
DEVELOPMENT OF CARTESIAN BASED MESH GENERATOR WITH BODY
FITTED BOUNDARY LAYERS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MERVE ÖZKAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

MECHANICAL ENGINEERING

DECEMBER 2019

Approval of the thesis:

DEVELOPMENT OF CARTESIAN BASED MESH GENERATOR WITH
BODY FITTED BOUNDARY LAYERS

submitted by MERVE ÖZKAN in partial fulfillment of the requirements for the de-
gree of Master of Science in Mechanical Engineering Department, Middle East
Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. M. A. Sahir Arıkan
Head of Department, Mechanical Engineering

Prof. Dr. Mehmet Haluk Aksel
Supervisor, Mechanical Engineering, METU

Assist. Prof. Dr. Özgür Uğraş Baran
Co-supervisor, Mechanical Engineering, METU

Examining Committee Members:

Assoc. Prof. Dr. Cüneyt Sert
Mechanical Engineering, METU

Prof. Dr. Mehmet Haluk Aksel
Mechanical Engineering, METU

Prof. Dr. Mehmet Metin Yavuz
Mechanical Engineering, METU

Prof. Dr. Sinan Eyi
Aerospace Engineering, METU

Assist. Prof. Dr. Onur Baş
Mechanical Engineering, TED University

Date: 31.12.2019

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Merve Özkan

Signature :

iv

ABSTRACT

DEVELOPMENT OF CARTESIAN BASED MESH GENERATOR WITH
BODY FITTED BOUNDARY LAYERS

Özkan, Merve
M.S., Department of Mechanical Engineering

Supervisor: Prof. Dr. Mehmet Haluk Aksel

Co-Supervisor: Assist. Prof. Dr. Özgür Uğraş Baran

December 2019, 118 pages

In this thesis, the development of a Cartesian based mesh generator with body-fitted

boundary layer is presented. The base of the developed mesh generator consists of

Cartesian mesh. However, the boundary layer handling is a challenge with Cartesian

mesh. Therefore, a body-fitted boundary layer is introduced to the mesh generator by

putting a customized open source mesh generator into the main Cartesian based mesh

generation. The boundary layer mesh generation part comes from the customized

SUMO code, which is an open source code for body-fitted boundary layer mesh.

By using the customized open source code, the boundary layer mesh is generated as

wedge volume elements which inflate from the triangular surface elements of the ge-

ometry. After generating the boundary layer, there is gap between the Cartesian mesh

and the boundary layer wedge volume elements. Since there must be a transition to

triangular surface to square surface, this transition is supplied with pyramid and tetra-

hedral volume mesh. Pyramid volume elements are generated at the inner boundary

of the Cartesian mesh as a part of the code. Tetrahedral mesh is generated by using

an open source code TetGen, which uses Delaunay tetrahedralization. The Cartesian

v

based mesh generator with body-fitted boundary layer is developed in this thesis for

less time-consuming and more efficient meshing process.

Keywords: Computational Fluid Dynamics, CFD, Mesh Generation, Finite Volume

Method, Cartesian Mesh, Hybrid Mesh, Tetrahedral Mesh

vi

ÖZ

GÖVDE UYUMLU SINIR TABAKAYA SAHİP KARTEZYEN TABANLI
ÇÖZÜM AĞI ÜRETİCİSİ GELİŞTİRİLMESİ

Özkan, Merve
Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Mehmet Haluk Aksel

Ortak Tez Yöneticisi: Dr. Öğr. Üyesi. Özgür Uğraş Baran

Aralık 2019 , 118 sayfa

Bu tezde, gövde uyumlu sınır tabakaya sahip Kartezyen tabanlı bir çözüm ağı üreticisi

geliştirilmesi sunulmuştur. Geliştirilen çözüm ağı jeneratörünün tabanını Kartezyen

çözüm ağı oluşturmaktadır; fakat Kartezyen çözüm ağı ile düzgün bir sınır tabaka

elde etmek çok zordur. Bu nedenle, çözüm ağı jeneratörüne sınır tabakayı çözüm ağı

oluşturabilen bir açık kaynak çözüm ağı üreticisi ile sınır tabakası oluşturulmuştur.

Sınır tabakası çözüm ağı bir açık kaynak kodu olan SUMO ile oluşturulup, bu açık

kaynak kod bu çözüm ağı geliştiricisinde kullanılmak üzere düzenlenmiştir. Düzen-

lenen gövde uyumlu sınır tabaka çözüm ağı üreticisi ile üçgen prizma hacim eleman-

ları gövdeyi oluşturan üçgen yüzey çözüm ağından yükselerek üçgen prizma şeklinde

hacim elemanlarına sahip sınır tabaka çözüm ağını oluşturur. Gövde uyumlu sınır

tabakanın oluşturulmasından sonra Kartezyen çözüm ağı ile arasında boşluk olduğu

görülür. Kartezyen çözüm ağı elemanları ve sınır tabakası çözüm ağı elemanları ara-

sında üçgen yüzeyden kare yüzeye geçiş bulunduğu için bu boşluk piramit hacim ele-

manları ve dörtyüzlü çözüm ağı ile doldurulur. Piramit hacim elemanları Kartezyen

vii

çözüm ağının bir parçası olarak geliştirilir. Dörtyüzlü çözüm ağı ise bir açık kaynak

kodu olan ve Delaunay tetrahedralizasyonu kullanan TetGen kodu kullanılarak oluş-

turulur ve diğer çözüm ağları ile birleştirilir. Daha az zaman harcayan ve verimli bir

gövde uyumlu sınır tabakaya sahip Kartezyen tabanlı bir çözüm ağı üreticisi bu tez

ile geliştirilmiştir.

Anahtar Kelimeler: Hesaplamalı Akışkanlar Dinamiği, HAD, Çözüm Ağı Üretimi,

Sonlu Hacim Metodu, Kartezyen Çözüm Ağı, Hibrit Çözüm Ağı, Dörtyüzlü Çözüm

Ağı

viii

To my grandmother, mother and sister

ix

ACKNOWLEDGMENTS

I would like to express my sincere appreciation to my supervisior, Prof. Dr. M. Haluk

Aksel for his excellent supervision, guidance and support.

I would like to expess my gratitude to my co-supervisor Assist. Prof. Dr. Özgür

Uğraş Baran for his endless motivation, guidance and support.

I would like to present my thanks to Mehmet Ali Ak for his support and advice.

I would like to offer my most profound gratitude to my deceased grandmother Emine

Yılmaz who always encouraged me to pursue my education.

I would like to present my sincerest thanks to my mother Pınar Yılmaz and my sister

Tuğçe Hande Özkan for their patience, encouragement, support and unconditional

love during this thesis.

I would like to express my special thanks to my colleagues at TÜBİTAK SAGE for

their support throughout this thesis.

I would like to express my thanks to my colleague Erdem Dikbaş for his support.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xvi

LIST OF FIGURES . xix

CHAPTERS

1 INTRODUCTION . 1

1.1 Mesh Generation . 3

1.1.1 Mesh Quality . 4

1.1.2 Mesh Types . 7

1.1.2.1 Structured mesh . 7

1.1.2.2 Unstructured mesh . 8

1.1.2.3 Hybrid Mesh . 8

1.1.2.4 Cartesian mesh . 9

1.1.3 Extended Mesh Terminology 10

1.1.3.1 Body-Fitted Mesh . 11

1.1.3.2 Block-Structured Mesh 11

xi

1.2 Motivation . 12

1.3 Literature Review . 14

1.4 Aim and Organization of the Thesis 26

1.4.1 Aim . 26

1.4.2 Organization . 28

2 BOUNDARY LAYER MESH GENERATION 29

2.1 Boundary Layer Mesh Generation Process 32

2.1.1 Surface Mesh . 32

2.1.2 Envelope Prismatic Layer . 32

2.1.2.1 Feature Extraction and Surface Node Classification . . . 33

2.1.2.2 Selective Smoothing of Growth Directions and Layer
Height . 34

2.1.2.3 Local Untangling and Warp Reduction 35

2.1.2.4 Global Collision Avoidance of Opposing Layers 36

2.2 Customizations on Hybrid Mesh Generator 37

3 CARTESIAN MESH GENERATION . 39

3.1 Octree Data Structure . 39

3.2 Cartesian Mesh Generator Module 41

3.2.1 Surface Mesh Import . 42

3.2.2 Generation of Hexahedral Cells 43

3.2.2.1 CUTCELL Marking 44

3.2.2.2 Marking the in-Domain Cells 47

3.2.2.3 Setting the Cell ID . 50

xii

3.2.3 Connectivity of Hexahedral Cells 50

3.2.3.1 Face Generation . 50

3.2.3.2 Face Marking . 52

INCELL-FACE Marking . 52

FARFIELD-FACE Marking 53

PYRAMID-BASE-FACE Marking 53

3.2.3.3 Node Generation . 54

3.2.3.4 Node Marking . 55

INCELL-NODE Marking . 55

PYRAMID-BASE-NODE Marking 55

TRIANGLE-FACE-NODE Marking 55

3.2.3.5 Node ID Setting . 56

3.2.4 Generation of Pyramid Volume Elements 56

3.2.4.1 Pyramid ID Setting . 57

3.2.4.2 Pyramid Apex Generation 58

3.2.4.3 Apex ID Setting . 58

3.2.5 Generation of PolyMesh Files for Cartesian and Pyramid Vol-
ume Elements . 58

3.2.5.1 Coordinates of the Nodes at the Points File 59

3.2.5.2 face, owner and neighbor File 60

INCELL-FACE faces . 60

FARFIELD-FACE faces . 62

PYRAMID-BASE-FACE faces 64

xiii

Triangle Faces of Pyramids . 66

3.2.5.3 boundary File . 68

4 TETRAHEDRAL MESH GENERATION 69

4.1 Tetrahedral Mesh Generator . 69

4.1.1 Delaunay Triangulation . 71

4.2 Implementation of the TetGen into Mesh Generation 72

4.3 Exporting to Final Mesh . 73

5 RESULTS AND VALIDATION OF MESH GENERATOR 75

5.1 Test Geometries . 75

5.2 Mesh Metrics . 77

5.3 Mesh Generation Results . 77

5.3.1 Test Case 1 . 77

5.3.2 Test Case 2 . 79

5.3.3 Test Case 3 . 83

5.3.3.1 Mesh with Developed Mesh Generator 83

5.3.3.2 Mesh with ANSYS Mesher 86

5.4 Simulation Results . 88

5.4.1 Test Case 1 . 88

5.4.2 Test Case 2 . 91

5.4.3 Test Case 3 . 92

6 CONCLUSION AND FUTURE WORK 95

REFERENCES . 99

xiv

A POLYMESH FILE FORMAT . 103

A.1 PolyMesh Properties . 103

A.1.1 points File . 103

A.1.2 faces File . 104

A.1.3 owners File . 104

A.1.4 neighbor File . 105

A.1.5 boundary File . 105

B NODE FACE CONNECTIVITY FOR INCELL-FACES 107

C NODE FACE CONNECTIVITY FOR FARFIELD-FACES 109

D NODE FACE CONNECTIVITY FOR PYRAMID-BASE-FACES 111

E CARTESIAN ELEMENT CONNECTIVITY 113

F COMMAND SWITCHES OF TETGEN 117

xv

LIST OF TABLES

TABLES

Table 2.1 Hybrid Mesh Generator Configuration File Inputs with Example

Values . 31

Table 2.2 Envelope Prismatic Layer Generation Steps 33

Table 3.1 Classes of Cartesian Mesh Generator Code 42

Table 3.2 Face IDs . 51

Table 3.3 Pyramid IDs . 57

Table 3.4 Face, Owner Cell and Neighbor Cell Relations 61

Table 3.5 Writing Order of Nodes for Neighbor Cell ID > Owner Cell ID (X

Direction) . 62

Table 3.6 Writing Order of Nodes for Owner Cell ID > Neighbor Cell ID (X

Direction) . 62

Table 3.7 Writing Order of Nodes (+x direction) 63

Table 3.8 Writing Order of Nodes (-x direction) 63

Table 3.9 Relation Between Face and Pyramid on the Face 64

Table 3.10 Relations Between Face and Neighbor Cells 65

Table 3.11 Relations Between Face and Nodes (+x direction) 66

Table 3.12 Relations Between Face and Nodes (-x direction) 66

xvi

Table 3.13 Relations of Cell and Pyramids . 67

Table 5.1 Mesh Properties from OpenFoam checkMesh - Test Case 1 79

Table 5.2 Mesh Properties from OpenFoam checkMesh - Test Case 2 82

Table 5.3 Mesh Properties from OpenFoam checkMesh - Test Case 3 86

Table 5.4 Mesh Properties from OpenFoam checkMesh for ANSYS Mesher

Mesh- Test Case 3 . 88

Table A.1 neighbor and owner File Format 105

Table B.1 Writing Order of Nodes for Neighbor Cell ID > Owner Cell ID (Y

Direction) . 107

Table B.2 Writing Order of Nodes for Owner Cell ID > Neighbor Cell ID (Y

Direction) . 107

Table B.3 Writing Order of Nodes for Neighbor Cell ID > Owner Cell ID (Z

Direction) . 108

Table B.4 Writing Order of Nodes for Owner Cell ID > Neighbor Cell ID (Z

Direction) . 108

Table C.1 Writing Order of Nodes (+y direction) 109

Table C.2 Writing Order of Nodes (-y direction) 109

Table C.3 Writing Order of Nodes (+z direction) 109

Table C.4 Writing Order of Nodes (-z direction) 110

Table D.1 Relations Between Face and Nodes (+y direction) 111

Table D.2 Relations Between Face and Nodes (-y direction) 111

Table D.3 Relations Between Face and Nodes (+z direction) 111

xvii

Table D.4 Relations Between Face and Nodes (-z direction) 112

Table E.1 Edge/Triangle Face Node Order 114

Table E.1 Edge/Triangle Face Node Order 115

Table E.1 Edge/Triangle Face Node Order 116

xviii

LIST OF FIGURES

FIGURES

Figure 1.1 Flowchart - Steps of CFD . 2

Figure 1.2 Mesh Generation Terminology 3

Figure 1.3 Cell-centered and Vertex-centered Schemes of FVM 4

Figure 1.5 Normalized Angle Deviation 5

Figure 1.4 Equailateral Volume Deviation 5

Figure 1.6 Smoothness and Aspect Ratio 6

Figure 1.7 Structured mesh . 7

Figure 1.8 Unstructured mesh . 8

Figure 1.9 Hybrid mesh . 9

Figure 1.10 Cartesian mesh . 10

Figure 1.11 Body-fitted mesh . 11

Figure 1.12 Block-Structured Mesh . 12

Figure 1.13 Meshing Process . 15

Figure 1.14 Octree-Based Hybrid Mesh . 16

Figure 1.15 Peugeot 405 Car Without Wheels Volume Mesh 16

Figure 1.16 Final Cartesian/Quad Mesh . 17

Figure 1.17 Flow Around a Cylinder Test Case Mesh 18

xix

Figure 1.18 Test Cases - Flat Plate and Rotated Plate 19

Figure 1.19 Test Cases - AGARD Case 1 19

Figure 1.20 Filling with Unstructured Mesh 20

Figure 1.21 Test Case - RAE2822 Case 9 21

Figure 1.22 Hybrid Mesh Example . 22

Figure 1.23 Off-body, Near-body and Overset Grid 22

Figure 1.24 Helicopter Body / Cartesian Mesh and Prismatic Layer 23

Figure 1.25 Overlapping Cells . 23

Figure 1.26 SnappyHexMesh Meshing Methodology 25

Figure 1.27 HexPress Hexahedral Mesh with hanging Node and Quad-Dominant

Surface Mesh on NASA Common Research Model (CRM) airplane . . 26

Figure 1.28 Flow Chart of Developed Mesh Generation 27

Figure 2.1 Geometric Feature Detection 33

Figure 2.2 Envelope Smoothing Example 35

Figure 2.3 Untangling of Elements . 36

Figure 2.4 Example - Fuselage and Engine Nacelle 37

Figure 2.5 Envelope Layer with Surface Wall Mesh 38

Figure 2.6 Boundary Layer Mesh with Surface Wall Mesh 38

Figure 3.1 Quadtree and Octree Data Structure 40

Figure 3.2 Binary Identification Numbering 41

Figure 3.3 Initial Octree CUTCELL Type Cells and Surface Mesh 45

Figure 3.4 Initial Octree NONE Cells and Surface Mesh 45

xx

Figure 3.5 Diffusion Octree with NONE and CUTCELL Cells and Surface

Mesh . 46

Figure 3.6 Seed Cell Location . 47

Figure 3.7 Marking of Children Cells of Neighbor Cell 48

Figure 3.8 INCELL and CUTCELL and Envelope Layer Mesh 49

Figure 3.9 INCELL and CUTCELL Type Cells and Envelope Layer Mesh

from Far Angle . 49

Figure 3.10 Face IDs . 52

Figure 3.11 Node IDs . 54

Figure 3.12 Pyramid IDs . 56

Figure 3.13 Face, Owner Cell and Neighbor Cell Relations 61

Figure 3.14 Edges of the Cell for Triangular Faces 68

Figure 4.1 Cartesian Mesh with Pyramid Volume Elements 69

Figure 4.2 Tetrahedral Volume Mesh Gap 70

Figure 4.3 Tetrahedral Mesh . 71

Figure 4.4 Voronoi Diagram and Delaunay Triangulation 72

Figure 5.1 Surface Mesh - Test Case 1 . 75

Figure 5.2 Geometry and Surface Mesh - Test Case 2 76

Figure 5.3 Surface Mesh of Basic Finner 76

Figure 5.4 Boundary Layer - Test Case 1 78

Figure 5.5 Cartesian Mesh - Test Case 1 78

Figure 5.6 Final Mesh - Test Case 1 . 78

xxi

Figure 5.7 Boundary Layer Mesh - Test Case 2 80

Figure 5.8 Close Figure of Boundary Layer - Test Case 2 80

Figure 5.9 Cartesian Mesh - Test Case 2 81

Figure 5.10 Tetrahedral Mesh - Test Case 2 81

Figure 5.11 Final Mesh - Test Case 2 . 82

Figure 5.12 Boundary Layer Mesh of Basic Finner Geometry - Test Case 3 . 83

Figure 5.13 Cartesian Mesh of Basic Finner Geometry - Test Case 3 84

Figure 5.14 Close up Figure of Cartesian Mesh - Test Case 3 84

Figure 5.15 Tetrahedral Mesh of Basic Finner - Test Case 3 85

Figure 5.16 Final Mesh of Basic Finner Geometry - Test Case 3 85

Figure 5.17 Farfield of Final Mesh with ANSYS Mesher - Test Case 3 86

Figure 5.18 Boundary Layer of Final Mesh with ANSYS Mesher - Test Case 3 87

Figure 5.19 Close Up Figure of Final Mesh with ANSYS Mesher - Test Case 3 87

Figure 5.20 Static Pressure Contour - Test Case 1 89

Figure 5.21 Velocity Vector Plot (Normal z Direction) - Test Case 1 89

Figure 5.22 y+ Contour Plot of Test Case 1 90

Figure 5.23 Pressure vs Position Plot - Test Case 1 90

Figure 5.24 Total Pressure Ratio From NATO Study 91

Figure 5.25 y+ on Wall Contour Plot - Test Case 2 92

Figure 5.26 Comparison Graph of Experimental and Simulation Results . . . 93

Figure 5.27 Drag Coefficient Plot for Freestream Mach 2.0 93

Figure 5.28 y+ Plot on Wall Boundary - Test Case 3 94

xxii

Figure A.1 points File format . 104

Figure A.2 faces File Format . 104

Figure A.3 boundary File Format . 105

xxiii

xxiv

CHAPTER 1

INTRODUCTION

Computational Fluid Dynamics (CFD) is an analysis tool which becomes a very im-

portant tool for engineers. Using CFD tool chain Design Engineers evaluate the en-

gineering problems before the prototypes are built. Since computers become more

powerful, CFD is employed in design problems and optimizations increasingly. The

governing equations are solved efficiently using numerous techniques. With the in-

creasing computational power, the detailed analysis of fluid flow can be conducted

by using Computational Fluid Dynamics (CFD).[1] The goal of CFD is to understand

the physical fluid flow problems in designs. The physicals of a fluid flow are the

interactions of the fluid. [2]

CFD is defined as the“third approach” in the study of fluid dynamics. In twentieth

century, fluid mechanics studies are mostly experimental. In 1950, CFD was only

existed for two dimensional problems due to the insufficient computer power and

algorithms relatively primitive. Then, in 1970s, the three-dimensional CFD is started

to be employed in design of fluid machinery, airplanes, wing,etc. The capacity of the

computing power is increasing ever since.[1]

The set of algebraic equations are derived from the partial differential equations dis-

cretized in time and space. The solutions of the algebraic equitations are the discrete

variables over the field. The discretization of the computational field requires identi-

fying the points and computational cells on the boundaries of the geometry.[3]

In most CFD methods, a discretization method is used. Discretization method is an

approximation of differential (or integral) equations by a system of algebraic equa-

tions on a set of sub domains often as simple topological shapes. Then, these equa-

1

tions are adapted to be solved by computers. In discretization method, both time and

the space can be discretized. The accuracy of the results obtained by discretization

methods depends on the quality of the discretization as well as the quality of space

sub-divisions. [4]

CFD work chains have three parts: (1) Pre-processing, (2) Solver and (3) Post-

processing as shown in the given in Figure 1.1.

Figure 1.1: Flowchart - Steps of CFD

The computational domain is defined in the first step of the pre-processing part. Then

the second step of pre-processing part is the mesh generation. The mesh genera-

tion is the sub division of the computational domain with the element size and size-

distribution defined by the user. Mesh generation step is the most important part of

pre-processing stage. The computational domain is divided into preferably nonover-

lappping and well connected sub-domains by the mesh generation process. [5] The

accuracy of a solution of a CFD problem is determined by the number and quality

of elements of the mesh. In the solver part, the selection of the model for solving

the problem (such as inviscid, laminar, turbulence methods, etc.). [6] In solver part,

there are three main separate numerical solution techniques. These are finite differ-

ence method (FDM), finite element and spectral methods (FEM) and finite volume

method[6] The most common technique is the finite volume method which is ap-

proximately used 80% of the modern CFD solvers. The other 15% is for the finite

element method and 5% is for the other methods.[7] Finally, in post-processing part,

the solution obtained from the solver part is precessed.[6]

2

1.1 Mesh Generation

Mesh generation is a very important process and has basic considerations. The data

of discretization elements must be stored and accessed easily and efficiently.

The second is the connectivity of the elements. The communication between elements

must be maintained and processed smoothly between the neighbor elements. Thirdly,

the quality of the discretization must be seek throughout the computational domain

for running numerical algorithm.[8]

Accurate computational solution require high quality meshing. A computational

mesh which does not meet the quality metrics leads to the inaccurate results in the

solution stage. [1] The basic terminology used in the computational meshes is shown

in Figure 1.2. It should be noted that, terminology is based on Finite Volume method.

For finite elements methods, cell term is replaced with element, and faces are often

not needed.

Figure 1.2: Mesh Generation Terminology

3

The cells are written in files which are transferred to the solver with two different

methods: Cell-centered scheme and Vertex-centered scheme. The definitions are

shown in Figure 1.3.

Figure 1.3: Cell-centered and Vertex-centered Schemes of FVM

In cell-centered scheme, the integral form of conservation equations is discretized

over the control volume which is same as the cell volume . [4] The calculations of

the variables are performed at the centers of the volume elements. [5] The surface

integrals are approximated at the control volume face, where the flux is calculated.

The calculation of the values at the faces are calculated by interpolation. [9] The flow

properties and quantities are stored at the centroids of the mesh cells. Therefore, the

volume of each mesh cell is equal to the control volume.

In vertex-centered scheme, the flow properties and quantities are stored at the nodes

of the mesh. Therefore, the control volume is a volume constructed at the solution

time where the element centers are located at nodes. Besides, the flux calculations

are similar with the cell-centered method. [10]

1.1.1 Mesh Quality

Mesh quality has vital effect on the solution accuracy. The quality of the mesh ele-

ments should be ensured before starting the solution. The basic and the most common

mesh quality metrics are skewness, orthogonality, smoothness and aspect ratio.

Skewness and orthogonal quality shows the deviation of a cell form from the ideal

shape for the cell in terms of angles. The ideal shape of the cell is an equilateral cube

for hexahedral mesh and equilateral tetrahedron for tetrahedral mesh. Skewness of

the cell is calculated by using either two methods: Equilateral Volume deviation or

4

Figure 1.5: Normalized Angle Deviation

Normalized Angle deviation.

The Equilateral Volume Deviation is the ratio of the difference of optimal cell size

from current cell size to optimal cell size. This metric can only be calculated for

tetrahedral elements. This method is explained in Figure 1.4. The green edged cell is

an optimal (equilateral) cell and the blue edged cell is an actual cell. As the deviation

increases, the skewness increases. In Normalized Angle Deviation method, skewness

is the maximum of the angle ratios of the cell. The skewness calculation and the

angle which is used in the calculation are shown in Figure 1.5. The angle(θ) with e

subscription is the 600 for tetrahedral and 900 for hexahedral cells. This method can

be applied to all type of cells; tetrahedral, hexahedral, prisms and pyramids.

Figure 1.4: Equailateral Volume Deviation

The best skewness quality is achieved when the skewness metric, which is found by

using one of the methods, is close or equal to zero. Orthogonal quality of a cell shows

how close the angles between faces of the elements, which are adjacent to each other,

to the optimal angle. If the adjacent faces of the face of the cell tend to be in the

5

normal direction of the face of the cell, then it is said to be the orthogonal quality of

the mesh is good.

Smoothness is the rate of size change of the adjacent cells. The unsmooth and the

smooth transition between elements are shown in Figure 1.6a. The ideal mesh spacing

should be under 20 percent, i.e. the adjacent cell size should be 1.2 times of the cell

size. [7] The cell size is volume of the cell. Aspect ratio is the ratio of the length of

long side to the short side. The ideal ratio is one and can be achieved with square and

equilateral triangles in 2D as shown in Figure 1.6b. The high aspect ratio cells are not

desirable in the most part of the flow domain. However, they are accepted and even

desired in boundary layer mesh where there is a strong flow gradient normal to the

wall and less parallel to the wall.

(a) Smoothness

(b) Aspect Ratio

Figure 1.6: Smoothness and Aspect Ratio

6

1.1.2 Mesh Types

There are three types of computational mesh. The types of meshes are structured

mesh, unstructured mesh and hybrid mesh.

1.1.2.1 Structured mesh

In structured mesh, the mesh points (nodes) have i,j,k indexing with integers for lo-

cating each node in the computational domain for three dimensions. This allows the

cells of the mesh can be identified by the indices. [11] In structured mesh, the mesh

consists of quadrilateral cells in 2D, hexahedra volume elements for 3D domains.

The indexing of the nodes supply easy identification of the nodes when solving the

computational domain with fluid flow governing equations. [5]

In Figure 1.7, the indexing of the nodes is given for both two dimensional and three

dimensional mesh.

Figure 1.7: Structured mesh

The mesh properties such as orthogonality and skewness can be out of usable bounds

on such geometries.[5] On the other hand, structured mesh gives best orthogonality

7

if successfully generated and also gives the most accurate solution compared to other

type of meshes.

1.1.2.2 Unstructured mesh

In unstructured meshes, the neighbor relations of the cells cannot be directly found by

the indexing. Mostly, the unstructured mesh consists of triangles in two dimension,

tetrahedral volume elements in three dimension. Also, from other volume elements,

such as hexadehra and prisms, the unstructured mesh can be generated.[10]. On a

broader basis, an unstructured mesh can involve any mixture of non-self-intersecting

positive volume cells. The main disadvantage of unstructured meshes is the absence

of fixed coordinate lines and nodes. The nodes and the edges can be organized auto-

matically, therefore the mesh is generated without logical representation compared to

structured meshes.[6] The memory usage is higher than the structured mesh.[7] An

example unstructured mesh is given with Figure 1.8.

Figure 1.8: Unstructured mesh

For complex geometries, meshing with unstructured mesh is easier compared to struc-

tured mesh. However, it is reported that unstructured meshes has less accurate solu-

tions compared to structured meshes at the same computational cell number.[7]

1.1.2.3 Hybrid Mesh

In CFD applications, the complex geometries are often encountered such as aircraft

geometries. Unstructured meshes provides great flexibility for body fitting to complex

8

geometries. However, the unstructured mesh may require special features, especially,

in the problems with viscous flows where the boundary layer flow demands special

treatment. In viscous flow regions where the flow gradients change rapidly, very

thin and preferably stacked parallel cells is needed to solve boundary layer equations

which results in high-aspect-ratio cells. With high-aspect-ratio, tetrahedral volume

elements causes high truncation errors, due to high skewness of the cells. Therefore,

at the viscous flow regions, prismatic (wedge) elements are introduced. An example

on using two types of elements on a turbine airfoil cascade is shown in Figure 1.9. In

such cases, the hybrid mesh, which consists of several types of volume elements, can

reduce the total cell count and improve the solution efficiency. [12]

Figure 1.9: Hybrid mesh

1.1.2.4 Cartesian mesh

Cartesian meshes are constructed as subdividing (or refining) quadrilateral or hexa-

hedral cells recursively by dividing into four or eight child cells. This procedure is

called quad-tree or octree division strategy. Cartesian mesh is generated encapsulat-

ing the whole geometry, and the biggest cell divides into cells until the size of the

child cell equal to the criterion. An example to Cartesian mesh is shown in Figure

5.9. One of the advantages of the Cartesian mesh is the quick generation compared

to other mesh types. [13] With the utilization Cartesian meshes, the higher order

solution schemes are implemented easily and geometric multi-level convergence ac-

celeration is achieved.[14] Moreover, same solution accuracy can be achieved with

using less number of cells compared to tetrahedral mesh. Moreover, since the cells

are orthogonal, the quality is better than unstructured mesh.

9

Figure 1.10: Cartesian mesh

On the other hand, it is often not possible to achieve body conforming Cartesian

meshes. The complex geometries or the curved surfaces of the geometries are not cap-

tured well with Cartesian mesh. There are three solutions to this problem. First one is

the interpolation/extrapolation of cell values at the boundary. The second method is

the insertion of local geometry or flow aligned meshes, which is used for high speed

viscous flows to generate high-aspect-ratio cells at the boundary. The third method is

the trimming the surface cells and having numerous of various type cut cells, besides

the poorly formed cut cells and extremely high number of cells at the boundary layers

where the solution accuracy is needed the most.[14]

1.1.3 Extended Mesh Terminology

There are two mesh terminology: body-fitted mesh and block-structured mesh. Body-

fitted meshes are based on mapping of the computational domain. This type of mesh-

ing is useful for the curved bodies. Block-structured mesh contains mesh regions

which are meshed separately. This type of mesh provides an increase in mesh quality

for complex geometries. [6]

10

1.1.3.1 Body-Fitted Mesh

In most cases for the single block mesh, since the geometry has complexities, the

mesh cannot be made body-fitted. Namely, the nodes of the mesh at the boundary of

the geometry do not match with the boundary of the geometry. An example can be

given to this situation with cut cell approach. Without cut cells, the Cartesian mesh

nodes cannot be on the same coordinate with the boundary of a complex geometry.

As mentioned before, handling of the cut cells at the boundary of the geometry is

time-consuming and needs high amount of computational power. Body-fitted meshes

are utilized in the vicinity of the geometry where mostly the viscous region exists.

By using body-fitted mesh, the boundary layer region is solved more accurately. The

body-fitted meshes can handle curvatures. An example to a body-fitted mesh is shown

in Figure 1.11. [15]

Figure 1.11: Body-fitted mesh

1.1.3.2 Block-Structured Mesh

Block-Structured mesh also has body-fitted feature such as the block boundaries co-

incide with the boundaries of another block mesh in the domain. An example for the

block-structured mesh is shown in Figure 1.12. The mesh quality and the mesh prop-

erties can be different for each block of block-structured meshes to satisfy the quality

requirements of the boundaries. [16]

11

Figure 1.12: Block-Structured Mesh

1.2 Motivation

The mesh generation is the most important and crucial part of solving a flow problem

with CFD. Since the quality of the computational mesh is directly effects the solution

of the problem, the mesh generation should be handled with caution. For complex

geometries, the meshing process becomes cumbersome due to the enormous number

of mesh elements in the computational domain necessary to capture the geometric

details.

Cartesian mesh can be used to improve computational requirements during the mesh

generation, since it can be generated rapidly compared to other type of volume meshes.

Cartesian mesh has also other advantages over other types of meshes. One of its ad-

vantages is the meshing with less number of volume elements in the computational

domain. For instance, the Cartesian mesh requires less volume elements when it is

compared to tetrahedral mesh in the same domain for similar solution accuracy. As

another advantage, the mesh generation time would be less than the tetrahedral mesh

generation, especially in three dimensional domain. High order solvers such as LES

solvers often require orthogonal cells that is easily provided by Cartesian mesh.

However, the Cartesian meshes have irregular shaped finite volume elements at the

boundaries, the cut cell approach used in at the boundary. At the boundary of the

geometry, the mesh generation requires more attention with the irregular shaped vol-

12

ume elements. The irregular shape elements affect the mesh quality metrics badly. In

boundary region, there should be high aspect ratio cells with high orthogonal quality

for capturing the large gradient change in the boundary layer region. However, cut-

cell approach cause high skewness/low orthogonal quality of the mesh at the boundary

layer region. Therefore, this is not an elegant solution at the boundary layers. Cut cell

generation algorithms creates cells with irregular shapes. The cutting algorithms add

processing time to the mesh generation. Moreover, the volume elements should not

be overlapped with each other and should be body-fitted to the watertight geometry.

Therefore, the motivation to this study is to develop Cartesian based mesh genera-

tor with body-fitted boundary layers. The main focus is the development of body-

conforming high quality meshes for fluid mechanics problems.

- The mesh generator provides high quality mesh and high orthogonality mesh adja-

cent to solid boundaries.

- Single zone mesh should be generated for maximum compatibility. The core mesh

has high quality mesh metric by using the hexahedral mesh.

- The developed mesh generator is focused on external flows, and it can be extended

to internal flows too.

- The solution would be more accurate compared to tetrahedral mesh in the flow

domain with very high quality Cartesian core mesh.

- The boundary layer consists of wedge volume elements. This type of mesh pro-

vides body-conformity to the final mesh. Besides, the high aspect ratio cells provide

capturing the high gradients of the flow variables at the boundary layer.

- The connection is made between the Cartesian core mesh and the boundary layer

mesh with wedge volume elements by using fast-generated tetrahedral volume ele-

ments and pyramids.

13

1.3 Literature Review

In this thesis, developed mesh generator contains a Cartesian core mesh connected to

a body-fitted mesh at the vicinity of the geometry. In literature, Cartesian mesh has

been used in studies for several years. In addition, in literature, the transition between

the structured or Cartesian mesh to the body-fitted mesh is provided in literature by

using unstructured mesh, especially the triangles in two-dimension and tetrahedral

elements in three-dimension. The literature review for the mesh generation is given in

the chronological order and mostly emphasized on Cartesian based mesh generators

and the unstructured transition mesh on the body-fitted boundary layer mesh.

In 1986, Clarke et al. used the Cartesian mesh for solving a finite volume formula-

tion for the Euler equations. The boundary cells are cut to fit to the geometry. The

results of the study showed the simplicity of using Cartesian mesh with finite volume

formulation. [17]

In 1987, Gaffney et al. used the Cartesian Mesh for modeling Euler equations on

airfoils. The cells at the boundary are handled by cutting the boundary cell. [18]

In 1971, Peskin et al. studied both the numerical computation of the heart valve

motion and the force exerted by the fluid on, with the immersed boundary method.

With the immersed boundary method, at the nodes of the Cartesian mesh domain, the

boundary is replaced by a field of body forces. By this way, the moving boundaries

can be handled. Since the forces on the boundary are highly sensitive, the numerical

instability can be produced by changing in the boundary conditions. However, the

instability on the boundary is handled by using implicit method for boundary forces.

[19]

In 1995, Steinbrenner and Noack studied on a three dimensional hybrid mesh gener-

ation. In the mesh generation, both structured and unstructured mesh types are used.

Firstly, the structured mesh is generated around the geometries independently. Then,

if the structured mesh of a geometry is overlapping with another structured mesh of a

near geometry, the overlapping structured meshes are deleted. After the rejection of

the overlapping cells, there will be gaps where the structured mesh has been deleted.

Unstructured mesh is generated up to the regions with no cell. Therefore, the mesh

14

generation results in hybrid mesh. The structured mesh part of the hybrid mesh is

generated by using Octree data storage. Since for the generation of structured cells

and deletion of the overlapping cells is done by using advancing front technique, it

requires significant amount of data to search for the cells. An example of meshing is

given in Figure 1.13. [20]

Figure 1.13: Meshing Process

Thanks to the octree algorithm, searching is done fast for the cells and the neighbor

cells can be found easily. As a result of this study, it is seen that using structured

mesh in the far-field reduces the time required for mesh generation. Also, the number

of mesh is reduced by using the structure mesh in far-field. Moreover, it is stated that

the hybrid mesh generation time should be improved and the quality of the mesh at

the transition parts should be improved by enhancing the face selection criteria for

the surface where the transition begins from structured to unstructured mesh. [20]

In 1997, Charlton and Powell studied an octree-based mesh generation method. Hy-

brid mesh is generated. Cartesian and structured mesh is both utilized for non match-

15

ing zones. The hybrid mesh used in the study is given in Figure 1.14. [21]

Figure 1.14: Octree-Based Hybrid Mesh

In 1997, Tchon et al produced an unstructured hexahedral mesh generator for viscous

flow simulations. The mesh generator is suitable for three dimensional geometries.

The first generation consists of only hexahedral mesh, then the boundary, the corners

and the small regions are captured by body-fitting methods and by degenerating the

hexahedral cells. The approach of the study is to lower the time required for three

dimensional meshing process. Also, the methods need maturity in terms of mesh

quality. An example to a generated mesh on Peugeot 405 car without wheels is given

in Figure 1.15. [22]

Figure 1.15: Peugeot 405 Car Without Wheels Volume Mesh

16

In 1998, Wang studied a quadtree-based adaptive Cartesian/Quad mesh to solve the

Navier-Stokes equations. First, body-fitted quad mesh are generated in the study.

Then, the Cartesian mesh is generated. The smallest cell of the Cartesian mesh is has

the same cell size as the cell of quad mesh. Thus, the Cartesian and the quad mesh

are overlapped with the outer surface of the quad mesh and the cells are cut to have

the final mesh. An example mesh form the study is given in Figure 1.16. [23]

Figure 1.16: Final Cartesian/Quad Mesh

The Quadtree data structure is used when generating the quad in the near boundary.

According to author, the refinement and the coarsening of the mesh becomes trivial in

this way. It is stated that use of two types of mesh, namely the Cartesian and the quad

mesh, increases robustness and successes of the solution. Complex geometries can

be meshed successfully with this mesh generator. Also, the storage of data based on

the Quadtree data structure stores the mesh and allows mesh adaptation easily. As a

result of the study, it is concluded that this study can be restudied in three dimensions

and the mesh can be Cartesian/adaptive prism mesh. [23]

In 1999, Tucker and Pan studied the cut cell approach with Cartesian mesh for the

incompressible laminar flow. The boundary of the mesh with the geometry is made

up with cut cell approach. A mesh is given from a test case from the study in Figure

1.17.

[14]

17

Figure 1.17: Flow Around a Cylinder Test Case Mesh

In 1999, Delaneye et al. studied on a Hybrid-Cartesian mesh generation. The mesh

generation process consists of four steps and the process is fully automated without

any user involvement. Firstly, Cartesian mesh is generated at the far-field of the ge-

ometry. Then, the unstructured body-conforming mesh is generated around the wall

of the geometry. The unstructured mesh on the wall of the geometry is generated by

using a front marching technique. By this way, the cells at the near wall of the ge-

ometry have high orthogonal ratios and high aspect ratios. At this step, there may be

regions where the unstructured mesh overlaps with another unstructured mesh layer.

The unstructured mesh is discarded and erased on overlapping regions. Thus, the

blank regions ,where the mesh is erased, are filled with another Cartesian mesh. The

filler Cartesian mesh is different than the Cartesian mesh, which is generated in the

first step. At the intersection of the Cartesian mesh and the unstructured wall mesh

is provided by cut cell approach. Test cases are the flat plate with a turbulent bound-

ary layer, RAE2822 airfoil AGARD Case 1 and Case 9, and finally a multi-element

airfoil. Two cases are tested with flat plate: x-axis aligned case and the 30 degrees ro-

tated case. For the x-axis aligned case, small triangular shaped cells are formed from

the Cartesian mesh. However, except those, there is a smooth transition between the

Cartesian Mesh and the unstructured mesh at the near wall. In the 30 degrees aligned

case, there are irregularly cut cells with different shapes, but they are mostly quadri-

lateral. Thus, with the rotated case, the effect of the irregular cells are seen. These

test cases can be seen in Figure 1.18.

18

Figure 1.18: Test Cases - Flat Plate and Rotated Plate

The solution of the two cases is compared with the experimental results. It is shown

that the solution matches with the experimental results. In addition to the flat plate,

RAE2822 airfoil geometries are tested. Two cases of the airfoil are selected as test

cases: AGARD Case 1 with Mach number equal to 0.676 and Reynolds number

5.7x106, and AGARD Case 9 with Mach number equal to 0.73 and Reynolds num-

ber 6.5x106. AGARD Case 1 geometry is meshed with three different configura-

tions: Body-conforming wall mesh intersects with the coarse Cartesian mesh, Body-

conforming wall mesh intersects with the fine Cartesian mesh and Body-conforming

wall mesh intersects with the high aspect ratio Cartesian Mesh. These test cases are

given in the Figure 1.19.

Figure 1.19: Test Cases - AGARD Case 1

It is shown that the first one to be converged is the mesh with second configuration.

It is resulted that the irregularities in the mesh cause non-linear system to solve. In

AGARD Case 9, a shock, which causes the thickening of the boundary layer, is ob-

served on the upper surface of the geometry. Although the location of the shock is

predicted on the upstream of the results obtained from the experimental measurements

19

with the mesh generated for AGARD Case 9, the lift and drag coefficients agree well

with the experimental measurements. It is stated that the difference in the location

of the shock is caused by the behavior of the Spalart-Allmaras turbulence model. Fi-

nally, the multi-element airfoil shows close results to the experimental results and it

is shown that the mesh generation works well for the complex geometries which have

concave and convex edges.[24]

In 2003, Zheng and Liou presented a hybrid mesh generator. The name of the mesh

generator is called DRAGON that stands for Direct Replacement of Arbitrary mesh

Overlapping by Nonstructured mesh. In their method, the structured mesh is gener-

ated around the geometry. Then, the body-fitted mesh is generated on the geometry

wall. Therefore, there is an overlapping region between them and the overlapped re-

gion is shown in Figure ??. The structured mesh on the overlapped region is deleted.

Then, the deleted blank region is filled with unstructured mesh. The filled region is

shown in Figure 1.20.

Figure 1.20: Filling with Unstructured Mesh

In 2006, Martineau et al. studied the mesh with Cartesian far-field, unstructured

tetrahedral and advancing triangular mesh in the near field region. In the study, the

Cartesian mesh far-field is compared to the hexahedral dominant unstructured far-

field mesh. The transition to Cartesian and unstructured hexahedral dominant mesh is

provided by the cut cell approach of the Cartesian mesh. The solution obtained with

CFD, is compared to the experimental results of RAE2822 Case 9. The mesh of the

test case RAE2822 Case 9 is given in Figure 1.21.

20

Figure 1.21: Test Case - RAE2822 Case 9

It is concluded that the mesh applications are successful in two-dimensional do-

main. Moreover, for three-dimensional ONERA M6 geometry, the comparisons came

up to be successful and it shows that the mesh applications are effective for three-

dimensional and simple geometries with transonic flows. [25]

In 2010, Luo et al. studied on a hybrid mesh generation method on complex geome-

tries in two dimensional domain. Orthogonality and directionality of the structured

mesh is aimed to be used in the boundary layer mesh. Also, Cartesian mesh genera-

tion method is used to create the flow domain for its simplicity and efficient genera-

tion. In addition, a triangle mesh is used between the structured boundary layer mesh

and Cartesian mesh, which provides flexibility to the mesh for complex geometries.

By this way, a robust and fast generated hybrid mesh generator is created. Firstly, the

semi-structured boundary layer grid is created on the wetted surface of the geometry.

Then, Cartesian mesh is generated by using Quadtree-based Cartesian Method. The

Cartesian cells which are not in the computational domain is removed by an Alternat-

ing Digital Tree method. Finally, to fill the empty region between the Cartesian mesh

and the boundary layer mesh, triangular mesh is generated. In the study, the cells with

very high aspect ratio at the boundary layer are self-divided. This self-division main-

tains the sizes of the boundary layer cells similar with the Cartesian cells. By this

way, the transition can be smooth along the triangular mesh. Hence, the quality of the

mesh is improved. This mesh generator is tested for a number of test cases. One of the

test cases is shown in Figure 1.9. The study by Luo et al. is conducted for only two

21

dimensional cases, but it is stated that the study can be extended to three-dimensional

cases. [26]

Figure 1.22: Hybrid Mesh Example

In 2010, Wissink et al. studied the aerodynamic performance of hovering rotors by

using unstructured-adaptive Cartesian Mesh. The unstructured mesh is used at the

near of the geometry, where the study calls near-body. Cartesian mesh is used in

the off-body part of the mesh. In this study, off-body term refers to farfield mesh of

the computational domain and near-body term refers to the boundary layer mesh of

the computational domain. The unstructured mesh in the near-body region is used to

capture the viscous effects and the complexity of the geometry. Cartesian Mesh is

used to capture the wake in the far-field region. Two different solvers are used for

off-body and near-body mesh. The connectivity between off-body and near-body is

made with a code PUNDIT which uses overset grid approach. The parts of the mesh

is shown in Figure 1.23. [27]

Figure 1.23: Off-body, Near-body and Overset Grid

22

In addition, adaptive refinement is done to capture the tip vortices on the Cartesian

Mesh within the scope of this study. [27]

In 2018, Roget et al. developed mesh generator for boundary layer mesh at the vicin-

ity of the wall of the geometry to capture the viscous layer in Reynolds Averaged

Navier Stokes (RANS) with high Reynols Numbers. A new algorithm is developed

in the study for the generation for the viscous layer mesh. The generation of the pris-

matic layer in the viscous layer starts with a point placement. Then, the closest point

is placed and smoothing is applied by using the elastic spring analogy. Cartesian

mesh is used for the far-field mesh. Generated mesh for the helicopter body is shown

in Figure 1.24.

Figure 1.24: Helicopter Body / Cartesian Mesh and Prismatic Layer

The transition between the prismatic mesh and the Cartesian mesh is provided through

overlapping mesh. The overlapped region can be seen in Figure 1.25.

Figure 1.25: Overlapping Cells

23

The overlapping part of the mesh provides minimum possible overlapping between

prismatic volume elements and Cartesian volume elements. The study is conducted

for both two and three dimensional cases.[28] In addition, there are solvers with mesh

generators, which use Cartesian mesh.

In 1999, Aftosmis et al. created CART3D which is a Cartesian mesh based parallel

flow solver. The program starts with only a surface geometry and generates Carte-

sian based volume mesh with pre-processed geometry. Then, the flow solution is

computed by Euler equations and post-processing is done.[29]

In 2003, Allred and Colloway validate the NASCART-GT Flow Solver with data com-

parison in Georgia Institute of Technology. This computer program was developed by

Dr. Stephen Ruffin. NASCART-GT is used for generating Cartesian mesh around the

geometry and the calculation is done on intersection points. Then, the flow variables

are visualized by using Fieldview, which is a visualization program. [30]

In 2007, OctVCE is created by Tang. OctVCE is a numerical simulation code for

shock and blast wave interactions on complex geometries. It uses Cartesian mesh

which has octree based adaptive refinement and parallel processing. [31]

In 2009, Hashimoto et al. created HexaGrid which is an automatic mesh generator

based on hexahedral mesh. The code handles complex geometries and automatically

generates Cartesian mesh around the geometry. Multi-component geometries can

be used in STL format as the input to the program. In the program, flow solver

is also embedded: TAS-code (Tohoku University Aerodynamic Simulation code) is

used.[32]

There are open source mesh generators such as SnappyHexMesh and HexPress. Snap-

pyHexMesh is a mesh generator which is controlled by OpenFOAM libraries. It uses

high quality hex-dominant mesh. The mesh generation can be done in parallel. The

geometry data is given as input to the mesh generator. The steps of meshing process

is given Figure 1.26.

24

Figure 1.26: SnappyHexMesh Meshing Methodology

In snappyHexMesh methodology, the first step is to create base mesh as seen in Figure

1.26. The geometry file in STL or Nastran type is given to the program and hexahedral

base mesh is generated around the geometry. Secondly, surface refinement an volume

refinement is done. Then, unused cells are removed from the domain. The mesh is

snapped to the geometry by cutting the hexhedral cells. Finally, the snapping layer is

pushed away from the geometry and boundary layers are added between the snapping

layer and geometry wall. The output of the mesh generator is well compatible with

OpenFOAM solvers.

Another mesh generator is HexPress by Numeca. HexPress is a parallel unstruc-

tured hex dominant meshing for complex and/or unclean geometries. It has an hole

searcher algorithm that fixes and cleans the geometry before starting to mesh. The

25

mesh generator can create both surface mesh and volume mesh. It generates full

hexahedral mesh with hanging nodes, hexahedral dominant mesh with non-hanging

nodes or fully tetrahedral mesh. The surface mesh generation is done with fully trian-

gle or quad-dominant mesh. High quality viscous mesh is included in volume mesh

capability. An example of mesh which is generated by HexPress is shown in Figure

1.27 as hexahedral mesh with hanging nodes on quad-dominant surface mesh.

Figure 1.27: HexPress Hexahedral Mesh with hanging Node and Quad-Dominant

Surface Mesh on NASA Common Research Model (CRM) airplane

1.4 Aim and Organization of the Thesis

1.4.1 Aim

Development of a body conforming, Cartesian based with high quality boundary layer

mesh generator is aimed in this thesis. The developed mesh generator aimed to be fast

and robust with smooth transition at the boundary layer cells as well as boundary layer

to Cartesian cells.

Alternative to the cut cell approach used in the literature, a Cartesian based mesh is

generated with pyramids as transitional elements to the boundary layer mesh. In the

developed mesh generator, the volume elements are not cut in the Cartesian mesh to

handle the transition between the far-field mesh and the near boundary mesh. There-

fore, the mesh quality can be increased by not using cut cells in the computational

26

domain. Firstly, the Cartesian mesh is generated with Octree algorithm which is an

algorithm to generate the hexahedral volume elements quickly. Starting from root

cell, which is an encapsulating cube of geometry, the Cartesian mesh is generated

by dividing each cell into eight children cells until the desired level of refinement is

reached. The cells which are in the out of computational domain is omitted out. Then,

the pyramids are created on the geometry side of the boundary of the Cartesian mesh.

After generation of the Cartesian mesh with pyramid volume elements, the bound-

ary layer mesh is generated by using a customized open source mesh generator. The

boundary layer mesh is made of wedge volume elements having the triangular face.

Since both Cartesian and the boundary wedge mesh have triangular faces, the gap

between the Cartesian mesh with pyramid volume elements and the boundary layer

wedge volume elements is filled with another open source mesh generator.

The aim is to have a mesh generator which produces high quality volume mesh for

fluid mechanics problems. The mesh generator produces high quality meshes at the

solid boundaries by using wedge eelements at the boundary layer mesh. For maxi-

mum compatibility, single zone mesh is used. This mesh generator is aimed to be used

for external CFD problems and it can be extended to internal flows too. The primary

specialty of the mesh is having Cartesian core mesh for very high quality. The body

conformity is provided by boundary layer mesh with wedge volume elements. Fi-

naly, the developed Cartesian based mesh generator with body-fitted boundary layers

is aimed to be used in the cell-based SU2 solver.

Since all types of mesh generation are quick generation processes, the overall mesh

generator requires little amount of time to generate the Cartesian based mesh around

a three dimensional geometry. The flow chart of the developed mesh generator which

shows the generation steps of the mesh is given in Figure 1.28.

Figure 1.28: Flow Chart of Developed Mesh Generation

27

1.4.2 Organization

In Chapter 2, boundary layer wedge mesh generator and the customized open source

boundary layer mesh generation code is introduced. Firstly, the open source code

Larosterna SUMO is given in detail and the customization of the code for the new

mesh generator is presented.

In Chapter 3, Cartesian mesh generation is presented. Firstly, Octree Data Structure

is introduced. The generation of pyramid volume elements are given. Finally, in this

chapter, the polyMesh structure is introduced and the polyMesh properties and the

creation of the polyMesh files are presented.

In Chapter 4, the tetrahedral mesh generator TetGen is introduced. The tetrahedral

mesh generator is given in detail.

In Chapter 5, test cases are given for the validation of the developed mesh generator

code.

In Chapter 6, the obtained solution results are discussed and the conclusion of the

study is presented. Finally, future works are introduced.

28

CHAPTER 2

BOUNDARY LAYER MESH GENERATION

In aeronautical applications, the turbulence and the thin boundary layer affects the

flow properties at the vicinity of the solid wall due to no slip condition. Most of

the solutions contains Reynolds-averaged Navier-Stokes equations (RANS), therefore

obtaining solutions on where the boundary layer is close to the wall of the geometry,

a well-defined and fine finite volume mesh is needed at the wall boundary.

In viscous flows, due to the viscous effects of the wall on the flow, boundary layer

is developed on the wall. At the boundary layer, the mesh must be able to resolve

the large velocity gradients in the turbulent boundary layer along the normal of the

wall. Therefore, there should placed many grid points as much as possible in the

boundary layer. Highly stretched meshes are needed to be created in the boundary

layer and shear layer region. There are two alternatives for the boundary layer mesh:

structured mesh and unstructured mesh. For stretching the meshes, structured mesh

is more suitable than stretching tetrahedral volume element for the viscous layer with

high Reynolds number flows. The boundary layer mesh should be generated carefully

by giving attention to the interior angles of the elements which should not be larger

than 90o. Also, the high aspect ratio cells should be aligned with the wall boundary.

[9] In most of the studies, the body-fitted structured mesh is used for the boundary

layer and unstructured tetrahedral mesh is used for the entire flow domain except the

boundary layer. The boundary layer mesh is consist of high quality elements and the

large flow domain is filled quickly by tetrahedral volume mesh.

Turbulence models have different ways of modeling the boundary layer. According

to turbulence model, the resolution of boundary layer mesh can change. The quantity

for this resolution is y+ value. This value defines the dimensionless height of the

29

first layer of the boundary layer grid point from the wall. In turbulent boundary layer

region, there are three sub-layers in boundary layer: Viscous sub-layer, log-law sub-

layer and outer layer. y+ is less than 5 for viscous sub-layer where the thickness of

sub-layer is very thin; shear stress is approximately constant and equal to the wall

shear stress. y+ value is between 30 and 500 for a region where the turbulent and

viscous effects are both important and effective. In boundary layer region, turbulence

is maintained by shear in the flow. The magnitude of the shear is very large near the

wall. Also, the velocity and its fluctuations are high. The distribution of velocity is

anisotropic. The shear layer is very thin and the flow characteristics are changing very

rapidly in the direction perpendicular to the wall boundary. The boundary layer mesh

must have very thin layers of elements to capture the gradients of flow variables in

the very thin boundary layer at the vicinity of the wall. Therefore, the boundary layer

mesh must be generated such that y+ value is achieved for the turbulence model.[6]

The quality of the mesh in the boundary layer mesh is very important to achieve the

flow variables accurately. Also, the mesh generation process should be automated. A

robust strategy is needed to take care of the deformations, such as warped elements

and negative volume elements, of mesh due to the geometric complications. The

purpose of the creating hybrid prismatic mesh is to increase the mesh resolution at the

boundary layer mesh and capture the viscous effects stemmed from no-slip boundary

condition. Therefore, large flow gradients are observed at the normal direction of the

wall that requires high cell density in the normal direction, but not necessarily high

cell density along the direction parallel to wall.

The boundary layer in the vicinity of the surface mesh of the geometry is generated

using the quadrilateral prismatic cells called wedges. The wedges are generated by

a library of the open-source hybrid mesh generator by Larosterna SUMO. The mo-

tivation for creating the hybrid mesh generator by the developers is the need for the

boundary layer mesh where the boundary layer effects is liked to be seen. The most

important aspects of generating the boundary layer wedge mesh is the flexibility of the

mesh generation with increasing of geometry complexity. The generation of bound-

ary layer wedge mesh becomes a tedious task. The generated mesh is aimed to used

for the cell-centered solvers. The main property of the hybrid mesh generator is being

fast and robust even with the large mesh sizes. [33]

30

The generation of the wedge volume mesh consists of four parts. The first part is

reading the surface mesh of the geometry. The second part involves the generation of

farfield surface mesh and the envelope mesh. Envelope prismatic layer is the surface

mesh where the last layer of the wedge elements are located. Third step is the gen-

eration of boundary layer wedge elements by inflating from triangular surface mesh.

Final step is the generation of tetrahedral mesh in between the farfield and envelope

layer surface meshes.

The mesh generator requires input files which involves a triangular surface mesh with

CGNS format [34] for the compatibility and a configuration file. The boundary layer

mesh parameters are given in the configuration file. The input parameters of mesh in

the file is given in Table 2.1.

Table 2.1: Hybrid Mesh Generator Configuration File Inputs with Example Values

Configuration File Property Example Value Units

Number of Layers 10 -

Initial Height of the First Layer 0.1 m

Maximum Growth Ratio 1.2 -

Maximum Layer Thickness 100 m

The outputs of the boundary layer mesh generator are two files: boundaries.smesh and

hybrid.su2 files. They are transfered to the Cartesian Mesh Generator. The bound-

aries.smesh file consists of the envelope layer surface mesh nodes and faces. The

hybrid.su2 file consists of the nodes and cells of the wedge elements. The faces of

wedge volume elements and the connectivity of wedge cells are generated using the

hybrid.su2 file. The faces and the owners/neighbors of the faces are processed by

using the hybrid.su2 file with another C++ program: WedgeHandler. This program

generates two files: wedgeFaces and wedgeNodes text files. The wedgeFaces file

consists of faces with owner, neighbor and the marker of the face. The wedge cells

are numbered starting from the first layer which is close to the geometry surface.

Therefore, there is an ID for every wedge cell to write them for owner and neighbor.

Finally, wedgeFaces and wedgeNodes are transfered to a program which makes the

final polyMesh.

31

2.1 Boundary Layer Mesh Generation Process

2.1.1 Surface Mesh

The surface mesh is created by any compatible surface mesh generation tool. The

format of the surface mesh must be a CGNS file and surface normal orientation should

be arranged as into the geomerty.

2.1.2 Envelope Prismatic Layer

After surface mesh is read by the program, the envelope prismatic layer is created. It

is another triangular surface mesh which is created inflating the surface mesh. The

wedge volume elements will be generated later between the envelope prismatic layer

and the surface mesh. The envelope prismatic layer is generated with the same topol-

ogy as the surface mesh. It is generated at a distance from the surface mesh. The

distance is given from the configuration file and it is the boundary layer mesh total

thickness. This thickness is calculated by using number of layers, initial height of the

boundary layers and the growing ratio of the cells. For example, if the initial height of

the first layer is 0.1 mm, and the growth ratio is 1.2, then the second layer height will

be 0.12 mm. Therefore, if there is 10 layers, the total height of the boundary layer will

be 2.60 mm. However, at some parts of the complex geometries, the height of the en-

velope prismatic layer is reduced for not clustering of the boundary layer. Hence, the

construction of the prismatic envelope layer is not an simple extrusion process. The

warped wedge elements are corrected while inflating the surface mesh by untangling

the surface normals with local untangling and warp reduction algorithms.

Since the geometry can be complex, the generation of the prismatic layer is done

step by step along local normals of the elements, not by simply extruding the surface

mesh. The steps of the envelope prismatic layer generation is given in Table 2.2 and

the steps are explained below. .

32

Table 2.2: Envelope Prismatic Layer Generation Steps

1 feature extraction and surface node classification

2 Selective Smoothing of Growth Directions and Layer Height

3 local untangling and warp reduction

4 global collision avoidance of opposing layers

2.1.2.1 Feature Extraction and Surface Node Classification

The nodes are detected and arranged according to their locations on the surface mesh.

The angles between the neighbor triangles of the surface mesh is calculated. Then,

the nodes of the surface mesh assigned with flags according to their positions and

the angles of the surface normals in the mesh. A node can have more than one flag

depending on the shape of the geometry. For example, a node can be on a topological

edge associated to both concave and convex surfaces of the geometry. Therefore, this

node is flagged as a saddle node. As an example, F-16XL geometry is shown with

Figure 2.1. In this figure, the edges which are shown in black are the regions where

the nodes are flagged with multiple flags, these black ones are different form the other

nodes. These nodes are on both two surfaces which makes them to be on a concave

or convex edge unlike the nodes on a single surface.

Figure 2.1: Geometric Feature Detection

33

One of the local criteria is the angle between the normal vectors of the triangles

with common edge between them. Also, concave or convex surfaces are detected by

flagging the nodes. The flagging of nodes process only includes the evaluating the

local geometry and not includes the evaluating of boundaries.

2.1.2.2 Selective Smoothing of Growth Directions and Layer Height

The envelope prismatic layer is generated using the vertex-based surface normal vec-

tors. These normal vectors are obtained from angle-weighted average of the normal

vectors of adjacent triangles at each vertex. The local layer thickness is initialized by

first computing the mean length of the incident edges at a vertex. Then, the initial

height of the local element of the layer is computed by using Equation 2.1 where rj ,

which is the local height expansion ratio of adjacent prisms and cannot exceed the

value given by the user in the configuration file as maximum layer thickness (rm),

is computed by Equation 2.2. h0is taken from the configuration file as initial height

value of the first layer.

hj = h0
1− rnj
1− rj

(2.1)

rj = min[(
lj
h0

)
1

n−1 , rm] (2.2)

If the generated envelope surface is not smooth to generate the prismatic volume

elements, the boundary layer wedge mesh cannot be created properly. An example

can be seen in Figure 2.2 is given. Unsmoothed envelope mesh is shown on the left

and smoothed envelope mesh is shown on the right. [35, 33]

Initial envelope surface mesh has irregular shapes due to the computations of the nor-

mal vectors. Therefore, smoothing operation is applied to the surface mesh. Three

smoothing passes are applied. The first pass is the application of the modified Lapla-

cian smoothing factor to the height field by using small Jacobi iterations. Also, the

height modifications of first pass uses the vertex flags which was generated in the

previous step. Second pass is applied to the growth directions. This pass also uses

34

Figure 2.2: Envelope Smoothing Example

flag-dependent modifications. The third pass involves the smoothing of the edges. As

a result of the smoothing, resulted envelope mesh for the F16 example is shown in

the right half of Figure 2.2. As it can be observed from the figure, the quality of the

wedge volume elements are good between the wall surface and the envelope prismatic

envelope mesh. [35, 33]

2.1.2.3 Local Untangling and Warp Reduction

Entangled wedge elements in the boundary layer wedge mesh are observed sometimes

due to the intersections of the normals of the surface elements while inflating from the

surface. Two step untangling algorithm starting from local untangling of the normal

heights is applied.

First phase of the untangling is the limiting the layer height. The local height of the

envelope layer cannot exceed hj value computed, for each edge e, by Equation 2.3

when 0 < γ < π and γ = π − β1 − β2.

hj < |e|
sinβj
sinγ

(2.3)

35

The angles between the edge direction and the vertex normal vectors in the endpoints

of the edge, which are β1and β2 respectively, are computed for each edge in wall

surface mesh.

The initial envelope layer my contain warped elements and these elements can be

inverted. Hence, this causes negative volume element at the boundary layer mesh.

There warped elements should be avoided. An example to the warped elements are

shown in on the leftmost side Figure 2.3. Although the envelope layer triangle nor-

mals should be towards outer, on warped elements, they point towards wall surface.

[35, 33]

Figure 2.3: Untangling of Elements

As it can be seen from the center figure of the Figure 2.3, the variation between enve-

lope direction vectors are not enough to solve the warping problem. So, the height of

the envelope layer is reduced to a maximum possible value to overcome the warped

elements. The limit of this height value is zero and also yields and acceptable wedge

element. The reduction of the envelope layer height is shown with the rightmost

figure in Figure 2.3. [35, 33]

2.1.2.4 Global Collision Avoidance of Opposing Layers

The height of the envelope layer is reduced for the potential overlapping envelope

layers. The height of the envelope layer is changed and decided by local geometric

considerations. The boundary layers are thinned between the encroaching bodies

to generated tetrahedral volume mesh between them. Therefore, in some complex

geometries, the boundary layer can be thin in one part and can be thick in another

part of the geometry. An example is given with Figure 2.4. [35, 33]

36

Figure 2.4: Example - Fuselage and Engine Nacelle

The detection of possible collision of boundary layer mesh on a geometry is pro-

vided by an efficient search tree data structure: using a balanced binary tree bounding

volume hierarchy. This data structure is very fast for detecting the points, where

the envelope layer collides. Then, it reduces the local height of the envelope layer.

[35, 33]

2.2 Customizations on Hybrid Mesh Generator

At the end of the program, the wedge volume elements, which are created between

wall and envelope surface meshes, is obtained. The first layer height is given with

the configuration file. After generating the first layer, the other layers are created by

applying the growth ratio which is given in the configuration file. The generation

of the boundary layer mesh is very fast, since the mesh is structured in the normal

direction of the wall surface.

There are some customizations on the hybrid mesh generator code. The tetrahedral

mesh generator part is suppressed in the code to extract only the wedge mesh gen-

erator part of the code. Also, for the Cartesian mesh generator code, the envelope

prismatic surface mesh is required to generate the Cartesian mesh and the pyramid

volume elements. One of the output of hybrid mesh generator is “boundaries.smesh”

file. This file contains three surface meshes. One is the far-field mesh of the geometry.

The far-field would be the boundary of the tetrahedral mesh if hybrid mesh generator

code had created the tetrahedral mesh. Since tetrahedral mesh is not generated in the

37

code, the far-field surface is suppressed to be written in the boundaries file. There-

fore, the other two surface meshes, which are envelope prismatic layer and the wall

surface mesh of the geometry, is written to the file. The wall surface mesh of the

geometry is also supressed to be written to the boundaries file. As a result, the only

surface in boundaries file becomes the envelope prismatic surface mesh. Therefore,

the “boundaries.smesh” file is directly taken by the Cartesian mesh generator as the

main input file.

An example of envelope layer on surface wall mesh is given in Figure 2.5. The mesh

with yellow surface is the envelope layer mesh and the mesh with blue surface is the

wall mesh. Also, the boundary layer which is generated between the envelope layer

and the wall mesh and the boundary layer mesh is shown in Figure 5.7.

Figure 2.5: Envelope Layer with Surface Wall Mesh

Figure 2.6: Boundary Layer Mesh with Surface Wall Mesh

38

CHAPTER 3

CARTESIAN MESH GENERATION

The Cartesian Mesh is generated outside of the boundary layer zone of the computa-

tional domain. As given in the Motivation part in Chapter 1, the core section is aimed

to be generated with the Cartesian Mesh which consists of high quality hexahedral

cells. Octree Data Algorithm is used for generation of cells for the Cartesian Mesh

generation. Transitional elements from Cartesian mesh to boundary layer mesh is

provided by pyramid volume elements at the Cartesian side and tetrahedral meshes at

the boundary layer side. Pyramid volume elements are generated within the Cartesian

Mesh generation code since they are generated from the faces of Cartesian mesh cells.

3.1 Octree Data Structure

In Cartesian mesh generation code, the computational domain is divided into Carte-

sian cells with multiple refinement levels and sizes. Octree data structures and algo-

rithm is employed for the generation of Cartesian cells. Octree algorithm is suitable

for three dimensional meshes, while the quadtree data structure is utilized for two

dimensional domain. [36]

Octree data structure is a hierarchic data structure that spans in various computer sci-

ence applications. Octree is a tree data structure where each internal node has exactly

three children. When applied to computer graphics and mesh generation, the main

trunk of tree represents the biggest cell of the mesh that is to be divided into eight

children and this first cell is called “root cell”. The root cell is a rectangular

prism which encapsulates the entire geometry or in mesh generation terms, compu-

tational domain. The other cells are generated by the successive subdivision of the

39

root cell into eight equal octant. The division continues until a size criteria is satis-

fied. Using this procedure, the number of necessary division at a location known and

hence, the octree hierarchy is generated. [37]

An example of the hierarchy is shown in Figure 3.1.

Figure 3.1: Quadtree and Octree Data Structure

The size of the smallest cell is decided by a size criteria. Refinement level is a value

which shows the number of dividing process to reach the size of the smallest cell.

Therefore, when the root cell is divided, the size of the smallest cell is identical to the

size of the boundary layer cell. By changing the size criteria, the refinement value

and the root cell size, the size of the whole domain and the cell sizes can be changed.

The refinement level of a cell can be found from Equation 3.1 and can be seen that it

is dependent on the criteria and the root cell edge length. Also, after every refinement

of the cells, the size of edge length is cut in half. If cells are divided by n, the edge

length is decreased as 2n. If the desired local length criteria is known, the refinement

level can be found by 3.1.

RefinementLevel = log2

(
root cell edge length

local length criteria

)
(3.1)

The location of cells can be found easily. Since every cell has its own parent cell,

the particular cell can be found traversing starting from the root cell. Every cell has a

parent cell except the root cell. By the children-parent relation, a cell can be reached

from the root cell. Besides the refinement level, identification numbers (ID) are given

to the each children cell, during the construction of children cells following the sub-

40

division request. Unique combination of Cell IDs is given for all three directions

for three dimensional domain. Parent-children relation as well as coordinates of the

cell center can accessed following the ID and refinement level of the cell. The ID is

assigned by binary designation. An example of the binary identification number is

given in Figure 3.2.

Figure 3.2: Binary Identification Numbering

The ID of the root cell is 0 in each dimension and the refinement level is also 0.

When the root cell is divided into children cells, four cells at the lower part at a given

direction are assigned with the ID as 0 at the given direction, next four cells at the

higher upper part at the same direction is assigned with the ID as 1 of that direction.

In binary expressions, the ID of the lower (or left, back) cell is 0 and the ID of the

upper (right, forward) cell is 1. The number of digits used for cell is determined by

refinement levels of the cells . When the refinement level is increased by one, the

numbers in the binary expression is shifted to left. For example, if the second cell,

which has ID as x-ID equals to 1, is divided into its children cells, the first cell of the

children cells has the ID as 1 and the refinement level is 2. For the next cell to this

cell, x-ID is 2 and refinement level equals to 2.

3.2 Cartesian Mesh Generator Module

Cartesian Mesh Generator code is responsible of generation of the Cartesian mesh

and the pyramids volume elements. Cartesian mesh generator is constructed around

41

C++ classes representing Cartesian cells, faces, nodes and pyramids. The list of the

base classes are given in Table 3.1.

Table 3.1: Classes of Cartesian Mesh Generator Code

Class Name Property

HexCell Generates hexahedra volume elements

HexNode Generates nodes

HexFace Generates faces of hexahedra volume elements

HexPyramid Generates pyramids

HexApex Generates apex nodes

SurfaceMesh Reads envelope mesh and configuration file

PolyMeshWriter Writes polyMesh files

The Cartesian Mesh generation process starts with reading of envelope mesh and the

configuration file which is used as the boundary of the hexahedral cell generation do-

main. The hexahedral cells are generated and then marked whether they are removed

or kept as computational cells. After generation of cells, the faces and the nodes of

the hexahedral cells are also generated. Finally, the pyramids are generated, then all

of the faces and the nodes are exported as polyhedral mesh format. The detailed ex-

planations of the generations of faces, nodes and pyramids are given in the following

sections.

3.2.1 Surface Mesh Import

The open source Larosterna SUMO mesh generator is used and it is customized into a

boundary layer wedge mesh generator. From the boundary layer wedge mesh gener-

ator, a boundary surface mesh is extracted. The boundary surface mesh is the surface

triangles of the last layer of the boundary layer wedge mesh. This surface mesh is

imported with a input file to the Cartesian Mesh Generator. The surface file format is

TetGen based ASCII .smesh.

The .smesh file type is made for defining Piecewise Linear Complex (PLC) surface

mesh. [38] Surface mesh data is processed and utilized for the future use in Cartesian

42

mesh. The surface mesh file consists of mesh coordinates and the triangulation. The

triangulation is stored in the correct normal orientation. The surface mesh is used in

Cartesian mesh and will be used in tetrahedral meshing.

After reading the surface mesh and saving the nodes and elements to arrays, the con-

figuration file is read. The configuration file stores the following information.

• Root Cell Edge Length

• Root Cell Center Coordinates

• Seed point coordinates

Root cell edge length is the half of the edge length of the root cell. The coordinates

of the root cell center is given by root cell center coordinates in the configuration

file. Also, the seed cell coordinates in three dimensions are given in the configuration

file. The explanation of seed cell will be given in later parts when the computa-

tional Cartesian cells are marked. The centers of the triangular faces of the enve-

lope mesh are calculated and stored. Next, the criteria for number of division crite-

ria for the cells at the vicinity of the triangles are calculated based on edge lengths

of the triangular surface elements of envelope mesh. For this purpose, the function

“calculateCellEdgeLength()” is used. The selection of the number of di-

vision steps is based on the criteria of the smallest Cartesian cell’s edge size which

should be similar in size of the triangular surface edge length of the envelope mesh

element. [39] The functions for reading of the surface mesh and configuration file,

calculating the cell center and criteria of distance for the refinement is implemented

in the “SurfaceMesh” class.

3.2.2 Generation of Hexahedral Cells

In the generation of hexahedral cells, the aim is to create by successive subdivision

at each envelope layer surface mesh triangle element. The x, y and z coordinate ID

of the hexahedral cell which intersects the envelope surface layer mesh is aimed to

be found. Also, the found hexahedral cell should be in similar size with the triangle

of the surface mesh. The hexahedral cells surrounds the center coordinate of the

43

triangular cell of the surface mesh. The created hexahedral cells which surrounds

the triangle cell centers of the surface mesh is marked as CUTCELL type hexahedral

cell. According to the coordinates of the elements center coordinates of the envelope

surface mesh, the hexahedral cells are created. The equations for obtain the ID of

hexahedral cells are given with Equations 3.2-3.4. The root edge is the half of the

root cell edge length in Equations 3.2-3.4.

cutcellIDx =
[ElementCenterx − (rootCenterx − rootEdge)]

2∗rootEdge
2RefinementLevel

(3.2)

cutcellIDy =
[ElementCentery − (rootCentery − rootEdge)]

2∗rootEdge
2RefinementLevel

(3.3)

cutcellIDz =
[ElementCenterz − (rootCenterz − rootEdge)]

2∗rootEdge
2RefinementLevel

(3.4)

After obtaining the center coordinates of the triangular surface elements and distance

criteria, CUTCELL ID in x,y and z directions are calculated using the Equations 3.2 -

3.4. The size has been read from the configuration file and has been saved to a value.

The name “initialOctree” is given to the root cell.

3.2.2.1 CUTCELL Marking

CUTCELL type cells are the cells which are at the boundary of the surface mesh. The

hexahedral cells, which surround the cell center of the triangles of the surface mesh,

are created and marked as CUTCELL. Then, diffusion is done with these cells. The

neighbor cells of the initially marked cells are also marked as CUTCELL. The repeat

number of the diffusion can be given to the code. Hence, for sphere surface wall

mesh, the CUTCELL type cells are created and marked as in Figure 3.3.

The CUTCELL cells do not only consist of the boundary intersecting cells. CUTCELL

type cells are the cells which separates the inner and outer cells of the computational

domain. CUTCELL type cells are removed later and they do not exist in the compu-

tational domain. These cells are generated with a given criteria, such that, the size of

44

the cells are similar to the smallest edge length of the triangular surface elements at

their closest vicinity. The cells other than CUTCELL type cells are marked as NONE

type cells. The other cells with marked as NONE type are shown in Figure 3.4

Figure 3.3: Initial Octree CUTCELL Type Cells and Surface Mesh

(a) Initial Octree NONE Cells

(b) Initial Octree NONE Cells - Close Up

Figure 3.4: Initial Octree NONE Cells and Surface Mesh

45

After marking the cells at the boundary of the envelope surface mesh as CUTCELL,

a new root cell with HexCell class type is generated. This new Root cell is created

a new copy of the initial octree mesh with improved smoothness between NONE and

CUTCELL cells and called Diffusion Octree. The size of the NONE cells are changing

so rapidly that the smoothness quality of the mesh is not achieved. Therefore, the aim

of copying the initial octree is to improve the smoothness of the NONE cells. Hence,

the initial octree is copied as diffusion octree. Starting from the finest refinement

level, it is ensured that each refined cell has at least two cells with same refinement

level before the neighbor of one highest level. This diffusion process is a recursive

process. The operations are repeated successively for larger cells. The Cartesian

mesh after the application of the refinement diffusion operation is shown in Figure

3.5. In Figure 3.5, the blue cells are the NONE cells. From Figure 3.4, it can be seen

that refinement level of the cells do not allow smoothness. However, as can be seen

from Figure 3.5, there are two cells with same refinement level between the cells with

different refinement level. This provides smoothness throughout the Cartesian mesh.

The pink cells are CUTCELL cells. The yellow mesh is the envelope layer mesh.

Figure 3.5: Diffusion Octree with NONE and CUTCELL Cells and Surface Mesh

46

3.2.2.2 Marking the in-Domain Cells

At this point Diffusion Octree is created, and this octree will be the main tree to work

on. As the last part of the generation of hexahedral cells, after marking CUTCELL

type cells, in-domain cells, namely INCELL type cells are marked. These in-Domain

cells will be used as computational cells. INCELL cells are marked by staring from

a seed cell. Seed cell location is defined in the configuration file and it is read at

the beginning of the code. The seed cell x-ID, y-ID and z-ID can be found from the

coordinates by using 3.2,3.3 and 3.4. The ElementCenter in Equation 3.2 to 3.4 is the

coordinates of the seed cell for seed cell ID calculation. An example to the seed cell

is shown in Figure 3.6. The red cell indicates the location of the seed cell.

Figure 3.6: Seed Cell Location

Then, the cell, which shares the same x-ID, y-ID and z-ID with the seed cell, is

founded recursively staring from the root cell. The cells, which make up the compu-

tational domain, are marked as INCELL by using the function “markIncells()”.

Now, cells neighboring the first INCELL is marked as INCELL too. If the neighbor

is not CUTCELL or if there is neighbor cells. This procedure is repeated recursively.

CUTCELL cells become a barrier between INCELL and NONE cells. This explains

47

the necessity of special diffusion process in CUTCELL cells. Otherwise INCELL

type cells can leak to NONE type cells. In “markIncells()” function, the seed

cell is marked as INCELL and calls another function “diffuseIncell()”. This

function starts to the right of seed cell by adding 1 to the x-ID of the seed cell. If the

x-ID plus one is less than the maximum possible x-ID which a cell can have with the

refinement level of seed cell, the cell is the finest cell, means has no children cells,

with the given x-ID in the refinement level. Also, the case of which the x-ID is less

than zero is checked as same as for the x-ID plus one. The marking is also repeated

in both y and z directions in same manner. Then, the code continues as checking if

the cell has child. If the cells does not have children cells, the refinement level is

increased by one and x-ID, y-ID and z-ID of the cell is shifted bitwise to left. By

this way, if there are cells which are children cells of the neighbor cell, they can be

marked as well. The marking of the children cells of the neighbor cell is given in

Figure 3.7

Figure 3.7: Marking of Children Cells of Neighbor Cell

If there is not children cells and the neighbor cell has the refinement level same as the

seed cell, from seed cell, “markAndDiffuseIncell()” is called. This function

checks if the neighbor cell is cell with the mark NONE. If the cell is NONE, the cell

status is changed to INCELL. Then, “diffuseIncell()” function is run again

from the root cell. In addition to x direction, INCELL marking is done in the y and

z directions. By this way, the complete computational domain is marked as INCELL

from the outer boundary to inner boundary. The outer boundary is the root cell and the

48

inner boundary is the CUTCELL which are generated at the first step and copied to

the Diffusion Octree. For example, the INCELL are shown in Figure 3.8 and Figure

3.9 with green. The pink cells are CUTCELL and the yellow mesh is the triangular

surface mesh.

Figure 3.8: INCELL and CUTCELL and Envelope Layer Mesh

Figure 3.9: INCELL and CUTCELL Type Cells and Envelope Layer Mesh from Far

Angle

After finishing the core Cartesian mesh, next step is to generate the pyramid cells

at the CUTCELL faces. Each pyramid cell will have its square base at the outer

surface of the INCELL and apex at the center of the CUTCELL cells. Therefore,

CUTCELL cells that are neighbor to an INCELL should be found and marked. Also,

INCELL cells with a neighbor to a CUTCELL should be found to ensure the connec-

49

tivity. The marking of the cells are continue with marking “INCELL-INNER” and

“CUTCELL_OUTER” typed cells. The function starts again from the root cell and

marks recursively. For all the cells with no children cell are traversed. Then, the cell

is checked whether it is an INCELL or INCELL-INNER cell. If this is the case,

all neighbors are checked. If the neighbor is CUTCELL, the neighbor cell is marked

as CUTCELL_OUTER. If the neighbor cell has children cells, the children cells of

the neighbor cell is marked as CUTCELL_OUTER. The INCELL is also marked as

INCELL-INNER.

3.2.2.3 Setting the Cell ID

The ID to the cells is given other than x-ID, y-ID and z-ID. A class variable is defined

as “cellID”. Setting cell ID is to assign a unique number to the cells. This is an

important setting for the file export. Only INCELL and INCELL-INNER will be

exported to the mesh file. Therefore, ID is assigned only the cell with INCELL and

INCELL-INNER markings and has no children.

3.2.3 Connectivity of Hexahedral Cells

3.2.3.1 Face Generation

The mesh is Cartesian mesh which is a non-conformal mesh. The finite element

type of conformal mesh formats are not suitable. Instead, the face-based data for-

mat is used to export for the Cartesian mesh. Hence, the mesh can be imported to

the solvers such as OpenFOAM and FLUENT. OpenFOAM mesh type is selected

because OpenFOAM is an open source solver which uses polyMesh format. In poly-

Mesh format, the computational cells are shown with nodes and faces. Therefore, the

faces are generated from the hexahedral cells.

Firstly, the cells are generated and marked in the previous steps of the code. The

generation of faces are handled with a new class called HexFace class. HexFace is

derived from the HexCell class. It should be noted that, an algorithmic connection

exist between faces and cells. Also each division operation divides faces, too.

50

The faces are generated using the function “createFace()”. The face creation

function is a recursive function. Starting from root face, the faces are created. There-

fore, the root face is defined. Unlike in the creation of cells, there are three different

face tree in the code. One root face tree is for the faces with normals in x direction, the

second face tree is for the faces with normals in y direction and another root face for

the faces with normals in z direction: “rootFaceX”, “rootFaceY” and “rootFaceZ”,

respectively.

The faces are created by using “createCellWithID()” function as in the case as

cells called from HexCell class. In every direction, there are two faces. Therefore,

from a root face, two children cells are obtained. One of the faces coordinate IDs are

equal to the parent face and the ID of the other face is one more of the parent face ID

in each direction. The ID of the faces are given as Table 3.2.

Table 3.2: Face IDs

HEX_CELL x-ID y-ID z-ID Refinement

Level

rootFaceX HEX_FACE x-ID y-ID z-ID Refinement

Level + 1

rootFaceX HEX_FACE x-ID

+ 1

y-ID z-ID Refinement

Level + 1

rootFaceY HEX_FACE x-ID y-ID z-ID Refinement

Level + 1

rootFaceY HEX_FACE x-ID y-ID

+ 1

z-ID Refinement

Level + 1

rootFaceZ HEX_FACE x-ID y-ID z-ID Refinement

Level + 1

rootFaceZ HEX_FACE x-ID y-ID z-ID

+ 1

Refinement

Level +1

In addition, as can be seen from Table 3.2, the refinement level of the faces are in-

creased by one as in the node creation. Since the x-ID ,y-ID and z-ID of the faces

are related to the x-ID, y-ID and z-ID of the cell, if a cell is known, then the faces

51

of the cell can be found. Also, if x-ID, y-ID, z-ID and refinement level of a face is

known, then the cell which it belongs to, can be known. The connectivity between

the cells, node and the faces are required for the owner and neighbor cell search while

the generation of polyMesh files.

Also, the ID location of the faces are given for x direction in Figure 3.10. The gener-

ation of faces in y and z direction is same as the x direction.

Figure 3.10: Face IDs

3.2.3.2 Face Marking

For faces, face status are defined. When a face is generated, the default value of

the status of the face is defined as NONE. The faces must be marked to indicate

for the purpose of that face in the mesh. Types of face status are INCELL-FACE,

FARFIELD-FACE and PYRAMID-BASE-FACE. Types are defined in the HexCell

class with enumeration technique. Face cell markings are conducted x, y and z direc-

tions separately, since respective trees are separate.The following sections should be

read as such.

INCELL-FACE Marking First of all, all of the faces marked with INCELL-FACE

status with a recursive function. The function calls root cell and refines the root cell

until a cell with no children is found. If such cell is found, it is checked whether the

cell is a cell with cell status INCELL or INCELL-INNER. If the cell is either one

of them, both right and left faces of the cell is marked as INCELL-FACE. The faces

52

are reached from the cell’s x-ID, y-ID, z-ID and refinement level. As seen from Table

3.2, there is relation with the cell IDs and refinement level with their counterparts of

faces of those cells. x-ID, y-ID and z-ID of left face of a cell is equal to the x-ID,

y-ID and z-ID of the cell, respectively. However, the refinement level of the face is

one more of the refinement level of the cell. This marking procedure is applied for all

three face trees.

FARFIELD-FACE Marking After all the faces are marked as INCELL-FACE,

the faces with FARFIELD-FACE status is marked. The FARFIELD-FACE faces

are the faces which are at the farfield boundary of the mesh. The boundary conditions

are given to these cells to be used in the solver part. The marking function for the

FARFIELD-FACE faces are done by a recursive function. The difference from the

function of the INCELL-FACE marking is that this function starts from the root face.

Therefore, there are three functions to mark far-field faces in x, y and z directions.

The functions visit every face with no child face. If the face has not a child and the

status is INCELL-FACE and for the function marking in x-direction, x-ID of the face

is zero or x-ID is equal to maximum possible id at that refinement level (2n − 1), the

neighbor cell of the face is marked. x-ID equals to zero means the face is on the

first face that can be obtained in that refinement level. The face is described by x-ID,

y-ID, z-ID and refinement level value. The procedure for marking the far-field faces

are repeated for the faces which have normals in the y direction and z direction. By

this way, the faces in all directions are marked.

PYRAMID-BASE-FACE Marking The pyramids is build on the faces between the

cells with status of CUTCELL-OUTER and INCELL-INNER. The base of the pyra-

mid volume elements are marked in the function “markPyramidBaseFaceX()”

for the faces with face normals in x direction. For y and z directions, same func-

tions which are named for y and z directions are used. All faces are marked as

INCELL-FACE at the beginning. The faces which make the base of the pyramids

are marked as PYRAMID-BASE-FACE. Pyramid base faces are important for creat-

ing pyramid elements. They are between INCELL-OUTER and CUTCELL-INNER

faces and marked recursively. The same check is done for the positive x direction, the

53

neighbor cell with x-ID, y-ID, z-ID and refinement level - 1 of the face is checked. If

the neighbor cell exists and the status of the neighbor cell is CUTCELL-OUTER, the

neighbor cell is marked as PYRAMID-BASE-FACE and the counting of the pyramid

base face is increased once. For other directions, the same procedure applies.

3.2.3.3 Node Generation

Nodes are organized in an octree data structure as in case of cells and faces. The

class containing the nodes is HexNode and it is inherited from HexCell class.

The nodes are created as reversing from root cell. The creation of nodes starts with

the function “createNode()” from the root node is the root of the node tree.

The node creation function is a recursive function. The nodes are created with the

function “createCellWithID()” as explained in Figure 3.11. The nodes have

x-ID, y-ID and z-ID values as in the Figure 3.11.

Figure 3.11: Node IDs

The root node is the node at the left corner of the root cell and has the same x-ID,

y-ID, z-ID and refinement level. When the root node is refined once, eight children

nodes are generated as shown in 3.11. Therefore, the refinement level of the nodes

are one level more than the refinement level of the cells. By this connection of node

54

and cell, when the cell is known the desired nodes of the cell can be known.

3.2.3.4 Node Marking

For nodes, the node status are defined. When a node is generated, the default value

of the status of the node is defined as NONE. The nodes must be marked to in-

dicate for the purpose of that node in the mesh. The types of the node status are

INCELL-NODE, PYRAMID-BASE-NODE and TRIANGLE-FACE-NODE.

INCELL-NODE Marking

Nodes of the INCELL-FACE and FARFIELD-FACE are marked as INCELL-NODE.

All of the faces are searched and the faces with type of INCELL-FACE

and FARFIELD-FACE are found. From the relation between the face and the nodes,

the four node of these type of faces are marked as INCELL-NODE.

PYRAMID-BASE-NODE Marking

The nodes of PYRAMID-BASE-FACE are marked as PYRAMID-BASE-NODE. All

of the faces are searched and the faces with type of PYRAMID-BASE-FACE are

found. From the relation between the face and the nodes, the four node of these type

of faces are marked as PYRAMID-BASE-NODE.

TRIANGLE-FACE-NODEMarking The nodes of the triangle surfaces of the pyra-

mid volume elements are marked as TRIANGLE-FACE-NODE. Firstly, the cells are

checked if it is a CUTCELL-OUTER type cell. Then, the pyramid elements are gen-

erated by using the relation between the CUTCELL-OUTER cell and the pyramid

element which is generated in the cell. While exporting the triangular faces, each

triangular face contains two nodes and one edge. It is checked whether there is a

pyramid which shares the same edge. If that is the case, the nodes of the edge is

marked as TRIANGLE-FACE-NODE.

55

3.2.3.5 Node ID Setting

The procedure for setting node ID is same as the cell ID setting. The ID setting is

in the order of marking. Firstly, the INCELL-NODE type nodes are given ID, then

PYRAMID-BASE-NODE type nodes are given ID.

Finally, the TRIANGLE-FACE-NODE type nodes are given ID. The nodes are num-

bered with an recursive function which visits all the nodes in the tree of nodes with

same type. As done in the cell ID setting, a node is numbered only once. A get&set

function is used for giving number to the unnumbered nodes. All of the nodes in the

mesh is numbered.

3.2.4 Generation of Pyramid Volume Elements

The pyramid cells are generated as same as the face generation. The function for

creating the pyramids is named as “createPyramids()” which is located in

HexCell class. The function is a recursive function. The pyramids are generated

from three different root pyramid for every three direction; x, y and z directions since

each pyramid is generated based on a particular PYRAMID-BASE-FACE. The root

pyramids are named as rootPyramidX, rootPyramidY and rootPyramidZ. The pyra-

mid ID is given to the pyramids is shown in Figure 3.12.

Figure 3.12: Pyramid IDs

56

The relation between the pyramid ID and the ID of the cell where the pyramid is

located (an CUTCELL-OUTER cell) also given in Table 3.3for x direction, y direction

and z direction.

Table 3.3: Pyramid IDs

HEX_CELL x-ID y-ID z-ID Refinement

Level

rootPyramidX HEX_

PYRAMID

x-ID y-ID z-ID Refinement

Level + 1

rootPyramidX HEX_

PYRAMID

x-ID

+ 1

y-ID z-ID Refinement

Level + 1

rootPyramidY HEX_

PYRAMID

x-ID y-ID z-ID Refinement

Level + 1

rootPyramidY HEX_

PYRAMID

x-ID y-ID

+ 1

z-ID Refinement

Level + 1

rootPyramidZ HEX_

PYRAMID

x-ID y-ID z-ID Refinement

Level + 1

rootPyramidZ HEX_

PYRAMID

x-ID y-ID z-ID

+ 1

Refinement

Level +1

As seen from Table 3.3, the refinement level of the pyramids are one more than the

cell in which the pyramid located. This relation between the pyramid and cell is

important for the neighbor relations while writing output files. Moreover, it is seen

that for a cell, the pyramid and the base face of the pyramid have same x-ID, y-ID,

z-ID and refinement level, but the elements are reached from different root elements.

Therefore, although the pyramid and the face have same ID values and the refinement

level, the generated element is different in type of the element.

3.2.4.1 Pyramid ID Setting

Pyramid ID are set to each pyramid element. As for the cell ID setting, the pyramids

are numbered to for the ease of reaching to the particular pyramid element while

57

writing the owner and neighbor files for the mesh output file. The ID of the pyramids

starts from the ID number where the cell ID of hexahedral cells finished. Therefore,

the numbering is continuation of the cell ID of hexahedral cells.

3.2.4.2 Pyramid Apex Generation

The apex coordinates of the pyramids are generated. The x-ID, y-ID, z-ID and the

refinement level of the apex is same as the x-ID, y-ID, z-ID and the refinement level

for the cell, since the apex is the center of the cell. Although x-ID, y-ID, z-ID and

the refinement level of the apex is same as the cells’, the root element is different.

Therefore, there are not same element generation with the same x-ID, y-ID, z-ID and

the refinement level.

3.2.4.3 Apex ID Setting

Apex of the pyramids are the center points of the cells where the pyramid is located.

The status of the cells which host pyramids is CUTCELL-OUTER. Therefore, all of

the cells are visited by the recursive function “setApexID()”. If the status of the

cell is CUTCELL-OUTER, the apex with the same x-ID, y-ID, z-ID and refinement

level as the cell, is given ID. As had been the case for the nodes, cells and pyramid

ID setting, apex numbers stars from the last node ID of the Cartesian cells.

3.2.5 Generation of PolyMesh Files for Cartesian and Pyramid Volume Ele-

ments

The output format of the Cartesian mesh generator is OpenFOAM polyMesh for-

mat. The information of the format of polyMesh files are given in Appendix A. The

points file involves nodes of the hexahedral and pyramid volume elements. The faces

file contains faces in the order of the face status. The first group is the faces of

Cartesian mesh with INCELL-FACE status. The second group is the faces with

FARFIELD-FACE and they are boundary cells. The third group is the faces with

PYRAMID-BASE-FACE. Fourth and final group of faces is the triangular faces of

58

the pyramid elements. In the code, while writing the faces, the owner and neigh-

bor cells are found in the same function and written in the owner and neighbor files.

Lastly, the boundary file is generated. For the Cartesian and pyramid volume mesh,

there are only two boundaries: the far-field boundary and the inner boundary where

the tetrahedral elements will be generated. Therefore, in boundary file, there are two

patches with the names as far-field and wall, respectively.

3.2.5.1 Coordinates of the Nodes at the Points File

The points file is created using the nodes of the mesh. The coordinates of the nodes

are calculated firstly. The function for coordinate calculation is “calculateNode

Coords()” which is a recursive function to visit all the nodes in mesh, starting

from the root node to the nodes with no children node. In the function, an inner or

boundary node without a child is visited, the coordinates of the this node calculated

according to the Equations 3.5-3.7.

x coordinate = xID ∗ (Root cell edge length
2RefinementLevel−1

) (3.5)

+ (Root cell centerx −
Root cell edge length

2
)

y coordinate = yID ∗ (Root cell edge length
2RefinementLevel−1

) (3.6)

+ (Root cell centery −
Root cell edge length

2
)

z coordinate = zID ∗ (Root cell edge length
2RefinementLevel−1

) (3.7)

+ (Root cell centerz −
Root cell edge length

2
)

The calculated coordinates are written in an array. After generating the coordinate

array, the coordinates are written to the file which is named “points” according to the

points file format. While generating the points file, the first group of point coordinates

59

belongs to the node coordinates of the hexahedral cells. The second group is the apex

point coordinates. The coordinates of the apex points are calculated. All of apex

elements with an ID is visited to write them to an array. The coordinates of the apex

points are calculated using Equations 3.8-3.10.

x coordinate = (xID + 0.5) ∗ (Root cell edge length
2RefinementLevel−1

) (3.8)

+ (Root cell centerx −
Root cell edge length

2
)

y coordinate = (yID + 0.5) ∗ (Root cell edge length
2RefinementLevel−1

) (3.9)

+ (Root cell centery −
Root cell edge length

2
)

z coordinate = (zID + 0.5) ∗ (Root cell edge length
2RefinementLevel−1

) (3.10)

+ (Root cell centerz −
Root cell edge length

2
)

The coordinates are written in the columns of array for x, y and z coordinates respec-

tively. The coordinates of the apex points are written after the node coordinates in the

points file.

3.2.5.2 face, owner and neighbor File

The faces file contains face vertexes which make up the faces. Firstly, INCELL-FACE

faces are written in the file. Later, FARFIELD-FACE, PYRAMID-BASE-FACE and

triangle faces of the pyramids are written.

INCELL-FACE faces First group of the faces file is written x-y and z-directions

successively. These functions are recursive functions and visit all of the faces starting

from the root face. The function “writeIncellFacesX()” is explained below,

60

since the other functions are the same function with a difference of root face. The

first function starts search for the faces from rootFaceX, the other functions starts

from rootFaceY and rootFaceZ, respectively. In the writer function, starting from

root face, all the faces are visited. When a face with INCELL-FACE status is found,

the owner cell and the neighbor cell is accessed with the known relations of face and

cell. For rootFaceX, the relations of the owner cell and neighbor cell is given in Table

3.4.

Table 3.4: Face, Owner Cell and Neighbor Cell Relations

face x-ID y-ID z-ID Refinement Level

owner cell x-ID y-ID z-ID Refinement Level - 1

neighbor cell x-ID - 1 y-ID z-ID Refinement Level - 1

As seen from Table 3.4, x-ID, y-ID and z-ID of the face and the owner cell is same,

but the refinement level of the cell is one less of the face’s. The neighbor cell has

one less of the x-ID of the owner cell. The schematic of the the face, owner cell and

neighbor cell relation is shown in Figure 3.4.

Figure 3.13: Face, Owner Cell and Neighbor Cell Relations

61

For the faces in x direction, if neighbor cell ID is larger than owner cell ID, the writing

order of the nodes to the faces file for the face is given in Table 3.5. If neighbor cell

ID is less than the owner cell ID, the writing order of the nodes to the faces file for

the face is given in Table 3.5 and Table 3.6 for the faces in x direction. Tables for the

faces in y and z direction is given in Appendix B.

Table 3.5: Writing Order of Nodes for Neighbor Cell ID > Owner Cell ID (X Direc-

tion)

rootFaceX face x-ID y-ID z-ID Refinement Level

rootNode node x-ID y-ID z-ID Refinement Level

rootNode node x-ID y-ID z-ID + 1 Refinement Level

rootNode node x-ID y-ID + 1 z-ID + 1 Refinement Level

rootNode node x-ID y-ID + 1 z-ID Refinement Level

Table 3.6: Writing Order of Nodes for Owner Cell ID > Neighbor Cell ID (X Direc-

tion)

rootFaceX face x-ID y-ID z-ID Refinement Level

rootNode node x-ID y-ID z-ID Refinement Level

rootNode node x-ID y-ID z-ID + 1 Refinement Level

rootNode node x-ID y-ID + 1 z-ID + 1 Refinement Level

rootNode node x-ID y-ID + 1 z-ID Refinement Level

After writing the faces with their nodes in the faces file, owner cell IDs to the owner

file and neighbor cell ID to the neighbor file the counting of the face, owner and

neighbor is increased once. By this way, when the functions complete, the number of

faces are known besides the number of owner and neighbor inputs in the files.

FARFIELD-FACE faces The second group of the faces are the FARFIELD-FACE.

The FARFIELD-FACE is written with three different functions starting from root

face at x, y and z directions separately. The functions start from root face and search

for the face with status of FARFIELD-FACE, recursively. If the face has not children

62

faces and the status of the face is FARFIELD-FACE, the neighbor cell of the face is

found from the relation between face and the cell. The relation between the face and

the cell is given in Table 3.4. The cell in the negative x direction of the face has x-ID -

1 according to the face is neighbor cell. If the neighbor cell does not exist in the given

position, the cell in the positive x direction is saved as the owner cell of the face and

the cell ID is written in owner file. Since the neighbor cell does not exist, the face is

at the boundary of the computational domain, “-1” is written in neighbor file for that

face. The face is written in according to the order given in Table 3.7.

The cell in the positive x direction of the face has x-ID according to the face is neigh-

bor cell. If the neighbor cell does not exist in the given position, the cell in the negative

x direction is saved as the owner cell of the face and the cell ID is written in owner

file. “-1” is written in neighbor file for that face. The face is written in according to

the order given in Table 3.8.

Table 3.7: Writing Order of Nodes (+x direction)

rootFaceX face x-ID y-ID z-ID Refinement Level

rootNode node x-ID y-ID + 1 z-ID Refinement Level

rootNode node x-ID y-ID + 1 z-ID Refinement Level

rootNode node x-ID y-ID z-ID + 1 Refinement Level

rootNode node x-ID y-ID z-ID + 1 Refinement Level

Table 3.8: Writing Order of Nodes (-x direction)

rootFaceX face x-ID y-ID z-ID Refinement Level

rootNode node x-ID y-ID + 1 z-ID + 1 Refinement Level

rootNode node x-ID y-ID + 1 z-ID Refinement Level

rootNode node x-ID y-ID z-ID Refinement Level

rootNode node x-ID y-ID z-ID + 1 Refinement Level

For the faces in y and z directions, the procedure for searching neighbor cell and the

owner cell is same. The writing order of the nodes to the faces file is given in Tables

63

in Appendix C. After writing the faces with their nodes in the faces file, owner cell

IDs to the owner file and neighbor cell ID to the neighbor file the counting of the face,

owner and neighbor is increased once. By this way, when the functions complete, the

number of faces are known besides the number of owner and neighbor inputs in the

files.

PYRAMID-BASE-FACE faces The third group of faces to write into faces file is the

faces with PYRAMID-BASE-FACE status. Faces are written in x, y and z directions

successivelywith recursive functions that visits all faces. If the faces has no children

cells and the face status is PYRAMID-BASE-FACE, it can be concluded that there is a

pyramid on that face and the pyramid is defined with x-ID, y-ID, z-ID and refinement

level of the face. The relation between the face and the pyramid on the face is given

with Table 3.9.

Table 3.9: Relation Between Face and Pyramid on the Face

face rootFace x-ID y-ID z-ID Refinement

Level

pyramid rootPyramid x-ID y-ID z-ID Refinement

Level

Since the ID of the pyramids are given after the hexahedral cell ID, the ID of an

pyramid is always bigger than the ID of a hexahedral cell. Therefore, the owner cell

is always the pyramid cell. After getting the pyramid cell, the ID of the pyramid cell

is known and written in owner file for that face and the counting of the owner element

is increased once. Then, the neighbor cell is get by the relations given in Table 3.10.

64

Table 3.10: Relations Between Face and Neighbor Cells

face rootFaceX x-ID y-ID z-ID Refinement

Level

positive

direction

neighbor cell

rootCell x-ID y-ID z-ID Refinement

Level - 1

negative

direction

neighbor cell

rootCell x-ID

- 1

y-ID z-ID Refinement

Level - 1

face rootFaceY x-ID y-ID z-ID Refinement

Level

positive

direction

neighbor cell

rootCell x-ID y-ID z-ID Refinement

Level - 1

negative

direction

neighbor cell

rootCell x-ID y-ID

- 1

z-ID Refinement

Level - 1

face rootFaceZ x-ID y-ID z-ID Refinement

Level

positive

direction

neighbor cell

rootCell x-ID y-ID z-ID Refinement

Level - 1

negative

direction

neighbor cell

rootCell x-ID y-ID z-ID

- 1

Refinement

Level - 1

If the neighbor cell in positive or negative direction exists and the status of the cell is

INCELL-INNER ,the neighbor cell ID is the cell ID of the neighbor cell. The neigh-

bor cell ID is written to the neighbor file and the count for the neighbor is increased

once. Since the normal of the face must be towards to the pyramid cell, the face nodes

are written to the faces file in an order. The order is given in Table 3.11 and 3.12 for

65

x direction. For other directions, the tables are given in Appendix D.

Table 3.11: Relations Between Face and Nodes (+x direction)

face rootFaceX x-ID y-ID z-ID Refinement Level

node rootNode x-ID + 1 y-ID z-ID Refinement Level

node rootNode x-ID + 1 y-ID z-ID + 1 Refinement Level

node rootNode x-ID + 1 y-ID + 1 z-ID + 1 Refinement Level

node rootNode x-ID + 1 y-ID + 1 z-ID Refinement Level

Table 3.12: Relations Between Face and Nodes (-x direction)

face rootFaceX x-ID y-ID z-ID Refinement Level

node rootNode x-ID y-ID + 1 z-ID Refinement Level

node rootNode x-ID y-ID + 1 z-ID Refinement Level

node rootNode x-ID y-ID z-ID + 1 Refinement Level

node rootNode x-ID y-ID z-ID + 1 Refinement Level

Triangle Faces of Pyramids Triangle faces of the pyramids are written with the

function “writeTriangleFace()” which is also a recursive function to visit all

of the faces in the mesh. The cells are checked if the cell has children cells. If a

cell does not have children cells and the status of the cell is CUTCELL-OUTER, the

possible pyramid locations are found and defined. The possible pyramid relations to

the cell is given in Table 3.13 in all directions.

66

Table 3.13: Relations of Cell and Pyramids

cell rootCell x-ID y-ID z-ID Refinement

Level

pyramid 1 rootPyramidX x-ID y-ID z-ID Refinement

Level - 1

pyramid 2 rootPyramidX x-ID

+ 1

y-ID z-ID Refinement

Level - 1

pyramid 3 rootPyramidY x-ID y-ID z-ID Refinement

Level - 1

pyramid 4 rootPyramidY x-ID y-ID

+ 1

z-ID Refinement

Level - 1

pyramid 5 rootPyramidZ x-ID y-ID z-ID Refinement

Level - 1

pyramid 6 rootPyramidZ x-ID y-ID z-ID

+ 1

Refinement

Level - 1

Each triangle face is related to an edge of the cell which hosts the pyramids. Each

edge is checked if there is pyramid located in the normal direction of the triangle

face. If there are pyramids both sides of the triangle face, it is not written in the faces

file. If there is only one pyramid in either direction of the triangular face, the face

is written in the faces file with the normal direction towards to the tetrahedral cell.

Since tetrahedral cells get ID later than the pyramids cells, the ID of the tetrahedral

cells are bigger than the pyramid cells. The check order for the edges are given with

Figure 3.14.

67

Figure 3.14: Edges of the Cell for Triangular Faces

Firstly, the x_1 edge is checked. According to Table 3.13, pyramid 1 and pyramid

5 is checked. If pyramid 1 exists and status of pyramid 1 is PYRAMIDCELL, and if

pyramid 5 exists and the status is PYRAMIDCELL, the triangular face is not written

in the file. However, If pyramid 1 exists and status of pyramid 1 is PYRAMIDCELL,

and if pyramid 5 does not exist, the triangular face is written in faces file. The node

order is given in Appendix E. The owner cell ID comes from the ID of pyramid 1.

For the other edges and triangular faces the node order is given in Appendix D.

3.2.5.3 boundary File

For boundary file, the number of boundary faces is required. Since there is two

boundary patches in the mesh, there are two patches written as far-field and wall

in the boundary file. Moreover, the start number of the boundary faces are required

in the file. The faces are written with the order, the first group is the faces with status

as INCELL-FACE, the second group is the faces with status as FARFIELD-FACEs,

the third group is the faces with status as PYRAMID-BASE-FACE and the final group

is the triangle faces of the pyramid volume elements. The start number of the far-field

boundary faces can be known.

68

CHAPTER 4

TETRAHEDRAL MESH GENERATION

4.1 Tetrahedral Mesh Generator

After generating the Cartesian mesh, pyramid volume elements and boundary layer

wedge mesh, there is a gap between the pyramid volume elements and the boundary

layer mesh. The Cartesian mesh has pyramid elements at the inner boundary and

pyramid volume elements have triangle faces as shown in Figure 4.1. It is guaranteed

in the Cartesian mesh generation that, no quad meshes are at the interface between

Cartesian Mesh and tetrahedral mesh. The pyramid volume elements provides trian-

gle face transition to the tetrahedral mesh. The pyramid volume elements are gener-

ated on a single refinement of Cartesian mesh , i.e. the size of the Cartesian volume

elements are of same size on the inner boundary of the Cartesian mesh. The multi-

level Cartesian mesh can be implied to the Cartesian mesh generation. Therefore, the

pyramid volume elements with different sizes can be generated.

Figure 4.1: Cartesian Mesh with Pyramid Volume Elements

69

Also, in Figure 4.2, the boundary layer mesh is shown with Cartesian mesh and pyra-

mid volume elements. Notice that, The boundary layer mesh is unusually thick. This

allows the easy visualization of the boundary layer mesh.

Figure 4.2: Tetrahedral Volume Mesh Gap

As it seen in the Figure 4.2, there exists a gap between the the pyramids extension of

the Cartesian mesh and boundary layer mesh. This void is to be filled with Tetrahedral

volume mesh by connecting the triangular surface elements of the pyramid volume

mesh and the envelope triangles of the boundary layer mesh. Tetrahedral volume

elements are generated using the open source mesh generator TetGen. Generated

tetrahedral mesh is shown in Figure 5.10.

70

Figure 4.3: Tetrahedral Mesh

The open source mesh generator TetGen is an open source tool that generates tetrahe-

dral mesh in three dimensional domain. [38] The tetrahedralization is applied by us-

ing an algorithm called Dealunay tetrahedralization. TetGen can generate three type

of tetrahedral mesh depending on the surface geometry introduced to the program.

The types are constrained tetrahedralization, conforming tetrahedralization and qual-

ity mesh. The code of TetGen is written in C++. The code can be compiled in another

program or it can be compiled into executable program. [38]

4.1.1 Delaunay Triangulation

Tetrahedral mesh generator is based on an extended verion of Delaunay Triangula-

tion.Delaunay inroduced a criteria for triangulation in 1934 and his method is a very

useful foundation to triangulate a set of vertices.[38] Delaunay triangulation con-

structs triangles using a set of points in Euclidean plane. Let there is a set of points

in given space. Assume that the number of distinct points is more than three, and the

points are not collinear. From this set of points many sets of triangles can be formed.A

triangle set conforms the of Delaunay triangulation criteriaif the circumcircle of the

71

triangle does not contain any point of another triangle.

A Voronoi diagram is complementarywith Delaunay trianglation. Voronoi diagram is

constructed such that points in each voronoi cell is closest the the associated vertex.

Vertices can be thought as the nuclei of the Voronoi cell. A Delaunay triangular-

tion is the dual graph of Voronoi graph. Edges of the triangulation expand normally

from the nuclei and form Voronoi tessellation on the entire plane. The dual graph is

constructed such that The circumcenters of Delaunay triangles are the nuclei of the

Voronoi diagram. The Voronoi and Delaunay triangulation is shown in Figure 4.4.

In this figure, the dashed lines show Delaunay Triangulation and the solid lines show

Voronoi Diagram.[40]

Figure 4.4: Voronoi Diagram and Delaunay Triangulation

4.2 Implementation of the TetGen into Mesh Generation

An input file is provided automatically to TetGen created in the Cartesian Mesh Gen-

erator. This input file consists of the triangular faces of envelope layer of boundary

layer mesh and the pyramids. These faces make up the boundaries of tetrahedral

mesh.

The TetGen is used as stand-alone program and takes mesh input from Cartesian

mesh generator and gives tetrahedral mesh output files. TetGen is compiled by using

command switches. The command switches, which are used, are given in Appendix

F.

72

The outputs of TetGen are consist of two files that contains node coordinates (.node

file) and face vertexes (.face file). Firstly, a face information file is created by using a

TetGen switch command. In this face file, only the boundary faces of the tetrahedral

mesh is written. Hence, the boundary faces are transfered to the file merger program

with a known order. Then, the inner tetrahedral faces file is generated. The node

coordinates file is also created along with the file of the tetrahedral connectivity. The

nodes are ordered according to their status of being the boundary node or inner node.

Finally, all tetrahedral mesh related files are transfered through TetGenHandler pro-

gram written in C++ and TetNodes and TetFaces text files are generated for the final

mesh generator code.

4.3 Exporting to Final Mesh

All of different mesh zones should be put together to form the final mesh. The final

mesh is created with a code which combines the output of the the boundary layer

mesh generator, Cartesian Mesh generator and tetrahedral mesh generator. The final

mesh is written with polyMesh file format. The detailed information about polyMesh

files is given Appendix A.

The points and faces files with owner and neighbor relations are given to the final

mesh generator code as input. The code combines all the points, faces, owner and

neighbor files into final polyMesh files.

The final mesh is generated by using polyMesh files. The solutions are obtained by

using Fluent. Therefore, polyMesh format is converted to .msh file format by using

the “foamMeshToFluent” command of OpenFoam.

73

74

CHAPTER 5

RESULTS AND VALIDATION OF MESH GENERATOR

In this chapter, three validation cases are presented including a sphere test case, a

missile test case aimed to study vortex interactions and basic finner test case, which

is a standard test case in missile aerodynamics. All three test cases are external flow

test cases and air is the working fluid.

5.1 Test Geometries

The first test case of the mesh generator is a sphere. The mesh generated for the

sphere geometry which is shown in Figure 5.1. Test geometry has 6” radius. Number

of surface triangles are relatively low with 6676 faces.

Figure 5.1: Surface Mesh - Test Case 1

The second test case is a missile geometry which is used in the Missile Facet of

NATO STO AVT 316 (Vortex Interaction Effects Relevant to Military Air Vehicle

Performance). [41] The geometry and the surface mesh is shown in Figure 5.2. The

75

surface geometry consist of 208684 faces. Number of division at the fin leading and

trailing edges is kept as 2 triangle. The test case aimed for vortex interaction between

the strake and the fins. Therefore the number of division at the strake, wind tips are

rather small for this test case.

Figure 5.2: Geometry and Surface Mesh - Test Case 2

The third test geometry is Basic Finner geometry. Basic finner geometry is a well

known test case, which is initially generated for determination of dynamic stability

and damping coefficients. Number of experimental data is available in the literature.

In this study only static coefficients are used as validation. The surface mesh of the

geometry is given in Figure 5.3. [42] The surface mesh contains 130898 number of

cells.

Figure 5.3: Surface Mesh of Basic Finner

76

5.2 Mesh Metrics

The meshes of the test cases are given in this part. The mesh quality of the test cases

are evaluated by using checkMesh tool of the OpenFOAM. Skewness is the measure

of the distance between the intersection of the line connecting two cell centers with

their common face and the center of that face. The skewness is considered as better

when it is closer to zero. [43]The allowable maximum skewness in OpenFOAM

skewness calculation methodology is reported as 20. [44] Non-orthogonality is the

angle made by the vector between the two adjacent cell centers across the common

face and the face normal. For a high quality mesh, this value should be as small as

possible. [45]

5.3 Mesh Generation Results

Mesh generation procedure is completed for the given meshes and mesh quality and

meshing time is reported. The required time for generation of all of the meshes are

less than total time of 2 minutes.

5.3.1 Test Case 1

For the sphere test case, the boundary layer initial height is given as 2x10−5 m and

the number of layers is 20. The boundary layer mesh is given in Figure 5.4, enclosing

Cartesian mesh of Test Case 1 is shown in Figure 5.5. The final mesh is shown in

Figure 5.6.

77

Figure 5.4: Boundary Layer - Test Case 1

Figure 5.5: Cartesian Mesh - Test Case 1

Figure 5.6: Final Mesh - Test Case 1

78

The mesh statistics taken from “checkMesh” utility of OpenFoam is shown in Table

5.1. As seen from here all mesh metrics are very good. The minimum cell volume

and aspect ratio is dictated by the first layer thickness and most modern CFD solvers

can easily handle them.

Table 5.1: Mesh Properties from OpenFoam checkMesh - Test Case 1

Points 18926

Faces 100056

Cells 41928

Maximum Skewness 1.40892

Minimum Cell Volume 1.23x10−7m2

Maximum Aspect Ratio 2606.08

Maximum Non-Orthogonality 89.0298o

5.3.2 Test Case 2

The boundary layer mesh is generated with 4x10−5m initial height at the first layer

and 20 layers. The boundary layer is shown in Figure 5.7 with a cut through the

geometry. The geometry involve difficulties for the boundary layer mesh generator,

especially around fin tips and fin-body connections. It is expected that at the corners

of the fins and the wings, the boundary layer mesh requires boundary layer thickness

handling as explained in Chapter 2. The close up figure of the boundary layer is given

in Figure 5.8. As seen from 5.8a, the boundary layer is thinned at the corner which is

the intersection of the body and the fin. Therefore, this case is a good case for seeing

difficulties of meshing with corners.

The Cartesian mesh of the geometry is given in Figure 5.9.

79

Figure 5.7: Boundary Layer Mesh - Test Case 2

(a) Boundary Layer at Corner

(b) Boundary Layer at Body

Figure 5.8: Close Figure of Boundary Layer - Test Case 2

80

(a) Cartesian Mesh - Test Case 2

(b) Close up of Cartesian Mesh - Test Case 2

Figure 5.9: Cartesian Mesh - Test Case 2

The tetrahedral mesh is given in Figure 5.10 separately. The tetrahedral mesh is

shown with a cut through the rocket body.

Figure 5.10: Tetrahedral Mesh - Test Case 2

81

The final mesh which has all type of meshes is shown in Figure 5.11. The cut is taken

to see the meshes thorough the geometry body.

Figure 5.11: Final Mesh - Test Case 2

The mesh statistics taken from “checkMesh” utility of OpenFoam is shown in Table

5.2. Again, despite the diffcult-to-mesh zones at especially fin tips and fin to body

connection zones, mesh metrics are acceptable. It should be noted that, this is a very

common situation for all boundary layer generators. Mesh generators provide skew

meshes where the unit normals changes abruptly. The developed algorithm provides

a decent solution at those locations.

Table 5.2: Mesh Properties from OpenFoam checkMesh - Test Case 2

Points 2443229

Faces 13985157

Cells 5877446

Maximum Skewness 2.97672

Minimum Cell Volume 4.85x10−12m2

Maximum Aspect Ratio 93.8459

Maximum Non-orthogonality 78.064o

82

5.3.3 Test Case 3

5.3.3.1 Mesh with Developed Mesh Generator

The boundary layer mesh with 20 layers and initial height of 1x10−4 m is given in

Figure 5.12. As in the Test Case 2, the corners where the wings and body coincide,

the boundary layer is thinned not to have negative volume elements.

(a) Boundary Layer Mesh at Corner

(b) Boundary Layer Mesh at Body

Figure 5.12: Boundary Layer Mesh of Basic Finner Geometry - Test Case 3

The Cartesian mesh is of the 3D volume mesh generated by the developed mesh

83

generator is shown in Figure 5.13 with a cut along the geometry. The close figure of

the Cartesian mesh at the vicinity of the boundary layer is shown in Figure 5.14.

Figure 5.13: Cartesian Mesh of Basic Finner Geometry - Test Case 3

Figure 5.14: Close up Figure of Cartesian Mesh - Test Case 3

The tetrahedral mesh is given in Figure 5.15 separately. The tetrahedral mesh is

shown with a cut through the geometry.

84

Figure 5.15: Tetrahedral Mesh of Basic Finner - Test Case 3

The final mesh which has all type of meshes is shown in Figure 5.16. The cut is taken

to see the meshes thorough the geometry body.

Figure 5.16: Final Mesh of Basic Finner Geometry - Test Case 3

The mesh statistics taken from “checkMesh” utility of OpenFoam is shown in Table

5.3. Again, despite the diffcult-to-mesh zones at especially fin tips and fin to body

connection zones, mesh metrics are acceptable. It should be noted that, this is a very

common situation for all boundary layer generators. Mesh generators provide skew

meshes where the unit normals changes abruptly. The developed algorithm provides

a decent solution at those locations.

85

Table 5.3: Mesh Properties from OpenFoam checkMesh - Test Case 3

Points 1568213

Faces 8386828

Cells 3443324

Maximum Skewness 5.07291

Minimum Cell Volume 6.57x10−11m2

Maximum Aspect Ratio 213.871

Maximum Non-orthogonality 77.6124o

5.3.3.2 Mesh with ANSYS Mesher

The same geometry is meshed with using ANSYS Mesher in order to compare the

meshing and solution quality of the developed mesh generator. ANSYS Mesher mesh

is tetrahedral mesh with same size of boundary as in the case of the mesh generated

with the developed mesh generator. The farfield of final ANSYS Mesher mesh is

shown in Figure 5.17 and the boundary layer is given in Figure 5.18. The close up

figure of the ANSYS Mesher is given in Figure 5.19.

Figure 5.17: Farfield of Final Mesh with ANSYS Mesher - Test Case 3

86

Figure 5.18: Boundary Layer of Final Mesh with ANSYS Mesher - Test Case 3

Figure 5.19: Close Up Figure of Final Mesh with ANSYS Mesher - Test Case 3

Mesh file format is exported to be read by OpenFoam. The mesh statistics taken from

“checkMesh” utility of OpenFoam for both ANSYS Mesher and Developed Mesh is

shown in Table 5.4 for comparison.

87

Table 5.4: Mesh Properties from OpenFoam checkMesh for ANSYS Mesher Mesh-

Test Case 3

ANSYS Mesher Mesh Developed Mesh

Points 1732950 1568213

Facets 10543896 8386828

Cells 4530372 3443324

Maximum Skewness 7.63629 5.07291

Minimum Cell Volume 4.63x10−11 6.57x10−11m2

Maximum Aspect Ratio 505.85 213.871

Maximum Non-orthogonality 89.2o 77.6124o

In Table 5.3, the number of point, face and cell of Developed Mesh are less than

ANSYS Mesher Mesh for the same volume of computational domain. It is seen that

the maximum skewness and non-orthogonality is less for Developed Mesh. In total,

it is easily seen that the Developed Mesh is better than ANSYS Mesher Mesh in

mesh metrics. Moreover, Test Case 3 is meshed using ANSYS Mesher in 7 minutes

for the same length of farfield, same surface mesh of the geometry and with same

computer, whereas the Developed Mesh is generated in 2 minutes. Therefore, the

required time for generating the mesh with the developed mesh generator is less than

ANSYS Mesher, which is a well-known mesh generator for CFD simulations.

5.4 Simulation Results

All simulations are conducted with FLUENT. The simulation results of Test Cases

are presented in this part.

5.4.1 Test Case 1

The turbulence model for the solution is Standard k-epsilon model. The fluid is cho-

sen as air. The boundary conditions are selected as pressure far field and viscous wall.

88

The pressure-far-field boundary condition is given as static pressure of 101325Pa and

static temperature of 300K. The Reynolds number is 4.7x106. The wall boundary

condition is no-slip condition viscous wall model. The solution method is selected

as Pressure-Velocity Coupling Scheme is coupled and the discretization is set to sec-

ond order. Initialization is done by hybrid initialization. The solution is obtained for

steady-state. Solutions are reported at figrures 5.20 to 5.22.

The static pressure field near the sphere is given in Figure 5.20. Similarly velocity is

presented as velocity vector plot from normal z direction is given in Figure 5.21. The

y+ contour plot of Test Case 1 is given in Figure 5.22 which shows as y+ values are

acceptable for turbulence model.

Figure 5.20: Static Pressure Contour - Test Case 1

Figure 5.21: Velocity Vector Plot (Normal z Direction) - Test Case 1

89

Figure 5.22: y+ Contour Plot of Test Case 1

The pressure coefficient which is calculated with 5.1 on the wall of the sphere with

respect to position in terms of degrees is given in Figure 5.23. It is seen that the

pressure decreased at the back of the sphere due wakes.

Pressure Coefficient =
(P − Pinf)

(1
2
ρinfV 2

inf)
(5.1)

0 50 100 150
−1.5

−1

−0.5

0

0.5

1

MachNumber

P
re
ss
u
re
C
oe
f
f
ic
ie
n
t

Figure 5.23: Pressure vs Position Plot - Test Case 1

90

5.4.2 Test Case 2

The turbulence model for the solution is Standard k-epsilon model. The fluid is cho-

sen as air. The boundary conditions are selected as pressure far field and viscous wall.

The pressure-far-field boundary condition is given as static pressure of 101325Pa and

static temperature of 288.15K. The Reynolds number is 4.89x106. The wall bound-

ary condition is no-slip condition viscous wall model. The solution method is selected

as Pressure-Velocity Coupling Scheme is coupled and the discretization is set to sec-

ond order. The simulation is initialized by using standard initialization from farfield

boundary conditions. The solution is obtained for steady-state.

This study is a work in progress in many research group, where some results are

published. The aim of the study is to evaluate CFD capabilities for missiles with

severe vortex interactions and highly compressible flow. It should be noted that the

comparison plots obtained from the NATO study are run with advanced CFD models

and very high (more than 100M) cell counts. Again,despite the low cell-count the

solver captured most of the vortex structure.

The total pressure ratio contour plot is given from NATO study and with developed

mesh in Figure 5.24. [41]

(a) Total Pressure Ratio From NATO Study (b) Total Pressure Ratio From Developed

Mesh

Figure 5.24: Total Pressure Ratio From NATO Study

As can be seen from Figure 5.24, the solutions are similar to each other.

91

The y+ on wall contour plot is given in Figure 5.25.

Figure 5.25: y+ on Wall Contour Plot - Test Case 2

5.4.3 Test Case 3

The turbulence model for the solution is Standard k-epsilon model. The fluid is cho-

sen as air. The boundary conditions are selected as pressure far field and viscous wall.

The pressure-far-field boundary condition is given as static pressure of 101325Pa and

static temperature of 288.15K. The Reynolds number is 4.89x106. The wall bound-

ary condition is no-slip condition viscous wall model. The solution method is selected

as Pressure-Velocity Coupling Scheme is coupled and the discretization is set to sec-

ond order. The simulation is initialized by using standard initialization from farfield

boundary conditions. The solution is obtained for steady-state.

The aerodynamic experiments are conducted with this geometry by Dupuis.[46][47]

All the experiments are done with the angle of attack is 5o. Therefore, the simulations

are done on the experimental points. The simulations are done with both Developed

Mesh and ANSYS Mesher Mesh. The wind tunnel test result of pitch moment coef-

ficients according to Mach number are given in Figure 5.26 for both meshes. As can

be seen from Figure 5.26, CFD solution of the developed mesh and the experimental

data is very similar to each other at different Mach numbers.

The plot of axial force coefficient with respect to Mach number is given in Figure

5.27 for both meshes. As can be seen, the results are similar to test results at different

Mach numbers.

92

0.5 1 1.5 2 2.5 3

−5

−4

−3

−2

−1

MachNumber

P
it
ch

in
g
M

om
en

tC
oe
f
f
ic
ie
n
t

Wind Tunnel
CFD - ANSYS Mesher Mesh

CFD - Developed Mesh

Figure 5.26: Comparison Graph of Experimental and Simulation Results

0.5 1 1.5 2 2.5 3

0.4

0.6

0.8

1

MachNumber

A
x
ia
lF

or
ce
C
oe
f
f
ic
ie
n
t

Wind Tunnel
CFD - ANSYS Mesher Mesh

CFD - Developed Mesh

Figure 5.27: Drag Coefficient Plot for Freestream Mach 2.0

The y+ on wall boundary plot for developed mesh and ANSYS Mesher mesh is given

in Figure 5.28.

93

(a) y+ Plot for Developed Mesh

(b) y+ Plot for ANSYS Mesher Mesh

Figure 5.28: y+ Plot on Wall Boundary - Test Case 3

94

CHAPTER 6

CONCLUSION AND FUTURE WORK

Computational Fluid Dynamics is an analysis tool which is very important for en-

gineers for modeling fluid mechanics problems. Mesh Generation is one the most

important step of a CFD problem. The mesh with good quality provides accurate

results and rapid convergence. With the aim of getting a high quality mesh in mind,

a Cartesian based mesh generator with body-fitted boundary layers is developed and

presented in this thesis. The mesh generated with the developed grid generator con-

sists of Cartesian, pyramid, tetrahedral cells as well as wedge boundary layer mesh.

Cartesian mesh makes up the core and farfield mesh. A new Cartesian mesh genera-

tor is developed for this purpose. As presented in the literature review, the Cartesian

mesh is connected to a boundary layer grid to be utilized the viscous flow simula-

tions. For this purpose, first a surface mesh should be provided by the user. Then,

the boundary layer mesh is generated by inflating wedge volume elements on the ge-

ometries from this initial triangular surface mesh. A size-fitting Cartesian mesh is the

generated around this boundary layer mesh zone. It is discussed that, Cartesian-only

mesh cannot be used for this purpose since the cells at the vicinity of the boundary

layer mesh should be cut into arbitrary shape polyhedra in order to fit fit to the body

geometry. As a result, development Cartesian based mesh generator with body-fitted

boundary layers which are connected with a buffer mesh consist of tetrahedrons and

pyramids is the main drive of this thesis.

Boundary layer is generated by using an open source mesh generator Larosterna

SUMO. The open source mesh generator provides boundary layer wedge mesh along

with tetrahedral mesh in the farfield. The boundary layer mesh generator is extracted

from the overall code of Larosterna SUMO. The required libraries of is taken and

95

compiled to have the stand-alone boundary layer mesh generator for this study. Cus-

tomizations are applied on the extracted libraries. The output of the code is adjusted

for utilization together with Cartesian mesh generator. By using boundary layer mesh

generator, at the vicinity of the geometry, the cells have high orthogonality which is a

required feature for RANS models. Cells at the Boundary layer has high aspect ratio

cell at the aligned parallel with the flow direction and normal to the velocity gradient.

After boundary layer mesh generation, the Cartesian mesh is generated. Cartesian

mesh cells has the highest quality since they consist of only cube volume elements

with 900 angles between faces, therefore the all quality metrics are the best in a Carte-

sian mesh. In addition, the motivation for this thesis study is to overcome the dif-

ficulties of meshing in three dimensional domain, especially for large geometries.

Cartesian mesh is generated by using Octree Data Structure. This data structure is

also utilized in the neighbor search algorithms. The searching with the Octree data

structure is very fast and easy compared to the other type of search algorithms. In ad-

dition, Cartesian mesh has less number of cells compared to other types of meshes in

the same computational domain. For example, in same computational domain, num-

ber of tetrahedral mesh required for the same accuracy is significantly more than that

of Hexahedral\Cartesian mesh, according to literature. Besides, the smoothness is en-

hanced between the successive cells of the same refinement level by cell refinement

diffusion algorithms implemented in Cartesian mesh generator. In order to ensure

conformal connectivity between Cartesian and boundary layer mesh a pyramid mesh

connected to Cartesian mesh is generated within Cartesian mesh generator code. They

are created by using the outermost elements of Cartesian cells that are facing to outer

layer of Boundary layer mesh faces. The pyramids in this mesh generator have equi-

lateral triangles as their faces. Pyramid cells have both triangular and square faces

which allows transition from square to triangle face. Therefore, the pyramid volume

elements are generated along with Cartesian mesh. Tetrahedral mesh is generated by

using the open source mesh TetGen. Therefore, the quality of the pyramid volume

elements are also very high. The rest of the domain is filled with tetrahedrons using

another open source mesh generator TETGEN. It is reported that, overall mesh qual-

ity provided by the Cartesian mesh generator is very high. For example, in Chapter 5,

the mesh properties of the Developed Mesh and ANSYS Mesher Mesh properties are

96

compared. It is seen that for the same computational domain size, the cell count of

the mesh decreases by using in-house developed mesh generator. Also, the skewness

and non-orthogonality values of the developed mesh are better compared to ANSYS

Mesher mesh.

This property of Cartesian mesh makes it more attractive for using in a mesh gener-

ation. Since, there is less number of cells and Octree algorithm is very efficient in

time, the generation of Cartesian mesh is very fast. For example, about a million cell

Cartesian mesh is generated approximately in 20 seconds. As given in Chapter 5, the

meshing time for the Test Case 3 is only 2 minutes, whereas, the meshing time with

ANSYS Mesher for the same surface mesh is 7 minutes.

As a result, a Cartesian based mesh generator with body-fitted boundary layer devel-

oped with this thesis stud provides high quality meshes for fluid flow problems with

three dimensional large domains. The mesh generated by this developed mesh gener-

ator merged into a single zone mesh. The generation is fast, the mesh is body-fitted

to the geometry by the boundary layer mesh. The developed mesh generator is fo-

cused on external flows, and can be extended to internal flows too. Finally, meshes

created by the developed mesh generator is tested in CFD problems, where solutions

are obtained by using FLUENT are also given.

The mesh generator developed in this thesis can be extended in a couple of basic

areas. The current mesh generator works for the geometries with triangular surface

meshes only. One of the possible extensions for the mesh generator is to make the

mesh generator compatible with quad or mixed initial surface mesh. Another study

can be conducted is to extend the mesh generator for internal flows where current

code can only handle external flow domains. Last but not least, the mesh generator

code can be upgraded to make solution adaptation.

97

98

REFERENCES

[1] J. D. J. Anderson, “Computational Fluid Dynamics: The Basics with Applica-

tions,” 1995.

[2] H. Lomax, T. H. Pulliam, and D. W. Zingg, “Fundamentals of Computational

Fluid Dynamics,” p. 249, 1999.

[3] J. F. Thompson, Z. Warsi, and C. W. Mastin, Numerical Grid Generation Foun-

dations and Applications. 1985.

[4] J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics.

Springer, 3rd ed., 2012.

[5] J. Tu, G.-H. Yeoh, and C. Liu, “CFD Mesh Generation: A Practical Guideline,”

Computational Fluid Dynamics, pp. 125–154, 2018.

[6] H. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dy-

namics, vol. M. 2007.

[7] B. André, “Lecture 5 -Solution Methods.”.

[8] J. F. THOMPSON, “Grid generation techniques in computational fluid dynam-

ics,” AIAA Journal, vol. 22, no. 11, pp. 1505–1523, 2008.

[9] Andre Bakker, “Meshing, Applied Computational Fluid Dynamics,” PPT:

bakker, no. 2002, pp. 1–35, 2006.

[10] J. Blazek, Computational fluid dynamics:Principles and Applications. 2001.

[11] F. Moukalled, L. Mangani, and M. Darwish, The Finite Volume Method in Com-

putational Fluid Dynamics - An Advanced Introduction with OpenFOAM and

Matlab, vol. 113. 2016.

[12] D. Sharov and K. Nakahashi, “Hybrid prismatic/tetrahedral grid generation for

viscous flow applications,” AIAA Journal, vol. 36, no. 2, pp. 157–162, 1998.

99

[13] M. Koike, T. Kojima, D. Sasaki, T. Misaka, K. Shimoyama, S. Obayashi, K. Hi-

rakawa, and N. Tani, “Numerical Simulation of Cascade Flows Using Block-

Structured Cartesian Mesh,” no. January, pp. 1–19, 2017.

[14] P. G. Tucker and Z. Pan, “A Cartesian cut cell method for incompressible vis-

cous flow,” Applied Mathematical Modelling, vol. 24, no. 8-9, pp. 591–606,

2000.

[15] T. J. Craft and G. B. Building, “Body-Fitted Grids Non-Orthogonal Grids,”

2010.

[16] P. Block, “Block structure creation creation of the auxiliary drawing which

serves as basic for the block structure meshing of individual numerical blocks

under conservation of boundary conditions at the shared interfaces between

neighbor blocks . Automatic block structure creation,” pp. 1–6, 2019.

[17] D. K. CLARKE, H. A. HASSAN, and M. D. SALAS, “Euler calculations

for multielement airfoils using Cartesian grids,” AIAA Journal, vol. 24, no. 3,

pp. 353–358, 1986.

[18] R. GAFFNEY, JR. and H. HASSAN, “Euler calculations for wings using Carte-

sian grids,” AIAA Journal, 1987.

[19] C. S. Peskin, “Flow patterns around heart valves: A numerical method,” Journal

of Computational Physics, vol. 10, no. 2, pp. 252–271, 1972.

[20] J. P. Steinbrenner and R. W. Noack, “Three-dimensional hybrid grid generation

using advancing front techniques,” pp. 333–358, 1995.

[21] E. F. Charlton, K. G. Powell, and K. G. Powell, “An octree solution to conser-

vation laws over arbitrary regions (OSCAR),” no. January, 1997.

[22] K.-F. Tchon, C. Hirsch, R. Schneiders, K.-F. Tchon, C. Hirsch, and R. Schnei-

ders, “Octree-based hexahedral mesh generation for viscous flow simulations,”

pp. 1–9, 1997.

[23] Z. J. Wang, “A quadtree-based adaptive Cartesian/Quad grid flow solver for

Navier-Stokes equations,” Computers and Fluids, vol. 27, no. 4, pp. 529–549,

1998.

100

[24] M. Delanaye, M. Aftosmis, M. Berger, Y. Liu, and T. Pulliman, “Automatic

hybrid-Cartesian grid generation for high-Reynolds number flows around com-

plex geometries,” 1999.

[25] D. Martineau, S. Stokes, S. Munday, A. Jackson, B. Gribben, and N. Verho-

even, “Anisotropic Hybrid Mesh Generation for Industrial RANS Applications,”

no. January, pp. 1–13, 2006.

[26] H. Luo, S. Spiegel, and R. Löhner, “Hybrid grid generation method for complex

geometries,” AIAA Journal, vol. 48, no. 11, pp. 2639–2647, 2010.

[27] A. Wissink, M. Potsdam, V. Sankaran, J. Sitaraman, Z. Yang, and D. Mavriplis,

“A Coupled Unstructured-Adaptive Cartesian CFD Approach for Hover Predic-

tion,” American Helicopter Society 66th Annual Forum, 2010.

[28] B. Roget, J. Sitaraman, V. Lakshminarayan, and A. Wissink, “Prismatic Mesh

Generation Using Minimum Distance Fields,” pp. 1–27, 2018.

[29] “Cart3D Documentation,”

[30] J. Allred, D. Calloway, and S. Ruffin, “Validation of the NASCART-GT Flow

Solver via Data Comparison,” no. July, 2003.

[31] J. Tang, “User guide for shock and blast simulation with the,” 2007.

[32] A. Hashimoto, K. Murakami, T. Aoyama, and P. R. Lahur, “Lift and drag predic-

tion using automatic hexahedra grid generation method,” 47th AIAA Aerospace

Sciences Meeting including the New Horizons Forum and Aerospace Exposition,

2009.

[33] M. Tomac and D. Eller, “Towards automated hybrid-prismatic mesh generation,”

Procedia Engineering, vol. 82, pp. 377–389, 2014.

[34] AIAA, “R-101A - AIAA recommended practice for the CFD General Notation

System - Standard interface data structures,” p. 156, 2005.

[35] D. Eller and M. Tomac, “Implementation and evaluation of automated

tetrahedral-prismatic mesh generation software,” CAD Computer Aided Design,

vol. 72, pp. 118–129, 2016.

101

[36] H. Samet, “An Overview of Quadtrees, Octrees, and Related Hierarchical Data

Structures,” Theoretical Foundations of Computer Graphics and CAD, pp. 51–

68, 2012.

[37] S. Popinet, “Gerris : a tree-based adaptive solver for the incompressible Euler

equations in complex geometries,” Journal of Computational Physics, vol. 190,

no. 2, pp. 572–600, 2017.

[38] H. Si, “Tetgen-Manual.Pdf,” tech. rep., 2006.

[39] L. Maréchal, “Advances in octree-based all-hexahedral mesh generation:

Handling sharp features,” Proceedings of the 18th International Meshing

Roundtable, IMR 2009, pp. 65–84, 2009.

[40] D. T. Lee and B. J. Schachter, “Two algorithms for constructing a Delaunay tri-

angulation,” International Journal of Computer & Information Sciences, vol. 9,

no. 3, pp. 219–242, 1980.

[41] N. Taylor, M. Uk, G. Mcgowan, M. Anderson, C. Schnepf, K. Richter, M. Tor-

malm, and M. Uk, “The Prediction of Vortex Interactions on a Generic Mis-

sile Configuration Using CFD : Current Status of Activity in NATO AVT-316,”

pp. 1–18, 2018.

[42] G. S. Makeich and I. A. Kryukov, “Aerodynamics and Flight Dynamics Simu-

lation of Basic Finner Supersonic Flight in Aeroballistic Experiment,” Journal

of Physics: Conference Series, vol. 1009, no. 1, 2018.

[43] “CheckMesh,” 2020.

[44] C. Support, “Mesh quality check.”

[45] U. Guide, “Keywords,” 2020.

[46] A. Dupuis and W. Hathaway, “Aeroballistic range tests of the basic finner refer-

ence projectile at supersonic velocities,” 1997.

[47] E. DIKBAS, “Design of a Grid Fin Aerodynamic Control Device for Transonic

Flight Regime,” no. June, p. 104, 2015.

102

Appendix A

POLYMESH FILE FORMAT

A.1 PolyMesh Properties

A polyMesh consists of five different files: points, faces, owner, neighbor and bound-

ary files. With a polyMesh format, the nodes and the faces are introduced to the solver

along with the owner, neighbor and boundary files. The reason behind introducing the

owner and neighbor is to calculate the computational volume which occupied by the

cell. every face has its owner cell and neighbor cell. The faces with the same owner

cell forms the volumetric cell where the computational equations would be solved.

Also, one of the rule of thumb is that the owner of a face must have higher identifica-

tion number than the neighbor of the face. In addition, as for the check of the files,

the number of the faces must be equal to the number of owner count and neighbor

count in the owner and neighbor files respectively. The properties of these files are

explained.

A.1.1 points File

The points file contains the list of coordinates of the nodes. The first line is the number

of nodes in the mesh. Then, between parenthesizes, the coordinates of the nodes are

written in the order of x coordinate, y coordinate and z coordinate.

The format of the points file given in the Figure A.1.

103

Figure A.1: points File format

A.1.2 faces File

The faces file contains the face elements. The face elements are defined with nodes

from the points file. The first line is the number of face elements and the next line

starts with the number of vertex of the face element. For example, for square shaped

faces with four nodes, there are four vertices.

The format is given in Figure A.2.

Figure A.2: faces File Format

A.1.3 owners File

The owner file is the file contains the owners of the faces. The first line is the number

of owners in the file. After the first line, the first owner value is the owner cell of the

first face in the faces file. Then, the second value in the owner file is for the owner

cell of the second face in the faces file.

The format is given in Figure A.1.

104

A.1.4 neighbor File

The neighbor file consists of the neighbors of the faces. The first line is the declaration

of the neighbor number. The first line in the list of the neighbors is the neighbor cell of

the first face. The second and the other elements in the file goes as like the previous.

The format of neighbor file is shown in Figure A.1.

Table A.1: neighbor and owner File Format

A.1.5 boundary File

The boundary file consists of the boundary faces of the mesh. There is a patch part

for every boundary type of the mesh. The format of boundary file is given in Figure

A.3.

Figure A.3: boundary File Format

105

106

Appendix B

NODE FACE CONNECTIVITY FOR INCELL-FACES

Table B.1: Writing Order of Nodes for Neighbor Cell ID > Owner Cell ID (Y Direc-

tion)

rootFaceY face xID yID zID Refinement Level

rootNode node xID + 1 yID zID Refinement Level

rootNode node xID + 1 yID zID Refinement Level

rootNode node xID yID zID + 1 Refinement Level

rootNode node xID yID zID + 1 Refinement Level

Table B.2: Writing Order of Nodes for Owner Cell ID > Neighbor Cell ID (Y Direc-

tion)

rootFaceY face xID yID zID Refinement Level

rootNode node xID yID zID + 1 Refinement Level

rootNode node xID yID zID + 1 Refinement Level

rootNode node xID + 1 yID zID Refinement Level

rootNode node xID + 1 yID zID Refinement Level

107

Table B.3: Writing Order of Nodes for Neighbor Cell ID > Owner Cell ID (Z Direc-

tion)

rootFaceZ face xID yID zID Refinement Level

rootNode node xID yID + 1 zID Refinement Level

rootNode node xID yID + 1 zID Refinement Level

rootNode node xID + 1 yID zID Refinement Level

rootNode node xID + 1 yID zID Refinement Level

Table B.4: Writing Order of Nodes for Owner Cell ID > Neighbor Cell ID (Z Direc-

tion)

rootFaceZ face xID yID zID Refinement Level

rootNode node xID + 1 yID zID Refinement Level

rootNode node xID + 1 yID zID Refinement Level

rootNode node xID yID + 1 zID Refinement Level

rootNode node xID yID + 1 zID Refinement Level

108

Appendix C

NODE FACE CONNECTIVITY FOR FARFIELD-FACES

Table C.1: Writing Order of Nodes (+y direction)

rootFaceY face xID yID zID Refinement Level

rootNode node xID + 1 yID zID Refinement Level

rootNode node xID + 1 yID zID Refinement Level

rootNode node xID yID zID + 1 Refinement Level

rootNode node xID yID zID + 1 Refinement Level

Table C.2: Writing Order of Nodes (-y direction)

rootFaceY face xID yID zID Refinement Level

rootNode node xID + 1 yID zID + 1 Refinement Level

rootNode node xID + 1 yID zID Refinement Level

rootNode node xID yID zID Refinement Level

rootNode node xID yID zID + 1 Refinement Level

Table C.3: Writing Order of Nodes (+z direction)

rootFaceZ face xID yID zID Refinement Level

rootNode node xID + 1 yID zID Refinement Level

rootNode node xID + 1 yID zID Refinement Level

rootNode node xID yID + 1 zID Refinement Level

rootNode node xID yID + 1 zID Refinement Level

109

Table C.4: Writing Order of Nodes (-z direction)

rootFaceZ face xID yID zID Refinement Level

rootNode node xID + 1 yID + 1 zID Refinement Level

rootNode node xID + 1 yID zID Refinement Level

rootNode node xID yID zID Refinement Level

rootNode node xID yID + 1 zID Refinement Level

110

Appendix D

NODE FACE CONNECTIVITY FOR PYRAMID-BASE-FACES

Table D.1: Relations Between Face and Nodes (+y direction)

face rootFaceY xID yID zID Refinement Level

node rootNode xID + 1 yID + 1 zID Refinement Level

node rootNode xID + 1 yID + 1 zID + 1 Refinement Level

node rootNode xID yID + 1 zID + 1 Refinement Level

node rootNode xID yID + 1 zID Refinement Level

Table D.2: Relations Between Face and Nodes (-y direction)

face rootFaceY xID yID zID Refinement Level

node rootNode xID yID zID Refinement Level

node rootNode xID yID zID + 1 Refinement Level

node rootNode xID + 1 yID zID + 1 Refinement Level

node rootNode xID + 1 yID zID Refinement Level

Table D.3: Relations Between Face and Nodes (+z direction)

face rootFaceZ xID yID zID Refinement Level

node rootNode xID yID zID + 1 Refinement Level

node rootNode xID yID + 1 zID + 1 Refinement Level

node rootNode xID + 1 yID + 1 zID + 1 Refinement Level

node rootNode xID + 1 yID zID + 1 Refinement Level

111

Table D.4: Relations Between Face and Nodes (-z direction)

face rootFaceZ xID yID zID Refinement Level

node rootNode xID yID zID Refinement Level

node rootNode xID + 1 yID zID Refinement Level

node rootNode xID + 1 yID + 1 zID Refinement Level

node rootNode xID yID + 1 zID Refinement Level

112

Appendix E

CARTESIAN ELEMENT CONNECTIVITY

113

Table E.1: Edge/Triangle Face Node Order

cell rootCell xID yID zID Refinement Level

x1 edge

Pyramid 1 exists /
Pyramid 5 not exist

node rootNode xID yID zID Refinement Level + 1
node rootNode xID yID + 1 zID Refinement Level + 1
apex rootApex xID yID zID Refinement Level

Pyramid 1 not exist /
Pyramid 5 exists

node rootNode xID yID zID Refinement Level + 1
apex rootApex xID yID zID Refinement Level
node rootNode xID yID + 1 zID Refinement Level + 1

x2 edge

Pyramid 2 exists /
Pyramid 5 not exist

node rootNode xID + 1 yID zID Refinement Level + 1
apex rootApex xID yID zID Refinement Level
node rootNode xID + 1 yID + 1 zID Refinement Level + 1

Pyramid 2 not exist /
Pyramid 5 exits

node rootNode xID + 1 yID zID Refinement Level + 1
node rootNode xID + 1 yID + 1 zID Refinement Level + 1
apex rootApex xID yID zID Refinement Level

x3 edge

Pyramid 1 exists /
Pyramid 6 not exist

node rootNode xID yID zID + 1 Refinement Level + 1
apex rootApex xID yID zID Refinement Level
node rootNode xID yID + 1 zID + 1 Refinement Level

Pyramid 1 not exist /
Pyramid 6 exits

node rootNode xID yID zID + 1 Refinement Level + 1
node rootNode xID yID + 1 zID + 1 Refinement Level + 1
apex rootApex xID yID zID Refinement Level

x4 edge

Pyramid 2 exists /
Pyramid 6 not exist

node rootNode xID + 1 yID zID + 1 Refinement Level + 1
node rootNode xID + 1 yID + 1 zID + 1 Refinement Level + 1
apex rootApex xID yID zID Refinement Level

Pyramid 2 not exist /
Pyramid 6 exits

node rootNode xID + 1 yID zID + 1 Refinement Level + 1
apex rootApex xID yID zID Refinement Level
node rootNode xID + 1 yID + 1 zID + 1 Refinement Level + 1

114

Table E.1: Edge/Triangle Face Node Order

cell rootCell xID yID zID Refinement Level

y1 edge

Pyramid 1 exists /
Pyramid 3 not exist

node rootNode xID yID zID Refinement Level + 1
apex rootApex xID yID zID Refinement Level
node rootNode xID yID zID + 1 Refinement Level + 1

Pyramid 1 not exist /
Pyramid 3 exits

node rootNode xID yID zID Refinement Level + 1
node rootNode xID yID zID + 1 Refinement Level + 1
apex rootApex xID yID zID Refinement Level

y2 edge

Pyramid 1 exists /
Pyramid 4 not exist

node rootNode xID yID + 1 zID Refinement Level + 1
node rootNode xID yID + 1 zID + 1 Refinement Level + 1
apex rootApex xID yID zID Refinement Level

Pyramid 1 not exist /
Pyramid 4 exits

node rootNode xID yID + 1 zID Refinement Level + 1
apex rootApex xID yID zID Refinement Level
node rootNode xID yID + 1 zID + 1 Refinement Level + 1

y3 edge

Pyramid 2 exists /
Pyramid 3 not exist

node rootNode xID + 1 yID zID Refinement Level + 1
node rootNode xID + 1 yID zID + 1 Refinement Level + 1
apex rootApex xID yID zID Refinement Level

Pyramid 2 not exist /
Pyramid 3 exits

node rootNode xID + 1 yID zID Refinement Level + 1
apex rootApex xID yID zID Refinement Level
node rootNode xID + 1 yID zID + 1 Refinement Level + 1

y4 edge

Pyramid 2 exists /
Pyramid 4 not exist

node rootNode xID + 1 yID + 1 zID Refinement Level + 1
apex rootApex xID yID zID Refinement Level
node rootNode xID + 1 yID + 1 zID + 1 Refinement Level + 1

Pyramid 2 not exist /
Pyramid 4 exits

node rootNode xID + 1 yID + 1 zID Refinement Level + 1
node rootNode xID + 1 yID + 1 zID + 1 Refinement Level + 1
apex rootApex xID yID zID Refinement Level

115

Table E.1: Edge/Triangle Face Node Order

cell rootCell xID yID zID Refinement Level

z1 edge

Pyramid 3 exists /
Pyramid 5 not exist

node rootNode xID yID zID Refinement Level + 1
apex rootApex xID yID zID Refinement Level
node rootNode xID + 1 yID zID Refinement Level + 1

Pyramid 3 not exist /
Pyramid 5 exits

node rootNode xID yID zID Refinement Level + 1
node rootNode xID + 1 yID zID Refinement Level + 1
apex rootApex xID yID zID Refinement Level

z2 edge

Pyramid 4 exists /
Pyramid 5 not exist

node rootNode xID + 1 yID + 1 zID Refinement Level + 1
apex rootApex xID yID zID Refinement Level
node rootNode xID yID + 1 zID Refinement Level + 1

Pyramid 4 not exist /
Pyramid 5 exits

node rootNode xID + 1 yID + 1 zID Refinement Level + 1
node rootNode xID yID + 1 zID Refinement Level + 1
apex rootApex xID yID zID Refinement Level

z3 edge

Pyramid 3 exists /
Pyramid 6 not exist

node rootNode xID yID zID + 1 Refinement Level + 1
node rootNode xID + 1 yID zID + 1 Refinement Level + 1
apex rootApex xID yID zID Refinement Level

Pyramid 3 not exist /
Pyramid 6 exits

node rootNode xID yID zID + 1 Refinement Level + 1
apex rootApex xID yID zID Refinement Level
node rootNode xID + 1 yID zID + 1 Refinement Level + 1

z4 edge

Pyramid 4 exists /
Pyramid 6 not exist

node rootNode xID + 1 yID + 1 zID + 1 Refinement Level + 1
node rootNode xID yID + 1 zID + 1 Refinement Level + 1
apex rootApex xID yID zID Refinement Level

Pyramid 4 not exist /
Pyramid 6 exits

node rootNode xID + 1 yID + 1 zID + 1 Refinement Level + 1
apex rootApex xID yID zID Refinement Level
node rootNode xID yID + 1 zID + 1 Refinement Level + 1

116

Appendix F

COMMAND SWITCHES OF TETGEN

For the compilation of TetGen, the required files are

• tetgen.h : TetGen library header file

• tetgen.cxx : TetGen library source code written in C++

• predicates.cxx Geometric predicates source code written in C++

The program can be worked on stand-alone or can be embedded in another program.

If the program is used as a stand-alone program, command switches can be given to

the compiler via command line along with an input file. Command switches are used

for the controlling the tetrahedralization behavior and the output files. The command

line syntax for the TetGen is given as

tetgen [-pq__a__AriYMS__T__dzjo_fengGOJBNEFICQVvh] input_file

The underlined blankets are for the numbers which may introduced for some switches.

For the tetrahedral mesh generation in this study, the command used is “-pqaYzkffenni”

and “-pqaYzgkenni” in this study. The most important command switch is the -p

switch. This switch provides the reading of piecewise linear complex(PLC) in the

.smesh, then, starts the constraint Delaunay tetrahedralization (CDT).

With switch command -q responsible for quality mesh generation. TetGen guarantees

the shape and sizes which is suitable for finite volume methods. The definition of

shape and size given by TetGen is that all of the elements would have certain amount

of quality and the number of elements is minimum. The default of the program for

quality mesh is that minimum radius to edge ratio of tetrahedral element would be

117

2.0. If the ratio given is less than 1.0, TetGen may not terminate. TetGen suggests

1.414 for the radius to edge ratio for successful termination of the program. However,

for having smooth transition between the tetrahedral cells, 1.1 is used as the ratio.

-a is for the restriction of on the maximum volume which can a tetrahedral element

can have.

-Y is the command for suppression of the Steiner points on the boundary faces. This

command is used when it is desired not to change or split faces of the tetrahedral due

to fitting into another mesh like in this study. However, unless using -Y switch twice

(-YY), the interior Steiner points will be created. Also, when -q switch is used along

with -Y switch, the quality of the mesh may be poor.

-k command switch is used for creating a .vtk file for Paraview visualization.

-f and -n command switches are for the outputs of .faces and .neigh files.

Finally, -i command switch is used for shows the list of additional points.

118

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Mesh Generation
	Mesh Quality
	Mesh Types
	Structured mesh
	Unstructured mesh
	Hybrid Mesh
	Cartesian mesh

	Extended Mesh Terminology
	Body-Fitted Mesh
	Block-Structured Mesh

	Motivation
	Literature Review
	Aim and Organization of the Thesis
	Aim
	Organization

	BOUNDARY LAYER MESH GENERATION
	Boundary Layer Mesh Generation Process
	Surface Mesh
	Envelope Prismatic Layer
	Feature Extraction and Surface Node Classification
	Selective Smoothing of Growth Directions and Layer Height
	Local Untangling and Warp Reduction
	Global Collision Avoidance of Opposing Layers

	Customizations on Hybrid Mesh Generator

	CARTESIAN MESH GENERATION
	Octree Data Structure
	Cartesian Mesh Generator Module
	Surface Mesh Import
	Generation of Hexahedral Cells
	CUTCELL Marking
	Marking the in-Domain Cells
	Setting the Cell ID

	Connectivity of Hexahedral Cells
	Face Generation
	Face Marking
	INCELL-FACE Marking
	FARFIELD-FACE Marking
	PYRAMID-BASE-FACE Marking

	Node Generation
	Node Marking
	INCELL-NODE Marking
	PYRAMID-BASE-NODE Marking
	TRIANGLE-FACE-NODE Marking

	Node ID Setting

	Generation of Pyramid Volume Elements
	Pyramid ID Setting
	Pyramid Apex Generation
	Apex ID Setting

	Generation of PolyMesh Files for Cartesian and Pyramid Volume Elements
	Coordinates of the Nodes at the Points File
	face, owner and neighbor File
	INCELL-FACE faces
	FARFIELD-FACE faces
	PYRAMID-BASE-FACE faces
	Triangle Faces of Pyramids

	boundary File

	TETRAHEDRAL MESH GENERATION
	Tetrahedral Mesh Generator
	Delaunay Triangulation

	Implementation of the TetGen into Mesh Generation
	Exporting to Final Mesh

	RESULTS AND VALIDATION OF MESH GENERATOR
	Test Geometries
	Mesh Metrics
	Mesh Generation Results
	Test Case 1
	Test Case 2
	Test Case 3
	Mesh with Developed Mesh Generator
	Mesh with ANSYS Mesher

	Simulation Results
	Test Case 1
	Test Case 2
	Test Case 3

	CONCLUSION AND FUTURE WORK
	REFERENCES
	POLYMESH FILE FORMAT
	PolyMesh Properties
	points File
	faces File
	owners File
	neighbor File
	boundary File

	NODE FACE CONNECTIVITY FOR INCELL-FACES
	NODE FACE CONNECTIVITY FOR FARFIELD-FACES
	NODE FACE CONNECTIVITY FOR PYRAMID-BASE-FACES
	Cartesian Element Connectivity
	COMMAND SWITCHES OF TETGEN

