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ABSTRACT 

 

A MARKOV DECISION PROCESS WITH UNOBSERVABLE STRENGTH 

UNDER MARKOVIAN ENVIRONMENT 

 

Altınkeser, Pınar 

Master of Science, Industrial Engineering 

Supervisor: Prof. Dr. Yasemin Serin 

 

January 2020, 57 pages 

 

This thesis focuses on a system which survives or fails depending on the stress it is 

exposed to and strength occurrences. Stress and strength are random quantities 

generated by two factors, an unobservable Markovian environment and the actions 

applied. The distributions are known but only the resulting level of realized stress can 

be observed. The objective is to find an optimal policy that only uses available 

information to minimize the long run average cost of running this system. The base 

decision model is modified to handle lack of information, and a new model is built. 

Value of information is measured by comparing the optimal objective values of two 

models. Conflicting performance measures are also evaluated. 

 

 

Keywords: Stress Strength Reliability Models, Markov Decision Process, Markov 

Modulated Environment  
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ÖZ 

 

MARKOV ÖZELLİKLİ ORTAMDA GÖZLEMLENEMEYEN 

DAYANIKLILIK ALTINDA BİR MARKOV KARAR SÜRECİ 

 

Altınkeser, Pınar 

Yüksek Lisans, Endüstri Mühendisliği 

Tez Danışmanı: Prof. Dr. Yasemin Serin 

 

Ocak 2020, 57 sayfa 

 

Bu tez, yaşam döngüsü uygulanan stres seviyesine ve sahip olduğu dayanıklılığa bağlı 

olan bir sisteme odaklanmaktadır. Bu sistemin ömrü stres ve dayanıklılık ilişkisine 

bağlı olarak devam etmekte veya bitmektedir. Stres ve dayanıklılık değerleri iki 

faktörden etkilenen rassal büyüklüklerdir. Bu iki faktör gözlemlenemeyen Markov 

özellikli bir çevresel etki ve alınan aksiyonlardır. Bu faktörlerin sonucu olan 

dağılımlar bilinmektedir, ancak sadece sonuçlanan stres seviyesi gözlenebilmektedir. 

Amaç mevcut bilgi ile uzun vadedeki ortalama maliyeti en düşük olan politikaları 

bulmaktır. Temel karar modeli, gözlemlenemeyen değişkenler nedeniyle 

güncellenmiş, yeni bir model oluşturulmuştur. Bu iki model kıyaslanarak 

ulaşılamayan bilginin değeri ölçülmüştür. Çatışan amaç fonksiyonları ile çözülen 

modellerin sonuçları karşılaştırılmıştır.  

. 

 

Anahtar Kelimeler: Stres Dayanıklılık Güvenilirlik Analizi, Makrov Karar Süreci, 

Markov Özellikli Ortam 
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CHAPTER 1  

 

1. INTRODUCTION AND LITERATURE SURVEY 

 

1.1. Introduction 

The stress–strength models have been used for reliability assessment of some systems 

especially during the design phase. Stress can be defined as any factor that can cause 

failure of a component or system reaching a certain level. The concept of stress is 

mostly used in electronic systems or components where stress can be medium 

temperature, humidity, effective voltage, current, etc. Strength of a system is the 

maximum level of stress it can sustain. Therefore, stress-strength analysis defines 

reliability as the probability that the strength being larger than the stress.  

We consider a system with a random strength that is affected by an unobservable 

environmental condition.  We have to apply a random stress to this system; we can 

only partially control the probability distribution of the stress because unobservable 

environment has an effect on that distribution also. We cannot observe the external 

environmental condition; however, we know that it can be modelled by a Markov 

chain and we know how it governs probability distributions of the stress and the 

strength. Applying stress may mean using the system in a certain fashion as well as 

adjusting its working conditions. As a result, stress controls have different costs.  As 

the environmental condition evolves, we need to select the stress controls so that this 

system runs in a desirable way.  

 

We construct a Markov decision process (MDP) model to solve this problem. Its states 

have observable as well as unobservable variables; but it carries sufficient information 

to compute the transition probabilities together with the selected actions. A policy of 

a Markov decision process describes an action for every possible state; hence assumes 
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observable state information.  To overcome that difficulty, we force the process to 

take actions without taking unobservable part of the state into consideration. Although 

there are other methods in literature to handle MDP’s with unobservable states their 

solutions may not be very practical. 

 

In literature, there are studies that take either stress or strength as time dependent 

processes. Rather, we assume that they are time independent, but the strength is 

affected by the Markov modulated external conditions and stress is probabilistically 

controllable by the decision maker. In other words, actions available to the decision 

maker change the distribution of the random stress on the system whereas the Markov 

modulated environment changes the distribution of the random strength of the system. 

We derive optimal policies with respect to a cost minimization objective. We also 

evaluate other performance measures such as probability of failure, mean time to 

failure. We investigate how the optimal policy and performance measures change with 

respect to some parameters. 

The organization of the next chapters is as follows. In Chapter 1, the main idea and 

the purpose of the study is given. A brief literature review related to the topic and the 

contributions of this study are also presented in Chapter 1. Chapter 2 includes stress-

strength reliability definition and main assumptions of the study conducted. In Chapter 

3, the decision process of the problem is discussed. This chapter also includes the 

models built in the scope of the study. The results of the computational experiments 

are demonstrated in Chapter 4, which also includes parametric analysis and variations 

of the models. In the last chapter of the thesis, concluding remarks and possible future 

research directions are discussed.  

  

1.2. Literature Survey 

In reliability-maintenance interface, there are many studies in the literature 

emphasizing one or the other more. The topic is great interest of electronic, mechanical 

and civil design fields. Studies by Johnson (1998) and Kotz et al. (2003) can be seen 
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for extensive review of the topic. Reliability is studied related to a lifetime distribution 

or as stress-strength collusion. The lifetime distribution is mostly modeled by a 

discrete probability distribution so that it can be handled with Markov chains or in 

case of a control problem, with Markov decision processes. In stress-strength 

reliability studies, one or both can be taken as time dependent processes. Expected 

failure time computation together with some statistical estimation problems are often 

studied. Optimization comes into picture in terms of some controllable parameters 

such as length of the inspection, inventory size of the spare parts, etc.  to minimize a 

cost function; these decisions mostly are time/state independent.  

An earlier study by Dhillon (1980) offers models for different stress-strength inference 

scenarios. A time-dependent stress-strength model with random strength and constant 

stress which are repeatedly applied at random cycle times was researched by Siju and 

Kumar (2016). Xie and Shen (1991) focused on reliability growth by changing 

strength distribution parameters. In the present study, the effects of changing stress 

mean, and variance are calculated. Markov decision process is used to model the 

problem, and actions are based on the mean and variance of the normally distributed 

stress. Many studies have addressed estimation problems for stress-strength reliability. 

A good example is the study by Bhuyan and Dewanji (2017) which focuses on the 

cases where both stress and strength are time dependent. Stress depends on random 

damages due to the shocks arriving at random points, strength has a deterministic 

decreasing curve. The study evaluates two sampling plans to make the estimation 

stronger. 

In most of the studies, systems are assumed to have two possible states, working or 

failed. There have been also studies which involves intermediate states to the model, 

such as the study by Eryilmaz (2011). Eryilmaz (2011) defined multiple states based 

on the difference between stress and strength levels. Qin. et. al. (2017), on the other 

hand, also defined more than two states, where both stress and strength are 

exponentially distributed random variables and used the ratio of the strength and stress 

values instead of the difference between them. 
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Godoy et al. (2013) proposed a decision technique for spare parts ordering, using 

stress-strength interference. Probability of stress being less than strength is defined as 

Condition-based service level (CBSL) in the study. The paper deals with the situations 

where both stress and strength are stochastic, and one of them is constant while the 

other is stochastic. In our model, we assume both stress and strength are normally 

distributed random variables, where the parameters of the distribution are determined 

by the actions and an unobservable environmental condition. 

Markov modulated environment is one of the main assumptions of this study. Markov 

modulated environment indicates an unobservable environmental factor which is 

modelled by a Markov chain. This factor impacts the main state that we observe the 

behavior of. Although there are many studies about Markov modulated models on 

inventory problems or other fields, there has been no study about Markov modulated 

stress strength reliability models. The concept of Markov modulated environment is 

widely used for Poisson Processes in the literature. Markov Modulated Poisson 

Process (MMPP) is a poisson process in which arrival rate varies according to a 

Markov process. Ramesh (1995) proposed a MMPP model and its extensions. There 

are many applications of MMPP study available in the literature. A good example is 

the study by Scott and Smyth (2003) in which MMPP is used for web surfing behavior 

analysis. In this study, a special case of MMPP is used which satisfies certain rules 

and referred as The Markov-Poisson cascade (MPC). By help of this specific case, 

click rate for computer users browsing through web is modelled.  

Another study by Andronov and Gertsbakh (2014), which is also related to failure 

time of a system, focuses on a system working in an environment in which failure 

rates of subsystems are jointly modulated by a continuous time Markov chain. System 

failure distribution function is derived using order statistics for subsystem lifetimes. 

This study basically shows the impact of random environment on the distribution 

function of the lifetime of a system.  



 

 

 

5 

 

MDPs in which the state of the system at each decision stage is not precisely known 

are called Partially observable Markov decision processes (POMDPs). Drake (1962) 

introduced the first POMDP model where in addition to the uncertain dynamics of an 

MDP, the state of the world is only partially observed through a noisy channel. In 

POMDP models, the relation between true state of the system and the observation is 

denoted by a relationship matrix. Corotis et al. (2005) proposed and advanced POMDP 

model, which does not have the assumption that the relationship between the 

observation and the true state of the process depends only on the prior control action. 

Policies produced by POMDP models are not very practical to implement. In the 

present study, unobservability is dealt with adding some constraints to the original 

MDP rather than POMDP methodology. Serin and Kulkarni (2005) added a special 

case of unobservability and proposed a model to handle it with constraints. We adopt 

that model in our study as in the study by Satır (2010). They also solved the problem 

with deterministic policy restrictions. Linear programming models for MDP’s provide 

means of handling constraints to the problem. Such models with different properties 

as well as under additional constraints can be found in the book by Altman (1999). 

Randomized policies under constraints are tried to be avoided in some studies. For 

example, Ross (1989) discusses the problem of finding equivalent nonrandomized, 

but nonstationary, policies for single constraint case. 

Maintenance decisions that are modeled as Markov decision processes mostly take a 

deteriorating condition as the state variable. Using the structure of the transitions, they 

obtain structured optimal policies. Reliability can now be defined in terms of these 

conditions that the process follows. 

The present study proposes a dynamic decision-making process in which the states are 

partially governed by an unobservable process. (i) Maintenance/repair actions result 

in explicit distributions of the stress (may be of the strength) (ii) State of the process 

carries information resulting from the collusion of a random strength and a random 

stress. Optimal decisions with respect to a minimum cost objective are computed using 

Markov decision process methodology.  
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Unobservability brings a realistic dimension to maintenance problems. It is often the 

case that the repair/maintenance action changes as you learn more about the system. 

(iii)  We model unobservability in maintenance/repair problem as constraints to MDP. 

That makes the MDP problem harder to solve. The problem under consideration is 

new with properties (i), (ii) and (iii) to our best knowledge.  
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CHAPTER 2  

 

2. STRESS-STRENGTH RELIABILITY PROBLEM  

 

The concern of this study is to model stress-strength reliability of a system and obtain 

a decision policy that takes actions based on observations while optimizing its 

performance. As stated in the first section, the strength of the system is defined as the 

highest level of stress the system can sustain. Failure occurs when stress, X, exceeds 

strength, Y. Therefore, probability of survival, namely the reliability, R, is defined as 

P(X<Y). If the strength is fixed and known, and if the stress is a random variable with 

a pdf 𝑓𝑥(𝑥), then the reliability is 

 

as demonstrated in Figure 2.1. 

 

Figure 2.1: Normally distributed stress and fixed strength 

 

If both stress and strength are normally distributed random variables, as in Figure 2.2, 

the interference area is an indication of the probability of failure, 1- P(X<Y).  

 𝑅 = 1 − ∫ 𝑓𝑋(𝑥)𝑑𝑥
∞

𝑌

 (2.1) 
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Figure 2.2: Normally distributed stress and strength 

If X and Y both have independent normal distributions, then the failure probability is  

 

In the present study, we assume the strength of the system is normally distributed with 

mean μy and variance σy2, as usually assumed in literature. Stress, X, independent of 

Y, is also assumed to be normally distributed and distribution parameters are assumed 

to depend on the actions applied. Each action leads to a different set of parameters of 

the stress distribution; however, it cannot change the strength of the system. In other 

words, it is possible to lower the mean of the stress distribution by changing action, 

which is desirable for low failure probability. However, each action has different costs. 

The actions which lead to lower distribution mean for stress have higher costs. Mean 

or variance of the stress that an item is exposed to can be changed in various ways. 

For example, the mean of a current can be decreased by adding parallel units, the 

variance of the temperature can be decreased by using an air conditioner to control 

extreme temperature values, etc.  

Besides, we have the following assumptions: We cannot measure or observe strength 

of the system; this is a realistic assumption as the strength of the system is defined as 

the highest level of stress the system can sustain. However, we assume that stress level 

  P(X ≥ Y)  =  1 − R =  1 −  P(X < Y)  =  1 − ∫ 𝑓𝑋𝑑𝑥

∞

0

 ∫ 𝑓𝑌𝑑𝑦

∞

𝑥

 (2.2) 
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can be measured that is a realization of the stress random variable. Stress measurement 

at a time point will be referred as the observation at that time point. We aim to be able 

to select actions at a time based on the observation at that time. The model constructed 

here aims to find the best policy that minimizes the long-term average cost. 
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CHAPTER 3  

 

3. MARKOV MODULATED RELIABILITY DECISION MODEL 

 

3.1. Markov Modulated Nature 

Markov modulated environment indicates an external environmental condition 

“Nature”, which has an impact on the state of the system and can be modeled by a 

Markov Chain, called “Nature Process”, and cannot be observed directly. Only the 

stress of the system can be measured/observed, which is partially a result of Nature. 

We assume that Nature Markov Chain has state space SN= {Good (G), Bad (B)} and 

can be defined by the transition probability matrix, 𝑄. Nature here represents any 

factor that cannot be observed easily but has an effect on the state of the system, such 

as outside temperature for a device in a box, network voltage for a converter, working 

state of another device for an electrical unit using same current, etc.  

An example unit is a silicon carbide-based photovoltaic converter, which is affected 

by environmental factors. External Markovian factor (Nature) is assumed to be 

sunload, namely the intensity of sunlight on the unit. Sunload can be measured by 

using special sensors which frequently require maintenance or repair. Users usually 

prefer to measure resulting factors, such as stress, instead of using these sensors. Stress 

factor is voltage that the unit is exposed to. The unit fails at a certain level of voltage 

and this level is dependent on other environmental factors. 

The voltage generated by solar panel increases by increasing sunload, therefore the 

voltage the unit is exposed to, namely stress increases. Increasing sunload also 

increases the temperature in the power converter box and consequently the breakdown 

voltage of the unit increases. Higher temperature enables all silicon carbide-based 

semiconductor products to sustain higher levels of voltage. There are many actions to 

affect voltage level of the unit. We may use smart sensors and regulators to control 
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extreme stress levels, which decrease stress variance. These sensors are costly, it is 

beneficial to evaluate if it is worth to buy sensors or not. Another action might be 

changing solar panel position or angle in order to decrease the voltage caused by 

sunload. We may apply a comprehensive maintenance to ensure the lowest stress level 

that the unit can have, which corresponds to “replace” action in our model. 

Another example unit might be a high voltage high power supply unit which is in a 

case but still affected by external factors. Nature factor is air temperature, stress factor 

is humidity in the case. When the air temperature gets higher, the humidity increases 

because of vaporization. With increasing temperature, due to the physical changes of 

the components, the humidity level the unit can sustains decreases. A certain level of 

humidity causes failure of the unit. There are many mean changing actions related to 

air conditioning. Cost of the action depends on how much energy is spent for air 

conditioning. Variance changing actions might be covering the case by a material to 

control extremely high humidity levels. After failure, the air in the case should be 

purified by a special air-purifier to make humidity level as low as possible. This action 

corresponds to “replace” action in our model and computations. 

 

3.2. The Decision Process 

There are decisions/actions available to us to control the system stress in a “desirable” 

fashion determined by our objective. We now explain the decision process in a timely 

order.  
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Figure 3.1: Decision Process Flow 

The flow of the process can be seen in Figure 3.1. We assumed that there are three 

actions available from action set A= {1,2,3, replace}, each producing different mean 

or variance for the stress of the system. “Replace” action is reserved for a failed system 

only; we have to replace a failed system (arrow 6 in Figure 3.1).  At each period, the 

unobserved Nature evolves with a Markovian transition. i) It produces a random 

strength (arrow 4 and arrow 5 in Figure 3.1) that is also unobservable to us from a 

known distribution depending on the state of the Nature. ii) An action is applied to the 

system at every period (arrow 7 in Figure 3.1). Together with the unobserved state of 

the Nature, the action results in a known probability distribution for the stress of the 

system (arrow 1 and arrow 2 in Figure 3.1).  iii) Then we observe/measure a stress 

realization from that distribution (arrow 3 in Figure 3.1). 

We first describe the details and computation of the parameters of the Markov decision 

process (MDP). Then we define MDP under consideration. Finally, we construct the 

mathematical model to find the optimal policy of that MDP. 

The problem that this study deals with is determining the policy based on the state 

variables that should be measured/observed. There are available actions and an action 

is defined as a control on the stress of the process with a cost. That is, each action 

together with the current Nature leads to a stress distribution for the next period and 

we observe the resulting stress. On the other hand, the distribution of the unobservable 

strength is determined by the Nature only. We assume that the strength is Yk  when 
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Nature is k and is distributed with N (μyk, σyk
2) and the stress is Xka when Nature is k 

and action is “𝑎” and is distributed with N (μxka, σxka
2) where k ϵ SN and 𝑎 ϵ A, A ={1, 

2, 3, replace}, the set of available actions.  Actions in our model only effect the mean 

and the variance of the resulting stress.  It is possible to model actions effecting the 

strength also.  Distribution of X corresponding to each state of Nature under each 

action can be seen in Table 3.1. 

Table 3.1. Distributions of the stress X corresponding to state of Nature under each action 

  Nature 

  Good Bad 

Action 

1 Xg1~N(μxg1, σxg1
2) Xb1~N(μxb1, σxb1

2) 

2 Xg2~N(μxg2, σxg2
2) Xb2~N(μxb2, σxb2

2) 

3 Xg3~N(μxg3, σxg3
2) Xb3~N(μxb3, σxb3

2) 

 

The natural state definition of such a process would be (X, Y).  There are some 

difficulties with that state definition: 

i) The strength Y is unobservable; we cannot base decisions on an 

unobservable process. 

ii) Even if we observe Y, it would not help to construct the transition 

probabilities because rather than the particular realization of Y, the 

distribution generated by the nature determines the strength in the next 

period. Since Nature is also is unobservable, the actions should not be 

based on that process either. 

iii) The stress X is observable with a continuous set of values, but as with the 

strength, the stress distribution generated by the nature and the selected 

action determines the value in the next period rather than the particular 

realization of X.  

 

So, for eliminating these difficulties, we construct the state of the MDP with the 

properties: 



 

 

 

15 

 

i) The strength Y comes in our state definition only through the information if 

a failure occurs (X ≥ Y) or not (X < Y). If failure occurs, the system is 

immediately replaced. 

ii) Since the Nature is unobservable, the same action is used whatever the 

unobserved state of Nature is. 

iii) We discretize the stress into a finite number of classes as low, medium and 

high in order to obtain a discrete state space. Clearly, a more detailed stress 

classification results in more realistic representation of the system. 

 

Therefore, the state keeps the information that if the system is up or failed and the 

level of the observed stress together with the Nature state. To discretize stress, we 

select two threshold levels T1 and T2 and defined three stress classes as summarized 

in Table 3.2. At any time point, what we can observe is a (discrete) observation 

process O(n), taking values form the observation set SO = {Low-Up (L), Medium-Up 

(M), High-Up (H), Failed (F)}, where L, M and H are as given in Table 3.2 and  “Up” 

indicates that X<Y so that the system is working and “Failure” indicates that X ≥Y.  

Possible observations can be seen in Figure 3.2 in (X, Y) plane.  

 

Table 3.2. Possible observations 

Definition Observation Represantation 

X<T1, X<Y Low-Up L 

T1≤X <T2, X<Y Medium-Up M 

T2≤X, X<Y High-Up H 

X≥Y Failed F 

 

 



 

 

 

16 

 

 

Figure 3.2: Observations 

The observation process O(n) is not Markovian under the actions in A. Now we 

construct the state of the MDP under consideration at time n as (N(n), O(n)) where 

N(n) is the Nature, O(n) is the observation and A(n) is the action taken at time n. 

Therefore, the state space is 

S = {(G, L), (G, M), (G, H), (B, L), (B, M), (B, H), Failure (F)}  

   = {(k, O): k ∈ SN, O ∈ SO} 

where G means “Good” and B means “Bad”. 

 

3.3. Transition Probabilities 

For each action 𝑎  A, we need to compute the transition probabilities 

𝑝(k1,O1),(k2,O2)(𝑎) =  

𝑃{𝑁(𝑛 + 1) = 𝑘2,  𝑂(𝑛 + 1) = 𝑂2| 𝑁(𝑛) = 𝑘1,  𝑂(𝑛) = 𝑂1,  𝐴(𝑛) = 𝑎}  

and construct the transition matrix 
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𝑃(𝑎) = [𝑝(k1,O1),(k2,O2)(𝑎)] = 

[
 
 
 
 
 
 
 𝑃(𝐺,𝐿)(𝐺,𝐿)(𝑎)   

𝑃(𝐺,𝑀)(𝐺,𝐿)(𝑎) 

𝑃(𝐺,𝐻)(𝐺,𝐿)(𝑎)
. .
. .
. .

𝑃𝐹(𝐺,𝐿)(𝑎)

𝑃(𝐺,𝐿)(𝐺,𝑀)(𝑎)   

𝑃(𝐺,𝑀)(𝐺,𝑀)(𝑎) 

𝑃(𝐺,𝐻)(𝐺,𝑀)(𝑎) 
. .
. .
. .

𝑃𝐹(𝐺,𝑀)(𝑎)

𝑃(𝐺,𝐿)(𝐺,𝐻)(𝑎)    

𝑃(𝐺,𝑀)(𝐺,𝐻)(𝑎) 

𝑃(𝐺,𝐻)(𝐺,𝐻)(𝑎)
. .
. .
. .
. .

𝑃(𝐺,𝐿)(𝐵,𝐿)(𝑎)    

𝑃(𝐺,𝑀)(𝐵,𝐿)(𝑎) 

𝑃(𝐺,𝐻)(𝐵,𝐿)(𝑎) 
. .
. .
. .
. .

𝑃(𝐺,𝐿)(𝐵,𝑀)(𝑎)   

𝑃(𝐺,𝑀)(𝐵,𝑀)(𝑎) 

𝑃(𝐺,𝐻)(𝐵,𝑀)(𝑎)
. .
. .
. .
. .

𝑃(𝐺,𝐿)(𝐵,𝐻)(𝑎)   

𝑃(𝐺,𝑀)(𝐵,𝐻)(𝑎) 

𝑃(𝐺,𝐻)(𝐵,𝐻)(𝑎) 
. .
. .
. .
. .

𝑃(𝐺,𝐿)𝐹(𝑎) 

𝑃(𝐺,𝑀)𝐹(𝑎)

𝑃(𝐺,𝐻)𝐹(𝑎)
. .
. .
. .

P𝐹𝐹(𝑎)

 

]
 
 
 
 
 
 
 

 

Take the transition from (k1, O1) to (k2, L), that is, observing low stress (and the 

system is up) and Nature =k2 after taking action 𝑎 in Nature=k1 can be defined as 

𝑃(𝑘1,𝑂1)(𝑘2,𝐿)(𝑎)  =  𝑃{𝑁(𝑛 + 1) = 𝑘2,  𝑂(𝑛 + 1) = 𝐿 | 𝑁(𝑛) = 𝑘1,  𝑂(𝑛) = 𝑂1, 

 𝐴(𝑛) = 𝑎}  

                                =   𝑄𝑘1𝑘2 𝑃{𝑋𝑘2𝑎 < 𝑌𝑘2,  𝑋𝑘2𝑎 < T1} 

where (k1, O1), (k2, L) ∈ S, 𝑎 ∈ A. Note that the stress at time n, 𝑂(𝑛) = 𝑂1, does 

not affect the stress or Nature at time n+1. All transition probabilities are independent 

from the stress of the previous state, they are the same for the starting states (N(n), 

O(n)) =(G,L), (G, M), (G, H) and they are the same for the starting states (N(n), O(n)) 

=(B,L), (B, M), (B, H); that is, 

𝑃(𝐺,𝐿)(𝑘2,𝑂2)(𝑎) =  𝑃(𝐺,𝑀)(𝑘2,𝑂2)(𝑎) =  𝑃(𝐺,𝐻)(𝑘2,𝑂2)(𝑎) 

and  

𝑃(𝐵,𝐿)(𝑘2,𝑂2)(𝑎) =  𝑃(𝐵,𝑀)(𝑘2,𝑂2)(𝑎) =  𝑃(𝐵,𝐻)(𝑘2,𝑂2)(𝑎) 

for 𝑎  A.  This results in transition probability matrices having repeated rows for two 

groups of states.  

Similarly, 

𝑃(𝑘1,𝑂)(𝑘2,𝑀)(𝑎) =  𝑃{𝑁(𝑛 + 1) = 𝑘2,  𝑂(𝑛 + 1) = 𝑀 | 𝑁(𝑛) = 𝑘1,  𝑂(𝑛),  𝐴(𝑛) =

𝑎}  

                              =   𝑄𝑘1𝑘2𝑃{𝑋𝑘2𝑎 < 𝑌𝑘2,  T1 < 𝑋𝑘2𝑎 < T2} 
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𝑃(𝑘1,𝑂)(𝑘2,𝐻)(𝑎) =  𝑃{𝑁(𝑛 + 1) = 𝑘2,  𝑂(𝑛 + 1) = 𝐻 | 𝑁(𝑛) = 𝑘1,  𝑂(𝑛),  𝐴(𝑛) =

𝑎}  

                               =   𝑄𝑘1𝑘2𝑃{𝑋𝑘2𝑎 < 𝑌𝑘2,  𝑋𝑘2𝑎 > T2} 

For example, probability that, we will observe a low stress and the unobservable 

Nature is good in the next period if we observed a low stress and the unobservable 

Nature was good in the current period under action 1 is 

𝑃(𝐺,𝐿)(𝐺,𝐿)(1) =  𝑃{𝑁(𝑛 + 1) = 𝐺,  𝑂(𝑛 + 1) = 𝐿 | 𝑁(𝑛) = 𝐺,  𝑂(𝑛),  𝐴(𝑛) = 1} 

                          =   𝑄11𝑃{𝑋𝑔1 < 𝑌𝑔,  𝑋𝑔1 < T1} 

where  𝑋𝑔1~𝑁(𝜇𝑥𝑔1, 𝜎𝑥𝑔1
2 ), 𝑌~𝑁(𝜇𝑦𝑔, 𝜎𝑦𝑔

2 )  

We take the second term on the right-hand side: 

𝑃{𝑋𝑔1 < 𝑌𝑔, 𝑋𝑔1 < T1} = ∫ 𝑓𝑋𝑑𝑥

T1

−∞

 ∫ 𝑓𝑌𝑑𝑦

∞

𝑥

 

Since both variables are normally distributed, we use numerical approximation by 

discretizing integral as follows: 

∫ 𝑓𝑌𝑑𝑦 = 1 − 𝐹𝑌(𝑥) 

∞

𝑥

 

where 𝐹𝑦  is the cdf of Y that can be computed in MATLAB.  

𝑃{ μxg1 − 6σ xg1 < 𝑋𝑔1 < μxg1 +  6σ xg1} > 0.99  since X is normally distributed,  

𝑃{𝑋𝑔1 < 𝑌𝑔, 𝑋𝑔1 < T1} ≅ ∫ 𝑓𝑋(𝑥) (1 − 𝐹𝑦(𝑥))𝑑𝑥

T1

μxg1−6σ xg1

 

  



 

 

 

19 

 

≅ ∑ 𝑓𝑋(μxg1 − 6σ xg1 + 𝑘𝛥𝑥) (1 − 𝐹𝑌( μxg1 − 6σ xg1 + 𝑘𝛥𝑥)) 𝛥𝑥

𝑛

𝑘=1

 

 

 where  𝑛 =
T1−(μxg1−6σ xg1)

𝛥𝑥
 and 𝛥𝑥 is sufficiently small. 

Similarly, 

𝑃(𝐺,𝐿)(𝐺,𝑀)(1) =  𝑄11𝑃{𝑋𝑔1 < 𝑌𝑔,  𝑇1 < 𝑋𝑔1 < T2}  

where 𝑋𝑔1~𝑁(𝜇𝑥𝑔1, 𝜎𝑥𝑔1
2 ), 𝑌~𝑁(𝜇𝑦𝑔, 𝜎𝑦𝑔

2 )   

𝑃{𝑋𝑔1 < 𝑌𝑔, 𝑇1 < 𝑋𝑔1 < T2} ≅  ∫ 𝑓𝑋(𝑥)(1 − 𝐹𝑌(𝑥))𝑑𝑥

𝑇2

𝑇1

  

≅ ∑ 𝑓𝑋(𝑇1 + 𝑘𝛥𝑥) (1 − 𝐹𝑌(μxg1 − 6σ xg1))𝛥𝑥

𝑛

𝑘=1

 

 

where 𝑛 =
T2−T1

𝛥𝑥
 and 𝛥𝑥 is sufficiently small. 

𝑃(𝐺,𝐿)(𝐺,𝐻)(1) = 𝑄11𝑃{𝑋𝑔1 < 𝑌𝑔,  𝑋𝑔1 > T2} 

where 𝑋𝑔1~𝑁(𝜇𝑥𝑔1, 𝜎𝑥𝑔1
2 ), 𝑌~𝑁(𝜇𝑦𝑔, 𝜎𝑦𝑔

2 )  

Also, 

𝑃{𝑋𝑔1 < 𝑌𝑔,  𝑋𝑔1 > T2} ≅  ∫ 𝑓𝑋(𝑥)(1 − 𝐹𝑌(𝑥))𝑑𝑥

μxg1+6σxg1

𝑇2

  

 ≅ ∑ 𝑓𝑋(𝑇2 + 𝑘𝛥𝑥) (1 − 𝐹𝑌(μxg1 − 6σ xg1 + 𝑘𝛥𝑥)) 𝛥𝑥 

𝑛

𝑘=1

 

where 𝑛 =
μxg1+6σ xg1−T1

𝛥𝑥
 𝛥𝑥 is sufficiently small. 
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Transition probabilities of other states and actions are calculated in the same manner. 

When the process is in Failure (F) state, the system is replaced. If Nature is in state k, 

replacement leads X to be normally distributed with mean μnewk and variance σnewk
2 

where k ∈ SN. Distribution parameters of newly replaced unit are dependent on the 

Nature condition and can be seen in Table 3.3.  

Table 3.3. Distributions of X after replacement 

Nature 
Good XRg~N(μnewg, σnewg

2) 

Bad XRb~N(μnewb, σnewb
2) 

 

Steady state probability of Nature being Good, π𝐺  and being Bad, π𝐵 = 1 − π𝐺 , are 

used to calculate transition probabilities from state F as  

𝑃𝐹(𝐺,𝐿)(𝑟𝑒𝑝𝑙𝑎𝑐𝑒) =  π𝐺𝑃{𝑋𝑅𝑔 < 𝑌𝑔,  𝑋𝑅𝑔 < T1} 

𝑃𝐹(𝐺,𝑀)(𝑟𝑒𝑝𝑙𝑎𝑐𝑒) =  π𝐺𝑃{𝑋𝑅𝑔 < 𝑌𝑔,  T1 < 𝑋𝑅𝑔 < T2} 

𝑃𝐹(𝐺,𝐻)(𝑟𝑒𝑝𝑙𝑎𝑐𝑒) =  π𝐺𝑃{𝑋𝑅𝑔 < 𝑌𝑔,   𝑇2 < 𝑋𝑅𝑔} 

𝑃𝐹(𝐵,𝐿)(𝑟𝑒𝑝𝑙𝑎𝑐𝑒) =  π𝐵𝑃{𝑋𝑅𝑏 < 𝑌𝑏 ,  𝑋𝑅𝑔 < T1} 

𝑃𝐹(𝐵,𝑀)(𝑟𝑒𝑝𝑙𝑎𝑐𝑒) =  π𝐵𝑃{𝑋𝑅𝑏 < 𝑌𝑏 ,  T1 < 𝑋𝑅𝑏 < T2} 

𝑃𝐹(𝐵,𝐻)(𝑟𝑒𝑝𝑙𝑎𝑐𝑒) =  π𝐵𝑃{𝑋𝑅𝑏 < 𝑌𝑏 ,  𝑇2 < 𝑋𝑅𝑏} 

where 𝑋𝑅𝑔~𝑁(𝜇𝑛𝑒𝑤𝑔, 𝜎𝑛𝑒𝑤𝑔
2 ), 𝑋𝑅𝑏~𝑁(𝜇𝑛𝑒𝑤𝑏 , 𝜎𝑛𝑒𝑤𝑏

2 ),   

𝑌𝑔~𝑁(𝜇𝑦𝑔, 𝜎𝑦𝑔
2 ) 𝑎𝑛𝑑 𝑌𝑏~𝑁(𝜇𝑦𝑏 , 𝜎𝑦𝑏

2 )  

Cost of each action depends on the current stress and Nature conditions. Immediate 

(one period) cost of operating such a system usually depends on the current state, the 

action taken and possibly the state transited that can be unconditioned.  If the random 

cost of being in state (N(n), O(n)) and taking action A(n) is 
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𝐶 ((𝑁(𝑛), 𝑂(𝑛)), 𝐴(𝑛) ) then the expected costs of state-action pairs (𝑘, 𝑂)  S and 

𝑎  A 

𝐶(𝑘,𝑂)𝑎 = 𝐸 (𝐶 ((𝑁(𝑛), 𝑂(𝑛)), 𝐴(𝑛) ) ǀ 𝑁(𝑛) = 𝑘, 𝑂(𝑛) = 𝑂, 𝐴(𝑛) = 𝑎) 

 are computed for the present process.  

After defining and computing all related parameters we have a well-defined Markov 

Decision Process {(N(n), O(n), A(n)): n=0, 1, …} where the state (N(n), O(n)) S, 

A(n)A, with transition matrices P(a), for each aA, and the expected cost of  taking 

action 𝑎 and being in state (𝑘, 𝑂) is 𝐶(𝑘,𝑂)𝑎. We can use one of the available methods, 

linear programming model, policy iteration algorithm or value iteration algorithm to 

find the optimal policy to minimize long-run average cost. We prefer the linear 

programming model because observability restrictions can be handled by linear 

programming relatively easily. We want to find policies to minimize the average cost 

over an infinite horizon.  

3.4. Linear Programming Model for the MDP 

The Markov chain defined above is unichain under any policy. So, we construct the 

following linear programming model, called Stress Strength Reliability model (SSR), 

for the MDP problem with parameters defined in the previous section. 

 

subject to 

 

  𝑀𝑖𝑛 ∑ ∑ 𝐶(𝑘,𝑂)𝑎π(𝑘,𝑂)𝑎

(𝑘,𝑂)∊𝑆𝑎∊𝐴 

 (3.1) 

 ∑ π(𝑘2,𝑂2)𝑎

𝑎∊𝐴 

= ∑ ∑π(𝑘1,𝑂1)𝑎

𝑖∊𝑆

𝑃(k1,O1),(k2,O2)(𝑎)  ∀ (𝑘2, 𝑂2) ∊ 𝑆

𝑎∊𝐴 

   (3.2) 

 ∑ ∑ π(𝑘,𝑂)𝑎

(𝑘,𝑂)∊𝑆𝑎∊𝐴 

= 1 (3.3) 
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where π(𝑘,𝑂)𝑎 is the steady state probability of taking action 𝑎 and being in state (𝑘, 𝑂).  

The objective function (3.1) includes average long-term cost of the policy. Constraints 

(3.2) - (3.3) ensure π(𝑘,𝑂)𝑎 values being steady state probabilities. SSR model gives a 

policy to minimize average long run cost for each state. From the solution of this linear 

program, optimal policy will be obtained. π(𝑘,𝑂)𝑎 values, which are steady state 

probabilities, indicate the optimal policy. If π(𝑘,𝑂)𝑎 >0, this means that the policy uses 

action 𝑎 when state is i. However, state (𝑘, 𝑂) includes unobservable information 

about Nature conditions. For this reason, the “feasible” policy for our problem should 

give actions according to the observations only. For instance, assigning different 

decisions for (G, L) and (B, L) is not “feasible”, due to the lack of information about 

Nature condition. In other words, (G, L) and (B, L) states are not distinguishable for 

the decision maker. That is why, the model should not allow different decisions for 

the states belong to same observation, such as (G, L) and (B, L). Hence, we introduce 

constraints (3.5) - (3.7) to ensure same decisions for states (G, L) and (B, L), (G, M) 

and (B, M), (G, H) and (B, H) as unobservability is handled by Serin (2005). 

 

 

 

SSR Model with these constraints is now called Markov Modulated Stress Strength 

Reliability (MMSSR) model. 

 π(𝑘,𝑂)𝑎 ≥ 0   ∀ (𝑘, 𝑂) ∊ 𝑆, 𝑎 ∊ 𝐴 (3.4) 

 
π(𝐺,𝐿)𝑎

∑ π(𝐺,𝐿)𝑙𝑙∊𝐴 
 = 

π(𝐵,𝐿)𝑎

∑ π(𝐵,𝐿)𝑙𝑙∊𝐴 
     ∀ 𝑎 ∊ 𝐴 = 1, 2, 3 (3.5) 

 
π(𝐺,𝑀)𝑎

∑ π(𝐺,𝑀)𝑙𝑙∊𝐴 
 = 

π(𝐵,𝑀)𝑎

∑ π(𝐵,𝑀)𝑙𝑙∊𝐴 
     ∀ 𝑎 ∊ 𝐴 = 1, 2, 3 (3.6) 

 
π(𝐺,𝐻)𝑎

∑ π(𝐺,𝐻)𝑙𝑙∊𝐴 
 = 

π(𝐵,𝐻)𝑎

∑ π(𝐵,𝐻)𝑙𝑙∊𝐴 
     ∀ 𝑎 ∊ 𝐴 = 1, 2, 3 (3.7) 
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3.5. The Main Characteristics of the Model 

It is well-known that there is a deterministic optimal policy for model SSR. A proof 

of this result uses two facts: 

i) The states are positive recurrent 

ii) In any basis of this linear program, there can be at most |𝑆| positive 

variables.   

Hence, the extreme points of the linear program correspond to the deterministic 

policies. So, it can easily be proved that if L linear constraints are added to the model 

there can be at most L randomization as shown in Ross (1989). For example, in case 

of  a single constraint, the optimal policy randomizes between two actions in one state; 

that is for the state (𝑘, 𝑂), π(𝑘,𝑂)𝑎1 > 0,  π(𝑘,𝑂)𝑎2 > 0  and π(𝑘,𝑂)𝑎 = 0  for 𝑎 ≠ 𝑎1,

𝑎 ≠ 𝑎2. Adding more constraints may increase number of randomizations. MMSSR 

model is obtained by adding non-linear constraints to SSR. So, we expect 

randomization in the optimal policy, but number of randomizations is difficult to 

estimate. 

Action structure is one of the main characteristics of our model. The actions do not 

have fixed transition probabilities for state pairs. Each action leads normal distribution 

of stress with a different parameter set. So, the distributions related to the actions are 

independent from the current stress, namely the first parameter of the states. The 

distributions produced by the actions depend only on the second parameter of the 

current state, which is nature condition. This leads us to have a special kind of 

transition matrix for each action. The probabilities are the same for different current 

stress level categories, but different for different nature conditions. Using this special 

structure, actions as “do nothing” or “reinforce one level” are not relevant for our 

model. 
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CHAPTER 4  

 

4. COMPUTATIONAL RESULTS 

 

4.1. A Representative Example 

We compute the transition probabilities for SSR and MMSSR in MATLAB, since the 

transition probabilities of the model need to be evaluated using numerical integration.  

We used GAMS Minos solver to solve SSR (linear) and MMSSR (nonlinear) models.   

We first give the parameters of the MDP process. We used two Nature states, three 

actions and three stress level categories in most of our computations and parametric 

analysis, however, we also give an example with high number of actions and stress 

level categories to see the performance of the model better. 

The transition probability matrix, 𝑄, for the Nature process with state space 

SN={Good, Bad} is assumed to be  

𝑄 = [
0.7
0.4

  0.3
  0.6

 ] 

Distribution parameters corresponding to actions for the representative example can 

be seen in Table 4.1. 

Table 4.1. Distributions parameters of the stress X corresponding to state of Nature under 

each action 

  Nature 

  Good Bad 

Action 

1 Xg1~N(5, 10) Xb1~ N(5, 10) 

2 Xg2~N(7, 10) Xb2~ N(7, 10) 

3 Xg3~N(7, 5) Xb3~N(7, 5) 

 

Distribution parameters used for newly replaced units stress are shown in Table 4.2.  
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Table 4.2. Distribution parameters of X after replacement  

Nature 
Good XRg~N(4, 2) 

Bad XRb~ N(4, 2) 

 

Strength distribution parameters differs according to the nature conditions. Bad nature 

causes lower strength. Assumed parameters can be seen in Table 4.3. 

Table 4.3. Distribution parameters of Y  

Nature 
Good Y~N(10, 4) 

Bad Y~N(8, 4) 

 

Threshold values to map the stress level to intervals are T1=6, T2=11.  

Cost of actions are given in Table 4.4. Actions that decrease the stress level that the 

unit is exposed to, may correspond to adding parallel units or increasing tolerance of 

the unit, namely investment. Therefore, these actions are relatively expensive. The 

most expensive action we use is action 2, which leads to stress with the lowest mean. 

Action 3 decreases the stress variance, for example using a regulator to control 

extreme stress levels, also requires investment, and has higher cost than action 1, but 

not as expensive as mean stress decreasing actions. 

Table 4.4. Cost of actions for each state 

   Actions  

  1 2 3 

States 

(G, L) 10 2 5 

(G, M) 300 20 80 

(G, H) 1000 60 100 

(B, L) 10 2 5 

(B, M) 300 20 80 

(B, H) 1000 60 100 

F 2000 2000 2000 
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The state F has a predetermined action, replace. Replacement cost is so high that the 

model tends not to get into state F. When SSR is run with these parameters, optimal 

long run average cost is 326.6 and π(𝑘,𝑂)𝑎 values are given in Table 4.5. The optimal 

policy shown in Table 4.6.  

Table 4.5. Positive 𝜋(𝑘,𝑂)𝑎 values of the optimal policy for SSR of the Representative 

Example 

  Actions 

  1 2 3 

States 

(G, L) 0.34642     

(G, M)   0.15852   

(G, H)     0.00345 

(B, L) 0.27035     

(B, M) 0.07345     

(B, H)   0.00037   

F 0.14745     

 

Table 4.6. Optimal Policy for SSR of the Representative Example 

State Action 

(G, L) 1 

(G, M) 2 

(G, H) 3 

(B, L) 1 

(B, M) 1 

(B, H) 2 

 

This policy offers action 2 for state (G, M), and action 1 for state (B, M). However, 

Nature conditions are not visible to us, therefore, (G, M) and (B, M) states are not 

distinguishable. That is why, MMSSR is run to have a “feasible” policy. Because of 

adding new constraints, optimal long run average cost is increased to 327.4 and 

optimal policy becomes independent of Nature conditions. Optimal π(𝑘,𝑂)𝑎 values and 

the optimal policy are given in Table 4.7 and Table 4.8 respectively. Note that optimal 

policy for SSR in Table 4.6 is not feasible for MMSSR. 



 

 

 

28 

 

 

Table 4.7. Positive 𝜋(𝑘,𝑂)𝑎 values of the optimal policy for MMSSR of the Representative 

Example 

  Actions 

  1 2 3 

States 

(G, L) 0.37270     

(G, M) 0.14812     

(G, H)     0.00239 

(B, L) 0.27775     

(B, M) 0.07137     

(B, H)     0.00029 

F 0.12738     

 

Table 4.8. Optimal Policy for MMSSR for the Representative Example 

State Action 

 (G, L) 1 

 (G, M) 1 

(G, H) 3 

(B, L) 1 

 (B, M) 1 

(B, H) 3 

 

As can be seen, same actions are offered for states (G, L) and (B, L), (G, M) and (B, 

M), (G, H) and (B, H). 

One important observation about the optimal policy for MMSSR is that it is not 

randomized as can be seen in Table 4.7 and Table 4.8. The constraints (3.5) - (3.7) cut 

the optimal solution for SSR but the optimal policy is a deterministic policy, again an 

extreme point of SSR. We encounter this result frequently in the computations below. 

We analyze this situation in the following sections. 
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4.2. Parametric Analysis 

The parameters of the problem are the distribution parameters of the stress and the 

strength and the cost coefficients. In this section, we present the analysis about the 

effects of the parameter changes on the optimal policy and the long run average cost. 

We did not find optimal policies minimizing the probability of failure π𝐹 (since 

replacement is compulsory in failure state) we keep the record of failure probability 

to see its trade off with the cost in this analysis. 

4.2.1. Replacement Cost 

Optimal policy and long run average cost are calculated for increasing replacement 

cost while other parameters are kept constant. Same input parameters of the 

representative example in 4.1. are used other than costs of actions. The cost parameters 

of the actions can be seen in Table 4.9. As can be seen, cost of each action changes 

depending on not only the observation level but also the nature condition. 

Table 4.9. Cost of actions for replacement cost analysis 

State 1 2 3 

(G, L) 10 2 5 

(G, M) 300 20 40 

(G, H) 1000 60 90 

(B, L) 10 2 5 

(B, M) 600 50 80 

(B, H) 1400 100 150 

F 1000 1000 1000 

 

The replacement cost is increased from 1000 to 12000 incrementally.  The optimal 

policies encountered in this analysis are summarized in Table 4.10.  

The optimal long run average costs, optimal policies as well as the failure probabilities 

π𝐹  for SSR and MMSSR can be seen in Figure 4.1 and Figure 4.2 respectively. Policy 

changing points can also be seen in the figures.  
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Table 4.10. Actions of the optimal policies encountered in parametric analyses 

 Policies 

State P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 

 (G, L) 1 1 1 1 1 1 1 1 1 1 1 1 

 (G, M) 3 3 3 1 1 1 1 2 3 2 1 3 

(G, H) 2 3 3 3 3 1 1 2 3 3 3 2 

(B, L) 1 1 1 1 1 1 1 1 1 1 1 1 

 (B, M) 2 2 3 3 1 1 1 2 3 1 1 3 

(B, H) 2 2 2 3 3 3 1 2 3 2 1 2 

 

 

Figure 4.1: Optimal cost, failure probability π𝐹   and optimal policy change against 

replacement cost for SSR 

As can be seen from Figure 4.1, replacement cost between 1000 and 12000 give 7 

different optimal policies assuming we do an exhaustive evaluation. Figure 4.2 shows 

the same information for MMSSR.  
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Figure 4.2: Optimal cost, failure probability π𝐹  and optimal policy change against 

replacement cost for MMSSR 

As can be seen, MMSSR proposes 4 different policies for the same range of 

replacement cost values. Both figures show that replacement cost is dominantly 

effective on the long run average cost. Probability of failure is a performance measure 

conflicting with the cost objective. Since the objective of the model is minimizing the 

cost, replacement cost is directly a penalty for the failure state. When the replacement 

cost increases while all other parameters are constant, the models prefer to be in 

Failure state less frequently. Consequently, failure probability decreases while the 

objective value increases.  

We observe that the optimal costs are almost identical for SSR and MMSSR. This can 

be interpreted as MMSSR catches almost the same optimal cost by changing the 

optimal policy “slightly” to a feasible policy. Although the optimal costs are close to 

each other, the steady state distributions, hence the failure probabilities are quite 

different since the optimal policies are different in those two models. 
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4.2.2. New Unit Quality 

A new unit is used after replacement. Keeping the cost of the new unit constant, we 

want to see how the stress level of the new unit affects the long run average cost and 

probability of failure. The model enables different new unit mean stress values for 

different nature conditions, however we used same values, called μnew, for both nature 

conditions. Same input parameters of the representative example in 4.1. are used other 

than costs of actions and new unit mean stress level. The cost parameters of the actions 

used can be seen in Table 4.9. We change new unit mean stress (μnew) from 0.5 to 9 

incrementally. The optimal long run average costs, optimal policies as well as the 

failure probabilities π𝐹   for SSR and MMSSR can be seen in Figure 4.3 and Figure 

4.4 respectively.  

 

Figure 4.3: Optimal cost, failure probability π𝐹  and policy change against μnew for SSR 
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Figure 4.4: Optimal cost, failure probability π𝐹  and policy change against μnew for 

MMSSR 

SSR and MMSSR both offer 3 different optimal policies in given μnew range. Since 

P1, P2 and P3 do not satisfy MMSSR constraints, the resulting policies are different 

for both models. The graphs show that, as the mean stress of new unit increases, 

namely as the quality of the new unit gets worse while replacement cost is same, the 

failure probability increases, increasing also the cost of failure.  

4.2.3. New Unit Quality and Cost 

Selection of new unit is a potential issue for designers. We face with higher cost if we 

want to have more reliable products. Replacement cost increases when μnewg and μnewb 

decreases. As we assume μnewg and μnewb to be equal in our calculations, we name this 

value μnew. Replacement cost and μnew relation is assumed as shown in Figure 4.5. 
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Figure 4.5: Replacement cost against the stress mean of new unit (μnew) 

 

Figure 4.6 and Figure 4.7 show both long run average cost, the optimal policy and the 

failure probability π𝐹 change for different quality, namely mean stress values using 

SSR and MMSSR models respectively. 

 

 

 Replacement Cost(μnew) = 50000 μnew
−2 (4.1) 
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Figure 4.6: Optimal cost, failure probability π𝐹  and optimal policy change against μnew 

for SSR using equation (4.1) 

 

 

Figure 4.7: Optimal cost, failure probability π𝐹  and optimal policy change against μnew 

for MMSSR using equation (4.1) 
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As can be seen from the figures above, long run average failure probability is a 

conflicting measurement with long run average cost for our problem. The cost 

increases with decreasing mean stress level, while average failure probability 

decreases. This means, new units should be chosen considering vital importance of 

the unit. If number of failures is not a concern, then there is no reason to decrease 

mean stress level. If the unit is a safety-critical unit, then the best unit, namely the unit 

with the highest cost will be chosen with the related optimal policy. 

4.3. Value of Information 

SSR Model uses exact state information to find the optimal policy while MMSSR 

gives optimal policies that use only partial information about the state. In terms of 

mathematical models, MMSSR is SSR under some more constraints. Optimal 

objective in MMSSR ≥ Optimal objective in SSR. Failure probability comparison is 

difficult to make under current cost structure. The resulting difference of the objective 

values of SSR and MMSSR can be called value of exact state information.  This would 

be interpreted as the maximum amount that the decision maker should be willing to 

pay to reveal the unobservable state. We define 

% 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 =  

𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑀𝑀𝑆𝑆𝑅 − 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑆𝑆𝑅

𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑆𝑆𝑅
 

For our models, value of exact state information at different replacement costs can 

be seen in Figure 4.8.   
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Figure 4.8: Value of information against replacement costs keeping mean stress fixed 

Figure 4.8 is produced using optimal costs of Replacement Cost Analysis in 4.2.1. and 

shows how the additional constraints of MMSSR impacts long run average cost.  The 

value of information is zero at points for which the optimal policies are the same. 

For our models, value of exact state information at different mean of the stress of the 

new unit, μnew can be seen Figure 4.9 that is produced using optimal costs of New Unit 

Mean Stress Analysis in 4.2.2. Here, we also define 

% 𝑔𝑎𝑖𝑛 𝑖𝑛 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
  π𝐹 𝑓𝑟𝑜𝑚 𝑀𝑀𝑆𝑆𝑅 − π𝐹  𝑓𝑟𝑜𝑚 𝑆𝑆𝑅

π𝐹 𝑓𝑟𝑜𝑚 𝑆𝑆𝑅
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Figure 4.9: Value of information against mean stress keeping the replacement cost fixed 

As can be seen in the figure, for the mean stress levels between 0.5 and 4.5, value 

of information in terms of cost and % gain in failure probability are positive. This 

means that, because of not knowing the nature condition, we must pay more and 

fail more frequently. However, for the mean levels higher than 4.5, MMSSR offers 

optimal policies with higher cost but less failure probabilities. The large change 

between μnew= 4.5 and μnew=5 is due the MMSSR optimal policy change from P8 

to P12. 

As stated before, the optimal costs we observe are very close for SSR and 

MMSSR. This is due to the input data we used in the models. Although our models 

allow differentiation of all parameters for different nature conditions such as 

resulting mean stress of actions, mean strength, new unit mean stress, cost of 

actions, we assumed same parameter values for “Good” and “Bad” nature 

conditions, to be able to observe effect of one parameter at a time. The main factor 

creating the value of information is the difference between cost of actions in 

different nature conditions. Since the cost of actions in different conditions are 

close in our computations, all the optimal policies have close long run average 

costs and the value of information can be considered as low.   
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The representative example in Section 5.1 the nature conditions do not change the cost 

of actions, as can be seen from Figure 4.4. To check the above argument, we run this 

representative example under the scenario that the costs are highly dependent on the 

nature condition. SSR and MMSSR models are solved under the same parameters but 

the costs in Table 4.11. 

Table 4.11. Alternative cost of actions for the representative example 

State 1 2 3 

(G, L) 20 1 5 

(G, M) 30 5 12 

(G, H) 50 30 55 

(B, L) 1000 50 250 

(B, M) 1100 150 300 

(B, H) 2000 600 450 

F 2500 2500 2500 

 

Under the cost structure given in Table 4.11, the optimal long run average cost of SSR 

and MMSSR are 465.7 and 587.8 respectively, which makes the % value of 

information %26.2. 

 

4.4. Optimizing Other Performance Measures 

4.4.1. Probability of Failure and First Passage Time to Failure 

Probability of failure, π𝐹, another performance measure, can be the objective function 

to minimize for the model. MMSSR with failure probability minimization model is as 

follows. 

 

subject to (3.2) - (3.7) 

 

Optimal policy of the model is observed to select the action with the lowest mean 

stress, which is the most expensive action as expected. This is mostly due to the 

  𝑀𝑖𝑛 π𝐹1+π𝐹2 + π𝐹3 (3.8) 
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selected means and the variances of the random strength and random stress in this 

study. The result may change with different selection of the parameters.  

 

Another objective is maximizing the expected first passage time to failure state which 

gives the same results with minimizing failure probability. Expected first passage time 

(EFPM) from state 𝑖 to 𝑗 for any Markov Chain is defined as follows: 

 

𝐸𝐹𝑃𝑀𝑖𝑗 = 1 + ∑𝑃𝑖𝑡𝐸𝐹𝑃𝑀𝑡𝑗

𝑡≠𝑗

 

 

where 𝑃𝑖𝑡 is transition probability from state i to state t and 𝐸𝐹𝑃𝑀𝑖𝑗 is expected first 

passage time from state i to state j.  

 

If the steady state distribution of a policy R is (π(𝑘1,𝑂1)𝑎, (𝑘1, 𝑂1) ∈ 𝑆, 𝑎 ∈ 𝐴)  then 

the transition probabilities under that policy can be written as 

 

𝑃(k1,O1),(k2,O2)(𝑅) = ∑ 𝑃(k1,O1),(k2,O2)(𝑎)
π(𝑘1,𝑂1)𝑎

∑ π(𝑘1,𝑂1)𝑙𝑙∊𝐴 
𝑎∈ 𝐴 

 

 

We use the following model for maximizing expected first passage time from state 

(G, L) to F. 

 

 

subject to 

  (3.2) - (3.7) 

 

 

  𝑀𝑎𝑥 𝐸𝐹𝑃𝑀(𝐺,𝐿)𝐹 (3.9) 
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We analyze expected first passage time to failure state and probability of failure as 

side performance measures when minimizing long run average cost. Figure 4.10 and 

Figure 4.11 present first passage time and failure probability levels of New Unit Mean 

Stress and Cost Analysis in 4.2.3. 

 

 

Figure 4.10: Failure Probability and First Passage Time change against Stress Mean for 

SSR 

𝐸𝐹𝑃𝑀(𝑘1,𝑂1)𝐹

= 1 + ∑ ∑ 𝑃(k1,O1),(k2,O2)(𝑎)
π(𝑘1,𝑂1)𝑎

∑ π(𝑘1,𝑂1)𝑙𝑙∊𝐴 
𝑎∈ 𝐴 

 𝐸𝐹𝑃𝑀(𝑘2,𝑂2)𝐹

(𝑘1,𝑂1)≠(𝑘2,𝑂2)

 

 

 

∀ (𝑘1, 𝑂1), (𝑘2, 𝑂2) ∊ 𝑆   

 

 

 

 

(3.10) 



 

 

 

42 

 

 

Figure 4.11: Failure Probability and First Passage Time change against Stress Mean for 

MMSSR 

Figures show that, expected first passage time is decreasing in failure probability, as 

expected. Expected first passage time from other states to failure state also have the 

same behavior, which can be seen in Appendix A. 

 

4.4.2. Example for Randomized Optimal Policies 

For the original MDP problem with no additional constraints, we use a linear 

programming model, SSR. We know that there is a deterministic optimal policy. 

However, possibility of obtaining randomized solutions arises when we add 

constraints, especially nonlinear constraints to obtain MMSSR. With the present cost 

structure and parameter value, we have not obtained any randomized optimal policies. 

The optimal policy of SSR is cut by constraints (3.5) - (3.7) since they are not feasible 

for MMSSR most of the time, but the latter optimal policies are also deterministic with 

very close optimal objective values. Although desirable, this result makes us to ask 

the question if these constraints always lead to deterministic optima. So, we make 

some more trials to see if it is the original feasible set (original transition probabilities) 
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or the constraints or the objective function that create this result. We observe that with 

some other objective functions, the optimal policies can be highly randomized.  

 

We present some arbitrary objective functions with randomized optimal policies for 

MMSSR. An example case is taken from New Unit Mean Stress Level analysis. Input 

parameters can be found in Appendix B. MMSSR is run with the following objective 

functions: 

min 2π(𝐺,𝐻)1 + π(𝐵,𝐻)3 

min π(𝐺,𝑀)3 + π(𝐵,𝑀)1 

Resulting steady state probabilities are given in Table 4.12 and Table 4.13 

respectively. As can be seen, randomized optimal policies come into the picture. 

 

Table 4.12. Optimal 𝜋(𝑘,𝑂)𝑎 values for MMSSR by minimizing  2𝜋(𝐺,𝐻)1 + 𝜋(𝐵,𝐻)3 

  Actions 

  1 2 3 

States 

(G, L) 0.10572   0.13996 

(G, M) 0.23827     

(G, H)   0.00347   

(B, L) 0.07082   0.09376 

(B, M) 0.11601     

(B, H)   0.00048   

F 0.23151     

 

Table 4.13. Optimal 𝜋(𝑘,𝑂)𝑎 values for MMSSR by minimizing π(𝐺,𝑀)3 + π(𝐵,𝑀)1 

  Actions 

  1 2 3 

States 

(G, L) 0.19979 0.01511  
(G, M)  0.24193  
(G, H) 0.00552   
(B, L) 0.13607 0.01029  
(B, M)  0.11638  
(B, H) 0.00071   

F 0.27420   
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4.5. Effect of Increasing Number of States and Number of Actions 

Keeping the state space of Nature process and its transition probability matrix the 

same, we define a system with 6 stress level intervals and 10 actions to get a more 

precise solution and see the behavior of the model in detail Distributions 

corresponding to actions can be seen in Table 4.14.  

Table 4.14. Distributions of X in 10-action scenario 

  Nature 

  Good Bad 

Action 

1 Xg1~N(2, 4) Xb1~N(2, 4) 

2 Xg2~N(3, 4) Xb2~N(3, 4) 

3 Xg3~N(4, 4) Xb3~N(4, 4) 

4 Xg4~N(5, 4) Xb4~N(5, 4) 

5 Xg5~N(6, 4) Xb5~N(6, 4) 

6 Xg6~N(7, 4) Xb6~N(7, 4) 

7 Xg7~N(8, 4) Xb7~N(8, 4) 

8 Xg8~N(9, 4) Xb8~N(9, 4) 

9 Xg9~N(10, 4) Xb9~N(10, 4) 

10 Xg10~N(11, 4) Xb10~N(11, 4) 

 

Distribution parameters used for newly replaced units stress are shown in Table 4.15.  

Table 4.15. Distributions of X after replacement in 10-action scenario 

Nature 
Good XRg~N(3, 2) 

Bad XRb~ N(2, 2) 

 

Strength distribution parameters differs according to the nature conditions. Bad nature 

causes lower strength. Strength parameters can be seen in Table 4.16. 
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Table 4.16. Distributions of Y in 10-action scenario 

Nature 
Good Y~N(10, 4) 

Bad Y~N(7, 4) 

 

Five threshold values are used to discretize stress level and map the values to intervals. 

Threshold levels and intervals are given in Table 4.17. Possible observations can be 

seen in Figure 4.12 in (X, Y) plane. 

Table 4.17. Possible observations for 10-action scenario 

Definition Observation Representation 

X<2, X<Y Level 1-Up L1 

2≤X <5, X<Y Level 2-Up L2 

5≤X <8, X<Y Level 3-Up L3 

8≤X <10, X<Y Level 4-Up L4 

10≤X <13, X<Y Level 5-Up L5 

13≤X, X<Y Level 6-Up L6 

X≥Y Failed F 

 

 

Figure 4.12: Observations for 10-action scenario 
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Cost of actions assumed in this scenario is given in Table 4.18. 

Table 4.18. Cost of actions for each state in 10-action scenario 

 Actions 

States 1 2 3 4 5 6 7 8 9 10 

(G, L1) 0 10 10 10 10 10 10 10 10 10 

(G, L2) 500 385 280 205 155 115 80 50 30 20 

(G, L3) 700 560 420 300 230 170 120 75 45 30 

(G, L4) 1050 840 630 450 345 255 180 110 65 45 

(G, L5) 1575 1260 945 675 520 375 270 165 100 68 

(G, L6) 2350 1900 1400 1010 780 550 405 250 150 102 

(B, L1) 0 10 10 10 10 10 10 10 10 10 

(B, L2) 10000 7700 5600 4100 3100 2300 1600 1000 600 400 

(B, L3) 14000 11200 8400 6000 4600 3400 2400 1500 900 600 

(B, L4) 21000 16800 12600 9000 6900 5100 3600 2200 1300 900 

(B, L5) 31500 25200 18900 13500 10400 7500 5400 3300 2000 1360 

(B, L6) 47000 38000 28000 20200 15600 11000 8100 5000 3000 2040 

F 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 

 

State 13 is the failure state, which has a predetermined action = replace, same as 

previous scenarios. When the first model, SSR is run with these parameters, long run 

average cost is 1606.5 and π(𝑘,𝑂)𝑎 values are given in Table 4.19. 

Table 4.19. Optimal 𝜋(𝑘,𝑂)𝑎 values for SSR of the 10-action scenario 

  Actions 

  1 2 3 4 5 6 7 8 9 10 

States 

(G, L1) 0.236          

(G, L2) 0.237          

(G, L3) 0.068          

(G, L4) 0.016          

(G, L5) 0.003          

(G, L6) >0          

(B, L1) 0.138          

(B, L2)      0.150     

(B, L3)        0.046   

(B, L4)         0.006  

(B, L5)         >0  

(B, L6)          >0 

F 0.100          
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MMSSR is run to determine action without nature condition information. Because of 

adding new constraints, the objective cost is increased to 2367.6 and optimal policy 

becomes independent of Nature conditions. Π(𝑘,𝑂)𝑎 values. The optimal π(𝑘,𝑂)𝑎 values 

can be seen in Table 4.20. 

Table 4.20. Optimal 𝜋(𝑘,𝑂)𝑎 values for MMSSR of the 10-action scenario 

  Actions 

  1 2 3 4 5 6 7 8 9 10 

States 

(G, L1) 0.129          

(G, L2)   0.285        

(G, L3)    0.141       

(G, L4) 0.01          

(G, L5)  >0         

(G, L6) >0          

(B, L1) 0.096          

(B, L2)   0.201        

(B, L3)    0.069       

(B, L4) 0.002          

(B, L5)  >0         

(B, L6) >0          

F 0.065          

 

Value of information is %47 for this example.  

As shown in the previous examples, deterministic optimal policies of MMSSR is 

thanks to the objective function. We present three other objective functions with 

randomized optimal policies for MMSSR. We have observed that most of the possible 

objective functions, other than long run average cost, bring randomized optimal 

policies. Three arbitrary examples are as follows. 

min π(𝐵,𝐿1)1 

min π(𝐵,𝐿2)3 + π(𝐵,𝐿2)4 + π(𝐵,𝐿2)7 

min π(𝐺,𝐿4)4 + 3π(𝐺,𝐿4)5 + 7π(𝐺,𝐿5)4 +  2π(𝐺,𝐿5)5 

Resulting steady state probabilities of MMSSR by minimizing π(𝐵,𝐿1)1 is given in  
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Table 4.21. Optimal 𝜋(𝑘,𝑂)𝑎 values of MMSSR by minimizing the other two functions 

above can be seen in Appendix C.  

Table 4.21. Optimal 𝜋(𝑘,𝑂)𝑎 values for MMSSR by minimizing  𝜋(𝐵,𝐿1)1 

  Actions 

  1 2 3 4 5 6 7 8 9 10 

States 

(G, L1)   0.046        

(G, L2)    0.036   0.146    

(G, L3)      0.192    0.006 

(G, L4)   0.068        

(G, L5)    0.012       

(G, L6)    >0       

(B, L1)   0.039        

(B, L2)    0.027   0.110    

(B, L3)      0.084    0.003 

(B, L4)   0.012        

(B, L5)    0.001       

(B, L6)    >0       

F 0.216          
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CHAPTER 5  

 

5. CONCLUSION AND FUTURE WORK 

 

In this thesis, we focus on a system that survives a period depending on its strength 

and stress occurrences at that period. These two are random quantities generated by 

an unobservable Markovian environment as well as the actions applied at that period. 

Their distributions are known but only the level of realized stress information is 

available. The objective is to find an optimal policy that only uses available 

information to minimize the long run average cost of running this system. Although 

we expect randomized policies due to unobservability of some state information, the 

optimal policies are deterministic with the present cost function. We checked if this is 

a structural property of the transition matrices and we concluded that it is not. 

Randomized optimal policies exist with different objective functions. We also 

evaluate other performance measures such as probability of failure, mean time to 

failure. We investigate how the optimal policy and performance measures change by 

changing different parameters. We also measure the value of observing the 

unobservable variables by comparing the optimal objective values. The cost and 

failure probability trade-off is also measured. 

 

The analysis made in this study can be extended in many future directions. Firstly, 

different objective functions can be tried. For instance, failure probability and long 

run average cost trade-off can further be analyzed using multiple objective 

methodology.  

 

Expected first passage time can be written as a nonlinear function of model variables. 

So, we tried maximizing the expected time to failure objective. We observed that this 
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gives the policy that minimizes the failure probability in our limited number of runs.  

Other functions of time to failure can also be considered. 

 

The stress and the strength distributions can be taken in a stochastic order so that the 

transition matrices may have a structure such as increasing failure rate (IFR). In this 

case, a somewhat structured optimal policies may exist. 

 

The stress and strength can also be taken as dependent random variables coming from 

a bivariate normal distribution. In such a model, we can also assume actions affecting 

both of them. 

 

Another valuable study might be using actions to resolve unobservability sequentially 

as inspections with changing details, recovering some more information after every 

action although we used “maintenance” in a very broad sense, as changing 

distributions of the stress and the strength. 
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APPENDIX A 

 

Figure A.1: First Passage Time from all 6 states to State F in SSR 

 

 

Figure A.2: First Passage Time from all 6 states to State F in MMSSR
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APPENDIX B 

Table B.1. Distributions parameters of the stress X corresponding to state of Nature under 

each action for the example case 

  Nature 

  Good Bad 

Action 

1 Xg1~N(5, 10) Xb1~ N(5, 10) 

2 Xg2~N(8.5, 10) Xb2~ N(8.5, 10) 

3 Xg3~N(8.5, 5) Xb3~N(8.5, 5) 

 

Table B.2. Distribution parameters of X after replacement for the example case 

Nature 
Good XRg~N(4, 2) 

Bad XRb~ N(4, 2) 

 

Table B.3. Distribution parameters of Y for the example case 

Nature 
Good Y~N(10, 4) 

Bad Y~N(8, 4) 

 

Table B.4. Cost of actions for each state for the example case 

   Actions  

  1 2 3 

States 

(G, L) 10 10 8 

(G, M) 5 0.25 0.3 

(G, H) 10 0.5 0.75 

(B, L) 0.05 10 13 

(B, M) 0.7 5 0.7 

(B, H) 12.5 1.2 1.5 

F 2.5 2.5 2.5 
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APPENDIX C 

 

Table C.1. Optimal 𝜋(𝑘,𝑂)𝑎 values for MMSSR by minimizing  𝜋(𝐵,𝐿2)3 + 𝜋(𝐵,𝐿2)4 + 𝜋(𝐵,𝐿2)7 

  Actions 

  1 2 3 4 5 6 7 8 9 10 

States 

(G, L1)             0.031    

(G, L2)         0.175        

(G, L3)         0.056 0.189      

(G, L4)       0.006 0.058        

(G, L5)       0.001 0.006        

(G, L6)         >0        

(B, L1)             0.029    

(B, L2)         0.132        

(B, L3)         0.024 0.082      

(B, L4)       0.001 0.010        

(B, L5)       >0 >0        

(B, L6)         >0        

F 0.198                

 

Table C.2. Optimal 𝜋(𝑘,𝑂)𝑎 values for MMSSR by minimizing 𝜋(𝐺,𝐿4)4 + 3𝜋(𝐺,𝐿4)5 +

7𝜋(𝐺,𝐿5)4 +  2𝜋(𝐺,𝐿5)5 

  Actions 

  1 2 3 4 5 6 7 8 9 10 

States 

(G, L1)     0.043               

(G, L2)             0.175       

(G, L3)       0.088 0.044 0.049       0.017 

(G, L4)           0.070         

(G, L5) 0.004         0.010         

(G, L6)       >0             

(B, L1)     0.038               

(B, L2)             0.136       

(B, L3)       0.038 0.019 0.021       0.007 

(B, L4)           0.013         

(B, L5) >0         0.001         

(B, L6)       >0             

F 0.229                   

 


