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ABSTRACT

TEMPERATURE ESTIMATION USING MAGNETIC NANOPARTICLES:
A SIMULATION STUDY

Onuker, Gamze
M.S., Department of Electrical and Electronics Eng.

Supervisor : Prof. Dr. Nevzat G. Gençer

Co-Supervisor : Dr. Can Barış Top

December 2019, 97 pages

Lately, in biomedical imaging systems, algorithms for providing the temperature data

became more important both for diagnosis and for treatment. Aiming to serve this

purpose, in this thesis study, it is planned to estimate the temperature data using

magnetic nanoparticles; which are actually imaging tracers used in a new medical

imaging modality, Magnetic Particle Imaging (MPI). Since the introduction of MPI,

the effect of temperature changes on magnetic nanoparticles (MNPs) and their mag-

netic behavior, is being investigated and the results show that there is a non-linear

relation between the temperature and the particle magnetization. For this reason, as

the starting point of this study, a detailed MPI system was modelled using MATLAB

with its main components, which are the Selection Field, Drive Field and Receiver

coil pairs. All coils were modelled to have a circular shape, the Selection and Drive

field coils have 25cm radius whereas the receive coils have 10cm radius. Scanning

sequence was chosen to be ’Lissajous Trajectory’ with sufficient density in order to

provide a good spatial resolution. After determining the geometrical setup, a sys-

tem matrix was obtained, which describes the magnetization signal, induced by the
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MNPs, as a function of the imaging space. In order to reconstruct images by the use

of the system matrix, Algebraic Reconstruction Technique (ART), Selective Singular

Value Decomposition (SSVD) Method and Truncated Singular Value Decomposition

(TSVD) Method were applied to solve the matrix equation. Reconstructed images

have resolution ranged in sub-millimeter level. In order to examine the effect of

temperature changes in the model, a thermal solver was implemented using Pennes’

Bioheat Equations. Energy of a focused ultrasound beam was used as the heat source

and the equation was solved both in time and space, using the Finite Difference Time

Domain Method (FDTD) in 2-Dimensional space. As a result, a realistic time-varying

temperature data was included in the MPI model. Previous studies show that it is pos-

sible to estimate the temperature by utilizing a calibration curve that is acquired from

the ratio of the fifth and the third harmonics of the magnetization signal, generated

by MNPs, under different strength of applied sinusoidal field. But this was showed

only for spectroscopic (0-D) data acquisition systems. In this thesis study two dif-

ferent methods were proposed for temperature distribution and applied for noise free

case. For the first method, the algorithm is based on pixel-wise scanning and using a

calibration curve obtained from 1D line scanning. The resolution and the maximum

relative error was found to be 0.01°K and 0.003 per cent, respectively. Secondly, a

linearization method for temperature estimation was proposed and the resolution and

the maximum relative error was found to be 0.001°K and 0.063 per cent, respectively.

Keywords: Biomedical, Imaging, Magnetic, Nanoparticle, Temperature, Estimation,

Ultrasound, Heating, Thermal, Therapy, Linearization, Calibration, Curve
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ÖZ

MANYETİK NANOPARÇACIKLAR KULLANARAK SICAKLIK ÖLÇÜMÜ
TAHMİNİ YAPILMASI: BENZETİM ÇALIŞMASI

Onuker, Gamze
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Nevzat G. Gençer

Ortak Tez Yöneticisi : Dr. Can Barış Top

Aralık 2019, 97 sayfa

Biyomedikal görüntüleme sistemlerinde, sıcaklık dağılımı bilgisinin verilmesini sağ-

layan algortirmalar, teşhis ve tedavi yöntemlerinde kullanılmak üzere önem kazan-

mıştır. Bundan yola çıkılarak, bu tez çalışmasında, manyetik nano parçacıklar kulla-

narak sıcaklık dağılımı tahmini yapılması amaçlanmıştır. Manyetik nano parçacıklar

(MNP), Manyetik Parçacık Görüntüleme (MPG) isimli, yeni bir biyomedikal görün-

tüleme tekniğinde görüntü izleyicisi olarak kullanılırlar. MPG’nin bulunuşundan beri,

sıcaklık değişimlerinin, MNP’lar ve manyetik davranışlarına olan etkileri araştırıl-

maktadır. Bu araştırmalar şu zamana kadar göstermiştir ki, sıcaklık ve MNP davra-

nışı arasında doğrusal olmayan bir ilişki vardır. Bu tez çalışmasının ilk adımı ola-

rak, detaylı bir MPG sisteminin, simülasyon ortamında modellenmesi amaçlanmıştır.

MATLAB ortamında, MPG sisteminin temel ögeleri olan ’Seçici’, ’RF’ ve ’Alıcı’

bobin çiftleri modellenmiştir. Seçici ve RF bobin yarıçapları 25cm ve Alıcı bobin ya-

rıçapı ise 10cm olarak ayarlanmıştır, bobinler tek sarımlı ve diresel şekildedir. Tarama

yöntemi olarak ’Lissajous Eğrileri’ seçilmiştir. Geometrik kurulumun modellenmesi
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sonrasında, manyetik alan üretimi de modellenmiş ve görüntü geri çatımında kullanıl-

mak üzere bir sistem matrisi oluşturulmuştur. Bu sistem matrisi, MNP’ler tarafından

manyetik alana maruz kaldıklarında üretilern manyetizasyon sinyali ve görüntüleme

sistemi arasındaki ilişkiyi tarif eder. Görüntü geri çatımında ’Algebraic Reconstruc-

tion Technique (ART)’, ’Selective Singular Value Decomposition(SSVD)’ ve ’Trun-

cated Singular Value Decomposition (TSVD)’ yöntemleri kullanılmıştır. Geri çatım

yapılan görüntüler, milimetre seviyesinde çözünürlüğe sahiptir. Bu sistemin yanı sıra,

sıcaklık değişimlerinin MNP davranışı ve MPG sistemine olan etkisinin incelenmesi

için ilk adım olarak gerçekçi bir sıcaklık dağılım haritası modellenmiştir. Bu mo-

delde Pennes Bioheat denklemleri kullanılmış ve simülasyon ortamında ’odaklı ultra-

son’ enerjisi kullanılarak bir takım sıcaklık dağılımları elde edilmiştir. Denklemlerin

çözümlenmesinde 2 boyutu ele alan ’Zamanda Sonlu Farklar Metodu (FDTD)’ kul-

lanılmıştır. Sonuç olarak, gerçekçi bir sıcaklık dağılım modeli oluşturulmuş ve MPG

modeline eklenmiştir. Daha önce yapılan çalışmalarda görülmektedir ki farklı genlik

ve frekansta sinüsoidal manyetik alanla uyarılan MNP’ların üretmiş olduğu sinyalin,

beşinci ve üçüncü harmoniklerinin oranları kaydedilerek bir kalibrasyon eğrisi elde

edilebilir ve bu eğri sıcaklık tahmininde kullanılabilir. Ancak bu çalışma yalnızca

spektroskopik veri toplama sistemleri için geçerlidir. Bu tez çalışmasında, sıcaklık

tahmini için iki farklı yöntem önerisinde bulunulmuştur ve bu yöntemler gürültüsüz

durum için uygulanmıştır. İlk yöntemde, sıcaklık tahmin algoritması, görüntüleme

alanını piksel – piksel taramaya dayalıdır. Çizgisel tarama yöntemi ile elde edilmiş

bir kalibrasyon eğrisi kullanarak her pikseldeki sıcaklık tahmin edilmektedir. Bu yön-

tem sonuçları 0.01°K çözünürlüğe ve yüzde 0.003 hata payına sahiptir. İkinci yöntem

ise bir linearizasyon algoritmasıdır. Sıcaklık ve manyetizasyon arasındaki ilişki line-

arize edilerek çözülmüştür. Bu yöntemin sonuçları ise 0.001°K çözünürlüğe ve yüzde

0.063 hata payına sahiptir.

Anahtar Kelimeler: Biyomedikal, Görüntüleme, Manyetik, Nanoparçacık, Sıcaklık,

Tahmini, Ultrason, Isıtma, Termal, Terapi, Lineerizasyon, Kalibrasyon, Eğrisi
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CHAPTER 1

INTRODUCTION

1.1 Overview

The effect of heating processes on living tissues is an important research topic for

medical applications, especially for cancer and tumor treatments. The procedure of

raising the temperature of a part of, or the whole body above normal for a defined pe-

riod of time is called Hyperthermia [4] and clinical treatments that use this procedure

are generally called Thermal Therapies.

During thermal therapies, providing an accurate estimation of temperature distribu-

tion is crucial, in terms of avoiding undesirable thermal damage. Therefore during

the therapy, mapping the spatial temperature distribution is very important. Image-

guided thermal therapies are now routinely applied in a variety of clinical settings [5].

RF heating, Microwave Hyperthermia, Laser therapies and Focused Ultrasound are

some of the methods that has been proposed.

Methods for monitoring the in-vivo temperature can both be invasive and non-invasive.

The gold standard for in vivo temperature measurement is the utilisation of invasive

temperature sensing probes as it would not modulate the thermal therapy field and

would be insensitive to strains due to thermal expansion and/or patient motion [5].

However, the use of invasive temperature probs, conflicts with the idea of avoiding

damage to the living tissue.

Computed Tomography based thermometry is another method for temperature moni-

toring. This method is recommended as it allows avoiding unintended damage of the

healthy tissues during the procedure by providing a detailed tissue temperature dis-
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tribution [6]. Unfortunately, the thermal sensitivity coefficient for CT thermometry is

in the order of -0.5 Hounsfield units (HU) per Celcius, which limits the thermal reso-

lution [5], thus this technique fails to provide detail and clarity of a thermal image.

In several methods, ultrasound acquisitions are being used in temperature mapping.

For instance, Passive Acousting Mapping (PAM) technique uses focused ultrasound

transducer as a sensor to receive acoustic emissions generated in the treatment zone

[7]. However, using this methods provides detection of non-thermal signals such as

cavitation, and since the passive acoustic signals from cavitation and thermal strain

are also affected by temperature dependent changes in speed of sound (SOS) and

attenuation, only relative temperature changes can be estimated [5]. Pulse-echo is

the most common focused ultrasound method employed for temperature estimation,

which uses a single transducer to transmit acoustic signals and receives acoustic wave

responses generated by the tissue interaction. In this method, temperature can ideally

be estimated only if the tissue interaciton is temperature independent [5].

MRI monitoring is currently clinical standard for non-invasive temperature map-

ping [5]. MRI-guided High Intensity Focused Ultrasound (MRI-HIFU) therapy and

MRI-guided Microwave Hyperthermia are two examples of most commonly used tec-

nhniques in thermal therapy. MRI-monitoring is preferable as it is non-invasive and

provides detailed and accurate temperature estimation, without using any a priori cal-

ibration in the target tissue [5]. Nevertheless, it is disadvantageous in terms of cost

issues and portability.

In this thesis study, the motivation is to develop a temperature estimation method that

is non-invasive and practical, provides good thermal resolution and accurate map-

ping, and is portable. In order to achieve this goal, it is proposed to use Magnetic

Nanoparticles (MNP) and take the advantage of their temperature-dependent mag-

netic behavior [8]. With this temperature estimation method,specifically, it is aimed

to obtain spatial temperature distributions in order to monitor temperature changes

that may occur during the process of Harmonic Motion Microwave Doppler Imaging

(HMMDI) [9].
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In HMMDI method, in order to obtain information on tissue elastic and dielectric

properties, a focused ultrasound induces local vibrations, combined with the trans-

mission of microwave signals. Backscattered and received microwave signal is a

phase and amplitude modulated due to the effect of vibration [9]. The illustration of

an HMMDI system is given in Fig.1.1.

Figure 1.1: Illustration of the HMMDI system [1]. Local vibrations that cause the har-

monic motion are generated by the focused ultrasound probe. RF/Microwave Trans-

mitter and Receiver Circuit basically generates microwave signals and detects the

backscattered signal amplitude at the Doppler frequency.

Although HMMDI is an imaging method, the use of focused ultrasound and waves

may result in temperature rises inside the tissue. In terms of safety issues, it is impor-

tant to monitor the temperature distribution. In this thesis study, the aim is to achieve

temperature mapping using MNPs, in a simulation environment. Although, the initial

motivation of this study is to apply this method during HMMDI, proposed method is

applicable in other imaging or thermal therapy methods.
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1.2 Scope of the Thesis

In the scope of this thesis, we

• Developed a simulation model of a Magnetic Particle Imaging system by con-

sidering all input parameters that can effect the results,

• Obtained system matrices and examine their characteristics.

• Simulated image reconstruction for MPI and thermal imaging, using different

approches.

• Developed a 2D temperature distribution model by using FDTD on Pennes’

Bioheat Equations, examine the effect of the energy of a focused ultrasound

beam as the heating source.

• Used state-of-the-art methods to estimate of temperature in 0-D.

• Proposed two methods to estimate of temperature distribution in 2-D and sim-

ulated their performance assuming infinite SNR.

1.3 The Outline of the Thesis

In Chapter 2, characteristics of an MPI system and the parameters that are important

for obtaining a detailed numerical simulation are discussed. The system components

are verified, system matrices are examined, and image reconstruction techniques are

explained. Lastly image reconstruction results are given.

In Chapter 3, a temperature distribution model for HMMDI is defined by utiliz-

ing Pennes’ Bioheat Equations. The effect of a focused ultrasound in the simula-

tion medium is examined and 2D temperature variations is obtained. Two different

methods were proposed for temperature estimation using MNPs and results were pre-

sented.

In Chapter 4, conclusions of the study are discussed with its limitations, and possible

subjects for the future studies are given.

4



CHAPTER 2

SIMULATIONS ON MAGNETIC PARTICLE IMAGING

2.1 Introduction

Magnetic Particle Imaging (MPI) is a relatively new medical imaging technique,

which was invented by Bernhard Gleich in 2005. It is proposed as a promising imag-

ing modality characterized by both high spatial resolution and high sensitivity [8].

This technique determines the spatial distribution of Magnetic Nanoparticles (MNP),

schematically given in Fig. 2.1, injected into the body, using them as imaging trac-

ers [10][11]. Iron oxide is a commonly used magnetic material, which consists of a

magnetic core and a nonmagnetic coating that prevents agglomeration1.

Figure 2.1: Schematic drawing of a typical magnetic nanoparticle. The diameter Dcore

of the magnetic core ranges between 1 - 100 nm. When the diameter of the nonmag-

netic coating is thick enough, the nanoparticle shows ’superparamagnetic’ behaviour,

having single magnetic domain and a high magnetic moment. This provides a better

tracking of magnetization of the MNPs.

1 The action of MNPs collecting together in a mass.
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MPI uses the nonlinear magnetization characteristics of magnetic materials, as they

give a characteristic response when exposed to an external magnetic field [8]. Magne-

tization signal M, is described as the sum of all magnetic moments of nanoparticles:

# »

M =
1

dV

N∑
j=0

#»mj (2.1)

Magnetization is initially zero due to Brownian motion, as directions of each magnetic

moment of particles are initially randomly distributed. With an external magnetic

field applied, directions of magnetic moments start to align in the same direction with

the applied field, causing a net magnetization signal in the direction of the applied field.

The importance of the term ’superparamagnetic behaviour’ appears here, as nanopar-

ticles with high magnetic moments means higher Magnetization signal and in MPI

the aim is to collect this Magnetization signal. Change in magnetization is given in

Fig. 2.2.

Figure 2.2: Stages of the magnetic behaviour that MNPs show, under externally ap-

plied magnetic field H. [2]. Each small sphere represents a nanoparticle and the small

arrow on the spheres are basically the individual magnetic moments. Total Mag-

netization is shown as M, and the applied field is shown as H. Initially, both the

Magnetization and the applied field are zero. As the applied field strength increased,

net Magnetization vector starts to grow and MNPs start to align in the direction of

applied magnetic field.

Magnetization signal can be modelled using the Langevin Function. The matematical
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expression for the Langevin Function, L is given as

L(ξ) =


coth(ξ)− 1

ξ
, ξ 6= 0

0, ξ = 0

(2.2)

And the Magnetization, M is described as

M(B) = cmL(βB) (2.3)

where

β =
µ0m

kBT
(2.4)

In equation (2.4), kB is the Boltzmann constant, T is the ambient temperature, µ0

denotes the permeability of free space and m is the modulus of the magnetic moment

of single particle, given with

m = V particleMSAT (2.5)

where

V particle =
1

6
πDcore

3 (2.6)

In equation (2.3), magnetic moment m, is multiplied with the particle core concentra-

tion, c. Magnetic moment of a particle depends on the particle core volume, V particle

and the saturation magnetization, MSAT, of the material that is the particle core is

made of.

It can be seen that nanoparticles are available to respond to an interval of applied

field strength (between -20 and 20 mT for the precise example in Fig. 2.3a) and at

a certain point, all of them remain aligned in the direction of the applied field, i.e.,

being saturated. The spatial encoding in MPI takes the advantage of this fact that the

particle magnetization saturates. Consequently, for a known distribution of magnetic

field strength in a medium, the particles that are available to respond are also known.

This can further be explained by examining a typical magnetization curve given in

Fig. 2.3a.
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(a) Magnetization w.r.t. applied field strength. (b) Magnetization w.r.t position.

Figure 2.3: Normalized Magnetization Curve. (a) Change in Magnetization of a sin-

gle superparamagnetic ironoxide nanoparticle is shown with rescepect to the applied

magnetic field. The dynamic region is shown as the blue shaded area in the graph. (b)

The Magnetization Curve versus the position is given. The nanoparticle, shown with

a small, red circle is placed at x=0 position.

In Fig. 2.3a, the relation between the particle magnetization and the externally ap-

plied magnetic field is shown. For the dynamic region, nanoparticles are available

to respond to field changes. The magnetization shows a sharp increase and decrease

around 0 mT external field. When an alternating magnetic field applied on MNPs,

they produce an alternating Magnetization Signal, fliping back and forward in the dy-

namic region. This signal can be collected using coils. As the strength of the applied

magnetic field increases, MNPs goes into saturation and MNPs are no longer avail-

able to respond changes in the external magnetic field. Therefore, it is only possible

to collect signals from MNPs that are in the dynamic region.

In order to collect spatial data during the scanning process in MPI, dynamic and

saturated regions in imaging space are being changed by the help of field generating

coils. Selected ’dynamic region’ is called the ’Field Free Point (FFP)’ [8] where

the applied magnetic field is adjusted accordingly such that particles in the FFP are

avaliable to generate Magnetization signal.
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In this chapter, a 2D scanning MPI system is simulated. The model presented in

[12] was followed for the coil geometries, scanning sequence, and MNP characteris-

tics. The simulation was implemented using MATLAB (The MathWorks, Inc., MA,

USA)[13], creating a 3-Dimensional MPI system model.

2.2 Detailed Numerical Simulations for Magnetic Particle Imaging

In order to model a simulation system, one should consider all inputs and parameters

that could effect the results of the system in real life. In this particular case of an MPI

system; characteristics of the applied fields, coil geometries and sensitivities, shape

and volume of MNPs and data acquisition sequence were considered as the main

effective parameters. The purpose is to mimic an imaging system that can be used for

clinical purposes, hence, parameters were chosen to represent conditions expected for

clinical applications; allowing for a fast image acquisition with a spatial resolution in

the millimeter range [12].

The simulation system has two main steps starting with generating data, in other

words obtaining the Magnetization signal. Second step is then, spatially encoding

this data to reconstruct images.

A basic MPI system consists of Selection Field coils, Drive Field coils and Receive

coils. Selection Field coils generate static magnetic field whereas the Drive Field

coils generate an alternating magnetic field. During the scanning process, the total

magnetic field in the medium spatially changes in order to move the so called ’Field

Free Point (FFP)’. This process is schematically explained in Fig. 2.4. The result of

this scanning process is a spatially dependent Magnetization signal.
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Figure 2.4: Positional change of the FFP in 2D cross-section. [2]. The first column

represents the Selection Field. In each row of the second column, different instances

of the alternating magnetic field is shown which is generated by the Drive Field coils.

The third column is the superposition of the Drive and Selection Fields. Darker re-

gions representing the FFP, change position in each row.

In this simulation, the aim was to define coil geometries, obtain a 3D setup, generate

the desired total magnetic field, B, and adjust the scanning sequence so that the FFP

moves along a certain trajectory. This trajectory was chosen as the ’Lissajous Trajec-

tory’ for this particular study. The shape of this trajectory was adjusted accordingly

to cover the whole scanning space with a sufficient density in order to provide a good

spatial resolution.

As it was shown in the schematic in Fig. 2.5 the first step was to define a 3D medium

in order to place the coil geometries. After generating the fields, a phantom was

defined in this medium, including the MNP characteristics.
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Figure 2.5: Steps for the realistic MPI simulation. Scheme shows the inputs and

outputs of the first and second step blocks. The outputs for the first step is a realistic

Magnetization signal data and a System Matrix that will both be used in the second

step, while reconstructing the image.

2.3 Coil Designs

In MATLAB environment, it is important to chose a suitable step-size in discretization

of the continuous variables. Coil models were assumed to be circular conductors with

single turn, and they were represented with 360 infinitely thin segments and all fields

were assumed to be generated by the coils [12]. Magnetic Fields were computed,

using the Biot-Savart Law given below in equation (2.7), with the numerical values

given in table (2.1).

#»

B( #»r ) =
µ0 I

4π

∫
d

#»

L × ( #»r − #»r ′)

| #»r − #»r ′|3
(2.7)

This equation calculates the magnetic field vector
#»

B( #»r ) for every position #»r in the

imaging space. µ0 is the free space permeability, I is the amplitude of the current

going through the coil and #»r ′ is the source point. without changing the notation, the
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discretized equation that is used to calculate the magnetic field can be written as

#»

B( #»r ) =
µ0 I

4π

360∑
i=1

d
#»

L i ×
( #»r − #»r ′i)

| #»r − #»r ′i|3
(2.8)

The geometry that desrcribes the variables in the discretized Biot Savart equation is

simply illustrated in Fig. 2.6.

Figure 2.6: Schematic illustration for single circular coil, showing the parameters

used in Biot Savart equation that calculates the magnetic field.

Drive and Selection Field coils were described with the same shape and radius, and

for each pair, coils were placed to be one meter apart from each other. The coil

simulation geometry is shown in Fig. 2.7. Imaging center was chosen to be at the

position x= 0.4, y= 0.7 and z= 0.9 meters. Numerical values that were used in this

simulation are given in Table 2.1. Iz and f z describe the amplitude and frequency

values for sinusoidal currents flowing through the Drive Field coil pair that is placed

on x-y plane and Iy and f y describe the coil pair placed on x-z plane.
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Figure 2.7: Field generating coils. Selection Field coil pair (black) is placed in the

z-direction and Drive Field coir pairs (red) are placed in both y and z directions.

Small circle in the middle represents a volume of nanoparticles. The shape of the

scanning trajectory is represented with the Lissajous Curve lines. The dimensions in

this schematic is only for visualization, not reflecting the actual size.

Selection Field Coils Drive Field Coils

Iz(A) 1.4549 0.0571

Iy(A) - 0.0571

f z(kHz) - 25.25

f y(kHz) - 25.508

R(m) 0.25 0.25

Table 2.1: Example of numerical values used in Biot-Savart equation.
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2.3.1 Selection Field Coils

In MPI, Selection Field coils are responsible from generating an inhomogenous, static

magnetic field in the imaging medium, as it is illustrated in Fig. 2.8. For this simula-

tion, the current passing through coils were set such that an FFP was produced at the

center of this inhomogenous field. The gradient strength in the z-direction, ∂Bz
∂z

, was

set to be 2.5 T/m and for x and y directions it was the half of the ∂Bz
∂z

, meaning that
∂By
∂y

= ∂Bx
∂x

= 1.25 T/m.

Figure 2.8: 3-Dimensional plot, showing the Magnetic Field vector lines for a Selec-

tion Field coil pair. In this illustration, both coils are placed in the x-y plane but one

of them has a center at z = 0.4 m and the other is at z = 1.4 m and the current through

the coils are in the opposite direction, in order to produce inhomogenous magnetic

field. Currents going through each coil have opposite direction therefore, generated

magnetic fields are identical but have opposite direction. This produces a FFP, resid-

ing in the high symmetric point between Selection Field coils, at x = 0.4, y = 0.4 and

z = 0.9.
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It is important to test the accuracy of the numerical model, in order to decide dis-

cretization parameters. Using the Biot-Savart Law, field on the axis of a circular coil

can be found using equation (2.9). Using this equation, z-component of the static

Magnetic Field was calculated on the axis (z-axis) of single Selection Field coil and

they were compared with the numerical solution that was computed in the simulation.

The results are shown in Fig. 2.9.

Bz =
µ0

4π

2πR2I

(z2 +R2)
(2.9)

Figure 2.9: Compared B-field values for analytical and discrete computations. As

the coil center was set to be at z = 0.9 meter, the B field reaches its maximum value

around z = 0.9. The maximum relative error calculated between the analytical and the

discrete solutions was approximately 0.6 percent.
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2.3.2 Drive Field Coils

It is possible to move the FFP around a certain trajectory in the imaging medium

by the help of the Drive Field. In this MPI simulation, two Drive Field coil pairs

were used, placed on x-y and x-z planes, moving the FFP along z - axis and y - axis,

respectively. This provides a 2-D imaging area on y-z plane of the 3-D simulation

system.

Coils were described identically, having circular shape and 50 cm diameter with a

single turn. Coils in each pair were placed 1 meter apart from each other, and the

currents going through each coil in a pair have the same direction. This produces an

oscillating but relatively homogenous magnetic field. The current amplitudes given

in Table (2.1) was set to generate a Magnetic Field strength of 20 mTµ0
-1 both in z

and y direction. With these characteristics, Field of View (FOV) covers 16 mm in

z-direction and 32 mm in y-direction.

2.3.3 Receive Coils

Simulated MPI system consists of two Receive Coils with circular shape and 10 cm

radius. One of them is placed on the x-y plane and sensitive to field changes in the

z-direction. And the second coil is placed on the x-z plane, meaning that it is sensitive

to field changes in the y-direction.

The Drive Field and Selection Field coils had centers that were 50 cm away from the

imaging center. Receive coils have centers that are 15 cm away from the imaging

center. Complete coil configuration that was used for this study is given in Fig. 2.10.

In order to collect the Magnetization Signal via Receive Coils, the Reciprocity Theorem

describing the relation between the magnetic flux through a coil and the correspond-

ing induced voltage was used.
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Figure 2.10: Complete coil configuration that was used in the MPI simulation. Drive

and Selection field coils placed on the x-y plane have the same position, therefore

they are not visually distinguishable, but the pairs are represented with dark blue and

red circles in the figure. Drive Field coil pair of the y-channel is represented with

purple and yellow circles. Lastly, the y-sensitive and z-sensitive Receive coils are

represented with light blue and green circles, respectively.
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Considering a single Receive Coil, a circular conductor loop, enclosing a surface S,

the voltage at the end points can be described as the integration of the electric field

strength along the coil:

u(t) =

∮
#»

E(l, t) · dl (2.10)

Here, u(t) is the induced signal,
#»

E(l, t) is the electric field strength and l represents

the position on the coil.

Using the Faraday’s law of induction, the line integral for the Electric Field strength,

which is the right hand side of the equation (2.10), can also be described using the

time derivative of the Magnetix Flux, φs, as follows:

∮
#»

E(l, t) · #»

dl = − d

dt
φs (2.11)

The integral equation describing the Magnetic Flux through the surface enclosed by

the coil is

φs =

∫
#»

B(r, t) · #  »

dS (2.12)

Inserting the equation (2.12) in equation (2.11), and combining with equation (2.10),

one can obtain

u(t) = − d

dt

∫
#»

B(r, t) · #  »

dS (2.13)
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Figure 2.11: Visualization of the concepts that was described in equations (2.11),

(2.12) and (2.13). E is the Electric Field through the circular coil, ∂B
∂t

is the Magnetic

Flux Density and u(t) is the voltage signal induced at the ends of the coil.

In order to find the relation between the Magnetization
# »

M and the induced signal u(t),

consider the fact that the magnetic flux is the curl of the magnetic vector potential,
#»

A

as given in equation (2.14).

#»

B( #»r , t) = ∇× #»

A( #»r , t) (2.14)

Inserting (2.14) into (2.13) one obtains,

u(t) = − d

dt

∫
(∇× #»

A( #»r , t)) · #  »

dS (2.15)

By applying the Stoke’s theorem, the surface integral becomes,

u(t) = − d

dt

∮
(

#»

A(l, t)) · #»

dl (2.16)
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Integration of (2.16) over the cross-section of a Receive coil with volume Vcoil gives,

u(t) = − d

dt

∫
Vcoil

#»

A( #»r , t) · ĵ( #»r )dVcoil (2.17)

where ĵ( #»r ) is the unit current density of the Receive coil.

Next, recalling the fact that a magnetic dipole, #»mdipole, would create a magnetic vector

potential with the following mathematical expression,

#»

A( #»r , t) =
µ0

4π

#»mdipole(
#»r , t)× ( #»r − #»r ′)

| #»r − #»r ′|3
(2.18)

Using equation (2.1), one can obtain the magnetic dipole for a small volume dV,

which is

#»mdipole(
#»r , t) =

# »

Mdipole(
#»r , t)dV (2.19)

Inserting this into equation (2.18), one can find a mathematical expression that de-

scribes the total magnetic vector potential, which is created by a volume of MNPs

with magnetization
# »

Mdipole(
#»r , t) as given in

#»

A( #»r , t) =
µ0

4π

∫
VM

# »

M( #»r , t)× ( #»r − #»r ′)

| #»r − #»r ′|3
dVM (2.20)

where VM is the volume of magnetic material, in other words the volume of MNPs

that create the Magnetization.

Inserting (2.20) into (2.17), one should obtain

u(t) = − d

dt

∫
Vcoil

µ0

4π

∫
VM

# »

M( #»r , t)× ( #»r − #»r ′)

| #»r − #»r ′|3
dVM · ĵ( #»r ′)dVcoil (2.21)
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Lastly, using the vector identity
#»

A× #»

B · #»

C =
#»

A · #»

B× #»

C in equation (2.21) one should

obtain

u(t) = − d

dt
µ0

∫
VM

# »

M( #»r , t) ·
(∫

Vcoil

( #»r − #»r ′)

4π| #»r − #»r ′|3
× ĵ( #»r ′) dVcoil

)
dVM (2.22)

Using the fact that the sensitivity ρ( #»r ) of a Receive coil with the unit current density,

ĵ( #»r ), can be mathematically expressed as

ρ( #»r ) =

∫
Vcoil

( #»r − #»r ′)

4π| #»r − #»r ′|3
× ĵ( #»r ′) dVcoil (2.23)

and inserting the term ρ( #»r ), into the equation (2.22) the mathematical expression

that describes the relation between the induced signal and the magnetization takes the

form

u(t) = − d

dt
µ0

∫
object

# »

M( #»r , t) · #»ρ ( #»r )d3r (2.24)
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2.3.4 Scanning Sequences

Choosing the convenient scanning sequence with sufficient density is important in

terms of providing a good spatial resolution. In this study, two sequences were used

for system acquisition and image reconstruction in a rectangular 2D FOV: Cartesian

and Lissajous. FOV was planned to cover 16 mm in the z-direction and 32 mm in the

y-direction, for each scanning trajectory.

The Cartesian Trajectory was obtained, using two drive fields in the z- and y- direc-

tions, considering to move FFP along the z-y plane. This sampling pattern requires

two different sinusoidal currents with frequencies such that

f y >>> f z (2.25)

Mathematical expressions for the sinusoidal currents in each drive-coil channel can

be expressed as

Iy(t) = Isin(2πf yt) (2.26)

Iz(t) = Isin(2πf zt) (2.27)

Here, I is the amplitude of the currents, and f y and f z are the channel frequencies.

This sequence moves FFP rapidly in the y direction and slowly in the z direction.

Illustrations for the shape of the Cartesian Trajectory and the drive field currents are

given in Fig. 2.12. For this simulation, f z was chosen to be 2.525 kHz and f y was

chosen to be fifty times bigger than of the z-direction, meaning 126.250 kHz. This

means, for this simulation N c in equation (2.28) is equal to 50.

f z

f y
=

1

N c
(2.28)
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Figure 2.12: Schematic presentation for the Cartesian Trajectory [2].

Lissajous Trajectory was the second sampling pattern that was used in this study.

This imaging sequence also uses sinusoidal currents with two different frequencies,

but this time chosen to be similar

f y ≈ f z (2.29)

Mathematical expressions for currents are the same as given in equations (2.26) and

(2.27). Generally the frequencies are chosen as

f z

f y
=

N

N + 1
(2.30)

For this simulation the ratio between the frequencies were set to be fy
fz

= 99
98

. For

the z-direction, a frequency of f z = 25.25 kHz was assigned and for the y-direction

the resulting frequency was f y = 25.51 kHz [12]. Illustrations for the shape of the

Lissajous Trajectory and the drive field currents are given in Fig. 2.13.
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Figure 2.13: Schematic presentation for the Lissajous Trajectory [2].

In order to collect data with sufficient sampling, it is important to set the scanning

duration, lasting at least one Repetition Time, T R. Repetition Time is the interval

between two complete scanning sequences, therefore one should calculate the dura-

tion for FFP to move along the whole FFP in a certain trajectory. The repetition time

calculation for Cartesian and Lissajous Trajectory patterns are given below.

T R
cartesian =

N c

f y
= 0.39msec. (2.31)

T R
lissajous =

N + 1

f y
= 3.9msec. (2.32)
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2.3.5 System Acquisition and System Matrix

The nanoparticles that are used in this simulation were characterized with a circular

shape and unit concentration. The radius for a single nanoparticle was taken as 30

nm.

2.3.5.1 Time Domain System Matrix

As the aim of the MPI is to map the distribution of MNPs in the imaging space, it can

roughly be said that the ’system function’ is a description of the relation between the

particle distribution and the induced signal. Recalling the mathematical formulation

for the Magnetization signal, which is

# »

M( #»r , t) = c( #»r )
#»

m̂( #»r , t) (2.33)

and inserting this representation in equation (2.24), one can obtain

u(t) = −µ0

∫
object

#»ρ ( #»r ) · c(
#»r )∂

#»

m̂( #»r , t)

∂t
d3r (2.34)

Instead of using dVM in equation (2.24), here, d3r is used. Without the loss of gener-

ality, in MPI systems the integral kernel of the imaging signal equation, which is the

induced signal equation, is called the System Function. Therefore, as the last version

of the equation (2.34), the signal can be expressed as

u(t) =

∫
object

s( #»r , t)c( #»r )d3r (2.35)

where the system function in time domain is described as

s( #»r , t) = −µ0
#»ρ ( #»r ) · ∂

#»

m̂( #»r , t)

∂t
(2.36)

In this case, #»r is the position vector in the imaging space, representing an arbitrary

pixel, defined in FOV.
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In this study, above equations (2.35) and (2.36) were discretized to obtain a 2-D sim-

ulation model. The FOV was set to cover 16mm in the z-direction and 32 mm in the

y-direction and this range was defined with 64×32 = 2048 pixels in the simulation.

The discretized equation for the induced signal can be written as follows:

ut =
64∑
j=1

32∑
k=1

st,j,kcj,k (2.37)

Where ut is the discretized form of induced signal, st,j,k is the discretized form of

system function and cj,k is the discretized form of particle concentration. In this

equation, t represents the index for the time instance, j represents the index of the

y-position and k represents the index of the z-position in FOV. This equation can also

be written using single summation as

ut =
2048∑
i=1

st,ici (2.38)

where i denotes the pixel number in the FOV. Therefore, in discrete form, one can

obtain a set of linear equations in the form:

u1 = s1,1 c1 + s1,2 c2 + · · ·+ s1,2048 c2048

u2 = s2,1 c1 + s2,2 c2 + · · ·+ s2,2048 c2048

...

un = sn,1 c1 + sn,2 c2 + · · ·+ sn,2048 c2048

(2.39)

This set of linear equations can be represented by using the following matrix equation

form:



s1,1 s1,2 . . . . . . s1,2048

s2,1 . . . . . . . . . s2,2048

s3,1 . . . . . . . . . s3,2048
...

...
...

...
...

sk,1 . . . . . . . . . sk,2048


×



c1

c2

c3
...

c2048


=



u1

u2

u3
...

uk


(2.40)
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which can also be written as

S c = u (2.41)

In equation (2.41), S is the system matrix that defines the relation between the system

excitations and tracer behaviour. In the simulation, it was obtained by changing the

position of a single volume element with unit concentration, pixel by pixel, until the

whole imaging area was scanned and each pixel-response was stored in a matrix. The

imaging area was defined with 2048 pixels in total, hence, acquisition was done by

processing a complete scan for 2048 pixels separetely. In this study, the system matrix

has the following form:

S =



s1,1 s1,2 s1,3 . . . s1,2048

s2,1 . . . . . . . . . s2,2048

s3,1 . . . . . . . . . s3,2048
...

...
...

...
...

s77601,1 . . . . . . . . . s77601,2048


(2.42)

In (2.42), columns of S represent the pixels and rows represent each time instance

in a complete scan. This means that, system response of each pixel was stored as

a column vector while obtaining the system matrix. Scanning duration was chosen

to be Tscan = 3.9 msec and fs = 20MHz sampling frequency was used. Both for

Lissajous and Cartesian Trajectory, the number of data points, Ndata , in one scan for

each pixel can be found as:

Ndata = Tscan.fs = 77601 (2.43)

As there were 2048 pixels in the image frame in this simulation, the dimension of the

system matrix is 77601 × 2048.
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For further analysis of the System Matrix, Singular Value Decomposition (SVD) can

be applied in order to obtain a factorization of the S matrix, in the form

S = M Σ V T = Σ2048
i=1 miσiv

T
i (2.44)

In this decomposition, M matrix consists of 2048 orthonormalized eigenvectors as-

sociated with the 2048 largest eigenvalues of STS, and V matrix consists the same

information of SST [14]. Additionally, mi are the column vectors of the matrix M

and vi are the same for V . The columns of M are called the left singular vectors

and the columns of V are called the right singular vectors. In equation (2.44), Σ is a

diagonal matrix with diagonal entries

σ1 ≥ σ2 ≥ ... ≥ σ2048 ≥ 0 (2.45)

which are the non-negative square roots of the eigenvalues of STS and are called

singular values.

It was explained that the aim of MPI is to map the MNP distribution in the imaging

space and the system is defined with the matrix equation given in equation (2.41).

This equation can be solved as an inverse matrix problem. The MNP distribution,

which is vector c, can be found with the classical approach, which is the left-multiplication

of each side with the equation inverse of S in (2.41). If the system matrix was full

rank, square matrix, then it could also be invertable. Here in this case, S is not in-

vertable. Therefore, SVD analysis was performed to solve the equation (2.41) in the

form

c = S−1 u (2.46)

Inserting (2.44) into (2.46) would give

c = Σ2048
i=1

mT
i u

σi
vi (2.47)
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While doing the SVD analysis, one can obtain information about the sensitivity dis-

tribution of the system. It can be said that, in equation (2.47), vi are image basis

vectors, each corresponding to a singular value σi. Image basis vectors that corre-

spond to higher singular values would show areas where the imaging system is more

sensitive. The sorted singular values are given in figures 2.14 and 2.15.

Figure 2.14: Sorted singular values for the system matrix that obtained from Lis-

sajous Trajectory. Maximum and minimum values are 1.133×10−7 and 3.729×10−9

respectively. The condition number is then found to be approximately 30.38.

29



Figure 2.15: Sorted singular values for the system matrix that obtained from Cartesian

Trajectory. Maximum and minimum values are 8.588 × 10−10 and 1.342 × 10−13

respectively. The condition number is then found to be 6.3979× 103.

The condition number measures the sensitivity of the solution of a problem to pertur-

bations in the data. It can also be used to predict the convergence of iterative methods

[15]. The higher condition number a matrix has, the more ill-conditioned it gets.

Therefore, an ill-conditioned matrix can generate huge errors while aproximating the

solution. Examining the condition numbers found for this imaging system, it can be

seen that especially for Cartesian Trajectory, if no regulations were applied, iterative

image reconstruction methods would give large errors. This could be a result of the

characteristics of the Cartesian Trajectory, as one drive field frequency is much more

larger than the other one, scanning in the direction of the lower frequency is much

more slower. Therefore, information gathered in one direction during one scan is al-

ways less than the information gathered in the other direction. This may result in a

more ill-conditioned system matrix with a higher condition number.

While performing the SVD analysis for the imaging system, both for Lissajous and

the Cartesian Trajectories, a combination of two system matrices that were obtained

from the Drive Field channels z and y were combined. Aiming to provide computa-

tional simplicity, matrix entries were decomposed to their real and imaginary parts,

and sorted as real and imaginary parts in the system matrix. Then, without changing
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this structure, two matrices from the z and y channels were combined together, end-

wise, resulting in a single System Matrix. SVD analysis was made to the resultant

System Matrices. Figures 2.16 and 2.17 show SVD analysis results for Lissajous and

Cartesian Trajectories, respectively.

Figure 2.16: Image basis vectors transformed to 2D image that correspond maximum

(upper) and minimum (lower) singular values that are obtained from Lissajous Scan-

ning.
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Figure 2.17: Image basis vectors transformed to 2D image that correspond maximum

(upper) and minimum (lower) singular values that are obtained from Cartesian Scan-

ning.
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2.3.5.2 Frequency Domain System Matrix

Reminding that there were two different receiver channels, z and y receive coils, in

this system, one can conclude that there will be two separate system matrices with

77601 × 2048 dimension and two different signals that are recorded. In computa-

tional basis, it would be hard and inefficient to work with such big matrices. Luckily,

when the system is examined in frequency domain it can be seen that the energy of

the signals are accumulated at certain frequencies, mostly at the harmonics, and it de-

creases with the increasing frequency [16] as it can be seen in figures 2.19 and 2.20.

Consequently, one can convert the time-domain system matrix into frequency domain

and filter out the frequency components that have energy values below average. Aim-

ing this, the time domain signals for each position of the sample, which are actually

columns of the system matrix, are converted to frequency domain, using fast fourier

transform and frequencies that correspond to lower energy values were filtered out,

like it is illustrated in Fig. 2.18.

Figure 2.18: Schematic illustration explaining the frequency domain conversion of a

system matrix.
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The mathematical expression for the energy of the system function in frequency-

domain, sk(r), is given as:

wk :=

√∫
object

|sk(r)|2d3r (2.48)

Figure 2.19: Energy distribution of y and z- channel system functions for frequencies

between 0 to 1000 kHz, that was obtained from Lissajous Scanning. It can be seen

that the energy is dominant at harmonic frequencies.
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Figure 2.20: Energy distribution of y and z- channel system functions for frequencies

between 0 to 4000 kHz, that was obtained from Cartesian Scanning. It can be seen

that the energy is dominant at harmonic frequencies.
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SVD analysis in frequency domain has the same steps as in time domain except that

after obtaining system matrices in frequency domain and examining the energy dis-

tribution, a ’cut frequency’ was chosen to downsize each matrix by trucating it and

filter out the low energy part of the system matrix, as it was explained before. Figures

2.21 and 2.22 show sorted singular values, and 2.23 and 2.24 show SVD analysis

results for Lissajous and Cartesian Trajectories, respectively. The matrix condition

numbers differ from those were obtained in the time-domain case, as the matrices are

downsized in frequency domain.

Figure 2.21: Sorted singular values for the system matrix that obtained from Lis-

sajous Trajectory. Maximum and minimum values are 1.057×10−8 and 6.24×10−12

respectively. The condition number is then found to be approximately 1.69× 103.
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Figure 2.22: Sorted singular values for the system matrix that obtained from Cartesian

Trajectory. Maximum and minimum values are 4.196 × 10−8 and 6.121 × 10−14

respectively. The condition number is then found to be approximately 6.855× 105.
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Figure 2.23: Image basis vectors transformed to 2D image that correspond maximum

(upper) and minimum (lower) singular values that are obtained from Lissajous Scan-

ning.
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Figure 2.24: Image basis vectors transformed to 2D image that correspond maximum

(upper) and minimum (lower) singular values that are obtained from Cartesian Scan-

ning.

For further analysis on the system, spatial structure of the System Matrix can be in-

terpreted for each scanning trajectory. Following figures, 2.25, 2.26, 2.27 and 2.28

show six different harmonic frequency components for each of 2D system functions,

one coming from the y-direction Drive Field Channel and the other is from the z-

direction Drive Field Channel. Spatial Frequency components were sorted according

to their frequency values, f t, which can be represented as f t = k4f . In this simu-

lation, 4f was set to be approximately 257.7 Hz. The aim of analyzing the spatial
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frequency pattern of system matrices is to understand the spatial sensitivity distribu-

tion of a spesific frequency component. In each figure, first six harmonic components

were shown and lighter areas indicate higher sensitivity. It can also be seen that the

resolution increases with the increase in the order of the harmonics. This informa-

tion provides the intuation that the more harmonics included in the system matrix the

higher the resolution of the reconstructed image is.

Figure 2.25: Spatial Frequencies for y-channel System Matrix that is obtained from

Lissajous Trajectory scan.
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Figure 2.26: Spatial Frequencies for z-channel System Matrix that is obtained from

Lissajous Trajectory scan.
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In reconstruction, using higher harmonics of the system matrices and the recorded

signals should provide higher resolutions. The trade off between the computational

simplicity and good resolution can be optimized using the frequency domain energy

distribution, as it was explained previously in this section. One can decide on a trun-

cation harmonic frequency by examining the energy distributions, and downsizing the

system matrices and the recorded signals. Spatial Frequency distributions of Carte-

sian Trajectory are further given below.

Figure 2.27: Spatial Frequencies for y-channel System Matrix that is obtained from

Cartesian Trajectory scan.
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Figure 2.28: Spatial Frequencies for z-channel System Matrix that is obtained from

Cartesian Trajectory scan.
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2.4 Image Reconstruction

2.4.1 Introduction

One of the MPI techniques that had been presented in literature is the x-space MPI.

This technique enables the reconstruction of a native MPI image, without using a

system function, harmonics, or pre-characterization of the nanoparticles or imager

[10]. X-space reconstruction method uses the fact that if the Selection Field has a

constant spatial distribution and Drive Field is uniform in the imaging space, then the

concentric distribution of MNP inside the FFP is proportional to the induced signal

over the FFP scanning velocity. This method is accepted to be a simpler method than

the system matrix reconstruction method, but it but it requires the knowledge of the

FFP exact position and velocity at each time step of the scanning process [17].

Iterative methods are also commonly used in System Matrix image reconstruction

for MPI. Likewise for choosing the scanning trajectory, utilization of the effective

reconstruction technique is crucial. In this study, three different image reconstruction

algorithms were used: Algebraic Reconstruction Technique, Selective Singular Value

Decomposition Method and Truncated Singular Value Decomposition Method.

The following matrix notation was used for 2D image reconstruction:

S c = u (2.49)

2.4.2 Reconstruction Techniques

2.4.2.1 Algebraic Reconstruction Technique

Algebraic Reconstruction Technique is an iterative algorithm that was introduced by

Gordon et al. [18] for solving the problem of three dimensional reconstruction from

projections in electron microscopy and radiology [19][20]. In 2.49, the values of the

each pixel, meaning the particle distribution data, were stored in the vector c, S is the

System Matrix and u is the signal received.
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The computational procedure in ART starts with assigning an initial guess to the

unknown, which was the particle distribution in the simulation. Then, by using the

following update equation, the algorithm computes an approximate solution for the

system, in order to find c.

cl+1 = cl +
uj − sj · cl

||sj||2
(2.50)

where j = l mod(M + 1), sj is the jth row of the matrix S and uj is the jth entry

of the signal vector, u. As an index for iteration, l was used in the notation. The idea

behind this technique can be explained as illustrated in Fig. 2.29.

Figure 2.29: Illustrative explanation for the idea behind ART. c0 is the initial guess

and ci are the projections on the line equations of the system, which are updated by

using equation (2.50). c is the actual particle distribution that is aimed to be approxi-

mated by using this method.
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2.4.2.2 Least Squares Approach

This method aims to solve the system matrix equation by left-multiplication of each-

side with the inverse of the system matrix. In order to obtain an invertible matrix

out of the system matrix, S was multiplied with its Hermitian which is the conjugate

transpose of itself. Therefore, the system equation takes the form

SHS c = SH u (2.51)

For simplicity, a new notation can be used for the above equation

A c = b (2.52)

where A = SHS and b = SH u. Obtained new equation, (2.52), can now be solved

as an inverse matrix problem, where A becomes the new system matrix that can be

decomposed as follows

A = U Σ V T = Σ2048
i=1 uiσiv

T
i (2.53)

Here, ui are the column vectors of the matrix U and vi are the same for V . Inserting

equation (2.53) into (2.52) will give

c = A−1 b = Σ2048
i=1

uTi b

σi
vi (2.54)

which gives c, the MNP concentration distribution in the imaging space. Examining

the summation in the right hand side of the equation, one can conclude that vi vectors

can be considered as the image basis vectors, each correspond to a different singu-

lar value σi. The basis vectors that correspond to smaller singular values would be

dominant in reconstructing the image, as the coefficient uTi b

σi
would increase, there-

fore during the reconstruction process, vi vectors that correspond to smaller σi can be

truncated as a regulation.
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There are two commonly used methods in order to regulate the effect of noisy SVD

components. First one is the Selective SVD (SSVD) Method, which chooses to include

SVD components, which are consistent with the system and each other, not as small

as the noisy level [21]. In this study, a treshold value was chosen according to the

Picard plot, that will be explained in the next section.

Second method is the Truncated SVD (TSVD) Method. Likewise in Selective SVD

Method, the aim of TSVD is to eliminate the negative effect of noisy SVD compo-

nents. In order to do so, in TSVD, components that correspond to larger singular

values were included. This means to ’truncate’ SVD components at a certain value

[21].

The mathematical expressions of the solution for SSVD method is

x = A−1b =
∑
|uTi b|>ks

uTi b

σi
vi (2.55)

The mathematical expressions of the solution for TSVD method is

x = A−1b =
kt∑
i=1

uTi b

σi
vi (2.56)
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2.5 Results and Conclusions

In order to test the system performance, a phantom was created as in Fig 2.30. Then,

System Matrix reconstruction techniques were applied both with and without noise

effects. Results are given in figures 2.31, 2.32, 2.34, 2.35, 2.36 and 2.37

Figure 2.30: 2D cross-section of the particle distribution that had been used as

the phantom in this simulation. For simplicity, magnetic core concentration for all

nanoparticles in this distribution of the phantom was chosen to be equal..

48



The results were compared using Peak Signal-to-Noise Ratio (PSNR) which gives the

ratio between the maximum possible value of the original signal, which is the particle

distribution in this case and the power of the disrupting noise. PSNR value can be

calculated by using the Mean Square Error (MSE), formulated as

MSE =
1

2048

64∑
j=1

32∑
k=1

[I(j, k)−R(j, k)]2 (2.57)

where j and k are indices in the imaging space, I is the original image matrix and R is

the reconstructed image matrix. Then by using MSE, PSNR value can be found as

PSNR = 10 log10
( MAX2

I

MSE

)
(2.58)

where MAXI is the maximum pixel value of the original image.

Figure 2.31: Results for Cartesian Scanning Trajectory, without any additional noise.

PSNR values for ART, SSVD and TSVD are 9.23, 54.31, 47.68 respectively.
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Figure 2.32: Results for Lissajous Scanning Trajectory, without any additional noise.

PSNR values for ART, SSVD and TSVD are 8.38, 283.55, 57.95 respectively.
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Noise addition was made by using MATLAB function ’awgn’, which generates ran-

dom numbers with Gaussian distribution. This function calculates the variance for

the Gaussian distribution as the noise power, with the desired SNR value, using the

original signal. In this model, SNR values were compared to realistic data that are

presented in Buzug et al.[3].

Figure 2.33: SNR values for different frequencies. Maximum SNR value is found to

be approximately 34 dB and it can be seen that SNR value increases at signal harmon-

ics. Comparing these results with experimental data given in [3], it can be concluded

that 34 dB SNR level is acceptable as 40dB SNR was observed experimentally for

200 averages.
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Figure 2.34: Results for Cartesian Scanning Trajectory, with SNR = 50 dB addi-

tional noise. PSNR values for ART, SSVD and TSVD are 8.07, 19.3686, 19.5740

respectively.
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Figure 2.35: Results for Lissajous Scanning Trajectory, with SNR = 50 dB addi-

tional noise. PSNR values for ART, SSVD and TSVD are 8.07, 21.2961, 21.3319

respectively.
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Figure 2.36: Results for Cartesian Scanning Trajectory, with SNR = 34 dB addi-

tional noise. PSNR values for ART, SSVD and TSVD are 7.13, 17.2133, 16.0055

respectively.
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Figure 2.37: Results for Lissajous Scanning Trajectory, with SNR = 34 dB addi-

tional noise. PSNR values for ART, SSVD and TSVD are 8.07, 17.2133, 17.4243

respectively.

In this chapter, details of the modelled MPI system were given and three different

reconstruction techniques were used in order to obtain images. When the results are

compared, it can be seen that the highest PSNR vales were found for SSVD method,

when Lissajous scanning trajectory was used. ART reconstructed images, on the other

hand, have the least PSNR values and mostly effected by the noise.
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CHAPTER 3

SIMULATIONS ON TEMPERATURE DISTRIBUTION FOR HARMONIC

MOTION MICROWAVE DOPPLER IMAGING AND TEMPERATURE

MAPPING USING MPI

3.1 Introduction

In the previous chapter, a 3D MPI system was modelled with its main components

and the parameters that effect the output signal. With the aim of obtaining solutions

on temperature estimation, it was decided to insert a temperature distribution in the

simulation, which was computed using Pennes’ Bioheat Equations [22][23].

A healthy, homogeneous breast tissue model was chosen as the medium characteris-

tics of where the heat transfer process took place. Characteristic parameters for the

medium were inserted into the bioheat equation [24][25].

3.2 Finite Difference Time Domain Solution for Pennes Bioheat Equations

Most commonly used and accepted theoretical analysis of the heat transfer process

between the blood vessels and surrounding tissues were proposed in 1948 and referred

as Pennes’ Bioheat Equations [22].
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Basic form is given in equations (3.1) and (3.2) for 1D bioheat transfer analysis.

ρtct
∂T (x, t)

∂t
= kt

∂2T (x, t)

∂2x
+wbcb (Ta − T (x, t)) +Qultrasound +Qmetabolic (3.1)

∂T (x, t)

∂t
=

kt
ρtct

∂2T (x, t)

∂2x
+
ωbcb
ρtct

(Ta − T (x, t)) +
Qultrasound +Qmetabolic

ρtct
(3.2)

where ρtct is the breast tissue density, ct is the breast tissue specific heat, kt is the

breast tissue thermal conductivity, cb is the blood specific heat, wb is the blood per-

fusion rate, Ta is the arterial blood temperature, and lastly, Qm is the metabolic heat

and, Qultrasound is the ultrasound heating.

For simplicity, let kt
ρtct

= C1 and ωbcb
ρtct

= C2. The Bioheat Equation for 2D imaging

space on z-y plane would then become

∂T (y, z, t)

∂t
= C1

∂2T (y, z, t)

∂2y
+ C1

∂2T (y, z, t)

∂2z

+C2 (Ta − T (y, z, t)) +
Qultrasound +Qmetabolic

ρtct

(3.3)

The Finite Difference Time Domain (FDTD) method provides approximate solutions

for differential equations, especially while implementing a continuous differential

function in a simulation. In this study, while usind FDTD in discretization, dt, dy

and dz notations were used to represent the stepsize in time, in y-axis and z-axis

respectively. Partial derivatives in the equation can be written as

∂T (y, z, t)

∂t
=
Tj,k,t+1 − Tj,k,t

dt
(3.4)

∂2T (y, z, t)

∂2y
=
Tj+1,k,t − 2Tj,k,t + Tj−1,k,t

(dy)2
(3.5)

∂2T (y, z, t)

∂2z
=
Tj,k+1,t − 2Tj,k,t + Tj,k−1,t

(dz)2
(3.6)
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In this study, step-size that define the grids of the medium in each direction were taken

equal, hence, dz = dy. Recall equation(3.3) and for simplicity, let dz = dy = d and
Qultrasound+Qmetabolic

ρtct
= Q∗. The discretized equation will take the form

Tj,k,t+1 − Tj,k,t
dt

= C1
Tj+1,k,t − 2Tj,k,t + Tj−1,k,t

(d)2

+C1
Tj,k+1,t − 2Tj,k,t + Tj,k−1,t

(d)2

+C2(Ta − Tj,k,t) +Q∗

(3.7)

The last step is to write the equation in FDTD form in order to explicitely show the

time iteration

Tj,k,t+1 =
dt

d2
C1 (Tj+1,k,t + Tj−1,k,t + Tj,k+1,t + Tj,k−1,t − 4Tj,k,t)

+(1− C2dt) Tj,k,t + C2 dt Ta + dt Q∗
(3.8)
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3.3 Realistic Numerical Simulations for Focused Ultrasound Heating

3.3.1 Introduction

In the simulation model, energy of a focused ultrasound beam was used as the heat

source and the change in temperature distribution was examined. The problem geom-

etry is given schematically in Fig. 3.1. The initial value for the ambient temperature

was defined as 310 Kelvin. This value was also assigned as the boundary condition.

Table 3.1 show numerical values that were used in the model [24].

Figure 3.1: Schematical illustration for the setup that has been modelled in this study.

Focused ultrasound was modelled to be applied in y-direction in the imaging plane.
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Table 3.1: Numerical values used for Bioheat Equation.

healthy breast tissue density (kg/m3) ρt 1020

healthy breast tissue specific heat (J/(kg.K)) ct 3000

healthy breast tissue thermal conductivity (W/(m.K)) kt 0.42

blood specific heat (J/(kg.K)) cb 4200

blood perfusion rate (1/s) wb 0.0018

arterial blood temperature (K) Ta 310.15

metabolic heat (W/m3) Qm 450

The initial condition that defines the temperature everywhere in the imaging space

was set as Tj,k,1 = 310 Kelvin at the beginning, where t = 0 sec, just before the fo-

cused ultrasound excitation. Space domain boundary conditions for the temperature,

were set to be constant (Dirichlet boundary condition) as T1,k,t = 310 Kelvin and

Tj,1,t = 310Kelvin, during the excitation.

Two heat sources were considered in this model. First one is generated from the to-

tal metabolical activity and it was assumed to be uniform everywhere in the imaging

space. Metabolism-generated heat was included in the model as Qm, the metabolic

heat per volume. The second source is the energy of a focused ultrasound beam with

the intensity that is measured and recorded in Electrical and Electronics Faculty labo-

ratories at Middle East Technical University during the HMMDI project [9]. The heat

generated by the focused ultrasound beam power was calculated using this intensity

and applied as a distributed heat source with the symbol Qultrasound. 3-D illustration

of the setup is given in Fig. 3.2. In order to examine the heat distribution, and the tem-

perature changes in the whole imaging area, a cross section on y-z plane was chosen,

at the center of x-axis. An illustration for the boundary condition and heat distribu-

tions is given in Fig. 3.3 and 2-D cross section of the actual 3-D focused ultrasound

intensity distribution is given in Fig. 3.4.
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Figure 3.2: Illustration of the 3-D setup. The limits of FOV is shown with blue solid

lines that forms a rectangular volume. Focused Ultrasound Transducer is modelled

such that it excites along y-direction and the focus point is set to be at the center of

the volume. The cross section area is shown with the dashed, blue lines.

Figure 3.3: Illustration that shows the boundary condition and heat distributions.

Qm is uniform everywhere in the area.
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Figure 3.4: Cross section of the actual 3-D focused ultrasound intensity distribution.
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3.3.2 Temperature Distribution Results of the Pennes Bioheat Model

Fig. 3.5 shows the change in temperature distribution during FUS excitation.

Figure 3.5: Change in temperature distribution when focused ultrasound applied

in the imaging area fordifferent durations between 10 ms and 2 seconds, along y-

direction.
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3.4 Temperature Estimation Method Using Magnetic Nanoparticles

3.4.1 Introduction

In this thesis study, in order to propose a method for temperature estimation using

the MNPs, Weaver et al.[26] was considered as a starting point. Article proposes a

method for estimating the temperature in 0-D, which is independent of the variations

in magnetic core concentration and the size distribution of MNPs.

Characteristic Magnetization Signal of MNPs depends on the ambient temperature as

recalled in equation (3.9).

M(r, t) = MSAT × Vparticle ×
[
coth(βB(r, t))− 1

βB(r, t)

]
(3.9)

Investigating the simple mathematical expression given for the Magnetization, some

variables cause complications while obtaining a model[26]. For instance, unlike the

ideal case, volume-size characteristics of nanoparticles that were produced in an ex-

perimental setup and placed in a phantom, shows a large variety. Therefore, har-

monics of the induced signal in the Receive coils is actually being produced as a

sum of different harmonics of mixed signals, generated by nanoparticles with varying

sizes. Secondly, the constant MSAT which represents the saturation magnetization

of MNPs, actually is dependent on the temperature itself. These two facts should be

considered while obtaining realistic and accurate solutions for temperature estimation

algorithms.

The signal generated by a spatial distribution of MNPs with varying volume char-

acteristics is nothing but a sum of individual Langevin Functions that correspond to

nanoparticles with different volumes.
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Changing the notation for the total magnetic field as
#»

B( #»r , t) = H0 cos(ωt) and

assuming it as the sum of Drive and Selection Fields, equation (3.9) becomes

# »

M( #»r , t) =
∑
i

niMSAT Vi

[
coth(AiL cos(ωt))− 1

AiL cos(ωt)

]
(3.10)

where

Vi = π
d3i
6

(3.11)

AiL =
µ0 MSAT Vi H0

kB T
(3.12)

In equation (3.10), variable ni is the number of MNPs that have the same volume.

Likewise in equations (3.11) and (3.12), i represents an arbitrary variable value for an

arbitrary particle volume. Additionally, considering equation (3.12), AiL appears to

reflect changes both in the temperature, T and the Magnetic Field Strength H0 which

is advantageous in proposing a method for temperature estimation.

3.4.2 Calibration Curves Obtained from MPI Relaxometer and 1D Scanning

It was mentioned that the variable MSAT is also dependent on the temperature. The

relation can be modelled by the mathematical expression in equation (3.13)

MSAT (T ) = M0(1− bT a) (3.13)

where M0 is the Magnetization Signal that is generated at zero Kelvin temperature.

In Weaver’s article, constant values vor a and b are as follows: a = 1.65,b = 2.8 ×
10−5K

3
2 . AiL appears to change proportionally with B/(T/(1− bT a)).
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Figure 3.6: Plots showing changes in the Ratio of Harmonics with respect to H0/T .

All of the three plots were obtained from 0-D simulations with only one excitation

field with frequency 1470Hz. From upper to the lower graphs, the amplitude of the

applied field increases.
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Fig.3.6 shows that for the same value of H0/T , the ratio of the fifth and the third

harmonics are the same. This means that, when temperature is held constant and the

applied magnetic field strength is changed; without changing the particle distribution,

a Calibration Curve can be obtained via recording the ratio of the fifth and the third

harmonics. This leads to a conclusion that, if this calibration curve is obtained and the

magnetization signal is decomposed to its harmonics, temperature value correspond-

ing to the known applied field strength can be found.

Figure 3.7: Calibration Curve obtained from MPI relaxometer by changing the tem-

perature from 310 to 320 Kelvin, under applied magnetic field with 1mT strength and

20kHz frequency.

The calibration curve shown in Fig. 3.7 was obtained from a model of single nanopar-

ticle that is excited with a sinusoidal drive field, in other words, without a particle

distribution or a scanning process. In this study, as the next step, 1D MPI scanning

results were obtained to form a calibration curve of a line scan. In order to do so,

different calibration curves were obtained using different Drive Field frequencies and

field strengths in order to find the most sensitive parameters for temperature changes

by comparing the slopes of the obtained calibration curves. Comparison table is given

in table (3.2).
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Table 3.2: Slopes of calibration curves, obtained by using different parameters for the

applied field strength and frequency.

5 kHz 10 kHz 20kHz

1 mT 1,768 1,768 1,768

2 mT 1,346 1,346 1,346

3 mT 0,993 0,993 0,993

4 mT 0,748 0,748 0,748

5 mT 0,583 0,583 0,583

Examining the comparison table, one can conclude that the most sensitive parameters

are when 1 mT drive field strength applied and the ratio of 5th to 3rd harmonics were

used. It can be seen that the frequency changes does not effect the slopes of the

calibration curves. The resultant calibration curve is given below in Fig. 3.8.

Figure 3.8: Calibration Curve obtained from 1D Line scanning by changing the tem-

perature from 310 to 320 Kelvin, under applied magnetic field with 1mT strength and

20kHz frequency and an additional 2 T/m Selection Field .
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3.4.3 Results and Conclusions

It was explained that the aim in this study is to estimate the temperature distribution in

a certain region, which is specifically the focal region of the focused ultrasound probe,

after ultrasound excitation. For simplicity, it was assumed that FOV is fully covered

with particles in each point, in other words, magnetization signal was collected from

all over the imaging area. The scanning and the estimation were done only around

the ultrasound focus area , which is the region of maximum temperature rise. The

Selection field was set to have 2 T/m amplitude in z-direction, and 1 mT Drive Field

with 20 kHz Drive Field frequency was given additionally in the y-direction. In order

to scan each pixel, the center of the FFP was shifted at each pixel center and tempera-

ture was estimated using the calibration curve at each center location. 2D temperature

estimation results and estimation error are given below in figures 3.9 and 3.10.

Figure 3.9: Estimated temperature distribution around the ultrasound focus area (lim-

its were marked with red lines) and the actual temperature distribution in the imaging

space, after the ultrasound was applied for 3 seconds. Maximum relative error was

calculated as 0.003%, approximately.
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Figure 3.10: Error Distribution between the original temperature distribution and the

estimated temperature distribution.
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While proposing a temperature estimation method, it is important to consider any

parameter in an actual setup that would affect the results, as the actual aim is to

track the temperature changes that may occurin an imaging technique, the HMMDI

method. Therefore, the method should also be tested after noise addition. In order to

do so, calibration curves were firstly examined for different noise levels, as it is given

in Fig. 3.11, and the difference between the calibration data that was found for noise

free case and noise added cases, given in Fig. 3.12. In addition to this, difference in

the signal spectrum was analyzed for ambient temperatures 310 and 311 K and values

at the first five harmonics were examined Fig. 3.13.

Figure 3.11: Four different calibration curve data, obtained for noise free case and

noise added cases when SNR is 80, 60 and 40 dB, respectively. It can be seen that

as SNR decreases, data become more dispersed and lose the linear structure. For this

reason, one can conclude that the error in temperature estimation would increase as

SNR decreases.
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Figure 3.12: Difference between the calibration curve data, obtained for noise free

case and noise added cases when SNR is 80, 60 and 40 dB, respectively.
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Figure 3.13: Difference data in the signal spectrum. It can be seen that the signal

levels at the 3rd and 5th harmonics changes about -40 dB, for 1 K alteration in the

ambient temperature.
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3.5 Linearization Method for Temperature Estimation Using Magnetic Nanopar-

ticles

3.5.1 Introduction

Linearization is a way to approximate the output of a non-linear function validly in a

small region and it is commonly used to transform a nonlinear problem into a linear

one that can be solved using standard methods. It was explained that an MPI system

takes the advantage of the non-linear behaviour of MNPs when they are exposed to

an external magnetic field. Therefore in this study, the modelled MPI system can be

considered non-linear, as the relation between the input excitations and the resultant

output signal is defined with the non-linear Langevin Function as given in equation

(2.2). In the previous section, it was explained that there is a relation between the

medium temperature and the MNP magnetization, as given in equation (3.10). In this

study, a linearization method using Taylor Series Expansion, is proposed to approx-

imate the Langevin function and obtain a linear matrix equation for describing the

relation between the temperature and the magnetization signal.

3.5.2 Linearization Method

In order to linearize the magnetization signal equation, Taylor Series Expansion is

used. The Taylor expansion of a function around a real point x0 is the representation

of the map as sum of a polynomial of a certain degree and an infinitesimal function of

order bigger than the degree [27]. Formulation for the Taylor expansion is given as

f(x) = f(x−x0)+
f ′(x− x0)

1!
x+

f(x− x0)
2!

x2+ · · · =
∞∑
k=0

f (k)(x− x0)
k!

xk (3.14)
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For the proposed method, only the first and the second terms were used. As the aim

is to find the temperature distribution, and as the magnetization signal is modelled

with the temperature-dependent Langevin function; Taylor expansion above can be

written using variable T, assuming that the function is linearized around the initial

temperature T0. The resultant formulation can be written as

f(T ) = f(T0) + f ′(T0) (T − T0) (3.15)

Here, T represents the actual temperature value for a single point that will be esti-

mated and T0 is the initial temperature, which was set to be 310◦K and the function f

represents the received signal at a time instance in the imaging space, therefore it can

also be represented as u, like it was defined in equations (2.36) and (2.38) . One can

conclude that the temperature value T, can be estimated if the magnetization signal

for T , T0 and the partial derivative of the magnetization signal at T0 are known.

In the previous chapter, it was explained that, the relation between the excitations and

the output signal in MPI system can be described with a system matrix ( 2.42) and

particle distribution can be found with a matrix equation ( 2.40 ). Using the fact that

the system matrix entries are dependent on the Langevin function as previously given

in equation (3.10), elements of the system matrix can be written as

st,i,τ = K
∂Lt,i,τ
∂t

= K L̇t,i,τ (3.16)

where K is a constant for representing the parameters that are related to MNP and

medium characteristics, st,i,τ is the discretized form of system function and Lt,i,τ is

the discretized form of the magnetization function. Like it was denoted in equation

(2.38), t represents the index for the time instance and i represents the pixel number

in FOV. Differently in this equation, τ represents the temperature value at pixel i, and
∂L
∂t

is represented with L̇t,i,τ .
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Using equation (3.16) in (3.15), knowing that the f function is actually the system

matrix entry, one can obtain

KL̇t,i,T = KL̇t,i,T0 +K
∂L̇t,i,τ
∂τ

∣∣∣
τ=T0

(T−T0) = KL̇t,i,T0 +KL̇′t,i,T0 (T−T0) (3.17)

where

L̇′t,i,T0 =
∂L̇t,i,τ
∂τ

∣∣∣
τ=T0

(3.18)

Using the consequent equations above, in an actual MPI system, it is possible to

estimate the temperature distribution in the imaging space, using matrix equations.

Recalling equation (2.38), the discrete equation for defining the relation between the

magnetization signal and the particle distribution can be rewritten as

ut =
2048∑
i=1

st,i,Ti ci (3.19)

where ut is the induced magnetization signal for certain temperature distribution and

the notation Ti denotes the temperature value at pixel i.

Additionally, system matrix can be represented as

S = K



L̇1,1,T1 L̇1,2,T2 . . . L̇1,2048,T2048

L̇2,1,T1 . . . . . . L̇2,2048,T2048

L̇3,1,T1 . . . . . . L̇3,2048,T2048

...
...

...
...

L̇77601,1,T1 . . . . . . L̇77601,2048,T2048


(3.20)
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and the system matrix equation in equation (2.40) would become

K



L̇1,1,T1 L̇1,2,T2 . . . L̇1,2048,T2048

L̇2,1,T1 . . . . . . L̇2,2048,T2048

L̇3,1,T1 . . . . . . L̇3,2048,T2048

...
...

...
...

L̇77601,1,T1 . . . . . . L̇77601,2048,T2048


×


c1

c2
...

c2048

 =


u1

u2
...

u77601

 (3.21)

Taking the magnetization signal as the function f in equation (3.15), one can obtain

uT − uT0 = u̇
T0
4T (3.22)

where 4T = T − T0 is actually the distribution of the change in temperature that is

desired to be estimated and is a 1×2048 column matrix that represents the temperature

value for each pixel. Here, uT is the magnetization signal vector that is obtained with

the temperature distribution, T , and uT0 is the magnetization signal vector that is

obtained when each pixel is 310◦K. These two signals are a priori data that can

be collected before estimating the temperature distribution. Recalling the equation

(3.18), u̇
T0

can be shown as

u̇
T0

= K


L̇′1,1,T0 L̇′1,2,T0 . . . L̇′1,2048,T0

L̇′2,1,T0 . . . . . . L̇′2,2048,T0
...

...
...

...

L̇′77601,1,T0 . . . . . . L̇′77601,2048,T0

×

c1 . . . 0

0
. . . 0

0 . . . c2048

 (3.23)
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Equation (3.23) can be written in the form

u̇
T0

= K Ṡ c (3.24)

where

Ṡ =



L̇′1,1,T0 L̇′1,2,T0 . . . L̇′1,2048,T0

L̇′2,1,T0 . . . . . . L̇′2,2048,T0

L̇′3,1,T0 . . . . . . L̇′3,2048,T0
...

...
...

...

L̇′77601,1,T0 . . . . . . L̇′77601,2048,T0


(3.25)

and, in order to use the correct notation in the matrix equation, the particle distribution

data was converted to a 2048× 2048 diagonal matrix c which has the form

c =


c1 . . . 0

0
. . . 0

0 . . . c2048

 (3.26)

For simplicity, let uT − uT0 = uD and one can obtain

uD = K Ṡ c4T (3.27)

Similarly as it was explained, Ṡ matrix can also be decomposed using SVD analysis

in order to solve the equation (3.27) via left-multiplication of the inverse of the Ṡ on

each side. Additionally, the particle concentration c can be estimated via methods

that was discussed in the previous chapter and used as a-priori data while estimating

the temperature distribution4T . The generalized solution to the matrix equation can

be written as

c4T =
Ṡ
−1
uD

K
(3.28)
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Let T c = c4T . As the particle distribution is known,4T distribution can be found

as

4T = c−1 T c (3.29)

3.5.3 Results and Conclusions

In figures 3.14, 3.15, 3.16, 3.17 the result of the temperature estimation is given

together with the original temperature distribution. Additionally in figures 3.18, 3.19,

3.20, 3.21 error distribution between the original and estimated temperature is given.

Maximum relative error for this method is calculated approximately as 0.0630%.

Figure 3.14: Estimated temperature distribution and the actual temperature distribu-

tion in the imaging space for the noise free case, after the ultrasound was applied for

2 seconds. For simplicity, it was assumed that the FOV is fully covered with uniform

particle distribution. Maximum relative error is calculated approximately as 0.063%
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Figure 3.15: Temperature estimation results for noise added case. SNR is set to be

80 dB and FUS was applied for 2 seconds. Maximum relative error is calculated

approximately as 0.0706%
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Figure 3.16: Temperature estimation results for noise added case. SNR is set to be

60 dB and FUS was applied for 2 seconds. Maximum relative error is calculated

approximately as 0.9805%
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Figure 3.17: Temperature estimation results for noise added case. SNR is set to be

40 dB and FUS was applied for 2 seconds. Maximum relative error is calculated

approximately as 11.5240%
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Figure 3.18: Error Distribution between the original temperature distribution and the

estimated temperature distribution for the noise free case.
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Figure 3.19: Error Distribution between the original temperature distribution and the

estimated temperature distribution when SNR is 80 dB.
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Figure 3.20: Error Distribution between the original temperature distribution and the

estimated temperature distribution when SNR is 60 dB.
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Figure 3.21: Error Distribution between the original temperature distribution and the

estimated temperature distribution when SNR is 40 dB.
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CHAPTER 4

CONCLUSION AND FUTURE WORK

The purpose of this thesis study was to develop a temperature estimation method that

provides good thermal resolution and accurate mapping for monitoring temperature

changes that may occur either during a medical imaging or thermal therapy. The

method uses magnetic nanoparticles (MNPs) that can be introduced intravenously

inside the body and take the advantage of temperature-dependent magnetic behavior

they show when they are exposed to an external magnetic field. As the outcome of

this study, two different methods were proposed and tested for noise free cases.

The MNPs inside the body can be directly imaged with the Magnetic Particle Imag-

ing (MPI) modality. This method uses the field free region (FFR) concept that can

be generated between two magnets with opposite polarity. The MNPs inside the FFR

is responsive to an additional time varying field. The FFR generating field is called

Selection Field, while the time-varying field(s) are called the Drive Field(s). MNPs

outside the FFR region generate no response as they are magnetically saturated. The

FFR is scanned throughout the field of view to generate magnetic particle distribution.

The magnetization response of the MNPs depend on the micro-environmental tem-

perature. It was previously shown that the temperature can be estimated by first gen-

erating a calibration curve for the MNP response at known temperature values. Then,

this curve can be used to obtain the actual temperature during an experiment. Previ-

ous studies on temperature estimation with MNPs are mostly limited to spectrometric

measurements for an MNP sample. Concurrent magnetic particle and temperature

imaging is still an open problem in the field of MPI.

In this thesis, we aimed at imaging both the MNP distribution and their temperature

distribution inside a volume of interest. We specifically focused on the application
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of the developed methods for Harmonic Motion Microwave Doppler Imaging (HM-

MDI). HMMDI, images the coupled microwave and elastic properties of tissues. An

amplitude modulated focused ultrasound (FUS) beam is applied to the region of in-

terest, creating local vibrations. Concurrently, a narrowband microwave signal is sent

and received. Received signal spectrum includes a Doppler component due to local

vibrations. This component depends both on the electrical and the elastic properties

of the vibrating region. The simulations and experiments showed promising results

for breast tumor detection with HMMDI [9]. The previous studies on this method

didn’t investigate the local temperature rise at the FUS focus. Therefore, we inves-

tigated the application of MPI temperature imaging for the HMMDI problem using

simulations in thesis study.

This thesis study can be divided into three phases. In the first phase, we developed

a MATLAB simulation tool for MPI, where characteristics of the applied fields, coil

geometries and sensitivities, shape and volume of MNPs and characteristics of data

acquisition sequences were considered as the main parameters. Using this simulator,

system matrices were obtained for image reconstruction and were analyzed in terms

of their condition numbers, energy distributions, singular values and spatial frequen-

cies. Then, for a certain MNP distribution in the imaging space, different techniques

were used for image reconstruction and resultant images had resolution ranged in

sub-millimeter level. In the second phase, we developed a thermal Finite Difference

Time Domain solver, which uses Pennes Bioheat Equations. We analyzed the resul-

tant temperature distribution for the experimentally measured FUS beam distribution

as a function of applied power and time. In the third phase, we proposed two novel

temperature imaging methods using MPI. In the first method, a 1-D calibration curve

is obtained from linear MPI scan in a single pixel. The FFR is scanned pixel by pixel,

and temperature of each pixel is determined using the measured data and the calibra-

tion curve. In the second method, the temperature and MNP density dependent MPI

signal equation is linearized around normal body temperature (310 K) using Taylor

Series Expansion. A two-step procedure was used to estimate the temperature distri-

bution. First, MPI data is gathered without FUS application, which assumes 310 K

uniform temperature distribution. Using this data, MNP distribution inside the FOV

is obtained. Then, FUS is applied, and another MPI data is acquired from the same
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FOV. Using the MNP distribution and linearized model, temperature distribution is

obtained. The following sections summarize the work done, results, and conclusions

for each phase of this study.

4.1 Magnetic Particle Imaging Simulations

In the developed MPI simulation model, selection field, drive field and receive coil ge-

ometries, MNP properties (temperature, magnetic saturation field, volume) and spa-

tial distribution can be defined. The currents applied to the coils can be input as a

time series. Coil generated magnetic field strengths were computed using Biot-Savart

Law, and the maximum relative error calculated between the analytical and the dis-

crete solutions was approximately 0.6%. The time domain received MPI signal is the

output of the simulator.

In the scope of the thesis we modelled drive field coil pair, selection field coil pair

and two receive coils as circular conductors. Selection and Drive field coils had 25

cm radius, whereas the Receive coils had 10 cm radius. Drive field coil pairs and

the receive coils were placed in the y and z directions. Selection field coil pair was

placed in the z-direction. Receive coil centers were 15 cm away from the imaging

center. Drive and Selection field coil pairs were placed 1 meter apart from each other.

Current amplitudes of the Drive field coil pairs were set to generate a Magnetic Field

strength of 20 mT both in z and y direction. The Selection field coil generated a gra-

dient strength of 2.5 T/m in the z-direction. With these characteristics, Field of View

(FOV) covered 16 mm in z-direction and 32 mm in y-direction, which was modelled

using 2048 pixels in the MPI simulator. Two different scanning trajectories, Lissajous

and Cartesian Trajectory were used for data acquisition. System matrix reconstruc-

tion method was used for image reconstruction in both time and frequency domain

using both trajectories. In the frequency domain case, noise dominated frequency

components were not used for image reconstruction. Cartesian Trajectory was ob-

tained by defining Drive field frequencies in z and y direction as, f z = 2.525kHz and

f y = 126.250kHz . And in case of the Lissajous Trajectory, the Drive field frequency

in z and y directions were set to be f z = 25.25kHz and f y = 25.51kHz respectively.
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4.1.1 System Matrix Analysis

In total, four different system matrices (time and frequency domain for both Lissajous

and Cartesian trajectories) were obtained for image reconstruction, and were analyzed

in terms of their condition numbers, energy distributions, singular values and spatial

frequencies.

For the spatial sensitivity distributions, resolution increases with increasing harmonic

frequency. Nevertheless, the signal power decreases with increasing harmonic num-

ber. In practice, beyond a certain frequency point noise dominates over the sig-

nal. Conventionally MPI systems use frequency domain data with truncating the

frequency components that does not carry information for image reconstruction. This

provides computational efficiency to handle the data allowing real time image recon-

struction. Generally, SVD is applied on the frequency domain data, and components

below a determined threshold is not used.

The image basis vectors that were obtained by the SVD analysis were examined. Each

pixel was distinguishable for the noise free case, since each frequency component

carries useful information. Especially, the frequencies between the harmonics carry

high resolution information. The amplitude of these components are very small and

practically dominated by noise. Consequently, a decrease both in the resolution and

PSNR values of the reconstructed images are observed for noise-added cases.

The condition number was found to be the smallest for the time domain Lissajous tra-

jectory case, which is 30.38 and highest for the frequency domain Cartesian trajectory

case, which is 6.855 × 105 meaning that the system matrix was more ill-conditioned

in the latter one. First reason for this result is the characteristic of the Cartesian

trajectory that the scanning frequency in one direction is very much lower than in

the other direction. Since inductive coil receive coils were used for data acquisition,

induced signal level is smaller in the low frequency direction. Second reason is that

time domain data preserves all information in the received signal, exhibiting a smaller

condition number compared to the frequency domain case that omits noisy frequency

components.
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4.1.2 Image Reconstruction Analysis

Three different techniques were used for image reconstruction: Algebraic Recon-

struction Technique (ART), Selective Singular Value Decomposition (SSVD), and

Truncated Singular Value Decomposition (TSVD). The reconstructed images by scan-

ning a Lissajous trajectory had larger Peak Signal-to-Noise Ratio (PSNR) values than

the resultant images that used Cartesian trajectory scanning. This result is expected

since Lissajous trajectory yields smaller system matrix condition number compared

to the Cartesian trajectory. SSVD and TSVD methods provided better image recon-

struction results compared to ART with similar PSNR values. For 34 dB data SNR,

image PNSR was calculated as 8.07, 17.21, and 17.42 for ART, SSVD, and TSVD,

respectively. SVD analysis and the use of largest SV components is, therefore, an

essential step for MPI image reconstruction. It can be concluded that SSVD or TSVD

reconstruction is preferable over ART reconstruction, and Lissajous trajectory should

be preferred over Cartesian trajectory. These results are consistent with the previous

studies in the MPI literature [2].

4.2 Thermal Simulations

To obtain the resultant temperature distribution after FUS sonication, Penne’s Bioheat

Equations were solved using the three- dimensional FDTD method. The simulator

was implemented in MATLAB. A healthy, homogeneous breast fat tissue model was

used as the medium where heat transfer occurred. The breast tissue density, specific

heat, and thermal conductivity; blood specific heat, perfusion rate, arterial blood tem-

perature, and metabolic heat parameters were input parameters of the simulator. A

focused ultrasound beam was used as the external heat source in the model, since the

motivation of temperature estimation in this thesis study is to track the temperature

for the HMMDI method. The heat generated by the focused ultrasound beam power

was calculated using an intensity data that is measured and recorded in Electrical

and Electronics Faculty laboratories at Middle East Technical University [9]. The

initial value for the medium temperature, for each pixel in FOV was defined as 310

K, just before the focused ultrasound excitation. Dirichlet boundary conditions with
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310 K were used for the numerical boundary truncation. The results showing the

temperature distribution for different durations of focused ultrasound heating were

analyzed. 0.015, 0.8, 2.5, and 3 K peak temperature rise was obtained for a continu-

ous FUS excitation duration of 0.01, 0.5, 1.5, and 2 seconds, respectively. The peak

FUS intensity in these simulations were 2.8 × 104W/m2. The resultant temperature

distributions were consistent with the applied FUS intensity.

4.3 Novel MPI Temperature Imaging Methods

In this thesis, two different methods were proposed for temperature imaging using

MNPs. The methods were applied only for noise free case and uniform particle dis-

tribution inside the FOV.

4.3.1 Pixel - Wise Linear Scanning (PWLS)

In the PWLS method, firstly, a 1-D calibration curve from linear single pixel MPI

scans is obtained. The FFR is scanned over each pixel and the calibration curve is

used to estimate the temperature inside each pixel. To demonstrate our hypothesis,

we first generated calibration curves for drive fields frequencies 5 kHz, 10 kHz, and

20 kHz, and drive field amplitudes between 1 mT and 5 mT. The curves were ob-

tained by dividing the amplitude ratio of 5th and 3rd harmonics in the temperature

range between 310 K and 320 K. The slopes of the curves were calculated to se-

lect the drive field parameters for best temperature sensitivity. The frequency did not

change the calibration curve slope. Noting that the sole temperature dependence in

our MPI signal model is Langevin function, this is an expected result. In practice,

magnetic particles respond to an external magnetic field by Neel and Brownian re-

laxation mechanisms that depend on drive frequency and temperature. These effects

were not taken into account in the scope of this thesis. The highest slope was achieved

for 1 mT drive field amplitude. Resultantly, in the simulations, drive field with 20 kHz

frequency and 1 mT amplitude in the y-direction, and 2 T/m Selection field in the z-

direction was used. For the noise free case, temperature estimation results had 0.01

K resolution and the maximum relative error was calculated as 0.003 %. The effect
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of noise on both calibration measurements and temperature estimation was analyzed.

To obtain a reliable calibration curve, more than 60 dB SNR was required, to have an

error smaller than 1% compared to the noise free case. In order to comment on the

required SNR for accurate temperature estimation, difference in the signal spectrum

was analyzed for a 1 K increase in temperature. The signal levels at the 3rd and 5th

harmonics changed about -40 dB. Therefore, assuming a 10 dB margin for accurate

temperature estimation, SNR values larger than 50 dB is required at these frequency

components. Single pixel temperature scans with different noise levels were also in

agreement with this result. We obtained 1.782, 0.033, and 0.0075 % maximum tem-

perature estimation errors for 40, 60 and 80 dB SNR levels, respectively.

4.3.2 Model Based Linearization (MBL)

In the MBL method, a linear relation between the temperature and the recorded mag-

netization signal is obtained by using Taylor Series Expansion of the MPI signal

model. The signal equation is expanded around 310 K, and high order terms are

discarded. A linear equation system is obtained. The temperature changes in all pix-

els can be obtained by solving this equation. This method requires the system matrix

as in conventional MPI. MPI data is acquired at the initial body temperature. Then,

the standard MPI imaging procedure is run, revealing the MNP distribution inside the

field of view. The MPI data is acquired again, after FUS excitation. Using the first

and second acquisitions and the MNP distribution, temperature variations in all pixels

can be solved.

Although this method can be applied for the same trajectory of the PWLS method

(1-D, single pixel scan), we used a Lissajous scan trajectory to cover a 16 mm x 32

mm FOV with uniform particle distribution. Drive field amplitude was 20 mT both in

z and y direction with frequencies 25.25 kHz and 25.51 kHz, respectively. Selection

field was 2.5 T/m in the z-direction. The assumptions on relaxation in the PWLS

method is also valid in this study. For the noise free case, MBL method provided

results with 0.001 K resolution, and the maximum relative error was calculated as

0.063%. The effect of noise on temperature estimation was analyzed. Maximum

temperature estimation error in the FOV errors for Temperature scans with different
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noise levels were in agreement with this result. We obtained 11.5, 0.98, and 0.07 %

maximum temperature estimation error inside the FOV for 40, 60, and 80 dB SNR

levels, respectively.

4.4 Future Work

Relaxation is an important characteristic of the MNP behavior that also depends on

the temperature. Particles suffer from Néel and Brownian relaxation effects, which

means that the particles react on a field variation only after a certain amount of time.

This puts a limit on the applicable frequency of the applied oscillating magnetic field

and, in turn, the signal-to-noise ratio (SNR) of the measurement signal [2]. Although

this effect may be negligible for the case when the Drive field frequency is small

enough and the magnetization can follow the change in applied field, this effect was

not included in this thesis study. In addition, MPI simulator also ignored MNP relax-

ation behavior. Consequently, this effect should be included in further studies.

In this study, we assumed a uniform MNP distribution in the temperature estimation

analyses with FUS application. Proposed methods should be analyzed for realistic

MNP distributions in the future studies.

Although we used a large Lissajous trajectory, MBL method can also be used for

other trajectories such as the one in PWLS. Therefore, the performance of the MBL

method should be further analyzed for other trajectories and FOV sizes.

An experimental study should also be done in order to analyze the limitations of

the temperature estimation methods experimentally. By establishing an experimental

setup, the relaxation effect can be examined under different ambient temperatures. To

this end, tissue mimicking phantoms that mimic the electrical and thermal properties

of the body can be developed. Using a heat source, a temperature distribution inside

the phantom can be generated. This distribution can be measured using temperature

probes. MPI and temperature distribution reconstruction methods can be applied and

compared with the measurements from the probes. Noise equivalent temperature

differences can be determined using these measurements.
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