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ABSTRACT 

 

PREDICTION OF THE EFFECTS OF SINGLE AMINO ACID VARIATIONS  

ON PROTEIN FUNCTIONALITY  

WITH STRUCTURAL AND ANNOTATION CENTRIC MODELING 

 

 

 

Cankara, Fatma 

MSc., Department of Bioinformatics 

Supervisor: Assoc. Prof. Dr. Nurcan Tunçbağ 

Co-Supervisor: Assoc. Prof. Dr. Tunca Doğan 

 

January 2020, 142 pages  

 

Whole-genome and exome sequencing studies have indicated that genomic variations may 

cause deleterious effects on protein functionality via various mechanisms. Single 

nucleotide variations that alter the protein sequence, and thus, the structure and the 

function, namely non-synonymous SNPs (nsSNP), are associated with many genetic 

diseases in human. The current rate of manually annotating the reported nsSNPs cannot 

catch up with the rate of producing new sequencing data. To aid this process, automated 

computational approaches are being developed and applied on the unknown data. In this 

study, we propose a new methodology to collect and organize the information related to 

the effects of nsSNPs at the amino acid sequence level from various biological databases 

and to utilize this information in a supervised machine-learning based system to predict 

the function disrupting capacities of mutations with unknown consequences. For this, 

157,138 annotated mutation data points (89,363 deleterious and 67,775 neutral) were 

collected from multiple resources such as UniProt, ClinVar and Protein Mutant Database. 

For each mutation data point, a feature vector was constructed using protein 3-D structure 

information and site-specific feature annotations in the UniProt database. The information 

about the spatial proximity of the reported mutations to these protein features were also 

incorporated to the feature vector. The system was trained with these feature vectors and 

their respective labels in a supervised fashion using random forest, where the ultimate aim 

was to construct a model that classifies unknown mutations either as deleterious or neutral. 
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The prediction model was evaluated in detail to observe the contribution of different 

feature types to the prediction success. The finalized model displayed a satisfactory 

performance (AUROC:0.86, precision: 0.77, recall 0:90, accuracy: 0.78, F1-score: 0.83 

and MCC: 0.54) on the independent test dataset. Besides, the performance of the proposed 

model was compared to the widely used variant effect predictors in the literature, over 

standard benchmark datasets. As future work, we plan to conduct a case study over 

interesting prediction examples and to validate our results via literature-based 

information. Finally, we plan to construct a ready-to-use command line based variant 

effect prediction tool and to share it with the research community over an open access data 

repository. We believe that this system will be complementary to the well-known methods 

in the literature and its incorporation to ensemble-based tools will increase the 

performance of the state-of-the-art in variant effect prediction. 

 
 

Keywords: Single amino acid variations, variant effect prediction, protein sequence 

annotations, machine learning, random forest. 
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ÖZ 

 

TEKİL AMİNO ASİT MUTASYONLARININ PROTEIN İŞLEVLERİ ÜZERİNDEKİ  

ETKİSİNİN YAPISAL VE ANOTASYON ODAKLI YAKLAŞIMLA TAHMİNİ 

 

 

Cankara, Fatma 

Yüksek Lisans, Biyoenformatik Bölümü 

Tez Yöneticisi: Doç. Dr. Nurcan Tunçbağ  

Eş Tez Yöneticisi: Doç. Dr. Tunca Doğan 

 

Ocak 2020, 142 sayfa  

 

 
Genom üzerindeki tekli nükleotid değişiklikleri protein dizisi, yapısı ve kararlılığı 

üzerinde yarattığı etkiler aracılığıyla proteinlerin işlevlerinde önemli değişikliklere sebep 

olabilir. Bu sinonim olmayan tek nükleotid polimorfizmleri, insanda pek çok hastalığın 

oluşumundan sorumludur. Uzmanların bu mutasyonları anote etme (etiketleme) hızı, 

günümüzde yeni dizi verisi üretme hızının çok gerisinde kalmaktadır. Bu süreci 

hızlandırmak için hesaplamalı yöntemler geliştirilmekte ve otomatize şekilde bilinmeyen 

veri üzerinde uygulanmaktadır. Bu çalışmada, sinonim olmayan tekli nükleotid 

değişikliklerinin amino asit seviyesinde gösterdikleri etkiler hakkındaki bilgilerin çeşitli 

veri tabanlarından toplanması ve organize edilmesi, bunun yanında bu bilginin etkisi 

bilinmeyen tekli nükleotid değişikliklerinin proteinin işlevine zarar verme 

potansiyellerinin gözetimli makine öğrenmesi yaklaşımı kullanarak tahmini için bir 

metodoloji sunulmuştur. Bu amaçla, UniProt, ClinVar ve PMD gibi çeşitli veri 

tabanlarından anote edilmiş 157,138 mutasyon (89,363 zarar gösteren ve 67,775 zarar 

göstermeyen) toplanmıştır. Her mutasyon veri noktası için, ilgili genin ürünü olan 

proteinin 3 boyutlu yapı bilgisi ve bölgesel UniProt dizi anotasyonları kullanılarak bir 

öznitelik vektörü oluşturulmuştur. Ayrıca, her mutasyon öznitelik vektörüne o 

mutasyonun, üzerinde bulunduğu genin ürünü olan proteinin bölgesel dizi anotasyonlarına 

olan uzaysal uzaklığı eklenmiştir. Bu öznitelik vektörleri ve bunların etiketleri 

kullanılarak, amacı mutasyonları protein işlevine zarar verenler ve zarar vermeyenler 

şeklinde sınıflandırmak olan ve rastgele orman algoritmasını kullanan bir makine 

öğrenmesi modeli geliştirilmiştir. Bu model çeşitli öznitelik alt gruplarının tahmin 
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başarısına etkisini ölçmek üzere detaylı bir şekilde değerlendirilmiştir ve nihai model 

bağımsız bir test seti üzerinde tatmin edici bir başarıya ulaşmıştır (AUROC:0.86, kesinlik: 

0.77, duyarlılık 0:90, doğruluk: 0.78, F1-puanı: 0.83 ve MCC: 0.54). Ayrıca,  modelin 

performansının, standart bir veri seti üzerinden mutasyon etki tahmini yapan yaygın 

yöntemlerin sonuçlarıyla kıyaslaması gerçekleştirilmiştir. Gelecekte yapılacak çalışmalar 

olarak, bir vaka çalışması yürütülerek, yeni mutasyon etki tahmin sonuçlarının literatür 

bazlı bilgi ile doğrulanması planlanmaktadır. Ayrıca, geliştirilen yöntemin kullanıma 

hazır bir komut satırı aracı haline getirilerek açık kaynaklı bir veri deposu vasıtasıyla 

araştırma topluluğuyla paylaşılması amaçlanmaktadır. Geliştirilen yöntemin literatürde 

sıkça kullanılmakta olan mutasyon etki tahmini araçlarıyla beraber olarak kullanılmasının 

tamamlayıcı bir etki yaratacağı ve bu yöntemlerin tahmin performanslarını arttıracağı 

düşünülmektedir. 

 

Anahtar Sözcükler: Tek amino asit değişimleri, varyasyon etki tahmini, protein dizi 

anotasyonları, makina öğrenmesi, rastgele orman 
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CHAPTER 1 

 

 

 

1. INTRODUCTION & BACKGROUND INFORMATION 

 

 

1.1 Proteins and Their Functions  

 

Proteins are critical molecules in all organisms, and they are responsible for a variety of 

tasks in the cell; including but not limited to biological process regulation, structural 

assembly, cellular organization, storage, transport, defense, regulation of DNA replication 

and messaging. The amino acid sequence that makes up the protein defines its function as 

well as its folding state, binding properties, stability and localization in the cell. A 

protein’s sequence also defines its final structure; individual structural elements and their 

organization in the protein. There are well-characterized elements that constitute the 

protein 3D structure such as alpha-helices, beta sheets, coils and turns.  Their organization, 

number and spatial presence with respect to the other ones determine the unique 

quaternary structure and thus the function of the protein. An example figure for some 

protein structures is given in Figure 1.1 (Abe et al., 2009). Protein structures and their 

folded states reflect the function of the proteins better than the sequence information. A 

protein’s function can be deduced from its 3D structure; because certain folds and motifs 

can define certain functions (Berg et al., 2002). In addition to that, since structure is better 

conserved than the sequence, protein function can be inferred from homologous organisms 

in more accurate manner (Illergård et al., 2009). For these reasons focusing on the 

structure gives a more in-depth and accurate information when the question that is being 

asked is about the protein function. When changes occur in protein sequence, this may 

affect the processes that proteins are involved via various mechanisms. These changes that 

result in faulty protein products or faulty pathways primarily occur in DNA sequence and 

they are successively inherited to the product itself; changing its native structure or its 

stability. Given the relationship between the structure and the function, changes in the 

protein sequence that alter the structure may cause serious deleterious effects on the 

protein’s function. Recent advances in sequencing technologies have revealed a large data 

in terms of sequence variations whose effects on proteins are open to interpretation. 

Changes that result in sequence variations may or may not alter the structure and 
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phenotype, ultimately, they may have beneficial, neutral or deleterious effects on the 

survival and fitness of the organism. 

 

 
 

Figure 1.1. Ribbon diagrams of protein architectures: a lysozyme, b serum albumin, c 

avidin, d myoglobin, and e ferritin taken from PDB ID: 2VB1, 1BJ5, 1AVD, 4MBN, and 

1DAT, respectively. Reprinted from ‘Artificial Metalloproteins Exploiting Vacant Space: 

Preparation, Structures, and Functions’ by Abe et al., 2009, Topics in Organometallic 

Chemistry. 

1.2. DNA Variations 

 

1.2.1. Single Base Pair Substitutions 

 

Changes in DNA sequence are results of mutations or structural reorganizations. A 

mutation is defined as any change in a DNA sequence that results in a different, abnormal 

or rare allele from normal one that is prevalent in the population. A mutation may or may 

not be significant depending on the consequences it introduces. In the most common form, 

mutations may alter a single nucleotide on the DNA sequence. Resulting variations are 

called Single Nucleotide Variants (SNVs) and they constitute the majority of sequence 

variations (Bromberg et al., 2013). Studies show that a typical overall genome differs from 

the reference human genome around 4.1 million to 5.0 million sites (The 1000 Genomes 

Project Consortium, 2012).  

 

When two alternative bases occur at appreciable frequency in the human population, 

which at least 1% of the population, they are named as Single Nucleotide Polymorphisms 

(SNPs). In other words, a SNP is when a change is expected at the position for any member 

in the species, on the other hand an SNV is when there is a variation at a position that 

hasn’t been well characterized. Polymorphisms are common in the populations. In the case 
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of polymorphisms, no single allele is considered as the standard one; rather two or more 

allele are equally acceptable options. Roughly 10 million such sites, on average about 1 

site per 300 bases, are estimated to exist in the human population such that both alleles 

have a frequency of at least 1% (Belmont et al., 2003). Constituting the most frequent type 

of DNA variation in human population, many SNPs are believed to express the most of 

human genetic diversity, as well as to cause phenotypic differences among individuals 

(Sachidanandam et al., 2001; Ramensky, 2002). 

 

Genome-wide association studies (GWAS) have identified thousands of single nucleotide 

polymorphisms (SNPs) associated with a large number of phenotypes in order to 

understand the relationship between SNPs and complex and/or monogenic diseases 

(Hindorff et al., 2009; Manolio et al., 2008). These studies showed that the majority of 

disease-associated SNPs are located in noncoding regions of the genome, non-coding 

SNPs (ncSNPs), where they do not show their effects on the phenotype but rather are 

located on regulatory regions. These ncSNPs are believed to have effects on promoters, 

enhancers and non-coding RNA genes (Halushka et al., 1999; Hindorff et al., 2009). 

ncSNPs may also alter transcription factor motifs or change nearby residues and in turn 

alter the way of activation (Farh et al., 2015; Khurana et al., 2016). As they do not show 

any observable phenotypical outcome, these findings show that they exert their effects by 

changing regulatory codes in the genome. Although association studies showed a very 

strong connection between diseases and ncSNPs, research to understand functional 

consequences of sequence variations mainly focused on coding SNPs, non-synonymous 

SNPs in particular, due to the difficulties in interpreting non-coding mutations given the 

incomplete annotation of regulatory elements, diversity of non-coding functions and 

potentially still unknown mechanisms of regulatory control (Ward & Kellis, 2012). 

 

SNPs that are located in coding regions of the genome (cSNPs) can be categorized as 

synonymous (sSNPs) and non-synonymous SNPs (nsSNPs). Synonymous SNPs are 

results of alterations of a single base in the DNA sequence; however, they do not affect 

the sequence of protein product due the phenomenon called codon-degeneracy. Since an 

amino acid can be recognized by more than one codon, when changes of that sort introduce 

another codon for the same amino acid in the mRNA sequence, product remains 

unchanged. Although synonymous mutations do not show a phenotypic consequence even 

though they occur in the coding segments, research showed that sSNPs share a similar 

likelihood of human disease association compared to nsSNPs (Chen et al., 2010). These 

silent mutations can affect gene expression, transcription, splicing, protein folding and 

mRNA stability; thus, they can cause significant effects on protein function, and changes 

in cellular response to different agents (Chamary et al., 2006; Edwards et al., 2012; Hunt 

et al., 2009; Pagani et al., 2005; Presnyak et al., 2015; Stergachis et al., 2013; Zwart et 

al., 2018). As a result of these effects, they are also shown to have associations with many 

diseases including pulmonary sarcoidosis, attention deficit/hyperactivity disorder, and 

cancer (Sauna & Kimchi-Sarfaty, 2011; Supek et al., 2014). Non-synonymous mutations, 

on the other hand, change the sequence of the protein product as a result of single 

nucleotide alteration in the genome. nsSNPs, together with SNPs in regulatory regions, 

are believed to have the highest impact on phenotype because most of the known genetic 
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variation associated with inherited human diseases occurs in protein-coding regions of the 

genome (Datta et al., 2015; Ramensky, 2002; Thomas & Kejariwal, 2004). As mentioned, 

nsSNPs change the amino acid sequence. Thus, they also show their effects on the protein 

level. These changes are expressed as single amino acid variations (SAVs) that indicates 

a change in the amino acid sequence due to a mutation on DNA sequence. Because the 

change in one nucleotide of DNA causes a change in the amino acid sequence that is to 

be translated, this switch, in turn, produces a new amino acid which will affect the nature 

of the protein itself. The human population is estimated to have 67,000–200,000 common 

nsSNPs and due to their disease associations, they provide a valuable information for 

variant interpretation (Ng & Henikoff, 2006).  

 

One of the major goals in human genetics is to understand the role of common genetic 

variants in susceptibility to common diseases. Given the challenges in evaluating the 

ncSNPs, long-assumed silent behavior of sSNPs and more readily observable wealthy 

outcomes of nsSNPs, studies to infer meanings from genomic changes focused on non-

synonymous mutations  (Bromberg & Rost, 2007; Karchin et al., 2005; Kumar et al., 

2009; Ramensky, 2002; Zhu et al., 2008). Most of the Mendelian diseases, diseases that 

are caused by a mutation in a single gene, arise from a single amino acid change in an 

encoded protein. Examples include phenylketonuria, cystic fibrosis, sickle-cell anemia 

and Huntington’s diseases. Databases such as Human Gene Mutation Database (HGMD) 

(Stenson et al., 2003) and Online Mendelian Inheritance in Man (OMIM) (Hamosh et al., 

2005) contain disease-causing nsSNPs that are responsible for almost half of the genetic 

changes known to cause a disease. Although the data in these databases mainly focus on 

Mendelian diseases, it is likely that these mutations also play important roles in many of 

the complex diseases (Barrett et al., 2011; Bishop et al., 2009; Botstein & Risch, 2003; 

Bush & Moore, 2012; Datta et al., 2015; Gorski et al., 2015; Hepp et al., 2015; Liu et al., 

2011; Ng & Henikoff, 2006; Thomas & Kejariwal, 2004) 

 

1.2.2. Structural Variations 

 

Other than single nucleotide changes on the DNA sequence, proteins and DNA may also 

comprise structural changes such as changes in copy number of genes (deletions, 

insertions and duplications), inversions and chromosomal location rearrangements 

(translocations, fusions). Structural variations are defined as changes in DNA regions that 

are greater than 1 kb in size (Stankiewicz & Lupski, 2010). Typical human genome 

contains estimated 2,100 to 2,500 structural variants, affecting around 20 million bases of 

sequence (The 1000 Genomes Project Consortium, 2012). These changes can affect a 

range of protein properties, such as stability, catalytic activity or the ability to interact with 

other molecules. 

 

Copy Number Variations (CNVs) are type of structural variations that result in changes 

in the number of copies of specific DNA segments. They can be stemmed from 

duplications, deletions or insertions. As they occur along a long segment in DNA, they 

may encompass more than one gene and cause genetic defects in individuals. CNVs may 
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account for 13% of the human genome; however, it is anticipated that with emerging 

techniques to detect CNVs, a larger proportion of them will be revealed (Stankiewicz & 

Lupski, 2010). Studies show that CNV’s are responsible for a number of disorders 

including but not limited to DiGeorge/velocardiofacial, Smith-Margenis, Williams-

Beuren and Prader-Willi syndromes (Bishop et al., 2009; Koolen et al., 2006; Lee & 

Scherer, 2010; Shaw-Smith et al., 2006). Additionally, autism, schizophrenia, epilepsy, 

Parkinson disease, Alzheimer disease and many more complex traits are shown to be 

resulting from CNVs in some fraction of patient DNAs (Stankiewicz & Lupski, 2010). 

Another structural variation, translocation, is observed in genomes when a segment from 

a chromosome is transferred to a different chromosome or to another region of the same 

chromosome without changing the DNA content of the segment. This type of variation 

results in a novel chromosome that did not exist in the native genome. When translocation 

joins two segments together, it is called a fusion. As translocations drastically change the 

organization in the genome, most of the times they result in disease conditions. One 

common example to such diseases can be Familial Down Syndrome which mostly is 

observed as a translocation between chromosomes 14 and 21 (O’Connor, 2008). 

Translocations may also be playing roles in certain types of cancers as they disrupt the 

gene function and cause a faulty product (Balmain, 2001). Final category of structural 

variants to cover here occurs as a result of inversions. Inversions are observed when two 

chromosomal segments join together after a breakage, but when one of them is inverted 

180 degrees before rejoining. Although overall DNA content remains the same, inversions 

may cause different diseases such as hemophilia A and Hunter syndrome; or common 

disease such as prostate cancer (Bondeson et al., 1995; Lakich et al., 1993). 

1.3. Efforts for Characterizing DNA Variations 

 

Up to this point, the importance of variations in the genome and how they may have 

implications in a lot of diseases or malfunctions in the organisms is highlighted with some 

background information. A considerable number of studies have been conducted to 

understand the consequences of human variation and most of these studies have been 

revolving around extrapolating the significance of SNPs and understanding the pathogenic 

results of them. However, given the abundance of uncharacterized SNPs and difficulties 

in identifying real causal SNPs due to the biases in experimental setups like linkage 

disequilibrium; it would be time-consuming, difficult, labor-intensive and expensive to 

try to identify functional consequences of SNPs on proteins and their disease relations by 

traditional experiments. As a result of these challenges and endeavor to interpret the 

underlying meaning of mutations, a number of computational algorithms and tools have 

been developed for automatically annotating these sequence variations, prioritization of 

amino acid changes or predicting their significance. These methods that are built for 

variant prioritization and effect prediction helped to gain insight into how they affect th’ 

gene's regulation and/or function of its protein products (Mooney & Klein, 2002). Each 

of these methods differ in the type of features they utilize in the data, their approach to 

evaluate the significance or their prediction mechanism. Among all, the most well-known 

tools are SIFT (Kumar et al., 2009) and PolyPhen-2 (Adzhubei et al., 2010). Other well-



 

6 

 

established methods include SNAP2 (Hecht et al., 2015), PROVEAN (Choi et al., 2012), 

MutationAssessor (Reva et al., 2011), PANTHER (Thomas et al., 2003) and SNPs3D 

(Yue et al., 2005). 

1.4. Machine-Learning Applications 

 

Machine learning is the study and usage of algorithms and statistical models to provide 

computers the ability to perform specific tasks without being explicitly programmed. 

Machine learning applications rely on the ability of the system to learn from the inherit 

nature of the data and on the inference made using patterns that data holds. The process 

of learning begins with examining and understanding the data, continues with building 

appropriate mathematical models to represent it.  Then the model aims to make predictions 

on new data and answers the questions asked. Machine learning applications are used in 

a wide range of fields such as finance, computer vision, image recognition, data analysis 

and robotics. 

 

Machine learning applications are also used in bioinformatics where understanding the 

underlying mechanisms in biological processes and inferring meanings from biological 

data matters. Many of the methods that are developed to characterize mutations and 

prioritize variants use machine learning models, as well. They provide robust, fast and 

generalized interpretations for analysis of DNA variations and their effects on the 

biological processes. Machine learning methods implement a number of statistical and 

computational algorithms and make predictions on biological data by extracting relevant 

information mathematically. Machine learning methods identify the data via its features. 

Relevance or redundancy of these features affect the performance of the algorithm. They 

can be categorized as supervised learning and unsupervised learning. In unsupervised 

models, the system is not provided with labels for the output data, rather it is expected to 

infer natural structure present within data itself. Cluster analysis (e.g. hierarchical 

clustering and k-means clustering) and principal component analysis can be given as 

examples to unsupervised learning methods. On the other hand, in supervised methods, 

the system is provided with the output labels that gives a prior knowledge for partition of 

data. One of the major types of supervised learning is classification. In classification, the 

aim is to predict a categorical response value or class label which is introduced to the 

system in the training phase. Separation can be binary classification where the class labels 

only have two categories or multiclass classification where there are more than two 

classes. The other major type of supervised learning is regression where the response value 

or prediction output is a continuous value. Figure 1.2 is added to show examples to 

supervised methods which include regression-based methods (e.g. logistic regression, 

generalized linear models), Naïve Bayes, Support Vector Machines (SVM), Artificial 

Neural Networks (ANN) and tree-based methods (e.g., decision trees and random forests). 
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Figure 1.2. Some commonly used machine learning algorithms are shown. Scope of this 

study includes supervised learning only. 

 

A typical machine learning approach to any sort of problem includes data pre-processing, 

splitting the data into test and training sets, feature selection on training data set, 

generating the model, running the model and getting the predictions, assessing the 

accuracy measurements and fine tuning the model (Figure 1.3). The model is then used to 

obtain predictions for new coming data.  

 

 
 

Figure 1.3. An example workflow for machine learning methods. 

 

 

1.4.1. Unsupervised Methods 

 

One of the well-known and widely used examples of unsupervised learning is clustering. 

Clustering is a learning method where similar data is partitioned into groups in order to 

reveal hidden internal structure of data. Since it is an unsupervised learning method cluster 
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analysis do not use any labels, rather it creates groups from scratch. It aims to partition 

data in a way that data points are very similar within groups, but as distinct as possible in 

different groups (Müller & Guido, 2015). There is no absolute best criterion on the best 

clusters produced as the nature of the question defines the homogeneity and separation of 

clusters. 

 

One of the widely used clustering methods is k-means clustering where data is clustered 

into k mutually exclusive groups. It works by iteratively assigning data points to clusters 

where the distance between data points and the mean or median location of the cluster is 

minimum.  The algorithm terminates when the assignment of clusters remains unchanged 

(Müller & Guido, 2016; Shalev-Shwartz & Ben-David, 2014). 

  

Another widely used clustering method is hierarchical clustering where data is grouped 

into multi-level tree or dendrogram. Hierarchical clustering is also an example of 

agglomerative clustering which refers to a type of algorithm that works by merging similar 

clusters from their single point clusters until some stopping criterion is met (Müller & 

Guido, 2015; Shalev-Shwartz & Ben-David, 2013) 

  

DBSCAN is also a clustering algorithm that works by identifying points that are in dense 

regions of the feature space, where many data points are close together. It does not require 

a pre-set cluster number, and it can capture clusters of complex shapes. It also can identify 

points that are not part of any cluster (Müller & Guido, 2015; Shalev-Shwartz & Ben-

David, 2013). 

 

1.4.2. Supervised Methods 

 

Examples for supervised methods include a wide range of algorithms. A very simple 

example is k-nearest neighbors where the algorithm finds the closest data points in the 

training set (nearest neighbor). Then the data point is grouped with similar data points 

whose distances are also closest to the same point. All of them is classified based on the 

class label of its nearest neighbor (Müller & Guido, 2015). New data points are assigned 

to one of these groups. 

 

Another example for supervised learning methods is simple linear regression. In linear 

regression algorithm, the aim is to find the parameters within a function that minimizes 

the mean squared error (the sum of the squared differences) between predictions and true 

target values (Müller & Guido, 2015). 

 

Naïve Bayes classifiers are also classified as supervised methods as they make use of pre-

defined labels. In Naïve Bayes method, a family of classifiers based on Bayes’ Theorem 

where in feature statistics is calculated for each one individually. It assumes independence 

among them meaning that the presence of a particular feature in a class is unrelated to the 

presence of any other feature (Müller & Guido, 2015). 
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Another category of widely used supervised learning algorithms include tree-based 

methods. Decision trees where a decision is reached by splitting the data into nodes based 

on rules generated during the classification (James et al., 2000; Mitchell, 1999), and 

random forests where multiple decision trees are generated for the same problem in order 

to obtain a consensus result (Breiman, 2001) are representatives of this class. Tree-based 

algorithms predict the label of an instance by following if/else statements until a final 

decision is reached. Final decision can be a continuous value or some category that makes 

decision tree a suitable method for both classification and regression tasks (Kotsiantis, 

2013) 

 

Support Vector Machines (SVM) (Cortes & Vapnik, 1995; Cristianini & Shawe-Taylor, 

2000) are also an example of supervised learning algorithms where the data is labelled as 

a result of a separation by an optimal hyperplane that is used as the discriminative 

classifier. SVMs use linear models to implement non-linear regression by mapping the 

input space to a higher dimensional feature space using kernel functions. In other words, 

it aims to find an N dimensional (N being the number of features) hyperplane that 

separates data in the best possible way. If the data is two dimensional, this hyperplane is 

a line that divides a planar surface to partition data. Among all possible planes, the one 

that maximizes the margin, the minimum distance between data points of both classes, is 

selected as the classifier. SVMs can be used for both classification and regression tasks 

(Müller & Guido, 2015; Shalev-Shwartz & Ben-David, 2013). 

 

Last but not least, Artificial Neural Networks (ANN) can be given as an example 

algorithm for supervised learning methods. ANNs are computational systems that are 

inspired by human brain and its capability to deliver information through its neurons -

nodes in computational terms. ANNs learn by examining labelled examples and 

automatically generating features, thus they are supervised learning techniques. ANNs 

take inputs and process it within some hidden layers by some non-linear function of the 

sum of its inputs (Schmidhuber, 2015). 

1.5. Aim of The Study 

 

It has been shown that genomic variations have the capacity to cause deleterious effects 

on protein functionality, and because of that, they are considered to be responsible for the 

occurrence of many different genetic diseases. These variations are important to 

characterize, as they can help to understand the underlying mechanisms of these changes, 

and further down the road, may help to develop treatments to cure these diseases by easing 

clinical interpretations. However, the current rate of manually annotating the reported 

nsSNPs cannot catch up with the rate of producing new sequencing data. To aid this 

process, automated computational approaches are being developed and applied on the 

unknown data.  

 

In this study, we aimed to develop a methodology to accurately predict the effect of 

mutations on protein functionality, as either deleterious or neutral, by utilizing protein and 
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mutation specific features, and by examining the contribution of different sets of structure 

and sequence-based features to the prediction performance. Objectives of the study can 

be listed as retrieving relevant data from different data sources, combining this data into 

a final clean data set, generating mutation feature vectors to be used as input to the 

prediction model, constructing and training a variant effect prediction model using random 

forest classifier, evaluating the importance of considered feature types and optimizing the 

final model to assess the performance for further use with newly introduced data. In our 

study, we assumed that quantizing the nature of the mutation, i.e. the change from wild 

type to mutant residue in terms of physicochemical properties such as polarity or volume, 

as well as mutation's correspondence with the functionally annotated regions on the 

protein, or the proximity of the mutation to these functional regions in the 3-D space, play 

an important role on the observed effect of that particular mutation. Thus, incorporating 

structure-based and sequence-based features together into the prediction model is 

expected to result in the accurate binary prediction of the effect of variations as deleterious 

or neutral. 

 

In this study, we proposed a new methodology to collect and organize the information 

related to the effects of nsSNPs at the amino acid sequence level from various biological 

databases and to utilize this information in a supervised machine-learning based system 

to predict the function disrupting capacities of mutations with unknown consequences. 

Our hypothesis was that, the incorporation of the information about the correspondence 

between the mutation and the site specific functional features (e.g. DNA binding regions, 

active sites, disulfide bridge forming residues and etc.), and the information regarding 

spatial proximity in-between when there is no direct correspondence, will be informative 

in terms of estimating the function disrupting capacity of the reported mutation on the 

respective protein.  Thus, to test our hypothesis, we constructed 68-dimensional mutation 

feature vectors for each data point using information from protein 3-D structures, 

physicochemical properties of mutations and site-specific functional annotations in the 

UniProt database and trained a random forest classifier to classify unknown mutations 

either as deleterious or neutral. In order to confirm the validity of our hypothesis, we 

checked the performance of different subsets of features presented in the feature vector 

and made a comparison. Combining structure and sequence information showed better 

performance than any of them used in a single form. We highlighted the importance of 

sequence annotations and showed their potential importance in variant effect prediction. 

We hope that this system will be complementary to the well-known variant effect 

predictors in the literature and will increase the performance of the state-of-the-art via its 

incorporation to ensemble based variant effect predictors in the future. 

1.6. Overview of the Thesis 

 

In Chapter 1, background information regarding sequence variations; their nature, types 

and importance is given in order to present a clear picture of the problem. We have also 

provided a brief description of the potential methodologies that are being used for 

addressing these problems. 
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In Chapter 2, we compared traditional and computation-based methods for prediction of 

sequence variations. We also gave a brief concept-wise explanation on machine learning 

methods as most of the computational methods use machine learning algorithms for their 

predictions. Finally, we classified the computational methods for the methodology they 

employ, input features they utilize and the underlying principles they carry.  

 

In Chapter 3, we explained our methodology from data collection to model building. We 

elaborated on the sources we gathered the data used in our study, how all the information 

is incorporated together and finally how our model is built. 

 

In Chapter 4, we showed the analysis of the data and our results upon training our model 

with different parameters. Models selected as best ones are shown in the results.  

 

And finally, in Chapter 5, we discussed our results and how they could be interpreted in 

the context of our data selection and features used. We also discussed how these findings 

may be used and further developed in future studies. 
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CHAPTER 2 

 

 

 

2.  LITERATURE REVIEW 

 

2.1. Traditional vs. Predictive Methods on the Study of Effects of SAVs on Proteins 

 

The ability to predict the disease-causing capacity of mutations holds a great importance 

for early detection of individuals that possess a high risk of carrying a particular disease 

and promises hope for personalized medicine applications (Kucukkal et al., 2014). 

Especially after the revelation of the diversity in the human genome, medical research has 

shifted to a more individual centric approach. This shift in methodology have been 

facilitated by the amount of SNP data available from research. After the completion of 

Human Genome Project, decreasing costs of sequencing individual genomes have 

generated a mass of individual-specific omics data that harbors a wealth of information 

(Ho et al., 2019). Personalized medicine approaches vastly target mining this data and 

find differences among individuals and understand each the genetic make-up in an 

individual basis. DNA mutations are the cause of many human diseases and they are the 

reason for natural differences among individuals by affecting the structure, function, 

interactions, and other properties of DNA and expressed proteins. The ability to predict 

whether a given mutation is deleterious or harmless is of great importance for the early 

detection of patients with a high risk of developing a particular disease and would pave 

the way for personalized medicine and diagnostics.  

 

Traditional methods considered single simple mutations as causatives of diseases and tried 

to associate them with observed phenotypes in order to understand the roots of diseases. 

Gene mapping is used to relate diseases to genotypes by identifying co-segregating 

markers among individuals. This was a valid assumption for single-gene or Mendelian 

diseases; however, it is also found out that most of the diseases carry a complex nature 

and single mutations cannot explain their causalities. In order to untangle this and find 

causatives of diseases that cannot be explained by single mutations, another approach, 

GWAS, had been developed. Genome-wide association studies (GWAS) are used in order 

to relate phenotypic traits to relevant SNPs for complex diseases (Tawfik & Spruit, 2018). 

GWA studies are carried out with hundreds of thousands of SNPs that are believed to 

capture the variation that causes certain diseases (Hirschhorn & Daly, 2005; W. Y. S. 
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Wang et al., 2005). It relies on the idea that genetic variations with alleles that are common 

in the population can shed light to the heritability of common diseases (Reich & Lander, 

2001). Although GWA studies helped the discovery of various SNPs that are associated 

with complex diseases such as Crohn’s disease, type II diabetes, cardiovascular and 

autoimmune diseases as well as cancer (Burton et al., 2007; Easton & Eeles, 2008; Lettre 

& Rioux, 2008; McCarthy et al., 2008; Mohlke et al., 2008; Samani et al., 2007), 

researches show that GWA studies actually are not as powerful as expected in terms of 

associating variants to phenotypes. Identified SNPs usually do not have a direct effect on 

the condition under study or have a small fraction in the causality (Frazer et al., 2009). 

However, they are located in the vicinity of the real causal SNPs since genotyped SNPs 

are chosen over the whole genome to increase the coverage (Ahmed et al., 2009; 

Amundadottir et al., 2009). This linkage disequilibrium situation can affect the 

interpretation of SNPs (Goddard et al., 2009). In addition to possible over estimations, 

GWA studies may also miss out some well-known genetic risk factors as the phenotypes 

are mostly considered complex and multiple factors are expected to contribute their 

presence. Together with linkage disequilibrium, contribution of multiple genetic and 

environmental factors and also the fact that number of SNPs are very higher than the 

number of samples (high-dimension, low-sample-size problem) introduce other 

challenges to GWA studies (Szymczak et al., 2009). GWA studies aim to find causal 

factors of diseases in genotype level. In other words, they try to link mutations to their 

induced diseases. However, given the complexity and challenges introduced throughout 

the experimentation process, one important aspect unfolds which is prioritizing the 

mutations to be tested in GWA studies. In addition to GWA studies, in the clinical part of 

understanding disease causalities, unraveling the potential effects of mutations after 

genetic testing or similar practices carries a great importance. Thus, instead of only relying 

on experimental results that require a tedious and time-consuming work to link mutations 

to diseases directly, implementing computational methods to model possible effects of 

mutations from the mutation specific or protein specific information is very significant.  

  

Given the challenges in experimental strategies that are just mentioned above, quantity of 

available variation data, the importance of readily characterizing variants without long 

experimentation processes and the need for prioritization of mutations for other 

downstream experiments, developing computational predictive methods have been a 

focus for variant analysis. Computational methods are not accurate enough to replace wet-

lab experiments however, they may help in selecting and prioritizing a small number of 

likely and tractable candidates from the pool of available data. Parametric statistical 

models accompanying traditional experimental approaches have limitations in terms of 

the analysis of the data as they have limited power for modeling high dimensional, non-

linear samples. However, most of the times biological data has a lot of dimensions and 

inherently very complex; and it encompasses a rich pool of information to extract 

meaningful relationships and infer patterns. Implementation of effective data mining 

strategies and machine learning algorithms on biological data have increased the ability 

to predict possible causalities (Ho et al., 2019). This comes from the ability of machine 

learning algorithms to handle multi-dimensional data. Methods utilizing machine learning 
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algorithms have shown to be explanatory on such high dimensional data that is otherwise 

very hard to explain. 

2.2. Variant Effect Assessment Using Predictive Approaches 

 

Given the magnitude and complexity of biological data, in order to catch the pace of 

improvements in science, predictive approaches come into play when it comes to 

evaluating the effects of sequence variations. Experimental approaches are more accurate, 

however; they fail to cover all possible mutation space. This fact shows us the importance 

of using predictive approaches for the purpose of variant effect assessment. Predictive 

approaches include machine learning and statistical methods. Their ability to interpret 

complex relations made machine-learning based and statistical methods a focus on 

evaluating variants and many other problems, including variant analysis, understanding 

biological data, inferring disease relations, revealing network patterns, making risk 

predictions or to making a more accurate diagnosis for certain diseases (Okser et al., 2014; 

Singh & Samavedham, 2015; Szymczak et al., 2009; Wei et al., 2009; Worachartcheewan 

et al., 2015). Table 2.1 provides a brief summary on the well-known methods. 

 

2.3. Classification of Variant Effect Prediction Methods Based on the Modelling 

Approach 

 

2.3.1. Probabilistic and Statistical Approaches 

 

Models developed to predict the effects of amino acid mutations can be grouped according 

to the approaches they take in terms of the way they make their predictions. One approach 

takes probabilistic or statistical models. In these methods, predictions and the performance 

of the method is calculated through a set of mathematical and probability calculations.  

 

A very widely accepted method SIFT (Ng & Henikoff, 2001) makes probability 

calculations in order to obtain its predictions. Workflow of SIFT can be seen in Figure 

2.1. In the methodology it follows, after searching and aligning related sequences, SIFT 

calculates normalized probabilities that an amino acid is tolerated in a protein sequence 

conditional on the most frequent amino acid being tolerated. It calculates these values for 

all possible mutations at each position from the alignment. If normalized probabilities are 

less than a cutoff, which is 0.05 by default, mutations are predicted to be deleterious; 

otherwise they are predicted to be tolerated. Probabilities are calculated through a Position 

Specific Scoring Matrix (PSSM) (Gribskov et al., 1987) that was constructed as a result 

of the multiple sequence alignment generated. A PSSM here is a l x 20 matrix where l is 

the length of the protein sequence. Each matrix entry pca is the probability of occurrence 

for amino acid a, at position c. Range for c goes up to l, and a represents any one of 20 

amino acids. 
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Table 2.1. Summary of some of the well-known methods for variant effect prediction. 

 

Method Features used 

Prediction 
Mechanism 

& 
Algorithm 

Input Output 

SIFT 
Sequence-

conservation 

PSSM 
scores with 

Drichlet 
priors 

Protein sequence and 
substitution, 

MSA and substitution 
dbSNP ID, protein ID 

Score ranging from 0 to 1 
[0: damaging, 1: neutral] 

Polyphen-2 

Sequence-
conservation & 

structural 
information 

Naive Bayes 

Protein sequence and 
variation, dbSNP ID, 

Protein ID and 
substitution 

Score ranges from 0 to a R+ 

[higher scores imply 
damaging capacity] 

SNPs3D 

Sequence- 
conservation & 

structural 
information 

SVM 

dbSNP ID, Protein 
accession number, 

Literature search, Gene 
ontology term 

SVM score 
[R+: neutral, R-: deleterious] 
[High Confidence > |0.5|] 

CanPredict 
Sequence 

conservation & 
GO annotations 

Random 
Forest 

Protein ID and 
variation, Protein 

sequence variation 

4 3 categories 
[Likely cancer, likely non-

cancer or not determined] 
 

PMUT 

Sequence 
conservation & 

predicted 
physico-
chemical 

properties 

Neural 
Networks 

Protein ID, Protein 
sequence, Multiple 

Sequence Alignment 

Score ranging from 0 to 1 
[Lower scores implying 

neutral cases, higher scores 
implying damage] 

SNAP 

Sequence-
conservation & 

sequence-
derived 

structural 
information 

Neural 
Networks 

Protein sequence 

Score ranges from -100 
(strong neutral prediction) to 

+100) strong effect 
prediction) 

 

SNPs&GO 

Sequence- 
conservation & 

structural 
information 

SVM 

Protein sequence and 
GO Terms and 

substitution, Protein ID 
and GO Terms and 

substitution 

Binary prediction (disease or 
neutral) and reliability index 

MutPred2 

Sequence- 
conservation & 

structural 
information 

Neural 
Networks 

Protein sequence and 
substitution 

Score reflecting the 
probability of pathogenicity 

MutationAssessor 
Sequence- 

conservation 
Statistical 
analysis 

Protein ID and 
substitution 

Functional impact score 
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Following formula is used for probability calculation 

 

𝑝𝑐𝑎 =  
𝑁𝑐

𝑁𝑐 +  𝐵𝑐
∗ 𝑔𝑐𝑎 + 

𝐵𝑐

𝑁𝑐 +  𝐵𝑐
∗ 𝑓𝑐𝑎  

 

where Nc is the total number of sequences in the multiple sequence alignment and gca is 

the sequence-weighted frequency that amino acid a appears at position c in the alignment 

(Henikoff & Henikoff, 1992). fca represents the pseudocounts that is calculated from 

Dirichlet mixture (Sjolander et al., 1996) and Bc is the total number of pseudocounts. 

Pseudocounts are added because the multiple sequence alignment does not represent all 

similar sequences since observed sequences are taken from a database search and they 

compensate for the space of all sequences (Henikoff & Henikoff, 1992). In case there are 

gaps in the alignment, the frequency of observing a gap in the position of interest is used 

to increment the count gca for each amino acid by 1/20 of gap frequency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Workflow of SIFT. Reprinted from ‘Predicting the effects of coding non-

synonymous variants on protein function using the SIFT algorithm’ by P. Kumar, S. 

Henikoff & P.C. Ng, 2009, Nature Protocols 
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Another method that makes use of probability is MAPP (Stone & Sidow, 2005). MAPP 

calculates quantitative scales for six physicochemical properties derived from sequence 

alignment and uses them to build weighted matrices to capture relevant information. After 

obtaining sequence alignment profile, it creates a vector that represents the occurrence of 

each amino acid throughout the alignment. Then, it creates a weighted matrix of 

physicochemical properties in which all the values are normalized to measure these 

properties in compatible units. Using this matrix, a 6 x 20 summary matrix is created that 

captures column means for each property. Later on, deviation of an amino acid from the 

alignment columns is calculated for each property and stored in a 6 x 1 vector of 

deviations. Finally, a correlation matrix is built for each property with respect to other 

properties. Using these matrices in a series of mathematical formulas, MAPP devises a 

probability-based rule and impact score thresholds are calculated for each mutation. 

Above this threshold, variants are predicted to be deleterious; and below they are predicted 

to be neutral. Seven analysis steps of MAPP are shown in Figure 2.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. MAPP analysis steps. Reprinted from ‘Physicochemical constraint violation 

by missense mutations mediates impairment of protein function and disease severity’ by 

E. A. Stone, & A. Sidow, 2005, Genome Research.  

 

 

There are a number of other methods that uses statistical or probabilistic analysis in 

different forms (Chasman & Adams, 2001; Lau & Chasman, 2004; Mathe et al., 2006; 

Saunders & Baker, 2002; Verzilli et al., 2005). For example, Verzilli et al. developed a 

hierarchical Bayesian multivariate adaptive regression spline (BMARS) model and tested 

their predictive performance by using data from mutagenesis experiments on lac repressor 

and lysozyme. Their methods showed to yield lower out-of-sample misclassification rates 

compared to other methods tested. In another example, Mathe et al. (2006) uses a co-

occurrence analysis that calculates the likelihood of a variant being deleterious versus 

neutral. They test their method with a specific range of data that only includes BRCA1 

variation. 
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2.3.2. Machine-Learning Approaches 

 

Another approach to study the impact of single amino acid variation includes the use of 

machine learning models. These models predict the effects of mutations using known data 

and give an outcome with varying prediction confidences. Depending on the nature of the 

problem, different machine learning algorithms can be used such as support vector 

machines (SVMs), tree-based algorithms, neutral networks and Naïve Bayes.   

 

SVMs are widely used to obtain predictions of disease-causing capacities of mutations as 

they can extract information from multi-dimensional data that is very hard to handle with 

other methods. Yue et al. (2005) employed SVMs in their method SNPs3D to partition 

the 15-dimensional feature space into two classes as disease-causing or neutral. They have 

used a radial based kernel to allow for complex surface topology to accommodate data in 

a better way. In another method Yue & Moult (2006) used SVMs this time to make 

predictions on features obtained from sequence only. Using a different kernel type, linear 

kernel, that fits the needs of the nature of features, they have trained their SVM model 

with five parameters mentioned above. For both models, they assigned weights to datasets 

in order to have them equally contribute to determination of partition space. Krishnan & 

Westhead (2003) has also tested an SVM model in order to distinguish neutral variants. 

In their paper, they have compared results from SVMs to results from decision trees and 

found out that SVM method shows a better generalized result for more realistic cases and 

it is less susceptible to protein-specific effects in the small learning set associated with a 

single protein than the decision tree. SNPs&GO (Calabrese et al., 2009) is another method 

that uses SVMs. An input vector of 52 values are fed into the classifier to obtain binary 

predictions. Capriotti et al. (2005), Tian et al. (2007), Bao & Cui (2005), Karchin et al. 

(2005), Kulkarni et al. (2008) are other methods developed using SVMs. 

 

Another widely used machine learning method for making predictions is tree-based 

methods. Decision Trees and random forests are implemented in variety of studies given 

their practically in interpreting the outcome and relatively simplicity of underlying 

mechanism. When comparing decision trees to SVMs in their paper, Krishnan & 

Westhead (2003) observed that decision trees are able to provide predictions with 

significantly lower error rates for certain data sets, however they are more susceptible to 

learning protein specific rules, making them error prone in heterogenous datasets. Random 

Forests are another type of tree-based systems where multiple trees are generated to obtain 

a consensus prediction. Since it relies on different separation criteria in each tree, it is 

more robust compared to a single decision tree. Bao & Cui (2005), employed a random 

forest model, along with an SVM model to compare two models like Krishnan & 

Westhead (2003). They built 1000 trees and showed that random forest was superior to 

SVM method in their analysis. Another method, Cancer-specific High-throughput 

Annotation of Somatic Mutations (CHASM) (Carter et al., 2009) have been developed by 

training a random forest classifier with the aim of discriminating between driver missense 

mutations and synthetically generated passenger missense mutations. 49 predictive 

features are used to train the classifier. Can-Predict (Kaminker et al., 2007) is also a well-

assessed method that uses random forests to predict cancer-associated mutations.  
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In Can-Predict, the classifier is trained on pathogenic mutation obtained from Catalogue 

of Somatic Mutations in Cancer (COSMIC) (Forbes et al., 2017) and neutral mutations 

from dbSNP (Sherry, 2001) databases. Instead of giving prediction using protein features, 

Can-Predict measures the impact of changes using three metrics; SIFT scores (Ng & 

Henikoff, 2001), Pfam-based LogR.E-value metric (Clifford et al., 2004) that predicts the 

impact of variation by characterizing the difference in fit of a wild-type version of the 

protein to a particular Pfam model and Gene Ontology Similarity Score (GOSS) that 

provides a measure of closeness of the gene in which the variant is found to other known 

cancer-causing genes. Three outcomes of these methods are fed into a random forest 

classifier to obtain final prediction on the consequences of mutations. An interactive 

webserver that does the same task with other methods is MutD (Wainreb et al., 2010). 

MutD distinguishes itself in that protein specific structural and functional information can 

be added while making predictions. MutD also uses a random forest-based classifier that 

is generated from 650 trees. 

 

Neural Networks is another important machine-learning algorithm that has been 

implemented in various methods with the goal of prediction of disease-capacity of 

mutations. One well-known example is SNAP (Bromberg & Rost, 2007; Bromberg et al., 

2008). Deriving features from sequence alone, SNAP uses a standard feed-forward neural 

network model with an input vector of 195 nodes, along with 50 hidden units. Features in 

the input vector are both categorical and continuous values depending on the feature 

represented. For example, changes in hydrophobicity, charge, size are represented by the 

severity of the change; an input of 100 representing a change from a positive charged 

residue to a negative charged residue, an input of 50 representing a change from positive 

residue to a neutral residue and an input of 0 representing a change from a positive charge 

residue to another positively charged residue. Some other features such as the presence of 

buried charge or an introduction of proline into an alpha helix are represented by a single 

binary node; with values of either 0 or 100, while predicted flexibility, SIFT and 

PolyPhen-2 scores are incorporated as their actual value. PMut (Carles Ferrer-Costa et al., 

2005) also uses neural networks as a way of obtaining predictions. It uses two neural 

network architectures, a large one that is used as the default one that includes 1 hidden 

layer, 20 nodes and 15 descriptors (C. Ferrer-Costa et al., 2004; Carles Ferrer-Costa et al., 

2002) and a small one  that includes 20 nodes and no hidden layer with 3 parameters. After 

training the classifier, a pathogenicity index ranging from 0 to 1 (values > 0.5 implying 

pathogenicity) and a confidence index ranging from 0 (low) to 9 (high) is reported. 

Capriotti et al. (2004) also employed neural networks in their method and by that they 

tried to reveal possible effects of mutation on protein’s stability, and through that 

understanding the capacity of mutation to cause aberrations in the protein. Problem again 

addressed via implementing a use standard feed-forward neural networks, with the back-

propagation algorithm as a learning procedure. Three different architectures are developed 

with increasing complexity to understand features that contribute the most to 

destabilization of the protein. N1 included 22 input neurons, 2 of accounts for temperature 

and the pH at which the stability of the mutated protein was measured, while the other 20 

nodes represent 20 amino acids. Residue corresponding to the wild type residue is set to -

1, mutant residue is set to 1 and all other are set to 0. In N2 architecture, one more node 
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that represents the relative accessibility of the mutated residue computed with the DSSP 

program (Kabsch & Sander, 1983) is added. Finally, in N3 architecture, 20 more input 

neurons (43 in total) are used to characterize 3D residue environment for each of 20 amino 

acids. Distance values are calculated for amino acids that are found within a certain radius. 

As expected, N3 performed better than the other two simpler methods.  

 

Final method to mention in this section that is used for the same purpose is Naïve Bayes. 

A well-known method PolyPhen-2 uses a probabilistic classifier and calculates the Naïve 

Bayes posterior probability that a given mutation is damaging for its prediction 

mechanism. A mutation is classified as benign, possibly damaging or probably damaging.  

Another example to methods using Naïve Bayes approach is MutationTaster (Schwarz et 

al., 2014, 2010). Similar to PolyPhen-2 it predicts the disease potential of the mutation 

using a Bayesian classifier to calculate probabilities for each case; namely disease. Naïve 

Bayes have some advantages in the sense that both discrete and continuous valued features 

can be incorporated into Naïve Bayes model. Additionally, it is a rather simple method as 

it does not contain any parameter to fine tune except for representing factored probabilities 

and smoothing, which is done by Laplace estimators.  

 

Each method mentioned above uses a different set of features, takes a different approach 

to give answers to the same problem using different algorithms and reasoning. All of them 

are applicable to certain data with certain limitations. This makes it inevitable to conduct 

a thorough investigation before using any of them for prioritization of variants. Despite 

the abundance of computational models that addressed the question of disease or 

functional effect prediction of mutations, the challenge resides in the biological 

interpretations of these effects. All of the methods above, predicts the effect of variations 

to some degree and helps to prioritize variants for clinical testing, drug development or 

personalized treatment options. However, they do not provide a direct association do 

diseases in most of the cases. Even though these methods can help in selecting certain 

variants over others, prevention and treatment strategies without interpreting the results in 

the context of human biology is not possible.  

2.4. Classification of Variant Effect Prediction Methods Based on the Input 

Features They Utilize 

 

2.4.1. Methods That Use Sequence Information 

 

Researches show that mutations that occur at evolutionarily conserved regions of the 

genome often have malign effects on the protein’s structure or function (Kumar et al., 

2009). These conserved regions are shown to possess important roles in protein’s function 

as they have been selected to survive through generations. As a result, mutations occurring 

in these regions are expected to have more severe effects than those occurring in non-

conserved regions. Conserved sequences in a protein’s structure are characterized through 

multiple sequence alignment of the protein across multiple organisms; either via 

alignment of consensus sequence of the same protein across organisms or via alignment 
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with its homologues (Kucukkal et al., 2014). This approach is particularly advantageous 

because it does not require any structure data. Given the gap between the number of 

sequences that are being characterized and the number of experimentally assessed 

structures, it does not seem close to validate structure information for all proteins for 

which sequence data is available (Schwede, 2013). As a result of this gap, and also due to 

the availability of sequence data, giving variant effect predictions through sequence 

information carries a great importance. The scope of methods that use sequence 

information is expected to cover a wider range of mutations as new sequence data is added 

to the existing ones (Kumar et al., 2009). As well as being a strength, relying only on 

sequence has its drawbacks, as well. Since the outcome of these methods are highly 

dependent on the multiple sequence alignment carried out, quality and depth of the 

alignment can affect the predictions (Kucukkal et al., 2014). There are a number of 

methods and servers that use sequence-derived information as their methodology 

including Sorting Intolerant from Tolerant (SIFT) (Ng & Henikoff, 2001), Alignment 

Grantham-Variation, Grantham-Deviation (Align-GVGD) (Tavtigian et al., 2008), 

Mutation Assessor (Reva et al., 2011) and Multivariate Analysis of Protein Polymorphism 

(MAPP) (Stone & Sidow, 2005). 

 

A very well-known tool SIFT (Ng & Henikoff, 2001), for example incorporates position-

specific information by considering only the position of mutation on the protein sequence 

and type of amino acid change in order to classify variants. Based on the generated 

alignment across selected sequences by SIFT, a normalized probability of a mutation 

being pathogenic or tolerable is calculated. If this value is less than a predefined cut-off, 

the mutation is predicted to be deleterious. For example, a single amino acid is observed 

throughout the alignment, any variant that occurs in that position is predicted to be 

deleterious; because it is hypothesized that this single amino acid is crucial to the function 

of the protein. On the other hand, if an amino acid of a certain class, i.e. hydrophobic, 

polar etc., is observed at a particular position, any change to an amino acid from the same 

class is predicted to be tolerant, and any change to an amino acid from another class is 

predicted to be deleterious. One important feature of SIFT is that it calculates a score 

called median conservation score. This is particularly important because as the outcome 

of the prediction is highly dependent on the quality of the alignment; the quality of the 

alignment is dependent on the sequences selected. If the sequences are selected from 

closely related organisms, they may not show enough diversity and a normally tolerant 

mutation may be predicted as deleterious. Median conservation score measures the 

diversity among alignments that helps to assess the reliability of sequences selected (Ng 

& Henikoff, 2003). 

 

Another method that is developed by Yue & Moult (2006) also makes us of a similar 

approach that only considers sequence related information. After constructing alignment 

profiles, five sequence features have been extracted: probability of accepting the amino 

acid mutation of interest taken from a generated Position Specific Scoring Matrix (PSSM) 

(Gribskov et al., 1987) in the same way that was done in the SIFT method, entropy at each 

position of the alignment that is calculated by Shannon’s entropy formula (Shannon, 1948) 

and summed over the 20 possible amino acids, mean entropy over the entire sequence, 
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standard deviation of the entropy over all positions and entropy at each position as 

expressed as Z score. All these features are extracted from sequence alone and used as the 

input set for classifier. This method showed a higher performance over a structure-based 

model developed by the same group (Yue et al., 2005).  

 

More examples on the methods that use sequence conservation alone includes 

Multivariate Analysis of Protein Polymorphism (MAPP) (Stone & Sidow, 2005). In 

MAPP method, the hypothesis that degree of protein impairment and disease severity 

might be correlated with the difference between the original and mutated residue’s 

physicochemical properties. Thus, MAPP makes its predictions by merging sequence 

alignments with the physicochemical characteristics in each position of the protein, based 

on observed evolutionary variation. It quantifies the physicochemical variation in each 

column of a multiple sequence alignment and calculates the deviation of candidate amino 

acid replacements from this variation. The greater the deviation, the higher is the 

probability that a replacement impairs the function of the protein, and the greater is its 

predicted effect on the function of the protein (Stone & Sidow, 2005). Physicochemical 

properties involved includes quantitative scales of hydropathy (Kyte & Doolittle, 1982), 

polarity (Stryer, 1995), charge (Stryer, 1995), side-chain volume (Zamyatnin, 1972), free 

energy in helical conformation (Muñoz & Serrano, 1994); and free energy in sheet 

conformation (Muñoz & Serrano, 1994). MAPP method has shown that physicochemical 

properties are very important in the degree of impairment and by this contributed to the 

study of amino acid variants by providing an explanatory mechanism underlying 

detrimental effects. 

 

One other method A-GVGD (Tavtigian et al., 2008) also uses sequence alignment and 

with a similar approach to MAPP. This method uses Grantham matrix (Grantham, 1974) 

scores between the wild type and mutated amino acids are used to score missense 

mutations against the range of variation present at their position in a multiple sequence 

alignment.  Sequence alignments and Grantham analyses are measures of evolutionary 

fitness that are indirectly tied to disease susceptibility. Thus, incorporating this feature 

into the analysis helped to distinguish between neutral and deleterious missense mutations. 

 

Last but not least, another method that uses sequence conservation information is 

MutationAssessor (Reva et al., 2011). MutationAssessor introduces a measure 

called functional impact score (FIS) that is calculated between the wild type and mutant 

amino acids using evolutionary conservation patterns in order to prioritize functional 

effects of mutations. As a new angle to look at the problem, this method involves the 

conserved residues among sequences called specificity residues into the analysis. Strong 

selection patterns across an entire protein family or within protein subfamilies are very 

likely the result of strong selection that disfavors amino acid residues not consistent with 

the conservation pattern, no matter their separate contributing factors, such as effects on 

protein stability or protein–protein interactions be. As a basis of the analysis, this method 

calculates FIS from two different scores, namely conservation and specificity scores 

where conservation score takes conservation across the entire family into account, while 

specificity score considers conservation within subfamily and variation between 
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subfamilies. Entropy throughout the alignments are calculated for both situations and 

these values are combined in order to get final values for impact assessment. A schematic 

representation of the method is given in Figure 2.3, showing derivation of functional 

impact score from multiple sequence alignments. The score is based on the evolutionary 

conservation of mutated residues. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Summary of the MutationAssessor method. Reprinted from ‘Predicting the 

functional impact of protein mutations: application to cancer genomics’ by B. Reva et al., 

2011, Nucleic Acids Research 

 

 

2.4.2. Methods That Use Structural Information 

 

There has been a continuous effort and progress in experimentally or theoretically 

discovering the 3D structures of proteins. Publicly available structure data is deposited in 

Protein Data Bank (PDB) (“The Protein Data Bank.,” 2003). When experimental methods 

are unable to reveal 3D structure of a protein, modeling approached are used to predict the 

structure using existing similar proteins or using ab-initio techniques which utilizes 

protein’s bio-physical properties. Despite being far from characterizing structure for all 

proteins whose sequences are available, the models deposited so far has helped research 

community use structure information in a variety of studies. One of these categories of 

studies is the prediction of functional or structural effects of variants through 3D structures 

(Glusman et al., 2017). Although, predicting the functional effects of proteins from 

sequence conservation helps to characterize variants, it does not elaborate on the 

mechanism of the change. Mapping mutations to protein’s three-dimensional (3D) 

structure may shed light into the mechanism by which that mutation disrupts function of 

the protein (Glusman et al., 2017). There are only few methods that solely use structure 

information and most of them do not give direct meanings into the disease capacity of 
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mutations, rather they explain mutation’s effects on protein’s stability or structure. Level 

of impairment as a result of the mutation of interest can be inferred from the outcome of 

these tools. Several tools integrate 3D visualization of proteins and map variants on the 

protein; however, they do not provide a prediction of their consequences (Cerami et al., 

2012; Douville et al., 2013; Mooney & Altman, 2003; Niknafs et al., 2013). Some tools 

on the other hand, in addition to making visualization on 3D structure possible, allows 

analysis of variants through structure-derived calculations. STRUM, for example, uses 

folding energy calculations and the difference of values in this feature upon mutation 

introduction to give a glimpse of the effect of new variant (Quan et al., 2016). Another 

such tool is a pipeline called VIPUR that allows automatic interpretation of the effect of 

the mutation on the protein structure by using Rosetta energy terms (Baugh et al., 2016; 

Leaver-Fay et al., 2011). A well-known method that uses purely structure information to 

predict the change in protein stability, folding or protein-protein binding dynamics, not 

the disease-causing capacity, is FoldX (Schymkowitz et al., 2005). FoldX uses an 

empirical force field scoring function to calculate the free energy of proteins based on the 

3D structure. Depending on the 3D structure alone, FoldX gives its predictions when well-

characterized structures are present. Another method, BindProfX, assesses protein-protein 

binding free-energy changes upon introduction of a variant to the protein (Xiong et al., 

2017). Since mutations that affect protein-protein binding regions tend to disrupt the 

formation of necessary complexes or interactions between proteins, they are considered 

to be changing the function. Changes in the free energy is associated with the 

conformation of the protein, thus BindProfX helps to understand roles of disease related 

mutations associated with protein-protein interactions.  

 

One last method to give an example to methods that use structure information is developed 

by Yue et al. (2005) complementary to another method for the same purpose, however, 

uses only sequence information. This method makes use of a set of structural calculations 

such as reduction in hydrophobic area, overpacking, backbone strain, and loss of 

electrostatic interactions in order to understand the impact of single residue mutations on 

protein stability. Their model included values for the mutated state and/or values for the 

wild type state as well as differences for selected features between these two where 

applicable. Features used include difference in electrostatic energy, overpacking that 

means the atomic distance between the mutant residue and its nearest neighbor, relative 

accessible surface area, hydrophobic burial area change and crystallographic temperatures 

factors as continuous values; introduction of a cavity, introduction of electrostatic 

repulsion which is characterized by the presence of two residues with two like charged 

groups within a close atomic contact, presence of a mutation that results in a residue with 

zero solvent accessibility (buried charge), presence of a mutation that results in a polar 

group with zero solvent accessibility (buried polar) and breakage of disulfide bond upon 

mutation occurrence. All these features are derived from structure only.  

 

As seen from the different methodologies used by different tools, the use of structural 

information varies from method to method. While FoldX uses the 3D atomic coordinates 

of the protein, last method mentioned by Yue et al. (2005) extract structural features that 

characterize changes in the local environment around a mutated residue. 
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2.4.3. Ensemble and Consenses Based Methods 

 

Sequence-only or structure-only methods have advantages and disadvantages in different 

terms. While structure-only methods are applicable to a wide range of proteins whose 

sequences are available, they fail to reveal underlying mechanisms of action. On the other 

hand, structure-based methods can provide means to explain mechanism of action, 

however, they are only applicable to proteins whose 3D structures are characterized which 

limits its scalability. For this reason, most methods use a combination of structural and 

sequence features and then formulate a regression problem to predict scalar values, or a 

classification problem to predict a mutation as probably deleterious or neutral. A number 

of methods fall into this category including but not limited to PolyPhen-2 (Adzhubei et 

al., 2010), SNAP (Bromberg & Rost, 2007), SNPs&GO (Calabrese et al., 2009), LS–

SNP/PDB (Ryan et al., 2009), SNPeffect (De Baets et al., 2012), MutPred (Li et al., 2009), 

NetDiseaseSNP  (Johansen et al., 2013) and Mutation Taster (Schwarz et al., 2010). 

 

A very well-known and accepted method PolyPhen-2 (Adzhubei et al., 2010) makes use 

of eight sequence-based and three structure-based predictive features.  These features are 

selected from a larger set of candidate features by an iterative greedy algorithm. Since 

other features are shown to decrease or not affect the model performance, final analysis is 

done with eleven remaining features. Majority of these features are calculated as the 

difference of values between the wild type residue and mutant residue. In order to obtain 

sequence information, PolyPhen-2 employs clustering and multiple sequence alignment 

steps of closely related sequences to the query protein. From the alignment generated, 

PolyPhen-2 calculates profile scores using Position-Specific Independent Counts (PSIC) 

(Adzhubei et al., 2010) that shows how likely it is for a particular amino acid to occur at 

a specific position in the protein sequence, given the pattern of amino acid mutations 

throughout the alignment profile. Another sequence-derived feature is the sequence 

identity to the closest homologue that carries a different amino acid from the wild-type 

allele at the mutation site. Congruency of the mutant allele, which means the sequence 

identity between the analyzed protein and its closest homologue in which this amino acid 

is observed, is also used as a feature that is calculated through sequence alignment. As for 

structural features that are derived from 3D structures of query protein, the accessible 

surface area of the wild-type amino acid residue, the change in the hydrophobic propensity 

in the form of knowledge-based potential, crystallographic B-factor reflecting 

conformational mobility of the wild-type amino acid residue are considered. Change in 

the amino acid volume between wild type and mutant amino acids, and whether the site 

of the mutation resides within an annotated Pfam (Finn et al., 2014) domain are also used 

as features for PolyPhen-2 predictions. Using a fine-tuned set of predictive features from 

a wider range of possible features, PolyPhen-2 performs well compared to many other 

methods (Adzhubei et al., 2010). Pipeline for PolyPhen-2 method is given Figure 2.4.  
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Figure 2.4. PolyPhen-2 pipeline. Reprinted from ‘A method and server for predicting 

damaging missense mutations’ by I. A. Adzhubei et al., 2010, Nature Protocols 

 

 

Another powerful method is Screening for Non-Acceptable Polymorphisms or SNAP 

(Bromberg & Rost, 2007). SNAP requires only sequence information; however, it also 

calculates structure related features in order to make more powerful predictions. 

Biochemical features such as hydrophobicity, charge and size changes, the presence of 

buried charge, change in Cß-branching, or an introduction of proline into an alpha-helix 

are included into the prediction mechanism. From sequence alignment, likelihood of 

observing certain mutations in a position and the degree to which a residue is conserved 

in a family of related proteins are calculated. In order to calculate the latter, PSSM 

(Gribskov et al., 1987) constructions that are derived from PSI-BLAST (Altschul et al., 

1997) alignments are used. In addition to these two, PSIC are used to compile compiling 

position-specific weights that considers the overall level of sequence similarity between 

the proteins aligned. Above all, some predictions are made in order to incorporate more 

structure related information. Using (Rost & Sander, 1994; “Proteomics Protoc. Handb.,” 

2005) the relative solvent accessibility of each residue is predicted. PROFsec (Rost, 1996; 

Rost & Sander, 1993; “Proteomics Protoc. Handb.,” 2005) is used to predict secondary 

structures that the protein of interest holds, and PROFbval (Schlessinger et al., 2006) is 

employed to predict chain flexibility. Besides biochemical properties of the protein, 

family information is also taken into consideration that includes presence or absence of 

domain boundaries in the residue stretch, the model score of this domain, indication of 

whether the position is conserved and whether the mutant is a better match (according to 

the BLOSUM62 mutation matrix) to the consensus than the wild type from Pfam domains 

(Finn et al., 2014). Last but not least, 5 selected SWISS-PROT (Bairoch, 2000) 

annotations are introduced to the model as input as binary features to explain whether 

annotation is present at the position of mutation. These mentioned features along with 

some other binary or continuous features are fed into a classifier to make predictions. 

Given the variety of features that SNAP includes, it is shown that it outperformed many 

other similar methods (Bromberg & Rost, 2007). 
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SNPs&GO (Calabrese et al., 2009) is another example to combined methods. In addition 

to using structure and sequence derived information, for the first time SNPs&GO 

integrates Gene Ontology (GO) (Ashburner et al., 2000) score into its predictors. GO 

database provides tree-structured and controlled vocabularies (ontology) that describe 

gene products in terms of their associated biological processes, cellular components, and 

molecular functions. As for other features, SNPs&GO method utilizes the local sequence 

environment of the mutation of interest, features derived from sequence alignment, 

prediction data provided by the PANTHER (Thomas et al., 2003) classification system 

and a functional based log-odds score calculated considering the GO classification. Each 

of the features are encoded in feature vectors in accordance with the classification method 

used. For instance, transition from wild type residue to mutant residue is encoded in a 20-

dimensional vector where wild type residues are assigned -1, mutant residues are assigned 

1 and the rest is assigned 0. Another 20-dimensional vector is created for structural 

features that included the occurrence of the residue in a radius of 6 Å around the Cα atom 

and relative accessible surface area of the mutated residue in 3D. Four outputs (the 

predicted probability of deleterious mutation, the frequencies of the wild-type and mutated 

residue and the number of independent counts) of the PANTHER algorithm are also fed 

into the prediction in the form of a 4-dimensional vector. Sequence profile features are 

incorporated as the frequencies of both wild type and mutated residues at the position of 

interest along with a conservation index. Input schema for SNPs&GO is given in Figure 

2.5 where different features and their encoding are shown. 

 

 

 

 
 

Figure 2.5. SNPs&GO input schema. Reprinted from ‘Functional Annotations Improve 

the Predictive Score of Human Disease-Related Mutations in Proteins’ by R. Calabrese 

et al., 2009, Human Variation 

 

 

One more method to review in this section is a method called Disease-Susceptibility-based 

SAV Phenotype Prediction (SuSPect) (Yates et al., 2014). This is the first method to 

incorporate network information into the features used in order to make predictions. It has 

been shown that certain proteins and domains are susceptible to bear disease-associated 

variant compared to others (Yates & Sternberg, 2013). However, using this information 

alone can cause wrong predictions due to inherent biases in the data such as the abundance 

of information about well-studied proteins and lack of information for the remaining ones. 

It is also shown that susceptibility of proteins and domains to contain disease-associated 
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variants is also related to other features including the location in the interactome network 

of the protein or domain and the function of the protein. For this reason, SuSPect 

incorporates network information together with some structural and sequence-derived 

features in order to make its predictions. Some of the features calculated for the input 

vector includes degree centrality in the protein-protein network, number of Universal 

Protein Resource (The UniProt Consortium, 2019) annotations at the mutation position, 

score for the wild type and mutant residues from PSSM as well as score difference 

between two, difference between Pfam HMM emission probabilities for the wild type and 

mutant residues, a measure for sequence conservation, percentage sequence identity with 

the first sequence in the MSA to have the mutant amino acid at the mutation position and 

relative accessible surface area value for the residues. Network related features have 

shown to improve the performance of the method when compared to evaluations made 

without including them, showing the promising potential for this approach. 

 

In addition to individual classifiers that uses a certain method of prediction and certain 

features from the proteins, there also exists consensus classifiers, in other words meta-

predictors, which give predictions on the effects of mutations by combining the results of 

multiple individual classifiers. Owing to the fact that each of the individual classifiers that 

make up the consensus have different set of data, underlying principles and methodology, 

a combination of them is likely to give more accurate predictions. Some examples to 

consensus classifiers include CONDEL (González-Pérez & López-Bigas, 2011), PON-P 

(Olatubosun et al., 2012), Meta-SNP (Capriotti et al., 2013) and PredictSNP (Bendl et al., 

2014). Each of these classifiers have shown to outperform their constituting individual 

classifiers. PredictSNP, for instance, uses three independent datasets that are constructed 

in a very elaborative way to eliminate the bias as much as possible. It combines the 

predictions of MAPP, PhD-SNP, PolyPhen-1, PolyPhen-2, SIFT and SNAP considering 

their confidence level with their own predictions and calculates its consensus result for 

the mutations. Figure 2.6 shows the workflow diagram of PredictSNP. Output from this 

ensemble classifier is shown to outperform all of its individual predictors, thus it is 

considered to be more accurate. Adding the ability to interpret a wider range of mutations 

to its improved performance, consensus classifiers are considered as good alternatives to 

individual classifiers. 
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Figure 2.6. Workflow diagram of PredictSNP. Reprinted from ‘PredictSNP: Robust and 

Accurate Consensus Classifier for Prediction of Disease-Related Mutations‘ by Bendl et 

al., 2014, PLoS Computational Biology. 
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CHAPTER 3 

 

3. MATERIALS & METHOD 

 

This section describes the data sources, procedures for data pre-processing and 

methodology followed in detail. Three sections describe data retrieval, feature vector 

construction and development of the classifier respectively. 

3.1. Data Retrieval 

 

In order to train a machine-learning classifier in a supervised model, data with known 

outcome labels are needed to train the model. For this purpose, we have retrieved data 

from 3 different sources; UniProt (The UniProt Consortium, 2019), ClinVar (Landrum et 

al., 2018) and Protein Mutant Database (PMD) (Kawabata et al., 1999). These sources 

include mutations causing either a disease or an impairment in the protein function in 

common. Terminology to describe non-neutral mutations differ in each of them. For the 

sake of simplicity, throughout this study ‘deleterious and ‘non-neutral’ terms are used 

interchangeably in order to describe mutations that cause a disease or an effect on the 

protein’s structure, stability or function. Likewise, ‘non-disease or ‘neutral’ terms are used 

interchangeably to describe benign mutations that does not show any effects on the 

protein’s native function. From each of three data sources, fields describing a ‘data point’ 

for our study are picked out. A data point is characterized by UniProtID, wild type residue, 

mutant (substitute) residue and position of mutation on UniProt sequence.  

 

3.1.1. The Universal Protein Knowledgebase (UniProt) 

 

The Universal Protein Knowledgebase (UniProt) is a database that contains protein 

sequences, sequence variations, family information and functional annotations as well as 

other relevant data from cross-referenced external databases. UniProt hosts three different 

databases, namely UniProt Knowledgebase (UniProtKB) (The UniProt Consortium, 

2019), UniProt Reference Clusters (UniRef) (Suzek et al., 2007) and UniProt Archive 

(UniParc) (Leinonen et al., 2004), each of which holds a different sort of information. 
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UniProtKB contains functional information of proteins, their description, taxonomic 

classification, annotations along with many other protein specific features. It is composed 

of two sections; one section, Swiss-Prot, contains manually annotated proteins. 

Annotation are derived from literature and evaluated by curators. Another section, 

TrEMBL, contains automatically annotated information that is derived from 

computational analysis. Entries in TrEMBL are added to Swiss-Prot after curator 

evaluation. Currently Swiss-Prot contains 561,568 entries while TrEMBL contains 

179,250,561 entries. Another UniProt database UniParc, contains most of the publicly 

available protein sequences in the world. It aims to decrease redundancy that is caused by 

multiple presence of the same protein in different databases or within the same database. 

It stores each sequence only once and updates it when new data is available. Other 

database UniRef contains clustered sets of protein sequences from both UniprotKB and 

UniParc with different sequence similarities. Sequences and sub-fragments are merged 

together in order to store sequences more effectively. From UniProt, we have retrieved 

sequence variations listed for human proteins (HUMSAVAR, release 2019_01) (Yip et 

al., 2008). HUMSAVAR file contains all missense variants annotated in human 

UniProtKB/Swiss-Prot entries. 69,580 data points are retrieved from UniProt database. 

 

3.1.2. ClinVar 

 

ClinVar is a freely accessible, public archive that holds the information regarding 

relationships among human variations and phenotypes, with supporting evidence. It 

combines variants discovered by clinical laboratories, researchers, expert panels, and 

others as well as their interpretations and share collected data for further use by the science 

community. The database holds 600,000 submitted records from 1,000 submitters, 

representing 430,000 unique variants (Landrum & Kattman, 2018). By combining 

different sources together. ClinVar allows comparison of interpretations, providing 

transparency into the concordance or discordance of interpretations. It also allows users 

to access supporting evidence for a better evaluation and comparison of the variants. 

Variant submissions come either from clinical providers who provide their own 

interpretation of the variant or from groups that primarily provide phenotypic information 

from patients. ClinVar processes submitted clinical data and presents in an understandable 

way for anyone who wants to use this data. ClinVar data is available in FTP site where a 

range of information from genomic coordinates to variant summaries are stored. From 

FTP archive of ClinVar, variant summary data is retrieved for variant effect analysis. 

Complete report includes all variants at a location on the genome for which data have been 

submitted to ClinVar. May 2019 release of variant summary file is used for the retrieval 

of 59,375 data points from ClinVar. 

 

3.1.3. Protein Mutant Database (PMD) 

 

Protein Mutant Database (PMD) contains manually curated information regarding a 

variation and its consequences from scientific papers. Each entry corresponds to an article 

that describes the related experiment for that entry and contains several or a number of 
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protein mutants. Being a manually curated database of variants, PMD carries reliable 

variation data. Mutation’s effect on protein structure, stability or function in comparison 

with the wild-type protein are described as the severity of effect, including loss of activity. 

[++], [+] signs denoting an increase in the activity/stability, [--], [-] signs denoting a 

decrease in the activity/stability, [0] sign denoting complete loss of function and [=] sign 

denoting same behavior are used to describe an observed effect in PMD. PMD covers over 

81,000 mutants including artificial as well as natural mutants of various proteins extracted 

from about 10,000 articles. It includes all proteins except members of the globin and 

immunoglobulin families. PMD uses keywords to describe and summarize the relevant 

information. "CHANGE" keyword refers to the position and kind of mutations, such as 

amino acid substitution, insertion and deletion. Other keywords such as "FUNCTION", 

"STRUCTURE", "STABILITY" describes the observed effect on the protein. Data is 

retrieved on April 2019 from PMD, and data retrieval resulted in 51,296 data points.  

3.2. Feature Vector Construction 

 

After constructing the final data set, features that will be used by the model are added to 

create the final feature vector. This section describes the data sources consulted to retrieve 

relevant information. 

 

3.2.1. Domain Data 

 

Domains are conserved functional and structures regions present in the proteins that are 

responsible for a particular function. They are distinct entities that evolve independently 

from the rest of the protein. The presence of a domain can define the role of protein in 

biological processes.  

 

InterPro (Finn et al., 2017) is a database that contains information about protein families, 

domains and functional site annotations. InterPro classifies proteins and performs 

functional analysis on them using predictive models from member databases. These 

models are built from already available protein families or domains and used to annotate 

new entries. UniprotKB proteins are matched with models to provide annotations. Interpro 

entries are classified into different classes such as families, domains, repeats depending 

on their signature types. These classes are then grouped into non-overlapping hierarchies 

or subclasses that contains related domains in a hierarchical manner. In this study, 

hierarchy built v64 is used for selecting parent domains. 

 

3.2.2. Structure Data 

a. Protein Data Bank (PDB) 

 

PDB (Berman et al., 2002) is a portal that holds experimentally determined 3D structures 

of proteins, nucleic acids, and complex assemblies. Experimental methods used to 
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determine structure include different strategies including X-Ray crystallography, NMR 

and electron microscopy. PDB website currently accommodates around 160,000 

experimentally validated structures for a variety of organisms. One protein is matched 

with multiple structures, each from different experiments, with different resolutions or 

representing different regions of the protein.  

b. SWISS-MODEL 

 

When experimentally characterized 3D structure data is not available in PDB, homology 

modelled structures from different sources are utilized. Homology modelling is a method 

to computationally determine 3D structures of proteins where experimental evidence is 

missing. It relies on the fact that when two protein sequences are similar to each other, 

their structures are also likely to be similar. In order to obtain a 3D model for a protein, 

generally following steps are applied. Firstly, similar sequences are found by BLAST 

(Altschul et al., 1990). Then, sequences are aligned using multiple sequence alignment to 

align important regions that can give meaningful insights towards the structure of interest. 

After that, a structure backbone is generated. This step is followed by some fine-tuning 

steps to model certain regions such as side chains, loops and turns. Finally, the model is 

optimized using energy minimization and stereochemical evaluation by Ramachandran 

plot (Ramachandran et al., 1963). 

 

SWISS-MODEL (Waterhouse et al., 2018) is a fully automated server and database for 

protein modelling. SWISS-MODEL allows its users to build a model for their protein of 

interest using homology modelling. In addition to that, it deposits data for already 

modelled sequences. It is regularly updated to accommodate updates from newly included 

sequences. Current repository holds 1,640,595 models from SWISS-MODEL for 

UniProtKB targets.  

 

c. MODBASE 

 

As another source of homology modelled structures, a widely used homology modelling 

database called MODBASE (Pieper et al., 2014) is used. MODBASE is a queryable 

database that contains annotated protein structure models generated via ModPipe pipeline 

(Eswar et al., 2003). ModPipe pipeline uses PSI-BLAST (Altschul et al., 1997) for the 

alignment of similar sequences and MODELLER algorithm (Webb & Sali, 2016) for fold 

assignment, sequence–structure alignment, model building and model assessment. 

ModPipe calculates a number of scores for assessing the quality of the model. Among 

these, ModPipe Quality Score (MPQS) is considered while scoring the models in our study 

as it is a composite model quality score calculated from other scores including the 

coverage of the modeled sequence, sequence identity, the fraction of gaps in the 

alignment, the compactness of the model and various statistical potential Z-scores.  
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3.2.3. Physicochemical Properties 

 

Researches have shown that physicochemical properties are very important in mutation 

effect predictions  (Chasman & Adams, 2001; Saunders & Baker, 2002; Z. Wang & Moult, 

2001; Yue et al., 2005). There are a number of different physicochemical properties and 

methods that include these properties, each of which is used with different combinations 

in different studies. One of such properties is Grantham Matrix (Grantham, 1974) which 

is calculated from three physicochemical value differences between the wild type and 

substitute residues. Grantham scores are calculated from three physicochemical property 

values, composition, polarity and molecular volume. These three are selected because they 

showed the best correlation with protein residue mutation frequencies. Volume and 

polarity values are taken from published data (Aboderin, 1971; Goldsack & Chalifoux, 

1973). Composition is calculated as the ratio between atomic weight of non-carbon atoms 

in the side chains to the total weight of carbon atoms in the side chain. For instance, a side 

chain for lysine residue consists of -CCCCNH2 atoms. Composition value for this residue 

is calculated as 16/48. For each of these three properties difference between native and 

mutant amino acid is calculated. After assigning appropriate weights to each property, a 

distance matrix for 20 amino acids is constructed. Distance scores range from 5 to 215, 

the closest ones being leucine and isoleucine and the most distant ones being cysteine and 

tryptophan. As the matrix value increases, the effect of replacement gets more dramatic; 

because a higher matrix value implies a higher degree of difference between residues. In 

other words, it is a measure of exchangeability. Calculated Grantham Matrix scores for 

different mutations can be found in Table 3.1. 

 

3.2.4. UniProt Sequence Annotations 

 

In addition to being a comprehensive database for protein sequences and related 

information, UniProt also provides curated and automated position-specific annotations 

for Swiss-Prot and TrEMBL entries respectively, in order to describe important regions 

for protein function. Sequence annotations characterize important regions in protein 

sequence such as glycosylation, disulfide bonding, binding sites and repeats. Since they 

are responsible for certain tasks or found in structural key points, mutations occurring in 

these regions may contribute the overall impairment capacity of mutation of interest.  
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Table 3.1. Grantham matrix scores between amino acid pairs. Each score is calculated by 

taking the difference between wild type residue and the substitute residue. 

 

 
 

 

3.2.5. Retrieving Mutation’s Location on the Structure  

 

3.2.5.a. Relative Accessible Surface Area 

 

Residues in the protein structure can be classified into different groups depending on their 

solvent accessible surface area (SASA). If a single threshold value is selected, they can be 

categorized as residues residing on the surface of the protein, i.e. surface or exposed 

residues; and residues residing in the inner and not as-easily accessible parts of the protein, 

i.e. core or buried residues. However, another information to this categorization can be 

added via incorporation of interface residues. Interface residues are located in the protein-

protein interaction regions and are shown to be important for a variety of aspects regarding 

protein’s stability, specificity and recognition by other proteins (Jayashree et al., 2019). 

Generally buried residues maintain the structural integrity while surface residues 

contribute to protein function (Gong et al., 2017). They are involved in interaction with 

other proteins and ligands and serve as active sites, thus contributes to protein’s stability 

more than core residues (Malleshappa Gowder et al., 2014). 

 

Solvent accessible surface area values are calculated using FreeSASA program 

(Mitternacht, 2016) that calculates residue level solvent accessible surface area values 

from atomic coordinates.   
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3.2.5.b Interface Residues 

 

Interactome Insider (Meyer et al., 2018) is a center that brings structural and genomic 

information together. Besides allowing exploration of mutations in the context of 

structural regions such as interface domains, residues, or 3D atomic clusters; it also 

collects interaction interfaces from various other databases for both co-crystallized 

structures and homology models. In addition to collecting validated data, it also employs 

a method called Ensemble Classifier Learning Algorithm to predict interface residues 

(ECLAIR) to enrich the prediction for the ones that are not present in the searched 

databases. ECLAIR predicts interfaces from protein interactions in eight organisms 

including humans. It uses 8 random forest classifiers to predict the interface residues.  

 

In this study, Interactome Insider is used to add the third category, i.e. the interface 

category, for residues which were already separated as buried and surface.  

3.3.  Classification Algorithm 

 

In this machine-learning based study, random forest algorithm is implemented to generate 

models which are used to understand impairment association of missense mutations. This 

section explains the principles of random forest algorithm and the tools used to obtain 

models. 

 

3.3.1. Decision Trees 

 

Decision tree is an algorithm that predicts the label of an instance by following if/else 

statements until a final decision is reached. Final decision can be a continuous value or 

some category that makes decision tree a suitable method for both classification and 

regression tasks. In decision trees, data is split in a hierarchical manner using the rules 

defined by the algorithm used. Three well-known algorithms are ID3 (Quinlan, 1986), 

CART (Gordon et al., 1984) and C4.5 (Quinlan, 1996). Most algorithms developed for 

decision trees revolve around a core algorithm that makes a top-down greedy search 

through the space of possible decision trees. To build a tree, the algorithm searches over 

all possible attributes and finds the one that is most informative about the target variable. 

ID3, the first one among these algorithms for instance, uses Shannon’s Information 

Theory (Shannon, 1948) to measure the information content in each node after splitting. 

It calculates the entropy in each class and measures the purity of nodes. The attribute that 

provides the largest change in entropy, thus gain in information, is selected for the split. 

As a successor of ID3, C4.5 provides the ability to include continuous variables by 

partitioning them into discrete set of intervals. Then it converts the trees into a set of if-

then rules. Classification and Regression Trees (CART) on the other hand, improves the 

algorithm further and includes continuous variables without discretizing them.  
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Splits aim to make output values as distinct as possible. For this purpose, it searches 

through all the attributes and find out which attribute splits the purest or best among all 

other options. This search is repeated at each step of the tree building. A quantitative 

measure called information gain, that evaluates how well an attribute separates the 

samples, is calculated. The term ‘entropy’ defines the impurity of samples and used to 

calculate the total information gain. Mathematically expressed, given a collection S, 

containing positive and negative labelled samples, entropy of S relative to this binary 

classification is 

 

Entropy(S) = −𝑝1log2𝑝1 − 𝑝0log2𝑝0 

 

where p1 is the proportion of positive examples of S and p0 is the proportion of negative 

examples of S. 

 

Entropy is 0 if a node is perfectly split into two categories and all members belong to the 

same class; and 1 if it contains the same number of samples from each class. For a 

classifier where the target value can take up to c different values, the entropy of S is 

calculated as  

 

Entropy(S) =  ∑ 𝑝𝑖log2𝑝𝑖

c

i=1

 

 

where pi is the proportion of S belonging to class i.  

 

After calculating the impurity of a node, i.e. entropy, information gain can be calculated 

using these values. Information gain is the expected reduction in entropy caused by 

partitioning the samples according to the attribute of interest and it is defined as 

 

Gain(S, A) = Entropy(S)   − ∑
|Sv|

|S|
Entropy(Sv)

v ∈ Values(A)

 

 

where Values(A) is the set of all possible values for an attribute A, and Sv is the subset of 

S for which attribute A has value v (i.e. Sv = {s ∈ S | A(s) = v}). First term in the Equation 

(4) is the entropy of the original collection S, and the second term is the expected value of 

entropy after S is partitioned using attribute A; in other words, it refers to the sum of 

entropies for each subset of Sv, weighted by the fraction of examples 
|Sv|

|S|
 that belong to Sv. 

Thus, Gain (S, A) of Equation (3) means expected reduction in entropy upon split by that 

attribute. Information gain is the measure used by ID3 algorithm (HSSINA et al., 2014). 

 

One of the major advantages of decision trees includes their easy interpretability to human 

eye. Decisions can be traced and the logic behind is splits can be observed by examining 

the trees. In addition to that, decision trees can split binary, categorical, and continuous 

(3) 

(2) 

(4) 
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predictors in the same model. One drawback of decision trees can be counted as their high 

variability which causes the decisions and the outcome to change with the changing data 

(Dasgupta et al., 2011). They may also overfit which means they can memorize the 

training data and fail on the newly introduced data points. 

 

When using decision trees, or random forest, as a classifier, algorithm takes some 

hyperparameters in order to optimize the algorithm like any other machine learning 

algorithm. Many parameters can be listed, however; only the ones that generally have the 

most effect on the results will be explained here. One of the most important parameters is 

maximum depth that defines the maximum number of splits that a tree can have. Increases 

in this parameter can lead to overfitting of the tree as it will make memorization easier. In 

other words, as the value of this parameter increases, the tree will have splits until each 

node contains a pure class of samples. One other hyperparameter that needs to be tuned 

for a better tree is number of trees generated. More trees usually led to better results. The 

reason for this is because random forest uses a technique called bagging which means 

selecting a subset of data points rather than using all of them at the same time and another 

technique called random feature selection that makes the algorithm select a random subset 

of attributes while building each tree. If the number of data points is large and the number 

of trees is small, some of these data points may be included once, if anytime. The same 

logic goes for the attributes, as well. For this reason, as the number of trees increase, the 

possibility to include all data and all features increases. However, after a certain point, the 

increase in performance gets lower as the number of trees increase. At this point, 

performance of the classifier and the cost in computation should be considered before 

increasing tree number further. Minimum numbers at each split is also another important 

parameter. It specifies the minimum number of samples that is required at a node to be to 

be considered for splitting. It controls the overfitting as high numbers prevent the model 

from learning relations which may be specific to a particular sample. However, if the value 

is too high this time it may cause under-fitting.  As mentioned above, random forests use 

random feature selection. Thus, in order to specify the number of selected features at each 

split, another hyperparameter is used. Maximum number of features is given to the model 

to limit the number of features included. As a thumb-rule, square root of the total number 

of features is used. Higher values can lead to overfitting; however, the best number 

changes from one case to another.  

 

3.3.2. Random Forests 

 

Random forest method is an extension of decision trees where multiple trees are built 

instead of one; and an ensemble of these trees are used to make a decision (Breiman, 

2001). Randomly selected subset of given size is drawn with replacement from the original 

data and trees are built with each data set separately (Dasgupta et al., 2011). This is called 

bagging (Quinlan, 1996). The samples that are left unused are named as out-of-bag (OOB) 

data which is used to obtain an unbiased estimate of classification error during model 

training. Another technique that Random Forests use is called random feature selection. 

By employing this technique, models randomly select features to be used in for splitting 
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in each model. This decreases the chances of over-fitting. Over-fitting occurs when the 

model memorizes the data. When it happens, the model gives very good evaluation scores 

with the training set, however it fails with the new coming data. Randomness in feature 

selection decreases over-fitting risks. An agreed output from the created forest is then 

selected as the final decision.  

 

Random forests are ensembles of multiple trees where each tree actually depend on a 

different set of variables as explained. Mathematically represented, for a p dimensional 

random vector X = (X1,….,Xp) representing the real-valued input vector and a random 

variable Y representing the response variable, an unknown distribution Pxy(X,Y) is 

assumed. The aim of the classifier is to find a prediction function f(x) that predicts the 

response variable Y. The prediction function is determined by a loss function L(Y,f(X)) 

and defined to minimize the expected value of the loss  

 

EXY (L(Y ,f(X))) 

 

where the subscripts denote expectation with respect to the joint distribution of X and Y 

(Cutler et al., 2012). Loss function is the measure of the closeness between f(X) and Y. 

Choice of loss function may differ but common functions are squared error loss L(Y,f(X)) 

= (Y−f(X))2 for regression and zero-one-loss for classification. 

 

 

L(Y,f(X)) = I(Y6=f(X)) = {
 0 if 𝑌 = 𝑓(𝑋)
1 otherwise.

 

 

 

Ensembl trees construct f in terms of a collection of so-called base-learners h1(x),...,hJ(x) 

which are then combined to obtain final ensembl prediction. For regression problems, the 

output of the learners are averaged 

 

 

f(x) = 
1

𝐽
∑ ℎ𝑗(𝑥)𝐽

𝑗=1  

 

while in classification, f(x) is the most frequently predicted class, in other words by the 

common vote  

 

f(x) =a𝑟𝑔max
𝑦∈𝑌

∑  𝐼(𝑦 = ℎ𝑗(𝑥))𝐽
𝑗=1  

 

 

In random forest models jth base learner is denoted as hj (X,Θ𝑗) where Θ𝑗 is a collection of 

independent random variables (Cutler et al., 2012). A variety of functions can be used for 

error minimization and regression or classification analyses, however deeper explanation 

of these algorithms is out of the scope of this study. 

(5) 

(6) 

(7) 

(8) 
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Random Forests are shown to perform well compared to both single decision trees and 

other machine learning techniques in many occasions (Gunther et al., 2003; Svetnik et al., 

2003; Wu et al., 2003). Low-bias nature of the trees in the forest and the random sampling 

gives random forest method the ability to provide low-bias, low-variance predictions 

(Dasgupta et al., 2011). 

 

3.3.3. Model Assessment 

 

Every model must be evaluated for its performance before it is applied to a new dataset to 

see if the model is over-fitting, under-fitting or well-generalized. As data that is used to 

build the model cannot be used for validation of the model, because this would cause 

model to memorize labels and perform accidentally well, another strategy must be 

followed. One such method is called train-test-split in which data is randomly separated 

into two sets. On the first set, the model is trained and on the remaining set performance 

is assessed. However, this method has some drawbacks when applied to data with a small 

size as the diversity may not be represented in the training or test sets. One other method 

is a statistical resampling procedure called k-fold cross-validation where the entire data is 

split into k random groups (Müller & Guido, 2015). For each group, train test split method 

is applied where one portion of the model is left for training and the other portion is used 

for testing, and the model is run to obtain performance measures. Iterations are continued 

until the model is run for every group. Figure 3.1 depicts a typical cross-validation for 

data chunks. In this way, every sub-sample of data will have served as the test set. Average 

from different round of iterations is given as the overall performance of the model. This 

method has less bias than the simpler train-test-split method, however selection of k is of 

major importance as it creates a trade-off between variance and bias. The fold value k 

should be selected in a way that it splits data to create groups that are statistically 

representative. Ask gets smaller, the bias of the method gets smaller as well as the 

difference between the training set and the resampling subsets gets smaller, as well (Kuhn 

& Johnson, 2013). Empirically validated values for k is either 5 or 10 since they showed 

moderate results in terms of bias and variance relationship (Ziegler, 2016). When k is 

selected to be the same as the size of the dataset, this results in representation of each and 

every data point in the test set. This special case is called leave-one-out cross-validation. 

 

 

 

 

 

Figure 3.1.  Cross-validation separates data into k folds and does performance evaluation 

for each of the sets. It then, combines each output to give a common performance for the 

model. 
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3.3.4. Performance Metrics 

 

In machine learning models, after building the model, the performance needs to be 

evaluated in order to understand the validity of the results. Depending on the data type 

and the problem addressed, best measures may change, however there are certain 

measures that are commonly accepted for assessing model quality.  

 

One of the ways to represent the results is confusion matrices in which true positive, true 

negative, false positive and false negative counts are shown to give a brief summary of 

the outcome. An example confusion matrix can be seen in Figure 3.2. Cells are filled after 

the comparison between the data with known labels and the prediction outcome. 

 

 
 Actual Positive Condition Actual Negative Condition 

Predicted Positive 

Condition 
True Positive False Positive (Type 1 Error) 

Predicted Negative 

Condition 
False Negative (Type II Error) True Negative 

 

Figure 3.2. An example confusion matrix. 

 

 

Calculating true positive (TP), true negative (TN), false positive (FP) and false negative 

(FN) values helps to derive other performance measures such as accuracy, precision, recall 

and F-score (Müller & Guido, 2015). 

 

Accuracy can be calculated with the following formula 

 

  

 

Accuracy =  
TP + TN

TP + TN + FN + FP
 

  

  

Another widely accepted performance measure is precision that measures how many of 

the samples predicted as positive are actually positive. It stands out as a descriptive 

measure when eliminating false positives are important. 

  

Precision =  
TP

TP + FP
 

  

  

 

(9) 

(10) 
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Recall or sensitivity or true positive rate (TPR), on the other hand, measures how many of 

the positive samples are captured by the positive predictions. Recall is an important metric 

when avoiding false negatives are important. 

  

 

Recall =
TP

TP + FN
 

 

  

However, because of the nature of the way precision and recall are calculated, there is a 

trade-off between them. Higher precision leads to lower recall or vice versa. In order to 

see a better picture, F1-score is calculated from these two values. As it takes both values 

into account, it can be a better measure than accuracy on imbalanced binary classification 

datasets (Müller & Guido, 2016). 

 

F1 = 2
precision x recall

precision + recall
 

  

  

Receiver operating characteristics (ROC) and AUC are another way to evaluate classifiers 

at different thresholds. A plot the of false positive rate (FPR) against the true positive rate 

(TPR) is drawn over the all possible thresholds for a given classifier gives Receiver 

Operating Characteristics (ROC) curve. True positive rate is recall, while the false positive 

rate is the fraction of false positives out of all negative samples: 

  

FPR =  
FP

FP + TN
 

  

An ideal behavior for a ROC curve is when the recall is high while false positive rate is 

low. Figure 3.3 depicts an example good scoring, high discriminatory ROC curve. It is 

often that ROC curve is explained as area under the ROC curve (AUC). AUC values are 

good indicators of the model performance. Predicting randomly always produces an AUC 

of 0.5, regardless of the imbalance in data classes (Müller & Guido, 2015). 

 

(11) 

(12) 

(13) 
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Figure 3.3. An example ROC curve illustrating high discriminatory power (Fan et al., 

2006). 
 

 

3.4. Modelling Approach 

 

In this study, we have followed an integrative approach where we combined features from 

multiple databases and sources. In this section, details about pre-processing, feature 

extraction and model generation are explained. An overview of the method can be 

observed in Figure 3.4. 
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Figure 3.4. Overview of the method. Data is retrieved from three sources. Feature vector 

is constructed. Finally, random forest model is built. 

 

 

3.4.1. Data Pre-processing  

 

Data is retrieved from three different databases (see Methods). After retrieval, it is pre-

processed in order to obtain necessary information, as well as to clean the data.  

 

HUMSAVAR file from UniProt involves gene name, Swiss-Prot accession number, 

variation ID, amino acid mutations, UniProt sequence position of the mutation, variation 

type as polymorphism or disease-causing, dbSNP ID and the associated disease, if present. 

Disease labels are given if the variant is implicated in a disease. If not, variation is labelled 

as polymorphism. Variations with conflicting implications of disease are labelled as 

unclassified. Unclassified variants are excluded from data set. Additionally, 31 mutations 
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are also excluded as they showed conflicting labels (i.e. both polymorphism and disease 

for the same protein). We have ended up with 69,580 data points from UniProt. Proportion 

of UniProt data per effect class is shown in Figure 3.5A. According to this, 51.7% of data 

contained in HUMSAVAR entry belongs to polymorphism, i.e. neutral, class while 38.2% 

belongs to deleterious class. 10.1 % remains unclassified due to either conflicting 

interpretations or lack of evidence. 

 

From ClinVar variant summary file, we have filtered relevant information that 

characterizes variants; National Center for Biotechnology Information (NCBI) RefSeq 

(Geer et al., 2009) accession number, amino acid substitution and clinical significance. In 

the downstream analysis, we will make use of UniProt annotations and sequences. For 

this purpose, NCBI accession numbers are converted to UniProt accession numbers via 

The Biological Database Network (bioDBnet) (Mudunuri et al., 2009). After conversion 

to UniProt IDs, outdated IDs are replaced with current IDs stored in UniProt. ClinVar 

contains a wide range of clinical significance categories some of which are pathogenic, 

likely benign, drug response, risk factor, conflicting interpretations of pathogenicity and 

so on. In order to avoid any misleading interpretation of disease or neutral variations, we 

only included a subset of these clinical significance terms. Variants labelled as likely 

benign and benign are included as neutral variants; whereas variants labelled as likely 

pathogenic and pathogenic are included as deleterious variants. Conflicting interpretations 

of pathogenicity and other categories are excluded. As a final step data is cleaned from 

repeats resulting from ID changes, synonymous changes and variations that contain 

missing information. In the final count 59,375 data points are remained. Figure 3.5B 

shows the distribution of ClinVar data per class. It can be observed that, 21.4 % of the 

data deposited in ClinVar are disease variants, while 30.4% are benign or neutral variants. 

Other categories which constitutes 48.3% of the data are composed of all remaining 

categories that are not included in the data. 

 

A final database PMD is again filtered to retrieve only relevant information. An increase 

or a decrease in the activity, no matter the magnitude is, has a potential to impair protein’s 

native state. For this reason, increase or decrease in activity and/or stability, along with 

loss of functions are recorded as deleterious, whereas no-effect cases are recorded as 

neutral class. Data contained variation information from 176,992 mutations, however, this 

data is filtered to exclude missing and conflicting information as well as repeats. Same 

procedure to update protein IDs as it was done for ClinVar. At the end of cleaning process, 

PMD introduced 51,296 data points to the final data set. As can be seen in Figure 3.5C, 

55.3% of the mutations are pathogenic, or causing an effect in PMD terms, while 32.3% 

are benign and 12.4% are non-quantitative. 
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Figure 3.5. (A) Proportion of different classes of variant in 2019_01 release of 

HUMSAVAR. (B) Proportion of different classes of variant in ClinVar variant summary 

[2019_05]. (C) Proportion of different classes of variant in PMD [2019_04]. 

 

 

Final data is a combination of these three data sources. However, there are some cases 

where the label from two data sources do not match each other. We have eliminated all 

such cases in order to introduce a clean data to our model. We have found 207 conflicts 

between Uniprot and PMD, 1458 conflicts between UniProt and ClinVar and 81 conflicts 

between ClinVar and PMD. Table 3.2 shows the number of common and conflicting data 

points from 3 sources.  

 

After excluding among and within conflicts, duplicates, or missing valued data for any 

reason, we have constructed out final data set for downstream feature incorporation. Data 

generation process yielded a total of 157,138 data points.  

 

 

Table 3.2. Counts from three data sources.  

 
 Common Conflict 

Uniprot-PMD 734 207 

Uniprot-ClinVar 16989 1458 

ClinVar-PMD 492 81 

          

 

3.4.2. Feature Vector Construction 

 

After creating the data set, we have constructed the feature vector to be fed into the 

classifier using different databases (see Methods). This section describes the methodology 

applied to process and include them into the final feature vector which consists of 68 input 

dimensions (Figure 3.6). 

 

B. C. A. 
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Figure 3.6. Feature vector representation of the considered features.  

 

 

3.4.2.a. Domains 

 

In order to incorporate domain information, domains that are associated with proteins in 

our data set are retrieved from InterPro. Majority of proteins contain more than one 

domain. In our model, we wanted to represent each protein and mutation with a single 

domain for performance reasons. For this purpose, domains are filtered with respect to 

their coverage of the mutation of interest. According to this, if the mutation of interest is 

found to occur within the domain boundaries, these domains are retained. When multiple 

domains remained for a data point, hierarchically top-level domain is saved.  If a mutation 

is not found to occur within the sequence boundaries of any domain, the one with the 

minimum distance to the position of mutation is recorded. For some proteins no Interpro 

domains were present, thus they are not matched to any domains.  

 

As a result, three groups of data points are remained with respect to InterPro domains; 

data points with domains that possess mutation within its boundaries, data points with 

domains that does not possess the mutation within its boundaries and data points that do 

not match to any domains. Domain information is included as a single feature that is 

constituted by 2,159 values.  

 

In addition to adding domains as a categorical entity as belonging to a certain protein, 

minimum distance between the domain’s location and the mutation is also recorded as a 

separate continuous and binary feature. For this purpose, domain positions from the 

sequence are mapped on associated structures (see below). 

 

3.4.2.b. 3D Structures and Structure Models 

 

Data points are mapped to their corresponding structures deposited in Protein Data Bank 

(PDB) where applicable. Only structures whose 3D shapes are determined via X-Ray 

crystallography are included. All possible PDB structures available for a protein are 

retained as a selection round will be applied to them based their resolution. Search space 
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included 46,493 structures, however; these structures are filtered for their coverage of the 

mutation position and resolution as will be mentioned below. 3D structures for 88,565 

data points are found to be present in PDB. For the remaining 68,573 of them, modelled 

structures are collected from SWISS-MODEL and MODBASE databases.  

 

We have downloaded models from SWISS-MODEL repository for proteins in our data 

that did not match to any structure in PDB, as well as proteins that did match to PDB 3D 

structures, but their mutation position is not found on the structure. 83,807 models are 

downloaded for 10,601 proteins. This is because a single protein has more than models; 

each with different ranges of coverage and quality scores (QMEAN) (Benkert et al., 

2009). All models are considered as candidates for proteins in our data and thus retained. 

Their selection is again done by filtering the ones which contain mutation of interest on 

their structure and also among them filtering for the quality score to get the highest scoring 

one. 

 

After retrieving model data from SWISS-MODEL repository, we still had proteins that 

are not matched to any SWISS-MODEL models or not covered within the matched 

models. In the same manner that was applied in the previous structure retrieval steps, 

models are matched to their corresponding protein from the database. Only models that 

enclose the mutation of interest on the modelled structure for a particular protein; and 

among them the ones with the highest score are retained.  

 

Structure data retrieved from there sources, experimental and computational, are merged 

with the relevant proteins (Figure 3.7). At the end of this step, each data point is 

represented with only one structure of its. This was necessary to reduce complexity and 

to be able to correctly identify data points in the model. Obtained information is used to 

calculate 3D distances between different sequence annotations and substation to 

understand the importance of spatial arrangement in impairment capacity of mutations.  

 

 
 

Figure 3.7. 3D structures are searched for data points. Firstly, PDB is checked. If a 

representative structure is not found in PDB Swiss-Model and MODBASE are consulted, 

respectively. 
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3.4.2.c. Physicochemical Property Values 

 

For this study, amino acid substitution scores from Grantham Matrix are included into the 

final feature vector for each data point, along with individual values of three 

physicochemical property classes that are used to generate Grantham Matrix scores; 

namely polarity, composition and volume. Collectively, these properties added four 

dimensions with continuous values to the feature vector. 

 

3.4.2.d. UniProt Annotations  

 

UniProt sequence annotations are downloaded for proteins in the data set. We have 

included 30 sequence annotations to our data vector (Table 3.3). These annotations are 

included to the feature vector both as continuous real-valued input and as binary input as 

will be explained in the following section. 

 

Table 3.3. Annotation types and classes retrieved from UniProt. 

 
Annotation Class Annotation Type Description 

Region 

Coiled Coil Positions of regions of coiled coil within the protein 

Motif Short sequence motif of biological interest 

Region Region of interest in the sequence 

Repeat Positions of repeated sequence motifs or repeated domains 

Zinc Finger Position(s) and type(s) of zinc fingers within the protein 

Calcium Binding Position(s) of calcium binding region(s) within the protein 

DNA Binding Position and type of a DNA-binding domain 

Nucleotide Binding Nucleotide phosphate binding region 

Intramembrane Extent of a region located in a membrane without crossing it 

Transmembrane Extent of a membrane-spanning region 

Topological 

Domain 

Location of non-membrane regions of membrane-spanning 

proteins 

Sites 

Active Site Amino acid(s) directly involved in the activity of an enzyme 

Binding Site Binding site for any chemical group  

Metal Binding Binding site for a metal ion 

Site Any interesting single amino acid site on the sequence 

Experimental Info Mutagenesis Site which has been experimentally altered by mutagenesis 

Amino Acid 

Modification 

Cross-link Residues participating in covalent linkage(s) between proteins 

Disulfide Bond Cysteine residues participating in disulfide bonds 

Glycosylation Covalently attached glycan group(s) 

Lipidation Covalently attached lipid group(s) 

Modified Residue 
Modified residues excluding lipids, glycans and protein cross-

links 

Natural Variation Natural Variant Description of a natural variant of the protein 

Secondary Structure 

Beta Strand 
Beta strand regions within the experimentally determined 

protein structure 

Helix 
Helical regions within the experimentally determined protein 

structure 

Turn Turns within the experimentally determined protein structure 

Molecule Processing 

Peptide Extent of an active peptide in the mature protein 

Pro-peptide Part of a protein that is cleaved during maturation or activation 

Signal Sequence targeting proteins to the secretory pathway 

Initiator methionine Cleavage of the initiator methionine 

Transit Peptide Extent of a transit peptide for organelle targeting 



 

51 

 

3.4.2.e. Mapping sequence to structure 

 

Our method includes 3D distance values between UniProt annotations, InterPro domains 

and the mutation. Any residue number indicating a UniProt sequence number should be 

converted to sequence indices on PDB structure. For this reason, in order to obtain 3D 

coordinate information from PDB files (and also from other structures obtained by 

homology modelling), we have performed local alignment between protein’s selected 

sequence and PDB FASTA file of its corresponding structure. In order to select which 

UniProt sequence to align with PDB FASTA file, we have searched UniProt database for 

sequences which possesses same residue as wild type residue of the data point at mutation 

position from data set. Matched sequences are used in alignment with the matched PDB 

FASTA sequence. This step identified 70,392 of the proteins as matching to UniProt 

canonical sequence; 2,132 of them as matching to one of the isoform sequences and 

16,041 of them not matching to any of the sequences available in the sequence collection 

for that protein. The latter group was excluded from the analysis as it did not show any 

sequence for alignment. For the rest, appropriate sequences are aligned with FASTA files 

for PDB structures. Alignment is done using BLOSUM62 as the substitution matrix. Gap 

scores are assigned as -11 for opening and -1 for extension. At the end of alignment 

procedure, we have mapped sequence annotations and domain’s start and end boundaries 

on the PDB structure. 

 

In addition to that, alignment results also revealed that some of the mutations were not 

covered in any of the structures characterized for that data point. These data points 

(25,010), along with the ones for which there was not hit in PDB database (68,573), are 

searched in SWISS-MODEL database to retrieve homology models when present. 

 

SWISS-MODEL search was positive for 53,947 data points. For those the same procedure 

from finding sequences to alignment with these sequences and modelled PDB files are 

performed. Among 78,353 data points that entered this step, 74,219 of them are found to 

match with UniProt canonical sequence while 2,265 matched to some isoform sequence. 

Remaining 1474 did not return any hits from UniProt, thus eliminated from the data set. 

 

Following the same procedure, alignment is performed with the same set-up as in the 

previous step. Since there are multiple models available for a single protein, models with 

the highest score, covering the mutation of interest and also covering the largest set of 

UniProt sequence annotations are retained. Again, some data points are found to not 

covered within their modeled structures (36,502). These data points along with the ones 

for which no SWISS-MODEL models were present (14,626) are collected for another 

round of homology modelled structure search in MODBASE. For 39,982 data points, 

SWISS-MODEL search successfully returned models that covers the mutation of interest.  

 

Finally, the same procedure is applied for remaining 51,732 data points. Search in 

MODBASE resulted in 32,190 data points to use in the following steps.  
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Rest of the data is excluded for the same reasons above. They were either not in the range 

of MODBASE models, or they did not return any hits in MODBASE data base. Data 

points that do not match any UniProt sequence are also excluded the same way it was done 

in the previous steps.  

 

3.4.2.f. Calculating 3D distances between annotations, domains and the mutations 

 

As mentioned above, sequence annotations are incorporated into the final feature vector 

in two ways; both as continuous real-valued input and as binary input. Continuous input 

holds the distance between annotation of interest and the mutation in 3D. For this purpose, 

both mutation position and annotation positions are mapped to structure in order to get 

correct coordinates for distance calculation, as residue numbering in UniProt does not 

always align well with the one in PDB (Figure 3.8). For each annotation type, Euclidian 

distance between the mutation position and annotation position is calculated by using the 

following equation: 

 

𝑑 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 +  (𝑧2 − 𝑧1)2 

 

where  

x2, y2, z2: coordinates for the mutant residue 

x1, y1, z1: coordinates for the wild type residue 

 

Some annotations are found spread throughout a range of amino acids. Also, some of the 

annotation types are annotated multiple times in a single protein. For such cases, Euclidian 

distance between the mutation position and residue constituting the minimum distance 

among all the residues that make up the annotation is considered. 

 

 

 
 

Figure 3.8. Mutations and UniProt annotations are mapped on protein’s corresponding 

3D structure. Distance between each annotation type and the mutation is calculated from 

their 3D coordinates.  

 

(14) 
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Not every protein has a structure associated with it in the final data set. For this reason,  

binary inputs are calculated on the UniProt sequence instead of checking for hits on the 

structure. In other words, a mutation is labelled as hit if its mutation position is found to 

hit the annotation position on the UniProt sequence. This has saved data points that may 

lack a structure, thus distance information, to the final data by considering annotation 

relation in a different manner. 

 

Domains are treated the same as annotations covering a range in the protein sequence.  

Distance between the mutation position and domain start and end position are calculated. 

Minimum of these values are retained as the distance between them, if mutation does not 

fall inside the domain. If it does, distance is recorded as 0.  

 

Including UniProt annotations added 60-dimensions to the final feature vector; 30 being 

continuous distance information and 30 being binary hits. Extra 2 dimensions (1-

continous, 1 binary) are added by including distance from the domain. 

 

3.4.2.g. Relative Solvent Accessibility 

As a final step, different classes of residues based on their accessibility are included into 

the feature vector. We separated residues into three as surface, buried and interface. A 

stringent threshold of 4% is selected to discriminate between surface and core residues 

(Dincer, 2019; Dincer et al., 2019; Momen-Roknabadi et al., 2008). According to this, an 

amino acid with relative surface accessible less than 4% is considered as a buried residue, 

while a residue with a relative accessible surface are more than 4% is considered as surface 

residue. In order to include interface information validated interfaces from databases along 

with high quality ECLAIR predictions are merged with the other two categories. If 

residues previously labelled as surface are present in the interface residue data, they are 

relocated to the interface group. If buried-labelled residues are found in interface data, 

they are labelled as conflict.  

As a result of FreeSASA and Interactome Insider analysis, three groups are generated for 

datapoints. This feature is included as a single dimension to the final feature vector, with 

3 possible values; interface, surface and buried.  

 

3.4.3. Model Implementation  

 

This section describes the tool used to generate random forest model. Random Forest 

models can be implemented by various ways. Common implementations utilize Python’s 

sci-kit learn package (Pedregosa et al., 2011) or R programming language (Liaw & 

Wiener, 2002). However, they both fail to handle categorical data in its natural form. 

Encoding options are out of the scope of this study. However, to mention briefly, Python 

implementations convert categorical data into some numeric or matrix form and treats the 

feature accordingly. This can include converting categories into some ordinally sorted 

numbers. However, this is not applicable for all types of categorical data such as colors. 
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Colors do not have an inherent order in them, that’s why they cannot be ordinally encoded. 

One other transformation can be converting the categorical data into a matrix in which 

each category is represented in a different column and data points including the feature of 

interest is labelled as 1 in that particular column. This is called one-hot encoding and is 

an alternative for handling categorical data in sci-kit learn implementations (Hastie et al., 

2009). However, it is not good for data with high cardinality, meaning data containing a 

lot of values, for the categorial feature. For example, in our data one of the categorical 

features is the domains. We have 2,159 domains for 119,069 data points. This would 

create a matrix for 119,069 x 2,159 dimensions matrix for encoding only one column. In 

addition to that, each feature is represented with one domain, adding another level of 

difficulty in terms of matrix sparsity. Using one-hot encoding for such a problem would 

cause problems more than it offers a solution. One-hot encoding is also not recommended 

for tree-based algorithms. Sparsity of the matrix causes algorithm to read the variables 

wrongly by decreasing the importance of the categorical variable and not incorporating in 

the early splits if they don’t meet a high response rate. On the other hand, R 

implementations can treat categorical variables in their natural form, as categorical. 

However, it has limitations to be able to handle up to 53 levels. It is again incapable of 

accommodating the data we have for domains.  

 

For all these reasons, in this study random forest algorithm is implemented on H2O.ai 

platform (The H2O Team, 2015). It is an open source software for artificial intelligence 

and machine learning solutions. It has interfaces for R, Python Scala, Java, JSON, and 

CoffeeScript/JavaScript, as well as a built-in web interface, Flow. H2O includes a number 

of algorithms such as Naïve Bayes, PCA, k-means, random forest and logistic regression. 

Although it has some options for different encoding options, H2O also has the ability to 

handle categorical categories in their native form. This is valuable for our study as 

domains are included as a categorical feature with more than 2,000 levels in the final 

feature vector. 

 

For this study, H2O’s built-in web interface is used to obtain predictions. Different 

parameters are searched over a grid space in order to find best performing parameters.  
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CHAPTER 4 

 

 

4. RESULTS 

 

4.1. Summary of The Data 

 

Data is collected and cleaned as explained in the previous sections (see Methods.). After 

the pre-processing steps, initial data contains 157,138 data points for 15,481 distinct 

proteins from three data sources. A data point is defined by protein ID, wild type residue, 

variation position and mutant residue. First of all, InterPro domains are matched for each 

data point. As a result of hierarchy analysis, 2,159 distinct domains are remained for all 

of the data points. Later on, structures from PDB are matched with data points as explained 

in section 3.4.2. 88,565 data points are found to match a structure from PDB, while 68,573 

of them did not match to any structures. 16,041 of 88,565 data points are excluded because 

their wild type residue did not show any matches in any of the UniProt canonical or 

isoform sequences. Remaining data points are taken for alignment with their 

corresponding structures to map them on a 3D space. 47,514 of them are found to be 

represented on the matched structures, while 25,010 data points are not represented on the 

crystallized 3D structure boundaries. Thus, they are taken for the search in the homology 

modelled structures’ space. This search is firstly done in SWISS-MODEL database. These 

25,010 data points along with 68,573 data points from the first split are searched in 

SWISS-MODEL for homology modelled structures. Only 78,353 of them are found to 

have models. 1,474 of them are again excluded for not containing the same residue as the 

wild type in UniProt sequence.  After repeating the same steps that was done for PDB 

structures, i.e. alignment, 39,982 of them are found to be represented on the matched 

models while 36,502 are not. These not-represented ones, along with the ones that do not 

have any models in SWISS-MODEL are then taken to MODBASE. A total of 51,732 data 

points is searched for modelled structures from MODBASE. This search yielded 32,190 

data points having MODBASE models which contains mutation position on the modelled 

structure range. A summary of the data count can be seen in Table 4.1. 

 

Eliminating those data points without any mapped 3D structures, either experimentally or 

computationally determined, we have ended up with 119,069 data points to continue our 

analysis. 
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Table 4.1. A summary for the counts of mutations in the dataset.  

 
Initial Number of Mutations 157,138 

Number of Unique Proteins 15,481 

Number of Unique Interpro Domains 2,159 

Total Number of Mutations with Structural Information 119,069 

        Number of Mutations that correspond with PDB Structure Regions 47,514 

        Number of Mutations that correspond with SwissModel Structure Regions 39,982 

        Number of Mutations that correspond with MODBASE Structure Regions 32,190 

Number of Neutral Mutations in The Final Dataset 50,238 

Number of Deleterious Mutations in The Final Data set 68,831 

 

4.2. Distribution of Data Points Among Domain Regions 

 

Firstly, the data is analyzed as whether data points fall within the boundaries of the 

associated domains or not. UniProt sequences are considered while exploring this aspect. 

According to this, if a given mutation is found to fall within the UniProt sequence 

boundaries (sequence indices) of their domain, these mutations are considered as range; 

and if not, they are considered as not-range. From our 119,069 data points, 88,251 of them 

are mapped to a domain from InterPro. Remaining 30,818 are treated as proteins without 

any domain information. Although they did not show any match to any domains for our 

data set, this is related to the Interpro version used in our study and domains might be 

found for these data points either from a different and more recent InterPro build or from 

other domain databases.  

 

Figure 4.1 shows the distribution of the mutation locations with respect to their associated 

domains. As can be seen, mutations found within domain boundaries shows a higher 

proportion for deleterious ones compared to the neutral ones. On the other hand, for 

mutations found in the vicinity of domains, the proportion favors neutral effect.  As 

explained before, domains are functional and distinct regions within the proteins, and they 

are responsible for the protein tasks. From this information, we expected to observe 

mutations that cause an effect on the protein function to be located within the domain 

boundaries more abundantly compared to the ones that do not cause an effect. Findings 

from our data backs up this claim about the placement of neutral and deleterious 

mutations. According to this, when a mutation occurs within a domain, it is more likely to 

cause an impairment in the protein as it directly affects a functional site by causing cause 

changes in the domain architecture.  

 



 

57 

 

 
Figure 4.1. Distribution of data points for their presence within or out of the domain 

boundaries. 

 

4.3. Identification of Significant Protein Domains  

 

In the dataset, we had a total of 2,159 distinct domains mapped to 119,069 data points. 

Even though we have merged domains belonging to the same hierarchical family into one 

group and replaced hierarchically lower ones with the superior ones (see Methods), 2,159 

is still a high number for the classifier to handle. It also carries the risk to overfit when 

this many distinct domains are used. For this reason, Fisher’s exact test (Fisher, 1956) is 

applied to the domains in order to select the ones with the highest importance. Fisher’s 

exact test is a method to assess the significance of difference between two groups. It shows 

the proportion of one class of variables over the values of the other class. A contingency 

table of m x n size, m and n being the number of searched categories for each condition, 

is created for calculations in which data falling in each category is recorded in the related 

cell. Statistical measures such as p-value is calculated through the values in this table. It 

is an exact test because the deviation from the null hypothesis can be calculated exactly, 

without needing an approximation. For this study, a contingency table of size 2 x 2 is 

created for deleterious and neutral mutations vs. domain presence and absence. 

 

Fisher’s exact test resulted in 327 distinct domains when p is set to 0.01. According to 

this, the most informative domains are listed in Appendix A. Their importance is defined 

by the separation power they hold for each category. Total number of data points that a 

particular domain is associated with and their proportion for neutral and deleterious 

classes can also be seen in the Appendix A. Figure 4.2 shows the most crowded domains 

among the remaining ones after the analysis. Being the most crowded domain does not 

mean to be the most informative domain. As can be traced from the Appendix A, the 

domain that tops the list is IPR011162; however, in Figure 4.2 it can be seen that the most 

crowded domain is IPR027417. This is a result of the proportion of each domain holds for 
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neutral and deleterious class. The bigger the gap is between two classes, the more 

informative a domain is. 

 

 
 

Figure 4.2. Distribution of domains for their abundance after Fisher’s exact test. 

 

 

When top resulting 10 domains after Fisher’s exact test are inspected for their biological 

role, it can be seen that domains are responsible for a variety of protein functions including 

cell surface ligand recognition, ion channel activity, enzymatic activity and cellular 

transportation (Table 4.2).  Each of these functions are important in cellular messaging 

and signal conduction within the cell. Thus, when an impairment occurs within these 

regions that disrupts the domain, it is very likely to affect downstream mechanisms, and 

ultimately cause aberrations in the cell.  

 

A total set of 2,159 domains, as well as a reduced version containing 327 domains are 

used to train different classifiers to observe the effect and separability capacity of domains. 
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Table 4.2. 10 most informative domains after Fisher’s exact test analysis 

 

Domain ID Domain Name Domain Description 
Total 

Cases 

Non-

neutral  
Neutral  

IP
R

0
1

1
1

6
2

 

MHC classes 

I/II-like antigen 

recognition 

protein 

Cell surface receptors that function to present 

antigen peptide fragments to T cells 

responsible for cell-mediated immune 

responses 

632 10 622 

IP
R

0
1

7
4

5
2
 

GPCR, 

rhodopsin-like, 

7TM 

Transduce extracellular signals through 

interaction with guanine nucleotide binding (G) 

proteins 

1918 550 1368 

IP
R

0
0

5
8

2
1

 

Ion transport 

domain 

Found in sodium, potassium and calcium ion 

channels proteins 
2095 1905 190 

IP
R

0
0

9
0

5
0

 

Globin-like 

superfamily 

Heme-containing proteins involved in binding 

and/or transporting oxygen 
530 48 482 

IP
R

0
1

3
7

8
3
 

Immunoglobulin-

like fold 

Contains immunoglobulin-like (Ig-like) fold. 

Involved in interactions, commonly with other 

Ig-like domains via their beta sheets. 

2908 1290 1618 

IP
R

0
1

7
8

5
3
 

Glycoside 

hydrolase 

superfamily 

Enzymes that hydrolyze the glycosidic bond 

between two or more carbohydrates, or 

between a carbohydrate and a non-

carbohydrate moiety. 

956 840 116 

IP
R

0
1

3
0

8
7

 

Zinc finger 

C2H2-type 

DNA binding motif. Transcription factors 

usually contain several Znfs capable of making 

multiple contacts along DNA 

607 181 426 

IP
R

0
1

7
8

5
0

 

Alkaline-

phosphatase-like, 

core domain 

superfamily 

These domains form the core domain of 

alkaline phosphatases 
780 687 93 

IP
R

0
0

8
9

7
2
 

Cupredoxin 
Stabilizes copper (I) ion from which is created 

after reduction of toxic copper (II) 
462 430 32 

IP
R

0
1

9
7

7
4

 

Aromatic amino 

acid hydroxylase, 

C-terminal 

Hydroxylation of the aromatic amino acids 

phenylalanine, tyrosine, tryptophan 
293 285 8 
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4.4. Physicochemical Properties of Mutations 

 

Literature evidence that physicochemical properties have the potential to guide algorithms 

differentiate between distinct classes. Since they define the protein’s structure, it is no 

surprise that they are determinants in the final functioning of the proteins.  

 

In our model, we have included three physicochemical properties as polarity, volume and 

composition, along with a Grantham matrix scores. All values are calculated as the 

difference between the wild type and the substituted residue. In our data, we had some 

mutations that resulted in a termination codon incorporation as the substitute residue. No 

values of physicochemical properties or Grantham scores is available for such cases as 

termination codons do not code for any amino acid. 11,371 data points are found to 

constitute this class. These data points are also included in the data because this itself is a 

property to infer meanings from for the classifier. 

 

Distribution of considered physicochemical values across the data set can be seen in 

Figure 4.3. For the three properties, namely polarity, composition and volume, the 

difference between the two classes is not as notable as the Grantham score case. However, 

when Grantham score graph is examined, it can be observed that there is a significant shift 

towards bigger values in the non-neutral graph. A study conducted by Huang et al. (2010) 

showed that higher scores are observed more in disease labelled mutations; whereas lower 

scores are more frequently observed in neutral cases. This is expected as a greater value 

in the Grantham Matrix indicates a greater difference between the wild type and its 

substitute. The greater the difference, the bigger the effect is on the protein’s functionality. 
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Figure 4.3. Distribution of data points for the physicochemical properties considered. 
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In order to observe the effect of each physicochemical property on different regions of the 

protein structure, we have applied Fisher’s exact test for each property in three significant 

regions; core, interface and surface. Firstly, we have separated the data into these three 

categories. For each category, we labelled each data point as ‘significant change’ and ‘not 

significant change’ for different thresholds for different properties. Thresholds are chosen 

to leave approximately same number of data points per condition, i.e. deleterious and 

neutral. For polarity property, data points having polarity values higher than 1.6 or lower 

than -1.6 are considered in the ‘significant change’ class while data points lying in between 

these values are considered in the ‘not significant change’ class. For volume property, this 

value is set to 38, i.e. values lower than -38 and greater than 38 are considered as 

‘significant change’, while values in between are considered as ‘not significant change. 

The threshold for composition was set to 0.52 and the selection is done in accordance with 

former two. Finally, for Grantham Matrix scores, we have counted values lower than 81 

as not significant, while values higher than 81 were recorded as significant. Data points in 

each group are also further divided into two groups as deleterious and neutral. Counts for 

each sub-group, for example deleterious mutations in significant polarity change group 

for core region, are obtained and used to calculate p-values for the significance of 

association between groups. Related contingency tables can be found in Appendix B for 

a detailed investigation for the counts per classes. A confidence interval of 99% is selected 

for evaluations. According to this, p-values smaller than the threshold are considered to 

be significant and interpreted as an important association between certain 

physicochemical property and the effect of mutation. Calculated p-values for each 

condition is given in Table 4.3. Region-wise analysis shows that for all of the regions, the 

highest significance is observed for Grantham Score values. This is expected as Grantham 

values are calculated by taking all three others into consideration and thus show a better 

distinction in values per effect class. 

 

Table 4.3. The significance (i.e. p-values) of associations between the changes in 

physicochemical properties at the mutated site and the effect of the mutation (i.e. 

deleterious or neutral), evaluated independently for different protein regions. 

 

 Composition Polarity Volume Grantham 

Score 

Core 1.97e-25 1.04e-91 1.96e-116 3.27e-159 

Interface 0.00072 4.73e-22 7.13e-30 2.06e-34 

Surface 3.93e-88 6.18e-250 1.44e-274 0.0 

 

4.5. Family-Based Evaluation of Mutations 

 

In order to understand the association between mutation effect and physicochemical 

properties in protein families, like in the previous section, we’ve applied Fisher’s exact 

test to our data. This time, instead of separating the data as core, interface or surface 

regions; we have grouped the proteins in our data set into five protein families as enzymes, 
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ion channels, membrane, transcription factors and others. For each family, we have again 

used the same thresholds to group physicochemical changes and further divided the 

dataset as deleterious and neutral. A confidence interval of 99% is chosen for evaluation. 

Tables having the individual counts per group can be found in Appendix C. Individual 

values for each protein family is given in Table 4.4. When the table is examined 

familywise, we can observe that the highest significance is observed in the Grantham 

Score property for enzyme, ion channel and membrane families, whereas for transcription 

factor family and other category volume was the most significant property that showed a 

difference between neutral and deleterious classes. For enzyme family, the magnitude of 

significance is much higher than any other families, showing a significance value of 3.70e-

163. Other families are observed in comparable ranges. For families except membrane 

family, least significance is observed in composition. For the membrane family, however, 

lowest significance is recorded in the polarity property. For transcription factor family and 

other category, the p-value is not significant for composition with values very far from the 

selected significance threshold of 0.01. Polarity and Grantham Matrix score is also not 

found to be significantly associated with the mutation effect in the transcription factor 

family. We observed that Grantham Value shows the most significant association for most 

of the families; however, Grantham Value is a combined value from three actual 

properties. Significance in this context refers to the association of the change in property 

values upon a mutation introduction and its resulting consequence. Thus, when we inspect 

these individual properties alone, we can see that a change in volume has the most 

significant association with the mutation effect in all families. This can be explained by 

the importance of the 3D spatial organizations of proteins in protein function. Changes in 

the volume of the residue in a certain position can change the overall 3D structure of the 

protein due to the size constraints. When significant volume changes are seen in a residue 

position, it is likely that it will alter the protein’s structure thus function. When the 

inspection is done property-wise, we observe that the most significant values are observed 

for the enzyme category, suggesting that in enzyme proteins physicochemical properties 

are good indication for distinguishing between disease and neutral mutations. For 

properties other than composition, the least significance is found in transcription factor 

family which holds the highest p-values for the physicochemical properties. For 

composition highest p-value is observed for the others category which is actually not a 

significant value. From these observations, we can deduce that the physicochemical 

properties are mostly significant for families and they are good indicator of separation 

between deleterious and neutral classes.  
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Table 4.4: The significance (i.e. p-values) of associations between the changes in 

physicochemical properties at the mutated site and the effect of the mutation (i.e. 

deleterious or neutral), evaluated independently for different protein families. * shows 

non-significant ones. 

 

 

 Composition Polarity Volume Grantham Score 

Enzyme 4.12e-28 4.37e-72 6.22e-102 3.70e-163 

Ion Channel 4.80e-05 3.67e-08 1.65e-14 8.71e-21 

Membrane 3.60e-12 3.28e-10 9.16e-18 1.82e-28 

Transcription Factor 0.57* 0.19* 2.80e-08 0.002* 

Others 0.71* 9.71e-23 6.65e-32 3.84e-23 

 

4.6. UniProt Annotations and Their Distribution in The Mutation Dataset 

 

Our model is annotation centric which means we want to investigate the role of sequence 

annotations on the impairment capacity of mutations. For this reason, we have mapped 30 

UniProt sequence annotations to the data. Details on the selected annotations can be found 

in the Methods section. Here, we analyzed the abundance of each annotation type for our 

two final classes.  

 

Figure 4.4 shows the proportion of annotation for each annotation category in our data set. 

As can be seen from the numbers, most of the annotation types are found to be annotated 

only for a small number of data points. A majority of them, however, are not found 

annotated for a bigger number of cases. A protein does not necessarily contain all the 

annotation types selected. In addition to that, even when present it is not as easy to identify 

all functionally important regions. Annotation entries are updated with the ongoing 

efforts, but currently our access for annotation data is limited. Thus, this gap between the 

annotated case and not-annotated case for each annotation category is an expected 

observation. 
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Figure 4.4. Percentage of each annotation category in the dataset. Each annotation 

category is annotated in a small number of data points. Only exception is natural variant 

category. This is expected as we are specifically dealing with data points with variations. 

 

It is also important to investigate annotations with respect to their impairment capacity 

and whether the mutation is found within the annotation boundaries. Figure 4.5 shows the 

observation frequencies of each annotation category for two response classes when the 

mutation is found within the annotation boundaries or hit the annotation position. Some 

annotations cover a long stretch in the protein sequence while some other are only 

represented in a single amino acid. For both cases, if the mutation is found within this 

sequence stretch or occupies the same sequence position as the annotation, it is considered 

as a hit. As can be seen from the graph, when the mutation is found within the annotation 

range, a majority of the annotation types tend to cause some sort of impairment and show 

non-neutral effects. Initial methionine shows to affect the protein function for all data 

points. This annotation is added when a mutation changes the starting methionine in the 

sequence, thus affects the translation of the protein. This means, when an initiator 

methionine is changed, it is almost certain that there will be a problem in the functioning 

of the protein.  
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Figure 4.5. Percentage of neutral and deleterious mutations per annotation class for 

mutations found to occupy an annotation region. 

 

4.7. Distribution of Data Points In Terms of Relative Accessibility 

 

One more feature that is included in the final feature vector is relative solvent accessible 

area; and three groups, buried, surface and interface, defined from the outcome of area 

values. In order to determine which threshold to select for group separation, we performed 

the analysis with different thresholds. For these analysis a stringent 4% and more relaxed 

16%  thresholds are selected (Dincer, 2019; Dincer et al., 2019; Momen-Roknabadi et al., 

2008). 4% yielded 18,822 data points for the buried class, while 16% yielded 38,386 data 

points for the same class. The rest was assigned to surface class for both cases. However, 

when interface information is incorporated, 4% threshold yielded 1,884 conflict cases for 

high quality selection, i.e. labelled as both interface and buried, while 16% yielded 3,912 

conflicts. High quality refers to the confidence of prediction by ECLAIR algorithm of 

Interactome Insider. When the interface data includes medium confidence predictions it 

is referred as low quality. Conflict numbers are found to be 2,847 for 4% threshold and 

6,072 for 16% threshold. According to this, to minimize the conflicts we continued our 

analysis with 4% threshold and high-quality interface residues. Resulting three groups are 

examined for their possession of deleterious and neutral mutations. In Figure 4.6, counts 

for our data set is given as a result of this grouping. As shown, in interface and core 

regions, non-neutral mutations are observed more than two-fold compared to neutral 

mutations. For interface class, 68% of interface mutations are shown to be deleterious, 

while 32% are neutral. On the other hand, for core class, 70% of the mutations are 

deleterious, while 30 % are classified as neutral. 

 

For surface residues, this ratio is not that drastic, however, since surface regions can also 

contribute to the function of the protein, it is expectable to observe more deleterious 

mutations in these regions, as well. For this class, 49% of surface mutations are classified 
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as neutral, while 51% are classified as deleterious. As shown in the literature, core and 

interface regions are responsible for protein’s stability and interaction with other proteins, 

respectively. Given this information, we expect to observe more non-neutral mutations in 

these regions. Results from our analysis supports this hypothesis and show a higher 

fraction of non-neutral mutations in these regions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. Distribution of data points for accessibility group.  

 

4.8. Mutation Classification With Random Forest Classifier 

 

In this study, random forest classifier is used in order to obtain predictions for 109,069 

data points of which 50,238 belong to the neutral class and 68,831 belong to the 

deleterious class. A feature vector of 68 dimensions is fed into the classifier that consists 

of protein and mutation level features such as physicochemical properties of the residues, 

UniProt sequence annotations and surface accessibility results. The output of the classifier 

is a binary classification where given data points are separated as deleterious or neutral. 

Random forest classifier merges multiple trees, each of which considers a different subset 

of data points and features and makes the decision as an agreed output from generated 

trees. In order to build the model, we have tested the performance of different subsets of 

the feature vector and observed the contribution of selected features. First of all, we 

checked the contribution of the domain attribute which consists of 2,159 distinct domains 

for all data points. This is a very crowded attribute for a random forest classifier to make 

decisions, thus we wanted to see how the complexity affects the performance. Later on, 

we have tested the contribution of physicochemical properties. Physicochemical 

properties are reported in the literature as features that provide a good indication for 

separation, thus we wanted to observe their sole effects for our classifier. Following that, 

we checked the effect of annotations as we want to build our main model annotation based. 

Examining the contribution of annotations is particularly important to validate our 

hypothesis that functionally important regions contribute to the overall function of the 

protein and changes in these regions are more likely to help us infer meanings from them. 
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Finally, after exploring the individual contributions we have constructed our final vector 

with the informative attributes and made a grid search over a space of hyperparameters to 

optimize our model.  

4.8.1. Evaluating the Effect of Domains 

 

Domains are distinct functional units in proteins which can carry meaningful information 

in terms protein function, and disruptions in domain regions are expected to cause 

deleterious effects upon non-synonymous mutation introduction. In our feature vector, we 

have 2,159 distinct domains that constitute to a categorical-valued vector. However, this 

many values in a feature vector causes high cardinality and many of the machine-learning 

implementation tools cannot handle high cardinality. H2O platform is developed to be 

able to process high cardinality values, thus we chose to use it in our analysis. However, 

we still wanted to understand the effect of a complex feature on the prediction outcome, 

and for this reason we have compared two different models. In one of the models, we used 

all of the 2,159 domains assigned for all data points. In the other one, we decrease the 

complexity of this vector by doing a Fisher’s exact test on the domain vector and selecting 

only the significant domains that show a high power for discriminating two output classes. 

We have used default parameters in order to provide an equal hyperparameter space. 50 

trees are generated with 25 maximum depth. Full parameter list can be found in Appendix 

D. 10-fold cross-validation is performed on the data that is split 75% to 25% as training 

and independent hold-out validation set, respectively. 

 

Confusion matrix values are given in Table 4.5 for all domain analysis and in Table 4.6 

for reduced domain complexity analysis. Neutral output is evaluated as the negative class, 

while deleterious output is considered as positive class. According to this, in the analysis 

with all domains included we have 6,943 true negatives, 5,574 false positives, 1,790 false 

negatives and 15,452 true positives. Recall is calculated as 0.86, while the precision is 

0.89 and specificity is 0.55. F1 score is reported as 0.87. For the second analysis where 

we only included statistically significant domains, we have 7,947 true negatives, 4,720 

false positives, 1,942 false negatives and 1,524 true positives. Recall is calculated as 0.89, 

while the precision is 0.76 and specificity is 0.63. F1 score is reported as 0.82. Other 

metrics derived from precision and recall values are reported in Table 4.7 for both 

analyses.  

 

Table 4.5. Confusion matrix for the hold-out validation set of all-domains model.  

Rows: Actual Class; Columns: Predicted Class 

 

 
predicted neutral 

class 

predicted deleterious 

class 

actual neutral class 6943 5574 

actual deleterious class 1790 15452 

Total 8733 21026 
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Table 4.6. Confusion matrix for the hold-out validation set of significant-domains 

model.  

Rows: Actual Class; Columns: Predicted Class 

 

 
Predicted neutral 

class 

Predicted deleterious 

class 

Actual neutral class 7947 4720 

Actual deleterious class 1942 15244 

Total 9889 19964 

 

 

Table 4.7. Performance metrics for all-domains and significant-domains models.  

 

Measure All Domains Significant Domains 

Sensitivity 0.8565 0.8870 

Specificity 0.5547 0.6274 

Precision 0.8880 0.7636 

Negative Predictive Value 0.4840 0.8036 

False Positive Rate 0.4453 0.3726 

False Discovery Rate 0.1120 0.2364 

False Negative Rate 0.1435 0.1130 

Accuracy 0.7976 0.7768 

F1 Score 0.8720 0.8207 

Matthews Correlation Coefficient 0.3911 0.5401 

AUC 0.8400 0.8600 

 

 

ROC curves for validation sets are shown in Figure 4.7 for both analyses. According to 

this, validation AUC value is reported as 0.84 for all-domains model, and as 0.86 for 

significant domains. 

 

http://onlineconfusionmatrix.com/#measures
http://onlineconfusionmatrix.com/#measures
http://onlineconfusionmatrix.com/#measures
http://onlineconfusionmatrix.com/#measures
http://onlineconfusionmatrix.com/#measures
http://onlineconfusionmatrix.com/#measures
http://onlineconfusionmatrix.com/#measures
http://onlineconfusionmatrix.com/#measures
http://onlineconfusionmatrix.com/#measures
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Figure 4.7. ROC curves for the hold-out validation sets of the models (A) where all 

domains are excluded, and (B) where only significant domains are included. AUC values 

are 0.84 and 0.86 respectively. 

 

 

One more thing to consider as a result of random forest analysis is the feature importance. 

Random Forest models rank the importance of each feature according to their power for 

separation of the data. Different trees are generated with different feature subsets and 

different samples during a random forest implementation. Algorithm calculates decrease 

in the error upon each split for different features and determines the importance and 

relevance of each feature based on calculated error values. Figure 4.8 shows two figures 

of feature importance for two analysis. According to this, in the first model, the rank of 

the domain feature is 4. However, when statistically redundant domains are eliminated 

from the model, feature importance for domains raises to the first rank. This is because, 

this elimination only leaves the most informative and discriminative domains and the 

information obtained from remaining domains becomes more significance. In the second 

figure, we can also observe that the scaled importance for other features decreases as 

domains get more importance. For instance, scaled importance of the second feature 

decreases from 0.79 to 0.56 when domain feature gets to the first rank. In the first rows, 

other than domains we can also see the dominance of physicochemical features. These 

findings are in accordance with the literature as many studies highlight the importance of 

physicochemical features for variant effect prediction. 

 

A.

  

B.
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Figure 4.8. Feature importance for all-domains and significant-domain models. (A) shows 

the feature importance ranking for all-domains case. Domain feature is located at the 4th 

rank. (B) shows the feature importance ranking for significant-domains case. Domain 

feature is raised to the first rank. 

 

 

When two models are compared, we observe an increase in the performance metrics of 

the second model. Also, we can observe the increased importance of domains as the 

complexity is reduced for domain feature and redundant domains are eliminated, leaving 

only most informative domains. For the further analysis, we used statistically significant 

domains for our models due to the increased performance. 

4.8.2. Evaluating the Effect of Physicochemical Features 

 

Physicochemical features are shown to increase the predictive performance of the 

classifiers that aim to distinguish between neutral and deleterious mutations. In our 

preliminary analyses, we also observed that physicochemical features rank in the higher 

rows of feature importance. Thus, we wanted to compare two models with and without 

physicochemical features from our feature vector and see their effect on an individual 

basis. Models are built with default parameters again. 50 trees generated with 25 set as 

their maximum depth. 10-fold cross-validation is applied on the data which is split as 

training and independent hold-out validation sets, respectively. 

 

Confusion matrix results are shown in Table 4.8 and Table 4.9 for model without 

physicochemical properties and with physicochemical properties, respectively. Neutral 

output is evaluated as the negative class. In the first analysis where we excluded 

physicochemical features from the feature vector, we have 6,875 true negatives, 5,712 

false positives, 1,985 false negatives and 15,172 true positives. Recall is calculated as 

0.88, while the precision is 0.73 and specificity is 0.55. F1 score is reported as 0.80. In the 

A. B. 
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second analysis where we included physicochemical properties, we have recorded 7,947 

true negatives, 4,720 false positives, 1,942 false negatives and 15,244 true positives. 

Recall is calculated as 0.89, while the precision is 0.76 and specificity is 0.63. F1 score is 

reported as 0.82. Other metrics derived from precision and recall values are reported in 

Table 4.10 for both analyses. 

 

Table 4.8. Confusion matrix for the hold-out validation set of the model without 

physicochemical properties. Rows: Actual Class; Columns: Predicted Class 

 

 
Predicted neutral 

class 

Predicted deleterious 

class 

Actual neutral class 6875 5712 

Actual deleterious class 1985 15172 

Total 8860 20884 

 

 

Table 4.9. Confusion matrix for the hold-out validation set of the  model with 

physicochemical properties. Rows: Actual Class; Columns: Predicted Class 

 

 
Predicted neutral 

class 

Predicted deleterious 

class 

Actual neutral class 7947 4720 

Actual deleterious class 1942 15244 

Total 9889 19964 

 

 

Table 4.10. Performance metrics for models with and without physicochemical 

properties. 

 

Measure 

Model without 

Physicochemical 

Properties 

Model with 

Physicochemical 

Properties 

Sensitivity 0.8843 0.8870 

Specificity 0.5462 0.6274 

Precision 0.7265 0.7636 

Negative Predictive Value 0.7760 0.8036 

False Positive Rate 0.4538 0.3726 

False Discovery Rate 0.2735 0.2364 

False Negative Rate 0.1157 0.1130 

Accuracy 0.7412 0.7768 

F1 Score 0.7977 0.8207 

Matthews Correlation Coefficient 0.4651 0.5401 

AUC 0.8100 0.8600 

http://onlineconfusionmatrix.com/#measures
http://onlineconfusionmatrix.com/#measures
http://onlineconfusionmatrix.com/#measures
http://onlineconfusionmatrix.com/#measures
http://onlineconfusionmatrix.com/#measures
http://onlineconfusionmatrix.com/#measures
http://onlineconfusionmatrix.com/#measures
http://onlineconfusionmatrix.com/#measures
http://onlineconfusionmatrix.com/#measures
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ROC curves for validation sets for both analyses are shown in Figure 4.9. According to 

this, validation AUC value is reported as 0.81 for the model where physicochemical 

properties are excluded, and 0.86 as for the model where physicochemical properties are 

included.  

 

 

 

Figure 4.9. ROC curves for the hold-out validation sets of the models (A) where 

physicochemical properties are excluded, and (B) where physicochemical properties are 

included. AUC values are 0.81 and 0.86 respectively. 

 

 

Feature importance figures can be found in Figure 4.10. According to this, in the first 

model that is built by excluding physicochemical features, first ranks are occupied by 

domain and other sequence features (Figure 4.10A). In the other model that is built by 

using all physicochemical properties, i.e. polarity, volume, composition and Grantham 

Matrix score, the rank of these features is the highest after the domain feature (Figure 

4.10B). This is expected as physiochemical properties are shown to be strong determinant 

in all of the analysis. When the figures are examined, it is observed that in the case of 

model without physicochemical features, the scaled importance of other features increases 

for most of them compared to the first model. Thus, we can conclude that when present, 

physicochemical domains dominate the other features as their predictive power is higher 

and decreases the importance of other features such as sequence features. 
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Figure 4.10. Feature importance models with and without physicochemical properties. 

(A) shows the feature importance ranking for model with physicochemical properties are 

excluded. All 4 properties are located in the highest ranks. (B) shows the feature 

importance ranking model with physicochemical features.  

 

When two models are compared, we can observe a significant difference in the 

performance between two models. The model in which physicochemical properties are 

included shows a greater performance compared to the model that does not use these 

features. These results show the importance of incorporation of physicochemical features 

into the predictive models in accordance with the literature. Mutations cause deleterious 

changes because they alter their environment, and the scale of the effect is proportional to 

the degree of change they show. Thus, the reason why these properties carry such a big 

importance could be attributed to the fact that they directly characterize the mutations. 

4.8.3. Evaluating the Effect of Spatial Distances to Protein Feature Annotations 

 

Finally, we wanted to examine the effect of sequence annotations on the performance of 

predictors. For this reason, we again built different two models. In one of them, we 

included all the features and in the second one, we excluded 3D distance features for 

sequence annotations. Since our purpose is to compare two models, we used default 

parameters. 50 trees generated with 25 set as their maximum depth. 10-fold cross-

validation is applied on the data which is split as 75%-25% as training and independent 

hold-out validation sets, respectively. 

 

Confusion matrix results are shown in Table 4.11 and Table 4.12 for model without 3D 

distance values and with 3D distance values for sequence annotations, respectively. 

Neutral output is evaluated as the negative class. According to this, in the analysis we 

performed without 3D distance values for sequence annotations from the feature-vector, 

we have 7,131 true negatives, 5,456 false positives, 1,803 false negatives and 15,354 true 

B. A. 
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positives. Recall is calculated as 0.89, while the precision is 0.74 and specificity is 0.57. 

F1 score is reported as 0.81. On the other hand, for the second analysis where we included 

physicochemical properties we have 7,947 true negatives, 4,720 false positives, 1,942 

false negatives and 15,244 true positives. Recall is calculated as 0.89, while the precision 

is 0.76 and specificity is 0.63. F1 score is reported as 0.82. Other metrics derived from 

precision and recall values are reported in Table 4.13 for both analyses. 

 

Table 4.11. Confusion matrix for the hold-out validation set of the model without 3D 

sequence annotations. Rows: Actual Class; Columns: Predicted Class 

 

 
Predicted neutral 

class 

Predicted deleterious 

class 

Actual neutral class 7131 5456 

Actual deleterious class 1803 15354 

Total 8934 20810 

 

Table 4.12. Confusion matrix for the hold-out validation set of the model with 3D 

sequence annotations. Rows: Actual Class; Columns: Predicted Class 

 

 
Predicted neutral 

class 

Predicted deleterious 

class 

Actual neutral class 7947 4720 

Actual deleterious class 1942 15244 

Total 9889 19964 

 

Table 4.13. Performance metrics for models without and with 3D sequence annotations. 

 

Measure 

Model without 

3D Sequence 

Annotation 

distances 

Model with 

3D Sequence 

Annotation 

distances 

Sensitivity 0.8949 0.8870 

Specificity 0.5665 0.6274 

Precision 0.7378 0.7636 

Negative Predictive Value 0.7982 0.8036 

False Positive Rate 0.4335 0.3726 

False Discovery Rate 0.2622 0.2364 

False Negative Rate 0.1051 0.1130 

Accuracy 0.7560 0.7768 

F1 Score 0.8088 0.8207 

Matthews Correlation Coefficient 0.4973 0.5401 

AUC 0.8400 0.86 
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ROC curves for validation sets for both analyses are shown in Figure 4.11. According to 

this, AUC value is reported as 0.84 for the model where 3D distances of annotations are 

excluded, and as 0.86 for the where 3D distances of annotations are included.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11. ROC curves for the hold-out validation sets of the models (A) where 3D 

distances of annotations are excluded, and (B) where 3D distances of annotations are 

included. AUC values are 0.84 and 0.86 respectively. 

 

As for feature importance figures, Figure 4.12 shows feature importance for two analysis. 

According to this, in the first model that is built by excluding 3D distances of annotations, 

we can observe that higher ranks are occupied by physiochemical feature as expected. 

Binary annotations follow physicochemical properties. Helix, strand and turn annotations 

occupy higher ranks compared to other annotation types. As for the model where 3D 

distances are included, the same three annotations, helix, strand and turn, are shown to 

occupy higher ranks with their 3D distance values; again, after physicochemical 

properties. Although 3D distance annotation values are scattered in terms of feature 

importance, from the output results we can conclude that they play an important role in 

the predictive performance of the model.  

 

 

 

A. B. 
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Figure 4.12. Feature importance models with and without physicochemical properties. 

(A) shows the feature importance ranking for model without physicochemical properties 

are excluded. All 4 properties are located in the highest ranks. (B) shows the feature 

importance ranking model with physicochemical features.  

 

 

These results show that, 3D annotations are valuable parts of the feature vector and their 

inclusion can enhance the predictive performance. With a similar logic to the domain case, 

we can conclude that mutations occurring in the functionally important regions are 

distinctive in terms of determining the possible effect of the mutation as they alter their 

surroundings as well. 

4.8.4. Performance of The Finalized Classifier 

 

After measuring the individual contributions of different subsets of the feature vector and 

observing the importance of each subset alone, we constructed a model with the final 

feature vector that contains all of the features tested. Since using only statistically 

significant domains increased the performance slightly and also reduced the complexity, 

we decided to use this reduced data set for further analysis. Final feature vector that is 

used to build the model contains 68-features. In order to determine the best parameters 

and optimize our model we performed a grid search over the space of possible 

hyperparameter values.  We did not tune all the parameters due to computational 

limitations, rather we adjusted a subset of hyperparameters that could be important in the 

tree generation and model performance. Tested hyperparameters are given in Table 4.14. 

Best performing parameters as a result of the grid search are shown in bold. Full list of 

parameters can be found in Appendix D. 

 

 

 

A. 
B. 
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Table 4.14. Parameters for grid search for the finalized model. Best performing ones are 

shown in bold. 

 

ntrees 25 50 75 100 125 150 175 

max_depth 10 15 20 25 30   

balanced_class yes  no      

 

 

 

ntrees parameter shows the number of trees built for the forest. Final decision is 

determined as a common decision obtained from 100 trees. max_depth parameter stands 

for maximum depth for the tree. This means, a tree can be branched up to these many 

levels. As the depth increases, it generates more splits and contains more information 

about the data. This hyperparameter is selected to be set to 25. Also, we can observe that 

a better score is obtained when the classes are balanced. When this parameter is set True, 

algorithm balances the contribution from two response classes by either oversampling the 

less abundant one, or under sampling the more abundant one. In the data, we had 68,831 

data points belonging to non-neutral case, and 50,238 data points belonging to neutral 

case. Although the difference between two classes is not very much, grid search resulted 

in a better model for the balanced case. 

 

Using the parameters that resulted in the best scores from Table 4.14 and default values 

for the rest of the hyperparameters, we have performed 10-fold cross-validation on our 

data. 75% of data is split for training; while the rest is saved as an independent hold-out 

validation set, respectively. 

 

Confusion matrix for the hold-out validation set is given in Table 4.15. According to this, 

we have 7,586 true negatives, 4,791 false positives, 1,759 false negatives and 15,677 true 

positives. Recall is calculated as 0.90, while the precision is 0.77 and specificity is 0.61. 

F1 score is reported as 0.83. Other metrics derived from precision and recall values are 

reported in Table 4.16. 

 

Table 4.15. Confusion matrix for the hold-out validation set of the finalized model. 

Rows: Actual Class; Columns: Predicted Class 

 

 
Predicted neutral 

class 

Predicted deleterious 

class 

Actual neutral class 7586 4791  

Actual deleterious class 1759 15677 

Total 9345 20468 
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Table 4.16. Performance metrics for the best model of grid search for the finalized 

model. 

 

Measure Value 

Sensitivity 0.8991 

Specificity 0.6129 

Precision 0.7659 

Negative Predictive Value 0.8118 

False Positive Rate 0.3871 

False Discovery Rate 0.2341 

False Negative Rate 0.1009 

Accuracy 0.7803 

F1 Score 0.8272 

Matthews Correlation Coefficient 0.5439 

AUC 0.86 

 

 

 

Resulting ROC after building the final model is given in Figure 4.13. ROC curve 

demonstrated an AUC value of 0.86 for the hold-out validation set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13. ROC curve for the hold-out validation set after grid search. AUC = 0.86. 

Blue line represents true positive rate and false positive rate at different threshold values, 

red line represents a random prediction. 
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As for variable importance, we can see that the highest-ranking variables are again domain 

and physicochemical properties when all of the features are included. Strand among 

strand, helix and turn annotations that are seen in higher ranks in the previous analysis is 

again observed to carry higher importance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14. Scaled variable importance for the features for the best model of finalized 

vector. Physicochemical properties are shown to contribute the most. 

 

 

 

Finally, Figure 4.15 shows a log-loss curve for the best performing model from the grid 

search. Blue line represents the training set, while orange line represents validation set. 

The logarithmic loss curves give a measure of the closeness of a model’s predicted values 

to the actual target value. In other words, it measures the accuracy of the classifier by 

penalizing false classifications. An algorithm’s goal is to minimize this rate. As we can 

see for our case, as the number of trees increases log-loss value decreases. One can notice 

that error-rate is lower for the validation case while in fact a lower error is expected for 

the training set. It could be deceptive at the first glance because the formula for calculating 

log-loss takes the negative of the value. Since logarithmic formula changes sign between 

0 and 1, log-loss formula outputs the higher value as a lower value.   
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Figure 4.15. Log-loss graph for the best model after the grid search. Orange line shows 

validation set, blue line shows training set. 

 

 

When results from four analyses are examined, we can see that a feature vector where all 

of the features from structure and sequence is included performs the best for optimized 

parameters. We obtained an AUC value of 0.86 for the final model. 

 

After obtaining the results for the final classifier, we also wanted to observe the 

performance of our classifier with different subsets from our data. For our model, we have 

retrieved data from three sources; UniProt, ClinVar and PMD. UniProt and PMD deposits 

mutations that cause a deleterious effect on the protein’s structure or function. However, 

ClinVar deposits disease data that are discovered in clinical or experimental studies. For 

this reason, in order to observe how the classifier would behave in two different data sets 

with different characteristics we split our data into two sets as one having only ClinVar 

mutations and the other one having UniProt and PMD mutations. 75% of the data is 

divided as the training set and the rest is saved as the hold-out validation set. 10-fold cross-

validation is applied on the data. In order to obtain a better performance number of trees 

are set to 150, and maximum depth is set to 25. Confusion matrices for the hold-out 

validation sets of two datasets are given in Table 4.17 and Table 4.18, respectively. 

According to this, in the model trained with UniProt and PMD data, we have 5,709 true 

negatives, 4,501 false positives, 1,246 false negatives and 9,966 true positives. Recall is 

calculated as 0.89, while the precision 0.69 and specificity is 0.56. F1 score is reported as 

0.78. Other metrics are reported in Table 4.19. On the other hand, in the model trained 

with ClinVar data only, we have 1,972 true negatives, 1,253 false positives, 593 false 

negatives and 8,282 true positives. Recall is recorded as 0.93, while precision is 0.87 and 

specificity is 0.61. F1 score is calculated as 0.90. Other metrics can be found in Table 

4.19. 
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Table 4.17. Confusion matrix for the hold-out validation set of the model trained with 

UniProt and PMD data. Rows: Actual Class; Columns: Predicted Class 

 

 
Predicted neutral 

class 

Predicted deleterious 

class 

Actual neutral class 5709 4501 

Actual deleterious class 1246 9966 

Total 6955 14467 

 

 

 

Table 4.18. Confusion matrix for the hold-out validation set of the model trained with 

ClinVar data. Rows: Actual Class; Columns: Predicted Class 

 

 
Predicted neutral 

class 

Predicted deleterious 

class 

Actual neutral class 1972 1253 

Actual deleterious class 593 8282 

Total 2565 9535 

 

 

 

Table 4.19. Performance metrics for models that use UniProt-PMD data and ClinVar 

data. 

 

Measure 

Model without 

UniProt-PMD 

data 

Model with 

ClinVar 

Data 

Sensitivity 0.8889 0.9332 

Specificity 0.5592 0.6115 

Precision 0.6889 0.8686 

Negative Predictive Value 0.8208 0.7688 

False Positive Rate 0.4408 0.3885 

False Discovery Rate 0.3111 0.1314 

False Negative Rate 0.1111 0.0668 

Accuracy 0.7317 0.8474 

F1 Score 0.7762 0.8997 

Matthews Correlation Coefficient 0.4779 0.5892 

AUC 0.82 0.91 
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ROC curves for validation sets for both analyses, dataset for ClinVar and dataset for 

UniProt and PMD, are shown in Figure 4.16. According to this, AUC value is reported as 

0.82 for the model with UniProt and PMD data combined, while AUC is 0.91 for the 

model is trained with ClinVar data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16. ROC curves of the hold-out validation sets of models trained on (A) 

Humsavar and PMD data (B) ClinVar data. AUC values are 0.82 and 0.91 respectively. 

 

As for feature importance figures, Figure 4.17 shows feature importance for two analysis. 

In the first model that is built with UniProt and PMD data, surprisingly, contrary to the 

other analysis physicochemical properties are seen in the lower ranks. Higher ranks are 

occupied by strand, helix and turn annotations from UniProt annotations and only by 

Grantham Matrix Score from physicochemical properties. Domains are again observed in 

the higher ranks. Relative accessible surface area value is also surprisingly in the high 

ranks. And in the second model where ClinVar data is used for training and validating the 

model, higher ranks are occupied by physicochemical properties as expected. They carry 

the most importance as the scaled importance for the other ones are low. On contrary in 

the first model, scaled importance are distributed more equally compared to this model. 

 

A. B. 



 

84 

 

 

 

Figure 4.17. Feature importance models trained and validated on (A) Humsavar and PMD 

data (B) ClinVar data. 

 

4.9. Benchmark Analysis 

 

In order to compare our results with the performances of existing methods, we’ve done a 

benchmark analysis. For this purpose, we have used data from PredictSNP (Bendl et al., 

2014). PredictSNP is an ensemble classifier that gives a consensus prediction from 6 

different classifiers, each use a different set of data points and methods. PredictSNP 

follows a very elaborative method while constructing its benchmark data set. It collects 

the data from other sources that are not used as the branches of the ensemble classifier and 

removes data that are found common in the training or test sets of the selected classifiers. 

By doing so, it ensures a fully independent data set that is able to measure the performance 

of each individually. However, one thing prevents PredictSNP from totally reflecting the 

individual unbiased performances is that classifiers are not able to accommodate all the 

data points in the benchmark data set. Some classifiers for instance require proteins to be 

deposited in certain databases, and when proteins from the data is not present in that 

database, this prevents their evaluation by the mentioned classifier. Despite that, even 

using some portion of this unbiased data gives a measure of understanding the 

performances. We have compared the performance of our model with the results from this 

ensemble classifier, as well as its selected individual classifiers on three different datasets. 

Datasets were available to download in PredictSNP. There are three datasets available to 

download in PredictSNP. The benchmark dataset is used for the evaluation of the selected 

classifiers and also for training of PredictSNP. It is compiled from five different sources. 

One of the testing sets were compiled from mutations on Protein Mutant Database. 

Finally, the second testing test, and the third of three datasets, was compiled from 

experiments conducted by Yampolsky and Stoltzfus for massively mutated proteins 

(MMP); and from two patent applications issued by Danisco Inc. describing the effect of 

A. B. 
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mutations on serine protease from Bacillus subtilis and alpha-amylase from Geobacillus 

stearothermophilus (Aehle W., Wolfgang, Cascao-Pereira Luis G., Estell David A., 

Goedegebuur Frits, Kellis, Jr. James T., Poulose Ayrookaran J., 2010; Cuevas William A, 

Lee Sang-Kyu, Ramer Sandra W, Shaw Andrew, Toppozada Amr R, Estell David E, 2009; 

Quan et al., 2016; Yampolsky & Stoltzfus, 2005). Data counts for individual data sets can 

be found in Table 4.20. 

Table 4.20. Data point counts for the datasets downloaded from PredictSNP.  

 Neutral Deleterious Total 

PredictSNP 

benchmark dataset 
24082 19800 43882 

PMD dataset 1248 2249 3497 

MMP dataset 7538 4452 11990 

 

In order to be able to use these data in our model, we retrieved the common data points 

that are present both in PredictSNP data sets and our dataset. This has resulted in 15491 

data points common with the benchmark set, and 952 data points common with the PMD 

test set. Later on, to construct the training and test sets for the model, we have extracted 

these common data points from our data set and created training and test sets. For each 

evaluation, remaining data points were used as the training set, while the excluded data 

points, i.e. common between PredictSNP data and the original dataset used in this study, 

are considered as the validation set. Additionally, in order to give fairer results, we have 

only used a subset of our data that includes the mutations from the same versions of 

UniProt, ClinVar and PMD used in PredictSNP data sets. This data set is referred as 

Dataset I in the following sections. According to this, counts of per training and test sets 

for each data set are given in Table 4.21.  

 

Table 4.21. Data points counts for the benchmarking analysis.  

 Neutral Deleterious Total 

Dataset I 38874 44177 83051 
Benchmark excluded 

from Dataset I (Train) 
29735 40227 69962 

Excluded Benchmark 

Set (Test) 
9139 3950 13089 

PMD excluded from 

Dataset I (Train) 
38539 43563 82102 

Excluded PMD (Test) 335 614 949 
MMP excluded from 

Dataset I (Train) 
47553 64434 111987 

Excluded MMP (Test) 5 18 23 
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We have created three models for evaluation of each data set. In the first model, we have 

excluded data points that are common to PredictSNP’s benchmark dataset and our original 

dataset. We again used significant domains for the domain feature in our model. This has 

resulted in a training set of 69,962 mutations and a test set of 13,089. Number of trees are 

set to 150 and maximum depth is set to 20. Confusion matrix for the hold-out validation 

set is given in Table 4.22 and performance metrics obtained using these sets are given in 

Table 4.23. Using this dataset, our model obtained a recall value of 0.77, while the 

precision is 0.66 and the specificity is 0.83. F1 score is found to be 0.71 while the accuracy 

is 0.81. We can also see that another measure Matthews Correlation Coefficient is 0.58. 

 

Table 4.22. Confusion matrix for the hold-out validation set for PredictSNP benchmark 

data. Rows: Actual Class; Columns: Predicted Class 

 

 
Predicted neutral 

class 

Predicted deleterious 

class 

Actual neutral class 7583 1556  

Actual deleterious class 906 3044 

Total 8489 4600 

 

 

 

Table 4.23. Performance metrics for the best model for PredictSNP benchmark set. 

 

Measure Value 

Sensitivity 0.7706 

Specificity 0.8297 

Precision 0.6617 

Negative Predictive Value 0.8933 

False Positive Rate 0.1703 

False Discovery Rate 0.3383 

False Negative Rate 0.2294 

Accuracy 0.8119 

F1 Score 0.7120 

Matthews Correlation Coefficient 0.5772 

AUC 0.8657 
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ROC curve generated over all thresholds for this model is given in Figure 4.18. According 

to this, independent validation set obtained an AUC value of 0.87. 

 

 
Figure 4.18. ROC curve for the hold-out validation set of the model generated using 

PredictSNP benchmark dataset. AUC = 0.87. Blue line represents true positive rate and 

false positive rate at different threshold values, red line represents a random prediction. 

 

 

Another model is generated with the data set that is constructed by excluding data points 

that are common with PMD test set of PredictSNP. According to this, we have 82,102 

datapoints in the training set and 949 data points in the test set. In order to get better results, 

we have refined the parameters as number of trees equals to 200 and maximum depth is 

equal to 30. Confusion matrix and performance metrices are given in Table 4.24 and 4.25, 

respectively. For this model, we have obtained a recall value of 0.98, while the precision 

is 0.66 and the specificity is 0.095. F1 score is found to be 0.80 while the accuracy is 0.67. 

We can also see that another measure Matthews Correlation Coefficient is 0.17.  

 

Table 4.24. Confusion matrix for the hold-out validation set for PredictSNP PMD test 

data. Rows: Actual Class; Columns: Predicted Class 

 

 Predicted neutral 

class 

Predicted deleterious 

class 

Actual neutral class 32 303 

Actual deleterious class 13 601 

Total 45 904 
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Table 4.25. Performance metrics for the best model for PredictSNP PMD test set. 

 

Measure Value 

Sensitivity 0.9788 

Specificity 0.0955 

Precision 0.6648 

Negative Predictive Value 0.7111 

False Positive Rate 0.9045 

False Discovery Rate 0.3352 

False Negative Rate 0.0212 

Accuracy 0.6670 

F1 Score 0.7918 

Matthews Correlation Coefficient 0.1672 

AUC 0.7101 

 

ROC curve generated over all thresholds for this model is given in Figure 4.19. According 

to this, independent validation set obtained an AUC value of 0.71.  

 

Figure 4.19. ROC curve for the hold-out validation set of the model generated using PMD  

dataset. AUC = 0.71. Blue line represents true positive rate and false positive rate at 

different threshold values, red line represents a random prediction. 
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As we can see, the metrics for this model is not as good as the previous one. This can owe 

to the fact that the validation set is not enough to reflect the real capacity of the model as 

it contains really a few number of data points. Most of the data points are predicted as 

deleterious, suggesting a bias in the data set. When the counts for individual classes are 

examined, we can observe that counts for deleterious mutations are double as neutral ones. 

Even though balanced classes parameter is activated in the model, it still seems to affect 

the performance. 

Finally, we have generated the last model using MMP set of PredictSNP. MMP validation 

set is not reliable as it only contains 23 datapoints. To recall, these data points are the ones 

that are found in common with our original set of data. Remaining data points that are 

only present in our data remained as the training set. 

Training set for MMP model contains 11,1987 data points and validation set contains 23 

data points. Confusion matrix and performance metrices are given in Table 4.26 and Table 

4.27, respectively. For this model, we have obtained a recall value of 1.0, while the 

precision is 0.82 and the specificity is 0.20. F1 score is found to be 0.90 while the accuracy 

is 0.83. We can also see that another measure Matthews Correlation Coefficient is 0.40. 

 

 

Table 4.26. Confusion matrix for the hold-out validation set for PredictSNP MMP test 

data. Rows: Actual Class; Columns: Predicted Class 

 

 Predicted neutral 

class 

Predicted deleterious 

class 

Actual neutral class 1 4 

Actual deleterious class 0 18 

Total 1 22 

 

 

Table 4.27. Performance metrics for the best model for PredictSNP MMP test set. 

 

Measure Value 

Sensitivity 1.000 

Specificity 0.2000 

Precision 0.8182 

Negative Predictive Value 1.000 

False Positive Rate 0.8000 

False Discovery Rate 0.1818 

False Negative Rate 0.0000 

Accuracy 0.8261 

F1 Score 0.9000 

Matthews Correlation Coefficient 0.4045 

AUC 0.5101 
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ROC curve generated over all thresholds for this model is given in Figure 4.20. According 

to this, independent validation set obtained an AUC value of 0.51.  

 

 

Figure 4.20. ROC curve for the hold-out validation set of the model generated using 

MMP dataset. AUC = 0.51. Blue line represents true positive rate and false positive rate 

at different threshold values, red line represents a random prediction. 

As can be seen from the ROC curve generated for MMP analysis, it is close to random 

predictions. This is mainly due to the effect of not having enough data points in the 

validation set. Only 23 data points cannot show the real evaluation of the classifier, thus 

we obtain such a result for MMP case. Also, we cannot observe any learning by the 

classifier which makes the predictions almost randomly assigned. To compare the effect 

of not having enough data points, we can take a look at the closest example which is 

PANTHER. In Table 4.25. we can see that PANTHER classifier is able to evaluate 61.9% 

of the mutations. This ratio is the lowest among all other classifiers. When we compare 

the metrics for this data set with the other classifiers, it is seen that PANTHER shows the 

lowest performance metrics for this set. This observation shows the importance of data 

availability and how a good representation can improve the performance. 

Overall comparison of performance metrics with other methods are given in Table 4.28. 

According to this, as expected consensus classifier outperformed the individual classifiers 

in many occasions. When the dataset is MMP, our model showed a poor performance due 

to the reasons mentioned above. However, with PMD test set and the benchmark set is 
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concerned our model has shown comparable or better results in most of the cases. Our 

model’s AUC value for benchmark set is 0.87 while the best score was given by 

PredictSNP as 0.81. For PMD test dataset this value is 0.70 for PredictSNP. Our score is 

similar with a value of 0.71. 

 

 

Table 4.28. Overall comparison of different classifiers. 

Performance 
Metrics 

Dataset Mapp nsSNPanalyzer Panther PhD-
SNP 

PPH-1 PPH-2 SIFT SNAP PredictSNP Our  
Model 

Percent of 
evaluated 
mutations 

PredictSNP 87.8 33.5 54.6 100.0 98.8 100.0 97.1 99.1 100.0 35.3 

PMD 81.1 63.4 38.1 100.0 97.1 98.3 77.6 95.1 100.0 27.0 

MMP 99.8 91.5 61.9 100.0 97.7 97.7 95.4 100.0 100.0 1.98 

Accuracy 

PredictSNP 0.711 0.632 0.642 0.746 0.682 0.701 0.723 0.670 0.747 0.81 

PMD 0.653 0.629 0.651 0.633 0.654 0.632 0.643 0.631 0.642 0.67 

MMP 0.707 0.618 0.603 0.629 0.684 0.677 0.646 0.709 0.708 0.83 

Matthews 
Correlation 
Coefficient  

PredictSNP 0.423 0.219 0.296 0.494 0.364 0.407 0.447 0.346 0.492 0.58 

PMD 0.327 0.243 0.303 0.258 0.299 0.289 0.312 0.253 0.281 0.17 

MMP 0.400 0.400 0.227 0.255 0.357 0.359 0.308 0.406 0.408 0.40 

AUC 

PredictSNP 0.773 0.634 0.692 0.812 0.695 0.776 0.784 0.732 0.808 0.87 

PMD 0.695 0.630 0.697 0.676 0.658 0.704 0.685 0.667 0.700 0.71 

MMP 0.759 0.620 0.676 0.685 0.720 0.774 0.710 0.769 0.787 0.50 

PPH-1 – PolyPhen-1; PPH-2 – PolyPhen-2; PMD dataset – dataset from Protein Mutant Database; MMP – dataset of massively mutated proteins  
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CHAPTER 5 

 

 

5. DISCUSSION & CONCLUSION 

 

 

Prediction of the effects of single amino acid variations on protein functionality remains 

an important question in computational biology. Although there are many tools and 

approaches developed for understanding possible effects, there is still room for 

improvement and the need for better prediction models continues. In this study, we aimed 

to develop a methodology for prediction of disease-causing capacity of single amino acid 

variations by taking a structure and annotation-centric approach where we utilized 30 

different UniProt sequence annotations along with three physicochemical properties to 

enrich our analysis. A total number of 119,069 data points were mapped to relative 

features and a feature vector of 68 dimensions was created to be fed into the machine 

learning classifier. Random forest algorithm was used to build the machine-learning 

model and variant effect predictions were obtained from the trained classifier.  

 

First of all, we observed that mutations occurring in functional regions are more prone to 

cause deleterious effects. These regions include various UniProt annotation sites, 

domains, sequence motifs and more. In our study, we selected 30 UniProt annotations and 

each protein’s InterPro domains to be considered as functionally important regions. 

Firstly, we investigated the relationship between domain regions and the mutation’s 

capacity to cause deleterious effects (Figure 4.1). Our analysis showed that 63% of the 

mutations occurring within the boundaries of domain regions cause an impairment in 

protein’s function. Remaining 37% is in that regions are found to be neutral mutations. 

On the other hand, 41% of the mutations that are found in the regions outside of the 

domain boundaries are shown to cause an effect on the protein. As expected, the ratio is 

lower for this case as these out-of-domain regions are less likely to be functionally 

important compared to domain regions. There of course can be other functionally 

important regions in these out-of-domain regions such as regulatory areas or interacting 

areas. This is why, we are expecting to see deleterious mutations in these regions, as well; 

however, with a smaller proportion. Analysis from our data can add to this conclusion. 

When we look at the graph, we observe another category as no-domains which indicates 

the data points for which no InterPro domain was found in the version used for this study. 

Proportions for the nature of mutation shows that 61% of such data points are recorded as 

having a deleterious effect. These unknown areas that includes deleterious mutations may 
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be expected to belong to functionally important regions. These findings can help to 

prioritize sequence and structure annotation efforts for these regions after some more in-

depth analysis.  

 

In addition to the domain regions, we have also made use of UniProt sequence annotations. 

These annotations are included both in the continuous valued form where we calculated 

the 3D distance between the annotation region and the mutation position, and in the binary 

form where we checked for the presence or absence of the mutation within the annotated 

region. In a similar manner we did for the domains, here as well, we expected to observe 

deleterious mutations more in the annotation regions. Our analysis showed that it was a 

valid assumption. In the regions of annotation, we observed more deleterious mutations 

than neutral mutations for most of the annotation types (Figure 4.5). For example, in 

initiator methionine annotations, all mutations that hit these regions caused a deleterious 

effect in the protein. Methionine is coded by a single amino acid and it is the initiator 

codon of protein synthesis for the eukaryotic organisms. Thus, any mutation that creates 

any product other than methionine distorts the protein synthesis and prevents the protein 

formation. Therefore, we would expect to see that mutations in this annotation region 

would be deleterious as confirmed by our analysis. Only few annotation types did not 

agree with this trend. Signal peptide, coiled coil, peptide, transit peptide, glycosylation 

and pro-peptide annotations showed a higher proportion for neutral mutations when 

mutation is found to hit these regions. Coiled coil is normally an important region for 

protein folding and mutations in this region are expected to impair protein folding; thus 

function. 16% of difference is observed between two classes for coiled coil. The ratio is 

not too high and can be a result of the positions of the mutation in the selected data set. 

Coiled coils are packed alpha helices. Mutations may be located in the inner regions that 

even when caused distortions their effect may not change the overall behavior of the 

complex. Glycosylation is again an important secondary protein processing mechanism 

that affects protein structure and stability. The difference in proportion is 12 %. This is 

not a dramatically large difference but still the reasons why non-neutral mutations are 

found to be more present in this annotation type can be investigated. The remaining 

annotations are related to peptide structures. Same as glycosylation goes for the peptide 

annotation which differs by 8% from the non-neutral class. Peptide annotation refers to a 

peptide, as can be understood from the name, and generally carries a biological function. 

Reasons why, even though small, this 8% excess is present for neutral class can be 

investigated. Remaining two annotations propeptide and transit peptide shows a bigger 

difference for neutral and non-neutral classes. For propeptide, we obtained a 30% of 

difference, while for transit peptide this proportion is 36%. A reasonable conclusion can 

be made by referring to the functions of these annotations. Pro-peptide is actually cleaved 

from the protein when it gets to its mature form. For this reason, any functionally 

important task is not expected from this annotation region. As for transit peptide, their 

task is to carry proteins to their destined location. This would normally affect the function 

by not sending the protein to its proper place, however a mutation that affects that batch 

of proteins is not necessarily found present for another synthesis cycle. These mutations 

do not directly affect the protein structure, but they affect the carrier part. What this means 

is proteins can still be carried to their destined locations as long as these mutations are 
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spontaneous mutations, not hereditary mutations. When the overall picture is examined, 

mutations are found to cause some sort of impairment for most of the annotations they are 

found in.  

 

We also investigated the importance and relevance of physicochemical properties in 

protein regions and in protein families. In order to understand the association of the 

mutation with the protein region it occurs and its consequence, i.e. disease or neutral case, 

we applied Fisher’s exact test on three protein regions: core, surface and interface (Table 

4.3). Our results have shown that in all of these regions change in the Grantham Matrix 

score is highly associated with the probability of observing deleterious mutations. This 

means that when a significant change occurs in the Grantham Matrix value, it is very likely 

that this mutation may cause deleterious effect. As Grantham Matrix is a combination of 

three other properties, we also wanted to observe the individual effects of these properties. 

When the results are examined, it can be observed that volume property shows the highest 

significance in all regions that suggests, again, changes in the volume are highly 

associated with the deleteriousness capacity of the mutation. This shows us the importance 

of maintaining protein’s 3D structure and spatial organization as drastic changes in the 

volumes may occur as a result of a substitution by very different residues which changes 

the overall shape. In the other analysis, we did the same comparison for different protein 

families. For this purpose, instead of three protein regions we have split the dataset into 

protein families. Four protein families   are selected as ion channel, membrane receptor, 

enzyme and transcription factor. Other families are grouped as the ‘other’ category. In 

each family, the proportion of the deleterious and neutral cases in different significance, 

i.e. significant change in the property or non-significant change in the property, groups 

for physicochemical properties are recorded. According to this, in enzyme, ion channel 

and membrane families, Grantham Score again showed to have the most significant 

association with the state of the outcome. In transcription factor family volume property 

surpassed all others with a very high significance. When we examine the individual 

properties, this time we again observed that volume’s significance is higher in all families. 

These results show the importance of maintenance of structure in proteins. We can 

hypothesize that in addition to having its own importance, structure can also be important 

because spatial conformation affects surrounding and its interactions as well. 

 

One other thing we examined was the relative accessibility of a mutation position and the 

degree of effect it may cause on the protein structure (Figure 4.6). Our analysis for our 

data has shown that when a mutation is observed in the buried region, it is more than 2-

fold likely to be a deleterious mutation. Proportions show that 70% of buried mutations 

caused an impairment; while remaining 30% is found to show no effect. Interface residues 

show a similar trend with 68% for non-neutral and 32% for neutral residues. This is 

expected because these two structure regions are important for protein’s ability to 

function. While buried residues contribute to the stability of the protein, interface regions 

are responsible for recognizing other proteins and make interactions and complexes with 

them. Thus, mutations affecting these regions are prone to cause important effects on the 

protein. Proportions for surface residues are not as dramatic as the other two cases with 

49% for neutral and 51% for non-neutral classes.  
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Finally, we have created our models using random forest algorithm. Models are built in a 

bottom-up manner in which we evaluated the performance of different subsets of 

candidate features and determined their relative importance in a full combined vector. 

Firstly, we evaluated the contribution of domains. For this purpose, we compared two 

feature vectors. One of them contained a full set of domains that are associated with the 

data points. The other feature vector only included statistically significant domains that 

we obtained as a result of Fisher’s exact test analysis. These selected domains showed a 

better association with the resulting outcome, meaning that their presence or absence was 

strongly linked to the type of outcome. In the original data set, we have 2,159 domains. 

However, after performing Fisher’s exact test 327 significant domains are remained 

(Appendix A). By doing so, we also wanted to observe the effect of reducing complexity 

in a high cardinality feature. Normally decision trees are able to handle categorical data; 

however, most of the computational implementations fail to accurately read categorical 

data. This fact led us to use H2O platform that can treat categorical data in its natural form. 

Despite that, high cardinality is not preferred as it may cause model to memorize data. As 

a result of our analysis, we observed an increase in the performance for reduced domain 

case. AUC value is increased from 0.84 to 0.86 when significant domains are used (Figure 

4.7). This has shown us that using less domains is still informative; additionally, it reduces 

computational complexity. Thus, it is preferable to build the final model with this set of 

domains. Another analysis is performed to measure the contribution of physiochemical 

features. Physicochemical features are shown to be informative in many prediction 

methods. This is expected as they directly characterize the mutation, thus providing insight 

about the changes introduced to the affected region. For example, when a large residue is 

changed with a small one, it is more likely to cause a deleterious effect on the protein 

because the surroundings will be affected more. In order to observe these effects, we again 

built two models; one is with physicochemical features included, and the other one is with 

physicochemical features excluded. The model with the physicochemical models showed 

a greater performance with an AUC value 0.86 compared to the other model which had 

an AUC value of 0.81 (Figure 4.9). Finally, we wanted to examine the contribution of 3D 

distances between sequence annotations and mutation of interest. We built two vectors 

with one including 3D distance values, and the other one excluding them. Our results have 

shown us 3D distance values are also contributors to the model performance as AUC value 

is decreased to 0.84 from 0.86 that was measured with the model that used all of the 

features (Figure 4.11).  

 

After assessing the individual importance of different feature subsets, we constructed our 

final vector using all of these candidate features as all of them shown to improve predictive 

performance. We again used statistically significant domains as their analysis showed 

comparable results with the case where all of the domains are used. We performed a grid 

search on the hyperparameter space in order to optimize the model by using best 

performing parameters. As a result of this, the best performance is observed when 150 

trees with maximum depth 20 are generated. A balanced dataset gave better results. This 

model resulted in an AUC value of 0.86 for the validation set and 0.88 for the training set 

(Figure 4.13). When feature importance is examined, physicochemical properties are seen 
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to lead the rankings, followed by 3D distance between strand annotation and mutation 

which are also shown to rank high in other preliminary analysis (Figure 4.14). Along with 

strand, helix and turn annotations have also showed to rank in higher degrees in the other 

preliminary evaluations. All three annotations belong to the secondary structure class 

which may suggest that mutations occurring in these regions are more likely to be 

deleterious because these regions are strongly related to protein folding. Thus, interruption 

of the proper folding may lead to non-functioning protein products; thus, preventing the 

processes from happening.  

 

After generating the finalized model, we wanted to observe the effects of different data 

characteristics in our model. For this reason, we divided our data into two groups. One 

group contained data points from ClinVar whereas the other group was composed of data 

points from UniProt and PMD. Data deposited in ClinVar is different than the data in 

UniProt and PMD as ClinVar stores disease mutations whereas the other two store 

mutations causing a deleterious effect on the protein function, stability or structure. 

According to the performance metrices, model that is trained and validated on ClinVar 

data outperformed the model that uses UniProt and PMD data. This is an unexpected 

observation, because our model is meant to give better predictions on protein functionality 

and structure due to the feature set it utilizes rather than implicating a disease. However, 

the results show otherwise (Table 4.19). This observation could be a result of the lack of 

variation in ClinVar data set. ClinVar holds a more homogenous and more predictable 

data, whereas for UniProt and PMD is very heterogenous. Thus, this makes the validation 

set easy to predict. We think that this could lead to a dataset that is harder to predict in the 

case for Humsavar-PMD data. 

 

Finally, we wanted to compare our model with other classifiers with a benchmark analysis. 

For this purpose, we have used benchmark and test sets from the PredictSNP consensus 

classifier study. PredictSNP uses these three independent datasets to compare the 

performances of its individual constituting classifiers as well as its own performance. 

However, one thing that prevents PredictSNP analysis from being completely accurate is 

the fact that individual classifiers that made up the consensus can evaluate only a portion 

of the benchmarking data sets (Table 4.28). Other parts of the data remain unused by the 

classifiers, and this restrains a fully fair evaluation. In our study, we evaluated the 

mutations that were also present in our dataset. Evaluation results suggest that our model 

showed a better or comparable performance than the ensemble classifier for different 

datasets. For example, for benchmarking set, our model performed better than the 

consensus classifier with an AUC value of 0.87; while the same metric measures 0.80 for 

PredictSNP (Figure 4.18). For PMD test set, we obtained a comparable result with the 

PredictSNP. However, number of the false positives are higher than expected that suggests 

we have more room for improvement. Finally, for the last dataset which consists of 

experimentally massively mutated proteins, our model did not give satisfying results. The 

reason for this is because we did not have enough data points in the validation set to reflect 

the learning outcomes of the data. When we examine one other individual classifier of 

PredictSNP, which is PANTHER, we can see that its coverage as well as its performance 

for this data set is lower than the other classifiers. The same reason explained for our data 
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is also valid here and shows the importance of a good coverage. One other reason for low 

performance could be the difference between data points characteristics between two sets. 

In order to overcome this, datasets can be further fine-tuned to represent a more similar 

nature. Overall, our model obtained comparable results with a consensus classifier 

PredictSNP which gives predictions from multiple classifiers. Considering our model only 

uses its own methodology for prediction, we can deem our model as a successful one. 

 

As a conclusion, we have developed a methodology to obtain variant effect predictions 

for single amino acid substitutions. Both protein structure and sequence information are 

used in the feature vectors. In our performance analyses, we observed that our classifier 

gave sufficiently well results. Also comparing with some individual and consensus 

classifiers, we have seen that our model shows comparable or better results when enough 

data is available. Future works of this study includes the construction of a computational 

tool that will automatize feature vector generation steps, in order to produce predictions 

on newly introduced data using our model. We plan to enrich the missing data by 

incorporating new protein functional annotations as they are added to the newer versions 

of the UniProt database, to increase the predictive performance further. We will also 

improve our benchmarking results by comparing our model with different benchmark sets 

such as the one given in Sarkar et al 2019). Finally, we plan to optimize our model to work 

as a meta-predictor in coherence with other well-established tools such as PolyPhen-2 and 

SIFT, to further increase the predictive performance of the existing state-of-the-art variant 

effect predictors. Later, this meta-predictor can be implemented in a webserver with a user 

interface to produce real-time predictions for newly reported mutations with unknown 

consequence. 
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APPENDICES 

 

APPENDIX A 

The table here shows selected domains and their counts for each class after Fisher’s exact 

test analysis along with the significance of association with 99% confidence interval. 

 

Domain Name 

Total 

Number of 

Observations 

Deleterious 

Observations 

Neutral 

Observations 
p-value 

IPR011162 632 10 622 2,64E-237 

IPR017452 1918 550 1368 1,14E-196 

IPR005821 2095 1905 190 5,89E-178 

IPR009050 530 48 482 8,26E-137 

IPR013783 2908 1290 1618 1,55E-82 

IPR017853 956 840 116 4,30E-52 

IPR013087 607 181 426 8,36E-48 

IPR017850 780 687 93 5,91E-41 

IPR008972 462 430 32 3,66E-36 

IPR019774 293 285 8 5,36E-31 

IPR013092 474 429 45 1,63E-26 

IPR008967 505 451 54 7,53E-26 

IPR015919 680 265 415 1,23E-21 

IPR027417 3726 2687 1039 1,09E-16 

IPR011146 221 213 8 1,45E-16 

IPR013088 199 194 5 5,83E-17 

IPR009057 513 441 72 1,03E-14 

IPR008948 194 188 6 5,97E-14 

IPR001909 67 0 67 8,32E-15 

IPR000536 499 427 72 7,59E-14 

IPR017943 79 4 75 6,89E-13 

IPR022772 168 164 4 1,25E-13 

IPR032675 550 228 322 4,61E-11 

IPR000742 1492 1124 368 3,86E-08 

IPR013320 547 232 315 6,45E-08 

IPR029021 432 363 69 9,67E-08 

IPR006132 121 119 2 3,05E-05 

IPR014710 230 208 22 4,08E-06 

IPR020858 76 9 67 2,07E-04 

IPR029063 268 95 173 3,79E-04 

IPR016176 121 118 3 4,86E-05 
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IPR023796 293 108 185 9,74E-05 

IPR006131 113 110 3 1,91E-02 

IPR029057 112 109 3 3,29E-02 

IPR000436 255 93 162 7,08E-03 

IPR009100 159 147 12 1,88E-01 

IPR011991 546 434 112 1,22E-01 

IPR001846 104 26 78 3,52E+00 

IPR008922 134 124 10 4,50E-01 

IPR023214 381 310 71 1,15E+02 

IPR002181 78 16 62 2,84E+02 

IPR022417 64 64 0 2,20E+03 

IPR013821 85 82 3 3,29E+03 

IPR003644 71 15 56 8,33E+02 

IPR015424 415 329 86 1,58E+04 

IPR032695 77 18 59 1,71E+04 

IPR001478 105 31 74 3,28E+03 

IPR024041 51 8 43 3,98E+03 

IPR008280 131 118 13 4,01E+04 

IPR014743 182 157 25 4,57E+04 

IPR004273 93 26 67 6,59E+03 

IPR008930 70 16 54 7,56E+02 

IPR015813 78 75 3 7,62E+03 

IPR004841 89 84 5 9,39E+03 

IPR003533 118 107 11 1,70E+05 

IPR023210 57 11 46 1,92E+04 

IPR012674 43 6 37 3,78E+04 

IPR027387 34 3 31 5,68E+05 

IPR007696 149 130 19 6,38E+04 

IPR009071 108 98 10 8,10E+04 

IPR001811 23 0 23 1,06E+06 

IPR017448 54 11 43 1,74E+06 

IPR011042 454 350 104 2,20E+05 

IPR024074 57 56 1 2,43E+05 

IPR000585 38 5 33 2,67E+05 

IPR001926 101 92 9 2,67E+06 

IPR028992 49 49 0 3,31E+06 

IPR022636 55 54 1 4,17E+05 

IPR001424 94 86 8 5,04E+05 

IPR009075 151 130 21 5,11E+05 

IPR011990 323 149 174 5,91E+05 

IPR023298 83 77 6 6,99E+05 

IPR022673 141 122 19 7,48E+04 

IPR022675 77 72 5 8,00E+04 

IPR016137 31 3 28 8,60E+05 

IPR010982 71 67 4 1,31E+07 

IPR012336 146 56 90 1,43E+07 

IPR015943 702 365 337 1,49E+05 
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IPR018884 51 11 40 1,66E+07 

IPR020683 381 183 198 1,84E+07 

IPR008984 121 106 15 2,15E+07 

IPR016024 999 540 459 2,98E+06 

IPR006207 74 69 5 3,34E+07 

IPR022672 111 98 13 4,33E+06 

IPR008979 295 233 62 4,68E+04 

IPR013816 77 71 6 7,65E+05 

IPR009045 55 53 2 8,30E+06 

IPR013780 87 79 8 8,45E+06 

IPR029332 18 0 18 1,56E+08 

IPR003594 165 137 28 2,54E+08 

IPR015425 21 1 20 2,88E+08 

IPR029061 140 118 22 5,13E+08 

IPR002912 36 36 0 7,84E+07 

IPR001452 151 63 88 1,05E+09 

IPR027936 16 0 16 1,15E+09 

IPR013680 16 0 16 1,15E+09 

IPR000859 116 45 71 1,15E+09 

IPR000980 232 184 48 1,18E+09 

IPR016185 58 54 4 1,86E+09 

IPR023578 30 5 25 2,30E+08 

IPR013785 179 145 34 2,31E+09 

IPR011764 34 34 0 2,32E+09 

IPR008250 175 142 33 2,56E+09 

IPR029006 49 13 36 2,73E+08 

IPR029047 15 0 15 3,12E+08 

IPR000157 37 8 29 3,45E+08 

IPR027309 32 6 26 3,47E+09 

IPR011992 260 124 136 4,11E+09 

IPR013806 63 20 43 5,59E+08 

IPR003331 38 37 1 7,41E+08 

IPR009051 38 37 1 7,41E+08 

IPR024732 31 31 0 7,48E+08 

IPR008519 14 0 14 8,47E+07 

IPR032455 14 0 14 8,47E+07 

IPR028889 47 13 34 9,75E+08 

IPR008983 229 179 50 1,27E+10 

IPR000472 54 50 4 1,28E+10 

IPR000834 35 8 27 1,49E+10 

IPR000873 55 17 38 1,68E+10 

IPR002035 362 184 178 1,78E+10 

IPR006134 13 0 13 2,30E+10 

IPR020602 41 39 2 2,48E+10 

IPR017878 86 74 12 3,11E+10 

IPR003008 91 78 13 3,12E+10 

IPR001098 61 55 6 3,20E+10 
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IPR031162 51 47 4 3,23E+10 

IPR000326 51 47 4 3,23E+10 

IPR020843 16 1 15 3,27E+10 

IPR013847 28 28 0 3,75E+10 

IPR029041 40 38 2 4,01E+09 

IPR023416 89 76 13 4,55E+09 

IPR032189 104 87 17 5,65E+09 

IPR016187 231 112 119 5,69E+09 

IPR001322 63 56 7 5,71E+09 

IPR006158 44 41 3 6,30E+09 

IPR000477 27 27 0 6,73E+10 

IPR009048 18 2 16 7,51E+10 

IPR012677 52 17 35 9,50E+08 

IPR025837 38 36 2 1,11E+11 

IPR010987 72 27 45 1,24E+11 

IPR017981 118 51 67 1,33E+11 

IPR001320 166 131 35 1,64E+11 

IPR024810 11 0 11 1,70E+10 

IPR006612 31 30 1 1,72E+11 

IPR009080 32 8 24 2,07E+11 

IPR029039 27 6 21 2,14E+11 

IPR031160 25 5 20 2,33E+10 

IPR022418 30 29 1 2,93E+11 

IPR029052 163 128 35 2,93E+10 

IPR001007 52 18 34 3,63E+11 

IPR003010 105 86 19 4,09E+10 

IPR001156 24 5 19 4,47E+10 

IPR008916 10 0 10 4,60E+10 

IPR014044 10 0 10 4,60E+10 

IPR011657 10 0 10 4,60E+10 

IPR015798 10 0 10 4,60E+10 

IPR021072 10 0 10 4,60E+10 

IPR029020 10 0 10 4,60E+10 

IPR002190 21 4 17 4,61E+10 

IPR000569 61 53 8 5,05E+11 

IPR033118 29 28 1 5,08E+10 

IPR008274 13 1 12 5,36E+11 

IPR011527 873 494 379 6,40E+08 

IPR016039 52 46 6 6,97E+10 

IPR007860 68 58 10 7,51E+09 

IPR015794 27 26 1 8,56E+10 

IPR001750 36 11 25 8,75E+10 

IPR015252 46 41 5 0,00 

IPR003112 75 63 12 1,01E-04 

IPR009011 40 13 27 1,04E-04 

IPR007110 15 2 13 1,05E-04 
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IPR002791 9 0 9 1,25E-04 

IPR028565 9 0 9 1,25E-04 

IPR002502 9 0 9 1,25E-04 

IPR024779 9 0 9 1,25E-04 

IPR018292 9 0 9 1,25E-04 

IPR001932 9 0 9 1,25E-04 

IPR001024 60 23 37 1,30E-04 

IPR018484 12 1 11 1,35E-04 

IPR007111 12 1 11 1,35E-04 

IPR000312 41 37 4 1,35E-04 

IPR016177 66 56 10 1,65E-04 

IPR000257 49 43 6 1,66E-04 

IPR014010 33 10 23 1,81E-04 

IPR004865 19 19 0 1,92E-04 

IPR012932 19 19 0 1,92E-04 

IPR002350 43 15 28 2,00E-04 

IPR006545 20 20 0 2,04E-04 

IPR032200 20 20 0 2,04E-04 

IPR011029 153 74 79 2,05E-04 

IPR001879 37 12 25 2,18E-04 

IPR001296 30 28 2 2,24E-04 

IPR010991 48 42 6 2,52E-04 

IPR000034 32 10 22 3,24E-04 

IPR024571 8 0 8 3,39E-04 

IPR029155 8 0 8 3,39E-04 

IPR031320 8 0 8 3,39E-04 

IPR012308 8 0 8 3,39E-04 

IPR027007 8 0 8 3,39E-04 

IPR012319 8 0 8 3,39E-04 

IPR032431 8 0 8 3,39E-04 

IPR032471 8 0 8 3,39E-04 

IPR002870 8 0 8 3,39E-04 

IPR010630 8 0 8 3,39E-04 

IPR013035 8 0 8 3,39E-04 

IPR011547 118 93 25 3,63E-04 

IPR013057 30 9 21 4,02E-04 

IPR001214 103 82 21 4,50E-04 

IPR001763 27 8 19 4,84E-04 

IPR003191 35 12 23 6,51E-04 

IPR014853 20 5 15 6,91E-04 

IPR009254 20 5 15 6,91E-04 

IPR029030 47 18 29 6,94E-04 

IPR003599 18 4 14 7,40E-04 



 

130 

 

IPR011598 93 74 19 7,86E-04 

IPR016040 504 354 150 8,35E-04 

IPR010994 10 1 9 8,36E-04 

IPR003137 10 1 9 8,36E-04 

IPR027357 7 0 7 9,21E-04 

IPR010926 7 0 7 9,21E-04 

IPR031907 7 0 7 9,21E-04 

IPR031474 7 0 7 9,21E-04 

IPR017854 7 0 7 9,21E-04 

IPR011008 7 0 7 9,21E-04 

IPR000922 7 0 7 9,21E-04 

IPR003609 63 52 11 9,94E-04 

IPR006594 16 16 0 1,01E-03 

IPR000197 21 20 1 1,13E-03 

IPR026831 21 20 1 1,13E-03 

IPR020568 122 94 28 1,31E-03 

IPR016093 62 51 11 1,41E-03 

IPR013121 25 23 2 1,58E-03 

IPR000699 54 45 9 1,68E-03 

IPR013158 14 3 11 1,80E-03 

IPR032630 14 3 11 1,80E-03 

IPR025766 15 15 0 1,83E-03 

IPR027841 9 1 8 2,05E-03 

IPR021040 6 0 6 2,50E-03 

IPR003726 6 0 6 2,50E-03 

IPR005302 6 0 6 2,50E-03 

IPR016182 6 0 6 2,50E-03 

IPR010979 6 0 6 2,50E-03 

IPR000674 6 0 6 2,50E-03 

IPR009017 6 0 6 2,50E-03 

IPR013992 6 0 6 2,50E-03 

IPR031437 6 0 6 2,50E-03 

IPR024309 6 0 6 2,50E-03 

IPR004102 6 0 6 2,50E-03 

IPR001194 6 0 6 2,50E-03 

IPR001180 6 0 6 2,50E-03 

IPR007725 6 0 6 2,50E-03 

IPR001599 6 0 6 2,50E-03 

IPR008942 6 0 6 2,50E-03 

IPR013697 6 0 6 2,50E-03 

IPR002999 6 0 6 2,50E-03 

IPR000772 16 4 12 2,82E-03 

IPR029071 103 50 53 2,86E-03 
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IPR012675 41 35 6 3,03E-03 

IPR008121 13 13 0 3,12E-03 

IPR001107 37 32 5 3,14E-03 

IPR003619 37 32 5 3,14E-03 

IPR029067 14 14 0 3,41E-03 

IPR001736 14 14 0 3,41E-03 

IPR002219 94 73 21 3,63E-03 

IPR000731 47 39 8 3,86E-03 

IPR014729 209 152 57 3,98E-03 

IPR031701 23 21 2 4,04E-03 

IPR033644 23 21 2 4,04E-03 

IPR000375 35 30 5 4,62E-03 

IPR031481 24 8 16 4,66E-03 

IPR002919 28 10 18 4,97E-03 

IPR007943 8 1 7 4,99E-03 

IPR008253 8 1 7 4,99E-03 

IPR027397 8 1 7 4,99E-03 

IPR000294 68 54 14 5,31E-03 

IPR000315 17 5 12 5,33E-03 

IPR024240 12 12 0 5,37E-03 

IPR013803 12 12 0 5,37E-03 

IPR002100 12 12 0 5,37E-03 

IPR034154 12 12 0 5,37E-03 

IPR032419 12 12 0 5,37E-03 

IPR009061 12 12 0 5,37E-03 

IPR010536 12 12 0 5,37E-03 

IPR001048 18 17 1 5,40E-03 

IPR016035 136 70 66 5,67E-03 

IPR016090 13 3 10 6,44E-03 

IPR008928 72 34 38 6,78E-03 

IPR029017 5 0 5 6,79E-03 

IPR010600 5 0 5 6,79E-03 

IPR029190 5 0 5 6,79E-03 

IPR031688 5 0 5 6,79E-03 

IPR025232 5 0 5 6,79E-03 

IPR027859 5 0 5 6,79E-03 

IPR002668 5 0 5 6,79E-03 

IPR029048 5 0 5 6,79E-03 

IPR022409 5 0 5 6,79E-03 

IPR001303 5 0 5 6,79E-03 

IPR006782 5 0 5 6,79E-03 

IPR006116 5 0 5 6,79E-03 

IPR004021 5 0 5 6,79E-03 
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IPR022764 5 0 5 6,79E-03 

IPR010918 5 0 5 6,79E-03 

IPR021989 5 0 5 6,79E-03 

IPR002589 5 0 5 6,79E-03 

IPR032746 5 0 5 6,79E-03 

IPR019162 5 0 5 6,79E-03 

IPR029312 5 0 5 6,79E-03 

IPR031442 5 0 5 6,79E-03 

IPR029388 5 0 5 6,79E-03 

IPR006581 5 0 5 6,79E-03 

IPR008332 5 0 5 6,79E-03 

IPR029064 10 2 8 6,93E-03 

IPR027295 10 2 8 6,93E-03 

IPR001111 79 38 41 6,99E-03 

IPR017946 39 16 23 7,00E-03 

IPR002937 26 23 3 7,08E-03 

IPR001148 190 102 88 8,23E-03 

IPR025659 16 15 1 8,79E-03 

IPR005480 16 15 1 8,79E-03 

IPR020630 16 15 1 8,79E-03 

IPR009078 41 34 7 8,81E-03 

IPR009014 17 16 1 9,34E-03 

IPR013234 11 11 0 9,45E-03 

IPR002474 11 11 0 9,45E-03 

IPR024986 11 11 0 9,45E-03 

IPR006644 11 11 0 9,45E-03 

IPR012429 11 11 0 9,45E-03 

IPR011162 632 10 622 0,00 
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APPENDIX B 

Tables in this Appendix shows Fisher’s exact test contingency table results for three 

protein regions per physicochemical property. Data points are classified for the regions 

their mutations occur as surface, core and interface. Physicochemical properties are 

divided as significant and non-significant based on the distribution they show in the data. 

Later on, association between the significance of properties and deleteriousness outcome 

is investigated. 

CORE – VOLUME 

 

 Deleterious Neutral Proportion 

(del/neut) 

Not Significant 4548 3149 1.44 

Significant 6154 1932 3.19 

Total 10702 5081 2.11 

p-value 1.96e-116 

 

CORE – COMPOSITION 

 

 Deleterious Neutral Proportion 

(del/neut) 

Not Significant 4915 2785 1.76 

Significant 5787 2296 2.52 

Total 10702 5081 2.11 

p-value 1.97e-25 

 

CORE – POLARITY 

 

 Deleterious Neutral Proportion 

(del/neut) 

Not Significant 4704 3110 1.51 

Significant 5998 1971 3.04 

Total 10702 5081 2.11 

p-value 1.05e-91 

 

CORE – GRANTHAM SCORE 

 

 Deleterious Neutral Proportion 

(del/neut) 

Not Significant 4270 3186 1.34 

Significant 6432 1895 3.39 

Total 10702 5081 2.11 

p-value 3.27e-159 
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INTERFACE – VOLUME 

 

 Deleterious Neutral Proportion 

(del/neut) 

Not Significant 3096 2163 1.43 

Significant 4181 1866 2.24 

Total 7277 4029 1.81 

p-value 7.13e-30 

 

 

INTERFACE – COMPOSITION 

 

 Deleterious Neutral Proportion 

(del/neut) 

Not Significant 3417 2026 1.67 

Significant 3860 2003 1.93 

Total 7277 4029 1.81 

p-value 0.00072 

 

INTERFACE – POLARITY 

 

 Deleterious Neutral Proportion 

(del/neut) 

Not Significant 3143 2122 1.48 

Significant 4134 1907 2.17 

Total 7277 4029 1.81 

p-value 4.73e-22 

 

INTERFACE – GRANTHAM SCORE 

 

 

 Deleterious Neutral Proportion 

(del/neut) 

Not Significant 2970 2127 1.40 

Significant 4307 1902 2.26 

Total 7277 4029 1.81 

p-value 2.06e-34 
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SURFACE – VOLUME 

 

 Deleterious Neutral Proportion 

(del/neut) 

Not Significant 12198 19349 0.63 

Significant 16601 14906 1.11 

Total 28799 34255 0.84 

p-value 1.44e-3274 

 

 

SURFACE – COMPOSITION 

 

 Deleterious Neutral Proportion 

(del/neut) 

Not Significant 13254 18489 0.72 

Significant 15545 15766 0.98 

Total 28799 34255 0.84 

p-value 3.93e-88 

 

SURFACE – POLARITY 

 

 Deleterious Neutral Proportion 

(del/neut) 

Not Significant 12829 19875 0.65 

Significant 15970 14380 1.11 

Total 28799 34255 0.84 

p-value 6.18e-250 

 

SURFACE – GRANTHAM SCORE 

 

 

 Deleterious Neutral Proportion 

(del/neut) 

Not Significant 11757 20777 0.56 

Significant 17042 13478 1.26 

Total 28799 34255 0.84 

p-value 0.0 
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APPENDIX C 

Tables in this Appendix shows Fisher’s exact test contingency table results for five protein 

families per physicochemical property. Data points are classified for the families that the 

protein is a member of. Physicochemical properties are divided as significant and non-

significant based on the distribution they show in the data. Later on, association between 

the significance of properties and deleteriousness outcome is investigated. 

 

TRANSCRIPTION FACTOR – VOLUME 

 

 Deleterious Neutral Proportion 

(del/neut) 

Not Significant 552 196 2.82 

Significant 698 122 5.72 

Total 1250 318 3.93 

p-value 2.75e-08 

 

TRANSCRIPTION FACTOR – COMPOSITION 

 

 Deleterious Neutral Proportion 

(del/neut) 

Not Significant 608 151 4.03 

Significant 642 167 3.84 

Total 1250 318 3.93 

p-value 0.753 

 

TRANSCRIPTION FACTOR – POLARITY 

 

 Deleterious Neutral Proportion 

(del/neut) 

Not Significant 584 162 3.60 

Significant 666 156 4.27 

Total 1250 318 3.93 

p-value 0.187 

 

TRANSCRIPTION FACTOR – GRANTHAM SCORE 

 

 Deleterious Neutral Proportion 

(del/neut) 

Not Significant 511 159 3.21 

Significant 739 159 4.65 

Total 1250 318 3.93 

p-value 0.0035 
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ENZYME – VOLUME 

 

 Deleterious Neutral Proportion 

(del/neut) 

Not Significant 6748 4558 1,48 

Significant 9072 3378 2.69 

Total 15820 7936 1.99 

p-value 9.55e-103 

 

 

ENZYME – COMPOSITION 

 

 Deleterious Neutral Proportion 

(del/neut) 

Not Significant 7283 4286 1.70 

Significant 8537 3650 2.34 

Total 15820 7936 1.99 

p-value 4.45e-31 

 

ENZYME – POLARITY 

 

 Deleterious Neutral Proportion 

(del/neut) 

Not Significant 7168 4575 1.57 

Significant 8652 3361 2.57 

Total 15820 3361 1.99 

p-value 4.37e-72 

 

ENZYME – GRANTHAM SCORE 

 

 

 Deleterious Neutral Proportion 

(del/neut) 

Not Significant 6491 4701 1.38 

Significant 9329 3235 2.88 

Total 15820 7936 1.99 

p-value 3.27e-155 
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ION CHANNEL – VOLUME 

 

 Deleterious Neutral Proportion 

(del/neut) 

Not Significant 1792 642 2.79 

Significant 2278 485 4.70 

Total 4070 1127 3.61 

p-value 1.63e-14 

 

 

ION CHANNEL – COMPOSITION 

 

 Deleterious Neutral Proportion 

(del/neut) 

Not Significant 1990 631 3.15 

Significant 2080 496 4.19 

Total 4070 1127 3.61 

p-value 2.55e-05 

 

ION CHANNEL – POLARITY 

 

 Deleterious Neutral Proportion 

(del/neut) 

Not Significant 2090 683 3.06 

Significant 1980 444 4.46 

Total 4070 1127 3.61 

p-value 3.67e-08 

 

ION CHANNEL – GRANTHAM SCORE 

 

 Deleterious Neutral Proportion 

(del/neut) 

Not Significant 1920 707 2.72 

Significant 2150 420 5.12 

Total 4070 1127 3.61 

p-value 2.04e-20 
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MEMBRANE – VOLUME 

 

 Deleterious Neutral Proportion 

(del/neut) 

Not Significant 1017 876 1.16 

Significant 1373 668 2.06 

Total 2390 1544 1.55 

p-value 4.14e-18 

 

 

MEMBRANE – COMPOSITION 

 

 Deleterious Neutral Proportion 

(del/neut) 

Not Significant 957 794 2.21 

Significant 1433 750 1.91 

Total 2390 1544 1.55 

p-value 2.50e-12 

 

MEMBRANE – POLARITY 

 

 Deleterious Neutral Proportion 

(del/neut) 

Not Significant 1030 824 1.25 

Significant 1360 720 0.88 

Total 2390 1544 1.55 

p-value 3.28e-10 

 

MEMBRANE – GRANTHAM SCORE 

 

 Deleterious Neutral Proportion 

(del/neut) 

Not Significant 870 834 1.04 

Significant 1520 710 2.14 

Total 2390 1544 1.55 

p-value 1.58e-27 
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OTHERS – VOLUME 

 

 Deleterious Neutral Proportion 

(del/neut) 

Not Significant 1033 985 1.05 

Significant 1683 775 2.17 

Total 2716 1760 1.54 

p-value 5.04e-32 

 

 

OTHERS – COMPOSITION 

 

 Deleterious Neutral Proportion 

(del/neut) 

Not Significant 1273 865 1.47 

Significant 1443 895 1.61 

Total 2716 1760 1.54 

p-value 0.1415 

 

OTHERS – POLARITY 

 

 Deleterious Neutral Proportion 

(del/neut) 

Not Significant 1169 1022 1.14 

Significant 1547 738 2.09 

Total 2716 1760 1.54 

p-value 9.71e-23 

 

OTHERS – GRANTHAM SCORE 

 

 Deleterious Neutral Proportion 

(del/neut) 

Not Significant 1058 952 1.11 

Significant 1658 808 2.05 

Total 2716 1760 1.54 

p-value 3.20e-23 
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APPENDIX D 

The table below shows the selected parameters for the finalized prediction model.  

 

 
label type level selected_value default_value 

model_id Key critical 

grid-40823815-b7a5-

4e5f-bbae-

9776fc38dc90_model

_2 

 

training_frame Key critical newtrain_fisher  

validation_frame Key critical newtest_fisher  

nfolds int critical 10 0 

keep_cross_validation_models boolean expert false true 

keep_cross_validation_predicti

ons 
boolean expert false false 

keep_cross_validation_fold_as

signment 
boolean expert false false 

score_each_iteration boolean 
second

ary 
false false 

score_tree_interval int 
second

ary 
0 0 

fold_assignment enum 
second

ary 
AUTO AUTO 

fold_column 
VecSpeci

fier 

second

ary 
·  

response_column 
VecSpeci

fier 
critical disease  

ignored_columns string[] critical uniprotIDwtmutpos  

ignore_const_cols boolean critical true true 

offset_column 
VecSpeci

fier 

second

ary 
·  

weights_column 
VecSpeci

fier 

second

ary 
·  

balance_classes boolean 
second

ary 
true false 

class_sampling_factors float[] expert ·  

max_after_balance_size float expert 5 5 

max_confusion_matrix_size int 
second

ary 
20 20 

max_hit_ratio_k int 
second

ary 
0 0 

ntrees int critical 100 50 

max_depth int critical 20 20 

min_rows double critical 1 1 

nbins int critical 20 20 

nbins_top_level int 
second

ary 
1024 1024 

nbins_cats int 
second

ary 
1024 1024 
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r2_stopping double 
second

ary 

1.7976931348623157

e+308 

1.7976931348623157

e+308 

stopping_rounds int 
second

ary 
0 0 

stopping_metric enum 
second

ary 
AUTO AUTO 

stopping_tolerance double 
second

ary 
0.001 0.001 

max_runtime_secs double 
second

ary 
0 0 

seed long critical 

-

32797074843467587

70 

-1 

build_tree_one_node boolean expert false false 

mtries int critical -1 -1 

sample_rate double critical 0.632 0.632 

sample_rate_per_class double[] expert ·  

binomial_double_trees boolean expert false false 

checkpoint Key 
second

ary 
·  

col_sample_rate_change_per_l

evel 
double expert 1 1 

col_sample_rate_per_tree double 
second

ary 
1 1 

min_split_improvement double 
second

ary 
0.00001 0.00001 

histogram_type enum 
second

ary 
AUTO AUTO 

categorical_encoding enum 
second

ary 
AUTO AUTO 

calibrate_model boolean expert false false 

calibration_frame Key expert ·  

distribution enum 
second

ary 
multinomial AUTO 

custom_metric_func string 
second

ary 
·  

export_checkpoints_dir string 
second

ary 
·  
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