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Dean, Graduate School of Informatics

Assist. Prof. Dr. Elif Sürer
Head of Department, Multimedia Informatics, METU

Assoc. Prof. Dr. Hüseyin Hacıhabiboğlu
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ABSTRACT

3D PERCEPTUAL SOUNDFIELD RECONSTRUCTION VIA SOUND FIELD
EXTRAPOLATION

Erdem, Ege

M.S., Department of Multimedia Informatics

Supervisor: Assoc. Prof. Dr. Hüseyin Hacıhabiboğlu

January 2020, 51 pages

Perceptual sound field reconstruction (PSR) is a spatial audio recording and repro-
duction method based on the application of stereophonic panning laws in microphone
array design. PSR allows rendering a perceptually veridical and stable auditory per-
spective in the horizontal plane of the listener, and involves recording using near-
coincident microphone arrays. This thesis extends the two dimensional PSR concept
to three dimensions and allows reconstructing an arbitrary sound field based on mea-
surements with a rigid spherical microphone array. This work offers a method for em-
ulating near coincident microphone recordings by using rigid spherical microphone
arrays via sound field extrapolation carried out in the spherical harmonic domain.

An active-intensity-based analysis of the rendered sound field shows that the proposed
approach can render direction of monochromatic plane waves accurately even with a
straightforward extension of PSR directivity patterns designed for the 2D case. For
the real recordings, listening tests are conducted using multi-channel audio record-
ings of the reconstructed sound field and compared with higher order Ambisonics
recordings.

Keywords: sound field reconstruction, sound field extrapolation, spherical harmonics,
spherical microphone arrays
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ÖZ

SES ALANI DIŞDEĞERLENDİRMESİ İLE 3 BOYUTLU ALGISAL SES
ALANI OLUŞTURMA

Erdem, Ege

Yüksek Lisans, Çokluortam Bilişimi Anabilim Dalı Bölümü

Tez Yöneticisi: Doç. Dr. Hüseyin Hacıhabiboğlu

Ocak 2020 , 51 sayfa

Algısal ses alanı oluşturma, iki kanallı kaydırma kurallarına dayanan uzamsal bir
ses alanı kaydetme ve yeniden üretme yöntemidir. Algısal ses alanı oluşturma, ya-
kın mikrofon dizileri kullanılarak yatay düzlemde dinleyiciye algısal olarak gerçeğe
uygun ve kararlı bir dinleme deneyimi sunar. Bu tez, iki boyut için geçerli olan bu
yöntemi 3. boyut için de gerçekleştirebilir hale getirmekte; kapalı mikrofon dizisi öl-
çümleri kullanarak herhangi bir ses alanını yeniden oluşturmayı mümkün kılmaktadır.
Bu bağlamda, kapalı mikrofon dizisi ölçümlerini kullanarak küresel harmonik alanda
yapılan ses alanı dış değerlendirmesi ile açık mikrofon dizisinden elde edilecek ses
kayıtları tahmin edilmiş, diğer bir deyişle sanal olarak elde edilmiştir.

İki farklı yükseklikte bulunan beşer adet hoparlör kullanılarak oluşturulan ses ala-
nının aktif yeğinlik analizi yapılarak; tek frekanslı düzlemsel dalgaların yönlerinin,
2 boyutlu PSR için tasarlanmış olan yönsellik örüntüsünün doğrudan kullanılmasına
rağmen yüksek doğrulukla oluşturulabildiği sayısal olarak gösterilmiştir. Gerçek ses
kayıtları ile oluşturulan ses alanı ise çeşitli dinleyici tesleri yapılarak ve yüksek dere-
celi Ambisonics kayıtları ile karşılaştırılmıştır.

Anahtar Kelimeler: ses alanı oluşturma, ses alanı dışdeğerlendirmesi, küresel harmo-

nikler, küresel mikrofon dizinleri
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preliminary experiment on his online server, helped me collecting the experimental
data very smoothly, and found a critical bug for the real experimental setup.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Recreating the auditory experience of an acoustic performance has been of interest
for broadcasters, artists and academics for over a century. Blumlein was the first to
attempt rendering of sound sources accurately in space using a pair of figure-eight
microphones. Since then, many solutions have been proposed [2], exploring different
microphone configurations, directivity patterns, and channel-mixing strategies. Apart
from approaches based on Ambisonics recording, these methods are predominantly
heuristic, and thus fundamentally reliant on the skills and taste of sound engineers.

Ambisonics and WFS are the notable examples of the methods that aim to recon-
struct an accurate physical approximation of a sound field [3] however they have high
equipment load requirements especially in terms of loudspeaker numbers. Various
other methods of lower complexity, that are perceptually motivated multichannel au-
dio reproduction systems that rely on psychoacoustics and human auditory perception
have also been proposed such as vector-based amplitude panning (VBAP) [4], spa-
tial impulse response rendering (SIRR) [5, 6], directional audio coding (DirAC) [7],
spatial decomposition method (SDM) [8], and perceptual soundfield reconstruction
PSR [9, 10].

The latter (PSR) uses a set of microphones of specifically designed directivity pat-
terns, each connected to a loudspeaker in a corresponding direction without additional
mixing [10]. It was shown that PSR performs on a par with VBAP [4] and second-
order Ambisonics in the centre of the sweet-spot, but has a more graceful performance
degradation away from the sweet-spot. More specifically, PSR provides better locat-
edness of phantom sources than techniques based on intensity alone. Using results
of a computational model [11], the increased locatedness was attributed to the higher
naturalness of the presented binaural cues [12].

The current formulation of PSR has two main limitations:

• It is confined to the horizontal plane,

• Each channel requires a dedicated (2nd or higher order) microphone.

The latter becomes particularly problematic for extending PSR to the full 3D case,
as the number of required microphones increases substantially. The motivation of
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this thesis is to overcome these limitations and to investigate extending PSR to three
dimensions using a single, spherical harmonics based coincident microphone array
such as the Eigenmike.

1.2 Proposed Methods and Models

A novel reproduction strategy is proposed. In order to obtain emulated virtual near
coincident microphone recordings, that is the "sound field extrapolation" results, pres-
sure and intensity of the sound field around the rigid spherical microphone is calcu-
lated at the positions of the corresponding PSR microphones. This method enabled us
to use original microphone directivity patterns in PSR [10] and reconstruct the sound
field directly.

1.3 Contributions and Novelties

The main contributions of this thesis are:

• A novel method of using sound field extrapolation to reconstruct any arbitrary
field is proposed.

• Near coincident microphone array recordings are emulated virtually, with using
only a single rigid spherical microphone.

Following conference publication has been written and presented with the work re-
ported in this thesis:

• E. Erdem, E. De Sena, H. Hacıhabiboğlu and Z. Cvetković, "Perceptual Sound-
field Reconstruction in Three Dimensions via Sound Field Extrapolation," ICASSP
2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Brighton, United Kingdom, 2019, pp. 8023-8027.

1.4 The Outline of the Thesis

Firstly, a mathematical and an acoustical background is presented in 2.1 and 2.2 re-
spectively, aiming to give all the necessary information to be able to understand the
proposed work. Section 2.3 introduces rigid spherical microphone arrays and gives
an insight to understand the pressure field around the microphone. Chapter 2 is con-
cluded with some of the spatial audio reproduction methods. Chapter 3 explains PSR
in detail, the prior work of this thesis which is the "perceptual" part of the proposed
audio reproduction method.

The core of this thesis, sound field extrapolation is described in Chapter 4 and Chapter
5 for two different cases: for plane waves and for real recordings, respectively. Plane

2



wave reproduction is numerically analyzed in Section 4.3.1 whereas real recordings
are evaluated by performing a binaural listening experiment in Section 6.6. Finally,
Chapter 7 concludes the thesis also discussing future work directions.
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CHAPTER 2

BACKGROUND

In this chapter, technical background is given. Definitions of spherical harmonics,
spherical harmonics decomposition and special spherical functions are presented.
Then plane-wave composition of a sound field and rigid microphone arrays are in-
troduced. Finally the most common state of the art methods are summarized.

2.1 Mathematical Background

Due to the fact that this work is based on spherical microphone and loudspeaker ar-
rays, it is necessary to discuss the representation of sound fields using a series of
spherical harmonics. That is to say, spherical coordinate system is used throughout
this thesis. In addition, spherical harmonics and special spherical Bessel and Han-
kel functions are central components to proposed method. Section 2.1 aims to give
required mathematical background to be able to understand the methods in the subse-
quent sections. After that, Section 2.2 establishes a connection between mathematical
background and physical acoustics.

2.1.1 Spherical Coordinate System

Consider a point defined in Cartesian coordinates as x = (x, y, z), this point is trans-
formed to spherical coordinates using equations in 2.1. Spherical coordinate of the
point is defined as r = (r, θ, φ) where radial distance, inclination and azimuth angles
are defined as r, φ, θ respectively The relation of spherical coordinates with Cartesian
coordinates is visualized in Fig. 2.1.

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ

(2.1)

5



x

y

z

r

φ

θ

Figure 2.1: Spherical coordinate system variables (r, φ, θ) correspondents in Cartesian coordinate

system.

2.1.2 Spherical Bessel and Hankel Functions

Solution of the acoustic wave equation in spherical coordinates results in special func-
tions of spherical Bessel and Hankel functions. In other words, solutions to the wave
equation can be represented as a linear combination of spherical Bessel and Hankel
functions. These special functions are crucial for obtaining pressure field due the
sound waves and will be frequently encountered in the following chapters.

Spherical Hankel functions of the first kind, hn(x), and the second kind, hn(2)(x) can
be written as a combination of spherical Bessel function of the first kind, jn(x) , and
of the second kind, yn(x), as follows :

hn(x) = jn(x) + iyn(x) (2.2)

hn
(2)(x) = jn(x)− iyn(x) (2.3)

Following relations can also be inferred from Eq. 2.2 and Eq. 2.3:

jn(x) = Re{hn(x)} (2.4)
yn(x) = Im{hn(x)} (2.5)

In order to keep the exposition in this thesis simple, the individual definitions of spher-
ical Bessel and Hankel functions are not given since the properties of the function is

6



Figure 2.2: The magnitude of 4πjn(kr) for n = 0, ..., 8 as a function of frequency, with r = 8.4 cm

and k = 2πf/c.

the important part rather than the definition itself. That being said, first 4 orders of the
spherical Bessel function is depicted in Fig. 2.2 giving the magnitude and frequency
relation. Note that frequency is proportional to the wave number k = 2πf/c and
forming the x axis of the figure.

2.1.3 Spherical Harmonics

The functions on the unit sphere mentioned in Section 2.1 are defined as a weighted
sum of basis functions, also analogous to Fourier basis functions applied a the sphere.
These basis functions are the spherical harmonics, a set of special functions of the
form [13]:

Y m
n (θ, φ) =

√
2n+ 1

4π

(n−m)!

(n+m)!
Pm
n (cos θ)eimφ (2.6)

where Pm
n (·) are the associated Legendre polynomials of order n ∈ Z+ and degree

−n ≤ m ≤ n, θ ∈ [0, π] is the inclination angle with respect to the +z axis, φ ∈
[0, 2π) is the azimuth angle defined from the +x axis.

Fig. 2.3 depicts real parts of the first five orders of spherical harmonic function where
Mollwiede projection for visual representation.
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Figure 2.3: Real parts of the first five orders of the spherical harmonic function, Re[Y m
n (θ, φ)].

2.2 Acoustical Background

2.2.1 Spherical Harmonic Decomposition

Spherical harmonics of order n ∈ N and degree m ∈ Z are defined in 2.6. Series of
spherical harmonics can be used to approximate wide range of functions defined on
the sphere by the following relation [14]:

p(θ, φ) =
∞∑
n=0

n∑
m=−n

pnmY
m
n (θ, φ) (2.7)

where p(θ, φ) is the function which is being projected to spherical harmonic basis
and pnm is the spherical harmonic decomposition coefficients. In other words, pnm
can be considered as the weights that compose the spherical Fourier Transform of
the function p(θ, φ). Any function on the sphere can be represented once the SHD
coefficients pnm are obtained with the following surface integral :

pnm =

∫ 2π

0

∫ π

0

p(θ, φ)Y m
n (θ, φ)∗ sin θdθdφ (2.8)

If the function p(θ, φ) represents a pressure distribution due to a sound field, then:

p(θ, φ) = p(k, r, θ, φ) (2.9)
pnm = pnm(k, r) (2.10)

where p(k, r, θ, φ) is the sound pressure at a frequency ω = kc and c is the speed of
sound on a spherical surface of radius r.
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Since pressure distribution on a spherical surface deduced from microphone record-
ings, one can only have finite number of microphone recordings in real life scenarios.
As a result, double integral in 2.8 becomes a summation that is introduced in the
following sections.

2.2.2 Plane-wave Composition of a Sound Field

2.2.2.1 A Single Plane Wave

An arbitrary sound field can be represented as a linear combination of an infinitely
many plane waves. Starting from exponential representation of a single plane wave
(Eq. 2.11), plane wave composition of a sound field in spherical harmonics domain
can be derived.

Consider a unit-amplitude, single-frequency plane wave, arriving from direction (θk, φk)
with a wave vector−k = (k, θk, φk). Sound pressure at r = (r, θ, φ) due to this plane
wave is eik·r in exponential from and can be written as a summation of spherical
harmonics and spherical Bessel functions [13]:

p(k, r, θ, φ) = eik·r =
∞∑
n=0

n∑
m=−n

4πinjn(kr)[Y m
n (θk, φk)]

∗Y m
n (θ, φ) (2.11)

In practice, representation of plane waves with an infinite summation is overcome by
approximating it as a finite summation, i.e. Eq. 2.11 becomes:

p(k, r, θ, φ) = eik·r ≈
N∑
n=0

n∑
m=−n

4πinjn(kr)[Y m
n (θk, φk)]

∗Y m
n (θ, φ) (2.12)

As the spherical Hankel functions diverge at the origin , spherical Bessel functions
are used to represent a plane-wave sound field.

Equation 2.11 provides the sound pressure of a single plane wave. Now, if the sound
pressure is evaluated at the surface of a sphere of radius r, function p(k, r, θ, φ) can
be represented with SHD coefficients pnm(k, r) defined in 2.2.1, satisfying :

p(k, r, θ, φ) =
∞∑
n=0

n∑
m=−n

pnm(k, r)Y m
n (θ, φ) (2.13)

Comparing Eq. 2.7 and 2.11, spherical harmonic decomposition coefficients pnm(k, r)
for a sound field composed of a single plane wave can be written as:

pnm(k, r) = 4πinjn(kr)[Y m
n (θk, φk)]

∗ (2.14)
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2.2.2.2 Multiple Plane Waves

If the sound field composed of multiple plane waves, the sound pressure can be writ-
ten using 2.11, similar to Eq. 2.8 with and amplitude density denoted by a(k, θk, φk):

p(k, r, θ, φ) =
∞∑
n=0

n∑
m=−n

4πinjn(kr)Y m
n (θ, φ)

×
∫ 2π

0

∫ π

0

a(k, θk, φk)[Y
m
n (θk, φk)]

∗sin θkdθkdφk (2.15)

=
∞∑
n=0

n∑
m=−n

4πinanm(k)jn(kr)Y m
n (θ, φ) (2.16)

where anm(k) is the spherical harmonic decomposition or spherical Fourier Trans-
form of a(k, θk, φk). Comparing Eq. 2.11 with 2.16, the following relation for single,
unit amplitude plane wave can be derived:

anm(k) = [Y m
n (θk, φk)]

∗ (2.17)

All the introduced equations considered, spherical harmonic decomposition coeffi-
cients for a combination of plane waves evaluated at the surface of a sphere of radius
r can be written as,

pnm(kr) = 4πinjn(kr)anm(k) (2.18)

whereas finite summation approximation of Eq. 2.16 is,

p(k, r, θ, φ) =
N∑
n=0

n∑
m=−n

4πinanm(k)jn(kr)Y m
n (θ, φ) (2.19)

=
N∑
n=0

n∑
m=−n

pnm(k, r)Y m
n (θ, φ)

From these results it is worth noting the direct relation between pnm and anm, which
are the measured function and the function generating the sound field respectively.
Equation 2.18 relates SHD coefficients of the sound pressure pnm to the SHD coeffi-
cients of the plane-wave amplitude density anm, that are both in spherical harmonics
domain facilitating the calculation process. With some alterations, these relations are
employed to obtain pressure distribution around spherical surface of a rigid sphere in
the following sections.

10



2.3 Rigid Spherical Microphone Arrays (RSMAs)

The first step of the proposed work is to record an auditory event with a rigid spheri-
cal microphone. To that end, understanding the structure of this type of microphone
as well as other similar types of microphones such as open sphere microphone ar-
rays and near-coincident pairs are crucial to apprehend the advantages of the work
introduced in this thesis. This section divided into three parts; Section 2.3.1 to be
able to visualise different types of microphone arrays, 2.3.3 to understand the relation
between microphone numbering and the order of spherical harmonics and 2.3.2 to
calculate the sound pressure around the surface of the rigid sphere.

2.3.1 Microphone Types

Spherical microphone arrays can be classified into two groups as open and closed
(i.e. rigid spherical microphone arrays) given in Fig. 2.4. Open arrays includes mi-
crophones positioned on the surface of an open sphere whereas closed arrays have
microphones positioned on a rigid spherical surface. For the latter; due to the close-
ness of the structure, microphone itself become a spherical scatterer and this spherical
rigid body imposes a boundary condition on its surface of zero radial particle veloc-
ity which result in a change in the expression of pressure and SHD coefficients for a
plane wave given in Section 2.2.

The microphone array that was used in this thesis was Eigenmike32r, a microphone
array with 32 electret microphones embedded onto the surface of a 4.2cm radius rigid
spherical baffle (see Fig.2.4b), more specifically, located at the faces of a truncated
icosahedron and at the center of each face [15]. Early prototype of Eigenmike32r

was introduced in 2003 [16] by mh acoustics.

The open microphone array in Fig.2.4a consists microphones positioned over a spher-
ical surface but this time with an open sphere instead of a rigid baffle, implemented
by METU Spatial Audio Research Group (SPARG).

Finally, examples of near-coincident microphone configurations are given in 2.5. A
near-coincident pair is a two microphone positioned nearly coincident but spaced few
centimeters apart, angled symmetrically on either side of the centre. It is a stereo
miking technique often preferred for their stereo image and especially used by audio
recording engineers and musicians.

One of the promising outcomes of this thesis is about emulating near-coincident mi-
crophone arrays with only using a rigid spherical microphone array, which will be
further explained in the subsequent chapters.

2.3.2 Sound Pressure Around a Rigid Sphere

In previous subsections of Section 2.2, sound pressure on a spherical surface due to
plane waves are approximated with SHD coefficients. In this section, spherical har-
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(a) (b)

Figure 2.4: Open (a) and closed (b) microphone array examples.

(a) (b) (c)

Figure 2.5: Near coincident microphone pair examples.

monic decomposition (SHD) coefficients are derived to obtain sound pressure around
a rigid spherical surface.

The sound pressure around a rigid sphere has two components: incident field that is
the sound field in free field without the rigid sphere, pi, and the sound field that is
scattered from the rigid sphere due to the incident field, ps. The overall sound field
is calculated using these two pressure field components. In addition, rigid sphere im-
poses a boundary condition due to infinite impedance at the sphere boundary, making
sound pressure impossible to generate a radial motion at the boundary, causing a zero
radial velocity. Since velocity and pressure are dependent via Euler equation (or con-
servation of momentum in fluid dynamics), incident and scattered pressure fields can
be derived with the boundary conditions mentioned above.
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Incident and scattered pressures are substituted to Euler equation, leading to

∂

∂r
[pi(k, r, θ, φ) + ps(k, r, θ, φ)]

∣∣∣∣
r=ra

= 0 (2.20)

Now write the incident and scattered sound pressure as a spherical harmonic series
as[13]

pi(k, r, θ, φ) =
∞∑
n=0

n∑
m=−n

anm(k)4πinjn(kr)Y m
n (θ, φ) (2.21)

ps(k, r, θ, φ) =
∞∑
n=0

n∑
m=−n

cnm(k)hn
(2)(kr)Y m

n (θ, φ) (2.22)

Rewriting 2.20 with 2.21 and 2.21 yields

cnm(k) = −anm(k)4πin
j
′
n(krs)

h
(2)′
n (krs)

. (2.23)

By summing up the incident and the scattered pressures as p = pi + ps, total pressure
around a rigid sphere is obtained as,

p(k, r, θ, φ) =
∞∑
n=0

n∑
m=−n

4πinanm(k)

[
jn(kr)− j

′
n(krs)

h
(2)′
n (krs)

h(2)
n (kr)

]
Y m
n (θ, φ) (2.24)

The structure of the pressure function is similar to Eq. 2.19, except the spherical
Bessel term jn(kr) becomes a new term denoted as bn(kr)

bn(kr) = 4πin

[
jn(kr)− j

′
n(krs)

h
(2)′
n (krs)

h(2)
n (kr)

]
. (2.25)

where jn(·) and h(2)
n (·) are the spherical Bessel function of the first kind and spherical

Hankel function of the second kind, respectively. The derivatives of these functions
with respect to their arguments are given as j ′n(·) and h(2)′

n (·), respectively.

The behavior of the magnitude of bn(kr) with respected to kr is presented in Fig. 2.6
In Fig. 2.7, the same Bessel function is drawn this time with respect to order n. Note
that the order n is also the argument of the Bessel function together with k and r.
An important result inferred from Fig.2.6 is that the magnitude of bn(kr) decreasing
at the higher orders of n. Importance of this behaviour is explained in the following
section.
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(a)

Figure 2.6: (a)|bnkr| for a rigid sphere with r = ra, for n = 0, ..., 5 and (b) |bnkr| with r = ra =

8.4cm and kr = 8.

Finally, pressure around a rigid spherical microphone array is obtained by substituting
bn(kr) to 2.24 as

p(k, r, θ, φ) =
∞∑
n=0

n∑
m=−n

anm(k)bn(kr)Y m
n (θ, φ) (2.26)

Fundamental spherical harmonics approximation of any sound pressure function given
in Section 2.2 Eq.2.7 is rewritten here for convenience:

p(k, r, θ, φ) =
N∑
n=0

n∑
m=−n

pnm(k, r)Y m
n (θ, φ) (2.27)

Comparing 2.26 with 2.27, following relation can be derived

pnm(k, r) = anm(k)bnm(kr) (2.28)

anm(k) =
pnm(k, r)

bnm(kr)
(2.29)

Note the similarity between 2.18 and 2.29, with 4πinjn(kr) replaced by bnm(kr).

In summary, SHD coefficients obtained from RSMA recordings include the scattering
effect of the rigid sphere which depends both on frequency and on the radius of the
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(a) (b)

Figure 2.7: (a) |bn(kr)| for a rigid sphere with r = ra, for n = 0, ..., 5 and (b) |bn(kr)| with

r = ra = 8.4cm and kr = 8.

sphere. This effect is eliminated with bn(kr) term, also providing some advantages in
terms of spatial aliasing and reconstruction accuracy that is explained in the following
section.

2.3.3 Spatial Aliasing

Pressure field over a spherical surface due to single plane wave and multiple plane
waves is given in Section 2.2. Then, pressure field around a rigid spherical surface
is derived in Section 2.3.2. Resulting pressure function approximations include SHD
coefficients terms, pnm(k, r), that should be obtained via RSMA recordings. As a
result, the sampling of sound pressure functions in space requires microphone mea-
surements. The positions and the number of microphones used in RSMA determine
the sampling points. The design of a rigid microphone array introduces a trade-off
between hardware complexity and the system accuracy. The total number of mi-
crophone on a spherical surface determines the accuracy of the reconstructed sound
pressure function.

In order to achieve perfect representation of a sound field from the finite number of
microphone samples, sampling theorems require the sound pressure functions to be
order-limited. This means the function should be represented by a finite number of
spherical harmonics, i.e. the basis functions [13].

Note that Eq.2.29 shows the magnitude of pnm is proportional to the magnitude of
bn(kr). It is therefore expected that pnm for a multiple plane-wave sound field decays
as a function of n for n > kr, as suggested by Fig. 2.6, and more explicitly, as
illustrated in Fig. 2.7.

This is an important result, as it suggests that the sound field represented by the infi-
nite summation in Eq. 2.11 can be represented by a finite summation as in Eq. 2.12
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with little error. The spherical harmonics series for a plane-wave sound field can
therefore be considered as nearly order limited, so that sampling theories for order-
limited functions can be applied [13].

Moving to RSMA recordings, SHD coefficients can be obtained using a finite set ofQ
pressure signals captured on a rigid sphere of radius ra. This involves the calculation
of an approximation to the surface integral using a numerical quadrature:

p̃nm(k) =

Q∑
q=1

wqp(θ, φ) [Y m
n (θ, φ)]∗ (2.30)

where wq are the quadrature weights.

Having obtained p̃nm(k) including the effect of the rigid sphere, pnm(k) can be cal-
culated eliminating the scattering effect due to rigid sphere as

anm(k) = p̃nm(k)
/
bn(kra) (2.31)

With Eq.2.31, SHD coefficients for a sound pressure around a rigid spherical surface
due to sound field of multiple plane waves is presented.

If N is the maximum harmonic order that is used during the spherical harmonic de-
composition calculations, then SHD coefficients that approximate the pressure func-
tion has (N + 1)2 spherical harmonics whereas the number of microphones on array,
Q, should satisfy the following condition:

Q ≥ (N + 1)2 (2.32)

Having 32 microphones on Eigenmik em32, maximum order that can be used is found
as N = 4.

2.4 Spatial Audio Reproduction

Spatial audio reproduction is a term for regenerating an auditory event through loud-
speakers or headphones, aiming to reconstruct the sound field indistinguishable from
the real sources and from the real sound field that is previously recorded. This expe-
rience give the impression of sounds coming from different directions and locations
around the listener. There are broad range of approaches with different reproduc-
tion strategies and employing various representations for the recorded sound field.
To begin, stereophonic reproduction which is an important aspect of spatial audio is
introduced. Secondly, some of the spatial audio reproduction methods are explained.

2.4.1 Stereophony

Stereophony is the perception of a phantom source between independent loudspeak-
ers. With stereophonic reproduction, illusion of multi-directional audio is created
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at the listener position even though there are only two loudspeakers. It is the most
used reproduction method also for domestic usage. In spatial audio, generally multi-
channel systems are used to achieve surround sound. In order to realize stereophony
with an accurate spatial rendition, various panning methods are developed.

2.4.2 Methods

This section explains several state-of-the-art methods for spatial audio reproduction.
Since there is no example of audio production with sound field extrapolation, the most
widely used approaches are summarized.

2.4.3 Perceptually Motivated Approaches

In perceptually motivated approaches such as VBAP, DirAC/SDM/SIRR; the purpose
is to reconstruct a field with equal perceptual attributes as the original sound field,
instead of aiming to reconstruct the original sound field precisely.

Vector Based Amplitude Panning (VBAP) is one of the most widely used, straight-
forward, and efficient stereophonic amplitude panning technique developed by Pulkki
[4]. VBAP sets individual gains for multiple loudspeaker reproduction systems by po-
sitioning virtual sound sources using a minimum number of loudspeakers at a time.
VBAP does not require a fixed number of loudspeakers; an arbitrary loudspeaker
configuration can be used as long as the locations of the loudspeakers are equidistant
with respect to the listener. Another common requirement for audio reproduction sys-
tems is that the listening room should not be very reverberant, to prevent unwanted
reflections that decrease sound source localization ability. Vectors and vector bases
are used in VBAP, which leads a simple and computationally efficient technique.

The intensity panning technique introduced in VBAP [4] was a two-dimensional
amplitude panning, calculates the individual gain factors for loudspeakers. The am-
plitude relation of these gains determines the direction of the virtual sound source. If
there is an equal-loudness constraint of the virtual source during the movement from
one loudspeaker to another, gain factors are normalized, setting a constant sound
power value. The amplitude panning method of the VBAP is the same as previously
introduced stereophonic law of sines by Blumlein [17], this time introduced in a vec-
tor base form together with the tangent panning version of it. One of the differences
of VBAP among other amplitude panning methods is that the gain factors may have
negative values, implying an anti-phase signal.

DirAC is a flexible spatial audio system which mainly based on the direction of arrival
(DOA) and diffuseness features of the sound field. These features can be related to
spatial hearing of human by the following psychoacoustical cues:

• Interaural time difference (ITD)

• Interaural level difference (ILD)

• Interaural coherence
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DirAC makes an energy analysis by assigning a direction and a diffuseness level to
each output channel of a filter bank with an equivalent rectangular bandwidth scale.

Similar to DirAC, there are methods considering the room impulse responses such
as Spatial Decomposition Method (SDM) and Spatial Impulse Response Render-
ing (SIRR). In these methods, the pressure observed in a point of the recorded space
is divided into short overlapping time-frames. Using direction-of-arrival estimation
methods, the dominant direction of the recorded sound field is calculated for each
time frame. In the reproduction space, the pressure signal in each time-frame is ren-
dered using the closest loudspeaker to the estimated direction or panned between
loudspeakers triplets using intensity panning such as vector-based amplitude panning
(VBAP) [4].

Even though the physical reproduced sound field is possibly quite different from the
recorded one, these methods have been used successfully in rendering various sound
scenes like concert acoustics, car cabin acoustics and also used at a broad range of
applications such as teleconferencing, mobile phone audio optimisation and VR.

2.4.4 Sound Field Synthesis Approaches

Different than VBAP and DirAC/SDM/SIRR, Ambisonics and Wave Field Synthe-
sis (WFS) are sound field synthesis approaches which aim to reconstruct the original
sound field directly.

Ambisonics is an elegant approach based on the spherical harmonics decomposition
of the sound field [18], introduced by Gerzon [19]. Spherical harmonic decomposi-
tion is explained in Section 2.2.1. As sound fields can be regarded as a superposition
of plane waves, which can be represented as an infinite series of spherical harmonic
functions, Ambisonics aims approximate the sound field by reconstructing it in the
center of a loudspeaker setup. The listening area of which the accurate reproduction
is obtained is called the sweet spot. Since spherical microphone arrays can be used to
record spherical harmonic components only up to a certain order, the area of the sweet
spot depends mainly on the order of the approximation, which is directly related to the
number of loudspeakers. Among spatial audio reproduction methods, the sweet spot
is a concern for multi-channel systems as spatial fidelity decreases when the listener
moves toward off-center positions even slightly. The optimal listening area is tried to
be extended as much as possible to have a more flexible and comfortable system.

In first-order Ambisonics, directional information is encoded into 4 separate chan-
nels. This format is the so-called B-Format, and the corresponding four channels
are W, X, Y, Z. These channels carry different directional informations of the sound
field where W channel is omnidirectional information, and the others are directional
information at x,y, and z axes, respectively. As one might guess, extending Am-
bisonics to Higher Order Ambisonics (HOA) introduces new channels, 5 additional
channels for second-order, and 7 channels for third-order. Each introduced channel
improves the approximation quality to the original sound field. The commercially-
available Soundfield microphone allows recording up to the first order, whereas the
Eigenmike32r up to the fourth-order [20] harmonics. Once the sound field has been
recorded, it is first encoded using suitable ambisonics channel ordering and normal-
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ization format; then, the sound field is reproduced using various decoding strategies.
The mode-matching decoding, for instance, aims to reconstruct a certain number of
spherical harmonic components in the center of the loudspeaker array. The main issue
with HOA is that for large orders, it requires large number ((N + 1)2 for N -th order)
of carefully positioned and calibrated loudspeakers.

In Chapter 6, second-order Ambisonics recordings are performed and compared with
the proposed 3D PSR method by introducing binaural listening experiments.
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CHAPTER 3

PRIOR WORK: PERCEPTUAL SOUNDFIELD RECONSTRUCTION (PSR)

This chapter introduces PSR [10], a prior work presenting a systematic framework for
design of multichannel surround sound systems. It proposes a methodology for the
design of circular microphone arrays in the same configuration as the corresponding
loudspeaker array, as two elements of the array shown in Fig. 3.2. In order to create an
accurate rendition of the auditory scene, PSR aims to capture inter-channel time and
intensity differences. Rather than designing a system based on empirical observation
or hands-on tuning, PSR concentrates on psychoacoustics to understand the underly-
ing physical and perceptual phenomena for human auditory perception. In addition,
it presents a powerful directivity pattern design method to be used for higher-order
microphones and offers a new recording strategy. Directivity design described in PSR
is adapted for this thesis.

PSR is performed with a pentagonal setup consists of 5 loudspeakers and 5 micro-
phones, placed π/5 radians apart. One of the main reason for using pentagonal array
setup is due to the fact that it is optimal for reconstruction of first and second-order cir-
cular harmonics [21]. During recording stage, 5 microphones are positioned towards
the loudspeaker locations and during reproduction stage 5 loudspeaker is positioned
inward, towards the corresponding microphone locations as given in Fig. 3.1. Thus,
microphone and loudspeaker numbers and configurations match with each other. An
important advantage of practical property of the PSR method is that each loudspeaker
plays back the exact signal recorded by corresponding microphone, without any post-
processing or any mixing.

The concept of active intensity is used when analyzing the reproduction capability
of PSR. Complex intensity is the product of pressure and complex conjugate velocity

Figure 3.1: Reproduction stage of PSR.
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Figure 3.2: Reproduction and recording stages shown for each two of the five microphones and

loudspeakers, respectively © 2013, IEEE.

whereas active intensity is the real part of the complex intensity term. Active intensity
is co-directional with the sound wave propagation, thus giving the direction of sound
at that particular coordinate in the space. Constructing a sound field with a uniform
active intensity field is crucial for a pleasing listening experience, as fields with fluc-
tuating intensity has an adverse effect on the size and the stability of the sweet-spot.
To achieve this, cross-channel components in the active intensity field representation
should be minimized as much as possible. Minimizing the energy of the cross-talk
terms is an optimisation problem which reveals that solutions have only two active
channel at a time. Thus, plane wave in the direction of φ is rendered only by the
adjacent two loudspeaker channels (m,m + 1) satisfying φm < φ < φm+1 where
φm = m2π

5
,m = 0, . . . , 4 are the azimuth angles for each loudspeakers.

Directivity patterns can be optimized such that undesirable cross-talks are suppressed
by making microphones more selective. Directivity patterns are formulated so that the
system operates along the chosen psychoacoustic curves to record and render acous-
tic sources at locations between loudspeaker pairs in the context of multichannel sys-
tems. These curves are time-intensity stereophonic panning curves as established by
Franssen [22] and Williams [23] to design directivity patterns, based on the summing
localisation effect [24].

Panning curves provide the pairs of time-level differences between loudspeaker pairs
that result in the phantom image being perceived in the direction of one loudspeakers
or the other. In Figure 3.3, time-intensity curves by Franssen [22] is presented where
L(τ) (left), R(τ) (right) and M(τ) (middle) represent the pairs of inter-channel time
difference (ICTD) and inter-channel level difference (ICLD) which the auditory event
is localized at. For a system with ICTD of |tmax| = 1 ms, auditory event is localized
at left and right loudspeakers AL, AR respectively. Two example curves to achieve
gradual source movement from one loudspeaker to other are showed with a dashed
and solid lines connected AL and AR. ICTD is denoted as GR − GL and ICLD as
τL − τR.
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Figure 3.3: Time-intensity psychoacoustic curves, adapted from Franssen [22], takenfrom [10] ©

2013, IEEE.

To design directivity patterns, first, the maximal time delay between channels due to a
source in the direction of one of the loudspeakers is calculated; this delay is specified
by the radius of the array and the particular angular placement of channels. Then,
the level difference in that direction is set to be the level difference that is needed in
combination with the time delay to create a phantom source in that direction. Finally,
an equal-power constraint is imposed, giving the following directivity pattern which
effectively interpolates time-level difference pairs between the end points:

Γd(Θ) =

{ [
1 + sin2(|Θ|+β)

sin2(|Θ|−(φ0+β))

]−1/2

Θ ∈ [−φ0, φ0]

0 elsewhere
(3.1)

where φ0 is the angle between loudspeakers in the horizontal plane and β = arctan η sin(φ0)
1−η cos(φ0)

,
where η is a value calculated from psychoacoustic curves to achieve the desired level
differences at loudspeaker directions. The parameters used in the PSR formulation
are φ0 = 2π/5 and η = 0.302. The reader is referred to [10] for details of how these
parameters are calculated. Whereas different interpolating functions can be used, the
formulation in (3.1) has a form of a generalized tangent panning law, i.e. the tan-
gent panning law is its special case for β = 0, which physically means infinite level
differences (expressed in dB) in loudspeaker directions.

Similar to representing functions the on sphere using spherical harmonics as in 2.1.3,
microphone directivity patterns can also be approximated with linear combination of
spherical harmonic functions as:

Γ(θ′, φ′) =
N∑
n=0

n∑
m=−n

αnmY
m
n (θ′, φ′) (3.2)
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Figure 3.4: Original PSR directivity patterns [10] © 2013, IEEE.

where (θ′, φ′) is the local spherical coordinates defined with respect to the micro-
phone axis and the coefficients αnm ∈ C have to satisfy αnm = ±α∗nm to obtain an
axisymmetric pattern. In order for Γ(θ, φ) to be real the coefficients should satisfy
αnm = α∗nm. The design space can be constrained to use the spherical harmonics of
degree m = 0, resulting in [25]:

Γ(Θ) =
N∑
n=0

αn

(
2n+ 1

4π

)
Pn(cos Θ) =

N∑
n=0

βn cosn Θ (3.3)

where Θ is the angle between the acoustic axis of the microphone and the wave of a
plane wave. The directivity pattern can be constrained to have unit response in the di-
rection of its acoustic axis by imposing

∑N
n=0 βn = 1. Whereas the method proposed

here is not limited to axisymmetric directivity patterns, time-intensity directivity pat-
tern described in Equation 3.1 [10] is employed.

The PSR pattern, Γd(Θ), is approximated here as a pattern in the form (3.3) by jointly
minimizing the L2-distance in the pick-up region and the L2-norm in the rejection
region:

argmin
β1,β2,...,βN

λ

∫ φ0

0

|Γ(Θ)− Γd(Θ)|2 + (1− λ)

∫ π

φ0+ε

|Γ(Θ)|2 dΘ (3.4)

The resulting pattern for λ = 1
2
, ε = π

10
, and N = 4 has coefficients β0 = 0.001,

β1 = 0.458, β2 = 0.536, β3 = 0.040 and β4 = −0.126. This pattern (see Fig. 3.4 is
used in Chapter 5 to obtain loudspeaker signals.
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CHAPTER 4

3D SOUND FIELD EXTRAPOLATION OF MONOCHROMATIC PLANE
WAVES

In this chapter, the 3D extension of PSR using sound field extrapolation is proposed.
As a proof of concept, this chapter introduces 3D reconstruction of a virtual sound
field composed of monochromatic plane waves whereas Chapter 5 realises the same
concept with real recordings by RSMAs.

4.1 Motivation

The 3D extension of PSR studied here uses a reproduction setup of 10 loudspeakers,
arranged in two horizontal layers above and below the ear level, as shown in Fig. 4.1.
Two layers rotated by π/5 with respect to each other, consisting 5 pentagonally placed
loudspeakers. The loudspeakers at the top and bottom layers have common inclina-
tion angles of θt ≈ 0.352π and θb ≈ 0.648π, respectively. The azimuth angles for the
top and bottom layers are φt = 2mπ/5 and φb = (2m+ 1)π/5 for m = 0, . . . , 4.

Similar to 2D PSR recording and reproduction method [10] described in Chapter 3,
the aim is to record the sound field with microphones with their acoustic axes pointing
towards the corresponding 10 loudspeakers directions and afterwards to reconstruct
the recorded field through loudspeakers. 2D PSR strategy requires number of micro-
phones to be equal to number of loudspeakers in the array, positioned on the surface

Ear level

Figure 4.1: The proposed reproduction setup with 10 loudspeakers. Taken from [1] © 2019, IEEE
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Figure 4.2: Virtual microphone positions over r = 15.5 cm spherical surface around the Eigenmike,

ni vectors showing acoustical axes of the microphones.

of an open sphere of radius 15.5 cm. For 10 loudspeakers, corresponding design of
a bespoke 10 channel near-coincident microphone array is challenging. If the de-
sign is carried out using differential microphone arrays (DMAs) [26] of order M , at
least 10M + 1 microphones would be needed (assuming that the center microphone
is shared among all channels), that are equalised for their frequency responses. The
positioning of these DMAs would also present practical problems. The same directiv-
ity patterns can also be designed via steered beamforming using the SHD coefficients
obtained from an RSMA. However, the lack of inter-channel time delays [10] elimi-
nates one of the fundamental premises of the original PSR design. In order to keep the
robustness and flexibility offered by the RSMAs whilst capturing interchannel time
differences, we propose an approach based on sound field extrapolation using SHD
coefficients.

4.2 Sound Field Extrapolation

In this section; instead of using an open spherical microphone array or a near coinci-
dent microphone array of at least 10 dedicated microphones, emulating these micro-
phones "virtually" via sound field extrapolation is introduced. The aim is to obtain
intensity vectors and sound pressure at the locations of specified virtual microphones.
The virtual microphones are positioned on a 15.5 cm radius spherical surface given
in Fig. 4.2, based on pyschoacoustical design choices proposed in [9, 27, 28].

Sound field extrapolation is carried out in two steps. First, the pressure is extrapolated
at positions of the corresponding PSR microphones. This is done in the spherical
harmonic domain in a manner similar to other prior art methods [29]. The direction
of the active intensity field is then also extrapolated at the same positions. Second,
the directions of the active intensity vectors at locations of PSR microphones are used
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to weigh the pressure signal according to the PSR directivity patterns.

As explained in Sec. 2.2.2.2, a pressure field composed of plane waves can be ap-
proximated using a linear combination of spherical harmonic functions as

p(k, r) =
N∑
n=0

n∑
m=−n

4πinanmjn(kr)Y m
n (θ, φ). (4.1)

where r = (r, θ, φ) represents a point in spherical coordinates. Note that limN→∞ p(k, r, θ, φ)
characterises the sound field exactly at all points while the truncated series in (4.1)
will provide a good approximation only up to a finite radius around the origin [13].

Note also that anm in (4.1) is the same as in the case of plane wave representation of
a sound field described in Sec. 2.2.2.2, Eq.4.2, giving

anm(k) = [Y m
n (θk, φk)]

∗ (4.2)

Particle velocity and pressure are related by conservation of momentum (i.e. Euler
equation) which can be expressed in time and frequency domains as:

−∇p(t, r) = ρ0
∂u(t, r)

∂t

F←→ −∇p(k, r) = jρ0kcu(k, r), (4.3)

where ρ0 is the ambient density. Particle velocity can be calculated at an arbitrary
point around the origin using this relation as:

u(k, r) = − 1

jρ0kc

[
∂p

∂r
ûr +

1

r

∂p

∂θ
ûθ +

1

r sin θ

∂p

∂φ
ûφ

]
(4.4)

where ûr, ûθ, and ûφ are the unit vectors in the radial, inclination and azimuth direc-
tions, respectively. The partial derivatives are:

∂p

∂r
=

N∑
n=0

n∑
m=−n

anm4πinkj
′

n(kr)Y m
n (θ, φ) (4.5)

∂p

∂θ
=

N∑
n=0

n∑
m=−n

anm4πinjn(kr)
∂Y m

n (θ, φ)

∂θ
(4.6)

∂p

∂φ
=

N∑
n=0

n∑
m=−n

anm4πin+1mY m
n (θ, φ) (4.7)

where

∂Y m
n (θ, φ)

∂θ
= (4.8)[

m cot θY m
n (θ, φ) +

√
(n−m)(n+m+ 1)e−iφY m+1

n (θ, φ)
]

and Y m
n = 0 for |m| > n.
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Once particle velocity is extrapolated, active intensity, that represents the direction
and strength of energy, can be obtained at any point at which the approximation is
sufficiently accurate as:

Ivirtual(k, r) =
1

2
Re {p(k, r)u∗(k, r)} . (4.9)

This will be used to obtain directional responses of emulated microphones located at
the desired 10 different positions.

4.3 Emulated off-centre microphone recordings for 3D PSR

Once the direction of the sound field is calculated via extrapolation, it is possible to
obtain virtual microphone recordings at points around the sphere, and thus emulate
near-coincident recording setups. The time-intensity microphone directivity pattern
described in Chapter 3 is used in the form of linear combination of cosine terms as

Γ(Θ) =
N∑
n=0

βn cosn Θ

= 0.001 + 0.458 cos(Θ) + 0.536 cos2(Θ) + 0.040 cos3(Θ)− 0.126 cos4(Θ)
(4.10)

The local pressure, p(k, r) and the active intensity vector, Ia(k, r) can be calculated
at any point r within a region where the sound field extrapolation is accurate. The di-
rectional response of the emulated microphone depends on Θr, the angle between the
local intensity vector and the acoustic axis of the microphone, demonstrated visually
in Fig. 4.3 as

Θr = arccos
〈r, Ia(k, r)〉
|Ia(k, r)||r|

(4.11)

Then, the emulated microphone signal is obtained as

prec(k, r) = Γ(Θr)p(k, r). (4.12)

3D PSR involves the calculation of emulated microphone signals at a distance of 15.5
cm with the directivity pattern given in (4.10). The acoustic axes of the emulated
microphones are radially outwards. It is assumed that listener’s head would be posi-
tioned at the centre of the loudspeaker rig.

4.3.1 Evaluation of 3D PSR of Plane Waves

The proposed method 3D PSR is evaluated in terms of their directional reproduction
accuracy for monochromatic plane wave fields. Sound field due to such a wave is
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Figure 4.3: Example vectors of local intensity (green) and acoustical microphone axis (blue).

homogenous and the active intensity is aligned with the direction of propagation of
the wave. Since the direction of active intensity vectors represent the direction of
the sound field, numerical simulations are carried out showing active intensity vector
field together with a contour map of directional error.

Absolute angular error used in the discussion below is defined as:

ε(r) = arccos 〈nPSR(r),npw(r)〉 (4.13)

where nPSR is the unit vector in the direction of the reproduced field and npw is the
unit vector in the direction of the plane wave.

We evaluated the directional accuracy of reproduced sound fields due to monochro-
matic plane waves at frequencies 250 Hz, 500 Hz, and 1 kHz, incident from nk =
(π/2, π/4) and reconstructed using 3D PSR. The simulations use emulated micro-
phone recordings using the sound field extrapolated 15.5 cm away from the origin.
The maximum order of extrapolation used were N = 1, N = 2, and N = 3, for 250
Hz, 500 Hz, and 1 kHz waves, respectively. Fig. 4.4 shows the angular reproduction
error as a contour plot and intensity vectors as a vector plot for the tested cases. The
average directional errors calculated within a spherical volume of radius 0.2 m around
the center of the simulated volume are 0.66◦, 3.68◦, 27.75◦, for the three tested fre-
quencies respectively. Figures also indicate that the directional accuracy decreases as
the frequency increases.

In order to assess the dependence of system accuracy on the direction of incidence,
monochromatic plane waves (f = 500 Hz) incident from different directions in the
horizontal and the median planes are also simulated. Fig. 4.5 shows average absolute
angular errors (in degrees) within a sphere of radius 0.2 m as polar plots for incidences
in the horizontal and median planes. The maximum order used in the extrapolation
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Figure 4.4: Reconstructed sound field around the optimal listening area for a monochromatic plane
wave with (a) f = 250 with N = 1, (b) f = 500 with N = 2, and (c) f = 1 kHz with N = 3. The
contour plot shows the direction error (in degrees). The vector plot shows the local active intensity.
The circle shows a circular region with a radius of 0.2 m. Note that the color bars are different across
figures. © 2019, IEEE

was N = 2. The figures indicate a good reproduction accuracy in terms of active
intensity directions, specifically in the horizontal plane.

Potentially improved performance could be achieved by including two loudspeakers
positioned at the apex and nadir of the sphere, respectively. While average absolute
angular error can be high for elevated sources, the perceptual impact is not likely to
be high since localisation blur for directions above the horizontal plane are generally
higher [24].

(a) (b)

Figure 4.5: Average absolute angular error (in degrees) for different directions of incidence for a

monochromatic plane wave with f = 500 Hz and N = 2 in (a) horizontal plane (θ = π/2 and

φ ∈ [0, 2π)), and (b) median plane (θ ∈ [0, π] and φ = 0). © 2019, IEEE
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CHAPTER 5

3D PSR VIA SOUND FIELD EXTRAPOLATION OF REAL RECORDINGS

In this chapter, real sound scenes recorded by Eigenmike© are used for 3D PSR
via sound field extrapolation. During recording process, Eigenmike is positioned at
the center of a sound scene. Later, listener are placed at the center of loudspeaker
array and reconstructed audio is played through the 10 channel loudspeaker system.
Recording and reproduction schemes are shown in Fig. 5.1; block diagram of the
proposed method is given in Fig. 5.2.

Main difference of using real recordings rather than simulated monochromatic plane
waves involves the calculation of SHD coefficients, as also explained in Section 2.2
in detail. For convenience, the procedure of calculating SHD coefficients described
in Section 2.3.2 for rigid spherical surfaces are reintroduced here in a more specific
manner. In order to obtain SHD coefficients, first, audio signals should be converted
to frequency domain.

As a rigid spherical microphone array, Eigenmike32r provides 32 channel of audio
recording files in uncompressed, PCM-encoded wave format for each 32 microphone
positioned over its surface.

In most of the audio applications, time domain signal is converted to frequency do-

(a)

Ear level

(b)

Figure 5.1: (a) Recording Stage (b) Reconstruction Stage.
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Figure 5.2: The flow diagram of the algorithm for plane waves and real recordings.

main by applying appropriate Fourier Transform algorithms in order to capture the
time varying frequency composition (i.e. frequency spectrum). In this work, STFT is
used to obtain the change in frequency and phase content of a non-stationary signal
by evaluating Fourier Transform at each local subsections of a signal.

STFT of the input audio signals are obtained with the following equation,

STFT{ai(n)} ≡ Am(ω) =
L∑
n=0

ai(n)w [n−m] e−jωn (5.1)

where Am(ω) is the Short Time Fourier Transform (STFT) of the input signal ai(n)
and Q = 32 is number of microphones. The window function is represented with
w [n−m], chosen as Hann window for this work. 7/8 overlap ratio is used.

The input signal ai(n), for i = 1, . . . , 32, consists of 32 channel audio recording with
L samples of each,

ai(n) =


a1,1 a1,2 . . . a1,n

a2,1
. . . ...

... . . . ...
a32,1 . . . . . . a32,n


32×L

(5.2)

Resulting STFT matrix Am(ω) is a three dimensional matrix of the form 32×T ×N ,
where N is the associated time bins and T is the frequency bins depend on STFT size
used (1024), total number of samples and sampling rate of the signal. As an example,
1024 sized STFT of a 30 seconds audio signal with sampling rate 44100 Hz gives the
following number of frequency and time bins:

T =
size

2
= 512 (5.3)

where each frequency bin are f = 44100
1024

= 43.066 Hertz apart ( Ti = 43.066i Hz,
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i = 1, . . . , T ).

N =
time× Fs

size
= 30s× 44100

s
× 1

1024
≈ 1292 (5.4)

A(m,ω) =
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Afte obtaining STFT of the signal, sound recordings are represented in spherical har-
monic domain with linear combination of spherical harmonics (5.5).

p̃nm(k) =

Q∑
q=1

wqAm(ω) [Y m
n (θ, φ)]∗ (5.5)

where wq are the quadrature weights, A is the complex-valued amplitude at a given
TF bin.

After obtaining p̃nm(k), scattering effect of the rigid sphere is removed with the
method explained in Sec. 2.3 and Sec. 2.3.3, giving anm(k) coefficient to represent
the sound field,

anm(k) = p̃nm(k)
/
bn(kra) (5.6)

Having obtained SHD coefficients, pressure field and the particle velocity is calcu-
lated as described in the Section 4.2. Using those values, intensity vectors are ob-
tained at virtual microphone positions with Equation 4.9, rewritten as

Ivirtual(k, r) =
1

2
Re {p(k, r)u∗(k, r)} . (5.7)

Notice that Ivirtual are the intensity vectors calculated for each time-frequency bin
representing the sound field for each 10 virtual locations. This means that, for every
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time-frequency bin constructed according to chosen STFT algorithm, there are 10
different intensity vector calculated at 10 corresponding extrapolation locations (i.e.
virtual microphone coordinates shown in Fig. 4.2).

Ivirtual(k, r) is in the form of a three dimensional matrix, this time having 10 channels
instead of the 32 channel input matrix STFT{ai(n)}. In summary, dimensions of the
input signal 32×T ×N becomes 25×T ×N after spherical harmonic decompostion;
and finally output matrices of 10× T ×N are obtained via extrapolation:

32× T ×N −→ 25× T ×N −→ 10× T ×N (5.8)

The signals that will be played back by the loudspeakers, prec, are generated in Equa-
tion 4.12 as,

prec(k, r) = Γ(Θr)p(k, r). (5.9)

These signals are also in the frequency domain in the form of 10 × T × N . To con-
vert frequency domain signals back into time domain signals, Inverse STFT (ISTFT)
algorithm is used. As a result, real valued output signals S are obtained to be played
directly through 3D PSR setup of j = 10 loudspeakers, without any addional mixing
or processing.

S = ISTFT{prec} ≡


s1,1 s1,2 . . . s1,n

s2,1
. . . ...

... . . . ...
s10,1 . . . . . . s10,n


10×L

(5.10)

where sj(n) for j = 1, 2, . . . , 10 and n = L where L is the number of total samples
of a recording.
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CHAPTER 6

SUBJECTIVE EXPERIMENT: MULTI-CHANNEL AUDIO TEST FOR HOA
VS. 3D PSR VIA SOUND FIELD EXTRAPOLATION

This chapter reports a subjective localisation experiment that aims to demonstrate
the performance of 3D PSR in comparison with a state-of-the-art 3D audio technol-
ogy, higher-order Ambisonics. Details of the localisation experiment as well as the
obtained results are shown together with a discussion that follows. In the following:

• PSR refers to 3D PSR via sound field extrapolation for real recordings

• AMB refers to 2nd-order Ambisonics with maximum energy vector magnitude
(Max-rE) using ALLRad decoding method [30].

The proposed work in this thesis is denoted as PSR (Chapter 4.2), whereas AMB
(Ambisonics) was briefly explained in Section 2.4.4. The motivation behind this se-
lection was that 2nd-order HOA is nominally the best state-of-the-art method that
could allow a direct comparison with the employed multichannel setup.

6.1 Recordings

Three different anechoic recordings of musical instruments [31] were used in the
experiments. These recordings were played through a Genelec 6010A studio monitor
one by one, and recorded with the Eigenmike em32 microphone positioned at the
center of the 3D PSR loudspeaker rig as shown in Fig. 6.1. The same three instrument
recordings were played at four different directions on the sphere defined by the 3D
PSR array as shown in Fig. 6.2. The directions of recorded sources with respect the
listener’s front direction are given in Table 6.1. Note that the look direction coincides
with positive x-axis, with loudspeaker no.1 and also with the P2 source position.
METU SPARG Lab has non-parallel walls and ceiling-ground, making difficult to
understand x-axis/look direction by only looking at the setup photos. Origin of the
sphere in Fig. 6.2 is the center point of the Eigenmike microphone in Fig. 6.1 while
the x-axis is directed towards the P2 position.

Recordings are made under tightly controlled acoustic conditions in METU SPARG
Lab which has a reverberation time of T30 = 80 ms and a background noise level
less than 40 dB SPL.

The three recordings that were used are given below:
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Figure 6.1: Recording stage of anechoic instrument samples in METU SPARG Lab. Approximate

source directions P1, P2, P3 and P4 is denoted with red circles.

(a) (b) (c)

Figure 6.2: 4 different positions of sample anechoic instruments recordings, played only by single

loudspeaker at a time. (a) Isometric view, (b) Top view: θ = 90, (c) Rear view: φ = 180
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Table 6.1: Source positions of anechoic recording

Position no. θ φ Radius [m]

p1 102.1 -25

1.498
p2 71.6 0

p3 116.1 25

p4 90.6 -62.5

1. b: Latin American rhythm played with an African bongo [31].

2. vc: Cello recording of Theme by Weber [31].

3. fl: Flute passage from an aria of Donna Elvira from the opera Don Giovanni,
W. A. Mozart. [32]

6.2 Methodology

Sound fields recorded using the described setup were reconstructed using AMB and
PSR methods through 3D PSR loudspeaker array setup (see Fig. 3.1). Subjects were
positioned at either i) the center of the loudspeaker array, or ii) at an off-center lo-
cation that is 60 cm away from the center. They listened to the reconstructed sound
fields one by one, and showed the directions of the virtual sound sources (i.e instru-
ment sounds) that they perceived, after listening to each test sample (recording). Since
the head movement dramatically changes the perception as spatial cues become more
natural and comfortable to be detected and result in a real-time adjusting of sound
localization according to the head-body movement, the subjects were encouraged to
turn their heads to localize sources if they needed to.

Tracking the direction data is realized using Leap Motion Controller, as will be ex-
plained in the following sections. Three sound recordings each reconstructed for four
different positions, with two different reconstruction method (PSR and AMB) and
two listening positions (center, off-center) resulted in a total of 48 questions per per-
son.

Thirteen subjects with no reported hearing impairments participated in the experi-
ment. 48 unique test items per listener resulted in 13 × 48 = 624 perceived sound
source location in total. Subjects listened to the recordings in randomized order such
that neither same instrument nor the same sound source position were used in succes-
sive presentations.

6.3 3D PSR Algorithm Parameters and Experiment Setup

Physical parameters for experiment setup are as follows:
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1. Height of the upper pentagonal loudspeaker layers from the ground = 2.24 m

2. Height of the lower pentagonal loudspeaker layers from the ground= 0.9 m

3. Height of the center of the sphere composed of two pentagonal layers, i.e.
height of the listening position (ear level) = 1.57 m

4. Radius of the sphere, i.e distance between center and any loudspeaker position
= 1.5 m

5. Radius of the pentagon, i.e distance between center and any vertex of the pen-
tagon = 1.34 m

The loudspeaker array consists of 10 Genelec 6010A studio monitors. Two MOTU
896 Mk3 Hybrid Audio Interfaces were used as an aggregate device for multi-channel
audio routing, using Mac Pro running Mac OS X v10.10. Python 2.7 was used to de-
sign the experimental software. sounddevice and pyaudio modules were used
for multi-channel audio playback whereas Python bindings of Leap Motion SDK ver-
sion 2.3 were used for real-time direction data tracking in the pointing task explained
below.

Sampling rate of 44.1 kHz is used both for recording and reproduction stages. For 3D
PSR, the following parameters were used for the STFT as explained in Chapter 5:

(i) Window size = 1024

(ii) Overlap ratio = 7/8

(iii) Window function = Hann

6.4 Ambisonics Decoded Signals

AMB signals were obtained using the following procedure:

1. Recorded input signals, ai(n), are encoded into an HOA format signal in Eigen-
studio® interface [33] by mh acoustics.

2. Decoding matrix is obtained with the 3D PSR loudspeaker array configura-
tion, using the IEM Plug-in Suite [34] using REAPER digital audio workstation
(DAW) software [35].

3. Decoding matrix is multiplied with input signal, giving the final Ambisonics
decoded output signal to be played through the loudspeakers.

For encoding and decoding; the parameters ACN and N3D were used for Ambisonic
channel ordering and normalization parameters. As a decoding strategy, Max-Re
(maximum energy vector magnitude) weighting [30] was used.
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(a) (b) (c)

Figure 6.3: (a) Leap motion controller with hand tracking, (b) An example pointable object for tool

tracking, (c) Finger bones that leap motion is able to track

6.5 Direction Data Tracking with Leap Motion

Leap motion [36] is an optical hand tracking controller (Fig. 6.3a) that captures the
movement of hands with two near-infrared cameras operating at 120 Hz. The con-
troller is capable of tracking hands within a 3D inverted pyramid shaped interactive
zone extending from the device in a 120°×150° field of view with approximately 60
cm height.

Leap motion also has the ability to track tool-like objects such as a pencil, a stick,
a rod, or a baton when grabbed by hand as shown in Fig. 6.3b. To obtain the data
of the direction which subjects are pointing with their hand, index finger tracking
was used in a first set of trials. As shown in Fig.6.3c, position data of the base and
tip of the finger bones; i.e distal, intermediate and proximal phalanges were used
to obtain direction vector. It is considered that the directions calculated using the
position data of the finger bones may result in angle deviations due to the short length
of finger bones as well as differences between each individual’s hand anatomies. To
gather more stable and less fluctuating direction data, a second set of trials were
performed using tool tracking instead of finger tracking. Consequently, it is observed
that pointing tasks can be tracked with higher accuracy and stability by using tool
tracking.

Fig. 6.4 shows the usage of a rod like tool during the experiment. A sample visual
data of tool tracking is given in Fig. 6.6. Leap motion controller is positioned 50
cm front to the listening position at a height of 87cm. Subjects indicated the sound
sources they have perceived, by pointing out with their hands while grabbing the
tool. In Fig. 6.5, the usage of a sample tool tracking data is explained. Red square
shows 3D PSR loudspeaker setup origin and the center of the sphere. This point also
representing the listening position which is the approximate location between the two
ears of the listener. Blue square shows the origin of the leap motion, coincide with
the controller. Leap motion provides the position data according to its own reference
frame, with respect to the origin (blue square) of the device. Since there is a distance
between the device origin and the tool tip position, the position vector starts from the
tip of the rod, shown as the black circular point. Tool direction vector is plotted with
blue arrow and intersects the sphere at the location of the blue star. By drawing a
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(a) (b)

Figure 6.4: Leap motion controller with rod like tool object for the experiment

new direction vector (red) from 3D PSR origin (red square) to this intersection point,
inclination (θ) and azimuth angles (φ) with respect to listening position are calculated
conveniently. Grayed points show 10 loudspeakers in the 3D PSR setup.

Figure 6.5: 3D PSR Setup origin and leap motion controller origin

6.6 Experiment Results

Excluding missing data from the overall data gathered, 586 individual direction vec-
tors are obtained. From a single direction vector, both inclination and azimuth angle
pairs (θ, φ) can be extracted. Thus, these two data are not evaluated independently
although the accuracy of the inclination and azimuth angles are expected to differ
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(a) (b)

Figure 6.6: Visual representation of the tracked tool by Leap Motion Visualizer

considerably. To evaluate the accuracy of the angle pairs as dependent variables; 5-
parameter Fisher-Bingham distribution, also known as Kent distribution was fitted to
pooled direction observations. This method is suitable for fitting an asymmetrically
distributed data over unit sphere and obtaining a bivariate probability distribution.
Three parameters of the Kent distribution are relevant in the context of this study: γ1

is the mean direction vector for the data points, κ is the parameter that determines the
concentration or spread of the distribution, and β is the parameter which determines
the ellipticity of the distribution.

Experimental data from subjects are plotted over the unit sphere together with the true
sound source directions in Figs. 6.7, 6.8, 6.9 and 6.10. Black and red arrow vectors
represent mean direction vectors, γ1, for AMB and PSR, respectively. Left column
shows the results for the center listening position while right column shows the cor-
responding off-center position for the same sound source position. The direction data
obtained for AMB reconstructed sound recordings are represented with black points
whereas PSR reconstructed signals are specified with red points.

The inclination and azimuth angles (θ, φ) of the mean direction vectors are compared
with the directions of the real sound sources (P1, P2, P3 and P4) in Table 6.2. The
angle between these direction vectors are calculated using the dot product, and given
in Table 6.3 as an angular errors in degrees.

The parameters κ and β that represent the spread and ellipticity of the fitted Kent
distributions are given in Table 6.4 and Table 6.5, respectively.
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Figure 6.7: Perceived directions for Ambisonics (black) and PSR (red) for position: P1. (a) center

(b) off-center listening locations.
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Figure 6.8: Ambisonics (black) and PSR (red) for P2, (a) center (b) off-center listening positions.
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Figure 6.9: Ambisonics (black) and PSR (red) for P3, (a) center (b) off-center listening positions.
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Figure 6.10: Ambisonics (black) and PSR (red) for P4, (a) center (b) off-center listening positions.

43



Table 6.2: Real source directions vs mean directions calculated with Kent distribution.

Center Off-center

θ φ θ φ

P1 102.1◦ 25◦ 102.1◦ 25◦

AMB 72.5◦ 15.1◦ 77.4◦ 41.4◦

PSR 100.5◦ 27.9◦ 104.3◦ 35.3◦

P2 71.6◦ 0◦ 71.6◦ 0◦

AMB 78.1◦ 3.8◦ 78.3◦ 16.4◦

PSR 75.1◦ 4.1◦ 72.9◦ 1.8◦

P3 116.1◦ -25◦ 116.1◦ -s25◦

AMB 85.2◦ -17.2◦ 83.4◦ -11.9◦

PSR 105.9◦ -28.2◦ 104.2◦ -31.2◦

P4 90.6◦ -62.5◦ 90.6◦ -62.5◦

AMB 81.8◦ -49.8◦ 82.2◦ -44.3◦

PSR 81.7◦ -51.2◦ 85.6◦ -46.8◦

Table 6.3: Angle between real source directions and mean directions (Kent distribution)

Angular Errors Center Off-center

Source Positions AMB PSR AMB PSR

P1 31.2◦ 3.2◦ 29.6◦ 10.3◦

P2 7.4◦ 5.3◦ 17.2◦ 2.2◦

P3 31.8◦ 10.5◦ 35.1◦ 13.2◦

P4 15.4◦ 14.3◦ 19.9◦ 16.5◦

Table 6.4: κ parameter obtained from Kent distribution.

κ Center Off-Center

Source Positions AMB PSR AMB PSR

P1 33.1◦ 33.6◦ 28.6◦ 27.3◦

P2 31.1◦ 49.2◦ 21.4◦ 35.9◦

P3 22.2◦ 29.9◦ 17.4◦ 20.3◦

P4 10.6◦ 28.1◦ 15.1◦ 19.3◦
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Table 6.5: β parameter obtained from Kent distribution.

β Center Off-Center

Source Positions AMB PSR AMB PSR

P1 3.1◦ 8.6◦ 3.6◦ 7.5◦

P2 4.5◦ 10.2◦ 4.8◦ 6.7◦

P3 5.7◦ 8.1◦ 3.9◦ 2.3◦

P4 0.3◦ 5.1◦ 2.7◦ 6.3◦

During subjective experiments; in addition to pointing task, subjects are also asked
to rate their confidence on perceived sound direction. Every subject evaluated each
audio sample on a 5-point rating scale with:

• 5 = Very high confidence about the perceived location of the sound source

• 1 = Least confidence about the direction of the sound source.

Table 6.6: Confidence rates with respect to instruments.

Confidence Rate - Instruments

Center Off-center Center Off-center

Instrument Ambisonics PSR Ambisonics PSR

Bongo 3.96 4.17 3.29 4.08

Flute 4.02 4.38 3.73 4.44

Violoncello 4.26 4.39 3.80 4.36
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Table 6.7: Confidence rates with respect to position

Confidence Rate - Positions

Center Off-center Center Off-center

Source Position Ambisonics PSR Ambisonics PSR

P1 4.18 4.23 3.62 4.27

P2 4.28 4.42 3.59 4.49

P3 4.05 4.37 3.76 4.22

P4 3.81 4.10 3.50 4.09

6.7 Discussion

The results of the experiment indicate that PSR provides a more accurate subjective
localization on average. In this respect, it performs better than 2nd-order Ambisonics
both at the center and off-center listener positions (see Table 6.2). As can be seen
in Table 6.3, average angula errors for PSR are significantly less than the errors for
Ambisonics indicating an even spread around the true source direction. Although the
average localisation error is smaller for PSR, Table 6.4 indicates that the spread of the
data is in general higher for PSR than AMB, meaning the data is more concentrated
for the AMB method. Similarly, AMB results in a more elliptic distribution (see Table
6.5). Although the spread is small, sound source localization accuracy of the 2nd
order Ambisonics is not satisfactory. From this, it may be inferred that Ambisonics
is forcing a dominant location for the sound source yet lacking the true directional
information.

In addition, subjects stated that they give their response more confidently for PSR
reconstructed samples. This can be validated by looking the confidence ratings at the
Tables 6.7 and 6.6. Regardless of position or instrument type, PSR achieved higher
confidence levels. Since the confidence and spread results are not in parallel, we
speculate that other factors such as tonal coloration may have played a part in this
outcome. On the other hand, the accuracy of the pointing task by using the Leap
Motion Controller is also unclear and this may have contributed to the high level of
spread observed for both AMB and PSR.

AMB signals employ several different correction strategies (e.g. for near-field sources)
and different decoding approaches to adapt it to arbitrary speaker layouts, whereas
PSR is a raw method excluding any any such correction. In this work, in order to
present similar experiment samples in terms of audio quality and content, and to pre-
vent the subjects from noticing that there are two distinct methods in the experiment,
frequency response of the reconstructed signals were very roughly equalised. To this
end, a simple equalization is added to PSR recordings, attenuating the low frequency
(F < 100 Hz) and amplifying the high frequency content (F > 4000 Hz).
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CHAPTER 7

CONCLUSION

7.1 Conclusion

An extension of perceptual soundfield reconstruction to three dimensions was pre-
sented in this thesis. Such an extension is not trivial with classical microphone setups
due to the required number of microphones and the necessity to equalize them. We
proposed a conceptual framework that enables 3D PSR recordings from rigid spher-
ical microphone arrays via sound field extrapolation. Numerical simulations with
monochromatic sound fields using the directivity pattern designed for 2D-PSR show
that 3D PSR via sound field extrapolation is feasible even with a straightforward ap-
plication of 2D PSR directivity pattern that is confined to the horizontal plane.

We then realised 3D PSR via sound field extrapolation using real recordings obtained
from an Eigenmike em32 and compared the results with a widely used state-of-the-
art higher-order Ambisonics method in a multi-channel subjective localisation exper-
iment. The results are promising for the considered perceptual attribute of subjective
localization.

Notice also that the proposed extrapolation method is not limited to PSR microphone
arrays, but can be used with any near-coincident array, including those typically used
in the audio engineering community [2, 3].

7.2 Possible Use Cases of 3D PSR via Sound Field Extrapolation

The work reported in this thesis facilitates spatial audio production by decreasing
the number of microphones and loudspeakers that should be used. Due to the fact
that the method proposed is realised only with a single rigid spherical microphone
array, it provides an opportunity to emulate any near coincident microphone array
combinations, which gives great recording flexibility, especially for real recordings of
live events. In this respect recordings made with RSMAs can act as a master recording
where infinitely many different combinations of near-coincident microphone setups
can be derived.
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7.3 Future Work

The directivity pattern used here was designed using interchannel time and level dif-
ferences needed for accurate horizontal localization. Obtaining an appropriate direc-
tivity pattern taking different psychoacoustic phenomena into account governing the
perception of source elevation to enhance the reproduction in the vertical plane is the
subject of future work.

Moreover, different extrapolation methods, as well as a formal analysis of the error
measure of the extrapolation step, including white noise gain (WNG) analysis, can be
assessed. For the plane-wave scenario, we expect a more significant error in extrap-
olated positions further away from the center. This means, in real recordings, there
may be a trade-off between noise gain/extrapolation error and taking advantage of the
perceptual improvement of time-intensity reproduction.

3D PSR has similarities to Dirac/SDM/SIRR [37][38][39], but with the crucial dif-
ference that both pressure and direction are estimated at a position different from the
center of the array, so as to include time-delays between individual channels.

Like many other state-of-the-art methods, 3D PSR may also have an imaginary loud-
speaker exactly at the top and at the bottom, to increase the perception of elevated
sound sources. This may be achieved for example by creating a virtual speakervia
vector base amplitude panning (VBAP).

In its current version, 3D PSR is not ideal for diffuse sound fields. Future work
would involve a more thorough analysis of STFT parameters, especially the audio
frame lengths and window functions. A more suitable window function with a higher
overlap percentage may smooth out sharply changing intensity vectors due to diffuse
sound fields. Reconstruction of this type of diffuse fields can further be enhanced by
proposing a hybrid model such as direct-diffuse separation that enables using different
parameters or methods for different subsections of the sound. In this way, 3D PSR
can perform better also for recordings made in highly diffuse scenes with multiple
incoherent sources by processing the contribution of diffuse components separately.

48



REFERENCES

[1] E. Erdem, E. De Sena, H. Hacıhabiboğlu, and Z. Cvetković, “Perceptual
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