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ABSTRACT 
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Geduk, Salih 
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Supervisor: Prof. Dr. İlkay Ulusoy 

 

 

 

January 2020, 125 pages 

 

 

To understand the underlying neural mechanisms in the brain, effective connectivity 

among brain regions is important. Discrete Dynamic Bayesian Networks (dDBN) 

have been proposed to model the brain’s effective connectivity, due to its nonlinear 

and probabilistic nature. In modeling brain connectivity using discrete dynamic 

Bayesian network (dDBN), we need to make sure that the model accurately reflects 

the internal brain structure in spite of limited neuroimaging data. Based on the fact 

that there are many dDBN structure learning applications in the recent literature and 

most of them use very limited amount of data, some facts should be made clear at 

least for the model convergence which depends on the number of data, the model 

complexity, and the learning approach. In this thesis, we analyzed the sample 

complexity of dDBN to find the required number of samples that guarantee 

successful learning. Firstly, we realized that the theoretical sample complexity for 

dDBN structure learning is not realistic, practical and applicable in practice. 

Therefore, we also focused on a practical and systematic approach for estimating the 

sample complexity for dDBN.  Secondly, we evaluated the non-supervised 

discretization methods for functional magnetic resonance imaging (fMRI) data 
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which has not been done yet to the best of our knowledge. We generated synthetic 

fMRI data that possess temporal relations. Then they were used for modeling 

effective connectivity by dDBN to compare the performance of each discretization 

method. Thirdly we analyzed the smoothing step of the fMRI data which is necessary 

to improve the signal to noise ratio. Experiments suggested that smoothing fMRI 

data with Gaussian function having a standard deviation to be 4 mm is suitable 

considering effective connectivity via dDBN.  Lastly, by considering these results 

we used dDBN to model the brain connectivity of schizophrenia and control group. 

The results signify that schizophrenia is a disconnection syndrome. 

 

Keywords: Discrete Dynamic Bayesian Networks, fMRI, Structure Learning, 

Sample Complexity, Effective Connectivity, Schizophrenia 
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ÖZ 

 

DİNAMİK BAYESÇİ AĞI İLE YAPILAN BEYİN BAĞLANTILARI İÇİN 

ÖNEMLİ HUSUSLAR 

 

 

Geduk, Salih 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği 

Tez Yöneticisi: Prof. Dr. İlkay Ulusoy 

 

 

 

Ocak 2020, 125 sayfa 

 

Beyindeki altta yatan sinirsel mekanizmaları anlamak için beyin bölgeleri arasındaki 

etkin bağlantısallığı göz önünde bulundurmak önemlidir. Ayrık Dinamik Bayes 

Ağları (dDBN), doğrusal olmayan ve olasılıklı doğası nedeniyle beynin etkin 

bağlantısallığını modellemek için önerilmiştir. Ayrık dinamik Bayes ağını (dDBN) 

kullanarak beyin bağlantısallığını modellerken, modelin sınırlı beyin görüntüleme 

verilerine rağmen dahili beyin yapısını doğru bir şekilde yansıttığından emin 

olmalıyız. Literatürde çok sayıda dDBN yapısı öğrenme uygulamasının bulunmasına 

ve çoğunun çok sınırlı miktarda veri kullanmasına bağlı olarak, en azından veri 

sayısına, model karmaşıklığına ve öğrenme yaklaşımına bağlı olan model 

yakınsaması için bazı gerçekler açıkça belirtilmelidir. Bu tezde, başarılı bir 

öğrenmeyi garanti eden gerekli sayıda örneği bulmak için dDBN'nin örnek 

karmaşıklığını analiz ettik. İlk olarak, dDBN yapı öğrenmesi için teorik örnek 

karmaşıklığını bulduk. Bununla birlikte, teorik örneklem miktarı gerçekçi, pratik ve 

dDBN için geçerli değildir. Bu nedenle, dDBN için örnek karmaşıklığını analiz 

etmek için pratik ve sistematik bir yaklaşıma odaklandık. Ayrıca, bilgimiz dahilinde 

henüz yapılmayan fMRI verileri için denetimsiz ayrıklaştırma yöntemlerini de 
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değerlendirdik. Zamansal ilişkilere sahip sentetik fMRI verileri oluşturduk. Daha 

sonra, bu veri her bir ayrıklaştırma yönteminin performansını karşılaştırmak için 

dDBN tarafından etkin bağlantısallığı modellemek için kullanıldı. Üçüncü olarak, 

sinyal-gürültü oranını iyileştirmek için gerekli olan fMRI verilerinin yumuşatma 

aşamasını analiz ettik. Deneyler, standart sapması 4 mm olan Gauss fonksiyonu ile 

fMRI verilerinin yumuşatılmasının, dDBN ile yapılan etkin bağlantısallık göz önüne 

alındığında uygun olduğunu göstermiştir. Son olarak, bu sonuçları dikkate alarak, 

şizofreni ve kontrol grubunda beyin bağlantısını modellemek için dDBN kullandık. 

Sonuçlar, şizofreninin bir kopukluk sendromu olduğunu göstermiştir.  

 

Anahtar Kelimeler: Ayrıkçı Dinamik Bayes Ağları, fMRI, Yapı Öğrenimi, Örnek 

Karmaşıklığı, Etkin Bağlantısallık, Şizofreni  
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CHAPTER 1  

1 INTRODUCTION  

1.1 Motivation  

By functional magnetic resonance imaging, brain regions involved in various 

cognitive tasks can be detected [1]. Considering multiple processes that occur in 

brain regions that interact with each other, extracting brain connectivity from fMRI 

data during a specific task can help us to understand brain functioning. In fMRI, 

brain activity is measured by time-series signals based on blood oxygenation level-

dependent (BOLD) contrast. One of the most important connectivity approaches 

using these time series is undoubtedly effective connectivity [2]. Effective 

connectivity reveals the causal interactions between brain regions. Dynamic 

Bayesian Networks are appropriate to model the brain’s effective connectivity due 

to their non-deterministic behavior. Due to the complexity of modeling, two DBN 

methods are applicable, one is Gaussian DBN [3], where brain regions are modeled 

with linear gaussian relations, second one is discrete DBN (dDBN), where non-linear 

modeling is possible by discretizing the data and using multinomial distributions 

over the network parameters [4]–[6].  

A dDBN is specified by two components: a structure (graph or model), which 

represents the conditional independencies between random variables and parameters, 

which represent the conditional probability distributions among these random 

variables. When we model the brain with dDBN, the nodes correspond to the brain 

regions, and the structure refers to the effective connectivity of the brain.  

A series of steps are followed to model the effective connectivity of the brain using 

dDBN. Figure 1-1 gives each step for modeling the effective connectivity of the brain 
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by dDBN. The first step is preprocessing where smoothing is applied to the raw fMRI 

data to get rid of errors due to scanning procedure. Secondly, the time-series of the 

identified brain regions (i.e., the region of interests, ROIs) are obtained. This 

determination is either done by expert knowledge or by generalized linear model 

technique to find activated regions in the brain. Then 4-dimensional fMRI data is 

transformed into 1-Dimensional data for each region. Then, these time series are 

discretized, where data is converted to a finite number of discrete values. Finally, the 

discrete time-series are used as input to the dDBN learning procedure and the brain 

effective connectivity is modeled.  

 

Figure 1-1: Steps to obtain effective connectivity by dDBN 

In this thesis, three important steps are investigated and clarified to make sure that 

the modeling is done correctly. The first one is the required number of data samples 

to be able to model the data by the dDBN learning procedure. Although motivation 

was for fMRI data, the required sample size is in general related to model not the 

type of data used. Therefore, assessment of the number of samples is investigated 

independently from fMRI data. The second one is the discretization method to 

convert fMRI data into a discrete set of states. Such a discretization has a significant 

impact on the correctness of modeling. The information in the continuous values 

should be kept while the number of quantized states should be as low as possible for 

the computational complexity of the learning procedure. Although some 

discretization methods are used in dDBN connectivity studies with fMRI data in the 

literature [4]–[6], we have not yet found any studies which search the best 

discretization method for this purpose. The last issue is about the smoothing process 

which is done in the fMRI preprocessing step. Smoothing is the only option for fMRI 

data to improve the signal to noise ratio. However excessive smoothing may cause 

to lose the spatial information that fMRI data possess. In this thesis, we considered 
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an approach considering the properties of dDBN and time-series to find a suitable 

smoothing. 

In most of the effective connectivity studies, researchers did not consider the issues 

discussed in this thesis. However, they are very crucial for the correctness of the 

modeling.  

1.2 Contributions 

In this thesis, the most important and greatest contribution is that all the steps of the 

dDBN method for brain modeling are examined and every important issue is solved. 

Consequently, considering the studies of this thesis, the brain effective connectivity 

can be done by using fMRI data and the hidden sides of the brain can be illuminated. 

 This thesis contains various contributions in terms of the sample complexity of 

dDBN. Although our motivation relies on fMRI data, sample complexity analysis is 

in general related to discrete Dynamic Bayesian Networks. First of all, as far as we 

know this study is the first for putting forward the sample complexity for dDBN on 

model discovery. A practical approach rather than a theoretical one was applied to 

see the effect of sample size for learning the structure of dDBN. Theoretical results 

are not applicable for real applications, such as the effective connectivity of the brain 

by fMRI, because they state the need for immense sample size in order to find the 

structure correctly. However, our practical results state that less number of samples 

is enough to discover the correct structure. In addition, experimental results are used 

to practically assess the sample complexity with respect to network parameters. 

O(Kp+1) is found to be the sample complexity for binary and ternary valued dDBNs, 

where K indicates the cardinality of the network, and p indicates the maximum 

number of parents in the network. Another contribution is to evaluate how the BDeu 

score is affected by the number of samples and what kind of structures are learned 

as a result of the dDBN learning procedure considering the imaginary sample size 

used as a prior belief for BDeu metric. This contribution to the literature will enable 

researchers to use dDBN more accurately in their studies. dDBN is used in various 
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areas such as economics, bioinformatics and neuroscience. This contribution will 

advance the studies to use the dDBN technique in modeling.   

We had two main objectives for the discretization case. The first was to evaluate the 

state-of-the-art non-supervised discretization methods to model the effective 

connectivity of the brain with dDBN using fMRI data and to determine the best 

among them. The discretization methods used in this study are mostly explained in 

[7]–[9]. Our second aim was to use variation between successive time points in the 

discretization and to show that using the differential information performs better. To 

achieve these goals, first of all, we produced synthetic fMRI data from 1000 different 

connectivity models. Then, we discretized this data with all of the discretization 

methods and used them in dDBN learning. We compared the ground-truth models 

and the learned models with appropriate error metrics. It was observed that the use 

of the derivative rather than the fMRI data itself was more informative in dDBN 

modeling. Moreover, we tested discretization techniques using real fMRI data, and 

similar results were obtained with synthetic data. Discretization methods was only 

evaluated for fMRI data in this study. Hence any area using this technique should 

also consider and evaluate discretization methods for the data they use. The 

discretization technique is rather data-dependent, modelling method only can be used 

as an evaluation metric to find the best discretization method. 

Another contribution is related to the smoothing step of fMRI preprocessing. The 

results of the discretization step suggested that scanner noise has a negative effect on 

the discretization. Spatial smoothing is the only issue that enhances the signal to 

noise ratio. To do that fMRI data was smoothed for various sigma values of Gaussian 

filter. Then the resulted dDBN models were analyzed and it was found that for 

smoothing, sigma should between 4-7 mm, and 4 mm found to be more promising.  

1.3 The Outline of the Thesis 

This thesis contains four main studies. The first one is the sample complexity 

analysis of discrete dynamic Bayesian networks. The second one is the evaluation of 

discretization methods for fMRI data. The third one is to find suitable spatial 
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smoothing for fMRI data considering the dDBN method. The last one is to find the 

effective connectivity of the brain by using the data belonging schizophrenia and 

control. Since we have a total of four sub-studies, we will introduce each study 

separately. In Chapter 2 the brain connectivity approaches focusing on effective 

connectivity will be explained. In chapter 3 discrete dynamic Bayesian networks and 

structure learning are explained. In chapter 4, sample complexity analysis of discrete 

dynamic networks with its results and discussions is provided. In chapter 5 

evaluation of discretization methods with literature review, results and discussion 

are explained. In chapter 6, the smoothing step of the fMRI preprocessing is 

explained. In chapter 7, the effective connectivity approaches are explained with an 

application on real fMRI data. Lastly, we conclude this thesis. 
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CHAPTER 2  

2 BRAIN CONNECTIVITY 

The main property of the brain's working mechanism is the segregation and 

integration of the information processed. The paradigm considered in neuroscience 

studies is that the interconnectivity between brain regions is directly related to 

optimal information processing. Functional interactions between regions of the brain 

are observed by the synchronized activation between both local and distant regions. 

In other words, the brain is a complex structure that can be spatially distant from 

each other but functionally interacts with each other. Brain connectivity is generally 

studied under three headings [10].  

• Structural connectivity: This connectivity examines the anatomic 

connectivity of distant neuron assemblies connected by axonal pathways of 

the brain regions [11]. The information sent in the axons is transmitted to 

other regions via synaptic connections [12]. We call all these axon pathways 

of the brain as white matter. This connectivity is expected to be more stable 

and the same for every person since it shows the direct structural property of 

the brain. It is more stable and permanent than other connectivity methods. 

• Functional connectivity: It shows whether the neurons that are considered 

spatially separate have similar activation patterns during any functional task 

[2], [13]. It shows the statistical dependence between different brain regions 

in information processing. Therefore, this method is based on statistical 

measurement methods such as correlation, covariance, and coherence. 

• Effective Connectivity: This is the connectivity that possesses the effect of 

one neural system to another neural system [2], [13]. It shows the temporal 

relationship between brain regions. It is defined as a directional map of 
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connectivity between brain regions. This temporal causality is usually 

obtained by time series analysis of data from brain regions. 

2.1 The Methods for Effective Connectivity 

Although there are several methods proposed to study effective connectivity of the 

brain using fMRI and EEG data, in this section, commonly used effective 

connectivity methods are explained. These methods are Granger Causality, 

Structural Equation Modelling, Dynamic Causal Modelling and Bayesian Networks. 

2.1.1 Granger Causality 

Suppose we have two time series, x and y. Our goal is to find the causality between 

x and y. If a time series x provides predictive information about the future of time 

series y better than past values of y, x is said to Granger-cause y [14], [15]. An 

autoregressive model is used to find this causality. In this section, we will explain 

how to calculate causality only for two variables. The same rule may apply to more 

than two time series. A univariate autoregressive model will be generated first. 

𝑥(𝑡) = ∑𝑎𝑘𝑥(𝑡 − 𝑘)

𝑝

𝑘=1

+ 𝑢1(𝑡) 

𝑦(𝑡) = ∑𝑏𝑘𝑦(𝑡 − 𝑘)

𝑝

𝑘=1

+ 𝑣1(𝑡) 

(2.1) 

In the given equation, ak represents the linear relation between the time series x at a 

particular time point t and its k previous values. k indicates the index of temporal 

dependency. This equation is fitted separately for x and y, then u1 and v1 vectors are 

obtained as error of prediction. The magnitude of these vectors shows how suitable 

our data is for the given model. Secondly, x and y are then fitted to a bivariate 

autoregressive model which is expressed by the following equations. 
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𝑥(𝑡) = ∑𝑎𝑘𝑥(𝑡 − 𝑘) + 𝑐𝑘𝑦(𝑡 − 𝑘)

𝑝

𝑘=1

+ 𝑢2(𝑡) 

𝑦(𝑡) = ∑𝑏𝑘𝑦(𝑡 − 𝑘) + 𝑑𝑘𝑥(𝑡 − 𝑘)

𝑝

𝑘=1

+ 𝑣2(𝑡) 

(2.2) 

In equation 2.2 C indicates the linear relation between x(t) and y(t-k). u2 and v2 show 

the prediction error due to the fitting process. In the Granger causality method, the 

variances of the error vectors are used to check the strength of the effective 

connectivity. The following equations show variance calculations. 

𝜎𝑥|𝑥 = 𝑣𝑎𝑟(𝑢1) 

𝜎𝑦|𝑦 = 𝑣𝑎𝑟(𝑣1) 

𝜎𝑥|𝑥𝑦 = 𝑣𝑎𝑟(𝑢2) 

𝜎𝑦|𝑦𝑥 = 𝑣𝑎𝑟(𝑣2) 

(2.3) 

Then Granger causality of y over x and x over y are calculated by the following 

equation. 

𝐹𝑌→𝑋 =
𝜎𝑥|𝑥

𝜎𝑥|𝑥𝑦
 

𝐹𝑋→𝑌 =
𝜎𝑦|𝑦

𝜎𝑦|𝑦𝑥
 

(2.4) 

2.1.2 Structural Equation Modelling 

The most important aspect of this technique that differs from other techniques in 

finding effective connectivity is that it considers the anatomical connectivity of the 

brain [16]. While the structural connectivity of the brain is used as a priori 

information, a connectivity model is formed using the covariance between brain 

regions. We will only give introductory information about the model. The model is 

expressed by the following equation. 

𝑦 = 𝐵𝑦 + Г𝑥 + 𝜀 (2.5) 
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y is an m*1 vector representing dependent variables. x is an n*1 vector of 

independent variables, ε is the error vector, B is a m*n coefficient matrix for 

dependent variables and Г is the coefficient matrix for the independent variables x. 

The diagonal elements of the matrix B are 0 since we think variables do not influence 

themselves. In order to evaluate the model, covariances of the x and ε are 

investigated.  

𝛷 = 𝐸[𝑥𝑥𝑇] 

𝛹 = 𝐸[𝜀𝜀𝑇] 
(2.6) 

Φ is defined as the covariance matrix of x and Ψ is defined as the covariance matrix 

of error term ε. If Z is a vector containing all the variables in the network which is 

described in equation 2.7, then the covariance matrix of Z can be defined in equation 

2.8, where Z is the n* p matrix of p variables in the network for each n observation.  

𝑍 = [𝑥1, 𝑥2, … , 𝑥𝑛, 𝑦1, 𝑦2 , … , 𝑦𝑛] (2.7) 

𝛴𝑜𝑏𝑠 =
𝑍𝑍𝑇

𝑁 − 1
 (2.8) 

 

The covariance matrix from the model can be calculated by the following expression. 

𝛴𝑚𝑜𝑑 = [
𝛷 (𝐼 − 𝐵)−1𝛷

((𝐼 − 𝐵)−1𝛷)𝑇  (𝐼 − 𝐵)−1(Г𝛷Г+ 𝛹)((𝐼 − 𝐵)−1𝛷)𝑇
] (2.9) 

 

The goal of this method is to minimize the difference between these two covariance 

matrices. In this minimization, the number of unknowns which is related to B,Ψ,Г 

and Φ are more than the number of equations. Therefore, this method needs prior 

information about the model in order to find the unknown parameters. Thus, this 

model has to point to the existence of some causal relations among the variables. The 

remaining parameters are found by fitting the model so that the difference between 

covariance matrices defined in equations 2.8 and 2.9 is minimized. By using the 

maximum likelihood method, the effective connectivity between the variables is 

found by the following expression where tr(.) denotes the trace of a matrix. 

𝐹 = log|𝛴𝑚𝑜𝑑| + 𝑡𝑟(𝛴𝑜𝑏𝑠) − log|𝛴𝑜𝑏𝑠| − 𝑝 (2.10) 
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2.1.3 Dynamic Causal Modelling 

This modeling addresses causal interactions between brain regions by creating and 

testing realistic models of interactive neural areas [17]. For this reason, DCM needs 

extreme prior information. DCM finds the couplings between brain regions and also 

aims to predict how these are affected by the changes in the experiment. DCM first 

begins by modeling brain regions that are supposed to interact, and adds a model of 

how a signal that can be measured by fMRI can form neuronal activity using BOLD 

response. Modeling is performed with a hemodynamic response function that 

describes how this neuronal activity transforms the BOLD signal. The DCM method, 

which models the connectivity with a Bayesian approach, solves the interaction 

between brain regions with the following equation. 

𝑑𝑧

𝑑𝑡
= (𝐴 +∑𝑢𝑗𝐵

(𝑗)

𝑚

𝑗=1

)𝑧 + 𝐶𝑢 (2.11) 

 

Here t is the continuous-time, u shows the input given during the experiment. Matrix 

A shows the interaction between brain regions, independent of the experiment, 

whereas matrix B shows the interaction resulting from the experimental input. C 

matrix shows the effect of the experiment input directly on the brain region. The 

parameters A, B and C in this equation are the parameters to be estimated in the 

learning part of the model. Therefore, the experimental design has a significant 

impact on DCM analysis. However, DCM is also used to analyze the effective 

connectivity for the resting-state fMRI where there is not any experimental input  

[18]. 

The computational complexity of this method is immense. Generally, it is 

investigated by some predetermined models. These specific models are tested by 

DCM analysis and the best fitting one out of the predetermined models is chosen as 

the model for the connectivity of the brain, with a Bayesian approach. Then, on the 
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best model, the strength of the effective connectivity is calculated and expressed to 

represent how much a brain region affects another brain region. 

2.1.4 Bayesian Networks 

Bayesian networks are probabilistic graphical models that show the independencies 

between certain random variables. This model is often preferred for fMRI and EEG 

data[4], [5], [19]. For effective connectivity studies, dynamic Bayesian networks are 

preferred over BN. Because this model investigates the temporal independencies 

between random variables. Dynamic Bayesian Networks are appropriate to model 

the brain’s effective connectivity due to their non-deterministic behavior. Due to the 

complexity of modeling, two DBN methods are applicable, one is Gaussian DBN 

[3], where brain regions are modeled with linear Gaussian relations, second one is 

discrete DBN, where non-linear modeling is possible by discretizing the data and 

using multinomial distributions over the network parameters [4]–[6]. The 

connectivity between the brain regions is assumed to be linear in most of the effective 

connectivity methods such as Linear Gaussian Model, Partial Directed Coherence 

and Granger Causality, Structural equation modeling, but this linear relationship may 

not be valid for the brain. Therefore, dDBN, which is a non-linear method, is one 

step ahead of other effective connectivity methods. 

One of the disadvantages of DCM in multiple brain regions is the excess 

computational needed. Therefore, not all models can be tested. But for ease of 

calculation, Bayesian networks allow us to test any model. Secondly, the modeling 

process does not depend on the experimental design. The experimental design is, of 

course, very critical for fMRI studies, but this method does not require experimental 

design for analysis. For this reason, BNs stands out one more step. 

The detailed background information about discrete Bayesian Networks is provided 

in the following chapter. 
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CHAPTER 3  

3 DISCRETE DYNAMIC BAYESIAN NETWORKS 

3.1 Introduction 

Bayesian networks are directed and acyclic graphical models to represent the joint 

probability distribution over a set of random variables [20]. A graph is represented 

by a set of nodes V= {i: i =1, 2, …, n} and edges E= {eij :eij = 1 if the i-th node is in 

the parent set of the j-th node}. Each node in the graph represents a random variable 

and edges show the causal independencies between certain variables. Given the 

parents of any node in the graph, that node is independent of the non-descendants, 

which is the nature of the probability and graph theory. If a certain amount of data is 

provided, both the structure of the underlying Bayesian network and the conditional 

probability distributions of the variables could be modeled. For Bayesian Network 

that model discrete random variables (discrete Bayesian Network), the causal 

relationship between a node and its parents are parameterized by conditional 

probability tables which explicitly describe the probability of the i-th node having 

any particular discrete state given the state of its parents.  

Dynamic Bayesian network (DBN) is a graphical model that represents the causal 

characteristics of the variables over time [21]. Discrete Dynamic Bayesian networks 

is a specialization of DBN that models the temporal processes between discrete-

valued random variables. dDBN is divided into columns of nodes where each column 

represents the observation of variables for a particular time frame. The edges are 

only designed to connect nodes between these columns, and edges are always from 

the previous state to the next state, i.e. edge of a dDBN is designed to point forward 

in time.  

Some simplifying assumptions are used for the sake of dDBN complexity and 

convergence during model learning. The first assumption is that the time series is 
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stationary which means that the conditional distribution is the same for all time 

points. The second assumption is that the model obeys first-order Markov property: 

𝑃(𝑥𝑖(𝑡)|𝑥1(𝑡),… , 𝑥𝑛(𝑡), 𝑥1(𝑡 − ∆𝑡),… , 𝑥𝑛(𝑡 − ∆𝑡),… , 𝑥1(𝑡 − 𝑘∆𝑡),… , 𝑥𝑛(𝑡 − 𝑘∆𝑡))

= 𝑃(𝑥𝑖(𝑡)|𝑝𝑎𝑖(𝑡 − ∆𝑡)) 

Here xi is the i-th variable, n is the total number of variables, t is the discrete time, 

∆t represents the time delay to model the causal relationships, k refers to the order of 

the model, pai represents the parent set of the i-th node.  

dDBN structure learning targets to find the present edges, eij, and the conditional 

probability distribution of the variables based on the existing edges. The graphical 

structure G is learned from the dataset D: 

𝐺∗ = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑃(𝐺|𝐷)) (3.1) 

By using the Bayes rule 

𝑃(𝐺|𝐷) =
𝑃(𝐷|𝐺)𝑃(𝐺)

∑ 𝑃(𝐷|𝐺)𝑃(𝐺)𝐺
 

and taking the logarithm of both sides and ignoring the denominator, since it is just 

a constant, the score can be defined as: 

𝑠𝑐𝑜𝑟𝑒(𝐺:𝐷) = 𝑙𝑜𝑔(𝑃(𝐷|𝐺)) + 𝑙𝑜𝑔 (𝑃(𝐺)) 

The right-hand side of the expression is the sum of the likelihood and the prior 

information about the structure. Generally, the prior is taken as the uniform 

distribution over the structures, and this concludes that maximizing the total score is 

the same as maximizing the likelihood:  

𝑃(𝐷|𝐺) = ∫𝑃(𝐷|𝐺, 𝜃)𝑃(𝜃|𝐺)𝑑𝜃 

Here θ is the parameter set that defines the conditional distributions over the random 

variables of the given structure G. Several distributions have been used for the prior 

P(θ|G). Cooper and Herskovits  [22] take the prior as uniform distribution for each 

parameter of θ and apply the well-known K2 score. Heckerman  et al. [23] use 
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Dirichlet distribution with parameters α (imaginary sample size) and obtain the 

following expression for the likelihood: 

𝑙𝑜𝑔𝑃(𝐷|𝐺) = log (∏∏
Γ(𝛼𝑖𝑗)

Γ(𝛼𝑖𝑗 +𝑁𝑖𝑗)
  ∏

Γ(𝛼𝑖𝑗𝑘 +𝑁𝑖𝑗𝑘)

Γ(𝛼𝑖𝑗𝑘)

𝑟𝑖

𝑘=1

  

𝑞𝑖

𝑗=1

𝑛

𝑖=1

)  

𝑙𝑜𝑔𝑃(𝐷|𝐺) =∑∑log (
Γ(𝛼𝑖𝑗)

Γ(𝛼𝑖𝑗 + 𝑁𝑖𝑗)
)

𝑞𝑖

𝑗=1

𝑛

𝑖=1

+ ∑ 𝑙𝑜𝑔(
Γ(𝛼𝑖𝑗𝑘 +𝑁𝑖𝑗𝑘)

Γ(𝛼𝑖𝑗𝑘)
)

𝑟𝑖

𝑘=1

 (3.2) 

 

Where qi denotes the total number of parental configurations of i-th node, ri 

represents the total discrete states that i-th node can take, n is the number of nodes, 

Nij represents the number of samples that i-th node is observed given the parental 

configuration represented by j, Nijk is the total number of samples that i-th node take 

one of its discrete state k given the parental configuration represented by j, αij and 

αijk are the prior distributions for Nij and Nijk  and they are specified by α/qi and α/qiri 

respectively. This equation is called the Bayesian Dirichlet equivalence with a 

uniform prior (BDeu).  

3.2 BDeu and BIC Scores 

Suppose that the data D consist of M samples, when M→∞ we have that[24]: 

𝑙𝑜𝑔𝑃(𝐷|𝐺) = 𝐿(𝜃𝐺 : 𝐷) − 
log𝑀

2
𝐷𝑖𝑚[𝐺] + 𝑂(1) (3.3) 

 

Where L(θG:D) is the maximum log-likelihood of parameters of the graph, θG and 

Dim[G] is the model dimension, or the number of independent parameters in G.  

Without the last term O(1), remaining expression is called Bayesian Information 

Criteria (BIC) which is also commonly used as a scoring method for Bayesian 

networks. If only the first term, the log-likelihood score, is used to find the best 

structure, some limitations will be faced. For example, log-likelihood tends to prefer 
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networks with more parents as the samples of variables increase [24]. However, 

adding the second term Dim[G] decreases the score of complex structures. This leads 

to a tradeoff between fit to data and model complexity: as the dependence between 

a variable and its’ parents increases, we get higher score due to the likelihood term, 

however as the network gets more complex, we get lower score due to the second 

term in equation 3.3.    

The likelihood score can be decomposed as follows: 

𝐿(𝜃𝐺 : 𝐷) = 𝑀∑𝑰(𝑥𝑖; 𝑝𝑎𝑖
𝐺)

𝑛

𝑖=1

−𝑀∑𝑯(𝑥𝑖)

𝑛

𝑖=1

 (3.4) 

 

Where I(xi;pai
G) is the mutual information between the random variable xi and their 

parents, and H(xi) is the entropy of variable xi.  Using equation 3.3 and 3.4 we can 

write the BIC score as follows: 

𝑙𝑜𝑔𝑃(𝐷|𝐺) = 𝑀(∑𝑰(𝑥𝑖; 𝑝𝑎𝑖
𝐺)

𝑛

𝑖=1

−∑𝑯(𝑥𝑖)

𝑛

𝑖=1

) −
log𝑀

2
𝐷𝑖𝑚[𝐺] (3.5) 

 

Suppose that we try to find the difference of BIC scores between two graphs, namely 

G1 and G2.  

𝑠𝑐𝑜𝑟𝑒𝑏𝑖𝑐(𝐺1: 𝐷) − 𝑠𝑐𝑜𝑟𝑒𝑏𝑖𝑐(𝐺2: 𝐷) = ∆𝑀−
log𝑀

2
(𝐷𝑖𝑚[𝐺1] − 𝐷𝑖𝑚[𝐺2]) 

∆ =∑𝑰(𝑥𝑖; 𝑝𝑎𝑖
𝐺1)

𝑛

𝑖=1

−∑𝑰(𝑥𝑖; 𝑝𝑎𝑖
𝐺2)

𝑛

𝑖=1

 

 

(3.6) 

Equation 3.6 is composed of two terms: the first term is the difference due to the 

likelihood, the second term is the difference of scores due to the model dimension. 

The first term changes linearly with the number of samples M, however, the second 

term changes logarithmically. This affects the structure obtained during learning 

when different numbers of data samples are used from the same underlying 
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probability distribution which is to be modeled. In order to analyze the effects of 

different configurations, G1 and G2, on BIC metric, let's discuss some special cases: 

• Let G1 be the actual structure from which the data is sampled, in other words, 

it is the true structure G*, and G2 is any graph that does not contain all of the 

temporal relations between random variables that the true structure does. As 

M→∞ ∆ will be positive and high because G2 contains different temporal 

relations than G*. Therefore, the first term of equation 3.6 starts to dominate 

the second term, as a result of the fact that the linear term increases faster 

than the logarithmic term. Therefore, the BIC score of G1 will be higher than 

that of G2.  

• Let G1 and G2 both contain the same temporal relations as the true structure 

G*, however, both have a higher number of edges than G*. In this case, the 

likelihood term of the equation 3.6 will converge to 0 since both graphs 

indicate the same temporal relations with the true structure, whereas the 

second term will be different for G1 and G2 if they differ in terms of model 

dimension. Hence, the structure with a lower number of parameters, Dim[G], 

will get the highest score. This result concludes that the graphs which have 

the same temporal relations as G* but have a higher number of edges will get 

lower score than G*. 

We conclude from these configurations that when the amount of data M→∞ G* is 

the structure that maximizes BIC score and all structures other than G* have strictly 

less scores. This property is called the consistency of a score, hence BDeu metric is 

a consistent score because for M→∞ BDeu score is approximated as BIC score; see 

equation 3.3 [24].  

Another important property of BIC and BDeu metrics is the score decomposability: 

the total score of a certain structure can be written as the sum over family scores of 

individual nodes in the structure. By using score decomposability, we can write the 

equation 3.2 and 3.3 as:  
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𝑠𝑐𝑜𝑟𝑒(𝐺:𝐷) = 𝑙𝑜𝑔𝑃(𝐷|𝐺) = ∑𝐹𝑎𝑚𝑆𝑐𝑜𝑟𝑒(𝑥𝑖|𝑝𝑎𝑖
𝐺 : 𝐷)

n

i

 

Where the family score of each node is defined for the BDeu score: 

𝐹𝑎𝑚𝑆𝑐𝑜𝑟𝑒(𝑥𝑖|𝑝𝑎𝑖
𝐺 : 𝐷) =∑log(

Γ(𝛼𝑖𝑗)

Γ(𝛼𝑖𝑗 +𝑁𝑖𝑗)
)

𝑞𝑖

𝑗=1

+∑𝑙𝑜𝑔(
Γ(𝛼𝑖𝑗𝑘 + 𝑁𝑖𝑗𝑘)

Γ(𝛼𝑖𝑗𝑘)
)

𝑟𝑖

𝑘=1

 

Score decomposability provides efficient learning algorithms since it allows local 

search [25]. Maximizing the overall score can be reduced to several optimization 

problems with only maximizing the individual family scores. For a given node, all 

possible parent combinations are traced and the one with the highest score is taken 

as the family of that node. This method is applicable for DBN because adding any 

edges to the graph of a DBN will not violate the directed acyclic graph property of 

the graph; since edges of DBN show the independence between the time slices. For 

Bayesian Networks, this method is applicable if and only if the order of the nodes is 

predetermined [24], [25]. 
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CHAPTER 4  

4 SAMPLE COMPLEXITY ANALYSIS OF DISCRETE DYNAMIC BAYESIAN 

NETWORKS 

4.1 Introduction 

In the literature, researches on the adequacy of the number of samples consider 

mostly the conditional probability distributions of Bayesian networks (BNs). They 

examine the error between the actual distribution from which the data was sampled 

and the distribution learned from the sampled data using Hoeffding’s inequality [24], 

[26]–[29]. All these studies use the Kullback-Leibler distance between the original 

and the learned model distributions to decide on the sample complexity. Zuk et al. 

[30] go beyond finding the right distribution and show the relationship between the 

correct structure with lower bounds and the number of samples. They argue that the 

amount of the samples should be more for finding the correct structure than finding 

the correct distribution. They demonstrate this by using the Hoeffding’s inequality 

and the relative entropy distance, and state that the probability of the correct 

structure’s score being greater than the score of any other structure is a function of 

the number of samples. They concentrate on Bayesian Networks with binary random 

variables and state the bounds on the probability of learning a wrong structure when 

Bayesian Information Criteria (BIC-score) is used. Ghoshal and Honorio [31] study 

on the information-theoretic limits of learning the structure of Bayesian Networks 

with discrete and continuous random variables and show that the minimum number 

of samples by any procedure to recover the correct structure grows with the number 

of random variables, for non-sparse Bayesian Networks. Dai et al. investigate the 

relation between the sample size and the error on model discovery (structure 

learning) [32]. The synthetic data generated from known models of various 

complexity are used, and the effect of sample size on two learning procedures is 



 

 

20 

searched. Their results show that increasing model complexity requires more 

samples to discover the model correctly. They also investigate the effect of the weak 

link (edge) on the model discovery and find out that finding a weak link through 

learning requires more samples. They have not analyzed the effect of parent size and 

number of random variables systematically. But their results help to understand that 

the number of samples is critically important to discover the correct structure. 

Brenner and Sontag [33] propose a new scoring method for Bayesian Networks, 

which has a sample complexity of the order O (n2), where n is the number of binary 

nodes in the network. In addition, they compare their method with Bayesian 

Information Criteria metric (BIC) and Max-Min Hill Climbing (MMHC) method and 

show that their scoring metric requires less number of samples for discovering the 

correct structure through the learning procedure. 

In order to define the sample complexity of dDBNs, we firstly started with the 

theoretical studies which define the sample complexity of Bayesian networks (BN) 

for structure learning. We used approximate methods to obtain a theoretical sample 

complexity for dDBNs and showed that it is not practical to use the theoretical 

approaches for dDBNs where the number of samples needed to learn the correct 

structure practically is far less than the theoretic sample size. Therefore, we 

developed an experimental method by posing the hypothesis that the practical sample 

complexity would be less than the theoretical ones for dDBN. We produced synthetic 

data for binary and ternary valued random variables, to see the effect of the 

cardinality on sample complexity. The structures from which the synthetic data was 

produced were carefully selected to observe the effect of the number of nodes and 

the number of parents accurately. We then examined the effect of the number of 

samples on structure learning with the BDeu score where the error is defined as 

structural Hamming distance between the learned structure and the ground-truth 

structure from which the data was generated. We then examined the relationship 

between the error due to the number of samples and the dDBN parameters such as 

parent size, cardinality and node numbers. Finally, we reached a practical definition 

of sample complexity for binary and ternary valued dDBN. 
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4.2 Theoretical Sample Complexity of dDBN 

In this section, the relationship between the model discovery for the dDBNs and the 

number of samples, i.e., sample complexity, will be explained. Let G* be the real 

structure and PB* be the corresponding probability distribution from which the data 

is sampled. Our goal is to find the relationship between the score of any graph G and 

the actual structure G*. We will discuss the results presented in Zuk et al. [30] where 

they use relative entropy distance and examine the probability of the correct 

structure’s score being smaller than the score of any other structure, given the 

number of samples.  In this study, graph G has been examined considering two cases: 

Graphs that are not I-maps for PB*, and graphs which are I-maps for PB*, yet have a 

higher dimension than G*. Since the second case is not valid for dDBN, we will only 

consider the first case and specify the effect of the number of samples. They conclude 

the sample complexity study for binary random variables with the following 

expression: 

𝑃(𝑆𝑀(𝐺 ∗) < 𝑆𝑀(𝐺)) ≤ (
𝑛
2
)𝑛2𝑛+3𝑒− 𝜎

2𝑀/3 (4.1) 

 

In this expression, SM is the scoring function of the Bayesian Network, n is the 

number of random variables, M is the number of samples, and σ is the following 

expression: 

𝜎 = min{
𝛾𝑛

2
,

𝐼𝐶𝐵

2𝑛+2|𝑛𝑙𝑜𝑔 (
𝛾
2
) + 1|

} (4.2) 

𝐼𝐶𝐵 = min 
𝑖,𝑗

{ min 
𝑠⊂{𝑥1,…,𝑥𝑛}\{𝑥𝑖,𝑥𝑗}

{𝐼𝑃𝐵∗(𝑥𝑖, 𝑥𝑗|𝑆)}} 
(4.3) 

 

In this expression γ is the minimum conditional probability distribution in PB*, and 

ICB is the minimum information content in PB*. Equation 4.1 gives the probability of 

maximizing a wrong structure with respect to the parameters of BNs. If we leave M 
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in this inequality alone and the probability is assumed to be smaller than δ, we get 

the following inequality: 

𝑀 ≥
3

𝜎2
𝑙𝑛 (

(
𝑛
2
)  𝑛 2𝑛+3

𝛿
) (4.4) 

 

For equation 4.4, if σ gets smaller, the minimum required sample size M increases. 

To be able to get a general expression for M we need to consider the worst case, 

hence we need to find the minimum σ value using equation 4.2. In this equation, γ 

determines whether the first expression or the second expression should be taken for 

minimum σ. γ shows the lowest conditional probability distribution and we cannot 

make any assumptions for the minimum of this value. The exponential representation 

of γ in the first expression shows that this expression is more dominating than the 

second one since γ can take random values in the interval [0, 1/K], where K is the 

cardinality of random variables. As a result, the first expression should be taken for 

σ. The proof of this decision is provided in Appendix A. So, the following 

approximate expression is considered for the minimum number of samples: 

𝑀 ≅
12

𝛾2𝑛
𝑙𝑛 (

(
𝑛
2
)  𝑛 2𝑛+3

𝛿
) (4.5) 

 

The most effective part of this equation is γ because it is the lowest probability 

distribution, and the highest value it can get in a binary network is ½. Even if γ is ½, 

the minimum number of samples (M) increases proportionally to 22n. This confirms 

the need for an extremely high amount of data. Table 4-1 shows the required number 

of samples for learning the structure which includes binary-valued random variables 

based on equation 4.5. These values are not practical because obtaining these 

amounts of samples is far from reality. Our practical results indicate that much less 

sample size is enough to learn the correct structure for dDBNs.  
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Table 4-1: M values for various γ and n for δ=0.1 

  n 
  3 4 5 6 7 

γ 

0.5 6,65E+03 3,17E+04 1,45E+05 6,41E+05 2,80E+06 

0.3 1,43E+05 1,89E+06 2,39E+07 2,94E+08 3,57E+09 

0.1 1,04E+08 1,24E+10 1,41E+12 1,56E+14 1,71E+16 

 

4.3 Effect of Number of Samples on Structure Learning 

In this section, the effect of sample size on structure learning of dDBN is explained 

by practical experiments using synthetic data. First of all, various synthetic data was 

generated based on a network model which consists of binary or ternary valued 

discrete random variables with known conditional probability distributions. In order 

to cover all possible parental relationships, each variable in the model has a different 

number of parents. For example, for a three-node graph, one node has three parents, 

i.e., has connections from all of the nodes, one node has two parents and the 

remaining node has a single parent. As an example, Table 4-2 and Figure 4-1 show 

connectivity relations among six random variables. Node number 6 has a single 

connection from node number 1, whereas node number 1 has connections from all 

six nodes. Using this kind of structure provides us to see the effect of the parent size 

and node size separately in the sample complexity analysis.   

Table 4-2: An example of connectivity for a six-variable network, from rows to 

columns. If there is a connection, the cell has value 1. 

nodes 1 2 3 4 5 6 

1 1 1 1 1 1 1 

2 1 1 1 1 1 0 

3 1 1 1 1 0 0 

4 1 1 1 0 0 0 

5 1 1 0 0 0 0 

6 1 0 0 0 0 0 
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Figure 4-1: Nodes and edges of a six-variable network, each node having a 

different number of parents. 

For binary-valued random variables, synthetic data was created from networks 

having node numbers changing from three to ten, based on the approach for possible 

structures defined above. For each different network structure, one hundred different 

time series were generated, each of which was created from a network having 

different conditional probability distributions. No constraint on the probability 

distributions was made, which is more fair.  Similarly, synthetic data was produced 

for the structures which include ternary valued nodes, with one difference, data was 

generated from the structures which have node number starting from three up to 

eight. Because learning the minimum number of samples for more than eight nodes 

requires very high computation power. The structures used for synthetic data creation 

were kept as ground truth. 

In chapter 3 it was described that finding the best structure for a dDBN is the same 

as finding the best parent combination for the individual nodes. Learning parents of 

the first node in Table 4-2 does not depend on whether parents of other nodes are 

learned or not, due to score decomposability of the BDeu metric. This leads to the 

freedom of analyzing each node separately. As a result, the error between the ground 

truth structure and the learned structure (in terms of average structural Hamming 



 

 

25 

distance) was recorded separately for each node. The following equation shows the 

structural error, where Gi is the learned structure of the i-th node, Gi* is the ground-

truth structure for that node and n is the total number of nodes. 

𝑒𝑟𝑟𝑜𝑟 =
1

𝑛
∑|𝐺𝑖 − 𝐺𝑖

∗|

𝑛

𝑖=1

 (4.6) 

4.3.1 Data size analysis 

In order to investigate the effect of sample size on the convergence of structure 

learning for dDBN, learning was performed for various sample sizes, where the 

imaginary sample size is considered as 1. For example, for a six-node network 

consisting of binary random variables, to analyze the effect of data size for node 

number 1, structure learning was performed when the number of samples is increased 

from 10 up to 100.000 in an exponential manner. The same procedure was also 

performed for the networks having ternary valued variables, but this time the length 

of the generated data was determined so that learning successfully finds the ground-

truth structure. During structure learning, if error dropped to 0, which means the 

structure was found perfectly, the algorithm was terminated to save from 

computation time, and the length of the data at the termination time was recorded as 

to be sufficient.  Figures 4-2 and 4-3 show the mean structural error of the hundred-

time series versus the number of samples for binary and ternary nodes having various 

number of parents. It is observed that there should be a minimum number of data 

samples to discover the model correctly. Explicit analysis of this figure will be 

explained in more detail in the next chapter by considering the imaginary sample 

size of the BDeu metric.  Also, in Tables 4-3 and 4-4, the minimum required number 

of samples that are needed for learning the structure of networks having various node 

numbers and various parent numbers are listed, for binary and ternary variables, 

respectively.  In order to obtain the minimum number of samples for an error to be 

0.1, we used linear interpolation between successive error values.  
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Figure 4-2: Mean error vs number of samples for various parent sizes for an 8-node 

network with binary nodes. 

 

Figure 4-3: Mean error vs number of samples for various parent sizes for an 8-node 

network with ternary nodes  
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Table 4-3: Minimum required number of samples for various number of nodes and 

parent sizes, to find the correct dDBN structure with a mean error smaller than 10 

percent for binary-valued random variables. 

  parent size 

  1 2 3 4 5 6 7 8 9 10 

n
u
m

b
er

 o
f 

n
o
d
es

 

3 216 440 480 - - - - - - - 

4 162 197 414 720 - - - - - - 

5 68 175 344 653 1455 - - - - - 

6 75 154 262 546 1175 2308 - - - - 

7 56 108 223 447 1000 1962 4444 - - - 

8 57 78 176 411 953 1915 4322 9192 - - 

9 78 91 160 384 856 1935 4089 8870 19221 - 

10 83 95 182 374 814 1904 3946 8673 18750 42843 

 

 

 

Table 4-4: Minimum required number of samples for various number of nodes and 

parent sizes, to find the correct dDBN structure with a mean error smaller than 10 

percent for ternary valued random variables. 

  parent size 

  1 2 3 4 5 6 7 8 

n
u
m

b
er

 o
f 

n
o
d
es

 

3 87 368 1378 - - - - - 

4 58 344 1184 3819 - - - - 

5 57 282 989 3670 17200 - - - 

6 62 221 963 3606 17391 44955 - - 

7 93 204 908 3530 16943 45035 148776 - 

8 128 215 896 3472 16364 44872 140786 483482 
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Figure 4-4: Mean error vs number of samples for various node numbers where each 

node has the same number of parents. This figure is for binary-valued networks, and 

each node has six parents.  

 

Figure 4-5: Mean error vs number of samples for various node numbers where each 

node has the same number of parents. This figure is for ternary-valued networks, and 

each node has five parents.  
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Figures 4-4 and 4-5 illustrate an example of the average structural Hamming distance 

between the actual and learned structures for various number of nodes that have the 

same number of parents, 6 for binary and 5 for ternary.  Here our purpose is to see 

the effect of node number on structure learning where the number of parents is kept 

constant for all nodes. This result concludes that the minimum number of samples to 

guarantee a successful dDBN structure learning depends on the parent size, not the 

number of random variables. 

4.3.2 The expression for practical sample complexity 

In this section, the minimum number of samples that is required for the convergence 

of dDBN structure learning is expressed as a function of the network parameters. 

These parameters consist of the number of variables n, the cardinality of random 

variables K, and the maximum number of parents p. We used the results presented 

in Tables 4-3 and 4-4 to fit an expression of these parameters. The expression of 

practical sample complexity represented only when imaginary sample size is 1. 

Let’s start with the simple expression,  

𝑀= min 
𝑀

 
|𝐺(𝑀) − 𝐺∗|

𝑛2
> 𝜖 (4.7) 

 

where M is the length of time series, G(M) is the structure found by using M samples 

of data, G* is the ground truth structure, n is the number of random variables. This 

equation implies that our objective is to find M, which is the minimum required 

number of data samples that guarantees the structure is found correctly with an error 

ϵ. We divided the structural error term by n2 to normalize it. Note that a structure can 

be represented by a n x n matrix with n2 edges.  

First of all, this equation can be divided into sub-optimization problems, one for each 

node in the network. In other words, the minimum number of samples to find parents 

of a random variable i can be expressed independently as follows:  
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𝑀𝑖 = min 
𝑀𝑖
 
|𝐺𝑖(𝑀𝑖) − 𝐺𝑖

∗|

𝑛
> 𝜖 (4.8) 

 

In this expression, division n2 is replaced by n, because there are now only n edges 

in Gi. In order to find the minimum number of samples for the overall network, we 

need to find the highest Mi: 

𝑀 = 𝑚𝑎𝑥 (min 
𝑀𝑖
 
|𝐺𝑖(𝑀𝑖) − 𝐺𝑖

∗|

𝑛
> 𝜖) (4.9) 

 

Define Ki as the cardinality of random variable xi, i.e., xi can take Ki possible discrete 

values.  Thus, in a discrete Dynamic Bayesian network, the number of possible 

parent configurations for the i-th node (PCi) can be defined as: 

𝑃𝐶𝑖 = ∏ 𝐾𝑗
𝑗∈{𝑝𝑎𝑖}

 (4.10) 

 

Here pai, is the set of parents of node i. Hence, learning P(xi|pai) depends on the 

observations of xi and pai, this leads to Ci possible configurations: 

𝐶𝑖 = 𝐾𝑖 ∗ 𝑃𝐶𝑖 = 𝐾𝑖 ∗ ∏ 𝐾𝑗
𝑗∈{𝑝𝑎𝑖}

 (4.11) 

 

If every random variable on the network has the same cardinality K, this equation 

can be simplified as, 

𝐶𝑖 = 𝐾
𝑝𝑖+1 (4.12) 

where pi is the number of parents of the variable xi. 

Secondly, we continued with the following assumption: learning the structure of a 

dDBN with an error term ϵ, approximately depends on an error term λ times Ci. In 

this term, λ still may depend on the network parameters as well, but we found that 
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this exponential relation is suitable to represent the practical sample complexity. 

Although we did not have a theoretical proof for this assumption, it holds for the 

practical results. Therefore Equation 4.8 can be written as, 

min 
𝑀𝑖
 
|𝐺𝑖(𝑀𝑖) − 𝐺𝑖

∗|

𝑛
> 𝜖 ≅ 𝜆(𝜖, 𝑛, 𝐾,… ) ∗ 𝐾𝑝𝑖+1 (4.13) 

 

which reduces equation 4.9 to, 

𝑀 = 𝑚𝑎𝑥(𝜆 ∗ 𝐾𝑝𝑖+1) (4.14) 

𝑀 =  𝜆 ∗ 𝐾max {𝑝𝑖}+1 (4.15) 

Equation 4.15 emphasizes that the required number of samples for a network 

depends on cardinality K, the maximum number of parents and an error term λ. Here, 

there is only an unknown λ, and we found it by using the practical results. 

In the third step, we used the results presented in Tables 4-3 and 4-4 to find the 

unknown parameter λ. These results were obtained using the synthetic data which 

was generated for random variables with cardinality 2 and 3, respectively. In Tables 

4-5 and 4-6, we listed the minimum required length M obtained from Tables 4-3 and 

4-4 where the maximum parent size was taken as equal to the node number in the 

network.  
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Table 4-5: Minimum data length for various parent size with K=2 and ϵ=0.1 

parent size 

p 3 4 5 6 7 8 9 10 

M 480 720 1.455 2.308 4.444 9.192 19.221 42.843 

 

Table 4-6: Minimum data length for various parent size with K=3 and ϵ=0.1 

parent size 

p 3 4 5 6 7 8 

M 1.378 3.819 17.200 44.955 148.776 483.482 

 

Finding λ is an optimization problem which finds the best fit of Equation 4.15 to the 

data presented in Tables 4-5 and 4-6:  

argmin
𝜆

  |𝑀 − 𝜆𝐾p+1| 

Note that, for simplicity, p is used for max{pi}. The main problem in this expression 

was that the relationship between the required data length and the parent size is 

exponential. Hence using any curve fitting method would tend to fail as a result of 

the fact that minimization is mostly affected by larger values of p. To overcome this 

problem, we took K logarithm of the minimization problem. Therefore, every value 

of p affected the minimization process with equal weights.  

argmin
𝜆

 |𝑙𝑜𝑔𝐾𝑀 − 𝑙𝑜𝑔𝐾𝜆 − 𝑝 − 1| (4.16) 

For binary case (K=2) λ was found as 20.7116, and for ternary case (K=3) it was 

found as 20.4071.  Figure 4-6 shows the plots of minimum data length versus parent 

size based on Tables 4-5 and 4-6, as well as the plots of Equation 4.15 with the 

computed λ values.   
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Figure 4-6: Experimental and theoretical plots of minimum data length versus parent 

size, left for the binary case and right for the ternary case. 

Note that this optimization process is a linear regression on p values, and suppose 

that f(p)=a*p+b. One difference here is that the linear coefficient a is 1, hence the 

aim of this optimization is only to find the constant b that is added to the linear term. 

This is due to the previous assumption. Figure 4-6 underlines that the assumption is 

correct because of the prominent consistency between the theoretical linear relation 

and the experimental results presented in Figure 4-6. Even though we put a restriction 

on the fitting process by predetermining the parameter a, the fitting was quite 

successful.  

In order to verify the assumption in more detail, we checked the goodness of fit of 

the optimization process for different error values. R2 is a suitable metric to check 

the goodness of fit for linear regression. Suppose we have a distribution over (x,y) 

variables, and the aim is to find a linear function f(x)=y=ax+b that fits the (x,y) pairs.  

R2 was computed by the following equation: 

𝑅2 =
∑(�̂� − �̅�)2

∑(𝑦 − �̅�)2
 (4.17) 
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where y̅ is the mean of all y values, ŷ is the computed values by using the function 

f(x).  R2 takes values in the interval [0 1]. When R2 is 1 it means that model f(x) fits 

the data perfectly. When it is 0 the model does not reflect the relation between x and 

y.  For each error values, Tables 4-5 and 4-6 were recomputed using linear 

interpolation between successive error values. Then the same curve fitting approach 

was investigated and corresponding λ and R2 were computed. Table 4-7 gives the 

corresponding lambda and R2 for different error values. This table signifies two 

important results. Firstly, λ still depends on the cardinality of the random variables 

even for the given assumption over complexity. The same lambda values were not 

obtained considering the same errors. Secondly, the fitting process to the expression 

described in Equation 4.15 was perfect. R2 was obtained as near to 1 for each error 

and cardinality values. Therefore, assumption over sample complexity in Equation 

4.15 is verified. Despite determining a in the linear regression as 1, getting R2 close 

to 1 signifies that the minimum number of samples for the convergence dDBN 

structure learning is proportional to Kp+1.   
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Table 4-7: Complexity coefficient λ and R2 for different errors 

 K=2 K=3 

error λ R2 λ R2 

0,03 30,6 0,936 23,3 0,996 

0,04 27,8 0,951 22,8 0,996 

0,05 25,3 0,960 22,3 0,995 

0,06 24,0 0,971 21,8 0,994 

0,07 23,0 0,976 21,5 0,994 

0,08 22,2 0,981 21,1 0,994 

0,09 21,5 0,985 20,8 0,994 

0,1 20,7 0,987 20,4 0,993 

0,11 19,9 0,990 20,0 0,993 

0,12 19,3 0,991 19,7 0,992 

0,13 18,8 0,992 19,3 0,991 

0,14 18,2 0,993 18,9 0,990 

0,15 17,7 0,994 18,6 0,989 

0,16 17,2 0,994 18,2 0,988 

0,17 16,8 0,995 18,0 0,988 

0,18 16,4 0,996 17,7 0,988 

0,19 16,1 0,996 17,5 0,987 

0,2 15,8 0,996 17,3 0,987 

 

4.3.3 Effect of Imaginary Sample Size on Sample Complexity 

In this section, the aim is to investigate the effect of imaginary sample size α, on the 

sample complexity of dDBN. Several studies conduct that imaginary sample size has 

a significant impact on the model discovery of Bayesian Networks. Steck and 

Jaakkola show that as the imaginary sample goes to zero, deletion of an edge is more 

likely to occur in the structure learning of Bayesian Networks [34]. The learned 
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graph becomes an empty graph when α goes to zero. In the same study, they also 

demonstrate that the number of edges in a network increases when the prior term 

increases. Silander et al. conduct practical experiments on structure learning to find 

an optimal alpha value [35]. They show that learned structure is highly sensitive to 

the chosen alpha value. In order to solve this problematic effect of the prior term, 

they propose a Bayes method for determining the optimal alpha. Steck provides an 

analytical approximation to the optimal alpha value in a predictive sense [36]. The 

data properties that have the main effect for determining optimal alpha value are 

provided by considering this approximation. Ueno analytically investigated the 

behavior of the BDeu metric when alpha goes to zero and infinity [37], [38].  The 

sensitivity of model discovery to alpha is investigated, and it is shown that when 

alpha goes to zero BDeu favors an empty graph. If alpha tends to infinity, BDeu 

favors a complete graph. In his studies, by considering the issues faced with prior 

term alpha, Scutari experimentally and theoretically show that the BDeu score is not 

accurate when data is sparse, which is the case when the number of samples is less 

than the appropriate amount [39], [40]. He proposes a new scoring method, Bayesian 

Dirichlet sparse, which is more suitable for sparse data. Because of this significant 

effect of the imaginary sample size in model discovery, we also conducted several 

experiments to see the effect of it for dDBN. 

Figure 4-7 shows the structural error for a ternary valued network consisting of five 

variables where only the mean error of the node that has five parents is shown. This 

figure illustrates the error between the true structure from which the data was 

sampled, and the structure found with dDBN learning using this data. Note that the 

imaginary sample size for this figure was 1. The graph seems to have three regions. 

In the first region, the error is around 0.5. It means that when data size is very small, 

dDBN structure learning ends up with a structure as if it was chosen randomly and 

does not contain any information about the actual structure. In the second region, the 

error is highest and stays so for the number of samples M from 70 to 1000. The actual 

structure from which the data was generated contains all the edges, i.e., fully 

connected. Getting structural error to be 1 means that the structure found by the 
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dDBN learning did not include any 1’s, hence the learning procedure tries to obstruct 

any edges, and the BDeu score of the empty structure is higher than any other 

possible structures.  If the amount of data is further increased, in the third region, the 

algorithm starts to add some parents to the structure and error starts to decrease. 

When a sufficient amount of data is provided, all parental relations are found 

correctly by the dDBN structure learning, and error reaches 0. The detailed 

explanation of this figure with the theoretical analysis of the BDeu score is provided 

in Appendix B.     

 

Figure 4-7: Mean error vs number of samples for a node which has five parents in a 

network of five ternary variables. 
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Figure 4-8: Mean error vs number of samples for different alpha values used for six-

node binary-valued network. It presents the results for a node that has six parents. 

The arrow shows the direction of increase in the imaginary sample size, for the 

easiness of illustration. 
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Figure 4-9: Mean error vs number of samples for different alpha values used for six-

node binary-valued network. It presents for a node that has one parent. The arrow 

shows the direction of increase in the imaginary sample size, for the easiness of 

illustration. 
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Figures 4-8 and 4-9 illustrate the effect of the imaginary sample size on model 

discovery when different numbers of data samples are provided. Only the error of 

the structure of two nodes is provided in these figures, which is considered to 

represent general cases. For other nodes, the figure has provided in Appendix D. 

Figure 4-8 is designed for a node that has six parents out of six nodes, and Figure 4-

9 is for a node that has one parent. There are three significant results of this analysis. 

First of all, for smaller imaginary sample sizes, the BDeu metric is likely to obstruct 

edge addition to the model. Considering Figure 4-8, when the same amount of data 

samples is provided, the error is higher for smaller imaginary sample sizes. Since the 

ground-truth structure of this node contains only 1’s, the increase of the error means 

that the learned model does not contain an edge. These results are compatible with 

the literature experimentally and theoretically [34], [35], [38]. The second result is 

that when imaginary sample sizes are higher than the number of data samples, BDeu 

prefers to add edges to the network. Consider Figure 4-9 for the imaginary sample 

size 10.000. The error increases when more data samples are provided but up to 

nearly 10.000. The ground-truth structure of the node was [1,0,0,0,0,0], containing a 

single edge. Therefore, the increase in error means that BDeu prefers to add 1s to the 

learned model. The third result is that both increasing and decreasing the imaginary 

sample size, increases the required number of samples to learn the model correctly. 

When the imaginary sample size is small, BDeu prefers not adding edges. So, to be 

able to fit the data to the correct model, the required sample size should be high to 

overcome the property of BDeu that blocks edge addition to the model. When the 

imaginary sample size is higher, BDeu more likely overfits the data to a model that 

has unnecessary edges. Therefore, higher amount of data is needed to reflect the 

model correctly.  

This section concludes that the imaginary sample size has a significant effect on the 

learned model. Therefore, better learning requires an optimal imaginary sample size. 

Steck and Jaakale face this issue and propose a Bayesian approach to determine the 

optimal value but do not investigate the problem [34]. Steck experimentally and 

theoretically provides how to find the optimal value by  Bayesian approach and 
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performs tests on datasets [36]. Silander et al. also propose to be Bayesian on alpha 

by marginalizing out P(G) from P(G|α) to find the most probable graph, which may 

only be applicable to small datasets [35]. Being Bayesian on alpha increases the 

computational complexity for the learning procedure. However, finding the optimal 

alpha as a function of network parameters rather than data itself would be more 

practical and useful.  

Since the choice of alpha changes, the required number of samples, an optimal α 

would indicate a need of less number of samples for the convergence of structure 

learning. However, our results signified that by providing enough data samples the 

is discovered correctly for not overrated imaginary sample sizes. For example, for 

imaginary sizes 0.01, 0.1, 1, 10, 100, both node 1 and node 6 were modeled 

successfully. Imaginary sample size is considered as 1 in most of the studies. In our 

simulations taking alpha as 1 always performed reasonably (see Figures 4-2, 4-3, 4-

8 and 4-9). Therefore, practical sample complexity was found for α equals 1 in 

previous section. In this thesis, we left finding an optimal alpha value for dDBN by 

sample complexity point of view as future work.  

 

4.4 Discussion 

Discrete dynamic Bayesian Networks are expressed by two main components: a 

structure and a parameter set. Structure or model represents the temporal causal 

independencies between the random variables. Parameters indicate the conditional 

probability distributions between the random variables based on the structure.  The 

dDBNs can be learned from data. Therefore, the number of samples is provided in 

the data plays a crucial role to be confident about the learned structure after 

performing the dDBN structure learning procedure. This study is the first that 

conducts the sample complexity for discrete Dynamic Bayesian Networks as far as 

we know. 
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In this study, we examined the effect of the number of samples on the structure 

learning for dDBNs. We gathered our results in three headings. First of all, the 

amount of data has a very important effect on the learning of the correct structure. It 

was shown that if the amount of data is less than it should be, the learned structure 

is entirely unrelated to the actual structure. Figures 4-6, 4-8 and 4-9 show that until 

the amount of data reaches a particular value, the learning procedure maximizes the 

empty structure for small imaginary sample sizes. In other words, the learning 

algorithm concludes that there are no dependencies between the random variables, 

although there is. However, when the amount of data is increased further, the correct 

structure is learned completely. These results show the importance of the amount of 

data, i.e. the number of observations, to find the exact model. Secondly, the results 

were shown to be directly related to the BDeu score. BDeu score maximizes different 

types of structures depending on the number of samples and the imaginary sample 

size. For smaller imaginary sample sizes, it gives a random structure as a maximum 

scored structure when the number of samples is very small. In other words, the 

learning method using the BDeu score does not provide any information about the 

independence relations when the number of samples is not enough. A further 

increase in the number of samples resulted in the learning of an empty structure. This 

was observed even though there were dependencies between the random variables. 

That is, the BDeu score started to reject the dependencies due to the increase in the 

number of samples. This was observed to a certain threshold; when the number of 

samples exceeded it, the BDeu score maximized the actual structure and all the 

independence relations was found correctly. For higher imaginary sample sizes 

BDeu score prefered to add edges to the learned structure. These results are 

compatible with recent studies [35], [37], [38]. Finally, practical sample complexity 

for dDBNs was expressed as a function of the network parameters for the imaginary 

sample size as 1. The minimum number of samples required to recover the correct 

structure by using the BDeu score is O(Kp+1), for binary and ternary valued networks 

where K is the cardinality of the random variables and p is the maximum number of 

parents present in the network.  
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The choice of imaginary sample sizes is important for learning the model. 

Nonetheless, the simulation results of this chapter signified that by providing 

sufficient data, the problematic effect of imaginary sample size can be negated. But 

the optimal imaginary sample size would provide a smaller number of samples for 

the convergence structure learning. In this thesis, we left this issue as future work. In 

addition, we believe that this study will have a repercussion in the applications of 

dDBN and that most researchers should carry out their research considering the 

results of this study. Especially in neuroscience applications, dDBN will be used 

more effectively considering issues discussed in this study. Researchers using dDBN 

should consider the effect of the number of samples on structure learning and make 

modeling in the light of this study. In this way, the results found will be more 

consistent and more reliable. 
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CHAPTER 5  

5 EVALUATION OF DISCRETIZATION TECHNIQUES FOR FUNCTIONAL 

MAGNETIC RESONANCE IMAGING DATA 

5.1 Introduction 

In general, data discretization is the conversion of continuous features to a set of 

discrete states. There are several reasons for discretization. Firstly, the learning 

process from discrete data is more effective and efficient [41], [42]. Secondly, it 

reduces the required number of samples for the convergence of the learning 

procedure [43]. Moreover, since data is simplified, the process of learning is much 

faster in general [44]. Nonetheless, the choice of discretization is not a trivial task, 

and any discretization method implies information loss from data [44]. The 

discretization of continuous data has been an important and long-standing problem 

for machine learning applications [45], [46]. Discretization methods are diverse 

depending on the application: dynamic vs. static, supervised vs. non-supervised, 

direct vs. incremental, etc.  

The discretization method for effective connectivity with dDBN using fMRI data in 

a study by Rajapakse et al.[4] is to consider the mean, maximum, and minimum 

values of the signal. Firstly, time-series are transformed to zero-mean. Then if a value 

in the time series is higher than one-third of the maximum value, it is discretized as 

‘1’. If a value is smaller than one-third of the minimum value, it is discretized as ‘-

1’. Else it is discretized as ‘0’.Burge et al. and Dang et al, [5], [6]  used the equal 

width discretization method where the data is transformed into k levels by splitting 

the data according to its minimum and maximum value. In none of these studies, the 

discretization methods are investigated and evaluated explicitly for the 

appropriateness of the resulting models. 
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dDBN is not only used for fMRI data; it is used in many fields from biomedical data 

to economics [47], [48] and the Gene Expression Data (GED) as well. In some of 

these studies, the methods of discretization are also evaluated. A survey of 

discretization methods is present in the study of Gallo et al. [49]. Maderia and 

Oliveira [9] explicitly explain and propose many non-supervised methods. Li et al. 

[8] compare the methods mentioned in [49] for GED data. 

5.2 Functional Magnetic Resonance Imaging (fMRI) 

Functional MRI data is obtained by measurement based on the level of oxygen in the 

blood. This level is defined as blood oxygen level-dependent contrast (BOLD). The 

magnitude of this signal depends on the cerebral oxidative metabolic rate (CMRO2) 

blood flow, oxygen extraction rate [50]. BOLD signal and electrical activation 

measurements give us the following important information, the BOLD signal 

indicates local field potential rather than neural spikes [51]. The spatial resolution of 

functional MRI is very high compared to other neurologic data such as 

electroencephalogram (EEG) data. A voxel related to the lowest measurement unit 

in an fMRI image can be about 3 * 3 * 3 mm3. This data is a 4-dimensional data, 3 

dimensions are x, y, z space coordinates and the fourth dimension is time. The signal 

obtained during fMRI scanning for a certain stimulus is called the hemodynamic 

response. Figure 5-1 gives the hemodynamic response function vs time. FMRI data 

is processed and analyzed by using a variety of tools such as Statistical Parameter 

Mapping software implemented in Matlab, BrainVoyager, FMRIB Software Library. 

Local activation in each voxel is modeled using the multiple linear parametric 

modeling with the general linear model technique using the BOLD signal. 
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Figure 5-1: Hemodynamic response function 

5.3 Discretization Techniques 

First, we introduce some definitions and basic concepts. Let x denote the single time-

series, and x[t] represents the value for x at time point t. Define x̄ as the average of x, 

xh and xl as the highest and lowest values that x can take respectively, and σ represents 

the standard deviation of x. Moreover, we define d as the discretized version of the 

time series x and d[t] represents the discrete level of x[t].  The discretization methods 

will be explicated in three categories. The first method is binary discretization, where 

time series is represented by two discrete states, the second one is ternary 

discretization where time series can only be discretized to three states, and the last 

one is multilevel discretization where data can be discretized to any number of levels.  
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5.3.1 Binary Discretization Methods 

The discretization of a data point is to classify the data into two: one is ‘activation’, 

and the other one is ‘inhibition’. For fMRI data, this method could be feasible if we 

consider the BOLD response. The BOLD response demonstrates the activity of the 

brain regions. Therefore, the binarization of an fMRI signal is meaningful from the 

perspective of neurophysiology since a brain region could be denoted as ‘active’ or 

‘de-active’ during a specific task. Binarization is usually done by finding a threshold 

to classify the data into two.  

5.3.1.1 Discretization Based on Mean (Mean2) 

In this method, each time point is binarized by using the mean of the time series as a 

threshold δ. Then discretization is done as follows [9]: 

𝑑[𝑡] = {    
1
0
        

𝑖𝑓  𝑥[𝑡] > 𝛿
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.1) 

5.3.1.2 Discretization Based on Mid-Range (mid-Range) 

The only difference between this method and the discretization based on mean is the 

threshold used in the expression. The threshold for this method is chosen as the 

midpoint of the data, which is the median. [9]. 

5.3.1.3 Discretization Based on Max - X% Max (Max-X) 

The threshold is fixed with respect to the maximal value observed for the time-series. 

A percentage of X is reduced from this value and chosen as the threshold, (1-%X)xh. 

[9]. 
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5.3.1.4 Discretization Based on Top %X (Top-X) 

In this method, time series are split into two sets by finding a threshold that puts %X 

highest values to one set and remaining ones to another [9]. 

5.3.1.5 Target Discretization Threshold (TDT) 

In this method, data is divided into two states, namely S1 and S2 with the following 

constraint [7]: 

min
𝑆1 ,𝑆2  ⊂𝑆

(𝑣𝑎𝑟(𝑆1) + 𝑣𝑎𝑟(𝑆2)) (5.2) 

 

Subject to: 

• S is the set of sample values for time-series x 

• S1 ⋂ S2 = Ø, S1 ⋃ S2 = S, |S1|>1 and |S2|>1  

• var(S1) and var(S2) are the variances of S1 and S2  

The sum of the variances of each subset S1 and S2 are minimized. This method is 

similar to K-means clustering, where K is 2. The following steps can be applied for 

the implementation: 

1. Sort the elements of S on an array L. 

2. Search for the element e such that var(L(1..e))+ var(L(e+1 ..|L|)) to be 

minimum. 

3. Save [L(e)+L(e+1)]/2 as the threshold, then use it for discretization expressed 

in equation 1. 

5.3.1.6 Transitional State Discretization (TSD) 

This method is proposed to discretize the gene expression data (GED) where the 

variations between the time points are used [52]. GED data is standardized to mean 
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of zero and unity variance, and then each gene profile is discretized using the 

following scheme: 

𝑑[𝑡] = {    
1
0
        

𝑖𝑓  𝑥[𝑡] > 𝑥[𝑡 − 1]
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.3) 

In this method, the length of the resulting discrete time series is reduced by a one-

time point. 

5.3.1.7 Extended TSD 

Erdal et al. [53] develop a method related to TSD but introduce a threshold for 

discretizing the data points. The threshold is computed as follows; the standard 

deviation of time point 0 is calculated, std(0), then a parameter α is provided to scale 

std(0). In order to use it for fMRI data, we used standard deviation, std of the time 

series.  

𝑑[𝑡] = {    
1
0
        

𝑖𝑓  𝑥[𝑡] − 𝑥[𝑡 − 1] > 𝛼 ∗ 𝑠𝑡𝑑
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.4) 

5.3.2 Ternary Discretization Methods 

The aim of ternary discretization is to represent the data point by three discrete states 

{-1, 0, 1}. These states mean ‘DownRegulated’, ‘NoChange’, ‘UpRegulated’ 

respectively.  Several methods are conducted for ternary discretization. 

5.3.2.1 Mean and Standard Deviation (mean-std α) 

This method combines the mean x̄ and standard deviation σ to discretize the data. Let 

α be a parameter used to manage the deviation from the mean of the data and then, 

the discretization is performed as follows [9]. 
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𝑑[𝑡] = {
−1
1
0
      
𝑖𝑓 𝑥[𝑡] < �̅� − 𝛼𝜎

𝑖𝑓 𝑥[𝑡] > �̅� + 𝛼𝜎
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.5) 

5.3.2.2 Mean and Maximum-Minimum (Mean-MaxMin) 

This method is used in neuroscience studies to discretize the EEG and fMRI data for 

effective connectivity modeled by discrete Dynamic Bayesian Networks [4], [19]. 

The method uses mean x̄ with maximum xh and minimum xl of time-series x, then 

performs the following expression. 

𝑑[𝑡] = {
−1
1
0
      
𝑖𝑓 𝑥[𝑡] < �̅� − (�̅� − 𝑥𝑙)/3

𝑖𝑓 𝑥[𝑡] > �̅� + (𝑥ℎ − �̅�)/3
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.6) 

The method thresholds the data from its maximum and minimum value by taking the 

one-third of their difference with mean. This method can be generalized by 

considering the techniques explained in the binary discretization section: Max-X and 

Top-X. Hence, two possible new discretization methods for ternary discretization 

could be proposed. 

5.3.2.3 Discretization Based on Max Min (MaxMin-X) 

The method starts by finding the average x̄, then subtracting each time point from 

mean to obtain zero-mean time series. After that following expression is performed 

to discretize the data: 

𝑑[𝑡] = {
−1
1
0
      
𝑖𝑓 𝑥[𝑡] < (1 − %𝑋) ∗ 𝑥𝑙

𝑖𝑓 𝑥[𝑡] > (1 − %𝑋) ∗ 𝑥ℎ

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.7) 
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5.3.2.4 Discretization Based on Top and Down (TopDown-X) 

In this method, time series are split into three sets by finding two thresholds: one 

puts %X highest values to first set, the other one puts %X lowest values to the second 

set, remaining ones to the third set. 

5.3.2.5 Discretization Based on Mean and Time (Mean-Time) 

In this method, time-series is discretized into three levels by following two steps 

[54], [55]. First, x is discretized into two-level {0,1} by using the mean2 method 

described in Section 2.1.1. Then this discretized d’ is re-classified based on the 

following scheme: 

𝑑[𝑡] = 𝑑′[𝑡] − 𝑑′[𝑡 − 1] (5.8) 

Data is converted to three discrete levels {-1,0,1} where ‘increase or rising’ treated 

as ‘1’, ‘0’ means ‘No change or constant’, and ‘-1’ means ‘decrease or falling’. 

5.3.2.6 Method Proposed by Ji and Tan (Ji-Tan) 

In this method, discretization is performed by considering the variations between 

successive time points [56]. Ji and Tan considered that these variations are important 

and meaningful whenever they exceed a certain threshold. First, they transform a 

time-series x into another series x’ such that: 

𝑥′[𝑡] =

{
 
 

 
 
𝑥[𝑡] − 𝑥[𝑡 − 1]

|𝑥[𝑡 − 1]|
1
−1
0

        

𝑖𝑓 𝑥[𝑡 − 1] ≠ 0

𝑖𝑓 𝑥[𝑡 − 1] = 0 ∧ 𝑥[𝑡] > 0

𝑓 𝑥[𝑡 − 1] = 0 ∧ 𝑥[𝑡] < 0

𝑓 𝑥[𝑡 − 1] = 0 ∧ 𝑥[𝑡] = 0

 (5.9) 

Then the final discretized time series d is obtained considering a threshold δ>0: 
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𝑑[𝑡] = {
−1
1
0
      
𝑖𝑓 𝑥′[𝑡] < −𝛿

𝑖𝑓 𝑥′[𝑡] > 𝛿
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.10) 

5.3.3 Multilevel Discretization Methods 

In multilevel discretization, the time-series x is transformed in many discrete levels. 

5.3.3.1 Equal Width Discretization (EWDX)  

In this method, the aim is to divide the data into k intervals using maximum and 

minimum data values. Interval of the discretization is calculated as w=(max-min)/k 

where k is the discretization level, and each cut point xr is calculated as xr+1=xr+w, 

with x0 being the minimum data value. After this step, each interval [xr xr+1] is 

assigned to a discrete level [49]. 

5.3.3.2 Equal Frequency Discretization (EFDX) 

This method aims to divide the data into k intervals, where each interval has the same 

number of data points. Suppose we have N number of data points, and our purpose 

is to divide the data into k discrete levels, each discrete level must contain N/k 

number of data points. After defining the intervals, each data point is assigned to its 

discrete state [9]. 

5.3.3.3 K-means discretization (K-means) 

This method aims to discretize the data into K level by using a clustering approach 

[57]. The groups are calculated by maximizing the similarity within the elements of 

each cluster. K-means clustering uses the squared Euclidian distance as a similarity 

measure and tries to partition each element in x with the minimum of WCSS (within-

cluster sum of squares).  
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5.3.3.4 Bidirectional K-means discretization (biK-means) 

This method is an extended version of K-means clustering [57]. Suppose we have a 

vector X: [x1… xm … xn], each xm represents m-th time-series and n is the number of 

nodes. The aim is to discretize the data into k splits. To do that, two clustering 

approaches are performed: the first one is the k-means clustering, which is performed 

for each time-series-xm with the number of clusters to be k+1. Second clustering is 

performed for every time point of X, X[t] where nodes are clustered using k-means 

with the number of clusters to be k+1. Applying two clustering methods gives two 

discrete states for each xm[t]: one for each time-point and the second one for each 

time-series. Let these two clusters to be d1 and d2 respectively, note that d1, d2 ∈ {0 

… k+1}. Then final discrete state dm[t] is determined by the following rule: 

𝑑𝑚[𝑡] = 𝑝 |  𝑝
2 ≤ 𝑑1[𝑡] ∗ 𝑑2[𝑡] < (𝑝 + 1)

2 (5.11) 

 

Table 5-1: An example of biK-means discretization with k=3, suppose that d1 and d2 

are found by applying k+1 clustering on X[t] and xm. The discretization state of the 

variable xm[t] is shown for each possible d1 and d2. 

 d2 

d1 1 2 3 4 

1 1*1=1→dm[t]=1 1*2=2→dm[t]=1 1*3=3→dm[t]=1 1*4=4→dm[t]=2 

2 2*1=2→dm[t]=1 2*2=4→dm[t]=2 2*3=6→dm[t]=2 2*4=8→dm[t]=3 

3 3*1=3→dm[t]=1 3*2=6→dm[t]=2 3*3=9→dm[t]=3 3*4=12→dm[t]=3 

4 4*1=4→dm[t]=2 4*2=8→dm[t]=3 4*3=12→dm[t]=3 4*4=16→dm[t]=3 
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5.3.4 Properties and External parameters of the methods 

Some methods have external parameters that should be set by experts. Table 5- [2-

4] lists the properties of the discretization methods. The values of the external 

parameters are also provided. In addition, the reason for the robustness of each 

method is explained in the tables.   

Most of the methods use the value of a time series for a particular time point t in 

which the variation between time points is not investigated. However, some methods 

are designed to discretize the value of x(t) by using both x(t) and x(t-1). Table 5-[2-

4] shows the methods use the variation between time points.  
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Table 5-3: The properties of ternary discretization methods and the values of the 

external parameters  

Name of 

Method 

The 

variation 

between 

time points 

External 

parameter 
Robustness and Reason 

Mean-std X 
α=0.25, 0.50, 

1.00, 1.50 

Robust: Once the best value for α is chosen, it can 

be used any time, the methods do not depend on 

any constraints such as the number of samples, the 

number of nodes. 

MaxMin-

X 
X X=67,50,33 

Not Robust: The threshold is chosen by the 

maximum and minimum value of the time-series, 

which means that the method is data-dependent. 

TopDown-

X 
X X=10,20,30,40 

Robust: The decision of the parameter does not 

depend on data. Once the parameter is chosen, it 

can be used for data.  

Mean-

Time 
✓ - Robust: No parameters 

Ji-Tan ✓ δ=1/3,1/2,2/3 
Robust: The decision of parameter does not 

depend on data constraints. 
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Table 5-4: The properties of multi-level discretization methods and the values of the 

external parameters  

Name of 

Method 

The 

variation 

between 

time points 

External 

parameter 
Robustness and Reason 

EWDX X - 

Not Robust: The data is discretized according to its 

maximum and minimum values, which makes this 

method to be not robust.  

EFDX X - Robust: No parameters 

K-means X - Robust: No parameters 

biK-

means 
X - Robust: No parameters 

 

  



 

 

59 

5.4 The use of derivative for discretization  

In this thesis, one of our hypotheses was using variation between time points to have 

a better performance in the discretization of fMRI data to model effective 

connectivity by dDBN. To evaluate this hypothesis, we also used the derivative of 

the generated synthetic fMRI data in the discretization methods. We compared the 

cases where fMRI data was directly used, or derivative of fMRI data was used in 

discretization. 

The reason behind our hypothesis is the linear property of the hemodynamic 

response. The brain is as a linear system with impulse response to be the 

hemodynamic response. Several studies show that BOLD response of the brain is 

linear if the period of the stimuli is higher than 4 sec for visual stimuli and 6 sec for 

audio stimuli. Although the period depends on the stimuli type, results signify that 

for a period greater than a certain threshold, this property holds [58]–[60].  For higher 

frequencies of the stimuli, the hemodynamic response behaves nonlinearly. Most of 

the researchers consider this issue when designing an fMRI task in order not to 

violate the linear property of the HRF.  
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Figure 5-2: Discretization of an HRF response to the stimuli where the time 

difference between successive stimuli is 6 seconds. The discrete signal is the mean2 

discretization of the corresponding signal 

 

Figure 5-3: Discretization of the derivate of HRF response to the stimuli where the 

time difference between successive stimuli is 6 seconds. The discrete signal is the 

mean2 discretization of the corresponding signal 
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Figure 5-4: Discretization of an HRF response to the stimuli where the time 

difference between successive stimuli is 8 seconds. The discrete signal is the mean2 

discretization of the corresponding signal 

 

Figure 5-5: Discretization of the derivate of HRF response to the stimuli where the 

time difference between successive stimuli is 8 seconds. The discrete signal is the 

mean2 discretization of the corresponding signal 
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Figure 5-6: Discretization of an HRF response to the stimuli where the time 

difference between successive stimuli is 8 seconds. The discrete signal is the mean2 

discretization of the corresponding signal 

 

Figure 5-7: Discretization of the derivate of HRF response to the stimuli where the 

time difference between successive stimuli is 8 seconds. The discrete signal is the 

mean2 discretization of the corresponding signal 
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Figure 5-[2-7] illustrates an example of the effect of discretization on HRF response. 

When the period of the stimuli is 6 seconds the discretization method is not able to 

discretize the HRF response effectively in order to denote the change of the stimuli. 

When the period is 8 seconds, discretization starts to sense the stimuli and 

differentiate them, and when it is 10 seconds, discretization is fully capable of 

showing each stimulus in the discretized signal. However, when the derivative of the 

HRF response is discretized the discretization method was able to denote each 

stimulus regardless of the period of the stimuli. This is due to the linear property of 

the HRF response. When the time difference between successive stimulus is lower, 

discretization methods give less information for the HRF response. On the other 

hand, using variation between time points, derivative in this case, provides much 

more information, since the information loss due to time difference is omitted.  

5.5 Generating Synthetic fMRI data 

 

Figure 5-8: Flowchart for generating synthetic fMRI time-series 

The vector autoregressive (VAR) model was used to create temporal relationships 

[4], [6], [15], [61]. Let x be an n-dimensional time series which obeys the first-order 

VAR model. Every time point of a time series i, xi is represented by the following 

expression. 

𝑥𝑖(𝑡) =∑𝐴𝑗𝑖𝑥𝑗(𝑡 − 1)

𝑛

𝑗=1

+∈ (5.12) 

  In this expression A is a matrix that shows the linear relation between time 

series. Aji represents the temporal linear relation between i-th and j-th time series. 
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The dimension of the vector is not critical for the discretization methods. However, 

larger values would require a larger number of samples to train the dDBN structure 

because the increase in the model complexity requires many more samples to recover 

the model through learning [32]. Therefore, we chose the number of time-series to 

be 6. Hence A was a 6*6 matrix, and there were a total of 36 temporal relations.  

Generating the VAR data starts by choosing an appropriate A. Since we would use 

this data to run the dDBN learning, we firstly generated a new structure A’ showing 

the direction of the temporal relation, which is described as 0’s or 1’s. Aij’=0 means 

that there is no edge from j-th node to i-th node, and 1 means that the i-th node is 

affected by j-th node. We had some constraints on A’. The first constraint was that 

the number of edges was chosen as half of the number of elements that the matrix 

has. This means that there were a total of 18 connections and 18 non-connections in 

the generated VAR model. The second constraint was the number of parents for each 

time series. We had generated the synthetic data such that each node had the same 

number of parents, which is 3. The parent set of each node was selected randomly. 

Then, we generated the VAR matrix A by using the generated connectivity matrix 

A’. On the one hand, 0’s in A’ remained the same, while 1’s in A’ were replaced by 

a random number which is in the interval [-1 -0.5] U [0.5 1]. We did not use smaller 

numbers which are comparable with 0. Because treating smaller linear relations as a 

connection between certain nodes might not be correct. After that, we checked the 

eigenvalues of A, to be sure about the stability of the generated VAR data. Hence the 

unstable matrices were not used for creating the VAR data. Then A was used to 

generate the synthetic data by two steps. Firstly, xi(0) was generated by random from 

a normal distribution with 0 mean and unity variance. Then the values for other time 

points were generated by using equation 5.12, where ∈ is chosen as the Gaussian 

white noise process of zero mean and unity variance. The number of samples was 

selected to be 5000. 1000 such multivariate time series were generated to get a good 

statistical comparison. The ground-truth matrix A’ was saved to be used later in the 

performance analysis. 
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At the next step, the VAR data were convolved with hemodynamic response function 

(HRF) to obtain the synthetic fMRI time-series. The HRF was canonical which is a 

mixture of two Gamma functions. SPM8 TOOLBOX already has a built-in function 

called spm_hrf which generates the HRF data in the discrete domain. We used TR=2s 

for the sampling of HRF. Note that previous studies also added scanner noise to the 

generated synthetic fMRI data. They aimed to see the effect of the scanner noise on 

learning [4], [6]. In this chapter, we also evaluated the effect of scanner noise. 

However, we only analyzed this effect on the best 11 methods to decrease the 

computation time.  

5.6 Results and Discussion 

dDBN learning procedure was applied to the synthetic data, and the best structure 

found by the learning procedure was saved. Then the following evaluation metrics 

were calculated. Note that each metric was calculated as an average of 1000 synthetic 

data.  

True positives TP: The average number of correct interactions inferred i.e the 

connections were the same for the inferred structure and the ground-truth 

structure. 

False Positive (FP): The average number of incorrect interactions inferred. 

The ground-truth structure did not possess an edge, but the inferred structure 

did.   

True Negative (TN): The average number of correct non-interactions inferred 

i.e both the ground-truth structure and inferred structure did not possess an 

edge  

False Negative (FN): The average number of incorrect non-interactions 

inferred. The ground-truth structure possessed an edge, but the inferred 

structure did not.   
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Recall or True Positive Rate (TPR): TP/(TP+FN) 

False Positive Rate (FPR): FP/(FP+TN) 

Precision or Positive Predictive Value (PPV): TP/(TP+FP) 

Accuracy: (TP+TN)/(Total) 

Before presenting the results, some important issues should be clarified. First, when 

DBN learning fails to recover the correct model, the expected value for TP, FP, TN, 

and FN would be same, meaning that we would get 9 for each of these metrics; and 

the expected value for Recall, FPR, Precision, and Accuracy would be 0.5. Secondly, 

when the learning procedure fully recovers the correct structure that data was 

sampled from, which means perfect learning, the expected value for TP and TN 

would be 18, and for FP and FN, it would be 0. Because there was a total of 36 edges 

in the ground-truth structure, and each structure had an equal number of 

dependencies and independencies. The A’ matrix was designed such that there were 

18 1’s and 18 0’s. Also, Recall, Precision, and Accuracy would be 1 and FPR would 

be 0 for this case. Hence for an easy way of deciding on the goodness of the 

discretization methods, we had decided to use the following criteria. If the 

discretization method had an accuracy higher than 0.75, it was denoted as successful. 
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Table 5-5:The comparison of binary discretization methods 

Name TP FP TN FN Recall FPR Precision Accuracy 

TSD 15,64 6,63 11,37 2,36 0,87 0,37 0,70 0,75 

midRange 14,47 7,52 10,48 3,53 0,80 0,42 0,66 0,69 

top50 14,46 7,53 10,47 3,54 0,80 0,42 0,66 0,69 

mean2 14,45 7,53 10,47 3,55 0,80 0,42 0,66 0,69 

TDT 14,47 7,66 10,34 3,53 0,80 0,43 0,65 0,69 

TSD25 14,86 8,24 9,76 3,14 0,83 0,46 0,64 0,68 

TSD50 13,66 8,69 9,31 4,34 0,76 0,48 0,61 0,64 

top25 14,25 9,65 8,35 3,75 0,79 0,54 0,60 0,63 

top75 14,20 9,68 8,32 3,80 0,79 0,54 0,59 0,63 

max75 13,84 9,80 8,20 4,16 0,77 0,54 0,59 0,61 

TSD100 11,15 8,21 9,79 6,85 0,62 0,46 0,58 0,58 

max50 9,54 7,10 10,90 8,46 0,53 0,39 0,57 0,57 

TSD150 9,63 7,74 10,26 8,37 0,54 0,43 0,55 0,55 

max25 5,40 4,12 13,88 12,60 0,30 0,23 0,57 0,54 

 

Table 5-6: The accuracy comparison of the binary discretization methods using the 

time-series and its derivative 

  mean2 midRange max25 max50 max75 top25 top50 top75 TDT 

time-series 0,69 0,69 0,54 0,57 0,61 0,63 0,69 0,63 0,69 

derivative 0,75 0,75 0,55 0,59 0,65 0,67 0,75 0,67 0,75 

 

Table 5-5 shows the evaluation metrics for each binary discretization method by 

sorting the methods according to their accuracy. The external parameters are given 

with the proposed method’s name. For example, top25 means that Top-X method 

was applied for discretization and 25 was used for the external parameter X. The 

same applies to Max-X method also. The Extended TSD is expressed by TSD only, 

and the parameter is added to the right side of the name. For instance, TSD150 shows 

that the Extended TSD method is used with the external parameter to be 1.50.   



 

 

68 

Each method has an accuracy of more than 0.5. Therefore, although some methods 

are less accurate than others, at least they were capable of finding some correct 

dependencies. However, most of the methods were not able to find the correct 

structure effectively, and their accuracy is near 0.5. Binary discretization is not a 

perfect approach to discretize a continuous time-series, because expressing 

continuous signal by just only two levels reduces the information that data possess. 

For most of the methods, although they have different aspects of discretization, they 

were classified as unsuccessful. Nonetheless, Transitional State Discretization was 

the best among binary discretization methods, and 0.75 accuracy is achieved by this 

method. Note that this method differs from other methods expressed in table 5-5 

because this method uses the variation between time points to discretize the data. In 

order to understand the effect of the variation between time points on discretization, 

Table 5-6 gives the comparison of accuracy for each method using the time-series 

and derivative of it. The most important result of this table is for all methods, using 

the derivative of the time-series gave a better performance than using time-series 

itself. Therefore, the hypothesis proposed in this study is strengthened by the results 

presented in table 5-6. In addition, the accuracy of Max-X method was the lowest 

comparing with others in Tables 5-5 and 5-6, note that this method was described as 

a non-robust method in table 5-2. Robustness is an important property for a method, 

and we conclude from this result that non-robust methods give a lower performance. 
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Table 5-7: The comparison of ternary discretization methods 

Name TP FP TN FN Recall FPR Precision Accuracy 

ji_tan33 13,67 2,92 15,09 4,33 0,76 0,16 0,82 0,80 

ji_tan50 13,31 3,33 14,67 4,69 0,74 0,19 0,80 0,78 

ji_tan67 12,80 3,70 14,30 5,20 0,71 0,21 0,78 0,75 

mean_std50 12,46 4,54 13,46 5,54 0,69 0,25 0,73 0,72 

mean_std25 11,96 4,05 13,95 6,04 0,66 0,23 0,75 0,72 

topdown40 11,96 4,07 13,93 6,04 0,66 0,23 0,75 0,72 

topdown30 12,49 4,07 13,40 5,51 0,69 0,26 0,73 0,72 

topdown20 12,34 5,24 12,76 5,66 0,69 0,29 0,70 0,70 

mean_std100 12,07 5,47 12,53 5,93 0,67 0,30 0,69 0,68 

maxmin67 11,70 5,54 12,46 6,31 0,65 0,31 0,68 0,67 

topdown10 11,41 5,54 12,46 6,59 0,63 0,31 0,67 0,66 

mean_std150 10,71 5,38 12,62 7,29 0,60 0,30 0,67 0,65 

mean_time 11,16 6,28 11,73 6,84 0,62 0,35 0,64 0,64 

maxmin50 9,70 5,04 12,96 8,30 0,54 0,28 0,66 0,63 

maxmin33 7,45 3,87 14,13 10,55 0,41 0,22 0,66 0,60 

   

Table 5-8: The accuracy comparison of the ternary discretization methods using the 

time-series and its derivative 

 mean_std25 mean_std50 mean_std100 mean_std150 maxmin67 maxmin50 

time-series 0,72 0,72 0,68 0,65 0,67 0,63 

derivative 0,84 0,84 0,78 0,71 0,75 0,68 

      

 topdown10 topdown20 topdown30 topdown40 maxmin33 

time-series 0,66 0,70 0,72 0,72 0,60 

derivative 0,74 0,80 0,84 0,84 0,63 

 

Table 5-7 shows the evaluation metrics for each ternary discretization method by 

sorting the methods according to their accuracy. For each method, if an external 

parameter was used, the parameter was expressed by the right side of its name. Also, 
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table 5-8 gives the comparison of accuracy for each method using the time-series 

and derivative of it. We discuss the results of ternary discretization methods in three 

headings. First of all, ternary discretization methods gave more accurate results than 

binary discretization methods. It is intuitively correct because splitting a time-series 

to more levels reduces the information loss due to discretization. Secondly, robust 

methods explained in table 5-3 performed better; the accuracy of the following 

methods are better than others despite changing external parameters:  Ji-Tan, mean-

std, and Top-Down. Robustness is one of the most important criteria for a method 

because these types of methods are less dependent on the properties of data such as 

sample size, maximum and minimum values of the data; these properties may change 

for different types of experiments and conditions. Thirdly similar to the result 

discussed for binary discretization methods, the methods use variation between time 

points is better than other methods. Although different external parameters were used 

for the Ji-Tan method, this method was better compared with the methods not using 

variation between time points. One exception is the mean-time discretization; less 

accuracy is obtained despite it uses the variation between time points. Besides, Table 

5-8 signifies that using derivate of the time-series gives better discretization 

performance; for all methods using the derivative of the time-series outperformed 

the time-series itself. Therefore, like in binary discretization methods, ternary 

discretization methods also corrected the hypothesis proposed; variation between 

time points reduces the information loss due to discretization for fMRI data. 
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Table 5-9: The comparison of multi-level discretization methods 

Name Level TP FP TN FN Recall FPR Precision Accuracy 

EFD3 3 12,40 4,39 13,61 5,60 0,69 0,24 0,74 0,72 

3means 3 12,51 4,80 13,20 5,49 0,70 0,27 0,72 0,71 

EFD2 2 14,47 7,52 10,48 3,53 0,80 0,42 0,66 0,69 

2means 2 14,44 7,55 10,46 3,56 0,80 0,42 0,66 0,69 

EWD2 2 14,40 7,79 10,21 3,60 0,80 0,43 0,65 0,68 

EWD3 3 11,79 5,73 12,27 6,21 0,66 0,32 0,67 0,67 

bi2means 2 10,64 7,81 10,19 7,37 0,59 0,43 0,58 0,58 

bi3means 3 5,78 3,84 14,16 12,22 0,32 0,21 0,60 0,55 

 

Table 5-10: The accuracy comparison of the multi-level discretization methods using 

the time-series and its derivative 

 EWD2 EWD3 EFD2 EFD3 2means 3means bi2means bi3means 

time-series 0,68 0,67 0,69 0,72 0,69 0,71 0,58 0,55 

derivative 0,73 0,74 0,75 0,85 0,75 0,83 0,61 0,58 

 

Table 5-9 gives the comparison of the multi-level discretization methods, for each 

method two levels were compared, binary and ternary. Because, increasing the level 

of the discretization requires larger samples for the convergence of dDBN learning. 

Hence, we did not increase the level of discretization, which is not practical because 

sample sizes are limited for fMRI data. There are several results obtained from multi-

level discretization analysis. First of all, except for the biKmeans and EWDX, 

ternary discretization was better than binary discretization. Getting better accuracy 

for ternary discretization was expected. The reason for the biKmeans gave the 

inverse of the expectation is the following; this method makes two Kmeans 

clustering. The first one for each time point, where nodes are clustered; the number 

of nodes was six in our case. Secondly, each time-series is clustered, same as the 

Kmeans method. For the first clustering, we only had six nodes, clustering six 
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samples to three clusters may arise problems, and these could lead to lower 

discretization performance for ternary. Clustering six samples to two clusters would 

give better quality then clustering to three clusters. Hence binary discretization gives 

better than ternary for this method. The second result is about robustness. Even 

though the biKmeans method was described as a robust method in Table 5-4, robust 

methods gave a better performance than non-robust methods. EWDX method is the 

only non-robust method for multi-level discretization; its performance was lower 

than other methods except biKmeans. Robustness could be the reason for its ternary 

discretization to have lower accuracy than binary. More importantly, its ternary 

discretization performed lower than binary discretization of EFDX and Kmeans 

discretization. Therefore, robust methods perform better fMRI discretization for 

dDBN learning. The third result is about the effect of derivative on the discretization. 

Like binary and ternary discretization methods, using the derivative of time-series 

gave better accuracy than using time-series itself for all methods presented for multi-

level discretization shown in Table 5-10.  

Table 5-11: The list of best ten discretization methods according to their accuracy. 

“der” means that firstly the derivative of the synthetic data was computed then 

discretization methods were applied. 

Name level TP FP TN FN Recall TPR FPR Precision PPV Accuracy 

der + EFD3 3 14,95 2,45 15,55 3,05 0,83 0,14 0,86 0,8473 

der + topdown40 3 14,59 2,23 15,77 3,41 0,81 0,12 0,87 0,8432 

der + mean_std25 3 14,58 2,23 15,77 3,43 0,81 0,12 0,87 0,8429 

der + mean_std50 3 14,94 2,60 15,40 3,06 0,83 0,14 0,85 0,8427 

der + topdown30 3 14,89 2,66 15,34 3,11 0,83 0,15 0,85 0,8397 

der + 3means 3 14,77 2,92 15,08 3,23 0,82 0,16 0,83 0,8291 

ji_tan33 3 13,67 2,92 15,09 4,33 0,76 0,16 0,82 0,7988 

der + topdown20 3 14,28 3,53 14,47 3,72 0,79 0,20 0,80 0,7985 

der + mean_std100 3 13,92 3,88 14,12 4,08 0,77 0,22 0,78 0,7789 

ji_tan50 3 13,31 3,33 14,67 4,69 0,74 0,19 0,80 0,7772 
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Table 5-11 lists the best ten discretization methods. The overall comparison for 

every method is provided in the Appendix C. The best methods listed in the table 

have three discrete levels. Binary discretization did not give higher accuracy, which 

is expected; because information loss due to discretization is lower for the ternary 

case. More importantly, all methods in the table use variation between time points; 

either method uses it directly like the Ji-Tan method, or methods use the derivative 

of the time series, then performs the discretization. This result concludes that the 

hypothesis proposed in this study is corrected by simulation methods; using variation 

between time points increases the performance of discretization; and for modeling 

brain connectivity by dDBN using fMRI data, the derivative of the fMRI signal is 

more informative than the signal itself.  In addition, robustness is a key property for 

a method to give a higher performance for discretization; listed methods in table 5-

11 were classified as a robust method in tables 5-[2-4].  
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Table 5-12: Effect of scanner noise on the accuracy of the discretization methods 

Name  
 

Level  

standard deviation σ 

0 0,2 0,4 0,6 0,7 0,8 0,9 1 

 TSD00  2 0,750 0,739 0,704 0,663 0,647 0,633 0,621 0,612 

 ji+tan33  3 0,799 0,766 0,709 0,663 0,642 0,627 0,610 0,597 

 ji+tan50  3 0,777 0,752 0,705 0,661 0,646 0,626 0,610 0,599 

 mean_std25  3 0,720 0,707 0,681 0,653 0,643 0,633 0,624 0,618 

 der+mean_std25  3 0,843 0,793 0,714 0,662 0,638 0,623 0,606 0,593 

 mean_std50  3 0,720 0,709 0,685 0,660 0,647 0,639 0,626 0,619 

 der+mean_std50  3 0,843 0,810 0,729 0,669 0,647 0,628 0,611 0,599 

 mean_std100  3 0,683 0,675 0,660 0,640 0,631 0,621 0,615 0,609 

 der+mean_std100  3 0,779 0,755 0,703 0,656 0,635 0,622 0,605 0,593 

 topdown20  3 0,697 0,689 0,669 0,647 0,636 0,628 0,619 0,612 

 der+topdown20  3 0,799 0,775 0,716 0,662 0,642 0,624 0,609 0,595 

 topdown30  3 0,719 0,708 0,684 0,659 0,647 0,639 0,626 0,619 

 der+topdown30  3 0,840 0,809 0,731 0,670 0,647 0,629 0,612 0,598 

 topdown40  3 0,719 0,707 0,681 0,654 0,642 0,632 0,624 0,618 

 der+topdown40  3 0,843 0,793 0,714 0,662 0,639 0,622 0,607 0,593 

 EFD3  3 0,722 0,712 0,687 0,659 0,646 0,639 0,627 0,621 

 der+EFD3  3 0,847 0,810 0,728 0,670 0,646 0,628 0,610 0,598 

 3means  3 0,714 0,704 0,682 0,658 0,646 0,636 0,625 0,617 

 der+3means  3 0,829 0,802 0,729 0,669 0,646 0,636 0,612 0,599 

 

 

Table 5-12 gives the effect of scanner noise on the discretization. Rather than 

evaluating all discretization methods explained in section 2, we only analyzed the 

best ten methods listed in table 5-11 and TSD which was the best among all binary 

discretization methods. Two main results are obtained by evaluating the effect of 

scanner noise. First, for all methods increasing the scanner noise decreases the 

accuracy of the discretization methods.  This is expected because an increase in the 

noise level increases the information loss on the HRF while discretizing the data. 

Secondly, variation between time points is more sensitive to the scanner noise. When 

scanner noise increases further a threshold, using the time-series itself outperforms 
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using variation between time points. For example, EFD3 with derivative was 

obtained the best method among other techniques, see table 5-11. When the standard 

deviation of the scanner noise is higher than 0.7, der+EFD3 is less accurate than 

EFD3. The standard deviation for which using time-series itself was more 

informative is illustrated by bolding the corresponding accuracy of the methods in 

Table 5-12. The reason behind this behavior is the increase in the effect of scanner 

noise when performing the difference between successive points. Suppose we have 

w[t] which is a white noise with 0 mean σ standard deviation. When we perform a 

difference filter on this noise, we get a new white noise with 0 mean and σ√2 standard 

deviation. Therefore, despite using variation between time points gives better 

accuracy when we consider the linear property of HRF response, an increase in the 

scanner noise decreases the accuracy. Hence, we have a trade-off between using 

variation between time-points and increasing the effect of scanner noise. 

5.7 Testing Discretization Methods in Real fMRI Data 

We compared discretization methods using only the data belonging to the control 

group in openfMRI data. The corresponding ROI’s and time series generation are 

explained in chapter 7. In this section, our aim is only to show that the discretization 

methods explained in this section are able to discretize the real fMRI data. Since we 

do not have ground-truth connectivity in this comparison, we made the comparison 

using EFD3 with derivative, which was chosen as the best discretization method for 

synthetic fMRI data. We made a comparison using a total of 8 different methods. 

According to the use of a method, fMRI data was discretized, considering also the 

derivative of data if a method needs it. We obtained a connectivity graph for each 

discretization method separately for a total of 121 subjects. The connectivity graph 

of der-EFD3 was accepted as ground-truth. If this method is considered to be the 

best method, it can be taken as ground truth. We have posed our hypothesis as 

follows, if we obtain a ranking similar to the ranking obtained as a result of tests 

made with synthetic data for real fMRI data, this will show the accuracy of the 
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methods performed. Therefore, the results of the methods compared with der-EFD3 

should show a similar result to those made in synthetic data. It is not important to get 

the same result exactly, but the similarity should be as high as possible. 

Table 5-13: The accuracy obtained by taking the der-EFD3 ground-truth for the 

methods specified for the real fMRI data in the table on the left, the results on the 

right show the accuracy for the synthetic data of the same methods. In both tables, 

the results are presented by sorting them according to accuracy. 

method 

accuracy 

according to 

real fMRI 

data 

 method 

accuracy 

according to 

synthetic data 

der-topdown40 0,942   der - topdown40  0,843 

der-mean-std50 0,935   der - mean_std50  0,843 

der-3means 0,887   der - 3means  0,829 

jitan33 0,872   ji_tan33  0,799 

TSD00 0,753   TSD00  0,750 

der-mean2 0,752   der - mean2  0,750 

der-EWD3 0,720   der - EWD3  0,745 

topdown40 0,674   EFD3  0,722 

EFD3 0,668   mean_std50  0,720 

mean-std50 0,657   topdown40  0,719 

3means 0,641   3means  0,714 

EWD3 0,615   mean2  0,692 

mean2 0,549   EWD3  0,668 
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Table 5-13 shows the comparison of the methods for real and synthetic fMRI data. 

Firstly, considering the rankings of the results of a total of 13 methods, a very similar 

ranking can be seen for real fMRI data cases compared to synthetic data. In both 

cases, the first six methods found to be the same. Other methods showed very close 

rankings compared to synthetic sequences. No striking difference was observed for 

both data. Note that the faster decline in performance rates on real data may be the 

result of the der-EFD3 method being the ground-truth. 

We will discuss this high level of similarity under two headings. First and foremost, 

testing of the methods performed in this study was carried out correctly. It shows 

how successful the method of generating synthetic fMRI data specified in this study 

is. This result signifies that it is a perfect method for generating synthetic fMRI data 

that possess effective connectivity among its regions. If we consider dDBN modeling 

as an evaluation metric, one of the results of table 5-3 is how high is the similarity 

between synthetic fMRI data and actual fMRI data. Second, these results show that 

how critical is the use of discretization techniques for connectivity modeling brain 

via dDBN. This issue is not considered for the recent studies conducted effective 

connectivity [4]–[6]. The choice of their method is not denoted as successful. Burge 

et al. and Dang et al. used the EWD method where it was denoted as a not successful 

not robust method for fMRI data. Rajapakse et al. used MaxMin33 in their studies 

and it was also denoted as an unsuccessful method. This makes their premise of study 

to be very problematic. All in all, I believe that this chapter of the thesis is very 

critical for modeling brain connectivity by dDBN. The EFD3 with derivative is a 

powerful technique to discretize fMRI data.  
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CHAPTER 6  

6 EFFECT OF SMOOTHING ON EFFECTIVE CONNECTIVITY 

In this chapter, our aim is to investigate the effect of smoothing on fMRI data by 

considering the effective connectivity modeling of the brain using dDBN. In spatial 

smoothing, data points are averaged using the neighbor information. This has the 

effect of low pass filtering by removing the high frequencies of data. Therefore, 

sharp edges of the data are removed, and it is blurred. The standard method for 

smoothing fMRI data is filtering the data with a Gaussian function on the spatial 

coordinate. The standard deviation (sigma) of the Gaussian function is the only 

parameter used.  

6.1 Advantages of the smoothing 

Smoothing of the fMRI data comprises several advantages for analyzing fMRI data. 

The most critical advantage is that it increases the signal to noise ratio [62]–[65]. 

Scanner noise has a negative impact on fMRI data analysis. In chapter 5, we showed 

how this noise may affect the performance of the discretization. By spatially 

smoothing the data, the fMRI signal is averaged for a particular voxel by considering 

its neighbor’s information. Therefore, the signal to noise ratio for the voxel signal is 

improved.  

6.2 The impact on effective connectivity 

In this part of the study, 4 ROIs of Default Mode Network were used. Firstly, 

smoothing with various sigma values (1-12 mm) was applied to fMRI data which 

was downloaded from openfMRI.org. Then a time series for each ROI was extracted 

from the smoothed data. The length of the time series was appropriate for a model 
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of 4 nodes (as explained in chapter 4, table 4-4). Data was discretized using der-

EFD3 which found to be the best method in chapter 5. Finally, connectivity was 

modeled by dDBN for each subject. The effective connectivity models learned are a 

4 * 4 matrix, and connectivity is indicated by 1 and dis-connectivity by 0. Then, the 

average connectivity map of the control group was obtained for each smoothing 

sigma. 

Table 6-1: Average connectivity map for smoothing sigma 1 mm 

ROIs MPFC PCC LIPL RIPL 

MPFC 1 0 0 0 

PCC 0 1 0 0 

LIPL 0 0 1 0 

RIPL 0 0 0 1 

 

Table 6-2: Average connectivity map for smoothing sigma 5 mm 

ROIs MPFC PCC LIPL RIPL 

MPFC 0,579 0,273 0,240 0,281 

PCC 0,628 0,430 0,455 0,355 

LIPL 0,322 0,438 0,479 0,314 

RIPL 0,248 0,372 0,298 0,306 
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Table 6-3: Average connectivity map for smoothing sigma 10 mm 

ROIs MPFC PCC LIPL RIPL 

MPFC 0,826 0,727 0,736 0,661 

PCC 0,719 0,686 0,777 0,678 

LIPL 0,818 0,694 0,686 0,694 

RIPL 0,554 0,727 0,645 0,678 

 

Table 6-[1-3] show the average connectivity map found for different smoothing 

sigma values. When sigma is low, ROIs are only self-connected. The fact that the 

connections between different ROIs are 0 indicates that there is no connection for all 

participants. When the sigma is 5mm, the method drops the self-connections and 

other connections appear. Statistically, this result shows us how important the 

smoothing is for the connectivity analysis. For smaller sigma, the connections are 

self-connected; the data cannot be statistically related to other ROIs. A single time-

series data at time t depends only on its value at time t-1, which is expected for any 

time-series. However, when the smoothing sigma increases, new connections are 

formed which is also expected. However when sigma increases there is a decrease in 

the self connections. For example the avarage self-connections represented in table 

6-2 is smaller than ones represented in table 6-1. The decrease in the self connections 

is not expected. Because a single time-series would be always expected to be 

connected to itself. Observation of decrease in self-connections and increase on 

other-connections shows that other-connections found by increasing the smoothing 

sigma are  significant. Table 6-3 shows the connectivity map for the smoothing sigma 

at higher values. First of all, it is clear that the average connectivity map is high; all 

of the entries are generally higher than 0.5. The reason for this is that the smoothing 

with very high sigma caused the similarity of the voxels in the ROI voxels to be very 

high. As a result, the dDBN learning algorithm is beginning to see connectivity due 

to the repetition of same data distributions, which is caused by oversmoothing and 
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that should be avoided. These three tables show that the smoothing of fMRI data is 

critical for the connectivity map found by dDBN. 

6.3 Determination of Smoothing Parameter for fMRI data considering 

dDBN 

In order to find the best smoothing sigma, we considered the issues discussed above. 

The self connections of ROIs and connections between different ROIs were carefully 

analyzed. Table 6-4 supports our previous statements about the effect of sigma on 

the effective connectivity graph. The connectivity between different ROIs increases 

as the smoothing sigma rises. But the average self-connection falls first and this 

decline continues until the sigma is 4 mm. It is almost stable when sigma is up to 7 

mm and then rises again. The first drop is related to finding dependency with other 

ROIs. When the dependency is much stronger with different ROI, the frequency of 

observing self-connection reduces. This is actually in line with our purpose in 

smoothing. This decrease remains constant between 4-7 mm and later increases 

again. The increase afterward is a problem that arises due to the excessive smoothing 

of the data. Considering these results, it can be seen that the smoothing sigma should 

be between 4-7 mm, and according to table 6-4, we suggest to take sigma as 4 mm 

because it is the sigma that gives the lowest average self-connections.  
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Table 6-4: Average self- connections and connections between different ROIs for 

different smoothing sigma 

smoothing 

sigma 

self-

connection 

Connections between 

different ROIs 

1 1,000 0,000 

2 0,936 0,030 

3 0,597 0,164 

4 0,444 0,270 

5 0,448 0,352 

6 0,475 0,425 

7 0,486 0,501 

8 0,552 0,568 

9 0,626 0,632 

10 0,719 0,702 

11 0,781 0,789 

12 0,855 0,844 

 

In order to strengthen the applicability of the proposed sigma value, we analyzed the 

connectivity differences between control and schizophrenia. The hypothesis is as 

follows, if there is a significant connectivity difference between these two groups, 

the differences would be observed at optimal smoothing sigma. Table 6-5 presents 

the average connectivity map differences between these groups for various sigma 

values with corresponding probabilities. The result shown in table 6-5 supports the 

method proposed for determining the best smoothing sigma. In the previous result, 

we determine the best sigma as 4-7 mm. When we look at the difference values in 

Table 6-5, we see the highest difference between the two classes are observed when 

sigma is 3-6 mm. Note that the p-value between 3-6 mm is less than 0.05, which 

shows statistically significant differences. In other words, the best sigma we find 

with the dDBN method gives us the difference between the groups as highest and 
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statistically meaningful. This result confirms our previous decision. The best 

smoothing sigma can be found using the control data only, just by analyzing the 

behavior of connectivity changes while sigma is changed. But including the 

comparison between the control and schizophrenia group provides further proof 

about the decision. 

Table 6-5: The average connectivity difference between the schizophrenia and 

control groups. Corresponding probability values that show the probability of getting 

the same difference in the control group using Monte Carlo simulation, for p<0.05 

the corresponding p values are bolded. 

smoothing 

sigma 

difference between 

schizophrenia and control 
p 

1 0,000 1,0000 

2 0,499 0,2201 

3 1,989 0,0003 

4 1,927 0,0052 

5 1,800 0,0303 

6 1,986 0,0120 

7 1,686 0,1049 

8 1,311 0,5154 

9 1,079 0,7957 

10 1,136 0,6115 

11 1,024 0,6070 

12 0,867 0,6888 

 

In addition, how to find the p values in Table 6-5 will be explained. It would not be 

correct to interpret this table without determining whether there is a significant 

difference between the control and schizophrenia group. In order to investigate the 

statistical meaning of the difference, we took the control group as a basis. Namely, 

since there were 50 schizophrenes and 121 controls in total, we had 50/171 ~ 0.3 
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percent of schizophrenic data. Whether the average connectivity graph difference we 

found between these two groups was significant or not was decided using the control 

group's data. Here we used the Monte Carlo simulation technique. According to this 

technique, we divided our control group’s data into two parts at a rate of 0.3 each 

time. Then we found the average connectivity difference between these parts. We 

did this simulation 100,000 times and recorded the results. We compared the 

difference between schizophrenia and the control group with the difference values 

we obtained with these simulations. In total, we calculated how many simulations 

gave difference larger than the real difference and divide it by the number of 

simulations. This gave us the probability of finding the actual difference on control 

group’s data. If this value is less than 0.05, it was accepted that there is a statistically 

significant difference. These differences are shown in bold in the table. Figure 6-1 

gives an example of how the Monte Carlo simulation technique is done, the 

smoothing sigma is 4 mm for this figure. The histogram represents the difference of 

the average connectivity graph when the Monte Carlo simulation technique was 

applied to the control group. The red area on the figure illustrates the corresponding 

observation of the difference in the control group which is higher than the actual 

difference between control and schizophrenic subjects.   



 

 

86 

 

Figure 6-1: Histogram of the difference using Monte Carlo simulation and the 

corresponding real difference between control and schizophrenia group  

6.4 Discussion 

All in all, we have concluded from the analysis of this chapter that smoothing has a 

significant effect on the connectivity graph found by dDBN. Note that in the previous 

chapter we had noted that scanner noise has a significant effect on model discovery 

for simulated fMRI data. In order to decrease the scanner noise, smoothing is the 

only option for fMRI data. Smoothing is performed by using a kernel filter with a 

Gaussian function and a predetermined standard deviation in mm. Increasing sigma 

blurs images too much that effective connectivity becomes fully connected. 

Decreasing the smoothing sigma does not decrease the scanner noise effect hence 

optimal sigma is needed. We used the internal properties of dDBN to determine the 

best sigma for smoothing. Our results suggest that a 4 mm sigma is favorable to use 

in Gaussian smoothing. This smoothing also gave the best discrimination between 

control and schizophrenia groups. We did not have to find such a result because our 
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method did not rely on differentiating two groups. However, if there were significant 

differences between these two groups, we would expect to get this difference for 

optimal sigma, and we got it for the smoothing sigma we proposed in this study.  
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CHAPTER 7  

7 EFFECTIVE CONNECTIVITY FOR CONTROL AND SCHIZOPHRENIA 

SUBJECTS USING THREE DIFFERENT MODELLING APPROACHES 

In this section, we will explain how the effective connectivity modeling of the brain 

is done using resting-state fMRI data. Resting-state fMRI data is obtained when 

participants do not take any task during fMRI scanning. While the individuals are at 

rest, activation is observed for certain brain regions, and some connectivity patterns 

are found between the brain regions. One of the most important connectivity 

observed during resting state is the Default Mode Network (DMN). In previous 

studies, both functional connectivity and effective connectivity between brain 

regions of Default Mode Network have been studied in modeling the brain using 

resting-state fMRI [3], [18], [66], [67]. In this section, we examined the effective 

connectivity of the brain using the control and schizophrenic data to underline the 

differences between each group using default mode network regions. From the 

previous studies, it has been stated that 4 important regions are found for the default 

mode network of the brain [66], [67]. Table 7-1 shows these brain regions and their 

MNI coordinates. 

Table 7-1: Corresponding DMN regions and their MNI coordinates 

Regions of DMN MNI Coordinates 

Medial Prefrontal Cortex (MPFC) 3,54,-2 

posterior cingulate cortex (PCC) 0, -52, 26 

left inferior parietal lobule (LIPL) −50, −63, 32 

right inferior parietal lobule (RIPL) 48, -69, 35 
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OpenfMRI data includes 121 controls, 50 schizophrenia, 49 bipolar disorders and 41 

attention-deficit / hyperactivity disorder (ADHD) data. More information about the 

data and its preprocessing is explained in [68], [69].  The biggest advantages of using 

this data are: Firstly, it was obtained from a large number of participants, which will 

increase the reliance on statistical analysis. Secondly, the preprocess of this data had 

been prepared in openfMRI.org. We would only do modeling without any 

preprocessing (except smoothing and high-pass filtering). In this thesis, we had only 

conducted effective connectivity modeling for schizophrenia and control groups. 

7.1 Preprocessing 

Since data is already preprocessed we downloaded the data from openfMRI.org with 

its preprocessed version. Data were preprocessed by the following steps: Motion 

Correction, Slice-Timing Correction, Distortion Correction and Spatial 

Normalization. Since this data is not spatially smoothed we applied this step by using 

FSL toolbox. This data is smoothed by the Gaussian kernel with a 4 mm standard 

deviation. Note that 4 mm was found as the best smoothing sigma in chapter 6. Then 

data were high-pass filtered by using FSL which contain a high pass filter for 

removing low-frequency component in the time domain. This component is rather 

depending on the scanner not related to hemodynamic response. The cut-off 

frequency was 128 HZ.   

7.2 Data generation for ROIs 

Several studies have conducted effective connectivity analysis for fMRI data [2], [3], 

[5], [17], [70]. We have used one of the ROIs that they have found activated in 

resting-state fMRI data which was collected from healthy subjects.  These regions 

are illustrated in table 7-1, where these regions are the regions considered to be 

related to the default mode network. 
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After fMRI data were smoothed, it had to be discretized in order to use it for dDBN 

modeling. For this, fMRI data was discretized with der-EFD3 which was chosen to 

be the best in chapter 5. The size of the fMRI time series was 152 scans. After this 

process, the size became 151. Since we made discretization at 3 levels, cardinality 

(K) should be taken as 3. Since the maximum number of parents is 4 ROIs, we have 

taken this number as 4. We did not put any restrictions on the number of parents. As 

a result, the table 4-4 stated that the amount of data required should be greater than 

3819, and we assumed to have more than 4000 number of samples. The size of each 

voxel was 151 in each discrete-fMRI data. As a result, we have to put the 4000 / 

151≈27 voxels’ signal in a row by concatenating them. Totally we collected 4*4077 

time-series for each participant where 4 denotes the regions and 4077 indicates the 

temporal length of each regions.  

7.3 Effective connectivity approaches 

In the literature, there are totally 3 different approaches for brain modeling [71]. In 

this section, we briefly explain each method, and their results using openfMRI data.  

7.3.1 Individual Structure (IS) Approach 

The IS approach learns individual networks for each subject separately and makes 

group analysis on these separate networks. The IS approach definitely considers 

variability between subjects. However, when individual network models are 

different, it is not a trivial task to obtain a statistically significant network for a group. 

In order to apply this approach for openfMRI data, we examined the following steps. 

Firstly, each discrete ROI-based fMRI data of each subject was used in dDBN 

learning to find the model of the data. This model which is a 4*4 matrix consists of 

0s and 1s was the effective connectivity graph of each subject. 1s in this graph 

represent the temporal causality between ROI’s and 0s indicate dysconnectivity 

among the brain regions. Secondly, in order to understand the group level similarity 
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and differences between the groups, the average effective connectivity graph for each 

group was calculated which is illustrated in Tables 7-2 and 7-3 for control and 

schizophrenia. 

Table 7-2: Average connectivity graph of the control group. The connections are 

from rows to columns  

ROIs MPFC PCC LIPL RIPL 

MPFC 0,562 0,207 0,182 0,124 

PCC 0,562 0,421 0,339 0,231 

LIPL 0,248 0,347 0,488 0,306 

RIPL 0,174 0,306 0,215 0,306 

 

Table 7-3: Average connectivity graph of the schizophrenia group. The connections 

are from rows to columns 

ROIs MPFC PCC LIPL RIPL 

MPFC 0,860 0,200 0,140 0,180 

PCC 0,360 0,700 0,380 0,280 

LIPL 0,180 0,260 0,640 0,140 

RIPL 0,180 0,220 0,100 0,580 

 

Pearson chi-square (χ2) test was performed to see if the difference between these two 

groups is statistically significant. Table 7-4 and figure 7-1 give the corresponding 

frequency differences between control and schizophrenia groups and corresponding 

p values for each connection. 
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Table 7-4: Connectivity differences between schizophrenics and controls obtained 

by the individual-structure method where the Pearson chi-square test is applied to 

see the significance of the difference. Green shows for p<0.01, red shows for 

0.01<p<0.05 and bolded ones are for 0.05<p<0.1. 

connection control schizophrenia difference χ2  p 

MPFC->MPFC 0,562 0,860 0,298 13,796 0,000204 

PCC->MPFC 0,562 0,360 -0,202 5,774 0,016266 

LIPL->MPFC 0,248 0,180 -0,068 0,927 0,335529 

RIPL->MPFC 0,174 0,180 0,006 0,010 0,919699 

MPFC->PCC 0,207 0,200 -0,007 0,010 0,922352 

PCC->PCC 0,421 0,700 0,279 10,978 0,000922 

LIPL->PCC 0,347 0,260 -0,087 1,230 0,267332 

RIPL->PCC 0,306 0,220 -0,086 1,290 0,256136 

MPFC->LIPL 0,182 0,140 -0,042 0,439 0,507444 

PCC->LIPL 0,339 0,380 0,041 0,263 0,60798 

LIPL->LIPL 0,488 0,640 0,152 3,300 0,069262 

RIPL->LIPL 0,215 0,100 -0,115 3,146 0,076126 

MPFC->RIPL 0,124 0,180 0,056 0,921 0,337295 

PCC->RIPL 0,231 0,280 0,049 0,451 0,5019 

LIPL->RIPL 0,306 0,140 -0,166 5,088 0,024086 

RIPL->RIPL 0,306 0,580 0,274 11,225 0,000807 
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Figure 7-1: The connectivity map for the individual structure approach, only 

statistically significant connections are illustrated. The green arrows show for 

p<0.01, the red arrows show for 0.01<p<0.05 and dashed arrows show for 

0.05<p<0.1. 

7.3.2 Virtual-Typical Subject (VTS) Approach 

The VTS approach assumes that each subject within the group has the same brain 

network. Data from all individuals are combined and processed as if sampled from a 

virtual object. Accordingly, a single time series for the groups was obtained by 

concatenating the data for every subject in each group. Then dDBN effective 

connectivity models were obtained. In Table 7-5 and 7-6, effective connectivity 

models of the two groups are given. Different observed connections in both groups 

are indicated in red. Some connections do not exist in the schizophrenia group. 
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Table 7-5: The effective connectivity model of the control group using Virtual-

Typical Subject approach 

ROIs MPFC PCC LIPL RIPL 

MPFC 1 0 0 0 

PCC 1 1 1 1 

LIPL 1 1 1 1 

RIPL 1 1 1 1 

 

Table 7-6: The effective connectivity model of the schizophrenia group using 

Virtual-Typical Subject approach 

ROIs MPFC PCC LIPL RIPL 

MPFC 1 0 0 0 

PCC 1 1 1 1 

LIPL 0 1 1 0 

RIPL 1 1 0 1 

 

One of the most striking results in these tables is about the effectiveness of MPFC. 

MPFC does not affect any brain region in the default mode network for both groups 

MPFC (medial-prefrontal cortex) is the region where the decision-making 

mechanism is located in the frontal area of the brain and where human-kind 

processes are performed. Considering that it is the region where the information is 

collected, processed, and the decision is made, this result may be expected because 

it must be the region where information transformation is ended considering the 

default mode network regions. Figure 7-2 gives a figure for the easiness of 

illustration to see the difference between each group.  



 

 

96 

 

Figure 7-2: The connectivity map for virtually-typical subject approach, only the 

differences are illustrated. Note that lines in the figure are the connections observed 

for the control group but not observed for schizophrenia. 

7.3.3 Common Structure (CS) Approach 

The CS approach allows a common brain network within the group while allowing 

model parameters to differ among subjects. The CS approach addresses group 

similarity at the structural level and cross-subject variability at the parameter level. 

The strength of the connection was considered, and it was assumed that it may differ 

among the subject within the group. We modeled this method with dDBN by the 

following steps. First of all, the data for the two groups were combined to obtain 

connectivity maps with dDBN learning. Tables 7-5 and 7-6 are the graphs obtained 

for two groups. The connections in these two maps were combined to create a single 

connectivity map. In this new connectivity map, the connection seen in any group is 

taken as the connection. If we explain mathematically, the connectivity map of the 
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two groups goes through the 'OR' operation. Using the discrete fMRI data of the 

subjects in both groups and the connectivity map, we calculated the strength of the 

connection between the brain regions of the groups. The strength of connection 

shows the information transmitted between the two regions. In order to calculate the 

strength of the connection following expression was used. 

𝐿𝑆(𝑋 → 𝑌) =∑𝑃(𝑥, 𝑧)

𝑥,𝑧

∑𝑃(𝑦|𝑥, 𝑧) log2
𝑃(𝑦|𝑥, 𝑧)

𝑃(𝑦|𝑧)
𝑦

 (7.1) 

In this expression, the connectivity strength between Y and X is calculated, where 

Y, X are discrete-valued random variables.  Z represents the random variables in the 

parent set of Y except for X. This expression finds the information transformed from 

X to Y. For detail about the strength of the connection see Nicholson and Jitnah [72]. 

Table 7-7: The average effective connectivity strength of the control group 

ROIs MPFC PCC LIPL RIPL 

MPFC 0,082 0,000 0,000 0,000 

PCC 0,067 0,043 0,031 0,027 

LIPL 0,054 0,033 0,039 0,027 

RIPL 0,054 0,031 0,026 0,032 

 

Table 7-8: The average effective connectivity strength of the schizophrenia group 

ROIs MPFC PCC LIPL RIPL 

MPFC 0,117 0,000 0,000 0,000 

PCC 0,058 0,068 0,029 0,027 

LIPL 0,050 0,030 0,049 0,025 

RIPL 0,052 0,031 0,022 0,051 

 

Tables 7-7 and 7-8 show the average connectivity strength of the effective 

connectivity in the control and schizophrenia group. One of the most striking and 
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remarkable results in this table is that the connectivity to MPFC is dramatically 

higher than the connectivity to other regions. This can also be seen in schizophrenic 

subjects. This result is also compatible with the individual structure approach. In 

order to examine the differences between the two groups, statistical analyses were 

performed using the two-sample t-test. 

Table 7-9: Connectivity differences between schizophrenics and controls obtained 

by the common-structure approach where a two-sample t-test was applied to see the 

significance of the difference. Green shows for p<0.01, red shows for 0.01<p<0.05. 

connection control schizophrenia difference p 

MPFC->MPFC 0,082 0,117 42 0,00002 

PCC->MPFC 0,067 0,058 -14 0,00613 

LIPL->MPFC 0,054 0,050 -8 0,04949 

RIPL->MPFC 0,054 0,052 -3 0,37631 

MPFC->PCC 0,000 0,000 - - 

PCC->PCC 0,043 0,068 60 0,00121 

LIPL->PCC 0,033 0,030 -9 0,26947 

RIPL->PCC 0,031 0,031 0 0,99835 

MPFC->LIPL 0,000 0,000 - - 

PCC->LIPL 0,031 0,029 -4 0,65731 

LIPL->LIPL 0,039 0,049 26 0,03166 

RIPL->LIPL 0,026 0,022 -14 0,03828 

MPFC->RIPL 0,000 0,000 - - 

PCC->RIPL 0,027 0,027 1 0,88367 

LIPL->RIPL 0,027 0,025 -8 0,25059 

RIPL->RIPL 0,032 0,051 60 0,00003 

 

Table 7-9 shows the comparison of the connectivity strength between the two groups. 

One of the results is that the average connectivity strength is lower in the 

schizophrenic group for the connections between different ROIs. On the contrary, 
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the self-connections of ROIs are higher in the schizophrenic group. The differences 

are stated as the percentage increase in the connectivity strength of the schizophrenia 

group compared to the control group. Note that almost the same result was obtained 

for the individual structure approach. 

 

Figure 7-3: The connectivity map for the common structure approach only 

statistically significant connections are illustrated. Green arrows show for p<0.01, 

the red arrows show for 0.01<p<0.05. 

7.4 Discussion 

In this chapter, we examined the effective connectivity of control and schizophrenia 

using fMRI data. The ROIs were 4 brain regions of the Default Mode Network 

presented in table 7-1. Effective connectivity shows the temporal effects of these 

regions on each other. These analyses were made considering three approaches. 
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These are individual structure approach, virtual typical subject approach and 

common structure approach. We will discuss the results carried out by considering 

these approaches in two headings. 

Firstly, the three approaches provided similar results. Figure 7-1 and 7-3 give the 

difference of the effective connectivity between the two groups. If we look at these 

differences, we see a decrease in effective connectivity in the schizophrenia group 

between different ROIs. In the IS and CS approach, almost similar connections were 

observed as statistically different between the two groups. Figure 7-2 (VTS 

approach) also shows similar differences, but self-connection was observed in both 

groups. The reason for this is that the method is handled only on the presence and 

absence of the connection. But the connections that are seen differently in VTS can 

be observed also in IS and CS. It is a very important result that this similarity is so 

high. Because this result is a proof that the issues encountered in modeling the brain 

effective connectivity by dDBN are completely resolved. Thereby, with this thesis, 

dDBN can be used for any fMRI data, regardless of the problems. 

Secondly, it was observed that in the schizophrenia group, effective connectivity 

decreases compared to the control group. Especially when all groups were modeled 

by the VTS approach, some connections were not observed for the schizophrenia 

group although they exist for the control group. Considering the results in the IS 

approach and CS approach, this situation makes itself more conspicuous. A drop in 

the strength of connectivity between different ROIs is observed for almost all 

connections. 
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CHAPTER 8  

8 CONCLUSION 

In this thesis, we examined the important issues that should be considered in 

modeling the effective connectivity of the brain with dDBN. These important issues 

were examined in the finest detail and what should be considered in each issue was 

determined. There are totally three issues, one is to determine the required number 

of samples for the convergence of the dDBN modeling, the second one is the 

evaluation of the discretization methods for fMRI data, the last one is determining 

the most suitable sigma for smoothing. Each issue in this study confirms each other. 

For example, the sample complexity analysis obtained in chapter 4 was used to 

compare discretization methods in chapter 5. If the results found in the sample 

complexity analysis were wrong, there would be no compatible results in chapter 5. 

This also applies to the smoothing step. The smoothing issue was examined using 

real data which was processed by considering both sample complexity results in 

chapter 4 and discretization results in chapter 5. Finally, the connectivity approaches 

in chapter 7 was made considering all three issues. In chapter 7 the three different 

approaches for effective connectivity gave very similar results which shows that the 

three issues identified in this study have been resolved in a proper and reliable way. 

In order to find the sample complexity for the convergence of the dDBN structure 

learning, theoretical approaches were investigated. It was observed that the 

minimum required number of samples found by theoretical approach is practically 

very high. Therefore, a practical and systematic approach was investigated and 

practical sample complexity of dDBN was found. Experiments showed that the 

sample complexity of structure learning for dDBN is O(Kp+1). Here K is the 

cardinality of the network and p is the maximum number of parents present in the 

network. The experimental results showed that the imaginary sample size is very 
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critical on the learned model. Less number of samples may be needed with the 

optimum imaginary sample size, but this issue was left as future work. 

Secondly, discretization, an important step for dDBN, was examined. In the 

literature, generally recommended discretization methods were evaluated for fMRI 

and the most suitable discretization method was determined for dDBN. While doing 

this, the properties of fMRI data were considered, and more successful results were 

obtained when variation between time points (derivative) of fMRI data was used 

instead of the data itself. The results in Chapter 5 showed that higher performance 

had always been achieved when the derivative of the data was used. The results of 

experiments with synthetic data suggest that der-EFD3 discretization is the best 

method for fMRI discretization. In the same section, experiments with real fMRI 

data were mentioned. Experiments with real fMRI data were consistent with the 

results of synthetic data. The extremely high similarity between the results of 

synthetic and real fMRI data showed how successful the synthetic data generation 

was. 

Chapter 6 covers the issue for the smoothing of fMRI data. Spatial smoothing is the 

filtering of fMRI data with gaussian function. The objective to be achieved in this 

chapter was the standard deviation (sigma) of the Gaussian function. For this, data 

belonging to the control group of openfMRI data was used. This data has been 

preprocessed for different smoothing sigma values and optimal sigma determined 

based on the result of the dDBN models. In addition, when we examined the 

specified smoothing sigma for finding the difference between the control and 

schizophrenia groups, we found that the optimal sigma distinguished the two groups 

very successfully. This was further proof of the optimal sigma value. Results signify 

that smoothing fMRI data with 4 mm gives more accurate results in modeling 

effective connectivity by dDBN. Consider chapter 5, we had presented the 

comparison of real and synthetic fMRI data for discretization methods in Table 5-

13. It was noted that there is prominent consistency between real and synthetic fMRI 

data in terms of discretization techniques. This consistency in the ranking also shows 
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us a result of the smoothing method. Table 5-13, which is the analysis for smoothing 

4 mm, also shows the success of the smoothing study (chapter 6). 

Finally, using openfMRI data, we examined the effective connectivity between the 

4 brain regions belonging to the default mode network. We did statistical tests to 

determine whether there is a difference in the effective connectivity models of 

schizophrenia and the control group. The most noticeable result was a decrease in 

effective connectivity among different ROIs in the schizophrenia group. In other 

words, in schizophrenic individuals, brain regions affect each other less than healthy 

individuals. These results were observed similarly for all three different connectivity 

approaches which are the individual structure, virtual typical subject and common 

structure approaches. 

In this thesis, we left several studies as future work. Foremost, the optimal imaginary 

sample size may be defined as a function of network parameters. The results in this 

study signify that a smaller number of samples are adequate to discover the model 

correctly, the imaginary sample size is now extremely high or low. Hence an 

optimum value would yield better learning in terms of sample complexity. Secondly, 

the effective connectivity analysis of bipolar and ADHD was not investigated in this 

study. The same procedure may also be applied to reveal the brain working 

mechanism of the corresponding disease. Thirdly, this method is ready to be 

compared with other effective connectivity models. Since all issues are solved by 

this study, and there is a practical method to generate synthetic fMRI data which is 

detailly explained, DCM, Granger Causality etc., may be used to be compared with 

dDBN. 
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APPENDICES 

A. Proof of taking the first expression for equation 4.2 

𝜎 = min{
𝛾𝑛

2
,

𝐼𝐶𝐵

2𝑛+2|𝑛𝑙𝑜𝑔 (
𝛾
2) + 1|

} (8.1) 

𝐼𝐶𝐵 = min 
𝑖,𝑗

{ min 
𝑠⊂{𝑥1,…,𝑥𝑛}\{𝑥𝑖,𝑥𝑗}

{𝐼𝑃𝐵∗(𝑥𝑖, 𝑥𝑗|𝑆)}} 
(8.2) 

𝐼𝑃𝐵(𝑥𝑖, 𝑥𝑗|𝑆) = −log (𝑃(𝑥𝑖, 𝑥𝑗|𝑆)) 
(8.3) 

 

In this expression γ is the minimum conditional probability distribution in PB*, and 

ICB is the minimum information content in PB* and eq. 8.3 defines information 

content on a probability distribution.  The aim is to find the minimum of the σ value 

when γ→0. We started by the following condition. Assume there exists a random 

variable pair (xi,xj) such that γ is the minimum conditional distribution in PB* for xi 

and xj.  

𝛾 = min 
𝑖,𝑗
{𝑃𝐵∗(𝑥𝑖|𝑆⋃{𝑥𝑗})} (8.4) 

 

Similarly, we found the expression for ICB in terms of γ. In order to get a minimum 

value for ICB, the highest probability of P(xi,xj|S) should be considered; see eq. 8.3, 

and note that a probability of a random variable is in the interval [0 1].  

𝑃(𝑥𝑖, 𝑥𝑗|𝑆) = max{𝑃(𝑥𝑖|𝑆⋃{𝑥𝑗}) ∗ 𝑃(𝑥𝑗|𝑆)} (8.5) 

 

To be able to get the highest joint probability over xi and xj given S, two expressions 

on the right-hand side of the eq. 8.5 should be maximum. For the second multiplicand 

P(xj) we assumed it to be 1, since we did not have a priori information for the 

marginal distributions in PB*. If the first expression in eq. 8.1 was found to be 
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minimum for σ, then the assumption over P(xj) will not violate the result, in other 

cases this assumption may not be correct. As a result maximum joint probability in 

PB* is defined as. 

 𝑃(𝑥𝑖, 𝑥𝑗|𝑆) = max{𝑃(𝑥𝑖|𝑆⋃{𝑥𝑗})} = 𝑃(𝑥𝑖′|𝑆⋃{𝑥𝑗}) = 1 − 𝛾  

 𝐼𝐶𝐵 = −log (1 − 𝛾)  

One can contradict by the following statement, would not exist another random 

variable pair (xk,xl) rather than (xi,xj) such that P(xk,xl|S) is greater P(xi,xj|S). If there 

is, then ICB would depend on (xk,xl) pair. The answer for this statement starts by 

assuming that there is a (xk,xl) pair satisfying the statement. Then, 

 

𝑃(𝑥𝑘, 𝑥𝑙|𝑆) = 𝑃(𝑥𝑘|𝑆⋃{𝑥𝑙}) ∗ 𝑃(𝑥𝑙) > 𝑃(𝑥𝑖′|𝑆⋃{𝑥𝑗}) 

𝑃(𝑥𝑘|𝑆⋃{𝑥𝑙}) > 𝑃(𝑥𝑖′|𝑆⋃{𝑥𝑗}) 

𝑃(𝑥𝑘|𝑆⋃{𝑥𝑙}) > 1 − 𝛾 

𝑃(𝑥𝑘′|𝑆⋃{𝑥𝑙}) < 𝛾 

 

 

The last expression violates the assumption over γ because it was assumed to be the 

minimum conditional distribution in the network. Therefore, the expression for ICB 

was correct. 

Then, we got the following expression for σ when γ→0.  

 𝜎 = min{𝑓1(𝛾) =
𝛾𝑛

2
, 𝑓2(𝛾) =

−log (1 − 𝛾)

2𝑛+2|𝑛𝑙𝑜𝑔 (
𝛾
2) + 1|

}  

Both expressions are 0 when γ→0. Therefore, we applied the following criteria: 

  𝑑𝑒𝑓𝑖𝑛𝑒 𝐴 = lim
𝛾→0+

𝑓1(𝛾)

𝑓2(𝛾)
 𝑡ℎ𝑒𝑛 𝜎 = {

𝑓1(𝛾) 𝑖𝑓𝐴 < 1

𝑓2(𝛾) 𝑖𝑓𝐴 > 1
𝑛𝑜 𝑑𝑒𝑠𝑖𝑐𝑖𝑜𝑛 𝑖𝑓𝐴 = 1

  

Now the aim is to evaluate the limit behavior of two functions when γ→0+.  
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𝑙𝑖𝑚
𝛾→0+

𝑓1(𝛾)

𝑓2(𝛾)
= 𝑙𝑖𝑚
𝛾→0+

𝛾𝑛

2
−log (1 − 𝛾)

2𝑛+2|𝑛𝑙𝑜𝑔 (
𝛾
2) + 1|

= 𝑙𝑖𝑚
𝛾→0+

𝛾𝑛

2
−log (1 − 𝛾)

2𝑛+2 ∗ −(𝑛𝑙𝑜𝑔 (
𝛾
2) + 1)

= 𝑙𝑖𝑚
𝛾→0+

𝛾𝑛

2
log (1 − 𝛾)

2𝑛+2(𝑛𝑙𝑜𝑔 (
𝛾
2) + 1)

= 𝑙𝑖𝑚
𝛾→0+

𝛾𝑛

2
log (1 − 𝛾)

2𝑛+2(𝑛𝑙𝑜𝑔(𝛾) − 𝑛𝑙𝑜𝑔2 + 1)

 

-nlog2+1 is finite, however, log(γ) → ∞ when γ→0+. Therefore, 

𝑙𝑖𝑚
𝛾→0+

𝑓1(𝛾)

𝑓2(𝛾)
= 𝑙𝑖𝑚
𝛾→0+

𝛾𝑛

2
log(1 − 𝛾)
2𝑛+2𝑛𝑙𝑜𝑔(𝛾)

= 𝑙𝑖𝑚
𝛾→0+

𝛾𝑛2𝑛+1𝑛𝑙𝑜𝑔(𝛾)

log(1 − 𝛾)
 

= 𝑛2𝑛+1 𝑙𝑖𝑚
𝛾→0+

𝛾𝑛𝑙𝑜𝑔(𝛾)

log(1 − 𝛾)
= 𝑛2𝑛+1 𝑙𝑖𝑚

𝛾→0+

𝛾𝑛−2𝛾𝛾𝑙𝑜𝑔(𝛾)

log(1 − 𝛾)
 𝑠𝑖𝑛𝑐𝑒 𝑛 ≥ 2 

𝑙𝑖𝑚
𝛾→0+

𝑓1(𝛾)

𝑓2(𝛾)
= 𝑛2𝑛+1 𝑙𝑖𝑚

𝛾→0+

𝛾𝑛−2𝛾𝑙𝑜𝑔(𝛾)

log(1 − 𝛾) ∗ 1/𝛾

= 𝑛2𝑛+1 𝑙𝑖𝑚
𝛾→0+

𝛾𝑛−2  𝑙𝑖𝑚
𝛾→0+

𝛾

log(1 − 𝛾)
𝑙𝑖𝑚
𝛾→0+

𝑙𝑜𝑔(𝛾)

1/𝛾
 

The last partition of the limit would be feasible if and only if three limits exist.  

𝑙𝑖𝑚
𝛾→0+

𝛾𝑛−2 = {
0 𝑖𝑓 𝑛 > 2
1 𝑖𝑓 𝑛 = 2

 

𝑙𝑖𝑚
𝛾→0+

𝛾

log(1 − 𝛾)

𝐿′𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙
⇒       𝑙𝑖𝑚

𝛾→0+

1

−1/(1− γ)
= 𝑙𝑖𝑚
𝛾→0+

𝛾 − 1 = −1 

𝑙𝑖𝑚
𝛾→0+

𝑙𝑜𝑔(𝛾)

1/𝛾

𝐿′𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙
⇒       𝑙𝑖𝑚

𝛾→0+

1/𝛾

−1/𝛾^2
= 𝑙𝑖𝑚
𝛾→0+

−𝛾 = 0 

𝑙𝑖𝑚
𝛾→0+

𝑓1(𝛾)

𝑓2(𝛾)
= 0 

Therefore, we get the first expression for σ when γ→0 
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B. Analysis of Figure 4-7 with BDeu and BIC Relation 

In this section, our aim is to analyze the characteristics of the BDeu metric on 

structure learning for various numbers of data samples M. In chapter 3 it was 

described that the BDeu score converges to BIC score when M converges to infinity. 

Nonetheless, practically, for larger values of M both scores still perform the same 

characteristics. Figures 8-1 and 8-2 give simulation results to compare the BDeu and 

BIC scores for finite sample sizes, which points that for sample size greater than a 

threshold both metrics behave the same.  Note that, prior parameters αijk in Equation 

3.2 have a significant effect on M in the decision when the BDeu score acts like the 

BIC score. When the prior distributions are high, more samples are needed to see 

this effect. In this thesis, we had also provided the effect of the prior distribution on 

it was found that for smaller imaginary sample size we get a result which is similar 

to the BIC score. The reason behind having the same relation for BDeu and BIC 

scores for finite sample sizes is the use of smaller imaginary sample sizes. Notice 

that we had discussed this issue in chapter 4 and concluded that smaller but fair 

imaginary sample sizes are suitable for model discovery on dDBNs.  
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Figure 8-1: Mean error vs number of samples of a binary node has six parents for 6-

node network using BDeu and BIC scores.  

 

Figure 8-2: Mean error vs number of samples of a ternary node has six parents for 6-

node network using BDeu and BIC scores. 
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Figure 8-3 shows the structural error for a ternary valued network consisting of five 

variables where only the mean error of the node that has 5 parents is shown. This 

figure illustrates the error between the true structure from which the data was 

sampled, and the structure found with dDBN learning using this data. The graph 

seems to have three regions. In the first region, the error is around 0.5. However, 

when more data is provided to the dDBN learning procedure, error reaches to 1 and 

stays constant, despite the sample size increases. In this second region, although the 

true structure contains five parents, the found structure does not contain any edges. 

In other words, learning ended up with an empty structure. If the amount of data is 

further increased, in the third region, the algorithm starts to add some parents to the 

structure and error starts to decrease. When a sufficient amount of data is provided, 

all parental relations are found correctly by the dDBN structure learning, and error 

reaches 0.      

 

Figure 8-3: Mean error vs number of samples for the node which has 5 parents in a 

network of 5 ternary variables 
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In the first region, the amount of data samples is smaller than 70. When the data size 

is very small, dDBN structure learning ends up with a structure as if it was chosen 

randomly and does not contain any information about the actual structure. It means 

that this amount of data has no effect on learning and the BDeu score of each possible 

graph is likely to be randomly generated numbers. The maximum scored structure is 

just a randomly generated array which consists of 0’s and 1’s. Figures 4-2 and 4-3 

also illustrate this behavior. When the data size is smaller than a threshold, the 

structural error is around 0.5 and changing the parent size does not affect this result. 

This shows that the found best structures consist of edges as if they were chosen 

randomly.  

In the second region, the error is highest and stays so for the number of samples M 

from 70 to 1000. The actual structure from which the data was generated contains all 

the edges, i.e., fully connected. Getting structural error to be 1 means that the 

structure found by the dDBN learning did not include any 1’s, hence the learning 

procedure tries to obstruct any edges and the BDeu score of the empty structure is 

higher than any other possible structures. The reason for this behavior can be 

explained by analyzing Equation 3.3. Since the sample size is not sufficient, the 

likelihood term of Equation 3.3 does not differentiate the actual structure from any 

other structure and gives almost the same likelihood score for every possible 

structure. As a result of that, the second term related to the model dimension 

dominates the BDeu score. The BDeu score tries to decrease model complexity by 

this term. Therefore, the structure with the lowest model complexity or least number 

of edges will get the highest score. As a result, the learning procedure ends up with 

an empty structure and this is the reason why the structural hamming distance 

between the actual and learned structure is 1.  

Finally, in the third region, the dDBN learning algorithm starts to learn the parents 

of the node correctly. While M increases, the mean error on the structures reduces 

and after a certain value of M error becomes 0, which means that the structure is 

learned from the data correctly.  
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C. The Comparison of Discretization Techniques 

Table 8-1: The comparison of discretization methods. The table is sorted according 

to the accuracy of the methods. “der” means that firstly, the derivative of the 

synthetic data is computed then discretization methods are applied. 

Name level TP FP TN FN TPR FPR PPV Accuracy 

der + EFD3 3 14,95 2,45 15,55 3,05 0,83 0,14 0,86 0,8473 

der + topdown40 3 14,59 2,23 15,77 3,41 0,81 0,12 0,87 0,8432 

der + mean_std25 3 14,58 2,23 15,77 3,43 0,81 0,12 0,87 0,8429 

der + mean_std50 3 14,94 2,60 15,40 3,06 0,83 0,14 0,85 0,8427 

der + topdown30 3 14,89 2,66 15,34 3,11 0,83 0,15 0,85 0,8397 

der + 3means 3 14,77 2,92 15,08 3,23 0,82 0,16 0,83 0,8291 

ji_tan33 3 13,67 2,92 15,09 4,33 0,76 0,16 0,82 0,7988 

der + topdown20 3 14,28 3,53 14,47 3,72 0,79 0,20 0,80 0,7985 

der + mean_std100 3 13,92 3,88 14,12 4,08 0,77 0,22 0,78 0,7789 

ji_tan50 3 13,31 3,33 14,67 4,69 0,74 0,19 0,80 0,7772 

ji_tan67 3 12,80 3,70 14,30 5,20 0,71 0,21 0,78 0,7529 

TSD00 2 15,64 6,63 11,37 2,36 0,87 0,37 0,70 0,7503 

der + mean2 2 15,63 6,64 11,37 2,37 0,87 0,37 0,70 0,7498 

der + 2means 2 15,62 6,63 11,37 2,38 0,87 0,37 0,70 0,7498 

der + midRange 2 15,62 6,64 11,36 2,38 0,87 0,37 0,70 0,7495 

der + top50 2 15,62 6,64 11,36 2,38 0,87 0,37 0,70 0,7495 

der + EFD2 2 15,62 6,64 11,36 2,38 0,87 0,37 0,70 0,7495 

der + maxmin67 3 13,26 4,29 13,72 4,75 0,74 0,24 0,76 0,7492 

der + TDT 2 15,62 6,77 11,23 2,38 0,87 0,38 0,70 0,7458 

der + EWD3 3 13,24 4,43 13,57 4,76 0,74 0,25 0,75 0,7449 

der + topdown10 3 13,01 4,30 13,70 4,99 0,72 0,24 0,75 0,7419 

der + EWD2 2 15,48 7,04 10,96 2,52 0,86 0,39 0,69 0,7345 

EFD3 3 12,40 4,39 13,61 5,60 0,69 0,24 0,74 0,7224 

mean_std50 3 12,46 4,54 13,46 5,54 0,69 0,25 0,73 0,7199 

mean_std25 3 11,96 4,05 13,95 6,04 0,66 0,23 0,75 0,7198 
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topdown40 3 11,96 4,07 13,93 6,04 0,66 0,23 0,75 0,7193 

topdown30 3 12,49 4,60 13,40 5,51 0,69 0,26 0,73 0,7190 

3means 3 12,51 4,80 13,20 5,49 0,70 0,27 0,72 0,7143 

der + mean_std150 3 12,05 4,40 13,60 5,96 0,67 0,24 0,73 0,7123 

topdown20 3 12,34 5,24 12,76 5,66 0,69 0,29 0,70 0,6973 

midRange 2 14,47 7,52 10,48 3,53 0,80 0,42 0,66 0,6930 

EFD2 2 14,47 7,52 10,48 3,53 0,80 0,42 0,66 0,6930 

top50 2 14,46 7,53 10,47 3,54 0,80 0,42 0,66 0,6925 

mean2 2 14,45 7,53 10,47 3,55 0,80 0,42 0,66 0,6921 

2means 2 14,44 7,55 10,46 3,56 0,80 0,42 0,66 0,6915 

TDT 2 14,47 7,66 10,34 3,53 0,80 0,43 0,65 0,6893 

TSD25 2 14,86 8,24 9,76 3,14 0,83 0,46 0,64 0,6840 

EWD2 2 14,40 7,79 10,21 3,60 0,80 0,43 0,65 0,6837 

mean_std100 3 12,07 5,47 12,53 5,93 0,67 0,30 0,69 0,6834 

der + w_maxmin10 3 10,14 3,64 14,36 7,86 0,56 0,20 0,74 0,6805 

der + maxmin50 3 10,57 4,13 13,87 7,43 0,59 0,23 0,72 0,6789 

maxmin67 3 11,70 5,54 12,46 6,31 0,65 0,31 0,68 0,6709 

EWD3 3 11,79 5,73 12,27 6,21 0,66 0,32 0,67 0,6684 

der + top25 2 15,05 9,03 8,97 2,95 0,84 0,50 0,63 0,6673 

der + top75 2 15,02 9,02 8,98 2,98 0,83 0,50 0,62 0,6666 

topdown10 3 11,41 5,54 12,46 6,59 0,63 0,31 0,67 0,6631 

der + w_maxmin15 3 9,13 3,33 14,67 8,87 0,51 0,18 0,73 0,6613 

der + max75 2 14,65 9,27 8,73 3,35 0,81 0,52 0,61 0,6493 

mean_std150 3 10,71 5,38 12,62 7,29 0,60 0,30 0,67 0,6482 

w_maxmin10 3 10,52 5,26 12,74 7,48 0,58 0,29 0,67 0,6462 

TSD50 2 13,66 8,69 9,31 4,34 0,76 0,48 0,61 0,6379 

w_maxmin15 3 10,03 5,07 12,93 7,97 0,56 0,28 0,66 0,6376 

mean_time 3 11,16 6,28 11,73 6,84 0,62 0,35 0,64 0,6357 

der + maxmin33 3 7,66 2,92 15,08 10,34 0,43 0,16 0,72 0,6317 

maxmin50 3 9,70 5,04 12,96 8,30 0,54 0,28 0,66 0,6293 

top25 2 14,25 9,65 8,35 3,75 0,79 0,54 0,60 0,6277 

top75 2 14,20 9,68 8,32 3,80 0,79 0,54 0,59 0,6254 

max75 2 13,84 9,80 8,20 4,16 0,77 0,54 0,59 0,6122 
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der + bi2means 2 10,51 6,50 11,50 7,49 0,58 0,36 0,62 0,6114 

maxmin33 3 7,45 3,87 14,13 10,55 0,41 0,22 0,66 0,5994 

der + max50 2 10,26 6,87 11,13 7,74 0,57 0,38 0,60 0,5944 

der + bi3means 3 5,51 2,50 15,50 12,49 0,31 0,14 0,69 0,5836 

TSD100 2 11,15 8,21 9,79 6,85 0,62 0,46 0,58 0,5819 

bi2means 2 10,64 7,81 10,19 7,37 0,59 0,43 0,58 0,5786 

max50 2 9,54 7,10 10,90 8,46 0,53 0,39 0,57 0,5678 

bi3means 3 5,78 3,84 14,16 12,22 0,32 0,21 0,60 0,5539 

TSD150 2 9,63 7,74 10,26 8,37 0,54 0,43 0,55 0,5526 

der + max25 2 4,82 3,01 14,99 13,19 0,27 0,17 0,62 0,5501 

max25 2 5,40 4,12 13,88 12,60 0,30 0,23 0,57 0,5356 
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D. Figures for the Effect Imaginary Sample Size on Model Discovery 

 

Figure 8-4: Mean error vs number of samples for different alpha values used for six-

node binary-valued network. It presents for a node that has six parents. 

 

Figure 8-5: Mean error vs number of samples for different alpha values used for six-

node binary-valued network. It presents for a node that has five parents. 
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Figure 8-6: Mean error vs number of samples for different alpha values used for six-

node binary-valued network. It presents for a node that has four parents. 

 

Figure 8-7: Mean error vs number of samples for different alpha values used for six-

node binary-valued network. It presents for a node that has three parents. 
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Figure 8-8: Mean error vs number of samples for different alpha values used for six-

node binary-valued network. It presents for a node that has two parents. 

 

Figure 8-9: Mean error vs number of samples for different alpha values used for six-

node binary-valued network. It presents for a node that has one parent. 
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