
 

 

 BOOSTING PERFORMANCE OF HLS OPTIMIZATION FOR SOC BASED 

HARDWARE ACCELERATORS 

 

 

 

A THESIS SUBMITTED TO 

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 

MIDDLE EAST TECHNICAL UNIVERSITY 

 

 

 

 

BY 

 AZIZ BERKIN KOCAAY 

 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR 

THE DEGREE OF MASTER OF SCIENCE 

IN 

ELECTRICAL AND ELECTRONICS ENGINEERING 

 

 

 

 

JANUARY 2020





 

 

Approval of the thesis: 

 

 BOOSTING PERFORMANCE OF HLS OPTIMIZATION FOR SOC BASED 

HARDWARE ACCELERATORS 

 

 

submitted by AZIZ BERKIN KOCAAY in partial fulfillment of the requirements for 

the degree of Master of Science in Electrical and Electronics Engineering 

Department, Middle East Technical University by, 

 

Prof. Dr. Halil Kalıpçılar 

Dean, Graduate School of Natural and Applied Sciences 

 

 

Prof. Dr. İlkay Ulusoy 

Head of Department, Electrical and Electronics Eng. 

 

 

Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı 

Supervisor, Electrical and Electronics Eng., METU 

 

 

 

 

Examining Committee Members: 

 

Prof. Dr. Gözde B. Akar 

Electrical and Electronics Engineering,METU 

 

 

Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı 

Electrical and Electronics Eng., METU 

 

 

Prof. Dr. İlkay Ulusoy 

Electrical and Electronics Engineering,METU 

 

 

Prof. Dr. Ece G. Schmidt 

Electrical and Electronics Engineering,METU 

 

 

Prof. Dr. Ali Ziya Alkar 

Electrical and Electronics Engineering, Hacettepe University 

 

 

Date: 30.01.2020 

 



 

 

 

iv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained and 

presented in accordance with academic rules and ethical conduct. I also declare 

that, as required by these rules and conduct, I have fully cited and referenced all 

material and results that are not original to this work. 

 

 

Name, Surname:  

 

Signature: 

 

 Aziz Berkin Kocaay 

 



 

 

 

v 

 

ABSTRACT 

 

 BOOSTING PERFORMANCE OF HLS OPTIMIZATION FOR SOC BASED 

HARDWARE ACCELERATORS 

 

Kocaay, Aziz Berkin 

Master of Science, Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı 

 

January 2020, 94 pages 

 

Modern large-scale computing algorithms require huge amount of computational 

power. In adapting to increasing computation demands, FPGA-based SoC platforms 

provide an alternative to traditional CPU or GPU units, which suffer from thermal 

problems, power issues, etc. However, design flow for FPGA based development may 

be hard and time-consuming for an average software engineer who has limited 

knowledge about hardware design. A new approach in FPGA-based system 

development without the need for a hardware engineer is to program the FPGA using 

high level synthesis (HLS) tools that resembles C-based languages. Commercial HLS 

tools provide different kinds of automatic and user-defined optimizations for loop 

kernels such as pipelining, loop unrolling, etc. However, these techniques only 

provide instruction-level pipelining and reduce loop enter and exit overheads to 

decrease execution time of algorithms running on programmable logic (PL) side of 

SoC systems.  

The limited approach of HLS for loop kernels can be extended by adding front-end 

operations to input code of HLS tools.  

In this thesis, we propose a semi-autonomous polyhedral analysis and optimization-

based methodology in order to enable course grained parallelization on nested loop 
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structures to increase final design efficiency. Xilinx Zynq SoC FPGA platform and 

Vivado Design Suite Tool are used in order to show how our proposed approach could 

be applied. 

    

 

Keywords: Polyhedral Modelling, Hardware Accelerator, System on Chip (SoC), 

High Level Synthesis, Parallel Processing, Zynq  
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ÖZ 

 

SOC TABANLI DONANIM HIZLANDIRMALARINDA HLS 

PERFORMANSINI YÜKSELTME 

 

Kocaay, Aziz Berkin 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği 

Tez Danışmanı: Doç. Dr. Cüneyt F. Bazlamaçcı 

 

Ocak 2020, 94 sayfa 

 

Yeni nesil, geniş kapsamlı hesaplama algorithmaları yüksek miktarda hesaplama 

gücüne ihtiyaç duyar. Bu artan ihtiyaca uyum sağlamak için, ısınma ve güç tüketimi 

gibi problemleri olan CPU veya GPU tabanlı platformlar kullanmanın yanısıra FPGA 

tabanlı SoC platformları kullanmak da bir seçenek olabilir. Fakat, geleneksel FPGA 

tasarım yöntemleri ortalama bir yazılım mühendisi için zaman alıcı ve zordur. Yüksek 

seviye programlama (HLS), FPGA tabanlı sistemleri geliştirirken, donanım mühendisi 

ihtiyacını ortadan kaldırararak, C-tabanlı dillerin kullanılmasına olanak sağlayan yeni 

bir yaklaşımdır.  Ticari HLS araçları  döngü çekirdekleri için otomatik olarak 

uygulanan veya kullanıcı kontrolünde olan  bir dizi optimizasyon yöntemi sunar. 

Fakat, sunulan optimizasyon yöntemleri sadece komut seviyesinde ardışıklık sağlar 

ve döngü giriş ve çıkışlarındaki zaman kaybını azaltır. 

HLS araçlarının bu sınırlı yaklaşımı, HLS aracının kullanımından önce giriş koduna 

bir takım işlemler uygulanarak genişletilebilir.  

Bu tez çalışmasında, polyhedral model tabanlı analiz ve optimizasyon yöntemleri 

kullanılarak iç içe geçmiş döngülere paralellenebilme yetisi kazandırılmış ve HLS 

aracının giriş koduna uygulanmıştır. Bu yaklaşımın nasıl uygulandığını göstermek için 
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Xilinx firmasının ZYNQ SoC FPGA platformu ve Vivado Design Suite tasarım aracı 

kullanılmıştır. 

    

Anahtar Kelimeler: Polyhedral modelleme, Donanım Tabanlı Hızlandırma, Çip 

Üzerindeki Sistem, Yüksek Seviye Sentezleme, Eş Zamanlı İşleme  
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CHAPTER 1  

 

1. INTRODUCTION 

 

In recent years, most of integrated circuit (IC) vendors around the world have 

released their powerful multicore heterogeneous CPUs, GPUs and CPU-FPGA hybrid 

systems [1]. Many modern applications which are based on machine learning, artificial 

intelligence, clouding demand huge amount of data processing in limited execution 

time [2]. However, efficient design for high-performance and low-power architectures 

for computationally intense applications is still not an easy task. Most system 

developers address this problem via transforming their algorithms to be executed on 

field programmable gate array (FPGA) platforms. FPGAs are charming solutions that 

allow implementing huge parts of target applications on hardware at low cost as they 

can serve better computational capacity, flexibility and lower-power consumption at 

the same time. 

   

 Motivation 

According to Moore’s law, transistor density in ICs has increased in the last 

decades [3]. As a consequence, many special functional blocks such as DSP units, on-

chip-memories and CPUs have been added into modern FPGAs. Nowadays, they can 

be used as a combination of powerful programmable logic (PL) and flexible 

processing units (PU). Commercial and research projects, which employ this 

combined structure as an accelerator on different kind of applications, have shown 

remarkable improvement in terms of execution time when compared to traditional 

CPUs and GPUs [4].  

However, the main disadvantage of the FPGAs is their more difficult programming 

and configuration procedure when compared to sequential instruction-based 
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programmable ICs such as GPU and CPU development. Traditionally, FPGAs are 

configured using a hardware description language (HDL), such as Verilog or VHDL 

whereas CPUs are programmed via one of a plethora of sequential programming 

languages such as C, C++ and Python. Although, theoretically both hardware 

description languages and instruction-based programming languages could be used to 

express any computation, there exists huge engineering workload differences between 

them. Traditionally educated software developers are usually not familiar with 

methodology of FPGA programming. Thus, software engineers have to learn low level 

HDL programming or cooperate with an expert hardware engineer, which increases 

the required human or time resources seriously in any FPGA based accelerator 

projects. The other way to use FPGA as an accelerator without requiring a hardware 

engineer is programming FPGA with high level synthesis (HLS) tools. HLS is an 

upcoming programming trend for FPGA programming with regular C-based 

languages [5]. HLS provides a higher-level abstraction of the system and removes 

details of traditional RTL based design to generate hardware architecture for a given 

target device. 

 

 Aim of the Thesis 

HLS has been studied extensively in recent years and commercial HLS tools have 

reached a creditably stable level. Many researches in literature have shown that 

performance of hardware design generated by using HLS tools may reach to an 

acceptable level when compared with traditional RTL designs for non-complex 

algorithms [6].  

Loop kernels are broadly used in computational-intensive algorithms. In SOC-based 

designs, FPGAs carry computational loads of systems because of its natural parallel 

processing capability. The efficiency of computation intellectual property (IP) mostly 

depends on the optimization techniques used during system design process. 

Commercial HLS tools provide different kinds of automatic and user-defined 
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optimizations for loop kernels such as pipelining and loop unrolling. These 

optimizations increase computational efficiency. However, these techniques cover 

only sequential instructions in loop bodies to enable instruction level pipelined or 

parallel architecture to enhance the performance of target algorithm. 

This conservative approach of HLS can be broken by adding some front-end 

operations to input code of HLS tools. In this thesis, a semi-autonomous polyhedral 

analysis and optimization-based methodology is proposed in order to enable course-

grained parallelism for computationally intense applications to reduce execution time 

due to natural advantages of parallel processing. 

 

 Contributions of the Thesis 

The contributions of the present thesis work can be summarized as follows: 

• A novel HLS design flow that integrates three different tools namely Xilinx 

Vivado Design Suite, POCC and PIPS, is proposed to provide higher performance 

for computationally intense applications. 

o This integrated design flow enables course grained parallelism in nested 

loop structures to increase the performance of the final design and also 

provides an autonomous loop carry dependency analysis and further loop 

optimizations. 

o Efficiency of the proposed system is evaluated on both Vivado HLS 

simulation environment and Xilinx ZC-702 development board that 

includes Zynq-7000 series FPGA. Performance of the proposed method is 

compared with the built-in loop optimization methods of Vivado HLS. 

•  Although POCC is a powerful polyhedral model-based analysis and optimization 

tool on its own, it does not include loop skewing transformation. In this thesis, 

functional correctness of loop skewing is examined and potential advantages of 

combining of loop skewing and loop tiling are discussed. Loop tiling is a 

polyhedral loop transformation that POCC is capable of. 
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o Jacobi 2D iterative stencil kernel is selected and used to verify the 

performance of skewed-tiling transformations and our novel HLS design 

flow at same time. 

 

 Thesis Outline 

The rest of the thesis is organized as follows: 

In chapter 2, background information about MPSoCs architecture is given. 

Homogeneous and heterogeneous MPSoC systems are described in detail and 

differences between these systems are reviewed. FPGA based SoC platforms are 

explained and the way to use these platforms as hardware accelerators are discussed.  

In chapter 3, High Level Synthesis (HLS) is explained and step by step HLS-based 

design flow of FPGA in detail. Also, optimization capabilities of current HLS tools 

for computationally intense applications and limitations of HLS tools are given. 

In chapter 4, information about Polyhedral modelling with its associated crucial 

mathematical definitions are presented. Usage of the polyhedral model to analyze 

dependency in nested loop structures is discussed entirely. 

In chapter 5, some related works about HLS and polyhedral optimizations are given 

and differences between these works and this thesis work is also discussed. 

In chapter 6, all details of the proposed semi-autonomous approach for computational 

intense applications are expressed comprehensively.  

In chapter 7, an evaluation and the test results of the proposed design flow are given 

and discussed for different types of loop kernels. 

In chapter 8, conclusion and possible future works are given 
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CHAPTER 2  

 

2. SOC BASED PLATFORMS AND HARDWARE-SOFTWARE CO-DESIGN 

 

 MPSOC Architectures 

In order to adapt to increasing computation demands, basic response of traditional 

processor in industry has been to raise clock frequencies of processing systems. On 

the other hand, while clock frequency increases, undesirable problems such as 

excessive power consumption, other thermal issues, etc. may arise. Therefore, leading 

integrated circuit (IC) vendors focus on the design and production of embedded 

devices including many cores without increasing clock frequency. With the 

development of System-on-Chip (SoC) technology, market leaders have started to 

fabricate Multiprocessor System-on-Chip (MPSoC) including multiple processing 

elements (PE), programmable logic (PL), memory systems and I/O components. 

Architecture of MPSoCs differ depending on the integrated components, which may 

have specific role, based on the desired applications. Consequently, there are two main 

categorizes of MPSoCs, one is homogeneous and the other one is heterogeneous. 

 

2.1.1. Homogeneous MPSoC 

Homogeneous MPSoC is an architecture embeds one or more programmable blocks 

that are all same, in a single IC. This model also known as parallel architecture model. 

The basic idea behind this architecture is dividing workload of single powerful 

processor among different physical resources in order to reduce total execution time. 

A homogeneous MPSoC, consisting of programmable processing elements, can serve 

acceleration on desired algorithm or reduced power-consumption by decreasing 

operational frequency and power supply thanks to its inherent parallel structure. 
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However, theoretically optimal parallelism cannot be possible for most of the time due 

to the limitations over flexibility and scalability issues of memory organization, 

communication infrastructure. A typical homogeneous architecture example can be 

seen in figure 2.1 [7]. 

 

 

Figure 2.1. Typical Homogeneous MPSoC Architecture Example  

 

2.1.2. Heterogeneous MPSoC 

Heterogeneous MPSoC is an architecture, which embeds different types of processing 

elements such as one or more general purpose processors, FPGAs, DSPs instead of 

same type of operating blocks in a single IC. This is the main difference between 

heterogeneous and homogenous architectures. 

Heterogeneous MPSoCs serve better flexibility in comparison to homogeneous ones. 

They may include components, which provide post-fabrication flexibility such as 



 

 

 

7 

 

FPGAs and DSPs. Processing elements that can be seen in various heterogeneous 

systems, are basically classified as follows: 

• Application Specific Integrated Circuit (ASIC) 

• Application Specific Instruction Set processor (ASIP) 

• General Purpose Processor (GPP) 

• Digital Signal Processor (DSP) 

• Field Programmable Gate Array (FPGA) 

A typical heterogeneous MPSoC example can be seen in figure 2.2 [8]. Test 

environment, studied in this thesis, is a kind of heterogeneous MPSoC platform, which 

will be briefly described in section 7.1. 

 

 

Figure 2.2. Example of Typical Heterogeneous MPSoC Architecture 

 

 SOC FPGAs 

FPGA is one of the continuously evolving technologies in today’s world. The newest 

development in FPGA technology is the design and production of System on Chip 

(SoC) FPGA devices. FPGA-based SoC devices accommodate both hard processor 
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cores and programmable logic on the same IC. Before the release of SoC-FPGAs, 

programmable logic architecture was controlled by external processors via connecting 

them to FPGAs over external interfaces. Merging of FPGAs and CPUs in same IC 

brings some advantages such as reduction of communication latency, higher 

bandwidth and smaller physical size. A basic illustration of change in FPGA 

architecture can be seen in figure 2.3 [9]. 

 

 

Figure 2.3. FPGA Architecture Change 

 

SoC-FPGAs can be also advantageous for replacing ASICs. SoC-FPGA development 

costs are much lower and the development requires less amount of design time. Design 

process is much more flexible because of rewritable firmware at any time. In this 

thesis, we opted for a SoC FPGA platform from Xilinx Zynq family named as Zynq-

7000 as our experimental evaluation and test environment. 

 

 Hardware-Software Co-Design in SoC FPGAs 

The concurrent development of hardware and software side of SoC platforms is called 

as hardware-software co-design. The main idea behind hardware-software co-design 
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is dividing workload of a system among hardware parts running on FPGAs and 

software part running on CPUs. 

A basic overview of hardware-software co-design flow can be seen in figure 2.4 [10]. 

Detailed analysis of an expected design in terms of performance, power consumption, 

design area and other constraints should be the first step of hardware-software co-

design process in order to reach to better results in hardware-software partitioning 

step. Hardware-software partitioning is a procedure that is efficiently split the design 

blocks among software and hardware parts of SoC systems. After determining which 

part of the design runs on hardware and which part on software, next step is coding 

and simulation of each part separately. After completing this step, the design should 

also be validated via an integrated simulation of hardware and software parts. This 

procedure is called as co-simulation. After a successful co-simulation, designs could 

be linked and implemented on development environments. 

 

Figure 2.4. Hardware-Software Co-Design Flow Example 
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 Hardware Acceleration 

Hardware acceleration is a method that involves completely or partially implementing 

an algorithm on dedicated hardware circuit instead of a processor in order to reduce 

elapsed time while the algorithm runs [12]. Figure 2.5 demonstrates a possible 

hardware implementation of “If” statement that is repeatedly used on any kind of 

algorithm [11]. Undoubtedly, these circuits should give the same result if it is 

compared with their software counterpart.  

 

Figure 2.5. Possible Hardware Implementation of If Statement 

 

A hardware designer should entirely understand each hardware block and how these 

blocks can be integrated in the overall design to reach an efficient solution at the end. 

Undoubtedly, this is really a time-consuming process that requires well educated 

hardware designers. Hardware Description Language (HDL) is extensively used in 

this workflow. HDL based design resembles to assembly language design because it 

requires low-level abstraction. Consequently, hardware designers cannot skip any 

signal detail or changing behavior of state machines over time. Besides, debugging in 

hardware design is extremely complex, requiring knowledge about timing constraints, 

waveforms, etc. 
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Although design, validation and implementation steps of hardware design are 

extremely hard, employment rate of hardware designers is increasing due to need for 

speeding-up one or more portions of demanding applications, instead of executing 

sequentially on traditional CPUs. It is usually clear that algorithms implemented in 

CPUs could not be fast as algorithms running on dedicated hardware because of CPU’s 

sequential structure.  

In order to reduce overhead of traditional CPUs, Graphic Processor Units (GPU), 

consisting of dedicated hardware running special instructions very fast, were also 

released. Even though GPUs are designed to mainly for graphics computations, its 

parallel architecture is used naturally for intense scientific computations in recent 

years. However, main drawbacks of GPU based accelerators are excessive power 

consumption and thermal problems if compared to FPGA based hardware 

accelerators. Thus, GPUs could be regarded as sub-optimal for accelerating 

computationally intense algorithms.  

If its power efficiency and flexibility are taken into account, FPGA based hardware 

accelerator seems to be best alternative for many applications. In recent years, in order 

to reduce difficulties of the design procedure of FPGAs, high level synthesis tools 

(HLS), which automatically convert and optimize high level languages to hardware 

description languages, have been released by FPGA vendors. In this thesis, all designs, 

running on FPGA, have been created using the HLS tool of Xilinx Company that is 

called as Vivado HLS. 

  

 





 

 

 

13 

 

CHAPTER 3  

 

3. HIGH LEVEL SYTHESIS 

 

 What is HLS? 

High level synthesis (HLS) is an automated design process, which describes behaviors 

of desired algorithms and defines digital circuits according to this behavior [13]. The 

ultimate aim of HLS is to raise abstraction to a higher level in hardware design.  

Hardware design procedure has changed from defining individual transistor and wires 

to design of Boolean model of computations using logic gates (and, or, xor...etc.) and 

flip-flops, to register transfer level (RTL) based design of desired circuits. HLS serves 

one step beyond of abstraction level served by traditional RTL design. HLS enables 

designers to entirely focus on functional level designs instead of low-level cycle-by-

cycle operations.   

Basically, HLS can do the following things automatically to reduce the work-load of 

a designer in comparison RTL based design: 

• HLS figures out the potential concurrency in design. 

• HLS can automatically adopt the design to desired frequency. 

• HLS can generate interface to connect to the rest of the system easily. 

• HLS maps data on designs to storage elements automatically considering a 

balanced resource usage and bandwidth. 

• HLS optimize the design according to user directives or automatically to 

achieve more efficient implementation. 

 

New generation HLS tools provide different high-level input language options, 

platform-based modelling and a domain-specific technique [14]. They can offer better 
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adaptation to industrial needs. Nowadays, demands for high-quality HLS solutions is 

growing day by day since design period of RTL based systems increase dramatically 

due to advancement in SoC chip capacities [14]. 

 

 C/C++ Based FPGA Design Flow in SOC platforms 

In order to completely design a SoC system which use a FPGA as an accelerator for a 

computational intense part of an algorithm, it is now mandatory to both consider how 

design the accelerator and how to integrate it to the target platform. HLS tool designs 

and integration steps can be handled separately. 

 

3.2.1. High Level Synthesis Design Flow 

Due to recent advancement in HLS technology, High-Level Synthesis (HLS) tools can 

be used to design entire FPGA-based accelerator applications [16]. HLS tool flow 

encloses several steps in order to develop hardware design from input software code 

to RTL bitstream. HLS tool requires hardware specifications of desired platform in 

order to make HLS be aware of the physical capacity of the system such as logic 

structure and available processing and memory resources as shown in figure 3.1 [17]. 

Because of the flexibility of FPGAs, some constraint defined by the user such as clock 

speed, degree of parallelism, etc. are also required to be given to HLS as an input.  

As illustrated in figure 3.1, the first step of the flow is compilation of source code 

given as an input to intermediate representation (IR). Then, HLS compiler can 

generate the data flow graph (DFG) for further steps and optimizations. Now, HLS 

can determine the high-level hardware structure by using the DFG, information about 

desired hardware platform and user defined constraints. The quality of generated 

hardware mostly depends on applied optimizations in this step. Different 

combinations of compiler optimizations can result in huge performance variations on 

design outcome. 
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Figure 3.1. Standard HLS Tool Flow  

 

After establishing DFG and desired hardware structure, the following steps are 

allocation, scheduling and resource binding, which are fundamental concepts can be 

seen in all types of compilers. In order to grasp these, consider an example code 

portion in figure 3.2 [18].    

 

 

Figure 3.2. Example Code Portion (dout=a+b+c+d) 
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The data flow graph of example code can be illustrated as in figure 3.3 [18]. Each 

node of the DFG represents an operation which is an adder in this example in final 

design. 

 

Figure 3.3. Data-Flow-Graph of dout=a+b+c+d 

 

After the construction of DFG, each operation is converted to a hardware resource, 

which is needed during scheduling. This procedure is called as resource allocation. 

Allocation procedure determines which hardware resources (e.g., functional blocks, 

storage components) is required to satisfy the design constraint. These resources are 

chosen from the RTL component library of the desired FPGA as shown in figure 3.4 

[18].  

 

Figure 3.4. Resource Allocation of dout=a+b+c+d 
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After resource allocation, it is necessary to determine which operation proceed in 

which clock cycle. This process is defined as scheduling which can be seen in figure 

3.5 [18]. Directives specified by users, frequency of the clock cycle, properties of 

target devices have critical impacts on deciding how operations are scheduled [17]. 

 

Figure 3.5. Scheduled Design of dout=a+b+c+d  

 

After the scheduling operation, operations, which run on the same clock cycle, can be 

bound to the same memory unit over a range of non-overlapping or mutually exclusive 

interfaces [19]. Binding is a procedure that assign hardware resources for operations, 

which run on same cycle. 

Finally, after the binding operation, RTL design corresponding to the given input 

algorithm is generated.  

 

3.2.2. Integration of HLS Design to SOC platform 

Complete design on an FPGA-based SOC platform while taking advantage of the 

high-level abstraction of HLS tool has three main stages. The first stage is creating the 

custom RTL code using HLS tool flow described entirely in section 3.2.1. This created 
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RTL is converted to intellectual property (IP) core to use in the second stage which is 

called as IP integration. In this stage, IP core from HLS is integrated with the other 

IPs designed using the traditional RTL flow and processor system. The final stage is 

creating a software application in the processing system to use the integrated block 

designs. The tool flow of SoC FPGA, from Xilinx Company, which is used in the 

entire parts of this thesis, can be seen on figure 3.6. This tool is called as Vivado [17]. 

 

Figure 3.6. HLS design flow in Vivado 

 

 Design Optimizations in HLS 

Performance gains (throughput, latency, area usage, etc.) of HLS-based design mostly 

depend on optimizations applied while converting sequential high-level language-

based design to RTL design as stated in section 3.2.1. Commercial and academic HLS 

tools offer various types of basic optimizations for loop kernels, which are commonly 

encountered and important parts of computationally intense applications. In this 
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section, optimization already available for loop kernels in Xilinx Vivado HLS tool are 

reviewed. These are namely loop unrolling, merging, pipelining and flattening. 

 

3.3.1.  Loop Unrolling 

Loop unrolling provides execution of consecutive iterations of a loop in a single body 

in order to divide the loop overhead to a factor of unrolling and also provides reuse of 

consecutive values that appear multiple times in the loop body. Let’s consider the 

example code portion in figure 3.7.  

 

Figure 3.7. Example Code Portion for Loop Unrolling 

 

The following loop shown in figure 3.8 is the resultant code of code in figure 3.7 after 

loop unrolling with factor 2. In this example, there is a data dependency between a[i] 

and a[i+1] thus, all operations in the loop body cannot be parallelized.  

 

Figure 3.8. Unrolled Code Example 

 

3.3.2. Loop Merging 

Loop merging is to combine different loop operations in a single loop body. If multiple 

loops, having the same bounds, execute consecutively and there are not any kind of 



 

 

 

20 

 

dependency between the loop contents, application of loop merging is possible. This 

optimization brings a reduction in the loop’s iterations overhead, which is caused by 

entering and exiting a loop [17]. A typical example of this optimization can be seen in 

figures 3.9 and 3.10. This optimization is also called as loop fusion. 

 

Figure 3.9. Code portion before merging 

 

Figure 3.10. Code portion after merging 

 

3.3.3. Loop Flattening 

In section 3.3.2, we mentioned about loop merging in order to reduce the latency 

overhead due to entering and exiting a loop. Sometimes the latency cannot be 

improved too much for example if two separate basic loops are merged. However, 

when loops are nested, this improvement may be at dramatically high level. Imagine 

a nested loop with 100 iterations in outer loop and 5 iterations in inner loop. This 

would result in 200 cycles overhead to enter and exit to inner loop. Loop flattening 

could eliminate this issue by totally unrolling the inner loop [17]. 

3.3.4.  Loop Pipelining 

HLS tool provides two different types of pipelining for loop kernels, which are loop 

pipelining and loop dataflow. Loop pipelining is applied on single loop body to 
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pipeline sequential instructions in the loop body; however, loop dataflow pipelines a 

series of loops. 

Loop pipelining is implemented on loop body in order to make all instructions 

pipelined. For instance, it is assumed that loop body include three sequential 

operations: read, write and computation, it could be pipelined to execute read 

operation on every clock cycle instead of one of third cycle as shown in figure 3.11 

[17]. Hence, each loop iteration begins on every clock cycle before the previous one 

completes. In order to apply loop pipelining, it is required that no data dependency 

between two consecutive iterations exist. 

Dataflow is used on bigger scope. This optimization pipelines different loops having 

no dependency among them. This optimization also works for a series of functions in 

the same manner. The biggest constraint of dataflow is that variables must be 

generated and consumed in single loop/function body as seen in figure 3.12 [17].  

 

 

Figure 3.11. Loop Pipelining Example     



 

 

 

22 

 

 

Figure 3.12. Loop Dataflow Pipelining 

 

 Limitations of HLS 

Recent studies about HLS have shown that performance of FPGA-based systems 

which are designed by using HLS tool flow are as competitive as hand-crafted RTL 

design [6]. Because of its high-end design productivity, HLS seems to better choice 

instead of RTL design, especially when having limited time for developing an 

accelerator system. On the contrary, in practical view, it is necessary to spend 

noticeable amount of time on rewriting code to make it more HLS friendly and apply 

tuning using HLS directives to get high design quality [20]. In this section, two major 

limitations of commercial HLS tools are presented, which requires considerable 

research effort to handle in order to improve HLS technology. 

One of the main challenges of HLS is accurate and efficient exploration of the design 

space. In the literature, there are various approaches for design space exploration 

(DSE) to generate convolution neural network (CNN) accelerators using HLS. Zhang 
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et al. offer a roofline model for its design space exploration, which includes 

implementation of different types of loop transformations [21]. Also, Suda et al. 

suggest a DSE method for CNN to increase the design throughput [22].  It is also 

crucial to think about computing characteristics beyond performance and resource 

usage. Gao et al. generate a method to handle complicated trade-off between area, 

latency and error of floating-point programs [23]. Exhaustive DSE can be very hard 

and time consuming and needs application-specific information. Thus, there is no 

accepted standard for DSE problem and it is still an open research area. 

Although various HLS tools offer different kinds of optimizations, these optimizations 

cannot work properly on all kinds of software. For example, dynamic memory 

allocation and recursion are commonly used in software programs, however there is 

no support for these in many HLS tools. Winterstein et al. offer a logic separation and  

program analysis technique to handle dynamic data structures [24]. Even though, there 

are numerous researches on this problem, rewriting of software code is still required 

for HLS design. Moreover, loop optimization techniques of HLS tool such as Vivado 

works only on instruction in loop bodies and perfectly parallelizable instance of 

different functions. When there is any kind of irregularity in the source code, 

parallelization of nested loop structures may be impossible although it is theoretically 

possible. The absence of optimizations for these unavoidable irregularities is one of 

the major limitations of current HLS tools.  In this thesis, we therefore offer a 

technique to reduce the effect of these limitations, in order to increase the available 

course grained parallelism. 
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CHAPTER 4  

 

4. POLYHEDRAL MODELLING FRAMEWORK 

 

 Motivation 

In order to employ parallelism for loop kernels in HLS, we propose in this thesis to 

perform optimizations based on polyhedral modelling. Basically, the polyhedral 

model is an algebraic representation of loop kernels. Use of mathematical modelling 

in loop kernels was proposed in early years of modern computing systems [36]. 

Popularity of polyhedral model for computational optimizations has increased 

dramatically in academic researches with the advancement of polyhedral tools.  They 

cannot only cover automatic parallelization but also memory management and data 

locality optimizations. In this chapter, the theoretical background of polyhedral 

modelling is reviewed briefly.  

 

 Mathematical Background of Polyhedral Model 

This section provides mathematical definitions for polyhedral modelling. More 

detailed information about polyhedral modelling can be found in [37]. 

Let’s cover some definitions: 

Affine Function: 

A function  𝑓: 𝐾𝑚 → 𝐾𝑛 is affine if there exists a vector 𝑏 ⃗⃗⃗   ∈  𝐾𝑛 and a matrix 𝐴 ∈

𝐾𝑛∗𝑚 such that: 

∀𝑥 ⃗⃗⃗   ∈  𝐾𝑚, 𝑓(𝑥 ) = 𝐴𝑥 + �⃗�   
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Affine Space: 

Affine space is a set of vectors that is closed under affine combination. 

Affine Half Space:  

Affine half space of  𝐾𝑚 is described as the set of points: 

{  𝑥 ⃗⃗⃗  ∈  𝐾𝑚 | 𝐴𝑥 ≤  𝑏 ⃗⃗⃗   }  

Affine Hyperplane: 

Affine hyperplane is a 𝑛 − 1 dimensional affine subspace of an n dimensional space. 

Hyperplane separates the space into two half-spaces which are called as positive and 

negative half-space as shown in figure 4.1. Each half-space can be described by an 

affine inequality. Representation of hyperplane for 2D and 3D space could be seen in 

figure 4.1 [38]. 

 

Figure 4.1. A Hyperplane in 2D and 3D Space 

 

Polyhedron: 

Polyhedron is a set 𝑆 ∈ 𝑄𝑛 which satisfies the following inequality and which can 

also be defined as an intersection of closed affine half-spaces. 

𝑃: {𝑥  ∈ 𝑄𝑛 | 𝐴𝑥  ≥  �⃗� } 
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Polyhedral Statement: 

Polyhedral statement is a set of program instructions that ensure the following 

conditions: 

• If program instruction is a conditional assignment with an affine condition, it 

is not a polyhedral statement. 

• If program instruction is a loop statement with affine bounds, it is not a 

polyhedral statement 

• Program instruction must have only affine subscript expressions for array 

accesses in order to be a polyhedral statement. 

• Program instruction should not generate flow-control effect in order to be a 

polyhedral statement. 

  

Iteration Vector: 

Iteration vector of an 𝑚 dimensional loop nest is a vector consisting of iteration 

variables, 𝑖 = (𝑖0, 𝑖1, ……… . , 𝑖𝑚−1), where 𝑖0, 𝑖1, ……… . , 𝑖𝑚−1 are iteration variables 

from outermost to innermost loop. 

Iteration Domain: 

Iteration domain covers all possible values surrounding loop iterators through a set of 

affine inequalities. 

The iteration domain (ID) 𝐷 ⊆ 𝑄𝑚 is the iteration vector set of nested loops, and are 

described by a set of linear inequalities [39]. 

𝐷 = {𝑖  | 𝑃𝑖  ≥  �⃗� } 

Each point inside the polyhedron corresponds to one execution of a statements inside 

the loop body as shown in the nested loop example in figure 4.2 [39]. This model 

provides coordination of values of loop iterators and execution of statements in the 



 

 

 

28 

 

loop body and gives an opportunity to compilers to manipulate statement execution 

and iteration orders.  

 

Figure 4.2. Iteration Domain Example 

Order of Execution: 

Let’s consider loop body with statement 𝑊. Evaluation of loop body on 𝑥   iterator is 

defined as an operation and denoted as < 𝑊, 𝑥 >, where 𝑥 ∈ 𝐷(𝑊). Execution order 

of all operations of all statements in a loop body is called as schedule. In literature, 

schedule is also called as lexicographic order. The formal definition of lexicographic 

order is as follows [39]: 

 Let’s assume two operations < 𝑊, 𝑥 > 𝑎𝑛𝑑 < 𝑅, 𝑦 > and 𝑚 dimensional 

iteration domain 

< 𝑊, 𝑥 > ≻ < 𝑅, 𝑦 > ↔ (𝑥0 > 𝑦0) ⋁ (𝑥0 = 𝑦0 ⋀ 𝑥1 > 𝑦1)  ⋁  (𝑥0 = 𝑦0 ⋀  

𝑥1 = 𝑦1 ⋀  𝑥2 > 𝑦2 ) ⋁……⋁ ( 𝑥0 = 𝑦0 ⋀ … . ⋀  𝑥𝑚−2 = 𝑦𝑚−2 ⋀ 𝑥𝑚 > 𝑦𝑚)    

 

 Data Dependencies  

Mathematical modelling of data dependencies is essential for the efficiency of the 

polyhedral model because all programs in which polyhedral transformations are used, 

should give the same result with the original version. If the dependency is preserved, 
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this condition is automatically satisfied. In this section, some crucial definitions for 

data dependency representation and analysis are given. 

Subscript Function    

Let’s assume that the set of arrays 𝐴𝑛, a reference point in array 𝐵 ∈ 𝐴𝑛 and a 

statement in loop body 𝑆, are given.  

𝑆 can be written as  < 𝐵, 𝑓 >  where 𝑓 is a subscript function [40]. 

Data Distance Vector 

Let’s assume that two different functions 𝑓𝐴
𝑅 and  𝑓𝐴

𝑊 exist and 𝛼 and 𝛽 are two 

different iterations of the innermost loop of a nested loop. Data distance vector is 

described as: 

𝛿 (𝛼, 𝛽)𝑓𝐴
𝑅𝑓𝐴   

𝑊 = 𝑓𝐴
𝑅(𝛼) − 𝑓𝐴

𝑊(𝛽) 

Lexicographically Non-Negative Distance Vector 

If the left-most non-zero entry of the distance vector is positive or all elements of this 

vector are zero, this distance vector is called as non-negative distance vector. 

 

Legal Distance Vector 

A distance vector is legal, if it is lexicographically non-negative (non-positive) and 

loop indices increase (decrease). 

 

 Bernstein Conditions  

Assume that two different statements are given, it can be said that there exists a kind 

of dependency between them, if following conditions hold [40]: 

• They refer to the same memory location 
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• One of the statements is a write operation  

• Both statements are executed 

When the conditions mentioned above are satisfied, three different types of 

dependencies can be discussed [41]: 

 

Read After Write (RAW) 

A Read-After-Write dependency occurs if an instruction requires the result of a 

previously executed instruction. This dependency is also called as true dependency or 

flow dependency. If pseudocode in figure 4.3 is examined, statement in line-2 requires 

execution of line-1 and also consecutively, statement in line-3 requires execution of 

line-2.  

 

Figure 4.3. RAW Dependency Pseudocode  

It is impossible to run these three instructions in parallel. In other words, instruction 

level parallelism is not an option for this pseudocode because of the dependency 

between each instruction. 

 

Write After Read (WAR) 

A Write-After-Read dependency occurs if an instruction writes to a memory location 

which has not been read by a previous instruction. This dependency is alternatively 

called as anti-dependency. Anti-dependency is a good example for name-dependency. 

In order to remove name-dependency, only renaming of the variable is enough. 

However, flow-dependency might arise as a result as shown on example code in figure 

4.4. Flow dependency occurs between statements in line-2 and line-3.  
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Figure 4.4. Anti-Dependency vs Flow-Dependency 

 

Write After Write (WAW) 

A Write-After-Write dependency occurs if an instruction writes to a memory location 

which a previous instruction wrote. This dependency is alternatively called as output 

dependency.    

Output dependency is a sort of name dependency as the anti-dependency case. That 

is, they can be handled through renaming of variables. However, renaming variables 

result in flow-dependency similar to anti-dependency as shown in figure 4.5.   

 

Figure 4.5. Output-Dependency vs Flow-Dependency  

 

Previously, there was an output-dependency between statements in line-1 and line-3. 

After renaming variables in order to remove output-dependency, flow-dependency 

occurred between line-1 and line-2 at the example code in figure 4.5. 

Unfortunately, in real-word applications, computational algorithms are much more 

complex. Hence, they are not limited to simple sequential instructions.  These 

algorithms usually consist of variables in deep nested loops with complex 
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dependencies. Thus, it is required to analyze mutual dependencies between different 

iterations of nested loops. At this point, loop-carried dependency concept should be 

introduced.  

Loop-Carried Dependencies: 

Loops are the way of executing the same sequence iterations with different data 

automatically. One of the questions we try to answer in this thesis is “Can two different 

loop iterations execute in parallel or is there any data dependency between them?” 

Let’s consider example loop in figure 4.6. It is easy to observe and say that this loop 

is completely parallelizable. Since, any loop iteration depends its own. Changing the 

order of calculations does not change the result. Relaxation of execution order 

provides executions of this loop on parallel hardware platforms. 

 

 

Figure 4.6. Completely Parallelizable Loop 

 

Definitely, loop in figure 4.6 is ideal for parallel processing, on the other hand, nearly 

all of the loops in computationally intense applications include different iterations 

which depend another iteration.   

Variation of loop-carried dependencies are similar to dependencies for sequential 

instructions which were defined before. The only difference is that dependencies are 

now between loop iterations instead of sequential statements.  

When the loop in figure 4.7 is examined, it is observed that the loop is similar to the 

one in figure 4.6, the difference being in array indexing in line-3. This difference 

results in loop-carried flow dependencies. 
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Figure 4.7. Loop-Carried Flow Dependencies Example 

 

It is useful to manually unroll several iterations of the loop in figure 4.7 to examine 

this dependency issue. Unrolled iterations in figure 4.8 illustrates that second 

statement depends on the result of first one, and third statement depends on the second 

one consecutively. This kind of flow-dependency could be seen in a wide range of 

algorithms used in different applications.   

 

 

Figure 4.8. Unrolled Example Code 

 

The formal definition of loop carried dependency as follows: 

• Assume a nested loop having two or more legal distance vectors: 

(𝐷1, 𝐷2, … . , 𝐷𝑚) , 𝑚 ≥ 2 

Each distance vector of 𝑛 dimensional nested loop could be illustrated as:  

𝐷𝑘 = (𝑑1, 𝑑2, … . , 𝑑𝑛),  

Dependency is carried at loop level 𝑖 if 𝑑𝑖 is the first non-zero element of 𝐷𝑘. 

Each execution of a loop could be executed in parallel when it carries no 

dependencies. 

This formal definition is crucial in order to determine whether or not a nested loop is 

parallelizable at any loop level using the distance vector concept.  
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In some cases, it is impossible to execute such a loop in parallel. In other words, 

eliminating flow dependencies are impossible. On the other hand, for different 

scenarios, flow dependencies could be handled by loop-transformation techniques 

which are explained in chapter 6. 

 

 Application Domain of Polyhedral Model  

The category of problems, which the polyhedral model targets, are scientific 

applications having computational workloads in general. The focus of polyhedral 

analysis are workloads for which all the information is known at compile time. 

Polyhedral model-based transformations on a source code can only be done by 

analyzing code statically. Due to the fact that most computationally intense algorithms 

share this characteristic, they can be analyzed using polyhedral model effectively. 

All in all, scope of interest of polyhedral model in this thesis could be re-defined as: 

• Static 

• Affine 

• Pure 

Let’s examine the conditions required to be satisfied by a code to be static, affine and 

pure. 

4.4.1. Static 

A code portion can be defined as static when: 

• Loop bounds are known at compile time 

• There are no data dependent condition 

Example code in figure 4.9 is not static. Since conditional statement in line-5 breaks 

second condition in order to be static. 
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Figure 4.9. Non-Static Code Example 

4.4.2. Affinity 

A code portion could be defined as affine when array indices in loop body are constant 

or a linear combination of enclosing loops. To illustrate, code in figure 4.9 is affine 

although it is not static.  

 

4.4.3.  Pureness 

A code portion could be defined as pure if: 

• It does not include global data 

• Result does not depend on variables which are not known by the compiler. 

• No read or write operations without the compiler knowledge exist. 

Thus, pass value by reference is not allowed in order to generate pure code. An 

example non-pure code and its pure counterpart can be seen of figure 4.10. The only 

difference between them is that in line-9, function is called by reference (value) in 

non-pure (pure) code. 

Pure functions are ideal to map on parallel hardware platforms since it is not required 

to use global variables to exchange data. In fact, efficient implementation of global 

variables on hardware platforms needs a mechanism that provides some sort of 

synchronization. This brings a waste of hardware resources and introduces wait states 

for all hardware blocks in the design. 
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Figure 4.10. Non-Pure and Pure Code Example 

 

4.4.4. Static Control Parts (SCoP) 

Static Control Parts (SCoP) are that subclass of nested loops, which can be represented 

by the polyhedral model [43]. These loops are widely used and results in a 

performance bottleneck in a high-performance computing (HPC) applications. Array 

accesses in SCoP statements are same as affine functions, which are previously 

defined in section 4.4.2. Because of the affine nature of the loops, loop analysis and 

optimizations such as dependency analysis or parallelization can be applied precisely. 

Also, SCoPs should be static and pure in order to parallelize them in hardware 

platforms.    

  

 Usage of Polyhedral Model for HLS-Based FPGA Accelerators 

Because of the suitability of FPGA logic and memory elements for parallel computing, 

FPGA-based hardware accelerators have been widely used in applications such as 

video/image processing, which demand powerful hardware resources for computation. 

The most time-consuming part of the computational kernel in these applications are 

nested loops that can be modeled by using polyhedral model. Polyhedral optimizations 

can be very appropriate in designing their hardware accelerators because of the 

computational or memory intense nature of them. In recent years, polyhedral model 
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has been studied to optimize wide aspects of hardware design such as memory reuse 

[44], design space optimizations for low power SoC [21].  

If FPGAs are designed using HLS, previously mentioned approaches for polyhedral 

model and FPGA design may be combined to cover applications which are difficult 

or time consuming to be designed in a hardware platform directly. Thus, we propose 

and demonstrate to use the polyhedral model-based optimization techniques in 

hardware accelerator designs and optimizations with the help of HLS tool in order to 

reduce runtime latency via speeding-up loop executions. 
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CHAPTER 5  

 

5. LITERATURE REVIEW AND RELATED WORKS 

 

 High level Synthesis (HLS)  

Although HLS tools provide automated conversion from high-level languages to 

register transfer level (RTL) implementation in order to reduce design efforts and 

duration, many studies in literature demonstrate that there is a huge performance gap 

between manual RTL design and HLS-based design for complicated applications. To 

illustrate, in the study of Liang et al. [51], performance difference between traditional 

RTL design and HLS-based design of the same algorithm is as high as 40 times. In 

this study, high-definitions stereo matching application is selected as a benchmark to 

illustrate the performance gap between the two different design procedures. Hence, 

different academic works proposed various solutions to address this issue. Ziegler et 

al. [52] proposed a method of compiler analyses which could guide to map sequential 

C program into a pipelined implementation for FPGA. Rodirgues et al. [53] offered a 

technique of execution to accelerate successive tasks having data-dependencies on 

reconfigurable platforms. Meanwhile, Lie et al. [54] introduce a novel customized 

optimization based on index set splitting to decrease initiation overhead of pipelined 

loops to reduce total latency. More recently, Cong et al. [56] have demonstrated how 

the quality of generated RTL design depends on source level and intermediate level 

optimizations. They have implemented 56 different optimization techniques and show 

that some of them have significant importance on hardware quality. Huang et al. [55] 

has studied the effects of various compiler optimization techniques on circuit 

generated with HLS. According to study of Huang et al., there are two important 

factors, namely optimizing methods and their order to improve performance of 

generated circuits. In this work, six different optimizations methods are implemented 

on benchmarks and a performance improvement is approximately 30% is achieved.  
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Even though, there are many researches in the literature that demonstrate how to 

optimize HLS-based circuit design, there is not any source-to-source compilation tool 

for HLS-based designs that has capability to analyze and optimize the given source 

code automatically for efficient circuit generation in computationally intense 

applications. In this thesis, a novel approach to semi-autonomously analyze and 

optimize HLS source code to improve the performance of designed FPGA blocks.  

    

 Polyhedral Modelling 

Polyhedral modeling is an algebraic representation of loop kernels which is a 

milestone for computationally intense applications. Widespread utilization area of 

polyhedral modelling in literature is the design automation and optimization for data 

reuse in improving memory and cache performance. Meeus et al. [57] shows that 

although most of HLS tools generate excellent RTL designs, they cannot optimize 

memory accesses across iteration of nested loops. Unfortunately, overhead of memory 

access is well-known to be reason for limited circuit performance. Some researchers 

proposed memory optimizations at the algorithm level. In [58], Cong et al. proposed 

a method for fitting loop nest to available local storage by using cycling reuse buffer 

and validated this method using HLS. However, these researches lack an analytic 

model that provides analysis framework for large and computationally intense kernels. 

In more recent works, polyhedral modelling and optimization techniques have been 

combined with HLS to optimize input algorithms for improving data locality. Bayliss 

et al. [59] used polyhedral model to design an address generator which increases data 

reuse. On the other hand, in this work, no loop transformation is taken into account to 

get better performance. In [60], Jiang et al. proposed an automatic tiling for 1D arrays 

to optimize memory access schedule. Meanwhile, Wang et al. [61] offer tiling for 

multidimensional arrays to increase efficiency of stencil computations with 

polyhedral-based block partitioning. Also, Alias et al. [62] and Pouchet et al. [44] 
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discussed different memory accesses, data reuse optimization techniques based on 

loop tiling. 

Although, loop tiling is extensively studied to design cache friendly optimized systems 

in order to reduce memory access overhead using HLS, it could also be used to 

parallelize computationally intense applications. In this thesis, tiling hyperplane loop 

transformation methods of polyhedral framework is used to enable course grained 

parallelization of nested loop structures instead of reducing the overhead of memory 

access and a semi-autonomous approach based on loop tiling with some further 

improvements is offered as a starting point towards automatic source-to-source 

algorithm parallelization tool.  
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CHAPTER 6  

 

6. A SEMI-AUTONOMOUS ACCELERATOR FOR COMPUTATIONALLY INTENSE 

APPLICATIONS 

 Motivation 

Software programs including algorithms having high computational intensity such as 

signal processing, deep learning, and multimedia applications contain excessive use 

of nested loops. Requirement of a kind of accelerated implementation for these 

programs cannot be ignored. Hardware accelerations designed by HLS tool flow is a 

good candidate for these implementations. As stated in chapter 3, one of the main 

problems of HLS tools is its inefficient handling of nested loop structures to reach a 

minimum execution time. Although, commercial or academic HLS tools offer loop 

unrolling and pipelining, most of the time, reaching efficient final design cannot be 

possible due to increasing complexity of algorithms. In literature, there are a lot of 

loop transformation methods such as loop skewing, loop tiling, loop interchange to 

increase the efficiency of hardware implementation of nested loop kernels. Even 

though, these polyhedral model-based loop transformations have been known for 

many years, they are still not provided by commercial HLS compilers.  

All in all, in this chapter, we propose and demonstrate a semi-autonomous system 

which is a combination of different optimization tools known in the literature to be 

applied before performing HLS optimization in for loop-kernels for parallel 

processing of them in FPGA hardware platform. 

       

 Proposed Architecture Overview  

The proposed architecture in this thesis, is built in three main different parts, which 

work in squence. In order to analyze and transform nested loop structures using 

polyhedral modeling, firstly, it is necessary to detect the static control parts (SCoP) in 
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given source code as was mentioned in chapter 4. Thus, the first step of our 

architecture is automatically extracting SCoP modules, which simply are nested loops 

in the given source code. In the second step, polyhedral representation, which is also 

known as intermediate representation (IR) of the given nested loops are created then, 

if it is necessary, suitable polyhedral optimizations are applied on these nested 

structures in order to create parallelizable loop structures. Finally, the rest of work is 

to create bitstream to program the hardware platform to use it as a hardware 

accelerator. In this step, Xilinx HLS tool flow that is reviewed in chapter 3 is used to 

program the programmable logic (PL) side of Zynq SoC platform. The basic flow 

diagram of the proposed architecture can be seen in figure 6.1. Each step in figure 6.1 

that are to be applied before HLS tool are described in following sections. 

 

Figure 6.1.  Flow Diagram of Proposed Architecture   
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6.2.1. SCoP Extraction 

In our proposel, SCoP extraction is a front-end task to be applied before polyhedral 

analysis. Most polyhedral analysis tools require pragmas such as “scop” and 

“endscop” to grasp SCoPs in source code as shown in the example code portion, which 

is“gemver.c” from Polybench suite, in figure 6.2 [25].  

 

Figure 6.2. Code example for SCoP pragma 

 

In this thesis work, in order to automatically extract SCoPs from the source code, PIPS 

[26] is used. Although, PIPS is a source-to-source compiler, in this thesis, we have 
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only used its “prettyprinter” feature because there is no comprehensive polyhedral 

model-based loop analysis or optimization method implemented in PIPS compiler. 

“Prettyprinter” pass is used for typing pragmas, which define SCoP of the code. 

Generated code can then be an input for any compiler requiring pragmas for SCoP 

definition. Figure 6.3 demonstrates required instruction pass for pragmas printing in 

“gemver.c”. 

 

 

Figure 6.3. PIPS Pass for “gemver.c” 

 

6.2.2. Polyhedral Analysis and Transformations 

As declared in [27, 28], the polyhedral model has reached enough maturity to develop 

compilers. Authors in [29] offers a set of tools to work on intermediate representation 

of polyhedral model. Thanks to these tools, polyhedral model can deal with analyzing 

and optimizing nested loop structures. 

In the literature, there are many works that use these polyhedral tools. The most 

admissible ones are Polly [30], Loopo [31] and Polyhedral Compiler Collection 

(PoCC) [32]. In this thesis, we have used PoCC for polyhedral model-based analysis 

and optimizations of nested loop structures to form the autonomous second step of our 

proposed architecture. 

PoCC is a source-to-source compiler that uses polyhedral model for efficient analysis, 

optimization, and parallelism. PoCC [32] has been built by combining different tools 

that are already available in literature. 
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These tools are: 

• Chunky Loop Analyzer (CLAN), is used to extract an intermediate polyhedral 

representation from high-level source code written in C, C++ [32]. CLAN 

requires enclosed code portions by “pragma scop” and “pragma endscop”. 

These pragmas are automatically written by PIPS in source as was mentioned 

in section 5.2.1. 

• Chunky Analyzer for Dependencies in Loops (CANDLY), is used to find all 

polyhedral dependencies from polyhedral intermediate representation that is 

feed by CLAN [32].  

• PLUTO, is used to make automatic parallelization based on polyhedral 

representation and dependencies given by CANDLY [33]. It offers compiler 

optimizations including an abstraction to perform high level transformations 

for nested affine loop structures. Its main functionality is finding affine 

transformations for efficient loop tiling as used in this thesis. However, it is 

not limited with this feature. It has the capability to make pre-vectorization, 

scalar privatization, and generating automatically OpenMP parallel code for 

multicore CPUs [33]. 

• The Legal Transformation Space Explorator (LetSee), is used to compute and 

explore affine scheduling space of programs having static control parts [34]. 

LetSee offers features such as: 

o An adjustable algorithm to construct legal transformation space 

o Different type of heuristic approaches for traversing legal space 

o Many other auxiliary functions such as generating transformation, 

graph manipulation…etc. 

In this thesis, LetSee has not been used for any loop transformation. We have 

chosen to use PLUTO since it offers tiling-based optimization contrary to 

LetSee. 
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• Chunky Loop Generator (CLOOG), is used to generate final source 

code by using transformed polyhedral representation given by 

PLUTO or LetSee [35]. 

CLAN, CANDLY and CLOOG are tools first offered by authors in [29]. However, 

PLUTO and LetSee are outcomes of different researches. The summary of the tool 

flow of POCC could be seen in figure 6.4.  

 

 

Figure 6.4. Tool Flow of POCC 

 

 The proposed system in this thesis, offers that PIPS and POCC work in sequence in 

order to automate source to source transformation of nested loop structures in the input 

source code before feeding it to the HLS tool. The following diagram illustrates all 

the work done before HLS. Optimized and parallelized code SCoPs in figure 6.5 is 

ready for being an input to the HLS tool. 
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Figure 6.5. Summary of Front-End Operations of HLS 

  

6.2.3. Accelerator Design and Verification in Vivado Tools 

As stated in chapter 3.2.2, design of a hardware-based accelerator using Vivado tool 

has three different consecutive steps. The first step is the design of the custom 

accelerator IP using Vivado HLS and integrate it to FPGA design in SOC platform as 

the second step. Finally, communication infrastructure between CPU and FPGA has 

to be constructed to use the FPGA as a hardware accelerator. 

 In computationally intense applications, performance of the final hardware design 

mostly depends on the number of parallel structures, on which computation work-load 

is divided. In this thesis, after the front-end operations, which are SCoP extraction 

using PIPS and loop parallelization using POCC, it is required to copy optimized 

SCoP from the source code to HLS template code and arrange some minor details such 

as variable names by hand in order to generate the circuit that can run SCoP in a 

parallel manner. This is one of the reasons why the proposed system is called semi-

autonomous instead of autonomous. 

In this thesis work, it is required to create an HLS-friendly template code which 

initialize the AXI interface which provides communication for data transfer between 



 

 

 

50 

 

PL and PS side of ZYNQ-SOC device and includes some tricky adjustments in order 

to parallelize loop kernels because HLS can only parallelize different function calls in 

the main code, thus it is obligatory to rewrite the loop kernels into a function. Vivado 

HLS tool inherently has no capability to block loop kernels for parallel execution. This 

should be one of the negative sides that is necessary to be improved in Vivado HLS. 

After completing the IP design of hardware accelerator, it is required to generate the 

bitstream file to program FPGA which is the programmable logic (PL) side of Zynq-

SoC platform. This procedure is not different than the traditional FPGA design process 

via using Vivado Design Suite if IP designed by HLS is to be added to IP catalog of 

Vivado Design suite. In this thesis work, final FPGA design only consist of Hardware 

accelerator IP, and necessary blocks providing communication between processing 

system (PS) and FPGA over AXI-4 interface as shown in figure 6.6. 

Last step to complete SoC system design is to configure CPU in Zynq to generate the 

required input data for hardware accelerator and measure designed hardware 

accelerator performance. In order to measure this, basic timer unit in ARM processor 

is used. Firstly, the timer measures the total amount of time passed from sending the 

first bit of data to hardware accelerator up to receiving the last bit of processed data 

by hardware accelerator. Then, designed system in ARM processor compares it with 

the reference time, which is the total amount of time if the CPU is used instead of 

hardware accelerator for the desired application. The basic illustration of Vivado SDK 

Design Flow can be seen in figure 6.7 [17]. 
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Figure 6.6. Final FPGA Block Design 
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Figure 6.7. Vivado SDK Design Flow 

 

 Parallelism in Computationally Intense Applications 

Exploitation of high-performance computing (HPC) platforms has paramount 

importance in many computationally intensive scientific computation applications 

since increasing computational power allows to widen the range of performance 

problems that could be handled. Especially, with advancements in FPGA technology, 

it has been widely preferred as the parallel computing platform for many applications 

having huge computation loads such as filtering in image processing, machine 

learning, etc. The biggest portions of this huge computational load are matrix 

multiplications and iterative stencil loops. 

Hence, in this thesis work, various iterative stencil loops and matrix-matrix 

multiplication applications are selected in order to test the performance of the 

proposed semi-autonomous hardware accelerator approach.  

6.3.1. Parallelism in Matrix Multiplication 

Due to the being a corner stone of linear algebra and its importance in engineering 

applications, matrix multiplication optimization methods are repeatedly studied in the 
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field of both hardware and software designs. Its inherently parallelizable structure is 

appropriate to test and verify our proposed accelerator design. In recent years, FPGA-

based matrix multiplication acceleration has become feasible alternative to software 

based-systems and there is plethora of research, which regard the use of matrix 

multiplication algorithms to analyze the performance of various FPGA-based 

hardware accelerator platforms [45]. 

All in all, matrix multiplication is one of the most suitable choice to verify and analyze 

our proposed semi-autonomous approach. The key idea behind the parallelization of 

matrix multiplication is using divide and conquer technique. Figure 6.8 shows this 

technique basically on matrix multiplication (𝐴𝑥𝐵 = 𝐶) by dividing first multiplier 

matrix horizontally and second one vertically. 

 

Figure 6.8. Divide and Conquer Matrix Multiplication 

 

It is not required to do any kind of loop optimization for matrix multiplication because 

there is no loop carry dependency in matrix multiplication algorithm as can be easily 

seen in example C code in figure 6.9. 
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Figure 6.9. Square Matrix Multiplication Code 

 

All in all, the remaining tasks before hardware designing in Vivado HLS tool are only 

extraction of matrix multiplication block in the given source code and prepare this 

code for dividing its workload among circuit blocks. Thanks to the proposed PIPS and 

POCC integration in this thesis, this two-step process could be done automatically 

without requiring a software design effort. In polyhedral model, this divide and 

conquer approach for loop operations is called as loop tiling.   

 

6.3.1.1.   Loop Tiling 

Loop tiling is a loop transformation method, which modifies nested loop iteration 

bounds to iterate over tiles in other words blocks instead of completely iterating in 

each dimension of iteration domains. Loop tiling is also called as loop blocking or 

strip mining and loop interchange [46]. As can be grasped from its name, loop tiling 

is considered as combination of another two basic loop transformations, which are 

namely strip-mining and loop interchange.  This transformation is used to improve 

data locality by fitting tile size to cache capacity or coarse-grained parallelism as used 

in this thesis. A tile could be of two types [47]: 

• Full Tile: Tiling is applied on all axis of iteration domain of nested 

loop 

• Partial Tile: Tiling is applied on only a subset of axis of iteration 

domain of nested loop 
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The difference between full-tiling and partial-tiling could be seen on figure 6.10 for 

2D iteration domain. 

 

Figure 6.10. Tiling in 2D Iteration Domain 

 

Clearly, a crucial task when doing loop tiling for course-grained parallelization is to 

ensure its legality. Generally, a loop transformation is legal if and only if distance 

vector of resultant code is legal as explained in section 4.3. POCC, which is polyhedral 

analysis and transformation tool used in this thesis has capability to automatically 

check for the legality of polyhedral transformation. 

 

6.3.2. Parallelism in Iterative Stencil Loops 

Many algorithms for scientific computations [49] and multimedia processing [48] are 

based on stencil computing. The computationally intensive nature of these algorithms 

forces designers to efficiently implement them in order to reduce total execution time. 

Due to their complex inner structure, which can include different kind of loop carried 

dependencies, hardware acceleration designs of these algorithms are traditionally 

considered as a difficult task. In other words, most of the times loop-tiling of these 

nested loops may not be directly possible. 
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In this thesis, a polyhedral model-based loop transformation method, which is 

combination of loop skewing and loop interchange is used to enable loop tiling 

operation for iterative stencil applications. 

 

6.3.2.1. Iterative Stencil Loop 

Iterative Stencil Loops (ISL) are a type of iterative algorithms that continuously 

update values on cell via correlating with its neighbors, which are cells in the same 

grid. The fixed pattern of neighbors is named as stencil and the function that uses 

values of neighbors to update a specific cell is called transition function [50]. The 

general pseudocode for any iterative stencil algorithms can be seen in figure 6.11.  

 

 

Figure 6.11. Pseudocode for ISL 

 

The number of applications using ISL is quite large as stated above, most of the 

scientific computation and image or video processing algorithms are based on 2D or 

3D iterative stencil loops. A basic illustration of 5-point 2D iterative stencil loop can 

be seen in figure 6.12.  

 

Figure 6.12. 5-Point 2D ISL 
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In iterative stencil loops, the contribution of neighbors is weighted by some 

coefficients. Obviously, these coefficients could be constant or variable. In this thesis 

work, both coefficient types are studied to analyze performance of offered system. 

 

6.3.2.2.  Loop Interchange 

Loop interchange is exchanging the position of two loops in a nested loop structure.  

It is also known as loop permutation. Example codes before and after loop interchange 

can be seen in figure 6.13. The main usage of loop interchange is modifying the 

behavior of array accesses. For instance, interchanging of two loops can enable partial 

tiling of nested loop for parallelization as used in this thesis work.  

 

Figure 6.13. Loop Interchange Example 

 

Obviously, loop interchange is legal if and only if distance vectors remain 

lexicographically positive after the interchange. Nested loop in figure 6.14 cannot be 

interchanged because its distance vector is  (1, −1) and after loop interchange it 

becomes  (−1, 1) which is not lexicographically positive [46]. 

 

Figure 6.14. Non-Interchangeable Loop Example 
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6.3.2.3. Loop Skewing 

Loop skewing is a polyhedral transformation which changes the lower and upper 

bounds of inner loop with respect to the outer loop in a nested loop. Skewing iteration 

space of nested loop structure is a natural result of changing of loop bounds. This 

transformation is useful in order to expose convenience to parallelism for nested loops 

which inner loop has a dependency on outer loop. This transformation and its results 

could be understood easily examining an example code in figure 6.15 [46].     

 

Figure 6.15. Loop Skewing Example Code 

 

Blue arrows in figure 6.15 represent distance vector, which is (1, −1), of the original 

code. Distance vector and iteration domain in figure 6.15 show that neither loop can 

be parallelized to accelerate nested loop algorithm. It should be note that formal 

definition of loop carried dependency cannot be used to decide whether a loop could 

be parallelized or not since the number of distance vector in this example is only one. 

Loop skewing is performed by adding loop index of outer loop to inner loop bounds 

and subtracting same skew value from index of statements in inner loop body. This 

subtraction preserves correctness of the program. The effect of skewing on inner loop 

is to deviate loop bounds relative to outer loop bounds and increase distance to outer 

loop in the same manner. In other words, assume a distance vector (𝑥, 𝑦) , after 

skewing it changes to(𝑥, 𝑥 + 𝑦). Loop skewing is always a legal transformation 

because it protects lexicographic order of the previous distance vectors. Application 
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of skewing original code in figure 6.15 can be seen on figure 6.16. It is worth noting 

that, loop index variables are changed from (𝑖, 𝑗) to (𝑖′, 𝑗′) after loop skewing in figure 

6.16. 

 

Figure 6.16. Skewed Code and Iteration Domain 

After loop skewing, new distance vector is (1,0). As can be seen on skewed iteration 

domain in figure 6.16, inner loop cannot be parallelized. On the other hand, at this 

point interchanging iteration domain tracing order, thanks to the loop interchanging, 

can enable inner loop parallelization as shown in figure 6.17. 

 

Figure 6.17. Skewed-Interchanged Code and Iteration Domain 
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It is clear that, after loop interchange, adjusting loop bounds is not straightforward. 

Each loop has to take care of upper and lower bounds of the other loops. 

 

6.3.2.4. Combining Loop Skewing with Tiling 

Skewing a loop can enable loop tiling that was not possible in the original loop because 

of its dependence structure. Skewing a loop and applying a tiling is called as skewed 

tiling. The order of these transformation is crucial. The reverse order which is tiling a 

loop and then skewing generate a tiled loop whose bounds are only skewed instead of 

all iterations in original nested loop. Although resultant code seems to be skewed 

relative to original code, this transformation is redundant because original iteration 

domain dimension does not change after loop skewing. 

Applying loop skewing and tiling in correct order means tiling transformation operates 

on skewed iteration domain. In this case, tiles may not have the same rectangular shape 

due to the skewing of iteration space as shown on example iteration space in figure 

6.18.    

 

Figure 6.18. Skewed Tiling Iteration Space   
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Polyhedral Compiler Collection (PoCC) tool that is a polyhedral analysis and loop 

transformation tool used in this thesis work unfortunately has no capability to apply 

loop skewing on given nested loops although it can automatically tile these. In this 

thesis, loop skewing is applied manually. This is another reason why our proposed 

approach is called as semi-autonomous. The other reason is the manual generation of 

HLS template code in order to parallelize given tiled nested-loops as mentioned in 

section 6.2.3. 
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CHAPTER 7  

 

7. PERFORMANCE EVALUATION 

 Test Environment 

In this thesis work, the proposed semi-autonomous approach is designed, implemented 

and verified on Xilinx ZC-702 evaluation kit. ZC-702 is a complete development kit 

for developers working on designing and testing different kind of systems. The ZC-

702 board include Xilinx Zynq-7000 All programmable SoC and all required 

interfaces supporting broad range of applications. In this section, basic background 

information about ZC-702 evaluation kit, and Zynq SoC platform are given. 

 

7.1.1. Xilinx ZC-702 Evaluation Board 

ZC-702 is a multi-purpose development board for both software and hardware 

developers to design and verify various applications. This board support many target 

applications such as video processing, hardware/software accelerators, Linux/Android 

development, embedded arm processor design, etc.  

Basic features of ZC-702 could be listed as follows [63]: 

• Zynq-7000 All Programmable SoC device (XC7Z020-CLG484) 

•  1 GB DDR3 Memory 

• 128 Mb QSPI Flash Memory 

• USB OTG 2.0 

• 10/100/1000 Ethernet interface with RJ-45 connector 

• Onboard JTAG programmer 

• HDMI codec 

• Fixed 200 MHz LVDS oscillator 

• I2C programmable LVDS oscillator 
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Figure 7.1 illustrates ZC-702 Evaluation board with all interfaces and features [63].  

 

Figure 7.1. ZC-702 Evaluation Board 

 

7.1.2. Zynq-7000 SoC 

Xilinx Zynq- XC7Z20 integrated circuit (IC) is composed of both dual ARM Cortex-

AP CPU called as processing system (PS) and Artix-7 base FPGA called as 

programmable logic (PL). PS and PL communicate over AXI interface. Figure 7.2 

illustrates the block diagram of ZYNQ-7000 series IC [10]. 
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Figure 7.2. Block Diagram of Zynq-7000 

 

7.1.2.1. Processing System (PS) 

The application processor unit (APU) has a dual ARM Cortex-A9 MPCore with 

version 7 ARM ISA that works on maximum 1GHz frequency.  It has 1GB DDR3 

memory and has a 128 Mb QSPI Flash. There is a 32KB L1 4-way set associative 

instruction and data cache, and a 512KB L2 8-way set associative data cache which 

supports byte-parity [10]. 
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7.1.2.2. Programmable Logic (PL) 

PL is based on the artrix-7 FPGA logic of Xilinx. The PL contains configurable logic 

block (CLB) which has a 6-input look-up table (LUT), memory capability within the 

LUT, Register/shift register and adders. It consists 36KB block RAM, and DSP with 

48 bit high-resolution. The PL resources consist of 13,300 Logic slice, 53,200 LUTs, 

140 BRAM and 220 DSPs [10]. 

 

7.1.2.3. PS-PL Communication 

Zynq-7000 series devices use advanced extensible Interface (AXI) to set up 

communication infrastructure between PL and PS. There are three types of AXI. First 

is AXI4, which is for high-performance memory-mapped interfaces. Secondly, AXI4-

Lite is the low-throughput memory mapped interface. Lastly, AXI4-Stream is used for 

high-speed streaming data for video/audio processing [64]. The Figure 7.3 is an AXI 

interface diagram showing a streaming data transfer between the PS and PL. In 

general, the AXI4-Stream interface is used together with a Direct Memory Access 

(DMA) controller to transfer large amount of data from the processor (ARM) to the 

programmable logic (FPGA). This data is transformed as vector data on the software 

side. The DMA controller reads the vector data from the memory and streams it to 

FPGA through the AXI4-Stream interface. 

 

Figure 7.3. AXI Interface on Zynq SoC 
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 Overview of Test Scenarios 

As mentioned in chapter 6, matrix multiplication and iterative stencil loops are 

favorable choices in order to test the performance of any accelerator design for 

computationally intense applications. In this thesis work, they have been 

comprehensively employed in different test scenarios. 

For each loop kernel having different size and parallelization degree are used in our 

tests, in five different scenarios: 

Simple CPU Execution: 

In order to examine the performance of the hardware accelerator, sequential 

execution time of the given algorithm on CPU, which is ARM Cortex A9, has 

to be known. Also, it should be noted that given algorithm is compiled by 

Xilinx SDK compiler with default optimization level setting which is optimize 

more (-O2) level. Abbreviation used for this scenario in section 7.3 and 7.4 is 

“CPU Exe.”. 

 

Simple HLS Design: 

In this scenario, after SCoP extraction using PIPS, any polyhedral or inherent 

HLS optimizations is applied on the loop kernel. FPGA IP for each loop kernel 

is generated using HLS flow without any optimization. Abbreviation used for 

this scenario in section 7.3 and 7.4 is “HLS w/o Opt.”. 

  

HLS Design with Inherent Vivado Optimizations: 

In this scenario, only inherent HLS instruction-based optimizations which are 

explained in section 3.3 are used. In other words, although given loop kernel 

is optimized in this scenario, loop parallelization degree is still one. In order to 

take advantage of these optimizations, it is required to insert pragma “pipeline” 

in the loop body. Usage of pipeline pragmas of Vivado HLS tool can be seen 
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in figure 7.4. Abbreviation used for this scenario in section 7.3 and 7.4 is “HLS 

w/ vivOpt.” 

 

Figure 7.4. Vivado Pipeline Pragma Usage 

  

 HLS Design with Polyhedral Optimizations: 

In this scenario, previously mentioned polyhedral model-based optimizations 

which are loop tiling and skewing are used instead of inherent HLS 

optimization to compare the performance of the proposed system with results 

of previous scenarios. Abbreviation used for this scenario in section 7.3 and 

7.4 is “HLS w/ poly.” 

 HLS Design with its Inherent Vivado and Polyhedral Optimizations: 

In this scenario, previous two optimizations are combined. Abbreviation used 

for this scenario in section 7.3 and 7.4 is “HLS w/ viv_poly.”. 

 

It should be noted that operational clock frequency for both CPU and FPGA is set to 

100MHz and all execution time results are in unit of clock cycle for all tests. Also, in 

order to download CPU bit stream and hardware description file to Zynq SoC, on-

board USB-JTAG module of ZC702 has been used. Besides, USB-to-UART bridge 

of ZC702 which is a serial port between Zynq PS side and external world is employed 
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to read experimental results from ARM processor. Thus, there are two different 

connections between computer that executes Vivado and evaluation board as shown 

in figure 7.5. 

 

Figure 7.5. Connections between Eval. Board and Comp. 

 

In this thesis, a code block on ARM processor has been designed to measure the 

execution time of a given loop kernel for both ARM and hardware accelerator 

executions and compare these results in terms of speed and correctness. Then, this 

code block sends the results to external world over UART port with 115200 baud-rate. 

Figure 7.6 demonstrates the results of an example execution of an hardware 

accelerator on the serial port of Vivado SDK. 

 

Figure 7.6. Results on UART port of SDK 
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In order to ensure whether compiled HLS code suits the desired parallelization degree 

or not, it is required to check operation\control step diagram provided by Vivado HLS 

tool. If the example diagram in figure 7.7 is examined, parallelization degree of loop 

kernel is four as can be easily understand by the C5 and C6 control steps. 

“stream_in_loop” operation represents reading input data from AXI interface and 

“stream_out_loop” operation represents writing output data to AXI interface. 

 

 

Figure 7.7. Operation\Control Step Diagram 

  

 Evaluation Using Matrix-Matrix Multiplication 

Square matrix-matrix multiplications of different sizes are tested applying different 

parallelization degrees in order to examine the performance of proposed architecture. 

After running PIPS-POCC integrated tool with usual matrix-matrix multiplication 

code, matrix multiplication code has been tiled to enable course-grained loop 

parallelization as shown in figure 7.8. POCC tool also changes loop index variable 

names and re-declare these variables. If the output code of PIPS-POCC is examined, 

parallelization degree of loop kernel can be adjusted via changing b1 and b2 variables.  
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Figure 7.8. Tiled Code of Matrix Multiplication 

 

7.3.1. Performance and Resource Usage Analysis 

The hardware accelerator has been tested by using floating-point matrix multiplication 

algorithm with three different sizes, which are 64x64, 128x128, 256x256 and 

experimental and simulation results are analyzed for three different loop 

parallelization degree which are 1, 2 and 4.  

Table 7.1 and table 7.2 (table 7.3 and table 7.4) show execution time measurement 

results and FPGA resource usages for 64x64 (128x128) matrix multiplication 

respectively. 

Table 7.1. Exe. Time Measurement Results of 64x64 Matrix Multip 

Parallelization 

Degree CPU Exe. HLS w/o Opt. 

HLS w/ 

vivOpt. 

HLS w/ 

poly. 

HLS w/ 

viv_poly. 

1 184850 1814544 79856 - - 

2 - - - 690832 37351 

4 - - - 171184 19799 

Unit: Clock Cycle 
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Table 7.2. FPGA Resource Usage of 64x64 Matrix Multip 

Parallelization 

Degree 

 

BRAM  

 (%) 

 

DSP 

(%) 

 

FF 

(%) 

  

LUT 

(%) 

       

1 (viv_opt) 40 4 12     20        

 poly viv_poly poly viv_poly poly viv_poly  poly viv_poly        

2 39 40 4 9 1 17 5 19        

4 39 40 9 18 2 42 9 40        
 

Table 7.3. Exe. Time Measurement Results of 128x128 Matrix Multip. 

Parallelization 

Degree CPU Exe. HLS w/o Opt. 

HLS w/ 

vivOpt. 

HLS w/ 

poly. 

HLS w/ 

viv_poly. 

1 920367 7326480 482007 - - 

2 - - - 2550321 203767 

4 - - - 1404240 111255 

Unit: Clock Cycle 

Table 7.4. FPGA Resource Usage of 128x128 Matrix Multip. 

Parallelization 

Degree 

 

BRAM  

 (%) 

 

DSP 

(%) 

 

FF 

(%) 

  

LUT 

(%) 

       

   1 (viv_opt) 68 4 12     20        

 poly viv_poly poly viv_poly poly viv_poly  poly viv_poly        

2 61 68 4 9 1 24 6 34        

4 60 68 9 18 2 48 9 69        

 

When matrix size has been increased to 256x256, following results in table 7.5 and 

7.6 are obtained from Vivado HLS simulations. Because of limited BRAM and LUT 

capacities of zynq programmable logic, it is not possible to verify the proposed 

accelerator system with 256x256 floating point matrix multiplication. However, these 

simulation results help to grasp how to FPGA resource use change in response to 
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changing matrix size and verify trends of execution time with changing parameters on 

a larger data set.  

 

Table 7.5. Exe. Time Simulation Results of 256x256 Matrix Multip. 

Parallelization 

Degree CPU Exe. HLS w/o Opt. 

HLS w/ 

vivOpt. 

HLS w/ 

poly. 

HLS w/ 

viv_poly. 

1 13961349 83437584 8520983 - - 

2 - - - 45648400 3462295 

4 - - - 11381392 1805815 

Unit: Clock Cycle 

 

Table 7.6. FPGA Resource Usage of 256x256 Matrix Multip. (Simulation Result) 

Parallelization 

Degree 

 

BRAM  

 (%) 

 

DSP 

(%) 

 

FF 

(%) 

  

LUT 

(%) 

       

   1 (viv_opt) 274 4 23    36        

 poly viv_poly poly viv_poly poly viv_poly  poly viv_poly        

2 274 274 4 9 1 45    6 64        

4 274 274 9 18 2 90 9 124        

 

 

Results for all 256x256, 128x128, 64x64 floating point matrix multiplication shows 

that if a hardware accelerator is designed for matrix multiplications using HLS tool 

without any optimization (HLS w/o Opt.), designed accelerator is dramatically slower 

than the usual CPU sequential executions as can be seen in table 7.7. If the size of 

matrices increases, it is examined that deceleration ratio decreases. However, these 

are certainly undesirable results. 
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Table 7.7. Comparisons of CPU Exe. And HLS w/o Opt. 

Matrix Size CPU Exe. HLS w/o Opt. 

Deceleration 

Ratio (%) 

64x64 184850 1814544 881 

128x128 920367 7326480 696 

256x256 13961349 83437584 498 

Unit: Clock Cycle 

 

On the other hand, when HLS inherent optimization methods are applied on loop 

bodies via easily adding pipelining pragma, shown in figure 7.4. HLS based 

accelerator designs for all matrix sizes reach to acceptable performance without any 

course-grained parallelism on nested loop structure due to the instruction level 

pipelining on loop bodies as shown in table 7.8. Also, it should be taken into 

consideration that, when the matrix sizes increase, acceleration ratio decrease due to 

the increase in the communication overhead between ARM processor and FPGA 

while transferring input matrices and resultant matrix after multiplication and memory 

operations overhead. 

 

Table 7.8. Comparisons of CPU Exe. and HLS w/ vivOPT. 

Matrix Size CPU Exe. HLS w/ vivOpt. 

Acceleration 

Ratio (%) 

64x64 184850 79856 132 

128x128 920367 482007 90 

256x256 13961349 8520983 63 

Unit: Clock Cycle 

 

When the proposed front-end polyhedral model-based optimization and inherent HLS 

pipelining are combined, resultant matrix multiplication IP block gains both course 



 

 

 

75 

 

grained parallelism and instruction level pipelining at loop body. Hence, designed 

hardware accelerator is more effective in terms of execution time. Table 7.9 

demonstrates this effectiveness via comparing best results of offered accelerator with 

highest degree of parallelism, that is four in this work, and HLS optimized results. 

Theoretically, if the number of parallel processing blocks is four, system should be 

four times faster than the sequential counterpart. Obviously, results deviate from 

theoretical values in practice due to the unavoidable communications and some minor 

operations (port initializations, timer setup, etc.) overheads as can be seen in table 7.9. 

Also, it can be said that if matrix size increases communication overhead between 

CPU and FPGA becomes less comparable with computational loads. In other words, 

performance offered hardware accelerator is higher when input matrix is larger as 

could be understand acceleration ratios in table 7.9. 

Table 7.9. Comparisons of HLS w/vivOpt. and HLS w/viv_poly 

Matrix Size HLS w/ vivOpt. 

HLS w/ 

viv_poly. 

Acceleration 

Ratio (%) 

64x64 79856 19799 303 

128x128 482007 111255 334 

256x256 8520983 1805815 371 

Unit: Clock Cycle 

 

 The major drawback of our architecture is the increase in FPGA resource usage. If 

table 7.2, table 7.4 and table 7.6, are examined when degree of parallelism increases, 

FPGA resource usage also increases with the same ratio except BRAM. Because usage 

of BRAM mostly depends on matrix size.  

 

 Evaluation Using Iterative Stencil Loops 

There are many algorithms using iterative stencil loops. In order to test and verify a 

hardware accelerator with iterative stencil loops, we have gotten a kernel from 
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Polybench benchmark suite [25]. In this thesis, Jacobi 2-D stencil kernel, which comes 

from Polybench suite is selected to test our system’s performance. 

 

7.4.1. Jacobi 2D Stencil with Constant Coefficients 

Constant Coefficient Jacobi 2D stencil is an iterative computational algorithm which 

calculate mean value of five points accessed in a specific pattern shown in figure 7.9. 

Jacobi 2D is the kernel that frequently used in many linear algebra and image 

processing algorithms.  

 

Figure 7.9. Jacobi 2D Computational Kernel 

 

Let’s briefly analyze the Jacobi 2D stencil code for square matrix kernel used to test 

hardware accelerator in this thesis in figure 7.10. Its legal distance vectors are (1,0) 

and (0,1). Hence, neither loops in Jacobi 2D stencil cannot be parallelized without 

any modification, in other words, full or partial loop tiling is not possible to enable 

course grained parallelism because each loop have loop carry dependency. 

 

 

Figure 7.10. Jacobi 2D Stencil Code 
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 When loop skewing and loop interchange which are reviewed in section 6.3.2 is 

applied on Jacobi 2D stencil by hand before feeding it to offered PIPS-POCC 

integrated tool, distance vector of transformed Jacobi 2D stencil, that can be seen in 

figure 7.11, becomes (1,0) and (1,1). Now, the inner loop could be parallelized 

because it has now no loop carried dependency.  

 

Figure 7.11. Transformed Jacobi 2D Stencil Code 

After these transformations, Jacobi 2D stencil is ready for partial loop tiling to enable 

course grained parallelism. Partial tiled code, which is generated automatically by 

POCC, could be seen on figure 7.12. Parallelization degree is determined by changing 

variable “b1” in figure 7.12. 

 

 

Figure 7.12. Tiled Jacobi 2D Stencil 
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7.4.1.1. Performance and Resource Usage Analysis 

Offered hardware accelerator has been tested via using constant coefficient 

transformed Jacobi 2D iterative stencil loop kernel with 3 different dimensions which 

are 64x64, 128x128, 256x256 and experimental and simulation results are analyzed 

for 3 different loop parallelization degree which are 1,2,4.  

Table 7.10 and table 7.11 (table 7.12 and table 7.13) show execution time 

measurement results and FPGA resource usages for constant coefficient transformed 

Jacobi 2D having size 64x64 (128x128) respectively. 

Table 7.10. Exe. Time Measurement Results of 64x64 Cons. Coeff. Jacobi 2D 

Parallelization 

Degree CPU Exe. HLS w/o Opt. 

HLS w/ 

vivOpt. 

HLS w/ 

viv_poly. 

1 99654 117892 78715 - 

2 - - - 45258 

4 - - - 28250 

Unit: Clock Cycle 

Table 7.11. FPGA Resource Usage of 64x64 Cons. Coeff. Jacobi 2D 

Parallelization 

Degree 

 

BRAM  

 (%) 

 

DSP 

(%) 

 

FF 

(%) 

  

LUT 

(%) 

       

1 (viv_opt) 6 2 1     4        

2 6            4 2 7        

4 6 9 3 11        
 

Table 7.12. Exe. Time Measurement Results of 128x128 Cons. Coeff. Jacobi 2D 

Parallelization 

Degree CPU Exe. HLS w/o Opt. 

HLS w/ 

vivOpt. 

HLS w/ 

viv_poly. 

1 398676 497478 321210 - 

2 - - - 184744 

4 - - - 115880 

Unit: Clock Cycle 
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Table 7.13. FPGA Resource Usage of 128x128 Cons. Coeff. Jacobi 2D 

Parallelization 

Degree 

 

BRAM  

 (%) 

 

DSP 

(%) 

 

FF 

(%) 

  

LUT 

(%) 

       

1 (viv_opt) 25 2 1     4        

2 25            4 2 7        

4 25 9 3 11        

 

When matrix size has been increased to 256x256, following results in table 7.14 and 

7.15 are gotten experimentally instead of Vivado HLS contrary to matrix 

multiplication example in section 7.2. Since, number of input matrices is only one for 

Jacobi 2D stencil benchmark however this number is two for matrix multiplication. 

This difference between Jacobi 2D kernel and matrix multiplication results in 

reduction of BRAM usage. 

Table 7.14. Exe. Time Measurement Results of 256x256 Cons. Coeff. Jacobi 2D 

Parallelization 

Degree CPU Exe. HLS w/o Opt. 

HLS w/ 

vivOpt. 

HLS w/ 

viv_poly. 

1 1586072 2060593 1297722 - 

2 - - - 746280 

4 - - - 459288 

Unit: Clock Cycle 

 

Table 7.15. FPGA Resource Usage of 256x256 Cons. Coeff. Jacobi 2D 

Parallelization 

Degree 

 

BRAM  

 (%) 

 

DSP 

(%) 

 

FF 

(%) 

  

LUT 

(%) 

       

1 (viv_opt) 92 2 1     5        

2 92            4 2 7        

4 92 9 3 12        
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Results for all 256x256, 128x128, 64x64 constant coefficient Jacobi 2D stencil kernel 

shows that hardware accelerator designed by only HLS inherent optimization have 

acceptable performance without polyhedral optimizations as shown in Table 7.16. 

Table 7.16. Comparisons of CPU Exe and HLS w/ vivOPT 

Matrix Size CPU Exe. HLS w/ vivOpt. 

Acceleration 

Ratio (%) 

64x64 99654 78715 26 

128x128 398676 321210 24 

256x256 1586072 1297722 22 

Unit: Clock Cycle 

If course grained parallelism is enabled by offered polyhedral optimization methods, 

performance of hardware accelerator for Jacobi 2D stencil kernel becomes higher in 

terms of execution time as shown in table 7.17 which comperes results of hardware 

accelerator only optimized by HLS tool and optimized by offered system with 4 

parallelism degree for various matrix sizes. However, it should not be forgotten that 

FPGA resource usage of hardware accelerator having higher degree of parallelism is 

also higher. 

Table 7.17. Comparisons of HLS w/ and HLS w/viv_poly 

Matrix Size HLS w/ vivOpt. 

HLS w/ 

viv_poly. 

Acceleration 

Ratio (%) 

64x64 78715 28250 173 

128x128 321210 115880 177 

256x256 1297722 459288 183 

Unit: Clock Cycle  

 

7.4.2. Jacobi 2D Stencil with Variable Coefficients 

As stated in section 6.3.2.1, in stencil computations, contribution of the neighbor could 

be weighed by variable coefficients instead of constant. In this case, stencil weights 
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could variate between time-steps or from one grid to another one during execution. 

These weights are stored in separate memory location during computations that 

definitely causes an extra memory traffic overhead.  

In this part of thesis, Jacobi 2D stencil benchmark is modified as shown in figure 7.13 

in order to test performance of offered hardware accelerator via using a coefficient 

matrix.  

 

Figure 7.13. Jacobi 2D Stencil with Var. Coeff. 

 

The optimization procedure of variable coefficient Jacobi 2D stencil is same with 

constant coefficient one studied in previous section. Step by step transformation of 

variable coefficient Jacobi 2D stencil loop kernel could be seen in Figure 7.14. 

 

7.4.2.1. Performance and Resource Usage Analysis 

Offered hardware accelerator has been tested via using variable coefficient 

transformed Jacobi 2D iterative stencil loop kernel with 3 different which are 64x64, 

128x128, 256x256 and experimental and simulation results are analyzed for 3 

different loop parallelization degree which are 1,2,4.  
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Figure 7.14. Loop transformation of Jacobi 2D Stencil with Var. Coeff. 

 

Table from 7.18 to 7.23 demonstrate execution time measurement results and FPGA 

resource usages for constant coefficient transformed Jacobi 2D having size 64x64, 

128x128, 256x256 respectively. 

 

Table 7.18. Exe. Time Measurement Results of 64x64 Var. Coeff. Jacobi 2D 

Parallelization 

Degree CPU Exe. HLS w/o Opt. 

HLS w/ 

vivOpt. 

HLS w/ 

viv_poly. 

1 119568 142744 93614 - 

2 - - - 54326 

4 - - - 33611 

Unit: Clock Cycle 

 



 

 

 

83 

 

Table 7.19. FPGA Resource Usage of 64x64 Var. Coeff. Jacobi 2D 

Parallelization 

Degree 

 

BRAM  

 (%) 

 

DSP 

(%) 

 

FF 

(%) 

  

LUT 

(%) 

       

1 (viv_opt) 8 2 2     4        

2 8            4 4 9        

4 8 9 8 19        

 

Table 7.20. Exe. Time Measurement Results of 128x128 Var. Coeff. Jacobi 2D 

Parallelization 

Degree CPU Exe. HLS w/o Opt. 

HLS w/ 

vivOpt. 

HLS w/ 

viv_poly. 

1 485256 596976 401210 - 

2 - - - 228363 

4 - - - 142744 

Unit: Clock Cycle 

Table 7.21. FPGA Resource Usage of 128x128 Var. Coeff. Jacobi 2D 

Parallelization 

Degree 

 

BRAM  

 (%) 

 

DSP 

(%) 

 

FF 

(%) 

  

LUT 

(%) 

       

1 (viv_opt) 25 2 2     4        

2 25            4 4 9        

4 25 9 8 19        

 

Table 7.22. Exe. Time Measurement Results of 256x256 Var. Coeff. Jacobi 2D 

Parallelization 

Degree CPU Exe. HLS w/o Opt. 

HLS w/ 

vivOpt. 

HLS w/ 

viv_poly. 

1 1890650 2498682 15888104 - 

2 - - - 919902 

4 - - - 559142 

Unit: Clock Cycle 
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Table 7.23. FPGA Resource Usage of 256x256 Var. Coeff. Jacobi 2D 

Parallelization 

Degree 

 

BRAM  

 (%) 

 

DSP 

(%) 

 

FF 

(%) 

  

LUT 

(%) 

       

1 (viv_opt) 98 2 2     4        

2 98            4 4 9        

4 98 9 8 19        

 

As can be understand from execution time results from tables 7.18, 7.20, 7.21, 

execution time of hardware accelerator is higher for all matrix sizes and all 

parallelization degrees because of extra memory access traffic. However, if the 

comparison of the offered hardware accelerator and usual HLS-based hardware 

accelerator performances for both variable types are considered, offered hardware 

accelerator has reached nearly same performance for both constant coefficient and 

variable coefficient Jacobi 2D iterative stencil kernel. Table 7.24 demonstrates 

performance of hardware accelerator with comparing acceleration ratios of constant 

and variable weighted Jacobi kernels for highest parallelization degrees. Acceleration 

ratios for constant variable Jacobi kernel is taken from table 7.17. 

 

 Table 7.24. Performance Comparisons for Var. and Cons. Coeff Jacobi 2D 

Matrix Size 

HLS w/ vivOpt. 

(Var. Coeff.) 

HLS w/ 

viv_poly. 

(Var.Coeff.) 

Acceleration 

Ratio (%) 

(Var.Coeff.) 

Acceleration 

Ratio (%) 

(Cons.Coeff.) 

 

64x64 93614 33611 179 173 

128x128 401210 142744 181 177 

256x256 15888104 559142 184 183 

 

If FPGA resource usage results of experiments with constant and variable coefficient 

Jacobi kernels are examined, BRAM, FF, LUT usage rate for variable coefficient is 

higher due to extra memory requirement of weight matrix. On the other hand, DSP 
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usage is kept constant because of same computational intensity of both constant and 

variable weighted Jacobi kernels. 

 

 Complete System Evaluation  

When all experimental and theoretical results in Chapter 7 are taken into 

consideration, it could be easily said that, Vivado HLS-based hardware accelerator 

design with only its inherent optimizations provide acceptable performance for 

computationally intense applications. However, this thesis work shows that better 

circuits could be designed with higher performance via combining HLS with 

polyhedral model-based analysis and optimization tools if there are enough hardware 

resources on the target SoC platform.  
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CHAPTER 8  

 

8. CONCLUSION AND FUTURE WORKS 

 Conclusion 

In this work, a semi-autonomous hardware accelerator for computationally intense 

applications is proposed. This proposed hardware accelerator is basically designed by 

combining three different tools. The first one is Vivado HLS, which is a high-level 

synthesis tool of Xilinx Company designed for their own FPGA platforms. The second 

one is POCC (Polyhedral Compilation Framework), which statically analyzes and 

optimizes nested loop kernels and the last one is PIPS, which extracts SCOP in a given 

source code to feed it to POCC.  

In order to test and verify the effectiveness of the proposed hardware accelerator 

platform, different test scenarios are generated by using different size of matrix 

multiplications and iterative stencil loops having loop carried dependencies. Xilinx 

ZC702 development board, which includes Xilinx Zynq-7000 series SoC device is 

selected as the test platform. 

To enable course grained parallelism in loop kernels, this work proposes loop tiling 

transformation, which is usually used in the literature for cache optimization contrary 

to usage in this thesis and HLS template code is generated to design parallel circuits 

corresponds to tiled loop kernels that is tiled automatically using POCC Tool. 

Unfortunately, all loop kernels are not suitable for loop tiling. In this work, polyhedral 

optimization method called as loop skewing is applied on loop kernels manually to 

enable tiling operation and the combination of loop skewing and tiling is tested and 

verified on ZC702 board with various types of Jacobi 2D stencil kernel.  

Finally, test results in this thesis demonstrate that it is possible to increase the 

performance of HLS based hardware accelerator design especially for applications 

having huge data sets by enabling course grained parallelism in nested loop structures 
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if desired platform has enough FPGA resources without requiring extra working hours 

thanks to our semi-autonomous structure. 

 

 Future Works 

The hardware accelerator that is proposed in this thesis is called as semi-autonomous. 

There are two main reason of why it is called as semi. Firstly, in order to synthesize 

nested loop structure source code with course-grained parallelism in Vivado HLS, it 

is required to handcraft writing of a template code. Instead of writing code by hand, 

there should be a loop optimization pragma in HLS compiler, for example named as 

“loop_blocking or loop_tiling”, to allow parallelization during compilation as in the 

case of loop pipelining. This is one of the major drawbacks of HLS tools. Secondly, 

although loop skewing is a powerful loop transformation method especially for 

iterative stencil applications, in literature there is no polyhedral model-based source 

to source optimization tool having talent to apply loop skewing automatically, loop 

skewing should be inserted in one of the current polyhedral tools.  

In this thesis work, FPGA is fully configured for only one hardware accelerator 

application. This work can be extended via configuring FPGA partially and 

dynamically to enable acceleration of various applications at the same time. Also, 

some minor operations between POCC and Vivado is done manually in this thesis 

work. This procedure can also be made autonomous while inserting tiling into HLS 

tool.  
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