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ABSTRACT

SENSITIVITY ANALYSIS OF BRIDGE DECKS FOR HIGH-SPEED
RAILWAY BRIDGES

Rahman, Abdullah
Master of Science, Civil Engineering
Supervisor: Prof. Dr. Alp Caner

January 2020, 167 pages

Continuous welded rail provides a smooth ride for railway traffic, the use of
continuous welded rail allows the trains to reach higher speeds, where tracks are made
to be continuous over supporting structure and discontinuities -embankment in front
of and behind the bridge- the structure and the track jointly resist the longitudinal
forces generated from rail traffic. Bridge structural properties can allow additional
stresses in rail due to movement under variable actions. Bridge structure and track are
interlinked by ballast. This interlink will result in an interaction between the track and
structure. If the interaction between the track and structure kept under control, the
track and bridge will continue to fulfill their function without any damage into the
track. In this thesis, parameters affecting the track-structure interaction are identified
to perform a sensitivity analysis. The parameters are bridge deck span, deck height,
bending stiffness, and neutral axis location. The focus of this thesis is given to develop
a simple method for calculating the combined effect with a live load amplification
factor of 1.4 (o = 1.4). The Eurocode provides a simple method, but it is only valid for

classified loads with o factor = 1.
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HIZLI TREN DEMIRYOLU KOPRULERI UST YAPILARI ICiN
DUYARLILIK ANALIZI

Rahman, Abdullah
Yiiksek Lisans, Insaat Miihendisligi
Tez Danismant: Prof. Dr. Alp Caner

Ocak 2020, 167 sayfa

Siirekli kaynakli ray sistemi demiryolu i¢in piiriizsiiz bir siiriisii miimkiin kilmaktadir,
Siirekli kaynakli rayli systemin kullanimi trenlerin yiiksek hizlara ¢ikmasina imkan
saglar. Demiryolunun iizerinde bulundugu yap1 ve giris-¢ikislarda bulunan dolgular
gibi siireksizlikler lizerinde siirekli hale getirildigi durumlarda, yap1 ve demiryolu {ist
yapist tren trafiginin olusturdugu boyuna yondeki kuvvetlere birlikte direng gosterir.
Kopriiniin yapisal ozellikleri, degisken yiikler altindaki hareketlerden kaynaklanan
ilave ray gerilmelerine miisade edebilir. Demiryolu iist yapis1 ve kdprii ballast tabakasi
ile birbirine baglanmaktadir ve bu baglant1 demiryolu ile yap: arasinda bir etkilesim
ortaya ¢ikarmaktadir. Demiryolu iist yapisi ve koprii arasindaki bu etkilesim kontrol
altinda tutulursa yap1 ve demiryolu herhangi bir hasar olmaksizin gérevlerini yapmaya
devam edeceklerdir. Bu calismada ray yapi etkilesiminde rol alan parametreler
duyarhilik analizi gergeklestirmek i¢in tariflenmistir. Bu parametreler, koprii istyapist
yapilan ¢alismanin amaci, hareketli yiik biiyiitme faktroniin 1.4 alindig1 durum i¢in (o
= 1.4) biitiin etkileri dikkate alacak sekilde basit bir hesap yontemi gelistirmektir.
Eurocode sartnamesi bunun i¢in basit bir yontem belirtmektedir ancak bu yontem

sadece haraketli yiik artirma faktoriiniin 1.0 alindig1 durum igin gegerlidir.
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CHAPTER 1
INTRODUCTION

1.1. High-Speed Railway

Travelling by trains is recognized as one of the safest land transportation systems, and
the railway transportation system is efficient in terms of energy and mobilization.
Speed railways have experienced a lot of developments over the past decades, and the
main goal is to achieve higher speeds and reduce transportation time. A new type of
railways which emerged from the conventional one is the high-speed railway system,
which can significantly reduce the amount of time required for traveling by the
conventional system. Japan had the lead in high-speed railways industry when they
introduced the first high-speed track in 1964 (Manovachirasan et al., 2018) known as
the bullet train. Many countries wanted to develop a high-speed railway network, such
as Germany, France, Turkey, Poland, Sweden, Spain, South Korea. The system of
high-speed railway track consists of the track and the fasteners, sleepers and the filling
material ballast, (Ruge and Birk., 2007), as shown in Figure 1.1, which are the

components that provide a surface for the train wheels running along the track.

rail
fastening, ]

pad

sleeper

ballast

oL grads subsoil

Figure 1.1. General Components of High-Speed Track System



1.2. Continuous Welded Rail (CWR)

In most of the conventional tracks, the rails are separated by gaps as shown in Figure
1.2 to allow for thermal expansion. Since the jointed track has a gap between the rails,
the contact surface between the rail and the train wheel is reduced on the joint section.
This reduction creates a dynamic force on the rails, requires a significant amount of
maintenance, increases power consumption (Low., 2015) and limits the maximum

speed of the train.

Introducing the Continuous Welded Track to the railway system will allow higher
speeds and a smoother ride (Yeo and Lee., 2006) by reducing the vibrations created
by the train wheels passing over the track joints (Miiller et al., 1981). The CWR is
produced by filling the gaps between the rails with filler material for several
kilometers. The overall cost of the CWR track type is cheaper than the conventional
type because the maintenance cost is reduced and the service life of the track is
increased (Lei and Feng., 2004). The most significant difference in structural response
between the continuously welded rails and the jointed type is the axial compression

force in the longitudinal direction.

Figure 1.2. Jointed Rail (Engineering Materials-Jones., 2019)



1.3. Continuous Welded Rail for High-Speed Railways

The use of CWR instead of the jointed rail will result in a better track system. The
CWR will allow higher speeds with low maintenance cost. However, because of the
CWR is continuous it will result in an extra internal force due to thermal, braking and
live loads. The jointed rail has small gaps allowing the rail to expand and contract
under the thermal loads. These extra loads generated in the track should be resisted by
the rail and the rail should withstand the stresses. These stresses can be compressive
or tensile. Particular attention should be paid for the compression force because the
compression force could reduce the compression resistance of the continuous welded

rail due to buckling.

The first use of the continuous welded rail was in Germany in 1924 (Lonsdale., 1999)
and it has become more common since the 1950’s. The German Railways are always
trying to increase the travelling speed. Therefore, they have designed most of their
high-speed railways to allow speeds up to 250 km/hr (Miiller et al., 1992). Similar to
are in Spain and Turkey as shown in Figure 1.3.

Figure 1.3. High-Speed Network in Europe 2012 (UIC)



1.4. Continuous Welded Rail for Bridges

The major part of the rails is placed on a subgrade. Generally, the rail attached to the
sleepers by fasteners laid on ballast bed supported by a subgrade, as shown in Figure
1.4 sleepers are typically spaced at 60 (cm) over ballast. However, in the application
of bridges, the rail is attached to the sleepers by fasteners laid on ballast bed or
concrete strip compatible with the filler used and then supported by the bridge deck.
For the jointed rail system, the rail and the supporting structure are treated separately
while, this is not the case for the continuously welded rail. Rail stresses needed to be
checked for CWR case. The bridge has mechanical and geometrical properties such
as bending stiffness, cross-section area, deck height. The superstructure is supported
over bearings attached to the top of piers and abutments. Having a shear stiffness under
lateral loads and axial stiffness under vertical loads, bearings will contribute to the
structural response. Since the bridge could undergo some deformations due to vertical
or horizontal force, the bridge movements are accommodated by the bearings and
expansion joints on the top of the deck. Introducing a continuous welded rail at the
top of the bridge will create a situation in which any movement of the bridge will
affect the rail supported by the deck. The coupling between the bridge deck and the

rail is achieved by ballast bed or by direct fastening.
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Figure 1.4. Cross Section View of Typical Ballast Track (Alabbasi and Hussein., 2019)

Since any movement of the bridge or the track will affect the other, this phenomenon
is defined as interaction. The interaction between the structure supporting the track



and the track is discussed through this thesis by using interaction models, as shown in

Figure 1.5. Generally, the bridges have large stiffness compared to tracks.
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Figure 1.5. Track-Structure Interaction Model (Widarda., 2009)

1.5. Problem Statement and Thesis Objectives

The Structure and the Track are coupled by the ballast. This coupling action is
described as the track structure interaction. The track-structure interaction is discussed
well in the literature, and the physical event is defined in practice design codes, as
reported in Chapter 2. The bridge structure has parameters affecting the behavior of
the bridge deck and the interaction. The parameters are defined in the literature, but
there are not any complete studies on how these parameters are affecting the
interaction between the structure and the track. The aim of this thesis is to fill the gap
in the literature regarding the parameters affecting the track-structure interaction
phenomenon for a ballasted case without rail expansion device. Sensitivity analysis is
performed for the parameters affecting the interaction to see how changing the
parameters will affect the system of the track and the structure through mathematical
models. Parameters affecting the interaction are defined and the response of the

structure as a whole to variation of these parameters is discussed.
1.6. Organization of the Thesis
The thesis is organized as follows:

Chapter 1 is an introduction to the high-speed railway systems and the concept of

continuous welded rail (CWR) and the interaction between the track and structure.



Chapter 2 is intended to discuss the Track-Structure interaction, deeply with the help
of the literature and the design codes, the loads affecting the interaction, and the
coupling nature between the track and the bridge deck. Also, later in this chapter, some
bridge monitoring practices are reported, and lastly the areas covered by this work are
defined.

Chapter 3 presents the mathematical modeling of the Track-Structure, differences
between the modeling techniques, and the verification of the computer model used for
the evaluation, according to UIC.

Chapter 4 focuses on the analysis types used for the evaluation. The two selected
analysis types are the complete and simple separated type are defined, and the
accuracy of each analysis is discussed. Moreover, a comparison between each analysis

type is presented.

Chapter 5 is the evaluation of Track-Structure interaction. Sensitivity analysis is
performed, and parameters affecting the interaction phenomenon are defined. The
effect of each parameter on the rail stress is presented. At the end of the sensitivity
analysis, a simple method is proposed for calculating the combined effect of Track-
Structure interaction similar to the method given by Eurocode Annex G. The method
Is intended to cover higher classified loads with o factor up to 1.4, while Eurocode

method only includes classified vertical loads with o factor equal to 1.

Chapter 6 presents a summary of the work done in this thesis, conclusion and some

recommendations for future researches.



CHAPTER 2

TRACK-STRCTURE INTERACTION

Bridge and Track are interlinked, regardless of whether the system used for the track
is the ballasted bed or it is directly fastened. Any force or deformation imposed on the
track above or close to bridge structure will result in a force and deformation on the

bridge structure or vice versa.
2.1. Track-Structure Interaction Development

After introducing the continuously welded rail to the high-speed railway network, a
new problem started to arise for the designers -CWR- doesn’t have any joints to
accommodate the thermal movement of the rail as in case of jointed tracks. The most
significant difference between the two types of tracks is the longitudinal forces
generated in the rail due to thermal and variable actions. Back in the mid-70’s the
design for longitudinal forces could be based only to a very limited extent on the
experience from road bridges (Prommersberger and Rojek., 1984). In the late 70’s the
designers started to take axial forces generated in the track due to interaction between
the bridge deck and the track into consideration. Historically, the development of high-
speed networks in Europe has been observed in several stages. The structural system
(bridge-viaduct) proposed to support the track should satisfy some rules developed to
ensure track safety. These rules typically have empirical limits based on actual site
measurements of rail stress concentrations and experience approaches for rail stability
and safety (Dutoit., 2008). To develop a design criterion for a continuous welded
track-structure interaction, the International Union of Railways has commissioned a
research team from the European Rail Research Institute (ERRI) in 1992 titled
“Improve knowledge of CWR including switches”. The research program was

assigned to the (ERRI) special committee D-202 and it was composed of four main



tasks; development of theoretical models, experimental research to determine the
input data for the model and the validation process of the models, non-destructive
measurements of longitudinal rail stresses due to temperature action and revision of
the International Union of Railways leaflets for the continuous welded rail (Esveld.,
1996). The research concluded in three parts developed at TU Delft, The Netherlands
and TU Krakow Poland and the three models were CWERRI, CREEP, TURN.
CWERRI intended to analyze and study the (CWR) stability under various
combinations, including vertical and longitudinal forces, dynamic effects and ballast
yielding under combined load situation. Modeling CWR behavior in the longitudinal,
vertical and lateral directions is possible with this method. As the CWR could be
modeled, its behavior could be calculated integrally in a user-friendly environment.
The model provides: rail-structure (bridge) interaction including the bending effect
from vertical loads, multi span bridges with many rails aligned parallel, ballast
yielding in three-dimensional behavior taking into account the vertical load effect,
three-dimensional modelling and calculations, vertical and lateral rail stability under
axial loads (Esveld., 1998).

2.2. Loads Considered by Interaction

Due to the fact that the track and structure are coupled by connection, the deformations
and loads on each element affect others. The rail is used to support the train passing
over it. The train has a vertical load with a rolling mass creating traction and braking
forces, and the thermal loads induced by bridge expanding in summer and contracting
in winter. The bridge interaction is also affected by creep shrinkage and temperature
gradient, but the main loads affecting the track-structure interaction are thermal loads,

vertical load, braking/acceleration loads (Ruge and Birk., 2007).
2.2.1. Braking-Acceleration Forces

Train movement along the bridge gives rise to a longitudinal (horizontal) force
transferred through friction via the rails, fasteners, sleepers through ballast to bridge

deck, bearings -if exists- finally to the supports. The rolling of the wheel at constant



speed creates a relatively small friction force. However, the friction force magnitude
increases during movement at non-uniform speed, which takes place at breaking or
acceleration. In this case, the adhesion forces between the train wheels and the tracks
(Fryba., 1996).

The longitudinal force transferred to tracks in case of acceleration or deceleration is
composed generally of air resistance due to vehicle drag, axle bearing and wheel
flange friction. The latter two are considered negligible and the train traction force,
which is related to the engine torque and gear ratio under the condition where no
slippage occurs means complete adhesion (for modern locomotives with a software-
controlled wheel slip). The maximum traction force that can be applied to the tracks
is limited to p the friction between the train wheel and the rail and to Wy, the vertical
load carried by the wheel (Unsworth., 2010). During load tests in the United States
and Europe, it has been observed that the longitudinal forces resulted from braking or
acceleration reach maximum force at low speeds as shown in Figure 2.1 when train
starts to accelerate or just before stopping for braking, and it has been shown that
forces exhibit almost static behavior (Fryba., 1996).

*Xg a)

Figure 2.1. Time-history Under Horizontal force a) Braking, b) Acceleration (Fryba., 1996)

Where:
Xs : the longitudinal force due to braking of acceleration.

t: time.



The longitudinal force due to braking and acceleration has been examined extensively
in the literature (Foutch et al., 1996, 1997), (LoPresti et al., 1998), (LoPresti and Otter.,
1998), (Otter et al., 1996, 1997, 1999, 2000), (Tobias et al., 1999), (Uppal et al., 2001).

The latest research proposed a relationship between the braking/acceleration force and
the length of the portion of the bridge under consideration, as shown in Figure 2.2,

which overcome the complexities and numerical modeling effort.
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Figure 2.2. AREMA Design Longitudinal Forces

The load distribution of braking and traction forces depends on many factors, some of
which are bridge members resisting the loads, bearing types and substructure stiffness,

as shown in Chapter 5.
2.2.1.1. Braking Force

The braking force reaches its maximum magnitude just before stopping, and it is
directly related to the weight of the train and the friction factor; hence, the largest
beam longitudinal deformations could be approximately calculated from static
longitudinal force equal to the coefficient of adhesion friction multiplied by the train
weight (Fryba., 1996). The friction factor could achieve 40 % p = 04
(Prommersberger and Rojek., 1984). Due to the fact that braking force could be treated

10



as static load, the force could be distributed along the train length. This will make the

computation much simpler and easier and more accurate at the same time.
2.2.1.2. Traction/Acceleration Force

The traction force reaches its peak just when the train starts to move (Unsworth.,
2010), and it is directly related to the friction coefficient, torque produced by the
engine, and the weight of the locomotive. It should be noted that the maximum traction
force is limited by the weight supported by the traction wheels and the friction
coefficient; otherwise, a slip will occur (Fryba., 1996). The weight of the locomotives
containing the engines is higher than the normal wagons; thus, it could produce forces
higher than braking forces, but on limited length. The horizontal forces due to
acceleration and braking are summarized as follows; the span length doesn’t affect the
braking force since the emergency braking system is distributed along the train, the
traction force and braking force are maximum at lower speeds, traction force generated

from locomotives could affect a smaller length of the bridge (Otter et al., 2000).
2.2.2. Vertical Load

Vertical loads are transferred to the bridge deck through ballast bed. The bridge deck
has a pre-defined bending stiffness, which will lead to superstructure end rotation
under vertical loads, as shown in Figure 2.3. Deck rotation will impose a deformation
on the track as shown in (Esveld., 1998).

\\ Rails
\ P

I

@

Bridge

Figure 2.3. Influence of Bridge-end Rotation (Esveld., 1998)
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The vertical loads for high-speed railways are primarily divided into two categories;
the European and the United States load classification. Within the European region,
the vertical loads are mainly based on LM-71 and the SW family load. The LM-71
load has been enhanced by the dynamic factor ®, and by the load amplification factor
a (Eurocode). The USA loads are based on maximum Cooper loads with Cooper E80
as the recommended load the other loads are scaled based on Cooper E80, such as 0.75
is used to determine Cooper E60 loads (AREMA., 2008). The total height of the deck

and the natural axis ordinate have an effect on the force generated in the tracks.
2.2.3. Thermal Load
2.2.3.1. Thermal load on the Track

The continuous welded rail (CWR) is fixed to the sleeper by a fastener, which secures
the rail in the sleeper by a clamping force. This clamping force is designed to provide
the full transmit of all longitudinal movement of the track to the sleepers. The
resistance of track/sleeper for sliding is greater than the resistance of ballast for
horizontal movement. As a result, the track movement in the longitudinal direction
under thermal action or traffic loads is restrained by the ballast stiffness, which will
build up an axial force in the track. If a continuous welded rail laying on embankment
without rail expansion device is subjected to the thermal load, the rail will be subjected
to axial stress because the expansion and contraction of the rail are completely
prevented. The CWR has a breathing zone -two zones- at each end, which could be

opened till 50 (mm) for a distance up to 150 (m), as shown in Figure 2.4.
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Figure 2.4. Thermal Longitudinal Force in CWR (UIC)

The stress within the CWR under thermal load is equal:
0 = E Xxx ATr (2-1)

Where:

E:  Young’s Modulus of the rail (MPa)

ATr: Temperature change reference to laying temperature

a: Coefficient of thermal expansion

Experiments on rail temperature shows that the rail temperature increases to a

maximum of 18 to 20 °K above the surrounding air temperature (DIN-Fb 101).
2.2.3.2. Thermal Loads on the Bridge Deck

Bridges for high-speed railway expand and contract under thermal loads. Due to the
movement, the bridge structure under thermal action induces additional forces on the
continuously welded rail, which limits its use. The problem of continuous welded rail
over bridge deck could be approached by considering the bridge deck and the rail as
beam element interlinked by ballast (Fryba., 1996). The bridge has fixed, and movable
supports and the bridge is typically free to move under thermal action. The bridge

movement will generate a movement in the ballast and this movement will be
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transmitted by ballast into the rails as a force. The force in the rails directly depends
on the free expansion length of the bridge, as shown in Figure 2.13 and the difference
between the laying temperature and the maximum or minimum temperature in the
summer or winter. The parameters affecting the rail stress due to temperature action
are discussed in detail in Chapter 5. The temperature variation depends on many
factors such as coefficient of thermal expansion, as shown in Figure 2.6. Also, steel
structures are more sensitive to temperature than concrete and composite structures,
as shown in Figure 2.5 (DIN-Fb 101).

Tomax

o
Te.min

maximum

minimum

-50 40 -30 -20 -10 O 10 20 30 40 50

Figure 2.5. Correlation between Shade Air Temperature and Uniform Bridge Temperature
Component (Holicky and Markova., 2008)

Te,max , Temin are for the bridge deck, Tmax, Tmin for shade air temperature °K, type-1 is

steel deck, type-2 and type-3 are composite and concrete decks respectively.
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Material or (x 10° x "C'I)
Aluminium, aluminium alloys 24
Stainless Steel 16
Structural steel 12
Concrete (except as specified below) 10
Concrete with light aggregates 7
Masonry 6-10
Timber, along to grain 5
Timber, across to grain 30-70

Figure 2.6. Coefficient of Thermal Expansion (EN 1991-1)

The thermal expansion coefficient for steel in composite and reinforced concrete deck

is assumed to be equal to that of concrete (Holicky and Markova., 2008).
2.3. Buckling of CWR

Temperature induces significant axial forces which can build up in CWR, threatening
the stability of rail (Lim et al., 2008). Consideration of the CWR started in the early
30’s, and the first computational model considering the buckling of CWR were
developed in 1930 (Dosa and Unggureanu., 2007). Many finite element models and
analytical models were developed by considering the ballast and the sleepers with the
CWR, but they were mathematically very complex (Kerr.,1976). Later on, different
finite element models were developed to investigate the CWR buckling (Samavedam
et al., 1983). The models could be categorized as continuum models or discrete
models. The 1D Winkler’s foundation beam were mostly used among the other
continuum models because of its simplicity. (Kish et al., 1982,1985), (Samavedam et
al., 1983,1993) published many papers regarding the rail buckling using beam model.
(Manovachirasan et al., 2017) developed a theoretical 3D finite element model for rail
buckling analysis, as shown in Figure 2.7. This model takes into account the coupling
change due to vertical loads and was developed to investigate the changes in the

longitudinal stress distribution due to loads applied on the bridge and the track.
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Figure 2.7. 3D Ballast Track Model (Manovachirasan et al., 2018)

2.4. Relative Displacement Criteria for Interaction

Movements of the rail relative to the deck are called relative displacement, as shown
in Figure 2.8 and the stresses generated from this movement are identified as
additional stresses on the rail (Low., 2015). Stresses generated from loads without
relative displacement are not called ad