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ABSTRACT

DEFORMATION AND FAILURE ANALYSIS OF LAMINATED
COMPOSITES BY ISOGEOMETRIC ELEMENTS FORMULATION

Aydın, Cansın Bade
Master of Science, Mechanical Engineering

Supervisor: Prof. Dr. Haluk Darendeliler

January 2020, 120 pages

The finite element method (FEM) is the most widely used technique for solution of

engineering problems. In classical finite element analysis (FEA) procedure, the exact

geometry generated in computer aided design software is regenerated to have an anal-

ysis suitable model, then this model is used for solution. Isogeometric analysis (IGA)

is a computational approach which eliminates the modification phase of the actual

geometry in FEA. Instead, IGA employs the same mathematical model which defines

the geometry in the computer graphics software for defining the solution field. One of

the most general basis functions used for representing the geometry mathematically is

Non-Uniform Rational B-Splines (NURBS). NURBS are more comprehensive form

of B-spline functions which are parametric piecewise polynomials. They allow flex-

ible and accurate design, control of continuity with ease, and with its rational form

enabling representation of conic sections which is not possible by using B-splines.

The main advantage of isogeometric approach is to analyze the complex shaped parts

by eliminating the error due to inaccurate representation of geometry in the finite el-

ement method. In addition, since spline-based functions with higher continuity are

used, better accuracy is acquired.
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The aim of this thesis is, through the use of isogeometric plate elements, to analyze

the deformation, to determine the strain and stress distribution and to predict the first

ply failure by using different failure criteria of laminated composite materials, and

to present the applicability of IGA for anisotropic materials. For this purpose, an

open source code written for isotropic materials is modified to analyze laminated

composites and various failure criteria are embedded to the code. A number of cases

with various ply orientations and thicknesses, under different loading and boundary

conditions are analyzed and their results are compared with the results obtained by

the solutions of FEM.

Keywords: Laminated Composite, Isogeometric Analysis, IGA, First Order Shear

Deformation Theory, Failure Theories
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ÖZ

KOMPOZİT LEVHALARIN DEFORMASYON VE KIRILMA ANALİZİNİN
İZOGEOMETRİK ELEMANLARLA FORMULASYONU

Aydın, Cansın Bade
Yüksek Lisans, Makina Mühendisliği

Tez Yöneticisi: Prof. Dr. Haluk Darendeliler

Ocak 2020 , 120 sayfa

Mühendislik problemlerinin çözümü için en sık kullanılan teknik, sonlu elemanlar

yöntemidir. Klasik sonlu elemanlar analizi (SEA) yönteminde, bilgisayar destekli

tasarım yazılımları ile oluşturulan kesin geometri, analize uygun bir modele sahip

olacak şekilde yeniden oluşturulur ve bu model analiz için kullanılır. İzogeometrik

analiz (IGA), SEA’daki asıl geometrinin sadeleştirildiği fazı ortadan kaldıran sayısal

bir yöntemdir. IGA, bunun yerine çözüm alanını tanımlamak için bilgisayar grafik-

leri yazılımlarında geometriyi tanımlamak amacıyla matematiksel modeli kullanır.

Geometrinin matematiksel tanımlanması için kullanılan en genel taban fonksiyonla-

rından biri düzenli olmayan rasyonel tabanlı eğrilerdir (NURBS). NURBS, paramet-

rik parçalı polinomlardan oluşan taban eğrilerinin (B-spline) daha kapsamlı halidir.

NURBS, esnek ve doğru tasarıma, yüksek mertebeden sürekliliğe kolay ulaşılmasına

olanak sağlar, ve rasyonel yapısı sayesinde, B-spline ile ifade edilemeyen konik ke-

sitlerin gösterimine imkan tanır. İzogeometrik yaklaşımın temel avantajı; karmaşık

şekilli parçaların, sonlu elemanlar metodunda, geometrilerinin yeterli düzeyde betim-

lenememesinden meydana gelen hataların ortadan kaldırılarak analiz edilebilmesidir.

Ayrıca, yüksek mertebeden sürekliliğe sahip eğri tabanlı fonksiyonların kullanımı ile
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daha doğru sonuçlar elde edilir.

Bu tezin amacı, izogeometrik plaka elemanlarının kullanımıyla, tabakalı kompozit

malzemelerin deformasyonunun analiz edilmesi, gerinim ve gerilme dağılımlarının

belirlenmesi, farklı hasar kriterleri ile ilk tabaka hasarının öngörülmesi ve IGA yönte-

minin yön bağımlı elemanlara uygulanabilirliğinin gösterilmesidir. Bu amaçla, çeşitli

fiber yönlerine sahip tabakalardan oluşan farklı kalınlıklardaki plaka örnekleri deği-

şik yük ve sınır koşulları altında incelenmiş, sonuçlar SEA yöntemi ile elde edilen

sonuçlar ile karşılaştırılmıştır.

Anahtar Kelimeler: Levhalı Kompozitler, İsogeometrik Analiz, IGA, Birinci Derece-

den Kesme Deformasyon Teorisi, Hasar Teorileri
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Humankind are trying to improve the materials since the beginning of the human

history. From the stone age to present many materials and processing techniques are

developed to meet the certain needs. Nowadays, in the technology based society,

one of the main objectives is having lighter designs in many fields such as energy,

automobile and aerospace. To fulfill this purpose, material technologies and analysis

methods plays major roles in design. Fiber reinforced composite materials are one of

the best result in engineering materials studies on enhancing the strength to weight

ratio.

1.1.1 Composites; Properties, Advantages and Drawbacks

Composite materials are composed of several materials, which are not soluble in each

other, combined in the macroscopic level to obtain a material which gathers the prop-

erties of its constituents [10]. Even in ancient history, humankind made early exam-

ples of the composite materials by mixing mud and straw and obtaining one of the

most commonly used construction materials, adobe. As technology developed, needs

are increased simultaneously, and constituents get sophisticated.

Depending on the constituents, composite materials can have high specific strength

and specific modulus, long fatigue life, wear resistance, endurance to high tempera-

ture gradients, better health characteristics, etc. [11]. There are numerous applications

of composites in the industry due to these favorable properties of the material. Some
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of the application areas are; aerospace structures, nuclear plants, automotive, marine

and underwater structures, buildings, and sports industry.

The constituent with higher strength is called reinforcement, and the other material

covering the reinforcement is called the matrix. The reinforcement increases the me-

chanical properties of the material and the matrix connects the reinforcements, dis-

tributes the force, and by covering them, guard the reinforcements from the environ-

ment [10]. There can also be a porous core material in some applications to increase

bending stiffness. Since composite materials have several ingredients, they have an

endless variety, and some of them can require design and analysis procedures differ-

ent from each other according to the used type. Composite materials can be classified

according to their texture, or according to their constituents. According to texture,

some of the most common types are; fiber reinforced, particulate reinforced and flake

reinforced composites. In the case of fiber reinforced composites, the texture may still

vary according to arrangements of the fibers. There are woven fabrics in which fibers

are combined in textile-like forms, and there are unidirectional (UD) fibers that all the

fibers of a layer oriented in the same direction. In respect of constituents, different

reinforcement and matrix materials are in use. The frequently used fiber materials

are carbon, glass and aramid. There are various matrix materials like polymers (ther-

moplastic or thermoset), metals, ceramic or even carbon, but the most commercially

used matrix materials are polymer resins, such as epoxy, phenolic and polyester [10].

Mechanical properties of the fiber reinforced composites are not isotropic due to their

fibrous nature. Strength on the fiber direction is considerably higher than the strength

on the other directions. This property allows a flexible design to enhance mechanical

properties only in necessary directions. On the other hand, anisotropic nature requires

unique analysis procedures.

The main challenges of the composites come from their constituents and heteroge-

neous nature. Since it is a combination of several materials, standardization of the

material is harder. Allowables of the material require many tests. In this study, unidi-

rectional (UD) fiber reinforced prepregs with thermoset resins are used. In the manu-

facturing process of the prepregs, fiber sheets are impregnated with the uniformly dis-

tributed resin. Prepregs are suitable for layup or molding operations. The thermoset
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resin is affected by environmental conditions severely before it is cured. Therefore,

prepregs are stored in refrigerators for a limited time then they are scrapped. Also,

the layup is performed in environmentally conditioned, clean rooms, and they require

vacuum bagging and curing in autoclave with pressure and heat. Manufacturing qual-

ity has severe effects on mechanical properties. Thus, composite materials subjected

to relatively expensive non-destructive testing methods, such as ultrasonic testing.

They also exhibit distinctive failure modes such as delamination, which is challeng-

ing to analyze and hard to discover in standard maintenance.

1.1.2 Development of Isogeometric Approach

Design process in industrial applications include many parameters such as manu-

facturability, assemblability, material selection, strength, weight, cost etc. To fulfill

these requirements, both parts and final assembled product should be visible with all

details to the designers. For this purpose, computer aided design (CAD) softwares

are being widely used worldwide in design departments for several decades. Before

computerization, designs were represented in 2-D blueprints. With developing tech-

nology, 2-D drawings relinquish its place to 3-D models. For computer representa-

tion of geometries with accuracy, math-based definition of the shapes were required.

First, Casteljau used Bernstein polynomials for parametric expression of the curves

and surfaces [12, 13], followed by Bézier with the curves named by himself [12, 14]

and computer implementation of B-splines by Riesenfeld and Richard [12, 15] which

allows local changes of the shape. Afterwards, a more comprehensive spline expres-

sions called non-uniform rational B-splines making representation of conical sections

possible [12]. At the present time, the NURBS are the mathematical method forming

the basis of the geometrical representations of the CAD softwares. Since, the NURBS

are parametric functions for geometrical modeling, the geometry generated by these

softwares are exact.

While CAD softwares are used for design, finite element analysis (FEA) softwares

are favored for analysis. These softwares usually use piecewise-linear or piecewise-

quadratic geometric approximations for the solution instead of exact geometry. A new

and approximate geometry, also known as analysis suitable geometry, is prepared for
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analysis purposes by stress engineers based on the exact geometry. The quality of the

analysis strongly depends on the quality of this approximation which is not unique.

Creation of this analysis suitable geometry and meshing takes about 80% of the total

time for analysis [7, 1] and involve many simplification of actual geometry. Devia-

tions between exact CAD geometry and approximate geometry generated for analysis

lead inaccurate results in analysis. In 2005, Hughes, Cottrell and Bazilevs proposed a

method called isogeometric analysis (IGA) to close this time consuming gap between

CAD and FEA environments [7]. The underlying concept of isogeometric analysis

is using the functions representing the exact geometry for the solution domain of

dependent variables [7].

1.2 Objective of the Thesis

The main objective of this thesis is carrying out a study to use the isogeometric ap-

proach for analyzing the deformation and strain-stress distribution of laminated com-

posites under transverse loading. By the development of a solution procedure that

allows using the exact geometry in the analysis model for composite laminates, re-

finements do not require any iterations between the CAD and the FEM softwares and

it is possible to analyze laminated composites with good accuracy. Constructing the

geometry by means of the NURBS basis functions and using the isogeometric analy-

sis method, an easily adjustable analysis model especially for analysis of the design

data in development phase is tried to be achieved. Moreover, integrating several fail-

ure criteria to the model enable the desired failure theory to be used and results of

them to be compared.

1.3 Review of Previous Work

In this section, the previous studies in the literature are summarized starting with

briefly mentioning the studies about laminated composite analysis, then moving to the

development and applications of isogeometric analysis; lastly, covering the researches

about isogeometric analysis for analyzing composite plates.
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1.3.1 Analysis of Laminated Composites

Pagano [16] studied on the validity of the CLPT. He compared the results of the

CLPT for cylindrical bending with elasticity solution by implementing both tech-

niques to the solution of a unidirectional one layer plate, a bidirectional two-layered

plate, and a bidirectional three-layered plate all under the same sinusoidal loading.

He finds out that while the results of stresses converge to the linear elasticity solution

rapidly as the ratio of the effective dimension to thickness increases. On the other

hand, convergence of the displacement is slower. The results of this study play a

significant role in further developments of composite plate analysis methods. Since

linear elasticity solution does not have assumptions for simplification and considers

shear deformations. Next year, Pagano [17] published another paper to deepen his

study on limitations of the classical laminated plate theory (CLPT), providing 3-D

elasticity solution for rectangular laminated and sandwich composites. This time,

he studied on a simply supported plate under static bending. He presented the ac-

ceptable cases for using the CLPT, and the cases theory loses its accuracy. As his

previous study, the role of this study is crucial in checking the validity of the new

theories since the exact solution was supplied. In 1994, Reddy and Robbins [18] pub-

lished an article covering the many theories for structural analysis of laminated plates

in detail. They also explain a method which applies different modeling techniques

for the regions requiring 3-D stress field and other regions. By doing so, a more opti-

mal model is generated since high computational cost is reduced while preserving the

accuracy. Castellazzi, Krysl and Bartoli [19] using nodally integrated plate elements

(NIPE) focused on a solution for locking problem created by the curvature caused

by shear that cannot be properly expressed in FEM model with increasing length to

thickness ratio (LTR). They used the FSDT formulation for the analysis of compos-

ite laminates. Their approach includes formation of novel elements with monoclinic

properties and composing the strain-displacement relations at nodes. During the val-

idation phase, they found consistent results with analytical and the FEM solutions.

Yu [20], advanced the Reissner-Mindlin (R-M) theory by starting with a 3-D formu-

lation and converting to a more standard 2-D plate problem by means of variational

asymptotic method. He come up with as accurate results as HSDT and LW theories.

Adim, Daouadji and Rabahi [21] proposed a method for eliminating the SCF by hav-
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ing a non-linear distribution of the shear stress in transverse direction. They assumed

uncoupled shear and bending for displacement in thickness direction, and applied a

refined HSDT. They affirm their solution by comparing with 3-D elasticity solution.

They also claimed that, their theory is more convenient than other HSDTs since it is

a refined theory with less unknowns and they even made the refined HSDT simpler.

Analysis is an important and difficult issue since the introduction of the composite

materials. Many researches were conducted and numerous theories are proposed for

modeling their layered structure. In addition to the ones, mentioned in this chapter,

the main theories will be explained in Chapter 2.

1.3.2 Development of Isogeometric Analysis

The finite element method began to developed around the 1950’s to decrease the need

for experiment and testing and has been widely used for solving engineering problems

since then. While the finite element method has been used for several decades when

computer aided design entered the life of the engineers. The different origins of these

two technologies cause distinctions in their logic; therefore, models. The parametric

mathematical models of CAD programs are improved together with the visualization

they created. Nowadays, NURBS functions are being widely used for generation of

geometries in these softwares. Piegl and Tiller [5] explained the formation, proper-

ties and applications of B-spline and NURBS functions in detail in their book. Even

after introducing of the isoparametric method, the FEM uses linear shape functions;

whereas, geometry is represented by precision using NURBS functions in design. In

2005, Hughes, Cotrell and Bazilevs [7] introduced a new analysis method represent-

ing the geometry exactly by using NURBS basis functions as CAD softwares. Beside

eliminating the geometry assumption, isogeometric concept also expedite the cumber-

some meshing process which requires iterations between CAD and FEM geometries.

Even in the first published paper, they present various application areas of the method

promoting by numerical examples, from structural mechanics to electromagnetics.

To authenticate the newly introduced method, they showed the consistency between

the previous studies and exact analytical solutions whenever available. Since than the

IGA method is applied to wide variety of problems. A few years later, Cotrell et.

al. [1] explained the methodology and implementation of the IGA comprehensively
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in their published book. They extend the application fields mentioned in the previous

paper [7] to include nonlinear problems, dynamic problems such as vibration, wave

propagation and turbulence.

Even though the IGA attracted many researchers, many were distant to the subject

because of the onerous computer implementation of an unfamiliar concept. Falco,

Reali and Vázquez [22] developed free software called GeoPDEs to provide a conve-

nient way for the ones who want to implement IGA to their studies and develop new

methods. They explained the design, architecture, and features of the software. They

also provide examples for linear elasticity, Strokes and Maxwell problems. Then,

Nguyen, Anitescu, Bordas and Rabczuk [8], further developed the GeoPDEs, cover-

ing h-, p-, k- refinements, widening the scope to cover multidimensional cracks and

material interfaces and they made the program compatible with also T-splines. They

verify their code by presenting several example problems and comparing their results

with exact solutions and academic studies.

Although IGA defines the geometry in the same way as CAD programs, the descrip-

tion may not always suitable for analysis, such as trimmed geometries. In the early

days of the IGA, trimmed geometries were one of the major problems. Marussig [23]

focused on solving the robustness and inaccuracy problem of the objects after trim-

ming operation. He proposed a procedure called extended B-splines with local refine-

ment to solve the problem of applying the IGA method in trimmed geometries.

Other than studies on B-splines and NURBS, other spline based functions like T-

splines [24, 25, 26], PHT splines [27] and RHT splines [28] are conducted by the

IGA concept.

1.3.3 Applications of Isogeometric Analysis

Besides the papers about the method itself, there are many applications of the IGA in

many fields, such as structural analysis [1, 29, 30, 31, 32, 33], fluid mechanics and

fluid-solid interactions [34, 24], electromagnetics [35] and contact mechanics [36].

Since the scope of this thesis is application of the IGA to the structural analysis, the

content of the researches on this subject is covered.
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Zhang, Alberdi and Khandelwal [37] are worked on the three dimensional curved

beams. They deal with the shear locking phenomena by using functions with higher

orders. Especially with the fourth order functions, they resolve the problem. Tsipt-

sis and Sapountzakis [38] are analyzed closed and open section curved beams under

combined loading. They concluded that using the IGA more accurate results can be

obtained with less computational cost. Because of the effect of the exact geometry

is particularly greater for curved beams, Rafenkovic and Borkovic [39] also used the

IGA for their studies on curved beams. Espath, Braun, Awruch and Maghous [33],

aimed on analyzing structured with nonlinearities by uniting the IGA and corotational

method. This method approaches 3-D state by separating problem into two parts, one

is only associated with deformation and other with translation. They both conduct

studies on linear and nonlinear cases. They observed reduce in computational ex-

pense by using higher order polynomials with sufficient but lower continuity. They

summarize the minimum required orders for procedures both linear and with nonlin-

earities.

Considering the researches combining the IGA and composite analysis, there are

many studies ranging from beam analysis to nonlinear post-bucking analysis. Hasim [40]

applied the IGA method for composite beams. He used a refined zigzag theory. He

specifies the advantages of this theory as independence from the number of layers,

is not exposed to shear locking, and does not include geometric errors; however, it

cannot provide shear stress continuity. To cope with this problem, he proposed cal-

culating transverse component after the axial components of the stress field using the

Cauchy’s equilibrium equation. To test the proposed procedure, he performed analy-

sis on beams with different aspect ratios and sandwich beam. He compared the results

with literature and results from commercial software and observed good agreement.

Faroughi, Shafei and Eriksson also worked on IGA solution of laminated beams [41].

They proposed "displacement-only" model, which does not take rotational DOFs into

account. Their approach is also adequate to model relations between layers and de-

lamination.

Fan, Zeng, Huang and Liu [42] intended to improve computational effort of laminated

plate analysis according to FSDT using the IGA. They also suggest a new method

called "Fast Plate Analysis based on Tensor-decomposition", which includes express-
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ing the matrices of structural analysis as tensor product by means of IGA. They gain

time in computation by decreasing the complexity of algorithms. They present sev-

eral examples covering constant and varying stiffness cases and both more standard

shapes and slightly complicated shapes whose Jacobian is not diagonal. They claimed

to have excellent improvement in computational complexity and their approach is

very suitable for optimization studies. Another study of laminated composite plates is

conducted by Thai, Nguyen-Xuan, Nguyen-Thanh, Nguyen-Thoi and Rabczuk [43].

They also used the R-M plate model with an improvement on shear terms proposed

by [44]. They applied the method to static, free vibration, and buckling problems with

elements of many orders to show the performance and observe perfect agreement with

the other methods in the literature. Thai, Nguyen-Xuan, Bordas, Nguyen-Thanh and

Rabczuk also used the HSDT of order three for analysis of composite plates [45].

Because of higher order approximation they eliminate the SCF while achieving es-

sential continuity with ease under favor of NURBS functions. They repeated the

same analysis in their previous paper [43] with this method. They asserted results

of their method competes with many other methods and even achieve better accu-

racy for interlaminar stresses. In another paper, Thai, Ferreira, Bordas, Rabczuk and

Nguyen-Xuan proposed a new method called "Inverse Tangent Shear Deformation

Theory" [46]. In this theory, a tangential displacement field assumed so that varia-

tion of shear stress does not require a SCF. They investigate the effects of LTR, core

to lamina ratio for sandwich plates, different geometries and boundary conditions in

several testing examples for the same analysis as previous papers [43, 45]. When

results are compared to other published work including other trigonometric theories,

they observed satisfying accuracy. The HSDT of order five is implemented to the

IGA for composite plate analysis by Nguyen-Xuan, Thai and Nguyen-Thoi [47]. Due

to high order of displacement assumption traction-free surfaces are achieved on the

model. They conducted analysis in the previous works [43, 45, 46] for both laminated

and sandwich plates for symmetric and antisymmetric lamination schemes. Similar

to the previous work C1 continuity is achieved without any difficulty by means of

the basis of IGA method. As cited from their study, the proposed method is a ri-

val to semi-analytical, FEM and meshless methods achieving good agreement with

exact 3-D elasticity solutions, especially for interlaminar stress distribution. Thai,

Ferreira, Carrere and Nguyen-Xuan [48], implement LW theory to the IGA for the

9



same analysis mentioned in previous papers [43, 45, 46, 47]. Using a LW theory,

they aimed to get more accurate results for transverse shear and does not need any

SCF since theory models each layer by the FSDT and relating layers by a condition

on displacement. The obtained result are highly promising for plates independent of

thickness, and theory calculates the transverse components more accurately than the

FSDT and HSDT. Li, Zhang and Zheng [49] applied HSDT of order three to lam-

inated plates in 2014. They mainly focused on analysis of comparatively complex

geometries. They performed free vibration and static analysis. They get admissible

results for thick plates which cannot be modeled by lower order theories properly be-

sides very thin plates which suffer from locking is solved by refining the mesh with

drawback of increasing computational expense. In the same year, the HSDT of order

three is used by other researchers for thick composite plate analysis. Pekovic, Stupar,

Simonovic, Svorcan and Komarow used basis functions of order 2,3 and 4 for analy-

sis of sandwich and laminated plates, compared their results with FSDT, other third

order HSDT and exact solutions, and observe accuracy of their study. In 2017, Gupta

and Ghosh [50] present their research about bending analysis of R-M plates by IGA.

They analyzed plates with different boundary conditions and with second, third and

fourth order basis functions. They also mentioned the validity of the method.

One of the most comprehensive studies is performed by Tran, Lee, Nguyen-Van,

Nguyen-Xuan and Wahab [51]. They applied IGA to laminated composite plates

using the HSDT. They performed both linear and non-linear bending and transient

analysis. They used the developed by Reddy. They eliminate the need for the SCF

in lower order theories and satisfy zero-traction conditions at the surfaces of the

plate while achieving the required continuity of the HSDT effortlessly thanks to the

NURBS basis functions. For nonlinearity, they used Lagrange approach with small

strain and moderate rotation assumptions. They analyze a clamped plate subjected

to uniform load, circular plate under uniform pressure, and several symmetric and

anti-symmetric laminated plates. They observe the effect of fiber orientation for anti-

symmetric laminates. They also performed nonlinear transient analysis for dynamic

systems. They compared their results with solutions in literature, and they achieved

a general agreement and even more accurate results in some cases compared to the

most used solution techniques. Kapoor and Kapania [52] obtained FSDT formula-
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tions for Von-Karman geometrical nonlinearities applying variational approach to an-

alyze composite plates using the IGA. They also provide a solution for the plates with

high LTR. They suggested using second order NURBS with k-refinement to eliminate

the artificial stiffer behavior of the laminate. As cited in their paper, they constitute

their nonlinear model by Newton-Raphson procedure, involving large displacement

in thickness direction with small strains and moderate rotations. According to their

results they obtained good accuracy with less DOF than FEM. Le-Manh, Luu-Anh

and Lee [53] are also studied on the same subject. Similar to the previous work of

Kapoor et. al [52], they used FSDT formulation with iterative process of Newton-

Raphson to derive relations for nonlinear model to be implemented to the IGA for

bending analysis. Their model account for large deformation and in-plane strains and

small rotations. They validate their method by comparing several numerical examples

covering different geometries, orientations and thicknesses with previously published

studies.

Delamination is one of the most limiting parameters of the composite design. Nguyen,

Kerfriden and Bordas [54] duplicate the control points using knot insertion to model

the delamination surfaces by isogeometric cohesive elements. After comparing the

results with the published papers, they concluded their method is highly favorable

to study delamination. Kapoor, Kapania and Soni [55], applied several degrees of

NURBS based IGA to find interlaminar normal and shear stresses in laminated com-

posite plates. They used the FSDT, and also 3-D elasticity equations in the transverse

direction. They verified their results in various numerical examples and compared

results with 3-D elasticity solution.

The numerical integration technique implemented is Gauss quadrature in most of

the published papers. Even though it is the most widely used numerical integra-

tion rule for the IGA method and seems adequate at first [1], researchers find out

that the convenience of the Gauss quadrature in terms of efficiency is very low for

IGA method. Auricchio, Calabro, Hughes, Reali and Sangalli [56] proposed a more

suitable quadrature technique for IGA. Even though Galerkin technique is widely

used method with isogeometric analysis, there are also studies with other numerical

methods. Pavan and Rao [57] using the isogeometric collocation method to perform

bending analysis, they are able to use strong form of the governing equations. The
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collocation method, has less computational cost due to less number of integration

points. They applied the isogeometric collocation method with three different formu-

lations to several problems, and accuracy and computational expense are evaluated.

Especially the results of the two of the formulations seem promising.

1.4 Scope of the Thesis

In this thesis study, analysis of composite plates are carried out for square and rect-

angular laminates under various loading, unidirectional fiber reinforced laminated

composites with polymer resins are examined. To see the affect of the ply orienta-

tions, cross-ply and angle-ply symmetric laminated composites are investigated. To

observe the effect of the boundary conditions on the displacement, one of the orien-

tation schemes is chosen and analyzed for one-end clamped and two-ends clamped

boundary conditions. For the first-ply-failure estimation, five different failure criteria,

namely maximum stress, Tsai-Hill, Hoffman, Tsai-Wu and Hashin, are implemented

and their results are compared for each test case. All of the analyses are conducted

by isogeometric element formulation with NURBS basis functions using first order

shear deformation theory by development of the open source code MIGFEM [8]. The

numerical results are compared with the 2-D orthotropic laminated shell analysis per-

formed in MSC Nastran.

1.5 Outline of the Thesis

The layout of this thesis is as follows:

In Chapter 1, a brief background information is provided and the motivation to start

working on the subject is explained, followed by the objective of the thesis study.

Then, previous studies in literature is reviewed and the scope and the outline of the

thesis are stated. In Chapter 2, plate theories used for laminated composite analy-

sis and several composite failure theories are examined. Isogemetric analysis (IGA)

method is introduced in Chapter 3. Basic concepts of the IGA, its application proce-

dure and differences from the classical finite element analysis method are explained
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in detail. Formulations used hroughout the analysis is derived in Chapter 4. After-

wards, to verify the validity of the procedure, results obtained by the formulation is

compared with the exact solution and the several numerical examples are presented

and they compared with the finite element analysis solutions performed on a commer-

cial software, MSC Nastran in Chapter 5. In Chapter 6, the results are summarized

and conclusions are drawn. Lastly, suggestions for future studies are given.
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CHAPTER 2

PLATE AND FAILURE THEORIES USED FOR COMPOSITES

The fiber reinforced laminated composites are strong in the fiber direction and weak

in the other directions compared to isotropic counterparts. Because of that, in most

applications, their thickness is small with respect to its planar dimensions. There-

fore, making plate and shell assumptions while modeling fiber reinforced composite

laminates is a reasonable approach [9, 20].

2.1 Plate Theories used for Composites

There are several theories for the analysis of composite plates. The leading theory

behind most of these theories is the 3-D elasticity theory for anisotropic materials.

Other methods are derived by making certain simplifications to the 3-D elasticity

theory. Theories for analyzing laminated composite plates can be classified into three

main groups by their approach to the material. These are equivalent single-layer

theories, three-dimensional elasticity theories, and multiple model methods [9].

The equivalent single layer (ESL) theories are the most commonly used theories be-

cause of their advantages, such as ease of modeling the problem, constructing the

constitutive relations, and low computational cost [43]. In these theories, an assump-

tion is made for variation of the displacement field, and the laminated plate is handled

as an equivalent single layer with anisotropic properties. Under this assumption, the

3-D continuum problem reduces to a 2-D problem [18]. The ESL theories give accu-

rate results for thin and moderately thick plates. However, because of the low trans-

verse shear stiffness of composites, thick plates tend to deform considerably under

transverse shear stress; therefore, the results of the ESL theories lose their accuracy
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as the plate gets thicker [9, 18]. The ESL theories are also yielding poor results in the

calculation of interlaminar stresses and not sufficient to predict ply level stresses near

geometric and material discontinuities and in highly loaded areas. In addition, they

cannot be used for delamination analysis [9, 43, 18].

The most common ESL theories are; classical laminated plate theory (CLPT), the first

order shear deformation theory, and higher order shear deformation theories. Each of

them will be explained in detail in the following sections.

The three-dimensional theories are the tools to calculate the results close to the exact

solution. In these theories, layers are modeled separately as homogeneous anisotropic

mediums [58]. As the number of layers increased, the model becomes complicated

and has a high computational cost. Even though 3-D theories are capable of solv-

ing geometric complexities, arbitrary boundary conditions, lamination schemes, and

nonlinearities; however, solution procedure may be very troublesome and even im-

possible.

There are also layerwise theories, instead of modeling laminate as an equivalent sin-

gle layer, they model continuous displacement field with not necessarily continuous

derivatives in the thickness direction. Therefore, it is like combination of many equiv-

alent layers. Especially, for moderately thick or thick laminates this theory ensures

better kinematic representation [18].

2.1.1 Classical Laminated Plate Theory (CLPT)

The Classical Laminated Plate Theory (CLPT) is also known as Kirchhoff Theory for

composite plates since it is an adaptation of Kirchhoff’s plate theory. Like its origin,

the CLPT is not a suitable theory for thick plates and only covers small deflections.

Assumptions of the CLPT are listed below [9]:

i. Normals of the mid-plane (transverse normals) before deformation, remain

straight and normal to the mid-plane after deformation.

ii. Normals of the mid-plane are inextensible.

iii. Both transverse shear and transverse normal effects are neglected. Therefore,
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plate deforms only under bending and in-plane stretching.

The CLPT is constituted by assuming a displacement field. Strain and stress fields

derived from this displacement field. The displacement field of the CLPT is given

below:

u(x, y, z) = u0(x, y)− z∂w0

∂x

v(x, y, z) = v0(x, y)− z∂w0

∂y
(2.1)

w(x, y, z) = w0(x, y)

As the field indicates, in the CLPT, deformations are solely due to bending and in-

plane stretching; that is to say, it does not take transverse shear and transverse normal

effects into account. Resulting from the high ratios of the effective elastic modulus

and effective shear modulus in fiber direction and transverse direction of laminated

composite plates, encountered error in CLPT is high. The CLPT method results in

lower deflections values than the actual and grater natural frequencies and buckling

loads [58]. Therefore, the CLPT is applicable only to thin plates, i.e., thickness to

span ratio less than 1/10 [11]. Exceedingly poor results are obtained as the plate

gets thicker [20]. In addition, the classical laminated plate theory loses its accuracy

as there exists a sudden increase or localization of the forces. The CLPT results in

errors, particularly around the boundaries of the plate and support reactions, since

it relies on the Kirchoff plate theory [59]. Lastly, the CLPT the required continuity

of the theory is C1 for transverse displacement; in other words, derivatives of the

function should be continuous beside the function. This obligation complicates the

finite element model [18].

2.1.2 First Order Shear Deformation Theory (FSDT)

The first order shear deformation theory (FSDT) is an improved version of the CLPT.

The FSDT for composite plates is widening the scope of the FSDT for anisotropic

plates by Pegano and Whitney [60, 55]. Different from the CLPT, takes into account

transverse displacements by eliminating the assumption of the transverse normals
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of the mid-plane will remain normal after the deformation. The FSDT is applica-

ble to moderately thick plates beside thin plates [49]. This theory assumes constant

displacement in the thickness direction. Due to this non-physical assumption, the

FSDT requires shear correction factor (SCF) stands for the nonlinear distribution of

the shear stress and satisfy traction-free boundary condition at the top and bottom

plate surfaces [50, 51]. The SCF is an dimensionless quantity depending on mate-

rial coefficients, alignment of the plies, geometry of the plate, loading and boundary

conditions [43, 49]. Consequently, it is not an easy to find impeccable SCF. While

researches are trying to improve SCF [61], more common approach is using constant

SCF, most commonly 5/6.

Assumptions of the FSDT are listed below [9]:

i. Normals of the midplane (transverse normals) are inextensible.

ii. Out of plane stress, σ33, is set to zero. Therefore, transverse displacement, w,

is independent of the coordinate in thickness direction.

iii. Transverse shear strain is constant throughout the thickness

By considering the second assumption, degrees of freedom reduces to 5 which in-

cludes 3 translations: u,v,w, and 2 rotations: φx, φy, rotations about x and y axes,

respectively.

Displacement field of the FSDT is as follows:

u(x, y, z) = u0(x, y) + zφx(x, y)

v(x, y, z) = v0(x, y) + zφy(x, y) (2.2)

w(x, y, z) = w0(x, y)

Including transverse shear strains, results of the FSDT is more accurate than the

CLPT. It is also require less effort to implement since it does contain any deriva-

tive terms. However, the FSDT also has limitations. Known parabolic distribution

of the shear strain along z-direction cannot be procured; thus, aforementioned SCF

is needed in the theory to ensure that there is an agreement between results of the

FSDT and the theory of elasticity [59]. As the LTR increases for a plate, the FSDT
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may generate factitious transverse shear stiffness in numerical solution, which is also

known as shear locking [18]. To obviate this issue, many researches have been con-

ducted, such as higher order elements are used [18], selective integration scheme is

applied [62, 63, 64] or k-refined quadratic NURBS elements are used [55]. More-

over, the traction-free boundary condition cannot be fulfilled at plate surfaces. The

interlaminar stress analysis cannot be performed properly since obtained interlaminar

stresses at the interfaces are discontinuous according to the FSDT [55]. Addition-

ally, the FSDT is suitable for 2-D problems. It does not give accurate results for 3-D

problems [59]. Lastly, the FSDT requires C0 continuity of variables, which makes the

theory more favourable than the CLPT considering complexity of conforming FEM

elements [18].

2.1.3 Higher Order Shear Deformation Theories (HSDT)

The higher order shear deformation theories (HSDT) are using second or higher order

polynomials while assuming displacement field. These theories also assert some addi-

tional unknowns, which have not an obvious physical meaning, to displacement field

expressions for each additional power to get accurate results [9, 58]. The HSDT are

better for modeling plates with high thickness, where transverse deformations plays

an important role [65]. Certain drawbacks of the FSDT, like satisfying the traction-

free boundary conditions on plate surfaces and need of SCF is still valid for some of

the HSDT, but some of them overcome these difficulties. One of the most popular

HSDT for laminated plates that assure the traction-free boundary conditions on plate

surfaces and eliminate the requirement of SCF is the third order theory developed by

Reddy [58]. The transverse components change quadratically in this theory [18].

The field of displacement of this theory is given below [58]:

u(x, y, z) = u0(x, y) + zψx(x, y) + z2ξx(x, y) + z3ζx(x, y)

v(x, y, z) = v0(x, y) + zψy(x, y) + z2ξy(x, y) + z3ζy(x, y) (2.3)

w(x, y, z) = w0(x, y)

Accuracy of the results of the HSDT models are slightly outperforming the FSDT

models. The HSDT also better for solutions of interlaminar stresses and displace-

19



ments [51, 49]. Moreover, the HSDT provide more stable results [11]. Nevertheless,

the HSDT require C1 continuity of displacement field, causing difficulties in FEM

elements [51]. In addition, effort for computing is greater than the FSDT [9]. For

high order theories as the order of the theory increase accuracy gained is unmention-

able with substantial rise in computational cost; thus, higher order theories are not

common [18].

2.1.4 3-D Elasticity Theories

The three dimensional elasticity theory for composite plates and sandwiches is pri-

marily studied by Pagano [16, 17, 51]. By using 3-D elasticity method, exact solutions

of the problems can be obtained [18, 33]. The continuum elements are fully nonlinear

and can solve shell problems as well as plate problems since they do not have plate

simplification assumptions [18]. In the solution of interlaminar stresses and prob-

lems like warping, 3-D elasticity method gives more precise results [43]. However,

formulation of the 3-D elasticity solution is very complicated and sometimes even

impossible for many problems having complex geometries, lamination schemes or

arbitrary boundary conditions [51]. Even though adequate method to model thick

composite laminates is 3-D elasticity method, increase in ply numbers results in dra-

matical rise in the computational effort because of 3-D elasticity theory models each

ply of the composite plate as a 3-D solid [51]. There are attempts to reduce the com-

plexity of the 3-D formulation without losing much of the accuracy of the solution.

For example, for plates, using advantage of smallness of the thickness coordinate,

3-D problem is split into a 1-D and a 2-D problems [20].

2.1.5 Layerwise Theories

The layerwise (LW) theories are like a step between 3-D elasticity theories and ESL

theories. There are full and partial LW theories. The full LW theories can calculate

interlaminar stresses near discontinuities precisely [18]. However, in conjuction with

increasing layer numbers to achieve the desired variation of the transverse displace-

ment, computational effort reaches full 3-D analysis level [66]. To overcome this
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problem, partial LW theories are constrained by assuming shear strain in transverse

direction constant only sectionally and its normal counterpart is zero, with drawback

of loosing this accuracy.

2.2 Failure Theories used for Composites

To investigate failure characteristic of the composite laminates the scale of modelling

should be decided. Three different scales that for failure prediction are: the micro-

scopic scale, the mesoscopic scale and the macroscopic scale [67]. The microscopic

scale is the scale of lamina constituents. Fiber-matrix interactions are considered, and

good for estimating crack initiation, but the microscopic failures do not always cause

laminate failure. The mesoscopic scale is the scale of the layer. For failure predic-

tion, stresses and strains of a single lamina is used. Lastly, the macroscopic scale is

the scale of laminate. This scale make a homogenization to the laminate and does not

consider positions or orientations of individual laminae, instead it uses stresses and

strains of the laminate for failure estimation [67].

Even after deciding the scale, the failure estimation of composite laminates is not

straight-forward as isotropic counterparts. The laminated composites do not yield,

their failure modes are fiber fracture or buckling under tension or compression, re-

spectively, crack formation in matrix, fibre debonding and delamination of the plies

of the laminate. In most cases the failure modes are not catastrophic, but causes local-

ized damage. After the localized failure, stresses on the lamina are redistributed [68].

Simultaneous and interactive development of the failure modes makes the failure pre-

diction difficult for laminated composites [3].

The first-ply-failure (FPF), as the name indicates, means not necessarily the total

failure but only the failure of the weakest lamina [68].

In this section, several failure theories for the FPF will be covered, which are, maxi-

mum stress failure criteria, Tsai-Hill failure criterion, Hoffman failure criterion, Tsai-

Wu failure criterion and Hashin failure criteria. There are many other failure theories

exist in literature, such as maximum strain, Puck, modified Puck and Yamada-Sun

theories. However, maximum stress, Tsai-Hill, Hoffman, Tsai-Wu and Hashin crite-
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ria are implemented and their results are compared in this thesis study.

The failure theories require the material properties given in Table 2.1.

Table 2.1: Abreviations of the material properties of a composite laminate.

(σT1 )ult Ultimate strength in tension in the first material direction

(σC1 )ult Ultimate strength in compression in the first material direction

(σT2 )ult Ultimate strength in tension in the second material direction

(σC2 )ult Ultimate strength in compression in the second material direction

(σT3 )ult Ultimate strength in tension in the third material direction

(σC3 )ult Ultimate strength in compression in the third material direction

(τ12)ult Ultimate shear strength (in-plane)

(τ23)ult Ultimate shear strength (out of plane, matrix-matrix shear)

(τ13)ult Ultimate shear strength (out of plane, fiber-matrix shear)

The failure criteria classified by treatment to the interactions of the strains and stresses

on different principle directions. They can be non-interactive, interactive or partially

interactive.

A non-dimensional property named strength ratio (SR) is defined have a sense of the

criticality of the quantity of the applied load [10]

SR =
Allowable Maximum Load Before Failure

Applied Load
(2.4)

The strength ratio is always positive and means the structure can withstand SR times

the load applied.The strength ratio can be defined for every failure theory and allows

comparison of the different theories. The layer will be safe if SR > 1, and failure

will be predicted if SR < 1.

2.2.1 Maximum Stress Criteria

The maximum stress criteria compares the stresses in material directions to the re-

spective strengths without considering any interaction. If the stress is greater than

the corresponding strength, lamina is said to be failed. In other words, the lamina is
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considered to be safe if

−(σc1)ult < σ1 < (σT1 )ult, or (2.5)

−(σc2)ult < σ2 < (σT2 )ult, or

−(σc3)ult < σ3 < (σT3 )ult, or

|τ12| < (τ12)ult, or

|τ23| < (τ23)ult, or

|τ13| < (τ13)ult.

The graphical representation of the maximum stress criterion for stresses σ1 and σ2 is

shown in Figure 2.1. The region outside the square is predicted unsafe. Strength ratio

is found by using individual strength ratios of the criteria

if σ1 > 0, SR1 =
(σT1 )ult
σ1

if σ1 < 0, SR1 = −(σC1 )ult
σ1

if σ2 > 0, SR2 =
(σT2 )ult
σ2

if σ2 < 0, SR2 = −(σC2 )ult
σ2

if τ12 > 0, SR3 =
(τ12)ult
τ12

if τ12 < 0, SR3 = −(τ12)ult
τ12

if τ23 > 0, SR4 =
(τ23)ult
τ23

if τ23 < 0, SR4 = −(τ23)ult
τ23

if τ13 > 0, SR5 =
(τ13)ult
τ13

if τ13 < 0, SR5 = −(τ13)ult
τ13

Therefore, strength ratio of the maximum stress criteria is the minimum of the indi-

vidual strength ratios

SR = min(SR1, SR2, SR3, SR4, SR5) (2.6)

The maximum stress criteria is a widely used theory since it only require uniaxial test

data, specify the failure mode causing the failure and good for first approximation.
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Figure 2.1: Safe and unsafe regions of the maximum stress criterion in two dimen-

sions.

However, it overpredicts the strength, does not cover the interactions between the

failure modes and does not fit well to the biaxial experimental data.

2.2.2 Tsai-Hill Criterion

Tsai-Hill criterion relates stress components in a single equation; thus it is an interac-

tive criterion. For orthotropic materials, the criterion is as follows

(
σ1

X1

)2

− σ1σ2

X2
2

+

(
σ2

Y

)2

+

(
τ12

(τ12)ult

)2

+

(
τ23

(τ23)ult

)2

+

(
τ13

(τ13)ult

)2

< 1

(2.7)

where

If σ1 > 0, X1 = (σT1 )ult

If σ1 < 0, X1 = (σC1 )ult

If σ2 > 0, X2 = (σT1 )ult, and Y = (σT2 )ult

If σ2 < 0, X2 = (σC1 )ult, and Y = (σC2 )ult
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Strength ratio of the Tsai-Hill criterion is calculated by

SR =
1√(

σ1
X1

)2

− σ1σ2
X2

2
+

(
σ2
Y

)2

+

(
τ12

(τ12)ult

)2

+

(
τ23

(τ23)ult

)2

+

(
τ13

(τ13)ult

)2
(2.8)

The Tsai-Hill criterion is an conformation of the Von Mises’ yield criterion to the

composite laminates, proposed by Hill [69]. To have the form in Equation (2.7),

the failure strength of Hill’s theory is related to usual failure strengths by Tsai [70].

This criterion fits more accurately to the experimental results [4]. Due to its accuracy

for all cases, its a broadly accepted. Nevertheless, since there is only one equation,

Tsai-Hill criterion does not specify the mode of failure leading to the failure.

Figure 2.2: Failure envelope of Tsai-Hill Criterion [3].

2.2.3 Hoffman Criterion

Hoffman criterion is also modification of Hill’s criterion [69], by adding linear terms [71]

C1(σ2 − σ3)2 + C2(σ3 − σ1)2 + C3(σ1 − σ2)2

+ C4σ1 + C5σ2 + C6σ3 + C7τ
2
23 + C8τ

2
13 + C9τ

2
12 < 1

(2.9)
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where Ci, i = 1, 2, ..., 9 are experimentally determined strength parameters. Assum-

ing σ3 = 0, equation takes the form

C1σ
2
2 + C2σ

2
1 + C3(σ1 − σ2)2

+ C4σ1 + C5σ2 + C7τ
2
23 + C8τ

2
13 + C9τ

2
12 < 1

(2.10)

where coefficients are defined as

C1 =
1

2

(
1

(σT2 )ult(σC2 )ult
+

1

(σT3 )ult(σC3 )ult
− 1

(σT1 )ult(σC1 )ult

)
,

C2 =
1

2

(
1

(σT1 )ult(σC1 )ult
+

1

(σT3 )ult(σC3 )ult
− 1

(σT2 )ult(σC2 )ult

)
,

C3 =
1

2

(
1

(σT1 )ult(σC1 )ult
+

1

(σT2 )ult(σC2 )ult
− 1

(σT3 )ult(σC3 )ult

)
,

C4 =
1

(σT1 )ult
− 1

(σC1 )ult
,

C5 =
1

(σT2 )ult
− 1

(σC2 )ult
,

C7 =
1

(τ23)2
ult

,

C8 =
1

(τ13)2
ult

,

C9 =
1

(τ12)2
ult

.

The strength ratio of the Hoffman criterion is found by quadratic equation. Which is

equation of the form (2.11), has the solution as (2.12).

ax2 + bx+ c = 0 (2.11)

x =
−b±

√
b2 − 4ac

2a
(2.12)

Thus, for the Hoffman theory, the coefficients are

a = C1σ
2
2 + C2σ

2
1 + C3(σ1 − σ2)2 + C7τ23 + C8τ13 + C9τ12 (2.13)

b = C4σ1 + C5σ2 (2.14)

c = −1 (2.15)

The strength ratio of the Hoffman criterion is the positive result of 2.12 with coeffi-

cients 2.13.
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Figure 2.3: Failure envelope of Hoffman Criterion [4].

Hoffman’s criterion indicates ellipsoids for plane stress in σ1, σ2 and τ12 space, sym-

metric about σ1 − σ2 plane [4], as shown in the Figure 2.3 Hoffman criterion also

agrees with several experimental data [4, 70, 72]. Moreover, it allows using the same

failure criteria for all quadrants of the ellipsoid, and does not take interactions of the

different failure modes into account.

2.2.4 Tsai-Wu Criterion

Another interactive failure theory is Tsai-Wu criterion. The criterion developed by

curve fitting to the experimental data by increasing the terms in the equation. This

results also allows us eof strength tensors [73]. The most general form of the Tsai-Wu

theory in six-dimensional stress space is

Fiσi + Fijσij = 1 i, j = 1, 2, ... 6. (2.16)

where Fi and Fij are strength tensors of the second and fourth rank [73]. An or-

thotropic lamina with σ3 = 0 is considered not to be failed if

F1σ1 + F2σ2 + F11σ
2
1 + F22σ

2
2 + F66τ

2
12 + F44τ

2
23 + F55τ

2
13 + 2F12σ1σ2 < 1 (2.17)
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where

F1 =
1

(σT1 )ult
− 1

(σC1 )ult
, F11 =

1

(σT1 )ult(σC1 )ult
,

F2 =
1

(σT2 )ult
− 1

(σC2 )ult
, F22 =

1

(σT2 )ult(σC2 )ult
,

F66 =
1

(τ12)2
ult

, F44 =
1

(τ23)2
ult

, F55 =
1

(τ13)2
ult

,

F12 is interactive stress term, and require a biaxial tensile test [3]. Although obtain-

ing F12 is difficult, empirical results can be used because its effect is minimal. For

example [10],

F12 = − 1

(σT1 )2
ult

from Tsai-Hill criterion [70] or, (2.18)

F12 = − 1

2(σT1 )ult(σC1 )ult
from Hoffman criterion [71] or, (2.19)

F12 = −1

2

√
1

(σT1 )ult(σC1 )ult(σT2 )ult(σC2 )ult
from Mises-Hency criterion [74] (2.20)

To calculate the strength ratio of the criterion, again the Equation (2.12) should be

solved with the corresponding coefficients

a = F11σ
2
1 + F22σ

2
2 + F66τ

2
12 + F44τ

2
23 + F55τ

2
13 + 2F12σ1σ2

b = F1σ1 + F2σ2 (2.21)

c = −1

The strength ratio of the Tsai-Wu criterion is the positive result of (2.12) with coeffi-

cients in (2.21).

Tsai-Wu criterion is generally the most compatible criterion with experimental re-

sults [3]. However, it does not give information about the failure mechanism leading

to the failure [75].

2.2.5 Hashin Criteria

Hashin criteria is a partially interactive criteria, i.e., failure of fiber and matrix treated

separately. Due to this feature, Hashin criteria distinguish among the various different
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failure mode as well as detecting the failure [76]. This property makes the Hashin

criteria more suitable for progressive failure analysis than the aforementioned criteria.

The quadratic criteria for σz = 0 derived by Hashin is as follows [76]:

Tensile failure of fiber (σ1 > 0)(
σ1

(σT1 )ult

)2

+
σ2

12 + σ2
13

(τ12)2
ult

< 1 (2.22)

or

σ1 = (σT1 )ult (2.23)

Compressive failure of fiber (σ1 < 0)

σ1 = −(σC1 )ult (2.24)

Tensile failure of matrix (σ2 > 0)(
σ2

(σT2 )ult

)2

+

(
σ23

(τ23)ult

)2

+
σ2

12 + σ2
13

(τ12)2
ult

< 1 (2.25)

Compressive failure of fiber (σ2 < 0)

σ2

(σC2 )ult

[(
(σC2 )ult
2(τ23)ult

)2

− 1

]
+

(
σ2

2(τ23)ult

)2

+

(
τ23

(τ23)ult

)2

+
τ 2

12 + τ 2
13

(τ12)2
ult

< 1 (2.26)

The strength ratio of the Hashin criteria is calculated in a slightly difficult manner. It

is composed of individual strength ratios of the criteria

if σ1 > 0, SRF =
1√

A1σ2
1 + A2(τ 2

12 + τ 2
13)

if σ1 < 0, SRF = −(σC1 )ult
σ1

if σ2 > 0, SRM =
1√

A3σ2
2 + A4τ 2

23 + A2(τ 2
12 + τ 2

13)

if σ2 < 0, SRM is the positive result of Equation (2.12) with coefficients

a =
A4σ

2
2

4
+ A4τ

2
23 + A2(τ 2

12 + τ 2
13) (2.27)

b = A5 (2.28)

c = −1 (2.29)
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where,

A1 =
1

(σT1 )ult
, A2 =

1

(τ12)2
ult

A3 =
1

(σT2 )ult
, A4 =

1

(τ23)2
ult

A5 =
1

(σC2 )ult

[(
(σT1 )ult
2(τ23)ult

)2

− 1

]
Lastly, the strength ratio is

SR = min(SRF , SRM) (2.30)
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CHAPTER 3

ISOGEOMETRIC ANALYSIS

The concept of isogeometric analysis (IGA) was first proposed by Hughes et al. in

2005 [7]. IGA is a relatively modern approach that uses NURBS (Non-Uniform Ra-

tional B-Splines) basis functions in analysis procedure. NURBS are also the splines

used to represent the design model in CAD software. Therefore, using the same

geometric data for design and analysis, IGA uses the exact geometry for analysis.

Moreover, any refinement does not change the actual geometry and does not require

dialogue with CAD [7]. Since than, the concept of IGA is implemented to many fields

as explained in Section 1.2.

In this chapter, the fundamental concepts for isogeometric analysis, such as B-splines

and NURBS, will be explained. Afterwards, usage of the NURBS as basis function

for analysis will be discussed. Moreover, refinement techniques for the IGA will be

covered. Lastly, the IGA will be compared with finite element analysis.

3.1 B-Splines

B-spline basis functions are piecewise polynomial functions defined on a set of para-

metric coordinates, namely knot vectors. The knot vector is represented as follows:

Ξ = {ξ1, ξ2, ξ3, ....., ξn+p+1}, (3.1)

where ξi ∈ R is ith knot, i = 1, .., n+p+1 is the knot index, n is the number of basis

functions to construct B-spline curve and p is the order of the polynomial. For the

knot vector, ξi ≤ ξi+1, meaning knots may be repetitive but cannot be in descending

order. The knot vector splits the parameter space into intervals, as called knot spans.
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These intervals have zero length for between repetitive knots. For the first and last

knots with k times repetitions. The knot vector is called open if k = p + 1. The

basis function built from open knot vectors are only interpolatory at the ends of the

parameter space and at the corners of the multiple dimensions [1]. The knots can

be aligned uniformly or non-uniformly in the knot vectors. The values of the knot

vectors are usually normalized to [0,1].

For p = 0, B-spline basis function is defined piecewise as

Ni,0(ξ) =

1 if ξi ≤ ξ < ξi+1 ,

0 otherwise.
(3.2)

and for p > 0 it is defined by

Ni, p(ξ) =
ξ − ξi
ξi+p − ξi

Ni, p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1, p−1(ξ) (3.3)

As can be seen from Equation (3.3), the ith B-spline function of degree p is defined

recursively by the Cox-de Boor recursive formula [77, 78]. This formula applied with

the convention of fraction with zero denominator equals to zero. The dependencies

of basis functions of B-spline function with p = 3 in this recursive algorithm is illus-

trated for first 3 knots in Figure 3.1. Given a knot vector Ξ = {0, 0.25, 0.5, 0.75, 1}
basis functions of order 0, 1, 2 and 3 is shown in the Figure 3.2. The zeroth and first

order basis functions are identical to the shape functions of isoparametric FEM of the

same order. B-spline functions differ from FEM functions for 2 and higher orders [7].

3.1.1 Properties of B-Spline Basis Functions

Some properties of the B-spline basis functions are as follows:

• Basis functions constitute a partition of unity.
n∑
i=1

Ni, p(ξ) = 1, ∀ξ.

• Each basis function is non-negative over the entire domain.

Ni, p(ξ) ≥ 0, ∀ξ.
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Figure 3.1: The dependencies of B-spline basis functions (p = 3) for i=1, 2, 3 [5].

• B-spline function of order p has p − k continuous derivatives on a knot with

multiplicity of k. If the knot is not repetitive, k = 1.

• B-spline function of order p has support of p+1 knot spans. That is,Ni, p(ξ) > 0

over [ξi, ξi+p+1].

• Basis functions are generally approximating the control points. However, it is

interpolatory when a knot value is repeated k = p, and the basis is discontinu-

ous if k = p+ 1.

3.1.2 Derivatives of B-Spline Basis Functions

Because of the recursive nature of the B-spline basis functions, their derivatives also

require computation of the derivatives of lower order basis functions. For polynomial

of order p and knot vector Ξ, the first derivative of the ith basis function with respect

to parametric coordinate ξ, is calculated as indicated below

d

dξ
Ni, p(ξ) =

p

ξi+p − ξi
Ni, p−1(ξ)− p

ξi+p+1 − ξi+1

Ni+1, p−1(ξ) (3.4)
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Figure 3.2: Basis functions of order 0, 1, 2, and 3 for uniform knot vector Ξ =

{0, 0.25, 0.5, 0.75, 1}.

Differentiating the Equation (3.4), a generalized expression for kth order derivative is

obtained as

dk

dkξ
Ni, p(ξ) =

p

ξi+p − ξi

(
dk−1

dk−1ξ
Ni, p−1(ξ)

)
− p

ξi+p+1 − ξi+1

(
dk−1

dk−1ξ
Ni+1, p−1(ξ)

) (3.5)

The expansion of Equation (3.5) by means of (3.4) gives series of functions in lower

orders Ni,p−k,Ni+1,p−k,...,Ni+k,p−k. That is

dk

dkξ
Ni, p(ξ) =

p!

(p− k)!

k∑
j=0

ak,jNi+j, p−k(ξ) (3.6)
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where

a0,0 = 1,

ak,0 =
ak−1,0

ξi+p−k+1 − ξi
,

ak,j =
ak−1,j − ak−1,j−1

ξi+p+j−k+1 − ξi+j
j = 1, ...., k − 1,

ak,k =
−ak−1,k−1

ξi+p+1 − ξi+k
.

3.1.3 B-Spline Geometries

In this section, construction of 1-D, 2-D and 3-D geometries by use of B-splines will

be explained.

3.1.3.1 B-Spline Curves

In a d dimensional space, B-spline curves are formed in Rd by linearly combined

B-spline basis functions with the vector-valued coefficients, known as control points.

Generally, B-spline curves do not interpolate these control points. The piecewise

linear interpolation of control points is named as control polygon. For a polynomial

order p, given n basis functions Ni,p, and reciprocal control points Pi ∈ Rd where

i = 1, 2, ..., n, B-spline curve is defined as

C(ξ) =
n∑
i=1

Ni, p(ξ)Pi (3.7)

For knot vectors Ξp=2 = {0, 0, 0, 0.2, 0.4, 0.4, 0.6, 0.8, 1, 1, 1}, Ξp=2 = {0, 0, 0, 0.2,
0.4, 0.6, 0.8, 1, 1, 1} and Ξp=3 = {0, 0, 0, 0, 0.2, 0.4, 0.6, 0.8, 1, 1, 1, 1} with control

points tabulated in Table 3.1, B-spline curves at Figures 3.3a and 3.3b are constructed

for quadratic and the curve at Figure 3.3c is constructed for cubic polynomials. The

green points in the figures indicates the control points and the polygons of red lines

demonstrate the control polygons. As can be seen both curves interpolate only at

the start and the end points since both knot vectors are open. However, the curve at

Figure 3.3a also interpolates at knot ξ = 0.4 since the number of repetition, k, of

the corresponding knot is equal to the order, p. The effect of repeated knot is also

seen at continuous derivatives of the curves. The B-spline curves are Cp−1 continues
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everywhere except the repeated knots. Therefore, the curves in the Figures 3.3b and

3.3c are C2−1 = C1 and C3−1 = C2 continuous, respectively. Whereas, the curve

in the Figure 3.3a is C2−1 = C1 continues except ξ = 0.4. At this knot the curve is

Cp−k = C2−2 = C0 continues. Also, it can be seen from Figures 3.3b and 3.3c that

the curve becomes more approximating to the control net and the individual effect of

the control points reduces with the increasing order.

(a)

(b)

(c)

Figure 3.3: B-spline curves with control points in Table 3.1 and con-

structing basis functions. (a) Ξp=2 = {0, 0, 0, 0.2, 0.4, 0.4, 0.6, 0.8, 1, 1, 1},
(b) Ξp=2 = {0, 0, 0, 0.2, 0.4, 0.6, 0.8, 1, 1, 1} and (c) Ξp=3 = {0, 0, 0, 0, 0.2,

0.4, 0.6, 0.8, 1, 1, 1, 1} in R2.

B-spline curves allow local control due to compact support of the B-spline basis func-
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Table 3.1: Coordinates of control points of Figure 3.3.

Pi 1 2 3 4 5 6 7

x 0 0 2 2.5 3.5 4.5 3

y 0.5 2 0.5 1 0 1 2

tions. That is, if one of the control points is moved, only p+ 1 elements of the curve

are affected. Moreover, B-spline curves have convex hull property, i.e., the convex

hull defined by the control points involves the B-spline curve.

3.1.3.2 B-Spline Surfaces

The B-spline surface is obtained by tensor product of B-spline basis functions in two

parametric directions with a given bidirectional control net, Pi,j , where i = 1, 2, ..., n

and j = 1, 2, ..., m. For polynomial orders p and q, the knot vector in ξ direction

Ξ = {ξ1, ξ2, ..., ξn+p+1}, in η direction H = {η1, η2, ...ηm+q+1} and control net Pi,j ,

B-spline surface is defined as

S(ξ, η) =
n∑
i=1

m∑
j=1

Ni, p(ξ)Mj, q(η)Pi, j (3.8)

where Ni, p(ξ) is the univariate basis function of order p of the knot vector Ξ, and

Mj, q(η) is the univariate basis function of order q of the knot vector H. An exam-

ple of B-spline surface of cubic polynomials (p = 3, q = 3) with knot vectors Ξ =

{0, 0, 0, 0, 0.125, 0.25, 0.375, 0.5, 0.75, 1, 1, 1, 1} andH = {0, 0, 0, 0, 0.5, 1, 1,

1, 1} is given in Figure 3.4, and the basis functions creating this surface are shown in

Figure 3.5.

B-spline surfaces have partition of unity property, likewise basis functions.

n∑
i=1

m∑
j=1

Ni, p(ξ)Mj, q(η) =

( n∑
i=1

Ni, p(ξ)

)( m∑
j=1

Mj, q(η)

)
= 1 (3.9)
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Figure 3.4: B-spline surface and control net [6].

(a) (b)

Figure 3.5: Basis functions of the surface in Figure 3.4 (a) in ξ direction,(b) in η

direction

3.1.3.3 B-Spline Solids

The B-spline solids are constructed in a similar manner to the B-spline surfaces. This

time, instead of a bidirectional control net, a tri-directional control net Pi,j,k, k =

1, 2, ..., l is required. For polynomial orders p, q and r, the knot vector in ξ direction

Ξ = {ξ1, ξ2, ..., ξn+p+1}, in η direction H = {η1, η2, ...ηm+q+1}, in ζ direction Z =

{ζ1, ζ2, ...ζl+r+1}, and control net Pi,j,k, B-spline solid is defined as

S(ξ, η, ζ) =
n∑
i=1

m∑
j=1

l∑
k=1

Ni, p(ξ)Mj, q(η)Lk, r(ζ)Pi, j, k (3.10)
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where Ni, p(ξ) is the univariate basis function of order p of the knot vector Ξ, Mj, q(η)

is the univariate basis function of order q of the knot vectorH, Lk, r(ζ) is the univari-

ate basis function of order r of the knot vector Z . A of B-spline solid is illustrated in

Figure 3.6.

Figure 3.6: A B-spline solid [7].

3.1.4 Refinement

As in FEM, refinement techniques are available in the IGA. Analogous to h-refinement

and p-refinement in the FEM, there are knot insertion and order elevation methods in

the IGA. Furthermore, there is also an extra refinement procedure called k-refinement,

which has no equivalent in the FEM. The geometry does not change in refinements

since it is already exact.

3.1.4.1 Knot Insertion

The knot insertion procedure is enriching the basis by inserting the new knots. The

new knot values may be new or an already existing. If an already existing knot is

inserted, continuity of the basis decreases. Repeating a knot p times causes disconti-
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nuity of the curve. For a knot vector Ξ = {ξ1, ξ2, ..., ξn+p+1}, insertion of a new knot ξ̄

after kth knot ξk, leads a new modified knot vector Ξ̄ = {ξ1, ξ2, ...ξk, ξ̄, ξk+1...ξn+p+1}.
Also the new control points are formed according to the Equation (3.11)

P̄i = αiPi + (1− αi)Pi−1 (3.11)

where

αi =


1 if 1 ≤ i ≤ k − p ,
ξ̄−ξi

ξi+p−ξi if k − p ≤ i ≤ k ,

0 if k + 1 ≤ i ≤ n+ p+ 2 .

An example of knot insertion can be seen in Figure 3.7, squares indicating the control

points and knots denoted by circles [1].

Table 3.2: Control point coordinates of Figure 3.7a.

Pi 1 2 3

x 0 1 2

y 0.5 2 0

Table 3.3: Control point coordinates of Figure 3.7b.

P̄i 1 2 3 4

x 0 0.5 1.5 2

y 0.5 1.25 1 0

3.1.4.2 Order Elevation

The order elevation procedure is enriching the basis by rising the order of the polyno-

mials of the basis functions. For order elevation, curve is divided into Bézier curves

by knot insertion, because of the reason explained in Section 3.1.1, as the order in-

creases, multicipality of the knot k should be increased for each unique knot as well,

to preserve the continuity [7]. After this knot insertion process, polynomial orders

are increased for every Bézier curve, then by removing the extra knots, curves are
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(a)

(b)

Figure 3.7: Quadratic B-spline curve and constructing basis functions (a) Ξp=2 =

{0, 0, 0, 1, 1, 1} and control points in Table 3.1, (b) Ξ̄p=2 = {0, 0, 0, 0.5, 1, 1, 1} and

control points in Table 3.3.

recombined. There are several algorithms for order elevation explained in [5]. To

illustrate the order elevation procedure, an example is provided for a single segment

curve in Figure 3.8 [1].

3.1.4.3 k-Refinement

The k-refinement procedure is a different order elevation technique, unique to spline

basis. For increasing the order, k-refinement takes advantage of previously mentioned

refinements independence from each other. The procedure of the k-refinement is as

follows: given a curve of order p, fist order of the curve is increased to q then, a unique

knot ξ̄ is inserted to the knot vector. Continuity at new inserted knot will be Cq−1.
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(a)

(b)

Figure 3.8: B-spline curve and constructing basis functions (a) Ξp=2 = {0, 0,
0, 1, 1, 1}. (b) Ξp=3 = {0, 0, 0, 0, 1, 1, 1, 1}.

Moreover, computational cost becomes significantly low compared to p-refinement

which involves first knot insertion, then order elevation due to significant decrease in

the number of final basis functions.

k-refinement is shown in the Figure 3.9 [7]. The order of the 3.9a is p = 1 and has

p + 1 = 2 basis functions, then, in the left hand side, p-refinement applied by knot

insertion, until there are n− p elements. Then, order increased. In this method, every

unique knot is repeated and basis functions are added to every element to maintain

the continuity. If the order elevated r times, the number of basis functions would

be (r + 1)n − rp. In k-refinement on the right hand side, first order elevated, and

one basis functions added. Afterwards, again knots are inserted until having n − p

elements. For order elevated r times, there would be r+p−1 continuous, n+ r basis
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functions.

(a)

(b)

Figure 3.9: Comparison of the p- and k- refinements [7]. (a) Linear B-spline basis

functions. (b) Left hand side, procedure of p-refinement; right hand side, procedure

of k-refinement.
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3.2 Non-uniform Rational B-Splines

Although B-splines effectively represents many geometries, they remain incapable of

exactly representing conic curves. To express a conic curve, ratio of two functions

is required. This type of functions called rational functions. Geometrically, Non-

uniform Rational B-splines are projective transformation of B-spline entities to a one

dimension lower space as illustrated in Figure 3.10 [1].

(a) Control polygons

(b) Curves

Figure 3.10: The projective relation between B-spline and NURBS curves [1].

NURBS basis functions constitute of B-spline basis functions, weighting function

and positive weight.

Rp
i (ξ) =

Ni, p(ξ)wi
W (ξ)

(3.12)
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where Ni, p(ξ) is the B-spline basis function, wi is the ith weight and W (ξ) is the

weighing function defined as follows

W (ξ) =
n∑
i=1

Ni, p(ξ)wi (3.13)

3.2.1 Properties of NURBS Basis Functions

Some properties of NURBS basis functions are as follows:

• NURBS basis functions are superset of B-spline basis functions; therefore, they

have many common properties like partition of unity, non-negativity, local sup-

port, continuity of the funtions and their derivatives. If all the weights are equal,

NURBS basis function is identical to the B-spline basis function.

• NURBS basis functions are rational functions.

3.2.2 Derivatives of NURBS Basis Functions

The derivative of a NURBS basis functions is taken using the chain rule and the

derivative of the B-spline basis function yielding

d

dξ
Ri, p(ξ) = wi

W (ξ)N ′i, p −W ′(ξ)Ni, p

(W (ξ))2
(3.14)

where ”′” means the first derivative with respect to ξ and the derivative of the weight-

ing function is

W ′(ξ) =
n∑
î=1

N ′
î, p

(ξ)wî (3.15)

For higher order derivatives

dk

dξk
Ri, p(ξ) =

A
(k)
i (ξ)−

∑k
j=1

k
j

W (j)(ξ) d(k−j)

dξ(k−j)Ri, p(ξ)

W (ξ)
(3.16)

where

W (k)(ξ) =
dk

dξk
W (ξ) (3.17)
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and

A
(k)
i (ξ) = wi

dk

dξk
Ni, p(ξ) (3.18)

Note that summation convention does not apply to the repeated index i, for Equation

(3.18).

3.2.3 NURBS Geometries

A NURBS curve defined in terms of rational basis functions as

C(ξ) =
n∑
i=1

Ri, p(ξ)Pi (3.19)

A circle formed by NURBS basis functions with knot vector Ξ = {0, 0, 0, 0.25, 0.25, 0.5,

0.5, 0.75, 0.75, 1, 1, 1], control points and weights in Table 3.4 is shown in Figure

3.11. The rational basis function to construct a NURBS surface is defined as follow-

ing

Rp,q
i,j (ξ, η) =

Ni, p(ξ)Mj, q(η)wi,j∑n
î=1

∑m
ĵ=1 Nî, p(ξ)Mĵ, q(η)wî,ĵ

(3.20)

Then, the NURBS surface is

S(ξ, η) =
n∑
i=1

m∑
j=1

Rp,q
i,j (ξ, η)Pi,j (3.21)

Similarly, the rational basis function to construct a NURBS solid is

Rp,q,r
i,j,k (ξ, η, ζ) =

Ni, p(ξ)Mj, qLk, r(ζ)wi,j,k∑n
î=1

∑m
ĵ=1

∑l
k̂=1Nî, p(ξ)Mĵ, q(η)Lk̂, r(ζ)wî,ĵ,k̂

(3.22)

Lastly, the NURBS solid,

S(ξ, η, ζ) =
n∑
i=1

m∑
j=1

l∑
k=1

Rp,q,r
i,j,k (ξ, η, ζ)Pi,j,k (3.23)

3.3 Analysis using NURBS based IGA

In this section, different spaces in isogeometric concept will be explained and formu-

lations for using NURBS functions as an analysis tool will be derived.
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Figure 3.11: A circle formed by quadratic NURBS basis functions (p = 2) with knot

vector Ξ = {0, 0, 0, 0.25, 0.25, 0.5, 0.5, 0.75, 0.75, 1, 1, 1}, control points and weights

in Table 3.4.

Table 3.4: Coordinates and weights of control points of Figure 3.11.

Pi 1 2 3 4 5 6 7 8 9

x 1 1 0 -1 -1 -1 0 1 1

y 0 1 1 1 0 -1 -1 -1 0

wi 1 1√
2

1 1√
2

1 1√
2

1 1√
2

1

3.3.1 Spaces and Mappings

There are four spaces in IGA. They are index space, parameter space, parent space and

physical space. The relation and differences between the spaces is shown schemati-

cally in the Figure 3.12 successfully [1].

3.3.1.1 Index Space

Index space is constituted by dividing the space into number of knots in a knot vector

without considering their values. In other words, repeating knots have different coor-
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Figure 3.12: Schematic of relations of the relevant spaces [1].

dinates in the index space. To illustrate, for the knot vectors Ξ = {0, 0, 0, 0.5, 1, 1, 1}
andH = {0, 0, 1, 1} the index space is shown in the Figure 3.13.
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Figure 3.13: Representation of the knot vectors Ξ = {0, 0, 0, 0.5, 1, 1, 1} and H =

{0, 0, 1, 1} in index space.

3.3.1.2 Parameter Space

Parameter space is a more commonly used subspace of index space. It is obtained by

omitting the repeating knots and expressing the modified knot vectors with non-zero

knot spans. For a normalized knot vector, i.e., ξ ∈ [0, 1], parameter space in 2-D is

a unit square. The parameter space is indicated by Ω̂. Coordinates of the parameter

space are (ξ, η, ζ). An example of the parameter space is provided in the Figure

3.14 for the knot vectors in Figure 3.13. In addition, the knot lines of the parameter

space forms the region where elements located [8]. Unlike the parent and physical

spaces, the parameter space is the result of using NURBS bases, and does not appear

in formulations of conventional finite element method [8].

3.3.1.3 Parent Space

Parent space is where numerical integration, like Gaussian quadrature, performed. It

is defined for each knot span. Limits of the parent space is -1 to 1 in every dimension

of the problem, its a square for a 2-D problem and a cube for a 3-D problem. Parent

space is denoted by Ω̃ and its coordinates are (ξ̃, η̃, ζ̃).
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Figure 3.14: Shaded area represents the knot vectors Ξ = {0, 0, 0, 0.5, 1, 1, 1} and

H = {0, 0, 1, 1} in parameter space.

3.3.1.4 Physical Space

The physical space is representation of the actual geometry by basis functions. When

its divided to form the elements, its named as physical mesh. Elements are knot spans

for a single patch. Physical space is denoted by Ω, and its coordinates are (x, y, z).

3.3.1.5 Mappings Between the Spaces

All points have equivalence in all the spaces. The spaces serve different purposes.

Therefore, transformations between the spaces are required. The transformation pro-

cedure is named as mapping. Mappings of an element in parent to parameter space

φe and from parameter to physical space xe are shown diagrammatically in Figure

3.15 [8]. Numerically, the mapping of a point (ξ̃, η̃) in the parent space to the param-

eter space, φ̃, is defined as

ξ =
(ξi+1 − ξi)ξ̃ + (ξi+1 + ξi)

2
(3.24)

η =
(ηi+1 − ηi)η̃ + (ηi+1 + ηi)

2
(3.25)
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Jacobian determinant of this mapping is

|Jφ| =
(ξi+1 − ξi)

2

(ηi+1 − ηi)
2

(3.26)

The mapping from parameter space to the physical space, x, is carried out by by using

the NURBS basis functionsxy
 =

ncp∑
k=1

Rk(ξ, η)

PxkPyk

 (3.27)

where R is the 2-D NURBS basis functions, ncp is the number of control points per

element and Px and Py are the coordinates of the control points. Jacobian of the

mapping is

Jx =

∂x∂ξ ∂y
∂ξ

∂x
∂η

∂y
∂η

 (3.28)

where partial derivatives are calculated by taking the derivative of Equation (3.27).

Figure 3.15: Mappings between relevant spaces [8].
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To perform integration, quadrature points on an element at the physical space is pulled

back to the parent space in two steps. First, by mapping x−1 they pulled back to the

parameter space, then by mapping φ−1 they pulled back to the parent space. Inverse

of the Jacobians of the corresponding mappings are required in these operations.

∂Rk

∂x

∂Rk

∂y

 = J−1
x

∂Rk

∂ξ

∂Rk

∂η

 (3.29)

3.3.2 Gaussian Quadrature

Two dimensional Gaussian quadrature is used as the technique for numerical integra-

tion. Integration takes place in knot spans as elements. To implement this integration

method, the NURBS basis functions, and Jacobian determinants should be calculated

for every integration point. Integral of a function f = f(x, y) in physical space is∫
Ω

f(x, y)dΩ =
n∑
e=1

∫
Ωe

f(x, y)dΩe (3.30)

where e indicates element in physical space. When this integration is mapped to the

parent space
n∑
e=1

∫
Ωe

f(x, y)dΩe =
n∑
e=1

∫
Ωẽ

f(ξ̃, η̃)|Jx|dΩẽ (3.31)

Integral can be re-expressed by two integrals

n∑
e=1

∫
Ωẽ

f(ξ̃, η̃)|Jx|dΩẽ =
n∑
e=1

∫ 1

−1

∫ 1

−1

f(ξ̃, η̃)|Jx|dξ̃dη̃ (3.32)

Using Gauss quadrature∫ 1

−1

∫ 1

−1

f(ξ̃, η̃)dξ̃dη̃ =

p∑
i=1

q∑
j=1

WiWjf(ξ̃i, η̃j) (3.33)

Therefore, ∫
Ω

f(x, y)dΩ =
n∑
e=1

p∑
i=1

q∑
j=1

WiWjf(ξ̃i, η̃j)|Jx| (3.34)

where p and q are orders of the NURBS basis functions; ξ̃i and η̃j are coordinates of

the quadrature points and Wi and Wj are quadrature weights in ξ and η directions,

respectively.
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3.4 IGA vs FEM, Similarities and Differences

Both IGA and FEM use basis functions to approximate the unknown solution field;

however, IGA uses the exact representation of the geometry, and uses the same func-

tions for solution field approximation, on the other hand; the geometry is also ap-

proximated in addition to the solution field in finite element analysis. This is the most

important and distinct feature of IGA. By not approximating the geometry, results of

IGA become more precise. Moreover, since IGA uses the exact geometry, no fur-

ther work required to redefine the geometry for studies like refinement. Secondly,

the NURBS basis functions used in IGA are generally not interpolating to the control

points, in contrast with the basis functions of the FEM which interpolated nodal points

even though the degrees of freedoms are located at control points and nodal points in

IGA and FEM, respectively. Thirdly, while basis functions of the FEM can tale pos-

itive or negative values, basis functions of IGA are strictly non-negative. Another

difference is about the parameter space. Isoparametric finite element method and

IGA have many common characteristics. However, while parameter space is mapped

to a unique element in the physical space of FEM, mapping of the IGA is unique for

a patch containing multiple elements. Furthermore, IGA has k-refinement method

together with its similar refinement techniques with FEM, p- and h- refinements. The

differences of the two methods are summed up in the Table 3.5 [1].

In terms of similarities, same methods can be applied to both IGA and isoparametric

FEM such as Galerkin and collocation. They have same bandwidth for the same

polynomial order and support of the basis functions are compact. Both FEM basis

functions and NURBS basis functions constitute a partition of unity. Lastly, they have

similar code implementation. Common features of the two method is summarized in

the Table 3.6 [1].

Solution architecture of IGA is shown in the diagram in Figure 3.16. There are three

main parts of the code, pre-processing, processing and post-processing. Material

properties and boundary conditions are defined at pre-processing part. In addition,

polynomial degree, control points, knot vectors are provided for isogeometric dis-

cretization. Connectivity array and IGA mesh created. Then, force vector and stiff-

ness matrix are initialized. In the processing step, quadrature points are calculated.
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Table 3.5: Differences between IGA and FEM [1].

Isogeometric Analysis Finite Element Analysis

NURBS Basis Functions Polynomial Basis Functions

Exact Representation of the Geometry Approximation to the Geometry

Control Points Nodal Points

Control Variables Nodal Variables

Non-Interpolating Basis Interpolating Basis

hpk-refinement hp-refinement

Flexible Continuity C0 Continuity

Pointwise Positive Basis Positive or Negative Basis

Convex Hull Property No Convex Hull Property

Variation diminishing in the presence of

discontinues data

Oscillatory in the presence of discontin-

ues data

Table 3.6: Similarities between IGA and FEM [1].

Isogeometric Analysis and Finite Element Analysis

Isoparametric Concept

Galerkin’s Method

Code Architecture

Compactly Supported Basis

Bandwith of Matrices

Partititon of Unity

Next, all elements are traveled in a loop and another loop travels through quadra-

ture points inside the element loop. This loop is where mappings occur, basis func-

tions and derivatives are computed, and calculated values are assembled to the global

stiffness matrix and force vector. Afterwards, system is solved. Lastly, outputs are

printed in the post-processing step. As is seen, it is almost the same as FEM architec-

ture. Nevertheless, it differs in the application of the some of the steps. Read input

changes since the two methods require different inputs. Connectivity array changes

because of its dependence on the basis. Inherently, evaluation of basis functions and
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their derivatives differ between FEM and IGA.
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Figure 3.16: Diagram of coding architecture of IGA.

56



CHAPTER 4

GOVERNING EQUATIONS

In this part, equations will be derived for a composite laminated plate.

4.1 Displacements and strains of First Order Shear Deformation Theory

Let uo, vo and wo be the displacement components along x, y and z coordinate direc-

tions, respectively, and φx denote rotation about x axis and φy denote rotation about

y axis. As mentioned in Chapter 2, the first order shear deformation theory based on

the displacement field, as given by Equation (2.2),

u(x, y, z) = u0(x, y) + zφx(x, y)

v(x, y, z) = v0(x, y) + zφy(x, y) (4.1)

w(x, y, z) = w0(x, y)

In-plane strains are calculated as follows:

εxx =
∂u

∂x

= u 0,x + zφx,x

εyy =
∂v

∂y
(4.2)

= v 0,y + zφ y,y

γxy =
∂u

∂y
+
∂v

∂x

= u 0,y + v 0,x + z(φx,y + φ y,x)
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Similarly, transverse shear strains can be calculated as shown below:

γyz =
∂v

∂z
+
∂w

∂y

= φ y + w 0,y (4.3)

γxz =
∂u

∂z
+
∂w

∂x

= φx + w 0,x

In-plane, εp, and transverse shear strain, εs, vectors can be written as

εp =


εxx

εyy

γxy

 =


u 0,x

v 0,y

u 0,y + v 0,x

+ z


φx,x

φ y,y

φx,y + φ y,x

 = εm + zεb (4.4)

εs =

γyzγxz
 =

w 0,y + φ y

w 0,x + φx

 (4.5)

where εm and εb stands for membrane and bending strains, respectively.

4.2 Constitutive Relations

The single subscript notation of the generalized constitutive equation for composite

material is

σ i = C ij ε j (4.6)

where C ij is stiffness tensor. The fiber reinforced laminated composite plates can be

modeled as combination of orthotropic layers since there exist three planes of material

symmetry. Therefore, the constitutive relation takes the following form:

σ1

σ2

σ3

σ4

σ5

σ6


=



C 11 C 12 C 13 0 0 0

C 12 C 22 C 23 0 0 0

C 13 C 23 C 33 0 0 0

0 0 0 C 44 0 0

0 0 0 0 C 55 0

0 0 0 0 0 C 66





ε1

ε2

ε3

ε4

ε5

ε6


(4.7)
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where the stress components are σ1 = σxx, σ2 = σyy, σ3 = σzz, σ4 = τyz, σ5 = τxz

and σ6 = σxy, similarly, the strain components are ε1 = εxx, ε2 = εyy, ε3 = εzz,

ε4 = γyz, ε5 = γxz and ε6 = γxy. The plane stress condition can be assumed

for lamina; however, although transverse shear stresses are small, they cannot be

neglected since lamina is weak in transverse directions. Therefore, with σ3 = 0,

rewriting the Equation (4.7) :

σ1

σ2

σ3

σ4

σ5

σ6


=



Q 11 Q 12 0 0 0 0

Q 12 Q 22 0 0 0 0

0 0 0 0 0 0

0 0 0 Q 44 0 0

0 0 0 0 Q 55 0

0 0 0 0 0 Q 66





ε1

ε2

ε3

ε4

ε5

ε6


(4.8)

where Qij is known as the plane stress reduced stiffness matrix. Noting that, Poisson

ratios νij and νji are related by νji = Ejνij/Ei for orthotropic materials,

Q11 =
E1

1− ν12ν21

, Q12 =
ν12E2

1− ν12ν21

, Q22 =
E2

1− ν12ν21

Q44 = G23, Q55 = G13, Q66 = G12

where E1 and E2 longitudinal and transverse elastic modulus and Gij is shear modu-

lus in ij plane.

Laminates composed of many layers with different orientations. The coordinates for

each lamina are called material coordinates of that lamina, and 1-direction is parallel

to the fiber direction, 2-direction is perpendicular to the fiber direction and 3-direction

is out-of-plane direction as shown in the Figure 4.1a. So far, the stress-strain relations

are expressed in material coordinates. To write constitutive relation for laminate,

a general coordinate system is needed. This coordinate system is called problem

coordinate system. The difference between the two coordinate systems are illustrated

in Figure 4.1b. The relation between stresses in material and problem coordinates

are:

σproblem = [T ]σmaterial (4.9)
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(a) (b)

Figure 4.1: (a) The material coordinates of a unidirectional fiber reinforced lam-

ina [9]. (b) The material coordinates (1, 2, 3) and the problem coordinates (x, y, z) [9].

where T is the transformation matrix in the Equation (4.10)

T =



cos2(θ) sin2(θ) 0 0 0 −2sin(θ)cos(θ)

sin2(θ) cos2(θ) 0 0 0 2sin(θ)cos(θ)

0 0 1 0 0 0

0 0 0 cos(θ) sin(θ) 0

0 0 0 −sin(θ) cos(θ) 0

sin(θ)cos(θ) −sin(θ)cos(θ) 0 0 0 cos2(θ)− sin2(θ)


(4.10)

Similarly, the relation between strains in material and problem coordinates are:

εmaterial = [T ]T εproblem (4.11)

Lastly, the plane stress reduced stiffness matrix in problem coordinates is named as

[Q̄] and calculated by the following equation

[Q̄] = [T ] [Q] [T ]T (4.12)

Now, for the kth lamina, the reduced plane stress constitutive relation in problem
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coordinates is:



σx

σy

τxy

τyz

τxz

σz



(k)

=



Q̄ 11 Q̄ 12 Q̄ 16 0 0 0

Q̄ 12 Q̄ 22 Q̄ 26 0 0 0

Q̄ 16 Q̄ 26 Q̄ 66 0 0 0

0 0 0 Q̄ 44 Q̄ 45 0

0 0 0 Q̄ 45 Q̄ 55 0

0 0 0 0 0 0



(k)

εx

εy

γxy

γyz

γxz

εz



(k)

(4.13)

4.3 Resultants and Weak Form Equation for Composite Plates

All stresses and strains are calculated in the mid-plane in the FSDT. The mid-plane

and position of the plies can be seen in Figure 4.2 To write the weak form for

Figure 4.2: Shematic of a laminate

laminated composite plate, stiffness matrix of constitutive equation that relate force

and moment resultants to the strains of the laminate is required. Therefore, for n
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layered laminate, in-plane force resultants can be calculated by


Nx

Ny

Nxy

 =
n∑
k=1

∫ zk+1

zk


σx

σy

τxy

 dz (4.14)

=
n∑
k=1

∫ zk+1

zk


Q̄ 11 Q̄ 12 Q̄ 16

Q̄ 12 Q̄ 22 Q̄ 26

Q̄ 16 Q̄ 26 Q̄ 66


(k)

u 0,x + zφx,x

v 0,y + zφ y,y

u 0,y + v 0,x + z(φx,y + φ y,x)

 dz


Nx

Ny

Nxy

 =


A 11 A 12 A 16

A 12 A 22 A 26

A 16 A 26 A 66




u 0,x

v 0,y

u 0,y + v 0,x


+


B 11 B 12 B 16

B 12 B 22 B 26

B 16 B 26 B 66




zφx,x

zφ y,y

z(φx,y + φ y,x)


(4.15)

In a similar way, moment resultants are calculated by


Mx

My

Mxy

 =
n∑
k=1

∫ zk+1

zk


σx

σy

τxy

 z dz (4.16)

=
N∑
k=1

∫ zk+1

zk


Q̄ 11 Q̄ 12 Q̄ 16

Q̄ 12 Q̄ 22 Q̄ 26

Q̄ 16 Q̄ 26 Q̄ 66


(k)

u 0,x + zφx,x

v 0,y + zφ y,y

u 0,y + v 0,x + z(φx,y + φ y,x)

 z dz


Mx

My

Mxy

 =


B 11 B 12 B 16

B 12 B 22 B 26

B 16 B 26 B 66




u 0,x

v 0,y

u 0,y + v 0,x


+


D 11 D 12 D 16

D 12 D 22 D 26

D 16 D 26 D 66




zφx,x

zφ y,y

z(φx,y + φ y,x)


(4.17)
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Lastly, transverse force resultants,Qx

Qy

 =
n∑
k=1

∫ zk+1

zk

τyzτxz
 dz (4.18)

=
N∑
k=1

∫ zk+1

zk

Q̄ 44 Q̄ 55

Q̄ 55 Q̄ 44

(k)φ y + w 0,y

φx + w 0,x

 dz

Qx

Qy

 = κ

Ds
11 Ds

12

Ds
12 Ds

22

φ y + w 0,y

φx + w 0,x

 (4.19)

zk and zk+1 are top and bottom coordinates of a lamina as shown in the Figure 4.2,

and κ is the shear correction factor. The matrices [A], [B], [D] and [Ds] are called

extensional stiffness matrix, coupling stiffness matrix, bending stiffness matrix and

transverse shearing stiffness matrix, respectively. As can be seen from Equations

(4.14)-(4.19), they are defined as:

(Aij, Bij, Dij) =
N∑
k=1

∫ zk+1

zk

Q̄
(k)
ij (1, z, z2)dz i, j = 1, 2, 6 (4.20a)

and

Ds
ij =

N∑
k=1

∫ zk+1

zk

Q̄
(k)
ij dz i, j = 4, 5 (4.20b)

or,

Aij =
N∑
k=1

Q̄
(k)
ij (zk+1 − zk), Bij =

1

2

N∑
k=1

Q̄
(k)
ij (z2

k+1 − z2
k), (4.20c)

Dij =
1

3

N∑
k=1

Q̄
(k)
ij (z3

k+1 − z3
k) i, j = 1, 2, 6

and

Ds
ij =

N∑
k=1

Q̄
(k)
ij (zk+1 − zk) i, j = 4, 5 (4.20d)

Defining C̄ by combining A, B and D matrices,

C̄ =

A B

B D

 (4.21)

Consequently, for a domain Ω in R2, a weak form for laminated composite plate for

static analysis is ∫
Ω

δεp
T

C̄ εp dΩ +

∫
Ω

δεs
T

Ds εs dΩ =

∫
Ω

δw q dΩ (4.22)

where q is the transverse loading per unit area.

63



4.4 Global Stiffness Matrix and Load Vector

The mid-plane of the laminated plate is a NURBS surface obtained by the equations

in Chapter 3. A global index,A, is defined for numbering the control points as follows

A = n(j − 1) + i (4.23)

Using this global index, Equation (3.8) defining a B-spline surface can be rewritten

as

S(ξ, η) =
nxm∑
A=1

NA(ξ, η)PA (4.24)

where A is the global index of the corresponding control point, nxm is the num-

ber of the B-spline basis functions, NA is product of basis functions Ni,p(ξ) and

Mj,q(η) with order p and q and two knot vectors Ξ = {ξ1, ξ2, ...ξn+p+1} and H =

{η1, η2, ...ηm+q+1}, respectively. Then, using Equation (4.24), Equation (3.21) defin-

ing a NURBS surface can be re-expressed as

S(ξ, η) =
nxm∑
A=1

RA(ξ, η)PA (4.25)

where the NURBS function RA is written by using the homogeneous coordinate wA

and weightening function as

RA(ξ, η) =
NA(ξ, η)wA
w(ξ, η)

(4.26)

Using the advantage of the IGA, functions that defines the exact geometry is used as

interpolation functions of the displacement field

uh =
nxm∑
A

RA(ξ, η) qA (4.27)

64



where qA = [uA vA wA φxA φyA]T is the degree of freedom of uh associated with

control point A. Taking derivative of displacement field to obtain strains,

εm =
∑
A

Bm
A qA, where Bm

A =


RA,x 0 0 0 0

0 RA,y 0 0 0

RA,y RA,x 0 0 0

 (4.28)

εb =
∑
A

Bb
A qA, where Bb

A =


0 0 0 RA,x 0

0 0 0 0 RA,y

0 0 0 RA,y RA,x

 (4.29)

εs =
∑
A

Bs
A qA, where Bs

A =

0 0 RA,x RA 0

0 0 RA,y 0 RA

 (4.30)

where εm, εb and εs are bending, membrane and shear strains, respectively, and B

matrices are called strain-degree of freedom (DOF) matrix. Now, using the global

stiffness matrix,

K =

∫
Ω

BmT

ABmdΩ +

∫
Ω

BmT

BBbdΩ +

∫
Ω

BbTBBmdΩ +

∫
Ω

BbTDBbdΩ +

∫
Ω

BsTDsBsdΩ

(4.31)

and the load vector;

F =

∫
Ω

qRdΩ + f b (4.32)

The equation Kq = F , can be solved for global DOF vector q.

4.5 Strains and Stresses

The mid-plane strains can now be calculated using Equations (4.28), (4.29) and (4.30),

since q is found. Afterwards, Equation (4.4) and (4.5) give the strains on top and bot-

tom of the each lamina with respect to problem coordinates (x, y, z). Then, Equation

(4.13) can be used to calculate the stresses in problem coordinates (x, y, z). How-

ever, to predict the failure, stresses in material coordinates, (1, 2, 3), are required.
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Using the Equation (4.9), stresses in the material coordinates is obtained as follows:

σ1

σ2

τ12

τ23

τ13


=



cos2(θ) sin2(θ) sin(2θ) 0 0

sin2(θ) cos2(θ) −sin(2θ) 0 0

−1
2
sin(2θ) 1

2
sin(2θ) cos(2θ) 0 0

0 0 0 cos(θ) −sin(θ)

0 0 0 sin(θ) cos(θ)





σx

σy

τxy

τyz

τxz


(4.33)

To check the failure, the stresses in material coordinates found by Equation (4.33)

should be substituted into failure criteria mentioned in Chapter 2, Section 2.2.
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CHAPTER 5

RESULTS AND DISCUSSION

In this chapter, firstly, the solution procedure is verified by comparing the obtained re-

sults with the 3-D elasticity solution of Pagano [17]. Then, some numerical examples

of analyses of laminates with different lamination schemes and boundary conditions

are presented; displacements, stress and strain distributions, strength ratios are calcu-

lated and using the strength ratios a heat-map is generated for the plates showing the

most critical regions.

5.1 Comparison of Result with Exact Solution

To verify the solution procedure, the obtained results for 3-layered graphite/epoxy

square plate with orientation [0/90/0] are compared with the exact solution of Pagano [2].

Related material properties are tabulated in the Table 5.1. The plate is simply sup-

ported from all edges and subjected to a sinusoidal load. The schematic of the plate

is shown in the Figure 5.1.

Table 5.1: Material properties of graphite/epoxy lamina.

Mechanical Property Value

E1 172.4 GPa

E2 6.9 GPa

G12 3447 MPa

G23 1379 MPa

G13 3447 MPa

ν12, ν13, ν23 0.25
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Figure 5.1: 3-layered simply supported square laminate

Dimensions of the square plate are denoted parametrically, where a is the edge length

and h is the total thickness. Analyses are performed for plates with 642 elements for

different a/h ratios. The loading on the top surface is

q = q0 sin(
πx

a
) sin(

πy

b
) (5.1)

Results are compared by normalized length, displacement and stresses defined as
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follows

z̄ =
z

h
,

w̄ =
π4w h3

12 q0 a4

(
4G12 +

E1 + E2 (1 + 2ν23)

1− ν12 ν21

)
σ̄x =

σx h
2

q0 a2
,

σ̄y =
σy h

2

q0 a2
,

τ̄xy =
τxy h

2

q0 a2

τ̄yz =
τzy h

q0 a
,

τ̄xz =
τxy h

q0 a

Comparison of the results are given in Table 5.2.

Table 5.2: Comparison of the results with 3-D elasticity solution [2].

a/h σ̄x σ̄y τ̄xz τ̄yz τ̄xy w̄

Elasticity
10

0.559 0.401 0.301 0.196 0.0275 1.709

IGA-FSDT 0.505 0.365 0.433 0.136 0.0202 1.556

Elasticity
50

0.539 0.176 0.337 0.141 0.0216 1.031

IGA-FSDT 0.538 0.274 0.440 0.176 0.0208 1.026

Elasticity
100

0.539 0.271 0.339 0.139 0.0214 1.008

IGA-FSDT 0.539 0.271 0.442 0.211 0.0220 1.007

As the results in Table 5.2 indicates, with increasing a/h ratio accuracy of the IGA-

FSDT solution increases and results for a/h = 100 is obtained for σ̄x and σ̄y are

the same, for τ̄xy and w̄ are very close to the elasticity solutions. Therefore, in the

following numerical examples, plates with higher a/h ratios are examined. For the

lower values, other methods such as higher order, layerwise or 3-D approaches might

be implemented for solution. Nevertheless, transverse shear values, τ̄xz and τ̄yz are

still overestimated in the FSDT. It is result of constant shear assumption of the FSDT

with shear correction factor. In the above calculations, the SCF is taken as 5/6 which

is the most commonly used value in literature. Increasing the SCF, results get closer
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to the exact solution as shown in Table 5.3. However, it should be noted that the SCF

depends many other properties such as material coefficients, alignment of the plies,

geometry of the plate, loading and boundary conditions [43, 49]; therefore, this trend

cannot be generalized.

Table 5.3: Effect of the shear correction factor for a/h = 100.

SCF τ̄xz τ̄yz

Elasticity 0.339 0.139

IGA-FSDT

5/6 0.442 0.211

6/7 0.429 0.203

1 0.3670 0.162

5.2 Numerical Examples

In this section, several laminated plates are analyzed. Their critical regions are pre-

sented through a heat-map obtained by the strength ratios (SR). SR values are calcu-

lated according to five different failure theories which are maximum stress, Tsai-Hill,

Hoffman, Tsai-Wu and Hashin. Although SR values of all theories are given for

comparison of the theories, the heat-map always generated for Hashin failure criteria

because of the failure mode prediction property of the theory. Moreover, variation

of the stresses through the thickness is plotted for all examples. Analyses are carried

out for fully clamped, one-end clamped and two-ends clamped plates. To ensure that

linear analysis procedure is acceptable, linear and nonlinear analyses are performed

using MSC Nastran for all examples and force-displacement curves are obtained.

Commenting on the curves, and knowing the practical application in aerospace in-

dustry, the applied loads are chosen so that the maximum displacement is less than

the half of the thickness of the plate for fully clamped plates and 20% of the thickness

for one-end and two-ends clamped plates. For each boundary conditions, symmetric

plates with various ply orientation are examined.

The laminates considered in this study are consist of unidirectional carbon/epoxy

layers with properties given in Table 5.4. Ply thickness is 0.25mm for all cases.
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For isogeometric analyses of the plate by FSDT, the mid-plane geometry is modeled

using knot vectors in ξ and η directions, order of the basis polynomials, p and q and

the control points.

Table 5.4: Material properties of carbon/epoxy lamina.

Mechanical Property Value

E1 152 GPa

E2 9.7 GPa

G12 4900 MPa

G23 4900 MPa

G13 4900 MPa

ν12 0.34

(σT1 )ult 2700 MPa

(σC1 )ult 1500 MPa

(σT2 )ult 75 MPa

(σC2 )ult 300 MPa

(σT3 )ult 75 MPa

(σC3 )ult 300 MPa

(τ12)ult 140 MPa

(τ13)ult 95 MPa

(τ23)ult 95 MPa

5.2.1 Fully Clamped Plates

This section consists of solutions of fully clamped square plate with different thick-

ness and different ply orientations under uniform loading on the top surface. Dimen-

sion of the plate is 200mm x 200mm. Aforementioned, ply thickness is 0.25mm for

each layer and material is carbon/epoxy with properties given in Table 5.4. The fully

clamped square plate is illustrated in Figure 5.2.

The inputs to model the square plate are listed in Table 5.5 and Table 5.6. After

k-refinement control points are increased to 66x66 to have accurate solution on the
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mid-point of the surface.

Figure 5.2: Distributed load applied to the top surface of a fully clamped square plate.

Table 5.5: Polynomial orders and knot vectors representing the mid-plane of a square

laminate before refinement.

p 1

q 1

Ξ 0, 0, 1, 1

H 0, 0, 1, 1

Table 5.6: Control points of mid-plane of a square laminate before refinement.

Point (x,y) [mm]

1 (0, 0)

2 (200, 0)

3 (0, 200)

4 (200, 200)

5.2.1.1 14-layer symmetric square cross-ply laminate with orientation

[0/90/0/90/0/90/0]s

The total thickness of the laminate is 3.5mm. The linear and nonlinear pressure-

displacement graph obtained by MSC Nastran is shown in the Figure 5.3. For dis-
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placement less than 50% of the thickness is assumed in linear region. Therefore,

according to the linear solution in Figure 5.3, pressure leading 1.75mm displace-

ment, 0.195MPa, is applied at the top surface of the plate. For the results obtained

by IGA code, displacement of the (x, 100, 0) line, which is the mid-line of the mid-

plate, is given in the Figure 5.4. The maximum displacement of 1.74mm is read from

the results. Figure 5.5 shows the variation of problem stresses through the thickness

where stresses have maximum values. The minimum SR for all failure criteria and

expected strength ratios at failure (ESRF) according to different theories are listed in

Table 5.7. The heat-map on Figure 5.6 is generated from SR values of the Hashin

theory for layer 14 (bottom layer) which is the most critical layer according to the

criteria. The failure mode is predicted to be tensile failure of the matrix. Red regions

are more critical regions (low SR values), whereas blue regions represent the safer

regions (high SR values).

Figure 5.3: Pressure-displacement graph of [ 0/90/0/90/0/90/0 ]s laminae at maxi-

mum displacement location, (x, 100, 0) for linear and nonlinear solutions.

Table 5.7: Minimum strength ratios and expected strength ratios at failure according

to different failure criteria of the laminate [0/90/0/90/0/90/0]s.

Maximum Stress Tsai-Hill Hoffman Tsai-Wu Hashin

Minimum SR 2.948 2.920 2.920 2.932 2.920

ESRF 1.010 1.000 1.000 1.004 1.000
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Figure 5.4: z-displacement graph of the IGA solution of the laminate [0/90/0/90/

0/90/0]s at (x, 100, 0).

5.2.1.2 14-layer symmetric square angle-ply laminate with orientation

[45/-45/45/-45/45/-45/45]s

Having 0.25mm layers, the total thickness of the plate is 3.5mm. MSC Nastran

results in Figure 5.7 shows the pressure-displacement graphs for linear and nonlin-

ear solutions. Assuming linear solutions agrees well with the nonlinear solution for

maximum displacement of half of the thickness, i.e. 1.75mm, corresponding pres-

sure 0.182MPa, is applied to the top surface. Figure 5.8 shows the displacement of

the (x, 100, 0) line for IGA solutions. The maximum displacement is 1.71mm. The

variation of in-plane problem stresses through the thickness where stresses have max-

imum values are shown in Figure 5.9. The minimum SR for all failure criteria and

expected strength ratios at failure (ESRF) according to different theories are listed in

Table 5.8. The generated heat-map for SR values of the Hashin criteria for the layer

having the lowest SR value, layer 14 (bottom layer), is shown in Figure 5.10. More

critical regions with lower SR values are represented by red, and safer regions with

higher SR values are shown with blue. The failure mode is predicted to be tensile

failure of the matrix.

Table 5.8: Minimum strength ratios and expected strength ratios at failure according

to different failure criteria of the laminate [45/-45/45/-45/45/-45/45]s.

Maximum Stress Tsai-Hill Hoffman Tsai-Wu Hashin

Minimum SR 3.614 3.176 3.372 3.839 3.316

ESRF 1.138 1.000 1.062 1.209 1.044
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(a) σx

(b) σy

(c) τxy

Figure 5.5: Stress distribution through the thickness of fully clamped laminate

[0/90/0/90/0/90/0 ]s.
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Figure 5.6: The SR distribution of the fully clamped square plate [0/90/0/90/

0/90/0 ]s according to the Hashin criteria at layer 14.

5.2.1.3 14-layer symmetric square angle-ply laminate with orientation

[0/90/0/90/45/-45/0]s

14-layer laminate has the total thickness of 3.5mm. The linear and nonlinear pressure-

displacement graph obtained by MSC Nastran is shown in the Figure 5.11. For max-

imum displacement of half of the thickness, i.e. 1.75mm, linear solutions agrees well

with the nonlinear solution. Corresponding pressure for this displacement, 0.195MPa,

is applied to the top surface. The displacement of the IGA code, for the (x, 100, 0)

line is given in the Figure 5.12. The maximum displacement is 1.74mm. The varia-

tion of problem stresses through the thickness for the elements with highest stresses,

is shown in Figure 5.13. The minimum SR for all failure criteria and expected strength

ratios at failure (ESRF) according to different theories are listed in Table 5.9. The
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Figure 5.7: Pressure-displacement graph of [45/-45/45/-45/45/-45/45]s laminae at

maximum displacement location, (x, 100, 0) for linear and nonlinear solutions.

Figure 5.8: z-displacement graph of the IGA solution of the laminate [45/-45/45/

-45/45/-45/45]s at (x, 100, 0).

heat-map on Figure 5.14 is generated from SR values of the Hashin theory for layer

14 (bottom layer) which is the most critical layer according to the criteria. The failure

mode is predicted to be tensile failure of the matrix. Red regions are more critical

regions (low SR values), whereas blue regions represent the safer regions (high SR

values).
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(a) σx

(b) σy

(c) τxy

Figure 5.9: Stress distribution through the thickness of fully clamped laminate [45/-

45/45/-45/45/-45/45]s.
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Figure 5.10: The SR distribution of the fully clamped square plate [45/-45/ 45/ -

45/45/-45/45]s according to the Hashin criteria at layer 14.

5.2.1.4 8-layer symmetric square angle-ply laminate with orientation

[45/-45/45/-45]s

The total thickness of 14-layer laminate having 0.25mm layers, is 2mm. Figure 5.15

shows applied pressure versus displacement graphs of linear and nonlinear solutions

of MSC Nastran. The pressure causing maximum 50% of the thickness displacement,

i.e. 1mm, is 0.020MPa. The pressure is applied to the top surface of the plate. For

the obtained results by IGA code, displacement of the (x, 100, 0) line is given in the

Figure 5.16. The maximum displacement of 1mm is read from the IGA results. Fig-

ure 5.17 shows the variation of problem stresses through the thickness where stresses

have maximum values. The minimum SR for all failure criteria and expected strength

ratios at failure (ESRF) according to different theories are listed in Table 5.10. The

heat-map on Figure 5.18 is generated from SR values of the Hashin theory for layer 8
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Figure 5.11: Pressure-displacement graph of [0/90/0/90/45/-45/0]s laminae at

maximum displacement location, (x, 100, 0) for linear and nonlinear solutions.

Figure 5.12: z-displacement graph of the IGA solution of the laminate [0/90/

0/90/45/-45/0]s at (x, 100, 0).

(bottom layer) which is the most critical layer according to the criteria. The criticality

of the regions reduce from red to blue. The failure mode is predicted to be tensile

failure of the matrix.

5.2.1.5 Comparison of Displacements of Laminae [0/90/0/90/ 0/90/0]s, [45/

-45/ 45/-45/45/-45/45]s, [0/90/0/90/ 45/-45/0]s and [45/-45/45/-45]s

Under the Same Load

To observe the effect of stacking sequence, code is rerun with the load 0.02MPa.

Displacements of laminae with orientations [0/90/0/90/0 /90/0]s, [45/-45/ 45/-
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(a) σx

(b) σy

(c) τxy

Figure 5.13: Stress distribution through the thickness of fully clamped laminate

[0/90/0/90/45/-45/0]s.
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Table 5.9: Minimum strength ratios and expected strength ratios at failure according

to different failure criteria of the laminate [0/90/0/90/45/-45/0]s.

Maximum Stress Tsai-Hill Hoffman Tsai-Wu Hashin

Minimum SR 2.909 2.879 2.878 2.890 2.879

ESRF 1.011 1.000 1.000 1.004 1.000

Figure 5.14: The SR distribution of the fully clamped square plate [0/90/0/ 90/45/-

45/0]s according to the Hashin criteria at layer 14.

45/45/-45/45]s and [0/90/0/90/45/-45/0]s are shown in the Figure 5.19. To ex-

amine the effect of the thickness, the displacements of the laminae [45/-45/ 45/-

45/45/-45/45]s and [45/-45/45/-45]s are compared in Figure 5.20.
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Figure 5.15: Pressure-displacement graph of [45/-45/45/-45]s laminae at maximum

displacement location, (x, 100, 0) for linear and nonlinear solutions.

Figure 5.16: z-displacement graph of the IGA solution of the laminate [45/ -45/45/-

45]s at (x, 100, 0).

5.2.2 One-End Clamped Plate

This section consists of solutions of one-end clamped rectangular plate with different

ply orientations under uniform loading on the top surface. Dimension of the plate

is 300mm x 100mm. Aforementioned, ply thickness is 0.25mm for each layer and

material is carbon/epoxy with properties given in Table 5.4. The one-end clamped

rectangular plate is illustrated in Figure 5.21.

The inputs to model the rectangular plate are listed in Table 5.11 and Table 5.12.

After k-refinement control points are increased to 66x66 to have accurate solution on

the mid-point of the surface.
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(a) σx

(b) σy

(c) τxy

Figure 5.17: Stress distribution through the thickness of fully clamped laminate [45/-

45/45/-45]s.
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Table 5.10: Minimum strength ratios and expected strength ratios at failure according

to different failure criteria of the laminate [45/-45/45/-45]s.

Maximum Stress Tsai-Hill Hoffman Tsai-Wu Hashin

Minimum SR 10.577 9.401 10.037 11.514 9.794

ESRF 1.125 1.000 1.068 1.225 1.042

Figure 5.18: The SR distribution of the fully clamped square plate [45/-45/ 45/-45]s

according to the Hashin criteria at layer 8.

5.2.2.1 14-layer symmetric rectangular cross-ply laminate with orientation

[0/90/0/90/0/90/0]s

Having 0.25mm layers, the total thickness of the laminate is 3.5mm. Relation be-

tween pressure and displacement obtained by linear and nonlinear solutions by MSC

Nastran is presented in Figure 5.22. Allowing the maximum displacement of 20%

of the thickness, i.e. 0.7mm, corresponding pressure 0.0002MPa, is applied to the
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Figure 5.19: Comparison of the displacements of the fully clamped square laminae

with different ply orientations under the same load.

Figure 5.20: Comparison of the displacements of the fully clamped square laminae,

[45/-45/ 45/-45/45/-45/45]s and [45/-45/45/-45]s, under the same load.

Table 5.11: Polynomial orders, knot vectors and control points of mid-plane of a

rectangular laminate before refinement.

p 1

q 1

Ξ 0, 0, 1, 1

H 0, 0, 1, 1
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Figure 5.21: Distributed load applied to the top surface of a one-end clamped rectan-

gular plate.

Table 5.12: Control points of mid-plane of a rectangular laminate before refinement.

Point (x,y) [mm]

1 (0, 0)

2 (300, 0)

3 (0, 100)

4 (300, 100)

top surface of the laminate. The displacement of the (x, 50, 0) line obtained by IGA

is given in the Figure 5.23. The maximum displacement is 0.62mm. Figure 5.24

shows the variation of in-plane problem stresses through the thickness where stresses

have maximum values. The minimum SR for all failure criteria and expected strength

ratios at failure (ESRF) according to different theories are listed in Table 5.13. The

heat-map on Figure 5.25 is generated from SR values of the Hashin theory for layer

13 which is the most critical layer according to the criteria. The transition from red

to blue express the transition from critic to safe. The failure mode is predicted to be

tensile failure of the matrix.

Table 5.13: Minimum strength ratios and expected strength ratios at failure according

to different failure criteria of the laminate [0/90/0/90/0/90 /0 ]s.

Maximum Stress Tsai-Hill Hoffman Tsai-Wu Hashin

Minimum SR 186.600 186.419 187.456 188.345 186.403

ESRF 1.001 1.000 1.006 1.010 1.000
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Figure 5.22: Pressure-displacement graph of [0/90/0/90/0/90/0 ]s laminae at max-

imum displacement location, (x, 50, 0) for linear and nonlinear solutions.

Figure 5.23: z-displacement graph of the IGA solution of the laminate [0/90/

0/90/0/90/0 ]s at (x, 50, 0).

5.2.2.2 14-layer symmetric rectangular angle-ply laminate with orientation

[45/-45/45/-45/45/-45/45]s

The 14-layer plate has the total thickness of 3.5mm. The linear and nonlinear pressure-

displacement graph obtained by MSC Nastran is shown in the Figure 5.26. For for

maximum displacement of 20% of the thickness, i.e. 0.7mm, corresponding pres-

sure 70Pa, is applied to the top surface. The displacement of the (x, 50, 0) line is

given in the Figure 5.27 for IGA solution. The maximum displacement is 0.71mm.

The variation of in-plane stresses through the thickness is presented in Figure 5.28for

the elements with highest stresses. Table 5.14 shows the minimum SR for all failure
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(a) σx

(b) σy

(c) τxy

Figure 5.24: Stress distribution through the thickness of one-end clamped laminate

[0/90/0/90/0/90 /0 ]s.
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Figure 5.25: The SR distribution of the one-end clamped plate [0/90/0/90/0/ 90/0]s

according to the Hashin criteria at layer 13.

criteria and expected strength ratios at failure (ESRF) according to different theories.

The heat-map in Figure 5.29 is generated from SR values of Hashin theory at the most

critical layer, which is layer 7. Red regions are more critical regions (low SR values),

whereas blue regions represent the safer regions (high SR values). The failure mode

is predicted to be compressive failure of the matrix.

Figure 5.26: Pressure-displacement graph of [45/-45/45/-45/45/-45/45]s laminae

at maximum displacement location, (x, 50, 0) for linear and nonlinear solutions.
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Figure 5.27: z-displacement graph of the IGA solution of the laminate [45/-45/45/-

45/45/-45/45]s at (x, 50, 0).

Table 5.14: Minimum strength ratios and expected strength ratios at failure according

to different failure criteria of the laminate [45/-45/45/-45/45/-45/45]s.

Maximum Stress Tsai-Hill Hoffman Tsai-Wu Hashin

Minimum SR 236.387 198.707 186.763 186.344 204.176

ESRF 1.269 1.066 1.002 1.000 1.096

5.2.2.3 14-layer symmetric rectangular angle-ply laminate with orientation

[0/90/0/90/45/-45/0]s

Each layer having 0.25mm layers, the total thickness of the laminate is 3.5mm.

The pressure-displacement graph obtained by MSC Nastran results for linear and

nonlinear solutions is shown in the Figure 5.30. Assuming linear solutions agrees

well with the nonlinear solution for maximum displacement of 20% of the thick-

ness, i.e. 0.7mm, corresponding pressure 0.0002MPa, is applied to the top surface.

Figure 5.31 shows the displacement of the (x, 50, 0) for IGA solution. The maxi-

mum displacement obtained by code is 0.65mm. Figure 5.32 shows the variation of

problem stresses through the thickness where stresses have maximum values. In Ta-

ble 5.15, the minimum SR and expected strength ratios at failure (ESRF) according

to different theories are listed. The heat-map on Figure 5.33 is generated from SR

values of the Hashin theory for layer 13 which is the most critical layer according to

the criteria. Red regions are more critical regions, whereas blue regions represent the

safer regions. The failure mode is predicted to be tensile failure of the matrix.
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(a) σx

(b) σy

(c) τxy

Figure 5.28: Stress distribution through the thickness of one-end clamped laminate

[45/-45/45/-45/45/-45/45]s.
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Figure 5.29: The SR distribution of the one-end clamped plate [45/-45/45/-45/45/-

45/45]s according to the Hashin criteria at layer 7.

Figure 5.30: Pressure-displacement graph of [0/90/0/ 90/45/-45/0]s laminae at

maximum displacement location, (x, 50, 0) for linear and nonlinear solutions.

5.2.2.4 Comparison of Displacements of Laminae [0/90/0/90/0 /90/0]s, [45/-

45/ 45/-45/45/-45/45]s and [0/90/0/90/ 45/-45/0]s Under the Same

Load

The analyses are rerun for the one-end clamped plates by applying the same load of

70Pa. Comparison of the resulting displacements are shown in the Figure 5.34.
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Figure 5.31: z-displacement graph of the IGA solution of the laminate [0/90/

0/90/45/-45/0]s at (x, 50, 0).

Table 5.15: Minimum strength ratios and expected strength ratios at failure according

to different failure criteria of the laminate[0/90/0/90/45/-45/0]s.

Maximum Stress Tsai-Hill Hoffman Tsai-Wu Hashin

Minimum SR 172.330 172.119 173.014 173.805 172.105

ESRF 1.001 1.000 1.005 1.010 1.000

5.2.3 Two-Ends Clamped Plate

This section consists of solutions of two-ends clamped rectangular plate with different

ply orientations under uniform loading on the top surface. Dimension of the plate is

300mm x 100mm. Aforementioned, ply thickness is 0.25mm for each layer and

material is carbon/epoxy with properties given in Table 5.4. The one-end clamped

rectangular plate is illustrated in Figure 5.35.

The inputs to model the rectangular plate are listed in Table 5.11, which are same as

the one-end clamped plate. After k-refinement control points are increased to 66x66

to have accurate solution on the mid-point of the surface.

5.2.3.1 14-layer symmetric rectangular cross-ply laminate with orientation

[0/90/0/90/0/90/0]s

14-layer laminate having 0.25mm layers, the total thickness is 3.5mm. According

to the linear and nonlinear solutions, the obtained pressure-displacement graph by
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(a) σx

(b) σy

(c) τxy

Figure 5.32: Stress distribution through the thickness of one-end clamped laminate

[0/90/0/90/45/-45/0]s.

95



Figure 5.33: The SR distribution of the one-end clamped plate [0/90/0/90/45/ -

45/0]s according to the Hashin criteria at layer 13.

Figure 5.34: Comparison of the displacements of the one-end clamped rectangular

laminae under the same load.

MSC Nastran results is shown in the Figure 5.36. For maximum displacement less

than 20% of the thickness, it is assumed that the solution is in linear region. Thus,

pressure resulting 0.7mmmaximum displacement, 0.0113MPa, is applied to the top

surface of the plate. For the results obtained by IGA, displacement of the (x, 50, 0)

line is given in the Figure 5.37. The maximum displacement is 0.7mm. Figure 5.38

shows the variation of in-plane problem stresses through the thickness where they

have maximum values at an element. The minimum SR for all failure criteria and

expected strength ratios at failure (ESRF) according to different theories are listed in
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Figure 5.35: Distributed load applied to the top surface of a two-ends clamped rect-

angular plate.

Table 5.16. The heat-map on Figure 5.39 is generated from SR values of the Hashin

theory for layer 13 which is the most critical layer according to the criteria. Color

distribution from red to blue represents the transition from critical to safe. The failure

mode is predicted to be tensile failure of the matrix.

Figure 5.36: Pressure-displacement graph of [0/90/0/90/ 0/90/0 ]s laminae at max-

imum displacement location, (x, 50, 0) for linear and nonlinear solutions.

5.2.3.2 14-layer symmetric rectangular angle-ply laminate with orientation

[45/-45/45/-45/45/-45/45]s

The total thickness of the 14-layer laminate is 3.5mm. Figure 5.40 shows the applied

pressure-displacement graph obtained by MSC Nastran. For maximum displacement
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Figure 5.37: z-displacement graph of the IGA solution of the laminate [0/90/0/

90/0/90/0 ]s at (x, 50, 0).

Table 5.16: Minimum strength ratios and expected strength ratios at failure according

to different failure criteria of the laminate [0/90/0/90/0/90/0]s.

Maximum Stress Tsai-Hill Hoffman Tsai-Wu Hashin

Minimum SR 21.756 21.606 21.631 21.730 21.604

ESRF 1.007 1.000 1.001 1.006 1.000

of 20% of the thickness, i.e. 0.7mm, corresponding pressure 0.004MPa, is applied

to the top surface. Figure 5.41 presents the displacement obtained by IGA of the

(x, 50, 0) line. The maximum displacement is 0.69mm. The variation of in-plane

problem stresses through the thickness are shown in Figure 5.42 where stresses have

maximum values. The minimum SR for all failure criteria and expected strength

ratios at failure (ESRF) according to different theories are listed in Table 5.17. The

heat-map generated from SR values of the Hashin theory for layer 14 (bottom layer)

which is the most critical layer according to the criteria is shown in Figure 5.43. Red

areas are more critical regions, whereas blue areas are safer regions. The failure mode

is predicted to be tensile failure of the matrix.

Table 5.17: Minimum strength ratios and expected strength ratios at failure according

to different failure criteria of the laminate [45/-45/45/-45/45/-45/45]s.

Maximum Stress Tsai-Hill Hoffman Tsai-Wu Hashin

Minimum SR 28.288 25.200 26.896 27.948 26.210

ESRF 1.123 1.000 1.067 1.109 1.040
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(a) σx

(b) σy

(c) τxy

Figure 5.38: Stress distribution through the thickness of two-ends clamped laminate

[0/90/0/90/0/90/0]s.
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Figure 5.39: The SR distribution of the two-ends clamped plate [0/90/0/90/

0/90/0]s according to the Hashin criteria at layer 13.

Figure 5.40: Pressure-displacement graph of [45/-45/45/-45/45/-45/45]s laminae

at maximum displacement location, (x, 50, 0) for linear and nonlinear solutions.

5.2.3.3 14-layer symmetric rectangular angle-ply laminate with orientation

[0/90/0/90/45/-45/0]s

Having 0.25mm layers, the total thickness of the plate is 3.5mm. The linear and

nonlinear pressure-displacement graph obtained by MSC Nastran results is shown

in the Figure 5.44. Assuming linear solutions agrees well with the nonlinear solu-
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Figure 5.41: z-displacement graph of the IGA solution of the laminate [45/-45/45/-

45/45/-45/45]s at (x, 50, 0).

tion for maximum displacement of 20% of the thickness, i.e. 0.7mm, corresponding

pressure 0.0106MPa, is applied to the top surface of the plate. For the results ob-

tained by IGA code, displacement of the (x, 50, 0) line is given in the Figure 5.45.

The maximum displacement is 0.69mm. Figure 5.46 shows the variation of in-plane

problem stresses through the thickness where stresses have maximum values. Table

5.18 shows the comparison of minimum SR and expected strength ratios at failure

(ESRF) for different criteria. The heat-map on Figure 5.47 is generated from SR val-

ues of the Hashin theory for layer 13 which is the most critical layer according to the

criteria. The transition from red to blue represents the transition from critical to safe.

The failure mode is predicted to be tensile failure of the matrix.

Table 5.18: Minimum strength ratios and expected strength ratios at failure according

to different failure criteria of the laminate [0/90/0/90/45/-45/0]s.

Maximum Stress Tsai-Hill Hoffman Tsai-Wu Hashin

Minimum SR 21.576 21.396 21.405 21.489 21.395

ESRF 1.008 1.000 1.000 1.004 1.000

5.2.3.4 Comparison of Displacements of Laminae [0/90/0/90/0 /90/0]s, [45/

-45/ 45/-45/45/-45/45]s and [0/90/0/90/ 45/-45/0]s Under the Same

Load

To observe the effect of stacking sequence, displacements of four two-ends clamped

laminae with different orientations under 0.004MPa are shown in the Figure 5.48.
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(a) σx

(b) σy

(c) τxy

Figure 5.42: Stress distribution through the thickness of two-ends clamped laminate

[45/-45/45/-45/45/-45/45]s.
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Figure 5.43: The SR distribution of the two-ends clamped plate [45/-45/45/-45/45/-

45/45]s according to the Hashin criteria at layer 14.

Figure 5.44: Pressure-displacement graph of [0/90/0/90/45/-45/0]s laminae at

maximum displacement location, (x, 50, 0) for linear and nonlinear solutions.

5.3 Discussion of Numerical Examples

Table 5.19 summarizes the numerical examples. In this table, names of the examples

are abbreviated as "FC 1" for example in Section 5.2.1.1, "FC 2" for example in

Section 5.2.1.2, "FC 3" for example in Section 5.2.1.3, "FC 4" for example in Section

5.2.1.4, "OC 1" for example in Section 5.2.2.1, "OC 2" for example in Section 5.2.2.2,

103



Figure 5.45: z-displacement graph of the IGA solution of the laminate [0/90/

0/90/45/-45/0]s at (x, 50, 0).

"OC 3" for example in Section 5.2.2.3, "TC 1" for example in Section 5.2.3.1, "TC 2"

for example in Section 5.2.3.2 and "TC 3" for example in Section 5.2.3.3. "t", "Exp"

"Disp" and "Pres" stand for the total thickness of laminate, expected, displacement

and pressure, respectively. Expected failure modes are abbreviated as tensile failure

of fiber, "TF"; compressive failure of fiber, "CF"; tensile failure of matrix, "TM";

and compressive failure of matrix, "CM". Similarly, failure criteria are abbreviated

as maximum stress, "MS"; Tsai-Hill, "T-H"; Hoffman, "Hof"; Tsai-Wu, "T-W"; and

Hashin, "Has".

In example in Section 5.2.1.1, the fully clamped plate with orientation [0/90/0/90/0

/90/0]s has the most critical layer is the bottom layer with 0◦ orientation. Therefore,

the most critical regions for the plate are near the boundaries at y = 0 and y = 200.

Noting that z-axis is at the symmetry plane and pointing to the bottom of the plate,

stress distribution in x-direction has negative values on the layers above the symmetry

plane and positive values on the layers below the symmetry plane. It is an expected

result since there is a pressure loading on the top of the plate and top layers should be

in compression whereas bottom layers should be in tension. In addition, layers of the

laminate can be clearly seen from the in-plane normal stress distributions through the

thickness for this example. In the laminate since the load is mainly carried by fibers

and stresses are low at y-direction and high at x-direction for the 0◦ plies, whereas

low at x-direction and high at y-direction for the 90◦ plies.
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(a) σx

(b) σy

(c) τxy

Figure 5.46: Stress distribution through the thickness of two-ends clamped laminate

[0/90/0/90/45/-45/0]s.
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Figure 5.47: The SR distribution of the two-ends clamped plate [0/90/0/90/ 45/

-45/0]s according to the Hashin criteria at layer 13.

In example in Section 5.2.1.2, the fully clamped plate with orientation [45/-45/ 45/

-45/45/-45/45]s is examined. The most critical layer is the bottom layer with 45◦

orientation. Different than the cross-ply laminate in the first example, the safest re-

gions for the layer are in the diagonal where 45◦ plies lie. While in-plane normal

stresses are compressive at the top and tensile at the bottom as expected, layers are

distinguishable in in-plane shear stress distribution due to fiber orientation.

For the example in Section 5.2.1.3, the fully clamped plate with orientation [0/90/0/90/45

/-45/0]s,similar to the cross-ply laminate in the first example, the failure is at the bot-

tom layer even though having±45◦ plies. The critical layer might change if the±45◦

plies moved away from the symmetry axis of the plate. While effect of these plies

can be seen in the stress distributions through the thickness (having lower in-plane

normal stresses and higher in-plane shear stresses), it is not obvious when maximum

displacement under the same load or critical regions distribution are considered.

In example in Section 5.2.1.4, the fully clamped plate with orientation [45/-45/45/ -

45]s is thinner than the plates in other examples. The slope of the linear trend is greater

than the thicker plates; therefore, applied pressure for displacement 50% thickness is

much lower. The distribution of the critical regions is similar to the second example

and the most critical layer is the bottom layer having 45◦. The orientation of the safer

regions agree well with the orientation of this ply. In this example, strength ratios
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Figure 5.48: Comparison of the displacements of the two-ends clamped rectangular

laminae under the same load.

are higher for the pressure to obtain desired displacement. It indicates the greater

deviation between linear and nonlinear solutions of the displacements at failure loads.

In example in Section 5.2.2.1, the slope of the linear trend for the one-end clamped

plate with orientation [0/90/0/90/0/90/0]s is much greater than the fully clamped

plate with same orientation as expected. As a result, applied load for valid analyses

with linear solution is smaller. Nonetheless, linear analyses still gives a first intuition

about the distribution of critical regions. The regions near to the clamped end are

expected to be failed first and the free and is the least critical since there is no re-

striction. In addition, having the failure at the boundary changes the behavior of the

nonlinear graph as well and percentage difference of the displacements of the linear

and nonlinear solutions at failure is smaller.

In example in Section 5.2.2.2, the one-end clamped plate with orientation [45/-45/

45/-45/45/-45/45]s shows different bahavior than the rest of the examples. Only in

this example, failure is due to compression of the matrix and maximum displacement

calculated by IGA is greater than the calculated displacement by MSC Nastran. This

might be due to having the greatest slope of the linear trend among all examples.

Although the effect of the fiber orientation can still be observed in the distribution of

the critical regions, lower SR values are seen in much larger area than the previous

example having cross-ply laminate.
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Table 5.19: Summary of numerical examples.

t

[mm]

Exp

Disp

(%)

Exp

Disp

[mm]

IGA

Disp

[mm]

Aplied

Pres

[MPa]

Exp

Failed

Layer

Exp

Failure

Mode

Min

SR

Max

SR

FC 1 3.5 50 1.75 1.74 0.195 14 TM

T-H

Hof

Has

MS

FC 2 3.5 50 1.75 1.71 0.182 14 TM T-H T-W

FC 3 3.5 50 1.75 1.74 0.195 14 TM

T-H

Hof

Has

MS

FC 4 2 50 1 1 0.020 8 TM T-H T-W

OC 1 3.5 20 0.7 0.62 0.0002 13 TM
T-H

Has
T-W

OC 2 3.5 20 0.7 0.71 0.00007 7 CM T-W MS

OC 1 3.5 20 0.7 0.65 0.0002 13 TM
T-H

Has
T-W

TC 1 3.5 20 0.7 0.7 0.0113 13 TM
T-H

Has
MS

TC 2 3.5 20 0.7 0.69 0.004 14 TM T-H MS

TC 3 3.5 20 0.7 0.69 0.0106 13 TM

T-H

Hof

Has

MS

In example in Section 5.2.2.3, the one-end clamped plate with orientation [0/90/0/90

/45/-45/0]s shows a very similar to the one end cross-ply example. The effect of the

±45◦ plies are again visible in the stress distribution through the thickness graphs.

In example in Section 5.2.3.1, the two-ends clamped plate with orientation [0/90/0

/90/0/90/0]s have strength ratios between the fully clamped and one-end clamped

cases. The most critical regions are the clamped boundaries followed by the midsec-

tion of the plate. Clamping only in x-direction where 0◦ plies lie, result in similar

pattern of σy and τxy in all two-ends clamped examples.
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In example in Section 5.2.3.2, the two-ends clamped plate with orientation [45/-45/

45/-45/45/-45/45]s sustain the least load among at the same displacement among the

two-end clamped plated same as the other boundary conditions. The effect of orienta-

tion is again visible in the distribution of the critical regions. The clamped boundaries

are much more critical in this example than the previous cross-ply laminate.

In example in Section 5.2.3.3, the two-ends clamped plate with orientation [0/90/0/

90/45 /-45/0]s has the most critical regions around the clamped boundaries similar

to the other examples. ±45◦ plies have dominant σy and τxy whereas, 0/90◦ plies

overpowering σx.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis study, an isogeometric formulation is derived for the analysis of the lam-

inated composite plates. The displacement field is assumed by the first order shear

deformation theory. The maximum stress, Tsai-Hill, Hoffman, Tsai-Wu and Hashin

criteria are employed to determine the critical regions. To verify the validity of the

formulation, results are compared with the exact solution of Pagano [2]. Several nu-

merical examples are performed for laminated composite plates with different shapes,

stacking schemes and boundary conditions. Using linear and nonlinear solutions ob-

tained by MSC Nastran, applied loads that can be used for linear analyses are decided

by limiting the maximum displacements within a certain percentage of the thickness

of the plate. The displacement through the larger span and in-plane stress distributions

through the thickness for the elements with maximum stresses are plotted. Moreover,

heat-maps are obtained by strength ratios of the Hashin criteria, showing distribution

of the critical regions for the most critical layer.

i. It is observed that IGA method is used effectively for analysis of laminated

composite plates.

ii. Comparison with the exact solution show that with increasing a/h ratio in-

plane stresses and maximum displacement are predicted accurately by IGA

with FSDT; whereas the simulation results deviate from the exact solution for

transverse shear stresses. It is also observed that increasing the shear correction

factor gives better results.

iii. For the fully clamped plates displacements are lower under the same load com-

pared to one-end and two-ends clamped cases. Moreover, laminates with ori-

entation [45/-45/ 45/-45/45/-45/45]s displace more than other orientations
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used in the examples. Therefore, analyses can be performed for higher loads in

linear range for these cases having lower displacements.

iv. From the numerical examples, it can be seen that the relationship between load

and the thickness is not linear. Reducing the thickness 45% results in 5 times

increase of the maximum displacement for the fully clamped plate with the

same dimensions.

v. Boundary conditions effect the failure loads drastically. Clamping one more

end of one-end clamped case decrease the displacements and increase the ap-

plicable load leading the same displacement more than 50 times for two-ends

clamped case.

vi. Laminates with all ±45◦ plies are exposed to the most displacement under the

same load for all boundary conditions.

vii. As it can be seen from the results, Tsai-Hill criterion gives the minimum strength

ratio for almost all examples. In other words, the theory expects failure at least

loads. Therefore, it can be said that it is the most conservative theory.

viii. In all the examples failure is due to matrix failures; moreover, almost in all of

them failure mode is tensile failure of matrix. Thus, it can be concluded that for

the composite plates under transverse pressure, matrix failures are more critical

than the fiber failures.

To conclude, the isogeometric analysis method is a very promising method having

many benefits due to representing the geometry exactly and the use of spline based

functions. As future work, more complex geometries can be investigated. The stud-

ies can be extend for large deformations and for nonlinear solutions of the problems.

In addition, more complex analysis like delamination can be examined. By adding

iterative procedure involving elimination or reduction of stiffness terms for the failed

elements together with nonlinear solutions, progressive failure analysis can be con-

ducted.
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[39] G. Radenković and A. Borković, “Linear static isogeometric analysis of an ar-

bitrarily curved spatial bernoulli–euler beam,” Computer Methods in Applied

Mechanics and Engineering, vol. 341, pp. 360–396, 2018.

[40] K. A. Hasim, “Isogeometric static analysis of laminated composite plane beams

by using refined zigzag theory,” Composite Structures, vol. 186, pp. 365–374,

2018.

116



[41] S. Faroughi, E. Shafei, and A. Eriksson, “Nurbs-based modeling of laminated

composite beams with isogeometric displacement-only theory,” Composites

Part B: Engineering, vol. 162, pp. 89–102, 2019.

[42] K. Fan, J. Zeng, Z. Huang, and Q. Liu, “Tensor-decomposition based matrix

computation: A fast method for the isogeometric fsdt analysis of laminated

composite plate,” Thin-Walled Structures, vol. 144, p. 106326, 2019.

[43] C. H. Thai, H. Nguyen-Xuan, N. Nguyen-Thanh, T.-H. Le, T. Nguyen-Thoi, and

T. Rabczuk, “Static, free vibration, and buckling analysis of laminated compos-

ite reissner–mindlin plates using nurbs-based isogeometric approach,” Interna-

tional Journal for Numerical Methods in Engineering, vol. 91, no. 6, pp. 571–

603, 2012.

[44] M. Lyly, R. Stenberg, and T. Vihinen, “A stable bilinear element for the reissner-

mindlin plate model,” Computer Methods in Applied Mechanics and Engineer-

ing, vol. 110, no. 3-4, pp. 343–357, 1993.

[45] C. H. Thai, H. Nguyen-Xuan, S. P. A. Bordas, N. Nguyen-Thanh, and

T. Rabczuk, “Isogeometric analysis of laminated composite plates using the

higher-order shear deformation theory,” Mechanics of Advanced Materials and

Structures, vol. 22, no. 6, pp. 451–469, 2015.

[46] C. H. Thai, A. Ferreira, S. P. A. Bordas, T. Rabczuk, and H. Nguyen-Xuan, “Iso-

geometric analysis of laminated composite and sandwich plates using a new in-

verse trigonometric shear deformation theory,” European Journal of Mechanics-

A/Solids, vol. 43, pp. 89–108, 2014.

[47] H. Nguyen-Xuan, C. H. Thai, and T. Nguyen-Thoi, “Isogeometric finite element

analysis of composite sandwich plates using a higher order shear deformation

theory,” Composites Part B: Engineering, vol. 55, pp. 558–574, 2013.

[48] C. H. Thai, A. Ferreira, E. Carrera, and H. Nguyen-Xuan, “Isogeometric analy-

sis of laminated composite and sandwich plates using a layerwise deformation

theory,” Composite Structures, vol. 104, pp. 196–214, 2013.

[49] X. Li, J. Zhang, and Y. Zheng, “Static and free vibration analysis of laminated

composite plates using isogeometric approach based on the third order shear

117



deformation theory,” Advances in Mechanical Engineering, vol. 6, p. 232019,

2014.

[50] A. Gupta and A. Ghosh, “Bending analysis of laminated and sandwich compos-

ite reissner-mindlin plates using nurbs-based isogeometric approach,” Procedia

engineering, vol. 173, pp. 1334–1341, 2017.

[51] L. V. Tran, J. Lee, H. Nguyen-Van, H. Nguyen-Xuan, and M. A. Wahab, “Geo-

metrically nonlinear isogeometric analysis of laminated composite plates based

on higher-order shear deformation theory,” International Journal of Non-Linear

Mechanics, vol. 72, pp. 42–52, 2015.

[52] H. Kapoor and R. Kapania, “Geometrically nonlinear nurbs isogeometric finite

element analysis of laminated composite plates,” Composite Structures, vol. 94,

no. 12, pp. 3434–3447, 2012.

[53] T. Le-Manh, T. Luu-Anh, and J. Lee, “Isogeometric analysis for flexural be-

havior of composite plates considering large deformation with small rotations,”

Mechanics of Advanced Materials and Structures, vol. 23, no. 3, pp. 328–336,

2016.

[54] V. P. Nguyen, P. Kerfriden, and S. P. Bordas, “Two-and three-dimensional iso-

geometric cohesive elements for composite delamination analysis,” Composites

Part B: Engineering, vol. 60, pp. 193–212, 2014.

[55] H. Kapoor, R. K. Kapania, and S. R. Soni, “Interlaminar stress calculation in

composite and sandwich plates in nurbs isogeometric finite element analysis,”

Composite Structures, vol. 106, pp. 537–548, 2013.

[56] F. Auricchio, F. Calabro, T. J. Hughes, A. Reali, and G. Sangalli, “A simple

algorithm for obtaining nearly optimal quadrature rules for nurbs-based isoge-

ometric analysis,” Computer Methods in Applied Mechanics and Engineering,

vol. 249, pp. 15–27, 2012.

[57] G. Pavan and K. N. Rao, “Bending analysis of laminated composite plates using

isogeometric collocation method,” Composite Structures, vol. 176, pp. 715–728,

2017.

118



[58] J. N. Reddy, “A simple higher-order theory for laminated composite plates,”

Journal of applied mechanics, vol. 51, no. 4, pp. 745–752, 1984.

[59] C. Nwoji, H. Onah, B. Mama, and C. Ike, “Theory of elasticity formulation of

mindlin plate equations,” International Journal of Engineering and Technology,

vol. 9, no. 6, pp. 4344–4352, 2017.

[60] J. Whitney and N. Pagano, “Shear deformation in heterogeneous anisotropic

plates,” 1970.

[61] P. Madabhusi-Raman and J. F. Davalos, “Static shear correction factor for lami-

nated rectangular beams,” Composites Part B: Engineering, vol. 27, no. 3-4, pp.

285–293, 1996.

[62] T. J. Hughes, R. L. Taylor, and W. Kanoknukulchai, “A simple and efficient

finite element for plate bending,” International Journal for Numerical Methods

in Engineering, vol. 11, no. 10, pp. 1529–1543, 1977.

[63] O. Zienkiewicz, R. Taylor, and J. Too, “Reduced integration technique in general

analysis of plates and shells,” International Journal for Numerical Methods in

Engineering, vol. 3, no. 2, pp. 275–290, 1971.

[64] N. Grover, D. K. Maiti, and B. N. Singh, “Flexural behavior of general laminated

composite and sandwich plates using a secant function based shear deformation

theory,” Latin American Journal of Solids and Structures, vol. 11, no. 7, pp.

1275–1297, 2014.

[65] M. Slimane, “Study and comparison of different plate theory,” International

Journal of Engineering Research And Advanced Technology (IJERAT), vol. 3,

no. 8, pp. 49–59, 2017.

[66] R. Rolfes and K. Rohwer, “Improved transverse shear stresses in composite fi-

nite elements based on first order shear deformation theory,” International Jour-

nal for Numerical Methods in Engineering, vol. 40, no. 1, pp. 51–60, 1997.

[67] N. Germain, J. Besson, and F. Feyel, “Simulation of laminate composites degra-

dation using mesoscopic non-local damage model and non-local layered shell

element,” Modelling and Simulation in Materials Science and Engineering,

vol. 15, no. 4, p. S425, 2007.

119



[68] P. Pal and S. Bhattacharyya, “Progressive failure analysis of cross-ply laminated

composite plates by finite element method,” Journal of reinforced plastics and

composites, vol. 26, no. 5, pp. 465–477, 2007.

[69] R. Hill, “The mathematical theory of plasticity, clarendon,” Oxford, vol. 613, p.

614, 1950.

[70] S. W. Tsai, “Strength theories of filamentary structure,” Fundamental aspects of

fiber reinforced plastic composites, 1968.

[71] O. Hoffman, “The brittle strength of orthotropic materials,” Journal of Compos-

ite Materials, vol. 1, no. 2, pp. 200–206, 1967.

[72] R. B. Pipes and B. Cole, “On the off-axis strength test for anisotropic materi-

als1,” Journal of Composite Materials, vol. 7, no. 2, pp. 246–256, 1973.

[73] S. W. Tsai and E. M. Wu, “A general theory of strength for anisotropic materi-

als,” Journal of composite materials, vol. 5, no. 1, pp. 58–80, 1971.

[74] H. T. Hahn and S. W. Tsai, Introduction to composite materials. CRC Press,

1980.

[75] G. N. Naik and A. K. Murty, “A failure mechanism-based approach for design

of composite laminates,” Composite structures, vol. 45, no. 1, pp. 71–80, 1999.

[76] Z. Hashin, “Failure criteria for unidirectional fiber composites,” Journal of ap-

plied mechanics, vol. 47, no. 2, pp. 329–334, 1980.

[77] M. G. Cox, “The numerical evaluation of b-splines,” IMA Journal of Applied

Mathematics, vol. 10, no. 2, pp. 134–149, 1972.

[78] C. De Boor, “On calculating with b-splines,” Journal of Approximation theory,

vol. 6, no. 1, pp. 50–62, 1972.

120


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Background and Motivation
	Composites; Properties, Advantages and Drawbacks
	Development of Isogeometric Approach

	Objective of the Thesis
	Review of Previous Work
	Analysis of Laminated Composites
	Development of Isogeometric Analysis
	Applications of Isogeometric Analysis

	Scope of the Thesis
	Outline of the Thesis

	PLATE AND FAILURE THEORIES USED FOR COMPOSITES
	Plate Theories used for Composites
	Classical Laminated Plate Theory (CLPT)
	First Order Shear Deformation Theory (FSDT)
	Higher Order Shear Deformation Theories (HSDT)
	3-D Elasticity Theories
	Layerwise Theories

	Failure Theories used for Composites
	Maximum Stress Criteria
	Tsai-Hill Criterion
	Hoffman Criterion
	Tsai-Wu Criterion
	Hashin Criteria


	Isogeometric Analysis
	B-Splines
	Properties of B-Spline Basis Functions
	Derivatives of B-Spline Basis Functions
	B-Spline Geometries
	B-Spline Curves
	B-Spline Surfaces
	B-Spline Solids

	Refinement
	Knot Insertion
	Order Elevation
	k-Refinement


	Non-uniform Rational B-Splines
	Properties of NURBS Basis Functions
	Derivatives of NURBS Basis Functions
	NURBS Geometries

	Analysis using NURBS based IGA
	Spaces and Mappings
	Index Space
	Parameter Space
	Parent Space
	Physical Space
	Mappings Between the Spaces

	Gaussian Quadrature

	IGA vs FEM, Similarities and Differences

	Governing Equations
	Displacements and strains of First Order Shear Deformation Theory
	Constitutive Relations
	Resultants and Weak Form Equation for Composite Plates
	Global Stiffness Matrix and Load Vector
	Strains and Stresses

	Results and Discussion
	Comparison of Result with Exact Solution
	Numerical Examples
	Fully Clamped Plates
	14-layer symmetric square cross-ply laminate with orientation  [0/90/0/90/0/90/0]s
	14-layer symmetric square angle-ply laminate with orientation  [45/-45/45/-45/45/-45/45]s
	14-layer symmetric square angle-ply laminate with orientation  [0/90/0/90/45/-45/0]s
	8-layer symmetric square angle-ply laminate with orientation  [45/-45/45/-45]s
	Comparison of Displacements of Laminae [0/90/0/90/ 0/90/0]s, [45/ -45/ 45/-45/45/-45/45]s, [0/90/0/90/ 45/-45/0]s and [45/-45/45/-45]s Under the Same Load

	One-End Clamped Plate
	14-layer symmetric rectangular cross-ply laminate with orientation  [0/90/0/90/0/90/0]s
	14-layer symmetric rectangular angle-ply laminate with orientation  [45/-45/45/-45/45/-45/45]s
	14-layer symmetric rectangular angle-ply laminate with orientation  [0/90/0/90/45/-45/0]s
	Comparison of Displacements of Laminae [0/90/0/90/0 /90/0]s, [45/-45/ 45/-45/45/-45/45]s and [0/90/0/90/ 45/-45/0]s Under the Same Load

	Two-Ends Clamped Plate
	14-layer symmetric rectangular cross-ply laminate with orientation  [0/90/0/90/0/90/0]s
	14-layer symmetric rectangular angle-ply laminate with orientation  [45/-45/45/-45/45/-45/45]s
	14-layer symmetric rectangular angle-ply laminate with orientation  [0/90/0/90/45/-45/0]s
	Comparison of Displacements of Laminae [0/90/0/90/0 /90/0]s, [45/ -45/ 45/-45/45/-45/45]s and [0/90/0/90/ 45/-45/0]s Under the Same Load


	Discussion of Numerical Examples

	Conclusion and Future Work
	REFERENCES

