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Signature :

iv



ABSTRACT

MESH SEGMENTATION FROM SPARSE FACE LABELS USING GRAPH
CONVOLUTIONAL NEURAL NETWORKS

SEVER, Önder İlke
M.S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Yusuf Sahillioğlu

Co-Supervisor : Assoc. Prof. Dr. Sinan Kalkan

January 2020, 48 pages

The marked improvements in deep learning influence almost every area of computer

science. The mesh segmentation problem in computer graphics has been an active

research area and keep abreast of the trend of deep learning developments.

The mesh segmentation has a central role in multiple application areas for 3D objects.

It is chiefly used to produce the object structure in order to manipulate the object or

analyze the components of it. These operations are primitive, and that primitiveness

causes a variety of application areas. The variation in application areas induce a

variety of priority deviations over time and memory usage.

In this thesis, we solve the mesh segmentation problem by using Graph Convolutional

Neural Networks. Our method uses a semi-supervised approach for which the mesh

objects are sparsely labeled, and the results are the formed segments. We consider

a mesh object as a graph by using their connectedness over the faces, and having

the mesh in 3D lets us create geometrically logical features for our network. Us-

ing the neighborhood information is maintained by the Graph Convolutional Neural

v



Networks, which is a pretty new concept, and the application on the sparsely labeled

mesh segmentation is novel to our work. By using the briefly summarized method,

we reach competitive results compared to state-of-art mesh segmentation methods.

Keywords: 3D, mesh, segmentation, semi-supervised learning, graph convolutional

neural networks
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ÖZ

GRAFIKSEL EVRİŞİMLİ SİNİR AĞLARINI KULLANARAK YÜZEYLERİ
SEYREK ETİKETLENMİŞ NESNE BÖLÜTLEMESİ

SEVER, Önder İlke
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Yusuf Sahillioğlu

Ortak Tez Yöneticisi : Doç. Dr. Sinan Kalkan

Ocak 2020 , 48 sayfa

Derin öğrenmedeki belirgin gelişmeler Bilgisayar Bilimlerinin neredeyse her alanını

etkilemektedir. Bilgisayar grafiklerinde nesne bölütlemesi aktif bir araştırma alanı

olmuştur ve derin öğrenme gelişmeleri trendini yakından takip etmektedir.

Nesne bölütlemesi, 3 boyutlu nesneler ile ilgili birçok uygulama alanında merkezi bir

role sahiptir. Nesneyi manipüle etmek veya bileşenlerini analiz etmek için esas olarak

nesne yapısını üretmek için kullanılır. Bu işlem çok temel bir role sahiptir ve bu te-

mel olma özelliği uygulama alanlarına çeşitliliğe neden olur. Uygulama alanlarındaki

çeşitlilik, zaman ve bellek kullanımı üzerinde öncelik sapmalarına yol açmaktadır.

Bu tezde, Grafiksel Evrişimli Sinir Ağlarını kullanarak Nesne Bölütlemesi proble-

mini çözüyoruz. Metodumuz, bölgesel olarak bölütleri etiketlenmiş objeleri alarak,

nesnenin bölütlenmiş halini sonuç olarak üreten yarı denetimli bir yöntemdir. Bölüt-

lenecek nesnenin ağ bilgisini kullanarak, yüzeylerin bağlantılari ile bir grafik olarak

düşünüyoruz, ağın 3 boyutlu düzlemde olması olması sinir ağımız için geometrik ola-

rak mantıksal özellikler oluşturmamızı sağlıyor. Komşuluk bilgilerinin kullanılması,
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oldukça yeni bir kavram olan Grafiksel Evrişimli Sinir Ağları tarafından korunmakta

olup, bu yeni sinir ağlarının kullanılarak nesne bölütlemesi işleminin uygulanması;

ilk kez bu çalışmada bizim tarafımızdan gerçekleştirilmiştir. Kısaca özetlenen yön-

temi kullanarak, alanlarında en iyi kabul edilen nesne bölütlemesi yöntemleriyle kı-

yaslanabilecek sonuçlara ulaşıyoruz.

Anahtar Kelimeler: 3B, nesne, bölütleme, yarı gözetimli öğrenme, grafiksel evrişimli

sinir ağları
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CHAPTER 1

INTRODUCTION

Segmentation is one of the vital research areas in computer graphics. It is the process

of breaking objects into smaller and serviceable parts. Many various solutions [7, 8, 9]

were generated to this problem in the past few years. However, as the new demands

in the area rise, so does the need for new solutions.

In this thesis, we will work with 3-dimensional objects that are represented as meshes.

Mesh segmentation is essential in the graphics area, considering it has the primary

role in animation, skeleton extraction, texture adding, and so forth. The objects our

model will be dealing with has at least one limbs and diverted from human objects to

octopus object. However, in this thesis, we will work with the human type of objects

as a prototype.

Figure 1.1: Examples of segmentation of 3D objects (Figure Source: [1])
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1.1 Problem Definition

Objects represented as meshes can be viewed as a union of faces which are con-

structed from vertices and edges. As all faces share their edges with adjacent faces,

there exists a graphical structure on the object. The problem is to cluster faces with

logical adjacents. When looked at this way, the problem is not different from the

clustering people on a social media platform. There is a version of a network in both

problems, and this network should be analyzed before splitting into the pieces.

Figure 1.2: A graph constructed from labeled instances x1, x2 and unlabeled in-

stances. The label of unlabeled instance x3 will be affected more by the label of x1,

which is closer on the graph, than by the label of x2, which is farther away, even

though x2 is closer in Euclidean distance. (Figure Source: [2])

1.2 Motivation

As the number on machine learning applications increases day by day, new solutions

that are suitable for the graphical problems are proposed. The primary motivation in

this thesis is to use network information in the mesh more effectively so that fewer

features can be used than most of the existing solutions.

Another motivation is finding a hybrid solution that is neither fully supervised nor
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unsupervised so that in the minimal information, better results will be achieved.In

many pattern classification problems, the acquisition of labelled training data is costly

and/or time consuming, whereas unlabelled samples can be obtained easily. Semisu-

pervised algorithms that learn from both labelled and unlabelled samples have been

the focus of much research in the last few years; a comprehensive review up to 2005

can be found in [10], while more recent references include [11, 2, 12, 13, 14].

1.3 Method Overview and Contributions

Our method is a semi-supervised mesh segmentation process, which is based on a

Graph Convolutional Neural Network. Graph Convolutional Neural Networks is the

version of a Convolutional Neural Network which is capable of using the structure

behind the graph [15].

The inputs of our method are models and some of the ground truth labels. After the

training process, the outputs of our model are segmentation clusters for the given test

objects. Not having pre-training for the input models makes our model end-to-end

and straightforward.

The contributions in our work for the given problem are:

• Using Graph Convolutional Neural Networks in a semi-supervised mesh seg-

mentation problem and analysis is novel to our work.

• Our model expects the whole mesh object as an input. Other segmentation

models using learning techniques use single polygon of the mesh object. This

technique enables our learning algorithm to consider the object, instead of the

polygon.

• Our model creates the necessary features of an object by itself with the capabil-

ity of Convolutional Neural Networks. This contribution makes our algorithm

simple and, at the same time, more inclusive. Also, using Graph Convolutional

Neural Networks, we use neighborhood information. That information allows

the network to consider neighborhood labels and their features in each iteration.
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• Our technique is trainable for any object in any pose. This contribution is also

a benefit of using Graph Convolutional Neural Networks (Figure 1.3).

Figure 1.3: Example scans of all 10 subjects showing the range of ages and body

shapes. (Figure Source: [3])

1.4 The Outline of the Thesis

This thesis consists of four chapters, excluding for this Introduction chapter. They

are:

Chapter 2; In this chapter the backbone of our proposed method, which is Graph Con-

volutional Neural Network and its assign algorithm Convolutional Neural Networks

are presented. Other mesh segmentation methods are also examined in detail.

Chapter 3; The segmentation process is explained in this section. This section starts

with the pre-processing stage. Following this, we show the architecture of our algo-

rithm and functions used. Lastly, the training stage is clarified.

Chapter 4; we begin this chapter with the dataset information used in our experiments.

The experimental details and hyperparameters follow the dataset part. The evaluation

and the results concerning other popular methods are then shown.

Chapter 5; this section outlines the conclusion of the thesis and also the future work

in the field.
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CHAPTER 2

BACKGROUND AND RELATED WORK

Before presenting the details of our process, it is important to remind the basics of

two important topics; Neural Networks and Mesh Segmentation. Both of them are

vast areas. We are going to examine them both in this chapter.

2.1 Artificial Neural Networks

The Neural Network is a methodology that is used in the computer engineering area

inspired by the human brain, imitating its working processes. The concept relies on

the artificial intelligence area. As the concept creates an imitation of a brain, the

process is very similar to the human body. The process of thinking includes taking

inputs using our senses, processing with the current state of our brain, creating the

output signals to our body. Neural Networks do the same. We generate the input for

them; they process with the current state and create an output signal.

Nevertheless, the matter is how accurate their output signals are. The methodology

of Neural Networks is developmental. The output signals depend on how the neural

networks are constructed and how they are fed with the data. The construction of

networks is a subject specific topic, and there is no best structure that can fit all. The

sequence and the elements used in the structure change the whole topology and affect

the learning process altogether. The best structure for application is an active research

area, and the structure we use in this work depends on a specific neural network,

which is Graph Convolutional Neural Network. In this chapter, we will present the

necessary information about Graph Convolutional Neural Networks, but before that

we should relay some basic knowledge on Neural Networks.
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Figure 2.1: Neuron networks: (a) brain; (b) neuron network (c) neuron connecting

structure (d) neuron structure (e) neuron network architecture (Figure Source: [4])

After the construction of a Neural Network, we can use this for decision making or

generation of new data. However, do we know all the facts when we are born? The

answer is surely no. The development of our brain continues as we are exposed to

new things. These experiences include memories, education, talking, even walking is

a learned process. However, how does our brain do the learning? What is changing in

our brains? These are interesting questions, and in our opinion, the answer will never

be known “exactly”.

Nevertheless, the scientists have approached and tried to mimic this learning progress.

This progress is data-driven and depends on results. As we feed the Neural Networks

with new data, we also manipulate them as we want them to be directed. As it all

driven by the mathematical equations, the manipulation is also a mathematical oper-

ation, which is changing some variables in our constructed network. We summarized

the learning approach in a very comprehensible way. Now we should focus on the

area we utilised and give the details about it.

We use the Graph Convolutional Neural Networks. The customized version of Con-

volutional Neural Networks. Before going into details of Graph Convolutional Neural

Networks, we begin with defining defining what the Convolutional Neural Networks
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are. What sets them apart from the Neural Networks? Convolutional neural networks

(CNN) utilize layers with convolving filters that are applied to local features [16].

Convolutional Neural Networks are a class of Deep Neural Networks that are pri-

marily created for types of input data that cannot be represented straightforwardly.

Image data, video data, speech data are typical examples of is. The prior feature of

the Convolutional Neural Networks enables us to accomplish, in which they create

their features by using convolutional filters. That is also very important in Graph

Convolutional Neural Networks because it is not an easy work to explain features in

graph than its structured nature.

Figure 2.2: CNN image classification pipeline. (Figure Source: [5])

There are special classes of Convolutional Neural Networks to work with graph-

structured data. In the study of Li et al. [17] and Duvenaud et al. [18] they have

developed solutions but for the specific cases. To build a generic model, we need to

transfer convolutional filters on Convolutional Neural Networks to cover graph data.

That is possible with two methods. They are Spatial Construction and Spectral Con-

struction methods.

The method used in The Henaff et al. [19], uses spectral construction for the filters.

The Spectral Construction is a different presentation of the convolutional filters as a

Laplacian operator. The deficiencies of this construction are high-cost in computation

and filter localization. These drawbacks lead to a new solution which is proposed by

Deferrard et al. [15] They introduced smooth filters by using Chebyshev polynomials

in the spectral domain. After that, Kipf and Welling [20] came up with a better per-
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forming Graph Convolutional Network by simplifying convolutional filtering. They

achieve simplification by the generalized and differentiable version of the Weisfeiler-

Lehman algorithm. In our model, we use their approach, which is the state-of-art in

the area.

2.2 Mesh Segmentation

The mesh segmentation is always a trendy and active research area in computer graph-

ics. This popularity not surprising since it has a critical role to play in shape analysis.

The shapes of the objects tell us many things about them, such as composition of

moving parts or their balance. So, to analyze a shape, we should analyze the mesh

that constructs it. There are various alternatives proposed to create a method for

segmentation. We will examine them under four general headlines, which are catego-

rized in Rodrigues et al. [6]. They are Surface-Based Segmentation, Skeleton-Based

Segmentation, Volume-Based Segmentation, and Multiple Shape Segmentation.

Figure 2.3: Taxonomy of mesh segmentation algorithms. (Figure Source: [6])
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The Surface-Based Segmentation type of algorithms use their 3D surfaces to create

2D output regions as a result. This type of algorithms uses natural physical facts

such as curves and angles in their surfaces. Examples of this type of algorithms are

Adams et al. [21], which uses iterative clustering, Shapira et al. [22] and Lai et al.

[23] use hierarchical clustering, Lavoue and Wolf [24] use Region Growing, Man-

gan and Whitaker [9] use watershed segmentation and Lin et al. [25] uses boundary

segmentation.

The Skeleton-Based Segmentation type of algorithms use their 1D skeleton struc-

ture to segment objects. The skeleton has a vital role in the animation area since it

defines the movement throughout. This type of algorithm has to extract skeleton in-

formation before segmentation. The examples of these types of algorithms are Aleotti

and Caselli [26] which use reeb graph method, Mortera et al. [27] uses medial axis

method, and Li et al. [28] use Geometric contraction.

The Volume-Based Segmentation type of algorithms use object volume as input and

generate 3D volumes as output. The examples of these types of algorithms are Attene

et al. [29] and Xian et al. [30] which use volumetric meshes. Chzelle et al. [31]

use exact convex decomposition method, Liu et al. [32] and Kreavoy et al. [33] used

approximate convex decomposition and Simatri et al. [34] used space partitioning.

The Multiple Shape Segmentation type of algorithms uses shape collections to seg-

ment objects. These collections may include fully labeled objects, partially labeled

objects, or non labeled objects. These collections may contain the same type of ob-

jects or differentiating objects. Only the collection used is method dependent and

decides the category that we should consider the method. The categories are Un-

supervised, Semi-supervised, and Supervised as the labels indicate. Since we use

Semi-Supervised Multiple Shape Segmentation, we will cover it in-depth in this sec-

tion.

The logic used in the Unsupervised Multiple Shape Segmentation is that the same

classes share the same segmentation models. This logic gives the method flexibility

in terms of pose and object types. Sidi et al. [35] created a spectral clustering and

performed analysis in object descriptor space.
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The Semi-Supervised Multiple Shape Segmentation uses the only labeled data on the

object to use segmentation. This can be done in several variations. Lv et al. [36] adds

an energy term to the unlabeled random fields. As another variation, Shu et al. [7]

introduced scribble based segmentation with weakly labeled objects. In our thesis,

we also use this type of algorithm with sparsely labeled objects, but we are using the

benefit of Graph Convolutional Neural Networks.

The Supervised Multiple Shape Segmentation uses the labeled objects to generate

method constraints and apply the method to object that is subject to being segmen-

tation. This methodology shows similarity with machine learning methods, and it is

popular nowadays. Kalogerakis et al. [37] formulated the state-of-art in this area.

However, the method used in his work needs too many features that make the method

costly.
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CHAPTER 3

SEGMENTATION MODEL

We will explain the steps taken in our method in this chapter. We will begin with the

pre-processing stage, explain how we created inputs for our method. Then, we will

give details of the architecture and structures used in the model architecture topic.

Lastly, we will give details of the training and results of our method.

3.1 Pre-Processing Stage

This stage begins with the input models, which are objects consisting of meshes. To

use the Convolutional Neural Networks, we know from the traditional 2D methods

that we should have a uniform type of inputs for better results. Applying the rule

for 3D object meshes, we need to use uniform graph structures for all meshes in our

dataset. So before we generate any other information, we should downsample them

and then use them as graphs. In addition to that, to use Graph Convolutional Neural

Networks, we need to create a particular type of data. This particular type of data

includes identification of faces to be labeled and features to use for each face. Also,

the adjacent faces should be extracted from the objects.

3.1.1 Generating Labeled Nodes

This part has a crucial role in our thesis. Observation over the changing number

of labeled nodes has never been done before, and it is exciting to see if the graph

information can manage the segmentation with a meager number of labeled nodes.

We will be discussing how the results of this part are affecting our final segmentation
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in the evaluation section. We will randomly select the labeled nodes for each object

in the training set separately. The only rule is not selecting neighbouring faces as

labeled. This rule will let us use more neighborhood information in the model. The

critical point in this chapter is that we may use label information of the object, which

is intended to segment, but the test objects may not require any labels.

3.1.2 Generating Features

As we mentioned in the related work section, most of the learning-based segmentation

models use a large number of features around 600 to 1000. However, our model uses

only six features for each face. These feature contain the position of a face and its

surface normal. For each vector, we need to store three variables, which are X, Y, and

Z coordinates. These vectors are calculated by simple graph geometry techniques in

the preprocessing.

3.2 Model Architecture

3.2.1 Input and Output

Our segmentation algorithm takes all types of 3D objects that can be represented as

meshes. In this work, we only stick with the same types of objects, for example,

humans. For our case, we need different styles and poses of human meshes that are

only required to have the same number of segments. This is a requisite for training the

neural network. After pre-processing steps we mentioned, the network model takes

four inputs for each object in our dataset, which are the graph structure generated

from mesh, the adjacencies of meshes, the features for meshes, and the some of the

ground truth labels which we give as seed points.

Adjacencies of meshes consist of id couples of faces that are neighbours. The face

ids should represented as integers.

Mesh features consist of six decimal numbers for each face. They should set in the

order of center and surface normal vector. Each should be given in the order of X, Y,
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Z coordinate triplets.

The ground truth labels consist of an integer for each face that starts from zero.

The output of the model is the predicted label of each face. The predictions also start

from zero.

3.2.2 Loss Functions

To explain our loss function, we should begin with the training stage. As we men-

tioned before, we feed some inputs to our network. The details of this process will

be explained in the training stage, but we should go over it briefly in this part. Our

method works on an iterative basis. For each iteration, the model takes inputs and

starts to predict within the basis of the current model. After this prediction, the model

checks the results with the existing seed points and can check some other things with

the prediction. This check decides how accurate the results are. To use the results

of this assesment, we utilise loss functions to digitize this information and revise our

model. This revision determines the performance at the next iteration, and so on. As a

result, the accuracy and the loss functions are strongly connected. In this perspective,

the loss functions are also the degree of accuracy for the network to be used. So for

our problem, we should ask: How we can give a degree of accuracy when we do not

know the complete ground truth information?

To this end we can use our seed points. For each iteration, we can check if we success-

fully labeled the ground truth labels and revise our model. We also know the graph

structure, and using the structure with the seed point information should improve the

results. This part of equation is given below (31).

Lseed =

(
−

N∑
pi

log(pi)

)
/N, (31)

where Lseed is the loss for given seed points, N is the number of sparse seed points.

This expression is necessary but not sufficient in our case. The reality is that we can

use the graph structure more effectively if we adopt the neighborhood information
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in the loss function. Except for the intersection, the network should consider the

likelihood of a neighbouring faces belonging to the same segment is too high. So,

we created a loss function that gets higher when too many neighbouring faces have

different labels. This part of equation is given below (32).

Lsmooth =

( N∑
i=1

3∑
aj

L∑
k=1

|pik − pjk |
)
/N, (32)

where Lsmooth is the smoothness loss, N is the total number of faces, L is the number

of adjacent faces for given face.

The final loss function is given below (33).

Ltotal = Lseed + αLsmooth, (33)

where α is smoothness factor. We will try varying smoothness factor values in the

experiments part of the thesis.

3.2.3 Graph Convolutional Layers

The common aim of the neural network models is to create a function of features on

a graph g = (V,E) which takes as input:

• Feature description Xi for every node i; summarized in a NxD feature matrix

X (D: number of features, N: number of nodes)

• Adjacency matrix A (or another representation of a graph structure)

It then produces an output for each node Z (NxF feature matrix in which F is the

different output features for each node). A neural network layer can be represented
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as a non-linear function

H(l+1) = f(H(l), A),

H(0) = X,

H(L) = Z,

(34)

where L is the number of layers, for each layer l.

We see that all specific models differ only how f(., .) is chosen and represented.

In our model, we will be using the model introduced in Kipf and Weiling[20], which

is widely employed. The model is represented as;

f(H(l), A) = θ(D̂−1/2ÂD̂−1/2H(l)W (l)),

where;

A = Adjacency matrix,

θ = non-linear activation function,

D̂ = diagonal node degree matrix of, Â

Â = A+ I,

I = identity matrix,

W (l) = weight matrix for layer l.

(35)

We used this propagation rule for each convolutional layer. However, our model

consists of multiple layers. Some of these layers are graph convolutional, and some

of them are linear layers. As shown in equation, for each graph convolutional layer

one feature passing operation is applied.

3.3 Sparsely Labeled Training Stage

We showed a propagation model on graphs in the last chapter. Now we will introduce

the problem of semi-supervised face classification in objects.
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After building our model structure, we have done several experiments in order to find

the optimal model. These experiments include two to ten layers of graph convolu-

tional layer. In this chapter, we will express our learning equations with a two-layered

simple model in order to keep expressions managable. The best resultant architecture

identified experimentally will be further explained in the evaluation part.

Using Softmax and Relu as a non-linear function, we can show a forward model as:

Z = f(X,A) = softmax(ÂReLU(ÂXW (0))W (1)). (36)

Here W (0) ∈ RCxH is an input-to-hidden sized layer weight matrix with H feature

maps. W (1) ∈ RHxF is a hidden-to-output sized layer weight matrix.

At the last stage of forwarding operation, the softmax activation function is applied

row-wise to calculate scores.

When we get the scores, we can evaluate the error with the loss function we have

shown (37).

Ltotal =

(
−

M∑
pi

log(pi)

)
/M + α

( N∑
i=1

3∑
aj

L∑
k=1

|pik − pjk |
)
/N, (37)

where M is the number of given seed points, N is the total number of faces, α is the

smoothness factor.

After calculating the error, we should update the weight matrices, W(0) and W(1) in

this case. To update weight matrices, we have used a batch gradient descent method.

These operations are applied in each iteration until convergence is achieved.

The pseudo-code of our method is given in algorithm (1).
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Algorithm 1: Training Segmentation Network
Input : Sparsely Labeled & Pre-Processed Training Dataset, T ; Labeled &

Pre-Processed Validation Dataset, V ; Epochs, e; Batch Size, b;

Learning Rate, l; Smoothness factor, α;

Output: Weights, W

1 initializate W

2 for e epochs do

3 BatchGroup← subsets of T with size B

4 foreach batch in BatchGroup do

5 L← calculate overall loss (Eqn. 37) for batch

6 grads← Calculate L Backward

7 Update W with gradient grads and learning rate l by using

Optimization Algorithm

8 end

9 Lval ← calculate overall loss

10 if Lval is not converging then

11 Update l

12 end

13 end

14 return W
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CHAPTER 4

EXPERIMENTS AND RESULTS

In this chapter of our thesis, we will first show and examine the datasets we used.

Then we will show our different experiments performed on data. In these experi-

ments, we will be changing the network topology, smoothness factor on loss function,

labeled face ratio, dropout value, and activation functions.

Before going into the details of the experiments and results, we will cover the environ-

ment and the frameworks used. In the beginning, we have a 3D object. To visualize

this object and manual labeling, we use Blender and Blender Python API. Feature and

adjacency extraction are also achieved by using the same API. After applying afore-

mentioned pre-processing operations, we should continue with the training phase.

For the training and matrice operations, we use PyTorch [38] and DGL [39]. PyTorch

is a commonly used open-source machine learning library that uses Torch. DGL is

also an open-source machine learning library, but it supports graph operations more

fluently and smoothly.

4.1 Dataset

We have used the two datasets. The first dataset is the FA [40]. The FAUST dataset

has ten different subjects and for each subject ten different poses. We have used

this dataset because it has correspondence information and this information lets us

label models easily. This dataset is used more often in the experimental part. For the

evaluation, we have the second dataset, which is used in the Princeton segmentation

benchmark. The dataset consists of polygonal models supplied by Daniela Giorgi

[41]. In this dataset, there are 20 different objects, each of which in 20 different
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positions. That makes 400 total objects for that dataset. In our work, we only used the

object “Human.” The dataset we have used does not support correspondence between

the object positions. That makes the sparse labeling process harder and diffucult

to compare except for random labeling. The ground truth labels are also provided

from the Princeton segmentation benchmark. The main reason for using this dataset

was its prevalence in the area. Most of the methods use this benchmark to compare

their results with the others. However, we should mention that our method does not

require any necessity for the data. Having a mesh objects in different poses or styles

and some of the ground truth labels are the only requirements for our model. Thus,

one can apply our model to any object that is represented by meshes.

4.2 Experiments

In this part of the thesis, we will show and examine the results of the experiments we

have carried out with our model.

4.2.1 Labeled Face Ratio

Using sparse semi-supervised learning can effectively achieve a good balance be-

tween classifier performance and the number of unlabeled examples retained [42].

The key point of this thesis is having sparsely labeled objects and training them with

the semi supervised method. The question is; how much sparsity can our model han-

dle?

We tried eight different levels from %0.2 to %50. The architectural details of the

network (4.1), epoch/loss (4.1) and accuracy/loss (4.2) figures are given.

On the top, layers row, the layer sizes are represented. For the graph convolutional

layers, the size is followed by designation "g". The “Epoch” column points out the

training loop count. “Learning Rate” column points out the learning rate used in

the network. The scheduler also used to adjust the learning rate. “Activation Func-

tion” indicates the activation function used in the network. “Batch Size” points out

the batch size used while training the network. “Smoothness Factor” points out the
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smoothness coefficient in the loss function. “Dropout” points out the dropout ratio in

training.

Table 4.1: Architectural details of the changing labeled face ratio experiment.

Layers

6(g)× 36(g)× 72(g)× 144(g)× 288(g)× 144(g)× 72(g)× 36(g)× 4

Epoch Learning Rate Activation Func. Batch Size Smoothness Factor Dropout

100 0.001 ReLU 10 0.5 0
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Figure 4.1: Loss plot of different label ratios in the network.
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Figure 4.2: Accuracy plot of different label ratios in the network.
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Table 4.2: Best accuracy values for different label ratios.

Sparsity %0.2 %0.8 %1.6 %2.5 %5 %12.5 %25 %50

Accuracy 0.887 0.916 0.926 0.933 0.943 0.951 0.951 0.953

Based on the results (4.2), the accuracy of the algorithm depends on the labeled face

ratio; however, the effect is exponentially decreasing.

Another interpretation is that having even a %0.2 percentage of the labeled faces; the

model still manages to converge with %88.7 accuracy.
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Table 4.3: Visual results of Labeled Face Ratio experiment.
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4.2.2 Network Topology

Neural networks have been known to produce wide variations in their predictive prop-

erties for small changes in network design [43]. In our case, these changes are much

more observable. This clarity of observation is because we use Graph Convolutional

Neural Networks and make a layer Graph Convolutional Layer or Linear changes the

whole behaviour of the layer.

We created ten different network topologies to compare with each other (4.4). While

creating different topologies, we tried to make them comparable with each other. The

architectural details of the network (4.5), epoch/loss (4.3) and accuracy/loss (4.4)

figures are given.

Table 4.4: Different network topologies for the experiment.

NET-1 6(g)× 36(g)× 72(g)× 144(g)× 288(g)× 144(g)× 72(g)× 36(g)× 4

NET-2 6(g)× 36(g)× 128(g)× 256(g)× 128(g)× 64(g)× 4

NET-3 6(g)× 36(g)× 128(g)× 256(g)× 128(g)× 4

NET-4 6(g)× 64(g)× 128(g)× 256(g)× 512(g)× 4

NET-5 6(g)× 512(g)× 1024(g)× 512(g)× 64× 4

NET-6 6(g)× 64(g)× 256(g)× 64× 16× 4

NET-7 6(g)× 64(g)× 256(g)× 512× 64× 4

NET-8 6(g)× 64(g)× 256(g)× 128× 64× 32× 4

NET-9 6(g)× 36(g)× 72(g)× 144(g)× 288(g)× 576(g)× 288(g)× 144(g)× 72(g)× 36(g)× 4

NET-10 6(g)× 36(g)× 72(g)× 144(g)× 288(g)× 576(g)× 288(g)× 144(g)× 72(g)× 36× 4

Table 4.5: Parameters for network topology experiment.

Epoch Labeled Face Ratio Learning Rate Activation Func. Batch Size Smoothness Factor Dropout

100 %25 0.001 ReLU 10 0.5 0
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Figure 4.3: Loss plot of different network topologies.

0 20 40 60 80 100
Epoch

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

Ac
cu

ra
cy

NET-1
NET-2
NET-3
NET-4
NET-5
NET-6
NET-7
NET-8
NET-9
NET-10

Figure 4.4: Accuracy plot of different network topologies.

Table 4.6: Best accuracy values for different network topologies.

NET-1 NET-2 NET-3 NET-4 NET-5

0.952 0.940 0.932 0.925 0.921

NET-6 NET-7 NET-8 NET-9 NET-10

0.886 0.890 0.886 0.960 0.951

Based on the results (4.6), NET-9 performed best with the highest accuracy. However,
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we can make additional observations by comparing other topologies with each other.

• Increasing Graph Convolutional Layer count in topology affects the perfor-

mance positively (NET-1:NET-9,NET-2:NET-3).

• Increasing linear layer sizes in topology affects the performance positively

(NET-6:NET-7).

• Increasing Graph Convolutional Layer sizes does not always affect positively

(NET-3:NET-4).This result may be related to the drop in the last layer in NET-4.

• Increasing the linear layer count in topology does not affect the performance

(NET-6:NET-8).

We can see that adding a new Graph Convolutional Layer affects the performance

positively as expected but having an additional graph convolutional layer makes the

learning process much more longer. So, we will not be using NET-9 for the rest of

the experiment but we will be using NET-1 instead since the difference is small.
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Table 4.7: Visual results of Network Topology experiment (1).
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Table 4.8: Visual results of Network Topology experiment(2).
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4.2.3 Adjacency Impact on the Loss function

We have used a problem specific loss function (41) and mentioned it on the model

section.

Ltotal = Lseed + αLsmooth. (41)

However, this specific loss function added a new hyperparameter to our learning pro-

cess, and in order to analyze the effects of this parameter, we should run experiments

We selected ten different alpha values to compare with each other. The architectural

details of the network (4.9), epoch/loss (4.5) and accuracy/loss (4.6) figures are given.

Table 4.9: Architectural details of the changing adjacency impact on the loss function

experiment.

Layers

6(g)× 36(g)× 72(g)× 144(g)× 288(g)× 144(g)× 72(g)× 36(g)× 4

Epoch Learning Rate Activation Func. Batch Size Labeled Face Ratio Dropout

100 0.001 ReLU 10 %25 0
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Figure 4.5: Loss plot of different adjacency impact on the loss function in the net-

work.
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Figure 4.6: Accuracy plot of different adjacency impact on the loss function in the

network.

Table 4.10: Best accuracy values for different adjacency impacts (1).

α 0 0.2 0.4 0.6 0.8 1.0

Accuracy 0.903 0.949 0.955 0.954 0.949 0.952
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Table 4.11: Best accuracy values for different adjacency impacts (2).

α 1.2 1.4 1.6 1.8 2.0

Accuracy 0.950 0.949 0.951 0.952 0.950

It is easy to interpret that we should expect fewer stains with the lower rates of alpha.

The results are supporting the expectation which is a positive for our model. However,

the effect of neighbouring faces seem to cause disruptions on the joining points. For

this reason, accuracies are increasing at the beginning and then starts to decrease.

Based on the results (4.10, 4.11), α value of 0.4 performed best. So, for the rest of

the experiments, we are going to set the alpha value as 0.4.
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Table 4.12: Visual results of Adjacency Impact on the Loss function experiment (1).
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Table 4.13: Visual results of Adjacency Impact on the Loss function experiment (2).
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4.2.4 Activation Function

The activation functions are attached to each neuron in the network and decide whether

or not to block the activity of it or not. Having them in every layer makes their role

important. The choice of activation functions in deep networks has a significant effect

on the training dynamics and task performance [44]. Choise of activation functions

are problem dependent.

We selected four different activation functions for comparison. They are ReLU,

Leaky-ReLU, Tanh and Sigmoid. They are all non-linear activation functions, and

they all have prominent features. The architectural details of the network (4.14),

epoch/loss (4.7) and accuracy/loss (4.8) figures are given.

Table 4.14: Architectural details of the different activation functions experiment.

Layers

6(g)× 36(g)× 72(g)× 144(g)× 288(g)× 144(g)× 72(g)× 36(g)× 4

Epoch Learning Rate Labeled Face Ratio Batch Size Smoothness Factor Dropout

100 0.001 %25 10 0.5 0
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Figure 4.7: Loss plot of different activation functions in the network.

0 20 40 60 80 100
Epoch

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Relu
Sigmoid
Tanh
Leaky Relu

Figure 4.8: Accuracy plot of different activation functions in the network.

Table 4.15: Best accuracy values for different activation functions.

Activation func. ReLU L-ReLU Tanh Sigmoid

Accuracy 0.934 0.938 0.924 0.717

Based on the results (4.15), L-ReLU performed best. However, ReLU and Tanh also

performed similarly. The reason why Sigmoid performed poorly should relate to the

problem of vanishing gradients. Sigmoid function saturates and kills the gradients by
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its nature. So, for the rest of the experiments, we avoided using Sigmoid, and mostly,

we used ReLU.

Table 4.16: Visual results of Activation Function experiment.
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4.2.5 Dropout

Dropout is a technique for improving neural networks by reducing overfitting [45].

So, it is a regularization technique and widely used in current state-of-art models.

We selected four different dropout ratios for comparison. They are 0, 0.1, 0.3 and 0.5.

The architectural details of the network (4.17), epoch/loss (4.9) and accuracy/loss

(4.10) figures are given.
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Table 4.17: Architectural details of the changing dropout ratio experiment.

Layers

6(g)× 36(g)× 72(g)× 144(g)× 288(g)× 144(g)× 72(g)× 36(g)× 4

Epoch Learning Rate Activation Func. Batch Size Smoothness Factor Labeled Face Ratio

100 0.001 ReLU 10 0.5 %2.5
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Figure 4.9: Loss plot of different dropout values in the network.
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Figure 4.10: Accuracy plot of different dropout values in the network.
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Table 4.18: Best accuracy values for different dropout values.

Dropout 0 0.1 0.3 0.5

Accuracy 0.937 0.912 0.876 0.840

Based on the results (4.18), zero dropout performed best. This result shows that we

have no overfitting in our training model. This may be related to having different

graphs for each of our models. So, for the rest of our experiments, we will not use the

dropout technique.

Table 4.19: Visual results of Dropout experiment.
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4.2.6 Batch Size

More extensive networks and large datasets result in longer training times which im-

pede progress of research and development [46]. The stochastic gradient descent

backpropagation method allows handling training using batches and is also an effi-
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cient way of parallelization. Nevertheless, it has been observed that when using large

batch sizes, there is a persistent degradation in generalization performance - known

as the "generalization gap" phenomenon [47].

We selected five different batch sizes to compare with each other. The architectural

details of the network (4.20), epoch/loss (4.11) and accuracy/loss (4.12) figures are

given.

Table 4.20: Architectural details of the changing batch size experiment.

Layers

6(g)× 36(g)× 72(g)× 144(g)× 288(g)× 144(g)× 72(g)× 36(g)× 4

Epoch Learning Rate Activation Func. Labeled Face Ratio Smoothness Factor Dropout

100 0.001 ReLU %2.5 0.5 0
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Figure 4.11: Loss plot of different batch sizes in the network.

37



0 20 40 60 80 100
Epoch

0.60

0.65

0.70

0.75

0.80

0.85

0.90
Ac

cu
ra

cy

5
10
20
40
80

Figure 4.12: Accuracy plot of different batch sizes in the network.

Table 4.21: Best accuracy values for different batch sizes.

Batch Size 5 10 20 40 80

Accuracy 0.926 0.935 0.934 0.934 0.928

Based on the results (4.21), batch size ten performed best. However, batch size 40

performed very similar with respect to 10. In order to take advantage of paralleliza-

tion, 40 is four times better than 10. So, for the rest of our experiments, we will use

the batch size 40.
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Table 4.22: Visual results of Batch Size experiment.
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4.3 Evaluation

We evaluated our method on the Princeton Segmentation Benchmark dataset, as we

mentioned in the dataset section. The benchmark comprises a data set with 4,300

manually generated segmentations for 380 surface meshes of 19 different object cat-

egories, and it includes software for analyzing 11 geometric properties of segmenta-

tions [48]. We will only be using the human object category in this benchmark.

While evaluating our method with the 20 different objects, we have used the leave-

one-out cross-validation technique. This technique requires using 19 objects for the

training except for the one which we used in testing.
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We have presented several observations in the experiments section; We have also

shown that the labeled face ratio affects our score in an exponentially decreasing man-

ner. Thus, before having benchmark scores, we have tried our method with several

labeled ratios (4.23).

Table 4.23: Accuracy comparison of our method for human category of 3D shapes in

Princeton Segmentation Benchmark with different labeled face ratios.

Sparsity %0.2 %0.8 %1.6 %2.5 %5 %12.5 %25 %50

Accuracy 0.659 0.797 0.838 0.847 0.855 0.870 0.874 0.877

After testing our method with the different labeled face ratios, we decided to get the

benchmark score for three different labeled face ratios. By doing this, we will be

showing how sparsity can be handled by using the method we have used.

The Rand Index scores of segmentation for the human category of 3D shapes in

Princeton Segmentation Benchmark with different methods is given below (4.24).

The lower Rand Index scores stand for better performances.

Table 4.24: The Rand Index scores of segmentation for the human category of 3D

shapes in Princeton Segmentation Benchmark with different methods.

Method Ours %50 Ours %12.5 Ours %1.6 PMC[49]

Rand Index 0.112 0.116 0.124 0.059

Method Scribble[7] WcSeg[50] RandCuts[51] NormCuts[51]

Rand Index 0.064 0.084 0.117 0.126

Method Kmeans[52] SDF[22] FitPrim[53] CoreExtra[54]

Rand Index 0.136 0.133 0.139 0.199
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CHAPTER 5

CONCLUSIONS AND DISCUSSION

In this thesis, we have produced and analyzed a mesh segmentation method for the

sparsely labeled 3D objects. We have adopted the mesh structure into a graph model

in order to take advantage of Graph Convolutional Neural Networks. We tried to

manage sparsely labeled training data by using the graph structures and also editing

the loss function in the way which uses the adjacency information more effectively.

As we mentioned before, using the Graph Convolutional Neural Networks for the

sparsely labeled 3D mesh segmentation problem is novel to our work. Analyzing the

behaviors of the network for the different setups has been shown experimentally in

the experiments section. We have shown the power of Graph Convolutional Neural

Networks on the sparsely labeled mesh segmentation problem by reaching similar

results with the labeled face percantages of %1.6 and %50. Using the semi-supervised

learning method for sparsely labeled data was one of the primary motivation that we

have mentioned and the results were sufficient to prove the power of the method we

have used in terms of handling the sparsity.

In the evaluation part of this thesis we have shown that using the proposed method, we

got similar results to most of the state of the art methods by only using 1.6 percent of

face label information and by only having six features for each face. Still, our method

does not rank away the best compared with some of the leading methods. However,

training with more data than only 19 models and further improving the method as

described in the future work, will improve its performance significantly.
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5.1 Future Work

Most of our erroneous labels are around the joints of segments as all our visual re-

sults clearly show. We have come up with a number of ideas that would increase

the performance for the faces around joints. Firstly, we may turn this model into a

GAN network which consists of two networks. While one network remains the same

and trying to segment our model, the another network is pre-trained to check if the

segmentation is done correctly. By doing this, we could come up with a solution that

is closer to the segments that we used while training the pre-trained network. An-

other idea is adding new and more powerful features that include more information

about the face, such as curvature. Apart from all these suggestions, we could add a

post-process for cleaning the missing stains or bad junction points.
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