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ABSTRACT 

 

MULTI-YEAR TIME SERIES CROP MAPPING 

 

Teke, Mustafa 

Ph.D., Department of Information Systems 

Supervisor: Prof. Dr. Yasemin Yardımcı Çetin 

 

January 2020, 101 pages 

 

Recent automated crop mapping via supervised learning-based methods have 

demonstrated unprecedented improvement over classical techniques. However, most crop 

mapping studies are limited to same-year crop mapping in which the present year’s labeled 

data is used to predict the same year’s crop map. Classification accuracies of these 

methods degrade considerably in cross-year mapping. Cross-year crop mapping is more 

useful as it allows the prediction of the following years’ crop maps using previously 

labeled data. We propose Vector Dynamic Time Warping (VDTW), a novel multi-year 

classification approach based on the warping of angular distances between phenological 

vectors. The results prove that the proposed VDTW method is robust to temporal and 

spectral variations compensating for different farming practices, climate and atmospheric 

effects, and measurement errors between years. We also describe a method for 

determining the most discriminative time window that allows high classification 

accuracies with limited data. We carried out tests of our approach with Landsat 8 time-

series imagery from years 2013 to 2015 for classification of corn and cotton in the Harran 

Plain, and corn, cotton, and soybean in the Bismil Plain of Southeastern Turkey. In 

addition, VDTW was tested with corn and soybean in Kansas, the US for 2017 and 2018 

with the Harmonized Landsat Sentinel data. The VDTW method improved the cross-year 

overall accuracies by 3% with fewer training samples compared to other state-of-the-art 

approaches including spectral angle mapper (SAM), dynamic time warping (DTW), time-

weighted DTW (TWDTW), random forest (RF), support vector machines (SVM) and 

deep long short-term memory (LSTM). 

 

Keywords: time series, crop mapping, phenology, multi-year classification, dynamic 

programming 
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ÖZ 

 

ÇOKLU-YIL ZAMAN SERİSİ ÜRÜN HARİTALAMA 

 

 

Teke, Mustafa 

Doktora, Bilişim Sistemleri Bölümü 

Tez Yöneticisi: Prof. Dr. Yasemin Yardımcı Çetin 

 

Ocak 2020, 101 sayfa 

 

Son yıllarda geliştirilen öğreticili makine öğrenme yöntemleri klasik yöntemlere göre 

benzeri görülmemiş iyileştirme sağlamışlardır. Ancak, ürün sınıflandırma çalışmlarının 

çoğu aynı yıla ait verinin yine aynı yıla ait eğitim verisi kullanmaktadır. Bu yöntemlerin 

farklı yıllara ait eğitim verisi kullandığı durumlarda sınıflandırma sonuçları önemli ölçüde 

düşmektedir. Yıllar arası ürün eşlemesi, daha önce toplanmış verileri kullanarak sonraki 

yıllardaki ürün deseni haritalarını tahmin edilmesine izin verdiği için daha kullanışlıdır. 

Bu çalışmada, fenoloji vektörleri arasındaki açısal mesafeye göre bükme gerçekleştiren 

vektör dinamik zaman bükme algoritması geliştirilmiştir. Testler, önerilen VDTW 

yönteminin farklı tarım uygulamalarını, iklim ve atmosferik etkileri ve yıllar arasındaki 

ölçüm hatalarını telafi eden zamansal ve spektral değişimlere karşı gürbüz olduğunu 

göstermektedir. Ayrıca, sınırlı veri ile yüksek sınıflandırma doğruluklarına izin veren 

optimal zaman penceresini belirlemek için bir yöntem de geliştirilmiştir. Testlerde, 2013-

2015 yılları arasında Harran Ovası’nda pamuk ve mısır, Bismil Ovası’nda mısır, pamuk 

ve soya fasülyesi ürünlerini içeren zaman serisi Landsat 8 uydu görüntüleri kullanılmıştır. 

Bunun yanında, 2017 ve 2018 yıllarında ABD, Kansas'taki VDTW mısır ve soya 

fasulyesini Harmonize Landsat Sentinel (HLS) verileriyle testler gerçekleştirildi. VDTW 

yöntemi, spektral açı eşleştiricisi (SAM), dinamik zaman bükme (DTW), zaman ağırlıklı 

DTW (TWDTW), rastgele orman (RF), destek vektör makineleri (SVM) ve derin uzun 

kısa süreli bellek (LSTM) dahil olmak üzere diğer en başarılı yaklaşımlara kıyasla daha 

az veri kullanarak yıllar arası doğrulukları %3 iyileştirdi.  

 

Anahtar Sözcükler: zaman serisi, fenoloji, çoklu-yıl sınıflandırma, dinamik 

programlama 
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CHAPTER 1 

CHAPTER 

1. INTRODUCTION 

 

The world population has been increasing so that it is expected to be over nine billion 

in 2050(United Nations, 2015). Providing the necessary amount of food for the 

increasing human population is a significant concern. On the other hand, advanced 

agricultural technologies, such as precision agriculture and precision irrigation are 

rapidly emerging to optimize water, fertilizers, and pesticides, thereby enabling higher 

crop yield. Remote sensing is a critical technology that would enable us to observe the 

growth of field crops. Satellite imagery is a standard method to monitor large areas.  

Advanced applications, such as precision agriculture or crop yield estimation, require 

accurate crop mapping. Early-season crop yield estimates are a vital factor for food 

security. Crop maps are also required for statistical purposes to analyze annual changes 

in agricultural production. There are a variety of field crops with similar phenologies 

and spectral signatures or the same crop may have distinct growing periods due to 

climate differences in the same country. 

There are various organizations that focus on crop monitoring. Group on Earth 

Observation’s (GEO) Global Agriculture Monitoring (GEOGLAM), European 

Commission’s Monitoring Agricultural Resources (MARS) Crop yield forecasting 

system (MCYFS), USDA Foreign Agriculture Services (FAS), Chinese Cropwatch 

System are examples of global crop monitoring systems (Rembold & Maselli, 2006). 

Recently, Waldner, et al. (2016) developed a global cropland layer at 250m 

resolution(Waldner et al., 2016). Kotera, et al. presented a global cropland and water 

index map from time-series MODIS imagery (Kotera, Berberoglu, Nagano, & Cullu, 

2015). One of the most notable examples of crop mapping systems is CropScape. 

CropScape enables the USDA National Agricultural Statistics Services to map US data 

for statistical purposes in collaboration with George Mason University (Han, Yang, 

Di, & Mueller, 2012).  

European Commission allocates agricultural subsidies under Common Agricultural 

Policy to farmers and farming businesses. Land Parcel Identification System is the 

basis of the distribution of subsidies that amounted to around €41 billion in 2011 

(Jansen, Badea, Milenov, & Moise, 2014). Turkey also maintains an LPIS system: 
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Farmer Registration System (Turkish: Çiftçi Kayıt Sistemi, ÇKS). Yearly agricultural 

subventions up to $3 billion are distributed through declarations through ÇKS. Even a 

fractional improvement in the LPIS based subvention system could have very high 

returns.  

Turkey is an ecologically diverse country. Many types of crops are grown in different 

regions of the country. Some field crops usually have similar reflectance, while their 

phenology and physical structures cause differences in electro-optical systems. A 

major tool to differentiate among crops is the use of multi-temporal or time-series 

satellite imagery classification. Time-series satellite image classification involves 

extracting features defining the growth of the crops, e.g., maximum NDVI or time 

between sowing and harvest.  

The multi-year classification of crops is conducted in the Harran Plain, Şanlıurfa, 

Turkey. Corn and cotton are major crops of the Harran Plain (Çelik & Gülersoy, 2013). 

Corn is planted after the harvest of winter wheat. These crops have similar 

phenological periods.  

Crop mapping from satellite or aerial data by using remote sensing methods is an 

intensely studied area. In our past studies, we considered the use of multispectral, 

hyperspectral, and synthetic aperture radar (SAR) in crop classification. The 

increasing temporal resolution of earth observation satellites allows us to collect time-

series data: Landsat 8 has a 16-day temporal resolution. On the other hand, recently 

launched Sentinel-1(a/b) and Sentinel-2(a/b) satellites will have a 5-day temporal 

resolution. The availability of high temporal resolution satellite imagery has enabled 

researchers to develop advanced time-series satellite imagery classification 

applications.  

Field surveys are the most basic method of crop mapping. However, they are expensive 

and may not cover all fields (Esetlili et al., 2018). Furthermore, crop field surveying 

is prone to human errors (Şimşek, Fatih Fehmi ;Teke, Mustafa;Altuntaş, 2016). An 

effective multi-year crop mapping methodology is required to monitor the status of 

crops, verify and monitor subventions, forecast crops, ensure price stability, and obtain 

agricultural statistics. Remote sensing is a critical technology that would allow us the 

mapping of field crops by using aerial and satellite imagery from various sources and 

modalities. Crop mapping methods may use single, multi-temporal and time-series 

satellite imagery. These algorithms typically require field data collection for each year 

of interest. Hence, they are expensive. Cross-year crop mapping enables the use of 

previous field surveys for the present year, thereby reduces the effort needed to 

training sample collection. 

Governments need to forecast crop yields to feed their population. This task becomes 

a challenge for large countries by only using information declared by farmers. Also, 

governments and the food industry need to estimate foreign crop yields to plan 

international trade. In addition to crop yield estimates, governments support farmers 

depending on the type of crop they plant in the farmlands. 
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Remote sensing is the primary tool to classify large vegetation areas quickly and 

efficiently. However, the capability of discriminating vegetation types with 

multispectral imagery is limited.   

Phenology is described as the study of periodic plant and animal life cycle events and 

how these are influenced by seasonal and interannual variations in climate, as well as 

habitat. 

The common method to estimate the type of vegetation and crop yield is to use 

vegetation phenology computed from time series of remote sensing data. Vegetation 

phenology uses multispectral data and detects the existence of vegetation by checking 

the value NDVI and other vegetation indices. Vegetation planting, growing and 

harvesting times are predicted then results are compared with vegetation phenology 

information to classify the crop. However, phenological classification requires 

capturing data regularly to monitor the growth of the crop. Continuous acquisition of 

images of the same area may not be feasible: due to cloud cover or long revisit time 

intervals of the satellites. Also, there may a phenological shift of the same crop due to 

the effects of climate, soil, or date of planting. 

In this study, it is aimed to develop an efficient cross-year crop mapping algorithm 

that uses a limited number of training samples and resistant to annual measurement 

and growth variations. 

The main contribution of the study is the novel vector distance-based optimal time 

warping algorithm: VDTW. VDTW method overcomes difficulties in cross-year crop 

classification in which training and test data are selected from different years: spectral 

shifts due to changes in illumination at the observation moment and temporal shifts in 

growth due to yearly climate variations or farming practices. We simulated different 

cases of illumination and growth changes. Furthermore, we tested our methodology in 

a multi-year approach in two regions (the Bismil and the Harran Plain) with distinct 

cropping practices. The proposed approach requires a lesser number of training 

samples compared to other methods; thus, it reduces the costly collection of field data.  

In our second contribution, we focused on exploiting crop phenologies to use fewer 

and effective image acquisitions. A method that automatically determines the optimal 

time window in which crops have discriminative phenological features was developed. 

This optimal time windows selection algorithm allows mid-season crop classification 

enabling early accurate prediction of crop yields. In this way, the necessary 

precautions for transport, storage as well as price volatility could be taken. 

Chapter 1 of the study presents the introduction, the statement of the problem, the 

purpose of the study, the significance of the study, research questions, the assumptions, 

limitations, delimitations, the definitions of terms, and organization of the study. 

Chapter 2 is a review of recent literature. 

Chapter 3 provides information on data. 



4 

 

Chapter 4 presents the methodology that will be used in the study, including a 

description of the data collection procedures and validation of results. 

Chapter 5 is the results and findings of the developed method. 

Chapter 6 is a discussion of the conclusions of the study. 
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CHAPTER 2 

CHAPTER 

2. LITERATURE REVIEW AND BACKGROUND 

 

2.1. Analysis of the Literature 

We surveyed multi-temporal and time-series crop mapping literature with an emphasis 

on cross-year crop mapping. Land use/land cover (LULC) is an extensively studied 

research area (Gómez, White, & Wulder, 2016)(R. Congalton et al., 2014)(García-

Mora, Mas, & Hinkley, 2012). Moreover, crop mapping is a sub-research area of 

LULC. Multi-temporal and time-series electro-optical satellite imagery were used in 

the majority of the studies in crop mapping that we surveyed. Multi-temporal images, 

which are less frequently acquired than time-series imagery, were also commonly used 

in crop mapping studies. 

2.1.1. Phenological and Time Series Vegetation Classification 

Twenty-six periodic AVHRR data acquired in the year 1992 of western Great Plains, 

USA, is analyzed to classify wheat, milo, corn, fallow and grass by Jakubauskas et al. 

(Jakubauskas, Legates, & Kastens, 2002). NDVI time-series information is processed 

with Fourier analysis and amplitude, and phase values are obtained. Harmonics (first, 

second, etc.) are extracted from the signal. In the study, the stepwise discriminant 

analysis is used as a classifier. To measure the classification results of AVHRR data, 

labeled land use information of Landsat satellite imagery is downscaled to 1000 m 

resolution. They were able to acquire 52% classification accuracy.  

Twenty-meter resolution AVIRIS data were collected in May, June, and September 

between 1998 and 2002 from California to discriminate spectra of five different 

vegetation and impervious surfaces are considered in (Dennison & Roberts, 2003). 

Dennison and Roberts address the problem of selecting vegetation as training data at 

different seasons for classification and obtaining a unique spectral signature from 

multiple observations. To overcome this challenge, they developed end member 

average root mean square method (EAR) to select endmembers for multiple spectral 

mixture analysis; this method selects a spectral signature from multiple training 

samples that were acquired at different seasons. They found out that images with water 

surplus were modeled 8-16% better than images with water deficit. Modeled spectra 
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are tested for each year: classification accuracy varies between accuracies for soil 

water surplus images are between 59% and 90%, while classification accuracies for 

soil water deficit images are between 52% and 81%. 

Nidamanur and Zbell studied the classification of winter rape with HyMap 

hyperspectral imagery (Nidamanuri & Zbell, 2011). In this study, spectral signatures 

of crops (winter rape, winter barley, winter rye, alfalfa) which co-exist with winter 

rape at four distinct growing seasons. They also collected spectral data with in-situ 

measurements to develop spectral libraries. Spectral angle mapper (SAM) and spectral 

feature fitting (SFF) methods are used for classification. In their study, they found out 

that winter rape has a unique vegetation characteristic while other crops studied have 

common less distinct characteristics. They suggest that every vegetation type should 

be considered as different cases while characterizing their spectra.   

36 10-days MODIS images to classify forest into evergreen, deciduous, and shrubs 

(Yu, Zhuang, Chen, & Hou, 2004). In the study, Yui et al. applied the unsupervised 

classification to time series analysis of phenology data: the mean NDVI, first- and 

second-order amplitude and phase are used to produce unsupervised classification 

map. 

In (Wardlow, Egbert, & Kastens, 2007), 12-month time series 250m MODIS data for 

the state of Kansas are analyzed by using NDVI and EVI indices to find the type of 

crops at 2000 crop sites. Alfalfa, corn, sorghum, soybeans, and winter wheat spectra 

are analyzed. Wardlow et al. found out that vegetation indices of the crops consisted 

of each vegetation general multi-temporal signature.  However, there are some minor 

differences in the phenology of the crops in some regions, depending on climate and 

planting differences. They also found out that most vegetation NDVI and EVI 

responses were similar in the growing season, but they began to differ in the 

senescence phase of the crops. In (Wardlow et al., 2007), Wardlow and Egbert used 

MODIS data to classify alfalfa, corn, sorghum, soybeans, winter wheat, fallow in 

Kansas. They used decision trees as a classifier; all classification accuracies are higher 

than 84%.  
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Figure 1: Change of NDVI values through a year (Wardlow et al., 2007). 

 



8 

 

Figure 2: Effect of irrigation on NDVI values, irrigated crops have higher NDVI values(Wardlow et al., 

2007). 

 

Figure 3: Classification results for nine Agricultural Statistics Districts (ASDs) of the State of 

Kansas(Wardlow et al., 2007). 

In another study, 12 crop types in Germany using 35 Landsat TM/ETM images 

acquired between the years 1987 and 2002 were used imagery are classified by a 

spectral and temporal approach (S. Foerster, Kaden, Foerster, & Itzerott, 2012). In the 

study, Foerster et al. used a spectral and temporal approach to classify crop types by 

using a hierarchical classification method and compared its performance against 

maximum likelihood classifier. They also used meteorological information as weather 

conditions could accelerate or delay vegetation of crops. This classification is 

conducted by using NDVI values acquired at different seasons of the year. A 

hierarchical method is used to classify vegetation by first classify vegetation into 

coarse groups of summer, winter, and perennial grass/fallow land. In subgroups, a fine 

classification is applied by using phenological information: phenological information 

obtained by NDVI analysis is matched for classification. However, the study reaches 

a lower performance value of 65.7% while the Maximum Likelihood classifier has 

72.8% accuracy. The research suggests that timing and the number of image 

acquisitions are essential for vegetation classification using phenological information.  

12 Landsat scenes from Landsat-5 and Landsat-7, which were acquired at different 

dates from 2002 to 2004, are analyzed to classify crops (Soybeans, Corn, Sugarcane, 

Pasture, and Riparian forest) in (Leite et al., 2011). Leite et al. deployed Hidden 

Markov Models (HMM), where the growth stages are states. Properties of vegetation 

are modeled as state transition parameters of the HMM model. Images are segmented 

before classification and are used for training and test areas. Classification using HMM 

was able to reach 85% average accuracy. Phenological stage (Prepared Soil, Growth 
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phase, Adult phase, Post-Harvesting) average accuracy is found to be 81%, and growth 

phase accuracy is determined as 55%.  

Common reeds and submerged macrophytes which are wetlands vegetation are 

classified by using SPOT-5 time series data which was acquired at different times of 

the year between 2005 and 2006 in (Davranche, Lefebvre, & Poulin, 2010) by 

Davranche et al. In the study, they used near-infrared band between March and June, 

the Optimized Soil Adjusted Vegetation Index in December, and the Normalized 

Difference Water Index (NDWI) in September for common reeds. Submerged 

macrophyte was classified with the shortwave-infrared band in December, the NDWI 

of September, the red band in September, and the Simple Ratio index in March. These 

vegetation indices and band values are used in classification trees. The accuracy of the 

classification is of 98.6% in 2005 and 98.1% in 2006 for common reed, and 86.7% in 

2005 and 85.9% in 2006 for submerged macrophytes. They note that with a small 

training size (N=25), classification trees are potent tools to discriminate vegetation 

types.  

Another application of analyzing time-series data is to estimate vegetation area of 

winter wheat by using the MODIS Enhanced vegetation index (Y. Pan et al., 2012). In 

this study, data belongs to two representative regions in China: one around Tongzhou, 

Beijing (TZ), and the other located around Shuyang, Jiangsu (SY). MODIS data are 

16-day composite EVI products from September 2006 to June 2007 (for TZ) and 

September 2008 to June 2009 (for SY). In the study, Pan et al. developed a Crop 

Proportion Phenology Index (CPPI) which expresses time-series MODIS Enhanced 

Vegetation Index (EVI) data and area of winter wheat in China. Crop areas which are 

needed to determine winter wheat areas for constructing test data are collected by using 

high-resolution multispectral sensors (Landsat and SPOT) as MODIS has a very low 

resolution. EVI is less susceptible to biases from haze and clouds; however, EVI time-

series information is further filtered by a Savitzky–Golay filter to reduce the effects of 

cloud cover and other sources of noise. CPPI is computed from phenological state 

change points. Calculate accuracies for two different sites are 90.5% and 93.8%. The 

study concludes that the value of EVI and the area of winter wheat are correlated. The 

authors conclude CPPI could be applied to further crop types by using a limited 

number of training samples.  

2.1.2. Time Series Crop Classification 

Maus et al. proposed time-weighted dynamic time warping (TWDTW), which is an 

improvement over DTW by incorporating time difference between samples as an 

additional cost (Maus et al., 2016). TWDTW method has two different time costs: 

linear and logistic function-based. TWDTW method improved the cross-year 

classification performance compared to the DTW method. In another study, pixel-

based and object-based TWDTW methods were compared with Random Forest (RF) 

with Sentinel-2 time series data. Object-based TWDTW acquired comparable results 

to the RF method (Belgiu & Csillik, 2018). 



10 

 

Zhong et al. used Landsat TM and ETM+ images of 2006-2010 to classify maize and 

soybean in central USA (Zhong, Gong, & Biging, 2014). They developed a phenology-

based multi-year classifier. In addition to phenology, spectral features are used. Images 

are first segmented into individual fields. Spectral features are computed from the 

mean value of segments. Spectral, phenological, Pheno-spectral, Pheno-index, and 

Accu-heat (Accumulated Heat is used). Phenology of crops is extracted from EVI. 

Pheno-spectral variables are spectral values at specific phenological transition dates. 

Pheno-indices are NDSVI (normalized differential senescent vegetation index 

(SWIR1, Red)) and NDTI (normalized difference tillage Index (SWIR1, SWIR2)) at 

phenological transition dates (Dates where phenological transitions occur: growing 

starts or holds, etc). Values at transition dates are interpolated by using curve fitting 

functions. Accumulated heat is a new variable introduced by the study. Accumulated 

heat is cumulative of heat values obtained at five different growing periods. Selected 

feature groups are used in random forest classifier. Classification performed over the 

same year and cross-year data. Several combinations of input variables are compared 

in the tests. Phenology based classification shows comparable performance to other 

methods that use combined features.  

 

Figure 4: Same Year and Cross Year Accuracies (Zhong et al., 2014) 

Geo-parcel based identification of crops using the fusion of high-resolution imagery 

and time series medium resolution imagery was proposed in (Y. Yang et al., 2017). 

Parcel boundaries were detected by using high-resolution GF-2 (0.8m) imagery. Time 

series medium resolution GF-1(16m) and Landsat 8 data were used EVI phenological 
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feature extraction. Phenological metrics extracted from EVI phenology and geo-parcel 

information were used as features to Random Forest classifier to obtain 93.72% overall 

accuracy.  

Massey et al. developed a decision tree based crop classification for commonly grown 

crops in the continental USA with 250m resolution MODIS time-series satellite 

imagery(Massey et al., 2017). The study was conducted in 12 separate agricultural 

economic zones (AEZs). Corn-soybean, wheat-barley, potato, alfalfa, cotton, and rice 

were classified; corn was merged with soybean and wheat was merged with barley. 

Overall accuracies were higher than 78% for 2001-2014 years.  

Thenkabail et al. used spectral matching techniques to AVHRR (Advanced Very High-

Resolution Radiometer) time series data for determination of LULC and irrigated area 

classification (Thenkabail, GangadharaRao, Biggs, Krishna, & Turral, 2007).  

Mingwei et al. used the Fourier transform of time series NDVI to classify double 

cropping in Northern China with MODIS images (Mingwei et al., 2008). Wheat, 

Wheat-Maize, Maize, and Cotton are classified. FFT is used for feature extraction from 

1st, 2nd, and 3rd harmonics from 8-day MODIS composite images. R2 scores for cotton 

and maize are 0.84 and 0.72, respectively. While the use of FFT produces positively 

correlated results, the FFT method requires full data to operate, which could be 

possible for high-temporal resolution satellites such as MODIS.  

Time series classification of tobacco fields with CBERS 02B and Landsat TM images 

are studied in (Peng, Deng, Cui, Ming, & Shen, 2009). SAM and Maximum Likelihood 

Classifier are compared while time series classification with SAM produced higher 

classification accuracy: 83.4%.  

Time Series RapidEye images are used to classify crops (cotton, rice, corn, winter 

wheat, alfalfa, and melons) in Mid-Asia (F Löw, Michel, Dech, & Conrad, 2013). 

Seven images were acquired monthly, and a different number of features were used 

with the SVM classifier. The use of at least three images was able to produce 85% or 

higher classification accuracies.  

Son et al. developed a phenology-based time series classification method using 

MODIS EVI for rice classification in Vietnam (Son, Chen, Chen, Duc, & Chang, 

2013). MODIS images between December 2000 and December 2012 are used in this 

study. Empirical Mode Decomposition method is used to extract time-series features. 

Single, double, and triple cropped areas with/without irrigation were classified using 

this approach. Accuracies were 81.4% for 2002, 80.6% for 2006 and 85.5% for 2012. 

Xue et al. used MODIS time-series imagery for LULC (forests, grasslands, water, etc.) 

classification (Xue, Du, & Feng, 2014). Phenological features were represented with 

the BFAST method. TIMESAT is used phenological feature extraction, DTW is used 

for feature selection (remote outliers and select the finest samples), and finally, 

ensemble and SVM methods are used for classification to obtain 96.44% overall 

accuracy.  
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TIMESPEC – A Software Tool for Analyzing Time-Series of Spectral Data is 

introduced in (M. Foerster, Welle, Schmidt, Nieland, & Kleinschmit, 2014). 

TIMESPEC provides a toolkit for analysis of time-series satellite data. This study also 

summarizes toolkits, which could be used in time series satellite data analysis such as 

TIMESAT.  

Another attempt for time series data processing is SPIRITS (Software for the 

Processing and Interpretation of Remotely Sensed Image Time Series) software, which 

was supported by the EU and developed by VITO (Eerens et al., 2014). 

Integration of low-resolution time-series MODIS data with higher resolution Landsat 

TM was used in (Li, Cao, Jia, Zhang, & Dong, 2014). Phenological features were 

extracted from MODIS images, while ML classifier is used with Landsat data to 

increase classification accuracy from 92.38% (with Landsat only) to 94.67% 

(MODIS+Landsat).  

Sakamato et al. studied time series corn yield with MODIS data in the U.S. (Sakamoto, 

Gitelson, & Arkebauer, 2014). Wide Dynamic Ranged Vegetation Index (WDRVI) is 

used with Shape Model Fitting (SMF) for phenological feature extraction. SMF 

algorithm is used to detect corn crop for further yield estimation analysis.  

Hao et al. compared hybrid classifiers with time-series NDVI for crop classification in 

North Xinjiang, China (Hao, Wang, & Niu, 2015). Multiple voting (M-voting) and 

probabilistic fusion (Pfusion) are the hybrid strategies that were used with Landsat 5 

and HJ-1 NDVI data. Random Forest (RF), Support Vector Machine (SVM), and See 

5 (C 5.0) are used as single classifiers. Cotton, grape, winter wheat, watermelon, 

maize, wheat-maize are classified. Hybrid strategies produced higher classification 

rates with low sample size; however, a high number of samples classification results 

were similar. Also, OBIA (object-based image analysis) did not improve numerical 

results while obtaining a better visual classification.   

Spectro-temporal profiles were utilized with NDVI, EVI, and WDRVI using MODIS 

imagery to discriminate corn and soybean in Brazil (de Souza, Mercante, Johann, 

Lamparelli, & Uribe-Opazo, 2015a). Spatiotemporal profiles obtained from EVI and 

WDRVI performed better than using SAM classifier with 80% accuracy. Corn and 

soybean have similar phenologies, which make discrimination of these crops difficult. 

Landsat-RICE system was developed to identify paddy rice fields by using Landsat 

imagery in China (Dong et al., 2015). Time series Landsat imagery between 1986 and 

2010 is used with developed phenology-based algorithms, which exploit unique 

characteristics of ice to obtain 84-95% accuracy at separate time windows. The 

algorithms use rules at certain phenological states.  

Pan et al. discussed crop mapping capabilities of China’s HJ-1A/B satellites (Z. Pan 

et al., 2015). In their study, phenological feature extraction, data preprocessing, and 

data smoothing were applied.  
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Pena and Brenning used eight Landsat 8 imagery for fruit classification in Chile (M. 

A. Pena & Brenning, 2015). Time series of NDVI, NDWI, and full band (band values) 

information is used as features with LDA, RF and SVM classifiers. LDA with full 

band time-series performed best, while NDVI performed worst with all classifiers 

considered.  

Tatsumi et al. studied the classification of time series Landsat 7 ETM+ images in Peru 

(Tatsumi, Yamashiki, Torres, & Taipe, 2015). Alfalfa, asparagus, avocado, cotton, 

grape, maize, mango, and tomato were classified with the RF classifier resulting in 

81% overall accuracy.  

Yan and Roy developed improved the Laplacian Eigenmaps (LE) nonlinear DR 

algorithms to overcome missing data in time series crop classification: LE-SAM and 

LE-SAM-R (Yan & Roy, 2015). Tests were conducted with Landsat WELD data of 3 

distinct regions (Texas (cotton, corn, wheat), Kansas (alfalfa, sorghum, wheat, corn), 

and South Dakota (hay, sorghum, sunflower, winter wheat, spring wheat)) for various 

crops. The dimension of time series data is reduced to five dimensions. The 

classification was performed with the Random Forest classifier. While LE-SAM-R 

increases classification accuracy, results vary for the same crop in different regions: 

Texas (87.8%), Kansas (78.3%), and South Dakota (77.7%).  

Zheng et al. used 24 time-series Landsat 5 TM and 7 ETM+ of 2010 for classification 

of crops in Phoenix, AZ, U.S. (Zheng, Myint, Thenkabail, & Aggarwal, 2015). The 

SVM method was selected as the classifier with random and intelligent sample 

selection. Six single crops (alfalfa, cotton, corn, wheat, barley, and potatoes) and three 

double crops (barley-cotton, wheat-sorghum, and wheat-cotton) are classified. Overall 

accuracy was 86%, while wheat and barley are mixed.  

16-day MODIS time-series data of 2001 was used for land use classification(urban, 

forest, agriculture) by using a various number of samples in the USA (Shao & Lunetta, 

2012). EVI and band-7 (SWIR) are selected as input features of 23 MODIS images 

SVM classifier was able to provide higher classification results compared to NN and 

CART with a lower number of training samples at 91%.  

2.1.3. Time Series Fusion and SAR 

A study conducted in the Lombardy region, Italy, demonstrated the use of multi-

temporal SAR and EO images in corn, rice and wheat classification (Fontanelli et al., 

2014).  13 Landsat 8 and 15 Cosmo-SkyMed X-band images of May-December 2013 

were used in the study. Time series data stacked together. MLC, EMD and SAM 

methods are applied to time series of optical, SAR and optical-SAR data. MLC applied 

to optical-SAR data produced the best results at 94%.   

Jiao et al. studied object-oriented mapping of wheat, oat, soybean, and canola and 

forage using 19 time-series RADARSAT-2 data of 2011 and 2012 in Ontario, Canada 

(Jiao et al., 2014). Multi-temporal decompositions in a hierarchical, object-oriented 

classification were able to obtain 95% classification accuracy.  
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Multi-temporal TerraSAR-X and RADARSAT-2 images were used for early season 

crop classification in Canada (McNairn, Kross, Lapen, Caves, & Shang, 2014). 

Accuracies above 90% were able to be obtained with decision tree classifier for corn 

at the end of the growing season. However, more images were required for soybean 

classification.   

Guarini et al. compared 11 HH and 10 VH polarization time series CosmoSky-Med 

images of 2014 in Austria to classify carrot, corn, potato, soybean, sugar beet (Guarini, 

Bruzzone, Santoni, & Dini, 2015). SVM machine classifier is used as a classifier, 

which resulted in higher accuracy with HH, polarized SAR images: 84.50% vs. 

81.63%.  

Optical and SAR Time Series images are fused for efficient crop identification (Blaes, 

Vanhalle, & Defourny, 2005).  15 ERS and RADARSAT and 3 optical images (SPOT 

& Landsat ETM+) of 2000 in Belgium are used. Grass, wheat, maize, sugar beet, 

barley, and potato are classified. Hierarchical classification with a fusion of temporal 

SAR and EO images increased classification performance, a minimum of 5% up to 

89%. The hierarchical classification scheme is based on Farmer’s declarations in 

which suspicious declarations are processed by using spectral signatures in the first 

step. In the second step, MLC is used.  The computer-assisted photo interpretation 

(CAPI) and in-situ field visits performed for suspected fields.  

Multi-temporal and multi-sensor classification of crops (forage, soybean, corn, and 

cereal) was proposed by (Shang, McNairn, Champagne, & Jiao, 2008). Classification 

of crops in Canada is performed with single Landsat TM optical or SAR images. Use 

of at least one electro-optical and SAR images increased classification rates while 

further use of multi-temporal imagery let the classification results to be 85% minimum.  

Özdarıcı Ok and Akyürek developed a method for segment-based classification of 

multitemporal Electro-optic and SAR images in Karacabey, Bursa, Turkey (Ok & 

Akyurek, 2012). Three Kompsat-2 and three ENVISAT ASAR images acquired in 

June, July, and August in 2008. Crops that are classified are corn, grass, rice, sugar 

beet, tomato, wheat. Segment based approach produces higher accuracies about 10% 

compared to pixel-based approach: 79.18% vs. 88.71%. 

Sentinel-1 imagery with phenological sequence patterns was developed for grasslands, 

maize, canola, sugar beets, and potatoes mapping in Germany (Bargiel, 2017). PSP 

approach outperformed Random Forest and Maximum Likelihood methods.  

Veloso et al. combined time-series Sentinel-1 and Sentinel-2 data to generate crop 

maps of wheat, rapeseed, maize, soybean, and sunflower in southwest France (Veloso 

et al., 2017). Their most significant finding was that the use of VH/VV ratio could be 

used for the analysis of biophysical parameters.  

2.1.4. Multi-temporal Crop Classification 



15 

 

Lucas et al. used eCognition Expert software to classify multi-temporal Landsat ETM+ 

images of 2001-2002 for land use/land classification (grassland, tree types, soil, water 

bodies etc.) (Lucas, Rowlands, Brown, Keyworth, & Bunting, 2007). Four Landsat 

images were obtained in March, April, July, and September. Rule-based classification 

is performed in four stages. Average accuracy using rule-based classification with 

multi-temporal images was 80%.  

George Mason University developed the CropScape system for USDA NASS (Han et 

al., 2012). Rule-based classification for each region and year from multi-temporal 

Landsat and other satellites are used. Rules are manually developed for each region 

using RuleQuest and applied by ERDAS Imagine software.  

Hemissi et al. conducted a temporal-spectral-spatial classification of Hyperion images 

(four 2003, three 2009, two 2010) in Tunisia (Hemissi, Farah, Saheb Ettabaa, & 

Solaiman, 2013). Classes that are considered in this study are carex, henne, bare soil, 

water, and palm. Multi-temporal spectral data is constructed as a 3D feature space for 

spectral signatures. An adopted SOM method is used for classification, which resulted 

in 89.46% accuracy.  

An object-oriented multi-temporal crop classification methods for four Landsat 7 

ETM+ SLC-off images of 2012 in Montana, the USA with random forest classifier 

(Long, Lawrence, Greenwood, Marshall, & Miller, 2013). Multi-temporal data is used 

to classify cereal, pulse, and other classes. The object-based classification approach 

produced higher classification accuracies than pixel-based methods with 85.5% 

accuracy.         

Conrad et al. investigated the optimum number of imagery acquisitions using 

RapidEye imagery in Uzbekistan (Conrad et al., 2014). Crops, which are classified in 

this study, are cotton, wheat, rice, maize, alfalfa, sunflower, watermelon. Nine 

RapidEye images were acquired in 2009.  Mean, and standard deviation of five bands 

with NDVI and EVI values of all nine images were used as features. In their study, the 

optimal number of images required for optimal classification is found to be at least 

five. The overall accuracy of the Random Forest classifier is 85.7%.         

Pena et al. used bi-temporal ASTER images of 2006 in California, the USA, to detect 

summer crops with machine learning methods (J. M. Pena et al., 2014).  The C4.5 

decision tree, logistic regression (LR), support vector machine (SVM) and multilayer 

perceptron (MLP) neural network methods were evaluated as single-level and two-

level classifiers: while SVM + SVM classifier performed higher than other classifiers 

at 89% accuracy.      

Çelik et al. used SPOT 6 images of the Harran region from multi-temporal June, July, 

and September of for corn and cotton crop classification(Celik, Sertel, & Ustundag, 

2015). NDVI obtained from multi-temporal images used object-based classification to 

reach 94% classification accuracy.  
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CROPCLASS system is a semi-automatic crop classification system, which uses 

census parcels (Garcia-Torres, Caballero-Novella, Gomez-Candon, & Pena, 2015). 

Decision trees are used with seven multi-temporal GeoEye imagery between April-

October 2010 in Spain. Crops that were considered in the study are broad beans, 

chickpeas, citrus orchards, cotton, corn, Mediterranean forest, oat, olive orchards, 

poplars grove, potatoes, sunflower, and winter wheat. CROPCLASS system was able 

to classify crops at 80.7% accuracy.  

Löw et al. developed a decision fusion system to classify multi-temporal RapidEye 

imagery for crop classification of alfalfa, cotton, fruit trees, rice, wheat, melon (Fabian 

Löw, Conrad, & Michel, 2015). The decision fusion approach used decision tree (DT), 

random forest (RF), support vector machine (SVM), and multilayer perceptron (MLP) 

classifiers to increase accuracy by 6%. Final accuracies changes between 64% and 

74% at various sites. The authors claimed that their methodology is applicable to other 

satellite imagery such as Sentinel-2 and could be used with images acquired at 

different years. 

2.1.5. Temporal Windows for Phenological Changes 

Van Niel and McVicar studied the determination of optimal temporal windows for the 

detection of rice, maize, sorghum, and soybeans by using 17 Landsat 7 ETM images. 

An iterative multi-temporal classification approach has been developed. The use of 

multiple images at different temporal windows for each crop increased classification 

accuracy up to 95.8% compared to 89.4% of single date imagery (Niel & McVicar, 

2004). 

Wavelet-based filter for determining Crop Phenology (WFCP) for rice paddy fields as 

proposed by (Sakamoto et al., 2005). EVI time series are obtained from MODIS 

images. Data is smoothed before being processed. The Coiflet 4 wavelets were found 

to be better in predicting phenological date then Fourier transform and other wavelet 

transforms (Daubechies and Symlet) 

2.1.6. Spectral Angle Mapper (SAM) 

Knight et al. applied the SAM method for LULC classification with MODIS NDVI 

time series data (Knight, Lunetta, Ediriwickrema, & Khorram, 2006). Major LULC 

classes are Agriculture, Urban, Water, Deciduous Trees, and Coniferous Trees. 

Accuracies were between 50-80% with varying ratios of training pixels.  

Rembold and Maselli used the SAM method to determine inter-annual crop area 

variation (Rembold & Maselli, 2006). Winter wheat areas are estimated from time-

series NDVI of NOAA-AVHRR images at different years. Time series data is 

collected in 10-day periods. Data is shifted 1-2 10-day periods. Summer crops, winter 

crops, forests,   

Yang et al. used the SAM method for classification of crop areas using a single SPOT-

5 image (C. Yang, Everitt, & Murden, 2011). However, ML and SVM methods 
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performed better than SAM for crop classification did. Single date imagery could be 

effective if the imagery is acquired at a date where the discrimination is higher. 

SAM is combined with ML classifier in (Yonezawa, 2007) for LULC classification. 

Feature extraction is performed using SAM scores in 3x3 window: Total SAM score 

of each pixel’s neighboring is computed by using spectral bands.  ML-SAM method 

is applied to QuickBird images.  

2.1.7. Dynamic Time Warping (DTW) 

Petitjean and Weber used Dynamic Time Warping for land cover classification with 

46 time-series FORMOSAT-2 images of 2006 (Petitjean & Weber, 2014). Time-series 

data were segmented into spatio-temporal regions for optimal classification 

performance.  

2.1.8. Error Metrics 

Niet at al studied the required number of samples (n) for given (p) band images in the 

case of multi-temporal images(Van Niel, McVicar, & Datt, 2005). It is determined 2-

4p samples are enough to obtain similar performance of 30p samples using ML 

classification of 17 Landsat ETM+ images.  

2.1.9. Data Smoothing 

Arvor et al. compared smoothing algorithms for time-series MODIS-EVI data for 

classification(Arvor, Jonathan, Meirelles, Dubreuil, & Lecerf, 2008). Savitzky-Golay 

filtering led to higher classification results to other smoothing methods such as 

Weighted Least Squares (WLS).  

Kim et al. compared the effect of Savitzky-Golay filtering in LULC classification of 

MODIS data in South Korea (Kim et al., 2014). It was concluded that the use of EVI 

with SG filtering produced the highest results.  

2.1.10. Studies Regarding South Eastern Anatolia Region of Turkey 

Aydoğdu et al. studied the aggregation between crop classification and ÇKS records 

using Landsat image classification results(Aydoğdu, Akçar, & Çullu, 2005).  The 

aggregation between ÇKS and classification results were 85-92%.  

Algancı et al. conducted a study in Şanlıurfa for land use classification using SPOT 6 

imagery(U Alganci, Sertel, Kaya, & BerkUstundag, 2013). The object-based 

classification method produced up to 90% classification results for barley, lentil, and 

wheat.  

Algancı et al. studied multi-resolution pixel and object-based classification methods 

for corn and cotton (Ugur Alganci, Sertel, Ozdogan, & Ormeci, 2013). eCognition 

software is used for segmentation and segment-based feature extraction. OBC, SVM, 

ML, and SAM methods are compared. OBC produced the highest accuracy, while 

SVM results are acceptable; on the other hand, ML and SAM results are worst.  
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Çelik and Gülersoy studied the development of irrigated areas in Harran Plain. They 

analyzed crop fields with Landsat imagery between 1984 and 2011(Çelik & Gülersoy, 

2013). 

2.1.11. Ground Truth Error 

Carlotto studied the effect of erroneous training data in remote sensing(Carlotto, 

2009). The actual performance of classifiers is observed by increasing the number of 

samples in the case of erroneous ground truth data.  Foody studied the effect of 

mislabeled training data with the SVM classifier (Foody, 2015). SVM classification 

accuracy was decreased by 8% when training data with 20% mislabel was given. On 

the other hand, discriminant analysis was affected by 3.11% by the same amount of 

mislabeled data. Recent work made a detailed analysis of class label noise by using 

time series data (Pelletier et al., 2017). RF, SVM-RBF and SVM-Linear classifiers 

were compared with synthetic and real datasets. The RF classifier is found to be more 

robust to low class label noise.  

2.1.12. Deep Learning 

DL has gained popularity in recent years due to its applications in numerous areas 

(Lecun, Bengio, & Hinton, 2015). Deep convolutional neural networks and recurrent 

neural nets were applied for crop mapping (Kamilaris & Prenafeta-Boldú, 2018; 

Liakos, Busato, Moshou, Pearson, & Bochtis, 2018). DL methods achieved higher 

classification accuracies compared to other classification methods such as SVM and 

RF (Kussul, Lavreniuk, Skakun, & Shelestov, 2017). However, DL requires a vast 

amount of training data and an extensive amount of computing power. The crop-

mapping studies that used DL, mentioned above, were tested with only same-year data, 

while the majority of the data were used in training. 
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2.2. Phenology Feature Extraction 

In this section, vegetation indices that are used to extract phenological features are 

presented. Their formulas are given in the form of band names. Vegetation indices 

have values in the range of [−1, 1].  

2.2.1. Normalized Difference Vegetation Index (NDVI) 

NDVI is the most used vegetation index. Chlorophyll pigments in leaves absorb visible 

light while the cell structure of the leaf reflects the majority of the light in near-infrared 

(NIR) wavelengths. NDVI is formulated as: 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 (1) 

 

Healthy photosynthetically active vegetation generally has higher NDVI values. 

Vegetation has NDVI values of greater than 0.3.  

2.2.2. Enhanced Vegetation Index (EVI) 

EVI index is an optimized index for detecting vegetation biomass without affecting 

canopy (vegetation structure) background noise and atmospheric effects. 

The Enhanced Vegetation Index is an improved vegetation index that compensates 

canopy cover and atmospheric effects. C1 and C2 are atmospheric terms for red and 

blue bands, while L is the canopy background adjustment factor (A. Huete et al., 2002).  

𝐸𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝐶1 × 𝑅𝑒𝑑 − 𝐶2 × 𝐵𝑙𝑢𝑒 + 𝐿
 (2) 

L is canopy background adjustment; C1 and C2 are aerosol resistance coefficients. 

EVI reduces saturation, atmospheric noise, and background noise.   C1 = 7.5, C2 = 6 

and L = 1 are used for Landsat 8(Landsat 8 Surface Reflectance Product Guide v1.2, 

2015). While NDVI is chlorophyll sensitive, EVI is more sensitive to vegetation 

canopy changes.  

2.2.3. Soil Adjusted Vegetation Index (SAVI) 

Soil adjusted vegetation index (SAVI) incorporates soil brightness correction factor (L) 

defined as 0.5 to accommodate most land cover types (Qi, Chehbouni, Huete, Kerr, & 

Sorooshian, 1994). L = 0.5 is selected for Landsat 8 (U.S. Geological Survey, 2017). 

 

𝑆𝐴𝑉𝐼 = (1 + 𝐿) ∗
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑 + 𝐿
 (3) 

 



20 

 

2.2.4. Optimized Soil Adjusted Vegetation Index (SAVI) 

Optimized Soil adjusted vegetation index (OSAVI) estimates soil line by using 

simulations and experiments (Rondeaux, Steven, & Baret, 1996). Values of soil 

variability X was determined experimentally as 0.16. 

𝑂𝑆𝐴𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑 + 𝑋
 (4) 

2.2.5. Modified Soil Adjusted Vegetation Index (MSAVI) 

Modified Soil Adjusted Vegetation Index replaces L in SAVI with an inductive 

function(Qi et al., 1994). Instead of computing the soil line experimentally, MSAVI 

computes L value from NIR and Red bands. Soil adjusted vegetation indices aim to 

improve the insensitivity of NDVI to canopy cover changes with the addition of soil 

line parameters. In this text, MSAVI refers to the second version of MSAVI: MSAVI2.  

𝑀𝑆𝐴𝑉𝐼 =
(2 ×  𝑁𝐼𝑅  +  1 – √(2 ×  𝑁𝐼𝑅 +  1)2 –  8 × (𝑁𝐼𝑅 −  𝑅𝑒𝑑) )

2
 (5) 

2.2.6. Enhanced Normalized Difference Vegetation Index (ENDVI) 

Healthy vegetation reflects NIR and green spectra, mostly because of photosynthesis.   

𝐸𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛 − 2 × 𝐵𝑙𝑢𝑒

𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛 + 2 × 𝐵𝑙𝑢𝑒
 (6) 

2.2.7. Green Normalized Difference Vegetation Index (GNDVI) 

GNDVI replaces NIR band with Red compared to NDVI (Motohka, Nasahara, Oguma, 

& Tsuchida, 2010). Healthy vegetation reflects green spectra the most in the visible 

range. GNDVI is also useful in RGB imagers where NIR band is not available.  

𝐺𝑁𝐷𝑉𝐼 =  
𝐺𝑟𝑒𝑒𝑛 − 𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛 + 𝑅𝑒𝑑
 (7) 

2.2.8. Wide Dynamic Range Vegetation Index (WDRVI)  

Wide dynamic range vegetation index was developed to remove the weakness of 

NDVI when crops reach maturity and excessing LAI values over two NDVI saturates 

(Gitelson, 2004). WDRVI achieves a more sensitive crop canopy measurement by 

modifying NIR values. WDRVI is more sensitive to changes to canopy cover, which 

is useful in precision agriculture applications. WDRVI is defined in equation (8): 

𝑊𝐷𝑅𝑉𝐼 =  
𝛼 × 𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑎 × 𝑁𝐼𝑅 + 𝑅𝑒𝑑
 (8) 

Where optimal values of 𝑎 were measured as between 0.1-0.2  
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2.3. Summary 

A majority of the studies on multi-temporal or time-series satellite imagery crop 

classification did not take time into account as a feature and focused on mapping crops 

using same-year data for both training and validation. However, multi-year analysis 

enables earlier classification of crops based on previous years’ data. Only a limited 

number of studies conducted multi-year comparisons such as Zhong et al. used Landsat 

TM and ETM+ images of 2006-2010 to classify maize and soybean in central USA 

(Zhong et al., 2014).  These studies presented classification accuracies where cross-

year results were considerably lower compared to same-year results, and they required 

a substantial amount of training samples. Even if cross-year crop mapping eliminated 

the necessity of yearly training sample collection, these studies still needed 

considerable training data. Again, most studies did not incorporate annual temporal 

variations in their studies; one notable exception is the work of (Maus et al., 2016). RF 

and SVM were the most used classifiers in crop mapping.  

Furthermore, deep learning (DL) methods were considered for cross-year crop 

mapping. DL has gained popularity in recent years due to its applications in numerous 

areas (Lecun et al., 2015). Deep convolutional neural networks and recurrent neural 

nets were applied for crop mapping (Kamilaris & Prenafeta-Boldú, 2018; Liakos et al., 

2018). DL methods achieved higher classification accuracies compared to other 

classification methods such as SVM and RF (Kussul et al., 2017). However, DL 

requires a vast amount of training data and an extensive amount of computing power.  
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CHAPTER 3 

 

3. DATA 

 

3.1. Study Areas 

In this study, the VDTW method in three different regions: The Harran Plain and The 

Bismil Plain in Turkey and Kansas, USA. The Harran and The Bismil Plain are located 

in the South East of Turkey. The locations of the Harran Plain (blue) and the Bismil 

Plain are shown in Figure 5.  The region has a Mediterranean climate with about 400-

450mm yearly rainfall, according to the General Directorate of Meteorology of 

Turkey. 

In this study, two separate areas are selected in Southern Anatolia Region of Turkey: 

The Harran Plain and The Bismil Plain  

Bismil County is around the Tigris River. Wheat, corn, and cotton are grown in both 

regions. In addition to these crops, Soybean is grown after winter wheat in the Bismil 

Plain.  
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Figure 5: The Harran and The Bismil Plains are depicted in Turkey.  

 

 

Figure 6: The Harran and The Bismil Plains are shown in detail. 
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Figure 7: The Kansas dataset is depicted. 

 

3.1.1. The Harran Plain 

The Harran Plain is located in the South East of Turkey. The locations of the Harran 

Plain (blue) and the Bismil Plain are shown in Figure 1. The region has a 

Mediterranean climate with about 400-450mm yearly rainfall according to the General 

Directorate of Meteorology of Turkey. 

3.1.2. The Bismil Plain 

The Bismil dataset covers the Bismil Plain around Bismil city in Diyarbakır County. 

Bismil city is located along the Tigris River. The area extends next to the border 

between Batman and Diyarbakır counties. Corn, cotton and soybean are the crops in 

this dataset.  

3.1.3. Kansas 

The Kansas dataset covers the North Eastern part of Kansas State. The test area is 

selected as the overlap of Landsat 8 Path 28/Row 33 and Path 27/Row33 tiles also 

fully covered by a Sentinel-2 tile. The Kansas data set extends on Brown, Jackson, 

Nemaha, Shawnee, Pottawatomie, and Wabaunsee counties. Major crops in the region 

are corn and soybean.  
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3.2. Satellite Data 

3.2.1. Landsat 8 

Landsat 8 was launched on February 11, 2013. Landsat 8 has two sensors: the 

Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS). The temporal 

resolution is 15-16 days. Swath width 183 km. 

Landsat 8 satellite images are being used as primary test data for the study. Landsat 8 

has 8 spectral bands. Launched in February 2013 provides images with 16 days of 

revisit time.  

Landsat 8 data were converted to surface reflectance by the U.S. Geological Survey 

(USGS)(Landsat 8 Surface Reflectance Product Guide v1.2, 2015). Harmonized 

Landsat Sentinel data were used for the Kansas dataset. 

 

Figure 8: Landsat 7, Landsat 8 and Sentinel-2 Bands Source: 

http://landsat.usgs.gov/L8_band_combos.php. 

 

http://landsat.usgs.gov/L8_band_combos.php
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Table 1: Landsat 8 satellite spectral information. 

Bands 
Central wavelength 

(nm) 
Bandwidth (nm) 

Spatial resolution 

(m) 

Band 1 - Coastal 

aerosol 443 20 30 

Band 2 - Blue 483 65 30 

Band 3 - Green 560 75 30 

Band 4 - Red 660 50 30 

Band 5 - Near 

Infrared (NIR) 865 40 30 

Band 6 - SWIR 1 1650 100 30 

Band 7 - SWIR 2 2220 200 30 

Band 8 - 

Panchromatic 640 180 15 

Band 9 - Cirrus 1375 30 30 

 

The imagery of the Harran Plain is from early June to the end of October. Twenty 

images from 2013, 19 images from 2014 and 20 images from 2015 are used. Imagery 

acquisition details for the Harran Plain are presented in Figure 9 and Table 2.  

 

Figure 9: Landsat 8 imagery Harran dataset acquisitions. 

 

2013 2014 2015
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Table 2: Landsat 8 imagery Harran dataset acquisitions DoY and date information.  

2013 2014 2015 

DoY Date DoY Date DoY Date 

 156 04/06 158 07/06 161 10/06 

162 11/06 165 14/06 168 16/06 

171 20/06 174 23/06 177 26/06 

178 27/06 181 30/06 184 03/07 

187 06/07 190 09/07 193 12/07 

194 13/07 197 16/07 200 19/07 

203 22/07 206 25/07 209 28/07 

210 29/07 213 01/08 216 04/08 

219 07/08 222 10/08 225 13/08 

226 14/08 229 17/08 232 20/08 

235 23/08 238 26/08 241 29/08 

242 30/08 245 02/09 248 05/09  

251 08/09 254 11/09 257 14/09 

258 15/09 261 18/09 264 21/09 

267 24/09 270 27/09 273 30/09 

274 01/10 277 04/10 280 07/10 

283 10/10 - - 289 16/10 

290 17/10 293 20/10 296 23/10  

299 26/10 302 29/10 305 01/11 

306 02/11 309 05/11 312 08/11 

 

Nine of images from the Harran dataset in 2013 are shown in Figure 10 as true-color 

and in Figure 11 as NIR false-color. 
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Figure 10: Landsat 8 Harran Images, 2013. 
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Figure 11: Landsat 8 Harran NIR false-color images, 2013. 
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The images, which are used for the Bismil Plain, are from April to November. Bismil 

dataset has 21 images in 2013 and 2014, and 19 images in 2015. The detailed 

information regarding images of each year is presented in Figure 12 and Table 3. 

 

Figure 12: Landsat 8 Bismil dataset imagery acquisitions. 

2013 2014 2015
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Table 3: Bismil dataset imagery dates DoY and date information . 

2013 2014 2015 

DoY Date DoY Date DoY Date 

116 26/04 - - 122 02/05 

123 03/05 - - - - 

- - 135 15/05 138 18/05 

139 19/05 - - 145 25/05 

148 28/05 151 31/05 - - 

155 04/06 158 07/06 161 10/06 

164 13/06 167 16/06 170 19/06 

171 20/06 174 23/06 177 26/06 

180 29/06 183 02/07 186 05/07 

187 06/07 190 09/07 193 12/07 

196 15/07 199 18/07 202 21/07 

203 22/07 206 25/07 209 28/07 

212 31/07 215 03/08 218 06/08 

219 07/08 221 10/08 225 13/08 

228 16/08 231 19/08 234 22/08 

235 23/08 - - 241 29/08 

244 01/09 247 04/09 - - 

251 08/09 254 11/09 257 14/09 

260 17/09 263 20/09 266 23/09 

267 24/09 270 27/09 - - 

- - 279 06/10 282 09/10 

283 10/10 287 14/10 289 16/10 

- - 295 22/10 - - 

  302 29/10 305 01/11 

308 04/11 311 07/11 - - 
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Figure 13: Landsat 8 Bismil true color images, 2013. 
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Figure 14: Landsat 8 Bismil NIR false color images, 2013. 
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3.2.2. Sentinel-2 

Sentinel-2A was launched on 23rd June 2015, and Sentinel-2B was launched on 7th 

March 2015. Both satellites have combined 5-day revisit time. Sentinel-2 satellites also 

provide higher resolution 10-meter imagery compared to Landsat 8 satellite.  

Table 4: Sentinel-2 a/b satellites spectral information. 

Sentinel-2 bands 

Sentinel-2A Sentinel-2B   

Central 

wavelength 

(nm) 

Bandwidth 

(nm) 

Central 

wavelength 

(nm) 

Bandwidth 

(nm) 

Spatial 

resolution 

(m) 

Band 1 - Coastal 

aerosol 

442.7 21 442.2 21 60 

Band 2 – Blue 492.4 66 492.1 66 10 

Band 3 – Green 559.8 36 559 36 10 

Band 4 – Red 664.6 31 664.9 31 10 

Band 5 – 

Vegetation red edge 

704.1 15 703.8 16 20 

Band 6 – Vegetation 

red edge 

740.5 15 739.1 15 20 

Band 7 – Vegetation 

red edge 

782.8 20 779.7 20 20 

Band 8 – NIR 832.8 106 832.9 106 10 

Band 8A – Narrow NIR 864.7 21 864 22 20 

Band 9 – Water vapour 945.1 20 943.2 21 60 

Band 10 – SWIR – 

Cirrus 

1373.5 31 1376.9 30 60 

Band 11 – SWIR 1613.7 91 1610.4 94 20 

Band 12 – SWIR 2202.4 175 2185.7 185 20 
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Harmonized Landsat 8 and Sentinel-2 (c) data were employed for the Kansas dataset. 

HLS Project aimed at merging Sentinel-2 data to Landsat 8 data. Thus, Sentinel-2 

bands were resampled and radiometrically translated. Processing steps are described 

in Figure 15. 

 

Figure 15: Landsat 8 and Sentinel-2 data harmonization steps. 

The HLS data enabled more cloud-free data acquisitions. The Kansas data set has 20 

images (15 Landsat 8 and seven Sentinel-2) in 2017 and 22 (five Sentinel-2 and 17 

Landsat 8) images in 2018 as shown in Figure 16 and Table 5. Harmonized Landsat 

Sentinel project resamples Sentinel-2 imagery in to match Landsat 8 in spatial and 

spectral properties(Claverie et al., 2018). 
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Figure 16: Landsat 8 and Sentinel-2 Kansas dataset imagery acquisition dates in 2017 and 2018. 

Table 5: Kansas Imagery Dates with DoY, date and satellite information.  

2013 2014 

DoY Date Satellite DoY Date Satellite 

126 06/05 L8 125 05/05 S2 

133 13/05 L8 130 10/05 S2 

149 29/05 L8 152 01/06 L8 

158 07/06 L8 165 14/06 S2 

160 09/06 S2 168 17/06 L8 

180 29/06 S2 180 29/06 S2 

190 09/07 L8 185 04/07 S2 

197 16/07 L8 190 09/07 S2 

200 19/07 S2 193 12/07 L8 

206 25/07 L8 200 19/07 S2 

215 03/08 S2 215 03/08 S2 

222 10/08 L8 220 08/08 S2 

229 17/08 L8 230 18/08 S2 

235 23/08 S2 241 29/08 L8 

245 02/09 L8 255 12/09 S2 

254 11/09 L8 257 14/09 L8 

   260 17/09 S2 

   265 2209 S2 

   270 27/09 S2 

275 02/10 S2 275 02/10 S2 

280 07/10 S2    

286 13/10 L8 290 17/10 S2 

295 22/10 L8 295 22/10 S2 

 

2017 L8 2017 S2 2018 L8 2018 S2
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True-color and false-color HLS data are shown in Figure 17 and Figure 18, 

respectively. Sentinel-2 frames are full data frames while Landsat 8 frames partially 

cover the region.  

 

Figure 17: Kansas Dataset 2018 true-color imagery. 

 

Figure 18: Kansas Dataset 2018 false-color imagery. 
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3.3. Crops of Interest 

Major summer crops of the Harran Plain are corn and cotton. Cotton is the first product, 

and corn is grown as the second product after winter wheat. Corn is grown after winter 

wheat. Both corn and cotton have similar phenological periods, which makes the 

classification of these crops challenging. 

On the other hand, both Corn and cotton are primary products in Bismil. Both crops 

have distinct phenological periods. Soybean in the area is grown after winter wheat. 

Kansas dataset contains corn and soybean as this region is part of the Corn Belt.  

  Months March April May June July August September October November 

H
a

rr
a

n
 

Corn                         Sowing Growth Harvesting     

Cotton     Sowing Growth Harvesting 

B
is

m
il

 Corn   Sowing Growth Harvesting               

Cotton     Sowing Growth Harvesting 

Soybean                           Sowing Growth Harvesting   

K
a

n
sa

s 

Corn         Sowing Growth Harvesting             

Soybean                 Sowing Growth Harvesting         

Figure 19: Harran, Bismil, and Kansas crop calendars. 
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3.4. Ground Truth 

Ground truth preparation is crucial and needs utmost care. In this section, details of 

ground truth preparation will be explained.  

The ground truth of the Harran and Bismil datasets are based on the Ministry of 

Agriculture and Forestry’s National Registry of Farmers (NRF, Turkish: Çiftçi Kayıt 

Sistemi, ÇKS) for Turkey. In the NRF, farmers declare the crops that they will grow 

in order to apply for government agricultural subsidies (Yomralioglu, Inan, Aydinoglu, 

& Uzun, 2009). On the other hand, the ground truth of the Kansas dataset is based on 

USDA NASS’s the Cropland Data Layer (CDL). The CDL data was created based on 

USDA’s Farm Services Agency (FSA) Common Land Unit (CLU) data.  

The NRF contains vectors of agricultural fields. Regarding the GT, census data was 

used as the baseline: the declaration from the National Registry of Farmers. In the case 

of the Kansas dataset, CLU 2008 was used data as field boundaries. 

The median vegetation index (VI) time-series vector data of each field is assigned as 

a sample in the tests. A summary of the characteristics the Harran Dataset is presented 

in Table 6, The Bismil dataset is presented in Table 7, and the Kansas dataset is 

depicted in Table 8.  

The majority of the crops in the Harran dataset are cotton about 80%. On the other 

hand, corn is the major crop in the Bismil dataset. The ratio of soybean is very low in 

the Bismil dataset. Finally, Corn in the Kansas dataset having a 60% ratio against 

soybean.  

 

Table 6: Number, percentage distribution, and areas of corn and cotton fields in the Harran dataset in 

2013, 2014 and 2015. 

  #Fields %Samples Area (ha) 

2
0
1
3
 Corn 1192 21.8 12366 

Cotton 4285 78.2 43968 

Total 5477  56333 

2
0
1
4
 Corn 692 13.2 7321 

Cotton 4561 86.8 47395 

Total 5253  54716 

2
0
1
5
 Corn 517 15.4 5863 

Cotton 2849 84.6 31094 

Total 3366  36957 
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Table 7: Number, percentage distribution, and areas of corn, cotton and soybean fields in the Bismil 

dataset in 2013, 2014 and 2015. 

  #Fields %Samples Area (ha) 

2
0
1
3
 

Corn 674 61.38 8887 

Cotton 347 31.60 3991 

Soybean 77 7.02 238 

Total 1098  13116 
2
0
1
4
 

Corn 721 54.91 11606 

Cotton 438 33.36 5115 

Soybean 154 11.73 312 

Total 1313  17033 

2
0
1
5
 

Corn 793 64.37 11842 

Cotton 349 28.33 2580 

Soybean 90 7.30 271 

Total 1232  14693 

 

Table 8: Number, percentage distribution, and areas of corn and soybean fields in the Kansas dataset in 

2017 and 2018. 

  #Fields %Samples Area (ha) 

2
0
1
7

 Corn 1167 41.66 67952 

Soybean 4083 58.34 89479 

Total 5250  157431 

2
0
1
8
 Corn 2307 42.99 71714 

Soybean 3059 57.01 86913 

Total 5366  158627 
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CHAPTER 4 

 

4. METHODOLOGY 

 

4.1. Background 

4.1.1. Dynamic Time Warping 

Dynamic Time Warping (DTW) is a technique that finds the optimal alignment in 

translation and scaling between two time-series data sequences (Müller 2007) by using 

dynamic programming(Bellman, 1966). The sequences are matched in a non-linear 

way to measure similarities. DTW method outperformed primary time series 

classification methods (Bagnall, Lines, Bostrom, Large, & Keogh, 2017). 

DTW uses the dynamic programming approach to find the optimal distance between 

two signals, thus determining the similarity between two signals. As the similarity 

increases, the distance between signals decreases resulting in lower scores.  

Figure 20 shows the alignment of corn and cotton crops. The input signals have a size 

of 20 and resulted in optimal warping is performed over 20 dimensions. The similarity 

score between these crops is 0.81 by using the Euclidean distance. The optimal 

warping path of these corn and cotton samples are displayed in Figure 21. The similar 

parts of these signals warped on the diagonal.  
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Figure 20: Warping of Two Vegetation Phenologies of corn and cotton having a Euclidean distance of 

0.81. 
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Figure 21: Computation of optimal warping path between corn and cotton samples 
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4.1.2. Spectral Angle Mapper 

Spectral angle mapper is a commonly used measure in hyperspectral image analysis 

describing the angular distance between two spectra (Kruse et al., 1993). The angle 

between two vectors, β⃗  and θ⃗ ,   is computed in radians as 

 = 𝐜𝐨𝐬−𝟏
β⃗ ∙θ⃗ 

‖β⃗ ‖∙‖�⃗⃗� ‖
 (9) 

SAM is robust to illumination changes so that the effects of yearly climate changes are 

reduced. VDTW method is based on a vectoral distance between two samples, which 

is the core of SAM.  

4.1.3. Crop Phenology 

The phenology of crops is measured by using vegetation indices, which were described 

in section 0. Phenology information generated by using the ordering of phenological 

observations in time. Due to differences in growing practices and crop conditions, 

there were variations in as displayed box plots Figure 22. Variations of different crops 

in the Harran Plain is depicted in Figure 23 and Figure 24. 
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Figure 22: Variations in MSAVI phenologies of corn and cotton samples in the Harran Plain in 2013. 

 

Figure 23: Median values of corn and cotton in the Harran dataset in different years.  

 

Figure 24: Variations in NDVI values of corn and cotton at different years. 
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4.1.4. Crop Phenology Indicators 

Crop phenology is defined by extracting important transition dates and other critical 

phenological indicators. Double logistic(double sigmoid) is used as an efficient 

phenology indicator (Zhong et al., 2014) (Zhang et al., 2003). 

Double sigmoid is a combination of two sigmoid signals. Several functions could 

define a sigmoid. Double hyperbolic function for feature extraction is given below: 

𝑓(𝑥) =  𝑎 +  0.5 ∗ 𝑏 ∗ ( 𝑡𝑎𝑛ℎ(𝑝 ∗ (𝑥 − 𝐷i))  +  𝑡𝑎𝑛ℎ(𝑞 ∗ (𝑥 − 𝐷d) (10) 

where  

• a: minimum NDVI Value 

• b: maximum NDVI Value, 

• p: the curve of NDVI increase 

• Di: center day of increase 

• q: the curve of NDVI decrease 

• Dd: center day of NDVI decrease 

Besides, transition days are used as a function 

• D1: Start of NDVI increase 

• D2: End of NDVI Increase 

• D3: Start of NDVI Decrease 

• D4: End of NDVI Decrease 

Features in this representation are used in this study (Figure 25). 

 

Figure 25: Double sigmoid phenological transition points (Zhong et al., 2014) 

4.1.5. Data Smoothing 

In this study, time-series data smoothing was applied as a preprocessing step. Savitzky-

Golay filtering, spline fitting, and piecewise curve fitting were compared.  
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Non-static observation conditions (such as atmosphere, weather, and sun position) and 

changes in crop phenology cause variations in measurements. Comparisons of these 

methods are presented as NDVI phenologies, which are expected to resemble a smooth 

double logistics function. SG filtering was performed by a second-order polynomial, 

and a window size of five samples is presented in Figure 26. The piecewise curve 

fitting is displayed in Figure 27. Second-order spline fitting results are shown in Figure 

28. 

Among these methods, Savitzky-Golay filtering produced smoother phenologies while 

other methods produced data that mostly resembled original forms.  

 

Figure 26: Smoothing of corn and cotton NDVI phenologies by SG filtering. 
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Figure 27: Smoothing of corn and cotton NDVI phenologies by piecewise smoothing. 

 

 

Figure 28: Smoothing of corn and cotton NDVI phenologies by spline smoothing. 
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4.2. Time Series Simulations 

Phenological variations of a crop were studied in various experimental settings within 

the datasets. For this purpose, crop signatures were simulated to analyze the behavior 

of VDTW, DTW, and SAM methods, their advantages, and shortcomings in time 

series crop mapping.  Shift and scale are simulated in different scenarios. Figure 29 

shows the case if sowing dates vary while harvest dates are the same. Figure 31 shows 

that crops are sown at the same time, but harvest dates differ. In Figure 33, an extreme 

case is shown, where the crop’s both sow and harvest times vary. Figure 35 shows 

where growth duration of the crop stays the same, but its sow and harvest time shifts 

in time: this simulation corresponds to some growers sowing earlier or later and yearly 

climate changes. Both DTW and VDTW similarity scores did not change against 

varying sowing and harvesting dates(Figure 32, Figure 34, Figure 36). Figure 37 

depicts variances in phenological observation in the growing period. These differences 

may be caused by different atmospheric conditions or variations in fields or farming 

practices. Finally, an extreme case is displayed in Figure 39, where phenological 

variations are observed globally. It was observed that SAM and VDTW methods 

obtained similar scores; on the other hand, DTW scores varied based on different 

values.  

These simulations showed that VDTW is invariant to shifts in time as DTW and 

produced near-valued scores as SAM to shifts in values. 
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Figure 29: Varying sowing dates simulation. 

   
DTW SAM VDTW 

Figure 30: Varying sowing dates simulation similarity scores. 
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Figure 31: Varying harvest dates simulation. 

   
DTW SAM VDTW 

Figure 32: Varying harvest dates similarity scores. 
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Figure 33: Varying sowing and harvest dates simulation. 

   
DTW SAM VDTW 

Figure 34: Varying sowing and harvest dates similarity scores. 



55 

 

 

Figure 35: Varying crop growth in time simulation. 

   
DTW SAM VDTW 

Figure 36: Varying crop growth in time similarity scores. 
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Figure 37: Offsetting crop growth simulation 1. 

   
DTW SAM VDTW 

Figure 38: Offsetting crop growth simulation 1 similarity scores 
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Figure 39: Offsetting crop growth simulation 2 

   
DTW SAM VDTW 

Figure 40: Offsetting crop growth simulation 2 similarity scores 
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4.3. Vector Dynamic Time Warping Method 

Dynamic time warping handles signals, which are shifted or scaled in time. When the 

original signal shifted in time, DTW handles shifts in time or change in scale. On the 

other hand, depending on the distance metric such as Euclidian distance, differences 

in scale or bias of the signal increases scores.  

Spectral Angle Mapper (SAM) method was developed to provide robustness w.r.t.  

illumination changes in hyperspectral data.  

There are two significant findings in the simulations:  

1. The growth of the crops shifts in time due to climate and other factors.  

2. Observations are dependent on illumination and atmospheric conditions. 

While DTW is robust to shifts in time, it is not robust to variations in growth and yearly 

illumination changes. DTW uses Euclidian distance. Instead of using Euclidean 

distance, it is proposed to utilize spectral angles distances. 

Both DTW and SAM have disadvantages while dealing with time series phenological 

data. Phenological measurements in crops vary in time, and illumination changes at 

different times cause variations in measurements.  

A new method is proposed, which is both robust to shift in crop growth and 

illumination differences: Vector Dynamic Time Warping (VDTW). While DTW is 

based on Euclidean distance 𝑑, it is proposed to use angular distance 𝑎, as shown in 

Figure 41. VDTW computes the optimal warping path of spectral distances between 

two phenological observations.  

Let c[i] be the corn VI data and d[j] be the cotton VI data, respectively. We generate a 

vector signal ui as follows: 

u ⃗⃗⃗  𝑖 = [
𝑐[𝑖] − 𝑐[𝑖 − 1]

𝑡(𝑖) −  𝑡(𝑖 − 1)
],    i = 1,2, ….., n            (11) 

where 𝑡(𝑖) represents the time of the i-th measurement. Similarly, a vector time-series 

vj is generated from d[i] VI data.  
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Figure 41: Angular distance metric between phenology of two crops at an observation date 

 

The first step in VDTW algorithm is constructing 𝑛-by-𝑚 distance matrix Ψ whose 

elements 𝜓𝑖,𝑗 is computed as the angle α between u ⃗⃗⃗  𝑖 ∈ ∪ ∀ 𝑖 = 2, … , 𝑛  and v ⃗⃗ 𝑖 ∈ ∪
∀ 𝑗 = 2,… ,𝑚.  

𝜓𝑖,𝑗 is computed as follow:  

𝜓𝑖−1,𝑗−1 = 𝑐𝑜𝑠
−1

u ⃗⃗⃗  𝑖∙v ⃗⃗ 𝑗  

‖𝑢𝑖⃗⃗  ⃗‖∙‖𝑣𝑗⃗⃗⃗  ‖
 (12) 

 

The accumulated distance matrix is computed from Ψ by computing recursive sum of 

distances: 

𝑑𝑖,𝑗 =  𝜓𝑖,𝑗 +𝑚𝑖𝑛 {𝑑𝑖−1,𝑗−1, 𝑑𝑖−1,𝑗, 𝑑𝑖,𝑗−1} (13) 

 Computation is subject to following boundary conditions:  
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𝑑𝑖,𝑗 = 

{
 
 

 
 

𝜓𝑖,𝑗                            𝑖 = 1, 𝑗 = 1

∑ 𝜓𝑘,𝑗
𝑖

𝑘=2
       2 < 𝑖 ≤ 𝑛 − 1 , 𝑗 = 1

∑ 𝜓𝑖,𝑘
𝑗

𝑘=2
       𝑖 = 1, 2 < 𝑗 ≤ 𝑚 − 1

 (14) 

 

The pseudocode of VDTW is given in Algorithm 1. VDTW algorithm computes a 

similarity score between two vectors u ⃗⃗⃗   and v ⃗⃗ . The same crop type is more likely to 

have low scores around 0, meaning high similarity.  

Algorithm 1: VDTW Algorithm 

1: Let u ⃗⃗⃗    input vector with size n. 

2: Let v ⃗⃗  input vector with size m.  

3: Let D be an mxn matrix initialised to zero. 

4: for i in 2 to m do 

5:  for j in 2 to n do 

6:    𝜓(i-1, j-1) ← acos(  ( u(i)*v(i)+u(i-1)*v(i-1) ) / … 

                         ( |u(i,i-1)|*|v(j, j-1)|) 

7: D(1,1) ← 𝜓(1,1) 

8: for i 2 to m do  

9:  d(i, 1) ← 𝜓(i, 1) + d(i-1, 1) 

10: for j 2 to n do 

11: d (1, j) ← 𝜓(1, j) + d(1, j-1) 

12: for i in 2 to m do 

13: for j in 2 to n do 

14:  d(i, j) ← 𝜓(i, j)  + min( d(i-1,j-1), d(i-1, j), d(i, j-1)) 

15: Score ←d(m,n) 

 

DTW algorithm constructs a Euclidean cost matrix between data points of signals. The 

cost matrix of VDTW is based on vector distances. Another major difference in cost 

matrix computation is that two data points are needed to compute the angle between 

these points. For this reason, VDTW starts computing the cost matrix starting from the 

second data points of signals.  

Distance and accumulated distance matrices of DTW and VDTW are compared. 

Euclidean distances of NDVI values are ranged between the minimum and maximum 
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values of samples, which are compared. The maximum value in the distance DTW 

matrix is 0.47 for the crops, which are shown in Figure 42. Regions, where the crops 

have close vegetation index values, are shown darker. The Accumulated distance 

matrix of VDTW is shown in Figure 43. On the other hand, the maximum normalized 

vector distance between two crops, which are shown in Figure 44, is 0.04 radians. The 

Accumulated distance map of VDTW is displayed in Figure 45. 

 

Figure 42: DTW Distance Matrix between corn and cotton in 2013 the Harran Plain. 
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Figure 43: DTW Accumulated Distance Matrix between corn and cotton in 2013 the Harran Plain. 

 
Figure 44: VDTW Distance Matrix between corn and cotton in 2013 the Harran Plain. 
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Figure 45: VDTW Accumulated Distance Matrix between corn and cotton in the year 2013 in the Harran 

Plain. 

DTW and VDTW are compared with various settings: same year-different crop and 

same crop-different year. Warping paths of and warped crops phenologies are shown 

in Figure 46, Figure 47, and Figure 48. Top graphics show accumulated distance 

matrices. Bottom graphics show warped signals in Euclidean or vector distances.  

Figure 46 presents warping paths of corn and cotton in the year 2013 in the Harran 

Plain. The warping paths of DTW and VDTW are similar. However, DTW’s warping 

path is smoother compared to VDTW. Accumulated distance matrix between corn and 

cotton in 2013 is given in Table 9. VDTW determined the vector distance between 

corn and cotton in 2013 as 0.56 radians. 

Figure 47 shows warping paths and warped phenologies of the corn crop in 2013 and 

2014 years. VDTW is able to warp the same crop better than different crops, as shown 

in Figure 46.  Accumulated distance matrix between corn in 2013 and 2014 is given in 

Table 10. VDTW determined the vector distance between corn in 2013 and 2014 as 

0.45 radians. 

DTW is more robust in warping two signals than VDTW. For this reason, DTW is able 

to produce lower scores compared to the maximum value of the distance matrix. On 

the other hand, the accumulated path score of VDTW is greater than the maximum 

vector distance. VDTW can produce more discriminative scores.  

Another same year crop warping performance is shown in Figure 48 for cotton in 2013 

and 2014 years. Accumulated distance matrix between corn in 2013 and 2014 is given 
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in Table 11. VDTW determined the vector distance between cotton in 2013 and 2014 

as 0.45 radians.  

The vector distance between corn and cotton in the same year is higher than the same 

crop in the cross-years. Moreover, the corn crop’s scores were higher compared to 

cotton in the cross-years. This is due to the corn’s variation between years as it is 

grown after the winter wheat harvest. On the other hand, the growth of the corn is more 

stable between years.  

VDTW can achieve higher warping performance compared to different crops in the 

same year, which are shown in Figure 46 and Figure 48 in the year 2013 and 2014, 

respectively. 
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DTW VDTW 

 
 

  
Figure 46: Corn2013-Cotton2013 DTW and VDTW comparison. Top graphics show accumulated 

distance matrices, and bottom graphics show warped signals.  

Table 9: Accumulated distance matrix of VDTW for corn and cotton in 2013 

 

 

 

 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.28 0.50 0.71 0.87 0.99 1.08 1.16 1.24 1.31 1.38 1.44 1.48 1.51 1.54 1.56

0.00 0.37 0.38 0.39 0.39 0.41 0.48 0.55 0.63 0.71 0.80 0.90 1.01 1.13 1.25 1.32

0.00 0.39 0.43 0.44 0.46 0.48 0.54 0.61 0.68 0.76 0.84 0.93 1.03 1.15 1.27 1.40

0.00 0.41 0.41 0.45 0.52 0.60 0.66 0.73 0.80 0.87 0.95 1.05 1.15 1.26 1.39 1.52

0.00 0.43 0.44 0.45 0.49 0.55 0.65 0.75 0.86 0.98 1.06 1.15 1.26 1.37 1.49 1.62

0.00 0.51 0.47 0.47 0.46 0.48 0.53 0.59 0.66 0.73 0.80 0.89 0.99 1.10 1.22 1.34

0.00 0.65 0.55 0.54 0.48 0.47 0.47 0.49 0.51 0.53 0.56 0.60 0.65 0.71 0.78 0.86

0.00 0.76 0.67 0.65 0.55 0.48 0.47 0.47 0.48 0.48 0.48 0.50 0.53 0.57 0.62 0.67

0.00 0.83 0.80 0.76 0.62 0.51 0.48 0.48 0.48 0.48 0.48 0.50 0.53 0.57 0.62 0.67

0.00 0.90 0.93 0.88 0.69 0.53 0.48 0.48 0.48 0.48 0.48 0.50 0.53 0.57 0.62 0.68

0.00 0.97 1.06 1.00 0.76 0.55 0.50 0.49 0.49 0.48 0.49 0.49 0.51 0.53 0.56 0.60

0.00 1.07 1.16 1.15 0.87 0.61 0.53 0.52 0.52 0.51 0.51 0.49 0.50 0.50 0.51 0.53

0.00 1.22 1.31 1.34 1.02 0.71 0.62 0.60 0.60 0.59 0.58 0.55 0.54 0.54 0.51 0.53

0.00 1.40 1.48 1.54 1.19 0.84 0.73 0.71 0.70 0.69 0.67 0.62 0.61 0.60 0.54 0.55

0.00 1.54 1.62 1.68 1.33 0.93 0.81 0.79 0.78 0.76 0.74 0.67 0.65 0.64 0.59 0.56
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DTW VDTW 

  

  
Figure 47: Corn in 2013-Corn in 2014 DTW and VDTW comparison. 

Table 10: Accumulated distance matrix of VDTW for corn in 2013 and 2014 

 

 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.04 0.10 0.34 0.64 0.87 1.01 1.11 1.19 1.26 1.33 1.39 1.46 1.53

0.00 0.12 0.08 0.12 0.21 0.24 0.26 0.31 0.39 0.47 0.56 0.65 0.74 0.82

0.00 0.35 0.16 0.14 0.13 0.18 0.32 0.38 0.46 0.53 0.61 0.69 0.78 0.85

0.00 0.61 0.21 0.24 0.13 0.13 0.23 0.37 0.53 0.65 0.73 0.81 0.90 0.97

0.00 0.87 0.26 0.29 0.15 0.16 0.21 0.30 0.41 0.52 0.64 0.76 0.88 0.99

0.00 1.04 0.30 0.31 0.23 0.20 0.19 0.24 0.31 0.38 0.45 0.53 0.61 0.67

0.00 1.16 0.39 0.38 0.36 0.30 0.21 0.20 0.22 0.24 0.27 0.30 0.33 0.35

0.00 1.24 0.52 0.49 0.52 0.44 0.25 0.20 0.20 0.21 0.21 0.22 0.23 0.23

0.00 1.32 0.66 0.61 0.70 0.59 0.31 0.21 0.21 0.21 0.21 0.22 0.23 0.23

0.00 1.39 0.78 0.72 0.82 0.73 0.36 0.22 0.22 0.21 0.22 0.23 0.23 0.23

0.00 1.46 0.77 0.84 0.94 0.88 0.42 0.24 0.21 0.22 0.22 0.22 0.23 0.24

0.00 1.50 0.77 0.97 1.09 1.06 0.50 0.28 0.23 0.25 0.24 0.23 0.24 0.26

0.00 1.50 0.82 1.02 1.27 1.28 0.64 0.37 0.30 0.31 0.31 0.29 0.30 0.33

0.00 1.51 0.89 1.09 1.34 1.53 0.79 0.48 0.39 0.40 0.40 0.37 0.38 0.40

0.00 1.57 0.94 1.13 1.37 1.56 0.92 0.57 0.46 0.46 0.47 0.42 0.43 0.45
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DTW VDTW 

  

  
Figure 48: DTW and VDTW comparison of Cotton in 2013-Cotton in 2014.  

Table 11: Accumulated distance matrix of VDTW for cotton in 2013 and 2014 

  

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.06 0.09 0.16 0.18 0.21 0.28 0.35 0.43 0.50 0.58 0.68 0.79 0.87

0.00 0.05 0.08 0.10 0.16 0.25 0.36 0.43 0.51 0.58 0.66 0.77 0.87 0.95

0.00 0.06 0.08 0.10 0.15 0.22 0.34 0.45 0.57 0.64 0.73 0.83 0.93 1.01

0.00 0.11 0.12 0.11 0.12 0.15 0.22 0.29 0.37 0.44 0.53 0.63 0.73 0.82

0.00 0.19 0.18 0.16 0.12 0.12 0.14 0.17 0.20 0.23 0.26 0.32 0.37 0.41

0.00 0.31 0.28 0.24 0.15 0.13 0.13 0.14 0.15 0.17 0.18 0.22 0.26 0.28

0.00 0.43 0.39 0.33 0.20 0.16 0.13 0.14 0.15 0.16 0.17 0.21 0.24 0.26

0.00 0.57 0.50 0.43 0.25 0.19 0.13 0.14 0.15 0.15 0.17 0.20 0.23 0.25

0.00 0.70 0.62 0.53 0.30 0.22 0.13 0.14 0.14 0.14 0.15 0.18 0.21 0.22

0.00 0.84 0.74 0.64 0.35 0.25 0.14 0.14 0.14 0.14 0.15 0.17 0.19 0.20

0.00 0.99 0.87 0.76 0.42 0.30 0.16 0.15 0.15 0.15 0.15 0.15 0.17 0.18

0.00 1.15 1.02 0.89 0.50 0.36 0.18 0.17 0.16 0.17 0.15 0.15 0.17 0.18

0.00 1.32 1.17 1.03 0.59 0.43 0.22 0.21 0.18 0.19 0.16 0.15 0.17 0.19

0.00 1.50 1.33 1.18 0.69 0.51 0.27 0.25 0.21 0.22 0.18 0.17 0.18 0.20

0.00 1.69 1.51 1.33 0.80 0.60 0.32 0.30 0.25 0.26 0.22 0.18 0.19 0.22
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4.4. Multiyear Crop Mapping Strategy 

A summary of the algorithm steps is presented in Figure 50. Atmospheric or 

illumination effects may degrade the performance of times series classification 

methods. Data smoothing methods have been used to reduce these effects (Arvor et 

al., 2008), and in this study, time-series data is smoothed by the Savitzky-Golay (SG) 

filtering method(Kim et al., 2014). 

Landsat 8 cloud and shadow masks are produced by the Fmask algorithm (Zhu & 

Woodcock, 2012). Cloud information cloning was applied, so that cloudy samples 

were linearly interpolated with the Inverse Distance Weighting (IDW) method by 

using the nearest two cloud-free images (Kalkan & Maktav, 2018). Even though the 

Fmask algorithm could detect clouds successfully, it may not detect cloud shadows as 

effectively (Figure 49). However, it is found that the Fmask algorithm and SG 

smoothing, followed by computation of the median of time-series field phenology was 

adequate for successful classification. Kansas dataset uses the Harmonized Landsat 8 

and Sentinel-2 satellite imagery (HLS). However, the Fmask algorithm (Fmask v3), 

which was used in HLS data, is not optimal with Sentinel-2 data. This resulted in 

missed shadows and clouds in some cloudy Sentinel-2 scenes. The Fmask. Moreover, 

Fmask version 4was used, which improved shadow and cloud detection with Sentinel-

2 data. The double sigmoid was used fitting instead of SG of crop phenologies to 

remove the remaining artifacts. 

  
Figure 49: Clouds and their shadows detected by the FMask algorithm. 
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Data is linearly interpolated between [𝑡𝑙, 𝑡𝑢] to enable cross-year classification where 

𝑡𝑙 and 𝑡𝑢 be the lower and upper limits of the time window. Time series classification 

is used to classify with same year or cross year classification. Optionally, data is 

classified with the partial time series approach. Finally, a cropland layer is produced 

showing the classification results.   

 
Figure 50: Multi-year time-series classification algorithm steps. 
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4.5. Partial Time Series Classification 

A new method is presented in the previous section. In this study, a partial time series 

approach is proposed, which achieves high classification accuracies with fewer data 

using distinct temporal time periods in phenological properties of crops.  

For example, corn and cotton in the Harran Plain are sown at specific dates. However, 

they both start to have the same growth phenological properties starting from mid-

August, after which their growths are nearly the same. Figure 51 shows corn and 

cotton’s discriminative regions in their early growth until mid-August. The proposed 

partial time-series method exploits this phenologically invariant region for improved 

cross-year crop classification.  

 

Figure 51: Median phenologies of corn and cotton in 2013. 

The partial time series algorithm has three major steps. The algorithm finds the optimal 

classification window around the pivot day.  

Algorithm steps: 

First, the pivot day where the difference between the NDVI of crops is maximum is 

determined (Figure 52 (a)). The median values of all samples from each crop are used 

in this computation. The pivot day is determined as:  

𝐽∗ =  𝑎𝑟𝑔 max
𝑡𝑙<𝐽<𝑡𝑢

𝑎𝑏𝑠(𝑁𝐷𝑉𝐼𝐶1(𝐽) − 𝑁𝐷𝑉𝐼𝐶2(𝐽))  (15) 
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where 𝐽∗ denotes pivot day, 𝐶1and 𝐶1are two crops,  𝑡𝑙 denotes the minimum common 

day and, 𝑡𝑢 denote the maximum common day shared by time series data of all years.  

(a) 

(b) 

(c) 

Figure 52: (a) Maximum difference of VI values between corn and cotton, (b) DTW scores between 

corn and cotton centered on the pivot day expanding on both sides, (c) First and second derivatives of 

DTW scores. 

Centering the pivot day, DTW scores of vectors extending in both directions are 

computed (Figure 52(b)). Lower DTW scores represent higher similarity. The increase 

in DTW scores is steady after certain periods, which coincides with discriminative 

regions of corn and cotton.  

𝑆𝑐𝑜𝑟𝑒(𝐽) = 𝐷𝑇𝑊( 𝑁𝐷𝑉𝐼1([𝐽
∗, 𝐽]), 𝑁𝐷𝑉𝐼2([𝐽

∗, 𝐽]), (16) 

where 𝑡𝑙 < 𝐽 <  𝑡𝑢. 

The algorithm finds the first days from the pivot by extending to initial and final dates 

until first and second derivatives are zero (Figure 52(c)). First and second derivatives 
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indicate that DTW scores are steady after these days as a result of determining the 

boundaries of the optimal time window. 

𝑓𝑖𝑛𝑑 𝑠𝑐𝑜𝑟𝑒(𝐽)′ = 0 𝐴𝑁𝐷 𝑠𝑐𝑜𝑟𝑒(𝐽)′′ = 0 (17) 

The optimal time window [o1, o2] for classification of corn and cotton are computed 

as day 170 and day 227, corresponding to mid-June and mid-August.  

In the case of three or more crops, each crop is compared to others and a minimum 

length time window is selected against other crops.  
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CHAPTER 5 

 

5. RESULTS & DISCUSSIONS 

 

5.1. Data Representation  

The median of each field is used as a sample in the tests. As a result of median field 

sampling, each field is represented by a single sample, thus decreasing redundancy and 

equalize the distribution of samples regardless of field sizes. Another advantage is that 

partly cloudy fields are also represented by their spectral values. The final advantage 

is the decrease of computation time in tests.  

5.2. Performance Metrics 

Performance evaluations in this study are based on confusion matrix analysis. The 

confusion matrix is used to evaluate the performance of a classifier with labeled 

samples as input and classifier results as outputs.  

A sample confusion matrix is presented in Table 12. The sample data contains 17 corn 

and 13 cotton samples. Assume that a classifier decided 15 of these samples as corn 

and rest as cotton.  

Table 12: Sample confusion matrix. 

 Corn Cotton 

Corn 10 7 

Cotton 5 8 

 

Overall Accuracy (OA): Overall accuracy is simply the ratio of the sum of diagonal 

entries in confusion matrix to all samples in the data. In this case, overall accuracy is 

18/30 = 0.6. Overall accuracy is itself is necessary as a performance metric but often 

other statistics such as producer’s accuracy, user’s accuracy, and Cohen’s kappa.  
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Error of omission: ratio of omitted samples, which are misclassified:  

Corn: 7/(5+10) = 7/17. 

Cotton: 5/(5+8) = 5/13. 

Error of commission: ratio of falsely included samples:  

Corn: 5/(5+10) = 5/15 = 33.3%. 

Cotton: 7/(7+8) = 7/15 = 38.4%. 

Producer’s Accuracy (PA): Producer’s accuracy is the measurement of how accurate 

the classifier detects each crop, i.e., how many of the samples are present. The 

producer’s accuracy presents the accuracy of each crop. The producer’s accuracy is 

the complement of omission error: Producer’s accuracy = 1 – omission error.  

Corn: 10/(10+7) = 10/17 = 58.82% 

Cotton: 8/(5+8) = 8/13 = 61.53%. 

User’s Accuracy (UA): It is determined as the ratio of correctly found crops over the 

sum of samples which are labeled the same as the crop. User’s accuracy is the 

complement of commission error: Producer’s accuracy = 1 – commission error. 

Corn: 10/(10+5) = 10/15 = 66.6%.  

Cotton: 8/(7+8) = 8/15 = 53.3%.  

Cohen’s Kappa: Kappa analysis is a statistical method if the classifiers’ agreement is 

by chance. Kappa is measured as the difference between agreement by classifiers and 

confusion matrix(R. G. Congalton & Green, 2008).  Cohen’s Kappa was introduced in 

1960. It had been commonly used in sociology and psychology fields. It was first used 

in remote sensing in 1981(R. G. Congalton & Green, 2008).  

𝜅 =
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

1 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
 (18) 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

=  
𝐴𝑐𝑡𝑢𝑎𝑙𝐹𝑎𝑙𝑠𝑒 × 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐹𝑎𝑙𝑠𝑒 + 𝐴𝑐𝑡𝑢𝑎𝑙𝑇𝑟𝑢𝑒 ×  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑇𝑟𝑢𝑒

𝑇𝑜𝑡𝑎𝑙 × 𝑇𝑜𝑡𝑎𝑙
 

(19) 

 

For this sample case Kappa values is calculated as follow = 

Expected Accuracy: (7×5 + 8×10) / (30×30) = 115/900 = 0.127 

𝜅 = (0.6 – 0.127)/(1-0.127) = 0.5418  
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5.3. Optimal Vegetation Index Selection 

The most commonly used spectral indices were compared with the VDTW classifier. 

NDVI is the most well-known and deployed phenological feature. Other indices such 

as EVI  (Maus et al., 2016).  Tests were performed with 50 samples. The stratified 

random selection was used, and tests were performed 100 times.  

NDVI, SAVI, and MSAVI all performed highest in same year crop classification. EVI 

performed closely. ENDVI and WDRVI performances were considerably lower. 

Cross-year performances of NDVI and SAVI were similarly higher than other 

vegetation indices except for MSAVI. MSAVI contributed to a 0.6% increase in the 

cross-year accuracy. Detailed performance analysis is presented in Table 13. 

Table 13: Overall accuracy comparisons of notable vegetation indices. 

Vegetation Index Same Year % Cross Year 

NDVI 99.6 98.0 

MSAVI 99.6 98.6 

EVI 99.4 96.9 

SAVI 99.6 98.0 

ENDVI 98.8 93.6 

OSAVI 99.6 92.2 

WDRVI 97.3 92.1 

 

Soil-vegetation indices such as SAVI, OSAVI, and MSAVI. Soil line values are 

selected in SAVI and OSAVI by experimentally or experience. On the other, MSAVI 

incorporates the computation of soil line into its equation (5).  

Phenologies of corn and cotton of the Harran Plain between 2013 and 2015 are 

presented in Figure 53. These phenologies were computed by field medians of all 

samples for each year. The Harran plain is overlapped by Landsat 8 orbital paths 172 

and 173 thus have positive and negative observation angles. These various angles and 

different observation conditions, such as current weather and sun position, lead to 

different reflectance values.  

Huete et al. compared NDVI and SAVI at various observation angles(A. R. Huete, 

Hua, Qi, Chehbouni, & van Leeuwen, 1992). In their study, they found out the 

measurement of NDVI was asymmetric about nadir viewing angles while SAVI was 

symmetric. On the other hand, MSAVI computes the soil line automatically makes it 

more resistant to canopy cover estimation.  
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Figure 53: Depiction of corn and cotton phenologies by NDVI, EVI, and MSAVI vegetation indices. 

 

Furthermore, the most common vegetation indices were compared, namely NDVI and 

EVI with MSAVI in different classifiers. The Kansas dataset contains both Landsat 8 

and Sentinel-2 imagery. Even though Sentinel-2 imagery is BRDF matched to Landsat 

8, this dataset is more suitable for comparison, especially in cross-year tests. Moreover, 

each year contains imbalanced combinations of these satellite imagery. The use of 

MSAVI improved the overall cross-year classification accuracies by 2% compared to 

NDVI (Table 13). The usage of MSAVI and EVI resulted in the similar the same-year 

accuracies while MSAVI’s the cross-year overall accuracies are higher than EVI.  

Table 14: Comparison of MSAVI, NDVI, and EVI vegetation indices in same-year and cross-year tests 

with the Kansas dataset. 

  SY CY 

MSAVI 98.74 87.31 

NDVI 98.56 85.29 

EVI 98.75 85.97 
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5.4. Analysis of Preprocessing Steps on Classification Performance 

In this section, data preprocessing steps are compared. The same-year and the cross-

year tests were performed to demonstrate contributions of individual preprocessing 

steps. The Savitzky-Golay(SG) data smoothing method was selected as the default 

method.  

Time-series satellite data were preprocessed by data smoothing and cloud information 

cloning. Furthermore, missed cloud detection of Sentinel-2 data reduced the cross-

tests. Double Sigmoid curve fitting was employed to correct missing cloud detection 

where SG filtering could not correct those gaps efficiently.  

Figure 54 shows a median crop sample from the Kansas dataset with two cloudy 

acquisitions. The Fmask algorithm was able to detect only one of them while the first 

cloudy sample was partially smoothed by the SG filter. Double Sigmoid curve fitting 

did generate a smoother phenological signature. A missing crop map detection at the 

end of the crop phenology is displayed in Figure 55. SG filter modified the phenology 

causing incorrect data.  

 

Figure 54: A median crop sample from the Kansas Dataset with two cloudy acquisitions. 
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Figure 55: A median crop sample from The Kansas dataset with single cloudy acquisitions 

The same-year and cross-year accuracies are described in Table 15. Application of 

preprocessing has a more significant effect in the same-year than cross-year. The 

same-year accuracy was increased by 1.24%. The cross-year accuracy was increased 

by 14.76%. In addition, cloud cover, variations caused by Landsat 8 and Sentinel-2 

degrades cross-year accuracies as different years have an unmatched composition of 

these satellites data as described in 3.2.2. 

Table 15: Preprocessing step performance analyses. 

 Same-year Cross-year 

No Preprocessing 97.44 72.82 

SG 98.19 75.09 

SG-Cloud Cloning 98.57 78.73 

Dsigmoid-Cloud Cloning 98.64 87.58 
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5.5. VDTW Search Window Selection 

DTW and VDTW methods could be set to work within a specific time window. The 

length of the DTW search window should consider the possible phenological variation 

between years.  

Tests were run to determine the optimal time window in the same-year and the cross-

year settings. Optimal Time Window of the VDTW method is determined 

experimentally. Computation cost is lowered by limiting the time-window. Search 

window limitation by window size T is shown in Figure 56. 

 

Figure 56: Visualization of DTW warping window limits. 

Optimal window sizes were determined experimentally for the datasets. Tests were 

performed by using median phenology. The same year and cross-year accuracies were 

computed to determine an optimal time window for different datasets.  

Important phenological transition dates were extracted by fitting double sigmoid 

functions to the median phenology of crops, as described in 0.  

Phenologies of corn and cotton in the Harran Plain are similar. They overlap starting 

around day 200. The maximum difference of corn and cotton phenologies to reach 

maturity is about twenty days.  

Tests showed that same year accuracies reached top accuracy at seven days difference 

and it is the point where cross-year accuracies start to decrease for VDTW (Figure 57). 

In a similar trend, the same-year and cross-year overall accuracies of DTW starts to 

decrease by window size of seven. The seven-day window is due to the phenological 

differences of the corn and cotton in the Harran Plain. 
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Figure 57: Optimal VDTW window size search for the Harran dataset. 

 
Figure 58: Optimal DTW window size search for the Harran dataset. 

An increase in NDVI [D1, D2] and decrease in NDVI [D3, D3] is provided in Table 

16 for the crops in the Harran Plain. Same year minimum differences 11 days at D2 

(end of NDVI increase) in 2013, 12 days at D2 and D4 in 2014, 11 days at D4 in 2015. 

Cross year differences have similar values such as difference at D3 between Cotton in 

2013 and corn in 2015 is 12 days.  
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Table 16: Phenological transition dates of corn and cotton in the Harran Plain. 

    Di Dd D1 D2 D3 D4 

2
0

1
3

 

Corn 213 289 203 223 270 308 

Cotton 196 286 179 212 252 323 

2
0

1
4

 
Corn 209 298 200 218 270 327 

Cotton 191 278 175 206 243 315 

2
0

1
5

 

Corn 211 290 201 220 264 316 

Cotton 190 281 172 208 248 317 

 

Bismil dataset contains three distinct crops. Both the same and cross-year classification 

accuracies reach the highest accuracies at 21 days differences for VDTW (Figure 59); 

then, it starts to decrease for the cross-year. Similarly, the DTW method obtains the 

highest overall accuracies starting from a window size of 21 days (Figure 60).  

 

Figure 59: Optimal VDTW window size search for the Bismil dataset. 
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Figure 60: Optimal DTW window size search for the Bismil dataset. 

 

Phenological indicators for the Bismil dataset is provided in Table 17. The time 

difference is 20 days at D3 between cotton and soybean in 2013. This value increases 

to 30 days in 2014 while it decreases to 17 days in 2015 — time differences between 

cotton and soybean change between 30 and 40 days. The time difference between 

cotton and soybean at D4 was very close as these crops have similar harvest seasons 

as low as five days in 2014.  

Table 17: Phenological transition dates of Corn, Cotton, and Soybean in the Bismil Plain 

    Di Dd D1 D2 D3 D4 

2
01

3
 Corn 132 232 116 148 208 256 

Cotton 186 299 168 204 264 334 

Soybean 214 297 199 229 284 310 

2
01

4
 Corn 136 232 118 153 212 252 

Cotton 180 290 161 200 255 325 

Soybean 219 308 202 236 285 330 

2
01

5
 Corn 146 242 131 160 219 264 

Cotton 180 289 162 198 263 314 

Soybean 220 304 210 231 281 326 

 

The overall accuracies of VDTW are stable against varying window sizes (Figure 61). 

DTW’s same year accuracies decreased increasing the window size. On the other hand, 

VDTW’s and DTW’s cross-year overall accuracies were similar in shape having 

different values (Figure 62). VDTW cross-year accuracies have local maxima values 
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at which the cross-year overall accuracies have a 1.5% difference compared to 

minimum overall accuracy.  

 

Figure 61: Optimal VDTW window size search for the Kansas dataset. 

 

Figure 62: Optimal DTW window size search for the Kansas dataset. 

Phenological transition dates of the Kansas dataset are presented in Table 16. The time 

difference of at D2 between corn and soybean is 44 days in 2017 and 36 in 2018.  

However, the harvest of corn is closer to the harvest of the soybean in 2017.  
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Table 18: Phenological transition dates of corn and soybean in the Kansas dataset. 

    Di Dd D1 D2 D3 D4 

2
0

1
7
 

Corn 164 240 151 176 221 262 

Soybean 195 261 168 220 250 273 

2
0

1
8
 

Corn 157 205 145 168 183 229 

Soybean 178 269 154 204 257 280 

 

The decrease of VDTW performance is related to differences between phenological 

indicators. Minimum Phenological differences between crops are 11 days in the Harran 

Plain, 30 days in the Bismil Plain and 36 days in the Kansas dataset. The window sizes 

are increased as the phenology of crops are distanced. For each dataset, the window 

sizes are different. Thus, the window sizes were experimentally selected. Moreover, 

selecting different windows size for each dataset confirmed the most recent literature 

in which 15 and 30-day time windows were selected for various cropping 

patterns(Csillik, Belgiu, Asner, & Kelly, 2019).   
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5.6. Multi-Year Tests 

In this study, the median of each field was used as a sample. A stratified random 

selection strategy was applied to training sample selection (Olofsson et al., 2014), and 

selected training samples were excluded from the test samples in same-year tests. The 

same training samples for each test are used in training for all methods. Tests were 

repeated 100 times to minimize the effect of non-representative outlier samples such 

as crops grown too early or too late. Different methods were compared against various 

numbers of training samples to evaluate their performance with a limited number of 

training samples. Congalton suggested using at least 50 samples from each class when 

the number of classes is less than 12 (R. G. Congalton, 1988). In the tests, the number 

of training samples was varied in 5,10,…,50 based on their findings. 

Detailed tests were performed for same-year and cross-year classification accuracies. 

Double sigmoid features with RF classifier and SVM, Time-series (VDTW, SAM, and 

DTW, TWDTW) and partial time-series (PVDTW) were compared in this study. RF 

classifier contains 1000 trees. SVM has the RBF kernel, and its parameters are selected 

after an extensive grid search of cross-validation of training samples. As DL methods 

gained much attention in classification, two-layer deep long short-term memory 

(LSTM) was used with 100 units at each layer followed by a softmax layer (Reimers 

& Gurevych, 2017).  

In cross-year tests, the Harran dataset is the most challenging since corn and cotton’s 

phenologies vary each year after peak growth until the harvest. Same-year and cross-

year percent overall accuracy scores of tested methods are shown in Table 19. The 

tests have shown that VDTW provides the highest overall accuracies both in the same 

year at 99.22% (Figure 63) and cross-year at 98.29% (Figure 64).  

SAM and RF methods had similar accuracies in the same year; however, RF was not 

robust to growth changes in the cross-year as SAM. SAM cross-year scores were 

below 94.78%. RF was able to reach 94.45% with a maximum number of training 

samples. VDTW was more robust to the shifts in growth and changes in illumination 

compared to other methods. The best two performers VDTW and TWDTW achieved 

the cross-year 50 training sample and 100-replication overall average classification 

accuracies of 98.29% and 95.29%, respectively. The 95% confidence interval for 

overall accuracy differences between VDTW and TWDTW methods were between 

2.77% and 3.23%. (Table 19). TWDTW’s time cost improved DTW’s cross-year 

overall accuracy from 93.31% to 95.29%. The effect of window size of VDTW and 

DTW was investigated by extensive runs.  Even though window size makes a 

difference in the accuracy, VDTW was always superior.  Time series with Deep LSTM 

initially produced lower accuracies for training sample size < 20 for each class. Deep 

LSTM obtained similar overall accuracies with DTW and SAM for the training sample 

size of 50 (~%1 of samples) for each class. Moreover, shallow networks did not 

produce high accuracies compared to deep networks. 

Tests with a varying number of training samples revealed that VDTW maintained high 

classification accuracies with a fewer number of samples compared to other methods 

as shown in Figure 63. In other words, the advantage of the proposed approach is its 

ability to attain high classification accuracy independent of the training set size.  
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Partial time-series applied to VDTW also achieved similar accuracy values as the core 

method. Partial time-series, the applied version of VDTW, PVDTW, reduces the 

amount of data by using fewer data limited by time windows. These time windows are 

based on phenological differences between crops.  

RF and SVM classifiers, which use features extracted from time-series data, have 

lower performance than other methods in the tests. Performances of RF and SVM are 

lower since curve fitting is designed for single cropping and may not always fit the 

optimal curve for double cropping case. Time-series methods such as proposed 

VDTW, SAM, and DTW are robust to double cropping cases.  

Finally, the VDTW method was tested with data from Kansas. Crops in Kansas are 

distinctly grown. Same year crop mapping accuracies were high for all classifiers, as 

shown in Table 21. TWDTW method obtained highest the same-year overall accuracy 

of 99.02%, followed by VDTW and LSTM having overall accuracies of 98.74% and 

98.60%. On the other hand, VDTW resulted in higher overall accuracies than 

TWDTW by 1.72% and other methods in the cross-year tests.  

 

Figure 63: Harran dataset same-year classification results at various training sample sizes. 

 

Figure 64: Harran dataset same-year classification results at different training sample sizes.  
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Table 19: Percent average overall accuracies of proposed and compared methods with 50 samples from 

each class for the Harran Dataset. Samples are selected with the stratified random selection 

 VDTW PVDTW DTW TWDTW SAM RF SVM 
Deep 

LSTM 

Same-year 99.22 98.86 97.64 98.54 98.77 98.72 98.36 98.76 

Cross-year 98.29 97.58 93.31 95.29 94.78 94.45 92.40 94.74 

 

 

Figure 65: The Bismil dataset same-year classification results at various training sample sizes. 

 

Figure 66: The Bismil dataset cross-year classification results at different training sample sizes. 

Table 20: Percent average overall accuracies of proposed and compared methods with 50 samples from 

each class for the Bismil Dataset. Samples are selected with the stratified random selection. 
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 VDTW PVDTW DTW TWDTW SAM RF SVM 
Deep 

LSTM 

Same-year 99.90 98.99 99.89 99.94 99.94 99.46 98.55 99.88 

Cross-year 99.74 98.67 99.13 99.78 99.76 98.75 95.60 99.80 

 

Table 21: Percent average overall accuracies of proposed and compared methods with 50 samples from 

each class for the Kansas Dataset. Samples are selected with the stratified random selection 

 VDTW PVDTW DTW TWDTW SAM RF SVM 
Deep 

LSTM 

Same-year 98.38 97.57 78.53 98.63 98.42 98.35 97.91 98.30 

Cross-year 89.68 84.89 73.01 88.40 85.55 86.06 86.26 87.10 

 

The user’s accuracy and producer’s accuracy for the Harran dataset are presented in 

Table 22. User’s accuracies are similar for both crops; however, several mislabeled 

corns result in lower producer’s accuracy for corn. Both user’s and producer’s 

accuracies of cotton are over 99% in same-year tests and 98% in cross-year tests.  

Table 22: Average User’s Accuracy and Producer’s Accuracy of VDTW classification results with 50 

samples for the same-year and cross-year.  

 User's Accuracy Producer's Accuracy 

 Corn Cotton Corn Cotton 

Same-year 97.29 99.57 97.90 99.48 

Cross-year 95.28 99.16 95.73 98.72 

 

High user’s accuracy both in the same and cross-year tests show that misclassification 

percentage of corn and cotton is low. However, low user’s accuracy of corn indicates 

that 4.72% of corn is labeled as cotton in cross-year tests. Misclassification error is 

2.71% in the same-year tests. Kappa values were 0.97 for the same-year tests and 0.94 

for the cross-year tests.  

A detailed view of VDTW classification is provided in the form of confusion tables. 

The confusion matrix in Table 23 shows the number of fields that were correctly 

classified as corn and cotton with training data from the same or other years. Cotton 

was correctly classified while some percent of corn is misclassified as cotton.  
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Table 23: Average Confusion Matrix of 100 tests for VDTW Classification with 50 samples in the 

Harran Plain. Columns are observations, while rows are predictions. Years in rows are training and 

years in rows are test years.  

  
2013 2014 2015 

  
Corn Cotton Corn Cotton Corn Cotton 

2
0

1
3
 

Corn 1108 34 619 13 513 4 

Cotton 34 4201 73 4548 4 2845 

2
0

1
4
 

Corn 1158 231 622 30 514 19 

Cotton 34 4054 20 4481 3 2830 

2
0

1
5
 

Corn 1123 39 656 13 466 3 

Cotton 69 4246 36 4548 1 2796 

 

Table 24: Average Percent Confusion Matrix of 100 tests for VDTW Classification with 50 samples in 

the Harran Plain. Columns are observations while rows are predictions. Years in rows are training, and 

years in rows are test years.  

  
2013 2014 2015 

  
Corn Cotton Corn Cotton Corn Cotton 

2
0
1
3
 

Corn 97.11 2.89 97.96 2.04 99.22 0.78 

Cotton 0.79 99.21 1.57 98.43 0.15 99.85 

2
0
1
4
 

Corn 85.04 14.96 95.61 4.39 96.82 3.18 

Cotton 0.82 99.18 0.45 99.55 0.09 99.91 

2
0
1
5
 

Corn 96.67 3.33 98.06 1.94 99.45 0.55 

Cotton 1.61 98.39 0.78 99.22 0.04 99.96 

 

Table 25: Average percent overall accuracy results for the VDTW classification with 100 samples in 

the Harran Plain. 

  2013 2014 2015 

2013 99.39 97.96 96.47 

2014 97.84 99.54 99.10 

2015 98.64 98.43 99.56 

Same Year 99.5 Cross Year 98.1 

 

Classification accuracy of cotton was above 99.81% in the same-year tests and 99.64% 

in cross-year tests. The accuracy of corn was as low as 91.81% in cross-year tests in 

2016. The difference in classification accuracies was partly due to how corn is sown 

after the harvest of wheat, so a late harvest of wheat may shift the growth of corn in 

different years. On the other hand, the plantation of cotton is not dependent on other 

agricultural activities.  
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As the distinct growth times of crops in the Bismil dataset allow classifiers to reach 

high classification results, VDTW has high same and cross-year accuracies.  

Both user’s and producer’s accuracies are close to 100% (Table 26). The Cross-year 

producer’s accuracy of cotton shows that 1% of cotton classified incorrectly and 

labeled as corn. Kappa values were 0.99 for the same-year and the cross-year tests. 

Table 26: Average User’s Accuracy and Producer’s Accuracy of VDTW classification results with 50 

samples in the Bismil Plain for the same-year and cross-year.  

 User's Accuracy Producer's Accuracy 
 Corn Cotton Soybean Corn Cotton Soybean 

Same-year 99.87 99.96 100 99.98 99.70 100 

Cross-year 99.57 99.98 99.99 99.99 99.06 100 

 

The confusion matrix of the Kansas dataset is depicted in Table 27. The same year 

user’s and producer’s accuracies of corn and soybean are above 98%. However, cross-

year accuracies are lower (Table 28). VDTW mislabel 22.84% of the corn fields 

trained with 2018 data and tested with 2017 and 13.98% of soybean fields trained with 

2018 data and tested with 2017 data. Crops in 2018 were sown eight days earlier on 

average compared to 2017. This caused lower accuracies in the cross-year tests.  

Table 27: Average Confusion Matrix of 100 tests for VDTW Classification with 50 samples in the 

Kansas dataset. Columns are observations, while rows are predictions. Years in rows are training and 

years in rows are test years.  

    2017 2018 

  Corn Soybean Corn Soybean 

2
0
1
7
 

Corn 2048 142 2283 429 

Soybean 78 2855 24 2630 

2
0
1
8
 

Corn 1679 31 2224 76 

Soybean 497 3016 33 2933 

 
Table 28: Average User’s Accuracy and Producer’s Accuracy of VDTW classification results with 50 

samples for the same-year and cross-year for the Kansas Dataset.  

 User's Accuracy Producer's Accuracy 

 Corn Soybean Corn Soybean 

Same-year 98.33 99.04 98.67 98.79 

Cross-year 91.17 92.48 88.06 92.47 

 

Same year user’s and producer’s accuracies are between 98.33-99.04% (Table 28). 

However, the cross-year user’s and producer’s accuracies are up to 10% lower. Kappa 

values were 0.97 for the same-year and 0.81 for the cross-year tests.  
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5.7. Discussions 

Test results show that the proposed approach improved overall accuracy results in both 

the same-year and cross-year tests. VDTW fuses advantages of both DTW and SAM 

methods; thus, it provides flexibility in time and measurement variations: DTW can 

be flexible in time; SAM is robust to illumination changes and measurement 

differences.   

Previous work had an overall accuracy difference of 10% between same-year and 

cross-year Zhong et al. used Landsat TM and ETM+ images of 2006-2010 to classify 

maize and soybean in central USA (Zhong et al., 2014). The proposed approach also 

improved same-year crop mapping accuracies in the Harran Plain compared to 

previous object-based (Ugur Alganci, Ozdogan, Sertel, & Ormeci, 2014) and multi-

temporal (Celik et al., 2015) studies. The results with the Kansas dataset was also in 

conjunction with the previous work Zhong et al. used Landsat TM and ETM+ images 

of 2006-2010 to classify maize and soybean in the central USA (Zhong et al., 2014).  

having 9-10% accuracy difference between the same-year and the cross-year tests. 

Yearly change of cropping practices decreased the accuracy of all classification 

methods in the Kansas dataset. 

On the other hand, the VDTW method was more robust compared to other methods in 

the cross-year tests. TWDTW approach was proposed to improve DTW performance 

(Maus et al., 2016). However, it did not include changes in illumination and variations 

in measurements as in SAM or VDTW approach. Deep LSTM’s accuracy was 

improved as the number of training samples were increased. This result was expected 

as DL requires a large amount of data and fine-tuning of parameters. RF with a double-

sigmoid features approach has similar results compared to SAM and DTW methods.  

Our multiyear crop mapping approach overcame difficulties in cross-year 

classification. In addition to SG data smoothing, vegetation index values of cloudy 

data samples were interpolated. This cloud information cloning approach improved 

cross-year overall accuracies.  

NDVI and EVI were commonly used in phenological feature extraction (de Souza et 

al., 2015a) (Z. Pan et al., 2015). However, the use of MSAVI was proposed since it 

was obtained higher the cross-year overall accuracies with the use of the MSAVI. Soil 

adjusted vegetation indices, such as SAVI, include the effect of the soil line as a 

parameter; on the other hand, MSAVI computes the soil line parameter automatically. 

For this reason, the use of MSAVI further reduced variations in observation angles.  

A limited time window version of VDTW, PVDTW, achieved similar overall 

accuracies with fewer data. PVDTW enables mid-season crop classification and has 

efficient computation requirements. The partial time window method may be applied 

to other classification algorithms, such as DTW and SAM under the proposed multi-

year crop mapping approach.  

VDTW and PVDTW methods are not as vulnerable as the other methods to the paucity 

of available training data. This property is useful since an operational system can use 
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pure phenologies (as low as a single time-series signature), or it can still operate 

sufficiently with fewer temporal data samples. 

The proposed methods can also be extended to the classification of other crops, such 

as discrimination of wheat-barley, corn-soybean (Massey et al., 2017), and rice-corn 

(Tang, Zhu, Zhan, & Ding, 2018), which have overlapped phenological phases.  

The difference of the first derivative of vegetation index (VI) was evaluated as an 

alternative to angles between VI time-vectors (Górecki & Łuczak, 2014).  The 

correlation between two distinct vectors, which have different values and the same 

slopes, were different. VDTW incorporates Euclidean similarity implicitly, thus 

resulting in better discrimination.  

Missing data acquisitions in large time windows may lower multi-year crop mapping 

performances. These time windows are growth and harvest, where the changes are 

exponential rather than linear. The use of the curve fitting with the double logistic 

function or other non-linear methods may eliminate this problem.  

According to the investigations in the Harran Plain, farmers may re-sow cotton if the 

seedlings did not emerge due to drought or heavy rains. In this case, the growth of the 

cotton crop was delayed, and its phenology resembled that of corn. Another issue is 

the growing of cotton as the second crop. However, this practice is not common and 

may produce low crop yields (Çopur & Yuka, 2016).  

One last challenge for the VDTW method is that it requires more computation power 

than both DTW and SAM methods. Compared to the DTW, vector dot products are 

computed at each point instead of a simple absolute distance operation. However, 

VDTW achieved high performance with fewer training samples. It is also suggested 

using the median of training samples to generate crop mapping from training data for 

time-sensitive or large-scale applications. 

 

 

  



93 

 

 

 

 

CHAPTER 6 

 

6. CONCLUSIONS 

 

In this study, vector dynamic time warping (VDTW), a modified version of DTW, was 

developed and presented in a multi-year crop mapping approach for efficiently 

classifying crops with similar phenologies, such as corn and cotton, and other crops 

with distinct phenologies. The proposed method is based on the optimal time vector 

alignment of crop phenologies for overcoming the difficulties experienced in previous 

efforts. VDTW for crop mapping is robust against spectral and temporal shifts in 

yearly crop growths. Simulations were conducted to analyze weaknesses of both DTW 

and SAM. VDTW is developed to overcome their weaknesses and render it to both 

variations in time and illumination changes. 

VDTW method was tested with multiple crops and in separate regions yielding high 

classification accuracies. Classification of corn and cotton, which are investigated in 

this study is challenging due to the overlaps in their phenological characteristics. On 

the other hand, the crops in the Bismil Plain have distinct phenologies. Corn and 

Soybean in Kansas have partially overlapping phenologies; however, phenology of 

crops in 2018 shifted considerably compared to 2017. The proposed VDTW method 

provided the highest same-year and cross-year overall classification accuracies. The 

tests with the Kansas dataset showed that there is still room for improvement in cross-

year crop mapping. Agro-meteorological information including temperature (such as 

growing degree days) and rainfall may be employed to improve the cross-year 

accuracies.  

Another improvement of this study is employing discriminative regions for efficient 

crop classification PVDTW method uses optimal time window selection to achieve 

comparable accuracies of its base method, with less temporal data. Optimal time-

periods to discriminate against these crops are determined by the PVDTW algorithm.  

Both VDTW and PVDTW methods achieved higher classification accuracy compared 

to other methods with a limited number of training samples, thus reducing the repeated 

effort of collecting ground samples. Time constraints were analyzed DTW and 

VDTW: it is suggested to determine optimal time windows for each dataset in 

consideration.  

Various vegetation indices including, EVI, NDVI and MSAVI were compared. 

MSAVI was robust against variations in the cross-year tests. The use of MSAVI 
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contributed the cross-year accuracy in Kansas dataset since it included both Landsat 8 

and Sentinel-2 imagery as they have different BRDF attributes.  

Data smoothing improved the cross-year crop mapping performance. In addition, 

effective cloud detection is required to ensure optimal performance of VDTW in the 

cross-year setting.  

The proposed methods can also be expanded to classify other types of crops. Besides, 

the VDTW method may also be adapted to different research areas (e.g., data mining 

and speech recognition) where DTW is commonly preferred.  

The approach developed is highly suitable for crop mapping at regional scales. 

However, further additional datasets are required to expand the VDTW to countrywide 

levels. In the meantime, the proposed approach may be used to improve the accuracy 

of the Ministry of Agriculture and Forestry’s National Registry of Farmers in the near 

future for the crop types taken into consideration in this study.  
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