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ABSTRACT

IMPORTANT ISSUES FOR BRAIN CONNECTIVITY MODELLING BY
DISCRETE DYNAMIC BAYESIAN NETWORKS

Geduk, Salih
Master of Science, Electrical and Electronic Engineering
Supervisor: Prof. Dr. Ilkay Ulusoy

January 2020, 125 pages

To understand the underlying neural mechanisms in the brain, effective connectivity
among brain regions is important. Discrete Dynamic Bayesian Networks (dDBN)
have been proposed to model the brain’s effective connectivity, due to its nonlinear
and probabilistic nature. In modeling brain connectivity using discrete dynamic
Bayesian network (dDBN), we need to make sure that the model accurately reflects
the internal brain structure in spite of limited neuroimaging data. Based on the fact
that there are many dDBN structure learning applications in the recent literature and
most of them use very limited amount of data, some facts should be made clear at
least for the model convergence which depends on the number of data, the model
complexity, and the learning approach. In this thesis, we analyzed the sample
complexity of dDBN to find the required number of samples that guarantee
successful learning. Firstly, we realized that the theoretical sample complexity for
dDBN structure learning is not realistic, practical and applicable in practice.
Therefore, we also focused on a practical and systematic approach for estimating the
sample complexity for dDBN. Secondly, we evaluated the non-supervised

discretization methods for functional magnetic resonance imaging (fMRI) data



which has not been done yet to the best of our knowledge. We generated synthetic
fMRI data that possess temporal relations. Then they were used for modeling
effective connectivity by dDBN to compare the performance of each discretization
method. Thirdly we analyzed the smoothing step of the fMRI data which is necessary
to improve the signal to noise ratio. Experiments suggested that smoothing fMRI
data with Gaussian function having a standard deviation to be 4 mm is suitable
considering effective connectivity via dDBN. Lastly, by considering these results
we used dDBN to model the brain connectivity of schizophrenia and control group.

The results signify that schizophrenia is a disconnection syndrome.

Keywords: Discrete Dynamic Bayesian Networks, fMRI, Structure Learning,
Sample Complexity, Effective Connectivity, Schizophrenia
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DINAMIK BAYESCi AGI iLE YAPILAN BEYIN BAGLANTILARI iCiN
ONEMLIi HUSUSLAR

Geduk, Salih
Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi
Tez Yoneticisi: Prof. Dr. Ilkay Ulusoy

Ocak 2020, 125 sayfa

Beyindeki altta yatan sinirsel mekanizmalar1 anlamak igin beyin bdlgeleri arasindaki
etkin baglantisallifi g6z oniinde bulundurmak 6nemlidir. Ayrik Dinamik Bayes
Aglar1 (dDBN), dogrusal olmayan ve olasilikli dogasi nedeniyle beynin etkin
baglantisalligin1 modellemek i¢in Onerilmistir. Ayrik dinamik Bayes agini1 (dDBN)
kullanarak beyin baglantisalligini modellerken, modelin sinirli beyin goriintiileme
verilerine ragmen dahili beyin yapisini dogru bir sekilde yansittigindan emin
olmaliyiz. Literatiirde ¢ok sayida dDBN yapis1 6grenme uygulamasinin bulunmasina
ve ¢cogunun c¢ok smirli miktarda veri kullanmasina bagli olarak, en azindan veri
sayisina, model karmasikligina ve Ogrenme yaklasimina bagli olan model
yakmsamast icin bazi gercekler acikca belirtilmelidir. Bu tezde, basarili bir
Ogrenmeyi garanti eden gerekli sayida Ornegi bulmak i¢in dDBN'nin ornek
karmasikhigini analiz ettik. Ik olarak, dDBN yap1 6grenmesi igin teorik &rnek
karmasikligini bulduk. Bununla birlikte, teorik 6rneklem miktar1 gercekei, pratik ve
dDBN i¢in gegerli degildir. Bu nedenle, dDBN i¢in 6rnek karmasikligini analiz
etmek icin pratik ve sistematik bir yaklasima odaklandik. Ayrica, bilgimiz dahilinde

heniiz yapilmayan fMRI verileri i¢in denetimsiz ayriklastirma ydntemlerini de

vii



degerlendirdik. Zamansal iligkilere sahip sentetik fMRI verileri olusturduk. Daha
sonra, bu veri her bir ayriklastirma yonteminin performansii karsilagtirmak igin
dDBN tarafindan etkin baglantisalligi modellemek i¢in kullanildi. Ugiincii olarak,
sinyal-giiriiltii oranini iyilestirmek igin gerekli olan fMRI verilerinin yumusatma
asamasini analiz ettik. Deneyler, standart sapmasi 4 mm olan Gauss fonksiyonu ile
fMRI verilerinin yumusatilmasimin, dDBN ile yapilan etkin baglantisallik g6z oniine
alindiginda uygun oldugunu gostermistir. Son olarak, bu sonuglar1 dikkate alarak,
sizofreni ve kontrol grubunda beyin baglantisin1 modellemek i¢cin dDBN kullandik.

Sonuglar, sizofreninin bir kopukluk sendromu oldugunu géstermistir.

Anahtar Kelimeler: Ayrik¢1 Dinamik Bayes Aglari, fMRI, Yap: Ogrenimi, Ornek
Karmasikligi, Etkin Baglantisallik, Sizofreni
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CHAPTER 1

INTRODUCTION

1.1 Motivation

By functional magnetic resonance imaging, brain regions involved in various
cognitive tasks can be detected [1]. Considering multiple processes that occur in
brain regions that interact with each other, extracting brain connectivity from fMRI
data during a specific task can help us to understand brain functioning. In fMRI,
brain activity is measured by time-series signals based on blood oxygenation level-
dependent (BOLD) contrast. One of the most important connectivity approaches
using these time series is undoubtedly effective connectivity [2]. Effective
connectivity reveals the causal interactions between brain regions. Dynamic
Bayesian Networks are appropriate to model the brain’s effective connectivity due
to their non-deterministic behavior. Due to the complexity of modeling, two DBN
methods are applicable, one is Gaussian DBN [3], where brain regions are modeled
with linear gaussian relations, second one is discrete DBN (dDBN), where non-linear
modeling is possible by discretizing the data and using multinomial distributions

over the network parameters [4]-[6].

A dDBN is specified by two components: a structure (graph or model), which
represents the conditional independencies between random variables and parameters,
which represent the conditional probability distributions among these random
variables. When we model the brain with dDBN, the nodes correspond to the brain

regions, and the structure refers to the effective connectivity of the brain.

A series of steps are followed to model the effective connectivity of the brain using

dDBN. Figure 1-1 gives each step for modeling the effective connectivity of the brain



by dDBN. The first step is preprocessing where smoothing is applied to the raw fMRI
data to get rid of errors due to scanning procedure. Secondly, the time-series of the
identified brain regions (i.e., the region of interests, ROIs) are obtained. This
determination is either done by expert knowledge or by generalized linear model
technique to find activated regions in the brain. Then 4-dimensional fMRI data is
transformed into 1-Dimensional data for each region. Then, these time series are
discretized, where data is converted to a finite number of discrete values. Finally, the
discrete time-series are used as input to the dDBN learning procedure and the brain

effective connectivity is modeled.

Regions of Interest

¥

FMRI Obtaining time- dDBN
fMRI —, p ) — seriesforeach [ Discretization |+  Structure |— Effective
Data reprocessing ROI Learning Connectivity

Figure 1-1: Steps to obtain effective connectivity by dDBN

In this thesis, three important steps are investigated and clarified to make sure that
the modeling is done correctly. The first one is the required number of data samples
to be able to model the data by the dDBN learning procedure. Although motivation
was for fMRI data, the required sample size is in general related to model not the
type of data used. Therefore, assessment of the number of samples is investigated
independently from fMRI data. The second one is the discretization method to
convert fMRI data into a discrete set of states. Such a discretization has a significant
impact on the correctness of modeling. The information in the continuous values
should be kept while the number of quantized states should be as low as possible for
the computational complexity of the learning procedure. Although some
discretization methods are used in dDBN connectivity studies with fMRI data in the
literature [4]-[6], we have not yet found any studies which search the best
discretization method for this purpose. The last issue is about the smoothing process
which is done in the fMRI preprocessing step. Smoothing is the only option for f{MRI
data to improve the signal to noise ratio. However excessive smoothing may cause

to lose the spatial information that fMRI data possess. In this thesis, we considered



an approach considering the properties of dDBN and time-series to find a suitable

smoothing.

In most of the effective connectivity studies, researchers did not consider the issues
discussed in this thesis. However, they are very crucial for the correctness of the

modeling.
1.2 Contributions

In this thesis, the most important and greatest contribution is that all the steps of the
dDBN method for brain modeling are examined and every important issue is solved.
Consequently, considering the studies of this thesis, the brain effective connectivity

can be done by using fMRI data and the hidden sides of the brain can be illuminated.

This thesis contains various contributions in terms of the sample complexity of
dDBN. Although our motivation relies on fMRI data, sample complexity analysis is
in general related to discrete Dynamic Bayesian Networks. First of all, as far as we
know this study is the first for putting forward the sample complexity for dDBN on
model discovery. A practical approach rather than a theoretical one was applied to
see the effect of sample size for learning the structure of dDBN. Theoretical results
are not applicable for real applications, such as the effective connectivity of the brain
by fMRI, because they state the need for immense sample size in order to find the
structure correctly. However, our practical results state that less number of samples
is enough to discover the correct structure. In addition, experimental results are used
to practically assess the sample complexity with respect to network parameters.
O(KP"!) is found to be the sample complexity for binary and ternary valued dDBNs,
where K indicates the cardinality of the network, and p indicates the maximum
number of parents in the network. Another contribution is to evaluate how the BDeu
score is affected by the number of samples and what kind of structures are learned
as a result of the dDBN learning procedure considering the imaginary sample size
used as a prior belief for BDeu metric. This contribution to the literature will enable

researchers to use dDBN more accurately in their studies. dDBN is used in various



areas such as economics, bioinformatics and neuroscience. This contribution will

advance the studies to use the dDBN technique in modeling.

We had two main objectives for the discretization case. The first was to evaluate the
state-of-the-art non-supervised discretization methods to model the effective
connectivity of the brain with dDBN using fMRI data and to determine the best
among them. The discretization methods used in this study are mostly explained in
[7]-[9]. Our second aim was to use variation between successive time points in the
discretization and to show that using the differential information performs better. To
achieve these goals, first ofall, we produced synthetic fMRI data from 1000 different
connectivity models. Then, we discretized this data with all of the discretization
methods and used them in dDBN learning. We compared the ground-truth models
and the learned models with appropriate error metrics. It was observed that the use
of the derivative rather than the fMRI data itself was more informative in dDBN
modeling. Moreover, we tested discretization techniques using real fMRI data, and
similar results were obtained with synthetic data. Discretization methods was only
evaluated for fMRI data in this study. Hence any area using this technique should
also consider and evaluate discretization methods for the data they use. The
discretization technique is rather data-dependent, modelling method only can be used

as an evaluation metric to find the best discretization method.

Another contribution is related to the smoothing step of fMRI preprocessing. The
results of the discretization step suggested that scanner noise has a negative effect on
the discretization. Spatial smoothing is the only issue that enhances the signal to
noise ratio. To do that fMRI data was smoothed for various sigma values of Gaussian
filter. Then the resulted dDBN models were analyzed and it was found that for

smoothing, sigma should between 4-7 mm, and 4 mm found to be more promising.
1.3 The Outline of the Thesis

This thesis contains four main studies. The first one is the sample complexity
analysis of discrete dynamic Bayesian networks. The second one is the evaluation of

discretization methods for fMRI data. The third one is to find suitable spatial



smoothing for fMRI data considering the dDBN method. The last one is to find the
effective connectivity of the brain by using the data belonging schizophrenia and
control. Since we have a total of four sub-studies, we will introduce each study
separately. In Chapter 2 the brain connectivity approaches focusing on effective
connectivity will be explained. In chapter 3 discrete dynamic Bayesian networks and
structure learning are explained. In chapter 4, sample complexity analysis of discrete
dynamic networks with its results and discussions is provided. In chapter 5
evaluation of discretization methods with literature review, results and discussion
are explained. In chapter 6, the smoothing step of the fMRI preprocessing is
explained. In chapter 7, the effective connectivity approaches are explained with an

application on real fMRI data. Lastly, we conclude this thesis.






CHAPTER 2

BRAIN CONNECTIVITY

The main property of the brain's working mechanism is the segregation and
integration of the information processed. The paradigm considered in neuroscience
studies is that the interconnectivity between brain regions is directly related to
optimal information processing. Functional interactions between regions of the brain
are observed by the synchronized activation between both local and distant regions.
In other words, the brain is a complex structure that can be spatially distant from
each other but functionally interacts with each other. Brain connectivity is generally

studied under three headings [10].

e Structural connectivity: This connectivity examines the anatomic
connectivity of distant neuron assemblies connected by axonal pathways of
the brain regions [11]. The information sent in the axons is transmitted to
other regions via synaptic connections [12]. We call all these axon pathways
of the brain as white matter. This connectivity is expected to be more stable
and the same for every person since it shows the direct structural property of
the brain. It is more stable and permanent than other connectivity methods.

e Functional connectivity: It shows whether the neurons that are considered
spatially separate have similar activation patterns during any functional task
[2], [13]. It shows the statistical dependence between different brain regions
in information processing. Therefore, this method is based on statistical
measurement methods such as correlation, covariance, and coherence.

e Effective Connectivity: This is the connectivity that possesses the effect of
one neural system to another neural system [2], [13]. It shows the temporal

relationship between brain regions. It is defined as a directional map of



connectivity between brain regions. This temporal causality is usually

obtained by time series analysis of data from brain regions.

2.1 The Methods for Effective Connectivity

Although there are several methods proposed to study effective connectivity of the
brain using fMRI and EEG data, in this section, commonly used effective
connectivity methods are explained. These methods are Granger Causality,

Structural Equation Modelling, Dynamic Causal Modelling and Bayesian Networks.

2.1.1 Granger Causality

Suppose we have two time series, x and y. Our goal is to find the causality between
x and y. If a time series x provides predictive information about the future of time
series y better than past values of y, x is said to Granger-cause y [14], [15]. An
autoregressive model is used to find this causality. In this section, we will explain
how to calculate causality only for two variables. The same rule may apply to more

than two time series. A univariate autoregressive model will be generated first.

p
x(t) = Z apx(t — k) +uqy(t)
k=1 2.1)

14
y(©) = ) byt =10 +va(®
k=1

In the given equation, ax represents the linear relation between the time series x at a
particular time point t and its k previous values. k indicates the index of temporal
dependency. This equation is fitted separately for x and y, then u; and vi vectors are
obtained as error of prediction. The magnitude of these vectors shows how suitable
our data is for the given model. Secondly, x and y are then fitted to a bivariate

autoregressive model which is expressed by the following equations.



p
x(t) = Z apx(t — k) + cy(t — k) + uy(t)
k=1 (2.2)

b
y(©) = D ey (e =1+ dix(t = k) + v,(0)
k=1

In equation 2.2 C indicates the linear relation between x(t) and y(t-k). uz and v> show
the prediction error due to the fitting process. In the Granger causality method, the
variances of the error vectors are used to check the strength of the effective

connectivity. The following equations show variance calculations.

Oxjx = var(uy)
ayly = var(vy) (2.3)
Oxlxy = var(u,)

Oylyx = var(vy)

Then Granger causality of y over x and x over y are calculated by the following

equation.
_ Ux|x
FY—>X - o
x|xy
(2.4)
_ Oyly
FX—>Y -
Oylyx

2.1.2 Structural Equation Modelling

The most important aspect of this technique that differs from other techniques in
finding effective connectivity is that it considers the anatomical connectivity of the
brain [16]. While the structural connectivity of the brain is used as a priori
information, a connectivity model is formed using the covariance between brain
regions. We will only give introductory information about the model. The model is

expressed by the following equation.

y=By+Tx+¢ (2.5)



y is an m*1 vector representing dependent variables. x is an n*1 vector of
independent variables, € is the error vector, B is a m*n coefficient matrix for
dependent variables and I is the coefficient matrix for the independent variables x.
The diagonal elements of the matrix B are 0 since we think variables do not influence
themselves. In order to evaluate the model, covariances of the x and ¢ are

investigated.

@ = E[xxT]
Y = E[eeT]

(2.6)

® is defined as the covariance matrix of x and W is defined as the covariance matrix
of error term €. If Z is a vector containing all the variables in the network which is
described in equation 2.7, then the covariance matrix of Z can be defined in equation

2.8, where Z is the n* p matrix of p variables in the network for each n observation.

Z = [X1,X, ', X0, V1, V2r +0r Y] (2.7)
77T
ZObS = N _ 1 (2.8)

The covariance matrix from the model can be calculated by the following expression.

s - @ (I-B) '@ (2.9)
med = (I =B)1@)T  (I1—B) Y (el + ¥)((I — B) 1)T

The goal of this method is to minimize the difference between these two covariance
matrices. In this minimization, the number of unknowns which is related to B,'\W,I'
and @ are more than the number of equations. Therefore, this method needs prior
information about the model in order to find the unknown parameters. Thus, this
model has to point to the existence of some causal relations among the variables. The
remaining parameters are found by fitting the model so that the difference between
covariance matrices defined in equations 2.8 and 2.9 is minimized. By using the
maximum likelihood method, the effective connectivity between the variables is

found by the following expression where tr(.) denotes the trace of a matrix.

F = loglzmodl + tr(zobs) - loglzobsl -p (210)
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2.1.3 Dynamic Causal Modelling

This modeling addresses causal interactions between brain regions by creating and
testing realistic models of interactive neural areas [17]. For this reason, DCM needs
extreme prior information. DCM finds the couplings between brain regions and also
aims to predict how these are affected by the changes in the experiment. DCM first
begins by modeling brain regions that are supposed to interact, and adds a model of
how a signal that can be measured by fMRI can form neuronal activity using BOLD
response. Modeling is performed with a hemodynamic response function that
describes how this neuronal activity transforms the BOLD signal. The DCM method,
which models the connectivity with a Bayesian approach, solves the interaction
between brain regions with the following equation.
m
d_ A+ZujB(j) z + Cu (2.11)

dt ,
=1

Here t is the continuous-time, u shows the input given during the experiment. Matrix
A shows the interaction between brain regions, independent of the experiment,
whereas matrix B shows the interaction resulting from the experimental input. C
matrix shows the effect of the experiment input directly on the brain region. The
parameters A, B and C in this equation are the parameters to be estimated in the
learning part of the model. Therefore, the experimental design has a significant
impact on DCM analysis. However, DCM is also used to analyze the effective
connectivity for the resting-state fMRI where there is not any experimental input

[18].

The computational complexity of this method is immense. Generally, it is
investigated by some predetermined models. These specific models are tested by
DCM analysis and the best fitting one out of the predetermined models is chosen as

the model for the connectivity of the brain, with a Bayesian approach. Then, on the

11



best model, the strength of the effective connectivity is calculated and expressed to

represent how much a brain region affects another brain region.

2.14 Bayesian Networks

Bayesian networks are probabilistic graphical models that show the independencies
between certain random variables. This model is often preferred for fMRI and EEG
data[4], [5], [19]. For effective connectivity studies, dynamic Bayesian networks are
preferred over BN. Because this model investigates the temporal independencies
between random variables. Dynamic Bayesian Networks are appropriate to model
the brain’s effective connectivity due to their non-deterministic behavior. Due to the
complexity of modeling, two DBN methods are applicable, one is Gaussian DBN
[3], where brain regions are modeled with linear Gaussian relations, second one is
discrete DBN, where non-linear modeling is possible by discretizing the data and
using multinomial distributions over the network parameters [4]—[6]. The
connectivity between the brain regions is assumed to be linear in most of the effective
connectivity methods such as Linear Gaussian Model, Partial Directed Coherence
and Granger Causality, Structural equation modeling, but this linear relationship may
not be valid for the brain. Therefore, dDBN, which is a non-linear method, is one

step ahead of other effective connectivity methods.

One of the disadvantages of DCM in multiple brain regions is the excess
computational needed. Therefore, not all models can be tested. But for ease of
calculation, Bayesian networks allow us to test any model. Secondly, the modeling
process does not depend on the experimental design. The experimental design is, of
course, very critical for fMRI studies, but this method does not require experimental

design for analysis. For this reason, BNs stands out one more step.

The detailed background information about discrete Bayesian Networks is provided

in the following chapter.
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CHAPTER 3

DISCRETE DYNAMIC BAYESIAN NETWORKS

3.1 Introduction

Bayesian networks are directed and acyclic graphical models to represent the joint
probability distribution over a set of random variables [20]. A graph is represented
by a set of nodes V= {1:1=1, 2, ..., n} and edges E= {e; -e;; =1 if the i-th node is in
the parent set of the j-t4 node}. Each node in the graph represents a random variable
and edges show the causal independencies between certain variables. Given the
parents of any node in the graph, that node is independent of the non-descendants,
which is the nature of the probability and graph theory. If a certain amount of data is
provided, both the structure of the underlying Bayesian network and the conditional
probability distributions of the variables could be modeled. For Bayesian Network
that model discrete random variables (discrete Bayesian Network), the causal
relationship between a node and its parents are parameterized by conditional
probability tables which explicitly describe the probability of the i-t4 node having

any particular discrete state given the state of its parents.

Dynamic Bayesian network (DBN) is a graphical model that represents the causal
characteristics of the variables over time [21]. Discrete Dynamic Bayesian networks
is a specialization of DBN that models the temporal processes between discrete-
valued random variables. dDBN is divided into columns of nodes where each column
represents the observation of variables for a particular time frame. The edges are
only designed to connect nodes between these columns, and edges are always from
the previous state to the next state, i.e. edge of a dDBN is designed to point forward

in time.

Some simplifying assumptions are used for the sake of dDBN complexity and

convergence during model learning. The first assumption is that the time series is
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stationary which means that the conditional distribution is the same for all time

points. The second assumption is that the model obeys first-order Markov property:

P(x;(®)]x1(£), e, 2 (£), %1 (t — AL), e, X (t — AL), e, %1 (t — KAL), ..., X, (t — KAL)
= P(x;()|Ipa;(t — Ab))
Here x; is the i-th variable, n is the total number of variables, ¢ is the discrete time,

At represents the time delay to model the causal relationships, & refers to the order of

the model, pa; represents the parent set of the i-¢#4 node.

dDBN structure learning targets to find the present edges, e;, and the conditional
probability distribution of the variables based on the existing edges. The graphical
structure G is learned from the dataset D:

G* = argmax(P(G|D)) (3.1)
By using the Bayes rule

P(D|G)P(G)
2 P(DIG)P(G)

P(G|D) =

and taking the logarithm of both sides and ignoring the denominator, since it is just

a constant, the score can be defined as:
score(G:D) = log(P(D|G)) + log(P(G))

The right-hand side of the expression is the sum of the likelihood and the prior
information about the structure. Generally, the prior is taken as the uniform
distribution over the structures, and this concludes that maximizing the total score is

the same as maximizing the likelihood:
P(D|G) = f P(D|G,0)P(6|G)do

Here 6 is the parameter set that defines the conditional distributions over the random
variables of the given structure G. Several distributions have been used for the prior
P(0|G). Cooper and Herskovits [22] take the prior as uniform distribution for each

parameter of 6 and apply the well-known K2 score. Heckerman et al. [23] use
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Dirichlet distribution with parameters a (imaginary sample size) and obtain the

following expression for the likelihood:

l"(al]) F(Clijk + Nijk)
logP(D|G) = log ﬂﬂr(% +N;) 1 1_[ [ (atij)

i=1 j=1

n 4
logP(D|G) = Z Z log <F(ol;(0:]1)v )) z o <F(a;‘](lca+k]\)]l]k)> (3.2)
ij ij ]

i=1j=1

Where ¢g; denotes the total number of parental configurations of i-th node, r;
represents the total discrete states that i-th node can take, » is the number of nodes,
Nj; represents the number of samples that i-th node is observed given the parental
configuration represented by j, Ny is the total number of samples that i-th node take
one of its discrete state k given the parental configuration represented by j, a;; and
aij are the prior distributions for N; and Ny and they are specified by o/g; and o/gir;
respectively. This equation is called the Bayesian Dirichlet equivalence with a

uniform prior (BDeu).

3.2 BDeu and BIC Scores

Suppose that the data D consist of M samples, when M—oo we have that[24]:

logM

logP(D|G) = L(6;:D) — Dim[G] + 0(1) (3.3)

Where L(0c:D) is the maximum log-likelihood of parameters of the graph, 6¢ and
Dim[G] is the model dimension, or the number of independent parameters in G.
Without the last term O(1), remaining expression is called Bayesian Information
Criteria (BIC) which is also commonly used as a scoring method for Bayesian
networks. If only the first term, the log-likelihood score, is used to find the best

structure, some limitations will be faced. For example, log-likelihood tends to prefer
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networks with more parents as the samples of variables increase [24]. However,
adding the second term Dim[G] decreases the score of complex structures. This leads
to a tradeoff between fit to data and model complexity: as the dependence between
a variable and its’ parents increases, we get higher score due to the likelihood term,
however as the network gets more complex, we get lower score due to the second

term in equation 3.3.

The likelihood score can be decomposed as follows:

L(6;:D) =M Z I(x;paf) — MZ H(x;) (3.4)
i=1 i=1

Where I(x;;pai°) is the mutual information between the random variable x; and their
parents, and H(x;) is the entropy of variable x;. Using equation 3.3 and 3.4 we can

write the BIC score as follows:

logP(D|G) = M (Z I(x;paf) — Z H(xl-)) - 1021\4 Dim|[G] (3.5)

i=

Suppose that we try to find the difference of BIC scores between two graphs, namely
Gi and G».

log M
scorep;.(Gy: D) — scorey;.(G,: D) = AM — gT (Dim[G,] — Dim[G,])

N N 3.6
A=;I(xi;paf1)—;I(xi;paf2) (3.6)

Equation 3.6 is composed of two terms: the first term is the difference due to the
likelihood, the second term is the difference of scores due to the model dimension.
The first term changes linearly with the number of samples M, however, the second
term changes logarithmically. This affects the structure obtained during learning

when different numbers of data samples are used from the same underlying
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probability distribution which is to be modeled. In order to analyze the effects of

different configurations, G and Gz, on BIC metric, let's discuss some special cases:

Let Gi be the actual structure from which the data is sampled, in other words,
it is the true structure G*, and G is any graph that does not contain all of the
temporal relations between random variables that the true structure does. As
M—oo A will be positive and high because G» contains different temporal
relations than G*. Therefore, the first term of equation 3.6 starts to dominate
the second term, as a result of the fact that the linear term increases faster
than the logarithmic term. Therefore, the BIC score of G1 will be higher than
that of G2.

Let G1 and G2 both contain the same temporal relations as the true structure
G*, however, both have a higher number of edges than G*. In this case, the
likelihood term of the equation 3.6 will converge to 0 since both graphs
indicate the same temporal relations with the true structure, whereas the
second term will be different for G1 and G2 if they differ in terms of model
dimension. Hence, the structure with a lower number of parameters, Dim[G],
will get the highest score. This result concludes that the graphs which have
the same temporal relations as G* but have a higher number of edges will get

lower score than G*.

We conclude from these configurations that when the amount of data M—oo G* is

the structure that maximizes BIC score and all structures other than G* have strictly

less scores. This property is called the consistency of a score, hence BDeu metric is

a consistent score because for M—o BDeu score is approximated as BIC score; see

equation 3.3 [24].

Another important property of BIC and BDeu metrics is the score decomposability:

the total score of a certain structure can be written as the sum over family scores of

individual nodes in the structure. By using score decomposability, we can write the

equation 3.2 and 3.3 as:
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n
score(G:D) = logP(D|G) = ZFamScore(xilpaiG:D)
i

Where the family score of each node is defined for the BDeu score:

qi F( ) Ti 1“( N )
FamScore(x;|paf:D) = Z log (#) + Z log< Aijic + Nijk )
j=1 k=1

I(ai; + Nyj) I(aijie)

Score decomposability provides efficient learning algorithms since it allows local
search [25]. Maximizing the overall score can be reduced to several optimization
problems with only maximizing the individual family scores. For a given node, all
possible parent combinations are traced and the one with the highest score is taken
as the family of that node. This method is applicable for DBN because adding any
edges to the graph of a DBN will not violate the directed acyclic graph property of
the graph; since edges of DBN show the independence between the time slices. For
Bayesian Networks, this method is applicable if and only if the order of the nodes is
predetermined [24], [25].
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CHAPTER 4

SAMPLE COMPLEXITY ANALYSIS OF DISCRETE DYNAMIC BAYESIAN
NETWORKS

4.1 Introduction

In the literature, researches on the adequacy of the number of samples consider
mostly the conditional probability distributions of Bayesian networks (BNs). They
examine the error between the actual distribution from which the data was sampled
and the distribution learned from the sampled data using Hoeffding’s inequality [24],
[26]-[29]. All these studies use the Kullback-Leibler distance between the original
and the learned model distributions to decide on the sample complexity. Zuk et al.
[30] go beyond finding the right distribution and show the relationship between the
correct structure with lower bounds and the number of samples. They argue that the
amount of the samples should be more for finding the correct structure than finding
the correct distribution. They demonstrate this by using the Hoeffding’s inequality
and the relative entropy distance, and state that the probability of the correct
structure’s score being greater than the score of any other structure is a function of
the number of samples. They concentrate on Bayesian Networks with binary random
variables and state the bounds on the probability of learning a wrong structure when
Bayesian Information Criteria (BIC-score) is used. Ghoshal and Honorio [31] study
on the information-theoretic limits of learning the structure of Bayesian Networks
with discrete and continuous random variables and show that the minimum number
of samples by any procedure to recover the correct structure grows with the number
of random variables, for non-sparse Bayesian Networks. Dai et al. investigate the
relation between the sample size and the error on model discovery (structure
learning) [32]. The synthetic data generated from known models of various

complexity are used, and the effect of sample size on two learning procedures is
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searched. Their results show that increasing model complexity requires more
samples to discover the model correctly. They also investigate the effect of the weak
link (edge) on the model discovery and find out that finding a weak link through
learning requires more samples. They have not analyzed the effect of parent size and
number of random variables systematically. But their results help to understand that
the number of samples is critically important to discover the correct structure.
Brenner and Sontag [33] propose a new scoring method for Bayesian Networks,
which has a sample complexity of the order O (n?), where n is the number of binary
nodes in the network. In addition, they compare their method with Bayesian
Information Criteria metric (BIC) and Max-Min Hill Climbing (MMHC) method and
show that their scoring metric requires less number of samples for discovering the

correct structure through the learning procedure.

In order to define the sample complexity of dDBNs, we firstly started with the
theoretical studies which define the sample complexity of Bayesian networks (BN)
for structure learning. We used approximate methods to obtain a theoretical sample
complexity for dDBNs and showed that it is not practical to use the theoretical
approaches for dDBNs where the number of samples needed to learn the correct
structure practically is far less than the theoretic sample size. Therefore, we
developed an experimental method by posing the hypothesis that the practical sample
complexity would be less than the theoretical ones for dDBN. We produced synthetic
data for binary and ternary valued random variables, to see the effect of the
cardinality on sample complexity. The structures from which the synthetic data was
produced were carefully selected to observe the effect of the number of nodes and
the number of parents accurately. We then examined the effect of the number of
samples on structure learning with the BDeu score where the error is defined as
structural Hamming distance between the learned structure and the ground-truth
structure from which the data was generated. We then examined the relationship
between the error due to the number of samples and the dDBN parameters such as
parent size, cardinality and node numbers. Finally, we reached a practical definition

of sample complexity for binary and ternary valued dDBN.
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4.2 Theoretical Sample Complexity of dDBN

In this section, the relationship between the model discovery for the dDBNs and the
number of samples, i.e., sample complexity, will be explained. Let G* be the real
structure and Pp+ be the corresponding probability distribution from which the data
is sampled. Our goal is to find the relationship between the score of any graph G and
the actual structure G*. We will discuss the results presented in Zuk et al. [30] where
they use relative entropy distance and examine the probability of the correct
structure’s score being smaller than the score of any other structure, given the
number of samples. In this study, graph G has been examined considering two cases:
Graphs that are not [-maps for P+ and graphs which are I-maps for Pp+ yet have a
higher dimension than G*. Since the second case is not valid for dDBN, we will only
consider the first case and specify the effect of the number of samples. They conclude
the sample complexity study for binary random variables with the following

expression:

P(Sy(G %) < Sy(6)) < (721) n2n+3e=otM/3 (4.1)

In this expression, Sy is the scoring function of the Bayesian Network, n is the

number of random variables, M is the number of samples, and ¢ is the following

expression:
n IC
0 = min )/_, B ¥ (4.2)
2 2"+2|nlog (7) + 1]
— i . o 4.3)
16s= e {sc{xl.ﬂ%\{xi.xj}{l”l** (Xe %) |S)}}

In this expression y is the minimum conditional probability distribution in Pp+, and
ICp is the minimum information content in Pp+. Equation 4.1 gives the probability of

maximizing a wrong structure with respect to the parameters of BNs. If we leave M
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in this inequality alone and the probability is assumed to be smaller than J, we get

the following inequality:

(4.4)

For equation 4.4, if o gets smaller, the minimum required sample size M increases.
To be able to get a general expression for M we need to consider the worst case,
hence we need to find the minimum ¢ value using equation 4.2. In this equation, y
determines whether the first expression or the second expression should be taken for
minimum o. y shows the lowest conditional probability distribution and we cannot
make any assumptions for the minimum of'this value. The exponential representation
of y in the first expression shows that this expression is more dominating than the
second one since y can take random values in the interval [0, 1/K], where K is the
cardinality of random variables. As a result, the first expression should be taken for
o. The proof of this decision is provided in Appendix A. So, the following

approximate expression is considered for the minimum number of samples:

12 . (721) 5 2n+3

= - (4.5)

M

IR

The most effective part of this equation is y because it is the lowest probability
distribution, and the highest value it can get in a binary network is 2. Even if y is /5,
the minimum number of samples (M) increases proportionally to 22", This confirms
the need for an extremely high amount of data. Table 4-1 shows the required number
of samples for learning the structure which includes binary-valued random variables
based on equation 4.5. These values are not practical because obtaining these
amounts of samples is far from reality. Our practical results indicate that much less

sample size is enough to learn the correct structure for dDBNS.
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Table 4-1: M values for various y and n for 6=0.1

n
3 4 5 6 7
0.5 6,65E+03 3,17E+04 1,45E+05 6,41E+05 2,80E+06
vy 03 1,43E+05 1,89E+06 2,39E+07 2,94E+08 3,57E+09
0.1 1,04E+08 1,24E+10 1,41E+12 1,56E+14 1,71E+16

4.3  Effect of Number of Samples on Structure Learning

In this section, the effect of sample size on structure learning of dDBN is explained
by practical experiments using synthetic data. First of all, various synthetic data was
generated based on a network model which consists of binary or ternary valued
discrete random variables with known conditional probability distributions. In order
to cover all possible parental relationships, each variable in the model has a different
number of parents. For example, for a three-node graph, one node has three parents,
i.e., has connections from all of the nodes, one node has two parents and the
remaining node has a single parent. As an example, Table 4-2 and Figure 4-1 show
connectivity relations among six random variables. Node number 6 has a single
connection from node number 1, whereas node number 1 has connections from all
six nodes. Using this kind of structure provides us to see the effect of the parent size

and node size separately in the sample complexity analysis.

Table 4-2: An example of connectivity for a six-variable network, from rows to

columns. If there is a connection, the cell has value 1.

nodes | 1 2 3 4 5 6
1 1 1 1 1 1 1
2 1 1 1 1 1 0
3 1 1 1 1 0 0
4 1 1 1 0 0 0
5 1 1 0 0 0 0
6 1 0 0 0 0 0
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Figure 4-1: Nodes and edges of a six-variable network, each node having a

different number of parents.

For binary-valued random variables, synthetic data was created from networks
having node numbers changing from three to ten, based on the approach for possible
structures defined above. For each different network structure, one hundred different
time series were generated, each of which was created from a network having
different conditional probability distributions. No constraint on the probability
distributions was made, which is more fair. Similarly, synthetic data was produced
for the structures which include ternary valued nodes, with one difference, data was
generated from the structures which have node number starting from three up to
eight. Because learning the minimum number of samples for more than eight nodes
requires very high computation power. The structures used for synthetic data creation

were kept as ground truth.

In chapter 3 it was described that finding the best structure for a dDBN is the same
as finding the best parent combination for the individual nodes. Learning parents of
the first node in Table 4-2 does not depend on whether parents of other nodes are
learned or not, due to score decomposability of the BDeu metric. This leads to the
freedom of analyzing each node separately. As a result, the error between the ground

truth structure and the learned structure (in terms of average structural Hamming
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distance) was recorded separately for each node. The following equation shows the
structural error, where G; is the learned structure of the i-th node, G;* is the ground-

truth structure for that node and # is the total number of nodes.

n
1
error = ;Z G, — G| (4.6)

i=1
4.3.1 Data size analysis

In order to investigate the effect of sample size on the convergence of structure
learning for dDBN, learning was performed for various sample sizes, where the
imaginary sample size is considered as 1. For example, for a six-node network
consisting of binary random variables, to analyze the effect of data size for node
number 1, structure learning was performed when the number of samples is increased
from 10 up to 100.000 in an exponential manner. The same procedure was also
performed for the networks having ternary valued variables, but this time the length
of the generated data was determined so that learning successfully finds the ground-
truth structure. During structure learning, if error dropped to 0, which means the
structure was found perfectly, the algorithm was terminated to save from
computation time, and the length of the data at the termination time was recorded as
to be sufficient. Figures 4-2 and 4-3 show the mean structural error of the hundred-
time series versus the number of samples for binary and ternary nodes having various
number of parents. It is observed that there should be a minimum number of data
samples to discover the model correctly. Explicit analysis of this figure will be
explained in more detail in the next chapter by considering the imaginary sample
size of the BDeu metric. Also, in Tables 4-3 and 4-4, the minimum required number
of samples that are needed for learning the structure of networks having various node
numbers and various parent numbers are listed, for binary and ternary variables,
respectively. In order to obtain the minimum number of samples for an error to be

0.1, we used linear interpolation between successive error values.
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Figure 4-2: Mean error vs number of samples for various parent sizes for an 8-node
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network with ternary nodes
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Table 4-3: Minimum required number of samples for various number of nodes and
parent sizes, to find the correct dDBN structure with a mean error smaller than 10

percent for binary-valued random variables.

parent size

216 440 480 - - - - - - -
162 197 414 720 - - - - - -
68 175 344 653 1455 -
75 154 262 546 1175 2308 - - - -
56 108 223 447 1000 1962 4444 - - -
57 78 176 411 953 1915 4322 9192 - -
78 91 160 384 856 1935 4089 8870 19221 -
10 83 95 182 374 814 1904 3946 8673 18750 42843

number of nodes
O ([0 |Q [N WDn | |W

Table 4-4: Minimum required number of samples for various number of nodes and
parent sizes, to find the correct dDBN structure with a mean error smaller than 10

percent for ternary valued random variables.

parent size

1 2 3 4 5 6 7 8
87 368 1378 - - - - -
58 344 1184 3819 - - - -
57 282 989 3670 17200 - - -
62 221 963 3606 17391 44955
93 204 908 3530 16943 45035 148776 -
128 215 896 3472 16364 44872 140786 483482

number of nodes
| |DN|Dn | |W
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Figures 4-4 and 4-5 illustrate an example of the average structural Hamming distance
between the actual and learned structures for various number of nodes that have the
same number of parents, 6 for binary and 5 for ternary. Here our purpose is to see
the effect of node number on structure learning where the number of parents is kept
constant for all nodes. This result concludes that the minimum number of samples to
guarantee a successful dDBN structure learning depends on the parent size, not the

number of random variables.

4.3.2 The expression for practical sample complexity

In this section, the minimum number of samples that is required for the convergence
of dDBN structure learning is expressed as a function of the network parameters.
These parameters consist of the number of variables n, the cardinality of random
variables K, and the maximum number of parents p. We used the results presented
in Tables 4-3 and 4-4 to fit an expression of these parameters. The expression of

practical sample complexity represented only when imaginary sample size is 1.

Let’s start with the simple expression,

GM)—-G*
M = min ¥2|>6 4.7)
M n

where M is the length of time series, G(M) is the structure found by using M samples
of data, G" is the ground truth structure, # is the number of random variables. This
equation implies that our objective is to find M, which is the minimum required
number of data samples that guarantees the structure is found correctly with an error
¢. We divided the structural error term by #” to normalize it. Note that a structure can

be represented by a n x n matrix with n’ edges.

First of all, this equation can be divided into sub-optimization problems, one for each
node in the network. In other words, the minimum number of samples to find parents

of'a random variable i can be expressed independently as follows:
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(M) — G
M; = min 1G(M) - Gil > € (4.8)
M; n

In this expression, division n° is replaced by n, because there are now only n edges
in G;. In order to find the minimum number of samples for the overall network, we

need to find the highest M::

G.(M) = G*
M = max (“}V}.“ % > E> (4.9)

Define K; as the cardinality of random variable x;, i.e., x; can take K; possible discrete
values. Thus, in a discrete Dynamic Bayesian network, the number of possible

parent configurations for the i-#2 node (PC;) can be defined as:

PC; = 1_[ K; (4.10)

Jje{pai}

Here pa;, is the set of parents of node i. Hence, learning P(xi|pa;) depends on the

observations of x; and pa;, this leads to C; possible configurations:

C=K+PC =K+ | | K (@11
je{pai}

If every random variable on the network has the same cardinality K, this equation

can be simplified as,
C; = Kpitl (4.12)
where p; is the number of parents of the variable x;.

Secondly, we continued with the following assumption: learning the structure of a
dDBN with an error term €, approximately depends on an error term A times C;. In

this term, 4 still may depend on the network parameters as well, but we found that
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this exponential relation is suitable to represent the practical sample complexity.
Although we did not have a theoretical proof for this assumption, it holds for the

practical results. Therefore Equation 4.8 can be written as,

G;:(M;)) — G}
m,\,}n M >e = AenK,...) x KPitt (4.13)

which reduces equation 4.9 to,
M = max(A x KPit1) (4.14)
M= A% K max{p;}+1 (415)

Equation 4.15 emphasizes that the required number of samples for a network
depends on cardinality K, the maximum number of parents and an error term 4. Here,

there is only an unknown /, and we found it by using the practical results.

In the third step, we used the results presented in Tables 4-3 and 4-4 to find the
unknown parameter 1. These results were obtained using the synthetic data which
was generated for random variables with cardinality 2 and 3, respectively. In Tables
4-5 and 4-6, we listed the minimum required length M obtained from Tables 4-3 and
4-4 where the maximum parent size was taken as equal to the node number in the

network.
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Table 4-5: Minimum data length for various parent size with K=2 and €=0.1

parent size
p 3 4 5 6 7 8 9 10
M 480 720 1.455 2.308 4.444 9.192 19.221 42.843

Table 4-6: Minimum data length for various parent size with K=3 and €=0.1

parent size
p 3 4 5 6 7 8
M 1378 3.819 17.200  44.955 148.776 483.482

Finding A is an optimization problem which finds the best fit of Equation 4.15 to the
data presented in Tables 4-5 and 4-6:

argmin |M — AKP*1|
)

Note that, for simplicity, p is used for max{p}. The main problem in this expression
was that the relationship between the required data length and the parent size is
exponential. Hence using any curve fitting method would tend to fail as a result of
the fact that minimization is mostly affected by larger values of p. To overcome this
problem, we took K logarithm of the minimization problem. Therefore, every value

of p affected the minimization process with equal weights.
argmin |loggM — loggA —p — 1| (4.16)
pl

For binary case (K=2) A was found as 20.7116, and for ternary case (K=3) it was
found as 20.4071. Figure 4-6 shows the plots of minimum data length versus parent
size based on Tables 4-5 and 4-6, as well as the plots of Equation 4.15 with the

computed A values.
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Figure 4-6: Experimental and theoretical plots of minimum data length versus parent

size, left for the binary case and right for the ternary case.

Note that this optimization process is a linear regression on p values, and suppose
that f(p)=a*p+b. One difference here is that the linear coefficient a is 1, hence the
aim of this optimization is only to find the constant b that is added to the linear term.
This is due to the previous assumption. Figure 4-6 underlines that the assumption is
correct because of the prominent consistency between the theoretical linear relation
and the experimental results presented in Figure 4-6. Even though we put a restriction
on the fitting process by predetermining the parameter a, the fitting was quite

successful.

In order to verify the assumption in more detail, we checked the goodness of fit of
the optimization process for different error values. R’ is a suitable metric to check
the goodness of fit for linear regression. Suppose we have a distribution over (x,y)
variables, and the aim is to find a linear function f{x)=y=ax+b that fits the (x,)) pairs.

R? was computed by the following equation:

, 20—y’ (4.17)
2y —y)?
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where y is the mean of all y values, y is the computed values by using the function
f(x). R’takes values in the interval [0 1]. When R is 1 it means that model f{x) fits
the data perfectly. When it is 0 the model does not reflect the relation between x and
y. For each error values, Tables 4-5 and 4-6 were recomputed using linear
interpolation between successive error values. Then the same curve fitting approach
was investigated and corresponding A and R? were computed. Table 4-7 gives the
corresponding lambda and R’ for different error values. This table signifies two
important results. Firstly, 4 still depends on the cardinality of the random variables
even for the given assumption over complexity. The same lambda values were not
obtained considering the same errors. Secondly, the fitting process to the expression
described in Equation 4.15 was perfect. R’ was obtained as near to 1 for each error
and cardinality values. Therefore, assumption over sample complexity in Equation
4.15 is verified. Despite determining a in the linear regression as 1, getting R’ close
to 1 signifies that the minimum number of samples for the convergence dDBN

structure learning is proportional to K™/
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Table 4-7: Complexity coefficient A and R? for different errors
K=2 K=3
error A R’ A R’
0,03 30,6 0,936 23,3 0,996
0,04 27,8 0,951 22,8 0,996
0,05 25,3 0,960 22,3 0,995
0,06 24,0 0,971 21,8 0,994
0,07 23,0 0,976 21,5 0,994
0,08 22,2 0,981 21,1 0,994
0,09 21,5 0,985 20,8 0,994
0,1 20,7 0,987 20,4 0,993
0,11 19,9 0,990 20,0 0,993
0,12 19,3 0,991 19,7 0,992
0,13 18,8 0,992 19,3 0,991
0,14 18,2 0,993 18,9 0,990
0,15 17,7 0,994 18,6 0,989
0,16 17,2 0,994 18,2 0,988
0,17 16,8 0,995 18,0 0,988
0,18 16,4 0,996 17,7 0,988
0,19 16,1 0,996 17,5 0,987
0,2 15,8 0,996 17,3 0,987

4.3.3 Effect of Imaginary Sample Size on Sample Complexity

In this section, the aim is to investigate the effect of imaginary sample size a, on the
sample complexity of dDBN. Several studies conduct that imaginary sample size has
a significant impact on the model discovery of Bayesian Networks. Steck and
Jaakkola show that as the imaginary sample goes to zero, deletion of an edge is more

likely to occur in the structure learning of Bayesian Networks [34]. The learned
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graph becomes an empty graph when o goes to zero. In the same study, they also
demonstrate that the number of edges in a network increases when the prior term
increases. Silander et al. conduct practical experiments on structure learning to find
an optimal alpha value [35]. They show that learned structure is highly sensitive to
the chosen alpha value. In order to solve this problematic effect of the prior term,
they propose a Bayes method for determining the optimal alpha. Steck provides an
analytical approximation to the optimal alpha value in a predictive sense [36]. The
data properties that have the main effect for determining optimal alpha value are
provided by considering this approximation. Ueno analytically investigated the
behavior of the BDeu metric when alpha goes to zero and infinity [37], [38]. The
sensitivity of model discovery to alpha is investigated, and it is shown that when
alpha goes to zero BDeu favors an empty graph. If alpha tends to infinity, BDeu
favors a complete graph. In his studies, by considering the issues faced with prior
term alpha, Scutari experimentally and theoretically show that the BDeu score is not
accurate when data is sparse, which is the case when the number of samples is less
than the appropriate amount [39], [40]. He proposes a new scoring method, Bayesian
Dirichlet sparse, which is more suitable for sparse data. Because of this significant
effect of the imaginary sample size in model discovery, we also conducted several

experiments to see the effect of it for dDBN.

Figure 4-7 shows the structural error for a ternary valued network consisting of five
variables where only the mean error of the node that has five parents is shown. This
figure illustrates the error between the true structure from which the data was
sampled, and the structure found with dDBN learning using this data. Note that the
imaginary sample size for this figure was 1. The graph seems to have three regions.
In the first region, the error is around 0.5. It means that when data size is very small,
dDBN structure learning ends up with a structure as if it was chosen randomly and
does not contain any information about the actual structure. In the second region, the
error is highest and stays so for the number of samples M from 70 to 1000. The actual
structure from which the data was generated contains all the edges, i.e., fully

connected. Getting structural error to be 1 means that the structure found by the
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dDBN learning did not include any 1’s, hence the learning procedure tries to obstruct
any edges, and the BDeu score of the empty structure is higher than any other
possible structures. If the amount of data is further increased, in the third region, the
algorithm starts to add some parents to the structure and error starts to decrease.
When a sufficient amount of data is provided, all parental relations are found
correctly by the dDBN structure learning, and error reaches 0. The detailed
explanation of this figure with the theoretical analysis of the BDeu score is provided

in Appendix B.
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Figure 4-7: Mean error vs number of samples for a node which has five parents in a

network of five ternary variables.
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The arrow shows the direction of increase in the imaginary sample size, for the
easiness of illustration.
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Figures 4-8 and 4-9 illustrate the effect of the imaginary sample size on model
discovery when different numbers of data samples are provided. Only the error of
the structure of two nodes is provided in these figures, which is considered to
represent general cases. For other nodes, the figure has provided in Appendix D.
Figure 4-8 is designed for a node that has six parents out of six nodes, and Figure 4-
9 is for a node that has one parent. There are three significant results of this analysis.
First of all, for smaller imaginary sample sizes, the BDeu metric is likely to obstruct
edge addition to the model. Considering Figure 4-8, when the same amount of data
samples is provided, the error is higher for smaller imaginary sample sizes. Since the
ground-truth structure of this node contains only 1°s, the increase of the error means
that the learned model does not contain an edge. These results are compatible with
the literature experimentally and theoretically [34], [35], [38]. The second result is
that when imaginary sample sizes are higher than the number of data samples, BDeu
prefers to add edges to the network. Consider Figure 4-9 for the imaginary sample
size 10.000. The error increases when more data samples are provided but up to
nearly 10.000. The ground-truth structure of the node was [1,0,0,0,0,0], containing a
single edge. Therefore, the increase in error means that BDeu prefers to add 1s to the
learned model. The third result is that both increasing and decreasing the imaginary
sample size, increases the required number of samples to learn the model correctly.
When the imaginary sample size is small, BDeu prefers not adding edges. So, to be
able to fit the data to the correct model, the required sample size should be high to
overcome the property of BDeu that blocks edge addition to the model. When the
imaginary sample size is higher, BDeu more likely overfits the data to a model that
has unnecessary edges. Therefore, higher amount of data is needed to reflect the

model correctly.

This section concludes that the imaginary sample size has a significant effect on the
learned model. Therefore, better learning requires an optimal imaginary sample size.
Steck and Jaakale face this issue and propose a Bayesian approach to determine the
optimal value but do not investigate the problem [34]. Steck experimentally and

theoretically provides how to find the optimal value by Bayesian approach and
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performs tests on datasets [36]. Silander et al. also propose to be Bayesian on alpha
by marginalizing out P(G) from P(G|a) to find the most probable graph, which may
only be applicable to small datasets [35]. Being Bayesian on alpha increases the
computational complexity for the learning procedure. However, finding the optimal
alpha as a function of network parameters rather than data itself would be more

practical and useful.

Since the choice of alpha changes, the required number of samples, an optimal o
would indicate a need of less number of samples for the convergence of structure
learning. However, our results signified that by providing enough data samples the
is discovered correctly for not overrated imaginary sample sizes. For example, for
imaginary sizes 0.01, 0.1, 1, 10, 100, both node 1 and node 6 were modeled
successfully. Imaginary sample size is considered as 1 in most of the studies. In our
simulations taking alpha as 1 always performed reasonably (see Figures 4-2, 4-3, 4-
8 and 4-9). Therefore, practical sample complexity was found for a equals 1 in
previous section. In this thesis, we left finding an optimal alpha value for dDBN by

sample complexity point of view as future work.

4.4 Discussion

Discrete dynamic Bayesian Networks are expressed by two main components: a
structure and a parameter set. Structure or model represents the temporal causal
independencies between the random variables. Parameters indicate the conditional
probability distributions between the random variables based on the structure. The
dDBNSs can be learned from data. Therefore, the number of samples is provided in
the data plays a crucial role to be confident about the learned structure after
performing the dDBN structure learning procedure. This study is the first that
conducts the sample complexity for discrete Dynamic Bayesian Networks as far as

we know.
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In this study, we examined the effect of the number of samples on the structure
learning for dDBNs. We gathered our results in three headings. First of all, the
amount of data has a very important effect on the learning of the correct structure. It
was shown that if the amount of data is less than it should be, the learned structure
is entirely unrelated to the actual structure. Figures 4-6, 4-8 and 4-9 show that until
the amount of data reaches a particular value, the learning procedure maximizes the
empty structure for small imaginary sample sizes. In other words, the learning
algorithm concludes that there are no dependencies between the random variables,
although there is. However, when the amount of data is increased further, the correct
structure is learned completely. These results show the importance of the amount of
data, i.e. the number of observations, to find the exact model. Secondly, the results
were shown to be directly related to the BDeu score. BDeu score maximizes different
types of structures depending on the number of samples and the imaginary sample
size. For smaller imaginary sample sizes, it gives a random structure as a maximum
scored structure when the number of samples is very small. In other words, the
learning method using the BDeu score does not provide any information about the
independence relations when the number of samples is not enough. A further
increase in the number of samples resulted in the learning of an empty structure. This
was observed even though there were dependencies between the random variables.
That is, the BDeu score started to reject the dependencies due to the increase in the
number of samples. This was observed to a certain threshold; when the number of
samples exceeded it, the BDeu score maximized the actual structure and all the
independence relations was found correctly. For higher imaginary sample sizes
BDeu score prefered to add edges to the learned structure. These results are
compatible with recent studies [35], [37], [38]. Finally, practical sample complexity
for dDBNs was expressed as a function of the network parameters for the imaginary
sample size as 1. The minimum number of samples required to recover the correct
structure by using the BDeu score is O(KP*!), for binary and ternary valued networks
where K is the cardinality of the random variables and p is the maximum number of

parents present in the network.
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The choice of imaginary sample sizes is important for learning the model.
Nonetheless, the simulation results of this chapter signified that by providing
sufficient data, the problematic effect of imaginary sample size can be negated. But
the optimal imaginary sample size would provide a smaller number of samples for
the convergence structure learning. In this thesis, we left this issue as future work. In
addition, we believe that this study will have a repercussion in the applications of
dDBN and that most researchers should carry out their research considering the
results of this study. Especially in neuroscience applications, dDBN will be used
more effectively considering issues discussed in this study. Researchers using dDBN
should consider the effect of the number of samples on structure learning and make
modeling in the light of this study. In this way, the results found will be more

consistent and more reliable.
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CHAPTER 5

EVALUATION OF DISCRETIZATION TECHNIQUES FOR FUNCTIONAL
MAGNETIC RESONANCE IMAGING DATA

5.1 Introduction

In general, data discretization is the conversion of continuous features to a set of

discrete states. There are several reasons for discretization. Firstly, the learning

process from discrete data is more effective and efficient [41], [42]. Secondly, it

reduces the required number of samples for the convergence of the learning

procedure [43]. Moreover, since data is simplified, the process of learning is much

faster in general [44]. Nonetheless, the choice of discretization is not a trivial task,

and any discretization method implies information loss from data [44]. The

discretization of continuous data has been an important and long-standing problem

for machine learning applications [45], [46]. Discretization methods are diverse

depending on the application: dynamic vs. static, supervised vs. non-supervised,

direct vs. incremental, etc.

The discretization method for effective connectivity with dDBN using fMRI data in

a study by Rajapakse et al.[4] is to consider the mean, maximum, and minimum

values of'the signal. Firstly, time-series are transformed to zero-mean. Then if a value

in the time series is higher than one-third of the maximum value, it is discretized as

‘1°. If a value is smaller than one-third of the minimum value, it is discretized as ‘-

1’. Else it is discretized as ‘0’.Burge et al. and Dang et al, [5], [6] used the equal

width discretization method where the data is transformed into k levels by splitting

the data according to its minimum and maximum value. In none of these studies, the

discretization methods are investigated and evaluated explicitly for the

appropriateness of the resulting models.
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dDBN is not only used for fMRI data; it is used in many fields from biomedical data
to economics [47], [48] and the Gene Expression Data (GED) as well. In some of
these studies, the methods of discretization are also evaluated. A survey of
discretization methods is present in the study of Gallo et al. [49]. Maderia and
Oliveira [9] explicitly explain and propose many non-supervised methods. Li et al.

[8] compare the methods mentioned in [49] for GED data.

5.2 Functional Magnetic Resonance Imaging (fMRI)

Functional MRI data is obtained by measurement based on the level of oxygen in the
blood. This level is defined as blood oxygen level-dependent contrast (BOLD). The
magnitude of this signal depends on the cerebral oxidative metabolic rate (CMRO?2)
blood flow, oxygen extraction rate [50]. BOLD signal and electrical activation
measurements give us the following important information, the BOLD signal
indicates local field potential rather than neural spikes [51]. The spatial resolution of
functional MRI is very high compared to other neurologic data such as
electroencephalogram (EEG) data. A voxel related to the lowest measurement unit
in an fMRI image can be about 3 * 3 * 3 mm?>. This data is a 4-dimensional data, 3
dimensions are x, y, z space coordinates and the fourth dimension is time. The signal
obtained during fMRI scanning for a certain stimulus is called the hemodynamic
response. Figure 5-1 gives the hemodynamic response function vs time. FMRI data
is processed and analyzed by using a variety of tools such as Statistical Parameter
Mapping software implemented in Matlab, BrainVoyager, FMRIB Software Library.
Local activation in each voxel is modeled using the multiple linear parametric

modeling with the general linear model technique using the BOLD signal.
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Figure 5-1: Hemodynamic response function

53 Discretization Techniques

First, we introduce some definitions and basic concepts. Let x denote the single time-
series, and x[7] represents the value for x at time point t. Define x as the average of x,
x" and x' as the highest and lowest values that x can take respectively, and ¢ represents
the standard deviation of x. Moreover, we define d as the discretized version of the
time series x and d[¢] represents the discrete level of x[¢]. The discretization methods
will be explicated in three categories. The first method is binary discretization, where
time series is represented by two discrete states, the second one is ternary
discretization where time series can only be discretized to three states, and the last

one is multilevel discretization where data can be discretized to any number of levels.
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5.3.1 Binary Discretization Methods

The discretization of a data point is to classify the data into two: one is ‘activation’,
and the other one is ‘inhibition’. For fMRI data, this method could be feasible if we
consider the BOLD response. The BOLD response demonstrates the activity of the
brain regions. Therefore, the binarization of an fMRI signal is meaningful from the
perspective of neurophysiology since a brain region could be denoted as ‘active’ or
‘de-active’ during a specific task. Binarization is usually done by finding a threshold

to classify the data into two.

5.3.1.1 Discretization Based on Mean (Mean2)

In this method, each time point is binarized by using the mean of the time series as a

threshold 0. Then discretization is done as follows [9]:

_ 1 if x[t] > 6 51
dft] = { 0 otherwise -1

5.3.1.2 Discretization Based on Mid-Range (mid-Range)

The only difference between this method and the discretization based on mean is the
threshold used in the expression. The threshold for this method is chosen as the
midpoint of the data, which is the median. [9].

5.3.1.3 Discretization Based on Max - X% Max (Max-X)

The threshold is fixed with respect to the maximal value observed for the time-series.

A percentage of X is reduced from this value and chosen as the threshold, (1-%X)x".
[9].
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5.3.1.4  Discretization Based on Top %X (Top-X)

In this method, time series are split into two sets by finding a threshold that puts %X

highest values to one set and remaining ones to another [9].

5.3.1.5 Target Discretization Threshold (TDT)

In this method, data is divided into two states, namely S; and S; with the following

constraint [7]:

mins(var(Sl) + var(S,)) (5.2)

Sl:SZ c

Subject to:

e S is the set of sample values for time-series x
e SINS2=0,S1US2=S,|Si>1I and [Sz[>1

e var(S) and var(S>) are the variances of S; and S»

The sum of the variances of each subset S; and S, are minimized. This method is
similar to K-means clustering, where K is 2. The following steps can be applied for

the implementation:

1. Sort the elements of S on an array L.

2. Search for the element e such that var(L(l..e))+ var(L(e+1 ..|L|)) to be
minimum.

3. Save[L(e)+L(e+1)]/2 as the threshold, then use it for discretization expressed

in equation 1.

5.3.1.6 Transitional State Discretization (TSD)

This method is proposed to discretize the gene expression data (GED) where the

variations between the time points are used [52]. GED data is standardized to mean
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of zero and unity variance, and then each gene profile is discretized using the

following scheme:

_ 1 if x[t] >x[t—1] 3
dft] _{ 0 otherwise (>3)

In this method, the length of the resulting discrete time series is reduced by a one-

time point.

5.3.1.7 Extended TSD

Erdal et al. [53] develop a method related to TSD but introduce a threshold for
discretizing the data points. The threshold is computed as follows; the standard
deviation of time point 0 is calculated, std(0), then a parameter a is provided to scale
std(0). In order to use it for fMRI data, we used standard deviation, std of the time

series.

_(1 if x[t]—x[t—1]> ax*std 54
d[t] { 0 otherwise (>4)

5.3.2 Ternary Discretization Methods

The aim of ternary discretization is to represent the data point by three discrete states
{-1, 0, 1}. These states mean ‘DownRegulated’, ‘NoChange’, ‘UpRegulated’

respectively. Several methods are conducted for ternary discretization.

5.3.2.1 Mean and Standard Deviation (mean-std o)

This method combines the mean x and standard deviation o to discretize the data. Let
a be a parameter used to manage the deviation from the mean of the data and then,

the discretization is performed as follows [9].
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-1 ifx[t]<x—ac
dlt] =71 ifx[t]>x+ac (5.5)
0 otherwise

5.3.2.2 Mean and Maximum-Minimum (Mean-MaxMin)

This method is used in neuroscience studies to discretize the EEG and fMRI data for
effective connectivity modeled by discrete Dynamic Bayesian Networks [4], [19].
The method uses mean ¥ with maximum x" and minimum x’ of time-series x, then

performs the following expression.

-1 ifx[t]<x—(x—xY/3
dlt] =41 ifx[t] > %+ (x" — %)/3 (5.6)
0 otherwise

The method thresholds the data from its maximum and minimum value by taking the
one-third of their difference with mean. This method can be generalized by
considering the techniques explained in the binary discretization section: Max-X and
Top-X. Hence, two possible new discretization methods for ternary discretization

could be proposed.

5.3.2.3 Discretization Based on Max Min (MaxMin-X)

The method starts by finding the average x, then subtracting each time point from
mean to obtain zero-mean time series. After that following expression is performed

to discretize the data:
-1 if x[t] < (1 —%X) = x!

dlt] =41 ifx[t] > (1 — %X) *x" (5.7)
0 otherwise
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5.3.2.4  Discretization Based on Top and Down (TopDown-X)

In this method, time series are split into three sets by finding two thresholds: one
puts %X highest values to first set, the other one puts %X lowest values to the second

set, remaining ones to the third set.

5.3.2.5  Discretization Based on Mean and Time (Mean-Time)

In this method, time-series is discretized into three levels by following two steps
[54], [55]. First, x is discretized into two-level {0,1} by using the mean2 method
described in Section 2.1.1. Then this discretized d’ is re-classified based on the

following scheme:

dlt] = d'[t] —d'[t — 1] (5.8)
Data is converted to three discrete levels {-1,0,1} where ‘increase or rising’ treated

as ‘1°, ‘0’ means ‘No change or constant’, and ‘-1’ means ‘decrease or falling’.

5.3.2.6 Method Proposed by Ji and Tan (Ji-Tan)

In this method, discretization is performed by considering the variations between
successive time points [56]. Ji and Tan considered that these variations are important
and meaningful whenever they exceed a certain threshold. First, they transform a

time-series x into another series x’ such that:

(x[t] —x[t —1] if x[t—1]# 0

va ) xlE=1]l if x[t=1]=0 Ax[t] >0

Xt ‘4' 1 fxlt—11=0 Ax[t] <0 )
. falt—11=0 Ax[t] =0

Then the final discretized time series d is obtained considering a threshold 6>0:

52



-1 ifx'l<-6
dlit] =4 1 if x'[t] > 68 (5.10)
0 otherwise

5.3.3 Multilevel Discretization Methods

In multilevel discretization, the time-series x is transformed in many discrete levels.

5.3.3.1 Equal Width Discretization (EWDX)

In this method, the aim is to divide the data into k intervals using maximum and
minimum data values. Interval of the discretization is calculated as w=(max-min)/k
where £ is the discretization level, and each cut point x, is calculated as x,+;=x,+w,
with xp being the minimum data value. After this step, each interval [x, x,+/] is

assigned to a discrete level [49].

5.3.3.2 Equal Frequency Discretization (EFDX)

This method aims to divide the data into k intervals, where each interval has the same
number of data points. Suppose we have N number of data points, and our purpose
is to divide the data into k discrete levels, each discrete level must contain N/k
number of data points. After defining the intervals, each data point is assigned to its

discrete state [9].

5.3.3.3 K-means discretization (K-means)

This method aims to discretize the data into K level by using a clustering approach
[57]. The groups are calculated by maximizing the similarity within the elements of
each cluster. K-means clustering uses the squared Euclidian distance as a similarity
measure and tries to partition each element in x with the minimum of WCSS (within-

cluster sum of squares).
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5.3.3.4  Bidirectional K-means discretization (biK-means)

This method is an extended version of K-means clustering [57]. Suppose we have a
vector X: [xj... Xm ... Xu], €ach Xn represents m-th time-series and » is the number of
nodes. The aim is to discretize the data into & splits. To do that, two clustering
approaches are performed: the first one is the k-means clustering, which is performed
for each time-series-xm with the number of clusters to be k+1. Second clustering is
performed for every time point of X, X/¢/ where nodes are clustered using k-means
with the number of clusters to be k+/. Applying two clustering methods gives two
discrete states for each x,/t/: one for each time-point and the second one for each
time-series. Let these two clusters to be d and d» respectively, note that d;, d> € {0

... k+1}. Then final discrete state d,/t] is determined by the following rule:

dm[t] =p| p? < di[t] * d,[t] < (p + 1)? (5.11)

Table 5-1: An example of biK-means discretization with k=3, suppose that d; and d»
are found by applying k—+1 clustering on X[t] and xm. The discretization state of the

variable xm[t] is shown for each possible d; and d».

d>

d; 1 2 3 4

1 | 1*1=1>da[t]=1

1%2=2—dn[t]=1

1#3=3—dn[t]=1

1*4=4—dp[t]=2

2 [ 2*1=225du[t]=] | 2%2=4—du[t]=2 | 2%3=6—du[t]=2 | 2*4=8—du[t]=3
3 | 3*1=35da[t]=] | 3*2=6—>du[t]=2 | 3*3=9—du[t]=3 | 3*4=12—du[t]=3
4 | 4% 1=4—dn[t]=2 | 4%2=8—du[t]=3 | 4*3=12—du[t]=3 | 4*4=16—du[t]=3
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5.3.4 Properties and External parameters of the methods

Some methods have external parameters that should be set by experts. Table 5- [2-
4] lists the properties of the discretization methods. The values of the external
parameters are also provided. In addition, the reason for the robustness of each

method is explained in the tables.

Most of the methods use the value of a time series for a particular time point t in
which the variation between time points is not investigated. However, some methods
are designed to discretize the value of x(?) by using both x(z) and x(z-1). Table 5-[2-

4] shows the methods use the variation between time points.
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Table 5-2: The properties of binary discretization methods and the values of the external parameters

Name of The variation External
Robustness and Reason
Method between time points | parameter
Mean2 X - Robust: No external parameters
Mid-Range X - Robust: No external parameters
Not Robust: A parameter is used for deciding on the discretization threshold.
Max-X X ) Maximum of the time-series used as the base value for the threshold. The
maximum value of a time-series heavily depends on data type and size.
Robust: Although there is a parameter to decide for thresholding, the threshold
Top-X X X=25.50.75 is used to divide the data according to a percentage of the number of samples.
The threshold obtained from this parameter does not depend on the properties
of data such as the number of samples, the number of nodes. Once the best
TDT X - Robust: No external parameters
TSD v - Robust: No external parameters
0=0.25, Robust: Not robust like TSD. But once the best value for a is chosen, it can be
Extended
TSD v 0.50, 1.00, used any time; the method does not depend on any constraints such as the
1.50 number of samples, the number of nodes.
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Table 5-3: The properties of ternary discretization methods and the values of the

external parameters

The
Name of variation External
Robustness and Reason
Method between parameter
time points
Robust: Once the best value for a is chosen, it can
0=0.25, 0.50, be used any time, the methods do not depend on
Mean-std X .
1.00, 1.50 any constraints such as the number of samples, the
number of nodes.
) Not Robust: The threshold is chosen by the
MaxMin- ) o ] )
X X X=67,50,33 maximum and minimum value of the time-series,
which means that the method is data-dependent.
Robust: The decision of the parameter does not
TopDown- ) )
X X X=10,20,30,40 | depend on data. Once the parameter is chosen, it
can be used for data.
Mean-
) v - Robust: No parameters
Time
) Robust: The decision of parameter does not
Ji-Tan v 8=1/3,1/2,2/3 )
depend on data constraints.
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Table 5-4: The properties of multi-level discretization methods and the values of the

external parameters

The
Name of variation External
Robustness and Reason
Method between parameter
time points
Not Robust: The data is discretized according to its
EWDX X - maximum and minimum values, which makes this
method to be not robust.
EFDX X - Robust: No parameters
K-means X - Robust: No parameters
biK-
X - Robust: No parameters
means
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54 The use of derivative for discretization

In this thesis, one of our hypotheses was using variation between time points to have
a better performance in the discretization of fMRI data to model effective
connectivity by dDBN. To evaluate this hypothesis, we also used the derivative of
the generated synthetic fMRI data in the discretization methods. We compared the
cases where fMRI data was directly used, or derivative of fMRI data was used in

discretization.

The reason behind our hypothesis is the linear property of the hemodynamic
response. The brain is as a linear system with impulse response to be the
hemodynamic response. Several studies show that BOLD response of the brain is
linear if the period of the stimuli is higher than 4 sec for visual stimuli and 6 sec for
audio stimuli. Although the period depends on the stimuli type, results signify that
for a period greater than a certain threshold, this property holds [58]—[60]. For higher
frequencies of the stimuli, the hemodynamic response behaves nonlinearly. Most of
the researchers consider this issue when designing an fMRI task in order not to

violate the linear property of the HRF.
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activation strength

scan

Figure 5-2: Discretization of an HRF response to the stimuli where the time
difference between successive stimuli is 6 seconds. The discrete signal is the mean2

discretization of the corresponding signal

activation strength

scan
Figure 5-3: Discretization of the derivate of HRF response to the stimuli where the

time difference between successive stimuli is 6 seconds. The discrete signal is the

mean?2 discretization of the corresponding signal
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activation strength

scan

Figure 5-4: Discretization of an HRF response to the stimuli where the time

difference between successive stimuli is 8 seconds. The discrete signal is the mean2

discretization of the corresponding signal

activation strength

scan

Figure 5-5: Discretization of the derivate of HRF response to the stimuli where the

time difference between successive stimuli is 8 seconds. The discrete signal is the

mean?2 discretization of the corresponding signal
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activation strength

scan

Figure 5-6: Discretization of an HRF response to the stimuli where the time

difference between successive stimuli is 8 seconds. The discrete signal is the mean2
discretization of the corresponding signal

activation strength

Figure 5-7: Discretization of the derivate of HRF response to the stimuli where the

time difference between successive stimuli is 8 seconds. The discrete signal is the
mean?2 discretization of the corresponding signal
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Figure 5-[2-7] illustrates an example of the effect of discretization on HRF response.
When the period of the stimuli is 6 seconds the discretization method is not able to
discretize the HRF response effectively in order to denote the change of the stimuli.
When the period is 8 seconds, discretization starts to sense the stimuli and
differentiate them, and when it is 10 seconds, discretization is fully capable of
showing each stimulus in the discretized signal. However, when the derivative of the
HRF response is discretized the discretization method was able to denote each
stimulus regardless of the period of the stimuli. This is due to the linear property of
the HRF response. When the time difference between successive stimulus is lower,
discretization methods give less information for the HRF response. On the other
hand, using variation between time points, derivative in this case, provides much

more information, since the information loss due to time difference is omitted.

5.5 Generating Synthetic f/MRI data

Scanner Noise

Effective Convolution Synthetic
Connectivity VAR model (HRF) - +|  fMRI
Graph Signal

Figure 5-8: Flowchart for generating synthetic fMRI time-series

The vector autoregressive (VAR) model was used to create temporal relationships
[4], [6], [15], [61]. Let x be an n-dimensional time series which obeys the first-order
VAR model. Every time point of a time series i, x; is represented by the following

expression.

j=1

In this expression A is a matrix that shows the linear relation between time

series. Aj; represents the temporal linear relation between i-th and j-th time series.
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The dimension of the vector is not critical for the discretization methods. However,
larger values would require a larger number of samples to train the dDBN structure
because the increase in the model complexity requires many more samples to recover
the model through learning [32]. Therefore, we chose the number of time-series to

be 6. Hence A was a 6*6 matrix, and there were a total of 36 temporal relations.

Generating the VAR data starts by choosing an appropriate 4. Since we would use
this data to run the dDBN learning, we firstly generated a new structure 4’ showing
the direction of the temporal relation, which is described as 0’s or 1’s. 4;;'=0 means
that there is no edge from j-#4 node to i-th node, and 1 means that the i-th node is
affected by j-th node. We had some constraints on 4. The first constraint was that
the number of edges was chosen as half of the number of elements that the matrix
has. This means that there were a total of 18 connections and 18 non-connections in
the generated VAR model. The second constraint was the number of parents for each
time series. We had generated the synthetic data such that each node had the same
number of parents, which is 3. The parent set of each node was selected randomly.
Then, we generated the VAR matrix 4 by using the generated connectivity matrix
A’. On the one hand, 0’s in 4’ remained the same, while 1’s in A’ were replaced by
a random number which is in the interval [-1 -0.5] U [0.5 1]. We did not use smaller
numbers which are comparable with 0. Because treating smaller linear relations as a
connection between certain nodes might not be correct. After that, we checked the
eigenvalues of 4, to be sure about the stability of the generated VAR data. Hence the
unstable matrices were not used for creating the VAR data. Then 4 was used to
generate the synthetic data by two steps. Firstly, x;(0) was generated by random from
a normal distribution with 0 mean and unity variance. Then the values for other time
points were generated by using equation 5.12, where € is chosen as the Gaussian
white noise process of zero mean and unity variance. The number of samples was
selected to be 5000. 1000 such multivariate time series were generated to get a good
statistical comparison. The ground-truth matrix 4” was saved to be used later in the

performance analysis.
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At the next step, the VAR data were convolved with hemodynamic response function
(HRF) to obtain the synthetic fMRI time-series. The HRF was canonical which is a
mixture of two Gamma functions. SPM8 TOOLBOX already has a built-in function
called spm_hrfwhich generates the HRF data in the discrete domain. We used TR=2s
for the sampling of HRF. Note that previous studies also added scanner noise to the
generated synthetic fMRI data. They aimed to see the effect of the scanner noise on
learning [4], [6]. In this chapter, we also evaluated the effect of scanner noise.
However, we only analyzed this effect on the best 11 methods to decrease the

computation time.

5.6 Results and Discussion

dDBN learning procedure was applied to the synthetic data, and the best structure
found by the learning procedure was saved. Then the following evaluation metrics
were calculated. Note that each metric was calculated as an average of 1000 synthetic

data.

True positives TP: The average number of correct interactions inferred i.e the
connections were the same for the inferred structure and the ground-truth

structure.

False Positive (FP): The average number of incorrect interactions inferred.
The ground-truth structure did not possess an edge, but the inferred structure

did.

True Negative (TN): The average number of correct non-interactions inferred
i.e both the ground-truth structure and inferred structure did not possess an

edge

False Negative (FN): The average number of incorrect non-interactions
inferred. The ground-truth structure possessed an edge, but the inferred

structure did not.
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Recall or True Positive Rate (TPR): TP/(TP+FN)

False Positive Rate (FPR): FP/(FP+TN)

Precision or Positive Predictive Value (PPV): TP/(TP+FP)
Accuracy: (TP+TN)/(Total)

Before presenting the results, some important issues should be clarified. First, when
DBN learning fails to recover the correct model, the expected value for TP, FP, TN,
and FN would be same, meaning that we would get 9 for each of these metrics; and
the expected value for Recall, FPR, Precision, and Accuracy would be 0.5. Secondly,
when the learning procedure fully recovers the correct structure that data was
sampled from, which means perfect learning, the expected value for TP and TN
would be 18, and for FP and FN, it would be 0. Because there was a total of 36 edges
in the ground-truth structure, and each structure had an equal number of
dependencies and independencies. The 4’ matrix was designed such that there were
18 1’s and 18 0’s. Also, Recall, Precision, and Accuracy would be 1 and FPR would
be 0 for this case. Hence for an easy way of deciding on the goodness of the
discretization methods, we had decided to use the following criteria. If the

discretization method had an accuracy higher than 0.75, it was denoted as successful.
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Table 5-5:The comparison of binary discretization methods

Name TP FP TN FN  Recall FPR Precision Accuracy
TSD 15,64 6,63 11,37 2,36 0,87 0,37 0,70 0,75
midRange | 14,47 7,52 10,48 3,53 0,80 0,42 0,66 0,69
top50 14,46 7,53 1047 3,54 0,80 0,42 0,66 0,69
mean2 14,45 7,53 1047 3,55 0,80 0,42 0,66 0,69
TDT 14,47 7,66 10,34 3,53 0,80 0,43 0,65 0,69
TSD25 14,86 8,24 9,76 3,14 0,83 0,46 0,64 0,68
TSDS0 13,66 8,69 9,31 4,34 0,76 0,48 0,61 0,64
top25 14,25 9,65 8,35 3,75 0,79 0,54 0,60 0,63
top75 14,20 9,68 8,32 3,80 0,79 0,54 0,59 0,63
max75 13,84 9,80 8,20 4,16 0,77 0,54 0,59 0,61
TSD100 11,15 8,21 9,79 6,85 0,62 0,46 0,58 0,58
max5S0 9,54 7,10 10,90 8,46 0,53 0,39 0,57 0,57
TSD150 9,63 7,74 10,26 8,37 0,54 043 0,55 0,55
max25 540 4,12 13,88 12,60 0,30 0,23 0,57 0,54

Table 5-6: The accuracy comparison of the binary discretization methods using the

time-series and its derivative

‘meanZ midRange max25 max50 max75 top25 topS0 top75 TDT

time-series 0,69 0,69 0,54 0,57 0,61 0,63 0,69 0,63 0,69
derivative 0,75 0,75 0,55 0,59 0,65 0,67 0,75 0,67 0,75

Table 5-5 shows the evaluation metrics for each binary discretization method by
sorting the methods according to their accuracy. The external parameters are given
with the proposed method’s name. For example, top25 means that Top-X method
was applied for discretization and 25 was used for the external parameter X. The
same applies to Max-X method also. The Extended TSD is expressed by TSD only,
and the parameter is added to the right side of the name. For instance, TSD150 shows

that the Extended TSD method is used with the external parameter to be 1.50.
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Each method has an accuracy of more than 0.5. Therefore, although some methods
are less accurate than others, at least they were capable of finding some correct
dependencies. However, most of the methods were not able to find the correct
structure effectively, and their accuracy is near 0.5. Binary discretization is not a
perfect approach to discretize a continuous time-series, because expressing
continuous signal by just only two levels reduces the information that data possess.
For most of the methods, although they have different aspects of discretization, they
were classified as unsuccessful. Nonetheless, Transitional State Discretization was
the best among binary discretization methods, and 0.75 accuracy is achieved by this
method. Note that this method differs from other methods expressed in table 5-5
because this method uses the variation between time points to discretize the data. In
order to understand the effect of the variation between time points on discretization,
Table 5-6 gives the comparison of accuracy for each method using the time-series
and derivative of it. The most important result of this table is for all methods, using
the derivative of the time-series gave a better performance than using time-series
itself. Therefore, the hypothesis proposed in this study is strengthened by the results
presented in table 5-6. In addition, the accuracy of Max-X method was the lowest
comparing with others in Tables 5-5 and 5-6, note that this method was described as
a non-robust method in table 5-2. Robustness is an important property for a method,

and we conclude from this result that non-robust methods give a lower performance.

68



Table 5-7: The comparison of ternary discretization methods

Name TP FP TN FN Recall FPR Precision Accuracy
ji_tan33 13,67 2,92 15,09 433 0,76 0,16 0,82 0,80
ji_tanS0 13,31 3,33 14,67 4,69 0,74 0,19 0,80 0,78
ji_tan67 12,80 3,70 14,30 5,20 0,71 0,21 0,78 0,75

mean_stdS0 | 12,46 4,54 13,46 5,54 0,69 0,25 0,73 0,72
mean_std25 | 11,96 4,05 13,95 6,04 0,66 0,23 0,75 0,72
topdown40 | 11,96 4,07 13,93 6,04 0,66 0,23 0,75 0,72
topdown30 | 12,49 4,07 13,40 5,51 0,69 0,26 0,73 0,72
topdown20 | 12,34 524 12,76 5,66 0,69 0,29 0,70 0,70
mean_std100 | 12,07 547 12,53 593 0,67 0,30 0,69 0,68
maxmin67 | 11,70 5,54 12,46 6,31 0,65 031 0,68 0,67
topdownl0 | 11,41 554 1246 6,59 0,63 0,31 0,67 0,66
mean_std150 | 10,71 5,38 12,62 7,29 0,60 0,30 0,67 0,65
mean_time | 11,16 6,28 11,73 6,84 0,62 0,35 0,64 0,64
maxmin50 9,70 5,04 1296 830 0,54 0,28 0,66 0,63
maxmin33 7,45 3,87 14,13 10,55 041 0,22 0,66 0,60

Table 5-8: The accuracy comparison of the ternary discretization methods using the

time-series and its derivative

mean_std25 mean_std50 mean_std100 mean_std150 maxmin67 maxminS0
time-series 0,72 0,72 0,68 0,65 0,67 0,63
derivative 0,84 0,84 0,78 0,71 0,75 0,68

topdownl10 topdown20 topdown30 topdown40 maxmin33
time-series 0,66 0,70 0,72 0,72 0,60
derivative 0,74 0,80 0,84 0,84 0,63

Table 5-7 shows the evaluation metrics for each ternary discretization method by
sorting the methods according to their accuracy. For each method, if an external

parameter was used, the parameter was expressed by the right side of its name. Also,
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table 5-8 gives the comparison of accuracy for each method using the time-series
and derivative of it. We discuss the results of ternary discretization methods in three
headings. First of all, ternary discretization methods gave more accurate results than
binary discretization methods. It is intuitively correct because splitting a time-series
to more levels reduces the information loss due to discretization. Secondly, robust
methods explained in table 5-3 performed better; the accuracy of the following
methods are better than others despite changing external parameters: Ji-Tan, mean-
std, and Top-Down. Robustness is one of the most important criteria for a method
because these types of methods are less dependent on the properties of data such as
sample size, maximum and minimum values of the data; these properties may change
for different types of experiments and conditions. Thirdly similar to the result
discussed for binary discretization methods, the methods use variation between time
points is better than other methods. Although different external parameters were used
for the Ji-Tan method, this method was better compared with the methods not using
variation between time points. One exception is the mean-time discretization; less
accuracy is obtained despite it uses the variation between time points. Besides, Table
5-8 signifies that using derivate of the time-series gives better discretization
performance; for all methods using the derivative of the time-series outperformed
the time-series itself. Therefore, like in binary discretization methods, ternary
discretization methods also corrected the hypothesis proposed; variation between

time points reduces the information loss due to discretization for fMRI data.
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Table 5-9: The comparison of multi-level discretization methods

Name (Level TP FP TN FN Recall FPR Precision Accuracy
EFD3 3 12,40 4,39 13,61 5,60 0,69 0,24 0,74 0,72
3 12,51 4,80 13,20 5,49 0,70 0,27 0,72 0,71
2 14,47 7,52 10,48 3,53 0,80 0,42 0,66 0,69
2means | 2 14,44 7,55 10,46 3,56 0,80 0,42 0,66 0,69
EwWD2 | 2 14,40 7,79 10,21 3,60 0,80 0,43 0,65 0,68

3

2

3

3means

EFD2

EWD3 11,79 5,73 12,27 6,21 0,66 0,32 0,67 0,67
10,64 7,81 10,19 7,37 0,59 0,43 0,58 0,58
5,78 3,84 14,16 12,22 0,32 0,21 0,60 0,55

bi2means

bi3means

Table 5-10: The accuracy comparison of the multi-level discretization methods using

the time-series and its derivative

‘EWDZ EWD3 EFD2 EFD3 2means 3means bi2means bi3means
time-series| 0,68 0,67 0,69 0,72 0,69 0,71 0,58 0,55
derivative| 0,73 0,74 0,75 0,85 0,75 0,83 0,61 0,58

Table 5-9 gives the comparison of the multi-level discretization methods, for each
method two levels were compared, binary and ternary. Because, increasing the level
of the discretization requires larger samples for the convergence of dDBN learning.
Hence, we did not increase the level of discretization, which is not practical because
sample sizes are limited for fMRI data. There are several results obtained from multi-
level discretization analysis. First of all, except for the biKmeans and EWDX,
ternary discretization was better than binary discretization. Getting better accuracy
for ternary discretization was expected. The reason for the biKmeans gave the
inverse of the expectation is the following; this method makes two Kmeans
clustering. The first one for each time point, where nodes are clustered; the number
of nodes was six in our case. Secondly, each time-series is clustered, same as the

Kmeans method. For the first clustering, we only had six nodes, clustering six
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samples to three clusters may arise problems, and these could lead to lower
discretization performance for ternary. Clustering six samples to two clusters would
give better quality then clustering to three clusters. Hence binary discretization gives
better than ternary for this method. The second result is about robustness. Even
though the biKmeans method was described as a robust method in Table 5-4, robust
methods gave a better performance than non-robust methods. EWDX method is the
only non-robust method for multi-level discretization; its performance was lower
than other methods except biKmeans. Robustness could be the reason for its ternary
discretization to have lower accuracy than binary. More importantly, its ternary
discretization performed lower than binary discretization of EFDX and Kmeans
discretization. Therefore, robust methods perform better fMRI discretization for
dDBN learning. The third result is about the effect of derivative on the discretization.
Like binary and ternary discretization methods, using the derivative of time-series
gave better accuracy than using time-series itself for all methods presented for multi-

level discretization shown in Table 5-10.

Table 5-11: The list of best ten discretization methods according to their accuracy.
“der” means that firstly the derivative of the synthetic data was computed then

discretization methods were applied.

Name level TP FP TN FN Recall TPR FPR Precision PPV Accuracy
der + EFD3 3 14,95 2,45 15,55 3,05 0,83 0,14 0,86 0,8473
der + topdown40 3 14,59 2,23 15,77 3,41 0,81 0,12 0,87 0,8432
der + mean std25 | 3 14,58 2,23 15,77 3,43 0,81 0,12 0,87 0,8429
der + mean std50 | 3 14,94 2,60 15,40 3,06 0,83 0,14 0,85 0,8427
der + topdown30 3 14,89 2,66 15,34 3,11 0,83 0,15 0,85 0,8397
der + 3means 3 14,77 2,92 15,08 3,23 0,82 0,16 0,83 0,8291
ji_tan33 3 13,67 2,92 15,09 4,33 0,76 0,16 0,82 0,7988
der + topdown20 3 14,28 3,53 14,47 3,72 0,79 0,20 0,80 0,7985
der + mean_std100 | 3 13,92 3,88 14,12 4,08 0,77 0,22 0,78 0,7789
ji_tan50 3 13,31 3,33 14,67 4,69 0,74 0,19 0,80 0,7772
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Table 5-11 lists the best ten discretization methods. The overall comparison for
every method is provided in the Appendix C. The best methods listed in the table
have three discrete levels. Binary discretization did not give higher accuracy, which
is expected; because information loss due to discretization is lower for the ternary
case. More importantly, all methods in the table use variation between time points;
either method uses it directly like the Ji-Tan method, or methods use the derivative
of the time series, then performs the discretization. This result concludes that the
hypothesis proposed in this study is corrected by simulation methods; using variation
between time points increases the performance of discretization; and for modeling
brain connectivity by dDBN using fMRI data, the derivative of the fMRI signal is
more informative than the signal itself. In addition, robustness is a key property for
a method to give a higher performance for discretization; listed methods in table 5-

11 were classified as a robust method in tables 5-[2-4].
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Table 5-12: Effect of scanner noise on the accuracy of the discretization methods

standard deviation ¢

Name
Level 0 0,2 0,4 0,6 0,7 0,8 0,9 1

TSDO00 2 0,750 0,739 0,704 0,663 0,647 0,633 0,621 0,612
jit+tan33 3 0,799 0,766 0,709 0,663 0,642 0,627 0,610 0,597
ji+tan50 3 0,777 0,752 0,705 0,661 0,646 0,626 0,610 0,599
mean_std25 3 0,720 0,707 0,681 0,653 0,643 0,633 0,624 0,618
der+mean_std25 3 0,843 0,793 0,714 0,662 0,638 0,623 0,606 0,593
mean_std50 3 0,720 0,709 0,685 0,660 0,647 0,639 0,626 0,619
der+mean_std50 3 0,843 0,810 0,729 0,669 0,647 0,628 0,611 0,599
mean_std100 3 0,683 0,675 0,660 0,640 0,631 0,621 0,615 0,609
dert+mean_std100 3 0,779 0,755 0,703 0,656 0,635 0,622 0,605 0,593
topdown20 3 0,697 0,689 0,669 0,647 0,636 0,628 0,619 0,612
der+topdown20 3 0,799 0,775 0,716 0,662 0,642 0,624 0,609 0,595
topdown30 3 0,719 0,708 0,684 0,659 0,647 0,639 0,626 0,619
der+topdown30 3 0,840 0,809 0,731 0,670 0,647 0,629 0,612 0,598
topdown40 3 0,719 0,707 0,681 0,654 0,642 0,632 0,624 0,618
der+topdown40 3 0,843 0,793 0,714 0,662 0,639 0,622 0,607 0,593
EFD3 3 0,722 0,712 0,687 0,659 0,646 0,639 0,627 0,621
der+EFD3 3 0,847 0,810 0,728 0,670 0,646 0,628 0,610 0,598
3means 3 0,714 0,704 0,682 0,658 0,646 0,636 0,625 0,617
der+3means 3 0,829 0,802 0,729 0,669 0,646 0,636 0,612 0,599

Table 5-12 gives the effect of scanner noise on the discretization. Rather than
evaluating all discretization methods explained in section 2, we only analyzed the
best ten methods listed in table 5-11 and TSD which was the best among all binary
discretization methods. Two main results are obtained by evaluating the effect of
scanner noise. First, for all methods increasing the scanner noise decreases the
accuracy of the discretization methods. This is expected because an increase in the
noise level increases the information loss on the HRF while discretizing the data.
Secondly, variation between time points is more sensitive to the scanner noise. When

scanner noise increases further a threshold, using the time-series itself outperforms
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using variation between time points. For example, EFD3 with derivative was
obtained the best method among other techniques, see table 5-11. When the standard
deviation of the scanner noise is higher than 0.7, der+EFD3 is less accurate than
EFD3. The standard deviation for which using time-series itself was more
informative is illustrated by bolding the corresponding accuracy of the methods in
Table 5-12. The reason behind this behavior is the increase in the effect of scanner
noise when performing the difference between successive points. Suppose we have
w[t] which is a white noise with 0 mean ¢ standard deviation. When we perform a
difference filter on this noise, we get a new white noise with 0 mean and 62 standard
deviation. Therefore, despite using variation between time points gives better
accuracy when we consider the linear property of HRF response, an increase in the
scanner noise decreases the accuracy. Hence, we have a trade-off between using

variation between time-points and increasing the effect of scanner noise.

5.7 Testing Discretization Methods in Real fMRI Data

We compared discretization methods using only the data belonging to the control
group in openfMRI data. The corresponding ROI’s and time series generation are
explained in chapter 7. In this section, our aim is only to show that the discretization
methods explained in this section are able to discretize the real fMRI data. Since we
do not have ground-truth connectivity in this comparison, we made the comparison
using EFD3 with derivative, which was chosen as the best discretization method for
synthetic fMRI data. We made a comparison using a total of 8 different methods.
According to the use of a method, fMRI data was discretized, considering also the
derivative of data if a method needs it. We obtained a connectivity graph for each
discretization method separately for a total of 121 subjects. The connectivity graph
of der-EFD3 was accepted as ground-truth. If this method is considered to be the
best method, it can be taken as ground truth. We have posed our hypothesis as
follows, if we obtain a ranking similar to the ranking obtained as a result of tests

made with synthetic data for real fMRI data, this will show the accuracy of the
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methods performed. Therefore, the results of the methods compared with der-EFD3
should show a similar result to those made in synthetic data. It is not important to get

the same result exactly, but the similarity should be as high as possible.

Table 5-13: The accuracy obtained by taking the der-EFD3 ground-truth for the
methods specified for the real fMRI data in the table on the left, the results on the
right show the accuracy for the synthetic data of the same methods. In both tables,

the results are presented by sorting them according to accuracy.

accuracy
according to accuracy
method method according to
real fMRI .
synthetic data
data

der-topdown40 0,942 der - topdown40 0,843
der-mean-std50 0,935 der - mean_std50 0,843
der-3means 0,887 der - 3means 0,829
jitan33 0,872 ji_tan33 0,799
TSDOO 0,753 TSDO00 0,750
der-mean2 0,752 der - mean2 0,750
der-EWD3 0,720 der - EWD3 0,745
topdown40 0,674 EFD3 0,722
EFD3 0,668 mean_std50 0,720
mean-std50 0,657 topdown40 0,719
3means 0,641 3means 0,714
EWD3 0,615 mean2 0,692
mean2 0,549 EWD3 0,668
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Table 5-13 shows the comparison of the methods for real and synthetic fMRI data.
Firstly, considering the rankings of the results of a total of 13 methods, a very similar
ranking can be seen for real fMRI data cases compared to synthetic data. In both
cases, the first six methods found to be the same. Other methods showed very close
rankings compared to synthetic sequences. No striking difference was observed for
both data. Note that the faster decline in performance rates on real data may be the

result of the der-EFD3 method being the ground-truth.

We will discuss this high level of similarity under two headings. First and foremost,
testing of the methods performed in this study was carried out correctly. It shows
how successful the method of generating synthetic fMRI data specified in this study
is. This result signifies that it is a perfect method for generating synthetic fMRI data
that possess effective connectivity among its regions. If we consider dDBN modeling
as an evaluation metric, one of the results of table 5-3 is how high is the similarity
between synthetic fMRI data and actual fMRI data. Second, these results show that
how critical is the use of discretization techniques for connectivity modeling brain
via dDBN. This issue is not considered for the recent studies conducted effective
connectivity [4]-[6]. The choice of their method is not denoted as successful. Burge
et al. and Dang et al. used the EWD method where it was denoted as a not successful
not robust method for fMRI data. Rajapakse et al. used MaxMin33 in their studies
and it was also denoted as an unsuccessful method. This makes their premise of study
to be very problematic. All in all, I believe that this chapter of the thesis is very
critical for modeling brain connectivity by dDBN. The EFD3 with derivative is a
powerful technique to discretize fMRI data.
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CHAPTER 6

EFFECT OF SMOOTHING ON EFFECTIVE CONNECTIVITY

In this chapter, our aim is to investigate the effect of smoothing on fMRI data by
considering the effective connectivity modeling of the brain using dDBN. In spatial
smoothing, data points are averaged using the neighbor information. This has the
effect of low pass filtering by removing the high frequencies of data. Therefore,
sharp edges of the data are removed, and it is blurred. The standard method for
smoothing fMRI data is filtering the data with a Gaussian function on the spatial
coordinate. The standard deviation (sigma) of the Gaussian function is the only

parameter used.

6.1 Advantages of the smoothing

Smoothing of the fMRI data comprises several advantages for analyzing fMRI data.
The most critical advantage is that it increases the signal to noise ratio [62]-[65].
Scanner noise has a negative impact on fMRI data analysis. In chapter 5, we showed
how this noise may affect the performance of the discretization. By spatially
smoothing the data, the fMRI signal is averaged for a particular voxel by considering
its neighbor’s information. Therefore, the signal to noise ratio for the voxel signal is

improved.

6.2 The impact on effective connectivity

In this part of the study, 4 ROIs of Default Mode Network were used. Firstly,
smoothing with various sigma values (1-12 mm) was applied to fMRI data which
was downloaded from openfMRI.org. Then a time series for each ROI was extracted

from the smoothed data. The length of the time series was appropriate for a model
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of 4 nodes (as explained in chapter 4, table 4-4). Data was discretized using der-
EFD3 which found to be the best method in chapter 5. Finally, connectivity was
modeled by dDBN for each subject. The effective connectivity models learned are a
4 * 4 matrix, and connectivity is indicated by 1 and dis-connectivity by 0. Then, the
average connectivity map of the control group was obtained for each smoothing

sigma.

Table 6-1: Average connectivity map for smoothing sigma 1 mm

ROIs | MPFC PCC LIPL RIPL
MPFC | 1 0 0 0
PCC |0 1 0 0
LIPL |0 0 1 0
RIPL |0 0 0 1

Table 6-2: Average connectivity map for smoothing sigma 5 mm

ROIs | MPFC PCC LIPL RIPL

MPFC | 0,579 0,273 0,240 0,281
pCC 0,628 0,430 0,455 0,355
LIPL |0,322 0,438 0,479 0,314

RIPL |0,248 0,372 0,298 0,306
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Table 6-3: Average connectivity map for smoothing sigma 10 mm

ROIs | MPFC PCC LIPL RIPL

MPFC | 0,826 0,727 0,736 0,661
pCC |0,719 0,686 0,777 0,678
LIPL |0,818 0,694 0,686 0,694

RIPL | 0,554 0,727 0,645 0,678

Table 6-[1-3] show the average connectivity map found for different smoothing
sigma values. When sigma is low, ROIs are only self-connected. The fact that the
connections between different ROIs are 0 indicates that there is no connection for all
participants. When the sigma is Smm, the method drops the self-connections and
other connections appear. Statistically, this result shows us how important the
smoothing is for the connectivity analysis. For smaller sigma, the connections are
self-connected; the data cannot be statistically related to other ROIs. A single time-
series data at time t depends only on its value at time t-1, which is expected for any
time-series. However, when the smoothing sigma increases, new connections are
formed which is also expected. However when sigma increases there is a decrease in
the self connections. For example the avarage self-connections represented in table
6-2 is smaller than ones represented in table 6-1. The decrease in the self connections
is not expected. Because a single time-series would be always expected to be
connected to itself. Observation of decrease in self-connections and increase on
other-connections shows that other-connections found by increasing the smoothing
sigma are significant. Table 6-3 shows the connectivity map for the smoothing sigma
at higher values. First of all, it is clear that the average connectivity map is high; all
of the entries are generally higher than 0.5. The reason for this is that the smoothing
with very high sigma caused the similarity of the voxels in the ROI voxels to be very
high. As a result, the dDBN learning algorithm is beginning to see connectivity due

to the repetition of same data distributions, which is caused by oversmoothing and
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that should be avoided. These three tables show that the smoothing of fMRI data is
critical for the connectivity map found by dDBN.

6.3  Determination of Smoothing Parameter for fMRI data considering

dDBN

In order to find the best smoothing sigma, we considered the issues discussed above.
The self connections of ROIs and connections between different ROIs were carefully
analyzed. Table 6-4 supports our previous statements about the effect of sigma on
the effective connectivity graph. The connectivity between different ROIs increases
as the smoothing sigma rises. But the average self-connection falls first and this
decline continues until the sigma is 4 mm. It is almost stable when sigma is up to 7
mm and then rises again. The first drop is related to finding dependency with other
ROIs. When the dependency is much stronger with different ROI, the frequency of
observing self-connection reduces. This is actually in line with our purpose in
smoothing. This decrease remains constant between 4-7 mm and later increases
again. The increase afterward is a problem that arises due to the excessive smoothing
of the data. Considering these results, it can be seen that the smoothing sigma should
be between 4-7 mm, and according to table 6-4, we suggest to take sigma as 4 mm

because it is the sigma that gives the lowest average self-connections.
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Table 6-4: Average self- connections and connections between different ROIs for

different smoothing sigma

smoothing self- Connections between
sigma connection different ROIs
1 1,000 0,000
2 0,936 0,030
3 0,597 0,164
4 0,444 0,270
5 0,448 0,352
6 0,475 0,425
7 0,486 0,501
8 0,552 0,568
9 0,626 0,632
10 0,719 0,702
11 0,781 0,789
12 0,855 0,844

In order to strengthen the applicability of the proposed sigma value, we analyzed the
connectivity differences between control and schizophrenia. The hypothesis is as
follows, if there is a significant connectivity difference between these two groups,
the differences would be observed at optimal smoothing sigma. Table 6-5 presents
the average connectivity map differences between these groups for various sigma
values with corresponding probabilities. The result shown in table 6-5 supports the
method proposed for determining the best smoothing sigma. In the previous result,
we determine the best sigma as 4-7 mm. When we look at the difference values in
Table 6-5, we see the highest difference between the two classes are observed when
sigma is 3-6 mm. Note that the p-value between 3-6 mm is less than 0.05, which
shows statistically significant differences. In other words, the best sigma we find

with the dDBN method gives us the difference between the groups as highest and
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statistically meaningful. This result confirms our previous decision. The best
smoothing sigma can be found using the control data only, just by analyzing the
behavior of connectivity changes while sigma is changed. But including the
comparison between the control and schizophrenia group provides further proof

about the decision.

Table 6-5: The average connectivity difference between the schizophrenia and
control groups. Corresponding probability values that show the probability of getting
the same difference in the control group using Monte Carlo simulation, for p<0.05

the corresponding p values are bolded.

smoothing difference between
sigma schizophrenia and control ’
1 0,000 1,0000
2 0,499 0,2201
3 1,989 0,0003
4 1,927 0,0052
5 1,800 0,0303
6 1,986 0,0120
7 1,686 0,1049
8 1,311 0,5154
9 1,079 0,7957
10 1,136 0,6115
11 1,024 0,6070
12 0,867 0,6888

In addition, how to find the p values in Table 6-5 will be explained. It would not be
correct to interpret this table without determining whether there is a significant
difference between the control and schizophrenia group. In order to investigate the
statistical meaning of the difference, we took the control group as a basis. Namely,

since there were 50 schizophrenes and 121 controls in total, we had 50/171 ~ 0.3
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percent of schizophrenic data. Whether the average connectivity graph difference we
found between these two groups was significant or not was decided using the control
group's data. Here we used the Monte Carlo simulation technique. According to this
technique, we divided our control group’s data into two parts at a rate of 0.3 each
time. Then we found the average connectivity difference between these parts. We
did this simulation 100,000 times and recorded the results. We compared the
difference between schizophrenia and the control group with the difference values

we obtained with these simulations. In total, we calculated how many simulations
gave difference larger than the real difference and divide it by the number of
simulations. This gave us the probability of finding the actual difference on control
group’s data. If this value is less than 0.05, it was accepted that there is a statistically
significant difference. These differences are shown in bold in the table. Figure 6-1
gives an example of how the Monte Carlo simulation technique is done, the
smoothing sigma is 4 mm for this figure. The histogram represents the difference of
the average connectivity graph when the Monte Carlo simulation technique was
applied to the control group. The red area on the figure illustrates the corresponding
observation of the difference in the control group which is higher than the actual

difference between control and schizophrenic subjects.
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Figure 6-1: Histogram of the difference using Monte Carlo simulation and the

corresponding real difference between control and schizophrenia group

6.4 Discussion

All in all, we have concluded from the analysis of this chapter that smoothing has a
significant effect on the connectivity graph found by dDBN. Note that in the previous
chapter we had noted that scanner noise has a significant effect on model discovery
for simulated fMRI data. In order to decrease the scanner noise, smoothing is the
only option for fMRI data. Smoothing is performed by using a kernel filter with a
Gaussian function and a predetermined standard deviation in mm. Increasing sigma
blurs images too much that effective connectivity becomes fully connected.
Decreasing the smoothing sigma does not decrease the scanner noise effect hence
optimal sigma is needed. We used the internal properties of dDBN to determine the
best sigma for smoothing. Our results suggest that a 4 mm sigma is favorable to use
in Gaussian smoothing. This smoothing also gave the best discrimination between

control and schizophrenia groups. We did not have to find such a result because our
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method did not rely on differentiating two groups. However, if there were significant
differences between these two groups, we would expect to get this difference for

optimal sigma, and we got it for the smoothing sigma we proposed in this study.
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CHAPTER 7

EFFECTIVE CONNECTIVITY FOR CONTROL AND SCHIZOPHRENIA
SUBJECTS USING THREE DIFFERENT MODELLING APPROACHES

In this section, we will explain how the effective connectivity modeling of the brain
is done using resting-state fMRI data. Resting-state fMRI data is obtained when
participants do not take any task during fMRI scanning. While the individuals are at
rest, activation is observed for certain brain regions, and some connectivity patterns
are found between the brain regions. One of the most important connectivity
observed during resting state is the Default Mode Network (DMN). In previous
studies, both functional connectivity and effective connectivity between brain
regions of Default Mode Network have been studied in modeling the brain using
resting-state fMRI [3], [18], [66], [67]. In this section, we examined the effective
connectivity of the brain using the control and schizophrenic data to underline the
differences between each group using default mode network regions. From the
previous studies, it has been stated that 4 important regions are found for the default
mode network of the brain [66], [67]. Table 7-1 shows these brain regions and their
MNI coordinates.

Table 7-1: Corresponding DMN regions and their MNI coordinates

Regions of DMIN MNI Coordinates

Medial Prefrontal Cortex (MPFC) 3,54,-2
posterior cingulate cortex (PCC) 0,-52, 26
left inferior parietal lobule (LIPL) -50, -63, 32

right inferior parietal lobule (RIPL) | 48, -69, 35
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OpenfMRI data includes 121 controls, 50 schizophrenia, 49 bipolar disorders and 41
attention-deficit / hyperactivity disorder (ADHD) data. More information about the
data and its preprocessing is explained in [68], [69]. The biggest advantages of using
this data are: Firstly, it was obtained from a large number of participants, which will
increase the reliance on statistical analysis. Secondly, the preprocess of this data had
been prepared in openfMRI.org. We would only do modeling without any
preprocessing (except smoothing and high-pass filtering). In this thesis, we had only

conducted effective connectivity modeling for schizophrenia and control groups.

7.1 Preprocessing

Since data is already preprocessed we downloaded the data from openfMRI.org with
its preprocessed version. Data were preprocessed by the following steps: Motion
Correction, Slice-Timing Correction, Distortion Correction and Spatial
Normalization. Since this data is not spatially smoothed we applied this step by using
FSL toolbox. This data is smoothed by the Gaussian kernel with a 4 mm standard
deviation. Note that 4 mm was found as the best smoothing sigma in chapter 6. Then
data were high-pass filtered by using FSL which contain a high pass filter for
removing low-frequency component in the time domain. This component is rather
depending on the scanner not related to hemodynamic response. The cut-off

frequency was 128 HZ.

7.2 Data generation for ROIs

Several studies have conducted effective connectivity analysis for fMRI data [2], [3],
[5], [17], [70]. We have used one of the ROIs that they have found activated in
resting-state fMRI data which was collected from healthy subjects. These regions
are illustrated in table 7-1, where these regions are the regions considered to be

related to the default mode network.
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After fMRI data were smoothed, it had to be discretized in order to use it for dDBN
modeling. For this, fMRI data was discretized with der-EFD3 which was chosen to
be the best in chapter 5. The size of the fMRI time series was 152 scans. After this
process, the size became 151. Since we made discretization at 3 levels, cardinality
(K) should be taken as 3. Since the maximum number of parents is 4 ROIs, we have
taken this number as 4. We did not put any restrictions on the number of parents. As
a result, the table 4-4 stated that the amount of data required should be greater than
3819, and we assumed to have more than 4000 number of samples. The size of each
voxel was 151 in each discrete-fMRI data. As a result, we have to put the 4000 /
151=27 voxels’ signal in a row by concatenating them. Totally we collected 4*4077
time-series for each participant where 4 denotes the regions and 4077 indicates the

temporal length of each regions.

7.3 Effective connectivity approaches

In the literature, there are totally 3 different approaches for brain modeling [71]. In

this section, we briefly explain each method, and their results using openfMRI data.

7.3.1 Individual Structure (IS) Approach

The IS approach learns individual networks for each subject separately and makes
group analysis on these separate networks. The IS approach definitely considers
variability between subjects. However, when individual network models are

different, it is not a trivial task to obtain a statistically significant network for a group.

In order to apply this approach for openfMRI data, we examined the following steps.
Firstly, each discrete ROI-based fMRI data of each subject was used in dDBN
learning to find the model of the data. This model which is a 4*4 matrix consists of
Os and Is was the effective connectivity graph of each subject. 1s in this graph
represent the temporal causality between ROI’s and Os indicate dysconnectivity

among the brain regions. Secondly, in order to understand the group level similarity

91



and differences between the groups, the average effective connectivity graph for each
group was calculated which is illustrated in Tables 7-2 and 7-3 for control and

schizophrenia.

Table 7-2: Average connectivity graph of the control group. The connections are

from rows to columns

ROIs MPFC PCC LIPL RIPL

MPFC | 0,562 0,207 0,182 0,124
PCC 0,562 0,421 0,339 0,231
LIPL 0,248 0,347 0,488 0,306
RIPL 0,174 0,306 0,215 0,306

Table 7-3: Average connectivity graph of the schizophrenia group. The connections

are from rows to columns

ROIs MPFC PCC LIPL RIPL

MPFC | 0,860 0,200 0,140 0,180
PCC 0,360 0,700 0,380 0,280
LIPL 0,180 0,260 0,640 0,140

RIPL 0,180 0,220 0,100 0,580

Pearson chi-square (2) test was performed to see if the difference between these two
groups is statistically significant. Table 7-4 and figure 7-1 give the corresponding
frequency differences between control and schizophrenia groups and corresponding

p values for each connection.
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Table 7-4: Connectivity differences between schizophrenics and controls obtained
by the individual-structure method where the Pearson chi-square test is applied to
see the significance of the difference. Green shows for p<0.01, red shows for

0.01<p<0.05 and bolded ones are for 0.05<p<0.1.

connection control  schizophrenia  difference Y2 p
MPFC->MPFC | 0,562 0,860 0,298 13,796  0,000204
PCC->MPFC 0,562 0,360 -0,202 5,774  0,016266
LIPL->MPFC 0,248 0,180 -0,068 0,927  0,335529
RIPL->MPFC 0,174 0,180 0,006 0,010  0,919699
MPFC->PCC 0,207 0,200 -0,007 0,010  0,922352
PCC->PCC 0,421 0,700 0,279 10,978  0,000922
LIPL->PCC 0,347 0,260 -0,087 1,230  0,267332
RIPL->PCC 0,306 0,220 -0,086 1,290  0,256136
MPFC->LIPL 0,182 0,140 -0,042 0,439  0,507444
PCC->LIPL 0,339 0,380 0,041 0,263 0,60798
LIPL->LIPL 0,488 0,640 0,152 3,300  0,069262
RIPL->LIPL 0,215 0,100 -0,115 3,146  0,076126
MPFC->RIPL 0,124 0,180 0,056 0,921  0,337295
PCC->RIPL 0,231 0,280 0,049 0,451 0,5019
LIPL->RIPL 0,306 0,140 -0,166 5,088  0,024086
RIPL->RIPL 0,306 0,580 0,274 11,225  0,000807
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Figure 7-1: The connectivity map for the individual structure approach, only
statistically significant connections are illustrated. The green arrows show for
p<0.01, the red arrows show for 0.01<p<0.05 and dashed arrows show for

0.05<p<0.1.

7.3.2 Virtual-Typical Subject (VTS) Approach

The VTS approach assumes that each subject within the group has the same brain
network. Data from all individuals are combined and processed as if sampled from a
virtual object. Accordingly, a single time series for the groups was obtained by
concatenating the data for every subject in each group. Then dDBN effective
connectivity models were obtained. In Table 7-5 and 7-6, effective connectivity
models of the two groups are given. Different observed connections in both groups

are indicated in red. Some connections do not exist in the schizophrenia group.
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Table 7-5: The effective connectivity model of the control group using Virtual-

Typical Subject approach

ROIs | MPFC  PCC LIPL RIPL
MPEFC 1 0 0 0
PCC 1 1 1 1
LIPL 1 1 1 1
RIPL 1 1 1 1

Table 7-6: The effective connectivity model of the schizophrenia group using

Virtual-Typical Subject approach

ROIs | MPFC  PCC LIPL RIPL
MPEFC 1 0 0 0
PCC 1 1 1 1
LIPL 0 1 1 0
RIPL 1 1 0 1

One of the most striking results in these tables is about the effectiveness of MPFC.
MPFC does not affect any brain region in the default mode network for both groups
MPFC (medial-prefrontal cortex) is the region where the decision-making
mechanism is located in the frontal area of the brain and where human-kind
processes are performed. Considering that it is the region where the information is
collected, processed, and the decision is made, this result may be expected because
it must be the region where information transformation is ended considering the
default mode network regions. Figure 7-2 gives a figure for the easiness of

illustration to see the difference between each group.
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Figure 7-2: The connectivity map for virtually-typical subject approach, only the
differences are illustrated. Note that lines in the figure are the connections observed

for the control group but not observed for schizophrenia.

7.3.3 Common Structure (CS) Approach

The CS approach allows a common brain network within the group while allowing
model parameters to differ among subjects. The CS approach addresses group
similarity at the structural level and cross-subject variability at the parameter level.
The strength of the connection was considered, and it was assumed that it may differ
among the subject within the group. We modeled this method with dDBN by the
following steps. First of all, the data for the two groups were combined to obtain
connectivity maps with dDBN learning. Tables 7-5 and 7-6 are the graphs obtained
for two groups. The connections in these two maps were combined to create a single
connectivity map. In this new connectivity map, the connection seen in any group is

taken as the connection. If we explain mathematically, the connectivity map of the
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two groups goes through the 'OR' operation. Using the discrete fMRI data of the
subjects in both groups and the connectivity map, we calculated the strength of the
connection between the brain regions of the groups. The strength of connection
shows the information transmitted between the two regions. In order to calculate the

strength of the connection following expression was used.

P(ylx,2)

P(yI2) 1)

LS(X - Y) = Z P(x,z) Z P(ylx, z) log,
X,Z y

In this expression, the connectivity strength between Y and X is calculated, where
Y, X are discrete-valued random variables. Z represents the random variables in the
parent set of Y except for X. This expression finds the information transformed from

X to Y. For detail about the strength of the connection see Nicholson and Jitnah [72].

Table 7-7: The average effective connectivity strength of the control group

ROIs | MPFC  PCC LIPL RIPL
MPFC | 0,082 0,000 0,000 0,000
PCC 0,067 0,043 0,031 0,027
LIPL 0,054 0,033 0,039 0,027
RIPL 0,054 0,031 0,026 0,032

Table 7-8: The average effective connectivity strength of the schizophrenia group

ROIs | MPFC  PCC LIPL RIPL
MPFC | 0,117 0,000 0,000 0,000
PCC 0,058 0,068 0,029 0,027
LIPL 0,050 0,030 0,049 0,025
RIPL 0,052 0,031 0,022 0,051

Tables 7-7 and 7-8 show the average connectivity strength of the effective

connectivity in the control and schizophrenia group. One of the most striking and
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remarkable results in this table is that the connectivity to MPFC is dramatically
higher than the connectivity to other regions. This can also be seen in schizophrenic
subjects. This result is also compatible with the individual structure approach. In
order to examine the differences between the two groups, statistical analyses were

performed using the two-sample t-test.

Table 7-9: Connectivity differences between schizophrenics and controls obtained
by the common-structure approach where a two-sample t-test was applied to see the

significance of the difference. Green shows for p<0.01, red shows for 0.01<p<0.05.

connection control schizophrenia difference p
MPFC->MPFC | 0,082 0,117 42 0,00002
PCC->MPFC 0,067 0,058 -14 0,00613
LIPL->MPFC 0,054 0,050 -8 0,04949
RIPL->MPFC 0,054 0,052 -3 0,37631
MPFC->PCC 0,000 0,000 - -
PCC->PCC 0,043 0,068 60 0,00121
LIPL->PCC 0,033 0,030 -9 0,26947
RIPL->PCC 0,031 0,031 0 0,99835
MPFC->LIPL 0,000 0,000 - -
PCC->LIPL 0,031 0,029 -4 0,65731
LIPL->LIPL 0,039 0,049 26 0,03166
RIPL->LIPL 0,026 0,022 -14 0,03828
MPFC->RIPL 0,000 0,000 - -
PCC->RIPL 0,027 0,027 1 0,88367
LIPL->RIPL 0,027 0,025 -8 0,25059
RIPL->RIPL 0,032 0,051 60 0,00003

Table 7-9 shows the comparison of the connectivity strength between the two groups.
One of the results is that the average connectivity strength is lower in the

schizophrenic group for the connections between different ROIs. On the contrary,
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the self-connections of ROIs are higher in the schizophrenic group. The differences
are stated as the percentage increase in the connectivity strength of the schizophrenia
group compared to the control group. Note that almost the same result was obtained

for the individual structure approach.

%42

%26
%60

RIPL

%60

Figure 7-3: The connectivity map for the common structure approach only
statistically significant connections are illustrated. Green arrows show for p<0.01,

the red arrows show for 0.01<p<0.05.

7.4 Discussion

In this chapter, we examined the effective connectivity of control and schizophrenia
using fMRI data. The ROIs were 4 brain regions of the Default Mode Network
presented in table 7-1. Effective connectivity shows the temporal effects of these

regions on each other. These analyses were made considering three approaches.
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These are individual structure approach, virtual typical subject approach and
common structure approach. We will discuss the results carried out by considering

these approaches in two headings.

Firstly, the three approaches provided similar results. Figure 7-1 and 7-3 give the
difference of the effective connectivity between the two groups. If we look at these
differences, we see a decrease in effective connectivity in the schizophrenia group
between different ROIs. In the IS and CS approach, almost similar connections were
observed as statistically different between the two groups. Figure 7-2 (VTS
approach) also shows similar differences, but self-connection was observed in both
groups. The reason for this is that the method is handled only on the presence and
absence of the connection. But the connections that are seen differently in VTS can
be observed also in IS and CS. It is a very important result that this similarity is so
high. Because this result is a proof that the issues encountered in modeling the brain
effective connectivity by dDBN are completely resolved. Thereby, with this thesis,
dDBN can be used for any fMRI data, regardless of the problems.

Secondly, it was observed that in the schizophrenia group, effective connectivity
decreases compared to the control group. Especially when all groups were modeled
by the VTS approach, some connections were not observed for the schizophrenia
group although they exist for the control group. Considering the results in the IS
approach and CS approach, this situation makes itself more conspicuous. A drop in
the strength of connectivity between different ROIs is observed for almost all

connections.
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CHAPTER 8

CONCLUSION

In this thesis, we examined the important issues that should be considered in
modeling the effective connectivity of the brain with dDBN. These important issues
were examined in the finest detail and what should be considered in each issue was
determined. There are totally three issues, one is to determine the required number
of samples for the convergence of the dDBN modeling, the second one is the
evaluation of the discretization methods for fMRI data, the last one is determining
the most suitable sigma for smoothing. Each issue in this study confirms each other.
For example, the sample complexity analysis obtained in chapter 4 was used to
compare discretization methods in chapter 5. If the results found in the sample
complexity analysis were wrong, there would be no compatible results in chapter 5.
This also applies to the smoothing step. The smoothing issue was examined using
real data which was processed by considering both sample complexity results in
chapter 4 and discretization results in chapter 5. Finally, the connectivity approaches
in chapter 7 was made considering all three issues. In chapter 7 the three different
approaches for effective connectivity gave very similar results which shows that the

three issues identified in this study have been resolved in a proper and reliable way.

In order to find the sample complexity for the convergence of the dDBN structure
learning, theoretical approaches were investigated. It was observed that the
minimum required number of samples found by theoretical approach is practically
very high. Therefore, a practical and systematic approach was investigated and
practical sample complexity of dDBN was found. Experiments showed that the
sample complexity of structure learning for dDBN is O(K?*!). Here K is the
cardinality of the network and p is the maximum number of parents present in the

network. The experimental results showed that the imaginary sample size is very
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critical on the learned model. Less number of samples may be needed with the

optimum imaginary sample size, but this issue was left as future work.

Secondly, discretization, an important step for dDBN, was examined. In the
literature, generally recommended discretization methods were evaluated for fMRI
and the most suitable discretization method was determined for dDBN. While doing
this, the properties of fMRI data were considered, and more successful results were
obtained when variation between time points (derivative) of fMRI data was used
instead of the data itself. The results in Chapter 5 showed that higher performance
had always been achieved when the derivative of the data was used. The results of
experiments with synthetic data suggest that der-EFD3 discretization is the best
method for fMRI discretization. In the same section, experiments with real fMRI
data were mentioned. Experiments with real fMRI data were consistent with the
results of synthetic data. The extremely high similarity between the results of
synthetic and real fMRI data showed how successful the synthetic data generation

was.

Chapter 6 covers the issue for the smoothing of fMRI data. Spatial smoothing is the
filtering of fMRI data with gaussian function. The objective to be achieved in this
chapter was the standard deviation (sigma) of the Gaussian function. For this, data
belonging to the control group of openfMRI data was used. This data has been
preprocessed for different smoothing sigma values and optimal sigma determined
based on the result of the dDBN models. In addition, when we examined the
specified smoothing sigma for finding the difference between the control and
schizophrenia groups, we found that the optimal sigma distinguished the two groups
very successfully. This was further proof of the optimal sigma value. Results signify
that smoothing fMRI data with 4 mm gives more accurate results in modeling
effective connectivity by dDBN. Consider chapter 5, we had presented the
comparison of real and synthetic fMRI data for discretization methods in Table 5-
13. It was noted that there is prominent consistency between real and synthetic fMRI

data in terms of discretization techniques. This consistency in the ranking also shows
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us a result of the smoothing method. Table 5-13, which is the analysis for smoothing

4 mm, also shows the success of the smoothing study (chapter 6).

Finally, using openfMRI data, we examined the effective connectivity between the
4 brain regions belonging to the default mode network. We did statistical tests to
determine whether there is a difference in the effective connectivity models of
schizophrenia and the control group. The most noticeable result was a decrease in
effective connectivity among different ROIs in the schizophrenia group. In other
words, in schizophrenic individuals, brain regions affect each other less than healthy
individuals. These results were observed similarly for all three different connectivity
approaches which are the individual structure, virtual typical subject and common

structure approaches.

In this thesis, we left several studies as future work. Foremost, the optimal imaginary
sample size may be defined as a function of network parameters. The results in this
study signify that a smaller number of samples are adequate to discover the model
correctly, the imaginary sample size is now extremely high or low. Hence an
optimum value would yield better learning in terms of sample complexity. Secondly,
the effective connectivity analysis of bipolar and ADHD was not investigated in this
study. The same procedure may also be applied to reveal the brain working
mechanism of the corresponding disease. Thirdly, this method is ready to be
compared with other effective connectivity models. Since all issues are solved by
this study, and there is a practical method to generate synthetic fMRI data which is
detailly explained, DCM, Granger Causality etc., may be used to be compared with
dDBN.
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APPENDICES
A. Proof of taking the first expression for equation 4.2

n IC
o = min y—, By (8.1)
2 2n+2|nlog (7) + 1]

ICp = E}in {Sc{xl‘.ﬂiﬁ\{xi,xj}{lpg*(Xi, X]|5)}} (8.2)
Ip, (%, %] S) = —log (P(xl-, xj|5)) (8.3)

In this expression y is the minimum conditional probability distribution in Pp+, and
ICp 1s the minimum information content in Pz« and eq. 8.3 defines information
content on a probability distribution. The aim is to find the minimum of the ¢ value
when y—(0. We started by the following condition. Assume there exists a random
variable pair (x;x;) such that y is the minimum conditional distribution in Pz+ for x;

and x;.

y = min {Pg. (x:|SU{x D) (84)

Similarly, we found the expression for /Cp in terms of y. In order to get a minimum
value for /Cs, the highest probability of P(x;x;|S) should be considered; see eq. 8.3,

and note that a probability of a random variable is in the interval [0 1].

P(x;, xj|S) = max{P(x;|SU{x;}) = P(x;15)} (8.5)

To be able to get the highest joint probability over x; and x; given S, two expressions
on the right-hand side of the eq. 8.5 should be maximum. For the second multiplicand
P(x;) we assumed it to be 1, since we did not have a priori information for the

marginal distributions in Pz« If the first expression in eq. 8.1 was found to be
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minimum for o, then the assumption over P(x;) will not violate the result, in other
cases this assumption may not be correct. As a result maximum joint probability in

Ppg+1s defined as.

P(x;,%;|S) = max{P(x;|SU{x;})} = P(x/[|SU{x;}) =1 —¥
I1Cg = —log(1—vy)
One can contradict by the following statement, would not exist another random
variable pair (xxx;) rather than (x;x;) such that P(xi,x|S) is greater P(x;x;|S). If there
is, then /Cp would depend on (xxx;) pair. The answer for this statement starts by

assuming that there is a (x,x;) pair satisfying the statement. Then,

P (i, 211S) = PCx| UL, * P(xp) > P(x/|SU{x;})
P(x1SU{x}) > P(xi'[SU{x;})
Pxp|SU{x ) >1 -y
P(xi'ISU{x,}) <y

The last expression violates the assumption over y because it was assumed to be the
minimum conditional distribution in the network. Therefore, the expression for /Cp

was correct.

Then, we got the following expression for ¢ when y—0.

n —log(1 —
c=minl i) =L, frp) = e D)
2"+2|nlog (7) + 1]

2 )
Both expressions are 0 when y—0. Therefore, we applied the following criteria:

o) iy ifA<1

define A = lim fzy theno = f2(y) ifA>1
y-0* f2(¥) g .

no desicion ifA=1

Now the aim is to evaluate the limit behavior of two functions when y—0".
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" "
lim f—l ) = lim 2 = 2
y=0t f2(y) y-0t _ —log(1—y) y—0* —log(1—7)

2"+2|nlog (%) + 1| 22 « —(nlog (%/) +1)

" "

li 2 = lim 2

/50 Tog(1—p) y o log(1—y)

27+2(nlog (%) +1) 2"*2(nlog(y) —nlog2 + 1)

-nlog2+1 is finite, however, log(y) — o when y—0". Therefore,

yn
1 va __y"2™nlog(y)

ylirgg f2(y) - yliTglJr log(1-y) ylirg)l’r log(1—1v)
2"*2nlog(y)

"lo n=2yylo
=n2™1 lim )/—g()/) =n2™"1 lim Lg()/) sincen > 2

y—otlog(1—y) y-o* log(1—1y)

1 n-2 lo
limf ()/)znzn+1 lim VY 9g)

y-0* f2(y) y-0*log(1—y) *1/y

lo
=n2™1 lim y" 2 lim Y im 9¢)
y—0+ y—otlog(1l —y)y—o+ 1/y

The last partition of the limit would be feasible if and only if three limits exist.

. Oifn>2
n-2 _—
Jm oyt = {1 ifn=2
li L'Hospital I 1 I 1 1
_— _—mm —_ = —
Y20+ log(1— ) Yoot —1/(1—y) oot
lOg()/) LrHospital 1/)/ I 0
> = —vy =
gy O ST = Y
¢2)
lim =0
v=0* f2(y)

Therefore, we get the first expression for ¢ when y—0
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B. Analysis of Figure 4-7 with BDeu and BIC Relation

In this section, our aim is to analyze the characteristics of the BDeu metric on
structure learning for various numbers of data samples M. In chapter 3 it was
described that the BDeu score converges to BIC score when M converges to infinity.
Nonetheless, practically, for larger values of M both scores still perform the same
characteristics. Figures 8-1 and 8-2 give simulation results to compare the BDeu and
BIC scores for finite sample sizes, which points that for sample size greater than a
threshold both metrics behave the same. Note that, prior parameters o in Equation
3.2 have a significant effect on M in the decision when the BDeu score acts like the
BIC score. When the prior distributions are high, more samples are needed to see
this effect. In this thesis, we had also provided the effect of the prior distribution on
it was found that for smaller imaginary sample size we get a result which is similar
to the BIC score. The reason behind having the same relation for BDeu and BIC
scores for finite sample sizes is the use of smaller imaginary sample sizes. Notice
that we had discussed this issue in chapter 4 and concluded that smaller but fair

imaginary sample sizes are suitable for model discovery on dDBNss.
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Figure 8-1: Mean error vs number of samples of a binary node has six parents for 6-

node network using BDeu and BIC scores.
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Figure 8-2: Mean error vs number of samples of a ternary node has six parents for 6-
node network using BDeu and BIC scores.
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Figure 8-3 shows the structural error for a ternary valued network consisting of five
variables where only the mean error of the node that has 5 parents is shown. This
figure illustrates the error between the true structure from which the data was
sampled, and the structure found with dDBN learning using this data. The graph
seems to have three regions. In the first region, the error is around 0.5. However,
when more data is provided to the dDBN learning procedure, error reaches to 1 and
stays constant, despite the sample size increases. In this second region, although the
true structure contains five parents, the found structure does not contain any edges.
In other words, learning ended up with an empty structure. If the amount of data is
further increased, in the third region, the algorithm starts to add some parents to the
structure and error starts to decrease. When a sufficient amount of data is provided,
all parental relations are found correctly by the dDBN structure learning, and error

reaches 0.
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Figure 8-3: Mean error vs number of samples for the node which has 5 parents in a

network of 5 ternary variables
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In the first region, the amount of data samples is smaller than 70. When the data size
is very small, dDBN structure learning ends up with a structure as if it was chosen
randomly and does not contain any information about the actual structure. It means
that this amount of data has no effect on learning and the BDeu score of each possible
graph is likely to be randomly generated numbers. The maximum scored structure is
just a randomly generated array which consists of 0’s and 1’s. Figures 4-2 and 4-3
also illustrate this behavior. When the data size is smaller than a threshold, the
structural error is around 0.5 and changing the parent size does not affect this result.
This shows that the found best structures consist of edges as if they were chosen

randomly.

In the second region, the error is highest and stays so for the number of samples M
from 70 to 1000. The actual structure from which the data was generated contains all
the edges, i.e., fully connected. Getting structural error to be 1 means that the
structure found by the dDBN learning did not include any 1’s, hence the learning
procedure tries to obstruct any edges and the BDeu score of the empty structure is
higher than any other possible structures. The reason for this behavior can be
explained by analyzing Equation 3.3. Since the sample size is not sufficient, the
likelihood term of Equation 3.3 does not differentiate the actual structure from any
other structure and gives almost the same likelihood score for every possible
structure. As a result of that, the second term related to the model dimension
dominates the BDeu score. The BDeu score tries to decrease model complexity by
this term. Therefore, the structure with the lowest model complexity or least number
of edges will get the highest score. As a result, the learning procedure ends up with
an empty structure and this is the reason why the structural hamming distance

between the actual and learned structure is 1.

Finally, in the third region, the dDBN learning algorithm starts to learn the parents
of the node correctly. While M increases, the mean error on the structures reduces
and after a certain value of M error becomes 0, which means that the structure is

learned from the data correctly.
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C. The Comparison of Discretization Techniques

Table 8-1: The comparison of discretization methods. The table is sorted according
to the accuracy of the methods. “der” means that firstly, the derivative of the

synthetic data is computed then discretization methods are applied.

Name level TP FP TN FN TPR FPR PPV Accuracy

der + EFD3 14,95 2,45 15,55 3,05 0,83 0,14 0,86 0,8473
der + topdown40 14,59 2,23 15,77 3,41 0,81 0,12 0,87 0,8432
14,58 2,23 15,77 3,43 0,81 0,12 0,87 0,8429
14,94 2,60 15,40 3,06 0,83 0,14 0,85 0,8427
14,89 2,66 15,34 3,11 0,83 0,15 0,85 0,8397
14,77 2,92 15,08 3,23 0,82 0,16 0,83 0,8291
13,67 2,92 15,09 4,33 0,76 0,16 0,82 0,7988
14,28 3,53 14,47 3,72 0,79 0,20 0,80 0,7985
13,92 3,88 14,12 4,08 0,77 0,22 0,78 0,7789

98]

der + mean_std25
der + mean_std50
der + topdown30
der + 3means
ji_tan33
der + topdown20

der + mean_std100

Jji_tan50 13,31 3,33 14,67 4,69 0,74 0,19 0,80 0,7772
Jji_tan67 12,80 3,70 14,30 5,20 0,71 0,21 0,78 0,7529
TSDO0O 15,64 6,63 11,37 236 0,87 0,37 0,70 0,7503
der + mean2 15,63 6,64 11,37 237 0,87 0,37 0,70 0,7498

der + 2means 15,62 6,63 11,37 2,38 0,87 0,37 0,70 0,7498
15,62 6,64 11,36 2,38 0,87 0,37 0,70 0,7495
15,62 6,64 11,36 2,38 0,87 0,37 0,70  0,7495
15,62 6,64 11,36 2,38 0,87 0,37 0,70 0,7495
13,26 4,29 13,72 4,775 0,74 0,24 0,76  0,7492
15,62 6,77 11,23 2,38 0,87 0,38 0,70  0,7458
13,24 443 13,57 4,776 0,74 0,25 0,75  0,7449

13,01 4,30 13,70 4,99 0,72 0,24 0,75 0,7419

der + midRange
der + top50
der + EFD2
der + maxmin67
der + TDT
der - EWD3
der + topdown10

W W W N W W N W NN DD NN NN W W W W W wWw w w w w

der + EWD2 15,48 7,04 10,96 2,52 0,86 0,39 0,69 0,7345

EFD3 12,40 4,39 13,61 5,60 0,69 024 0,74 0,7224
mean_std50 12,46 4,54 13,46 5,54 0,69 0,25 0,73 0,7199
mean_std25 11,96 4,05 13,95 6,04 0,66 023 0,775 0,7198
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topdown40
topdown30
3means
der + mean_std150
topdown20
midRange
EFD2
top50
mean2
2means
TDT
TSD25
EWD2
mean_std100
der + w_maxminl0
der + maxmin50
maxmin67
EWD3
der + top25
der + top75
topdown10
der + w_maxminl5
der + max75
mean_std150
w_maxminl0
TSD50
w_maxminl5
mean_time
der + maxmin33
maxmin50
top25
top75

max75

N NN W W W W N W W N W W N N W W W W W N N N DN D DD DD N W W W w w

11,96
12,49
12,51
12,05
12,34
14,47
14,47
14,46
14,45
14,44
14,47
14,86
14,40
12,07
10,14
10,57
11,70
11,79
15,05
15,02
11,41
9,13

14,65
10,71
10,52
13,66
10,03
11,16
7,66

9,70

14,25
14,20
13,84

4,07
4,60
4,80
4,40
5,24
7,52
7,52
7,53
7,53
7,55
7,66
8,24
7,79
5,47
3,64
4,13
5,54
5,73
9,03
9,02
5,54
3,33
9,27
5,38
5,26
8,69
5,07
6,28
2,92
5,04
9,65
9,68
9,80

13,93
13,40
13,20
13,60
12,76
10,48
10,48
10,47
10,47
10,46
10,34
9,76

10,21
12,53
14,36
13,87
12,46
12,27
8,97

8,98

12,46
14,67
8,73

12,62
12,74
9,31

12,93
11,73
15,08
12,96
8,35

8,32

8,20

6,04
5,51
5,49
5,96
5,66
3,53
3,53
3,54
3,55
3,56
3,53
3,14
3,60
5,93
7,86
7,43
6,31
6,21
2,95
2,98
6,59
8,87
3,35
7,29
7,48
434
7,97
6,84
10,34
8,30
3,75
3,80
4,16

0,66
0,69
0,70
0,67
0,69
0,80
0,80
0,80
0,80
0,80
0,80
0,83
0,80
0,67
0,56
0,59
0,65
0,66
0,84
0,83
0,63
0,51
0,81
0,60
0,58
0,76
0,56
0,62
0,43
0,54
0,79
0,79
0,77

0,23
0,26
0,27
0,24
0,29
0,42
0,42
0,42
0,42
0,42
0,43
0,46
0,43
0,30
0,20
0,23
0,31
0,32
0,50
0,50
0,31
0,18
0,52
0,30
0,29
0,48
0,28
0,35
0,16
0,28
0,54
0,54
0,54

0,75
0,73
0,72
0,73
0,70
0,66
0,66
0,66
0,66
0,66
0,65
0,64
0,65
0,69
0,74
0,72
0,68
0,67
0,63
0,62
0,67
0,73
0,61
0,67
0,67
0,61
0,66
0,64
0,72
0,66
0,60
0,59
0,59

0,7193
0,7190
0,7143
0,7123
0,6973
0,6930
0,6930
0,6925
0,6921
0,6915
0,6893
0,6840
0,6837
0,6834
0,6805
0,6789
0,6709
0,6684
0,6673
0,6666
0,6631
0,6613
0,6493
0,6482
0,6462
0,6379
0,6376
0,6357
0,6317
0,6293
0,6277
0,6254
0,6122
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der + bi2means
maxmin33
der + max50
der + bi3means
TSD100
bi2means
max50
bi3means
TSD150
der + max25

max25

DN N W NN W N W N

10,51
7,45
10,26
5,51
11,15
10,64
9,54
5,78
9,63
4,82
5,40

6,50
3,87
6,87
2,50
8,21
7,81
7,10
3,84
7,74
3,01
4,12

11,50
14,13
11,13
15,50
9,79
10,19
10,90
14,16
10,26
14,99
13,88

7,49
10,55
7,74
12,49
6,85
737
8,46
12,22
8,37
13,19
12,60

0,58
0,41
0,57
0,31
0,62
0,59
0,53
0,32
0,54
0,27
0,30

0,36
0,22
0,38
0,14
0,46
0,43
0,39
0,21
0,43
0,17
0,23

0,62
0,66
0,60
0,69
0,58
0,58
0,57
0,60
0,55
0,62
0,57

0,6114
0,5994
0,5944
0,5836
0,5819
0,5786
0,5678
0,5539
0,5526
0,5501
0,5356
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D. Figures for the Effect Imaginary Sample Size on Model Discovery
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Figure 8-4: Mean error vs number of samples for different alpha values used for six-

node binary-valued network. It presents for a node that has six parents.
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Figure 8-5: Mean error vs number of samples for different alpha values used for six-

node binary-valued network. It presents for a node that has five parents.
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Figure 8-6: Mean error vs number of samples for different alpha values used for six-

node binary-valued network. It presents for a node that has four parents.
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Figure 8-7: Mean error vs number of samples for different alpha values used for six-

node binary-valued network. It presents for a node that has three parents.
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Figure 8-8: Mean error vs number of samples for different alpha values used for six-

node binary-valued network. It presents for a node that has two parents.
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Figure 8-9: Mean error vs number of samples for different alpha values used for six-

node binary-valued network. It presents for a node that has one parent.
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