may differs. This is due to the on/off status of sensors 

changes in a block wise manner. So, detection of faulty sensor can be done for only 

specific amount of snapshots. As a result, faulty sensors can be detected for specific 

amount of snapshots in order to prevent the loss of DOA performance. 

In deterministic approach, a known DOA source is used in order to detect the faulty 

MEMS sensors which are produced as pairwise sensors. However, in random array 

approach, each sensor in the array could be faulty according to the operating 

probability so proposed method for deterministic approach is not applicable. 

Nevertheless, a different method is proposed for faulty detection in random arrays.  

In order to derive the signal model for random array, ULA signal model and operating 

probability is used. By considering operating probability 𝑝𝑖 and not-operating 



 

 

 

54 

 

probability 1 − 𝑝𝑖 for each sensor, the operating sensor vector 𝒖  is obtained in Eqn. 

5.1 and 5.2. 

 

𝑢𝑖 = {
1, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑖

          0,         𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑝𝑖 
 

(5.1) 

 

𝒖 = [𝑢1, 𝑢2, … , 𝑢𝑀]𝑇  

 

(5.2) 

 

The operating sensor vector is used to create the true array steering vector. The true 

array steering vector is shown in Eqn. 5.3.  

𝒂̃(𝜃𝑖) =  𝒂(𝜃𝑖)  ⊙ 𝒖 (5.3) 

 

In Eqn. 5.3 ⊙ represents the Hadamard (element-wise) product. Then, in Eqn. 5.4, 

array steering matrix containing array steering vectors for each source angle is given. 

𝑨̃(𝜃) = [𝒂̃(𝜃1) 𝒂̃(𝜃2) 𝒂̃(𝜃3)…  𝒂̃(𝜃𝐿)] (5.4) 

 

It can be seen that, the operating probability redefines the array steering vectors, as 

well as the signal output and covariance matrix in the end. So, the observed signal 

output becomes as in Eqn. 5.5. 

𝒚̃(𝑡) = 𝑨̃(𝜃)𝒔(𝑡) + 𝒏(𝑡) , 𝑡 = 1, 2, …𝑁 (5.5) 

 

𝒔(𝑡) is the signal waveform with zero mean 𝐸[𝒔(𝑡)] = 0 and signal power 

𝐸[𝒔(𝑡)𝒔𝐻(𝑡)] = 𝜎𝑠
2𝑰𝑀. The noise is an additive Gaussian white noise with zero mean 

𝐸[𝒏(𝑡)] = 0 and noise power 𝐸[𝒏(𝑡)𝒏𝐻(𝑡)] = 𝜎𝑛
2𝑰𝑀 covariance matrix. Moreover, 

noise and signal is assumed to be uncorrelated. Furthermore, the Signal-to-Noise 

(SNR) can be expressed as  
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𝑆𝑁𝑅 =  
𝑝𝑜𝑤𝑒𝑟 𝑜𝑓 𝑠𝑖𝑔𝑛𝑎𝑙

𝑝𝑜𝑤𝑒𝑟 𝑜𝑓 𝑛𝑜𝑖𝑠𝑒
=

𝜎𝑠
2

𝜎𝑛
2
 

(5.6) 

The important aspect of the random array approach is that, the on/off status of sensors 

changes in a block wise manner. For example, for the first 𝑁1 snapshots the operating 

sensor vector remains the same as 𝒖𝟏 = [1  0  1  1]𝑇 for 4-element array and for the 

next 𝑁1 snapshots the operating sensor vector changes as 𝒖𝟐 = [1  1  1  0]𝑇. 

The covariance matrix is computed as, 

𝑹 = 𝐸[𝒚̃(𝑡)𝒚̃𝐻(𝑡)] = 𝑨̃(𝜃)𝒔(𝑡)𝒔𝐻(𝑡)𝑨̃𝐻(𝜃) + 𝒏(𝑡)𝒏𝐻(𝑡) (5.7) 

 

𝑹 = 𝜎𝑠
2𝑨̃(𝜃)𝑨̃𝐻(𝜃) + 𝜎𝑛

2𝑰𝑀 (5.8) 

 

The array steering matrix in Eqn. 5.8 contains all steering vectors for 𝐿 sources as in 

Eqn.2.17.  

Derivation of the signal subspace eigenvalues formulation is critical for random array 

case since it is used in the proposed method for faulty sensor detection. Hence, the 

covariance matrix formulation is derived in Eqn. 5.9 for single source case 𝐿 = 1. 

 

𝑹 =  

[
 
 
 
𝜎𝑠

2𝑢1
2|𝑎̃1|

2 + 𝜎𝑛
2

𝑢1𝑢2𝑎̃2𝑎̃1
𝐻

𝑢1𝑢2𝑎̃1𝑎̃2
𝐻

𝜎𝑠
2𝑢2

2|𝑎̃2|
2 + 𝜎𝑛

2

…
…

𝑢1𝑢𝑀𝑎̃1𝑎̃𝑀
𝐻

𝑢2𝑢𝑀𝑎̃2𝑎̃𝑀
𝐻

⋮
𝑢1𝑢𝑀𝑎̃𝑀𝑎̃1

𝐻
⋮

𝑢2𝑢𝑀𝑎̃2𝑎̃𝑀
𝐻

⋱
…

⋮
𝜎𝑠

2𝑢𝑀
2 |𝑎̃𝑀|2 + 𝜎𝑛

2]
 
 
 
 

 

(5.9) 

where 𝒂̃(𝜃) = [𝑎̃1  𝑎̃2  …  𝑎̃𝑀]𝑇. 

Eigenvalues of the covariance matrix are obtained as, 

𝑹 = 𝑽𝜦𝑽𝐻 , 𝜦 = 𝑑𝑖𝑎𝑔{𝜆1, 𝜆2, … , 𝜆𝑀}  (5.10) 
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∑𝜆𝑖

𝑀

𝑖=1

= 𝜎𝑠
2 ∑𝑢𝑖

2|𝑎𝑖|
2

𝑀

𝑖=1

+ 𝑀𝜎𝑛
2 

(5.11) 

 

Since 𝐿 = 1, single source,  𝜆2 = ⋯ = 𝜆𝑀 = 𝜎𝑛
2, by considering the eigenvalues are 

in a descending order. Moreover, |𝑎̃𝑖|
2 = 1. By rewriting Eqn. 5.11it is obtained that, 

𝜆1 =  𝜎𝑠
2 ∑𝑢𝑖

2

𝑀

𝑖=1

+ 𝜎𝑛
2 = 𝜎𝑠

2𝑀′ + 𝜎𝑛
2 

(5.12) 

where 𝑀′ is the number of operating sensors which 𝑀′ ≤ 𝑀. 

For multiple source case, 𝐿 > 1, the covariance matrix is given in Eqn. 5.13. 

Moreover, by applying the same steps with the single source case, Eqn. 5.14 is 

obtained. 

𝑹 = 

[
 
 
 
 
 
 
 
 
 
𝜎𝑠

2𝑢1
2 ∑|𝑨̃𝑖,1|

2

𝐿

𝑖=1

+ 𝜎𝑛
2

𝑢1𝑢2 ∑𝑨̃𝑖,2𝑨̃𝑖,1
∗

𝐿

𝑖=1

𝑢1𝑢2 ∑𝑨̃𝑖,1𝑨̃𝑖,2
∗

𝐿

𝑖=1

𝜎𝑠
2𝑢2

2 ∑|𝑨̃𝑖,2|
2

𝐿

𝑖=1

+ 𝜎𝑛
2

…
…

𝑢1𝑢𝑀 ∑𝑨̃𝑖,1𝑨̃𝑖,𝑀
∗

𝐿

𝑖=1

𝑢2𝑢𝑀 ∑𝑨̃𝑖,2𝑨̃𝑖,𝑀
∗

𝐿

𝑖=1

⋮

𝑢1𝑢𝑀 ∑𝑨̃𝑖,𝑀𝑨̃𝑖,1
∗

𝐿

𝑖=1

⋮

𝑢2𝑢𝑀 ∑𝑨̃𝑖,𝑀𝑨̃𝑖,2
∗

𝐿

𝑖=1

⋱
…

⋮

𝜎𝑠
2𝑢𝑀

2 ∑|𝑨̃𝑖,𝑀|2
𝐿

𝑖=1

+ 𝜎𝑛
2

]
 
 
 
 
 
 
 
 
 

 

 

(5.13) 

 

∑𝜆𝑖

𝑀

𝑖=1

= 𝜎𝑠
2 ∑𝑢𝑖

2 ∑|𝑨𝑖,𝑙|
2

𝐿

𝑙=1

𝑀

𝑖=1

+ 𝑀𝜎𝑛
2 

(5.14) 

 

In Eqn. 5.14, the left side can be arranged since 𝜆𝐿+1 = 𝜆𝐿+2 = ⋯ = 𝜆𝑀 = 𝜎𝑛
2, by 

considering the eigenvalues are in a descending order. Moreover, |𝑨𝑖,𝑙|
2

= 1. By 

rewriting Eqn. 5.14 it is obtained that, 
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∑𝜆𝑖

𝐿

𝑖=1

= 𝜎𝑠
2𝐿 ∑𝑢𝑖

2

𝑀

𝑖=1

+ 𝐿𝜎𝑛
2 = 𝜎𝑠

2𝑀′𝐿 + 𝜎𝑛
2𝐿 = 𝐿(𝜎𝑠

2𝑀′ + 𝜎𝑛
2) 

(5.15) 

 

As it can be seen by comparing Eqn. 5.15 and 5.12, sum of the multiple case signal 

subspace eigenvalues turns out to be equal to 𝐿 times of the single source signal 

subspace eigenvalue. Therefore, the problem is to find the faulty sensors given the 

array output or covariance matrix. In the following part, the problem is solved by using 

the signal subspace formulation above and MUSIC-based DOA estimation methods.  

 

5.2. Problem Solution 

The aim is to improve DOA estimation performance that degraded due to faulty 

sensors, randomly missing data. There are related works for DOA estimation with 

randomly missing data, for example MUSIC performance analysis with randomly 

missing data [17].  Moreover, it is stated that MUSIC algorithm is not M, N-consisted 

in [26] where it fails to provide consistent estimates in the general asymptotic regime. 

Therefore, G-MUSIC algorithm is introduced in [24] with its performance analysis 

with random linear array in [27]. The purpose of applying G-MUSIC method is that, 

consistent DOA estimation is valid without detecting faulty sensors in the array. In 

addition, MUSIC and G-MUSIC randomly missing data studies use the whole sensor 

array without distinguishing operating and not operating sensors. However, by 

detecting and eliminating the faulty sensors, better DOA performance is achievable 

where our motivation lies on.  

In the following proposed method for random array approach steps are introduced. 

5.2.1. Step1: Estimating signal and noise powers 

Since the sum of signal subspace eigenvalues has been known from Eqn. 5.12 and 

5.15, both for single and multiple source cases, number of operating sensors can be 
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found by estimating the SNR value. However, the signal and noise powers must be 

found in order to estimate an accurate SNR value.  

By taking the diagonal elements of the received signal covariance matrix in Eqn. 5.9, 

the output signal powers can be found for each sensor. Since some sensors do not 

operate at all according to the associated operating probability, the channel signals for 

them are composed of only noise. According to the sensor operating or faulty status, 

the output signal power for each sensor is equal to either only noise power or sum of 

signal and noise power as in Eqn. 5.16. 

 

𝑹𝑖𝑖 =  𝐸[𝒚𝑖(𝑡) ∗ 𝒚𝑖
∗(𝑡)] = 𝜎𝑠

2𝑢𝑖
2|𝑎̃𝑖|

2 + 𝜎𝑛
2 (5.16) 

 

Detection of faulty sensors can be made through comparing the received signal powers 

for each sensor since output power of operating sensors are greater than faulty sensors’ 

as in Eqn. 5.16. It possible to distinguish the received powers according to their 

amplitudes by using a threshold value. However, for different SNR values the 

threshold value must differ. Hence, instead of using a threshold method, k-means 

projective clustering method [28] which seeks to minimize the average squared 

distance between points in the same cluster, is applied. K-means clustering method is 

fast, effective and has the ability to choose cluster dimension. Furthermore, the 

received signal powers are divided into two partitions as received signals of operating 

and not-operating sensors by using k-means clustering method. However, for low 

SNR, k-means clustering method would not work properly since the power values are 

not easily distinguished. So, some modifications have been added to the clustering 

step.  

5.2.2. Step2: Estimating number of operating sensors  

In addition to the output of the clustering step, SNR is found by using the estimates of 

operating and not-operating sensors. The distinguished operating sensor received 

signals from k-means clustering output are denoted as 𝒚𝑜𝑝 and not-operating received 
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signals as 𝒚𝑛𝑜𝑝. By taking the average of the received signals of operating and not 

operating sensors in Eqn.5.17 and 5.18, the signal and noise powers are found.  

 

𝜎̂𝑛
2 =

1

𝑁 ∗ 𝑀𝑛𝑜𝑝
∑ ∑𝒚𝑛𝑜𝑝,𝑖(𝑡) ∗ 𝒚𝑛𝑜𝑝,𝑖

∗ (𝑡)

𝑁

𝑡=1

𝑀𝑛𝑜

𝑖=1

 

(5.17) 

𝜎̂𝑠
2 =

1

𝑁 ∗ 𝑀𝑛𝑜
∑∑𝒚𝑜𝑝,𝑖(𝑡) ∗ 𝒚𝑜𝑝,𝑖

∗ (𝑡)

𝑁

𝑡=1

𝑀𝑜

𝑖=1

− 𝜎̂𝑛
2 

(5.18) 

𝑆𝑁𝑅 =
𝜎̂𝑠

2

𝜎̂𝑛
2
 

(5.19) 

 

where 𝑀𝑜𝑝 refers to the number of operating sensors and 𝑀𝑛𝑜𝑝 refers to the number 

of faulty, not operating sensors found from the clustering step. 

In Eqn. 5.20 and 5.21, the possible number of operating sensors can be found by using 

the eigenvalue formulations derived in Eqn. 5.12. 

 

𝑀̂1
′
= ⌈argmin

𝑀′
𝜆1 − (𝑀′𝜎𝑠

2 + 𝜎𝑛
2)⌉ , 𝑀′ ∈ [1,𝑀] 

(5.20) 

𝑀̂2
′ = ⌊argmin

𝑀′
𝜆1 − (𝑀′𝜎𝑠

2 + 𝜎𝑛
2)⌋,        𝑀′ ∈ [1,𝑀] 

(5.21) 

 

Since the solution of the same cost function in Eqn. 5.20 and 5.21 is not an integer 

value, both solutions are rounded up and down. Rounded solutions are considered as 

possible number of operating sensors, 𝑀̂1
′ , 𝑀̂2

′ . Rounding operation also enables us to 

prevent wrong estimations as possible as it can. It should be noted that, especially in 

low SNR cases, taking only the rounded up estimation of the minimization solution, 

do not provide efficient performances.  
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5.2.3. Step3: Constructing possible array configurations 

By using the estimates of the 𝑀̂′values, the possible sensor array configurations can 

be constructed with using all permutations of operating sensor vector. For example, 

consider a 𝑀 = 4 sensor array with first and the third sensors are faulty. The estimates 

for the operating sensor numbers are 2 & 3. The possible array steering matrices are 

constructed as Eqn. 5.22 by using the possible operating sensor vectors in Eqn. 5.23. 

𝒂̃𝑖 = 𝒂 ⊙ 𝒖̃𝑖  (5.22) 

 

𝒖̃1 = [1  1  0  0]𝑇 
𝒖̃2 = [1  0  1  0]𝑇 
𝒖̃3 = [1  0  0  1]𝑇 
𝒖̃4 = [0  0  1  1]𝑇 
𝒖̃5 = [0  1  0  1]𝑇 
𝒖̃6 = [0  1  1  0]𝑇 
𝒖̃7 = [0  1  1  1]𝑇 
𝒖̃8 = [1  0  1  1]𝑇 
𝒖̃9 = [1  1  0  1]𝑇 
𝒖̃10 = [1  1  1  0]𝑇 

 

 

 

 

 

 

(5.23) 

Where the actual 𝒖 vector is 𝒖 = [0  1  0  1]𝑇. 

Number of possible array configurations can be found 𝑃𝑢 = ( 𝑀
𝑀̂1

′) + ( 𝑀
𝑀̂2

′) as according 

to the two minimum solutions of the minimization of the cost in Eqn. 5.20 and 5.21. 

 

5.2.4. Step4: Detection of Faulty Sensors and DOA Estimation 

In this part of the proposed method, both Root-MUSIC and Spectral MUSIC are used 

in order to comparing the possible array configurations DOA outputs to estimate the 

correct one. The reason for using both Root and Spectral MUSIC, is to have less 

computation in high performances. Although it is possible to use only one of methods 

among the Spectral and Root-MUSIC, it leads us to computational or performance 

problems.  
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In Root-MUSIC application step, all the possible array steering matrices, 𝒂̃𝑖’s, are 

used in order to estimate the DOAs respectively. Since there may be faulty, not 

operating sensors, Root-MUSIC for NLA is used which is presented in Chapter 2. At 

the end, the DOAs for each possible array configuration will be estimated as 𝜃𝑟𝑜𝑜𝑡,𝑖. 

 

𝜃𝑟𝑜𝑜𝑡,𝑖 = sin−1(
𝜑𝑧̂𝑖

𝜆

2𝜋𝑑
) 

(5.24) 

  

In the following, the correct array configuration is detected, resulting with faulty 

sensors detection for specific amount of snapshots 𝑁. DOA estimates of Root-MUSIC 

for each possible array configurations are substituted in MUSIC spectrum formulation 

in Eqn. 5.25. Since the best DOA estimation must have the highest MUSIC cost value, 

DOA estimate among the possibilities which has the maximum cost is chosen as the 

correct one where the true array configuration is the corresponding 𝒖̂ vector. 

Furthermore, faulty sensors can be detected, where they are represented as 0 (zero) 

values in the 𝒖̂’s. 

𝑝𝑚𝑢𝑠𝑖𝑐,𝑖(𝜃𝑟𝑜𝑜𝑡,𝑖) =
1

𝑨𝐻(𝜃𝑟𝑜𝑜𝑡,𝑖)𝑮𝑮𝐻𝑨(𝜃𝑟𝑜𝑜𝑡,𝑖)
 

(5.25) 

 

𝜃 = max
𝑖

|𝑝𝑚𝑢𝑠𝑖𝑐,𝑖(𝜃𝑟𝑜𝑜𝑡,𝑖)| (5.26) 

 

Detection of the faulty sensors, in other words correct array configuration estimation 

can be done by using the roots of the Root-MUSIC polynomial equation. This can be 

achieved by comparing the distances of the estimate roots to the unit circle for each 

possible array configuration and taking the closest one to the unit circle. However, 

DOA performance of using only Root-MUSIC for random array approach is not good 

as the proposed algorithm performance. Furthermore, detection of faulty sensors can 
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be established by using only Spectral MUSIC either. Although the performance will 

be the same with the proposed method performance, computational complexity will 

grow ending with a slower algorithm.  

 

Special Case: All Sensors Operating 

Since each sensor’s fault is associated with probability, it is possible that all sensors 

are in operating mode according to the value of the probability. In the proposed 

method, the operating and not-operating sensors are founded by using k-means 

clustering algorithm. Although the clustering procedure is for distinguishing the 

received signal powers to find the operating and faulty sensors, when all sensors are 

operating clustering output could not be correct since it divides the received signal 

powers into two clusters according to power levels. Nevertheless, the modification 

step after the k-means clustering solves the problem.  

After k-means clustering step, signal and noise powers are estimated in the proposed 

method. Since the received signal for each sensor contains both signal and noise 

power, the estimated powers will be not correct according to false clustering operating 

status output. The estimated noise power is computed higher than it should be, 

therefore signal power is computed less than the right ones in Eqn. 5.17 and 5.18. 

Computation steps are presented in Eqn. 5.27 and 5.28. 

 

𝜎̂𝑛
2 = 𝜎𝑛

2 + 𝜎𝑛
2−∈ (5.27) 

𝜎̂𝑠
2 = 𝜎𝑠

2 + 𝜎𝑛
2 − 𝜎̂𝑛

2 =∈ (5.28) 

 

where ∈ is positive infinitesimal quantity and the value varies according to the 

snapshot number and SNR value. The noise power term is computed slightly smaller 

than the received signal power due to the clustering outputs based on received signal 

power. Since the estimated signal power is computed as a very small quantity, the 
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outputs of Eqn. 5.20 and 5.21 will be equal to 𝑀 and 𝑀 − 1 respectively. As a result, 

even though estimating false signal and noise powers, number of operating sensors 

could be computed correctly especially in high SNR values.  

 

Detection of Faulty Sensors and Improved DOA Algorithm In Practical 

Applications 

 Compute the SCM  

𝑹̂ =
1

𝑁
∑𝒚̃(𝑡)𝒚̃𝐻(𝑡)

𝑁

𝑡=1

 

(5.29) 

 

 Apply k-means clustering method to the diagonal terms of SCM in order to 

find operating and not-operating sensors by clustering the received signal 

powers from SCM 

 

𝑑𝑖𝑎𝑔{𝑹̂𝑖𝑖} =  𝜎𝑠
2𝑝𝑖

2|𝑎𝑖|
2 + 𝜎𝑛

2 (5.30) 

 

 Find signal, noise powers and SNR from clustering outputs 

𝜎̂𝑛
2 =

1

𝑁 ∗ 𝑀𝑛𝑜
∑ ∑𝒚̃𝑛𝑜𝑝,𝑖(𝑡) ∗ 𝒚̃𝑛𝑜𝑝,𝑖

∗ (𝑡)

𝑁

𝑡=1

𝑀𝑛𝑜

𝑖=1

 

(5.31) 

𝜎̂𝑠
2 =

1

𝑁 ∗ 𝑀𝑜
∑∑𝒚̃𝑜𝑝,𝑖(𝑡) ∗ 𝒚̃𝑜𝑝,𝑖

∗ (𝑡)

𝑁

𝑡=1

𝑀𝑜

𝑖=1

− 𝜎̂𝑛
2 

(5.32) 

𝑆𝑁𝑅̂  =
𝜎̂𝑠

2

𝜎̂𝑛
2
 

(5.33) 

 

 Find the signal and noise subspace eigenvalues and eigenvectors by using the 

eigen decomposition of SCM 

𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝐿 ≥ 𝜆𝐿+1 ≥ ⋯ ≥  𝜆𝑀 (5.34) 

𝑮̂ = [𝒈̂1, 𝒈̂2, … , 𝒈̂𝐿] (5.35) 
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 Find two estimates of number of operating sensors that gives minimum two 

costs in the below. 

 

𝑀̂1
′
= argmin

𝑀′
⌈𝜆1 − (𝑀′𝜎𝑠

2 + 𝜎𝑛
2)⌉   (5.36) 

𝑀̂2
′ = argmin

𝑀′
⌊𝜆1 − (𝑀′𝜎𝑠

2 + 𝜎𝑛
2)⌋   (5.37) 

 

 According to the number of operating sensor estimates, 𝑀𝑖̂
′
, construct the 

possible array steering matrices configurations, 𝒂̃𝑖. 

 

 Estimate DOAs with Root-MUSIC algorithm for each possible array 

configuration. 

𝜃𝑟𝑜𝑜𝑡,𝑖 = sin−1(
𝜑𝑧̂𝑖

𝜆

2𝜋𝑑
) 

(5.38) 

 

 Substitute the estimated DOAs with Root-MUSIC method into the Spectral 

MUSIC cost function. 

𝑝𝑚𝑢𝑠𝑖𝑐,𝑖(𝜃𝑟𝑜𝑜𝑡,𝑖) =
1

𝑨𝐻(𝜃𝑟𝑜𝑜𝑡,𝑖)𝑮𝑮𝐻𝑨(𝜃𝑟𝑜𝑜𝑡,𝑖)
 

(5.39) 

 

 Compare the Spectral MUSIC costs for each possible array configuration, find 

the minimum value respectively with the array configuration and estimated 

DOA.  

𝜃 = max
𝑖

|𝑝𝑚𝑢𝑠𝑖𝑐(𝜃𝑟𝑜𝑜𝑡,𝑖)| (5.40) 

 

 Detect the faulty sensors from the estimated DOA corresponding 𝒖̂ 
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CHAPTER 6  

 

6. RESULTS OF FAULTY SENSOR DETECTION AND IMPROVED DF 

ESTIMATION FOR RANDOM ARRAYS 

 

In this part of the thesis, results for the random array approach have been given. In the 

simulations, the improved estimation method is compared with other DOA estimation 

algorithms in performance criteria. Furthermore, the comparisons are done for 

different scenarios, probability values, snapshots and sensor element numbers. In the 

given graphs, the DOA estimation RMSE (Root Mean Square Error) values are 

compared for different DOA methods and PTD of faulty sensor detection graphs for 

the proposed method are presented. 

The comparison has been made through firstly with Spectral and Root-MUSIC with 

the correct operating sensors. This is taken as a reference since in the random array 

problem operating sensors are not known. Furthermore, Spectral MUSIC and G-

MUSIC are used for comparison where these methods are using the whole array 

sensors without the knowledge of the operating array steering vectors. Lastly, the 

proposed estimation method is demonstrated. 

The simulations for random array approach divides into two parts, single source case 

and multiple source cases. 

The description of the legends of the graphs are as: 

MUSIC Real Configuration: Spectral MUSIC with correct operating sensors 

Root MUSIC Real Conf: Root-MUSIC with correct operating sensors 

MUSIC RLA: Spectral MUSIC by using all sensors in random linear array 

G-MUSIC RLA: G-MUSIC by using all sensors in random linear array 

Improved RLA: Proposed algorithm for RLA, hybrid Spectral and Root-MUSIC 
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Operating possibilities for each sensor is represented as 𝑝𝑖. In the case of equal 

probabilities for each sensor is considered, operating possibility is shown as  𝑝. If each 

sensor has different operating possibility, it is denoted by operating probability vector, 

𝒖.   

 

6.1. Single Source Case 

 

6.1.1. 𝑴 = 𝟔 

First consider 𝑀 = 6, and the all sensors are operating as probability of 𝑝 = 0.8. 

Element spacing between the sensors in the array is chosen as 𝑑 =
𝜆

10
 in order to 

preventing aliasing problem by fitting the array in 
𝜆

2
. Angle of the source is chosen as 

25 in the simulations. 

Table 6.1. Single Source Case, 𝑀=6, p=0.8 

Parameters Values 

𝑀 (Sensor number) 6 

𝑝 (Operating sensor possibility) 0.8 

L (Source Number) 1 

SNR (dB) [-5,10] 

SNR Resolution (dB) 5 

# of Monte Carlo runs 1000 

𝑁 (Snapshots) 10, 50, 100 

Spectral MUSIC Search Angle Resolution (deg) 0.1  

AOA of Source Angle 25 

Spectral MUSIC Search Angle [0º, 90º] 
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The results are given in Fig 6.1 – 6.3 and presenting the DOA estimation performances 

of the methods for different number of snapshots and SNR values in the manner of 

RMS Error in degrees. Additionally, the PTD percentages of proposed method faulty 

sensor detection for various SNR and number of snapshots are shown in Fig 6.4 Since 

two methods, Spectral and Root-MUSIC with real array configuration, using the 

correct operating sensors in their DOA estimation problem, performances are 

optimum that can be taken as a reference. Although, the proposed method does not 

use the correct array configuration, method’s performance converges to the optimum 

as snapshot and SNR gets higher. This is due to PTD of faulty sensor detection reaches 

%100 at 0dB SNR, meaning of detecting the faulty sensor in every trial, for 50 and 

100 snapshots as it can be observed from Fig 6.4. On the contrary of the proposed 

method, MUSIC and G-MUSIC methods are using all sensors in the array for DOA 

estimation. Therefore, they do not achieve optimum performances. Also, MUSIC and 

G-MUSIC algorithm performances are nearly the same. It should be noted that, the 

proposed method has significantly better DOA performance than MUSIC and G-

MUSIC for 𝑀=6, 𝑝=0.8 case. Additionally, the proposed method can detect the faulty 

sensor and sensors accurately according to the SNR and number of snapshots. 
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Figure 6.1. RMSE vs SNR, 𝑀=4, p=0.8, N=10 

 

Figure 6.2. RMSE vs SNR, 𝑀=4, p=0.8, N=50 
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Figure 6.3. RMSE vs SNR, 𝑀=4, p=0.8, N=100 

 

Figure 6.4. PTD of Faulty Sensor Detection vs SNR, 𝑀=4, p=0.8 
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6.1.2. 𝑴 = 𝟔 Different Sensor Possibilities 

In this case, each sensor in the array has different operating possibility that operating 

sensor vector becomes as, 𝒖 = [0.8  0.9  0.7  0.6  0.8  0.9]𝑇. Element spacing 

between the sensors in the ULA array is chosen as 𝑑 =
𝜆

10
 in order to prevent the 

aliasing problem by fitting the array in 
𝜆

2
. The source angle is 25º similar with the 

previous case. 

Table 6.2. Single Source Case, 𝑀=6, 𝒖 = [0.8  0.9  0.7  0.6  0.8  0.9]𝑇  

Parameters Values 

𝑀 (Sensor number) 6 

𝒖 (Operating sensor possibility vector) [0.8  0.9  0.7  0.6  0.8  0.9]𝑇 

L (Source Number) 1 

SNR (dB) [-5,10] 

SNR Resolution (dB) 5 

# of Monte Carlo runs 1000 

𝑁 (Snapshots) 10, 50, 100 

Spectral MUSIC Search Angle Resolution (deg) 0.1 

AOA of Source Angle 25 

Spectral MUSIC Search Angle [0º, 90º] 

 

Different operating probabilities for each sensor enables us to show the robustness 

ability of the proposed method. Since the problem formulation is according to the 

number of operating sensors, giving different probabilities for each sensor does not 

affect the performance of the proposed method. Results of RMSE performance graphs 

are given in Fig 6.5-6.7 with comparing the methods. Even in low SNR value and 

number of snapshots, improved method has better performance than MUSIC and G-
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MUSIC for 𝑀=6, 𝐮 = [0.8  0.9  0.7  0.6  0.8  0.6]T case. Due to the detection of faulty 

performance for high SNR values in Fig 6.8, RMSE values of the improved method 

converge to the optimum Root and Spectral MUSIC methods estimations with correct 

array configuration. However, similar with the previous case, MUSIC and G-MUSIC 

RLA performances are worse than the proposed method, for all SNR and snapshot 

values. 

 

 

Figure 6.5. RMSE vs SNR, 𝑀=6, Each sensor Diff. Prob., N=10 
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Figure 6.6. RMSE vs SNR, 𝑀=6, Each sensor Diff. Prob., N=50 

 

Figure 6.7. RMSE vs SNR, 𝑀=6, Each sensor Diff. Prob., N=100 
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Figure 6.8. PTD of Faulty Sensor Detection vs SNR, 𝑀=6, Each sensor Diff. Prob. 

 

 

6.2. Multiple Source Case 

In multiple source scenario, the AOA of the sources are assumed to be at 20º and 70º. 

Number of sensors in the array is 𝑀=8, and all sensors are operating with 𝑝𝑖=0.8 

possibility. Element spacing between the sensors in the array is chosen as 𝑑 =
𝜆

2
. Since 

two source exist, total RMSE is computed by taking the RMS of two DOA estimation 

RMSE values.  

Table 6.3. Multiple Source Case, 𝑀=8, p=0.8 

Parameters Values 

𝑀 (Sensor number) 8 

𝑝 (Operating sensor possibility) 0.8 
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L (Source Number) 2 

SNR (dB) [-5,10] 

SNR Resolution (dB) 5 

# of Monte Carlo runs 1000 

𝑁 (Snapshots) 10, 50, 100 

Spectral MUSIC Search Angle Resolution (deg) 0.1 

AOA of Source Angle 20, 70 

Spectral MUSIC Search Angle [0º, 90º] 

 

 

The results of multiple source case are presented in Fig 6.10-6.13. For the multiple 

source case, proposed method RMSE performance is observed to be better than 

MUSIC and G-MUSIC RLA method performances. Similar with the previous 

simulation results, as SNR goes higher the performance of improved method reaches 

the Spectral and Root-MUSIC Real Configuration performances. Different from the 

single case results, MUSIC and G-MUSIC RLA RMSE performances are achieving 

real configuration results around 10dB SNR. This is due to, MUSIC and G-MUSIC 

use the whole array structure and as much as the number of sensors in the array 

increases their RMSE values are decreasing. Consequentially, the proposed method is 

applicable for both single and multiple source cases with better performance results 

than related studies for randomly missing data. Finally, faulty sensor detection 

accuracy for multiple source case is similar with the single source case.  



 

 

 

75 

 

 

Figure 6.9. RMSE vs SNR, Multiple Source Case, 𝑀=8, p=0.8, N=10 

 

Figure 6.10. RMSE vs SNR, Multiple Source Case, 𝑀=8, p=0.8, N=50 
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Figure 6.11. RMSE vs SNR, Multiple Source Case, 𝑀=8, p=0.8, N=100 

 

Figure 6.12. PTD of Faulty Sensor Detection vs SNR, Multiple Source Case, 𝑀=8, p=0.8 
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CHAPTER 7  

7. CONCLUSIONS 

 

In this thesis, two different problems are considered, namely the deterministic faulty 

sensors and random faulty sensors. In deterministic faulty sensors case, a special 

sensor array composed of MEMS microphones is investigated. MEMS microphones 

are produced on PCB’s in such a way that two microphones share the same data 

channel. These microphones are configured to separate their output signal from the 

common data channel by using different edge of the clock signal, positive and negative 

cycles of clock. If one of the microphones is faulty, it cannot take the data channel and 

the data latched by the other microphone is still available for read. Hence when the 

microphone channels are read, two microphone signals became exact copies of each 

other. Hence, detection of faulty sensors in MEMS microphones without a physical 

intervention becomes a major problem. This thereby, leads us to propose a new 

method for determining faulty sensors by using a DOA known source. DOA known 

source enables us to compare the possible operating array configurations DOA 

performances by computing their PTD values, where the minimum absolute error 

among the possible configurations considered as true detection. According to the PTD 

values, the best matching one corresponds to the correct array configuration, resulting 

in detecting the faulty sensors. In the thesis work, detecting faulty sensors 

performances according to the DOA of known source is examined. In Chapter 4, the 

simulation results are presented with different scenarios, such as different SNR, 

known DOA source angles and sensor arrays to perform the abilities of the proposed 

method. As a result, the proposed method can find the faulty sensor or sensors 

accurately even in low SNR depending on the source position with respect to the array. 

Moreover, best angular region of the source with respect to the array is also presented 

in the results. Furthermore, the faulty sensor problem and detecting faulty sensors by 

using a DOA known source for MEMS microphones are reported for the first time in 

the literature. 
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In the second problem of the thesis, random faulty sensors are investigated. For the 

related problem, sensors in the array considered as stochastic live/faulty operation 

with an unknown probability for each sensor at any time. Random faulty sensors lead 

to randomly missing data with performance loss in DOA estimation applications. 

Related studies to the randomly missing data problem suggest a consistent DOA 

estimator by using the whole sensors in the array, without detecting the faulty ones. 

However, our motivation for randomly missing data problem is to detect the faulty 

sensors and achieve better DOA performance than the related studies. To achieve this 

goal, random sensor array features are examined and a new method is proposed. The 

results are presented in Chapter 6 for different scenarios, such as different SNR, 

operating possibilities, snapshots and sensor arrays, to perform the abilities of the 

proposed method. It is shown that the performance of the proposed algorithm is better 

than G-MUSIC algorithm’s which G-MUSIC is a consistent DOA estimator for 

random linear array. Moreover, according to the results, at high SNR values 

performance of the proposed algorithm reaches to the performance of Spectral or 

Root-MUSIC using the correct operating sensors array configuration. This is due to 

faulty sensors are detected accurately at high SNR values. Additionally, it is shown 

that the proposed method is applicable for multiple source cases. Finally, the proposed 

method can be used for practical applications even for the low SNR cases.  

Main disadvantage of the given random array method is the computational intensity 

comparing with other algorithms. The computational intensity is due to estimating 

each possible array configuration DOA. However, this disadvantage can be ignored 

by taking into consideration of improved DOA performance for random sensor arrays. 

In our future work, faulty sensor problems could be further investigated. Deterministic 

approach could be improved by considering different types of faulty sensors and 

different array structures. In addition, detecting faulty sensors by using multiple 

known DOA source could be investigated. Future work for random array approach is 

utilizing different array geometries, although ULA geometry is used in the thesis 

work. 
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