
DATA SHARING USING MQTT AND ZIGBEE-BASED DDS ON
RESOURCE-CONSTRAINED CONTIKI-BASED DEVICES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

TUNAHAN YILDIRIM

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

JANUARY 2020

Approval of the thesis:

DATA SHARING USING MQTT AND ZIGBEE-BASED DDS ON
RESOURCE-CONSTRAINED CONTIKI-BASED DEVICES

submitted by TUNAHAN YILDIRIM in partial fulfillment of the require-
ments for the degree of Master of Science in Computer Engineering De-
partment, Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Mehmet Halit S. Oğuztüzün
Head of Department, Computer Engineering

Prof. Dr. Mehmet Halit S. Oğuztüzün
Supervisor, Computer Engineering, METU

Examining Committee Members:

Prof. Dr. Ahmet Coşar
Computer Engineering, THK University

Prof. Dr. Mehmet Halit S. Oğuztüzün
Computer Engineering, METU

Assoc. Prof. Dr. Ertan Onur
Computer Engineering, METU

Date:10.01.2020

I hereby declare that all information in this document has been obtained
and presented in accordance with academic rules and ethical conduct. I
also declare that, as required by these rules and conduct, I have fully cited
and referenced all material and results that are not original to this work.

Name, Surname: Tunahan Yıldırım

Signature :

iv

ABSTRACT

DATA SHARING USING MQTT AND ZIGBEE-BASED DDS ON
RESOURCE-CONSTRAINED CONTIKI-BASED DEVICES

Yıldırım, Tunahan
M.S., Department of Computer Engineering

Supervisor: Prof. Dr. Mehmet Halit S. Oğuztüzün

January 2020, 108 pages

This thesis describes the implementation of data sharing among resource-

constrained IoT devices using two different middleware: MQTT(Message

Queuing Telemetry Transport) and DDS (Data Distribution Services) for Real-

Time Systems. In our setting, all IoT devices run under the Contiki operating

system. In the configuration for DDS, a pair of Texas Instruments’ MSP430

processor-based ZigBee powered Advanticsys XM1000 device is used to re-

alize data sharing between wireless sensor network devices without a server

node. In order to install and run the proposed application, Ubuntu 64-bit op-

erating system is used since it provides all the dependencies for Contiki and

wireless sensor nodes. In the DDS middleware, an example interface def-

inition is given in the XML file which contains the temperature, humidity,

light values and the data to be shared is determined by the interface defi-

nition. For sharing data, DDS components (DataWriter, DataReader, Pub-

lisher, Subscriber, Topics) are used. Two XM1000 wireless sensor nodes are

used for sharing sensor data with each other every 10 seconds. These experi-

v

murat_
Rectangle

murat_
Typewritten Text
107

murat_
Typewritten Text

murat_
Typewritten Text

ments are performed between 2 and more devices using the simulator and in

different periods. In the second part of the work, the data structure that con-

tains temperature, humidity and light values is shared via both MQTT and

MQTT-SN (MQTT for Sensor Networks) middleware. The configuration of

the MQTT middleware application works with the TCP protocol, the follow-

ing components are used: The Ubuntu-based host computer, the mosquitto

(Local MQTT server) application running on the host computer, MSP430

processor-based ZigBee powered wireless sensor node (CM5000 produced

by Advanticsys company). In addition, the Python client applications for

both publisher and subscriber are run on the host computer. These compo-

nents above are used for sharing the sensor data structure between wireless

sensor nodes which are connected to the host computer. Publisher and sub-

scriber applications share the sensor data structure in every 10 seconds over

the mosquitto server and received data is sent to the wireless sensor node

by using python subscriber application. The received sensor data structure

is sent to wireless sensor node by using the serial interface. In this im-

plementation, ZigBee radio is not used because the ZigBee module could

not be activated due to the large memory footprint of the MQTT applica-

tion. Since the Zigbee module cannot be used in MQTT application, it is

not included in the comparison. In order to run and share the data structure

that contains temperature, humidity and light values by using the MQTT-SN

middleware, RSMB (Really Small Mosquitto Broker) is installed and run on

a Linux based host computer. The devices must obtain the IP address from

the host computer to communicate with the Mosquitto server running on

the host computer. Therefore, the border-router application used to obtain

an IP address on the computer is running on wireless sensor node named

CM5000 . Another CM5000 wireless sensor node gets the IP address by us-

ing border-router application installed CM5000 wireless sensor node and can

write sensor data on RSMB by using MQTT-SN middleware installed on the

CM5000 wireless sensor node. The sensor data structure is shared in differ-

ent period of times(5,10,20,30,60 seconds) and 2 and more sensor devices. In

addition, sensor data sent from CM5000 wireless sensor node is shared with

the RSMB server running on the host computer. The shared sensor data can

vi

be viewed on the host computer by using the Mosquitto client which reads

data from RSMB. These three configurations are compared in terms of mem-

ory usage, power consumption, and bandwidth utilization. With respect to

memory usage, DDS middleware software is the least memory consuming

software. In addition, the effects of the changes made to fit the image of the

operating system on the memory usage are calculated. Similarly, it was seen

that the DDS application consumed the least power among all the applica-

tions. For MQTT-SN, power consumption could not be calculated, due to

power estimation module which could not be activated because of the lack

of memory.With the application developed using calculated raw values, the

calculation is made for MQTT-SN and the energest module of Contiki is used

for power estimation.

Keywords: Dds, Mqtt, Contiki,Interoperable,Memory Footprint

vii

ÖZ

KAYNAK KISITLARI BULUNAN CONTİKİ TABANLI CİHAZLARDA
MQTT VE ZİGBEE TABANLI DDS KULLANARAK VERİ PAYLAŞIMI

Yıldırım, Tunahan
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Mehmet Halit S. Oğuztüzün

Ocak 2020 , 108 sayfa

Bu tez, iki farklı katman yazılımı kullanan kaynak kısıtlı IoT aygıtları ara-

sında veri paylaşımının uygulanmasını açıklamaktadır: Gerçek Zamanlı Sis-

temler için MQTT (Message Queuing Telemetry Transport) ve DDS (Veri Da-

ğıtım Hizmetleri). Konfigürasyonumuzda, tüm IoT cihazları Contiki işletim

sistemi altında çalışmaktadır. DDS yapılandırmasında, bir sunucu düğümü

olmadan kablosuz sensör ağ aygıtları arasında veri paylaşımını gerçekleştir-

mek için bir çift Texas Instruments’ın MSP430 işlemci tabanlı ZigBee des-

tekli Advanticsys XM1000 cihazı kullanılmıştır. Uygulamanın kurulumu ve

çalıştırılması için, Contiki ve kablosuz sensör düğümleri için tüm bağımlı-

lıkları sağladığı için Ubuntu 64-bit işletim sistemi kullanılır. DDS arakatman

yazılımında, sıcaklık, nem, ışık değerleri içeren XML dosyasında örnek bir

arayüz tanımı verilmiştir ve paylaşılacak veriler bu arayüz tanımı tarafından

belirlenir. Veri paylaşımı için, DDS bileşenleri (DataWriter, DataReader, Pub-

lisher, Subscriber, Topic) kullanılır. İki XM1000 kablosuz sensör düğümü,

sensör verilerini her 10 saniyede bir birbirleriyle paylaşmak için kullanılır.

viii

murat_
Rectangle

murat_
Typewritten Text
107

murat_
Typewritten Text

murat_
Typewritten Text

Bu testler, simülatör kullanarak 2 ve daha fazla cihaz arasında ve farklı pe-

riyotlarda gerçekleştirilir. Çalışmanın ikinci bölümünde sıcaklık, nem ve ışık

değerleri içeren veri yapısı hem MQTT hem de MQTT-SN (Sensör Ağları

için MQTT) ara katman yazılımı ile paylaşılıyor. MQTT ara yazılımı uygu-

lamasının yapılandırması TCP protokolüyle çalışır ve aşağıdaki bileşenler

kullanılır: Ubuntu tabanlı ana bilgisayar, ana bilgisayarda çalışan mosquitto

(Yerel MQTT sunucusu) uygulaması, MSP430 işlemci tabanlı ZigBee destekli

kablosuz sensör düğümü (MSP430 işlemci tabanlı) Advanticsys firması tara-

fından üretilen CM5000). Ayrıca, hem yayıncı hem de dinleyici için Python

istemci uygulamaları ana bilgisayarda çalıştırılır. Yukarıdaki bu bileşenler,

sensör veri yapısını ana bilgisayara bağlı olan kablosuz sensör düğümleri

arasında paylaşmak için kullanılır. Yayıncı ve abone uygulamaları, sensör

veri yapısını mosquitto sunucusu üzerinden her 10 saniyede bir paylaşır ve

alınan veriler python abone uygulaması kullanılarak kablosuz sensör düğü-

müne gönderilir. Alınan sensör veri yapısı da seri arayüz kullanılarak kablo-

suz sensör düğümüne gönderilir. Bu uygulamada, ZigBee modülü, MQTT

uygulamasının yüksek bellek ihtiyacınedeniyle ZigBee modülü etkinleşti-

rilemediğinden kullanılamaz.MQTT uygulamasında Zigbee modulü kulla-

nılamadığından dolayı karşılaştırılmaya dahil edilmemiştir. MQTT-SN ara

katman yazılımını kullanarak sıcaklık, nem ve ışık değerleri içeren veri ya-

pısını çalıştırmak ve paylaşmak için RSMB (Really Small Mosquitto Broker)

Linux tabanlı bir ana bilgisayara kurulup çalıştırılır. Cihazlar, ana bilgisa-

yarda çalışan Mosquitto sunucusuyla iletişim kurmak için ana bilgisayardan

IP adresini almalıdır. Bu nedenle, bilgisayarda IP adresi almak için kullanılan

yönlendirici uygulaması CM5000 adlı kablosuz algılayıcı düğümde çalıştırı-

lır. Başka bir CM5000 kablosuz sensör düğümü, CM5000 kablosuz sensör

düğümünü yükleyen yönlendirici uygulamasını kullanarak IP adresini alır

ve CM5000 kablosuz sensör düğümüne yüklenen MQTT-SN ara yazılımı

kullanarak RSMB üzerindeki sensör verilerini yazabilir. Sensör veri yapısı

farkı sürelerde 2 veya daha fazla sensör düğümü arasında paylaşılır. Ayrıca,

CM5000 kablosuz sensör düğümünden gönderilen sensör verileri, ana bilgi-

sayarda çalışan RSMB sunucusuyla paylaşılır. Paylaşılan sensör verileri, ana

bilgisayarda RSMB’den veri okuyan Mosquitto istemcisi kullanılarak görün-

ix

tülenebilir. Bu üç yapılandırma hafıza kullanımı, güç tüketimi ve bant geniş-

liği kullanımı açısından karşılaştırılmıştır. Bellek kullanımıyla ilgili olarak,

DDS arakatman yazılımı en az bellek tüketen yazılımdır. Ek olarak, işletim

sisteminin görüntüsünün cihazlar üzerine yüklebilmesi için yapılan deği-

şikliklerin bellek kullanımı üzerindeki etkileri hesaplanmaktadır. Benzer şe-

kilde, DDS uygulamasının tüm uygulamalar arasında en az gücü tükettiği

görülmüştür. MQTT-SN için bellek yetersizliği nedeniyle etkinleştirilemeyen

güç tahmin modülü nedeniyle güç tüketimi hesaplanamaz. Bu nedenle bu

modül tarafından hesaplanan ham değerler kullanılarak geliştirilen uygu-

lama ile MQTT-SN için de hesaplamalar yapılır. Contikinin "Energest mo-

dülü" güç tüketimi tahmini için kullanılır.

Anahtar Kelimeler: Dds, Mqtt, Contiki, Birlikte Çalışabilirlik,Hafıza Kulla-

nımı

x

To my family..

xi

ACKNOWLEDGMENTS

I would like to express my inmost gratitude to my supervisor Prof. Dr.Halit

Oğuztüzün for his patience, vision and understanding throughout this the-

sis. I am also indebted to Assoc.Prof Ertan Onur for his knowledge, ideas

and motivation. I also would like to thank my parents, sister and my aunt

Sevgi Yıldırım for their love and support.

xii

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . viii

ACKNOWLEDGMENTS . xii

TABLE OF CONTENTS . xiii

LIST OF TABLES . xvii

LIST OF FIGURES . xix

LIST OF ABBREVIATIONS . xxii

CHAPTERS

1 INTRODUCTION . 1

1.1 Problem Statement . 1

1.2 Approach . 4

1.3 Improvements . 6

2 BACKGROUND INFORMATION AND RELATED WORK 9

2.1 Contiki . 9

2.1.1 Operating System . 9

2.1.2 Energest Power Module 10

2.2 MSP430 Based Telosb Mote . 10

2.3 Zigbee . 11

xiii

2.4 Data Distribution Service . 12

2.5 MQTT . 14

2.6 Mosquitto . 15

2.7 MQTT-SN . 16

2.8 Literature Survey on DDS Gateway for Resource-Constrained
Enviroments . 17

2.9 Literature Survey for MQTT . 19

3 IMPLEMENTATION AND METHODS 21

3.1 Dataset . 21

3.2 Proposed Methods and Models 22

3.2.1 DDS . 22

3.2.1.1 Installing Contiki Development Environment for
Sensor DDS . 22

3.2.1.2 Tailoring DDS Software and Enabling Zigbee Gate-
way for Contiki OS 23

3.2.1.3 Creating Source Code for MSP430 based Telosb
Motes for Sensor DDS 25

3.2.1.4 Building and Creating a binary file from source
code . 26

3.2.1.5 Sequence Diagram for Sending Sensor Data 28

3.2.1.6 Output of the Demo application 29

3.2.2 MQTT-SN . 31

3.2.2.1 Installing Contiki Development Environment for
MQTT-SN . 31

3.2.2.2 Using MQTT-SN for Sharing Sensor Data 31

3.2.2.3 General Structure 32

xiv

3.2.2.4 Installing RSMB on Ubuntu OS 33

3.2.2.5 Burning Node ID for Border-Router 33

3.2.2.6 Installing Border-Router on Telosb Mote 34

3.2.2.7 Running Tunslip for SLIP Server 35

3.2.2.8 Creating Binary File and Sending Data 37

3.2.2.9 Running Simulation on Cooja 38

3.2.2.10 Running Application on Real Hardware 40

3.3 Encountered Difficulties and Their Resolution 43

3.3.1 Sensor DDS . 43

3.3.2 MQTT . 44

3.3.3 MQTT-SN . 44

3.4 Power Consumption Calculation for Sensor Sharing Applica-
tions . 45

4 RESULTS AND DISCUSSION . 47

4.1 Result of Memory Optimization for DDS application 48

4.1.1 Memory Optimization for Changing Network Macros . . 49

4.1.2 Changing Energest Module on XM1000 Mote 49

4.1.3 Prevent From Initializing Variables and Printing String . 49

4.1.4 Disabling Process Name 50

4.1.5 Configuration for Power Consumption 50

4.1.6 Result Table . 50

4.2 Result of Memory Optimization for MQTT-SN application . . . 51

4.2.1 Memory Optimization For Changing Network Macros . 52

xv

4.2.2 Disabling Process Name 52

4.2.3 Prevent From Initializing Variables and Printing String . 52

4.2.4 Changing Energest Module on Sky Mote 53

4.2.5 Enable Energest Module Without Self Calculation 53

4.3 Result for Power Consumption 53

4.3.1 Result for Tailored DDS on XM1000(Two Nodes) 54

4.3.2 Result for Tailored DDS on CM5000(Two Nodes) 64

4.3.3 Result for Tailored DDS on CM5000(Three nodes) 66

4.3.4 Result for MQTT . 69

4.3.5 Result for MQTT-SN . 70

4.3.6 Result for Two Nodes MQTT-SN Communication 70

4.3.7 Result for Three Nodes MQTT-SN Communication . . . 80

5 CONCLUSION AND FUTURE WORK 91

REFERENCES . 93

APPENDICES

A MAKEFILE FOR SENSORDDS . 97

B INTERFACE DEFINITION FOR DDS 101

C READING SERIAL DATA . 103

D CREATING DDS OBJECTS . 105

E OPTIMIZING MEMORY FOR MSP430 107

xvi

LIST OF TABLES

TABLES

Table 3.1 The calculation of the values by using sensor data. [1] 22

Table 3.2 The macro definitions for energest module 46

Table 4.1 The meaning of the MSP430 flags 49

Table 4.2 The Memory Usage of The Sample DDS Application 51

Table 4.3 The Memory Usage of The MQTT-SN Application for Only

Temperature Sensor . 53

Table 4.4 Average power consumption in microwatt for interval 5 sec-

onds . 54

Table 4.5 Average power consumption in microwatt for interval 10 sec-

onds . 57

Table 4.6 Average power consumption in microwatt for interval 20 sec-

onds . 59

Table 4.7 Average power consumption in microwatt for interval 30 sec-

onds . 60

Table 4.8 Average power consumption in microwatt for interval 60 sec-

onds . 61

Table 4.9 Expected life time for DDS application(XM1000 Two Nodes) . 64

Table 4.10 Expected life time for CM5000(Two Nodes) 66

xvii

Table 4.11 Expected life time for CM5000(Three Nodes) 69

Table 4.12 Average power consumption for MQTT in milliwatt 69

Table 4.13 Average power consumption in microwatt for interval 5 sec-

onds . 70

Table 4.14 Average power consumption in microwatt for interval 10 sec-

onds . 74

Table 4.15 Average power consumption in microwatt for interval 20 sec-

onds . 75

Table 4.16 Average power consumption in microwatt for interval 30 sec-

onds . 76

Table 4.17 Average power consumption in microwatt for interval 60 sec-

onds . 77

Table 4.18 Expected life time for MQTT-SN(Two Nodes) 80

Table 4.19 Average power consumption in nanowatt for interval 5 seconds 81

Table 4.20 Average power consumption in microwatt for interval 10 sec-

onds . 84

Table 4.21 Average power consumption in microwatt for interval 20 sec-

onds . 86

Table 4.22 Average power consumption in microwatt for interval 30 sec-

onds . 87

Table 4.23 Average power consumption in microwatt for interval 60 sec-

onds . 87

Table 4.24 Expected life time for tested periods 90

xviii

LIST OF FIGURES

FIGURES

Figure 2.1 Telosb Motes XM1000 [2], CM5000 [3] 11

Figure 2.2 General structure for DDS [4] 14

Figure 2.3 MQTT general connection architecture 15

Figure 2.4 MQTT-SN Architecture [5] 17

Figure 2.5 DDS-XRCE architecture [6] 18

Figure 3.1 Build process for sensor DDS 27

Figure 3.2 Sequence diagram for sending data 28

Figure 3.3 Overall block diagram . 29

Figure 3.4 Receiving data from XM1000 Mote1 30

Figure 3.5 Receiving data from XM1000 Mote2 30

Figure 3.6 The General Structure For MQTT-SN 32

Figure 3.7 Running server on telosb sensor node 36

Figure 3.8 The web interface of Tunslip6 36

Figure 3.9 Sequence diagram fomgr border-router 37

Figure 3.10 Adding a sky sensor node to border router application

on Cooja simulator . 39

Figure 3.11 Running sensor node as a server 40

xix

Figure 3.12 The sequence of publishing data 42

Figure 3.13 The output of the mosquitto client application 42

Figure 3.14 Changing the path values 44

Figure 4.1 The total power consumption in milliwatt in first 400 sec-

onds for CPU . 62

Figure 4.2 The total power consumption in milliwatt in first 400 sec-

onds for LPM . 62

Figure 4.3 The total power consumption in milliwatt in first 400 sec-

onds for TX . 63

Figure 4.4 The total power consumption in milliwatt in first 400 sec-

onds for TX . 63

Figure 4.5 The total power consumption in milliwatt in first 450 sec-

onds for CPU . 64

Figure 4.6 The total power consumption in milliwatt in first 450 sec-

onds for LPM . 65

Figure 4.7 The total power consumption in milliwatt in first 450 sec-

onds for TX . 65

Figure 4.8 The total power consumption in milliwatt in first 450 sec-

onds for RX . 66

Figure 4.9 The total power consumption in milliwatt in first 450 sec-

onds for CPU . 67

Figure 4.10 The total power consumption in milliwatt in first 450 sec-

onds for LPM . 67

Figure 4.11 The total power consumption in milliwatt in first 450 sec-

onds for TX . 68

xx

Figure 4.12 The total power consumption in milliwatt in first 450 sec-

onds for RX . 68

Figure 4.13 The total power consumption in milliwatt in first 450 sec-

onds for CPU . 78

Figure 4.14 The total power consumption in milliwatt in first 450 sec-

onds for LPM . 79

Figure 4.15 The total power consumption in milliwatt in first 450 sec-

onds for TX . 79

Figure 4.16 The total power consumption in milliwatt in first 450 sec-

onds for RX . 80

Figure 4.17 The total power consumption in millwatt in first 450 sec-

onds for CPU . 88

Figure 4.18 The total power consumption in milliwatt in first 450 sec-

onds for LPM . 89

Figure 4.19 The total power consumption in milliwatt in first 450 sec-

onds for TX . 89

Figure 4.20 The total power consumption in milliwatt in first 450 sec-

onds for RX . 90

xxi

LIST OF ABBREVIATIONS

API Application Programming Interface

CoAP Constrained Application Protocol

CPU Central Processing Unit

DDS-XRCE DDS for Extremely Resource Constrained Environments

DDS Data Distribution Service

IOT Internet of Things

IP Internet Protocol Address

LPM Low Power Mode

M2M Machine to Machine

MQTT-SN MQTT For Sensor Network

MQTT Message Queuing Telemetry Transport

OMG Object Management Group

QOS Quality of Service

RAM Random Access Memory

RIME Radio Interface Module

ROM Read Only Memory

RSMB Really Small Mosquitto Broker

RTI Real Time Infrastructure

RTPS Real Time Publish Subscribe

RX Receive

SDDS Sensor Data Distribition Service

SNPS Sensor Network Publish

TCP Transmission Control Protocol

xxii

TX Transmit

UDP User Datagram Protocol

USB Universal Serial Bus

XML Extensible Markup Language Subscribe

xxiii

xxiv

CHAPTER 1

INTRODUCTION

1.1 Problem Statement

Today applications are developed by using various software languages and

can be run on many different systems. In many usage scenarios, communica-

tion between devices and systems is required. The disintegration of systems

led to the development of the concept of discrete systems. The main pur-

pose of this thesis is to run the DDS(Data Distribution Service) protocol on

systems that use less memory and fixed memory space. DDS can be defined

as a middleware standard for interoperable, data-centric publish/subscribe

architectures with real-time capabilities [7]. DDS normally provides secure

data transfer over ethernet. In this thesis, it is aimed to update the DDS pro-

tocol for tailoring data and convert the DDS middleware to a gateway that

can be run on ZigBee by using a sensor node that uses Contiki operating

system. Studies are developing data distribution service as middleware ac-

cording to the Object Management Group (OMG) DDS standard. The OMG

Data-Distribution Service for Real-Time Systems (DDS) is the first open in-

ternational middleware standard directly addressing publish-subscribe com-

munications for real-time and embedded systems [7]. The DDS differs from

client-server applications because of several features. The most significant

difference between DDS and client-server applications is the requirement of

the usage of the centralized server which receiving data from clients and the

server replies every request with a response message. Client-server architec-

ture is generally used for web applications. On the contrary, a previously

defined data structure, Interface Definition Language (IDL), is used for the

1

client-server architecture. Common data structures are created according to

the definitions in the IDL file format. Data exchange can be successfully

performed when these structures are compatible with each other. The data

is written via a publisher and the data is read via a subscriber. By making

adjustments about parameters of Quality of Service (QoS), DDS events can

be customized to identify problems about DDS clients and data sharing be-

tween clients. The general concept is that each application has a data writer

to send data that is specified in IDL. Also, the subscriber component uses the

DDS component, DataReader, to read data from other nodes according to the

DDS topic. When data is shared between nodes by using DDS middleware,

data transfer takes place only through logical structures such as topics and

QoS parameters. Incompatible logical structures are ignored by DDS. Also,

each device communicates over a certain domain number which helps to iso-

late the domain from other domains to avoid miscommunication. In this the-

sis, devices have ZigBee modules to convert and modify Real Time Publish

Subscribe (RTPS) packages to smaller packages which are called Sensor Net-

work Publish-Subscribe (SNPS) packet [8]. In this thesis, the SNPS packet

format is modified to be able to use DDS middleware on ZigBee devices.

The aim of the usage of the modified SNPS packet format is data commu-

nication with the radio interface of Contiki devices, packages, and network

layer which is changed to send as a ZigBee packet. The DDS data packets are

exchanged with nodes through a radio interface to achieve a successful data

transfer. To find and define the differences (memory footprint, advantages,

use cases), the performance results of this thesis are compared with Mes-

sage Queuing Telemetry Transport (MQTT) which is a machine-to-machine

(M2M)/"Internet of Things" connectivity protocol. MQTT is designed as an

extremely lightweight publish/subscribe messaging transport. The MQTT is

useful for connections with remote locations where a small code footprint is

required and network bandwidth is effectively used [9].

When resource-constrained operating systems are compared, it appears that

Tiny-OS is the least resource-consuming operating system. However, it is

predicted that the Contiki operating system would be suitable for applica-

2

tions developed throughout the thesis. Tiny OS cannot be multitasked, in-

sufficient in terms of flexibility and preemptive multi-threading and doesn’t

support the pure C programming language [10].

Firstly, it is aimed to install tailored DDS middleware on sensor node models

which have very low RAM and ROM resources by using the ZigBee model

on sensor node instead of using ethernet. To achieve this goal, efforts are

given to minimize memory footprints. To optimize the memory footprint of

the device, it is possible to load on the device by changing the configura-

tion data of the related platform (Contiki), adding optimization flags of the

compiler and optimizing the memory on the Contiki operating system. The

procedures will be discussed in Section 3.

Secondly, it is aimed to evaluate various data sharing schemes in resource-

constrained environments. The steps are required to install and use this

software will be explained in Section 3. A sample code compatible with the

CC2538 model has been produced by Texas Instrument to use the MQTT

via Contiki. This example could not be run on the existing devices because

the CC2538 model has approximately four times more RAM and ROM re-

sources. As a solution, the data is sent to python software by using the serial

communication port. The middleware receives the incoming data from the

MQTT server and sends the data constructed from the related topic data

structure to the MQTT server. Meanwhile, a second client application which

is implemented in python listens to the data and periodically share data.

The data is transferred to the device via the serial communication port. Al-

though the data reading event on Sky sensor node is available, the data is

not received. To fix this problem, changes are made in the data reading

mechanism.

Then, it is aimed to reduce the memory footprints by using the User Data-

gram Protocol (UDP) instead of the Transmission Control Protocol (TCP) for

the MQTT packets. To achieve this, it is decided to use the MQTT For Sen-

sor Network (MQTT-SN protocol) which is a derivative of MQTT. For the

MQTT-SN experiments, the memory overflow problem is observed in the

3

memory footprint. To solve this problem, the operating system and com-

piler settings are changed and the memory problem is fixed. To ensure IP

connectivity between devices, the aforementioned CM5000 device controller

must work with webserver support by using the rpl-border-router which is

one of the examples of IPv6 projects under Contiki applications. Otherwise,

the IP connection can not be established. The XM1000 (sensor node) device

had problems with getting the IP address, therefore XM1000 [2], is simulated

with the Cooja [11] simulator by using the sky sensor node platform. Then,

the sensor node sends to the other nodes by using the topic structure that

has the same structure with the data which is sent over DDS. Details will be

explained in Section 3.

1.2 Approach

Compatible low-power Telosb [12] nodes that have radio interface are ex-

amined to run the DDS and MQTT middleware on the Contiki operating

system. In this thesis, the devices produced by Advanticsys are used. These

devices are Advanticsys XM1000 [2] and CM5000 [3] nodes. The sample

DDS application is installed on devices that have ZigBee radio chips. Both

XM1000 and CM5000 are kind of Telosb sensor node that has temperature,

humidity, light and battery sensors. These values which are received from

sensors are collected and stored into a data structure that is sent by using

data distribution service. These devices (XM1000 and CM5000) have very

low RAM and ROM resource usage. Both devices have MSP430 based pro-

cessors. The XM1000 [2] device has 114KB ROM and 8KB RAM, while the

CM5000 [3] has 48KB ROM and contains 10KB of RAM. XM1000 uses the

Zigbee adapter to send moisture, temperature and light status to the other

devices. Because of the lack of available memory on RAM and ROM, the bi-

nary file for a device could not be loaded via bootstrap in the default setting.

Also, overflow error messages are written on the bootstrap loader console.

To resolve the memory overflow obstacle, the changes on platform-conf un-

der the platform folder related to the device. Platform files for the Con-

4

tiki operation system are downloaded via Texas Instruments(TI)’s website

and downloaded files are moved to the Contiki operation system’s platform

folder. The changes related to macro is done by using this platform-conf

file. When changes are done SNPS packet for ZigBee, firstly macros related

to IPV6 set as 0 for disabling IPV6 support. The memory overflow problem

still exists while creating binary images for tailored DDS, the latest version of

MSP430 is not available on the Linux repositories. The latest version(4.6.3)

on Ubuntu repositories couldn’t support 20-bit registers. Because of this,

a newer version is downloaded for github [13] and this memory-efficient

version reduces the RAM and ROM size. Compiler flags that provide opti-

mization to reduce RAM and ROM usage are added to the corresponding

makefile. However, uploading the binary file to the device is not successful.

Besides, a project-related configuration file shall be set by disabling or chang-

ing unnecessary components. For example, TSCH log level, TCP and UDP

settings, values for routing tables and neighboring tables, process strings can

be activated by using a platform configuration file, therefore memory space

can be gained by optimizing or disabling Contiki macros. Optimization is

applied for the byte values occupied by members held in the source code,

initial values are removed in source code to reduce the RAM size. Both the

MQTT part and the DDS part are tuned according to the methods above

and the reference [14]. In the first part of the thesis, the DDS application is

modified for ZigBee after adapting DDS for the radio interface. The second

problem is found while trying to upload DDS software to the sky sensor

node. Makefile is updated for building the DDS project for MSP430 CPU ar-

chitecture. All dependencies for(sensor source file and DDS source files) are

added to the makefile by overriding makefile templates, as a result of this the

exceptions related to memory messages seen in the terminal window. These

problems are fixed by applying the methodologies defined above. Applica-

tion is uploaded to devices and data exchange operations successfully done.

The second implementation is related to MQTT. Similar to the DDS sensor

data application, the makefile was created to install the MQTT software on

the sensor nodes, and the configuration settings were updated similar to

methods mentioned in the part related to DDS software. However, despite

5

these changes, the binary file could not be loaded to the device because TCP

and UDP could not be turned off in the MQTT software. In the first at-

tempt of MQTT, the data obtained from the serial port was transmitted to

the mosquitto server which is running on the Linux computer via the client

software running on the same computer and the data exchange between the

two sensor devices is made. In the third stage of the thesis, a data structure

was created using MQTT-SN. infrastructure produced by IBM for sensor net-

works that can work with MQTT. MQTT-SN uses UDP and not TCP for its

transport [15]. UDP is a connectionless protocol whereas TCP is connection

orientated. Also, the arrangements on memory usage applied in other stages

were made in this software. Updated memory sharing of the corresponding

processor structure under MSP430 because of overflow on the RAM. These

changes will be discussed later in the thesis. Thus, a certain portion of the

empty ROM was assigned as ram and the corresponding software could

be loaded onto the device. For the server, a python-based MQTT-SN com-

patible version of the server was installed and connected with MQTT was

achieved. Contiki operating system uses a java-based Cooja simulator which

has features for adding nodes by using binary file and these nodes will be

added to the cooja’s panel. Ip configuration for the sensor nodes is provided

by the border-router application. The simulation is firstly run on the cooja

simulator then run in real devices for testing.

1.3 Improvements

There are several improvements mentioned in the items defined above.

-In current implementation modified DDS software only supports on data

available option, on liveliness lost, on sample lost and other necessary QoS

features will be added if memory footprint is enough to enable these fea-

tures

-The complete version of MQTT will be run on real devices using Contiki

operating system instead of the client python program running on the com-

puter.

6

-RTI and opensplice are announced the resource constraint version of DDS

software. Data read from sensors will be sent M2M by using this lightweight

DDS software versions and memory footprint will be compared if the binary

file fits the sky sensor nodes.

7

8

CHAPTER 2

BACKGROUND INFORMATION AND RELATED WORK

2.1 Contiki

2.1.1 Operating System

Contiki is an open-source operating system for the Internet of Things [11].

Contiki, a lightweight operating system with support for dynamic load-

ing and replacement of individual programs and services. Contiki is built

around an event-driven kernel but provides optional preemptive multithread-

ing that can be applied to individual processes [16]. The Contiki operating

system requires very low system resources, therefore it has worked in har-

mony with most resource-constraint devices. Also, the operating system is

compatible with most of the wireless sensor network devices. Even if the

platform doesn’t exist in the platform folder under the Contiki-OS source

folder, the platform will be easily ported for a new device because of the

flexibility of Contiki OS. The ported source code for the platform is moved

under the platform folder. The code can be built for the newly added plat-

form by changing the target device. Contiki is designed for low-cost, low-

power microcontrollers also serve the cooja simulator to test an application

without installing the real device. This simulator is configurable for devices

with specific processor architecture, the developed code can be tested with

the simulator without being installed on the device. On the instant Con-

tiki virtual computer provided by Contiki, all programs required to install

the operating system to the device are installed by default. Since it is open-

source, it is possible to make flexible changes to the files in the operating sys-

9

tem. The Contiki operating system supports Ipv4 and Ipv6 and RIME(radio

interface support). Devices using the Contiki operating system can easily get

an IP address with the border-router project under the example folder of the

operating system. Although the operating system has a very small memory

footprint, it can run multiple operations at the same time. Libraries that al-

low data to be easily received from the sensors on the device are available

in the operating system’s source code. It is possible to optimize the memory

footprint by setting values that will not be used or diminished through the

configuration file of the device.

2.1.2 Energest Power Module

Another topic to be compared in the thesis is power consumption. For power

consumption, Contiki offers the energest module. In the power consumption

calculation, the power consumption of the devices is calculated with the val-

ues presented in the datasheet of the device (voltage, current), other values

CPU tick number, transmit, receive values. Using this feature, the hourly

power consumption of the applications which are implemented in the thesis

will be compared in the following chapters.

2.2 MSP430 Based Telosb Mote

AS-XM1000 and MTM-CM5000-MSP models produced by Advanticsys are

used to install the software in this thesis. Since the used devices have a USB

interface, they can be easily installed via the serial communication interface

of the Linux operating system. These devices support Contiki and TinyOS

operating systems, these platform files can be reachable by the website of the

products [2] [3]. The devices use the first and second-generation versions of

the MSP430 processor. Both devices have a ZigBee radio. Devices can be

used wireless as there is a battery compartment on them. There are also

temperature, humidity and light sensors on the device. Besides, the battery

status of the Contiki operating system can also be queried. It can get IPv6

10

addresses by using a router through USB.

Figure 2.1: Telosb Motes XM1000 [2], CM5000 [3]

2.3 Zigbee

Zigbee is commonly used in wireless sensor networks. When sensor net-

works are wired, data sharing is more secure and faster, but wireless sensor

networks come to the forefront because of the easy installation. The IEEE

802.15.4 wireless data standard developed by the Zigbee alliance is used.

The Zigbee module uses energy better than other wireless data standards

and operates affordably and securely. Besides, the high density of the node

network is provided by Zigbee. Compared to the estimated battery life, Zig-

bee can work for years, while Bluetooth can work for days and wireless can

work for hours. In addition, Zigbee requires 4-32 KB, Bluetooth requires 250

KB and wireless requires around 1MB memory space [17]. Although Zigbee

has the lowest data transmission speed, the Zigbee is sufficient in the ap-

plications used in the thesis. Range varies between 10-100 meters according

to environmental factors. The data transmission rate is 250kb / second for

2.4 GHz, at a slower rate than other wireless devices; however, this speed is

sufficient for transmitting sensor data. Also, the interference detection fea-

ture is used for reliability. It calculates Packet Error Range for interference

detection [18].

11

2.4 Data Distribution Service

The DDS (Data Distribution Service) is a kind of middleware protocol and

API(Application Programming Interface) standard for data-centric connec-

tivity from the OMG(Object Management Group) [19]. Today, there are

many DDS implementations developed by various communities. OMG aims

to produce a solution that can be used on all versions by partnering with

the methods used on DDS QoS. Another important feature of DDS is that

it is a middleware that can be used by many software languages. The in-

teroperability feature of the DDS middleware stands out when compared to

similar protocols. The DDS middleware is a software layer that abstracts

the application from the details of the operating system, network transport,

and low-level data formats. The same concepts and APIs are provided in

different programming languages allowing applications to exchange infor-

mation across operating systems, languages, and processor architectures [7].

The DDS is more secure in comparison to socket APIs because the data type

is defined. When DDS compares with web services, web services do not

provide data type reliability because they use HTTP and XML protocols. In

addition, web services must be configured before a connection can be es-

tablished. In addition, QoS settings can be done more flexibly on DDS. [20]

All entities are shown in Figure 2.2 must be created for realizing the secure

data sharing scenario. The main element of the DDS model is the partici-

pant, every component which is used in DDS software is created by using

the participant component. While the user can create many participants on

the same computer, DDS allows the creation of participants on different com-

puters. In order for the communication to take place, users must be on the

same network, their quality of service settings should be the same and data

connection between participants shall be successful, all data writer and read-

ers shall be matched and all participants have to be in the same domain. The

communication of the devices or computers with each other is possible with

the use of a common data structure. The software developing communities

create data structures that can be used in the application layer in the software

language of the user by taking the file containing the data structures in IDL

12

format as input. Each participant should have the same structure. Also, the

datawriters of each data structure can be adjusted to QoS. For example, if it

is data that is continuously updated and does not pose a problem in case of

data hijacking, it might be reasonable to use the best-effort method instead

of reliable in the QoS properties of data losses. If the data is of critical im-

portance, the relevant option is selected as reliable, and in case there is no

data in the Qos events, it subscribes to an event and informs the participant

about this situation and makes it operate accordingly. The inform event is

also configurable by specifying the timeout period. Data is read over struc-

tures named DataReader and data is sent from the DataWriter structure to

the relevant domain. A topic structure is created for any data that is sent

and written. There are cases where different topics with the same data struc-

ture can be produced. For example, suppose that two separate temperature

data are received from the telosb models used in the Contiki operating sys-

tem, the first device measures the CPU temperature and the other device

measures the atmospheric temperature. Both data structures listen to the

data structure related to temperature information on different topics and

data readers, as a result of this prevents from creating an extra separate data

structure for the same data. The data published in the DDS domain is sent

by DataWriters. Similar to data readers, the quality of service settings is

configurable for DataWriters. DDS middleware can inform on_sample_lost,

on_subscription_lost and other similar events that are helpful in different use

cases. Data readers can read data in two different ways. These are handled

in two ways: Listener-based data access and Wait-based data access [21]. If

there is a change in all subscribed QoS events in the Listener-Based version,

the component that listens to either DataWriter or DataReader will notify the

every event changes separately about the data transfer. In the version with

WaitBase, one or more event information comes with a single message. The

component notifies the user when the desired event information is acquired.

Guard conditions are predefined when creating the component which read

data and quality of the service events, therefore the user is only notified

when the desired event information changed or new data is available. The

overall architecture can be seen in Figure 2.2

13

.

Figure 2.2: General structure for DDS [4]

2.5 MQTT

MQTT is a low-resource protocol that runs on devices with resource prob-

lems using publish-subscribe logic. This protocol includes a central server

service. The service structure used on MQTT can be either a mosquitto

server running on a local network or a Watson platform developed by IBM

can be used. It is the duty of sending the messages from the server to the

subscribers who listen to the messages published on it. This protocol, which

is running in the application layer, performs message transfers using TCP/IP.

The devices communicating in this structure do not have to recognize each

other directly. Internet of Things is useful for the Publish-Subscriber struc-

ture because the sent data can be transmitted to all devices on the same net-

work. Besides, any small delays while sending sensor data will not cause any

problems. Data can be received from sensor nodes by using topic names. For

reading the data sent on MQTT, the predefined topic name must be created

similar to DDS. Applications that listen to the MQTT server can communi-

cate with each other if they have the same topic name as the sender. The

topic is used to make it more specific separating names with "/" character.

If we try to give an example of the sensors we use, if we assume that the

microcontroller measures both atmospheric temperature and CPU temper-

ature, only CPU data can be read by using the "temperature/CPU" topic.

14

If the subscriber wants to read all the temperature data under this topic, it

can access all the temperature data using the temperature/# topic. Similar

wildcard expressions can also be used as a topic structure. If multiple data

is sent, REST structures such as JSON and XML can be sent over MQTT.

Figure 2.3: MQTT general connection architecture

2.6 Mosquitto

Mosquitto is a server application that performs a publisher-subscriber struc-

ture for MQTT protocol [22]. The mosquitto software developed by Eclipse

has an interface that allows you to start the mosquitto server automatically

when the computer is opened. The log messages from the server can be seen

from the terminal application. The mosquitto server can be run on a local

network with the desired port(default 1883) and address, the mosquitto pub-

lisher writes data with specific topic name data to mosquitto server via the

terminal interface and mosquitto_sub component of mosquitto listens to the

data on the specified topic from the mosquitto server. Mosquitto_sub can be

configurable for desired data by giving the topic name if the user wants to

read all data subscribed from the server, the mosquitto_sub reads the topic

name with # character for reading all data.

15

2.7 MQTT-SN

Although the MQTT protocol is used for resource-constraint devices, data

sharing on some devices are still not possible due to the size of the mem-

ory footprint. For this reason, the MQTT-SN platform has been developed

specifically for sensor networks working on UDP instead of TCP [15]. Be-

sides, the connection between MQTT-SN and MQTT protocol is provided by

establishing a connection with RSMB on the Mosquitto server. Both server

applications run interoperable. In this thesis MQTT-SN application realiz-

ing the data transfer with MQTT-SN through the mosquitto server. Unlike

MQTT, resources are used to consume less energy at lower bandwidth. First

of all, the link message is translated into three messages. Connection mes-

sages are sent via a topic named "Will". Topic names are implemented with

2 bytes instead of string notation. For the devices with power problems, all

messages are stored on the server and used to send messages to the devices

that are reopened [5].

16

Figure 2.4: MQTT-SN Architecture [5]

2.8 Literature Survey on DDS Gateway for Resource-Constrained Envi-

roments

The DDS version developed by Opensplice and RTI works on powerful de-

vices. However, the Contiki operating system used in the writing of the

thesis could not be ported in two versions due to its size. Similarly, these

two DDS distributors are working to reduce the memory footprint. RTI

microprocessor-level DDS micro version for the operation of DDS has been

released. [23]. This version only aims to use less memory space by imple-

menting the basic features of DDS. In the current implementation, the set-

tings related to the operating system can be defined generically, thus provid-

ing the possibility to port to other operating systems in the future. Currently,

FreeRTOS supports Windows, VxWorks operating systems, but part of how

to port to other operating systems is available on the document [24]. It is

not possible to work on the device used for the thesis with its current size.

A similar operation can be created when the package is sent via ZigBee af-

17

ter the port operation for Contiki is completed. Similarly, the Lite version

of OpenSplice aims to reduce the memory footprint of the DDS. Although

it can go down to 200kb in size, it is not possible to install it again on the

Contiki operating system due to the files needed for the sensor. Another so-

lution is similar to the client-server software described in the beginning. In

this solution produced by EProsima micro, low-source devices can join the

DDS topology by exchanging data with the xrce-server as a client. Currently,

Linux, Windows and Nuttx operating systems are used. It can be handled

in future jobs by porting in accordance with Contiki [25]. The DDS-XRCE

standard used by eprosima and RTI was also published by OMG [6]. Simi-

larly, SDDS software has modified beyond the standards specified by OMG

DDS to create a separate packet structure for sensor networks. This software

provides limited support for RIOT, Linux, Contiki, and Tiny-OS. The exist-

ing software supports devices with Avr processor architecture in the Contiki

operating system. At this stage of the thesis, the code generated for the Avr

processor will be updated to run for the MSP430 architecture. Also, Contiki

will be added to the operating system and the makefile where the required

files for DDS are compiled again for the MSP430 processor architecture. Fi-

nally, the packet structure sent over ethernet will be sent over ZigBee and

data communication will be provided.

Figure 2.5: DDS-XRCE architecture [6]

18

2.9 Literature Survey for MQTT

MQTT is an open-source standard developed by IBM. As it is known, when

using the MQTT protocol, TCP is used for providing and realizing the reli-

able transmission of packets. The most effective implementation for embed-

ded systems is discussed in the referenced document. It is observed that the

complexity and memory usage of the protocol increased when Qos levels in-

creased. Also, the increase in Qos levels led to a slowdown in the time taken

for data transfer. [26]. In this article, the differences with CoAP (Constrained

Application Protocol) are examined in terms of memory usage. These two

protocols differ in terms of TCP usage. If data transfer is performed in an

environment where message loss is high, it is understood that MQTT comes

to the fore. In another article, the MQTT-SN version of UDP used in the net-

work layer was examined by updating the MQTT protocol to be used more

effectively on devices with resource shortages of [15] memory space. HTTP

and MQTT in the article comparing the similarities of MQTT with QoS levels

were examined. QoS1 (Assured transmission) has been mentioned to have

one-to-one similarities in terms of communication with HTTP and reliabil-

ity. Since MQTT is an asymmetric protocol, it is mentioned that it consumes

fewer resources and has more performance. CoAP and MQTT [27] for smart

home systems are examined and the similarities of these two protocols to

HTTP are mentioned. It has been mentioned that MQTT comes to the fore

by consuming 5 times less power than HTTP. According to CoAP, it is ahead

in both power and security issues.

19

20

CHAPTER 3

IMPLEMENTATION AND METHODS

3.1 Dataset

The XM1000 telosb sensor node which is produced by Advanticsys [12] com-

pany is decided to run the tailored DDS version for the sensor sharing on the

Contiki operating system via Zigbee protocol instead of the UDP protocol.

A similar device called CM5000 sensor node which is produced by the same

company has the same sensors(temperature, humidity, light) on the board.

The MQTT version of the sensor data transfer is run on the CM5000 telosb

sensor nodes. Both sensor nodes have a reset button on the board, the ap-

plication restarts at the time when the button is triggered. The devices also

have an input button which receives input from user and triggers a button

press event, the SHT11 humidity, temperature and light sensors are available

on the board. Data received from sensors are shared with either serial com-

munication interface or radio interface on the sensor node. In the thesis, data

obtained from the sensors using the modified version of the DDS software

and MQTT will be shared on the devices. It is planned that the LEDs on the

device are lit each time data is received. Since the device has Sht11 sensors,

meaningful data are obtained according to the datasheet of these sensors and

the web site of the official Contiki repository [1].

21

Table 3.1: The calculation of the values by using sensor data. [1]

Value Formula

Temperature (Temperature Sensor Value* / 10) - 396) / 10

Light 10 * LightSensor Value / 7

Humidity Same Humidity Value

Before the data is received, the sensors to be received via the Contiki operat-

ing system are activated and then received and processed in a loop.

3.2 Proposed Methods and Models

3.2.1 DDS

3.2.1.1 Installing Contiki Development Environment for Sensor DDS

The Contiki operating system is characterized by dynamic loading and un-

loading of code compared to other operating systems, allowing multiple op-

erations, and thus distinguished from other similar operating systems. Also,

being open-source provides accessibility advantage [28]. Operations can in-

teract with each other and decide when to proceed. It is also important that

the code developed with the cooja simulator can be used independently of

the actual hardware for the selection of the operating system. The Contiki

operating system can be used and applications could be developed via the

instant Contiki virtual machine, where all platform data of the operating

system is pre-loaded. However, there is a need for more space to try sample

applications related to the thesis. Besides, a more optimized loading of the

code requires version 4.7.3 of the compiler for MSP430. Ubuntu 16.04 64 bit

version was used during the development of the sample applications since

this version only supports 64-bit architecture and could be downloaded via

Github. 4.7.3 version of the MSP430 software was downloaded from [13] at

22

the given reference. Since the latest version of this application was down-

loaded from the ubuntu repository, 4.6 was used when compiling the code.

Ubuntu uses a default version of the MSP430, so the memory footprint prob-

lem persists while developing a sample application.

1 sudo visudo

2 edit secure path value similar to first

3.2.1.2 Tailoring DDS Software and Enabling Zigbee Gateway for Con-

tiki OS

Sensor DDS software includes DataReader, DataSink, DataWriter, History,

Locator, Topic, and SNPS package structure, which is converted RTPS into

a smaller package. By sending the UDP packet over the network structure,

data can be shared over DDS via Linux and other operating systems. The

part used over UDP has been removed from the Contiki operating system

by using configuration file or makefile. All components mentioned above

are initialized in the first part of the software produced. To talk about the

operation briefly, the topic that is produced by reading the contents of the

XML file is initialized. To reduce memory footprint and provide much space

on RAM and ROM, the variables are used at the core of the Contiki operating

system and SDDS software-related source files are updated. The first change

is done in loops uint8_t containing 1 byte is used instead of the integer value

of 4 bytes. The components are used in data sharing with DDS via ZigBee,

these components are briefly mentioned below.

• DataSink: First checks whether the incoming data in the SNPS pro-

tocol has the correct structure. In a normal implementation, this data

is received via UDP, while in the updated version it is received via the

Zigbee package. For Zigbee devices to communicate, both the same do-

main and the same channel must communicate. DataSink first checks

the software version. During this check, convert the incoming byte

value using the Marshaling class and check the version value. If this

23

value is different from the expected value, the message is ignored and

the next message is checked. The second byte of the protocol specifies

the length of the other bytes in the message packet. The third byte con-

tains the domain address. Only devices within the same domain can

communicate in the DDS protocol. Therefore, it compares the domain

value in the incoming message with the domain value in the listening

application; if the value is the same as the expected value, the message

is accepted and the remaining byte values are converted to message

structure. The message structure is identified by topic id which is de-

coded in the SNPS package. Since the devices that broadcast and listen

to the data use the same data structure, the order of the data in the

message structure must be same order. The text and numeric values

are contained in the byte array. This value is decoded in the same way

and converted into a meaningful string and numeric values.

• DataReader: This class created by Datasink is adding the incoming

data to the history class. History class data is stored in a list and the

oldest element of this list is read by the data reader with the data-

available event. The incoming data can be viewed via the ubuntu ter-

minal via the serial interface.

• DataWriter: A new locator is created for each data to be sent via Pub-

lisher. The DataWriter class also uses the SNPS package to create the

data. The deadline event can also be set via the project macros. For

example, if the deadline event is active, then the data has not been re-

ceived for a certain period. However, in the exemplary embodiment

developed, this structure is not active. The compatibility of the gen-

erated SNPS package with the UDP is checked in normal implemen-

tation. This part has been modified to check its suitability with the

ZigBee package. The size of the data is calculated and sent according

to the protocol.

• Zigbee Network Component: The component reads the Zigbee packet

24

from a predefined channel, the component is bind to DataSink. Incom-

ing packages are forwarded to DataSink and locators are created in

this component. These components also used as a network layer. The

datawriter directly sends the data through this component. The cur-

rent position of the data, buffer length and other values are retrieved

from data by using the netbuff component. Significant data is retrieved

from this class, these data are copied into the byte array to be sent, and

created data is sent using the ZigBee radio interface.

• SNPS: The SNPS component is used for writing domain id, parsing

and reading sub-messages from SNPS data. It also contains self meth-

ods to discard data, read data and addresses. For the Zigbee gateway

reading channel, the feature is added to this component. All read-

/write operations on data are realized in this component.

• Marshalling: The marshaling component is used for encoding and

decoding the integer and text values.

3.2.1.3 Creating Source Code for MSP430 based Telosb Motes for Sensor

DDS

As described in section 2 of the DDS, a code structure is created according to

the specified data structures. During the generation of this code, the appli-

cation specified on the reference was used. SDDS [8] software is configured

over XML and converted into meaningful code fragments by GSL(Generator

Scripting Language) [29]. The history depth, number of locators, buffer size,

publisher and subscribers will be configurable through the XML file in Ap-

pendix D. Generated source codes are created the root directory of the script.

The GSL script is updated for Contiki and MSP430 architecture. The refer-

ence paths are also updated and Makefile’s first and second level versions

are generated. In this sensor sharing example the following files are auto-

generated:

25

• sensor_data-ds

• sensordata_test_publisher

• sensordata_test_publisher_imp

The topic details are defined in another XML file. Topic names are referenced

in the sdds.xml file by using include tag and the path of the file. This file

contains the variables in the structure. The telosb sensor nodes have a tem-

perature, humidity and light sensors. To share these pieces of information,

the topic structure created and defined in the sensordata.xml file. The con-

tent of the XML is seen as below. The device id is defined as a primary key

for every device. The data will be identified by the device id and these ids

are predefined in source code. Also, the domain id and topic id are defined

in the same XML file in Appendix B.

To explain briefly, the type of temperature value, light, humidity, and device

id are DDS_Short.

3.2.1.4 Building and Creating a binary file from source code

SDDS currently runs on only avr-based microprocessors. The data fields, the

method of creating a binary file, a compiler for gcc and some extra changes

are required to build and create a binary file. Besides Zigbee related files

are added and SDDS types are added for msp430 architecture. The default

makefile could be accessible to the platform folder of the device. In the sam-

ple application, the rule defined in default makefile is overridden in some

cases. The makefile is seen in the code block below. The compiler cc flag

is set as gcc-msp430 which version is 4.7.3. In the makefile in Appendix

A, both SDDS and Contiki operating system makefiles are included. The

Contiki operating system can use the makefile under the platform accord-

ing to the specified Target value. Binary file creation is done by adding a

26

dependency to files related to SDDS and Zigbee binary file in makefiles and

the related files could be compiled in this architecture. In Msp430 version

4.7.3, SMALL = 1 is assigned to ensure that the produced binary file is op-

timized for memory space. IPV6 is also set as inactive to reduce memory

footprint. The platform target can be configured through the TARGET vari-

able to support both devices (XM1000 and sky sensor nodes). Because the

application name of a binary file to be created is defined as a variable, when

this name is to be changed, the code is generated in a well-formed structure

automatically. In XM1000 and sky platform files, the production of binary

files consists of the same stages. Since the main difference between the two is

caused by the target name, this value is set to depend on the target variable

on the makefile. Both devices can compile the code with the same infrastruc-

ture. An installer script file is prepared to upload the generated file to the

devices. This script file decides which device to load by giving the number

of devices with the MOTES variable. The motes value starts at 1 in contrast

to the array index numbering which starts from 0. The sequence diagram of

the build process is given in figure 3.1 below. The final state of the sequence

diagram is the creation of the binary file. Detailed information about the

meaning of special characters used in the makefile is found in the referenced

link [30].

Figure 3.1: Build process for sensor DDS

27

3.2.1.5 Sequence Diagram for Sending Sensor Data

Figure 3.2: Sequence diagram for sending data

In the previous sequence diagram, it is mentioned how to create a binary file.

This section shows how the sensor data is received and sent by the telosb

sensor node. Roughly, the first sensor reads over the sensors, processes the

data and converts them into meaningful values. This data is filled per the

data structure by using the topic and sent via the ZigBee packet by adding

the device id, domain id and topic ids and topic which are specified as hard-

coded. Another telosb sensor node that listens to the same domain captures

this incoming data and inserts that data into the DataHistory. The data

reader reads the incoming data and prints it to the terminal, thus completing

the data transfer.

28

Figure 3.3: Overall block diagram

The overall block diagram and dependencies of the components could be

seen in Figure 3.3.

3.2.1.6 Output of the Demo application

In the exemplary application, a separate configuration is prepared for both

devices on the makefile. The two devices broadcast data to each other, the

device IDs 1 and 2 are assigned to both devices. Humidity, temperature, and

light values are shared in the data sent. The data extracted from the serial

interface is formatted and printed on the screen via the terminal. Data shar-

ing can be seen from the following figures.

29

Figure 3.4: Receiving data from XM1000 Mote1

Figure 3.5: Receiving data from XM1000 Mote2

30

3.2.2 MQTT-SN

3.2.2.1 Installing Contiki Development Environment for MQTT-SN

The TCP network stack version of MQTT could not be installed on the device

(XM1000 and CM5000) even though the configuration file related to Contiki

and the macros defined on the project were updated. To solve this problem,

it was decided to use MQTT-SN [15] software for sensor networks that use

UDP instead of TCP. The other change is related to the topic name. It doesn’t

use the full name of the topic name, the number equivalent two-byte values

are used as the topic id for both client and server sides. Also, the connect

message of MQTT is divided into three parts and the QoS level is defined as

0. The mosquitto server is not compatible with MQTT-SN. The Really Small

Message Broker [31] and Mosquitto are using together in a new project called

Eclipse mosquitto. It is compatible with the mosquitto server, this feature

provides interoperability with mosquitto, the data sent by MQTT-SN will be

received by an MQTT client.

3.2.2.2 Using MQTT-SN for Sharing Sensor Data

In the previous section, data exchange over MQTT was attempted by com-

municating with the mosquitto server over the devices. Due to the use of

MQTT TCP and QoS (Quality of Service) features, efforts were made to re-

duce the memory footprint, but not enough reduction was achieved. In this

step, it is aimed to provide communication over the device by using special-

purpose MQTT-SN for sensor networks. In the same way, data exchange

and listening of data can be done via the mosquitto server. However, in this

stage, the Really Small Message Broker [31] application can communicate

with mosquitto and work properly with MQTT. The RSMB is low power

consuming and works better for sensor devices. It has a memory space of

approximately 200 kb. RSMB supports the MQTT-SN protocol and can inter-

pret UDP messages. However, it can also connect to mosquitto by establish-

ing a bridge function with the MQTT protocol. The commands necessary

31

to establish the connection will be explained in detail under the following

headings. In addition to this, the telosb mode has to be an IP address to

achieve communication with RSMB and Mosquitto. The sample under the

sky platform will be modified and the border-router application shall be run

before the run MQTT-SN protocol. The other sensor node gets the IP address

by using the border-router. Also, a cooja simulator is used for using mul-

tiple publishers and subscribers. The details of the border-router and other

settings are also mentioned in the following headings [32].

3.2.2.3 General Structure

Before going into detail, the following illustration shows the communication

of all components used in the topology. Sky Mote 1 provides a connection

to the operating system using the border router application, while the other

sky sensor node shares the sensor data by connecting with the computer via

this device. To successfully transmit this sensor data, it must be transferred

over the serial interface via RSMB.

Figure 3.6: The General Structure For MQTT-SN

32

3.2.2.4 Installing RSMB on Ubuntu OS

The mosquitto.rsmb software is downloaded the following link given [33] the

reference. The downloaded files are extracted in a directory. The root direc-

tory is opened and the working path is changed as source code directory and

the following code snippets are executed. Assume that the command prompt

working in the root of RSMB download from the link in the reference. The

most important point to note here is that in the version used for MQTT, 1883

works by default. Since this port is used each time the computer is turned

on, mosquitto’s program id is taken from the programs running using the

following commands and the program running with the corresponding id

value is terminated.

Listing 1 Running RSMB server

1 cd /rsmb/src

2 sudo ./broker_mqtts config.mqtt

If the output of the RSMB contains the port is already using error message

the mosquitto shall be closed before running this server application. The

commands below are used for receiving program id and the program con-

tains the program id is killed for running RSMB properly.

Listing 2 Killing Mosquitto server before running RSMB

1 ps -ef | grep mosquitto

2 sudo kill xxx \\ xx defines the PID value.

3.2.2.5 Burning Node ID for Border-Router

For the border router to work properly, the node id value must be assigned.

To assign the node value, the #include "sys/node-id.h" header file must be

33

added to the Contiki operating system’s example border-router code. Imme-

diately after starting the process, this value can be determined by calling the

node_id_burn (id) method. The node value will also be assigned during the

compilation and uploading image process described in the next stage.

3.2.2.6 Installing Border-Router on Telosb Mote

To get IP over the network of telosb sensor node devices, the border-router

application should be used. This application allows the device to receive IP

over the serial interface. After the IP reception process is completed, other

devices are added to the network via this device. The sample has been up-

dated for makefile serial ports on the border-router application. Once this

application is installed on one of the devices, it should be started as a server

with tunslip6. The sample application provides a web interface for view-

ing other nearby devices. Also, routing addresses can be accessed via the

web interface of the border router. The following code snippets are used for

active serial interfaces. The tunslip use the serial interface as a parameter

then start the device as a server. The memory footprint problem reappears

when the web interface is activated. If the CM5000 model is taken as an

example, the memory.x file under opt/compilers/ msp430/lib/ldscripts/

msp430f1611 needs to be updated. The last folder shows the architecture

of the CPU. Since this field requires admin privileges, changes should be

made by opening memory.x file with admin privileges. The updated mem-

ory file is seen in Appendix E. The memory area ram (wx) and rom (rx) are

rearranged by calculating the required memory area. The problem is related

to overflow in the ROM memory area. This file is updated by reducing the

RAM and increase the ROM memory area. The end of the memory address

could be calculated by adding origin and length. The connect-router inter-

face is updated by using a border-router makefile. The serial address of the

device is queried with the python script below.

34

Listing 3 Listing serial ports using python

1 python -m serial.tools.list_ports

All active serial ports are seen the output of the command. The program

uses the following command to install on telosb sensor node. The result of

the Python command is the current active serial interfaces. The current serial

interface is given as a parameter to the command used to load the border-

router. The usage is seen in the code snippet below. The communication

port of the serial interface is assigned to the MOTES variable.

Listing 4 Uploading border router image

1 sudo make border-router.upload TARGET=sky MOTES=/dev/ttyUSB2

2 sudo make sky-reset && sudo make connect-router_ttyUSB0 #_devId

When there is no error message occured by uploading image stage, the xxx

bytes is uploaded message seen at the end of the process.

3.2.2.7 Running Tunslip for SLIP Server

The source code of the existing Contiki operating system contains tools

folder and the tunslip6 is accesible in tools folder. With make tunslip6 com-

mand, this application is compiled and made executable. This executable

application is used to establish a connection with the border-router. In the

example above, the following line of code is executed in order to run the

device with border-router as a server.

Listing 5 Running server bu using tunslip6 tool

1 make tunslip6

2 ./tunslip6 -s /dev/ttyUSB2 aaaa::1/64

35

When the application is successfully started, the output shall be similar to

Figure below. The webpage of the server is accesible through the first ipv6

address on Figure 3.9

Figure 3.7: Running server on telosb sensor node

In Figure 3.10, nearby devices and route information can be accessed using

the server IP address that is run on the tunslip.

Figure 3.8: The web interface of Tunslip6

In the sequence diagram indicated in the figure below, the compilation of the

code, loading it on the device after compiling, running the code loaded on

the device with tunslip application and transferring the incoming messages

to the network using serial interface are discussed.

36

Figure 3.9: Sequence diagram fomgr border-router

3.2.2.8 Creating Binary File and Sending Data

In contrast to the full version MQTT application, the application which uses

the MQTT-SN protocol has been successfully installed on, CM5000 telosb

sensor node. MQTT-SN protocol uses UDP and little changes have been

made to the package structure to reduce memory-footprint. Similar to the

DDS application, an infrastructure has been prepared to send sensor data

using the MQTT-SN library in the reference [34]. Every 10 seconds, sensor

data is sent to the RSMB via the border router. To listen to the sent data, the

mosquitto client libraries that were previously established are used. When

the border-router application runs on the XM1000, it tries repeatedly to get

IP over the server, but it fails. Instead of this device a new virtual sky sensor

node, cooja simulator load application as an MQTT client. For listening to

all data transfer the client library application, mosquitto_sub, is used to trace

data changes. The command is given below is used for listening to all topics

37

using the following command.

Listing 6 Running mosquitto subscriber for all topics

1 mosquitto_sub -t "#" -v

The simulator cooja could be built and run the directory below. The tools

folder under the root directory of Contiki source code. The simulator is run

by using the following commands.

Note: Assume that command prompt shows the root directory

1 cd tools

2 ant run #wait until build finish

3.2.2.9 Running Simulation on Cooja

In the previous chapters, two binary files were created to send data via

border-router and MQTT-SN. In the first part, a binary file of the border-

router application is loaded into one of the virtual telosb sensor nodes to

verify this structure. After this application, the serial server menu is entered

under tools and the server starts to listen with port number 60001. The tun-

slip6 application installed in the previous sections. The server is run when

the following command is executed. In the command, the IP equivalent ad-

dress of the localhost (127.0.0.1) is used.

38

Listing 7 Running tunslip6 on localhost

1 sudo ./tunslip6 -a 127.0.0.1 aaaa :: 1/64

Thus, the web interface can be accessed from the IP address of the server.

Adding a new device updates neighboring devices and route information

via the web interface. After the RSMB has been checked successfully as

described in the previous sections, a binary file is uploaded to the devices

that send sensor data using the MQTT-SN protocol. The binary file creates

topics and listens to MQTT-SN events. The sensor values are sent by using

the temperature topic. The sequence of creating a simulation for sending

temperature data through Cooja is mentioned below. The RSMB shall be run

before the simulation is started. In the first stage, the border-router image is

added to the Contiki network.

Figure 3.10: Adding a sky sensor node to border router application on Cooja

simulator

Secondly, applications that send sensor data to the medium using MQTT-SN

should be added. In the same way, the sensor type is selected as the sky and

the devices are added next to the server device with border-router installed.

39

To run the border router application, the listen port feature of the server

device must be started. The server starts broadcasting with local tunslip

commands under the "Creating Binary File and Sending Data" section. The

simulation starts with the addition of newly added virtual devices. Sensor

data can be accessed via the outputs of the devices.

The newly added sensor node is selected from the serial settings(SERVER)

option under the settings menu of the cooja. The listening process starts

from port 60001, which is set as default.

Figure 3.11: Running sensor node as a server

Secondly, applications that send sensor data to the environment using the

MQTT-SN protocol must be added. In the same way, the sensor type is se-

lected as the sky and the devices are added next to the server device which

border-router installed. To run the border router application, the listen port

feature of the server device must be started. The server starts broadcast-

ing with using local tunslip commands under the "Creating Binary File and

Sending Data" section. The simulation starts with the addition of newly

added virtual devices. Sensor data can be accessed via the outputs of the

devices. All data traffic on the network can be listened to by using the

mosquitto_sub command.

3.2.2.10 Running Application on Real Hardware

Sky sensor nodes [3] that communicate successfully on simulation are com-

municating on real hardware in this section. In this case, a border-router

40

application is installed on one of the devices and then the IP address acqui-

sition and server installation process is completed by using a tunslip appli-

cation under the tools folder in Contiki OS. First, the MQTT-SN connection

is used with the second device where the temperature data is installed. As

the default value MQTT-SN application runs through 1884, the configura-

tion on the program is set to Qos level 1 and the port value is set to 1884.

After activating the sensors on the device programmatically, the obtained

data is converted to meaningful values and sent to the application where the

MQTT-SN server is running via border-router. This server also listens port

1883 in MQTT data. The incoming data can be read by both a third device

and mosquitto_client. For the border router application to work in harmony

with the Linux operating system, the serial interface information to which

it is connected must be given as a parameter. It can automatically run the

tunslip6 interface with the related command by adding recipe information

for the serial port on the makefile.

41

Figure 3.12: The sequence of publishing data

The figure above shows the sequence diagram illustrating the messages sent

and received by the sky sensor node and the data received by the RSMB

server. In addition to this when all flow diagrams are successfully per-

formed, the following output is shown by the mosquitto client.

Figure 3.13: The output of the mosquitto client application

42

3.3 Encountered Difficulties and Their Resolution

3.3.1 Sensor DDS

The platform files of the XM1000 developed by advanticsys company, which

are used for the thesis, are not installed by default on the Contiki operating

system. To resolve this problem, the platform files on the device’s website

were downloaded via the link in the reference [2]. In the example applica-

tion using the SHT11 [1] sensor doesn’t work properly in default, because

the sensors could not be found, the missing parts of the SHT11 sensors were

copied from the files under the sky sensor node and made available to the

relevant telosb sensor node via Contiki. The bootstrap loader for XM1000 is

not compatible with a newer version of the python library. The older version

of platform files is used for providing compatibility.Besides, DDS middle-

ware could not be installed due to the memory problem. To resolve the

problem, the newer version of the MSP430 compiler is installed. However,

the Ubuntu operating system uses the 4.6.3 version that is available on the

Ubuntu repository. The newer version couldn’t be installed on the 32-bit op-

erating system. Therefore the customized OS for Contiki OS(InstantContiki)

couldn’t be used. The newer version(MSP430 4.7.3) is only available for 64-bit

architecture and installed on the 64-bit Ubuntu operating system. Makefile

uses the older version of the because the path values show the binary files

for the older version. For using the newer version of MSP430, the sudovise

and /.bashrc files are edited with new path values for MSP430 4.7.3 to run

applications with the newer version. The command below shall be run be-

fore the application start for a normal user. The basic package components

will be seen in the Figure below.

43

1 gedit HOME/.bashrc

2 export PATH=PATH:/opt/compilers/mspgcc4.7.3/binary

/opt/compilers/mspgcc4.7.3/binary is an absolute path.

It will be changed according to the path on computer

Figure 3.14: Changing the path values

In some cases, the applications shall be run as sudo user. When the appli-

cation starts with a superuser, the path values couldn’t be visible and the

program couldn’t be run as expected. To resolve the path problem for a su-

peruser the code below is applied for sudo user. By applying these changes,

the program can be installed on the XM1000 wireless sensor node. With ver-

sion 4.7.3 of MSP430, the application cannot be installed on the CM5000, and

an error occurs due to register support problems. To solve this problem, only

the temperature sensor is activated and compiled with version 4.6.3 without

20-bit register support. In the MSP430 folder under the cpu folder of the

Contiki operating system, the compilation process is completed by replac-

ing CC(Compiler binary path) LD(Linker path) variables with binary files of

version 4.6.3.

3.3.2 MQTT

The bootstrap loader uses the python-based bootloader. This bootloader

version is compatible with an older version of the serial library, the python

serial library which is part of the bootloader is updated with a new interface.

3.3.3 MQTT-SN

The server used for the MQTT-SN application shares the same port as the

server used for the MQTT. Therefore, unused server software must be closed.

44

3.4 Power Consumption Calculation for Sensor Sharing Applications

The Contiki operating system is used to receive sensor data via the both

sensor DDS software, MQTT and MQTT-SN. Energest module is used on

Contiki operating system to calculate energy consumption on devices with

resource constraints. The operations of this module can be accessed via ref-

erence [35]. The power consumption can be calculated by using the macros

given in the table below and the current and voltage values specified on the

data documents of the devices.

PCPU =
(Current ∗Voltage ∗ EnergestValueCPU)

RTIMER ∗ IntervalTime
(31)

PLPM =
(Current ∗Voltage ∗ EnergestValueLPM)

RTIMER ∗ IntervalTime
(32)

PTRANSMITTER =
(Current ∗Voltage ∗ EnergestValueTX)

RTIMER ∗ IntervalTime
(33)

PRECEIVER =
(Current ∗Voltage ∗ EnergestValueRX)

RTIMER ∗ IntervalTime
(34)

PTOTAL = PTRANSMITTER + PRECEIVER + PCPU + PLPM (35)

PBATTERY = Current ∗Voltage (36)

The total power and current values of the two batteries used in the test are

7.5W. The equations above are used in calculating hourly and total power

consumption and these formulas shall be defined and implemented for all

three implementations to compare power consumption results. The cal-

culation is done for CPU, LPM, TX, and RX. For testing the relation of

message sending period and power consumption, the tests are done for

a period of 5,10,20,30,60 seconds. The output of the sensor nodes is redi-

rected to the text file, the developed java application processes this data and

creates charts for all units(CPU(Central Processing Unit),LPM(Low Power

Mode),TX(Transmit),RX(Receive)).

45

Table 3.2: The macro definitions for energest module

ENERGEST_TYPE_CPU The CPU is active.

ENERGEST_TYPE_LPM The CPU is in low power mode.

ENERGEST_TYPE_DEEP_LPM The CPU is in deep low power mode.

ENERGEST_TYPE_TRANSMIT The radio is transmitting.

ENERGEST_TYPE_LISTEN The radio is listening.

In order to use the required module for energy calculation, energest module

must be activated on contiki-conf.h file. To use the energest module, the file

defined in the below shall be included the project under tools directory of

the Contiki OS.

Listing 8 Including makefile for Power Module

1 include $ (CONTIKI) /tools/powertrace/Makefile.powertrace

2

Listing 9 Activating the Energest module via configaration file

1 #ifndef ENERGEST_CONF_ON

2 #define ENERGEST_CONF_ON 1

3 #endif /* ENERGEST_CONF_ON */

4

46

CHAPTER 4

RESULTS AND DISCUSSION

The first objective of the thesis is installing the applications successfully us-

ing DDS and MQTT protocols by optimizing memory usage. Several meth-

ods have been used to reduce memory usage [14]. Some of these are exam-

ined as follows.

• Instead of assigning the initial values of the variables defined in the op-

erating system, the assignment operator could not be performed and

the automatic value assignment is realized as 0. Value assignment op-

erations in the operating system are updated all the source codes in

this way.

• The components in the Contiki operating system such as IPV6 and TCP

and UDP features can be activated and deactivated by the predefined

macros.

• The third solution is updating the MSP430 version. When the DDS

application is run lower versions(4.6.3 and below), the binary file for

an application cannot be compiled because of overflow on ROM and

RAM.

• The fourth solution is made on the "ENERGEST" library, which is used

to measure the energy use of the devices. When this library is dis-

abled, resulting in a significant memory reduction in ROM and RAM

usage. This library is activated or deactivated by defining a macro in

the project config file.

• As a fifth solution, less RAM and ROM space have been achieved by

47

using the following commands on the compiler. For these values to

work, the commands specified in the MSP430 file using the SMALL

value in the makefile are implemented. By using the "#define TSCH

LOG CONF LEVEL 0" macro, the log operations are closed and mem-

ory gain is achieved.

The changes mentioned in the examples have been used in applications re-

quired to transmit sensor data.

4.1 Result of Memory Optimization for DDS application

Since the Zigbee package will be used, the following commands must be

updated on platform-conf.h or makefile. The size of the binary file is cal-

culated using the SMALL = 0 command on the makefile, This means no

optimization commands are used in the first step. In this case, ROM over-

flowed by 8362 bytes error causes the binary file not to be produced. Since

the binary file could not be generated, SMALL = 1 value is set on the make-

file to run optimization settings. With the execution of this command, the

created binary file is optimized and memory-footprint is reduced. Changing

parameter SMALL triggers the execution of the following commands for the

MSP430 makefile under the Contiki CPU folder.

1 CFLAGS += -ffunction-sections

2 LDFLAGS += -Wl,--gc-sections,--undefined=_reset_vector__,

3 --undefined=InterruptVectors,--undefined=_copy_data_init__

4 ,--undefined=_clear_bss_init__,--undefined=_end_of_init__

5 \caption{Optimization flags for MSP430}

Other commands are used to reset the fields used on memory areas on the

processor.

48

Table 4.1: The meaning of the MSP430 flags

Command Effect

ffunctionsections switch to tell the compiler not to mix functions

that could be referenced externally
–gc-sections switch telling the linker to do garbage collection

and discard unreferenced routines

4.1.1 Memory Optimization for Changing Network Macros

When UIP_CONF_TCP and UIP_CONF_UDP are active since the modules

specified in the DDS application are included, there is still an overflow issue

on the memory area and no binary file is generated. When the values given

above are set as 0 on changing Project-conf.h file, the problem of overflow in

the memory space is resolved.

In this case, a total of 41617 bytes can be loaded onto the device using a

binary file.

4.1.2 Changing Energest Module on XM1000 Mote

The Energest module is used to access the power information of the device.

This module is modified via project-conf.h. To make this change, the com-

mand ENERGEST_CONF_ON 0 must be assigned. In the tests performed

after the change, it was observed that a 40491-byte size binary file was gen-

erated.

4.1.3 Prevent From Initializing Variables and Printing String

Assigning the first value on the Contiki caused data to accumulate on the

data area on the memory. If the initial value is not assigned, the data is

marked as 0 and thus did not cause data accumulation. As a result of the

modification of the entire operating system and the sample application, an

49

area of approximately 100 bytes was achieved. When the string values are

written via the serial interface, there was an area loss of approximately 18

bytes for each value. During the development of the code, a large area ac-

quisition was achieved by removing the codes intentionally for debugging

the source code.

4.1.4 Disabling Process Name

Another memory space is obtained by not using the process names during

the program start. The process name is only used to show the user and does

not cause any problem in the execution of the code.

In the exemplary application, #define PROCESS_CONF_NO_PROCESS_NAMES

has been set to 1, decreasing to software size 41345 bytes.

4.1.5 Configuration for Power Consumption

The size of the binary file used for calculating power consumption is 42699.

In order to use the power calculation module, the Energest module shall

be activated. The power calculation method and a string print function are

called for this binary file. The compiler optimization flag is used by defini-

tion of SMALL=1 and process name is disabled by changing configuration

file similar to 4.1.4.

4.1.6 Result Table

The changes and effect on the tailored DDS version are obviously seen in

Table 4.2

50

Table 4.2: The Memory Usage of The Sample DDS Application

Change Text Data Bss Dec

Define SMALL= 0 Overflow Overflow Overflow Overflow

Define SMALL= 1 38149 126 3342 41617

Define ENERGEST=

0

37109 126 3256 40491

DEFINE TSCH LOG

CONF LEVEL 0

38149 126 3342 41617

Disable Print(4.1.3) 38097 126 3342 41565

Disable TCP and

IPV4

38105 126 3340 41571

Disable Process c

Name

37889 114 3342 41345

Configuration for

Power Calculation

39217 125 3356 42699

4.2 Result of Memory Optimization for MQTT-SN application

Even though the above changes are made for the MQTT application, it could

not be installed on Sky sensor node because of the size of the TCP packet.

Similar to the DDS application, the device is loaded using the above meth-

51

ods to reduce the memory footprint. Also, the border-router application

could not be installed on the device with default values. The installation

was achieved by changing the memory areas in memory.x file(Appendix E)

under the compiler folder. The changes for DDS are applied for MQTT-SN.

Two situations are considered in this software when calculating the results.

Firstly, it is calculated only for the case where the temperature sensor is acti-

vated, and secondly, it is calculated for the case where the temperature and

humidity sensor are activated together. The memory size is queried by ’size’

command.

4.2.1 Memory Optimization For Changing Network Macros

Since the MQTT-SN application provides communication over UDP, there is

no need to use TCP protocol. The TCP macro value is initialized with value

0 for disabling this module. With the deactivation of TCP, a binary file of

48175 bytes was created. However, in the case of the temperature sensor is

active, a binary file could not be generated due to overflow error on ROM.

4.2.2 Disabling Process Name

In the exemplary application, #define PROCESS_CONF_NO_PROCESS_NAMES

has been set to 1, decreasing to software size 47933 bytes. However, in the

case of the temperature sensor is active, a binary file could not be gener-

ated due to overflow error on ROM. But the amount of 250 bytes is saved by

disabling process name.

4.2.3 Prevent From Initializing Variables and Printing String

When the change in title is made, 74 bytes of memory space gain is achieved

on both applications. However, change doesn’t allow the production of bi-

nary files when the state in which both temperature sensors are used.

52

4.2.4 Changing Energest Module on Sky Mote

In addition to the other changes, deactivation of the Energest module re-

sulted in a large amount of memory gain. Thus, when temperature sensor

and humidity sensors are used, a binary file containing 55903 bytes can be

generated and uploaded to the device.

4.2.5 Enable Energest Module Without Self Calculation

Changes are done in sections 4.2.1, 4.2.2 and 4.2.3 are applied in this section.

In addition to changes, self power consumption function is removed from

the source code. The raw values are printed for CPU, LPM, TX, and RX and

these values are given as input to the developed java application.

Table 4.3: The Memory Usage of The MQTT-SN Application for Only Tem-

perature Sensor

Change Text Data Bss Dec

Define SMALL= 0 Overflow Overflow Overflow Overflow

Define SMALL= 1 48175 264 7782 56221

Define PROCESS-

NAME= 0

47933 248 7762 55943

Input defined in 4.2.5 47631 248 7778 55657

4.3 Result for Power Consumption

The power consumption of the MQTT and DDS applications is calculated

in this section. The application and source code used in the DDS power

consumption for the XM1000 sensor node is also used on the CM5000 sensor

node by using the COOJA simulator. The power consumption is calculated

for both XM1000 and CM5000 sensor nodes at 5, 10, 20, 30 and 60 seconds

intervals. As a result of this calculation, the effect of the number of sensor

53

nodes on the energy consumption is seen. When the DDS application is run

on the CM5000 via the simulator, the data sent are shared without being

measured by the sensor, embedded in the code. Therefore, the battery life

seems to be longer than the XM1000 sensor node.

4.3.1 Result for Tailored DDS on XM1000(Two Nodes)

The following table is created according to the data sent at 5 seconds inter-

vals. The total column indicates the hourly power consumption in miniwatt.

Table 4.4: Average power consumption in microwatt for interval 5 seconds

TIME CPU LPM TX RX Total

0 317127 0 0 0 317127

5 112776 3196 733106 2102263 2951341

10 160572 3046 314461 2532216 3010295

15 136825 3136 0 3594880 3734841

20 164258 3044 523465 2352524 3043291

25 187812 2966 688502 2563886 3443166

30 160246 3057 748081 2422060 3333444

35 162844 3049 553732 2485744 3205369

40 159708 3059 164399 1995205 2322371

45 161080 3055 688820 4428625 5281580

50 160729 3056 464205 2407258 3035248

55 160204 3057 583681 2589704 3336646

60 161159 3055 329436 2090214 2583864

65 118541 3196 389652 2225500 2736889

70 159461 3050 658872 2853735 3675118

75 159521 3060 419282 4104697 4686560

80 164367 3044 688502 3327063 4182976

85 137726 3132 0 4466835 4607693

90 164210 3045 478861 4786633 5432749

95 188670 2963 883168 5714355 6789156

54

Table 4.4 continued from previous page

TIME CPU LPM TX RX Total

100 159364 3060 344091 6275119 6781634

105 204785 3043 284194 3112602 3604624

110 159515 3096 479179 2305363 2947153

115 159600 3060 284194 2058545 2505399

120 159243 3060 284194 2248220 2694717

125 159781 3060 268582 2254760 2686183

130 159581 3060 44604 2137031 2344276

135 159013 3061 269219 2410700 2841993

140 160198 3058 254564 2712597 3130417

145 136064 3137 0 2200371 2339572

150 189196 2962 1212604 2312248 3717010

155 159877 3058 449230 2493317 3105482

160 160294 3058 703157 2406569 3273078

165 160186 3057 718450 2482646 3364339

170 160319 3057 448912 2180405 2792693

175 161841 3052 119476 2320854 2605223

180 160143 3058 718132 2339787 3221120

185 160355 3058 643897 2413798 3221108

190 136433 3136 0 2167668 2307237

195 189111 2962 1107465 2504677 3804215

200 137484 3133 0 2457861 2598478

205 187866 3023 747762 2537724 3476375

210 161370 3053 718450 2516037 3398910

215 137901 3132 0 2487810 2628843

220 161467 3053 284194 2534970 2983684

225 164440 3044 418645 2366982 2953111

230 163672 3046 568707 2456828 3192253

235 188458 2963 1002645 2402094 3596160

240 160566 3057 658872 2381440 3203935

245 160337 3057 404307 2443059 3010760

55

Table 4.4 continued from previous page

TIME CPU LPM TX RX Total

250 136330 3138 0 2426191 2565659

255 136439 3137 0 2627915 2767491

260 191667 2953 583363 2788329 3566312

265 135593 3139 0 2186601 2325333

270 137345 3135 0 2716384 2856864

275 139925 3126 0 2673354 2816405

280 137629 3133 0 2683337 2824099

285 140312 3125 0 2491252 2634689

290 220725 2856 1031319 2708811 3963711

295 164331 3044 568707 3901940 4638022

300 165557 3039 553095 2706057 3427748

305 141200 3121 0 2511906 2656227

310 168089 3031 643579 2565952 3380651

315 164210 3044 388696 2402094 2958044

320 194090 2945 897506 2661650 3756191

325 164162 3044 433938 2576623 3177767

330 216937 2869 1959730 2606916 4786452

335 137049 3134 0 2634111 2774294

340 164053 3046 702839 2330493 3200431

345 216755 2869 1151751 2790051 4161426

350 137013 3135 0 2838933 2979081

355 138245 3131 0 2549772 2691148

360 165515 3040 373721 2554936 3097212

365 163606 3047 568707 2422749 3158109

370 164645 3042 329117 2463024 2959828

375 214870 2876 1331125 2546330 4095201

380 160300 3057 703476 2434797 3301630

385 161872 3052 479179 2498825 3142928

390 161116 3054 613948 2399685 3177803

395 160609 3056 523784 2308806 2996255

56

Table 4.4 continued from previous page

TIME CPU LPM TX RX Total

400 136505 3136 0 2445124 2584765

405 164693 3043 747762 2377998 3293496

410 189002 2962 1137095 2294692 3623751

415 160355 3057 763692 2475073 3402177

420 160276 3058 509128 2359753 3032215

425 163098 3048 657916 2540134 3364196

430 160524 3057 747762 2081953 2993296

435 163835 3045 299487 2276792 2743159

440 162373 3071 718450 2064052 2947946

445 160911 3056 718450 2432731 3315148

450 161291 3054 194666 2137719 2496730

Average(nanowatt) 163289,5 3021,8 473405,9 2620432,1 3260149,4

The following table is created according to the data sent at 10 seconds inter-

vals.

Table 4.5: Average power consumption in microwatt for interval 10 seconds

TIME CPU LPM TX RX Total

0 157744 0 0 0 157744

10 67002 3210 0 2551494 2621706

20 68367 3213 0 2750119 2821699

30 61010 3239 127122 2465606 2656977

40 92655 3129 246599 2704163 3046546

50 79942 3176 0 2560272 2643390

60 79105 3180 247077 2713458 3042820

70 79080 3179 97333 2565091 2744683

80 82869 3167 119794 2458721 2664551

57

Table 4.5 continued from previous page

TIME CPU LPM TX RX Total

90 79165 3179 127282 2501579 2711205

100 68869 3214 0 2917247 2989330

110 68832 3213 0 2868365 2940410

120 69890 3210 0 2858382 2931482

130 70727 3207 0 3133256 3207190

140 70594 3208 0 2716039 2789841

150 70539 3208 0 2848743 2922490

160 83201 3166 22302 2852186 2960855

170 71422 3205 0 2785748 2860375

180 71826 3204 0 2858038 2933068

190 70388 3208 0 2773527 2847123

200 71298 3206 0 2883167 2957671

210 73083 3199 0 2790223 2866505

220 74839 3194 0 2816557 2894590

230 128457 3015 403511 2598998 3133981

240 84806 3160 82199 3207956 3378121

250 71068 3206 0 2807779 2882053

260 113764 3064 732947 2627570 3477345

270 83495 3164 172364 2594523 2853546

280 72080 3203 0 2828433 2903716

290 71213 3205 0 2566640 2641058

300 137717 2984 792685 2548912 3482298

310 81138 3172 321630 2527741 2933681

320 68709 3214 0 2828261 2900184

330 68905 3213 0 2779379 2851497

340 70530 3208 0 2758553 2832291

350 71905 3203 0 2557862 2632970

360 70757 3207 0 2884544 2958508

370 83570 3164 149584 2850809 3087127

380 84827 3160 74553 2802960 2965500

58

Table 4.5 continued from previous page

TIME CPU LPM TX RX Total

390 71056 3206 0 2775249 2849511

400 71316 3206 0 2795386 2869908

410 71926 3203 0 2740308 2815437

420 72530 3202 0 2820860 2896592

430 73331 3198 0 2781789 2858318

440 85120 3160 127122 2826540 3041942

450 73455 3198 0 2860447 2937100

Average(nanowatt) 79654,8 3113,7 83567,5 2690075,7 2856411,6

The following table is created according to the data sent at 20 seconds inter-

vals.

Table 4.6: Average power consumption in microwatt for interval 20 seconds

TIME CPU LPM TX RX Total

0 79283 0 0 0 79283

20 39270 3237 183356 1344594 1570457

40 40647 3237 179612 1340722 1564218

60 40187 3239 179612 1314559 1537597

80 40082 3239 100997 1583926 1728244

100 40395 3238 175789 1179532 1398954

120 40212 3238 14974 1153198 1211622

140 40230 3238 190923 1408536 1642927

160 40194 3239 119794 1345025 1508252

180 40194 3238 145920 1177897 1367249

200 40113 3239 179692 1263268 1486312

220 40383 3238 127202 1638402 1809225

240 29244 3275 149664 1138740 1320923

260 40182 3236 93510 1209911 1346839

280 40208 3239 123458 1217484 1384389

59

Table 4.6 continued from previous page

TIME CPU LPM TX RX Total

300 40061 3239 138353 1290893 1472546

320 40176 3239 142176 1352770 1538361

340 40401 3238 142176 1478675 1664490

360 40149 3239 93510 1344680 1481578

380 40245 3239 3743 1214214 1261441

400 40082 3239 187099 1232459 1462879

420 40250 3239 179692 1436420 1659601

440 40674 3237 116130 1314559 1474600

Average(nanowatt) 41428,8 3099,1 129016,6 1260020,2 1433564,7

The following table is created according to the data sent at 30 seconds inter-

vals.

Table 4.7: Average power consumption in microwatt for interval 30 seconds

TIME CPU LPM TX RX Total

0 52852 0 0 0 52852

30 26175 3258 119794 1260198 1409425

60 27533 3256 99829 1170410 1301028

90 26847 3259 122237 1344078 1496421

120 26753 3259 119794 1063466 1213272

150 26809 3259 74871 1173680 1278619

180 26745 3259 79863 1067368 1177235

210 27519 3256 77314 1318145 1426234

240 26827 3259 94678 1123077 1247841

270 26862 3259 84695 1069720 1184536

300 27316 3257 99829 1147231 1277633

330 26754 3259 119688 1084006 1233707

360 26867 3259 39931 1084407 1154464

390 27332 3257 87350 1022502 1140441

60

Table 4.7 continued from previous page

TIME CPU LPM TX RX Total

420 26836 3259 102324 1205694 1338113

450 27368 3257 77314 1140805 1248744

Average(nanowatt) 28587,2 3054,5 87469,4 1079674,2 1198785,3

These values below are calculated for period of 60 seconds.

Table 4.8: Average power consumption in microwatt for interval 60 seconds

TIME CPU LPM TX RX Total

0 26427 0 0 0 26427

60 13052 3279 31196 1013035 1060562

120 13495 3279 57348 976259 1050381

180 13498 3279 57401 1252855 1327033

240 13517 3279 49914 1007843 1074553

300 14059 3277 59844 925083 1002263

360 13462 3279 59897 870693 947331

420 13500 3279 52383 928668 997830

Average(nanowatt) 15126,2 2868,9 45997,9 871804,5 935797,5

61

Figure 4.1: The total power consumption in milliwatt in first 400 seconds for

CPU

Figure 4.2: The total power consumption in milliwatt in first 400 seconds for

LPM

62

Figure 4.3: The total power consumption in milliwatt in first 400 seconds for

TX

Figure 4.4: The total power consumption in milliwatt in first 400 seconds for

TX

63

Table 4.9: Expected life time for DDS application(XM1000 Two Nodes)

Time(Interval) Estimated Life Time(year)

5 0.26491

10 0.307197

20 0.631267

30 0.773935

60 1.08155

4.3.2 Result for Tailored DDS on CM5000(Two Nodes)

The power consumption for CM5000 could be seen in the figures below.

Figure 4.5: The total power consumption in milliwatt in first 450 seconds for

CPU

64

Figure 4.6: The total power consumption in milliwatt in first 450 seconds for

LPM

Figure 4.7: The total power consumption in milliwatt in first 450 seconds for

TX

65

Figure 4.8: The total power consumption in milliwatt in first 450 seconds for

RX

Table 4.10: Expected life time for CM5000(Two Nodes)

Time(Interval) Estimated Life Time(year)

5 0.704014

10 1.087074

20 1.537222

30 1.820367

60 2.539766

4.3.3 Result for Tailored DDS on CM5000(Three nodes)

The power consumption for CM5000 (three nodes) could be seen in the fig-

ures below.

66

Figure 4.9: The total power consumption in milliwatt in first 450 seconds for

CPU

Figure 4.10: The total power consumption in milliwatt in first 450 seconds

for LPM

67

Figure 4.11: The total power consumption in milliwatt in first 450 seconds

for TX

Figure 4.12: The total power consumption in milliwatt in first 450 seconds

for RX

68

Table 4.11: Expected life time for CM5000(Three Nodes)

Time(Interval) Estimated Life Time(year)

5 0.660331

10 1.036143

20 1.425846

30 1.707206

60 2.475717

Since the chemical life of the battery is at most 5 years, the maximum du-

ration can be assumed to be 5 years. With the increase in the number of

sensors, energy consumption increases by 10 percent. When the same test is

applied with a topology that contains thirteen CM5000 sensor nodes, energy

consumption increases by nearly 200 percent.

4.3.4 Result for MQTT

Table 4.12: Average power consumption for MQTT in milliwatt

Time(Second) CPU LPM TX RX Total(Nanowatt)

0 58729 3190 0 1660261 1722180

10 58729 3190 0 749578 811497

20 58666 3190 0 1881434 1943290

30 58971 3189 0 2872668 2934828

40 59044 3191 0 1173852 1236087

50 58738 3190 0 1423941 1485869

60 58787 3190 0 1552514 1614491

70 58811 3190 0 1804841 1866842

Average(nw) 58809.375 3190 0 1639886.125 1701885.5

Average(mw) 0.058809375 0.00319 0 1.639886125 1.7018855

69

According to formula 41, the estimated battery life is recalculated for MQTT.

The battery life is calculated as approximately 0.5 years. The data sent to

the python application via the serial interface requires less power than the

data sent via the Zigbee in the same period. Because of the Zigbee module

is not used in this test, therefore the effect of the node count and data send

a period on power consumption is not calculated

4.3.5 Result for MQTT-SN

In order to activate the energest module and calculate the power consump-

tion, the methods used in other applications were added to MQTT-SN. Al-

though the memory reduction methods described in the first part of the con-

clusion are tried, all the methods are failed. Therefore, no measurement is

performed for MQTT-SN, because of the lack of memory. If the current and

voltage calculations are removed from the binary file and these calculations

are performed via the java application. According to the results below, as the

data transmission period increases, energy consumption decreases slightly.

In addition, when the number of sensor nodes increases, energy consump-

tion also increases in direct proportion.

4.3.6 Result for Two Nodes MQTT-SN Communication

The communication in this example is provided by two sensor nodes and

the RSMB server.

The following table is created according to the data sent at 5 seconds inter-

vals.

Table 4.13: Average power consumption in microwatt for interval 5 seconds

TIME CPU LPM TX RX Total

0 25396 3261 0 57015840 57044497

5 24925 3216 119794 56268153 56416088

70

Table 4.13 continued from previous page

TIME CPU LPM TX RX Total

10 30864 3197 147832 56237516 56419409

15 27656 3207 123618 56263334 56417815

20 25456 3215 91757 56298099 56418527

25 28369 3210 113104 56363507 56508190

30 22919 3223 93032 56296729 56415903

35 21064 3229 60853 56332870 56418016

40 21203 3229 60534 56331833 56416799

45 21172 3229 60534 56332185 56417120

50 21070 3229 60853 56332870 56418022

55 25946 3213 93032 56296729 56418920

60 23728 3220 86341 56304294 56417583

65 21064 3229 60853 56332870 56418016

70 21209 3229 60534 56331833 56416805

75 21172 3229 60534 56332185 56417120

80 21064 3229 60853 56332870 56418016

85 21203 3229 60534 56331833 56416799

90 21209 3229 60534 56332185 56417157

95 21064 3229 60853 56332870 56418016

100 21203 3229 60534 56331833 56416799

105 21172 3229 60534 56332185 56417120

110 21064 3229 60853 56332870 56418016

115 21203 3229 60534 56331833 56416799

120 25795 3213 86022 56304985 56420015

125 22465 3225 93032 56297068 56415790

130 21493 3228 60853 56332185 56417759

135 21172 3229 60534 56332185 56417120

140 21064 3229 60853 56332870 56418016

145 21203 3229 60534 56331833 56416799

150 21233 3229 60534 56332185 56417181

155 23124 3222 94625 56295347 56416318

71

Table 4.13 continued from previous page

TIME CPU LPM TX RX Total

160 21203 3229 60534 56332185 56417151

165 21172 3229 60534 56332185 56417120

170 21064 3229 60853 56332870 56418016

175 21209 3229 60534 56331833 56416805

180 21245 3229 60534 56332185 56417193

185 21070 3229 60853 56332870 56418022

190 21203 3229 60534 56331833 56416799

195 21178 3229 60534 56332185 56417126

200 24327 3218 93032 56297414 56417991

205 23468 3221 86022 56304646 56417357

210 21263 3229 60534 56332185 56417211

215 21064 3229 60853 56332870 56418016

220 21203 3229 60534 56331833 56416799

225 21178 3229 60534 56332185 56417126

230 23662 3221 94625 56295347 56416855

235 21209 3229 60534 56332185 56417157

240 21269 3229 60534 56332185 56417217

245 21064 3229 60853 56332870 56418016

250 21203 3229 60534 56331833 56416799

255 21172 3229 60534 56332185 56417120

260 21354 3228 60534 56332524 56417640

265 21209 3229 60534 56332185 56417157

270 21281 3228 60534 56332185 56417228

275 21064 3229 60853 56332870 56418016

280 21203 3229 60534 56331833 56416799

285 21172 3229 60534 56332185 56417120

290 21064 3229 60853 56333216 56418362

295 21203 3229 60534 56331833 56416799

300 21293 3228 60534 56332185 56417240

305 23535 3221 94943 56295347 56417046

72

Table 4.13 continued from previous page

TIME CPU LPM TX RX Total

310 21209 3229 60534 56332185 56417157

315 21178 3229 60534 56332185 56417126

320 21064 3229 60853 56332870 56418016

325 21203 3229 60534 56331833 56416799

330 21299 3228 60534 56332185 56417246

335 21064 3229 60853 56332870 56418016

340 21203 3229 60534 56331833 56416799

345 21172 3229 60534 56332185 56417120

350 21064 3229 60853 56332870 56418016

355 21203 3229 60534 56331833 56416799

360 21311 3228 60534 56332185 56417258

365 21064 3229 60853 56332870 56418016

370 21209 3229 60534 56331833 56416805

375 21172 3229 60534 56332185 56417120

380 21064 3229 60853 56332870 56418016

385 21203 3229 60534 56331833 56416799

390 21335 3228 60534 56332185 56417282

395 21064 3229 60853 56332870 56418016

400 21209 3229 60534 56331833 56416805

405 21172 3229 60534 56332185 56417120

410 21064 3229 60853 56332870 56418016

415 21203 3229 60534 56331833 56416799

420 21342 3228 60534 56332185 56417289

425 21064 3229 60853 56332870 56418016

430 21203 3229 60534 56331833 56416799

435 22635 3224 93350 56297068 56416277

440 21070 3229 60853 56332870 56418022

445 21203 3229 60534 56331833 56416799

450 21348 3228 60534 56332185 56417295

Average(nanowatt) 21882,9 3227,1 66934,2 56333203,0 56425247,2

73

The following table is created according to the data sent at 10 seconds inter-

vals.

Table 4.14: Average power consumption in microwatt for interval 10 seconds

TIME CPU LPM TX RX Total

0 21749 3250 59897 56642860 56727756

10 26106 3212 135884 56251289 56416491

20 23269 3224 102271 56331667 56460431

30 17505 3241 61649 56331667 56414062

40 16710 3244 45560 56349395 56414909

50 18725 3237 61968 56331667 56415597

60 17909 3240 58463 56335795 56415407

70 16704 3244 45560 56349395 56414903

80 16647 3244 45560 56349395 56414846

90 16656 3244 45719 56349734 56415353

100 17012 3243 45560 56349222 56415037

110 16350 3245 45560 56349395 56414550

120 19650 3234 74712 56318246 56415842

130 16849 3243 45719 56349222 56415033

140 16650 3244 45560 56349395 56414849

150 17695 3240 62764 56331155 56414854

160 16707 3244 45560 56349395 56414906

170 16650 3244 45560 56349395 56414849

180 16671 3244 45719 56349734 56415368

190 16704 3244 45560 56349222 56414730

200 19408 3235 74871 56317894 56415408

210 16677 3244 45719 56349734 56415374

220 16704 3244 45560 56349222 56414730

230 17955 3240 62764 56330630 56414589

240 16686 3244 45719 56349734 56415383

250 16707 3244 45560 56349222 56414733

260 16795 3243 45719 56349222 56414979

74

Table 4.14 continued from previous page

TIME CPU LPM TX RX Total

270 16692 3244 45719 56349734 56415389

280 16704 3244 45560 56349222 56414730

290 16650 3244 45560 56349395 56414849

300 17931 3240 62924 56331155 56415250

310 16704 3244 45560 56349395 56414903

320 16650 3244 45560 56349395 56414849

330 16704 3244 45719 56349734 56415401

340 16704 3244 45560 56349222 56414730

350 16650 3244 45560 56349395 56414849

360 17006 3243 45719 56349734 56415702

370 16408 3245 45560 56349222 56414435

380 16650 3244 45560 56349395 56414849

390 16716 3244 45719 56349734 56415413

400 16704 3244 45560 56349222 56414730

410 16653 3244 45560 56349395 56414852

420 16719 3244 45719 56349734 56415416

430 17432 3241 62127 56331833 56414633

440 16647 3244 45560 56349395 56414846

450 16725 3244 45719 56349734 56415422

Average(nanowatt) 17454,3 3241,9 52853,1 56349281,5 56422830,8

The following table is created according to the data sent at 20 seconds inter-

vals.

Table 4.15: Average power consumption in microwatt for interval 20 seconds

TIME CPU LPM TX RX Total

0 22068 3238 97890 56447673 56570869

20 18169 3240 74632 56340358 56436399

40 15497 3248 46277 56348960 56413982

75

Table 4.15 continued from previous page

TIME CPU LPM TX RX Total(Hourly)

60 15092 3249 44604 56350944 56413889

80 14412 3251 38152 56358003 56413818

100 14449 3251 38073 56357747 56413520

120 16017 3246 52808 56342252 56414323

140 14943 3250 46675 56348704 56413572

160 14452 3251 38073 56357830 56413606

180 14458 3251 38073 56357830 56413612

200 15801 3247 52649 56342163 56413860

220 15113 3249 46755 56348620 56413737

240 14480 3251 38073 56357830 56413634

260 14500 3251 38073 56357830 56413654

280 14450 3251 38073 56357830 56413604

300 15091 3249 46834 56348620 56413794

320 14433 3251 38152 56358003 56413839

340 14449 3251 38073 56357747 56413520

360 14479 3251 38073 56357830 56413633

380 14440 3251 38152 56358003 56413846

400 14452 3251 38073 56357747 56413523

420 14844 3250 46356 56349139 56413589

440 14446 3251 38152 56358003 56413852

Average(nanowatt) 15240,7 3249,1 45684,6 56357376,8 56421551,1

The following table is created according to the data sent at 30 seconds inter-

vals.

Table 4.16: Average power consumption in microwatt for interval 30 seconds

TIME CPU LPM TX RX Total

0 21878 3234 103439 56389845 56518396

30 16543 3244 59472 56334993 56414252

76

Table 4.16 continued from previous page

TIME CPU LPM TX RX Total

60 16715 3244 59950 56334190 56414099

90 15063 3250 50923 56358805 56428041

120 14974 3250 45666 56349853 56413743

150 13711 3254 35577 56360640 56413182

180 14627 3251 45400 56350254 56413532

210 14135 3252 41365 56354500 56413252

240 13765 3254 35683 56360695 56413397

270 13719 3254 35577 56360640 56413190

300 13720 3254 35577 56360640 56413191

330 13724 3254 35577 56360640 56413195

360 14158 3252 41418 56354500 56413328

390 13727 3254 35577 56360640 56413198

420 14151 3252 41365 56354500 56413268

450 13731 3254 35577 56360640 56413202

Average(nanowatt) 14896,3 3250,4 46133,9 56356623,4 56420904,1

The following table is created according to the data sent at 60 seconds inter-

vals.

Table 4.17: Average power consumption in microwatt for interval 60 seconds

TIME CPU LPM TX RX Total

0 17227 3246 70517 56381896 56472886

60 13252 3255 38152 56358203 56412862

120 13608 3254 38285 56358058 56413205

180 13508 3254 38152 56358233 56413147

240 13179 3256 36188 56360409 56413032

300 12994 3256 33294 56363451 56412995

360 13119 3256 36028 56360554 56412957

420 13169 3256 36161 56360379 56412965

77

Table 4.17 continued from previous page

TIME CPU LPM TX RX Total

Average(nanowatt) 13757 3254,1 40847,1 56362647,9 56420506,1

Figure 4.13: The total power consumption in milliwatt in first 450 seconds

for CPU

78

Figure 4.14: The total power consumption in milliwatt in first 450 seconds

for LPM

Figure 4.15: The total power consumption in milliwatt in first 450 seconds

for TX

79

Figure 4.16: The total power consumption in milliwatt in first 450 seconds

for RX

Table 4.18: Expected life time for MQTT-SN(Two Nodes)

Time(Interval) Estimated Life Time(year)

5 0.0153438

10 0.0155188

20 0.0158968

30 0.016258

60 0.017703

4.3.7 Result for Three Nodes MQTT-SN Communication

The communication in this example is provided by three sensor nodes and

the RSMB server.

The following table is created according to the data sent at 5 seconds inter-

vals.

80

Table 4.19: Average power consumption in nanowatt for interval 5 seconds

TIME CPU LPM TX RX Total

0 26133 3259 21346 56992774 57043512

5 25904 3260 0 57015840 57045004

10 28127 3206 89846 56300512 56421691

15 30852 3197 124892 56263334 56422275

20 28889 3203 66269 56325990 56424351

25 35294 3182 121069 56266777 56426322

30 27553 3208 121706 56266777 56419244

35 36998 3176 210596 56169702 56420472

40 28738 3204 90164 56301203 56423309

45 26194 3218 87615 56398278 56515305

50 42073 3159 183197 56197932 56426361

55 31553 3194 118520 56268499 56421766

60 26719 3216 113422 56363507 56506864

65 21891 3226 60534 56331833 56417484

70 22151 3226 60853 56333216 56419446

75 21468 3228 60534 56332524 56417754

80 22326 3225 60534 56332185 56418270

85 21626 3227 60534 56332185 56417572

90 22296 3225 60534 56332524 56418579

95 21583 3227 60534 56332524 56417868

100 25348 3215 60853 56333216 56422632

105 22937 3223 93032 56296729 56415921

110 27444 3208 93032 56296729 56420413

115 28496 3204 60534 56332524 56424758

120 25106 3216 86022 56304646 56418990

125 24580 3217 85704 56304294 56417795

130 22405 3225 60534 56332524 56418688

135 21758 3227 60216 56332185 56417386

140 22326 3225 60534 56332524 56418609

81

Table 4.19 continued from previous page

TIME CPU LPM TX RX Total

145 21613 3227 60534 56332524 56417898

150 22296 3225 60534 56332524 56418579

155 21577 3227 60534 56332524 56417862

160 25481 3214 94625 56295692 56419012

165 24520 3218 60853 56332870 56421461

170 22333 3225 60534 56332524 56418616

175 21619 3227 60534 56332185 56417565

180 25523 3214 60534 56332524 56421795

185 24762 3217 94625 56294662 56417266

190 22133 3226 60853 56333216 56419428

195 21481 3228 60853 56332870 56418432

200 25553 3214 60534 56332185 56421486

205 23082 3222 93350 56296729 56416383

210 22296 3225 60534 56332524 56418579

215 21577 3227 60216 56332185 56417205

220 22133 3226 60853 56333216 56419428

225 21468 3228 60853 56332870 56418419

230 23783 3220 93350 56297068 56417421

235 24701 3217 60534 56332185 56420637

240 25946 3213 60534 56332524 56422217

245 28079 3206 86022 56304646 56421953

250 24750 3217 86341 56305337 56419645

255 21481 3228 60853 56332870 56418432

260 22617 3224 60853 56331833 56418527

265 21916 3226 60853 56331833 56417828

270 22296 3225 60534 56332524 56418579

275 21577 3227 60216 56332185 56417205

280 22133 3226 60853 56333216 56419428

285 21474 3228 60853 56332870 56418425

290 22326 3225 60534 56332185 56418270

82

Table 4.19 continued from previous page

TIME CPU LPM TX RX Total

295 21626 3227 60534 56332185 56417572

300 22351 3225 60534 56332524 56418634

305 21638 3227 60534 56332524 56417923

310 22133 3226 60853 56333216 56419428

315 21468 3228 60853 56332870 56418419

320 22326 3225 60534 56332185 56418270

325 21619 3227 60534 56332185 56417565

330 26079 3212 60534 56332524 56422349

335 24792 3217 95262 56295008 56418279

340 21529 3228 60853 56333216 56418826

345 21481 3228 60534 56332524 56417767

350 22326 3225 60534 56332185 56418270

355 21619 3227 60534 56332185 56417565

360 22375 3225 60534 56332524 56418658

365 21650 3227 60534 56332524 56417935

370 22133 3226 60853 56333216 56419428

375 21474 3228 60853 56332870 56418425

380 22326 3225 60534 56332185 56418270

385 21626 3227 60534 56332185 56417572

390 22296 3225 60534 56332524 56418579

395 21577 3227 60534 56332524 56417862

400 22133 3226 60853 56333216 56419428

405 21468 3228 60853 56332870 56418419

410 27299 3208 86022 56304294 56420823

415 24532 3218 60216 56331833 56419799

420 22381 3225 60534 56332524 56418664

425 23384 3221 86022 56304646 56417273

430 22133 3226 60853 56333216 56419428

435 21474 3228 60853 56332870 56418425

440 22326 3225 60534 56332185 56418270

83

Table 4.19 continued from previous page

TIME CPU LPM TX RX Total

445 21619 3227 60534 56332185 56417565

450 22296 3225 60534 56332524 56418579

Average(nanowatt) 23942,7 3220,7 71013,1 56336778,4 56434954,8

The following table is created according to the data sent at 10 seconds inter-

vals.

Table 4.20: Average power consumption in microwatt for interval 10 seconds

TIME CPU LPM TX RX Total

0 24943 3240 70570 56631321 56730074

10 24994 3239 62127 56640108 56730468

20 30212 3199 150699 56235110 56419220

30 27816 3207 120591 56268153 56419767

40 27892 3209 119157 56314112 56464370

50 32061 3193 148628 56238380 56422262

60 17363 3242 45560 56349395 56415560

70 20118 3232 57985 56336313 56417648

80 17559 3241 45560 56349395 56415755

90 19088 3236 44285 56350598 56417207

100 21683 3227 58623 56335628 56419161

110 21444 3228 60693 56333216 56418581

120 18390 3238 61968 56332012 56415608

130 21910 3226 57348 56337177 56419661

140 17559 3241 45560 56349395 56415755

150 18212 3239 44445 56350771 56416667

160 17550 3241 45560 56349395 56415746

170 20529 3231 61171 56333043 56417974

180 19127 3236 45719 56349734 56417816

190 26771 3210 121865 56266777 56418623

84

Table 4.20 continued from previous page

TIME CPU LPM TX RX Total

200 19900 3233 62286 56331667 56417086

210 21393 3231 77898 56361958 56464480

220 17553 3241 45560 56349395 56415749

230 17311 3242 45560 56349568 56415681

240 20598 3231 58463 56335628 56417920

250 20514 3231 58623 56335628 56417996

260 17698 3240 45719 56349049 56415706

270 17456 3241 45560 56348876 56415133

280 19160 3236 63083 56330976 56416455

290 18837 3237 45560 56349568 56417202

300 17538 3241 45719 56349734 56416232

310 17293 3242 45719 56349568 56415822

320 19151 3236 45560 56349222 56417169

330 18922 3236 62924 56330464 56415546

340 17556 3241 45560 56349395 56415752

350 17314 3242 45400 56349395 56415351

360 17846 3240 45719 56349734 56416539

370 17299 3242 45719 56349568 56415828

380 17260 3242 45560 56349222 56415284

390 17314 3242 45560 56349222 56415338

400 20568 3231 58463 56335628 56417890

410 18761 3237 45719 56349568 56417285

420 17556 3241 45719 56349734 56416250

430 18163 3239 58463 56335628 56415493

440 17556 3241 45560 56349222 56415579

450 17314 3242 45560 56349222 56415338

Average(nanowatt) 20066,3 3233,8 60638,0 56348627,7 56432565,8

The following table is created according to the data sent at 20 seconds inter-

vals.

85

Table 4.21: Average power consumption in microwatt for interval 20 seconds

TIME CPU LPM TX RX Total

0 21890 3238 67543 56480716 56573387

20 21568 3239 62127 56486316 56573250

40 23021 3223 89686 56301376 56417306

60 24393 3220 104024 56310323 56441960

80 17937 3240 52569 56342508 56416254

100 17304 3242 46516 56349139 56416201

120 16711 3245 51295 56365664 56436915

140 16289 3245 44604 56350860 56414998

160 16826 3243 46516 56348620 56415205

180 16595 3244 46277 56349049 56415165

200 15751 3247 46356 56349139 56414493

220 16270 3245 38073 56357830 56415418

240 17012 3243 44604 56350860 56415719

260 17243 3242 44524 56350860 56415869

280 15979 3246 38152 56358003 56415380

300 16281 3245 46755 56348620 56414901

320 15069 3249 38073 56357651 56414042

340 15344 3248 38073 56357830 56414495

360 15385 3248 38073 56357830 56414536

380 15508 3248 38073 56357830 56414659

400 17486 3241 44604 56351033 56416364

420 17678 3241 53127 56341824 56415870

440 15764 3247 38232 56357747 56414990

Average(nanowatt) 17535,0 3242,1 50342,4 56360070,8 56431190,3

The following table is created according to the data sent at 30 seconds inter-

vals.

86

Table 4.22: Average power consumption in microwatt for interval 30 seconds

TIME CPU LPM TX RX Total

0 24424 3227 108484 56399193 56535328

30 25085 3225 105510 56403613 56537433

60 15848 3247 39931 56355993 56415019

90 15437 3248 41099 56354790 56414574

120 14628 3251 35736 56360755 56414370

150 15039 3249 39878 56355938 56414104

180 15203 3249 41259 56354901 56414612

210 15655 3247 41152 56354845 56414899

240 16030 3246 45613 56349853 56414742

270 16127 3246 39984 56356049 56415406

300 14962 3250 35683 56360755 56414650

330 15034 3249 41418 56354444 56414145

360 15425 3248 39878 56356164 56414715

390 14985 3250 35630 56360695 56414560

420 14681 3251 41152 56354901 56413985

450 15303 3248 39825 56355993 56414369

Average(nanowatt) 16491,6 3245,7 48264,5 56361805,1 56429806,9

The following table is created according to the data sent at 60 seconds inter-

vals.

Table 4.23: Average power consumption in microwatt for interval 60 seconds

TIME CPU LPM TX RX Total

0 19689 3238 75296 56376678 56474901

60 20517 3235 70305 56382754 56476811

120 14838 3250 40860 56355217 56414165

180 14555 3251 38763 56357772 56414341

240 14455 3251 35258 56361130 56414094

87

Table 4.23 continued from previous page

TIME CPU LPM TX RX Total

300 14628 3251 38285 56358289 56414453

360 14692 3251 38152 56358058 56414153

420 14537 3251 38179 56358459 56414426

Average(nanowatt) 15988,9 3247,2 46887,2 56363544,6 56429668

Figure 4.17: The total power consumption in millwatt in first 450 seconds for

CPU

88

Figure 4.18: The total power consumption in milliwatt in first 450 seconds

for LPM

Figure 4.19: The total power consumption in milliwatt in first 450 seconds

for TX

89

Figure 4.20: The total power consumption in milliwatt in first 450 seconds

for RX

Table 4.24: Expected life time for tested periods

Time(Interval) Estimated Life Time(year)

5 0.0153409

10 0.0155161

20 0.0158939

30 0.0162552

60 0.0176993

90

CHAPTER 5

CONCLUSION AND FUTURE WORK

In this thesis, it is seen that the data distribution system, which is widely

used today, has been successfully installed on resource-constrained devices

that have low power consumption and low memory usage by tailoring the

DDS. Since these devices have approximately 8 KB RAM and 128KB ROM

values, their power consumption is low and this feature enables them to

work for days. The DDS interface provides an abstraction on the network

layer. As another point of view, it is aimed to use MQTT middleware using a

publisher-subscriber pattern on the same operating system. However, since

the memory problems of the device are not overcome in this example, it has

been found that the connection to the server can be realized with the python

application defined on the computer. However, Python application runs on

a computer that provides a USB connection for running application, so it

requires more components than other methods. In the MQTT-SN software,

unlike MQTT, the studies mentioned in the previous sections are performed

and the device is installed successfully as a result of updates. For now, the

Zigbee based DDS software only listens to the data received event and the

data delay event. In future work, more Qos event information can be added

to the Zigbee based DDS. MQTT-SN software can be created automatically

source code by reading from an XML file, similar to DDS. Besides differences

between bandwidth utilization will be measured and added to the result

section.

91

92

REFERENCES

[1] Contiki-Os, “contiki-os/contiki.” https://github.com/

contiki-os/contiki/blob/master/dev/sht11/sht11.c,

2015. [Online; accessed 4-August-2019].

[2] Z. C. Team, “As-xm1000.” https://www.advanticsys.com/shop/

asxm1000-p-24.html, 2019. [Online; accessed 21-November-2019].

[3] “Cm5000.” https://www.advanticsys.com/wiki/index.php?

title=CM5000, 2019. [Online; accessed 21-November-2019].

[4] “Quality of service.” http://download.prismtech.com/docs/

Vortex/html/ospl/DDSTutorial/qos.html. Online; accessed 19-

November-2019].

[5] A. Stanford-Clark and H. L. Truong, “Mqtt for sensor networks (mqtt-

sn) protocol specification,” International business machines (IBM) Corpora-

tion version, vol. 1, 2013.

[6] “About the dds for extremely resource constrained environ-

ments specification version 1.0 beta 2.” https://www.omg.org/

spec/DDS-XRCE/About-DDS-XRCE/, 2018. [Online; accessed 21-

November-2019].

[7] G. Pardo-Castellote, “Omg data-distribution service: Architectural

overview,” in Proceedings of the 23rd International Conference on Distributed

Computing Systems, ICDCSW ’03, (Washington, DC, USA), pp. 200–,

IEEE Computer Society, 2003.

[8] K. Beckmann and M. Thoss, “A model-driven software development

approach using omg dds for wireless sensor networks,” Oct 2010.

[9] “Mqtt.” http://mqtt.org/, 2019. [Online; accessed 21-November-

2019].

93

https://github.com/contiki-os/contiki/blob/master/dev/sht11/sht11.c
https://github.com/contiki-os/contiki/blob/master/dev/sht11/sht11.c
https://www.advanticsys.com/shop/asxm1000-p-24.html
https://www.advanticsys.com/shop/asxm1000-p-24.html
https://www.advanticsys.com/wiki/index.php?title=CM5000
https://www.advanticsys.com/wiki/index.php?title=CM5000
http://download.prismtech.com/docs/Vortex/html/ospl/DDSTutorial/qos.html
http://download.prismtech.com/docs/Vortex/html/ospl/DDSTutorial/qos.html
https://www.omg.org/spec/DDS-XRCE/About-DDS-XRCE/
https://www.omg.org/spec/DDS-XRCE/About-DDS-XRCE/
http://mqtt.org/

[10] T. Reusing, “Comparison of operating systems tinyos and contiki,” Sens.

Nodes-Oper. Netw. Appl.(SN), vol. 7, pp. 7–13, 2012.

[11] “The open source os for the internet of things.” http://www.

contiki-os.org/, 2018. [Online; accessed 21-November-2019].

[12] “Wireless sensor networks :: Telosb.” http://www.cmt-gmbh.de/

Produkte/WirelessSensorNetworks/TelosB.html, 2016. [On-

line; accessed 21-November-2019].

[13] Pksec, “pksec/msp430-gcc-4.7.3.” https://github.com/pksec/

msp430-gcc-4.7.3, Feb 2019. Online; accessed 19-November-2019].

[14] Contiki-Os, “contiki-os/contiki.” https://

github.com/contiki-os/contiki/wiki/

Reducing-Contiki-OS-firmware-size, 2019. [Online; accessed

21-November-2019].

[15] “Introduction to mqtt-sn (mqtt for sensor networks).” http://www.

steves-internet-guide.com/mqtt-sn/. Online; accessed 19-

November-2019].

[16] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and flex-

ible operating system for tiny networked sensors,” in 29th Annual IEEE

International Conference on Local Computer Networks, pp. 455–462, Nov

2004.

[17] M. R. H. Khan, R. Passerone, and D. Macii, “Fzepel: Rf-level power

consumption measurement (rf-pm) for zigbee wireless sensor network-

towards cross layer optimization,” in 2008 IEEE International Conference

on Emerging Technologies and Factory Automation, pp. 959–966, Sep. 2008.

[18] m. a. Sarijari, M. Sharil Abdullah, A. Lo, and R. A Rashid, “Experimen-

tal studies of the zigbee frequency agility mechanism in home area net-

works,” in Experimental studies of the ZigBee frequency agility mechanism in

home area networks, vol. 2014, pp. 711–717, 09 2014.

[19] “What is dds?.” https://www.dds-foundation.org/

what-is-dds-3/, 2005. Online; accessed 19-November-2019].

94

http://www.contiki-os.org/
http://www.contiki-os.org/
http://www.cmt-gmbh.de/Produkte/WirelessSensorNetworks/TelosB.html
http://www.cmt-gmbh.de/Produkte/WirelessSensorNetworks/TelosB.html
https://github.com/pksec/msp430-gcc-4.7.3
https://github.com/pksec/msp430-gcc-4.7.3
https://github.com/contiki-os/contiki/wiki/Reducing-Contiki-OS-firmware-size
https://github.com/contiki-os/contiki/wiki/Reducing-Contiki-OS-firmware-size
https://github.com/contiki-os/contiki/wiki/Reducing-Contiki-OS-firmware-size
http://www.steves-internet-guide.com/mqtt-sn/
http://www.steves-internet-guide.com/mqtt-sn/
https://www.dds-foundation.org/what-is-dds-3/
https://www.dds-foundation.org/what-is-dds-3/

[20] “Twin oaks computing (2011) inc twin oaks computing. 2011.

what can dds do for you?.” https://www.omg.org/hot-topics/

documents/dds/CoreDX_DDS_Why_Use_DDS.pdf/, 2019. [Online;

accessed 21-November-2019].

[21] G. Pardo-Castellote, “Omg data-distribution service: architectural

overview,” in 23rd International Conference on Distributed Computing Sys-

tems Workshops, 2003. Proceedings., pp. 200–206, May 2003.

[22] R. A. Light, “Mosquitto: server and client implementation of the mqtt

protocol,” The Journal of Open Source Software, vol. 2, no. 13, p. 265, 2017.

[23] “How to build and run rti connext dds micro on

a microcontroller.” https://www.rti.com/blog/

how-to-build-and-run-rti-connext-dds-micro-on-a-micro,

journal=Connectivity Software Framework for the Industrial IoT, au-

thor=Hidalgo, Jesus Checa, year=2017, note = [Online; accessed

21-November-2019].

[24] https://community.rti.com/static/documentation/

connext-micro/2.4.6/doc/html/group_

_OSAPIUserManuals__PortingModule.html, 2017. [Online;

accessed 21-November-2019].

[25] “eprosima micro xrce-dds¶.” https://micro-xrce-dds.

readthedocs.io/en/latest/index.html, 2018. [Online; ac-

cessed 21-November-2019].

[26] O. Deschambault, A. Gherbi, and C. Légaré, “Efficient implementation

of the mqtt protocol for embedded systems,” JIPS (Journal of Information

Processing Systems), vol. 13, no. 1, pp. 26–39, 2017.

[27] Y. Upadhyay, A. Borole, and D. Dileepan, “Mqtt based secured home

automation system,” in 2016 Symposium on Colossal Data Analysis and

Networking (CDAN), pp. 1–4, March 2016.

[28] T. Reusing, “Comparison of operating systems tinyos and contiki,” Sens.

Nodes-Oper. Netw. Appl.(SN), vol. 7, pp. 7–13, 2012.

95

https://www.omg.org/hot-topics/documents/dds/CoreDX_DDS_Why_Use_DDS.pdf/
https://www.omg.org/hot-topics/documents/dds/CoreDX_DDS_Why_Use_DDS.pdf/
https://www.rti.com/blog/how-to-build-and-run-rti-connext-dds-micro-on-a-micro
https://www.rti.com/blog/how-to-build-and-run-rti-connext-dds-micro-on-a-micro
https://community.rti.com/static/documentation/connext-micro/2.4.6/doc/html/group__OSAPIUserManuals__PortingModule.html
https://community.rti.com/static/documentation/connext-micro/2.4.6/doc/html/group__OSAPIUserManuals__PortingModule.html
https://community.rti.com/static/documentation/connext-micro/2.4.6/doc/html/group__OSAPIUserManuals__PortingModule.html
https://micro-xrce-dds.readthedocs.io/en/latest/index.html
https://micro-xrce-dds.readthedocs.io/en/latest/index.html

[29] Imatix, “imatix/gsl.” https://github.com/imatix/gsl, Sep 2017.

[Online; accessed 19-November-2019].

[30] GNU, “Gnu make.” https://www.gnu.org/software/make/

manual/make.html#Wildcard-Examples, May 2016. [Online; ac-

cessed 21-November-2019].

[31] “Rsmb: Mqtt.” http://mqtt.org/tag/rsmb, 2016. [Online; ac-

cessed 21-November-2019].

[32] IBM, “Really small message broker.” https://www.

ibm.com/developerworks/community/groups/

service/html/communityview?communityUuid=

d5bedadd-e46f-4c97-af89-22d65ffee070, Jan 2013. [Online;

accessed 23-September-2019].

[33] Eclipse, “eclipse/mosquitto.rsmb.” https://github.com/

eclipse/mosquitto.rsmb/tree/master/rsmb/src, 2016.

[Online; accessed 23-September-2019].

[34] Aignacio, “aignacio/mqtt-sn-contiki_example.” https://github.

com/aignacio/mqtt-sn-contiki_example, Aug 2017. [Online;

accessed 23-September-2019].

[35] Contiki-Ng, “contiki-ng/contiki-ng.” https://github.com/

contiki-ng/contiki-ng/wiki/Documentation:-Energest,

2016. [Online; accessed 21-November-2019].

96

https://github.com/imatix/gsl
https://www.gnu.org/software/make/manual/make.html#Wildcard-Examples
https://www.gnu.org/software/make/manual/make.html#Wildcard-Examples
http://mqtt.org/tag/rsmb
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=d5bedadd-e46f-4c97-af89-22d65ffee070
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=d5bedadd-e46f-4c97-af89-22d65ffee070
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=d5bedadd-e46f-4c97-af89-22d65ffee070
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=d5bedadd-e46f-4c97-af89-22d65ffee070
https://github.com/eclipse/mosquitto.rsmb/tree/master/rsmb/src
https://github.com/eclipse/mosquitto.rsmb/tree/master/rsmb/src
https://github.com/aignacio/mqtt-sn-contiki_example
https://github.com/aignacio/mqtt-sn-contiki_example
https://github.com/contiki-ng/contiki-ng/wiki/Documentation:-Energest
https://github.com/contiki-ng/contiki-ng/wiki/Documentation:-Energest

APPENDIX A

MAKEFILE FOR SENSORDDS

1 SDDS_TOPDIR := ../../

2 CONTIKI := ../../contiki

3 DRIVER := $(SDDS_TOPDIR)/include/

4 ifeq ($(BUILD),sensor_board)

5 SDDS_OBJDIR := objs-xm1000

6 TARGET := xm1000

7 else

8 SDDS_OBJDIR := objs-sky

9 TARGET := sky

10 endif

11 SDDS_PLATFORM := contiki

12 SDDS_ARCH := atmega

13 SMALL = 1

14 //MODULES += core/net/ipv6/multicast

15 CONTIKI_WITH_IPV4 = 1

16 CONTIKI_WITH_RIME = 1

17 LOCAL_CONSTANTS := local_constants.h

18 # Object files of the generateted dds data types

19 DATA_DEPEND_OBJS += $(SDDS_OBJDIR)/sensordata-ds.o

20 #DATA_DEPEND_OBJS += $(SDDS_OBJDIR)/alpha-ds.o

21 DATA_DEPEND_OBJS += $(SDDS_OBJDIR)/sensordata_test_publisher_sdds_impl.o

22 #OBJS = $($(shell ls *-ds.c):.o=.c)

23 DATA_DEPEND_OBJS += $(addprefix $(SDDS_OBJDIR)/, $(OBJS))

24 # object files depending on platform

25 PLATFORM_DEPEND_OBJS += $(SDDS_OBJDIR)/*.o

26 # object files depending on driver for sensors

27 #DRIVER_DEPEND_OBJS += $(SDDS_OBJDIR)/sdds-driver-$(SDDS_ARCH)-LED.o

28 #DRIVER_DEPEND_OBJS +=

$(SDDS_OBJDIR)/sdds-driver-$(SDDS_ARCH)-GammaCorrection.o↪→

29 # object files of the generates implementation code file of sdds

30 IMPL_DEPEND_OBJS = $(SDDS_OBJDIR)/sensordata_test_publisher_sdds_impl.o

31 #TARGET_STARTFILES = sensordata_test_publisher.c

32 # file for the preprocessor constants of sdds

33

34 SDDS_CONSTANTS_FILE := sdds_features_config.h sdds_features.h

sdds_network.h sdds_profile.h↪→

97

35 #TARGET_LIBFILES += -L. -lhel

36 ALL_OBJS += $(PLATFORM_DEPEND_OBJS)

37 ALL_OBJS += $(DRIVER_DEPEND_OBJS)

38 ALL_OBJS += $(IMPL_DEPEND_OBJS)

39 ALL_OBJS += $(SDDS_OBJDIR)/$(APPLICATION_NAME).o

40 ALL_OBJS += $(DATA_DEPEND_OBJS)

41

42 include $(SDDS_TOPDIR)/sdds.mk

43 include $(CONTIKI)/Makefile.include

44 DATA_DEPEND_SRCS+=$(patsubst $(SDDS_OBJDIR)/%.o,%.c,$(DATA_DEPEND_OBJS))

45 DATA_DEPEND_SRCS+=$(patsubst $(SDDS_OBJDIR)/%.o,%.h,$(DATA_DEPEND_OBJS))

46 CLEAN += $(DATA_DEPEND_SRCS)

47

48 IMPL_DEPEND_SRCS += $(patsubst $(SDDS_OBJDIR)/%.o,%.c,$(IMPL_DEPEND_OBJS))

49 IMPL_DEPEND_SRCS += $(patsubst$(SDDS_OBJDIR)/%.o,%.h,$(IMPL_DEPEND_OBJS))

50 $(info $(IMPL_DEPEND_SRCS))

51

52 CLEAN += $(IMPL_DEPEND_SRCS)

53 CLEAN += $(ALL_OBJS)

54 CLEAN += $(patsubst %.o,%.d,$(ALL_OBJS))

55 CLEAN += $(SDDS_CONSTANTS_FILE)

56 CLEAN += local_constants.h

57 all:$(APPLICATION_NAME)

58 $(SDDS_OBJDIR):

59 mkdir $(SDDS_OBJDIR)

60 $(LOCAL_CONSTANTS):

61 touch $(LOCAL_CONSTANTS)

62 CFLAGS += -I.

63 CFLAGS += -I $(DRIVER)

64 CFLAGS += -Os

65 $(SDDS_OBJDIR)/%.o: %.c

66 $(COMPILE.c) -MMD $(OUTPUT_OPTION) $<

67 @echo "compiled"

68 $(APPLICATION_NAME).c: $(LOCAL_CONSTANTS) $(SDDS_OBJDIR)

69 $(IMPL_DEPEND_SRCS) $(DATA_DEPEND_SRCS)

70 $(CC) $(CFLAGS) -MM -MF

71 $(SDDS_OBJDIR)/$(APPLICATION_NAME).d -MT$@ $^

72 @echo "********************compile c $(IMPL_DEPEND_SRCS)"

73 @echo "$(CC) $(CFLAGS) -c $(IMPL_DEPEND_SRCS)

74 $(DATA_DEPEND_SRCS) -MM -MF$(SDDS_OBJDIR)/$(APPLICATION_NAME).d -MT$@ $^"

75 @echo "compile executed"

76 $(APPLICATION_NAME).$(TARGET): $(APPLICATION_NAME).co

77 $(SDDS_OBJS) $(DATA_DEPEND_OBJS)

78 $(IMPL_DEPEND_OBJS) $(PROJECT_OBJECTFILES) $(PROJECT_LIBRARIES)

79 contiki-$(TARGET).a

80 @echo " (Q)(LD) $(LDFLAGS) $(SDDS_OBJS) $(DATA_DEPEND_OBJS)

81 $(APPLICATION_NAME).co obj_sky/contiki-xm1000-main.o contiki-$(TARGET).a

82 -o $(APPLICATION_NAME).$(TARGET)"

83

84 (Q)(LD) $(LDFLAGS) $(APPLICATION_NAME).co

98

85 $(SDDS_OBJS) $(DATA_DEPEND_OBJS) obj_$(TARGET)/contiki-$(TARGET)-main.o

86 contiki-$(TARGET).a -o $(APPLICATION_NAME).$(TARGET)

87

88 @echo "StartFiles will be added "

89 @echo "Target generator is done for xm1000 "

90 $(APPLICATION_NAME).ihex: $(APPLICATION_NAME).$(TARGET)

91 $(OBJCOPY) $^ -O ihex $@

92 @echo 'ihex run2'

93 CLEAN += $(APPLICATION_NAME).elf $(APPLICATION_NAME).hex

94 $(APPLICATION_NAME).ihex $(APPLICATION_NAME).out

95 CLEAN += symbols.c symbols.h

96 CLEAN += $(APPLICATION_NAME).d

97 CLEAN += -rf $(SDDS_OBJDIR)

98

99 %-ds.c %-ds.h %_sdds_impl.c %_sdds_impl.h:

100 #$(shell ./generate.sh)

101

102 -include $(patsubst %.o,%.d,$(ALL_OBJS))

103

104 code:

105 #$(shell ./generate.sh)

99

100

APPENDIX B

INTERFACE DEFINITION FOR DDS

Listing 10 XML file for Interface Definition

1 <profile id = "1">

2 <topic name = "temperature" domain = "1" id = "A">

3 Temperature Test

4 <attribute name = "deviceId" type = "DDS_short" key = "primary">Device ID

5 </attribute>

6 <attribute name = "temperature" type = "DDS_short">Temperature value

7 </attribute>

8 <attribute name = "light" type = "DDS_short">Light value

9 </attribute>

10 <attribute name = "humidity" type = "DDS_short">Humidity value

11 </attribute>

12 </topic>

13 </profile>

101

102

APPENDIX C

READING SERIAL DATA

Listing 11 Reading serial data from USB

1 #include "contiki.h"

2 #include "dev/serial-line.h"

3 #include <stdio.h>

4 #include "dev/leds.h"

5 #include "dev/uart1.h"

6 PROCESS(test_serial, "Serial line test process");

7 AUTOSTART_PROCESSES(&test_serial);

8 static struct etimer timer;

9 static int uart_rx_callback(unsigned char c) {

10 uint8_t u;

11 u = (uint8_t)c;

12 leds_on(LEDS_ALL);

13 printf("\nReceived temp: %u",u);

14 //etimer_set(&timer, 1 * CLOCK_SECOND);

15 //PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&timer));

16 leds_off(LEDS_ALL);

17 }

18 PROCESS_THREAD(test_serial, ev, data)

19 {

20 PROCESS_BEGIN();

21 uart1_init(BAUD2UBR(115200)); //set the baud rate as necessary

22 printf("%s\n","Waiting data:");

23 uart1_set_input(uart_rx_callback); //set the callback function

24 leds_on(LEDS_ALL);

25 for(;;) {

26 PROCESS_YIELD();

27 if(ev == serial_line_event_message) {

28 leds_off(LEDS_ALL);

29 printf("received line: %s\n", (char *)data);

30 }

31 }

32 PROCESS_END();

33 }

103

104

APPENDIX D

CREATING DDS OBJECTS

Listing 12 XML file for creating DDS components

1 <\ project

2 name = "sensordata_test_publisher"

3 script = "sdds.gsl"

4 endian = "little"

5 os = "contiki"

6 ip = "fe80::12:13ff:fe14:1516"

7 port = "23234">

8 SensorData

9

10 <!--

11 Includes are processed first, so XML in included files will be

12 part of the XML tree

13 -->

14 <define name = "SDDS_NET_MAX_BUF_SIZE" value = "128"/>

15 <define name = "SDDS_QOS_HISTORY_DEPTH" value = "3"/>

16 <define name = "SDDS_NET_MAX_LOCATOR_COUNT" value = "10"/>

17 <include filename = "../topics/sensordata.xml" />

18

19 <role topic = "sensordata" type = "publisher"/>

20 <role topic = "sensordata" type = "subscriber"/>

21 </project>

105

106

APPENDIX E

OPTIMIZING MEMORY FOR MSP430

1 MEMORY {

2 sfr : ORIGIN = 0x0000, LENGTH = 0x0010 /* END=0x0010,

size 16 */↪→

3 peripheral_8bit : ORIGIN = 0x0010, LENGTH = 0x00f0 /* END=0x0100,

size 240 */↪→

4 peripheral_16bit : ORIGIN = 0x0100, LENGTH = 0x0100 /* END=0x0200,

size 256 */↪→

5 ram_mirror (wx) : ORIGIN = 0x0200, LENGTH = 0x0800 /* END=0x0a00,

size 2K */↪→

6 infomem : ORIGIN = 0x1000, LENGTH = 0x0100 /* END=0x1100,

size 256 as 2 128-byte segments */↪→

7 infob : ORIGIN = 0x1000, LENGTH = 0x0080 /* END=0x1080,

size 128 */↪→

8 infoa : ORIGIN = 0x1080, LENGTH = 0x0080 /* END=0x1100,

size 128 */↪→

9 ram (wx) : ORIGIN = 0x1100, LENGTH = 0x2800 /* END=0x3900,

size 10K */↪→

10 rom (rx) : ORIGIN = 0x4000, LENGTH = 0xbfe0 /* END=0xffe0,

size 49120 */↪→

11 vectors : ORIGIN = 0xffe0, LENGTH = 0x0020 /*
END=0x10000, size 32 as 16 2-byte segments */↪→

12 /* Remaining banks are absent */

13 bsl : ORIGIN = 0x0000, LENGTH = 0x0000

14 infoc : ORIGIN = 0x0000, LENGTH = 0x0000

15 infod : ORIGIN = 0x0000, LENGTH = 0x0000

16 ram2 (wx) : ORIGIN = 0x0000, LENGTH = 0x0000

17 usbram (wx) : ORIGIN = 0x0000, LENGTH = 0x0000

18 far_rom : ORIGIN = 0x00000000, LENGTH = 0x00000000

19 }

20 REGION_ALIAS("REGION_TEXT", rom);

21 REGION_ALIAS("REGION_DATA", ram);

22 REGION_ALIAS("REGION_FAR_ROM", far_rom); /* Legacy name, no longer

used */↪→

23 REGION_ALIAS("REGION_FAR_TEXT", far_rom);

24 REGION_ALIAS("REGION_FAR_DATA", ram2);

25 PROVIDE (__info_segment_size = 0x80);

26 PROVIDE (__infob = 0x1000);

27 PROVIDE (__infoa = 0x1080);

107

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Problem Statement
	Approach
	Improvements

	Background Information and Related Work
	Contiki
	Operating System
	Energest Power Module

	MSP430 Based Telosb Mote
	Zigbee
	Data Distribution Service
	MQTT
	Mosquitto
	MQTT-SN
	Literature Survey on DDS Gateway for Resource-Constrained Enviroments
	Literature Survey for MQTT

	Implementation and Methods
	Dataset
	Proposed Methods and Models
	DDS
	Installing Contiki Development Environment for Sensor DDS
	Tailoring DDS Software and Enabling Zigbee Gateway for Contiki OS
	Creating Source Code for MSP430 based Telosb Motes for Sensor DDS
	Building and Creating a binary file from source code
	Sequence Diagram for Sending Sensor Data
	Output of the Demo application

	MQTT-SN
	Installing Contiki Development Environment for MQTT-SN
	Using MQTT-SN for Sharing Sensor Data
	General Structure
	Installing RSMB on Ubuntu OS
	Burning Node ID for Border-Router
	Installing Border-Router on Telosb Mote
	Running Tunslip for SLIP Server
	Creating Binary File and Sending Data
	Running Simulation on Cooja
	Running Application on Real Hardware

	Encountered Difficulties and Their Resolution
	Sensor DDS
	MQTT
	MQTT-SN

	Power Consumption Calculation for Sensor Sharing Applications

	Results and Discussion
	Result of Memory Optimization for DDS application
	Memory Optimization for Changing Network Macros
	Changing Energest Module on XM1000 Mote
	Prevent From Initializing Variables and Printing String
	Disabling Process Name
	Configuration for Power Consumption
	Result Table

	Result of Memory Optimization for MQTT-SN application
	Memory Optimization For Changing Network Macros
	Disabling Process Name
	Prevent From Initializing Variables and Printing String
	Changing Energest Module on Sky Mote
	Enable Energest Module Without Self Calculation

	Result for Power Consumption
	Result for Tailored DDS on XM1000(Two Nodes)
	Result for Tailored DDS on CM5000(Two Nodes)
	Result for Tailored DDS on CM5000(Three nodes)
	Result for MQTT
	Result for MQTT-SN
	Result for Two Nodes MQTT-SN Communication
	Result for Three Nodes MQTT-SN Communication

	Conclusion and Future Work
	REFERENCES
	Makefile for SensorDds
	Interface Definition for DDS
	Reading Serial Data
	Creating DDS Objects
	Optimizing Memory for MSP430

