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ABSTRACT 

 

EXPANDING THE SCOPE OF NONPARAXIAL SCALAR DIFFRACTION 
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Günöven, Mete 
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Supervisor: Prof. Dr. Raşit Turan 

Co-Supervisor: Prof. Dr. Hüsnü Emrah Ünalan 

 

 

January 2020, 107 pages 

 

 

The modelling of light scattering from rough textured surfaces is important to assess 

the light trapping performances of thin film solar cells. In this regard, Harvey-Shack 

scalar scattering theory is a method of choice established in the solar cell community. 

It can be used to calculate the angular intensity distribution both in reflection and in 

transmission, by using the Fourier transform of the optical phase light accumulates 

while traversing the rough surface texture to evaluate a far-field approximation of 

the Rayleigh-Sommerfeld scalar diffraction integral, observed on a hemisphere 

centered around the sample aperture.  

In this work, different versions of the Harvey-Shack scalar scattering theory are 

implemented, and their results are compared to actual angular intensity 

measurements, using a purpose-built high-resolution goniometric instrument. These 

comparisons generally show remarkable quantitave predictions, which validate the 

overall approach.  

However, differences with the measurements suggest that the optical phase 

accumulation could benefit from an additional correction factor for rough surfaces 
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containing lateral feature sizes on the order of the wavelength, which can be 

attributed to effective medium effects. Moreover, secondary interactions within the 

surface topography are shown to be a mechanism that partly redistributes scattered 

power, affecting angular intensity distribution results. These mechanisms emerge as 

the two main limitations of the generalized nonparaxial Harvey-Shack theory in the 

far-field.  

When applied to the scattering into an optically denser medium, this model predicts 

polar angle regions where no scattering should accur, regardless of the angle of 

incidence or the roughness of the texture. This prediction points at a limitation of 

light trapping using rough textured interfaces. 

Furthermore, the near-aperture and near-field terms of the Rayleigh-Sommerfeld 

scalar diffraction integral were investigated using a modification to the generalized 

Harvey-Shack theory computational algorithm. Within the restrictions of its scalar 

nature, this novel method can be an important tool for the characterization of near-

field diffraction  for thin film solar cells and many other problems.  

 

Keywords: Harvey-Shack Theory, Scalar Scattering Theory, Rayleigh-Sommerfeld 

Diffraction Integral, Near-Field Terms, Light Trapping  
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ÖZ 

 

PARAKSİYAL OLMAYAN SKALAR KIRILMA TEORİSİNİN 

KAPSAMININ GENİŞLETİLMESİ 

 

 

 

Günöven, Mete 

Doktora, Mikro ve Nanoteknoloji 

Tez Yöneticisi: Prof. Dr. Raşit Turan 

Ortak Tez Yöneticisi: Prof. Dr. Hüsnü Emrah Ünalan 

 

 

Ocak 2020, 107 sayfa 

 

Işığın pürüzlü yapılardan saçılmasının modellenmesi ince film güneş gözelerinin ışık 

hapsetme performansının değerlendirilmesi açısından önemlidir. Bu bağlamda 

Harvey-Shack skalar saçılım teorisi güneş enerjisi araştırmalarında sıklıkla 

kullanılan bir yöntemdir. Işığın pürüzlü yüzeyden yansırken veya geçerken 

kazandığı optik fazın Fourier dönüşümü kullanılarak, Rayleigh-Sommerfeld kırılma 

integralinin örneğin bulunduğu açıklık çevresindeki bir yarımküre üzerinde 

gözlemlenmesi sayesinde ışığın açısal yoğunluk dağılımının hesaplanmasında 

kullanılır. 

Bu çalışmada, Harvey-Shack skalar saçılım teorisinin çeşitli türleri açısal dağılım 

hesaplamasına uygulanmış, ve bu sonuçlar özel üretilen yüksek açısal çözünürlüklü 

saçılım düzeneği ile yapılan ölçümlerle karşılaştırılmıştır. Karşılaştırmalar genel 

olarak yöntemin kayda değer niceliksel öngörüler verdiğini doğrulamaktadır. 

Öte yandan, ölçümler ile aradaki bazı farklılıklar, optik faz kazanımının, yanal 

boyutları dalgaboyu seviyesinde olan yüksek pürüzlü yüzeylerden geçerken, efektif 

ortam etkilerini içerecek bir düzeltme katsayısından faydalanabileceğini 



 

 

viii 

 

önermektedir. Ayrıca, yüzey topografisi üzerindeki ikincil etkileşimlerin saçılan 

gücü kısmen farklı doğrultulara dağıtarak açısal ışık yoğunluğu dağılımını değiştiren 

bir mekanizma olduğu gösterilmiştir.Bu iki mekanizma, genelleştirilmiş paraksiyal 

olmayan Harvey-Shack teorisinin uzak-alandaki temel kısıtlamaları olarak ortaya 

çıkmaktadır. 

Optik kırılma indisi daha yüksek bir malzemeye doğru saçılıma uyarlandığında, bu 

model belli bir kutupsal açı bölgesine hiç saçılma olmadığını öngörmektedir. Bu 

öngörü, rastgele pürüzlü yapılarının genel olarak ışık hapsetme performansları bir 

sınırına işaret etmektedir.  

Öte yandan, Rayleigh-Sommerfeld kırılma integralinin yakın-alan ve açıklık-

yakınında önem kazanan terimleri, genelleştirilmiş Harvey-Shack sayısal hesap 

algoritmasına yapılan bir değişiklikle incelenmiştir. Skalar doğasının getirdiği 

sınırlamalar dahilinde, önerilen bu yeni yöntem ince film güneş gözelerinin ve başka 

birçok yakın-alan kırılma probleminin modellemesinde kullanılabilir. 

 

Anahtar Kelimeler: Harvey-Shack Teorisi, Skalar Saçılım Teorisi, Rayleigh-

Sommerfeld Kırılma İntegrali, Yakın-Alan, Işık Hapsetme 
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CHAPTER 1  

1 INTRODUCTION  

“Once you have tasted flight you will walk the earth with your eyes turned 

skyward; for there you have been, and there you will long to return.” 

Leonardo da Vinci 

1.1 Surface scatter phenomena 

The scattering of electromagnetic radiation is an important phenomenon in numerous 

areas of technology. Radars use radio waves to study the signal reflected back from 

distant objects to determine their positions and movements [1]. Scattering of 

microwaves is used in a variety of remote sensing applications such as in 

meteorology or geophysical sciences [2-5], or archeology [6,7], to name a few. 

Optical applications use surface scattering as a powerful characterization tool in non-

contact metrology [8], or study its detrimental effects in x-ray and EUV imaging [9-

11] and stray light reduction systems [12]. Scattering is even studied for realistic 

rendering of surfaces in computer graphics [13]. 

1.2 Light trapping in solar cells 

The design of solar cell devices is fundamentally made around the compromise of 

balancing light absorption and carrier collection [14]. Increasing the thickness of the 

active absorber layer increases the number of absorbed photons (and generated 

minority carriers) through Beer-Lambert law. However, a thicker absorber layer is 

not ideal for the electronic performance of the device, as generated minority carriers 
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must diffuse (or drift) through the active layer to be collected, and bulk 

recombination losses are proportional to layer thickness.  

The ideal solution to this compromise is found through the concept of light trapping, 

which consists of increasing the average path length that light travels inside the 

absorbing layer, without increasing the physical thickness. In thin film solar cells, 

this is usually achieved by the scattering of incident light from textured interfaces 

with micrometer to sub-micrometer size lateral features, as illustrated in Figure 1.1.  

Figure 1.1. a) Principle of light scattering in thin film solar cells. b) Absorption 

enhancement that can be obtained by ideal light trapping, compared to a single pass 

without any light trapping, for c-Si absorber layers of 1 and 5 µm thicknesses. 

The optimal absorption enhancement corresponds to the Yablonovitch limit [15,16], 

which is obtained if the incident light were to be completely randomized across all 

optical modes (or polar angles). This full randomization can be shown to increase 

the average path length by 2 (compared to a single perpendicular pass), or by 4 if a 

lossless back reflector is also present. After full randomization, the escape 

probability of photons at the front surface is reduced to 1/𝑛2, thanks to total internal 

reflections inside the medium of higher refractive index n, where the escape cone is 

small. Thus, the maximum amount of path length, absorption and photocurrent 

enhancement that can be attained is 4n2 for poorly absorbed photon energies just 

above the semiconductor bandgap. This maximum enhancement is illustrated in 

Figure 1.1b), where the spectral portion of AM1.5g solar irradiance [17] absorbed 
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by 1 µm and 5 µm thick mc-Si layers are plotted, using c-Si absorption coefficient 

[18], with optimal 4n2 light trapping and with no light trapping at all.  

However, this level of randomization in a single pass has not been achieved over a 

broad spectral range in thin film solar cells, neither using traditional random textures 

[19,20] nor more novel periodic or plasmonic structures [20-26]. Simply increasing 

surface roughness to improve high-angle scattering is often detrimental to the 

material quality of subsequent layers, and degrades the electronic performance of the 

device [27].  

Significant efforts have been made in the last decade to better understand and 

optimize such nanotextured interfaces [26,28-51]. In order to optimize such textures, 

it is desirable to have a modelling approach which is accurate, computationally 

accessible and relatively parameter-free, to predict the angular distribution of light 

after scattering from randomly and/or orderly textured interfaces, with arbitrary 

roughness, into slabs of material of arbitrary thickness, arbitrary refractive index, 

and for arbitrary incidence angles. 

After this decades-long period of investigation, a method of choice that got 

established in the solar cell community for the modelling of light scattering is the 

Harvey-Shack nonparaxial scalar scattering theory (SST) [42-59]. This scalar 

approach gives up some of the physical exactitude of rigorous electromagnetic 

methods that solve Maxwell’s equations, such as the coupling between electric and 

magnetic fields in an electromagnetic wave and boundary conditions at the rough 

surface, but generally makes up for it in terms of its simplicity, accuracy, range of 

roughness validity, and ease of applicability for random textures.  

This leads to the main motivation of this dissertation: to apply the Harvey-Shack 

nonparaxial SST to modelling the scattering of light from such rough textures as 

those employed in solar cells, and to test and expand its various domains of 

applicability.  



 

 

4 

1.3 Organization of this dissertation 

In chapter 2, some useful quantities regarding surface morphology and its interaction 

with light will be introduced, and relevant radiometric quantities regarding the 

exchange of radiation between two surfaces will be defined.  

In chapter 3, experimental details regarding the preparation of nanotextured samples, 

characterization of surface microtopography using atomic force microscopy, and 

instrumentation for angular intensity distribution measurements will be presented. 

In chapter 4, which is the central chapter of this dissertation, Harvey’s scalar surface 

scattering theory will be derived and implemented. This computationally efficient 

method uses Fourier transforms on the optical phase light accumulates while 

traversing the rough texture to evaluate a modified Rayleigh-Sommerfeld (RS) 

diffraction integral. Various versions of this method were implemented and 

compared to actual far-field angular intensity measurements. These comparisons 

reveal two notable deviations. The first one concerns rough textures with lateral 

feature sizes on the order of the wavelength, which can be linked to effective medium 

effects. The second one is explained by a redistribution of part of scattered power, 

which has been experimentally linked to secondary interactions within the surface 

topography. 

In chapter 5, terms that are important when the observation point is near the aperture 

and in the near-field and that are usually left out of the RS diffraction integral will 

be analyzed using a modification to the approach developed for the nonparaxial 

generalized Harvey-Shack theory.  

 

  

 

 



 

 

5 

 

CHAPTER 2  

2 SURFACE MORPHOLOGY AND ITS INTERACTION WITH LIGHT. 

DEFINITIONS.  

“What does the dosimeter say? 

3.6 roentgen, but that’s as high as the meter... 

3.6. Not great, not terrible.” 

Chernobyl miniseries   

2.1 Introduction 

The purpose of this chapter is to establish some basic notions on the interaction of 

light with surfaces, surface statistics and radiometric terms that are going to find use 

throughout the rest of this dissertation.  

Since the scattering of light into different angles due to surface textures is being 

investigated, the scope of this dissertation will be limited to the purely photonic cases 

of non-absorptive, dielectric sample surfaces that are free from additional scattering 

mechanisms such as plasmonic interactions, or from attenuation due to absorption. 

Therefore, throughout the rest of this dissertation, relative magnetic permeabilities 

µ𝑟 of studied materials reduce to unity, and relative dielectric permittivities 𝜀𝑟 can 

be replaced by the square of the real part of the refractive index 𝑛2. 

2.2 Snell’s law and Fresnel equations 

The interaction of a monochromatic plane wave of vacuum wavelength 𝜆0 incident 

on an optically flat surface separating two materials with different refractive indices, 
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as illustrated in Figure 2.1, is the result of Maxwell’s equations and their boundary 

conditions. Here, “optically flat” means that any roughness protrusion from the flat 

surface is much smaller than the wavelength.  

Figure 2.1. Snell’s law 

The continuity of the tangential components of the wave vectors of incident, 

reflected and transmitted waves lead to these three wave vectors being on a single 

plane of incidence (the plane of Figure 2.1), their angles being given by Snell’s law: 

𝑛1 𝑠𝑖𝑛 𝜃𝑖 = 𝑛1 𝑠𝑖𝑛 𝜃𝑟 = 𝑛2 𝑠𝑖𝑛 𝜃𝑡 (2.1) 

The amplitude of the wave vector 𝑘𝑗 = 2𝜋𝑛𝑗 𝜆0⁄  is greater in a optically denser 

material with higher refractive index, as a consequence when light is incident from 

a medium with higher refractive index at an angle higher than the critical angle 𝜃𝑐 =

𝑠𝑖𝑛−1(𝑛𝑡 𝑛𝑖⁄ ), total internal reflection occurs.  

The continuity of tangential electric fields lead to the Fresnel equations describing 

the amplitudes of the refracted and transmitted electric fields as functions of 

incidence angle, polarization, and the refractive indices of the materials bound by the 

flat surface. Fresnel coefficients corresponding to reflected and transmitted power 

are: 

𝑓𝑅,𝑠 = |
𝑛1 𝑐𝑜𝑠 𝜃1 − 𝑛2 𝑐𝑜𝑠 𝜃2
𝑛1 𝑐𝑜𝑠 𝜃1 + 𝑛2 𝑐𝑜𝑠 𝜃2

|
2

 
(2.2) 
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𝑓𝑅,𝑝 = |
𝑛2 𝑐𝑜𝑠 𝜃1 − 𝑛1 𝑐𝑜𝑠 𝜃2
𝑛2 𝑐𝑜𝑠 𝜃1 + 𝑛1 𝑐𝑜𝑠 𝜃2

|
2

 
 

𝑓𝑇,𝑠 = 1 − 𝑓𝑅,𝑠  

𝑓𝑇,𝑝 = 1 − 𝑓𝑅,𝑝  

2.2.1 Multiple incoherent reflection coefficients 

Consider a light beam incident on a flat slab of material with constant thickness and 

refractive index n2, sandwiched by materials with refractive indices n1 and n3, as 

illustrated by Figure 2.2. 

Figure 2.2. Multiple beams reflected from and transmitted through a non-absorbing 

dielectric slab. 

Interference effects would occur between light waves reflected off the front surface 

and transmitted through the front surface after being reflected from the rear surface, 

provided that the coherence length of the incident light is greater that the optical path 

difference of interfering beams. In this case, the amount of light reflected 

additionally depends on the thickness of the slab and the wavelength. However, if 

the slab is thick enough, or if the light can be considered incoherent (e.g. due to one 

side of the slab being textured), the total of reflected power due to these multiple 

reflections is given by:  
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𝑓𝑅 𝑡𝑜𝑡𝑎𝑙,𝑗 =
𝑓𝑅1,𝑗+𝑓𝑅2,𝑗 − 2𝑓𝑅1,𝑗𝑓𝑅2,𝑗

1 − 𝑓𝑅1,𝑗𝑓𝑅2,𝑗
 

(2.3) 

Here j refers to either s or p polarization. 

2.3 Diffraction phenomena in periodic ordered structures 

When the dielectric surface consists of a periodic grating structure with a given 

spatial frequency along one direction, as illustrated in Figure 2.3, constructive 

interference occurs between light reflected off troughs and crests of the structure, 

leading to diffraction of light into different orders travelling at different angles. 

Figure 2.3. Sinusoidal 1D grating. 

The distribution of diffracted power into propagating diffraction orders is 

complicated, and depends on the grating amplitude (i.e. the separation between 

troughs and crests), polarization of light and the exact shape of the periodic element; 

but diffraction angles of different orders depend only on the grating equation.  

If the direction of grating periodicity is aligned with the plane of incidence, diffracted 

orders are all in the plane of incidence, and the grating equation is simply: 

𝑛𝑖 𝑠𝑖𝑛 𝜃𝑖 +𝑚
𝜆0
𝑃
= 𝑛𝑑𝑠𝑖𝑛 𝜃𝑑,𝑚 

(2.4) 
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Here, 𝑛𝑖 is the refractive index of the medium of incidence, the integer 𝑚 is the 

diffraction order, 𝑃 is the grating period and 𝑛𝑑 and 𝜃𝑑,𝑚 are the refractive index and 

diffraction angle of order 𝑚 of the medium of diffraction, which can be either 

reflection or transmission. Therefore, a periodic grating imparts an integer multiple 

of its grating wave vector 𝜆0 𝑃⁄  into the tangential component of the incident wave 

vector, along the direction of periodicity. However, note that for a diffraction order 

𝜃𝑑,𝑚 to propagate (i.e. be non-evanescent), the condition |𝑠𝑖𝑛 𝜃𝑑,𝑚| < 1 needs to be 

satisfied. 

2.4 Randomly textured surfaces and their statistical quantities 

If the surface is not optically flat but randomly textured, with a random height 

distribution profile 𝑧 = ℎ(𝑥, 𝑦), the incident light is scattered into all directions, both 

in reflection and in transmission. For most real randomly textured surfaces, the 

scattered light is composed of a direct, non-diffracted or specular (i.e. mirror-like) 

component whose direction is given by Snell’s law, and a diffuse part. The angular 

distribution of scattered power is not trivial, and is the main focus of Chapter 4. 

However, a lead on this problem can be obtained by considering a 2D random surface 

texture as a superposition of an infinite number of sinusoidal gratings with different 

amplitudes and spatial frequencies, in both directions.  

This decomposition is usually done by the surface power spectral density function 

(PSDF), which is the squared modulus of the Fourier transform of the height profile, 

and gives the amplitude spatial frequency distribution of mean-square surface 

roughness 𝜎2 of the height profile: 

𝑃𝑆𝐷𝐹2𝐷(𝑓𝑥, 𝑓𝑦) = 𝑙𝑖𝑚
𝐿→∞

1

𝐿2
|∬ ℎ(𝑥, 𝑦) 𝑒−𝑖2𝜋(𝑓𝑥𝑥+𝑓𝑦𝑦)𝑑𝑥𝑑𝑦

+∞

−∞

|

2

 
(2.5) 

Here, L is the surface size, 𝑓𝑥 and 𝑓𝑦 are the spatial frequencies along x and y 

directions. Hence: 
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𝜎2 =
1

𝐿2
∬ (ℎ(𝑥, 𝑦) - ℎ(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅)

2
𝑑𝑥𝑑𝑦

+∞

−∞

=∬ 𝑃𝑆𝐷𝐹2𝐷(𝑓𝑥, 𝑓𝑦)
+∞

−∞

𝑑𝑓𝑥𝑑𝑓𝑦 
(2.6) 

Here, ℎ(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅ is the mean value of the surface height profile. 

Root-mean-square roughness σ is an indicator of the vertical variations in the height 

profile, but does not contain any information about the scale of lateral variations. 

This lateral scale can be obtained from the 2D surface autocorrelation (or 

autocovariance) function (ACF2D), which is the inverse Fourier transform of the 

PSDF2D, and the geometric average of the surface height profile with a translated 

version of itself. 

𝐴𝐶𝐹2𝐷(𝜏𝑥, 𝜏𝑦) = 𝑙𝑖𝑚
𝐿→∞

1

𝐿2
∬ ℎ(𝑥, 𝑦)

+∞

−∞

ℎ(𝑥 − 𝜏𝑥 , 𝑦 − 𝜏𝑦) 𝑑𝑥𝑑𝑦 
(2.7) 

When the translation (𝜏𝑥, 𝜏𝑦) is zero, the value at origin of ACF2D is at its maximum 

at 𝜎2. The distance at which the ACF2D value falls to 1 𝑒⁄  of its peak can be defined 

as the autocorrelation length (acl), and is an indicator of the characteristic lateral 

distance between features on the surface. However, unlike the definition of σ, the 

value of the acl depends on the actual form of the ACF function. If the acl is obtained 

by fitting an analytical expression (e.g. Gaussian, exponential, etc.) on the actual 

ACF data, as in Chapter 3.1, the choice of the fitting function can change the precise 

physical meaning of the resulting the acl. 

The relations between the surface height profile, PSDF, ACF, surface roughness σ 

and the autocorrelation length are illustrated in Figure 2.4.  
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Figure 2.4. Height profile, PSDF, ACF, σ, acl, and their Fourier transform relations. 

Adapted from [52,60].  

A surface texture which is truly random in all directions is isotropic, its PSD2D and 

ACF2D functions have circular symmetry, and acl is the same in all directions. This 

might not exactly be the case for all practical randomly textured samples, e.g. due to 

machining artefacts in some directions, or if an otherwise random texture is 

deposited on top of an anisotropic, grating-like quasi-periodic structure. Variation of 

surface statistics along different surface directions are usually linked to variations in 

surface scattering along corresponding azimuthal directions. 

2.5 Definitions of radiometric quantities 

As the incident light is scattered from a randomly textured surface into all directions, 

as illustrated by Figure 2.5, it can be characterized by a detector surface some 

distance away. Here, relevant radiometric quantities pertaining to the exchange of 

radiation between these surfaces will be defined.  
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Figure 2.5. Scattering geometry, in spherical coordinates, drawn here for the 

reflection hemisphere.  

A detector measures the radiant power 𝑃𝑐 falling onto its surface collector area, which 

is an extensive quantity that depends on the size of the detector. A corresponding 

intensive quantity is radiant flux per unit collector area, or irradiance 𝐸𝑐 = 𝜕𝑃 𝜕𝐴𝑐⁄ , 

where 𝐴𝑐 is the collector area. Note that outside of radiometry terminology, the term 

intensity is still often used to describe this quantity, but in the following the 

radiometric convention outlined e.g. by Harvey et al. [55] will be followed. 

However, the irradiance still depends on the collector distance to the source, because 

its subtended solid angle changes with distance.  

2.5.1 Intensity 

Therefore, the proper quantity to characterize and compare light scatter 

measurements is the radiant power per unit collector solid angle, or radiant intensity 

𝐼𝑐 = 𝜕𝑃 𝜕𝜔𝑐⁄ , where 𝜔𝑐 is the solid angle subtended by the collector area from the 

source, (especially for source areas that are small compared to the square of the 

separation between the two surfaces). The angular intensity distribution (AID) can 

be mapped across the entire scattering hemisphere (either in reflection or 

transmission) in a 𝐼2𝐷(𝜃, 𝜑) plot; or along any cross section of the hemisphere going 

through the zenith direction in a 𝐼1𝐷,𝜑(𝜃) plot, as illustrated in Figure 2.6a. A 
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numerical algorithm for high resolution 𝐼1𝐷(𝜃) calculation along the plane of 

incidence, for isotropic textures, from a discrete 𝐼2𝐷(𝜃, 𝜑), map will be presented in 

Chapter 4. 

Figure 2.6. a) AID, b) TID 

Another method to present radiant intensity is to average it along the azimuthal φ 

coordinate, i.e. along ring elements with the same  𝜃𝑠 angles from the surface normal. 

This representation, illustrated in Figure 2.6b, has been called total intensity 

distribution (TID) [43], and gives the total intensity scattered across the entire 

hemisphere at a radial angle  𝜃𝑠. It is useful in situations where directions with the 

same θ are treated equally, (e.g. corresponding to equivalent modes travelling at 

different directions within a slab of material). Therefore, it is the relevant quantity 

for quantitative calculations of absorption and current enhancement. For isotropic 

samples and under normal incidence, the integration along the φ coordinate is 

analytically equivalent to 𝑇𝐼𝐷(𝜃) = 𝐼1𝐷(𝜃) × |𝑠𝑖𝑛 𝜃|, but this formula is of limited 

use for quantitative calculations in real situations where the non-diffracted 

component carries a significant part of the radiant power, or under oblique incidence. 

An algorithm for TID calculation from a discrete 𝐼2𝐷 map will be presented in 

Chapter 5.  
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2.5.2 Radiance 

An even more fundamental quantity is radiant power per unit collector solid angle 

per unit projected source area, or radiance 𝐿 = 𝜕2𝑃 (𝜕𝜔𝑐𝜕𝐴𝑠 cos 𝜃𝑠)⁄ , where 𝐴𝑠 is 

the source area, and 𝜃𝑠 is the inclination angle of the source with respect to the 

collector direction. Radiance is more relevant in situations where the source area is 

appreciable with respect to the square of the separation between the two surfaces.  

An important concept describing an ideal diffuser surface is the Lambertian surface, 

which has a constant radiance distribution across all directions, regardless of the 

incidence direction. The value of this constant radiance can be calculated considering 

a hemispherical collector centered around/on the scattering surface. If the total 

scattered radiant power in reflection or transmission is 𝑃𝑅,𝑇: 

𝑃𝑅,𝑇 = ∫ ∫ 𝐿 𝑐𝑜𝑠 𝜃𝑠  𝜕𝐴𝑠 𝜕 𝜔𝑐
𝐴𝑠

= 𝐿 𝐴𝑠∫ ∫ 𝑐𝑜𝑠 𝜃𝑠 𝑠𝑖𝑛 𝜃𝑠𝑑𝜃𝑑𝜑
2𝜋

0

𝜋 2⁄

0
ℎ𝑒𝑚𝑖
𝑠𝑝ℎ𝑒𝑟𝑒

=  2𝜋 𝐿 𝐴𝑠∫ 𝑐𝑜𝑠 𝜃𝑠

𝜋 2⁄

0

𝑠𝑖𝑛 𝜃𝑠 𝑑𝜃 = 𝜋 𝐿 𝐴𝑠 

(2.8) 

𝐿𝐿𝑎𝑚𝑏𝑒𝑟𝑡𝑖𝑎𝑛 =
𝑃𝑅,𝑇
𝜋 𝐴𝑠

 
(2.9) 
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CHAPTER 3  

3 EXPERIMENTAL WORK 

“Make measurable what cannot be measured.” 

Galileo Galilei 

3.1 Surface topography characterization by atomic force microscopy 

Atomic force microscopy (AFM) is a high-resolution surface characterization 

technique suitable to map the topography of nanotextured surfaces with roughnesses 

smaller than a several µm. It uses a fine tip, with a tip radius around 10 nm, mounted 

on a caltilever to move over the surface using piezoelectric elements. In tapping 

mode, which is preferred for topography measurements, the cantilever is oscillated 

at a fixed frequency, which changes due to the distance of the tip from the surface 

through Van-der-Waals interactions. The height information is gathered at regular 

intervals over the surface, using a feedback loop to keep the oscillation frequency 

(and hence the distance) constant. There can be other types of interactions between 

the surface and the tip that compounds the height information, such as on 

heterogeneous surfaces or where electrostatic or magnetic forces are present; but 

these are negligible in the case of hard, dielectric surfaces.  

A consequence of this discrete sampling is to introduce a high frequency band limit 

to the height profile and corresponding surface roughness. Therefore, the roughness 

σ measured from an AFM scan (or any other characterization method) is a bandwidth 

limited version of the intrinsic surface roughness defined in Equation (2.6) [8,50]. 

However, for the surfaces and optical wavelengths used in this work, the contribution 
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of these high spatial frequencies is very small and in any case not relevant for the 

optical diffraction interaction, which is further explained in section 4.4.1.  

If the sample surface is not perfectly aligned with the plane of the cantilever scan, 

their difference would result in an oblique plane superimposed to the height profile. 

This is corrected by a single plane subtraction. Polynomial subtractions of higher 

order are not recommended in this case because they can erode into the low 

frequency spatial components of the surface, which can lead to artificial dips in later 

AID distributions near the central frequency.  

3.2 Surface preparation 

Two different types of samples, covering a wide range of surface roughnesses (σ) 

and lateral autocorrelation lengths (acl) were used throughout this dissertation. Their 

relevant surface parameters, indicated in Figure 3.1 and Table 3.1, were extracted 

from 25x25 μm2 square AFM images with 256 data points per line, using Gwyddion 

software [61] after a single plane subtraction for tilt correction followed by zero 

mean level adjustment. Slope distributions were obtained using local plane fitting 

around each data point. 

Table 3.1 Surface roughness σ and autocorrelation length acl extracted from AFM 

topography images. Asterisks indicate values taken from the optically relevant part 

of two-Gaussian fit of radial autocorrelation function. 

 A B C D E 

σ (nm) 20.5* 67.0* 70.0* 82.7 129.4 

acl (nm) 889* 1166* 768* 321 527 
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Figure 3.1. AFM images, height and slope angle distributions 

Samples A, B and C were prepared using the aluminium induced texturing (AIT) 

method [62], where a 150 nm thick layer of aluminium is deposited on 3 mm thick 

soda-lime glass substrates (refractive index n≈1.52) and annealed at 600°C for 60 

minutes to produce a textured Al2O3 layer with crystalline Si that precipitates with a 

low nucleation centre density [63] at the interface. These intermediates are then 

etched away using successive H3PO4 and HF:HNO3 solutions (samples A and B) 
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[62] or a NaOH:H2O2:H2O solution (sample C) [64], for different etch durations. As 

can be seen in Figure 3.1, the presence of intermediate Si precipitates creates a 

coarser length scale with deep valleys and crests, superimposed on an optically 

relevant smaller length scale. This small texture manifests itself as a micrometer-

sized, cusp-like texture for sample A, and a finer, pyramid-like texture for sample B, 

ranging from smooth (σ/λ≈0.05 for sample A for λ=532nm) to moderately rough 

surfaces. The resulting surface height distribution is usually not Gaussian. The 

azimuthally-averaged radial ACF is best modelled using a two-Gaussian fit [𝑓(𝑥) =

𝜎1
2. 𝑒−(𝑥 𝑎𝑐𝑙1⁄ )2 + 𝜎2

2. 𝑒−(𝑥 𝑎𝑐𝑙2⁄ )2], corresponding to the two length scales. For these 

samples, the optically relevant smaller acl and corresponding σ values are indicated 

with an asterisk. As will be seen in Chapter 4.2.5, these irregularities make the AID 

of these samples more challenging to model, but also enables to test the applicability 

and robustness of the different modelling approaches. 

The other type of samples, represented by samples D and E, were prepared by 

depositing 1.25 μm thick Al:ZnO by sputtering, on 2 mm thick and nominally flat 

Schott glass substrates, followed by a one-step wet HCl etching [65], for 30s at 

different concentrations. Ellipsometry analysis indicate a refractive index of n=1.87. 

The rough textures produced by this method present a highly uniform distribution of 

“etch pits”, resulting in a height distribution with a negative skew. The radial ACF 

is ideally modelled using a single Gaussian fit [𝑓(𝑥) = 𝜎2. 𝑒−(𝑥 𝑎𝑐𝑙⁄ )2], leading to 

smaller autocorrelation lengths. These textures exhibit roughnesses towards the 

higher end of relevance for solar cells, and without further treatment they might not 

be ideal to preserve the electrical performance of subsequent active layers [27]. 

However, once again, they are ideal to test the applicability limits of SST. 

3.3 Goniometer: instrumentation and AID measurements  

In order to compare with and validate the different implementations of the Harvey-

Shack theory, AID of light scattering from these samples along the plane of incidence 
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were measured using a purpose designed, home-made automated goniometer system. 

This instrument, illustrated in Figure 3.2a, consists of two concentric rotation stages.  

Figure 3.2. a) General schematic of instrumentation, shown for AID in transmission 

measurement. b) Aperture width and sample thickness minimizing multiple 

reflection effects, shown for AID in reflection measurement. c) Photograph of the 

goniometric instrument. 

The first one in the center supports a screen, with a 3 mm (or 6 mm) diameter aperture 

that holds the sample, and controls the angle of incidence. A laser beam of fixed 

path, with 532 nm wavelength and a 1.45 mm Gaussian beam width traverses the 

center of this aperture, after being modulated by an optical chopper. The polarization 

of the incident beam with respect to the plane of incidence is set by a quarter-

waveplate and a polarizer pair. In this dissertation, only s-polarized incident light is 

used. This is because, when vector RS diffraction integral is considered [66] in a 
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more general vector Fourier optics approach, the scalar approach is shown to match 

the complex amplitude of waves scattered in the plane of incidence only for s-

polarized incident waves. p-polarized incident waves result in more complicated 

phenomenon such as dips in reflected scatter corresponding to quasi-Brewster angles 

in the AID measurements. 

The second stage controls a detector arm that rotates around the center independently 

of the first stage, and scans for scatter signal in either reflection or transmission. On 

the detector arm, scattered light is coupled to a 1 mm core diameter optical fiber 

through a 3 mm diameter diffuser film at a distance of 244 mm from the center 

aperture; this corresponds to a light-collecting opening of about ΔΩs=1.2x10-4 

steradians, or 0.7° around the plane of rotation. This small collector footprint ensures 

very little blocking of incident light around the incidence direction in reflection 

measurements, (< 2° wide), while being adequate to measure laser beam power when 

it is directly incident on the collector. The calibration of this measurement to account 

for coupling losses between the diffuser disk and the fiber core is the subject of 

Appendix A.1. 

The other side of the fiber is coupled to a variable gain silicon photodetector, whose 

signal is measured using a lock-in amplifier. The center aperture diameter, in 

conjunction with laser beam width and sample thicknesses, is selected to be able to 

reject the effect of multiple reflections inside the glass substrates for 30° and 60° 

incidence measurements, as illustrated in Figure 3.2b. In cases where multiple 

reflections and transmissions cannot be avoided, e.g. from the thin Al:ZnO layer or 

from glass samples under normal incidence, multiple incoherent reflection 

coefficients from Equation (2.3) are used. A set of screens is employed for stray light 

reduction.  

The scatter signal is then normalized by the incident beam signal (laser beam 

measured directly by the same collector without sample) and by the subtended solid 

angle, to obtain the normalized AID in the plane of incidence, expressed in sr-1. In 
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transmission measurements, the reflection loss at the first flat surface is accounted 

for, by dividing the signal by the corresponding Fresnel coefficient. 

The instrument exhibits a dynamic range of up to 7 orders of magnitude. In most 

measurements, the noise equivalent normalized intensity level occurs around 10-4 

steradian-1, although this depends the level attenuation of the laser power by a set of 

neutral density filters to reduce the power below the damage threshold of polarizers.  

The data correction due to the lock-in amplifier time constant not being fast enough 

to follow the rapidly varying signal at the peak position (and the next data point) is 

covered in Appendix A.2. 
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CHAPTER 4  

4 ON HARVEY-SHACK SCALAR SCATTERING THEORY 

 “If you have two adjustable parameters in your model, you can make it draw an 

elephant, if you have three adjustable parameters you can make it jump, with four 

you can make it talk” - Prof. Bill Nicoll 

4.1 Introduction 

Historically, the two main approximative approaches to the problem of surface 

scattering based on some approximation of Maxwell’s equations consisted of the 

Rayleigh-Rice small-amplitude vector perturbation theory [67-71], which remains 

valid for large scatter angles and incorporates polarization effects, but is limited to 

smooth surfaces (σ/λ<<1), and the Beckman-Kirchhoff SST [72], which remains 

valid for rough surfaces but contains a paraxial approximation that limits its use to 

small incidence and scatter angles. 

Developments in small amplitude perturbation theory using the reduced Rayleigh 

equation (RRE) method [73-78] have been applied to the study of higher order 

coherent localization and multiple scattering effects, albeit for sufficiently small 

slopes and at the cost of computational complexity. 

Derivatives of the former approach, including the work of Carniglia [79], together 

with earlier work by Bennett et. Al. [80], have been used for total integrated scatter 

or haze calculations [28], (i.e. the ratio of diffuse reflected or transmitted scatter to 

total reflectance or transmittance), where the paraxial limitation is not important. 

However, for many applications including solar cells, haze calculation alone is not 
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always enough to give an accurate characterization of the scattering ability of a 

surface [30,31]. 

Rigorous methods that solve for Maxwell’s equations have been used to model light 

scattering at randomly textured interfaces. These include methods such as RCWA 

[36] that divides the volume into homogeneous layers, the finite-difference time-

domain (FDTD) [33-35] or finite element method (FEM) [37] that discretize the 

entire volume, and surface integral methods such as the method of moments (MoM) 

[81] or the non-perturbative implementation of the reduced Rayleigh equation (RRE) 

method [82-85].  

While these rigorous numerical methods are important for validating applicability 

ranges of more approximate theories, they do not lend themselves well to 

parametrization for random textures, and they can become computationally intensive 

for statistically relevant large surfaces.  

In this context, a particularly interesting method stems from the work of Harvey et 

al., who over the years developed a nonparaxial SST based on a Fourier optics linear-

systems approach [52-59], suitable for both rough surfaces and large scatter angles. 

This Harvey-Shack SST has been used to model surface scatter in a wide range of 

applications [9-11,13], including solar cell research [42-51] for over a decade.  

In this chapter, the Harvey-Shack SST will be derived. This computationally 

efficient method uses Fourier transforms on the optical phase light accumulates 

while traversing the rough texture to evaluate a modified Rayleigh-Sommerfeld (RS) 

diffraction integral [86,87]. Different versions of this method will be implemented 

and compared to actual far-field angular intensity measurements. These comparisons 

show a remarkable quantitative fit, but also reveal several interesting features and 

limitations of SST that will be discussed in detail. The first one concerns rough 

textures with lateral feature sizes on the order of the wavelength, which can be linked 

to effective medium effects. The second one is explained by a redistribution of part 

of scattered power, which has been experimentally linked to secondary interactions 

within the surface topography 
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4.2 Review of Harvey-Shack scalar scattering theory 

The Harvey approach is based on the Fourier optics, linear systems treatment of the 

problem of scalar diffraction of a time-independent, monochromatic wave passing 

through a binary aperture [88]. The diffraction aperture creates a binary disturbance 

𝑈0(�̂�, �̂�, �̂� = 0)  in the complex amplitude distribution of the incident plane wave.  

The complex amplitude diffracted into the forward half-space is expressed by the 

convolution of this initial disturbance with the impulse response of free space, which 

results in the RS diffraction integral [52,54], here expressed for an observation plane 

at a distance z from the aperture: 

𝑈(𝑥, 𝑦; 𝑧) = 𝜆0 ∬ 𝑈0(𝑥
′, 𝑦′; 0)

+∞

−∞

(
𝜆0
2𝜋𝑙

 −  𝑖)
𝑧

𝑙

𝑒𝑖2𝜋𝑙 𝜆0⁄

𝑙
𝑑𝑥′𝑑𝑦′ (4.1) 

In this expression, 𝑥′ and 𝑦′ are the integration variables mapping the aperture, and 

𝑙 = √(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + 𝑧2 is the distance from points in the aperture and the 

observation point. 

4.2.1 Diffraction from an empty aperture observed on a hemisphere 

When spatial coordinates are normalized with respect to the vacuum wavelength 𝜆0, 

i.e.: 

�̂� = 𝑥 𝜆0⁄ , �̂� = 𝑦 𝜆0⁄ , �̂� = 𝑧 𝜆0⁄ , and  �̂�2 = �̂�2 + �̂�2 + �̂�2, 

the Fourier transform of the initial disturbance 𝑈0(�̂�, �̂�) leads to the angular spectrum 

formulation, where the corresponding reciprocal coordinates 𝛼 = �̂� �̂�⁄  and 𝛽 = �̂� �̂�⁄  

become the direction cosines of the propagation vectors of diffracted plane wave 

components emerging from the aperture [88], with 𝛾 = �̂� �̂� = √1 − (𝛼2 + 𝛽2)⁄ . 

This geometric configuration is illustrated in Figure 4.1. 
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Figure 4.1. Geometric configuration of the incident plane wave, diffracting aperture 

and the observation hemisphere. Adapted from [52,55]. 

These direction-cosine coordinates are also related to spherical coordinates centered 

around the aperture by:  

𝛼 = 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜑 𝛽 = 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜑 𝛾 = 𝑐𝑜𝑠 𝜃 𝛼 𝛽⁄ = 𝑡𝑎𝑛𝜑 

This choice of coordinates also enables the RS diffraction integral of Equation (4.1) 

to be evaluated over an observation hemisphere centered around the aperture [52,54]: 

𝑈(𝛼, 𝛽; �̂�) = 𝛾
𝑒𝑖2𝜋�̂�

�̂�
∬ 𝑈0(�̂�′, �̂�′; 0) (

1

2𝜋𝑙
 −  𝑖)

+∞

−∞

�̂�2

𝑙2
𝑒𝑖2𝜋(𝑙−�̂�) 𝑑�̂�′𝑑�̂�′ (4.2) 

It is important to distinguish between waves with reciprocal space coordinates that 

lie inside a unit circle in direction-cosines space, satisfying 𝛼2 + 𝛽2 ≤ 1, which 

correspond to propagating waves; and those with 𝛼2 + 𝛽2 > 1, which correspond to 

evanescent waves that do not radiate power.  

This general expression is accurate in all the forward half-space, (so far as it is a 

scalar expression), for any aperture or observation hemisphere size, right down to 

the aperture. By setting (𝑙 − �̂�) = �̂�(�̂�, �̂�; �̂�) − (𝛼�̂�′ + 𝛽�̂�′), the RS diffraction 
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integral can be expressed directly as a Fourier transform integral, where all the phase 

terms except those used in the Fourier kernel are grouped in the �̂� term.  

𝑈(𝛼, 𝛽; �̂�)

= 𝛾
𝑒𝑖2𝜋�̂�

�̂�
∬ 𝑈0(�̂�′, �̂�′; 0) (

1

2𝜋𝑙
 - 𝑖)

+∞

−∞

�̂�2

𝑙2
𝑒𝑖2𝜋�̂�𝑒−𝑖2𝜋(𝛼�̂�

′+𝛽�̂�′) 𝑑�̂�′𝑑�̂�′ 
(4.3) 

Furthermore, when this observation hemisphere is significantly larger than both the 

wavelength (𝑙 ≫ 1), and the aperture size, i.e. 𝑙  −  �̂� ≈ −(𝛼�̂�′ + 𝛽�̂�′), as is the case 

in our far-field angular measurements, the only remaining phase variations are those 

originating at the aperture plane, i.e. 𝑈0(�̂�′, �̂�′; 0). The effect of these neglected terms 

is the subject of Chapter 5. The diffraction integral can then be simplified to a single 

Fourier transform as: 

𝑈(𝛼, 𝛽; �̂�) = 𝛾
𝑒𝑖2𝜋�̂�

𝑖�̂�
∬ 𝑈0(�̂�′, �̂�′; 0)

+∞

−∞

𝑒−𝑖2𝜋(𝛼�̂�
′+𝛽�̂�′) 𝑑�̂�′𝑑�̂�′

≡ 𝛾
𝑒𝑖2𝜋�̂�

𝑖�̂�
ℱ{𝑈0(�̂�, �̂�; 0)} 

(4.4) 

When the incident light illuminates the aperture at an oblique angle of incidence θ0, 

a linear phase variation appears along the aperture. According to the shift theorem 

of Fourier transform theory, the resulting complex amplitude is simply linearly 

shifted in direction-cosines space. For an isotropic initial disturbance, the incidence 

can be chosen along one of the coordinate axes without loss of generality.  

In this work, only surfaces that have isotropic textures are considered, i.e. azimuthal 

directions are equivalent. Hence, for simplicity and without loss of generality, the 

incidence can be chosen along one of the coordinate axes. For anisotropic textures 

such as crossed gratings or pyramid textures however, it is straightforward to use a 

two-component shifting vector. For an angle of incidence along the �̂� axis, the 

complex amplitude becomes: 
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𝑈(𝛼, 𝛽 − 𝛽0;  �̂�) = 𝛾
𝑒𝑖2𝜋�̂�

𝑖�̂�
ℱ{𝑈0(�̂�′, �̂�′; 0) 𝑒

𝑖2𝜋𝛽0�̂�} 
(4.5) 

Note that with an oblique incidence, the irradiance is also attenuated by an obliquity 

factor of 𝛾0 = cos 𝜃0. However, for an accurate comparison with the results of our 

angular measurements, where the entire laser beam width traverses the aperture 

regardless of the angle of incidence, this factor should be dropped. 

4.2.2 Radiant angular power distribution 

In scalar wave optics, irradiance is equal to the squared modulus of the (time 

independent) complex field amplitude [88]. Notably, on the observation hemisphere 

surface, the collector area elements make an angle θ with respect to the coordinate 

axis, as illustrated in Figure 4.2. The irradiance expressed in direction-cosine space 

is simply: 

𝐸𝑐,2𝐷(𝛼, 𝛽 − 𝛽0) =
|𝑈(𝛼, 𝛽 − 𝛽0;  �̂�)|

2

𝛾
 (4.6) 

Figure 4.2. Irradiance inside hemispheric collector area elements expressed in 

direction cosine space. 
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Moreover, the solid angle subtended by a collector area 𝑑�̂�𝑐 = �̂�
2 sin 𝜃 𝑑𝜃𝑑𝜑 on 

the observation hemisphere and viewed from the aperture center is simply 𝑑𝜔𝑐 =

𝑑𝐴𝑐 𝑟2⁄ . Hence, the intensity distribution is: 

𝐼𝑐,2𝐷(𝛼, 𝛽 − 𝛽0) = �̂�2𝐸(𝛼, 𝛽 − 𝛽0) (4.7) 

The radiant power 𝑃𝑗 scattered across any portion 𝑗 of the observation hemisphere 

can be found by integrating the irradiance (or the intensity) across its collector area 

�̂�𝑐,𝑖 (or its corresponding solid angle 𝜔𝑐,𝑖). Using the change of variables between 

coordinate systems 𝑑𝛼𝑑𝛽 = sin 𝜃 cos 𝜃 𝑑𝜃𝑑𝜑, and the collector area 𝑑�̂�𝑐 =

�̂�2 sin 𝜃 𝑑𝜃𝑑𝜑, and substituting Equation (4.6): 

𝑃𝑗 = ∬𝐸𝑐(𝜃, 𝜃0, 𝜑)𝑑�̂�𝑐
�̂�𝑐,j

= ∬𝐸𝑐(𝜃, 𝜃0, 𝜑) �̂�
2 sin(𝜃) 𝑑𝜃𝑑𝜑

𝜔𝑐,j

= ∬𝐸𝑐(𝛼, 𝛽 − 𝛽0) �̂�
2  
𝑑𝛼𝑑𝛽

𝛾
𝜔𝑐,j
′

= ∬𝐼𝑐(𝜃, 𝜃0, 𝜑) 
𝑑𝛼𝑑𝛽

𝛾
𝜔𝑐,j

=∬
�̂�2

𝛾2
 |𝑈(𝛼, 𝛽 − 𝛽0;  �̂�)|

2 𝑑𝛼𝑑𝛽
𝜔𝑐,j
′

=∬ |ℱ{𝑈0(�̂�′, �̂�′; 0)} 𝑒
𝑖2𝜋𝛽0�̂� |

2
 𝑑𝛼𝑑𝛽

𝜔𝑐,j
′

=∬ 𝜙(𝛼, 𝛽 − 𝛽0) 𝑑𝛼𝑑𝛽
𝜔𝑐,j
′

 

(4.8) 

Among diffracted power quantities, the quantity that is shift-invariant with respect 

to the angle of incidence is scattered radiance, i.e. the radiant power received per unit 

solid angle and emitted per unit projected source area [55]. Radiance proper is used 

to characterize an emitter with an appreciable source area compared to the square of 
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the viewing distance; whereas in our far-field treatment and angular measurements, 

the source area is negligible.  

Therefore, I prefer to use a more direct quantity with the same functional form, i.e. 

scattered power per direction cosine-space unit area, 𝜙(𝛼, 𝛽 − 𝛽0). As seen in (4.8), 

this quantity is shift-invariant, provided that the expression of 𝑈0(�̂�′, �̂�′; 0) is also 

independent of incident and scatter angles. 

𝜙(𝛼, 𝛽 − 𝛽0) =
�̂�2

𝛾2
|𝑈(𝛼, 𝛽 − 𝛽0; �̂�)|

2 = |ℱ{𝑈0(�̂�′, �̂�′; 0) 𝑒
𝑖2𝜋𝛽0�̂�}|

2
 

(4.9) 

Hence, the squared modulus of a single Fourier transform of the pupil 

function 𝑈0(�̂�′, �̂�′; 0) directly maps the (far-field) power distribution in direction-

cosine space. 

Recall that in (4.9), only the part of the angular distribution that falls inside the unit 

circle described by 𝛼2 + 𝛽2 ≤ 1 in direction-cosine plane is propagating. The 

“power” falling onto direction cosines outside the unit circle, 𝛼2 + 𝛽2 > 1, 

corresponds to non-radiating, evanescent waves. Hence, Harvey proposes to add the 

following normalization constant to equations (4.7) and (4.9) to ensure the 

conservation of energy [55]: 

𝐾𝑛𝑜𝑟𝑚 = 

{
 

 ∬  |ℱ{𝑈0(�̂�, �̂�; 0) 𝑒
𝑖2𝜋𝛽0�̂�}|

2+∞

−∞
 𝑑𝛼𝑑𝛽

∫ ∫  |ℱ{𝑈0(�̂�, �̂�; 0) 𝑒𝑖2𝜋𝛽0�̂�}|2
(1−𝛼2)1 2⁄

𝛽=−(1−𝛼2)1 2⁄ 𝑑𝛼𝑑𝛽
1

𝛼=−1

,  𝛼2 + 𝛽2 ≤ 1

0,  𝛼2 + 𝛽2 > 1

 

(4.10) 

This normalization constant is added to the distribution equations of all power 

quantities. Thus, the power and intensity distributions become: 

𝜙(𝛼, 𝛽 − 𝛽0) = 𝐾𝑛𝑜𝑟𝑚 |ℱ{𝑈0(�̂�, �̂�; 0) 𝑒
𝑖2𝜋𝛽0�̂�}|

2
 (4.11) 

𝐼2𝐷(𝛼, 𝛽 − 𝛽0) = 𝐾𝑛𝑜𝑟𝑚 𝛾|ℱ{𝑈0(�̂�, �̂�; 0) 𝑒
𝑖2𝜋𝛽0�̂�}|

2
 (4.12) 
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This normalization constant serves to redistribute the power contained in evanescent 

modes equally into radiant modes. 

4.2.3 Harvey’s original surface scatter theory 

Up to this point, the approach deals with diffraction from an empty binary aperture 

in free space. It can be extended to the case of an aperture containing a textured 

interface, by considering the additional amplitude and phase changes induced upon 

the diffracted wave by this interface. 

For a homogeneously illuminated surface with a homogeneous local reflectance and 

transmittance, the amplitude change is simply √𝑝𝑖 𝑓𝑅,𝑇, where 𝑝𝑖 is the incident 

power; 𝑓𝑅,𝑇 is the fraction of power reflected off or transmitted through the surface, 

given by the respective Fresnel coefficients for a flat surface. Phase changes depend 

on the optical path difference �̂�(�̂�, �̂�; 0) accumulated across the aperture due to the 

texture, compared to a flat interface. The pupil function 𝑈0(�̂�, �̂�; 0) becomes: 

𝑈0;𝑅,𝑇(�̂�, �̂�; 0) = √𝑝𝑖 𝑓𝑅,𝑇 𝑒
𝑖2𝜋 �̂�(�̂�,�̂�;0) (4.13) 

In the original version of Harvey-Shack (OHS) theory, the path that rays take through 

the textured zone is considered to be vertical to the plane of the interface, regardless 

of the angle of incidence, as illustrated in Figure 4.3. Initially, this was done for 

reflection to air, but it has been extended to include reflection and transmission 

between two arbitrary media. Hence the optical path difference becomes: 

�̂�𝑂𝐻𝑆 (�̂�, �̂�) = (𝑛𝑖 ± 𝑛𝑠) ℎ̂(�̂�, �̂�) (4.14) 

where ℎ̂(�̂�, �̂�) is the wavelength-normalized surface height profile, 𝑛𝑖 and 𝑛𝑠 are the 

refractive indices of the medium light is incident from and scattered to, respectively. 

The plus sign is used for scattering in reflection, where 𝑛𝑖 = 𝑛𝑠 also; and the minus 

sign is used for scattering in transmission. 
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Figure 4.3. OHS interface optical path difference accumulation model. 

The pupil function can thus be modelled as a phase screen: 

𝑈0,𝑅𝑇 (𝑥,̂ �̂�; 0) = √𝑝𝑖 𝑓𝑅,𝑇 𝑒
𝑖2𝜋(𝑛𝑖±𝑛𝑠) ℎ̂(�̂�,�̂�;0) (4.15) 

Substituting Equation (4.15) into Equation (4.11), the normalized power distribution 

in direction cosine space becomes: 

𝜙𝑂𝐻𝑆(𝛼, 𝛽 − 𝛽0)

𝑝𝑖
= 𝐾𝑛𝑜𝑟𝑚 𝑓𝑅,𝑇 |ℱ{𝑒

𝑖2𝜋(𝑛𝑖±𝑛𝑠) ℎ̂(�̂�,�̂�;0) 𝑒𝑖2𝜋𝛽0�̂�}|
2
 

(4.16) 

4.2.4 Direct phase screen approach and its discrete implementation 

The most straightforward way of modelling the phase screen to be Fourier-

transformed is to simply use a surface height profile data obtained by AFM. This 

“Direct phase screen” (DPS) approach has been commonly used in the solar cell 

community in the past decade [42-48].  

Here I will describe the discrete implementation, using a code running on a personal 

computer. A square AFM scan of side length 𝐿 generates height data taken on 𝑁𝑥𝑁 

discrete points at regular intervals across the sample surface. It uses the discrete 

equivalent of Equation (4.15) for normal incidence, that uses a 2D Fast Fourier 

Transform (FFT) on the optical phase accumulated when light traverses the surface 

on these grid points: 
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𝑃𝛼,𝛽

𝑝𝑖
= 𝐾𝑛𝑜𝑟𝑚 𝑓𝑅,𝑇 |

𝐹𝐹𝑇2𝐷{𝑒
𝑖2𝜋(𝑛𝑖±𝑛𝑠)ℎ̂(𝑁×𝑁)}

𝑁2
|

2

 

(4.17) 

Since the modulus of each exponent element is 1, and there are 𝑁2 of them, 

Parseval’s theorem can be invoked to normalize the sum of the FFT distribution by 

dividing it by 𝑁2.  

The result of this 2D FFT operation, represented in Figure 4.4, is composed of matrix 

elements on 𝑁𝑥𝑁 numerical “grid” points, and does not contain information on 

lateral coordinates. These lateral coordinates can be assigned by thinking of the AFM 

image area as a 2D cross diffraction grating with grove period 𝐿 in both directions. 

For simplicity, consider the grating equation along one axis: 

𝑛𝑖
𝑛𝑠
𝑠𝑖𝑛 𝜃𝑖 +𝑚

𝜆0
𝐿 𝑛𝑠

= 𝑠𝑖𝑛 𝜃𝑠 
(4.18) 

where 𝜃𝑖 and 𝜃𝑠 are the incident and diffracted order angles, and the integer 𝑚 is the 

diffraction order. 

Figure 4.4. 2D FFT operation and associated direction cosine coordinates.  

At normal incidence, the power of the non-diffracted beam corresponding to the 

order m=0 will be given by the central element (𝛼 = 𝛽 = 0), colored in Figure 4.4. 

This central element corresponds to the zenith direction of the hemisphere, and is at 

the center of the direction cosine coordinate system. The width of this central 
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element, as well as the distance between each consecutive order on any axis in 

direction-cosines space, is given by 𝛥𝛼 = 𝛥𝛽 = 𝜆0 (𝐿 𝑛𝑠)⁄ , and corresponds to the 

low spatial frequency limit of the AFM measurement. The power 𝑃𝛼,𝛽 contained in 

an element of discrete coordinates (𝛼, 𝛽) can be thought of as distributed on an 

Δ𝛼 × Δ𝛽 area centered around these coordinates. The high spatial frequency band 

limit of the AFM measurement, (determined by the distance between each scan point 

(i.e. 𝐿/𝑁)) is not very crucial, as these frequencies usually correspond to evanescent 

waves. However, care should be taken to select a large enough grid size 𝑁, so that 

the diffraction hemisphere/circle does not brim over the image grid for oblique 

incidence angles and smaller wavelengths. Since only the matrix elements with a 

radial distance to this central element such as 𝛼2 + 𝛽2 ≤ 1 are propagating, the 

radius of the propagation hemisphere consists of 1 Δ𝛼⁄  matrix elements. See 

Appendix B for the handling of elements that are partially outside the unit circle. 

The normalization factor 𝐾𝑛𝑜𝑟𝑚 can be obtained by the inverse of the summation of 

all elements inside the unit circle: 

𝐾𝑛𝑜𝑟𝑚 =
1

∑ |
𝐹𝐹𝑇2𝐷{𝑒𝑖2𝜋

(𝑛𝑖±𝑛𝑠)ℎ̂(𝑁×𝑁)}

𝑁2 |

2

𝛼2+𝛽2≤1

 
(4.19) 

This normalization factor is usually very close to unity for most moderately rough 

and isotropic surface textures at normal incidence. Increasing the angle of incidence 

progressively shifts the power distribution out of the unit circle. Likewise, in highly 

rough surfaces, the power distribution becomes broader and thus extends more out 

of the unit circle. 

The shifting effect due to oblique incidence can be incorporated in the 2D power 

distribution map by using the 𝑒𝑖2𝜋𝛽0�̂� term in the FFT, just as in the analytical 

expression, but doing this generally splits the power contained in the specular beam 

into two matrix elements, (unless the shift, 𝑛𝑖 𝑛𝑠⁄ 𝑠𝑖𝑛(𝜃𝑖) happens to be an exact 

multiple of Δ𝛼). Moreover, using the 𝑒𝑖2𝜋𝛽0�̂� term generally creates more 



 

 

35 

discontinuity at the edges of the random phase screen image, which significantly 

amplifies spectral leakage problems, which are covered in Appendix C.  

Instead, a better solution is to shift the coordinates of the observation hemisphere 

along one of the axes, and calculate radial distances from that shifted center. For 

isotropic surfaces where a circularly symmetric power distribution around the central 

element can be assumed, the azimuthal projection algorithm illustrated in Figure 4.5 

can be used to calculate 𝐼1𝐷(𝜃) in the plane of oblique incidence.  

Figure 4.5. Azimuthal projection algorithm for isotropic samples. a) Position of an 

element with respect to the unshifted center in 2D space, b) Because of circular 

symmetry, only radial distance of elements needs to be considered, flattening the 

problem to 1D, c) applying the shift due to the angle of incidence, d) position of the 

specular beam, e) resulting AID, after division by the solid angles corresponding to 

each element with respect to the shifted center. 

For each element, the radial distance in direction cosines space, 𝑑0 = √𝛼2 + 𝛽2, to 

the unshifted central element is calculated. Each element is doubled to contribute one 

positive and one negative distance. The shift amount, 𝑠 = 𝑛𝑖 𝑛𝑠⁄ 𝑠𝑖𝑛(𝜃𝑖), is then 

added to all these distances. The elements whose shifted distances, 𝑑 = ±𝑑0 + 𝑠, 

fall within [−1,1] on the axis of the oblique incidence constitute the propagating 

elements.  
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For anisotropic samples such as diffraction gratings, or samples containing a 

superposition of random and semi-periodic textures, other algorithms can in 

principle be employed to calculate the intensity distributions across different planes 

of interest.   

Finally, to obtain the radiant AID along the direction of the oblique incidence, the 

power diffracted into each element is divided by its corresponding solid angle 

ΔΩ𝛼,𝛽 ≅ Δ𝛼 Δ𝛽 𝛾′⁄ , where 𝛾′ = cos(sin−1 𝑑). Δ𝛼 × Δ𝛽. 

𝐼𝛽−𝛽0
𝑝𝑖

= 𝐾𝑛𝑜𝑟𝑚 𝑓𝑅,𝑇 

× 𝑃𝑟𝑜𝑗𝑒𝑐𝑡(𝑂𝐻𝑆),2𝐷→1𝐷 {|
𝐹𝐹𝑇2𝐷{𝑒

𝑖2𝜋(𝑛𝑖±𝑛𝑠)ℎ̂(𝑁×𝑁)}

𝑁2
|

2

} 𝛥𝛺𝛼,𝛽⁄  

(4.20) 

In order to make the AID graph more readable, a smoothing algorithm is used that 

averages data points that fall into angle bins, the width of which is taken to match 

the angular opening of our goniometer detector area ~0.7°, to have a similar angular 

integration effect. The intensity of the specular beam is not affected by this 

averaging. 

 

The AID calculations according to the algorithm (4.20) with respect to scatter angle 

𝜃𝑠 = sin−1 𝛽 are given in Figure 4.6, and compared to angular measurements. 

Calculations for all samples have good qualitative match overall with the 

measurements when viewed on a logarithmic axis, however there are also some 

noticeable differences. The power distribution remains almost completely within the 

unit circle in direction-cosine space.  
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Figure 4.6. AID in reflection (right) and in transmission (left), respectively for 

incidence and refraction angles of 0°, 30° and 60°. Symbols represent calculations 

according to the OHS algorithm in (4.20), lines represent measurements. For 

reflection calculations, incidence is through air; for transmission, incidence is 

through glass (n=1.52 for samples A, B, C) or Al:ZnO (n=1.87 for samples D, E). 

Dashed lines represent a Lambertian intensity distribution weighted by 𝑓𝑅,𝑇. Note the 

absence of data of a few degrees around the angle of incidence for reflected AID 

measurements, where the detector arm blocks incident laser beam.  
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The AIT etched glass samples (A, B, C) all have relatively low surface roughnesses 

and large autocorrelation lengths, consequently they have strong light scattering very 

close to the specular direction but weak scattering into higher angles, both in 

reflection and in transmission.  

In reflection, especially for 60° incidence, calculated distributions tend to 

overestimate the measurements. However, in both reflection and transmission, 

calculated intensities fall steadily towards negative scatter angles (which will be 

referred to as the backscattering direction) while measurements show a plateau, 

which is clearly over our instrument’s noise level in most cases. This plateau is 

already visible for normal incidence transmission in these samples, after scatter 

angles around 45°, and especially apparent in the backscattering direction for oblique 

incidence measurements, even though oblique incident reflection measurements for 

these samples quickly hit the noise level in the backscattering direction. 

 

The textured Al:ZnO samples (D, E) have higher surface roughness and smaller 

autocorrelation lengths, with steeper local angles and feature sizes comparable or 

smaller to the measurement wavelength; consequently they have strong light 

scattering into higher angles, superimposed to a distinct specular beam that still 

contains a large portion of the reflected or transmitted power.  

A significant proportion of the power distribution extends over the unit circle, 

especially in reflection and for higher angles of incidence. Consequently, diffuse 

components exhibit a distribution very close to Lambertian, especially in reflection.  

When comparing the shape of intensity distributions, measured distributions also 

exhibit a relative increase in the backscattering direction. However, even more 

distinctly, the diffuse parts of the calculated distributions are noticeably shifted 

above those in measurements.  
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4.2.5 Surface autocorrelation method 

Before the advent of the AFM techniques enabling laterally precise surface micro-

topography characterization, Harvey developed, in his doctoral thesis [52], a 

statistical approach that uses the autocorrelation theorem of Fourier transform to 

model the phase variations due to the textured surface. Here a simplified version of 

his derivation will be presented. Using the autocorrelation theorem of Fourier 

transforms theory, Equation (4.11) can be expressed as: 

𝜙(𝛼, 𝛽 − 𝛽0) =  𝐾𝑛𝑜𝑟𝑚 |ℱ{𝑈0(�̂�, �̂�; 0) 𝑒
𝑖2𝜋𝛽0�̂�}|

2
 

= 𝐾𝑛𝑜𝑟𝑚 ℱ {∬ 𝑈0;𝑅,𝑇(�̂�
′, �̂�′; 0)

+∞

−∞

𝑈0;𝑅,𝑇
∗ (�̂�′-�̂�, �̂�′-�̂�; 0)  𝑒𝑖2𝜋𝛽0�̂�𝑑�̂�′𝑑�̂�′} 

(4.21) 

where 𝑈0
∗  denotes the complex conjugate. Once again, 𝐾𝑛𝑜𝑟𝑚 is the normalization 

term to redistribute power contained in evanescent modes into radiant waves, and is 

defined analogously to Equation (4.10). 

After making the same assumptions as in the previous section, i.e. a homogeneously 

illuminated surface with constant reflectance and transmittance, neglecting phase 

variations in the near-field and near the aperture, and assuming that light accrues 

optical path difference vertically in the textured zone (OHS), Equation (4.15) can be 

substituted for the pupil function 𝑈0;𝑅,𝑇: 

𝜙(𝛼, 𝛽 − 𝛽0)

=  𝐾𝑛𝑜𝑟𝑚 ℱ {∬ 𝑝𝑖 𝑓𝑅,𝑇 𝑒
𝑖2𝜋(𝑛𝑖±𝑛𝑠)[ℎ̂1−ℎ̂2] 𝑒𝑖2𝜋𝛽0�̂�

+∞

−∞

𝑑�̂�′𝑑�̂�′ } 

(4.22) 

In this expression, ℎ̂1(�̂�, �̂�)and ℎ̂2(�̂�, �̂�) are two-dimensional random variables that 

sample the height profile ensemble ℎ̂(�̂�, �̂�). Harvey then makes the following 

additional statistical assumptions about the surface height distribution ℎ̂: 1) the 

height distribution ℎ̂ is Gaussian, 2) ℎ̂(�̂�, �̂�; 0) is locally stationary in the statistical 

sense (i.e., surface is homogeneous and isotropic), 3) the random variables ℎ̂1(�̂�1, �̂�1) 

and ℎ̂2(�̂�2, �̂�2), produced by any two fixed pairs of spatial coordinates are jointly 
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normal, and 4) ℎ̂ is weakly ergodic, i.e. statistics determined by space averages using 

a single sample function  ℎ̂𝑖(�̂�, �̂�; 0) are identical to those determined using the 

ensemble average ℎ̂(�̂�, �̂�; 0). 

Taking the expected value of random variables ℎ1 and ℎ2: 

𝜙(𝛼, 𝛽 − 𝛽0)  

= 𝐾𝑛𝑜𝑟𝑚 ℱ {∬ 𝑝𝑖 𝑓𝑅,𝑇 𝔼〈𝑒
𝑖2𝜋(𝑛𝑖±𝑛𝑠) [ℎ̂1−ℎ̂2]〉 𝑒𝑖2𝜋𝛽0�̂�

+∞

−∞

𝑑�̂�′𝑑�̂�′} 

(4.23) 

Since the random variables are stationary, the expected value can be taken out of the 

integral: 

𝜙(𝛼, 𝛽 − 𝛽0)

= 𝐾𝑛𝑜𝑟𝑚 ℱ {𝔼〈𝑒
𝑖2𝜋(𝑛𝑖±𝑛𝑠) [ℎ̂1−ℎ̂2]〉 𝑝𝑖 𝑓𝑅,𝑇∬ 𝑒𝑖2𝜋𝛽0�̂�𝑑�̂�′𝑑�̂�′

+∞

−∞

} 

(4.24) 

This is the joint characteristic function of two jointly normal random variables. It can 

be shown that [89], Equation 4.24 is equivalent to: 

𝜙(𝛼, 𝛽 − 𝛽0)

𝑝𝑖
= 𝐾𝑛𝑜𝑟𝑚 𝑓𝑅,𝑇 ℱ { 𝑒

−(2𝜋(𝑛𝑖±𝑛𝑠)�̂�)
2[1−

𝐴𝐶𝐹(�̂�,�̂�)

𝜎2
]
 𝑒𝑖2𝜋𝛽0�̂�} 

(4.25) 

As previously, the  𝑒𝑖2𝜋𝛽0�̂� term in the Fourier transform produces the shifting effect 

of an oblique angle of incidence in direction cosine space. The other terms in the 

Fourier transform can be regarded as the transfer function of the surface. It is also 

possible to analytically separate this formulation into a sum of direct and diffuse 

parts of the reflected or transmitted power distribution [52,59]. 

Within the assumptions used in its derivation, Equation (4.25) is equivalent to 

Equation (4.16) of the DPS approach. For our isotropic samples, the algorithm 

procedure of Figure 4.7 can then be used to calculate the AID. Figure 4.7 compares 

intensity distributions calculated using DPS and ACF methods, for samples B and 
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D, where the ACF has been calculated by inverse FFT2D transforming the PSDF 

function.  

Figure 4.7. Comparison of AID calculated with OHS pupil function using DPS (blue 

squares) and ACF (red triangles) methods, together with angular measurements 

(line) for samples B and D. 

 

The two methods yield virtually identical results for Al:ZnO samples (exemplified 

by D), which are very homogeneous at the 25 µm length scale of their AFM scan 

and have Gaussian radial ACF, despite the negative skew in their height 

distributions. 

However, for AIT glass samples (exemplified by B), which exhibit a two-scale 

superposed height distribution (and two-Gaussian radial ACF), the ACF method 

clearly overestimates the intensity scattered to higher angles. This is probably 

because, unlike in the DPS approach, the reference plane with regards to which 

heights are measured is important in ACF method because it directly influences the 

�̂�2 and 𝐴𝐶𝐹(�̂�, �̂�) parameters. Likewise, the superposition of the larger length scale 

due to the intermediate Si precipitates disturbs this reference and inflates the �̂�2 
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value. Moreover, for these samples, the ACF method AID also tend to flatten near 

the specular direction, while being superimposed to the distinct specular peak; the 

DPS method seems to better reproduce the progressive, gradual shape observed in 

measurements. 

One of the most important advantages of this ACF method is that, multiple PSDFs 

obtained from different locations on the sample can be averaged [58,90,91], reducing 

the possible effect of local statistical variations, instead of relying on a single image 

that naturally has less “ergodic” fidelity. PSDFs originating from various surface 

measurement techniques that have different spatial frequency bandwidths can also 

be combined to obtain extended PSDFs [8,90], if needed. 

For isotropic samples, a PSDF2D function can be azimuthally averaged; for 

anisotropic samples, cross sections of the PSDF2D surface can be taken across 

relevant optical directions. In the scientific community, the resulting PSDF1D 

functions are usually fitted with analytical functions (usually Gaussian or K-

correlation functions) [49,59]. Such fitting parameters can give additional insights 

into surface characteristics. The ACF function (and thus angular power distribution 

quantities) can then be calculated analytically.  

Overall, the ACF approach transforms the scattering problem into a method better 

suited to parametrization and statistical averaging, (and will provides a basis for the 

correction term proposed in section 4.4.1), at the cost of an extra computational step 

and possible loss of generality. While noting the advantages of the ACF approach, 

the more direct DPS approach will be used in the remainder of this dissertation for 

the sake of simplicity and robustness.  

4.3 Generalized Harvey-Shack theory 

Although the OHS theory gives qualitatively adequate results, the vertical optical 

phase accumulation model is clearly an oversimplification. Furthermore, it has been 

pointed out by several authors that, when the OHS pupil function is applied to a 
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surface containing a single facet angle, as can be found in a large pyramid texture, 

the main angle of diffraction predicted by the OHS theory increasingly overestimates 

the refraction angle predicted by Snell’s law, as the surface facet angle increases 

[43,51]. Figure 4.8 illustrates this point for normal incidence reflection and 

transmission. 

Figure 4.8. Diffraction angles in reflection and transmission predicted by OHS and 

GHS theories for normally incident light (λ=532 nm) on a Si pyramid surface with 

varied facet angles, and compared to reflection and refraction angles. n1=1 n2=3.5. 

Partly adapted from [51]. 

Already at the end of his thesis in 1976, Harvey hints at a more realistic pupil 

function that takes into consideration the phase differences induced by the surface 

texture and depending on incidence and scatter angles. The corrected pupil function 

is in fact that which was used by Carniglia in the context of total integrated scatter 

[79], and corresponds to the optical path difference accumulated by a light ray with 

a given incident and scatter angle when reflected off or transmitted through the 

surface profile; compared to a light ray with the same incident and scatter angles 

interacting with a flat surface, as illustrated in Figure 4.9. Alternatively, this pupil 

function also corresponds to the difference in the vertical components of incident 

and scattered plane wave wave-vectors. 
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Figure 4.9. GHS interface optical path difference accumulation model. 

The optical path difference and improved pupil functions become: 

�̂�𝐺𝐻𝑆 = (𝛾𝑖𝑛𝑖 ± 𝛾𝑠𝑛𝑠) ℎ̂(�̂�, �̂�) (4.26) 

𝑈0;𝐺𝐻𝑆(𝑥,̂ �̂�; 𝛾𝑖, 𝛾𝑠, 0) = √𝑝𝑖 𝑓𝑅,𝑇 𝑒
𝑖2𝜋(𝛾𝑖𝑛𝑖±𝛾𝑠𝑛𝑠) ℎ̂(�̂�,�̂�;0) (4.27) 

where 𝛾𝑖 and 𝛾𝑠 are cosines of incident and scatter angles respectively. Once again, 

the plus sign is used for scattering in reflection, where 𝑛𝑖 = 𝑛𝑠 also; and the minus 

sign is used for scattering in transmission. 

This generalized version of Harvey-Shack (GHS) theory was first introduced by 

Krywonos et Al from 2006 [56,57,59], and was first used in the solar cell community 

by Haug et Al. by 2016 [51]. With this generalization, Harvey-Shack theory becomes 

truly non-paraxial, as illustrated by Figure 4.8, i.e. all residual phase differences 

originating from the textured interface or the diffraction process itself (except those 

that are negligible in the far-field) are accounted for.  

Corrected expressions for power and are obtained by simply replacing the pupil 

functions in Equations (4.16) and (4.25) respectively: 

𝜙𝐺𝐻𝑆/𝐷𝑃𝑆(𝛼, 𝛽 − 𝛽0)

𝑝𝑖
= 𝐾𝑛𝑜𝑟𝑚 𝑓𝑅,𝑇 |ℱ{𝑒

𝑖2𝜋(𝛾𝑖𝑛𝑖±𝛾𝑠𝑛𝑠) ℎ̂(�̂�,�̂�;0) 𝑒𝑖2𝜋𝛽0�̂�}|
2
 

(4.28) 
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𝜙𝐺𝐻𝑆/𝐴𝐶𝐹(𝛼, 𝛽 − 𝛽0)

𝑝𝑖

= 𝐾𝑛𝑜𝑟𝑚 𝑓𝑅,𝑇  |ℱ {𝑒
−(2𝜋(𝛾𝑖𝑛𝑖±𝛾𝑠𝑛𝑠)�̂�)

2[1−
𝐴𝐶𝐹(�̂�,�̂�)

𝜎2
]
 𝑒𝑖2𝜋𝛽0�̂�}| 

(4.29) 

However, using the GHS pupil function for any given incidence angle, every scatter 

angle now requires a different 2D FFT operation; and in the resulting 2D phase 

screen, only the matrix element corresponding to that particular scattering angle is 

relevant. Simple shift invariance due to the single Fourier transform is foregone. The 

complex amplitude distribution and related power distribution need to be 

reconstructed using elements of a “two-parameter family of Fourier transforms” 

[59], one element at a time. This is more demanding computationally, although it can 

still be handled by a personal computer thanks to the speed of FFT algorithms, at 

least for single layer scattering simulations. 

In order to accomplish this, a modified version of the previous algorithm (Equation 

(4.20) in Figure 4.5) is used. Among 𝑁𝑥𝑁 elements, only those (p, q) whose shifted 

distances, 𝑑 = ±𝑑0 + 𝑠, fall within [−1,1] on the axis of the oblique incidence in 

direction-cosine space correspond to valid scatter angles. The FFT operation of 

Equation (4.17) (with the corrected pupil function) is performed for each of these 

elements (p, q) using their corresponding scatter angle cosines 𝛾𝑠, and in the result, 

only the value of the element (p, q) is retained, associated to shifted distance 𝑑 =

𝑠𝑖𝑛 𝜃𝑠. The radiant AID1D in the plane of the oblique incidence is reconstructed 

element-by-element, after scanning for all valid elements mapping to within [−1,1]. 

With this algorithm, the isotropicity of the sample can still be exploited to obtain 

well averaged 𝐼1𝐷(𝜃) results. 

For anisotropic samples such as diffraction gratings, or samples containing a 

superposition of random and semi-periodic textures, other algorithms can in 

principle be employed to calculate the 𝐼1𝐷,𝜑(𝜃) across different planes of interest. 

Using the GHS pupil function, complex amplitudes corresponding to evanescent 

modes lying outside the unit circle are undefined. However, due to the conservation 
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of energy, the sum of the normalized power distribution inside the unit circle (before 

applying the 𝑓𝑅,𝑇 term), should be equal to 1. After calculating the radiant power 

distribution 𝜙𝐺𝐻𝑆(𝛼, 𝛽 − 𝛽0) inside the shifted propagation hemisphere (in a 

separate scan step), 𝐾𝑛𝑜𝑟𝑚 can still be defined as the inverse of the total radiant power 

contained inside the unit circle. 

𝐾𝑛𝑜𝑟𝑚 =
1

∑ 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡2𝐷 {|
𝐹𝐹𝑇2𝐷{𝑒𝑖2𝜋

(𝛾𝑖𝑛𝑖±𝛾𝑠𝑛𝑠)ℎ̂(𝑁×𝑁)}

𝑁2 |

2

}𝛼2+𝛽2≤1

 

(4.30) 

Hence, the radiant AID in the plane of incidence becomes: 

𝐼𝛽−𝛽0
𝑝𝑖

= 𝐾𝑛𝑜𝑟𝑚 𝑓𝑅,𝑇 

× 𝑃𝑟𝑜𝑗𝑒𝑐𝑡(𝐺𝐻𝑆),2𝐷→1𝐷 {|
𝐹𝐹𝑇2𝐷{𝑒

𝑖2𝜋(𝛾𝑖𝑛𝑖±𝛾𝑠𝑛𝑠)ℎ̂(𝑁×𝑁)}

𝑁2
|

2

} ΔΩ𝛼,𝛽⁄  

(4.31) 

where 𝑃𝑟𝑜𝑗𝑒𝑐𝑡(𝐺𝐻𝑆),2𝐷→1𝐷 with brackets denotes the element-by-element 

reconstruction algorithm. 

 

Figure 4.10 compares the cosine function GHS optical path differences to the 

constant OHS optical path difference, for several angles of incidence, with respect 

to scatter angle. The GHS optical path difference multipliers (𝛾𝑖𝑛𝑖 ± 𝛾𝑠𝑛𝑠) inside the 

exponential cause the phase accumulation to tighten (or loosen) for different scatter 

angles compared to the constant (𝑛𝑖 ± 𝑛𝑠) OHS phase accumulation, as if the surface 

texture height is increased or decreased for that scatter angle. During the Fourier 

transform step, a tighter phase screen (with higher frequency content) has the effect 

of distributing more power into higher frequencies (and angles) at the expense of the 

central, specular frequency, and vice versa.  
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Note that for reflection, regardless of the incidence side, GHS pupil function is 

always below that of OHS, hence it results in less power distribution to higher scatter 

angles, compared to OHS. This difference increases with incidence angle. 

Figure 4.10. Comparison of OHS and GHS pupil functions. a) Reflection into n=1, 

for 0°, 30° and 60° incidence angles. b) Transmission from n1=1.52 to n2=1, for 0°, 

30° and 60° refraction angles. c) Transmission from n1=1 to n2=1.52, for 0°, 30° and 

60° incidence angles.  

For transmission, there are scatter angles where the GHS and OHS optical path 

differences become equal, hence, depending on the relative refractive indices, there 

are spatial frequency/scatter angle regions where GHS theory predicts more (or less) 

scattering power compared to OHS theory. Specifically, for normal incidence 

transmission to a lower refractive index medium, GHS theory predicts more power 

scattered to higher angles. However, with increasing incidence angles, there appears 

a region around small polar angles where predicted scatter is less than for OHS path 

difference.  

Note that this discussion does not take into account the normalization constant due 

to redistribution of power contained in evanescent frequencies, which might also 

differ between the two implementations. 
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With these effects in mind, the results of the AID calculations with respect to scatter 

angle 𝜃𝑠 = sin
−1 𝛽 according to the GHS algorithm (4.31) are given in Figure 4.11, 

and compared to angular measurements.  

Figure 4.11. AID in reflection (right) and in transmission (left), respectively for 

incidence and refraction angles of 0°, 30° and 60°. Symbols represent calculations 

according to the GHS algorithm in (4.31), lines represent measurements. For 

reflection calculations, incidence is through air; for transmission, incidence is 

through glass (n=1.52, for samples A, B, C) or Al:ZnO (n=1.87, for samples D, E). 

Dashed lines represent a Lambertian intensity distribution weighted by 𝑓𝑅,𝑇. 
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Most of the observations made for comparisons with OHS calculations hold true for 

GHS calculations as well.  

In reflection, GHS pupil function causes more power to concentrate in the specular 

beam at the expense of the diffuse distribution, leading to a significantly better 

experimental fit, especially around the specular direction.  

In transmission, the tweaks brought by GHS pupil function also result in a better 

experimental fit around the central polar angles as well as the specular direction. 

Arguably, the improvements brought by GHS theory are relatively minor for our 

samples, and concern mainly intensity levels in specular beam for high angles of 

incidence. They might not always justify the increased computational cost, or rather, 

for the samples in this study OHS might be adequate enough. This is because, unlike 

pyramid textures or diffraction gratings (where most of the power is diffracted into 

specific, non-specular angles), randomly textured samples do not exhibit a discrete 

diffraction behavior, and even in highly diffusive surfaces most of the diffracted 

power is still concentrated around the specular direction, where the optical path 

differences between the two implementations are usually not too large.  

 

However, two notable deviations remain: 

Firstly, for AIT glass samples, calculated intensities for oblique incidence in both 

reflection and transmission fall steadily towards in the backscattering direction, 

while measurements show a plateau, which is clearly over our instrument’s noise 

level in most cases. This plateau is already evident in normal incidence transmission 

for sample A and B, above scatter angles around 45°. Similar plateaus can also be 

observed in AID measurements published in previous literature [48]. Moreover, for 

AIT glass samples, calculated intensities in the forward scattering direction around 

and beyond the non-diffracted beam angle appear to be overestimated, especially in 

transmission.  
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For Al:ZnO samples, the magnitude of the calculated intensity distribution also 

exhibits a relative decrease in the backscattering direction when compared to 

measurements, but this is compounded by another distinct, second deviation: The 

diffuse parts of the calculated intensity distributions are noticeably shifted up and 

overestimated compared to their measured levels.  

The possible explanations for these two observations will be discussed in the 

following sections. 

4.4 Discussion on limitations and improvements to GHS theory 

4.4.1 An effective medium correction factor? 

The persistent overestimation of diffuse intensity compared to measurements for 

Al:ZnO samples with relatively rough surfaces and small lateral autocorrelation 

lengths suggest that the phase screen that is Fourier-transformed in Equation (4.27) 

could be too dense. Here, I propose a correction factor 𝑐 in the pupil function such 

that 𝑐 < 1, which results in a better empirical match with the measurements: 

𝑈0;𝐺𝐻𝑆(�̂�, �̂�; 𝛾𝑖, 𝛾𝑠, 0) = √𝑝𝑖 𝑓𝑅,𝑇 𝑒
𝑖2𝜋(𝛾𝑖𝑛𝑖±𝛾𝑠𝑛𝑠)𝑐(𝛾𝑖,𝛾𝑠)ℎ̂(�̂�,�̂�;0) (4.32) 

At this point, it is important to mention an improvement that has been made to the 

ACF version of GHS theory [57-59]. Recall that the surface roughness parameter σ 

in the power distribution Equation (4.25) is a quantity spread over spatial 

frequencies, this frequency distribution being given by the PSDF2D function.  

Just like a grating whose period is too small compared to wavelength, high spatial 

frequency components will not produce optical diffraction, only evanescent waves; 

hence they are not “relevant” to diffraction [8,11,71]. Roughness components 

relevant to optical interaction can be calculated by integrating the PSDF2D 

distribution over the relevant frequency range, given by a circular domain of radius 

𝑛𝑠/𝜆, shifted from the center of the PSDF2D by 𝑛𝑖 𝑠𝑖𝑛 𝜃𝑖 𝑛𝑟,𝑡 = 𝑠𝑖𝑛 𝜃𝑟,𝑡⁄  for an 
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oblique angle of incidence [11,59]. The resulting relevant roughness 𝜎𝑟𝑒𝑙 should 

replace the first σ parameter in Equation (4.25) [11,59], (but not the second, as the σ 

term in the denominator simply normalizes the peak of the ACF2D to unity). This 

relevant roughness is not an intrinsic surface property, and depends, beside the 

surface related PSDF distribution, on the optical wavelength, incidence angle and 

refractive index of the medium into which scattering occurs. 

Furthermore, this relevant roughness 𝜎𝑟𝑒𝑙 can fit the bill for the corrective coefficient 

c, since it is a fraction of total roughness σ, which decreases with increasingly rough 

samples and increasing angles of incidence, as roughness components are pushed out 

of the relevant range. 

The equivalent modification is missing in the DPS implementation, it can be 

introduced by setting 𝑐(𝛾𝑖) = 𝜎𝑟𝑒𝑙 𝑟,𝑡 𝜎𝑡𝑜𝑡⁄  in the phase term. However, although the 

ratio 𝜎𝑟𝑒𝑙 𝑟,𝑡 𝜎𝑡𝑜𝑡⁄  provides a theoretical basis in the right direction for a corrective 

term, for our samples it is very close to unity except at very oblique angles, and is 

not enough to explain the observed effect. A dichotomous search algorithm has been 

used in order to find the c coefficients that result in an optimal fit between 

calculations and measurements.  

For normal incidence transmission, numerous scatter measurements were repeated 

from different locations across each sample, resulting in statistical variations at each 

scatter angle. These variations result from uncertainties due to instrumentation as 

well as the stochastic nature of surface scattering phenomenon itself. Intensity values 

calculated using the empirical pupil function given in Equation (4.32) were 

interpolated at measurement angles, and the squared difference between these two 

intensities was multiplied by |sin 𝜃𝑠|. As explained in section 2.5.1, this is because 

for a sample with isotropic surface texture at normal incidence, the quantity 

𝐼(𝜃𝑠) × |sin 𝜃𝑠| is proportional to the total intensity scattered across the entire 

hemisphere at a radial angle 𝜃𝑠, not just a cross section of it as in angular 

measurements [42,43]. The non-diffracted peak values, where experimental 

uncertainties are greatest, are not taken into account. The 𝑐 value resulting in the 
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least total residual error was determined after several iterations. This dichotomous 

parameter search was repeated using curves one standard deviation lower and higher 

than the average 𝐼1𝐷(𝜃), to give an estimation of the variability range of the 

correction factor. These optimized c coefficients and their expected range are given 

in Table 4.1, together with other relevant surface parameters. 

Table 4.1 Empirical corrective coefficients, for normal incidence transmission, 

obtained using a dichotomous search optimization. Asterisks indicate values taken 

from the optically relevant part of two-Gaussian fit of radial autocorrelation function. 

 A B C D E 

𝜎𝑡𝑜𝑡 (nm) 20.5* 67.0* 70.0* 82.7 129.4 

acl (nm) 889* 1166* 768* 321 527 

most likely  

local angle 
2° 5° 7.5° 14° 23° 

𝜎𝑟𝑒𝑙 𝜎𝑡𝑜𝑡⁄  0.996 0.997 0.996 0.965 0.989 

optimized c 

coefficient 
1.175 

[0.975;1.325] 
1.025 

[0.825;1.250] 
0.950 

[0.825;1.075] 
0.750 

[0.600;0.900] 
0.575 

[0.425;0.750] 

 

As expected, correction factors for AIT glass samples with broad textures are close 

to unity. Deviations, while significant, probably result from AFM images not being 

representative enough of these samples, with limited homogeneity at this length scale 

owing to their larger features, as well as goniometric measurement uncertainties. 

Furthermore, since these samples have high intensity distributions close to the non-

diffracted beam, slight experimental deviations in those few data points can offset 

the optimization result.  

Corrective factors for both Al:ZnO samples are significantly less than 1; with sample 

E exhibiting the steepest angles that require the smallest factor. While deviations 

remain significant, a corrective factor beyond the  𝜎𝑟𝑒𝑙 𝑟,𝑡 𝜎𝑡𝑜𝑡⁄  ratio is the likeliest 

explanation. Other factors specific to Al:ZnO samples, such as scattering caused by 

residual roughness in the nominally flat glass/ZnO interface, would all have the 

opposite effect of greater scattering into high angles in measurements. 
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AID calculations with optimized c coefficients are shown in Figure 4.12. Also 

included are transmission calculations with correction factors for refraction angles 

of 30° and 60°, (calculated without the |sin 𝜃𝑠| multiplier to intensity), but the 

dichotomous search fitting is less reliable in oblique incidence, due to the 

compounding effect of the secondary interactions on the measured 𝐼1𝐷(𝜃) AID, 

which is the subject of the next section.  

Figure 4.12. AID in transmission, for refraction angles of 0°, 30° and 60°, for 

samples D and E, calculated with optimized corrective coefficients (red triangles) 

for fitting measurements (lines), and without the corrective coefficient (blue 

squares). 

 

A possible physical explanation for this behavior could be the onset of effective 

medium effects, which are not taken into account in SST. These samples exhibit 

moderately large vertical and small lateral features compared to the wavelength in 

the material, resulting in relatively steep local surface angles. The incident light 

around peaks and pits of these textures experiences a gradual refractive index 

change, resulting in less overall optical phase accumulation compared to a texture 
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with abrupt refractive index change. This would manifest as an effective reduction 

in the height profile of the roughness zone. 

Consider hypothetical pyramidal textures as illustrated in Figure 4.13: a) features a 

steep facet angle with a large base, corresponding to the geometric optics regime. b) 

contains small heights with dimensions at the order of the wavelength and large 

lateral features (similar to sample A and B). It has slow phase accumulation due to 

shallow slopes, which results in weak scattering at high angles. c) features a facet 

angle identical to a), however with small heights at the order of the wavelength as 

b), but with smaller lateral features. Even though the phase accumulation on each 

facet is identical to that of a), there are numerous regions with comparatively small 

phase change around tips and pits, which translate to reduced high frequency content 

in the Fourier transform, when compared to a). Moreover, c) is more susceptible to 

effective medium approximation due to reduced feature dimensions, such that the 

effective height profile starts to decrease compared to the actual profile around tips 

and pits, which also decreases high angle scattering. According to Equation (4.27), 

in order to enhance high angle scattering from a small texture, facet angles could be 

increased as in d), similar to samples D and E with their skewed height distribution. 

However, pronounced reduction of effective height profile due to effective medium 

effects opposes this enhancement. 

Figure 4.13. Phase accumulation on pyramid facets with different facet angles and 

sizes. Colors stand for the optical phase accumulated when light traverses each 

profile. Dotted lines suggest an equivalent height profile, encompassing effective 

medium effects 
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Consider now the missing 𝜎𝑟𝑒𝑙 𝑟,𝑡 𝜎𝑡𝑜𝑡⁄  ratio. The smaller textures c) and d) would 

have PSDF that extend more toward high spatial frequencies, and therefore have 

smaller corrective 𝜎𝑟𝑒𝑙 𝑟,𝑡 𝜎𝑡𝑜𝑡⁄  ratios compared to the larger textures a) and b). 

However, this ratio is very close to unity in our samples for normal incidence, even 

though the features are already smaller than to the wavelength. Therefore, a 

correction factor due to effective medium effects might be more than merely a DPS 

method analogue of the 𝜎𝑟𝑒𝑙 𝜎𝑡𝑜𝑡⁄  correction ratio. 

If the roughness zone between the material and air acts like a graded medium, another 

consequence would be a decrease in reflectivity and increase in transmissivity 

compared to that given by Fresnel coefficients for a flat interface. This additional 

change will be proportionally much more important in reflection. Moreover, in 

normal incidence reflection, light reflected from the sample backside and transmitted 

from the front is superimposed on the desired first reflection scatter, which nearly 

doubles the measured signal, and masks the observed discrepancy. The analogous 

effect in transmission scatter is negligible. These effects prevent a similar 

quantitative dichotomous search for reflection. However, the presence of the same 

overestimation in the 𝐼1𝐷(𝜃) AID for oblique incidence reflection compared to 

measurements, where reflection from the substrate backside is blocked by the 

aperture, Figure 3.2b, suggests that a similar phenomenon also exists in reflection 

for the Al:ZnO samples D and E.  

 

Effective medium approximation is a complicated phenomenon, and an associated 

correction factor, if confirmed, would likely be a complicated function of the 

autocorrelation length, surface roughness, refractive indices as well as the local 

surface geometry (volume fraction and distribution of local angles). The 

uncertainties inherent in the metrology of AID measurements are not insignificant, 

and further investigations with a greater range of samples and shorter wavelength 

lasers are needed to confirm the existence of an effective medium correction factor.  
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4.4.2 Effects of secondary interactions 

Another general limitation of SST is that it concerns only primary interactions of 

incident light with the surface. As such, shadowing events and secondary interactions 

at the surface topography are not considered. A possible explanation for the 

increased backscattering and reduced forward scattering observed across the samples 

is a redistribution of part of the scattered power due to the presence of such secondary 

interactions. This broad backscattering enhancement is of course distinct from the 

localized, coherent retroreflection phenomenon predicted by higher order small-

amplitude perturbation approaches [81-83].  

The angle between a local facet plane and light scatter direction decreases with a 

high content of surface slope angles and with increasing scatter angle, rendering a 

secondary interaction more likely, in which scattered light reflects off another 

adjacent surface topographic feature. A similar argument can be made with 

increasing incidence angles and the probability of shadowing events, where a tall 

local surface feature blocks light from reaching the average surface plane.  

While it is not possible to know the effects of such interactions without performing 

rigorous calculations on well-defined surface geometries, it can be suggested, as a 

first approximation, that a secondary interaction tends to spread out the power 

contained in affected (forward) directions to all scatter directions more-or-less 

equally. Since for a random texture, the forward scatter direction close to the non-

diffracted beam contains much more scattered power, a slight redistribution away 

from this direction could compensate for a large relative increase across all 

backscatter directions.  

Notably, these scatter events do not take place only on the plane of incidence, (which 

is the plane of AID measurements), they affect the light scattered in any azimuthal 

direction with similar probability. A small part of this light undergoing secondary 

interaction across a different azimuthal direction could scatter back in the plane of 

incidence and be detected by the scanning detector. However, unlike primary 
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scattering in the plane of incidence, such interactions involving other azimuthal 

directions would result in a change in the polarization direction of the detected light, 

as illustrated in Figure 4.14a. 

Figure 4.14. a) Illustration of secondary interactions on a pyramid-like surface 

texture, top view. b) Side view of goniometer aperture illustrating a secondary 

interaction from the surface topography (dark green line) or sides of the aperture with 

different radii (lighter green lines). 

To test this hypothesis, some of the scatter measurements were repeated with a 

polarizer placed in front of the scanning detector. These results are given in Figure 

4.15 (Left), and exhibit a proportional increase of intensity measured with p polarizer 

in the backscattering direction (or towards high angles for normal incidence), and 

reduction of intensity measured with s polarizer. This observation is in line with the 

possible presence of secondary interactions that could explain the backscattering 

plateaus in the angular measurements in Figures 4.6, 4.7, 4.11 and 4.12. 
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Figure 4.15. Left: AID measurements with s polarizer (red), p polarizer (green) and 

without polarizer (blue) in front of the detector. Incident beam is s polarized.  

Right: s/no polarizer and p/no polarizer ratios, measured using 3mm and 6mm 

diameter aperture sizes. 

However, it is also possible that the observed polarization changes have a non-

topographic, experiment-related source. For example, such secondary scattering 

events could also happen on the sides of the small aperture surrounding the sample 

surface, as illustrated in Figure 4.14b. In order to check for this instrumentation 

effect, the previous measurements were repeated using apertures of different 

diameters, 3mm and 6mm. The sides of a larger diameter aperture, that has the same 
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thickness as a small diameter one, subtends a smaller solid angle with respect to the 

incident beam area, and therefore should produce fewer secondary interactions, if 

non-topographic secondary scattering is predominant. The resulting s/no polarizer 

and p/no polarizer intensity ratios are given in Figure 4.15 (Right), and show little 

difference, suggesting that secondary interactions are indeed originating from the 

surface topography. 

From a purely geometric optics perspective, the effect of secondary interactions 

should be negligible for the small slopes composing our samples. The redistribution 

of power to all combined backscatter directions should indeed make up a small 

percentage of the overall radiated power, which is concentrated mainly near the non-

diffracted beam direction. But the effects are still detectable, and the superposition 

makes precise quantitative interpretation of low level scattering difficult. While it is 

not possible to integrate these effects directly into the pupil function, it might be 

possible to add them to the 2D power distribution map heuristically.  

An example to a case where secondary interactions seriously change the scattered 

power distribution could be found in the large pyramid texture of Figure 4.8. GHS 

SST naturally predicts that a facet with 45° slope reflects normally incident light 

parallel to the surface. Beyond this facet angle, all power distribution is evanescent. 

However, it can be readily shown that normally incident light reflects twice from a 

textured crystalline silicon surface with 54.7° slope pyramids, resulting in a final 

reflected ray with an angle around 39° (4*54.74°-180°) with respect to the normal 

direction; and the reflected intensity is less than that expected from a single pass 

Fresnel coefficient due to the additional interaction. In textures where these effects 

are dominant, such as with large anisotropic features, SST should be supplemented 

by ray tracing or some other rigorous methods.  
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4.5 Scattering into optically denser media 

Scattering into an optically denser medium with refractive index 𝑛𝑠 can be handled 

with the same algorithms, but keep in mind that spatial frequencies of the Fourier 

transform, i.e. direction cosines, Δ𝛼 = Δ𝛽 = 𝜆 (𝐿 𝑛𝑠)⁄  depend on 𝑛𝑠.  

In Figure 4.16, the GHS optical path difference multiplier |𝛾𝑖𝑛𝑖 − 𝛾𝑠𝑛𝑠| is plotted 

with respect to scatter angle, for scattering in transmission into 𝑛𝑠=1.87. 

Figure 4.16. GHS pupil function, with respect to scatter angle, transmission from 

n1=1.87 to n2=1, for 0°, 30° and 60° incidence angles. 

Interestingly, GHS model predicts that for transmission to a medium with higher 

refractive index, there are scatter angles corresponding to the condition (𝛾𝑖𝑛𝑖 = 𝛾𝑠𝑛𝑠) 

for which the optical path difference becomes zero, hence there is no diffraction and 

power distribution vanishes at those angles. The simpler OHS model does not have 

this property. 

To illustrate this, AID results calculated using GHS Equation (4.31) for light incident 

from air and scattering from sample D are given in Figure 4.17 (blue lines), for 0° 

and 30° angles of incidence. Sample D was chosen because, in both reflection and 

transmission into air, it has a near Lambertian scattering response that is easy to 

interpret.  



 

 

61 

Figure 4.17. AID calculations for light scattering from sample D, for 0° and 30° 

incidence from air. Blue lines show transmission into ns=1.87, red lines show 

reflection into air, (green) lines show reflection measurements. 

Experimental verification of AID in transmission into an optically denser medium in 

general, and the dips in scatter corresponding to the condition (𝛾𝑖𝑛𝑖 = 𝛾𝑠𝑛𝑠) in 

particular are very difficult, and would require specialized configurations [51,92] 

with well-aligned spherical lenses. Even with such a configuration, a slight 

redistribution of power due to secondary interactions could render the observation of 

low-level dips impossible. 

This phenomenon is to be contrasted with the Yoneda phenomenon [78,85] predicted 

by the reduced Rayleigh equations method for weakly rough surfaces and verified 

experimentally [92]. It consists of a sharp peak in scattered power just above the 

critical angle, when the scattering occurs into the optically denser medium. This 

arises from the coupled nature of the tangential wave vectors of the scattered 

reflected and transmitted modes, and is independent of the angle of incidence [78]. 

When a mode scattered into the optically less dense medium becomes evanescent, 

its scattered power is redistributed into its coupled mode scattered into the optically 

denser medium. It can be considered a scattering analogue of Rayleigh’s anomalies 

observed in gratings. SST does not take into account effects such as the coupling 
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between individual scattered reflected and transmitted modes. In this model, the 

coupling between reflected and transmitted scatter is done at the hemisphere level 

using 𝑓𝑅,𝑇 coefficients, after the angular distribution for each has been calculated 

using the RS diffraction integral.  

However, if the prediction of dips in the transmission AID into an optically denser 

medium holds, the scattered power would be more constrained around small polar 

angles. The 𝐼2𝐷(𝜃, 𝜑) AID distribution, which is very nearly Lambertian in air, 

would not extend into higher angles. As a consequence, GHS SST predicts that 

Lambertian randomization, necessary for 4n2 Yablonovitch limit light trapping, 

cannot be obtained by a single pass from the front surface of a photonic random 

texture. Additional interactions at the rear surface would be necessary for full 

randomization. Therefore, a two-stage randomization process such as the one in [41] 

should be considered for the modelling of scattering in thin film solar cells. 

4.6 Conclusion 

In this chapter, the Harvey-Shack SST has been introduced, and its different versions 

have been applied to the AID calculations of two types of surface textures intended 

for use in the solar industry.  

The autocorrelation function (ACF) approach is suited for well-behaved surfaces and 

lends itself better to parametrization and PSDF averaging to reduce experimental 

uncertainties, but requires some statistical assumptions that are not always fulfilled. 

The equivalent and more direct phase screen (DPS) approach seems to be more 

general and robust in that regard, and performs as well for sample height profiles that 

are adequately representative of the real surfaces. 

With regard to the choice of pupil function, the generalized Harvey-Shack (GHS) 

theory uses the correct phase accumulation term, which makes it truly non-paraxial 

in the far-field, and the extra computational cost can be handled by relative ease. The 

simpler, less computationally demanding original version (OHS) can still produce 
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adequate results for isotropic textured samples, in which the scattered power is 

mostly contained in angle ranges where the difference between the two phase-

accumulation models is not too large.  

Moreover, in contrast to the OHS model, the GHS model applied to scattering from 

air into an optically denser medium predict AID distributions concentrated to small 

polar angles, constrained by the existence of specific angles where no scattering 

occurs. Therefore, the GHS model predicts that ideal Lambertian scattering 

distribution (and therefore 4n2 Yablonovitch limit light trapping) cannot be achieved 

by a single pass through the front surface of a random photonic texture.  

Comparisons of GHS implementations with independent angular measurements 

show remarkable general agreement. while also revealing two possible limitations of 

SST, which were examined in detail.  

The first one consists of a regular decrease of wide angle scattering in rougher 

textures with small lateral features that could be explained by an effective decrease 

in height profile, due to the onset effective medium effects. This limitation of SST 

modelling could arguably point out to a physical limitation of achievable high angle 

scattering inside thin absorber materials using photonic surface texturing, since 

making steeper textures at the nanoscale will be less and less effective. 

The second limitation of SST is that it concerns only primary interactions of incident 

light with the surface. An increase in scattering towards negative scatter angles at the 

expense of forward scattering, observed across all samples (especially for oblique 

incidence), has been experimentally linked to the presence of secondary interactions 

at the surface topography, that serve to redistribute part of the scattered power. 
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CHAPTER 5  

5 INVESTIGATION OF NEAR-FIELD TERMS 

“Nearly everything is really interesting if you go into it deeply enough.” 

Richard Feynman 

5.1 Introduction  

In the previous chapter, the Harvey-Shack SST, itself based on an approximation of 

the Rayleigh-Sommerfeld (RS) scalar diffraction integral, has been laid down and 

validated by comparing its results to far-field AID measurements. On the other hand, 

there have been numerous studies over the years to validate the applicability of RS 

diffraction integrals [86,87] to evaluate the fields in the near-field. Analytical 

solutions can be obtained only for a few simple cases, such as for a spherical wave 

incident on a circular aperture, where the source (or focal) point and observation 

point lie on the optical axis [93-95]. The validity of replacing the empty aperture 

with a thin phase object (considered as a zero-thickness phase shifting foil, as in 

Harvey-Shack surface modelling) is also investigated, albeit with simple, 

homogeneous phase apertures [95]. Approximations to the integral kernel of the full 

RS formulae are often used that make analytical approaches possible. Some of these, 

such as the Fresnel and Fraunhofer approximations are commonly known [96], while 

some are newly proposed [97], each with their specific applications and validity 

ranges.  

For more complex apertures/scattering objects, numerical methods based on Fourier 

optics need to be employed. Most of these methods fall in two main categories: The 

RS convolution integral can be directly evaluated [98,99] in the spatial domain, by 
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calculating the FFT of both the pupil function and the impulse response of free space, 

then elementwise multiplying the resulting matrices, before calculating the inverse 

FFT of the result to obtain the field/complex amplitudes. 

Alternatively, the angular spectrum of the plane waves [100,101] emanating from 

the aperture can be calculated in the spatial frequency domain by taking the FFT of 

the pupil function, which is then multiplied by the transfer function of free space, 

before calculating the inverse FFT of the result to obtain the field/complex 

amplitudes.  

Note that both of the aforementioned methods calculate the complex amplitudes on 

a plane of observation some distance away from the aperture. On the other hand, the 

Harvey approach of Equation (5.1) purposes to evaluate the RS direct convolution 

integral, but on an observation hemisphere centered around the aperture using the 

reciprocal direction-cosine coordinates of the angular spectrum method. In this 

regard, it can be considered a middle ground better suited for situations where the 

angular distribution is important, such as in solar cells. 

𝑈(𝛼, 𝛽; �̂�)

= 𝛾
𝑒𝑖2𝜋�̂�

�̂�
∬ 𝑈0(�̂�′, �̂�′; 0) (

1

2𝜋𝑙
 - 𝑖)

+∞

−∞

�̂�2

𝑙2
𝑒𝑖2𝜋�̂�𝑒−𝑖2𝜋(𝛼�̂�

′+𝛽�̂�′) 𝑑�̂�′𝑑�̂�′ 
(5.1) 

In the past decade, OHS theory based models using far-field approximations of 

Equation (5.1) such as those presented in section 4.2 have been used to estimate the 

AID inside thin layers [42-50], even though the constant OHS pupil function does 

not predict the dips in transmission AID for scattering into an optically denser 

medium. These OHS theory based models have also been incorportated in multilayer 

device simulations for absorption and current enhancement calculation in solar cells 

and other optoelectronic devices [47,48]. 

Leaving the GHS theory pupil function consideration momentarily aside, is it 

justified to utilize the far-field approximation of the RS scalar diffraction integral to 

model the AID to within a distance close to the considered diffraction aperture (i.e., 
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the AFM scan area)? For instance, Dominé, who introduced the OHS theory to the 

solar cell community, takes the practical applicability range of a partially 

approximated RS diffraction integral (Equation (5.1) without the near-field reactive 

B term, defined in section 5.2) at about 𝑟 > 3𝜆 [43], but doesn’t address the effect 

of the other terms neglected in the far-field.  Moving closer to the aperture, is it 

justified to model the AID inside very thin active layers with a thickness of just a 

few wavelengths, or less? 

As a step towards answering these questions, a modified version of the element-by-

element reconstruction method, used for the nonparaxial GHS theory in the previous 

section, will be employed to calculate the near-aperture and near-field terms of the 

RS diffraction integral that are no longer negligible when the observation point is 

close to the aperture. 

5.2 Revisiting near-field terms of the Rayleigh-Sommerfeld integral 

Let us consider again the general form of the RS diffraction integral be evaluated 

over an observation hemisphere centered around the aperture, but corrected in 

Equation (5.2) to account for scattering into a medium of refractive index 𝑛𝑠: 

𝑈(𝛼, 𝛽; �̂�) = 𝛾
𝑒𝑖2𝜋𝑛𝑠�̂�

𝑛𝑠�̂�
 

× ∬ 𝑈0(�̂�′, �̂�′; 0) (
1

2𝜋𝑛𝑠𝑙
 −  𝑖)

+∞

−∞

�̂�2

𝑙2
𝑒𝑖2𝜋𝑛𝑠�̂�𝑒−𝑖2𝜋𝑛𝑠(𝛼�̂�

′+𝛽�̂�′) 𝑑�̂�′𝑑�̂�′ 

(5.2) 

The scaling effect of 𝑛𝑠 on coordinates (�̂�, �̂�) of the Fourier kernel is already taken 

care of in the discrete algorithm, where 𝛥𝛼 = 𝛥𝛽 = 𝜆0 (𝐿 𝑛𝑠)⁄ . 

This expression contains the Fourier transform of the multiplication of four terms: 

𝐴 = 𝑈0(�̂�′, �̂�′; 0) =  𝑒𝑖2𝜋(𝛾𝑖𝑛𝑖±𝛾𝑠𝑛𝑠) ℎ̂(�̂�,�̂�;0) (5.3) 
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𝐵 = (
1

2𝜋𝑛𝑠𝑙
− 𝑖)  

𝐶 =
�̂�2

𝑙2
  

𝐷 = 𝑒𝑖2𝜋𝑛𝑠�̂� = 𝑒𝑖2𝜋𝑛𝑠[(𝑙−�̂�)+(𝛼�̂�
′+𝛽�̂�′)]  

 

A is the random phase screen term, i.e. it corresponds to the optical phase acquired 

when light traverses the rough texture. B is composed of two terms: −𝑖, which leads 

to the usual far-field radiative terms; and the 1 2𝜋𝑛𝑠𝑙⁄  term, which is the near-field 

[53,66], reactive term corresponding to evanescent waves. C acts like an amplitude-

like geometric weighting term during the integration. D can be considered as a 

deterministic phase screen term due to the diffraction geometry. As will be seen in 

the examples below, in the near-aperture region this term has a fast oscillating 

argument. In fact, Harvey proceeds [52,53] to make the binomial expansion of 𝑙 in 

terms of (�̂�, �̂�), and shows that �̂� can be written as a sum of constituent terms 

identified as conventional wavefront aberrations. Here I will take a numerical 

approach.  

When the observation radius 𝑟 is not much larger than the aperture size, the terms C 

and D are no longer negligible. Moreover, the evaluation of the A term should also 

change, because the angle term 𝛾𝑠 can no longer be considered constant across the 

aperture. When the observation radius 𝑟 is no longer much larger than the 

wavelength, the term B also becomes non negligible. However, for any given r, it is 

possible to numerically calculate these terms. A geometric visualization of these 

terms is presented in Figure 5.1. 

As in the previous section, the effect of the angle of incidence is accounted by 

shifting the center of the observation hemisphere in direction cosine space.  
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Figure 5.1. Top: Geometric visualization of near-field terms A, C and D. The 

(𝑙 − �̂�) + (𝛼�̂�′ + 𝛽�̂�′) quantity in term D corresponds to the small distance in bright 

green. Bottom: Geometric visualization of the direction cosine space (black) 

centered on the real, aperture space (orange), with distances �̂� (red) and 𝑙 (blue). 

Because each of these terms depends on the scattering angle 𝛾𝑠, the complex 

amplitude distribution 𝑈(𝛼, 𝛽; �̂�) and 𝐼2𝐷(𝛼, 𝛽) cannot be obtained by a single 

Fourier transform operation, i.e. Equation (4.2) corresponds to a “two-parameter 

family” of Fourier transforms. But this is exactly the same difficulty faced by the 
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GHS theory in the far-field, and can be overcome by the same element-by-element 

reconstruction method. For each matrix element (green in Figure 5.1 Bottom) 

corresponding to a scatter angle inside the unit circle in direction cosine space, four 

𝑁𝑥𝑁 2D screens corresponding to each term are calculated numerically by scanning 

the angle 𝜃𝑠 (for A) and distances �̂� (for C and D), 𝑙 (for B, C and D) and 𝛼�̂�′ + 𝛽�̂�′ 

(for D) across the aperture. In the resulting FFT transform after elementwise 

multiplication of the four terms, only the element corresponding to the correct scatter 

angle is retained. 

The results of some 𝐼1𝐷(𝜃) calculations along the plane of incidence will now be 

presented for sample D, for three different observation hemisphere radii. However, 

it is no longer possible to use the previous azimuthal averaging algorithm, to recreate 

the equivalent of each valid scatter element (of the 2D hemipshere) on the 1D 

incidence plane. This is because, unlike the far-field isotropic random phase screen 

term used in the previous section, the four terms do not have circular symmetry 

around the central element. Therefore the AID is more noisy, being composed of just 

1 Δ𝛼⁄  elements, or 47 data points in the case of scattering into air. 

5.2.1 Case 1: r=5000µm, ni=1.87→ns=1, θi=15.508° (θt=30°) 

This large observation hemisphere radius is chosen to verify that the approach to 

calculate the near-field and near aperture terms converge with the previous far-field 

calculations. In Figure 5.2, the first 4 images show the modulus of the amplitude-

like terms B and C, and the argument of the phase terms A and D. In these examples, 

these terms are illustrated at the scatter angle corresponding to matrix elements  

(p, q)=(100,100), which remain inside the shifted diffraction hemisphere, at a radial 

angle θ=38.9° and an azimuth angle φ=10.7°. The FFT result of the elementwise 

multiplication of these four terms in presented in 2D and 3D perspectives. The 

element-by-element reconstructed power distribution and the resulting AID match 

very well with previous far-field calculations, while the red line in the AID graph 

shows the angular measurement result. 
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Figure 5.2. Select calculation steps for r=5000µm, θi=15.508° 
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5.2.2 Case 2: r=50µm, ni=1.87→ns=1, θi=15.508° (θt=30°) 

In this example, the observation hemisphere radius becomes comparable to the 

aperture size, which is the AFM scan length of L=25µm. Figure 5.3a illustrates an 

on-scale representation of this diffraction geometry. 

Figure 5.3. Diffraction geometries with a) r=50µm, b) r=5µm observation radii, 

under θi=15.508 incidence angle (θt=30°) 

Figure 5.4 reproduces the previous calculation steps for r=50µm, with the four terms 

calculated for the scatter angle corresponding to the matrix element (p, q)=(100,100). 

As the radius decreases, near aperture terms C and D increasingly become non-

negligible. On the FFT for this to the matrix element (p, q)=(100,100), and especially 

on the element-by-element reconstructed 2D power distribution, the image of the 

AFM scan area can clearly be seen on the observation hemisphere as a square 

projection.  

Consequently, when the aperture size is not negligible, the ‘angular intensity’ 

distribution that is calculated by this routine can be interpreted as a convolution of 

the true angle spread function with the extent of the aperture. 
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Figure 5.4. Select calculation steps for r=50µm, θi=15.508° (θt=30°) 
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5.2.3 Case 3: r=5µm, ni=1→ns=1.87, 15.508° (θt=30°) 

In this example, the observation hemisphere radius becomes smaller than the 

aperture size of L=25µm. Figure 5.3b illustrates an on-scale representation of this 

diffraction geometry. 

Figure 5.5 reproduces the previous calculation steps for r=5µm, with the four terms 

calculated for the scatter angle corresponding to the matrix element (p, q)=(100,100).  

When the edges of the observation hemisphere gets close to the aperture, the 

weighting terms B and C become very high for the element (p, q) that is retained in 

the FFT. This leads to an increase in the ‘angular power’ and ‘angular intensity’ 

distributions towards higher scattering angles. This is expected from a physical point, 

since the distance from the scattering dipoles on the surface to the local observation 

point gets very small.  

The power distribution starts to mirror the troughs and crests of the surface texture - 

phase object situated below. The algorithm described in Figure 5.1 only allows an 

observation hemisphere centered on the AFM image aperture. However, if the power 

distribution at different position on the aperture is required, it is possible to use a 

simple translation of the AFM image center to that another point. When this is done, 

the power distribution changes to mirror the local phase object around this new point.  

However, even more than in the previous example, it is not correct anymore to 

interpret these results as an “angular distribution”, because the incidence is not 

through a small aperture at the center of the hemisphere.  
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Figure 5.5. Select calculation steps for r=5µm, θi=15.508° (θt=30°) 
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5.2.4 Case 4: r=5 µm with window function, ni=1.87→ns=1, 15.508° 

(θt=30°) 

If an angular distribution with respect to the polar angle is desired, e.g. to be used in 

an absorption enhancement calculation, it is possible to utilize a ‘virtual aperture’ or 

window function. Figure 5.6 presents such a window function that can be used to 

restrict the matrix terms that are going to affect the AID calculation.  

Figure 5.6. 2D Nuttall [n=16] window [102] placed at the center of an [N=256] 

square matrix. The rest of the matrix elements are filled with zeros. 

Figure 5.7 reproduces the results of Figure 5.5 with the inclusion of this window 

function in each FFT operation. The increase in power towards the edges of the 

observation hemisphere is remedied. The intensity distribution result can be once 

again considered an “angular distribution”. This AID is more similar to the far-field 

distribution, but without the non-diffracted peak. The power that is concentrated in 

the non-diffracted peak in the far-field seems to be distributed to a broad range of 

angles, and which also changes with the phase surface below if this latter is 

translated. This broadening in frequency space can be explained intuitively using 

Fourier optics arguments, by the narrowing of spatial coordinates from which 

diffraction occurs near the surface, when the observation hemisphere shrinks.  

The downside to the use of a window function is that the matrix elements 

contributing to the result are constricted to those at the center of the aperture. The 
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decrease in the number of effective matrix elements would result a greater 

uncertainty in the frequency domain. This could partly explain the broadening of the 

AID around the peak. The window function could also introduce numerical artefacts 

such as FFT side lobes, whose effects could probably be seen in the placement of 

secondary peaks around the central one.  

Both of these problems could be mitigated by using an AFM image with denser 

points per line, which in turn would allow a finer window function, at the cost of 

computational complexity.  

Figure 5.7. Results for r=5µm, θi=15.508°, using a central Nuttall window function 

5.2.5 Case 5: r=5 µm with window function, ni=1.87→ns=1, θi=30° 

(θt=15.508°) 

A similar calculation is performed for scattering into the optically denser medium, 

using the same central Nuttall window function, the results of which are presented 
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in Figure 5.8. The disappearance of scattering towards scatter angles satisfying the 

condition 𝛾𝑖𝑛𝑖 = 𝛾𝑠𝑛𝑠 is clearly visible once again. 

Figure 5.8. Results for r=5µm, θi=30°, using a central Nuttall window function 
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Similar calculations could be made for even smaller observation radii, where the 

near-field term B become more important. The use of well-selected window 

functions would be even more difficult but necessary to obtain true ‘angular 

distributions’ of intensity in those cases. However, the relationship between the 

electric and magnetic fields in the vicinity of the randomly textured surface, 

especially in the presence of a thin absorber medium, is likely to be very complex. 

How far close to the surface these SST based predictions remain accurate is another 

matter that should be investigated using rigorous electromagnetic simulations 

possibly supported by scanning near-field optical microscopy (SNOM) [33,103] 

characterization. 

5.3 Total intensity distribution 

Recall that TID representation was defined as a 2D AID integrated along the 

azimuthal φ coordinate, which corresponds to the total intensity scattered alongside 

equivalent polar angles 𝜃𝑠.  

The GHS theory algorithm used in this chapter to find non-azimuthally-averaged 2D 

AID involves the element-by-element FFT reconstruction step, performed for matrix 

elements corresponding to valid scatter angles inside a shifted observation 

hemisphere. The resulting normalized 2D power distribution is multiplied by the 

GHS normalization constant 𝐾𝑛𝑜𝑟𝑚, and the value of each element is divided by the 

corresponding solid angle ΔΩ𝛼,𝛽 ≅ Δ𝛼 Δ𝛽 𝛾⁄ , where 𝛾 = 𝑐𝑜𝑠(𝑠𝑖𝑛−1 𝑑0), to obtain a 

radiant AID 𝐼2𝐷(𝛼, 𝛽).  

To obtain the 𝑇𝐼𝐷(𝜃𝑠), these elements are sorted according to their radial distance 

in direction cosine space 𝑑0, from the center of the hemisphere, Next, values of 

elements with identical radial distances are averaged. Each radial distance is 

associated with a thin ring area between that of its neighbours, except the first 

element (zenith direction) which is associated with a circular area surrounded by the 

first ring area. The intensity of each element is multiplied with its associated area: 
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this operation corresponds to a numerical integration along azimuthal (φ) 

coordinates. Figure 5.9 illustrates an example of such a TID calculation, made for 

the previous case of 30° incidence on sample D.  

 

Figure 5.9. TID for sample D, with incidence angle θi=30°. (blue) and (green) show 

results respectively for transmission and reflection, for r=5µm, using a central Nuttall 

window function. (red) shows a TID for transmission calculated in the far-field. 

(black) and (pink) curves represent Lambertian distributions, calculated using 

Equation (2.9) and weighted by 𝑓𝑅,𝑇, respectively for transmission and reflection. 

It can be clearly seen that near the aperture (r=5µm), the intensity distribution is 

much broader until about 30°, whereas in the far-field it is concentrated in the non-

diffracted peak.  

However, the decrease of scattering towards scatter angles satisfying 𝛾𝑖𝑛𝑖 = 𝛾𝑠𝑛𝑠 is 

clear in both cases. This reinforces one of the previous conclusions that this 

phenomenon, if experimentally verified, would constitute a serious theoretical 

limitation towards achieving 4n2 Yablonovitch limit light trapping, at least in a single 

pass, through a randomly textured photonic interface. The existence of dips in 
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scattering into an optically denser medium forces the TID away from the case of the 

ideal Lambertian distribution for most of high polar scatter angle range. This is the 

case even though the TID distribution for the coupled case in reflection is predicted 

to be almost completely Lambertian, which is confirmed by AID measurements in 

the far-field, from Figure 4.11. 

5.4 Conclusion 

A numerical method has been laid down to calculate the near-aperture and near-field 

terms of the RS scalar diffraction integral. These are terms that had been neglected 

so far in the solar cell community when using the SST to model the intensity 

distributions in thin film solar cells. This novel method has been applied to the 

scattering of light from a complex phase object such as a rough random surface 

texture. 

The results show that, when the observation hemisphere approaches the surface 

profile, the aperture should be likewise restricted to a small region of the original 

surface profile by means of a virtual aperture. The AID results calculated under these 

conditions show a broadening of the main intensity component that forms a non-

diffracted peak in the far-field. This can be explained, from a physical point of view, 

by the narrowing of spatial coordinates from which light is scattered near the surface, 

which causes a broadening of the angular distribution of light in the frequency space. 

The AID results also closely mirror the troughs and crests of the phase object below, 

as can be expected.  

Another important feature is the continuous presence of the angle range with 

scattering dips when light is scattered into the optically denser medium. This 

phenomenon, if confirmed, would have negative consequences on the light trapping 

potential achievable by such random photonic textures, at least when the first pass 

through the absorber medium is concerned. 
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These results are given within the inaccuracies inherent in the scalar nature of the 

method, especially for applications to the very-near-field, where the coupling 

between the electric and magnetic fields is complex and cannot be ignored. An 

assertive validation of these results does require rigorous electromagnetic 

simulations over a large number of statistical realizations of a randomly textured 

surface, possibly supported by scanning near-field optical microscopy (SNOM) 

characterization. 

While the main motivation of this thesis remains towards thin film solar cell 

applications, the computational method proposed in this section can in principle be 

applied to other geometries and problems, including the application of RS diffraction 

integral to an observation plane, similar to Equation (4.1), a given distance away 

from the aperture, as is usually done outside of the Harvey-Shack approach.  

Compared to other numerical methods for near-field diffraction pattern calculation 

based on the direct evaluation of the RS convolution integral or the angular spectrum 

of plane waves method, this novel method should be computationally more intensive 

due to the large number of FFT operations, and especially due to the need to 

recalculate all four terms from scratch for each FFT. However, note that the 

recalculation of at least the A term cannot be dispensed with using more conventional 

methods (even for observation planes), because the phase object itself changes 

depending on the scatter angle (or the position on the observation plane). 
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CHAPTER 6  

6 CONCLUSIONS AND FUTURE PROSPECTS 

“The scepter, learning, physic must 

All follow this, and come to dust.” 

Cymbeline, Shakespeare 

 

In this thesis, I have set out to investigate the Harvey-Shack nonparaxial scalar 

diffraction theory applied to the scattering of light from rough dielectric surface 

textures intended for use in thin film solar cells as light trapping interfaces.  

In order to approach this subject, an angular light intensity measurement instrument 

has been purpose-designed and built. It consists of a sample stage that can rotate  to 

set an incident angle, and a detector arm that can revolve around the same center 

with high angular resolution, thus enabling operation both in reflection and 

transmission mode.  

Harvey-Shack scalar surface scattering theory is a method that established itself in 

the modelling of thin film layers in the solar cell community. It is based on the 

Fourier transform of the optical phase light accumulates while traversing the rough 

surface texture to evaluate the far-field approximation of the Rayleigh-Sommerfeld 

diffraction integral, observed on a hemisphere centered around the sample aperture. 

Different versions of Harvey-Shack theory can be found in the literature. These were 

identified and implemented in computational algorithms that run on a personal 

computer.  

Among these versions, the autocorrelation function (ACF) approach is suited for 

well-behaved surfaces and lends itself better to parametrization and averaging to 
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reduce experimental uncertainties, but requires some statistical assumptions that are 

not always fulfilled. The equivalent and more direct phase screen (DPS) approach 

seems to be more robust in that regard, and performs as well for sample height 

profiles that are adequately representative of the real surfaces. 

With regard to the choice of the pupil function to be Fourier-transformed, the 

generalized Harvey-Shack (GHS) theory uses the correct phase accumulation term, 

which makes it truly non-paraxial in the far-field, and the extra computational cost 

can be handled by relative ease. The simpler, less computationally demanding 

original Harvey-Shack (OHS) theory can still produce adequate results for isotropic 

textured samples, in which the scattered power is mostly contained in angle ranges 

where the difference between the two phase-accumulation models is not too large.  

Moreover, in contrast to the OHS model, the GHS model applied to scattering from 

air into an optically denser medium predicts angular intensity distributions 

concentrated to small polar angles, constrained by the existence of specific angles 

where no scattering occurs. Therefore, the GHS model predicts that ideal Lambertian 

scattering distribution (and therefore 4n2 Yablonovitch limit light trapping) cannot 

be achieved by a single pass through the front surface of a random photonic texture.  

All of these results show remarkably good general fit to actual far-field intensity 

measurements, the GHS predictions being the more accurate. However, these 

comparisons also reveal two possible limitations of scalar scattering theory:  

The first one consists of a regular decrease of wide angle scattering in rougher 

textures with small lateral features that could be explained by an effective decrease 

in height profile, which can be attributed to effective medium effects. This limitation 

of scalar scattering theory modelling could arguably point out to another physical 

limitation of achievable high angle scattering inside thin absorber materials using 

photonic surface texturing, since making steeper textures at the nanoscale will be 

less and less effective. 
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The second limitation of scalar scattering theory is that it concerns only primary 

interactions of incident light with the surface. An increase in scattering towards 

negative scatter angles at the expense of forward scattering, observed across all 

samples (especially for oblique incidence), has been experimentally linked to the 

presence of secondary interactions at the surface topography, that serve to 

redistribute part of the scattered power. 

In addition, the terms of the near-aperture and near-field terms of the RS scalar 

diffraction integral were investigated using a novel modification to the GHS 

algorithm. These are the terms that were previously neglected in the solar cell 

community, but can be relevant to modelling the intensity distributions in thin film 

solar cells using the scalar scattering theory. This novel method has been applied to 

the scattering of light from a complex phase object such as a rough random surface 

texture. 

The results show that, when the observation hemisphere approaches the surface 

profile, the aperture should be likewise restricted to a small region of the original 

surface profile by means of a virtual aperture. The angular intensity distribution 

results calculated under these conditions show a broadening of the main intensity 

component that forms a non-diffracted peak in the far-field. This can be explained, 

from a physical point of view, by the narrowing of spatial coordinates from which 

light is scattered near the surface, which causes a broadening of the angular 

distribution of light in the frequency space. The angular intensity distribution results 

also closely mirror the troughs and crests of the phase object below, as can be 

expected.  

 

As a future prospect ensuing from this thesis, a validation of such near-field results 

can be attempted by using rigorous electromagnetic simulations or scanning near-

field optical microscopy characterization. This near-field computational method 

could also in principle be applied to other geometries and problems, including the 

application of Rayleigh-Sommerfeld diffraction integral to an observation plane at a 
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given distance away from the aperture, as is usually done outside of the Harvey-

Shack approach. 

Furthermore, this dissertation focuses on s-polarized incident waves, whose effects 

are more easily modelled using such a scalar scattering theory. When p-polarized 

incident waves are used, or indeed when the observation plane is not the plane of 

incidence, more complicated polarization related effects will come at play. This is 

especially true in scatter in reflection, where depending on the angle of incidence, 

quasi-Brewster like angle ranges appear, with significant decrease in scattering. 

Remaining within the scope of scalar scattering theory, a modelling of these effects 

could be attempted by replacing the constant fresnel weighting coefficients that 

depend only on the incidence angle and used throughout this work; by a two-

dimensional “polarization screen”, that would also depend on the polar and 

azimuthal locations of the scatter angle with respect to the incident angle.  
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APPENDICES  

“Hic sunt dracones.” 

A. Measurement calibrations and corrections 

A.1  Intensity measurement calibrations  

As explained in the experimental section 3.2, all experimental scatter measurements 

were performed using a 3 mm diameter diffuser film on the detector arm in front of 

the 1 mm core diameter optical fiber. To obtain the normalized AID, the diffuse 

signal measured at scatter angles is divided by the incident beam signal (laser beam 

measured directly by the same collector without a sample), and by the constant 

detector solid angle. 

The use of this diffuser disk has the advantage of spatially averaging the signal over 

a larger collection area, resulting in a smoother measured signal, as illustrated in 

Figure A.1.  

Figure A.1. Angular measurements for normal incidence transmission for sample D, 

with and without a diffuser film in front of the optical fiber. The scatter signal has 

been normalized with the incident signal and the larger (film) collector solid angle. 
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The alternative option of using a lens to focus the scattered light onto the optical 

fiber core would require a precise alignment which would be difficult to maintain in 

practical conditions. It would also lead to a larger collector footprint, blocking the 

incident light over a larger range of incident angles in reflection.  

However, the coupling of light from a 3mm diffuser disk to a 1mm fiber core situated 

at a distance of few millimeters does not happen without losses. These coupling 

losses would not affect the intensity level if they are identical for a relatively 

homogeneous, diffuse scatter signal and the direct laser beam signal. However, as 

illustrated in Figure A.2, coupling losses are clearly not identical for light incident 

relatively homogeneously across the diffuser film area and concentrated at its center. 

Figure A.2. Coupling losses for a) relatively homogeneous diffuse incident light and 

b) direct laser beam aligned to the center of the diffuser film. 

Therefore, the case with the diffuse film has to be calibrated with respect to the case 

with a bare optical fiber. This can be accomplished by dividing the optical coupling 

losses into elementary quantities that can be measured. The calibration factor to 

adjust the diffuse (non-direct-beam) signal, measured with a diffuser film (compared 

to a signal measured without diffuser film, would be: 

signal,bare,diffuse

signal,film,diffuse
=

direct power
collection ratio

 × geometric
collection mismatch

 × solid angle
ratio

 
diffuse power
collection ratio
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signal, bare, diffuse

signal, film, diffuse
=

direct power, film
direct power, bare

×
power collected, bare

power collected, detector.
×
solid A, film
solid A, bare

diffuse power, film
diffuse power, bare

 

The peak power collection ratio is the ratio of the signal measured with the laser 

beam aligned to the center of the diffuser film in the position illustrated in Figure 

A.2b, to the signal measured with the laser beam aligned to the center of the optical 

fiber (with the diffuser film placed directly on the fiber to account for film 

reflectance). After numerous measurements, this ratio is estimated to be  

(0.20 ±2.7e-2). 

The geometric collection mismatch results from the fact that the laser beam has a 

Gaussian beam width 𝜔0 of about 1.45 mm. Therefore, the bare optical fiber core of 

1 mm diameter cannot collect all of the laser beam power. The power contained 

within a radius of rfiber = 0.5 mm from the Gaussian beam center is: 

P(rfiber)

P∞
= 1 − exp (

−2 ∗ rfiber
2

ω02
) 

After numerous measurements of beam width, the geometric collection mismatch is 

estimated to be (0.61 ±3.7e-3). 

The solid angle ratio is the ratio of the solid angles subtended by the 3 mm diameter 

diffuser film placed at 242 mm from the aperture center, versus the 1 mm bare optical 

fiber core placed at 244 mm, giving a ratio of 9.15. Uncertainties related to distances 

are neglected.  

The diffuse power collection ratio is estimated similarly to the direct power 

collection ratio but using a diffuse light source such as a halogen lamp.  After 

numerous measurements, it is estimated to be (0.86 ±3.7e-2). 

signal, bare, diffuse

signal, film, diffuse
=
(0.20 ± 2.7e-2) × (0.61 ± 3.7e-3) × 9.15

(0.86 ± 3.7e-2)
= (1.29 ± 1.39e-1) 



 

 

102 

This is a relation of the type 𝑓(𝑥1, 𝑥2, 𝑥3) = 𝑐. 𝑥1. 𝑥2. 𝑥3. The standard deviation 𝜎𝑐𝑎𝑙 

for the overall calibration factor has been calculated by propagating the uncertainties 

𝜎1,2,3 of the three multiplicative factors according to: 

𝜎𝑐𝑎𝑙
2 = 𝑐2. (𝑥1̅̅̅. 𝜎2

2. 𝜎3
2 + 𝑥2̅̅ ̅. 𝜎1

2. 𝜎3
2 + 𝑥3̅̅ ̅. 𝜎1

2. 𝜎2
2)  

This calibration factor is applied to all non-direct-beam scatter measurements. The 

calibration factor concerning the direct-beam reduces simply to the geometric 

collection mismatch factor, or (0.61 ±3.7e-3).  

A.2  Peak signal level corrections to account for lock-in time constant  

The angular light scattering scans have been generally performed using a lock-in 

time constant of 100 ms, which is enough to follow the signal level across the diffuse 

angle range. However, during the measurement of the direct beam, the signal level 

changes by several orders of magnitude in a very short time, and for the 

corresponding data point the lock-in time constant is usually not fast enough to reach 

correct level by the time the measurement is taken. The resulting errors are illustrated 

in Figure A.3. 

Figure A.3. Lock-in measurement error and its correction. The measurement is not 

fast enough to a) increase to and b) decrease to the correct signal level. 
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These errors can be remedied using the following procedure presented in Figure A.4. 

Raw data points are indicated with circles. Base points B1 and B2 correspond to the 

signal level just before and after the peak. B2 can be constructed using the data point 

after it and the ratio leading to the first base point B1. H is the raw data point 

corresponding to the peak, and it is underestimated. L is the raw data point after the 

peak, and it is overestimated. X corresponds to the true peak signal level.  

Figure A.4. Peak signal level correction points. 

Assuming that the data points are measured at equal time intervals, and therefore that 

the error ratio between successive points is the same, the following quadratic relation 

is obtained: 

H − B1

X − B1
= 1 −

L − B2

X − B2
=
X − L

X − B2
 

The two solutions of this quadratic relation give the corrected peak data point X, and 

a refinement of base point B2.  

B. Circling the Square: elements partly outside the diffraction hemisphere  

The discrete algorithms for power calculation 𝑃𝛼,𝛽 such as Equation (4.17) give the 

2D power map for each matrix element corresponding to a scatter angle. Algorithms 

for intensity distributions 𝐼2𝐷(𝛼, 𝛽) or 𝐼1𝐷(𝛽 − 𝛽0) such as Equations (4.20) or (4.31) 

require normalization by the solid angle ∆Ω𝛼,𝛽 corresponding to those scattering 
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matrix elements. This is straightforward for most matrix elements that are fully 

inside the diffraction hemisphere, but not so for elements that are partially outside, 

such as the ones colored in Figure B.1. The center (𝛼, 𝛽) of the blue-colored element 

is inside the unit circle, but part of the square Δ𝛼 × Δ𝛽 (and therefore part of the 

power contained in that element) is outside. Likewise, the center (𝛼, 𝛽) of the red-

colored element is outside, but part of its square Δ𝛼 × Δ𝛽 is inside the unit circle. 

Depending on the AFM scan size and refractive index of the medium into which 

scattering occurs, such elements will constitute a sizable angle range (around 75° to 

90° for L=25µm and ns=1). 

Figure B.1. Matrix elements partly inside the unit circle. 

For such elements, the area contained inside the unit circle (illustrated in the colored 

parts of Figure B.1a) and the area projected onto the unit hemisphere (giving 

corresponding solid angles, as illustrated in Figure B.1b) are calculated numerically 

using surface integrals. Furthermore, for such elements, the radial distance to the 

center of the unit circle is calculated not from the center of the square Δ𝛼 × Δ𝛽, 

which can be outside the unit circle (as in the red-colored elements), but from the 

geometric center of the polygon remaining inside the unit circle. This polygon can 

have three, four or five corners, depending on how many corners of the square 

Δ𝛼 × Δ𝛽 are outside the unit circle.  
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Finally, the intensity is calculated by multiplying the scattered power for that matrix 

element by the area ratio of the square remaining inside the unit circle, and dividing 

by the corresponding solid angle.  

C. Spectral leakage problems 

A consequence of the finite nature of the 2D FFT operation is the spectral leakage 

phenomenon, illustrated in Figure C.1. The FFT operation treats the phase screen as 

a periodic function at the boundaries, which is not the case for random isotropic 

textured samples. The discontinuity at the edges result in a characteristic “cross” 

pattern after the 2D FFT. Samples with larger lateral features compared to their AFM 

image size (such as samples A, B and C) tend to suffer more from this effect. The 

preferred solution is to use a window function to smoothly decrease the height profile 

to zero near the image edges. The use of a well-selected window function can 

eliminate almost the entire leakage artefact without significantly altering the power 

distribution of the central elements. 
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Figure C.1. a) Phase screen resulting from normal incidence reflection for sample A, 

and b) its corresponding 2D power distribution map. c) and d) The same results with 

a tapered cosine (Tukey) window function (with parameter 0.1) [102] applied to the 

AFM image. 
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