DATA SHARING USING MQTT AND ZIGBEE-BASED DDS ON
RESOURCE-CONSTRAINED CONTIKI-BASED DEVICES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

TUNAHAN YILDIRIM

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
COMPUTER ENGINEERING

JANUARY 2020

Approval of the thesis:

DATA SHARING USING MQTT AND ZIGBEE-BASED DDS ON
RESOURCE-CONSTRAINED CONTIKI-BASED DEVICES

submitted by TUNAHAN YILDIRIM in partial fulfillment of the require-
ments for the degree of Master of Science in Computer Engineering De-
partment, Middle East Technical University by,

Prof. Dr. Halil Kalipcilar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Mehmet Halit S. Oguztiiziin
Head of Department, Computer Engineering

Prof. Dr. Mehmet Halit S. Oguztiiziin
Supervisor, Computer Engineering, METU

Examining Committee Members:

Prof. Dr. Ahmet Cosar
Computer Engineering, THK University

Prof. Dr. Mehmet Halit S. Oguztiiziin
Computer Engineering, METU

Assoc. Prof. Dr. Ertan Onur
Computer Engineering, METU

Date:10.01.2020

I hereby declare that all information in this document has been obtained
and presented in accordance with academic rules and ethical conduct. I
also declare that, as required by these rules and conduct, I have fully cited
and referenced all material and results that are not original to this work.

Name, Surname: Tunahan Yildirim

Signature

iv

ABSTRACT

DATA SHARING USING MQTT AND ZIGBEE-BASED DDS ON
RESOURCE-CONSTRAINED CONTIKI-BASED DEVICES

Yildirim, Tunahan
M.S., Department of Computer Engineering
Supervisor: Prof. Dr. Mehmet Halit S. Oguztiiziin

January 2020, 107 pages

This thesis describes the implementation of data sharing among resource-
constrained IoT devices using two different middleware: MQTT(Message
Queuing Telemetry Transport) and DDS (Data Distribution Services) for Real-
Time Systems. In our setting, all IoT devices run under the Contiki operating
system. In the configuration for DDS, a pair of Texas Instruments” MSP430
processor-based ZigBee powered Advanticsys XM1000 device is used to re-
alize data sharing between wireless sensor network devices without a server
node. In order to install and run the proposed application, Ubuntu 64-bit op-
erating system is used since it provides all the dependencies for Contiki and
wireless sensor nodes. In the DDS middleware, an example interface def-
inition is given in the XML file which contains the temperature, humidity,
light values and the data to be shared is determined by the interface defi-
nition. For sharing data, DDS components (DataWriter, DataReader, Pub-
lisher, Subscriber, Topics) are used. Two XM1000 wireless sensor nodes are

used for sharing sensor data with each other every 10 seconds. These experi-

A%

murat_
Rectangle

murat_
Typewritten Text
107

murat_
Typewritten Text

murat_
Typewritten Text

ments are performed between 2 and more devices using the simulator and in
different periods. In the second part of the work, the data structure that con-
tains temperature, humidity and light values is shared via both MQTT and
MQTT-SN (MQTT for Sensor Networks) middleware. The configuration of
the MQTT middleware application works with the TCP protocol, the follow-
ing components are used: The Ubuntu-based host computer, the mosquitto
(Local MQTT server) application running on the host computer, MSP430
processor-based ZigBee powered wireless sensor node (CM5000 produced
by Advanticsys company). In addition, the Python client applications for
both publisher and subscriber are run on the host computer. These compo-
nents above are used for sharing the sensor data structure between wireless
sensor nodes which are connected to the host computer. Publisher and sub-
scriber applications share the sensor data structure in every 10 seconds over
the mosquitto server and received data is sent to the wireless sensor node
by using python subscriber application. The received sensor data structure
is sent to wireless sensor node by using the serial interface. In this im-
plementation, ZigBee radio is not used because the ZigBee module could
not be activated due to the large memory footprint of the MQTT applica-
tion. Since the Zigbee module cannot be used in MQTT application, it is
not included in the comparison. In order to run and share the data structure
that contains temperature, humidity and light values by using the MQTT-SN
middleware, RSMB (Really Small Mosquitto Broker) is installed and run on
a Linux based host computer. The devices must obtain the IP address from
the host computer to communicate with the Mosquitto server running on
the host computer. Therefore, the border-router application used to obtain
an IP address on the computer is running on wireless sensor node named
CMS5000 . Another CM5000 wireless sensor node gets the IP address by us-
ing border-router application installed CM5000 wireless sensor node and can
write sensor data on RSMB by using MQTT-SN middleware installed on the
CM5000 wireless sensor node. The sensor data structure is shared in differ-
ent period of times(5,10,20,30,60 seconds) and 2 and more sensor devices. In
addition, sensor data sent from CM5000 wireless sensor node is shared with

the RSMB server running on the host computer. The shared sensor data can

Vi

be viewed on the host computer by using the Mosquitto client which reads
data from RSMB. These three configurations are compared in terms of mem-
ory usage, power consumption, and bandwidth utilization. With respect to
memory usage, DDS middleware software is the least memory consuming
software. In addition, the effects of the changes made to fit the image of the
operating system on the memory usage are calculated. Similarly, it was seen
that the DDS application consumed the least power among all the applica-
tions. For MQTT-SN, power consumption could not be calculated, due to
power estimation module which could not be activated because of the lack
of memory.With the application developed using calculated raw values, the
calculation is made for MQTT-SN and the energest module of Contiki is used

for power estimation.

Keywords: Dds, Mqtt, Contiki,Interoperable, Memory Footprint

vii

0z

KAYNAK KISITLARI BULUNAN CONTIKI TABANLI Ci'HAZLARDA
MQTT VE ZIGBEE TABANLI DDS KULLANARAK VERI PAYLASIMI

Yildirim, Tunahan
Yiiksek Lisans, Bilgisayar Miihendisligi Bolimii
Tez Yoneticisi: Prof. Dr. Mehmet Halit S. Oguztiiziin

Ocak 2020, 107 sayfa

Bu tez, iki farkhh katman yazilimi kullanan kaynak kisith IoT aygitlar: ara-
sinda veri paylagimimin uygulanmasini agiklamaktadir: Gercek Zamanh Sis-
temler icin MQTT (Message Queuing Telemetry Transport) ve DDS (Veri Da-
gitim Hizmetleri). Konfigiirasyonumuzda, tiim IoT cihazlar1 Contiki isletim
sistemi altinda caligmaktadir. DDS yapilandirmasinda, bir sunucu diigimii
olmadan kablosuz sensor ag aygitlar: arasinda veri paylasimin gerceklestir-
mek i¢in bir ¢ift Texas Instruments’m MSP430 islemci tabanli ZigBee des-
tekli Advanticsys XM1000 cihazi kullanilmistir. Uygulamanin kurulumu ve
calistirilmasi icin, Contiki ve kablosuz sensor diigtimleri igin tiim bagimli-
liklar: sagladigr icin Ubuntu 64-bit isletim sistemi kullanilir. DDS arakatman
yaziliminda, sicaklik, nem, 1s1k degerleri iceren XML dosyasinda 6rnek bir
araytiz tanim verilmistir ve paylasilacak veriler bu arayiiz tanimi tarafindan
belirlenir. Veri paylasimi i¢in, DDS bilesenleri (DataWriter, DataReader, Pub-
lisher, Subscriber, Topic) kullanilir. Iki XM1000 kablosuz sensor digimii,

sensOr verilerini her 10 saniyede bir birbirleriyle paylasmak icin kullanilir.

viil

murat_
Rectangle

murat_
Typewritten Text
107

murat_
Typewritten Text

murat_
Typewritten Text

Bu testler, simiilator kullanarak 2 ve daha fazla cihaz arasinda ve farkli pe-
riyotlarda gergeklestirilir. Calismanin ikinci boliimiinde sicaklik, nem ve 151k
degerleri iceren veri yapist hem MQTT hem de MQTT-SN (Sensor Aglar:
icin MQTT) ara katman yazilimi ile paylasiliyor. MQTT ara yazilimi uygu-
lamasinin yapilandirmas1 TCP protokoliiyle c¢alisir ve asagidaki bilesenler
kullanilir: Ubuntu tabanl ana bilgisayar, ana bilgisayarda ¢alisan mosquitto
(Yerel MQTT sunucusu) uygulamasi, MSP430 islemci tabanl ZigBee destekli
kablosuz sensor diugimii (MSP430 islemci tabanli) Advanticsys firmas: tara-
findan tiretilen CM5000). Ayrica, hem yayimnci hem de dinleyici i¢in Python
istemci uygulamalar1 ana bilgisayarda caligtirilir. Yukaridaki bu bilegenler,
sensOr veri yapisini ana bilgisayara bagli olan kablosuz sensor diigtimleri
arasinda paylasmak i¢in kullanilir. Yayinci ve abone uygulamalari, sensor
veri yapisimi mosquitto sunucusu tizerinden her 10 saniyede bir paylasir ve
alinan veriler python abone uygulamas: kullanilarak kablosuz sensor diigii-
miine gonderilir. Alinan sensor veri yapisi da seri arayiiz kullanilarak kablo-
suz sensor diigiimiine gonderilir. Bu uygulamada, ZigBee modiilii, MQTT
uygulamasinin yiiksek bellek ihtiyacinedeniyle ZigBee modiilii etkinlesti-
rilemediginden kullanilamaz.MQTT uygulamasinda Zigbee modulii kulla-
nilamadigindan dolay:r karsilastirilmaya dahil edilmemistir. MQTT-SN ara
katman yazilimini kullanarak sicaklik, nem ve 151k degerleri iceren veri ya-
pisin1 ¢alistirmak ve paylasmak i¢cin RSMB (Really Small Mosquitto Broker)
Linux tabanli bir ana bilgisayara kurulup galistirilir. Cihazlar, ana bilgisa-
yarda ¢alisan Mosquitto sunucusuyla iletisim kurmak i¢in ana bilgisayardan
IP adresini almalidir. Bu nedenle, bilgisayarda IP adresi almak i¢in kullanilan
yonlendirici uygulamasi CM5000 adli kablosuz algilayic1 diigtimde galistiri-
lir. Bagka bir CM5000 kablosuz sensor diigiimii, CM5000 kablosuz sensor
diugimiinii yiikleyen yonlendirici uygulamasim kullanarak IP adresini alir
ve CM5000 kablosuz sensor diigiimiine yiiklenen MQTT-SN ara yazilimi
kullanarak RSMB {izerindeki sensor verilerini yazabilir. Sensor veri yapisi
fark: stirelerde 2 veya daha fazla sensor diigiimii arasinda paylasilir. Ayrica,
CM5000 kablosuz sensor diigiimiinden gonderilen sensor verileri, ana bilgi-
sayarda calisan RSMB sunucusuyla paylasilir. Paylasilan sensor verileri, ana

bilgisayarda RSMB’den veri okuyan Mosquitto istemcisi kullanilarak goriin-

iX

tiilenebilir. Bu ti¢ yapilandirma hafiza kullanimu, giig tiiketimi ve bant genis-
ligi kullanim1 agisindan karsilagtirilmistir. Bellek kullanimiyla ilgili olarak,
DDS arakatman yazilimi en az bellek tiiketen yazilimdir. Ek olarak, isletim
sisteminin goriintiisiiniin cihazlar {izerine yiiklebilmesi icin yapilan degi-
sikliklerin bellek kullanim tizerindeki etkileri hesaplanmaktadir. Benzer se-
kilde, DDS uygulamasmin tiim uygulamalar arasinda en az giicii tiikettigi
goriilmiistiir. MQTT-SN icin bellek yetersizligi nedeniyle etkinlestirilemeyen
glic tahmin modiilii nedeniyle gii¢ tiiketimi hesaplanamaz. Bu nedenle bu
modiil tarafindan hesaplanan ham degerler kullanilarak gelistirilen uygu-
lama ile MQTT-SN icin de hesaplamalar yapilir. Contikinin "Energest mo-

duli" giig tiiketimi tahmini i¢in kullanilir.

Anahtar Kelimeler: Dds, Mqtt, Contiki, Birlikte Calisabilirlik,Hafiza Kulla-

nimi

To my family..

xi

ACKNOWLEDGMENTS

I would like to express my inmost gratitude to my supervisor Prof. Dr.Halit
Oguzttiziin for his patience, vision and understanding throughout this the-
sis. I am also indebted to Assoc.Prof Ertan Onur for his knowledge, ideas
and motivation. I also would like to thank my parents, sister and my aunt

Sevgi Yildirim for their love and support.

xii

TABLE OF CONTENTS

ABSTRACT] \%

... viii

ACKNOWLEDGMENTS oo o oo . xii

TABLE OF CONTENTS xiii

LISTOFTABLES xvii

LISTOF FIGURES. Xix

LIST OF ABBREVIATIONS| xxii
CHAPTERS

1 INTRODUCTION| 1

1.1 Problem mentlo 1

(1.2 Approachl 4

(1.3 Improvements|. 6

2 BACKGROUND INFORMATION AND RELATED WORK 9

9

2.1.1 Operating System| 9

2.1.2 Energest Power Module| 10

2 P430 B Telosb Mote|. 10

23 Zigbee| 11

14

15

16

17I

19

3 IMPLEMENTATION AND METHODS 21
21

B.2 Proposed Methods and Models|. 22
............................... 22
3.2.1.1 Installing Contiki Development Environment for |
Sensor DDS|o oo 22

13.2.1.2 Tailoring DDS Software and Enabling Zigbee Gate- |

| way for ContikiOS| 23
13.2.1.3 Creating Source Code tor MSP430 based Telosb |
Motes for Sensor DDS| 25

3.2.1.4 Building and Creating a binary file from source |

codel 26

13.2.1.5 Sequence Diagram for Sending Sensor Data| 28
13.2.1.6 Output of the Demo application| 29

B22 MOTTSN| 31
13.2.2.1 Installing Contiki Development Environment for |
MOTI-SN| o 31

13.2.2.2 Using MQTT-SN for Sharing Sensor Data| 31
B223 General Structurel 32

B.2.2.4 Installing RSMB on Ubuntu OS5 33
B3.2.2.5 Burning Node ID for Border-Router|. 33
8.2.2.6 Installing Border-Router on Telosb Mote| 34
3.2.2.7 Running Tunslip for SLIP Server|. 35
3.2.2.8 Creating Binary File and Sending Data|. 37
3.2.2.9 Running Simulation on Cooja| 38
B8.2.2.10 Running Application on Real Hardware|. 40
Encountered Difficulties and Their Resolution! 43
B31 SensorDDS 0. 43
B32 MOTT]. 44
B33 MOTT-SN| 44
3.4 Power Consumption Calculation for Sensor Sharing Applica- |
I tionsl 45
....................... 47
4.1 Result of Memory Optimization for DDS application| 48
411 Memory Optimization for Changing Network Macros|. . 49
.12 Changing Energest Module on XM1000 Mote|. 49
4.1.3 Prevent From Initializing Variables and Printing String| . 49
#4.1.4 Disabling Process Name| 50
4.1.5 Configuration for Power Consumption|. 50
416 ResultTablel 50
4.2 Result of Memory Optimization for MQTT-SN application|. . . 51
“4.2.1 Memory Optimization For Changing Network Macros| . 52

XV

@.2.2 Disabling Process Name| 52

#4.2.3 Prevent From Initializing Variables and Printing String| . 52

.24 Changing Energest Module on Sky Mote| 53

4.2.5 Enable Energest Module Without Self Calculation| 53

4.3 Result for Power Consumption|. 53

4.3.1 Result for Tailored DDS on XM1000(Two Nodes)|. 54

4.3.2 Result for Tailored DDS on CM5000(Two Nodes)| 64

“4.3.3 Result for Tailored DDS on CM5000(Three nodes)| 66

4.3.4 Result for MOQTT| 69

3.5 Result tor MOTT-SN| 70

4.3.6 Result for Two Nodes MQTT-SN Communication| 70

4.3.7 Result for Three Nodes MQTI-SN Communication| . .. 80

.................. 91

REFERENCES e 93
APPENDICES

...................... 97

................... 101

C READING SERTAL DATAl o e 103

E OPTIMIZING MEMORY FOR MS5P430

Xvi

LIST OF TABLES

TABLES

Table[3.1 The calculation of the values by using sensor data. [1]] 22
Table 3.2 The macro definitions for energest module| 46
Table4.1 The meaning of the MSP430 flags| 49
Table 4.2 The Memory Usage of The Sample DDS Application| 51
Table 4.3 The Memory Usage of The MQTT-SN Application for Only |
| Temperature Sensor| 53
Table4.4 Average power consumption in microwatt for interval 5 sec- |
| ondsl 54
Table4.5 Average power consumption in microwatt for interval 10 sec- |
| onds| 57
Table4.6 Average power consumption in microwatt for interval 20 sec- |
Condd 59
Table4.7 Average power consumption in microwatt for interval 30 sec- |
Condd 60
Table|4.8 Average power consumption in microwatt for interval 60 sec- |
[ondd 61
Table 4.9 Expected life time for DDS application(XM1000 Two Nodes)|. 64
Table 4.10 Expected life time for CM5000(Iwo Nodes)| 66

XVvii

Table 4.11 Expected life time for CM5000(Three Nodes)| 69

Table 4.12 Average power consumption for MQTT in milliwatt. 69

Table |4.13 Average power consumption in microwatt for interval 5 sec- |

Condd 70
Table4.14 Average power consumption in microwatt for interval 10 sec- |
[ondd 74
Table4.15 Average power consumption in microwatt for interval 20 sec- |
[ondd 75
Table4.16 Average power consumption in microwatt for interval 30 sec- |
[ondsl 76
Table4.17 Average power consumption in microwatt for interval 60 sec- |
| onds| 77
Table |4.18 Expected life time for MQTT-SN(Iwo Nodes)| 80

Table4.19 Average power consumption in nanowatt for interval 5 seconds| 81

Table4.20 Average power consumption in microwatt for interval 10 sec- |

Condsl 84

| onds| ... 87
Table 4.24 Expected life time for tested periods| 90

Xviii

LIST OF FIGURES

FIGURES

Figure2.1 — Telosb Motes XM1000 [2], CM5000 [3]| 11
Figure[2.2 General structure for DDS [4] | 14
Figure 2.3 MOQTT general connection architecture] 15
Figure2.4 ~ MQTI-SN Architecture [5] 17
Figure2.5 DDS-XRCE architecture [6]] 18
Figure[3.1 Build process for sensor DDS| 27
Figure3.2 Sequence diagram for sending data|. 28
Figure[3.3 Overall block diagram |. 29
Figure 3.4 Receiving data from XM1000 Motel| 30
Figure[3.5 Receiving data from XM1000 Mote2| 30
Figure[3.6 The General Structure For MQTT-SN| 32
Figure[3.7 Running server on telosb sensornode| 36
Figure[3.8 The web interface of Tunslip6[. 36
Figure[3.9 Sequence diagram fomgr border-router|. 37
Figure 3.10 Adding a sky sensor node to border router application |
| on Coojasimulator|. 39
Figure[3.11 Running sensor node asa server|. 40

Xix

Figure3.12 The sequence of publishing data|. 42
Figure3.13 The output of the mosquitto client application| 42
Figure 3.14 Changing the path values| 44
Figureid.l1 The total power consumption in milliwatt in first 400 sec- |

ondsfor CPU| o 62
Figureid.2 The total power consumption in milliwatt in first 400 sec- |
I ondsfor LPMI| o 62
Figurei4.3 The total power consumption in milliwatt in first 400 sec- |
I ondsfor TX| 63
Figure4.4 The total power consumption in milliwatt in first 400 sec- |
| ondsfor TX| 63
Figure4.5 The total power consumption in milliwatt in first 450 sec- |
| ondsfor CPU| 64
Figureid.6 The total power consumption in milliwatt in first 450 sec- |
| ondsfor LIPMI| L 65
Figureid.” The total power consumption in milliwatt in first 450 sec- |

ondsfor IX| 65
Figurei4.8 The total power consumption in milliwatt in first 450 sec- |

ondsfor RX| 66
Figurei4.9 The total power consumption in milliwatt in first 450 sec- |
I ondsfor CPU| L o 67
Figure{4.10 The total power consumption in milliwatt in first 450 sec- |
I ondsfor LPMI| o 67
Figure4.11 The total power consumption in milliwatt in first 450 sec- |
| ondsfor TX| 68

XX

Figure{4.12 The total power consumption in milliwatt in first 450 sec-

[onds for RX|

Figure{4.13 The total power consumption in milliwatt in first 450 sec-

nds for CPU |,

Figure{4.14 The total power consumption in milliwatt in first 450 sec-

[onds for LPM|

Figure{4.15 The total power consumption in milliwatt in first 450 sec-

Figure{4.20 The total power consumption in milliwatt in first 450 sec-

[onds for RX|

XX1

API
CoAP
CPU
DDS-XRCE
DDS
10T

P
LPM
M2M
MQTT-SN
MQTT
OMG
QOS
RAM
RIME
ROM
RSMB
RTI
RTPS
RX
SDDS
SNPS
TCP

LIST OF ABBREVIATIONS

Application Programming Interface
Constrained Application Protocol
Central Processing Unit

DDS for Extremely Resource Constrained Environments
Data Distribution Service

Internet of Things

Internet Protocol Address

Low Power Mode

Machine to Machine

MQTT For Sensor Network
Message Queuing Telemetry Transport
Object Management Group

Quality of Service

Random Access Memory

Radio Interface Module

Read Only Memory

Really Small Mosquitto Broker
Real Time Infrastructure

Real Time Publish Subscribe
Receive

Sensor Data Distribition Service
Sensor Network Publish

Transmission Control Protocol

XXii

X Transmit
uDP User Datagram Protocol
USB Universal Serial Bus

XML Extensible Markup Language Subscribe

XXiii

XX1V

CHAPTER 1

INTRODUCTION

1.1 Problem Statement

Today applications are developed by using various software languages and
can be run on many different systems. In many usage scenarios, communica-
tion between devices and systems is required. The disintegration of systems
led to the development of the concept of discrete systems. The main pur-
pose of this thesis is to run the DDS(Data Distribution Service) protocol on
systems that use less memory and fixed memory space. DDS can be defined
as a middleware standard for interoperable, data-centric publish/subscribe
architectures with real-time capabilities [7]. DDS normally provides secure
data transfer over ethernet. In this thesis, it is aimed to update the DDS pro-
tocol for tailoring data and convert the DDS middleware to a gateway that
can be run on ZigBee by using a sensor node that uses Contiki operating
system. Studies are developing data distribution service as middleware ac-
cording to the Object Management Group (OMG) DDS standard. The OMG
Data-Distribution Service for Real-Time Systems (DDS) is the first open in-
ternational middleware standard directly addressing publish-subscribe com-
munications for real-time and embedded systems [7]. The DDS differs from
client-server applications because of several features. The most significant
difference between DDS and client-server applications is the requirement of
the usage of the centralized server which receiving data from clients and the
server replies every request with a response message. Client-server architec-
ture is generally used for web applications. On the contrary, a previously

defined data structure, Interface Definition Language (IDL), is used for the

1

client-server architecture. Common data structures are created according to
the definitions in the IDL file format. Data exchange can be successfully
performed when these structures are compatible with each other. The data
is written via a publisher and the data is read via a subscriber. By making
adjustments about parameters of Quality of Service (QoS), DDS events can
be customized to identify problems about DDS clients and data sharing be-
tween clients. The general concept is that each application has a data writer
to send data that is specified in IDL. Also, the subscriber component uses the
DDS component, DataReader, to read data from other nodes according to the
DDS topic. When data is shared between nodes by using DDS middleware,
data transfer takes place only through logical structures such as topics and
QoS parameters. Incompatible logical structures are ignored by DDS. Also,
each device communicates over a certain domain number which helps to iso-
late the domain from other domains to avoid miscommunication. In this the-
sis, devices have ZigBee modules to convert and modify Real Time Publish
Subscribe (RTPS) packages to smaller packages which are called Sensor Net-
work Publish-Subscribe (SNPS) packet [8]. In this thesis, the SNPS packet
format is modified to be able to use DDS middleware on ZigBee devices.
The aim of the usage of the modified SNPS packet format is data commu-
nication with the radio interface of Contiki devices, packages, and network
layer which is changed to send as a ZigBee packet. The DDS data packets are
exchanged with nodes through a radio interface to achieve a successful data
transfer. To find and define the differences (memory footprint, advantages,
use cases), the performance results of this thesis are compared with Mes-
sage Queuing Telemetry Transport (MQTT) which is a machine-to-machine
(M2M)/"Internet of Things" connectivity protocol. MQTT is designed as an
extremely lightweight publish/subscribe messaging transport. The MQTT is
useful for connections with remote locations where a small code footprint is

required and network bandwidth is effectively used [9].

When resource-constrained operating systems are compared, it appears that
Tiny-OS is the least resource-consuming operating system. However, it is

predicted that the Contiki operating system would be suitable for applica-

tions developed throughout the thesis. Tiny OS cannot be multitasked, in-
sufficient in terms of flexibility and preemptive multi-threading and doesn’t

support the pure C programming language [10].

Firstly, it is aimed to install tailored DDS middleware on sensor node models
which have very low RAM and ROM resources by using the ZigBee model
on sensor node instead of using ethernet. To achieve this goal, efforts are
given to minimize memory footprints. To optimize the memory footprint of
the device, it is possible to load on the device by changing the configura-
tion data of the related platform (Contiki), adding optimization flags of the
compiler and optimizing the memory on the Contiki operating system. The

procedures will be discussed in Section

Secondly, it is aimed to evaluate various data sharing schemes in resource-
constrained environments. The steps are required to install and use this
software will be explained in Section 3 A sample code compatible with the
CC2538 model has been produced by Texas Instrument to use the MQTT
via Contiki. This example could not be run on the existing devices because
the CC2538 model has approximately four times more RAM and ROM re-
sources. As a solution, the data is sent to python software by using the serial
communication port. The middleware receives the incoming data from the
MQTT server and sends the data constructed from the related topic data
structure to the MQTT server. Meanwhile, a second client application which
is implemented in python listens to the data and periodically share data.
The data is transferred to the device via the serial communication port. Al-
though the data reading event on Sky sensor node is available, the data is
not received. To fix this problem, changes are made in the data reading

mechanism.

Then, it is aimed to reduce the memory footprints by using the User Data-
gram Protocol (UDP) instead of the Transmission Control Protocol (TCP) for
the MQTT packets. To achieve this, it is decided to use the MQTT For Sen-
sor Network (MQTT-SN protocol) which is a derivative of MQTT. For the

MQTT-SN experiments, the memory overflow problem is observed in the

memory footprint. To solve this problem, the operating system and com-
piler settings are changed and the memory problem is fixed. To ensure IP
connectivity between devices, the aforementioned CM5000 device controller
must work with webserver support by using the rpl-border-router which is
one of the examples of IPv6 projects under Contiki applications. Otherwise,
the IP connection can not be established. The XM1000 (sensor node) device
had problems with getting the IP address, therefore XM1000 [2], is simulated
with the Cooja [11] simulator by using the sky sensor node platform. Then,
the sensor node sends to the other nodes by using the topic structure that
has the same structure with the data which is sent over DDS. Details will be

explained in Section

1.2 Approach

Compatible low-power Telosb [12] nodes that have radio interface are ex-
amined to run the DDS and MQTT middleware on the Contiki operating
system. In this thesis, the devices produced by Advanticsys are used. These
devices are Advanticsys XM1000 [2] and CM5000 [3] nodes. The sample
DDS application is installed on devices that have ZigBee radio chips. Both
XM1000 and CM5000 are kind of Telosb sensor node that has temperature,
humidity, light and battery sensors. These values which are received from
sensors are collected and stored into a data structure that is sent by using
data distribution service. These devices (XM1000 and CM5000) have very
low RAM and ROM resource usage. Both devices have MSP430 based pro-
cessors. The XM1000 [2] device has 114KB ROM and 8KB RAM, while the
CM5000 [3] has 48KB ROM and contains 10KB of RAM. XM1000 uses the
Zigbee adapter to send moisture, temperature and light status to the other
devices. Because of the lack of available memory on RAM and ROM, the bi-
nary file for a device could not be loaded via bootstrap in the default setting.

Also, overflow error messages are written on the bootstrap loader console.

To resolve the memory overflow obstacle, the changes on platform-conf un-

der the platform folder related to the device. Platform files for the Con-

4

tiki operation system are downloaded via Texas Instruments(TI)’s website
and downloaded files are moved to the Contiki operation system’s platform
folder. The changes related to macro is done by using this platform-conf
file. When changes are done SNPS packet for ZigBee, firstly macros related
to IPV6 set as 0 for disabling IPV6 support. The memory overflow problem
still exists while creating binary images for tailored DDS, the latest version of
MSP430 is not available on the Linux repositories. The latest version(4.6.3)
on Ubuntu repositories couldn’t support 20-bit registers. Because of this,
a newer version is downloaded for github [13] and this memory-efficient
version reduces the RAM and ROM size. Compiler flags that provide opti-
mization to reduce RAM and ROM usage are added to the corresponding
makefile. However, uploading the binary file to the device is not successful.
Besides, a project-related configuration file shall be set by disabling or chang-
ing unnecessary components. For example, TSCH log level, TCP and UDP
settings, values for routing tables and neighboring tables, process strings can
be activated by using a platform configuration file, therefore memory space
can be gained by optimizing or disabling Contiki macros. Optimization is
applied for the byte values occupied by members held in the source code,
initial values are removed in source code to reduce the RAM size. Both the
MQTT part and the DDS part are tuned according to the methods above
and the reference [14]. In the first part of the thesis, the DDS application is
modified for ZigBee after adapting DDS for the radio interface. The second
problem is found while trying to upload DDS software to the sky sensor
node. Makefile is updated for building the DDS project for MSP430 CPU ar-
chitecture. All dependencies for(sensor source file and DDS source files) are
added to the makefile by overriding makefile templates, as a result of this the
exceptions related to memory messages seen in the terminal window. These
problems are fixed by applying the methodologies defined above. Applica-
tion is uploaded to devices and data exchange operations successfully done.
The second implementation is related to MQTT. Similar to the DDS sensor
data application, the makefile was created to install the MQTT software on
the sensor nodes, and the configuration settings were updated similar to

methods mentioned in the part related to DDS software. However, despite

these changes, the binary file could not be loaded to the device because TCP
and UDP could not be turned off in the MQTT software. In the first at-
tempt of MQTT, the data obtained from the serial port was transmitted to
the mosquitto server which is running on the Linux computer via the client
software running on the same computer and the data exchange between the
two sensor devices is made. In the third stage of the thesis, a data structure
was created using MQTT-SN. infrastructure produced by IBM for sensor net-
works that can work with MQTT. MQTT-SN uses UDP and not TCP for its
transport [15]. UDP is a connectionless protocol whereas TCP is connection
orientated. Also, the arrangements on memory usage applied in other stages
were made in this software. Updated memory sharing of the corresponding
processor structure under MSP430 because of overflow on the RAM. These
changes will be discussed later in the thesis. Thus, a certain portion of the
empty ROM was assigned as ram and the corresponding software could
be loaded onto the device. For the server, a python-based MQTT-SN com-
patible version of the server was installed and connected with MQTT was
achieved. Contiki operating system uses a java-based Cooja simulator which
has features for adding nodes by using binary file and these nodes will be
added to the cooja’s panel. Ip configuration for the sensor nodes is provided
by the border-router application. The simulation is firstly run on the cooja

simulator then run in real devices for testing.

1.3 Improvements

There are several improvements mentioned in the items defined above.

-In current implementation modified DDS software only supports on data
available option, on liveliness lost, on sample lost and other necessary QoS
features will be added if memory footprint is enough to enable these fea-
tures

-The complete version of MQTT will be run on real devices using Contiki
operating system instead of the client python program running on the com-

puter.

-RTI and opensplice are announced the resource constraint version of DDS
software. Data read from sensors will be sent M2M by using this lightweight
DDS software versions and memory footprint will be compared if the binary

file fits the sky sensor nodes.

CHAPTER 2

BACKGROUND INFORMATION AND RELATED WORK

2.1 Contiki

2.1.1 Operating System

Contiki is an open-source operating system for the Internet of Things [11].
Contiki, a lightweight operating system with support for dynamic load-
ing and replacement of individual programs and services. Contiki is built
around an event-driven kernel but provides optional preemptive multithread-
ing that can be applied to individual processes [16]. The Contiki operating
system requires very low system resources, therefore it has worked in har-
mony with most resource-constraint devices. Also, the operating system is
compatible with most of the wireless sensor network devices. Even if the
platform doesn’t exist in the platform folder under the Contiki-OS source
folder, the platform will be easily ported for a new device because of the
flexibility of Contiki OS. The ported source code for the platform is moved
under the platform folder. The code can be built for the newly added plat-
form by changing the target device. Contiki is designed for low-cost, low-
power microcontrollers also serve the cooja simulator to test an application
without installing the real device. This simulator is configurable for devices
with specific processor architecture, the developed code can be tested with
the simulator without being installed on the device. On the instant Con-
tiki virtual computer provided by Contiki, all programs required to install
the operating system to the device are installed by default. Since it is open-

source, it is possible to make flexible changes to the files in the operating sys-

9

tem. The Contiki operating system supports Ipv4 and Ipvé and RIME(radio
interface support). Devices using the Contiki operating system can easily get
an IP address with the border-router project under the example folder of the
operating system. Although the operating system has a very small memory
footprint, it can run multiple operations at the same time. Libraries that al-
low data to be easily received from the sensors on the device are available
in the operating system’s source code. It is possible to optimize the memory
footprint by setting values that will not be used or diminished through the

configuration file of the device.

2.1.2 Energest Power Module

Another topic to be compared in the thesis is power consumption. For power
consumption, Contiki offers the energest module. In the power consumption
calculation, the power consumption of the devices is calculated with the val-
ues presented in the datasheet of the device (voltage, current), other values
CPU tick number, transmit, receive values. Using this feature, the hourly
power consumption of the applications which are implemented in the thesis

will be compared in the following chapters.

2.2 MSP430 Based Telosb Mote

AS-XM1000 and MTM-CM5000-MSP models produced by Advanticsys are
used to install the software in this thesis. Since the used devices have a USB
interface, they can be easily installed via the serial communication interface
of the Linux operating system. These devices support Contiki and TinyOS
operating systems, these platform files can be reachable by the website of the
products [2]] [3]. The devices use the first and second-generation versions of
the MSP430 processor. Both devices have a ZigBee radio. Devices can be
used wireless as there is a battery compartment on them. There are also
temperature, humidity and light sensors on the device. Besides, the battery

status of the Contiki operating system can also be queried. It can get IPv6

10

addresses by using a router through USB.

Figure 2.1: Telosb Motes XM1000 [2], CM5000 [3]

2.3 Zigbee

Zigbee is commonly used in wireless sensor networks. When sensor net-
works are wired, data sharing is more secure and faster, but wireless sensor
networks come to the forefront because of the easy installation. The IEEE
802.15.4 wireless data standard developed by the Zigbee alliance is used.
The Zigbee module uses energy better than other wireless data standards
and operates affordably and securely. Besides, the high density of the node
network is provided by Zigbee. Compared to the estimated battery life, Zig-
bee can work for years, while Bluetooth can work for days and wireless can
work for hours. In addition, Zigbee requires 4-32 KB, Bluetooth requires 250
KB and wireless requires around 1MB memory space [17]. Although Zigbee
has the lowest data transmission speed, the Zigbee is sufficient in the ap-
plications used in the thesis. Range varies between 10-100 meters according
to environmental factors. The data transmission rate is 250kb / second for
2.4 GHz, at a slower rate than other wireless devices; however, this speed is
sufficient for transmitting sensor data. Also, the interference detection fea-
ture is used for reliability. It calculates Packet Error Range for interference

detection [18].

11

2.4 Data Distribution Service

The DDS (Data Distribution Service) is a kind of middleware protocol and
API(Application Programming Interface) standard for data-centric connec-
tivity from the OMG(Object Management Group) [19]. Today, there are
many DDS implementations developed by various communities. OMG aims
to produce a solution that can be used on all versions by partnering with
the methods used on DDS QoS. Another important feature of DDS is that
it is a middleware that can be used by many software languages. The in-
teroperability feature of the DDS middleware stands out when compared to
similar protocols. The DDS middleware is a software layer that abstracts
the application from the details of the operating system, network transport,
and low-level data formats. The same concepts and APIs are provided in
different programming languages allowing applications to exchange infor-
mation across operating systems, languages, and processor architectures [7].
The DDS is more secure in comparison to socket APIs because the data type
is defined. When DDS compares with web services, web services do not
provide data type reliability because they use HTTP and XML protocols. In
addition, web services must be configured before a connection can be es-
tablished. In addition, QoS settings can be done more flexibly on DDS. [20]
All entities are shown in Figure must be created for realizing the secure
data sharing scenario. The main element of the DDS model is the partici-
pant, every component which is used in DDS software is created by using
the participant component. While the user can create many participants on
the same computer, DDS allows the creation of participants on different com-
puters. In order for the communication to take place, users must be on the
same network, their quality of service settings should be the same and data
connection between participants shall be successful, all data writer and read-
ers shall be matched and all participants have to be in the same domain. The
communication of the devices or computers with each other is possible with
the use of a common data structure. The software developing communities
create data structures that can be used in the application layer in the software

language of the user by taking the file containing the data structures in IDL

12

format as input. Each participant should have the same structure. Also, the
datawriters of each data structure can be adjusted to QoS. For example, if it
is data that is continuously updated and does not pose a problem in case of
data hijacking, it might be reasonable to use the best-effort method instead
of reliable in the QoS properties of data losses. If the data is of critical im-
portance, the relevant option is selected as reliable, and in case there is no
data in the Qos events, it subscribes to an event and informs the participant
about this situation and makes it operate accordingly. The inform event is
also configurable by specifying the timeout period. Data is read over struc-
tures named DataReader and data is sent from the DataWriter structure to
the relevant domain. A topic structure is created for any data that is sent
and written. There are cases where different topics with the same data struc-
ture can be produced. For example, suppose that two separate temperature
data are received from the telosb models used in the Contiki operating sys-
tem, the first device measures the CPU temperature and the other device
measures the atmospheric temperature. Both data structures listen to the
data structure related to temperature information on different topics and
data readers, as a result of this prevents from creating an extra separate data
structure for the same data. The data published in the DDS domain is sent
by DataWriters. Similar to data readers, the quality of service settings is
configurable for DataWriters. DDS middleware can inform on_sample_lost,
on_subscription_lost and other similar events that are helpful in different use
cases. Data readers can read data in two different ways. These are handled
in two ways: Listener-based data access and Wait-based data access [21]. If
there is a change in all subscribed QoS events in the Listener-Based version,
the component that listens to either DataWriter or DataReader will notify the
every event changes separately about the data transfer. In the version with
WaitBase, one or more event information comes with a single message. The
component notifies the user when the desired event information is acquired.
Guard conditions are predefined when creating the component which read
data and quality of the service events, therefore the user is only notified
when the desired event information changed or new data is available. The

overall architecture can be seen in Figure

13

Figure 2.2: General structure for DDS ||

2.5 MOQTT

MQTT is a low-resource protocol that runs on devices with resource prob-
lems using publish-subscribe logic. This protocol includes a central server
service. The service structure used on MQTT can be either a mosquitto
server running on a local network or a Watson platform developed by IBM
can be used. It is the duty of sending the messages from the server to the
subscribers who listen to the messages published on it. This protocol, which
is running in the application layer, performs message transfers using TCP/IP.
The devices communicating in this structure do not have to recognize each
other directly. Internet of Things is useful for the Publish-Subscriber struc-
ture because the sent data can be transmitted to all devices on the same net-
work. Besides, any small delays while sending sensor data will not cause any
problems. Data can be received from sensor nodes by using topic names. For
reading the data sent on MQTT, the predefined topic name must be created
similar to DDS. Applications that listen to the MQTT server can communi-
cate with each other if they have the same topic name as the sender. The
topic is used to make it more specific separating names with "/" character.
If we try to give an example of the sensors we use, if we assume that the
microcontroller measures both atmospheric temperature and CPU temper-

ature, only CPU data can be read by using the "temperature/CPU" topic.

14

If the subscriber wants to read all the temperature data under this topic, it
can access all the temperature data using the temperature/# topic. Similar
wildcard expressions can also be used as a topic structure. If multiple data
is sent, REST structures such as JSON and XML can be sent over MQTT.

==

Subseribe)

SubscribePublish()

Publish()

PublishAckD

Figure 2.3: MQTT general connection architecture

2.6 Mosquitto

Mosquitto is a server application that performs a publisher-subscriber struc-
ture for MQTT protocol [22]. The mosquitto software developed by Eclipse
has an interface that allows you to start the mosquitto server automatically
when the computer is opened. The log messages from the server can be seen
from the terminal application. The mosquitto server can be run on a local
network with the desired port(default 1883) and address, the mosquitto pub-
lisher writes data with specific topic name data to mosquitto server via the
terminal interface and mosquitto_sub component of mosquitto listens to the
data on the specified topic from the mosquitto server. Mosquitto_sub can be
configurable for desired data by giving the topic name if the user wants to
read all data subscribed from the server, the mosquitto_sub reads the topic

name with # character for reading all data.

15

2.7 MOQTT-SN

Although the MQTT protocol is used for resource-constraint devices, data
sharing on some devices are still not possible due to the size of the mem-
ory footprint. For this reason, the MQTT-SN platform has been developed
specifically for sensor networks working on UDP instead of TCP [15]. Be-
sides, the connection between MQTT-SN and MQTT protocol is provided by
establishing a connection with RSMB on the Mosquitto server. Both server
applications run interoperable. In this thesis MQTT-SN application realiz-
ing the data transfer with MQTT-SN through the mosquitto server. Unlike
MQTT, resources are used to consume less energy at lower bandwidth. First
of all, the link message is translated into three messages. Connection mes-
sages are sent via a topic named "Will". Topic names are implemented with
2 bytes instead of string notation. For the devices with power problems, all
messages are stored on the server and used to send messages to the devices

that are reopened [5].

16

MQTT-SN|,_

client MOTTBN._ ___, MQTT-5N MaTT
—_ Gateway

MQTT-SN|, '

cliant
| ImaTT-sN
MQTT-8N| _ MATT-8N, Encon.

cliant i

ImaTT-sN |, *

. Sy Forwarder
MOQTT-SN| MOTTSN |

cliant

Figure 2.4: MQTT-SN Architecture

2.8 Literature Survey on DDS Gateway for Resource-Constrained Envi-

roments

The DDS version developed by Opensplice and RTI works on powerful de-
vices. However, the Contiki operating system used in the writing of the
thesis could not be ported in two versions due to its size. Similarly, these
two DDS distributors are working to reduce the memory footprint. RTI
microprocessor-level DDS micro version for the operation of DDS has been
released. [23]]. This version only aims to use less memory space by imple-
menting the basic features of DDS. In the current implementation, the set-
tings related to the operating system can be defined generically, thus provid-
ing the possibility to port to other operating systems in the future. Currently,
FreeRTOS supports Windows, VxWorks operating systems, but part of how
to port to other operating systems is available on the document [24]. It is
not possible to work on the device used for the thesis with its current size.

A similar operation can be created when the package is sent via ZigBee af-

17

ter the port operation for Contiki is completed. Similarly, the Lite version
of OpenSplice aims to reduce the memory footprint of the DDS. Although
it can go down to 200kb in size, it is not possible to install it again on the
Contiki operating system due to the files needed for the sensor. Another so-
lution is similar to the client-server software described in the beginning. In
this solution produced by EProsima micro, low-source devices can join the
DDS topology by exchanging data with the xrce-server as a client. Currently,
Linux, Windows and Nuttx operating systems are used. It can be handled
in future jobs by porting in accordance with Contiki [25]. The DDS-XRCE
standard used by eprosima and RTI was also published by OMG [6]. Simi-
larly, SDDS software has modified beyond the standards specified by OMG
DDS to create a separate packet structure for sensor networks. This software
provides limited support for RIOT, Linux, Contiki, and Tiny-OS. The exist-
ing software supports devices with Avr processor architecture in the Contiki
operating system. At this stage of the thesis, the code generated for the Avr
processor will be updated to run for the MSP430 architecture. Also, Contiki
will be added to the operating system and the makefile where the required
tiles for DDS are compiled again for the MSP430 processor architecture. Fi-
nally, the packet structure sent over ethernet will be sent over ZigBee and

data communication will be provided.

DDS/RTPS (" GlobalDataspace |
/ T

Figure 2.5: DDS-XRCE architecture [6]

18

2.9 Literature Survey for MQTT

MQTT is an open-source standard developed by IBM. As it is known, when
using the MQTT protocol, TCP is used for providing and realizing the reli-
able transmission of packets. The most effective implementation for embed-
ded systems is discussed in the referenced document. It is observed that the
complexity and memory usage of the protocol increased when Qos levels in-
creased. Also, the increase in Qos levels led to a slowdown in the time taken
for data transfer. [26]. In this article, the differences with CoAP (Constrained
Application Protocol) are examined in terms of memory usage. These two
protocols differ in terms of TCP usage. If data transfer is performed in an
environment where message loss is high, it is understood that MQTT comes
to the fore. In another article, the MQTT-SN version of UDP used in the net-
work layer was examined by updating the MQTT protocol to be used more
effectively on devices with resource shortages of [15] memory space. HTTP
and MQTT in the article comparing the similarities of MQTT with QoS levels
were examined. QoS1 (Assured transmission) has been mentioned to have
one-to-one similarities in terms of communication with HTTP and reliabil-
ity. Since MQTT is an asymmetric protocol, it is mentioned that it consumes
tewer resources and has more performance. CoAP and MQTT [27] for smart
home systems are examined and the similarities of these two protocols to
HTTP are mentioned. It has been mentioned that MQTT comes to the fore
by consuming 5 times less power than HTTP. According to CoAD, it is ahead

in both power and security issues.

19

20

CHAPTER 3

IMPLEMENTATION AND METHODS

3.1 Dataset

The XM1000 telosb sensor node which is produced by Advanticsys [12] com-
pany is decided to run the tailored DDS version for the sensor sharing on the
Contiki operating system via Zigbee protocol instead of the UDP protocol.
A similar device called CM5000 sensor node which is produced by the same
company has the same sensors(temperature, humidity, light) on the board.
The MQTT version of the sensor data transfer is run on the CM5000 telosb
sensor nodes. Both sensor nodes have a reset button on the board, the ap-
plication restarts at the time when the button is triggered. The devices also
have an input button which receives input from user and triggers a button
press event, the SHT11 humidity, temperature and light sensors are available
on the board. Data received from sensors are shared with either serial com-
munication interface or radio interface on the sensor node. In the thesis, data
obtained from the sensors using the modified version of the DDS software
and MQTT will be shared on the devices. It is planned that the LEDs on the
device are lit each time data is received. Since the device has Shtl1 sensors,
meaningful data are obtained according to the datasheet of these sensors and

the web site of the official Contiki repository [1].

21

Table 3.1: The calculation of the values by using sensor data. [1]

Value Formula
Temperature (Temperature Sensor Value* / 10) - 396) / 10
Light 10 * LightSensor Value / 7
Humidity Same Humidity Value

Before the data is received, the sensors to be received via the Contiki operat-

ing system are activated and then received and processed in a loop.

3.2 Proposed Methods and Models

3.21 DDS

3.2.1.1 Installing Contiki Development Environment for Sensor DDS

The Contiki operating system is characterized by dynamic loading and un-
loading of code compared to other operating systems, allowing multiple op-
erations, and thus distinguished from other similar operating systems. Also,
being open-source provides accessibility advantage [28]. Operations can in-
teract with each other and decide when to proceed. It is also important that
the code developed with the cooja simulator can be used independently of
the actual hardware for the selection of the operating system. The Contiki
operating system can be used and applications could be developed via the
instant Contiki virtual machine, where all platform data of the operating
system is pre-loaded. However, there is a need for more space to try sample
applications related to the thesis. Besides, a more optimized loading of the
code requires version 4.7.3 of the compiler for MSP430. Ubuntu 16.04 64 bit
version was used during the development of the sample applications since
this version only supports 64-bit architecture and could be downloaded via
Github. 4.7.3 version of the MSP430 software was downloaded from [13] at

22

the given reference. Since the latest version of this application was down-
loaded from the ubuntu repository, 4.6 was used when compiling the code.
Ubuntu uses a default version of the MSP430, so the memory footprint prob-

lem persists while developing a sample application.

1 sudo visudo

2 edit secure path value similar to first

3.2.1.2 Tailoring DDS Software and Enabling Zigbee Gateway for Con-
tiki OS

Sensor DDS software includes DataReader, DataSink, DataWriter, History,
Locator, Topic, and SNPS package structure, which is converted RTPS into
a smaller package. By sending the UDP packet over the network structure,
data can be shared over DDS via Linux and other operating systems. The
part used over UDP has been removed from the Contiki operating system
by using configuration file or makefile. All components mentioned above
are initialized in the first part of the software produced. To talk about the
operation briefly, the topic that is produced by reading the contents of the
XML file is initialized. To reduce memory footprint and provide much space
on RAM and ROM, the variables are used at the core of the Contiki operating
system and SDDS software-related source files are updated. The first change
is done in loops uint8_t containing 1 byte is used instead of the integer value
of 4 bytes. The components are used in data sharing with DDS via ZigBee,

these components are briefly mentioned below.

e DataSink: First checks whether the incoming data in the SNPS pro-
tocol has the correct structure. In a normal implementation, this data
is received via UDP, while in the updated version it is received via the
Zigbee package. For Zigbee devices to communicate, both the same do-
main and the same channel must communicate. DataSink first checks
the software version. During this check, convert the incoming byte

value using the Marshaling class and check the version value. If this

23

value is different from the expected value, the message is ignored and
the next message is checked. The second byte of the protocol specifies
the length of the other bytes in the message packet. The third byte con-
tains the domain address. Only devices within the same domain can
communicate in the DDS protocol. Therefore, it compares the domain
value in the incoming message with the domain value in the listening
application; if the value is the same as the expected value, the message
is accepted and the remaining byte values are converted to message
structure. The message structure is identified by topic id which is de-
coded in the SNPS package. Since the devices that broadcast and listen
to the data use the same data structure, the order of the data in the
message structure must be same order. The text and numeric values
are contained in the byte array. This value is decoded in the same way

and converted into a meaningful string and numeric values.

e DataReader: This class created by Datasink is adding the incoming
data to the history class. History class data is stored in a list and the
oldest element of this list is read by the data reader with the data-
available event. The incoming data can be viewed via the ubuntu ter-

minal via the serial interface.

e DataWriter: A new locator is created for each data to be sent via Pub-
lisher. The DataWriter class also uses the SNPS package to create the
data. The deadline event can also be set via the project macros. For
example, if the deadline event is active, then the data has not been re-
ceived for a certain period. However, in the exemplary embodiment
developed, this structure is not active. The compatibility of the gen-
erated SNPS package with the UDP is checked in normal implemen-
tation. This part has been modified to check its suitability with the
ZigBee package. The size of the data is calculated and sent according

to the protocol.
e Zigbee Network Component: The component reads the Zigbee packet

24

from a predefined channel, the component is bind to DataSink. Incom-
ing packages are forwarded to DataSink and locators are created in
this component. These components also used as a network layer. The
datawriter directly sends the data through this component. The cur-
rent position of the data, buffer length and other values are retrieved
from data by using the netbuff component. Significant data is retrieved
from this class, these data are copied into the byte array to be sent, and

created data is sent using the ZigBee radio interface.

e SNPS: The SNPS component is used for writing domain id, parsing
and reading sub-messages from SNPS data. It also contains self meth-
ods to discard data, read data and addresses. For the Zigbee gateway
reading channel, the feature is added to this component. All read-

/write operations on data are realized in this component.

e Marshalling: The marshaling component is used for encoding and

decoding the integer and text values.

3.2.1.3 Creating Source Code for MSP430 based Telosb Motes for Sensor
DDS

As described in section 2 of the DDS, a code structure is created according to
the specified data structures. During the generation of this code, the appli-
cation specified on the reference was used. SDDS [8] software is configured
over XML and converted into meaningful code fragments by GSL(Generator
Scripting Language) [29]. The history depth, number of locators, buffer size,
publisher and subscribers will be configurable through the XML file in Ap-
pendix D. Generated source codes are created the root directory of the script.
The GSL script is updated for Contiki and MSP430 architecture. The refer-
ence paths are also updated and Makefile’s first and second level versions
are generated. In this sensor sharing example the following files are auto-

generated:

25

e sensor_data-ds
e sensordata_test_publisher

e sensordata_test_publisher_imp

The topic details are defined in another XML file. Topic names are referenced
in the sdds.xml file by using include tag and the path of the file. This file
contains the variables in the structure. The telosb sensor nodes have a tem-
perature, humidity and light sensors. To share these pieces of information,
the topic structure created and defined in the sensordata.xml file. The con-
tent of the XML is seen as below. The device id is defined as a primary key
for every device. The data will be identified by the device id and these ids
are predefined in source code. Also, the domain id and topic id are defined

in the same XML file in Appendix B.

To explain briefly, the type of temperature value, light, humidity, and device
id are DDS_Short.

3.2.1.4 Building and Creating a binary file from source code

SDDS currently runs on only avr-based microprocessors. The data fields, the
method of creating a binary file, a compiler for gcc and some extra changes
are required to build and create a binary file. Besides Zigbee related files
are added and SDDS types are added for msp430 architecture. The default
makefile could be accessible to the platform folder of the device. In the sam-
ple application, the rule defined in default makefile is overridden in some
cases. The makefile is seen in the code block below. The compiler cc flag
is set as gcc-msp430 which version is 4.7.3. In the makefile in Appendix
A, both SDDS and Contiki operating system makefiles are included. The
Contiki operating system can use the makefile under the platform accord-

ing to the specified Target value. Binary file creation is done by adding a

26

dependency to files related to SDDS and Zigbee binary file in makefiles and
the related files could be compiled in this architecture. In Msp430 version
4.7.3, SMALL =1 is assigned to ensure that the produced binary file is op-
timized for memory space. IPV6 is also set as inactive to reduce memory
footprint. The platform target can be configured through the TARGET vari-
able to support both devices (XM1000 and sky sensor nodes). Because the
application name of a binary file to be created is defined as a variable, when
this name is to be changed, the code is generated in a well-formed structure
automatically. In XM1000 and sky platform files, the production of binary
files consists of the same stages. Since the main difference between the two is
caused by the target name, this value is set to depend on the target variable
on the makefile. Both devices can compile the code with the same infrastruc-
ture. An installer script file is prepared to upload the generated file to the
devices. This script file decides which device to load by giving the number
of devices with the MOTES variable. The motes value starts at 1 in contrast
to the array index numbering which starts from 0. The sequence diagram of
the build process is given in figure 3.1 below. The final state of the sequence
diagram is the creation of the binary file. Detailed information about the
meaning of special characters used in the makefile is found in the referenced
link [30].

% deG = ta Makefi
User
! T T
(from Starter Sequence | 1
ram) 1 1
H | |
: | I
| |
i Generate Code() " 1
I
i
CreatingClassesForXm1000 1
[} =
I
CreateMakefile]
T
I
1
]
I
]
Installer()
T
I
I
I
1
]
I
I
|
I
]
I
]
I
T T I
' '

Figure 3.1: Build process for sensor DDS

27

3.2.1.5 Sequence Diagram for Sending Sensor Data

-—-f >0

--—d--0

Figure 3.2: Sequence diagram for sending data

In the previous sequence diagram, it is mentioned how to create a binary file.
This section shows how the sensor data is received and sent by the telosb
sensor node. Roughly, the first sensor reads over the sensors, processes the
data and converts them into meaningful values. This data is filled per the
data structure by using the topic and sent via the ZigBee packet by adding
the device id, domain id and topic ids and topic which are specified as hard-
coded. Another telosb sensor node that listens to the same domain captures
this incoming data and inserts that data into the DataHistory. The data
reader reads the incoming data and prints it to the terminal, thus completing

the data transfer.

28

i [packags] General Structurs) [Gens ral Structre] /

Installing Ay ST ———
alocks oA ——

Xm1000 mote1 —_—

parts
HumiditySensor o {Sends byte array contains ra
L £ :

Em;t-:w Zigbee Interface channel id, header, domain id
ightSensor encrypted data}
: TemperatureSensor
ablock» - : Contki Zighee Interface
properties Contiki Zighee : LightSensor

TemperatureSensor Interface : TemperatureSensor

whlock»
Xm1000 mote2

parts

Send modified sdds packet contains.
sensor information through own Zigbee
module

Receives modified sdds

packet through Zighee

and Send own sensor
data toMote 1

Read raw
temperature
datafrom
;;;;;;

wblocky
TemperatureSensor

ablocks wblock»
Lightsensor HumiditySensor

properties
+ Xm1000 motel

Figure 3.3: Overall block diagram

The overall block diagram and dependencies of the components could be

seen in Figure 3.3.

3.2.1.6 Output of the Demo application

In the exemplary application, a separate configuration is prepared for both
devices on the makefile. The two devices broadcast data to each other, the
device IDs 1 and 2 are assigned to both devices. Humidity, temperature, and
light values are shared in the data sent. The data extracted from the serial
interface is formatted and printed on the screen via the terminal. Data shar-

ing can be seen from the following figures.

29

tunahan@tunahan-550P5C-550P7C: ~/Masaiistii/denemeler/sensorddsfexamples/allsens

Data -> 30 :
9. Data -= 0 :
16. Data -= 242 :
11. Data -> 4 :

Data -= 50 :
snpsData length :13,snpsData copidByte 13NetBuffRef renew:
1.Network Init:
2.NetBuffRef_renew completed
Send a sensordata sample
Send a sensordata sample : Lux: 242 , Temp: 30 Humidity: 1
DataReader_take_next_sample: Data is found

History:sdds History dequeue
Retrieving history dequeue self
sample enabled
Sample received
262: sample received
sample is received
Received a sample from topic 'sensordata': {
deviceld => 1
temperature => 30
light => 201
humidity => 1070

ié

Figure 3.4: Receiving data from XM1000 Motel

@ S & tunahan@tunahan-550P5C-550P7C: ~/Masaiistii/denemeler/sensordds/examples/allsensors_pub2

Incomigg frame is finished
Sending Data timer elapsed
Write method enter:
Writing new Data
SNPS_writeData: writtenBytes 8
writing to domain 1 and topic 18
CheckSending
buf->locators->size_fn(buf->locators) : @Network Send method is called *****
Network send Zigbee Test Started:Buffer curPos: % : 13
. Data -
. Data
. Data
Data
. Data
. Data
. Data
Data
. Data -
. Data -
Data

W oo
e e @

PUeRrOoR LB W

199 :

-> 70 :

5 length :13,snpsData copidByte 13NetBuffRef_renew:
1.Network Init:
2.NetBuffRef_renew completed
send a sensordata sample
Send a sensordata sample : Lux: 199 , Temp: 30 Humidity: 1094
DataReader_take_next_sample: Data is found
History:sdds History dequeue
Retrieving history dequeue self
Sample enabled
sample received
262: sample received
Sample is received
Received a sample from topic 'sensordata': {

deviceld => 2

temperature => 31

light => 238

humidity => 1074

"
Y

o

Figure 3.5: Receiving data from XM1000 Mote2

30

322 MOQTT-SN

3.2.2.1 Installing Contiki Development Environment for MQTT-SN

The TCP network stack version of MQTT could not be installed on the device
(XM1000 and CM5000) even though the configuration file related to Contiki
and the macros defined on the project were updated. To solve this problem,
it was decided to use MQTT-SN [15] software for sensor networks that use
UDP instead of TCP. The other change is related to the topic name. It doesn’t
use the full name of the topic name, the number equivalent two-byte values
are used as the topic id for both client and server sides. Also, the connect
message of MQTT is divided into three parts and the QoS level is defined as
0. The mosquitto server is not compatible with MQTT-SN. The Really Small
Message Broker [31] and Mosquitto are using together in a new project called
Eclipse mosquitto. It is compatible with the mosquitto server, this feature
provides interoperability with mosquitto, the data sent by MQTT-SN will be
received by an MQTT client.

3.2.2.2 Using MQTT-SN for Sharing Sensor Data

In the previous section, data exchange over MQTT was attempted by com-
municating with the mosquitto server over the devices. Due to the use of
MQTT TCP and QoS (Quality of Service) features, efforts were made to re-
duce the memory footprint, but not enough reduction was achieved. In this
step, it is aimed to provide communication over the device by using special-
purpose MQTT-SN for sensor networks. In the same way, data exchange
and listening of data can be done via the mosquitto server. However, in this
stage, the Really Small Message Broker [31] application can communicate
with mosquitto and work properly with MQTT. The RSMB is low power
consuming and works better for sensor devices. It has a memory space of
approximately 200 kb. RSMB supports the MQTT-SN protocol and can inter-
pret UDP messages. However, it can also connect to mosquitto by establish-

ing a bridge function with the MQTT protocol. The commands necessary

31

to establish the connection will be explained in detail under the following
headings. In addition to this, the telosb mode has to be an IP address to
achieve communication with RSMB and Mosquitto. The sample under the
sky platform will be modified and the border-router application shall be run
before the run MQTT-SN protocol. The other sensor node gets the IP address
by using the border-router. Also, a cooja simulator is used for using mul-
tiple publishers and subscribers. The details of the border-router and other

settings are also mentioned in the following headings [32].

3.2.2.3 General Structure

Before going into detail, the following illustration shows the communication
of all components used in the topology. Sky Mote 1 provides a connection
to the operating system using the border router application, while the other
sky sensor node shares the sensor data by connecting with the computer via
this device. To successfully transmit this sensor data, it must be transferred

over the serial interface via RSMB.

bdd [package] General Structure (General Structure] /
Subseriber /
Send Mqtt byte array
Ihroughserial ablock» ablockn
nterface RSMB(Matt-SN | subscribes Sensorvalues | Mosquitto Client - — =]
broker
K Send Dhta
; A
B «block»
B ContikiSeriallnterface
«block» references «blocko
Shy Motel :Sky Mote1 PublishData Sky Mote 2
parts parts
g SendsData .1
LightSensor _ ———"| :HumiditySensor
TemperatureSensor Publisher o=~ - - TemperatureSensor

«block» ablock» «block»
L

HumiditySensor

Figure 3.6: The General Structure For MQTT-SN

32

3.2.2.4 Installing RSMB on Ubuntu OS

The mosquitto.rsmb software is downloaded the following link given [33] the
reference. The downloaded files are extracted in a directory. The root direc-
tory is opened and the working path is changed as source code directory and
the following code snippets are executed. Assume that the command prompt
working in the root of RSMB download from the link in the reference. The
most important point to note here is that in the version used for MQTT, 1883
works by default. Since this port is used each time the computer is turned
on, mosquitto’s program id is taken from the programs running using the
following commands and the program running with the corresponding id

value is terminated.

Listing 1 Running RSMB server

cd /rsmb/src

sudo ./broker_mgtts config.mgtt

If the output of the RSMB contains the port is already using error message
the mosquitto shall be closed before running this server application. The
commands below are used for receiving program id and the program con-

tains the program id is killed for running RSMB properly.

Listing 2 Killing Mosquitto server before running RSMB

ps —ef | grep mosquitto

sudo kill xxx \\ xx defines the PID value.

3.2.2.5 Burning Node ID for Border-Router

For the border router to work properly, the node id value must be assigned.

To assign the node value, the #include "sys/node-id.h" header file must be

33

added to the Contiki operating system’s example border-router code. Imme-
diately after starting the process, this value can be determined by calling the
node_id_burn (id) method. The node value will also be assigned during the

compilation and uploading image process described in the next stage.

3.2.2.6 Installing Border-Router on Telosb Mote

To get IP over the network of telosb sensor node devices, the border-router
application should be used. This application allows the device to receive IP
over the serial interface. After the IP reception process is completed, other
devices are added to the network via this device. The sample has been up-
dated for makefile serial ports on the border-router application. Once this
application is installed on one of the devices, it should be started as a server
with tunslip6. The sample application provides a web interface for view-
ing other nearby devices. Also, routing addresses can be accessed via the
web interface of the border router. The following code snippets are used for
active serial interfaces. The tunslip use the serial interface as a parameter
then start the device as a server. The memory footprint problem reappears
when the web interface is activated. If the CM5000 model is taken as an
example, the memory.x file under opt/compilers/ msp430/lib/ldscripts/
msp430f1611 needs to be updated. The last folder shows the architecture
of the CPU. Since this field requires admin privileges, changes should be
made by opening memory.x file with admin privileges. The updated mem-
ory file is seen in Appendix E. The memory area ram (wx) and rom (rx) are
rearranged by calculating the required memory area. The problem is related
to overflow in the ROM memory area. This file is updated by reducing the
RAM and increase the ROM memory area. The end of the memory address
could be calculated by adding origin and length. The connect-router inter-
tace is updated by using a border-router makefile. The serial address of the

device is queried with the python script below.

34

Listing 3 Listing serial ports using python

python -m serial.tools.list_ports

All active serial ports are seen the output of the command. The program
uses the following command to install on telosb sensor node. The result of
the Python command is the current active serial interfaces. The current serial
interface is given as a parameter to the command used to load the border-
router. The usage is seen in the code snippet below. The communication

port of the serial interface is assigned to the MOTES variable.

Listing 4 Uploading border router image

sudo make border-router.upload TARGET=sky MOTES=/dev/ttyUSB2

sudo make sky-reset && sudo make connect-router_ttyUSBO # devId

When there is no error message occured by uploading image stage, the xxx

bytes is uploaded message seen at the end of the process.

3.2.2.7 Running Tunslip for SLIP Server

The source code of the existing Contiki operating system contains tools
folder and the tunslip6 is accesible in tools folder. With make tunslip6 com-
mand, this application is compiled and made executable. This executable
application is used to establish a connection with the border-router. In the
example above, the following line of code is executed in order to run the

device with border-router as a server.

Listing 5 Running server bu using tunslip6 tool

make tunslip6
./tunslip6 -s /dev/ttyUSB2 aaaa::1/64

35

When the application is successfully started, the output shall be similar to
Figure below. The webpage of the server is accesible through the first ipv6

address on Figure 3.9

@ © @ tunahan@tunahan-550P5C-550P7C: ~fMasaiistii/contiki3.0/tools

opened tun device " /dev/tun@’

ifconfig tun® inet "hostname’™ mtu 15600 up
ifconfig tun® add aaaa::1/64

ifconfig tun® add fe8P::0:0:0:

ifconfig tune

Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00

inet addr:127.8.1.1 P-t-P:127.0.1.1 Mask:255.255.255.255
inet6 addr: fe8@::1/64 Scope:Link

ineté addr: aaaa::1/64 Scope:Evrensel

UP POINTOPOINT RUNNING MOARP MULTICAST MTU:1500 Metric:1

RX packets:® errors:® dropped:® overruns:® frame:e
TX packets:® errors:® dropped:® overruns:® carrier:0
collisions:0® txqueuelen:500

RX bytes:® (0.0 B) TX bytes:0 (0.0 B)

*** Address:aaaa::l => aaaa:0000:0000:0000
Got configuration message of type P

aaaa::212:7400:16c0:73cf
fe80::212:7400:16c0:73cf

Figure 3.7: Running server on telosb sensor node

In Figure 3.10, nearby devices and route information can be accessed using

the server IP address that is run on the tunslip.

- C | @ [aa3aa:212:7400:16c0:6f8b]

Neighbors
fe80::212:7400:16c0:73cf

Routes

aaaa::212:7400:16c0:73cf/128 (via feB0::212:7400:16c0:73cf) 1734s

Figure 3.8: The web interface of Tunslip6

In the sequence diagram indicated in the figure below, the compilation of the
code, loading it on the device after compiling, running the code loaded on
the device with tunslip application and transferring the incoming messages

to the network using serial interface are discussed.

36

Sky Mote BootStrap Loader BorderRouter Tunslip Seriallnterface

T T
| |

CompileBorderRoliter() |
T

et
Uploadimage()

|

|
ConnedMoleTQOperallngSyster‘p(slnng

serialPort) |

T

|

|
~

Uploadimage()

A

——=C

ConnectSlipMode()

RouteMessagey(),

—————————

Y

Figure 3.9: Sequence diagram fomgr border-router

3.2.2.8 Creating Binary File and Sending Data

In contrast to the full version MQTT application, the application which uses
the MQTT-SN protocol has been successfully installed on, CM5000 telosb
sensor node. MQTT-SN protocol uses UDP and little changes have been
made to the package structure to reduce memory-footprint. Similar to the
DDS application, an infrastructure has been prepared to send sensor data
using the MQTT-SN library in the reference [34]. Every 10 seconds, sensor
data is sent to the RSMB via the border router. To listen to the sent data, the
mosquitto client libraries that were previously established are used. When
the border-router application runs on the XM1000, it tries repeatedly to get
IP over the server, but it fails. Instead of this device a new virtual sky sensor
node, cooja simulator load application as an MQTT client. For listening to
all data transfer the client library application, mosquitto_sub, is used to trace

data changes. The command is given below is used for listening to all topics

37

using the following command.

Listing 6 Running mosquitto subscriber for all topics

mosquitto_sub -t "#" -v

The simulator cooja could be built and run the directory below. The tools
folder under the root directory of Contiki source code. The simulator is run

by using the following commands.

Note: Assume that command prompt shows the root directory

cd tools

ant run #wait until build finish

3.2.2.9 Running Simulation on Cooja

In the previous chapters, two binary files were created to send data via
border-router and MQTT-SN. In the first part, a binary file of the border-
router application is loaded into one of the virtual telosb sensor nodes to
verify this structure. After this application, the serial server menu is entered
under tools and the server starts to listen with port number 60001. The tun-
slip6 application installed in the previous sections. The server is run when
the following command is executed. In the command, the IP equivalent ad-
dress of the localhost (127.0.0.1) is used.

38

Listing 7 Running tunslip6 on localhost

sudo ./tunslip6 -a 127.0.0.1 aaaa :: 1/64

Thus, the web interface can be accessed from the IP address of the server.
Adding a new device updates neighboring devices and route information
via the web interface. After the RSMB has been checked successfully as
described in the previous sections, a binary file is uploaded to the devices
that send sensor data using the MQTT-SN protocol. The binary file creates
topics and listens to MQTT-SN events. The sensor values are sent by using
the temperature topic. The sequence of creating a simulation for sending
temperature data through Cooja is mentioned below. The RSMB shall be run
before the simulation is started. In the first stage, the border-router image is

added to the Contiki network.

[EJ Network EJ@@ EJ Simulation conti
View Zoom Run Speed limit
I HE| v S| arn
i T ﬁ Mote Information (Sky 1) a@m
» .
/I HH 1| Mote type Sky Mote Type #skyl
: — — skyl
III !.' @ i | Mote type information |
L / Mote interfaces 15 interfaces
+] ’,/’f | Mote interface viewer |
H CPU frequency 2687880 Hz
Remove mote [Remove |
Filter:

Figure 3.10: Adding a sky sensor node to border router application on Cooja

simulator

Secondly, applications that send sensor data to the medium using MQTT-SN
should be added. In the same way, the sensor type is selected as the sky and

the devices are added next to the server device with border-router installed.

39

To run the border router application, the listen port feature of the server
device must be started. The server starts broadcasting with local tunslip
commands under the "Creating Binary File and Sending Data" section. The
simulation starts with the addition of newly added virtual devices. Sensor

data can be accessed via the outputs of the devices.

The newly added sensor node is selected from the serial settings(SERVER)
option under the settings menu of the cooja. The listening process starts

from port 60001, which is set as default.

a Serial Socket (SERVER) (Sky 1) EEB
Listen port: | 50001] Start

socket -> mote: 0 bytes
mote -= socket: 0 bytes

Status: Idle

Figure 3.11: Running sensor node as a server

Secondly, applications that send sensor data to the environment using the
MQTT-SN protocol must be added. In the same way, the sensor type is se-
lected as the sky and the devices are added next to the server device which
border-router installed. To run the border router application, the listen port
feature of the server device must be started. The server starts broadcast-
ing with using local tunslip commands under the "Creating Binary File and
Sending Data" section. The simulation starts with the addition of newly
added virtual devices. Sensor data can be accessed via the outputs of the
devices. All data traffic on the network can be listened to by using the

mosquitto_sub command.

3.2.2.10 Running Application on Real Hardware

Sky sensor nodes [3] that communicate successfully on simulation are com-

municating on real hardware in this section. In this case, a border-router

40

application is installed on one of the devices and then the IP address acqui-
sition and server installation process is completed by using a tunslip appli-
cation under the tools folder in Contiki OS. First, the MQTT-SN connection
is used with the second device where the temperature data is installed. As
the default value MQTT-SN application runs through 1884, the configura-
tion on the program is set to Qos level 1 and the port value is set to 1884.
After activating the sensors on the device programmatically, the obtained
data is converted to meaningful values and sent to the application where the
MQTT-SN server is running via border-router. This server also listens port
1883 in MQTT data. The incoming data can be read by both a third device
and mosquitto_client. For the border router application to work in harmony
with the Linux operating system, the serial interface information to which
it is connected must be given as a parameter. It can automatically run the
tunslip6 interface with the related command by adding recipe information

for the serial port on the makefile.

41

[T] [T]

T

| | |

Jl_ Connexdint port, it topidld) i :
Comedi pon, WIS

1

|

|

T

1

I

1

|

SendConneciMessagebyle®) I

I

9]

] j|

i

1

1

|

AckMessege() |

|

I

RecsiveComnectEvent() 1
e S

7 |

1 1

| |

]]

1 |

CresingDateF omTerperstreSensar) | i

1 1

1 1

1 |

CratingTopichame() : :

1 |

I I

at while running_/ ! !

|

1

PubiishData(int PubiishDeta(int smparature) :

temperatueDala) i

|

1

Aok} |

) |

|

]

OnfPutiish() !

|

I

I

I

|

1

gﬂil— i

Figure 3.12: The sequence of publishing data

The figure above shows the sequence diagram illustrating the messages sent
and received by the sky sensor node and the data received by the RSMB
server. In addition to this when all flow diagrams are successfully per-

formed, the following output is shown by the mosquitto client.

tunahan@tunahan-550P5C-550P7C:~$ mosquitto_sub -t "#" -v
Temp:32
Temp:32
Temp:32
Temp:32
Temp:32
Temp:32
Temp:32
Temp:32
Temp:32
Temp:32
Temp:32
Temp:32
Temp:32
Temp:32
Temp:32
Temp:32

Figure 3.13: The output of the mosquitto client application

42

3.3 Encountered Difficulties and Their Resolution

3.3.1 Sensor DDS

The platform files of the XM1000 developed by advanticsys company, which
are used for the thesis, are not installed by default on the Contiki operating
system. To resolve this problem, the platform files on the device’s website
were downloaded via the link in the reference [2]. In the example applica-
tion using the SHT11 [1] sensor doesn’t work properly in default, because
the sensors could not be found, the missing parts of the SHT11 sensors were
copied from the files under the sky sensor node and made available to the
relevant telosb sensor node via Contiki. The bootstrap loader for XM1000 is
not compatible with a newer version of the python library. The older version
of platform files is used for providing compatibility.Besides, DDS middle-
ware could not be installed due to the memory problem. To resolve the
problem, the newer version of the MSP430 compiler is installed. However,
the Ubuntu operating system uses the 4.6.3 version that is available on the
Ubuntu repository. The newer version couldn’t be installed on the 32-bit op-
erating system. Therefore the customized OS for Contiki OS(InstantContiki)
couldn’t be used. The newer version(MSP430 4.7.3) is only available for 64-bit
architecture and installed on the 64-bit Ubuntu operating system. Makefile
uses the older version of the because the path values show the binary files
for the older version. For using the newer version of MSP430, the sudovise
and /.bashrc files are edited with new path values for MSP430 4.7.3 to run
applications with the newer version. The command below shall be run be-
fore the application start for a normal user. The basic package components

will be seen in the Figure below.

43

1 gedit HOME/.bashrc
2 export PATH=PATH:/opt/compilers/mspgccd.7.3/binary
/opt/compilers/mspgccd.7.3/binary is an absolute path.

It will be changed according to the path on computer

Figure 3.14: Changing the path values

In some cases, the applications shall be run as sudo user. When the appli-
cation starts with a superuser, the path values couldn’t be visible and the
program couldn’t be run as expected. To resolve the path problem for a su-
peruser the code below is applied for sudo user. By applying these changes,
the program can be installed on the XM1000 wireless sensor node. With ver-
sion 4.7.3 of MSP430, the application cannot be installed on the CM5000, and
an error occurs due to register support problems. To solve this problem, only
the temperature sensor is activated and compiled with version 4.6.3 without
20-bit register support. In the MSP430 folder under the cpu folder of the
Contiki operating system, the compilation process is completed by replac-
ing CC(Compiler binary path) LD(Linker path) variables with binary files of

version 4.6.3.

332 MOQTT

The bootstrap loader uses the python-based bootloader. This bootloader
version is compatible with an older version of the serial library, the python

serial library which is part of the bootloader is updated with a new interface.

3.3.3 MQTT-SN

The server used for the MQTT-SN application shares the same port as the

server used for the MQTT. Therefore, unused server software must be closed.

44

3.4 Power Consumption Calculation for Sensor Sharing Applications

The Contiki operating system is used to receive sensor data via the both
sensor DDS software, MQTT and MQTT-SN. Energest module is used on
Contiki operating system to calculate energy consumption on devices with
resource constraints. The operations of this module can be accessed via ref-
erence [35]. The power consumption can be calculated by using the macros
given in the table below and the current and voltage values specified on the
data documents of the devices.

(Current x Voltage x EnergestValuecpyy)

P, = 1
cru RTIMER * Interval Time (31)
p _ (Current x Voltage x EnergestValuerpyy) (32)
LPM = RTIMER % Interval Time
P _ (Current x Voltage x EnergestValuerx) (33)
TRANSMITTER = RTIMER % Interval Time
p _ (Current x Voltage x EnergestValuerx) (34)
RECEIVER = RTIMER * Interval Time
Protar = PrransmiTTER + PRECEIVER + Pcpu + Prrm (35)
PparTERY = Current x Voltage (36)

The total power and current values of the two batteries used in the test are
7.5W. The equations above are used in calculating hourly and total power
consumption and these formulas shall be defined and implemented for all
three implementations to compare power consumption results. The cal-
culation is done for CPU, LPM, TX, and RX. For testing the relation of
message sending period and power consumption, the tests are done for
a period of 5,10,20,30,60 seconds. The output of the sensor nodes is redi-
rected to the text file, the developed java application processes this data and
creates charts for all units(CPU(Central Processing Unit), LPM(Low Power
Mode), TX(Transmit),RX(Receive)).

45

Bw N e

Table 3.2: The macro definitions for energest module

ENERGEST_TYPE_CPU The CPU is active.
ENERGEST_TYPE_LPM The CPU is in low power mode.
ENERGEST_TYPE_DEEP LPM The CPU is in deep low power mode.
ENERGEST_TYPE_TRANSMIT The radio is transmitting.
ENERGEST_TYPE_LISTEN The radio is listening.

In order to use the required module for energy calculation, energest module
must be activated on contiki-conf.h file. To use the energest module, the file
defined in the below shall be included the project under tools directory of
the Contiki OS.

Listing 8 Including makefile for Power Module

include $ (CONTIKI) /tools/powertrace/Makefile.powertrace

Listing 9 Activating the Energest module via configaration file

#ifndef ENERGEST_CONF_ON
#define ENERGEST_CONF_ON 1
#endif /+ ENERGEST_CONF_ON x/

46

CHAPTER 4

RESULTS AND DISCUSSION

The first objective of the thesis is installing the applications successfully us-
ing DDS and MQTT protocols by optimizing memory usage. Several meth-
ods have been used to reduce memory usage [14]. Some of these are exam-

ined as follows.

e Instead of assigning the initial values of the variables defined in the op-
erating system, the assignment operator could not be performed and
the automatic value assignment is realized as 0. Value assignment op-
erations in the operating system are updated all the source codes in

this way.

e The components in the Contiki operating system such as IPV6 and TCP
and UDP features can be activated and deactivated by the predefined

macros.

e The third solution is updating the MSP430 version. When the DDS
application is run lower versions(4.6.3 and below), the binary file for
an application cannot be compiled because of overflow on ROM and
RAM.

e The fourth solution is made on the "ENERGEST" library, which is used
to measure the energy use of the devices. When this library is dis-
abled, resulting in a significant memory reduction in ROM and RAM
usage. This library is activated or deactivated by defining a macro in

the project config file.
e As a fifth solution, less RAM and ROM space have been achieved by

47

(S B S O N

using the following commands on the compiler. For these values to
work, the commands specified in the MSP430 file using the SMALL
value in the makefile are implemented. By using the "#define TSCH
LOG CONF LEVEL 0" macro, the log operations are closed and mem-

ory gain is achieved.

The changes mentioned in the examples have been used in applications re-

quired to transmit sensor data.

4.1 Result of Memory Optimization for DDS application

Since the Zigbee package will be used, the following commands must be
updated on platform-conf.h or makefile. The size of the binary file is cal-
culated using the SMALL = 0 command on the makefile, This means no
optimization commands are used in the first step. In this case, ROM over-
flowed by 8362 bytes error causes the binary file not to be produced. Since
the binary file could not be generated, SMALL = 1 value is set on the make-
file to run optimization settings. With the execution of this command, the
created binary file is optimized and memory-footprint is reduced. Changing
parameter SMALL triggers the execution of the following commands for the
MSP430 makefile under the Contiki CPU folder.

CFLAGS += —-ffunction-sections

LDFLAGS += -Wl,--gc-sections,-—-undefined=_reset_vector__,
——undefined=InterruptVectors, ——undefined=_copy_data_init___
,——undefined=_clear_bss_init__,-—-undefined=_end_of_init__

\caption{Optimization flags for MSP430}

Other commands are used to reset the fields used on memory areas on the

processor.

48

Table 4.1: The meaning of the MSP430 flags

Command Effect

ffunctionsections switch to tell the compiler not to mix functions

that could be referenced externally

—gc-sections switch telling the linker to do garbage collection

and discard unreferenced routines

41.1 Memory Optimization for Changing Network Macros

When UIP_CONF_TCP and UIP_CONF_UDP are active since the modules
specified in the DDS application are included, there is still an overflow issue
on the memory area and no binary file is generated. When the values given
above are set as 0 on changing Project-conf.h file, the problem of overflow in
the memory space is resolved.

In this case, a total of 41617 bytes can be loaded onto the device using a

binary file.

4.1.2 Changing Energest Module on XM1000 Mote

The Energest module is used to access the power information of the device.
This module is modified via project-conf.h. To make this change, the com-
mand ENERGEST_CONF_ON 0 must be assigned. In the tests performed
after the change, it was observed that a 40491-byte size binary file was gen-

erated.

4.1.3 Prevent From Initializing Variables and Printing String

Assigning the first value on the Contiki caused data to accumulate on the
data area on the memory. If the initial value is not assigned, the data is
marked as 0 and thus did not cause data accumulation. As a result of the

modification of the entire operating system and the sample application, an

49

area of approximately 100 bytes was achieved. When the string values are
written via the serial interface, there was an area loss of approximately 18
bytes for each value. During the development of the code, a large area ac-
quisition was achieved by removing the codes intentionally for debugging

the source code.

4.1.4 Disabling Process Name

Another memory space is obtained by not using the process names during

the program start. The process name is only used to show the user and does
not cause any problem in the execution of the code.

In the exemplary application, #define PROCESS_CONF_NO_PROCESS_NAMES
has been set to 1, decreasing to software size 41345 bytes.

4.1.5 Configuration for Power Consumption

The size of the binary file used for calculating power consumption is 42699.
In order to use the power calculation module, the Energest module shall
be activated. The power calculation method and a string print function are
called for this binary file. The compiler optimization flag is used by defini-
tion of SMALL=1 and process name is disabled by changing configuration
file similar to

4.1.6 Result Table

The changes and effect on the tailored DDS version are obviously seen in
Table 4.2

50

Table 4.2: The Memory Usage of The Sample DDS Application

Change Text Data Bss Dec
Define SMALL=0 Overflow Overflow Overflow Overflow
Define SMALL=1 38149 126 3342 41617
Define ENERGEST= 37109 126 3256 40491
0

DEFINE TSCH LOG 38149 126 3342 41617
CONF LEVEL 0

Disable Print(4.1.3) 38097 126 3342 41565
Disable TCP and 38105 126 3340 41571
IPV4

Disable Process ¢ 37889 114 3342 41345
Name

Configuration for 39217 125 3356 42699
Power Calculation

4.2 Result of Memory Optimization for MQTT-SN application

Even though the above changes are made for the MQTT application, it could
not be installed on Sky sensor node because of the size of the TCP packet.

Similar to the DDS application, the device is loaded using the above meth-

51

ods to reduce the memory footprint. Also, the border-router application
could not be installed on the device with default values. The installation
was achieved by changing the memory areas in memory.x file(Appendix E)
under the compiler folder. The changes for DDS are applied for MQTT-SN.
Two situations are considered in this software when calculating the results.
Firstly, it is calculated only for the case where the temperature sensor is acti-
vated, and secondly, it is calculated for the case where the temperature and
humidity sensor are activated together. The memory size is queried by "size’

command.

4.21 Memory Optimization For Changing Network Macros

Since the MQTT-SN application provides communication over UDP, there is
no need to use TCP protocol. The TCP macro value is initialized with value
0 for disabling this module. With the deactivation of TCP, a binary file of
48175 bytes was created. However, in the case of the temperature sensor is

active, a binary file could not be generated due to overflow error on ROM.

4.2.2 Disabling Process Name

In the exemplary application, #define PROCESS_CONF_NO_PROCESS_NAMES
has been set to 1, decreasing to software size 47933 bytes. However, in the
case of the temperature sensor is active, a binary file could not be gener-
ated due to overflow error on ROM. But the amount of 250 bytes is saved by

disabling process name.

4.2.3 Prevent From Initializing Variables and Printing String

When the change in title is made, 74 bytes of memory space gain is achieved
on both applications. However, change doesn’t allow the production of bi-

nary files when the state in which both temperature sensors are used.

52

4.2.4 Changing Energest Module on Sky Mote

In addition to the other changes, deactivation of the Energest module re-
sulted in a large amount of memory gain. Thus, when temperature sensor
and humidity sensors are used, a binary file containing 55903 bytes can be

generated and uploaded to the device.

4.2.5 Enable Energest Module Without Self Calculation

Changes are done in sections |4.2.1, [4.2.2|and [4.2.3| are applied in this section.

In addition to changes, self power consumption function is removed from
the source code. The raw values are printed for CPU, LPM, TX, and RX and

these values are given as input to the developed java application.

Table 4.3: The Memory Usage of The MQTT-SN Application for Only Tem-

perature Sensor

Change Text Data Bss Dec
Define SMALL= 0 Overflow | Overflow | Overflow | Overflow
Define SMALL=1 48175 264 7782 56221
Define =~ PROCESS- 47933 248 7762 55943
NAME-= 0

Input defined in 47631 248 7778 55657

4.3 Result for Power Consumption

The power consumption of the MQTT and DDS applications is calculated
in this section. The application and source code used in the DDS power
consumption for the XM1000 sensor node is also used on the CM5000 sensor
node by using the COOJA simulator. The power consumption is calculated
for both XM1000 and CM5000 sensor nodes at 5, 10, 20, 30 and 60 seconds

intervals. As a result of this calculation, the effect of the number of sensor

53

nodes on the energy consumption is seen. When the DDS application is run
on the CM5000 via the simulator, the data sent are shared without being
measured by the sensor, embedded in the code. Therefore, the battery life

seems to be longer than the XM1000 sensor node.

4.3.1 Result for Tailored DDS on XM1000(Two Nodes)

The following table is created according to the data sent at 5 seconds inter-

vals. The total column indicates the hourly power consumption in miniwatt.

Table 4.4: Average power consumption in microwatt for interval 5 seconds

TIME Cru LPM | TX RX Total

0 317127 | 0 0 0 317127
5 112776 | 3196 | 733106 | 2102263 | 2951341
10 160572 | 3046 | 314461 | 2532216 | 3010295
15 136825 | 3136 |0 3594880 | 3734841
20 164258 | 3044 | 523465 | 2352524 | 3043291
25 187812 | 2966 | 688502 | 2563886 | 3443166
30 160246 | 3057 | 748081 | 2422060 | 3333444
35 162844 | 3049 | 553732 | 2485744 | 3205369
40 159708 | 3059 | 164399 | 1995205 | 2322371
45 161080 | 3055 | 688820 | 4428625 | 5281580
50 160729 | 3056 | 464205 | 2407258 | 3035248
55 160204 | 3057 | 583681 | 2589704 | 3336646
60 161159 | 3055 | 329436 | 2090214 | 2583864
65 118541 | 3196 | 389652 | 2225500 | 2736889
70 159461 | 3050 | 658872 | 2853735 | 3675118
75 159521 | 3060 | 419282 | 4104697 | 4686560
80 164367 | 3044 | 688502 | 3327063 | 4182976
85 137726 | 3132 | 0O 4466835 | 4607693
90 164210 | 3045 | 478861 | 4786633 | 5432749
95 188670 | 2963 | 883168 | 5714355 | 6789156

54

Table 4.4 continued from previous page

TIME CrPU LPM | TX RX Total

100 159364 | 3060 | 344091 | 6275119 | 6781634
105 204785 | 3043 | 284194 | 3112602 | 3604624
110 159515 | 3096 | 479179 | 2305363 | 2947153
115 159600 | 3060 | 284194 | 2058545 | 2505399
120 159243 | 3060 | 284194 | 2248220 | 2694717
125 159781 | 3060 | 268582 | 2254760 | 2686183
130 159581 | 3060 | 44604 2137031 | 2344276
135 159013 | 3061 | 269219 | 2410700 | 2841993
140 160198 | 3058 | 254564 | 2712597 | 3130417
145 136064 | 3137 |0 2200371 | 2339572
150 189196 | 2962 | 1212604 | 2312248 | 3717010
155 159877 | 3058 | 449230 | 2493317 | 3105482
160 160294 | 3058 | 703157 | 2406569 | 3273078
165 160186 | 3057 | 718450 | 2482646 | 3364339
170 160319 | 3057 | 448912 | 2180405 | 2792693
175 161841 | 3052 | 119476 | 2320854 | 2605223
180 160143 | 3058 | 718132 | 2339787 | 3221120
185 160355 | 3058 | 643897 | 2413798 | 3221108
190 136433 | 3136 |0 2167668 | 2307237
195 189111 | 2962 | 1107465 | 2504677 | 3804215
200 137484 | 3133 |0 2457861 | 2598478
205 187866 | 3023 | 747762 | 2537724 | 3476375
210 161370 | 3053 | 718450 | 2516037 | 3398910
215 137901 | 3132 |0 2487810 | 2628843
220 161467 | 3053 | 284194 | 2534970 | 2983684
225 164440 | 3044 | 418645 | 2366982 | 2953111
230 163672 | 3046 | 568707 | 2456828 | 3192253
235 188458 | 2963 | 1002645 | 2402094 | 3596160
240 160566 | 3057 | 658872 | 2381440 | 3203935
245 160337 | 3057 | 404307 | 2443059 | 3010760

55

Table 4.4 continued from previous page

TIME CpPU LPM | TX RX Total

250 136330 | 3138 |0 2426191 | 2565659
255 136439 | 3137 | O 2627915 | 2767491
260 191667 | 2953 | 583363 | 2788329 | 3566312
265 135593 | 3139 |0 2186601 | 2325333
270 137345 | 3135 |0 2716384 | 2856864
275 139925 | 3126 | O 2673354 | 2816405
280 137629 | 3133 | 0 2683337 | 2824099
285 140312 | 3125 | O 2491252 | 2634689
290 220725 | 2856 | 1031319 | 2708811 | 3963711
295 164331 | 3044 | 568707 | 3901940 | 4638022
300 165557 | 3039 | 553095 | 2706057 | 3427748
305 141200 | 3121 | O 2511906 | 2656227
310 168089 | 3031 | 643579 | 2565952 | 3380651
315 164210 | 3044 | 388696 | 2402094 | 2958044
320 194090 | 2945 | 897506 | 2661650 | 3756191
325 164162 | 3044 | 433938 | 2576623 | 3177767
330 216937 | 2869 | 1959730 | 2606916 | 4786452
335 137049 | 3134 |0 2634111 | 2774294
340 164053 | 3046 | 702839 | 2330493 | 3200431
345 216755 | 2869 | 1151751 | 2790051 | 4161426
350 137013 | 3135 |0 2838933 | 2979081
355 138245 | 3131 |0 2549772 | 2691148
360 165515 | 3040 | 373721 | 2554936 | 3097212
365 163606 | 3047 | 568707 | 2422749 | 3158109
370 164645 | 3042 | 329117 | 2463024 | 2959828
375 214870 | 2876 | 1331125 | 2546330 | 4095201
380 160300 | 3057 | 703476 | 2434797 | 3301630
385 161872 | 3052 | 479179 | 2498825 | 3142928
390 161116 | 3054 | 613948 | 2399685 | 3177803
395 160609 | 3056 | 523784 | 2308806 | 2996255

56

Table 4.4 continued from previous page

TIME CPU LPM | TX RX Total
400 136505 | 3136 |0 2445124 | 2584765
405 164693 | 3043 | 747762 | 2377998 | 3293496
410 189002 | 2962 | 1137095 | 2294692 | 3623751
415 160355 | 3057 | 763692 | 2475073 | 3402177
420 160276 | 3058 | 509128 | 2359753 | 3032215
425 163098 | 3048 | 657916 | 2540134 | 3364196
430 160524 | 3057 | 747762 | 2081953 | 2993296
435 163835 | 3045 | 299487 | 2276792 | 2743159
440 162373 | 3071 | 718450 | 2064052 | 2947946
445 160911 | 3056 | 718450 | 2432731 | 3315148
450 161291 | 3054 | 194666 | 2137719 | 2496730
Average(nanowatt) | 163289,5 | 3021,8 | 473405,9 | 2620432,1 | 3260149,4

The following table is created according to the data sent at 10 seconds inter-

vals.

Table 4.5: Average power consumption in microwatt for interval 10 seconds

TIME Cru LPM | TX RX Total

0 157744 | 0 0 0 157744
10 67002 | 3210 |0 2551494 | 2621706
20 68367 | 3213 |0 2750119 | 2821699
30 61010 | 3239 | 127122 | 2465606 | 2656977
40 92655 | 3129 | 246599 | 2704163 | 3046546
50 79942 | 3176 | 0O 2560272 | 2643390
60 79105 | 3180 | 247077 | 2713458 | 3042820
70 79080 | 3179 | 97333 | 2565091 | 2744683
80 82869 | 3167 | 119794 | 2458721 | 2664551

57

Table 4.5 continued from previous page

TIME CpPU LPM | TX RX Total

90 79165 | 3179 | 127282 | 2501579 | 2711205
100 68869 3214 |0 2917247 | 2989330
110 68832 |3213 |0 2868365 | 2940410
120 69890 |3210 |O 2858382 | 2931482
130 70727 | 3207 | O 3133256 | 3207190
140 70594 | 3208 |0 2716039 | 2789841
150 70539 3208 |0 2848743 | 2922490
160 83201 | 3166 | 22302 | 2852186 | 2960855
170 71422 13205 |0 2785748 | 2860375
180 71826 | 3204 | O 2858038 | 2933068
190 70388 3208 |0 2773527 | 2847123
200 71298 | 3206 | O 2883167 | 2957671
210 73083 3199 |0 2790223 | 2866505
220 74839 3194 |0 2816557 | 2894590
230 128457 | 3015 | 403511 | 2598998 | 3133981
240 84806 | 3160 | 82199 | 3207956 | 3378121
250 71068 | 3206 | O 2807779 | 2882053
260 113764 | 3064 | 732947 | 2627570 | 3477345
270 83495 | 3164 | 172364 | 2594523 | 2853546
280 72080 |3203 |0 2828433 | 2903716
290 71213 | 3205 | O 2566640 | 2641058
300 137717 | 2984 | 792685 | 2548912 | 3482298
310 81138 | 3172 | 321630 | 2527741 | 2933681
320 68709 |3214 |0 2828261 | 2900184
330 68905 |3213 |0 2779379 | 2851497
340 70530 |3208 |0 2758553 | 2832291
350 71905 3203 | O 2557862 | 2632970
360 70757 13207 |0 2884544 | 2958508
370 83570 | 3164 | 149584 | 2850809 | 3087127
380 84827 | 3160 | 74553 | 2802960 | 2965500

58

Table 4.5 continued from previous page

TIME CPU LPM | TX RX Total

390 71056 | 3206 |0 2775249 | 2849511
400 71316 | 3206 | O 2795386 | 2869908
410 71926 | 3203 | O 2740308 | 2815437
420 72530 3202 | O 2820860 | 2896592
430 73331 3198 |0 2781789 | 2858318
440 85120 | 3160 | 127122 | 2826540 | 3041942
450 73455 3198 |0 2860447 | 2937100
Average(nanowatt) | 79654,8 | 3113,7 | 83567,5 | 2690075,7 | 2856411,6

The following table is created according to the data sent at 20 seconds inter-

vals.

Table 4.6: Average power consumption in microwatt for interval 20 seconds

TIME CpPU LPM | TX RX Total

0 79283 |0 0 0 79283
20 39270 | 3237 | 183356 | 1344594 | 1570457
40 40647 | 3237 | 179612 | 1340722 | 1564218
60 40187 | 3239 | 179612 | 1314559 | 1537597
80 40082 | 3239 | 100997 | 1583926 | 1728244
100 40395 | 3238 | 175789 | 1179532 | 1398954
120 40212 | 3238 | 14974 1153198 | 1211622
140 40230 | 3238 | 190923 | 1408536 | 1642927
160 40194 | 3239 | 119794 | 1345025 | 1508252
180 40194 | 3238 | 145920 | 1177897 | 1367249
200 40113 | 3239 | 179692 | 1263268 | 1486312
220 40383 | 3238 | 127202 | 1638402 | 1809225
240 29244 | 3275 | 149664 | 1138740 | 1320923
260 40182 | 3236 | 93510 1209911 1346839
280 40208 | 3239 | 123458 | 1217484 | 1384389

59

Table 4.6 continued from previous page

TIME CPU LPM | TX RX Total

300 40061 | 3239 | 138353 | 1290893 | 1472546
320 40176 | 3239 | 142176 | 1352770 | 1538361
340 40401 | 3238 | 142176 | 1478675 | 1664490
360 40149 | 3239 | 93510 1344680 | 1481578
380 40245 | 3239 | 3743 1214214 | 1261441
400 40082 | 3239 | 187099 | 1232459 | 1462879
420 40250 | 3239 | 179692 | 1436420 | 1659601
440 40674 | 3237 | 116130 | 1314559 | 1474600
Average(nanowatt) | 41428,8 | 3099,1 | 129016,6 | 1260020,2 | 1433564,7

The following table is created according to the data sent at 30 seconds inter-

vals.

Table 4.7: Average power consumption in microwatt for interval 30 seconds

TIME Cru LPM | TX RX Total

0 52852 | 0 0 0 52852
30 26175 | 3258 | 119794 | 1260198 | 1409425
60 27533 | 3256 | 99829 | 1170410 | 1301028
90 26847 | 3259 | 122237 | 1344078 | 1496421
120 26753 | 3259 | 119794 | 1063466 | 1213272
150 26809 | 3259 | 74871 1173680 | 1278619
180 26745 | 3259 | 79863 | 1067368 | 1177235
210 27519 | 3256 | 77314 | 1318145 | 1426234
240 26827 | 3259 | 94678 | 1123077 | 1247841
270 26862 | 3259 | 84695 | 1069720 | 1184536
300 27316 | 3257 | 99829 | 1147231 1277633
330 26754 | 3259 | 119688 | 1084006 | 1233707
360 26867 | 3259 | 39931 1084407 | 1154464
390 27332 | 3257 | 87350 | 1022502 | 1140441

60

Table 4.7 continued from previous page

TIME CPU LPM | TX RX Total

420 26836 | 3259 | 102324 | 1205694 | 1338113
450 27368 | 3257 | 77314 | 1140805 | 1248744
Average(nanowatt) | 28587,2 | 3054,5 | 87469,4 | 1079674,2 | 1198785,3

These values below are calculated for period of 60 seconds.

Table 4.8: Average power consumption in microwatt for interval 60 seconds

TIME CPru LPM | TX RX Total

0 26427 | 0O 0 0 26427

60 13052 | 3279 | 31196 | 1013035 | 1060562
120 13495 | 3279 | 57348 | 976259 | 1050381
180 13498 | 3279 | 57401 1252855 | 1327033
240 13517 | 3279 | 49914 | 1007843 | 1074553
300 14059 | 3277 | 59844 | 925083 | 1002263
360 13462 | 3279 | 59897 | 870693 | 947331
420 13500 | 3279 | 52383 | 928668 | 997830
Average(nanowatt) | 15126,2 | 2868,9 | 45997,9 | 871804,5 | 935797,5

61

CPU
0,020 |

0,018 -

e o
[T - |
= =
= O

0,012
0,010 -
0,008 -
0,006 -

0,004 -

PowerConsumption (milliwatt)

e
[=]
=
(]

0,000

0 50 100 150 200 250 300 350 400
Time(Second)

-5 -e=10 -4 20 -+ 30 60

Figure 4.1: The total power consumption in milliwatt in first 400 seconds for
CPU

LPM
4E-4

3,5E-4

3E-4 -

2,5E-4

2E-4

1,5E-4

1E-4

SE-5

PowerConsumption (milliwatt)

0EO

0 50 100 150 200 250 300 350 400
Time(Second)

5 -a=10 & 20 -+ 30 [514]

Figure 4.2: The total power consumption in milliwatt in first 400 seconds for
LPM

62

0,055
0,050
0,045 4
0,040 4
0,035
0,030
0,025
0,020
0,015 ¢
0,010
0,005 4

PowerConsumption (milliwatt)

0,000

0 50 100 150 200 250 300 350 400
Time(Second)

-5 010 -4 20 -+ 30 60

Figure 4.3: The total power consumption in milliwatt in first 400 seconds for
X

PowerConsumption (milliwatt)
-
(]
[

0 50 100 150 200 250 200 350 400
Time(Second)

=5 810 & 20 -+ 30 60

Figure 4.4: The total power consumption in milliwatt in first 400 seconds for
TX

63

Table 4.9: Expected life time for DDS application(XM1000 Two Nodes)

Time(Interval) | Estimated Life Time(year)
5 0.26491

10 0.307197

20 0.631267

30 0.773935

60 1.08155

4.3.2 Result for Tailored DDS on CM5000(Two Nodes)

The power consumption for CM5000 could be seen in the figures below.

0,013

0,014

0,013
= 0,012
0,011
0,010
0,009
0,008
0,007
0,006
0,005
0,004
0,003
0,002
0,001
0,000

PowerConsumption (milliwatt

CPU

.
W
b

50 100 150

200 250 300 350 400
Time(Second)

=510 & 20 + 30 60

Figure 4.5: The total power consumption in milliwatt in first 450 seconds for

CPuU

64

LPM

3,5E-4

3E-4

2,5E-4 -

2E-4

1,5E-4

1E-4 -

SE-5

PowerConsumption (milliwatt)

0OEO

0 50 100 150 200 250 300 350 400
Time(Second)

-5 -9=10 -4 20 - 30 60

Figure 4.6: The total power consumption in milliwatt in first 450 seconds for
LPM

0,08

0,07

0,06 1

0,05

0,04

0,031

0,021

PowerConsumption (milliwatt)

0,01

0,00

0 50 100 150 200 250 300 350 400
Time(Second)

-5 -e=10 -4 20 -+ 30 60

Figure 4.7: The total power consumption in milliwatt in first 450 seconds for
TX

65

0,050
0,045

£ 0,040

=

£ o035

E

= 0,020

E 0,025

7 0,020

S 0,015

[

£ o010

[=]
8 0,005

0,000

50 100 150 200 250 300 350

Time(Second)

=510 & 20 - 30 60

400

Figure 4.8: The total power consumption in milliwatt in first 450 seconds for

RX

Table 4.10: Expected life time for CM5000(Two Nodes)

Time(Interval) | Estimated Life Time(year)
5 0.704014
10 1.087074
20 1.537222
30 1.820367
60 2.539766

4.3.3 Result for Tailored DDS on CM5000(Three nodes)

The power consumption for CM5000 (three nodes) could be seen in the fig-

ures below.

66

CPU

0,018

0,016 1

Lo
(=]
=
I

0,012
0,010

0,008 1

PowerConsumption (milliwatt)
[
=}
[
[%]
I|II

0 50 100 150 200 250 300 350 400
Time(Second)

=5 -0=10 -4 20 - 30 60

Figure 4.9: The total power consumption in milliwatt in first 450 seconds for
CPU

LPM

3,5E-4

3E-4 |

2,5E-4 -

2E-4

1,5E-4 -

1E-4

SE-5

PowerConsumption (milliwatt)

0ED

0 50 100 150 200 250 300 350 400
Time(Second)

-5 010 & 20 < 30 60

Figure 4.10: The total power consumption in milliwatt in first 450 seconds
for LPM

67

0,08

0,07

0,061

0,051

0,04

PowerConsumption (milliwatt)

0 50 100 150 200 250 300 350 400
Time(Second)

=5 010 -4 20 + 30 60

Figure 4.11: The total power consumption in milliwatt in first 450 seconds
for TX

0,055 |
0,050 |
0,045 |
0,040 | ”/
0,035 | —

0,030 |
0,025 |
0,020 |
0,015 | ==
0,010 | -~ '

0,005 |
0,000

PowerConsumption (milliwatt)

50

100

150

200

250

300

350

400

Time(Second)

=5 -010 & 20 -+ 30 60

Figure 4.12: The total power consumption in milliwatt in first 450 seconds
for RX

68

Table 4.11: Expected life time for CM5000(Three Nodes)

Time(Interval) | Estimated Life Time(year)
5 0.660331
10 1.036143
20 1.425846
30 1.707206
60 2.475717

Since the chemical life of the battery is at most 5 years, the maximum du-

ration can be assumed to be 5 years. With the increase in the number of

sensors, energy consumption increases by 10 percent. When the same test is

applied with a topology that contains thirteen CM5000 sensor nodes, energy

consumption increases by nearly 200 percent.

4.3.4 Result for MQTT

Table 4.12: Average power consumption for MQTT in milliwatt
Time(Second) | CPU LPM TX | RX Total(Nanowatt)
0 58729 3190 0 | 1660261 1722180
10 58729 3190 0 | 749578 811497
20 58666 3190 0 | 1881434 1943290
30 58971 3189 0 | 2872668 2934828
40 59044 3191 0 | 1173852 1236087
50 58738 3190 0 | 1423941 1485869
60 58787 3190 0 | 1552514 1614491
70 58811 3190 0 | 1804841 1866842
Average(nw) | 58809.375 3190 0 | 1639886.125 | 1701885.5
Average(mw) | 0.058809375 | 0.00319 | 0 | 1.639886125 | 1.7018855

69

According to formula 41, the estimated battery life is recalculated for MQTT.
The battery life is calculated as approximately 0.5 years. The data sent to
the python application via the serial interface requires less power than the
data sent via the Zigbee in the same period. Because of the Zigbee module
is not used in this test, therefore the effect of the node count and data send

a period on power consumption is not calculated

4.3.5 Result for MQTT-SN

In order to activate the energest module and calculate the power consump-
tion, the methods used in other applications were added to MQTT-SN. Al-
though the memory reduction methods described in the first part of the con-
clusion are tried, all the methods are failed. Therefore, no measurement is
performed for MQTT-SN, because of the lack of memory. If the current and
voltage calculations are removed from the binary file and these calculations
are performed via the java application. According to the results below, as the
data transmission period increases, energy consumption decreases slightly.
In addition, when the number of sensor nodes increases, energy consump-

tion also increases in direct proportion.

4.3.6 Result for Two Nodes MQTT-SN Communication

The communication in this example is provided by two sensor nodes and
the RSMB server.

The following table is created according to the data sent at 5 seconds inter-

vals.

Table 4.13: Average power consumption in microwatt for interval 5 seconds

TIME Cru LPM | TX RX Total
0 25396 | 3261 |0 57015840 | 57044497
5 24925 | 3216 | 119794 | 56268153 | 56416088

70

Table 4.13 continued from previous page

TIME CrPU LPM | TX RX Total

10 30864 | 3197 | 147832 | 56237516 | 56419409
15 27656 | 3207 | 123618 | 56263334 | 56417815
20 25456 | 3215 | 91757 | 56298099 | 56418527
25 28369 | 3210 | 113104 | 56363507 | 56508190
30 22919 | 3223 | 93032 | 56296729 | 56415903
35 21064 | 3229 | 60853 | 56332870 | 56418016
40 21203 | 3229 | 60534 | 56331833 | 56416799
45 21172 | 3229 | 60534 | 56332185 | 56417120
50 21070 | 3229 | 60853 | 56332870 | 56418022
55 25946 | 3213 | 93032 | 56296729 | 56418920
60 23728 | 3220 | 86341 | 56304294 | 56417583
65 21064 | 3229 | 60853 | 56332870 | 56418016
70 21209 | 3229 | 60534 | 56331833 | 56416805
75 21172 | 3229 | 60534 | 56332185 | 56417120
80 21064 | 3229 | 60853 | 56332870 | 56418016
85 21203 | 3229 | 60534 | 56331833 | 56416799
90 21209 | 3229 | 60534 | 56332185 | 56417157
95 21064 | 3229 | 60853 | 56332870 | 56418016
100 21203 | 3229 | 60534 | 56331833 | 56416799
105 21172 | 3229 | 60534 | 56332185 | 56417120
110 21064 | 3229 | 60853 | 56332870 | 56418016
115 21203 | 3229 | 60534 | 56331833 | 56416799
120 25795 | 3213 | 86022 | 56304985 | 56420015
125 22465 | 3225 | 93032 | 56297068 | 56415790
130 21493 | 3228 | 60853 | 56332185 | 56417759
135 21172 | 3229 | 60534 | 56332185 | 56417120
140 21064 | 3229 | 60853 | 56332870 | 56418016
145 21203 | 3229 | 60534 | 56331833 | 56416799
150 21233 | 3229 | 60534 | 56332185 | 56417181
155 23124 | 3222 | 94625 | 56295347 | 56416318

71

Table 4.13 continued from previous page

TIME CpPU LPM | TX RX Total

160 21203 | 3229 | 60534 | 56332185 | 56417151
165 21172 | 3229 | 60534 | 56332185 | 56417120
170 21064 | 3229 | 60853 | 56332870 | 56418016
175 21209 | 3229 | 60534 | 56331833 | 56416805
180 21245 | 3229 | 60534 | 56332185 | 56417193
185 21070 | 3229 | 60853 | 56332870 | 56418022
190 21203 | 3229 | 60534 | 56331833 | 56416799
195 21178 | 3229 | 60534 | 56332185 | 56417126
200 24327 | 3218 | 93032 | 56297414 | 56417991
205 23468 | 3221 | 86022 | 56304646 | 56417357
210 21263 | 3229 | 60534 | 56332185 | 56417211
215 21064 | 3229 | 60853 | 56332870 | 56418016
220 21203 | 3229 | 60534 | 56331833 | 56416799
225 21178 13229 | 60534 | 56332185 | 56417126
230 23662 | 3221 | 94625 | 56295347 | 56416855
235 21209 | 3229 | 60534 | 56332185 | 56417157
240 21269 | 3229 | 60534 | 56332185 | 56417217
245 21064 | 3229 | 60853 | 56332870 | 56418016
250 21203 | 3229 | 60534 | 56331833 | 56416799
255 21172 | 3229 | 60534 | 56332185 | 56417120
260 21354 | 3228 | 60534 | 56332524 | 56417640
265 21209 | 3229 | 60534 | 56332185 | 56417157
270 21281 | 3228 | 60534 | 56332185 | 56417228
275 21064 | 3229 | 60853 | 56332870 | 56418016
280 21203 | 3229 | 60534 | 56331833 | 56416799
285 21172 | 3229 | 60534 | 56332185 | 56417120
290 21064 | 3229 | 60853 | 56333216 | 56418362
295 21203 | 3229 | 60534 | 56331833 | 56416799
300 21293 | 3228 | 60534 | 56332185 | 56417240
305 23535 | 3221 | 94943 | 56295347 | 56417046

72

Table 4.13 continued from previous page

TIME CrPU LPM | TX RX Total

310 21209 | 3229 | 60534 | 56332185 | 56417157
315 21178 | 3229 | 60534 | 56332185 | 56417126
320 21064 | 3229 | 60853 | 56332870 | 56418016
325 21203 | 3229 | 60534 | 56331833 | 56416799
330 21299 | 3228 | 60534 | 56332185 | 56417246
335 21064 | 3229 | 60853 | 56332870 | 56418016
340 21203 | 3229 | 60534 | 56331833 | 56416799
345 21172 | 3229 | 60534 | 56332185 | 56417120
350 21064 | 3229 | 60853 | 56332870 | 56418016
355 21203 | 3229 | 60534 | 56331833 | 56416799
360 21311 | 3228 | 60534 | 56332185 | 56417258
365 21064 | 3229 | 60853 | 56332870 | 56418016
370 21209 | 3229 | 60534 | 56331833 | 56416805
375 21172 | 3229 | 60534 | 56332185 | 56417120
380 21064 | 3229 | 60853 | 56332870 | 56418016
385 21203 | 3229 | 60534 | 56331833 | 56416799
390 21335 | 3228 | 60534 | 56332185 | 56417282
395 21064 | 3229 | 60853 | 56332870 | 56418016
400 21209 | 3229 | 60534 | 56331833 | 56416805
405 21172 | 3229 | 60534 | 56332185 | 56417120
410 21064 | 3229 | 60853 | 56332870 | 56418016
415 21203 | 3229 | 60534 | 56331833 | 56416799
420 21342 | 3228 | 60534 | 56332185 | 56417289
425 21064 | 3229 | 60853 | 56332870 | 56418016
430 21203 | 3229 | 60534 | 56331833 | 56416799
435 22635 | 3224 | 93350 | 56297068 | 56416277
440 21070 | 3229 | 60853 | 56332870 | 56418022
445 21203 | 3229 | 60534 | 56331833 | 56416799
450 21348 | 3228 | 60534 | 56332185 | 56417295
Average(nanowatt) | 21882,9 | 3227,1 | 66934,2 | 56333203,0 | 56425247,2

73

The following table is created according to the data sent at 10 seconds inter-

vals.

Table 4.14: Average power consumption in microwatt for interval 10 seconds

TIME CpPU LPM | TX RX Total

0 21749 | 3250 | 59897 | 56642860 | 56727756
10 26106 | 3212 | 135884 | 56251289 | 56416491
20 23269 | 3224 | 102271 | 56331667 | 56460431
30 17505 | 3241 | 61649 | 56331667 | 56414062
40 16710 | 3244 | 45560 | 56349395 | 56414909
50 18725 | 3237 | 61968 | 56331667 | 56415597
60 17909 | 3240 | 58463 | 56335795 | 56415407
70 16704 | 3244 | 45560 | 56349395 | 56414903
80 16647 | 3244 | 45560 | 56349395 | 56414846
90 16656 | 3244 | 45719 | 56349734 | 56415353
100 17012 | 3243 | 45560 | 56349222 | 56415037
110 16350 | 3245 | 45560 | 56349395 | 56414550
120 19650 | 3234 | 74712 | 56318246 | 56415842
130 16849 | 3243 | 45719 | 56349222 | 56415033
140 16650 | 3244 | 45560 | 56349395 | 56414849
150 17695 | 3240 | 62764 | 56331155 | 56414854
160 16707 | 3244 | 45560 | 56349395 | 56414906
170 16650 | 3244 | 45560 | 56349395 | 56414849
180 16671 | 3244 | 45719 | 56349734 | 56415368
190 16704 | 3244 | 45560 | 56349222 | 56414730
200 19408 | 3235 | 74871 | 56317894 | 56415408
210 16677 | 3244 | 45719 | 56349734 | 56415374
220 16704 | 3244 | 45560 | 56349222 | 56414730
230 17955 | 3240 | 62764 | 56330630 | 56414589
240 16686 | 3244 | 45719 | 56349734 | 56415383
250 16707 | 3244 | 45560 | 56349222 | 56414733
260 16795 | 3243 | 45719 | 56349222 | 56414979

74

Table 4.14 continued from previous page

TIME CPU LPM | TX RX Total

270 16692 | 3244 | 45719 | 56349734 | 56415389
280 16704 | 3244 | 45560 | 56349222 | 56414730
290 16650 | 3244 | 45560 | 56349395 | 56414849
300 17931 | 3240 | 62924 | 56331155 | 56415250
310 16704 | 3244 | 45560 | 56349395 | 56414903
320 16650 | 3244 | 45560 | 56349395 | 56414849
330 16704 | 3244 | 45719 | 56349734 | 56415401
340 16704 | 3244 | 45560 | 56349222 | 56414730
350 16650 | 3244 | 45560 | 56349395 | 56414849
360 17006 | 3243 | 45719 | 56349734 | 56415702
370 16408 | 3245 | 45560 | 56349222 | 56414435
380 16650 | 3244 | 45560 | 56349395 | 56414849
390 16716 | 3244 | 45719 | 56349734 | 56415413
400 16704 | 3244 | 45560 | 56349222 | 56414730
410 16653 | 3244 | 45560 | 56349395 | 56414852
420 16719 | 3244 | 45719 | 56349734 | 56415416
430 17432 | 3241 | 62127 | 56331833 | 56414633
440 16647 | 3244 | 45560 | 56349395 | 56414846
450 16725 | 3244 | 45719 | 56349734 | 56415422
Average(nanowatt) | 17454,3 | 3241,9 | 52853,1 | 56349281,5 | 56422830,8

The following table is created according to the data sent at 20 seconds inter-

vals.

Table 4.15: Average power consumption in microwatt for interval 20 seconds

TIME CpPU LPM | TX RX Total

0 22068 | 3238 | 97890 | 56447673 | 56570869
20 18169 | 3240 | 74632 | 56340358 | 56436399
40 15497 | 3248 | 46277 | 56348960 | 56413982

75

Table 4.15 continued from previous page

TIME CPU LPM | TX RX Total(Hourly)
60 15092 | 3249 | 44604 | 56350944 | 56413889
80 14412 | 3251 | 38152 | 56358003 | 56413818
100 14449 | 3251 | 38073 | 56357747 | 56413520
120 16017 | 3246 | 52808 | 56342252 | 56414323
140 14943 | 3250 | 46675 | 56348704 | 56413572
160 14452 | 3251 | 38073 | 56357830 | 56413606
180 14458 | 3251 | 38073 | 56357830 | 56413612
200 15801 | 3247 | 52649 | 56342163 | 56413860
220 15113 | 3249 | 46755 | 56348620 | 56413737
240 14480 | 3251 | 38073 | 56357830 | 56413634
260 14500 | 3251 | 38073 | 56357830 | 56413654
280 14450 | 3251 | 38073 | 56357830 | 56413604
300 15091 | 3249 | 46834 | 56348620 | 56413794
320 14433 | 3251 | 38152 | 56358003 | 56413839
340 14449 | 3251 | 38073 | 56357747 | 56413520
360 14479 | 3251 | 38073 | 56357830 | 56413633
380 14440 | 3251 | 38152 | 56358003 | 56413846
400 14452 | 3251 | 38073 | 56357747 | 56413523
420 14844 | 3250 | 46356 | 56349139 | 56413589
440 14446 | 3251 | 38152 | 56358003 | 56413852
Average(nanowatt) | 15240,7 | 3249,1 | 45684,6 | 56357376,8 | 56421551,1

The following table is created according to the data sent at 30 seconds inter-

vals.

Table 4.16: Average power consumption in microwatt for interval 30 seconds

TIME CPuU LPM | TX RX Total
0 21878 | 3234 | 103439 | 56389845 | 56518396
30 16543 | 3244 | 59472 | 56334993 | 56414252

76

Table 4.16 continued from previous page

TIME CrPU LPM | TX RX Total

60 16715 | 3244 | 59950 | 56334190 | 56414099
90 15063 | 3250 | 50923 | 56358805 | 56428041
120 14974 | 3250 | 45666 | 56349853 | 56413743
150 13711 | 3254 | 35577 | 56360640 | 56413182
180 14627 | 3251 | 45400 | 56350254 | 56413532
210 14135 | 3252 | 41365 | 56354500 | 56413252
240 13765 | 3254 | 35683 | 56360695 | 56413397
270 13719 | 3254 | 35577 | 56360640 | 56413190
300 13720 | 3254 | 35577 | 56360640 | 56413191
330 13724 | 3254 | 35577 | 56360640 | 56413195
360 14158 | 3252 | 41418 | 56354500 | 56413328
390 13727 | 3254 | 35577 | 56360640 | 56413198
420 14151 | 3252 | 41365 | 56354500 | 56413268
450 13731 | 3254 | 35577 | 56360640 | 56413202
Average(nanowatt) | 14896,3 | 3250,4 | 46133,9 | 56356623,4 | 56420904,1

The following table is created according to the data sent at 60 seconds inter-

vals.

Table 4.17: Average power consumption in microwatt for interval 60 seconds

TIME CPU |LPM | TX RX Total

0 17227 | 3246 | 70517 | 56381896 | 56472886
60 13252 | 3255 | 38152 | 56358203 | 56412862
120 13608 | 3254 | 38285 | 56358058 | 56413205
180 13508 | 3254 | 38152 | 56358233 | 56413147
240 13179 | 3256 | 36188 | 56360409 | 56413032
300 12994 | 3256 | 33294 | 56363451 | 56412995
360 13119 | 3256 | 36028 | 56360554 | 56412957
420 13169 | 3256 | 36161 | 56360379 | 56412965

77

Table 4.17 continued from previous page

TIME CPU | LPM | TX RX Total
Average(nanowatt) | 13757 | 3254,1 | 40847,1 | 56362647,9 | 56420506,1

CPU

0,0026
0,0024
0,0022
0,0020
0,0018 "

0,0016 g
0,0014

0.0012
0,0010
0,0008
0,0006 =
0.0004 —

0,0002 |~

0,0000

milliwatt)

(

PowerConsumption

0 50 100 150 200 250 300 350 400
Time(Second)

-5 -=10 -4 20 - 30 60

Figure 4.13: The total power consumption in milliwatt in first 450 seconds
for CPU

78

LPM

E-4
E-4
E g ’ - -_...
BE - g
2IE T
2E - ,..,...... -
: - - -

1E-4 =

PowerConsumption {milliwatt)

SE-5 =

OEQ

0 50 100 150 200 250 300 350 400
Time(Second)

-5 -0=10 & 20 -+ 30 60

Figure 4.14: The total power consumption in milliwatt in first 450 seconds
for LPM

0,008
0,007
0,006
0,005 —
0,004
0,003 ~

0,002 —

PowerConsumption (milliwatt)

0,001

0,000

0 50 100 150 200 250 300 350 400
Time(Second)

5 -8 10 -& 20 -+ 30 60

Figure 4.15: The total power consumption in milliwatt in first 450 seconds
for TX

79

oo~
[4, =

)

att
@
o

won g
[=30,]

4,5

PowerConsumption (milliw.
o ENNLWER
oo oW oo

(=]

30 100 150

-5 -=10 -4 20 - 30

200 250
Time(Second)

300 350 400

60

Figure 4.16: The total power consumption in milliwatt in first 450 seconds

for RX

Table 4.18: Expected life time for MQTT-SN(Two Nodes)

Time(Interval) | Estimated Life Time(year)
5 0.0153438

10 0.0155188

20 0.0158968

30 0.016258

60 0.017703

4.3.7 Result for Three Nodes MQTT-SN Communication

The communication in this example is provided by three sensor nodes and
the RSMB server.

The following table is created according to the data sent at 5 seconds inter-

vals.

80

Table 4.19: Average power consumption in nanowatt for interval 5 seconds

TIME CrPuU LPM | TX RX Total

0 26133 | 3259 | 21346 | 56992774 | 57043512
5 25904 [3260 |0 57015840 | 57045004
10 28127 | 3206 | 89846 | 56300512 | 56421691
15 30852 | 3197 | 124892 | 56263334 | 56422275
20 28889 | 3203 | 66269 | 56325990 | 56424351
25 35294 | 3182 | 121069 | 56266777 | 56426322
30 27553 | 3208 | 121706 | 56266777 | 56419244
35 36998 | 3176 | 210596 | 56169702 | 56420472
40 28738 | 3204 | 90164 | 56301203 | 56423309
45 26194 | 3218 | 87615 | 56398278 | 56515305
50 42073 | 3159 | 183197 | 56197932 | 56426361
55 31553 | 3194 | 118520 | 56268499 | 56421766
60 26719 | 3216 | 113422 | 56363507 | 56506864
65 21891 | 3226 | 60534 | 56331833 | 56417484
70 22151 | 3226 | 60853 | 56333216 | 56419446
75 21468 | 3228 | 60534 | 56332524 | 56417754
80 22326 | 3225 | 60534 | 56332185 | 56418270
85 21626 | 3227 | 60534 | 56332185 | 56417572
90 22296 | 3225 | 60534 | 56332524 | 56418579
95 21583 | 3227 | 60534 | 56332524 | 56417868
100 25348 | 3215 | 60853 | 56333216 | 56422632
105 22937 | 3223 | 93032 | 56296729 | 56415921
110 27444 | 3208 | 93032 | 56296729 | 56420413
115 28496 | 3204 | 60534 | 56332524 | 56424758
120 25106 | 3216 | 86022 | 56304646 | 56418990
125 24580 | 3217 | 85704 | 56304294 | 56417795
130 22405 | 3225 | 60534 | 56332524 | 56418688
135 21758 | 3227 | 60216 | 56332185 | 56417386
140 22326 | 3225 | 60534 | 56332524 | 56418609

81

Table 4.19 continued from previous page

TIME CpPU LPM | TX RX Total

145 21613 | 3227 | 60534 | 56332524 | 56417898
150 22296 | 3225 | 60534 | 56332524 | 56418579
155 21577 | 3227 | 60534 | 56332524 | 56417862
160 25481 | 3214 | 94625 | 56295692 | 56419012
165 24520 | 3218 | 60853 | 56332870 | 56421461
170 22333 | 3225 | 60534 | 56332524 | 56418616
175 21619 | 3227 | 60534 | 56332185 | 56417565
180 25523 | 3214 | 60534 | 56332524 | 56421795
185 24762 | 3217 | 94625 | 56294662 | 56417266
190 22133 | 3226 | 60853 | 56333216 | 56419428
195 21481 | 3228 | 60853 | 56332870 | 56418432
200 25553 | 3214 | 60534 | 56332185 | 56421486
205 23082 | 3222 | 93350 | 56296729 | 56416383
210 22296 | 3225 | 60534 | 56332524 | 56418579
215 21577 | 3227 | 60216 | 56332185 | 56417205
220 22133 | 3226 | 60853 | 56333216 | 56419428
225 21468 | 3228 | 60853 | 56332870 | 56418419
230 23783 | 3220 | 93350 | 56297068 | 56417421
235 24701 | 3217 | 60534 | 56332185 | 56420637
240 25946 | 3213 | 60534 | 56332524 | 56422217
245 28079 | 3206 | 86022 | 56304646 | 56421953
250 24750 | 3217 | 86341 | 56305337 | 56419645
255 21481 | 3228 | 60853 | 56332870 | 56418432
260 22617 | 3224 | 60853 | 56331833 | 56418527
265 21916 | 3226 | 60853 | 56331833 | 56417828
270 22296 | 3225 | 60534 | 56332524 | 56418579
275 21577 | 3227 | 60216 | 56332185 | 56417205
280 22133 | 3226 | 60853 | 56333216 | 56419428
285 21474 | 3228 | 60853 | 56332870 | 56418425
290 22326 | 3225 | 60534 | 56332185 | 56418270

82

Table 4.19 continued from previous page

TIME CrPU LPM | TX RX Total

295 21626 | 3227 | 60534 | 56332185 | 56417572
300 22351 | 3225 | 60534 | 56332524 | 56418634
305 21638 | 3227 | 60534 | 56332524 | 56417923
310 22133 | 3226 | 60853 | 56333216 | 56419428
315 21468 | 3228 | 60853 | 56332870 | 56418419
320 22326 | 3225 | 60534 | 56332185 | 56418270
325 21619 | 3227 | 60534 | 56332185 | 56417565
330 26079 | 3212 | 60534 | 56332524 | 56422349
335 24792 | 3217 | 95262 | 56295008 | 56418279
340 21529 | 3228 | 60853 | 56333216 | 56418826
345 21481 | 3228 | 60534 | 56332524 | 56417767
350 22326 | 3225 | 60534 | 56332185 | 56418270
355 21619 | 3227 | 60534 | 56332185 | 56417565
360 22375 | 3225 | 60534 | 56332524 | 56418658
365 21650 | 3227 | 60534 | 56332524 | 56417935
370 22133 | 3226 | 60853 | 56333216 | 56419428
375 21474 | 3228 | 60853 | 56332870 | 56418425
380 22326 | 3225 | 60534 | 56332185 | 56418270
385 21626 | 3227 | 60534 | 56332185 | 56417572
390 22296 | 3225 | 60534 | 56332524 | 56418579
395 21577 | 3227 | 60534 | 56332524 | 56417862
400 22133 | 3226 | 60853 | 56333216 | 56419428
405 21468 | 3228 | 60853 | 56332870 | 56418419
410 27299 | 3208 | 86022 | 56304294 | 56420823
415 24532 | 3218 | 60216 | 56331833 | 56419799
420 22381 | 3225 | 60534 | 56332524 | 56418664
425 23384 | 3221 | 86022 | 56304646 | 56417273
430 22133 | 3226 | 60853 | 56333216 | 56419428
435 21474 | 3228 | 60853 | 56332870 | 56418425
440 22326 | 3225 | 60534 | 56332185 | 56418270

83

Table 4.19 continued from previous page

TIME CPU LPM | TX RX Total

445 21619 | 3227 | 60534 | 56332185 | 56417565
450 22296 | 3225 | 60534 | 56332524 | 56418579
Average(nanowatt) | 23942,7 | 3220,7 | 71013,1 | 56336778,4 | 56434954,8

The following table is created according to the data sent at 10 seconds inter-

vals.

Table 4.20: Average power consumption in microwatt for interval 10 seconds

TIME Cru LPM | TX RX Total

0 24943 | 3240 | 70570 | 56631321 | 56730074
10 24994 | 3239 | 62127 | 56640108 | 56730468
20 30212 | 3199 | 150699 | 56235110 | 56419220
30 27816 | 3207 | 120591 | 56268153 | 56419767
40 27892 | 3209 | 119157 | 56314112 | 56464370
50 32061 | 3193 | 148628 | 56238380 | 56422262
60 17363 | 3242 | 45560 | 56349395 | 56415560
70 20118 | 3232 | 57985 | 56336313 | 56417648
80 17559 | 3241 | 45560 | 56349395 | 56415755
90 19088 | 3236 | 44285 | 56350598 | 56417207
100 21683 | 3227 | 58623 | 56335628 | 56419161
110 21444 | 3228 | 60693 | 56333216 | 56418581
120 18390 | 3238 | 61968 | 56332012 | 56415608
130 21910 | 3226 | 57348 | 56337177 | 56419661
140 17559 | 3241 | 45560 | 56349395 | 56415755
150 18212 | 3239 | 44445 | 56350771 | 56416667
160 17550 | 3241 | 45560 | 56349395 | 56415746
170 20529 | 3231 | 61171 | 56333043 | 56417974
180 19127 | 3236 | 45719 | 56349734 | 56417816
190 26771 | 3210 | 121865 | 56266777 | 56418623

84

Table 4.20 continued from previous page

TIME CrPU LPM | TX RX Total

200 19900 | 3233 | 62286 | 56331667 | 56417086
210 21393 | 3231 | 77898 | 56361958 | 56464480
220 17553 | 3241 | 45560 | 56349395 | 56415749
230 17311 | 3242 | 45560 | 56349568 | 56415681
240 20598 | 3231 | 58463 | 56335628 | 56417920
250 20514 | 3231 | 58623 | 56335628 | 56417996
260 17698 | 3240 | 45719 | 56349049 | 56415706
270 17456 | 3241 | 45560 | 56348876 | 56415133
280 19160 | 3236 | 63083 | 56330976 | 56416455
290 18837 | 3237 | 45560 | 56349568 | 56417202
300 17538 | 3241 | 45719 | 56349734 | 56416232
310 17293 | 3242 | 45719 | 56349568 | 56415822
320 19151 | 3236 | 45560 | 56349222 | 56417169
330 18922 | 3236 | 62924 | 56330464 | 56415546
340 17556 | 3241 | 45560 | 56349395 | 56415752
350 17314 | 3242 | 45400 | 56349395 | 56415351
360 17846 | 3240 | 45719 | 56349734 | 56416539
370 17299 | 3242 | 45719 | 56349568 | 56415828
380 17260 | 3242 | 45560 | 56349222 | 56415284
390 17314 | 3242 | 45560 | 56349222 | 56415338
400 20568 | 3231 | 58463 | 56335628 | 56417890
410 18761 | 3237 | 45719 | 56349568 | 56417285
420 17556 | 3241 | 45719 | 56349734 | 56416250
430 18163 | 3239 | 58463 | 56335628 | 56415493
440 17556 | 3241 | 45560 | 56349222 | 56415579
450 17314 | 3242 | 45560 | 56349222 | 56415338
Average(nanowatt) | 20066,3 | 3233,8 | 60638,0 | 56348627,7 | 56432565,8

The following table is created according to the data sent at 20 seconds inter-

vals.

85

Table 4.21: Average power consumption in microwatt for interval 20 seconds

TIME CpPU LPM | TX RX Total

0 21890 | 3238 | 67543 | 56480716 | 56573387
20 21568 | 3239 | 62127 | 56486316 | 56573250
40 23021 | 3223 | 89686 | 56301376 | 56417306
60 24393 | 3220 | 104024 | 56310323 | 56441960
80 17937 | 3240 | 52569 | 56342508 | 56416254
100 17304 | 3242 | 46516 | 56349139 | 56416201
120 16711 | 3245 | 51295 | 56365664 | 56436915
140 16289 | 3245 | 44604 | 56350860 | 56414998
160 16826 | 3243 | 46516 | 56348620 | 56415205
180 16595 | 3244 | 46277 | 56349049 | 56415165
200 15751 | 3247 | 46356 | 56349139 | 56414493
220 16270 | 3245 | 38073 | 56357830 | 56415418
240 17012 | 3243 | 44604 | 56350860 | 56415719
260 17243 | 3242 | 44524 | 56350860 | 56415869
280 15979 | 3246 | 38152 | 56358003 | 56415380
300 16281 | 3245 | 46755 | 56348620 | 56414901
320 15069 | 3249 | 38073 | 56357651 | 56414042
340 15344 | 3248 | 38073 | 56357830 | 56414495
360 15385 | 3248 | 38073 | 56357830 | 56414536
380 15508 | 3248 | 38073 | 56357830 | 56414659
400 17486 | 3241 | 44604 | 56351033 | 56416364
420 17678 | 3241 | 53127 | 56341824 | 56415870
440 15764 | 3247 | 38232 | 56357747 | 56414990
Average(nanowatt) | 17535,0 | 3242,1 | 50342,4 | 56360070,8 | 56431190,3

The following table is created according to the data sent at 30 seconds inter-

vals.

86

Table 4.22: Average power consumption in microwatt for interval 30 seconds

TIME CPU LPM | TX RX Total

0 24424 | 3227 | 108484 | 56399193 | 56535328
30 25085 | 3225 | 105510 | 56403613 | 56537433
60 15848 | 3247 | 39931 | 56355993 | 56415019
90 15437 | 3248 | 41099 | 56354790 | 56414574
120 14628 | 3251 | 35736 | 56360755 | 56414370
150 15039 | 3249 | 39878 | 56355938 | 56414104
180 15203 | 3249 | 41259 | 56354901 | 56414612
210 15655 | 3247 | 41152 | 56354845 | 56414899
240 16030 | 3246 | 45613 | 56349853 | 56414742
270 16127 | 3246 | 39984 | 56356049 | 56415406
300 14962 | 3250 | 35683 | 56360755 | 56414650
330 15034 | 3249 | 41418 | 56354444 | 56414145
360 15425 | 3248 | 39878 | 56356164 | 56414715
390 14985 | 3250 | 35630 | 56360695 | 56414560
420 14681 | 3251 | 41152 | 56354901 | 56413985
450 15303 | 3248 | 39825 | 56355993 | 56414369
Average(nanowatt) | 16491,6 | 3245,7 | 48264,5 | 56361805,1 | 56429806,9

The following table is created according to the data sent at 60 seconds inter-

vals.

Table 4.23: Average power consumption in microwatt for interval 60 seconds

TIME CPU LPM | TX RX Total

0 19689 | 3238 | 75296 | 56376678 | 56474901
60 20517 | 3235 | 70305 | 56382754 | 56476811
120 14838 | 3250 | 40860 | 56355217 | 56414165
180 14555 | 3251 | 38763 | 56357772 | 56414341
240 14455 | 3251 | 35258 | 56361130 | 56414094

87

Table 4.23 continued from previous page

TIME CpPU LPM | TX RX Total

300 14628 | 3251 | 38285 | 56358289 | 56414453
360 14692 | 3251 | 38152 | 56358058 | 56414153
420 14537 | 3251 | 38179 | 56358459 | 56414426
Average(nanowatt) | 15988,9 | 3247,2 | 46887,2 | 56363544,6 | 56429668

CPU

0,0030
0,0028
0,0026
%‘ 0,0024
= 0,0022
= 0,0020 —

E o018
5 0.0016

‘20,0014
£ 0.0012
£ 0,0010
[=]
© 0.0008
@ 0,0006
3 0,0004 g
0,0002 |
0,0000

0 50 100 150 200 250 300 350 400
Time(Second)

-5 -e=10 -4 20 < 30 60

Figure 4.17: The total power consumption in millwatt in first 450 seconds for
CPU

88

LPM
4,5E-4 1

aE-4

3,5E-4 =
3E-4

2,5E-4 | =

2E-4 =
1,5E-4 - e

1E-4 - —

PowerConsumption (milliwatt)

SE-S [

0OEO

0 50 100 150 200 250 300 350 400
Time(Second)

-5 -9=10 -4 20 - 30 60

Figure 4.18: The total power consumption in milliwatt in first 450 seconds
for LPM

0,008 1

0,007 1

0,006 1

0,005 1

0,004 1

0,003 e

0,002

PowerConsumption (milliwatt)

0,001 {7,

0,000

0 50 100 150 200 250 300 350 400
Time(Second)

=5 -8-10 -& 20 -+ 30 60

Figure 4.19: The total power consumption in milliwatt in first 450 seconds
for TX

89

0 50 100 150 200 250 300 350 400
Time(Second)

-5 910 -& 20 -+ 30 60

Figure 4.20: The total power consumption in milliwatt in first 450 seconds
for RX

Table 4.24: Expected life time for tested periods

Time(Interval) | Estimated Life Time(year)
5 0.0153409
10 0.0155161
20 0.0158939
30 0.0162552
60 0.0176993

90

CHAPTER 5

CONCLUSION AND FUTURE WORK

In this thesis, it is seen that the data distribution system, which is widely
used today, has been successfully installed on resource-constrained devices
that have low power consumption and low memory usage by tailoring the
DDS. Since these devices have approximately 8 KB RAM and 128KB ROM
values, their power consumption is low and this feature enables them to
work for days. The DDS interface provides an abstraction on the network
layer. As another point of view, it is aimed to use MQTT middleware using a
publisher-subscriber pattern on the same operating system. However, since
the memory problems of the device are not overcome in this example, it has
been found that the connection to the server can be realized with the python
application defined on the computer. However, Python application runs on
a computer that provides a USB connection for running application, so it
requires more components than other methods. In the MQTT-SN software,
unlike MQTT, the studies mentioned in the previous sections are performed
and the device is installed successfully as a result of updates. For now, the
Zigbee based DDS software only listens to the data received event and the
data delay event. In future work, more Qos event information can be added
to the Zigbee based DDS. MQTT-SN software can be created automatically
source code by reading from an XML file, similar to DDS. Besides differences
between bandwidth utilization will be measured and added to the result

section.

91

92

REFERENCES

[1] Contiki-Os, “contiki-os/contiki.” https://github.com/
contiki-os/contiki/blob/master/dev/shtll/shtll.c,
2015. [Online; accessed 4-August-2019].

[2] Z. C. Team, “As-xm1000.” https://www.advanticsys.com/shop/
asxml1000-p—24.html, 2019. [Online; accessed 21-November-2019].

[3] “Cmb5000.” https://www.advanticsys.com/wiki/index.php?
tit1le=CM5000, 2019. [Online; accessed 21-November-2019].

[4] “Quality of service.” http://download.prismtech.com/docs/
Vortex/html/ospl/DDSTutorial/gos.html. Online; accessed 19-
November-2019].

[5] A. Stanford-Clark and H. L. Truong, “Mqtt for sensor networks (mqtt-
sn) protocol specification,” International business machines (IBM) Corpora-

tion version, vol. 1, 2013.

[6] “About the dds for extremely resource constrained environ-
ments specification version 1.0 beta 2.” https://www.omg.org/
spec/DDS—XRCE/About-DDS-XRCE/, 2018. [Online; accessed 21-
November-2019].

[7] G. Pardo-Castellote, “Omg data-distribution service: Architectural
overview,” in Proceedings of the 23rd International Conference on Distributed
Computing Systems, ICDCSW 03, (Washington, DC, USA), pp. 200-,
IEEE Computer Society, 2003.

[8] K. Beckmann and M. Thoss, “A model-driven software development

approach using omg dds for wireless sensor networks,” Oct 2010.

[9] “Mqtt.” http://mgtt.org/, 2019. [Online; accessed 21-November-
2019].

93

https://github.com/contiki-os/contiki/blob/master/dev/sht11/sht11.c
https://github.com/contiki-os/contiki/blob/master/dev/sht11/sht11.c
https://www.advanticsys.com/shop/asxm1000-p-24.html
https://www.advanticsys.com/shop/asxm1000-p-24.html
https://www.advanticsys.com/wiki/index.php?title=CM5000
https://www.advanticsys.com/wiki/index.php?title=CM5000
http://download.prismtech.com/docs/Vortex/html/ospl/DDSTutorial/qos.html
http://download.prismtech.com/docs/Vortex/html/ospl/DDSTutorial/qos.html
https://www.omg.org/spec/DDS-XRCE/About-DDS-XRCE/
https://www.omg.org/spec/DDS-XRCE/About-DDS-XRCE/
http://mqtt.org/

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

T. Reusing, “Comparison of operating systems tinyos and contiki,” Sens.
Nodes-Oper. Netw. Appl.(SN), vol. 7, pp. 7-13, 2012.

“The open source os for the internet of things.” http://www.

contiki-os.org/, 2018. [Online; accessed 21-November-2019].

“Wireless sensor networks :: Telosb.” http://www.cmt—gmbh.de/
Produkte/WirelessSensorNetworks/TelosB.html, 2016. [On-

line; accessed 21-November-2019].

Pksec, “pksec/msp430-gcc-4.7.3.” https://github.com/pksec/
msp430—gcc—4.7.3, Feb 2019. Online; accessed 19-November-2019].

Contiki-Os, “contiki-os/contiki.” https://
github.com/contiki-os/contiki/wiki/
Reducing—-Contiki-0S—-firmware—-size, 2019. [Online; accessed

21-November-2019].

“Introduction to mqtt-sn (mqtt for sensor networks).” http://www.
steves—internet—guide.com/mgtt—sn/. Online; accessed 19-
November-2019].

A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and flex-
ible operating system for tiny networked sensors,” in 29th Annual IEEE
International Conference on Local Computer Networks, pp. 455-462, Nov
2004.

M. R. H. Khan, R. Passerone, and D. Macii, “Fzepel: Rf-level power
consumption measurement (rf-pm) for zigbee wireless sensor network-
towards cross layer optimization,” in 2008 IEEE International Conference

on Emerging Technologies and Factory Automation, pp. 959-966, Sep. 2008.

m. a. Sarijari, M. Sharil Abdullah, A. Lo, and R. A Rashid, “Experimen-
tal studies of the zigbee frequency agility mechanism in home area net-
works,” in Experimental studies of the ZigBee frequency agility mechanism in

home area networks, vol. 2014, pp. 711-717, 09 2014.

“What is dds?.” https://www.dds—foundation.org/
what-1is—dds—-3/, 2005. Online; accessed 19-November-2019].

94

http://www.contiki-os.org/
http://www.contiki-os.org/
http://www.cmt-gmbh.de/Produkte/WirelessSensorNetworks/TelosB.html
http://www.cmt-gmbh.de/Produkte/WirelessSensorNetworks/TelosB.html
https://github.com/pksec/msp430-gcc-4.7.3
https://github.com/pksec/msp430-gcc-4.7.3
https://github.com/contiki-os/contiki/wiki/Reducing-Contiki-OS-firmware-size
https://github.com/contiki-os/contiki/wiki/Reducing-Contiki-OS-firmware-size
https://github.com/contiki-os/contiki/wiki/Reducing-Contiki-OS-firmware-size
http://www.steves-internet-guide.com/mqtt-sn/
http://www.steves-internet-guide.com/mqtt-sn/
https://www.dds-foundation.org/what-is-dds-3/
https://www.dds-foundation.org/what-is-dds-3/

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

“Twin oaks computing (2011) inc twin oaks computing. 2011.
what can dds do for you?.” https://www.omg.org/hot-topics/
documents/dds/CoreDX_DDS_Why_Use_DDS.pdf/, 2019. [Online;
accessed 21-November-2019].

G. Pardo-Castellote, “Omg data-distribution service: architectural
overview,” in 23rd International Conference on Distributed Computing Sys-

tems Workshops, 2003. Proceedings., pp. 200-206, May 2003.

R. A. Light, “Mosquitto: server and client implementation of the mqtt

protocol,” The Journal of Open Source Software, vol. 2, no. 13, p. 265, 2017.

“How to Dbuild and run rti connext dds micro on
a microcontroller.” https://www.rti.com/blog/
how—-to-build-and-run-rti-connext-dds-micro-on—-a-micro,
journal=Connectivity Software Framework for the Industrial IoT, au-
thor=Hidalgo, Jesus Checa, year=2017, note = [Online; accessed
21-November-2019].

https://community.rti.com/static/documentation/
connext-micro/2.4.6/doc/html/group_
_OSAPIUserManuals__ PortingModule.html, 2017. [Online;
accessed 21-November-2019].

“eprosima micro xrce-dds].” https://micro-xrce-dds.
readthedocs.io/en/latest/index.html, 2018. [Online; ac-
cessed 21-November-2019].

O. Deschambault, A. Gherbi, and C. Légaré, “Efficient implementation
of the mqtt protocol for embedded systems,” JIPS (Journal of Information
Processing Systems), vol. 13, no. 1, pp. 26-39, 2017.

Y. Upadhyay, A. Borole, and D. Dileepan, “Mqtt based secured home

7

automation system,”

Networking (CDAN), pp. 1-4, March 2016.

in 2016 Symposium on Colossal Data Analysis and

T. Reusing, “Comparison of operating systems tinyos and contiki,” Sens.
Nodes-Oper. Netw. Appl.(SN), vol. 7, pp. 7-13, 2012.

95

https://www.omg.org/hot-topics/documents/dds/CoreDX_DDS_Why_Use_DDS.pdf/
https://www.omg.org/hot-topics/documents/dds/CoreDX_DDS_Why_Use_DDS.pdf/
https://www.rti.com/blog/how-to-build-and-run-rti-connext-dds-micro-on-a-micro
https://www.rti.com/blog/how-to-build-and-run-rti-connext-dds-micro-on-a-micro
https://community.rti.com/static/documentation/connext-micro/2.4.6/doc/html/group__OSAPIUserManuals__PortingModule.html
https://community.rti.com/static/documentation/connext-micro/2.4.6/doc/html/group__OSAPIUserManuals__PortingModule.html
https://community.rti.com/static/documentation/connext-micro/2.4.6/doc/html/group__OSAPIUserManuals__PortingModule.html
https://micro-xrce-dds.readthedocs.io/en/latest/index.html
https://micro-xrce-dds.readthedocs.io/en/latest/index.html

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Imatix, “imatix/gsl.” https://github.com/imatix/gsl, Sep 2017.
[Online; accessed 19-November-2019].

GNU, “Gnu make.” https://www.gnu.org/software/make/
manual/make.html#Wildcard-Examples, May 2016. [Online; ac-
cessed 21-November-2019].

“Rsmb: Mqtt.” http://mgtt.org/tag/rsmb, 2016. [Online; ac-
cessed 21-November-2019].

IBM, “Really small message broker.” https://www.
ibm.com/developerworks/community/groups/
service/html/communityview?communityUuild=
d5bedadd-e46f-4c97-af89-22d65ffee070, Jan 2013. [Online;
accessed 23-September-2019].

Eclipse, “eclipse/mosquitto.rsmb.” https://github.com/
eclipse/mosquitto.rsmb/tree/master/rsmb/src, 2016.

[Online; accessed 23-September-2019].

Aignacio, “aignacio/mqtt-sn-contiki_example.” https://github.
com/aignacio/mgtt-sn-contiki_example, Aug 2017. [Online;

accessed 23-September-2019].

Contiki-Ng, “contiki-ng/contiki-ng.” https://github.com/
contiki-ng/contiki-ng/wiki/Documentation:—-Energest,

2016. [Online; accessed 21-November-2019].

96

https://github.com/imatix/gsl
https://www.gnu.org/software/make/manual/make.html#Wildcard-Examples
https://www.gnu.org/software/make/manual/make.html#Wildcard-Examples
http://mqtt.org/tag/rsmb
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=d5bedadd-e46f-4c97-af89-22d65ffee070
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=d5bedadd-e46f-4c97-af89-22d65ffee070
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=d5bedadd-e46f-4c97-af89-22d65ffee070
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=d5bedadd-e46f-4c97-af89-22d65ffee070
https://github.com/eclipse/mosquitto.rsmb/tree/master/rsmb/src
https://github.com/eclipse/mosquitto.rsmb/tree/master/rsmb/src
https://github.com/aignacio/mqtt-sn-contiki_example
https://github.com/aignacio/mqtt-sn-contiki_example
https://github.com/contiki-ng/contiki-ng/wiki/Documentation:-Energest
https://github.com/contiki-ng/contiki-ng/wiki/Documentation:-Energest

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

APPENDIX A

MAKEFILE FOR SENSORDDS
SDDS_TOPDIR := ../../
CONTIKI := ../../contiki
DRIVER := $(SDDS_TOPDIR)/include/

ifeq ($(BUILD), sensor_board)
SDDS_OBJDIR := objs-xml000

TARGET := xml000

else

SDDS_OBJDIR := objs-sky
TARGET := sky

endif

SDDS_PLATFORM := contiki
SDDS_ARCH := atmega
SMALL = 1

//MODULES += core/net/ipv6/multicast
CONTIKI_WITH_IPV4 = 1

CONTIKI_WITH_RIME = 1

LOCAL_CONSTANTS := local_constants.h

Object files of the generateted dds data types
DATA_DEPEND_OBJS += $(SDDS_OBJDIR)/sensordata-ds.o
#DATA_DEPEND_OBJS += $(SDDS_OBJDIR) /alpha-ds.o

DATA_DEPEND_OBJS += $(SDDS_OBJDIR)/sensordata_test_publisher_sdds_impl.o

#0OBJS = $($(shell 1ls x-ds.c):.o=.c)

DATA_DEPEND_OBJS += $ (addprefix $(SDDS_OBJDIR)/, $(OBJS))

object files depending on platform
PLATFORM_DEPEND_OBJS += $(SDDS_OBJDIR)/*.0

object files depending on driver for sensors

#DRIVER_DEPEND_OBJS += $(SDDS_OBJDIR) /sdds—driver—-$ (SDDS_ARCH)-LED.o

#DRIVER_DEPEND_OBJS +=

< $(SDDS_OBJDIR) /sdds—driver—-$ (SDDS_ARCH) -GammaCorrection.o
object files of the generates implementation code file of sdds
IMPL_DEPEND_OBJS = $(SDDS_OBJDIR) /sensordata_test_publisher_ sdds_impl.o

#TARGET_STARTFILES = sensordata_test_publisher.c

file for the preprocessor constants of sdds

SDDS_CONSTANTS_FILE := sdds_features_config.h sdds_features.h

— sdds_network.h sdds_profile.h

97

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

#TARGET_LIBFILES += -L. -lhel

ALL_OBJS += $(PLATFORM_DEPEND_OBJS)

ALL_OBJS += $(DRIVER_DEPEND_OBJS)

ALL_OBJS += $ (IMPL_DEPEND_OBJS)

ALL_OBJS += $ (SDDS_OBJDIR)/$ (APPLICATION_NAME) .o
ALL_OBJS += $(DATA_DEPEND_OBJS)

include $ (SDDS_TOPDIR) /sdds.mk

include $ (CONTIKI)/Makefile.include

DATA_DEPEND_SRCS+=$ (patsubst $ (SDDS_OBJDIR) /%.0,%.c,$ (DATA_DEPEND_OBJS))
DATA_DEPEND_SRCS+=$ (patsubst $ (SDDS_OBJDIR)/%.0,%.h,$ (DATA_DEPEND_OBJS))
CLEAN += $ (DATA_DEPEND_SRCS)

%.c, S (IMPL_DEPEND_OBJS))
.h, $ (IMPL_DEPEND_OBJS))

IMPI_DEPEND_SRCS += $ (patsubst $ (SDDS_OBJDIR
IMPL_DEPEND_SRCS += $ (patsubst$ (SDDS_OBJDIR)
$(info $ (IMPL_DEPEND_SRCS))

-~ =
oo

O

~

do ~

CLEAN += $ (IMPL_DEPEND_SRCS)

CLEAN += $(ALL_OBJS)

CLEAN += $ (patsubst %.0,%.d,$(ALL_OBJS))

CLEAN += $(SDDS_CONSTANTS_FILE)

CLEAN += local_constants.h

all:$ (APPLICATION_NAME)

$ (SDDS_OBJDIR) :

mkdir $(SDDS_OBJDIR)

$ (LOCAL_CONSTANTS) :

touch $ (LOCAL_CONSTANTS)

CFLAGS += -I.

CFLAGS += -I $(DRIVER)

CFLAGS += -Os

$ (SDDS_OBJDIR) /%$.0: %.cC

$ (COMPILE.c) —-MMD $ (OUTPUT_OPTION) $H

@echo "compiled"

$ (APPLICATION_NAME) .c: $ (LOCAL_CONSTANTS) $ (SDDS_OBJDIR)

$ (IMPL_DEPEND_SRCS) $ (DATA_DEPEND_SRCS)

$(CC) $(CFLAGS) -MM -MF

$ (SDDS_OBJDIR) /$ (APPLICATION_NAME) .d -MTS@ $~

@echo "x***kkxkxxxkk**kxxxxxcompile ¢ $(IMPL_DEPEND_SRCS)"
@echo "$(CC) $(CFLAGS) -c $ (IMPL_DEPEND_SRCS)

$ (DATA_DEPEND_SRCS) -MM —-MFS$ (SDDS_OBJDIR) /$ (APPLICATION_NAME) .d -MTS$@ $~"
@echo "compile executed"

$ (APPLICATION_NAME) .$ (TARGET) : $ (APPLICATION_NAME) .co

$ (SDDS_OBJS) $ (DATA_DEPEND_OBJS)

$ (IMPL_DEPEND_OBJS) $ (PROJECT_OBJECTFILES) $(PROJECT_LIBRARIES)
contiki-$ (TARGET) .a

@echo " (Q)(LD) $(LDFLAGS) $(SDDS_OBJS) $ (DATA_DEPEND_OBJS)
S (APPLICATION_NAME) .co obj_sky/contiki-xml1000-main.o contiki-$ (TARGET) .a
-0 $(APPLICATION_NAME) .$ (TARGET)"

(Q)(LD) $(LDFLAGS) $ (APPLICATION_NAME) .co

98

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

$ (SDDS_OBJS) $ (DATA_DEPEND_OBJS) obj_$ (TARGET) /contiki-$ (TARGET)-main.o

contiki-$ (TARGET) .a —-o $(APPLICATION_NAME) .$ (TARGET)

@echo "StartFiles will be added "

@echo "Target generator is done for xml000 "

$ (APPLICATION_NAME) .ihex: $ (APPLICATION_NAME) .$ (TARGET)
$ (OBJCOPY) $~ -0 ihex $@

@echo 'ihex run2'

CLEAN += $ (APPLICATION_NAME) .elf $(APPLICATION_NAME) .hex
$ (APPLICATION_NAME) .ihex $ (APPLICATION_NAME) .out

CLEAN += symbols.c symbols.h

CLEAN += $ (APPLICATION_NAME) .d

CLEAN += -rf $(SDDS_OBJDIR)

%$-ds.c %$-ds.h %_sdds_impl.c %_sdds_impl.h:

#$ (shell ./generate.sh)

—-include $ (patsubst %.0,%.d, $(ALL_OBJS))

code:
#$ (shell ./generate.sh)

99

100

APPENDIX B

INTERFACE DEFINITION FOR DDS

Listing 10 XML file for Interface Definition

<profile id = "1">

<topic name = "temperature" domain = "1" id = "A">

Temperature Test

<attribute name = "deviceld" type = "DDS_short" key = "primary">Device ID
</attribute>

<attribute name = "temperature" type = "DDS_short">Temperature value
</attribute>

<attribute name = "light" type = "DDS_short">Light value

</attribute>
<attribute name
</attribute>

"humidity" type = "DDS_short">Humidity value

</topic>

</profile>

101

102

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

APPENDIX C

READING SERIAL DATA

Listing 11 Reading serial data from USB

#include "contiki.h"

#include "dev/serial—-line.h"

#include <stdio.h>

#include "dev/leds.h"

#include "dev/uartl.h"

PROCESS (test_serial, "Serial line test process");
AUTOSTART_PROCESSES (&test_serial);

static struct etimer timer;

static int uart_rx_callback (unsigned char c) {
uint8_t u;

u = (uint8_t)c;

leds_on (LEDS_ALL) ;

printf ("\nReceived temp: %u",u);

//etimer_set (&timer, 1 * CLOCK_SECOND) ;
//PROCESS_WAIT _EVENT UNTIL (etimer_expired(&timer));
leds_off (LEDS_ALL) ;

}

PROCESS_THREAD (test_serial, ev, data)

{

PROCESS_BEGIN() ;

uartl_init (BAUD2UBR(115200)); //set the baud rate as necessary

printf ("$s\n", "Waiting data:");

uartl_set_input (uart_rx_callback); //set the callback function

leds_on (LEDS_ALL) ;

for(;;) {

PROCESS_YIELD () ;

if (ev == serial_line_event_message) {
leds_off (LEDS_ALL) ;

printf ("received line: %$s\n", (char =+)data);
}

}

PROCESS_END () ;

}

103

104

10

11

12

13

14

15

16

17

18

19

20

21

APPENDIX D

CREATING DDS OBJECTS

Listing 12 XML file for creating DDS components

E\ project

name = "sensordata_test_publisher"
script = "sdds.gsl"

endian = "little"

os = "contiki"

ip = "fe80::12:13ff:feld:1516"
port = "23234">

SensorData

<! ——

Includes are processed first,

part of the XML tree

-—>
<define name
<define name

<define name

so XML in included files will be

"SDDS_NET_MAX_ BUF_SIZE" value = "128"/>
"SDDS_QOS_HISTORY_DEPTH" value = "3"/>
"SDDS_NET_MAX_LOCATOR_COUNT" value

<include filename = "../topics/sensordata.xml" />

<role topic =
<role topic =

</project>

"sensordata" type =

"sensordata" type =

"publisher"/>

"subscriber"/>

Hloll/>

105

106

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

APPENDIX E

OPTIMIZING MEMORY FOR MSP430

MEMORY {

sfr

— size 16 x/
peripheral_8bit
< size 240 */
peripheral_16bit
— size 256 x/
ram_mirror (wx)
— size 2K x/

infomem

ORIGIN

ORIGIN

ORIGIN

ORIGIN

ORIGIN

0x0000, LENGTH

0x0010, LENGTH

0x0100, LENGTH

0x0200, LENGTH

0x1000, LENGTH

— size 256 as 2 128-byte segments =*/

infob

< size 128 */
infoa

— size 128 */
ram (wx)

< size 10K */
rom (rx)

< size 49120 */

vectors

ORIGIN

ORIGIN

ORIGIN

ORIGIN

ORIGIN

0x1000, LENGTH

0x1080, LENGTH

0x1100, LENGTH

0x4000, LENGTH

OxffeO, LENGTH

0x0010

0x00£f0

0x0100

0x0800

0x0100

0x0080

0x0080

0x2800

Oxbfel

0x0020

— END=0x10000, size 32 as 16 2-byte segments =*/

/+ Remaining banks are absent =/

bsl

infoc
infod

ram2 (wx)
usbram (wx)
far_rom

}

ORIGIN
ORIGIN
ORIGIN
ORIGIN
ORIGIN
ORIGIN

REGION_ALIAS ("REGION_TEXT",
REGION_ALIAS ("REGION_DATA",

REGION_ALIAS ("REGION_FAR_ROM", far_rom); /* Legacy name,

< used */

0x0000, LENGTH
0x0000, LENGTH
0x0000, LENGTH
0x0000, LENGTH
0x0000, LENGTH

0x0000
0x0000
0x0000
0x0000
0x0000

/

/%

/ *

/ *

/ *

/ *

/%

/ *

/ *

/ *

END=0x0010,

END=0x0100,

END=0x0200,

END=0x0a00,

END=0x1100,

END=0x1080,

END=0x1100,

END=0x3900,

END=0xffeO,

0x00000000, LENGTH = 0x00000000

rom) ;

ram) ;

REGION_ALIAS ("REGION_FAR_TEXT", far_ rom);
REGION_ALIAS ("REGION_FAR_DATA", ram2);

PROVIDE (__info_segment_size
PROVIDE (__infob = 0x1000);
PROVIDE (__infoa = 0x1080);

= 0x80);

no longer

107

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Problem Statement
	Approach
	Improvements

	Background Information and Related Work
	Contiki
	Operating System
	Energest Power Module

	MSP430 Based Telosb Mote
	Zigbee
	Data Distribution Service
	MQTT
	Mosquitto
	MQTT-SN
	Literature Survey on DDS Gateway for Resource-Constrained Enviroments
	Literature Survey for MQTT

	Implementation and Methods
	Dataset
	Proposed Methods and Models
	DDS
	Installing Contiki Development Environment for Sensor DDS
	Tailoring DDS Software and Enabling Zigbee Gateway for Contiki OS
	Creating Source Code for MSP430 based Telosb Motes for Sensor DDS
	Building and Creating a binary file from source code
	Sequence Diagram for Sending Sensor Data
	Output of the Demo application

	MQTT-SN
	Installing Contiki Development Environment for MQTT-SN
	Using MQTT-SN for Sharing Sensor Data
	General Structure
	Installing RSMB on Ubuntu OS
	Burning Node ID for Border-Router
	Installing Border-Router on Telosb Mote
	Running Tunslip for SLIP Server
	Creating Binary File and Sending Data
	Running Simulation on Cooja
	Running Application on Real Hardware

	Encountered Difficulties and Their Resolution
	Sensor DDS
	MQTT
	MQTT-SN

	Power Consumption Calculation for Sensor Sharing Applications

	Results and Discussion
	Result of Memory Optimization for DDS application
	Memory Optimization for Changing Network Macros
	Changing Energest Module on XM1000 Mote
	Prevent From Initializing Variables and Printing String
	Disabling Process Name
	Configuration for Power Consumption
	Result Table

	Result of Memory Optimization for MQTT-SN application
	Memory Optimization For Changing Network Macros
	Disabling Process Name
	Prevent From Initializing Variables and Printing String
	Changing Energest Module on Sky Mote
	Enable Energest Module Without Self Calculation

	Result for Power Consumption
	Result for Tailored DDS on XM1000(Two Nodes)
	Result for Tailored DDS on CM5000(Two Nodes)
	Result for Tailored DDS on CM5000(Three nodes)
	Result for MQTT
	Result for MQTT-SN
	Result for Two Nodes MQTT-SN Communication
	Result for Three Nodes MQTT-SN Communication

	Conclusion and Future Work
	REFERENCES
	Makefile for SensorDds
	Interface Definition for DDS
	Reading Serial Data
	Creating DDS Objects
	Optimizing Memory for MSP430

