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ABSTRACT 

 

EVALUATING AND MERGING MODEL- AND SATELLITE-BASED 

PRECIPITATION PRODUCTS OVER VARYING CLIMATE AND 

TOPOGRAPHY 

 

Amjad, Muhammad 

Doctor of Philosophy, Civil Engineering 

Supervisor: Assoc. Prof. Dr. M. Tuğrul YILMAZ 

 

January 2020, 113 pages 

 

This study first evaluates and inter-compares a set of nine precipitation products (2 

satellite estimation-based, 2 model reanalysis-based, and 5 model forecast-based 

products) over varying climate and topography by using the in-situ observed 

precipitation data as truth. The products are then merged, in the form of two groups, 

using two different merging techniques: 1. Taking ensemble mean (i.e., simple 

merging); 2. Taking ensemble mean after rescaling them by a linear regression 

method. The merged products are statistically evaluated and inter-compared with the 

individual products using the same in-situ precipitation data. The results show that the 

errors in the products increase, while their correlations with the observed data decrease 

with the increasing terrain complexity. Comparatively, wetness and terrain slope have 

a more prominent role than elevation in the error variability of the products. The 

performance of model-based products is more adversely affected by increasing terrain 

complexity than that of satellite-based products. Both the merging methods improve 

the errors and correlations of the products not only over the entire study area, but over 

all its sub-regions classified based on the wetness, elevation, and terrain slope. Simple 

merging improves the precipitation detection ability of the individual products the 

most. Merging the products after rescaling them in the space of ECMWF HRES and 
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IMERG adds the highest improvement in ErrSD (on average 28.5% and 34.8%, resp.) 

and CC (on average 17.6% and 23%, resp.) of the individual forecasts and individual 

research products, respectively. 

 

Keywords: Precipitation, Satellite, Model, Evaluation, Precipitation Data Merging, 

Varying Topography.  
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ÖZ 

 

MODEL VE UYDU TABANLI YAĞIŞ ÜRÜNLERİNİ DEĞİŞKEN İKLİM VE 

TOPOĞRAFYA ÜZERİNDE DEĞERLENDİRMEK VE BİRLEŞTİRMEK 

 

Amjad, Muhammad 

Doktora, İnşaat Mühendisliği 

Tez Danışmanı: Doç. Dr. M. Tuğrul YILMAZ 

 

Ocak 2020, 113 sayfa 

 

Bu çalışma ilk olarak dokuz farklı yağış ürününü (2 uydu tahmin tabanlı, 2 model 

yeniden analiz tabanlı, 5 model tahmin tabanlı ürün) değişken iklim ve topografya 

üzerinde, yer gözlem istasyon verilerini referans kabul ederek değerlendirmekte ve 

karşılaştırmaktadır. Ürünler iki farklı birleştirme tekniği kullanılarak iki grup halinde 

birleştirilmiştir: 1. Çoklu ürün ortalaması almak (yani basit birleştirme); 2. Lineer 

regresyon yöntemiyle ölçeklendirildikten sonra çoklu ürün ortalamasının almak. Elde 

edilen birleştirilmiş ürünler hem istatistiksel hem de hidrolojik olarak değerlendirilmiş 

olup sırasıyla aynı yağış gözlem verilerini kullanan ürünler ve yüzeysel akış gözlem 

verileri ile karşılaştırılmıştır. Elde edilen sonuçlara göre, artan arazi karmaşıklığı 

ürünlerdeki hataların artmasına ve ürünler ile gözlem verileri arasındaki korelasyon 

değerlerinin azalmasına sebebiyet vermiştir. Sulaklık ve arazi eğimi ürünlerin hata 

değişkenliğinde yüksekliğe göre daha belirgin bir role sahiptir. Model tabanlı 

ürünlerin performansı, artan arazi karmaşıklığından uydu tabanlı ürünlere nazaran 

daha olumsuz etkilenmektedir. Her iki birleştirme yöntemi de, ürünlerin hata ve 

korelasyonlarını tüm çalışma alanı boyunca geliştirmekle kalmaz; sulaklık, yükseklik 

ve arazi eğimine göre sınıflandırılmış olan tüm alt bölgeler için de iyileştirir.  Basit 

birleştirme ürünlerin en çok yağış tespit becerisini geliştirmektedir. Tahmin ve 

araştırma ürünlerinin ErrSD ve CC değerlerindeki en yüksek iyileştirmeler ürünler 
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ECMWF, HRES ve IMERG ürünlerini referans alarak yeniden ölçeklendirildikten 

sonra birleştirildiğinde elde edilmiştir (ErrSD’de tahmin ürünleri için ortalama %28.5, 

araştırma ürünleri için ortalama %34.8 ve CC’de tahmin ürünleri için ortalama % 17.6, 

araştırma ürünleri için ortalama %23). 

 

Anahtar Kelimeler: Yağış, Uydu, Model, Değerlendirme, Yağış Verisi Birleştirme, 

Değişken Topoğrafya 
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CHAPTER 1  

 

1. INTRODUCTION 

 

1.1. Precipitation: Measurement and Applications 

Precipitation is a vital element of the global hydrological and energy cycles and one 

of the most critical parameters for a range of natural and socioeconomic systems such 

as water resources management, agriculture, forestry, tourism, flood protection, and 

drought management. Being one of the most significant elements in the water and 

energy cycles (Kucera et al., 2013), a quantitative appraisal of precipitation amount 

and its spatiotemporal distribution is essential for many scientific and operational 

applications. However, the spatiotemporal heterogeneity of precipitation makes its 

correct estimation very difficult (Herold et al., 2016), especially with high spatial and 

temporal resolutions.  

Precipitation is currently being determined by utilizing four major methodologies: 

ground-based gauges, ground-based remote sensing radars, remote sensing satellites, 

and atmospheric retrospective-analysis models (Michaelides et al., 2009). Ground-

based gauge observations can be considered to be the most forthright and correct 

source of precipitation data (Ma et al., 2015). However, their installation and 

maintenance costs cause sparsely or unevenly distributed ground-based rain gauge 

networks in many areas of the world, which is the case, especially in several 

developing countries (Hughes, 2006). While the radars can monitor large areas with 

high spatial and temporal resolutions, their observations suffer from various error 

sources like mean-field systematic errors, systematic errors due to range, and random 

errors (Dinku et al., 2002). Model- and satellite-based estimates of precipitation may 

be considered as potential alternative sources of precipitation data as they offer 

spatially and temporally continuous and consistent estimates for a broad set of 
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variables including precipitation. However, despite their spatial and temporal 

advantages, both the satellite- and model-based products have been reported to have 

certain biases and errors (Chakraborty, 2010; Derin et al., 2016; Durai et al., 2010; 

Ghajarnia et al., 2015; Wang et al., 2010; Yuan et al., 2017). Hence, the accuracy and 

quality of these products should be carefully investigated before utilizing them in 

various applications requiring high-quality precipitation data. 

1.2. Evaluation of Precipitation products 

Several quasi-global satellite precipitation products with a variety of spatial and 

temporal resolutions have been established in recent years. Widely used satellite-

based precipitation products include Tropical Rainfall Measuring Mission (TRMM) 

Multi-satellite Precipitation Analysis (TMPA) (Huffman et al., 2007) and IMERG (the 

Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM)) 

(Huffman et al., 2015).  In addition to the satellite-based precipitation data sources, 

there are several centers releasing weather forecasts and reanalysis with various spatial 

and temporal resolutions by using global general circulation models (GCMs) 

(Chakraborty, 2010). Some of the model-based products from such centers include 

ERA-Interim (Dee et al., 2011) and ERA5 (Herbach and Dee, 2016) reanalysis 

products from European Centre of Medium-range Weather Forecast (ECMWF), High 

Resolution (HRES) deterministic forecasts from ECMWF, ALadin–AROme 

(ALARO, from AROME [Application of Research to Operations at Mesoscale] 

system of ALADIN model from Météo-France), Weather Research and Forecasting 

Model (WRF, maintained by Mesoscale and Microscale Meteorology Laboratory of 

National Center for Atmospheric Research (NCAR)), Global Forecast System (GFS, 

produced by National Centers for Environmental Prediction (NCEP)) and The Climate 

Forecast System (CFS, maintained by the National Centers for Environmental 

Prediction (NCEP)). 

1.2.1. Inter- comparison of Satellite- and Model-based Products 
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The real added utility of the products estimated from different platforms via the 

observing sensors, retrieval algorithms, and/or dataset estimation methodologies is 

better understood when the products are validated using ground station-based 

observations and via inter-comparison studies validating multiple products 

simultaneously for the same location and time. Several studies in the literature focused 

on inter-comparison of satellite-based products only (e.g., Cai et al., 2016; Derin and 

Yilmaz, 2014; Guo et al., 2016; He et al., 2017; Murali Krishna et al., 2017; Prakash 

et al., 2018, 2016; Tan and Duan, 2017; Tang et al., 2016; Wang et al., 2017; Xu et 

al., 2017; Yuan et al., 2017; Zhang et al., 2018), or model-based products only (e.g., 

Davis et al., 2006; Done et al., 2004; Durai et al., 2010; Hamill et al., 2008; Manzato 

et al., 2016; Pappenberger and Buizza, 2009; Sooraj et al., 2012; Wang et al., 2010; 

Wolff et al., 2014; Ye et al., 2014), whereas the number of studies focusing on inter-

comparison of both the satellite- and model-based products is relatively less (e.g., 

Chakraborty, 2010; Derin et al., 2016; Hénin et al., 2018; Li et al., 2018; Sahlu et al., 

2017; Sharifi et al., 2016; Thiemig et al., 2012; Tong et al., 2014). Nevertheless, 

among the studies inter-comparing satellite- and model-based products, some of them 

(e.g., Chakraborty, 2010; Thiemig et al., 2012; Tong et al., 2014) have been completed 

before the release of some of the most promising recently-released products like 

IMERG (released in 2014) or ERA5 (released in 2018), some of them (e.g., Sahlu et 

al., 2017) did not include the recently-released products (e.g., ERA5 and IMERG), 

and some studies (e.g., Hénin et al., 2018; Sharifi et al., 2016) did not evaluate and 

inter-compare the products comprehensively (i.e., evaluating them over considerable 

span of time, area and number of gauges which could result in generalization of the 

error statistics of the products). There is a motivating gap in the literature regarding 

comprehensive studies that could consider evaluation and inter-comparison of the 

recently released satellite- and model-based products. 
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1.2.2. Evaluation and Inter-comparison over Varying Topography 

Compared to non-complex (relatively flatter) topography, different factors may drive 

the accuracy of satellite- and model-based precipitation products over complex 

topography (i.e., having a high slope and/or elevation). Local and regional 

topographical complexity has the potential to exert a profound impact on atmospheric 

lapse rate and mesoscale circulations. In the regions having complex topography, 

extreme events show significant temporal and spatial variations and generate extensive 

amounts of precipitation in short durations, while the phenomenon associated with 

non-complex topography is expected to have less variability. Additionally, as 

compared to non-complex topography, complex topography is more prone to disasters 

like flash floods; highlighting different levels of significance of accurate estimation of 

precipitation over the regions with these two kinds of topography. Hence, for any 

given product, the performance results over complex and non-complex areas have 

their individual implications. Several studies (e.g., Beck et al., 2019; El Kenawy et al., 

2015; Mayor et al., 2017; Sharifi et al., 2016) conducted the performance assessment 

of satellite- and model-based products over varying topography (considering both the 

complex and non-complex topography simultaneously). However, most of these 

studies, except Beck et al. (2019), have not included the recently released products 

like IMERG and ERA5. Similarly, some of these studies (Mayor et al., 2017; Sharifi 

et al., 2016) evaluated precipitation products for short/limited duration, so that 

estimated errors may not reflect long term error statistics. Accordingly, there is a 

pressing need for more studies comprehensively investigating the performances of 

recently released and their predecessor precipitation products with a varying 

topography focus. 

1.2.3. Evaluation Studies Over Turkey 

Characterized with varying climate and complexity, Turkey has terrain which varies 

in complexity owing to the high mountains stretching in east-west direction over both 

the northern and the southern parts while relatively flatter regions located in the central 
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parts of the country. There are some studies performed to characterize the accuracy of 

precipitation products over Turkey (Bıyık et al., 2009; Demir et al., 2018; Derin and 

Yilmaz, 2014; Toros et al., 2018; Yucel, 2015; Yucel et al., 2011; Yucel and Onen, 

2014). However, these studies remain limited and narrow-focused (i.e., either used a 

low number of stations in validation efforts, implemented over limited regions, 

focused only on short precipitation events occurring within 1-2 days, or used only one 

or two products). Hence, more comprehensive studies are still needed by using more 

datasets acquired over more stations and representing more extended periods to 

characterize better the uncertainty of widely used recent precipitation products over 

this region, which is known for its varying climatic and topographical conditions. 

1.3. Merging the Precipitation Products 

Merging of precipitation datasets from different sources has been demonstrated to 

improve the overall quality of precipitation data. Several studies in the literature (e.g., 

Beck et al., 2019; Berg et al., 2016; Berndt et al., 2014; Boudevillain et al., 2016; 

Chiang et al., 2007; Goudenhoofdt and Delobbe, 2009; Li and Shao, 2010; Rozante et 

al., 2010; Scheel et al., 2011; Yilmaz et al., 2010; Verdin et al., 2015; Woldemeskel 

et al., 2013; Xie and Xiong, 2011) have worked on improving various radar-, satellite- 

and model reanalysis-based precipitation products by merging them with data 

observed at ground-based gauges. Different merging techniques, including Bayesian 

kriging approach (Verdin et al., 2015), linearized weighting procedure (Woldemeskel 

et al., 2013), optimal interpolation technique (Xie and Xiong, 2011), ordinary 

cokriging algorithm (Scheel et al., 2011) and nonparametric kernel smoothing method 

(Li and Shao, 2010), have been adopted in the literature to merge different satellite-

based and/or model-based reanalysis products with the gauge-based observed data on 

daily to monthly time scales. Moreover, Bayesian merging method (Luo et al., 2007) 

has been used to merge monthly precipitation forecasts with the observed climatology, 

while weighted average method (Xie and Arkin, 1996) was used to blend satellite-

based estimates and model-based forecasts with the observed data on a monthly time 

scale. Systematic differences between variety of merged products exist; hence, in 
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order to improve the accuracy of the merged products reducing the systematic errors 

between them is necessary. Among merging methodologies, however, merging after 

rescaling the precipitation datasets using linear regression has never been conducted 

(although this technique has been used for merging different soil moisture datasets by 

Yilmaz and Crow, 2013). Another significant gap in the literature is that real-time 

(e.g., 1-3 daily) forecasts have never been merged to improve their statistical accuracy 

and applicability for operational purposes. 

1.4. Motivation for this Study 

Firstly, a comprehensive study, not only simultaneously considering evaluation and 

inter-comparison of several recently released precipitation products from various 

platforms like model-based forecast, model-based reanalysis and remote sensing-

based estimates but also assessing their performance over varying climatic conditions 

and terrain complexity, is lacking. Secondly, although merging products from 

different sources has been reported to be improving their overall accuracy, there have 

been no effort (in our knowledge) to merge different real-time precipitation forecasts 

with the intention to get a better real-time input for operational fields, as improving 

the quality of precipitation forecasts might have definite implications in flood 

forecasting, natural hazard management and different water resources management 

processes. Thirdly, the impact of merging the precipitation products after rescaling 

them by linear regression has not been studied in the literature. 

1.5. Goals of the Study 

The goals of this study are:  

1. A comprehensive evaluation of recently released precipitation products from 

model-based forecasts (ECMWF HRES, ALARO, WRF, GFS, and CFS), model-

based reanalysis (ERA-Interim and ERA5), and satellite-based estimates (TMPA 

3B42V7 and GPM IMERGv05) by using precipitation data from ground-based gauges 

as reference data over varying topographical and climatic conditions to assess the error 

variations associated with each product over daily, monthly and annual time scales. 
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2. Merging different real-time (1-3 daily) precipitation forecasts (ECMWF 

HRES, ALARO, WRF, GFS, and CFS) and assessing the impact of merging on their 

error variance. 

3. Merging different post-real-time precipitation products (ERA-Interim, ERA5, 

TMPA 3B42V7, and GPM IMERGv05) and assessing the impact of merging on their 

error variance. 

1.6. Innovation in this Study 

Firstly, this study intends to comprehensively evaluate a set of nine precipitation 

products (including forecasts, reanalysis and satellite-based estimates) over varying 

topographical and climatic conditions of Turkey. Secondly, for the first time, this 

study merges up-to-date and state of the art satellite- and model- based products with 

special emphasis on varying climate and complexity of terrain. Thirdly, to author’s 

knowledge, no study has ever merged different real-time (operational) forecasts; this 

study intends to merge them and to assess the impact of merging on their statistical 

performance. Lastly, this study is the first to apply the technique of merging different 

precipitation products after rescaling them, and to investigate the added utility of this 

technique of merging.  
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CHAPTER 2  

 

2. METHODOLOGY 

 

2.1. Study Area 

2.1.1. Terrain Complexity and Variability of Climate 

The study area is selected as Turkey, having an area of 783,500 km2. The area is 

situated in the Mediterranean region with temperate climatic conditions, but in 

general, the diverse nature of its landscape and presence of the mountains contribute 

to significant differences in climatic conditions from one region to the other. The 

coastal areas enjoy milder climates while inland Anatolian plateau experiences 

extremes of hot summers and cold winters with limited precipitation (Sensoy, 2004). 

Depending on location, the annual precipitation in Aegean and Mediterranean coasts 

ranges between 580 mm and 1300 mm. The eastern coast of the Black Sea region 

receives 2200 mm annual precipitation and is the only region of the study area that 

receives precipitation throughout the year. The amount of total precipitation on the 

coastal and inland stations differs significantly due to mountain blockage. For 

example, Antalya station, which is located at the Mediterranean coast in the windward 

side of the Taurus Mountain, receives three times a higher amount of annual 

precipitation compared to Karaman and Burdur stations which are situated in the 

leeward side of that mountain. Similar mountain blockage makes the precipitation 

highly variable along the northern Black Sea Region (Derin and Yilmaz, 2014; 

Sensoy, 2004) where a coastal station (windward), named Hopa, receives 2182 mm 

annual rainfall while an inland station (leeward), named Bayburt, receives only 420 

mm. Overall, the entire country consists of undulating regions, while most of the high 

mountainous ranges are situated in the eastern and northeastern parts of the country. 

Very long coastlines draw its borders with the Black Sea in the north, the 
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Mediterranean Sea in the south, and the Aegean Sea in the west. Most of the relatively 

flat and low-land areas are situated in western regions while most of the high-land 

areas and high mountainous areas are located in the eastern regions. Black Sea region 

(northeast of Turkey) and some of the southeastern regions have relatively higher 

mountainous areas there.  

The term “complex topography” has been widely used in the literature to refer to the 

regions with high elevation (e.g., Hirpa et al., 2010) or standard deviation of elevation 

(e.g., Chiaravalloti et al., 2018). Even though more complex topographies are 

associated with a higher tendency to receive more orographic precipitation than less 

complex topographies, there seems a need to make a clear consensus over the 

definition of the term complex topography. Following earlier studies, this study 

associates the topographical complexity with slope and elevation, but it also classifies 

the regions into different classes of elevation and slope and specifies clearer thresholds 

for those classes. 

2.1.2. The Sparsity of Ground-based Gauges Network 

The ground-based gauge station density (area per gauge station) against the increasing 

elevation above mean sea level (MSL) is shown in Figure 2.1a and increasing terrain 

slope in Figure 2.1b. The proportion of the number of gauge stations is lower in the 

case of areas with higher elevations and slopes. World Meteorological Organization 

(WMO) standards suggest an average gauge density of 1 gauge per 575 km2 area for 

hilly/undulating regions while 1 gauge per 250 km2 area in case of mountainous 

regions (Awadallah, 2012). In the case of the study area under consideration, the rain 

gauges are sparser (especially at higher elevation and slope zones) than the average 

rain gauge density defined by WMO standards. Taking example of regions with slopes 

steeper than 15% (which could be associated with highly undulating or mountainous 

areas), gauge station density in the study area is one gauge station for an area of above 

6000 km2, which is way lower than the density (1 gauge per 250 km2) defined by 

WMO. This lower station density would impact the calculation of area-averaged 
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precipitation estimates over selected regions of interest. Therefore, here in this study, 

area-averaged estimates are not analyzed (rather station-based estimates, which are 

point data in nature, are utilized in the analyses). The detailed rationale for using 

station-based data (instead of area-averaged data) is discussed in section 2.3.2.   

 

Figure 2.1. Gauge density against varying a) Elevation above MSL (m), and b) Percent Terrain Slope 

 

2.2. Datasets 

This study uses two satellite-based estimates, two model-based reanalysis products, 

five model-based forecasts, and their merged products for evaluation using ground-

based observed precipitation data over gauge stations (755 in total). The detailed 

description of the input datasets is given below. 

2.2.1. Gauge-based Precipitation Observations (Reference Data) 

Subject to its availability, precipitation data observed through ground-based gauge 

stations can be considered as the most reliable data. Hence, evaluating the remotely 

sensed and model-based estimated precipitation datasets by using gauge stations data 

as a reference is the most common procedure in the literature adopted for accuracy 

assessment of those datasets.    
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Precipitation data from gauge stations (1936 in total) spread all over Turkey was 

obtained from the General Directorate of Meteorology (Turkish acronym: Meteoroloji 

Genel Müdürlüğü [MGM]) of Turkey. The obtained data contained certain 

discrepancies including outliers, discontinuities, and repetition of data entries. 

Therefore, it was undergone through certain quality control procedures to remove 

outliers or any apparent discrepancies in the raw data. The adopted quality control 

procedure is described in detail in Section 2.3.1. The daily precipitation data for a 

period of ~5.5 years (January 2014 to May 2019) from the stations passing the quality 

control filters were used for evaluation of individual products and further analyses. 

2.2.2. Satellite-based Precipitation Products 

Two satellite-based precipitation products were considered in this study for evaluation 

and further processes. A detailed description of each of these products is provided in 

the following paragraphs. 

2.2.2.1. TMPA 3B42V7 

The TMPA algorithm merges several ground-based observations (in the non-real-time 

products) with two types of satellite-based observations (i.e., microwave [MW] and 

infrared [IR]). The MW sensors include the Advanced Microwave Scanning 

Radiometer-Earth Observing System, Advanced Microwave Sounding Unit-B, 

TRMM Microwave Imager (TMI), and the Spectral Sensor Microwave 

Imager/Sounder, which combine to make the 3B40RT product. The IR observations 

combine the geostationary satellites. The MW and IR observations constitute the 

TMPA 3B40RT and 3B41RT products, respectively. Together these products are used 

to generate the 3B42RT product, which when combined with the Global Precipitation 

Climatology Center (GPCC), TMI, and TRMM Precipitation Radar produce the post-

real-time 3B42 product (Huffman and Bolvin, 2018; Yong et al., 2014). Hence, the 

TMPA 3B42 retrievals consist of two products: near-real-time (3B42RT, spatial 

coverage: 60°N–60°S) and research-grade (3B42, spatial coverage: 50°N–50°S). The 

former is less accurate (Milewski et al., 2015) but provides estimates suitable for near-
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real-time monitoring and modeling activities (Wu et al., 2012). The latter, available 

approximately two months after observation, is released after calibration with gauge 

data, different sensor calibration, and additional post-processing in the algorithm. The 

resulting product is more accurate and suitable for research (Huffman et al., 2007; 

Huffman and Bolvin, 2018). This study uses daily precipitation data from version 7 of 

research-grade daily product, TMPA 3B42V7, that has 0.25o spatial resolution. 

2.2.2.2. GPM IMERG 

The GPM Core Observatory carries a dual-frequency precipitation radar (DPR; the 

Ku-band at 13.6 GHz and Ka-band at 35.5 GHz) and a conical-scanning multi-channel 

GPM Microwave Imager (GMI; frequencies range between 10 and 183 GHz). GPM 

extends the sensor package compared to TRMM instruments, which had a single-

frequency precipitation radar (PR) and a multichannel TRMM Microwave Imager 

(TMI). Therefore, the GPM sensors can detect light and solid precipitation more 

accurately than TRMM sensors (Hou et al., 2014). GPM IMERG algorithm provides 

three levels of products, including the near-real-time ‘‘Early” and ‘‘Late” run 

products, and the post-real-time ‘‘Final” run product, which is considered as a 

research-grade product. This study focuses on the Level-3 “Final” product, which is 

released after inter-calibration, merging, and interpolation of all microwave estimates 

of the GPM constellation, infrared estimates, gauge observations, and other data from 

potential sensors at 0.1o x 0.1o (Huffman et al., 2015). The product used in this study 

is 3IMERGDFv05 (DFv05 denotes version 5 of Daily Final run product) with a spatial 

resolution of 0.1o x 0.1o. 

For brevity, the short names IMERG and TMPA, are used from here on instead of 

complete names of satellite-based products, GPM 3IMERGDFv05 and TMPA 

3B42V7, respectively. 

2.2.3. Model-based Reanalysis Precipitation Products 

Reanalysis datasets are generated by a data assimilation system combining 

observations with a numerical weather prediction model. For the entire reanalysis 
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period, the model physics remain unchanged in the forecast model for consistency of 

the output data. The reanalysis consequently provides a picture of the global climate 

over a period during which observational data are available. Reanalysis data can 

provide a multivariate, spatially complete, and coherent record of the global 

atmospheric circulation (Dee et al., 2011).  

2.2.3.1. ECMWF ERA-Interim 

The ECMWF ERA-Interim reanalysis (Dee et al., 2011) dataset is produced with a 

sequential data assimilation scheme, advancing forward in time using 12-hourly 

analysis cycles. In each cycle, available observations are combined with prior 

information from a forecast model to estimate the evolving state of the global 

atmosphere and its underlying surface. The analyses are then used to initialize a short-

range model forecast, which provides the prior state estimates needed for the next 

analysis cycle. The spatial resolution of ERA-Interim data is 79 km (T255 spectral 

truncation) (Dee et al., 2011). For ERA-Interim data retrieval, the ECMWF web 

applications server (http://apps.ecmwf.int) offers a default spatial resolution grid of 

0.75o as well as other spatial-resolution grids (ranging from 0.125o to 3o) based on a 

bilinear interpolation technique for continuous parameters. In this study, 0.75o spatial 

resolution for the ERA-Interim product is used. 

2.2.3.2. ECMWF ERA5 

In 2017, the ECMWF released a new reanalysis data ERA5 (Herbach and Dee, 2016). 

There are major improvements in ERA5 compared with ERA-Interim. For example, 

ERA5 provides datasets starting from 1950 (ERA-Interim from 1979) to present, has 

0.25o spatial resolution (ERA-Interim has 0.75o) and hourly analysis fields (ERA-

Interim has 6-hourly), improved variational bias scheme (in addition to satellite 

radiances now ozone, aircraft and surface pressure data are also used), includes more 

information on variation in quality over space and time, an improved representation 

of troposphere, better global balance of precipitation and evaporation, and more 

consistent sea surface temperature and sea ice coverage (Herbach and Dee, 2016). This 
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study uses ERA5 daily accumulated reanalysis data at the native spatial resolution of 

0.25o.  

For brevity, the short name ERAint is used from here on instead of the complete name 

of ERA-Interim. 

2.2.4. Model Forecast-based Precipitation Data 

This study uses five model-based precipitation forecast products including: (1) HRES 

deterministic forecasts from ECMWF, (2) ALARO forecasts, (3) WRF forecasts, (4) 

GFS forecasts, and (5) CFS forecasts. 

2.2.4.1. ECMWF HRES 

For the medium-range forecasts based on ECMWF Integrated Forecasting System 

(IFS), an ensemble of 52 individual ensemble members are created twice a day. One 

member is at a higher spatial resolution than the other members (called the HRES at 

ECMWF), its initial state is the most accurate estimate of the current conditions, and 

it uses the current best description of the model physics. It provides a highly detailed 

description of future weather and, averaged over many forecasts, it is considered as 

the most accurate forecast for a certain period, which is currently estimated as ten days 

for large scale properties of the atmosphere. This study used 1-daily accumulated total 

precipitation (TP) forecasts from these deterministic forecasts (with a spatial 

resolution of 0.1o) from ECMWF for initial evaluation, and 1-3 daily accumulated 

total precipitation (TP), convective precipitation (CP) and large-scale precipitation 

(LSP) forecasts for further merging analyses. These datasets can be retrieved from the 

Meteorological Archival and Retrieval System (MARS) of ECMWF. 

2.2.4.2. ALARO 

As the AROME software is computationally expansive, particularly for real-time 

weather forecasting, a framework for the transition, called ALARO, has been 

developed, based on the ALADIN model with a refined formulation of the physical 

parameterizations. ALARO uses an AROME-oriented mesoscale physics, and the aim 
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of this canonical configuration of the ALADIN System is to provide a setup that can 

also be used in intermediate resolutions between the mesoscale and the convection-

permitting scales. For moist deep convection, the Modular Multiscale Microphysics 

and Transport scheme (3MT) has been developed to overcome problems when 

convection gets partly resolved at the so-called gray-zone model resolutions. The 

ALARO configuration is built upon this physics parameterization concept relying on 

the governing equations for the moist physics. Operational ALARO Turkey cycle 40t1 

has 4.5 km horizontal resolution and 60 vertical layers. Boundary conditions are 

applied at 3-hour intervals from the global model ARPEGE (Action de Recherche 

Petite Echelle Grande Echelle). The model is run four times (00, 06, 12, and 18 UTC), 

and forecasts up to 72 hours are produced. 

2.2.4.3. WRF 

WRF, maintained by Mesoscale and Microscale Meteorology Laboratory of National 

Center for Atmospheric Research (NCAR), produces simulations based on actual 

atmospheric conditions (i.e., from observations and analyses) or idealized conditions. 

Running WRF model to get high-resolution precipitation data needs high-tech 

assembly of simulation running machines and currently, MGM has facilities to 

provide WRF data to the end-users. The data can be obtained at a spatial resolution of 

~4.5 km. 

2.2.4.4. GFS 

GFS, produced by the National Centers for Environmental Prediction (NCEP), uses a 

coupled model to provide an accurate picture of weather conditions. Its forecasts 

starting from 2015 to today can be retrieved from the archive of the National Center 

for Atmospheric Research (NCAR) at a spatial resolution 0.25o. This study used 1-

daily accumulated (derived from 6-hourly) total precipitation forecasts for initial 

evaluation analyses, while 1-3 daily accumulated (derived from 6-hourly) total 

precipitation, convective precipitation, and large-scale precipitation forecasts were 

utilized in further analyses related to merging of real-time forecasts. 
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2.2.4.5. CFS 

CFS, maintained by the National Centers for Environmental Prediction (NCEP), is a 

model representing the global interaction between Earth's oceans, land, and 

atmosphere. CFS models are used in producing precipitation data reanalysis, 

reforecasting, and forecasting (based on reanalysis). This study used 1-daily (derived 

from 6-hourly) TP and CP data (with a spatial resolution of 0.5o) retrieved from NCAR 

archive. LSP data was further obtained by subtracting CP from TP. 

For brevity, simple names (ECM, ALR, WRF, GFS, and CFS) will be used from here 

on instead of complete names of the real-time forecast products. 

2.2.5. Selection of Common Study Period 

Table 2.1 shows the maximum available period for each of the included datasets. 

Including the recently released precipitation products required a compromise on the 

length of the common study period. Hence, the longest possible common period of 

~72 months (2014-2019) was selected as the study period for evaluation and merging 

of the precipitation products. 

Table 2.1. Information about the datasets used in the study (last checked on September 2019) 

Sr. 
No. 

Dataset Type 
Spatial 

Resolution 
Temporal 
Resolution 

Availability 
Period 

Source 

1 Observed Data Ground-based Gauges data - 1-daily 
2003-

201905 
MGM, Turkey 

2 
GPM 

3IMERGDFv05 
Satellite-based Estimates 
(Research-grade product) 

0.1o 
1-daily 

(Derived) 
201404-
201806 

NASA Earth Data, 
Huffman et al. (2015) 

3 TMPA 3B42V7 
Satellite-based Estimates 

(Research-grade product) 
0.25o 

1-daily 

(Derived) 

1998-

201907 

NASA Earth Data, 

Huffman et al. (2007) 

4 ERA-Interim Model-based Reanalysis 0.75o 1-daily 
1979-

201906 
ECMWF, Dee et al. (2011) 

5 ERA5 Model-based Reanalysis 0.25o 
1-daily 

(Derived) 

1979-

201906 

ECMWF, Herbach and 

Dee (2016) 

6 ECMWF HRES Model-based Forecasts 0.1o 1-3 daily 
2007-

201909 
ECMWF MARS Archive 

7 ALARO Model-based Forecasts 0.045o 1-3 daily 2011-2018 MGM, Turkey 

8 WRF Model-based Forecasts ~0.045o 1-3 daily 2013-2018 MGM, Turkey 

9 GFS Model-based Forecasts 0.25o 
1-3 daily 
(Derived) 

2015-
201909 

NCEP, NCAR Archive 

10 CFSv2 Model-based Forecasts 0.5o 
1-3 daily 

(Derived) 

2011-

201909 
NCEP, NCAR Archive 
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2.3. Pre-processing of Data 

2.3.1. Quality control of Reference Data 

Observed daily precipitation data over a total of 1936 gauge stations managed by 

Turkish State Meteorological Services (MGM) for a period of 16.5 years (January 

2003 to May 2019) was initially obtained from MGM. The data was then subjected to 

a certain quality control procedure to remove any discontinuities or outliers.  The 

adopted quality control procedure is described in the following paragraphs.  

To remove outliers in the daily precipitation data, it was passed through a maximum 

precipitation threshold filter of 466 mm/day (which is, according to MGM, the most 

extreme daily precipitation observed in the recorded history of Turkey). After that, the 

remained daily data from those 1936 stations were trimmed to the required study 

period (~2014-2019). A further quality control procedure was applied to the daily data, 

which consisted of removing the stations with significant data gaps, removing the 

stations having many repeated data entries, and removing the stations with zero long 

term monthly means. Moreover, the stations whose average annual precipitation for 

the entire study period differed more than 200 mm/year from their long-term average 

annual precipitation were also removed. Finally, the stations whose data is being 

shared with the World Meteorological Organization (WMO) were excluded to ensure 

the independence of the reference dataset from the satellite- and the model-based 

datasets. 

It is to note that most of the threshold filters during the quality control procedure were 

specified after getting information from MGM. Nevertheless, after application of all 

the quality control steps, the remaining daily data for 5.5 years (January 2014 to May 

2019) from 755 gauge stations spread all over Turkey was utilized as the reference 

data for evaluation of individual precipitation products and further processes. 
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2.3.2. The Rationale and Preparation of Data for Point-to-Grid Evaluation 

First, as the gauge-based observation data is point data in its kind, potential errors are 

resulted when interpolation techniques are applied to convert the point data into 

continuous spatial precipitation data (Kidd and Huffman, 2011). Moreover, the spatial 

representativeness of gauge-based observations (i.e., point) and satellite- and model-

based datasets (i.e., grids) is different. In the studies performing comparisons of such 

datasets, in general, two different methodologies are commonly used to reconcile the 

spatial scale differences between the gauges data and the products: either the grids of 

satellite and the model data that are closest to the gauge stations are extracted (point-

to-grid methodology following El Kenawy et al., 2015; Heidinger et al., 2012; Islam 

et al., 2012) or the station-based observations within the grids of satellite/model 

datasets are averaged so that a compatible and spatially distributed estimate can be 

obtained. Over many locations of the world, when a dense network of precipitation 

gauges is absent and/or in the case of precipitation products with coarse spatial 

resolution (like in our case: ~0.10° – 0.25°) are evaluated, only minority of the grids 

contain more than single station; hence, the second methodology is not viable in this 

study. Here in this study, the first methodology is adopted for all the analyses (i.e., 

data for satellite and model grids closest to the stations are extracted). 

Following the above-discussed methodology, daily data from all nine precipitation 

products (gridded in nature), other than gauges data, were extracted over the locations 

of 755 gauge stations for compatible comparison between the observed and products 

data. Hence, a total of 10 datasets (including the observed data) over 755 stations were 

made ready for the further analyses. 

2.3.3. Classification of Stations for Wetness, Elevation, and Slope 

As mentioned in Section 2.1.1, the study area is quite diverse regarding the terrain 

complexity and varying climate. This diversity required a detailed evaluation of the 

precipitation products as the conclusions over the entire area would not be enough to 

make any generalization about the performance accuracy of the products. This 
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motivated the classification of the stations (755 in total) based on wetness, terrain 

elevation, and terrain slope so that the performance of the products could be 

investigated over varying climate and terrain complexity; where this study associates 

the climate variability with wetness and terrain complexity with elevation and slope. 

For the classification based on wetness, the stations of the entire study area were 

grouped into four wetness classes: dry, moderately dry, moderately wet, and wet. Four 

arbitrary thresholds of average monthly precipitation amount of observed data (< 40, 

40-60, 60-80, and > 80 mm/mon) were used to define wetness (dry, moderately dry, 

moderately wet, and wet, respectively) of individual stations (Table 2.2). Figure 2.2a 

shows locations of the stations of wetness classes plotted over the observed annual 

average precipitation map of Turkey. Under the elevation classification, the stations 

were grouped into five classes (i.e., <500 m, 500-1000 m, 1000-1500 m, 1500-2000 

m, and >2000 m) depending on the elevation of individual stations above MSL (Table 

2.2 and Figure 2.2b). Similarly, the stations were grouped into five classes (i.e., <5%, 

5-10%, 10-15%, 15-20%, and >20%) based on percent terrain slope (Table 2.2 and 

Figure 2.2c). For elevation and slope classifications, 1 km mean elevation and percent 

slope data (source: NASA’s Shuttle Radar Topography Mission, SRTM) obtained 

from https://www.earthenv.org/topography (Amatulli et al., 2018) were extracted over 

point locations of individual stations and the stations were then grouped into five 

classes each, respectively. 

Considering the number of stations against each slope class, a major proportion (i.e., 

499) of the total stations (i.e., 755) were situated in the regions with slope less than 

5%. Whereas, only 30 stations were situated in much steeper slope classes (i.e., 

>15%). Here, the scope of meteorological application of terrain complexity is being 

forced by specifying some randomly selected threshold intervals. Otherwise, 

topographical complexity is a very complex term for which there exist no fixed and 

well-established thresholds in the literature, as well as only two parameters (i.e., 

elevation and slope) might not be enough to fully define the terrain complexity. As 

this study intended to investigate the variation in performance accuracy of the 
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precipitation products against varying terrain complexity, it was considered necessary 

to specify some thresholds for varying elevation and terrain slope. 

 

Figure 2.2. (a) Locations of stations ordered using four wetness classes plotted over observed annual 

average precipitation map of Turkey, (b) Locations of stations ordered using five elevation classes 

plotted over Digital Elevation Map (m), (c) Locations of stations ordered using five slope classes 

plotted over percent slope map 
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Table 2.2. Classification of stations of entire area based on wetness, elevation, and slope 

Wetness 

(mm/mon) 

No. of 

Stations 

Elevation 

(m) 

No. of 

Stations 
Slope 

No. of 

Stations 

Entire 755 Entire 755 Entire 755 

Dry ( <40 ) 279 < 500 237 < 5% 499 

Mod-dry (40-60) 303 500-1000 219 5-10% 170 

Mod-wet (60-80) 123 1000-1500 209 10-15% 56 

Wet ( >80 ) 50 1500-2000 77 15-20% 19 

- - > 2000 13 > 20% 11 

 

Evaluation analyses were applied separately over stations of four wetness classes, five 

elevation classes, and five slope classes. 

 

2.4. Evaluation of Precipitation Products 

All nine products (Table 2.1) were initially evaluated using ground station-based 

observed precipitation data on daily, monthly, and annual time scales. 

2.4.1. Daily Time Scale 

2.4.1.1. Daily Evaluation statistics 

Daily precipitation products were evaluated for their mean (�̅�) and standard deviation 

(SD): 

�̅�𝑛 =  
1

𝑡
 ∑ 𝑃𝑖

𝑡
𝑖=1          (1) 

𝑆𝐷𝑛  =  √
1

𝑡
∑ (𝑃𝑖 −  �̅�𝑛)𝑡

𝑖=1         (2) 

as well as for their error statistics (Bias, Error Standard Deviation (ErrSD), and Root 

Mean Square Error (RMSE)) and Correlation Coefficient (CC):  
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𝐵𝑖𝑎𝑠𝑛  =  
1

𝑡
∑ 𝑃𝑝,𝑖 −  

1

𝑡
∑ 𝑃𝑜,𝑖

𝑡
𝑖=1

𝑡
𝑖=1        (3) 

𝐸𝑟𝑟𝑆𝐷𝑛  = 𝑆𝐷[∑ (𝑃𝑝,𝑖 −  𝑃𝑜,𝑖)
𝑡
𝑖=1 ]       (4) 

𝑅𝑀𝑆𝐸𝑛 =  √
1

𝑡
∑ (𝑃𝑖 − 𝑂𝑖)2𝑡

𝑖=1        (5) 

𝐶𝐶𝑛 =  
∑ (𝑃𝑝,𝑖

𝑡
𝑖=1  − �̅�𝑝)(𝑃𝑜,𝑖− �̅�𝑜)

√∑ (𝑃𝑝,𝑖− �̅�𝑝)2𝑡
𝑖=1  .√∑ (𝑃𝑜,𝑖− �̅�𝑜)2𝑡

𝑖=1  

      (6) 

where n is the station number (from 1 to 755, for the entire study area); t is the number 

of day; subscripts “o” and “p” denote observed data and products; 𝑃𝑝,𝑖  is the product 

precipitation estimate (mm/day); 𝑃𝑜,𝑖is the observed precipitation (mm/day); �̅�𝑝 is the 

product mean precipitation (mm/day); �̅�𝑜 is the mean observed precipitation 

(mm/day). 

All the statistics (�̅�, SD, Bias, ErrSD, RMSE, and CC) were determined for each 

product over stations of the entire study area as well as over stations of all the wetness, 

elevation, and slope classes. 

2.4.1.2. Intensity-Frequency Analysis 

To investigate the performance of the products in accurately matching the observed 

frequency of different precipitation intensities, their frequency of detection was 

plotted against 5 different thresholds/intervals of daily precipitation intensity. The 

intensity thresholds/intervals (Table 2.3) were defined following (Zambrano-Bigiarini 

et al., 2017). 

Table 2.3. Classification of precipitation intensities 

Name 
Precipitation Intensity  

(mm/day) 

No precipitation 0 – 1 

Light precipitation 1 – 5 

Moderate precipitation 5 – 20 
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Heavy precipitation 20 – 40 

Extreme precipitation > 40 

 

2.4.1.3. Categorical Performance Indices 

Over the entire area and individual wetness, elevation, and slope classes, three 

categorical performance indices (CPI) were investigated for different daily 

precipitation intensity thresholds (Table 2.4); namely probability of detection (POD), 

false alarm ratio (FAR) and critical success index (CSI). Here, POD and FAR measure 

the fraction of data points that are correctly and incorrectly (respectively) estimated to 

be above a threshold value, while CSI is also related with the depiction of the fraction 

of data points correctly estimated as having values above the threshold (Yucel et al., 

2011). A perfect detection should have CSI and POD values equal to 1 and a FAR 

value of 0. 

Table 2.4. Algorithm for categorical performance indices 

 Observed Precipitation 

Above Threshold Below Threshold 

Product  

Precipitation 

Above Threshold Hit (H) False Alarm (F) 

Below Threshold Miss (M) Correct Negative (CN) 

 

The categorical performance indices are calculated as: 

𝑃𝑂𝐷 =  
𝐻

(𝐻+𝑀)
          (7) 

𝐹𝐴𝑅 =  
𝐹

(𝐻+𝐹)
           (8) 

𝐶𝑆𝐼 =  
𝐻

(𝐻+𝑀+𝐹) 
         (9) 

where H indicates a hit (i.e., a satellite/model estimate that correctly identifies an 

observed precipitation above a threshold), M is a miss (i.e., satellite/model showing 

daily precipitation less than a threshold while station-based observations show higher 
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precipitation than that threshold), F is a false alarm (i.e., satellite/model show 

precipitation greater than a threshold while station-based observations show lower 

precipitation rates than that threshold), and CN is when both the observed data and 

satellite/model data show daily precipitation less than a threshold.  

Following Yucel et al. (2011), the statistics POD, FAR, and CSI were computed using 

six thresholds of precipitation intensity (1, 10, 20, 30, 40, and 50 mm/day). However, 

instead of using 0 mm/day threshold for “no precipitation” (Yucel et al., 2011), this 

study used the threshold of 1 mm/day to define “no precipitation” (Zambrano-

Bigiarini et al., 2017). 

2.4.2. Monthly Time Scale 

To investigate the performance of the products over monthly time scale, the daily 

observed precipitation data as well as the daily precipitation data from the nine 

products were converted to monthly accumulated data. 

2.4.2.1. Time Series Plots 

For each dataset, monthly precipitation data for all the stations within each class were 

averaged for each month separately; thus, forming a monthly complete time series. 

Later, these complete time series were decomposed into climatology and anomaly 

components following the below equations: 

𝑃𝑝,𝑚
𝐶𝑙𝑖𝑚𝑎𝑡𝑜𝑙𝑜𝑔𝑦

= ∑ 𝑃𝑝,𝑦,𝑚
𝑛
𝑦=1        (10) 

𝑃𝑝,𝑦,𝑚
𝐴𝑛𝑜𝑚𝑎𝑙𝑦

= 𝑃𝑝,𝑦,𝑚 − 𝑃𝑝,𝑚
𝐶𝑙𝑖𝑚𝑎𝑡𝑜𝑙𝑜𝑔𝑦

       (11) 

where, n is the total number of years (6 in our case); 𝑃𝑝,𝑦,𝑚 is the precipitation estimate 

in mm/mon for each product (p), year (y), and month (m); 𝑃𝑝,𝑚
𝐶𝑙𝑖𝑚𝑎𝑡𝑜𝑙𝑜𝑔𝑦

 is the 

seasonality component (mean of each product for a specific month of all the years); 

and 𝑃𝑝,𝑦,𝑚
𝐴𝑛𝑜𝑚𝑎𝑙𝑦

 is the remaining anomaly component. Here, the climatology of a 

specific month of the year is calculated by taking the average of precipitation for that 

month during all the study years (~6 years in our case). 
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Monthly complete time series, climatology, and anomaly were plotted for all the 

datasets over the entire study area to make a general view about their time-series 

performance. In addition to plots on the whole study area, monthly climatology and 

anomaly time series were plotted for all the datasets over different wetness, elevation, 

and slope classes to assess the time-series performance of all the datasets in detail over 

varying wetness, elevation, and slope. 

2.4.2.2. Monthly Evaluation Statistics 

2.4.2.2.1. Temporal Statistics 

Like daily evaluation metrics, the evaluation metrics for monthly datasets included 

Mean, SD, Bias, ErrSD, RMSE, and CC. However, on the monthly time scale, all 

these statistics were computed not only for the complete time series but also for its 

climatology and anomaly components over the entire study area as well as over 

individual wetness, elevation, and slope classes. 

2.4.2.2.2. Spatial Statistics 

In addition to computation of the above-mentioned temporal statistics, the spatial 

distribution maps (of the entire study area) for Bias and RMSE were prepared to 

visually assess the performance of the products over different regions of the area. For 

this, the station-based point data for Bias and RMSE were converted from point to 

spatial maps using inverse distance weighting interpolation (using data from 3 closest 

neighboring stations).  

Monthly evaluation analyses also included the investigation of how absolute Bias and 

ErrSD vary with the increasing terrain elevation and slope. 

2.4.3. Annual Time Scale 

The performance of the products over the annual time scale was assessed by 

converting the daily data to accumulated annual data for the individual datasets. 
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To visually assess the accuracy of the products in capturing the spatial variability of 

observed annual average precipitation, the spatial distribution maps were prepared by 

converting annual average precipitation for each dataset over stations to spatial maps 

by using inverse distance weighting interpolation (using data from 3 closest 

neighboring stations). 

Moreover, the variability of the annual average precipitation for each dataset was 

plotted against different elevations and slopes. 

 

2.5. Merging Precipitation Products 

This study does not merge the ground-based observed data with the precipitation 

products, rather it keeps the observed data independent so that, later, the individual 

and merged products could be evaluated using this independent data. 

2.5.1. Preparing Datasets for Merging 

The satellite estimation-based and model reanalysis-based products are released after 

a lag of 2-3 months as these products undergo certain calibration processes (in case of 

satellite-based products) or data assimilation processes (in case of reanalysis 

products); this study terms four of the products (i.e., IMERG, TMPA, ERAint, and 

ERA5) as “Research-grade products” or “Research products”. Similarly, the 

remaining five real-time forecast products (i.e., ECM, ALR, WRF, GFS, and CFS) are 

termed as “Real-time Forecasts” in this study. Thus, the set of nine precipitation 

products (i.e., IMERG, TMPA, ERAint, ERA5, ECM, ALR, WRF, GFS, and CFS) 

was divided into two groups based on the accessibility and type of the individual 

products. The two groups of the individual products were separately merged and 

evaluated afterwards. 

1-daily total precipitation data from IMERG, TMPA, ERAint and ERA5 were merged 

and evaluated using the ground-based observed data as the reference over daily as well 

as over monthly time scales (as these products are research-grade products, merging 
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and evaluating them over monthly time scale finds its implication in the fields like 

drought management).  

Total precipitation, as well as its convective and large-scale components for 1-3 daily 

real-time forecast data from ECM, ALR, WRF, GFS, and CFS were merged and 

evaluated. Here, CFS forecasts do not include large-scale precipitation variable, 

because of this, LSP amounts were determined by subtracting CP from TP.  

Now, as the observed 1-daily TP data obtained from MGM did not contain any 

information about the proportions of CP and LSP within TP for a specific day, this 

study had to rely on the skills of the ECMWF forecast model in segregating CP and 

LSP proportions. Thus, the observed 1-daily TP data was split to CP and LSP using 

proportions provided by ECM data each day, and then this 1-daily observed TP, CP, 

and LSP data was converted to 2-daily and 3-daily accumulated data for later 

evaluation of individual and merged datasets. 

2.5.2. Merging Procedure 

2.5.2.1. Simple Merging 

Simple merging of data on a specific day is calculated by taking the mean of data from 

all the merged products on that day (in other words, it is the same as the ensemble 

mean, where all the individual products combine to form the ensemble). Say if five 

products a, b, c, d, and e are being merged, their simple merge (SimpMRG) will be 

produced as: 

𝑆𝑖𝑚𝑝𝑀𝑅𝐺 =  
𝑎𝑖+ 𝑏𝑖+ 𝑐𝑖+ 𝑑𝑖+ 𝑒𝑖

5
       (12) 

where i denotes the specific day on which the SimpMRG is being produced. 

SimpMRG was produced for each of the 755 stations on each day of the study period 

separately for research-grade products (IMERG, TMPA, ERAint, and ERA5) and 

real-time forecasts (ECM, ALR, WRF, GFS, and CFS). 
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As an example, Figure 2.3a visually depicts simple merging method for the five 

forecast products to obtain SimpMRG by applying the Eq. 12. 

2.5.2.2. Merging after Regression-based Rescaling 

This method includes two steps: (1) Rescaling the individual products in the space of 

a reference product (here, reference product does not indicate the observed data, but 

it is one of the products which is taken at a time as a reference for rescaling the other 

products), and (2) Merging the rescaled products with simple merging method (Eq. 

12).  

 

Figure 2.3. Merging Methodology. (a) Simple Merging, (b) – (f): Simple Merging after regression-

based rescaling using ECM, ALR, WRF, GFS, and CFS as reference product (one at a time), 

respectively 

 

Rescaling the products with linear regression is done by considering one of the 

products at a time as the reference product and rescaling the other products on the 

space of this reference products. Hence, if we are rescaling five products by linear 

regression, we consider five different scenarios, where one of the five products are 

considered as the reference product in each scenario. Now, rescaling by linear 
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regression is implemented by using a simple linear relation between unscaled product 

(Y) and the reference product (X) as: 

𝑌∗ = 𝜇𝑋 + (𝑌 − 𝜇𝑌)𝐶𝑌       (13) 

where Y∗ is the rescaled form of Y; μX and μY are time averages of X and Y, 

respectively; and cY is the rescaling factor which can be found through linear 

regression method (Yilmaz and Crow, 2013): 

𝐶𝑌  = ρXY σX σY⁄          (14) 

where 𝐶𝑌 is the rescaling factor, 𝜎𝑋    and  𝜎𝑌   are the standard deviations of X and Y 

products; and 𝜌𝑋𝑌 is the correlation coefficient between X and Y. After rescaling the 

individual products, they were simply merged by using Eq. 12. 

The process of “selecting one of the products as a reference, applying regression-

based rescaling on all the products based on that reference product, and merging 

rescaled products using Eq. 12” was repeated five times (Figures 2.3b to 2.3f) for the 

five forecast products. Similarly, it was repeated four times for the four research 

products.  

The resulting merged real-time forecasts were denoted as SimpMRG (ensemble 

mean of all the forecasts), MRG_ECM_REG, MRG_ALR_REG, MRG_WRF_REG, 

MRG_GFS_REG, and MRG_CFS_REG (simply merged products obtained after 

rescaling all the forecasts in the space of ECM, ALR, WRF, GFS, and CFS, 

respectively). The merged products were produced for 1-3 daily TP, CP and LSP. 

Similarly, the satellite-based estimates and model-based reanalysis were merged by 

using the two methods of merging, and the resulting merged products were denoted 

as SimpMRG, MRG_IMERG_REG, MRG_TMPA_REG, MRG_ERAint_REG, and 

MRG_ERA5_REG. 
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2.5.3. Evaluation of Merged Products 

2.5.3.1. Categorical Performance Indices 

Over 1-daily time scale, individual real-time forecasts and their merged products for 

TP, CP, and LSP were analyzed for their performance in the detection of daily 

precipitation events and boxplots for POD, FAR, and CSI averaged over the entire 

area were prepared for discussion on this analysis. A similar study was conducted in 

the case of 1-daily individual research-grade (satellite and reanalysis) products and 

their merged products but only for TP data. 

2.5.3.2. Intensity-Frequency Analysis 

To investigate and compare the performance of individual and merged products in 

accurately matching the observed frequency of different precipitation intensities, their 

frequency of detection was plotted against 5 different thresholds/intervals (Table 2.3) 

of daily precipitation intensity. This analysis was conducted for TP, CP, and LSP for 

real-time forecasts, while only TP was considered in the case of satellite and reanalysis 

products. 

2.5.3.3. Error Statistics of Individual and Merged Products 

Evaluation metrics including Bias, ErrSD, and CC were determined for 1-3 daily 

individual and merged forecasts considering TP as well as its Cp and LSP components. 

These metrics were determined for individual and merged research-grade products 

over 1-daily and monthly time scales. 

2.5.3.4. Investigating Improvement in Accuracy of Individual Products after 

Merging 

To investigate the added utility of merging methods, an overall percent improvement 

in the accuracy of individual products due to merging was analyzed where ErrSD and 

CC were considered as accuracy indicators. 
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CHAPTER 3  

 

3. RESULTS AND DISCUSSION 

 

3.1. Evaluation of Precipitation Products 

The initial assessment of precipitation data from four research-grade products (i.e., 

IMERG, TMPA, ERAint, and ERA5) and five real-time forecast products (i.e., ECM, 

ALR, WRF, GFS, and CFS) was conducted using observation gauges data on daily, 

monthly and annual time scales. The results are presented and discussed below. 

3.1.1. Daily Time Scale 

3.1.1.1. Daily Evaluation Statistics 

Daily data from ALR shows the best accuracy in reproducing the mean observed 

precipitation (Table 3.1) by showing almost no Bias (Table 3.2) over the entire study 

area, where CFS data shows the most substantial wet Bias (0.6 mm/day). Contrary to 

the Bias related results, overall, ERA5 and ECM both show the least ErrSD (3.9 

mm/day) and the highest daily CC (0.66) with the observed data (Table 3.3) while 

TMPA performed the worst regarding ErrSD (5.7 mm/day) and CC (0.47). 

All the datasets, except ALR, overestimate the observed daily precipitation not only 

over the entire study area but over dry to moderately dry regions as well. IMERG, 

TMPA, ERAint, GFS, and CFS datasets tend to underestimate the observed 

precipitation over wetter regions while ERA5, ECM, and WRF consistently 

overestimated it over all the wetness classes (Table 3.2); with ERA5 and WRF 

showing more pronounced overestimation. ErrSD for a given product increases with 

increasing wetness of the region, which is obvious that increased amounts of 

precipitation tend to increase the errors; CC, on the other hand, does not follow such 

trend (Table 3.3). 
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Table 3.1. Daily Mean and SD for the entire study area and wetness classes 

Region Entire Dry Mod-dry Mod-wet Wet 

No. of Stations 755 279 303 123 50 

Mean  

(mm/day) 

Obs 1.6 1.1 1.6 2.2 3.2 

IMERG 1.9 1.5 1.9 2.3 2.8 

TMPA 1.8 1.5 1.9 2.0 2.4 

ERAint 1.9 1.7 1.9 2.0 2.2 

ERA5 2.0 1.6 2.0 2.5 3.4 

ECM 1.8 1.4 1.8 2.4 3.3 

ALR 1.6 1.0 1.5 2.2 3.2 

WRF 1.9 1.4 1.9 2.5 3.7 

GFS 1.9 1.5 2.0 2.4 2.4 

CFS 2.2 1.8 2.4 2.6 2.6 

SD  

(mm/day) 

Obs 5.0 3.5 5.0 6.5 9.0 

IMERG 5.4 4.2 5.6 6.6 7.6 

TMPA 5.8 4.8 6.0 6.7 7.9 

ERAint 4.0 3.6 4.0 4.4 4.4 

ERA5 4.3 3.4 4.3 5.5 6.8 

ECM 4.3 3.2 4.2 5.6 7.2 

ALR 4.6 3.2 4.6 6.2 8.3 

WRF 5.1 3.7 5.1 6.6 9.5 

GFS 4.6 3.6 4.8 6.0 6.1 

CFS 5.1 4.0 5.5 6.3 6.4 

 

Table 3.2. Daily Bias and ErrSD for the entire study area and wetness classes 

Region Entire Dry Mod-dry Mod-wet Wet 

No. of Stations 755 279 303 123 50 

Bias 

 (mm/day) 

IMERG 0.3 0.4 0.3 0.1 -0.4 

TMPA 0.2 0.4 0.3 -0.2 -0.8 

ERAint 0.3 0.6 0.3 -0.1 -0.9 

ERA5 0.4 0.5 0.4 0.3 0.3 

ECM 0.2 0.3 0.2 0.2 0.2 

ALR 0.0 -0.1 -0.1 0.0 0.0 

WRF 0.3 0.3 0.3 0.3 0.5 

GFS 0.3 0.4 0.4 0.3 -0.8 

CFS 0.6 0.7 0.8 0.4 -0.6 

ErrSD 

 (mm/day) 

IMERG 4.6 3.7 4.6 5.4 7.7 

TMPA 5.7 4.7 5.7 6.7 9.2 

ERAint 4.2 3.4 4.1 4.9 7.1 

ERA5 3.9 3.1 3.9 4.7 6.8 

ECM 3.9 3.0 3.9 4.7 6.5 

ALR 4.4 3.3 4.4 5.5 7.8 

WRF 4.5 3.4 4.5 5.5 7.8 

GFS 4.5 3.6 4.5 5.5 7.2 

CFS 4.8 3.9 4.9 5.5 7.3 
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Table 3.3. Daily CC for the entire study area and wetness classes 

Region Entire Dry Mod-dry Mod-wet Wet 

No. of Stations 755 279 303 123 50 

CC with the 

Observed Data 

IMERG 0.62 0.59 0.64 0.66 0.57 

TMPA 0.47 0.44 0.49 0.49 0.40 

ERAint 0.62 0.58 0.62 0.66 0.64 

ERA5 0.66 0.63 0.67 0.72 0.68 

ECM 0.66 0.63 0.67 0.71 0.70 

ALR 0.58 0.55 0.59 0.63 0.59 

WRF 0.62 0.59 0.62 0.66 0.66 

GFS 0.60 0.55 0.61 0.66 0.62 

CFS 0.59 0.54 0.60 0.66 0.62 

 

Table 3.4. Daily Mean and SD for the entire study area and elevation classes 

Elevation (m) Entire < 500 500-1000 1000-1500 1500-2000 > 2000 

No. of Stations 755 237 219 209 77 13 

Mean 

 (mm/day) 

Obs 1.6 2.0 1.4 1.4 1.4 1.5 

IMERG 1.9 2.3 1.8 1.7 1.7 1.9 

TMPA 1.8 2.1 1.7 1.6 1.7 1.8 

ERAint 1.9 1.9 1.8 1.8 2.3 2.4 

ERA5 2.0 2.3 1.8 1.8 2.1 2.2 

ECM 1.8 2.2 1.6 1.6 1.8 1.9 

ALR 1.6 2.1 1.4 1.2 1.1 1 

WRF 1.9 2.3 1.7 1.7 1.9 2.2 

GFS 1.9 1.8 1.8 1.9 2.3 2.5 

CFS 2.2 2.5 2.1 2.0 2.3 2.7 

SD  

(mm/day) 

Obs 5.0 6.8 4.2 4.1 4.1 4.1 

IMERG 5.4 7.1 5.0 4.5 4.2 4.4 

TMPA 5.8 7.2 5.3 5.0 5.0 5.2 

ERAint 4.0 4.2 3.9 3.7 4.2 4.2 

ERA5 4.3 5.4 4.0 3.7 3.9 3.7 

ECM 4.3 5.4 3.8 3.6 3.8 3.6 

ALR 4.6 6.4 4.2 3.6 3.3 3 

WRF 5.1 6.6 4.4 4.3 4.7 4.9 

GFS 4.6 5.1 4.3 4.3 4.7 4.7 

CFS 5.1 6.4 4.9 4.3 4.4 4.5 

 

Usually, the highest precipitation amounts are associated with the regions with higher 

elevations. However, this is not strictly the case with the study area under 

consideration. The observed data, TMPA, and ALR show the highest average daily 

precipitation amounts to be received by the regions with the lowest elevations (Table 

3.4), whereas all the other datasets show the regions with the highest elevations being 
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the wettest ones. With a few exceptions (e.g., Bias in ALR over the regions with 

elevation > 1000 m), all the precipitation products overestimate the observed 

precipitation over all the elevation classes (Table 3.5). 

Table 3.5. Daily Bias and ErrSD for the entire study area and elevation classes 

Elevation (m) Entire < 500 500-1000 1000-1500 1500-2000 > 2000 

No. of Stations 755 237 219 209 77 13 

Bias  

(mm/day) 

IMERG 0.3 0.3 0.3 0.3 0.3 0.5 

TMPA 0.2 0.1 0.2 0.2 0.3 0.3 

ERAint 0.3 -0.1 0.4 0.4 0.8 0.9 

ERA5 0.4 0.3 0.4 0.4 0.7 0.7 

ECM 0.2 0.1 0.2 0.2 0.4 0.4 

ALR 0.0 0.1 0.0 -0.2 -0.4 -0.5 

WRF 0.3 0.3 0.2 0.3 0.5 0.8 

GFS 0.3 -0.2 0.4 0.5 0.9 1.1 

CFS 0.6 0.5 0.7 0.6 0.9 1.3 

ErrSD 

 (mm/day) 

IMERG 4.6 5.9 4.0 3.9 4.2 4.7 

TMPA 5.7 7.1 5.0 4.9 5.3 5.6 

ERAint 4.2 5.4 3.6 3.5 4.0 4.3 

ERA5 3.9 5.2 3.4 3.3 3.6 3.8 

ECM 3.9 5.2 3.3 3.2 3.5 3.8 

ALR 4.4 5.9 3.8 3.7 3.8 4.1 

WRF 4.5 6.0 3.7 3.7 4.1 4.6 

GFS 4.5 5.4 4.0 4.0 4.5 4.9 

CFS 4.8 6.0 4.3 4.0 4.5 4.8 

 

Table 3.6. Daily CC for the entire study area and elevation classes 

Elevation (m) Entire < 500 500-1000 1000-1500 1500-2000 > 2000 

No. of Stations 755 237 219 209 77 13 

CC with the  

Observed Data 

IMERG 0.62 0.66 0.64 0.59 0.52 0.45 

TMPA 0.47 0.51 0.49 0.43 0.38 0.34 

ERAint 0.62 0.63 0.63 0.61 0.57 0.49 

ERA5 0.66 0.68 0.68 0.65 0.61 0.55 

ECM 0.66 0.68 0.68 0.66 0.62 0.56 

ALR 0.58 0.62 0.60 0.55 0.50 0.45 

WRF 0.62 0.62 0.63 0.62 0.59 0.54 

GFS 0.60 0.62 0.60 0.58 0.56 0.49 

CFS 0.59 0.63 0.59 0.57 0.52 0.46 

 

The combined average ErrSD (5.8 mm/day) for all the products over regions with the 

lowest elevation is higher than that (4.3 mm/day) over regions with elevations above 

1500 m (Table 3.5). This implies (keeping in mind that most of the products associate 
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the regions with the lowest elevations receiving more average precipitation) that 

wetness has a prominent role in the error statistics of the products over the study area. 

However, for all the products, the daily CC with the observed data decreases with the 

increasing regional elevation (Table 3.6). The combined average daily CC of all the 

products decreases from 0.63 over regions with the lowest elevations to 0.48 over 

those with the highest elevations. 

Table 3.7. Daily Mean and SD for the entire study area and slope classes 

Slope Entire < 5% 5-10% 10-15% 15-20% > 20% 

No. of Stations 755 499 170 56 19 11 

Mean  

(mm/day) 

Obs 1.6 1.5 1.7 2.0 2.3 1.9 

IMERG 1.9 1.8 2.0 2.1 2.4 2.6 

TMPA 1.8 1.7 1.9 1.9 2.1 2.1 

ERAint 1.9 1.8 2.0 2.2 2.6 3 

ERA5 2.0 1.8 2.1 2.6 3.3 4.1 

ECM 1.8 1.7 1.9 2.3 2.9 3 

ALR 1.6 1.5 1.5 2.0 2.2 1.8 

WRF 1.9 1.8 2.0 2.4 3.1 2.4 

GFS 1.9 1.7 2.0 2.5 3.3 4.5 

CFS 2.2 2.1 2.3 2.6 2.3 3.4 

SD  

(mm/day) 

Obs 5.0 4.9 4.8 5.7 5.9 4.4 

IMERG 5.4 5.4 5.4 5.6 5.8 5.3 

TMPA 5.8 5.7 5.8 6.0 6.2 5.6 

ERAint 4.0 3.9 4.1 4.3 4.7 4.7 

ERA5 4.3 4.2 4.4 5.0 5.6 6.1 

ECM 4.3 4.1 4.3 4.8 5.4 4.9 

ALR 4.6 4.5 4.5 5.3 5.8 4.5 

WRF 5.1 4.9 5.1 5.8 6.9 5.6 

GFS 4.6 4.4 4.7 5.4 6.4 7.1 

CFS 5.1 5.1 5.2 5.4 4.8 6.4 

 

Contrary to the variability of daily precipitation averages related to the varying 

elevations, the observed data, as well as all the products, indicate that the higher the 

terrain slope is, the wetter is the region (Table 3.7). Except for ALR and WRF, all the 

products have the highest Bias occurring over regions with the highest slopes (Table 

3.8), while the relationship between ErrSD and terrain slope is not as linear. However, 

on average, the products show lower ErrSD (4.4 mm/day) over regions with the lowest 

terrain slopes (i.e., < 5%) as compared to that (4.9 mm/day) over regions with the 

highest terrain slopes (i.e., > 20%); which depicts the impact of terrain complexity on 
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error variation. Increasing terrain slopes have an inverse effect on the daily CC of a 

given product (Table 3.9), which results in the combined average daily CC of all the 

products to drop from 0.60 over regions with the lowest terrain slopes to 0.55 over 

those with the highest slopes. 

Table 3.8. Daily Bias and ErrSD for the entire study area and slope classes 

Slope Entire < 5% 5-10% 10-15% 15-20% > 20% 

No. of Stations 755 499 170 56 19 11 

Bias  

(mm/day) 

IMERG 0.3 0.3 0.3 0.1 0.1 0.7 

TMPA 0.2 0.2 0.2 -0.1 -0.3 0.2 

ERAint 0.3 0.3 0.3 0.1 0.3 1.1 

ERA5 0.4 0.3 0.4 0.5 1.0 2.2 

ECM 0.2 0.2 0.2 0.3 0.5 1.1 

ALR 0.0 0.0 -0.1 0.0 -0.1 -0.1 

WRF 0.3 0.3 0.3 0.3 0.8 0.5 

GFS 0.3 0.2 0.3 0.4 0.9 2.6 

CFS 0.6 0.6 0.7 0.5 0.0 1.5 

ErrSD  

(mm/day) 

IMERG 4.6 4.5 4.5 5.2 5.7 4.9 

TMPA 5.7 5.6 5.6 6.4 7.1 6.1 

ERAint 4.2 4.1 4.0 4.7 4.8 4 

ERA5 3.9 3.9 3.8 4.5 4.7 4.6 

ECM 3.9 3.9 3.7 4.4 4.4 3.9 

ALR 4.4 4.3 4.3 5.1 5.5 4.6 

WRF 4.5 4.4 4.3 5.1 5.4 4.6 

GFS 4.5 4.4 4.4 5.5 5.9 6 

CFS 4.8 4.7 4.6 5.4 5.3 5.4 

 

Table 3.9. Daily CC for the entire study area and slope classes 

Slope Entire < 5% 5-10% 10-15% 15-20% > 20% 

No. of Stations 755 499 170 56 19 11 

CC with the  

Observed Data 

IMERG 0.62 0.63 0.62 0.59 0.52 0.49 

TMPA 0.47 0.48 0.46 0.43 0.36 0.3 

ERAint 0.62 0.61 0.63 0.62 0.64 0.62 

ERA5 0.66 0.66 0.68 0.67 0.69 0.63 

ECM 0.66 0.65 0.68 0.68 0.71 0.67 

ALR 0.58 0.58 0.58 0.58 0.56 0.47 

WRF 0.62 0.61 0.63 0.63 0.67 0.63 

GFS 0.60 0.59 0.61 0.59 0.61 0.58 

CFS 0.59 0.58 0.59 0.59 0.59 0.58 
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3.1.1.2. Intensity-Frequency Analysis 

The model-based products, except ALR, show a smaller number of dry days (i.e., with 

“no precipitation”) compared to observed data (Figure 3.1), which is a common thing 

related to this kind of products (e.g., Gampe and Ludwig, 2017; Hénin et al., 2018). 

ALR shows the highest accuracy in matching the observed frequency of days against 

all the intensity intervals while ERAint and CFS show converse of this. The poor 

performance of ERA-Interim and CFS in estimating the precipitation events can be 

related to their coarser spatial resolutions (0.75o and 0.5o, respectively) at which cloud-

precipitation systems are weakly resolved, and lower number of observations 

assimilated into the models. 

 

Figure 3.1. Daily precipitation intensity vs. frequency bar plots for the entire study area 

 

Although, both the model-based reanalysis products (ERAint and ERA5) 

underestimate the frequency of observed days with “heavy precipitation” and 

“extreme precipitation” (Figure 3.1), ERA5 shows some improvement over ERA-
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Interim in recording the frequency of these specific days. Among the satellite-based 

products, TMPA performs slightly better than IMERG in intensity-frequency analysis 

against almost all the daily precipitation intensity intervals. 

3.1.1.3. Categorical Performance Indices 

As in this study, CPI were computed against different precipitation intensity 

thresholds (not the intervals) (please refer to Section 2.4.1.3); the results related to CPI 

must be considered differently than intensity-frequency analysis. 

 

Figure 3.2. Categorical Performance Indices, a) POD, b) FAR, and c) CSI, against different intensity 

thresholds over the entire study area. The dashed lines show the optimum scores for the respective 

CPI 

Over the entire study area, better POD, FAR and CSI (Figure 3.2a, 3.2b, and 3.2c, 

respectively) of IMERG as compared to TMPA indicate its improved precipitation 

detection ability against almost all the intensity thresholds. Similarly, ERA5 performs 

better than ERAint in all the CPI against all the intensity thresholds. The CPI of the 

real-time forecast, ECM, are well in line with those of ERA5, thus depicting its utility 
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in operational fields. Increasing the magnitude of precipitation intensity threshold 

causes lower POD, higher FAR, and lower CSI. 

 

Figure 3.3. Categorical Performance Indices. POD (from (a) to (d)), FAR (from (e) to (h)), and CSI 

(from (i) to (l)) against different daily precipitation intensities over wetness classes; Dry (a,e,i), Mod-

Dry (b,f,j)), Mod-Wet (c,g,k)), and Wet (d,h,l)), respectively. The dashed lines show the optimum 

scores for the respective CPI 

With the increasing wetness of the region, the differences between the CPI of different 

products increase (Figure 3.3). Moreover, the increasing wetness causes a decrease in 

POD for both the satellite-based products while it results in raised POD for model-
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based products (Figures 3.3a to 3.3d). Low FAR for model-based products (Figures 

3.3e to 3.3h) is an indication of them underestimating the frequency of dry days. 

Among all the products, TMPA consistently shows higher FAR over all the wetness 

classes; IMERG shows much improved FAR. TMPA and ERAint show the worst CSI 

(Figures 3.3i to 3.3l) among the products over all the wetness classes, while CFS and 

GFS have moderate ability regarding CPI. Among all the model-based products, ECM 

shows the best CSI, especially against light to moderate precipitation intensities. 

The POD of satellite-based products is inversely affected by an increase in the 

elevation of the regions (Figures 3.4a to 3.4e); the POD of ALR also has the same 

trend. Overall, ERA5 shows better POD than ERAint over all the elevation classes. 

Like its performance over wetness classes, TMPA shows the highest FAR over all the 

elevation classes (Figures 3.4f to 3.4j). ECM, again, counts it among the top 

performers regarding CSI over varying elevation regions (Figures 3.4k to 3.4o). With 

some exceptions, the CPI results for the products over elevation classes are like those 

over wetness classes. 

The difference between performances of ERA5 and ERAint regarding CPI over 

varying terrain slopes (Figure 3.5) is even more substantial as compared to that over 

varying elevations. IMERG shows the highest POD score over regions with the lowest 

slopes (Figure 3.5a); however, its POD score is inversely affected by increasing terrain 

slopes. ECM consistently shows the highest CSI scores (Figures 3.5k to 3.5o), 

especially over steeper terrain slopes. 
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Figure 3.4. Categorical Performance Indices. POD (from (a) to (e)), FAR (from (f) to (j)), and CSI 

(from (k) to (o)) against different daily precipitation intensities over elevation classes; Elev <500 

(a,f,k), Elev 500-1000 (b,g,l)), Elev 1000-1500 (c,h,m)), Elev 1500-2000 (d,i,n)), Elev >2000 (e,j,o)), 

respectively. The dashed lines show the optimum scores for the respective CPI 
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Figure 3.5. Categorical Performance Indices. POD (from (a) to (e)), FAR (from (f) to (j)), and CSI 

(from (k) to (o)) against different daily precipitation intensities over slope classes; Slope <5% (a,f,k), 

Slope 5-10% (b,g,l)), Slope 10-15% (c,h,m)), Slope 15-20% (d,i,n)), Slope >20% (e,j,o)), 

respectively. The dashed lines show the optimum scores for the respective CPI 
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3.1.2. Monthly Time Scale 

3.1.2.1. Time Series Plots 

 

Figure 3.6. Monthly time series over the entire study area. a) complete time series, b) climatology, 

and c) anomaly. The color-coded horizontal lines in the climatology plot show the mean monthly 

precipitation for the respective datasets. The horizontal line in the anomaly plot shows zero anomaly 

level 

Investigating the country-scale monthly precipitation time series variability (Figure 

3.6a) suggests that the products follow the trends of observed data time series very 

well. There are a few patches of time (e.g., March 2016 to November 2016) where 



 

 

 

46 

 

monthly complete time series of all the products perfectly match the observed data 

time series. However, during most of the study period, product time series show 

differences with the observed data. Discrepancies at the peaks have implications in 

water resources management, where the product data may cause more optimistic 

management decisions. Overall, the climatology of the products (Figure 3.6b) shows 

that July to September are the driest months, while December to May are the wettest 

months over the study area. The products’ overestimation of the observed precipitation 

is more pronounced in winter as compared to the summer season. Overall, the 

products, except ALR, overestimate the monthly observed data; CFS does it the most. 

Monthly anomaly time series of all the products, on the other hand, very closely follow 

the anomaly time series of the observed data throughout the study period (Figure 3.6c). 

Monthly precipitation data from ALR, ECM, and ERAint could better be 

recommended for hydrological applications during the summer months (June-August) 

as they follow the climatology of the observed data better than all the other products 

(Figure 3.6b). ECM follows the monthly observed precipitation during autumn 

(September-November) better than the other products, while ALR also shows 

consistency with the observed data especially during the months of September and 

October. During the winter season (December-February), none of the products has a 

consistent matching for the trends in climatology of observed data. Nevertheless, 

WRF, ALR, and TMPA could be considered as better recommendable products during 

winter season. The trends and magnitudes of monthly observed precipitation during 

the spring season (March-May) are better followed by ALR compared with all the 

other products.  

The country-scale monthly precipitation time series variability is assessed in more 

detail by plotting its climatology and anomaly components for the individual wetness 

(Figure 3.7), elevation (Figure 3.8), and slope classes (Figure 3.9). IMERG, TMPA, 

ERAint, GFS, and CFS overestimate the observed monthly precipitation over dry to 

moderately wet regions (Figures 3.7a to 3.7c) while they do the inverse over wet 

regions (Figure 3.7d). However, all the other products, except ALR, consistently 
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overestimate the observed precipitation over all the wetness classes. The discrepancies 

in following the observed monthly anomaly time series increase with the increasing 

wetness (Figures 3.7e to 3.7h). 

 

Figure 3.7. Monthly climatology (from (a) to (d)) and monthly anomaly (from (e) to (h)) for wetness 

classes. The color-coded horizontal lines in the climatology plot show the mean monthly precipitation 

for the respective datasets. The horizontal line in the anomaly plot shows zero anomaly level 

As an only exception, ALR overestimates the monthly observed data over regions with 

the lowest elevations (i.e., <500 m) and does the inverse over regions with elevations 

above 1000 m (Figures 3.8a to 3.8e). Climatology plots for all the other products show 

a consistent overestimation over each elevation class. The differences in climatology 

time series between the observed data and the products are more pronounced over the 
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regions with elevations above 1500m, which is evidence of the impact of elevation 

increase on the accuracy of the products. A similar conclusion is valid for monthly 

anomaly time series over regions with elevations above 1500m (Figures 3.8i and 3.8j). 

 

Figure 3.8. Monthly climatology (from (a) to (e)) and monthly anomaly (from (f) to (j)) for elevation 

classes. The color-coded horizontal lines in the climatology plot show the mean monthly precipitation 

for the respective datasets. The horizontal line in the anomaly plot shows zero anomaly level 
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Figure 3.9. Monthly climatology (from (a) to (e)) and monthly anomaly (from (f) to (j)) for slope 

classes. The color-coded horizontal lines in the climatology plot show the mean monthly precipitation 

for the respective datasets. The horizontal line in the anomaly plot shows zero anomaly level 

Differences between climatology plots of the observed data and the products increase 

with the increasing terrain slopes (Figures 3.9a to 3.9e), where the climatology time 

series of ERA5, GFS, and CFS show the most differences (overestimation) with the 

observed ones. Climatology plots for ALR show a slight underestimation of the 

observed data, especially over the higher terrain slopes. It is to note that the effect of 

increasing terrain slopes is more pronounced on the climatology plots of model-based 



 

 

 

50 

 

products. Contrary to their variation with wetness and elevation, the monthly anomaly 

time series of the products show larger discrepancies with increasing terrain slopes 

(Figures 3.9f to 3.9j), thus indicating the impact of increasing terrain complexity on 

the accuracy of the products. 

Summarizing, investigating the time-series variability shows that the variabilities of 

monthly and seasonal precipitation and, in turn, the accuracy of the products are 

profoundly affected by all three factors (i.e., wetness, elevation, and slope). 

3.1.2.2. Spatial Distribution of Statistics 

The spatially distributed maps for monthly Bias show sharp transitions of Bias values 

frequently occurring in cases of GFS (Figure 3.10h), and CFS (Figure 3.10i) forecasts 

depicting their very wet and very dry biases over different parts of the area.  

 

Figure 3.10. Spatial distribution maps for monthly Bias (mm/month). Negative values denote dry 

Bias while positive ones denote wet Bias 

Along most of the Black Sea coastline (the entire northern side of the study area), the 

products tend to underestimate the observed precipitation, which is the case with 

IMERG (Figure 3.10a), TMPA (Figure 3.10b), ERAint (Figure 3.10c), and ALR 
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(Figure 3.10f). Almost all the products have less Bias display over the central parts of 

the region where most of the dry to moderately dry areas exist. Regarding terrain 

complexity, all the products, except ERA5 (Figure 3.10d), tend to show dry Bias over 

a mountainous patch of northeastern Black Sea region, while they show wet bias over 

the regions situated right below that patch; this pattern is prominent in cases of 

IMERG, TMPA, ERAint, GFS, and CFS. The apparent reason behind this behavior is 

the orographic character of precipitation falling over that region. 

 

Figure 3.11. Spatial distribution maps for monthly RMSE (mm/month) 

The spatially distributed maps for monthly RMSE (which is a combination of Bias 

and ErrSD) provide an overall picture of the errors associated with the products 

(Figure 3.11). GFS and CFS are, again, the two worst performers showing large 

monthly RMSE over several regions of the study area, especially over the eastern parts 

of it, which are known for their complex topography. Although ECM shows larger 

monthly Bias compared to ALR, it shows overall slightly less RMSE than ALR 

(Figures 3.11e and 3.11f), especially over eastern and northeastern regions with 

complex topography. Similar patterns exist in research-grade products, where IMERG 

(Figure 3.11a) shows slightly less RMSE than TMPA (Figure 3.11b) over western 
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regions, and ERA5 (Figure 3.11d) performs better than ERAint (Figure 3.11c) over 

some eastern regions of the study area. 

3.1.2.3. Temporal Statistics – The Entire Study Area 

Table 3.10. Monthly Mean and SD for the entire area and wetness classes 

Region Entire Dry Mod-dry Mod-wet Wet 

No. of Stations 755 279 303 123 50 

Mean  

(mm/month) 

Complete  

Time  

Series 

Obs 49.2 32.9 48.8 67.5 97.7 

IMERG 57.6 46.0 59.3 68.6 84.7 

TMPA 54.8 45.5 57.4 62.3 73.0 

ERAint 57.5 52.8 58.4 62.3 67.3 

ERA5 61.4 48.0 60.4 76.8 104.8 

ECM 55.8 41.5 54.5 72.7 101.0 

ALR 46.6 30.6 46.0 64.6 95.3 

WRF 57.8 40.7 58.6 74.2 107.9 

GFS 58.3 44.7 61.2 75.6 73.9 

CFS 67.9 54.7 73.9 78.6 78.4 

SD  

(mm/month) 

Complete  

Time  

Series 

Obs 41.6 28.9 42.1 55.6 75.4 

IMERG 40.3 32.4 42.0 47.9 55.6 

TMPA 41.2 33.5 43.3 47.6 55.4 

ERAint 39.4 36.5 40.2 43.3 41.0 

ERA5 42.1 34.4 42.1 51.6 61.6 

ECM 40.6 32.1 40.5 51.1 62.6 

ALR 40.7 29.0 40.9 54.0 72.7 

WRF 45.2 34.6 45.7 54.4 79.2 

GFS 47.0 37.6 48.7 59.6 57.9 

CFS 50.5 41.3 54.1 59.5 58.1 

Climatology 

Obs 29.0 20.3 29.1 38.8 53.3 

IMERG 29.1 23.1 30.4 34.5 40.9 

TMPA 28.7 23.3 30.2 32.9 39.5 

ERAint 27.7 25.7 28.3 30.4 28.2 

ERA5 30.2 24.9 30.2 36.3 44.0 

ECM 29.0 23.8 28.9 35.4 43.1 

ALR 30.0 21.6 29.5 39.5 56.2 

WRF 32.0 25.9 32.3 35.8 55.2 

GFS 34.4 27.0 35.7 43.8 45.5 

CFS 35.5 29.3 37.5 41.7 42.4 

Anomaly 

Obs 29.4 20.6 29.8 38.9 53.1 

IMERG 27.9 22.5 29.1 33.5 37.7 

TMPA 29.4 24.0 30.8 34.3 38.5 

ERAint 27.8 25.9 28.2 30.5 29.3 

ERA5 29.2 23.6 29.2 36.4 42.2 

ECM 27.9 21.3 27.9 36.1 44.4 

ALR 26.7 18.7 27.0 36.1 47.3 

WRF 29.8 20.7 30.2 39.0 55.0 

GFS 31.2 25.2 32.4 39.8 35.9 

CFS 35.2 28.5 38.0 41.7 39.0 
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Over the entire study area, ALR shows the closest average monthly precipitation to 

the observed data (Table 3.10) with a dry Bias of 2.6 mm/month (Table 3.11). All the 

other products overestimate (i.e., wet Bias) the observed monthly data, with CFS data 

showing the most substantial wet Bias (18.7 mm/month). 

Table 3.11. Monthly Bias and ErrSD for the entire area and wetness classes 

Region Entire Dry Mod-dry Mod-wet Wet 

No. of Stations 755 279 303 123 50 

Bias  

(mm/month) 

Complete  

Time  

Series 

IMERG 8.4 13.1 10.5 1.1 -13.0 

TMPA 5.6 12.6 8.6 -5.2 -24.6 

ERAint 8.3 19.9 9.6 -5.2 -30.4 

ERA5 12.2 15.1 11.6 9.3 7.1 

ECM 6.6 8.6 5.7 5.2 3.3 

ALR -2.6 -2.4 -2.8 -2.9 -2.4 

WRF 8.6 7.8 9.8 6.7 10.2 

GFS 9.0 11.7 12.4 8.1 -23.8 

CFS 18.7 21.8 25.1 11.1 -19.3 

ErrSD  

(mm/month) 

Complete  

Time  

Series 

IMERG 24.3 19.5 24.1 27.9 42.9 

TMPA 27.7 21.8 27.4 33.4 48.4 

ERAint 29.5 25.5 27.7 33.4 54.0 

ERA5 27.6 22.7 26.6 32.3 49.8 

ECM 26.6 21.2 25.9 32.7 45.9 

ALR 30.4 22.0 30.6 38.7 54.8 

WRF 30.6 22.6 31.5 38.1 52.0 

GFS 35.8 28.8 36.1 43.4 54.2 

CFS 35.9 29.8 36.8 40.5 53.2 

Climatology 

IMERG 17.9 14.1 18.0 21.3 30.5 

TMPA 17.7 14.2 18.1 20.3 28.9 

ERAint 18.4 16.5 16.8 19.5 35.5 

ERA5 17.8 15.3 16.9 19.9 32.0 

ECM 16.5 14.2 15.8 18.8 27.6 

ALR 21.4 14.2 20.9 30.0 44.6 

WRF 22.8 16.2 23.1 30.5 39.5 

GFS 23.4 19.5 23.6 27.3 34.0 

CFS 22.8 19.8 23.3 24.5 32.9 

Anomaly 

IMERG 21.6 16.9 21.5 26.4 37.1 

TMPA 23.2 18.2 22.9 28.8 40.1 

ERAint 24.6 20.4 23.9 29.0 41.9 

ERA5 23.0 18.0 22.7 28.1 40.6 

ECM 22.8 17.2 22.6 29.3 39.9 

ALR 26.1 19.1 26.4 33.1 45.6 

WRF 26.2 19.0 26.6 33.7 46.1 

GFS 29.1 22.3 29.9 36.7 43.6 

CFS 29.0 23.5 30.1 33.5 42.3 
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Compared to the anomaly SD of the observed data (29.4 mm/month), a larger anomaly 

SD of CFS data (35.2 mm/month) (Table 3.10) along with its substantial wet Bias of 

18.7 mm/month (Table 3.11) suggest it to be, probably, less beneficent in operational 

fields like flood forecasting. Whereas, both the anomaly SD (26.7 mm/month), as well 

as the Bias (2.6 mm/month) of ALR are the lowest among all the products. IMERG 

shows the lowest ErrSD (24.3 mm/month) among all the products when the complete 

time series, as well as the anomaly components, are considered (Table 3.11) over the 

entire area.  

Table 3.12. Monthly CC for the entire area and wetness classes 

Region Entire Dry Mod-dry Mod-wet Wet 

No. of Stations 755 279 303 123 50 

CC with the  

Observed Data 

Complete  

Time  

Series 

IMERG 0.82 0.81 0.84 0.84 0.78 

TMPA 0.79 0.79 0.79 0.78 0.72 

ERAint 0.76 0.74 0.77 0.79 0.71 

ERA5 0.79 0.77 0.80 0.82 0.73 

ECM 0.79 0.77 0.81 0.82 0.77 

ALR 0.72 0.74 0.72 0.72 0.66 

WRF 0.78 0.79 0.77 0.76 0.76 

GFS 0.74 0.73 0.75 0.76 0.69 

CFS 0.75 0.73 0.76 0.76 0.70 

Climatology 

IMERG 0.81 0.81 0.82 0.82 0.80 

TMPA 0.82 0.81 0.82 0.83 0.79 

ERAint 0.81 0.79 0.82 0.84 0.75 

ERA5 0.82 0.81 0.84 0.84 0.74 

ECM 0.83 0.82 0.85 0.85 0.78 

ALR 0.74 0.80 0.75 0.68 0.59 

WRF 0.75 0.81 0.75 0.65 0.66 

GFS 0.79 0.77 0.80 0.80 0.75 

CFS 0.79 0.79 0.80 0.80 0.75 

Anomaly 

IMERG 0.71 0.69 0.72 0.72 0.68 

TMPA 0.69 0.69 0.71 0.68 0.63 

ERAint 0.65 0.64 0.66 0.67 0.63 

ERA5 0.69 0.67 0.70 0.72 0.68 

ECM 0.68 0.66 0.70 0.71 0.68 

ALR 0.56 0.54 0.56 0.59 0.57 

WRF 0.61 0.57 0.62 0.63 0.65 

GFS 0.58 0.59 0.57 0.62 0.58 

CFS 0.63 0.61 0.64 0.66 0.61 

 

ERA5 shows improved ErrSD (27.6 mm/month) compared to that of ERAint (29.5 

mm/month), while GFS and CFS are among the products with the highest ErrSD. 
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Besides having the lowest ErrSD, IMERG data shows the highest monthly CC (with 

the observed data) as well (Table 3.12), while ALR data comes out to have the least 

CC. The climatology components of the products have lower ErrSD (on average, 19.9 

mm/month) and higher CC (on average, 0.80) as compared to their anomaly 

components (ErrSD: 25.1 mm/month, CC: 0.64).     

3.1.2.4. Temporal Statistics – Wetness Classes 

As it is mentioned already while discussing the daily statistics, higher precipitation 

amounts tend to cause higher ErrSD. Hence, monthly ErrSD for a given product 

increases with the increasing wetness of the region (Table 3.11); this is valid for 

monthly complete time series, as well as for climatology and anomaly components of 

all nine products. As the larger values of ErrSD result into lower correlation, the 

combined average monthly CC of the products over wet regions (0.72) is lower than 

that over dry regions (0.76) (Table 3.12). Over the wet regions (i.e., receiving higher 

amounts of precipitation), IMERG, ERA5, and ECM show the highest monthly 

anomaly CC (0.68) while ALR and GFS are among the products showing lower 

anomaly CC there. 

3.1.2.5. Temporal Statistics – Elevation Classes 

Means and SD are higher for the observed precipitation as well as for the products 

over the regions having the lowest elevations (Table 3.13) as these regions receive the 

highest total amount of precipitation. Hence the conclusion “wetness has a prominent 

role in the error statistics of the products over the study area” over the daily time scale 

is also valid over the monthly time scale. Over the highest elevations (i.e., > 2000m), 

ALR shows very less anomaly SD (16.3 mm/month) compared to that (27.7 

mm/month) of the observed data while, among all the products, GFS shows the highest 

SD for complete time series and both of its components over these regions. 
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Table 3.13. Monthly Mean and SD for the entire area and elevation classes 

Region Entire Elv < 500 Elv 500-1000 Elv 1000-1500 Elv 1500-2000 Elv > 2000 

No. of Stations 755 237 219 209 77 13 

Mean  

(mm/month) 

Complete  

Time  

Series 

Obs 49.2 61.8 44.1 42.7 43.6 44.3 

IMERG 57.6 69.4 53.4 50.5 52.5 58.6 

TMPA 54.8 63.9 50.8 49.7 52.1 55.2 

ERAint 57.5 58.2 54.7 54.7 68.6 72.8 

ERA5 61.4 71.3 56.0 55.0 63.1 66.1 

ECM 55.8 66.2 50.1 49.6 56.3 57.8 

ALR 46.6 64.2 42.7 37.3 31.3 29.7 

WRF 57.8 70.2 50.4 50.2 59.5 69.6 

GFS 58.3 55.9 55.7 57.7 70.9 78.2 

CFS 67.9 76.1 63.9 60.5 71.0 84.0 

SD  

(mm/month) 

Complete  

Time  

Series 

Obs 41.6 55.1 35.6 34.4 37.1 40.9 

IMERG 40.3 51.9 36.8 34.0 32.7 32.3 

TMPA 41.2 53.3 37.2 35.1 33.2 32.3 

ERAint 39.4 41.6 38.2 36.8 42.5 43.4 

ERA5 42.1 50.4 39.1 37.0 39.6 38.0 

ECM 40.6 48.2 37.2 36.1 39.8 36.2 

ALR 40.7 53.7 36.4 33.4 33.9 34.8 

WRF 45.2 53.9 39.5 39.8 48.7 51.7 

GFS 47.0 48.6 43.7 46.0 52.8 55.4 

CFS 50.5 60.7 48.0 43.5 45.2 52.3 

Climatology 

Obs 29.0 37.5 24.9 24.2 28.0 29.8 

IMERG 29.1 37.8 26.5 24.4 23.2 22.5 

TMPA 28.7 36.8 26.0 24.6 23.5 22.1 

ERAint 27.7 29.0 26.8 25.8 30.4 31.5 

ERA5 30.2 35.2 28.1 26.8 29.7 28.4 

ECM 29.0 33.0 26.9 26.5 29.9 26.7 

ALR 30.0 38.9 26.4 24.5 27.5 30.5 

WRF 32.0 35.4 28.2 29.6 37.6 38.9 

GFS 34.4 36.5 31.3 33.1 39.6 40.9 

CFS 35.5 42.0 33.6 30.6 33.4 39.3 

Anomaly 

Obs 29.4 39.5 25.4 24.3 24.1 27.7 

IMERG 27.9 36.0 25.5 23.5 22.8 22.9 

TMPA 29.4 38.2 26.6 25.0 23.4 23.4 

ERAint 27.8 29.4 27.1 26.1 29.3 29.2 

ERA5 29.2 35.9 27.1 25.2 25.8 24.6 

ECM 27.9 34.8 25.3 24.0 25.7 23.9 

ALR 26.7 36.4 24.6 21.6 18.7 16.3 

WRF 29.8 39.3 25.9 24.0 26.7 31.5 

GFS 31.2 32.0 29.7 30.9 33.0 35.2 

CFS 35.2 42.8 33.7 30.1 29.6 33.7 

 

Although the lowest elevation regions receive the most substantial amounts of average 

precipitation, monthly ErrSD for a given product is not the highest over these regions 

(Table 3.14). Instead, the elevation effect dominates in the regions with the highest 

elevations where all the products show the highest ErrSD. Generally, the elevation 

effect is more prominent on the monthly CC of the products over the regions with 

elevations higher than 1000 m (Table 3.15). 
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Table 3.14. Monthly Bias and ErrSD for the entire area and elevation classes 

Region Entire Elv < 500 Elv 500-1000 Elv 1000-1500 Elv 1500-2000 Elv > 2000 

No. of Stations 755 237 219 209 77 13 

Bias 

 (mm/month) 

Complete  

Time  

Series 

IMERG 8.4 7.6 9.3 7.8 8.9 14.3 

TMPA 5.6 2.1 6.8 7.0 8.5 10.9 

ERAint 8.3 -3.6 10.7 12.0 25.0 28.5 

ERA5 12.2 9.5 12.0 12.3 19.5 21.8 

ECM 6.6 4.3 6.1 6.9 12.6 13.4 

ALR -2.6 2.4 -1.3 -5.4 -12.3 -14.6 

WRF 8.6 8.3 6.3 7.5 15.8 25.2 

GFS 9.0 -5.9 11.6 15.1 27.3 33.9 

CFS 18.7 14.3 19.9 17.8 27.3 39.6 

ErrSD  

(mm/month) 

Complete  

Time  

Series 

IMERG 24.3 29.8 19.8 21.3 26.0 35.5 

TMPA 27.7 34.0 24.3 24.2 26.9 32.2 

ERAint 29.5 34.9 25.1 26.4 32.4 39.7 

ERA5 27.6 33.6 23.6 24.1 28.9 33.6 

ECM 26.6 33.0 22.0 23.3 27.7 32.2 

ALR 30.4 36.6 25.8 27.6 30.4 37.7 

WRF 30.6 39.6 24.7 25.4 31.6 43.3 

GFS 35.8 39.3 31.2 33.6 41.6 50.9 

CFS 35.9 42.2 31.9 31.3 38.4 47.2 

Climatology 

IMERG 17.9 21.7 15.4 15.3 19.6 24.3 

TMPA 17.7 20.7 15.8 15.7 18.7 22.4 

ERAint 18.4 20.8 15.7 16.6 21.8 26.5 

ERA5 17.8 20.4 15.8 15.7 20.4 23.3 

ECM 16.5 19.0 14.3 14.7 19.4 22.5 

ALR 21.4 26.8 17.4 18.4 23.6 27.2 

WRF 22.8 29.5 18.9 18.0 25.2 30.9 

GFS 23.4 24.3 20.8 22.6 28.7 31.8 

CFS 22.8 25.7 20.5 20.5 25.2 32.3 

Anomaly 

IMERG 21.6 26.7 18.5 19.0 21.4 26.1 

TMPA 23.2 29.0 20.2 20.2 22.0 25.4 

ERAint 24.6 29.3 21.3 22.0 25.9 30.8 

ERA5 23.0 28.9 19.6 19.8 22.6 27.2 

ECM 22.8 29.1 18.9 19.6 22.4 26.6 

ALR 26.1 32.8 22.7 22.6 24.0 27.4 

WRF 26.2 34.2 21.9 21.6 25.3 32.8 

GFS 29.1 33.6 25.4 26.7 30.7 39.6 

CFS 29.0 35.2 25.7 25.1 29.2 35.5 

 

Summarizing, the combined average monthly CC of all the products decreases from 

0.78 for the lowest elevation regions to 0.66 for the highest elevation regions, whereas 

ErrSD increases from 35.9 mm/month for the lowest elevation regions to 39.1 

mm/month for the highest elevation regions. 
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Table 3.15. Monthly CC for the entire area and elevation classes 

Region Entire Elv < 500 Elv 500-1000 Elv 1000-1500 Elv 1500-2000 Elv > 2000 

No. of Stations 755 237 219 209 77 13 

CC with the 

Observed Data 

Complete  

Time  

Series 

IMERG 0.82 0.84 0.85 0.82 0.75 0.68 

TMPA 0.79 0.79 0.80 0.79 0.75 0.7 

ERAint 0.76 0.77 0.78 0.76 0.71 0.61 

ERA5 0.79 0.80 0.81 0.79 0.75 0.68 

ECM 0.79 0.80 0.81 0.79 0.76 0.69 

ALR 0.72 0.75 0.74 0.70 0.66 0.6 

WRF 0.78 0.74 0.79 0.81 0.79 0.69 

GFS 0.74 0.74 0.75 0.74 0.72 0.65 

CFS 0.75 0.76 0.77 0.74 0.69 0.63 

Climatology 

IMERG 0.81 0.83 0.83 0.81 0.74 0.68 

TMPA 0.82 0.83 0.83 0.80 0.78 0.73 

ERAint 0.81 0.83 0.83 0.80 0.76 0.68 

ERA5 0.82 0.83 0.83 0.82 0.78 0.75 

ECM 0.83 0.84 0.85 0.83 0.80 0.75 

ALR 0.74 0.73 0.78 0.73 0.70 0.69 

WRF 0.75 0.66 0.78 0.82 0.79 0.74 

GFS 0.79 0.79 0.78 0.79 0.79 0.76 

CFS 0.79 0.81 0.82 0.77 0.74 0.72 

Anomaly 

IMERG 0.71 0.74 0.73 0.70 0.58 0.61 

TMPA 0.69 0.71 0.71 0.69 0.59 0.58 

ERAint 0.65 0.69 0.67 0.65 0.55 0.46 

ERA5 0.69 0.72 0.71 0.69 0.59 0.53 

ECM 0.68 0.71 0.71 0.67 0.59 0.52 

ALR 0.56 0.62 0.58 0.54 0.39 0.4 

WRF 0.61 0.64 0.62 0.60 0.51 0.55 

GFS 0.58 0.59 0.63 0.58 0.50 0.42 

CFS 0.63 0.67 0.65 0.62 0.52 0.47 

 

The factor of increasing elevations most pronouncedly affects the monthly absolute 

Bias and monthly ErrSD of GFS and CFS (Figure 3.12), while boxplots for WRF also 

show the inverse effect of increasing elevations. Overall, the products tend to have the 

most substantial absolute Bias and ErrSD over elevations higher than 1500 m. Very 

few stations lying under the highest elevation bins might also be contributing towards 

the larger errors by the products. 
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Figure 3.12. Boxplots for monthly absolute Bias (from (a) to (e)) and monthly ErrSD (from (f) to (j)) 

for elevation classes 
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3.1.2.6. Temporal Statistics – Slope Classes 

Table 3.16. Monthly Mean and SD for the entire area and slope classes. 

Region Entire Slp < 5% Slp 5-10% Slp 10-15% Slp 15-20% Slp > 20% 

No. of Stations 755 237 219 209 77 13 

Mean  

(mm/month) 

Complete  

Time  

Series 

Obs 49.2 46.0 51.0 63.4 71.1 56.7 

IMERG 57.6 55.0 59.4 64.9 74.5 79.7 

TMPA 54.8 52.9 57.4 59.6 63.2 64.4 

ERAint 57.5 54.0 60.6 65.7 80.0 92.0 

ERA5 61.4 55.9 63.6 78.1 100.6 125.4 

ECM 55.8 51.5 57.4 71.1 87.7 90.1 

ALR 46.6 44.4 45.7 60.4 67.4 53.7 

WRF 57.8 54.0 59.4 72.1 93.1 72.6 

GFS 58.3 52.1 60.8 76.0 99.9 137.2 

CFS 67.9 64.6 71.2 78.7 70.8 103.0 

SD  

(mm/month) 

Complete  

Time  

Series 

Obs 41.6 40.8 41.1 49.3 48.7 36.1 

IMERG 40.3 40.1 40.0 42.0 43.3 41.2 

TMPA 41.2 41.5 40.5 41.7 40.1 37.2 

ERAint 39.4 38.9 39.7 40.9 43.2 41.4 

ERA5 42.1 41.0 41.8 47.2 50.6 57.0 

ECM 40.6 39.7 40.7 45.5 46.0 44.2 

ALR 40.7 39.8 39.4 48.4 52.4 46.2 

WRF 45.2 43.8 45.8 50.9 59.0 49.7 

GFS 47.0 44.4 47.6 56.6 63.4 76.9 

CFS 50.5 50.6 50.2 52.4 41.0 55.9 

Climatology 

Obs 29.0 28.0 28.8 36.1 37.9 27.3 

IMERG 29.1 29.0 28.7 30.3 31.6 28.5 

TMPA 28.7 28.8 28.6 28.9 27.8 25.0 

ERAint 27.7 27.5 28.1 28.4 28.9 24.7 

ERA5 30.2 29.3 30.3 33.3 35.9 38.7 

ECM 29.0 28.4 29.5 32.2 31.4 27.4 

ALR 30.0 29.1 28.6 36.7 39.3 36.1 

WRF 32.0 31.0 32.6 35.9 40.5 34.4 

GFS 34.4 32.4 35.0 42.0 46.1 56.7 

CFS 35.5 35.5 35.5 37.2 29.2 39.4 

Anomaly 

Obs 29.4 29.2 28.9 33.4 30.4 23.7 

IMERG 27.9 27.7 27.8 29.3 29.8 29.8 

TMPA 29.4 29.6 28.7 30.1 29.1 27.7 

ERAint 27.8 27.4 27.9 29.1 31.6 32.7 

ERA5 29.2 28.4 28.5 33.1 34.9 40.8 

ECM 27.9 27.4 27.6 31.5 32.6 34.1 

ALR 26.7 26.1 26.0 31.5 34.8 28.4 

WRF 29.8 28.9 29.5 34.3 40.5 33.7 

GFS 31.2 29.7 31.2 37.1 41.9 49.6 

CFS 35.2 35.3 34.8 36.1 28.6 39.4 

 

All the datasets (including the observed and product data) associate the lowest 

amounts of average precipitation with the regions having the lowest terrain slopes 

(Table 3.16), while the average precipitation generally increases by going towards 

higher slopes. ALR and WRF follow the observed data in showing the highest monthly 

average precipitation amounts over the regions having slopes between 15-20%, while 



 

 

 

61 

 

all the other products show it over the highest slope regions (i.e., with > 20% slopes). 

Monthly ErrSD does not necessarily follow the trend mentioned above. 

Table 3.17. Monthly Bias and ErrSD for the entire area and slope classes 

Region Entire Slp < 5% Slp 5-10% Slp 10-15% Slp 15-20% Slp > 20% 

No. of Stations 755 237 219 209 77 13 

Bias  

(mm/month) 

Complete  

Time  

Series 

IMERG 8.4 9.0 8.4 1.5 3.4 23.0 

TMPA 5.6 6.9 6.4 -3.7 -7.9 7.8 

ERAint 8.3 7.9 9.6 2.4 8.8 35.4 

ERA5 12.2 9.9 12.6 14.8 29.5 68.8 

ECM 6.6 5.5 6.4 7.7 16.6 33.5 

ALR -2.6 -1.7 -5.3 -3.0 -3.8 -2.9 

WRF 8.6 7.9 8.4 8.7 22.0 16.0 

GFS 9.0 6.0 9.8 12.6 28.7 80.6 

CFS 18.7 18.6 20.2 15.4 -0.3 46.3 

ErrSD  

(mm/month) 

Complete  

Time  

Series 

IMERG 24.3 23.4 23.9 29.1 33.4 27.5 

TMPA 27.7 27.2 26.9 31.8 36.7 28 

ERAint 29.5 28.8 28.8 35.7 38.3 29.4 

ERA5 27.6 26.6 26.6 33.2 39.4 40.4 

ECM 26.6 25.9 25.7 31.7 35.1 29.6 

ALR 30.4 28.4 30.9 37.9 48.3 39.7 

WRF 30.6 30.0 30.1 35.1 40.0 27.9 

GFS 35.8 33.5 35.1 47.1 52.9 62.6 

CFS 35.9 35.0 34.9 42.3 41.8 48.6 

Climatology 

IMERG 17.9 17.1 17.4 21.9 29.7 24.2 

TMPA 17.7 17.0 17.1 21.7 28.6 21.8 

ERAint 18.4 17.6 17.4 24.4 27.5 20.8 

ERA5 17.8 16.8 16.8 23.3 31.2 29.5 

ECM 16.5 15.7 15.8 21.3 27.8 18.7 

ALR 21.4 19.4 21.3 29.7 43.5 35.4 

WRF 22.8 22.1 22.0 28.6 33.4 23.3 

GFS 23.4 21.6 23.0 32.1 35.9 43.6 

CFS 22.8 21.8 22.4 27.8 33.1 32.1 

Anomaly 

IMERG 21.6 20.9 21.6 26.2 28.0 21.7 

TMPA 23.2 22.8 22.7 26.6 29.8 23.5 

ERAint 24.6 23.9 24.3 29.0 31.8 25.9 

ERA5 23.0 22.2 22.3 27.7 31.4 31.6 

ECM 22.8 22.2 22.1 27.4 29.7 26.5 

ALR 26.1 24.9 26.3 31.6 36.6 27 

WRF 26.2 25.5 25.8 31.7 33.2 25.6 

GFS 29.1 27.5 28.6 37.1 42.7 45.3 

CFS 29.0 28.6 27.9 34.1 32.0 35.7 

 

Wet bias (Table 3.17) in the precipitation products, except ALR, over very complex 

topography (i.e., slopes > 20%), may result in an increased number of false alarms for 

floods. Among all the products, GFS shows the largest ErrSD over the regions with 

terrain slopes greater than 5% (Table 3.17); the same is valid for complete time series, 

climatology, and anomaly. IMERG consistently performs the best regarding ErrSD 

over varying slopes, while ECM shows the second-best ErrSD values after IMERG; 

this is true for both the complete time series and anomaly. 
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ECM and IMERG both show the equal amount of monthly CC (0.75) over the steepest 

slope regions (Table 3.18), which depicts the utility of this real-time product against a 

gauge-adjusted research-grade product over complex topography. Here, the inverse 

effect of increasing terrain complexity over the accuracy of the products is noticeable, 

as the combined average anomaly CC drops from 0.66 over the lowest slope regions 

to 0.56 over the highest slope regions, whereas ErrSD increases from 28.8 mm/month 

to 37 mm/month on the same criteria. 

Table 3.18. Monthly CC for the entire area and slope classes 

Region Entire Slp < 5% Slp 5-10% Slp 10-15% Slp 15-20% Slp > 20% 

No. of Stations 755 237 219 209 77 13 

CC with the  

Observed Data 

Complete  

Time  

Series 

IMERG 0.82 0.83 0.82 0.82 0.76 0.75 

TMPA 0.79 0.79 0.79 0.77 0.70 0.7 

ERAint 0.76 0.76 0.77 0.74 0.70 0.72 

ERA5 0.79 0.79 0.80 0.79 0.73 0.68 

ECM 0.79 0.79 0.80 0.80 0.76 0.75 

ALR 0.72 0.74 0.70 0.71 0.56 0.58 

WRF 0.78 0.77 0.78 0.79 0.78 0.8 

GFS 0.74 0.75 0.74 0.72 0.66 0.64 

CFS 0.75 0.75 0.75 0.73 0.64 0.61 

Climatology 

IMERG 0.81 0.83 0.81 0.79 0.65 0.62 

TMPA 0.82 0.82 0.83 0.80 0.65 0.65 

ERAint 0.81 0.82 0.83 0.75 0.67 0.64 

ERA5 0.82 0.83 0.84 0.80 0.65 0.64 

ECM 0.83 0.84 0.84 0.82 0.68 0.74 

ALR 0.74 0.77 0.74 0.67 0.40 0.45 

WRF 0.75 0.75 0.78 0.69 0.66 0.73 

GFS 0.79 0.79 0.79 0.74 0.70 0.71 

CFS 0.79 0.81 0.79 0.76 0.58 0.59 

Anomaly 

IMERG 0.71 0.72 0.71 0.66 0.63 0.66 

TMPA 0.69 0.70 0.70 0.65 0.57 0.6 

ERAint 0.65 0.66 0.65 0.62 0.54 0.61 

ERA5 0.69 0.70 0.70 0.66 0.59 0.58 

ECM 0.68 0.69 0.69 0.66 0.61 0.6 

ALR 0.56 0.58 0.52 0.55 0.42 0.44 

WRF 0.61 0.61 0.60 0.60 0.56 0.61 

GFS 0.58 0.60 0.58 0.55 0.47 0.43 

CFS 0.63 0.64 0.64 0.57 0.49 0.52 
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Figure 3.13. Boxplots for monthly absolute Bias (from (a) to (e)) and monthly ErrSD (from (f) to (j)) 

for slope classes 
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Considering the variation in terrain slopes (Figure 3.13), although both the absolute 

Bias and ErrSD tend to increase over the slope range of 0-20%, the change in these 

two statistics is not linear for all the products. 

3.1.2.7. Correlation Histograms 

To investigate the frequency of correlations over entire study area, histograms of the 

monthly CC of the products with the observed data were prepared. Histograms for CC 

of research-grade products (Figure 3.14a) suggest that higher CC values (say > 0.8) 

occur more frequently in case of IMERG as compared to TMPA, which in turn, results 

in the higher average CC of IMERG. 

 

Figure 3.14. Histograms of monthly CC between the observed data and research-grade products; (a) 

Complete Time Series, (b) Climatology, and (c) Anomaly. The color-coded vertical lines show mean 

monthly CC for the respective dataset with the observed data 
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A similar situation exists between ERAint and ERA5, where ERAint shows relatively 

lower frequency bars against higher values of monthly CC as compared to those shown 

by ERA5. Among the components of the monthly complete time series, climatology 

components (Figure 3.14b) of the products are more correlated compared to anomaly 

components (Figure 3.14c), thus showing higher frequency bars against higher CC 

values. 

 

Figure 3.15. Histograms of monthly CC between the observed data and research-grade products; (a) 

Complete Time Series, (b) Climatology, and (c) Anomaly. The color-coded vertical lines show mean 

monthly CC for the respective dataset with the observed data. 

Among the real-time forecast datasets (Figure 3.15), ECM and WRF equally show the 

lowest frequency bars against lower CC values (say < 0.6). Overall, ECM shows the 

most frequent occurrence of higher CC values (slightly better than WRF). Considering 
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complete (Figure 3.15a), climatology (Figure 3.15b), and anomaly (Figure 3.15c) time 

series, ALR shows the highest frequency bars against the lowest CC values (say < 

0.4), thus depicting its worst performance related to monthly CC with the observed 

data. CFS shows slightly better CC as compared to GFS. 

3.1.3. Annual Time Scale 

Table 3.19. Annual spatial mean precipitation and its SD 

Dataset 
Annual Mean 

(mm/year) 
Annual SD (mm/year) 

OBS 590.6 232.2 

IMERG 691.2 192.5 

TMPA 658.1 160.0 

ERAint 690.5 177.7 

ERA5 737.1 291.4 

ECM 669.2 253.5 

ALR 558.9 271.3 

WRF 693.5 289.0 

GFS 699.1 405.2 

CFS 814.6 382.6 

 

For the observed data and the products, the annual mean precipitation in space and its 

SD are shown in Table 3.19. The wet Bias in the products have been already discussed 

over both the daily and monthly time scales. Here, the purpose of presenting Table 

3.19 is to show the precipitation variability in the space displayed by each dataset. 

TMPA shows the least spatial variability (SD value of 160 mm/year) in annual 

precipitation, while GFS shows it to be 405.2 mm/year against the observed annual 

precipitation SD of 232.2 mm/year. Although ECM shows a wet Bias of 78.6 

mm/year, its variability of annual spatial precipitation (SD of 253.5 mm/year) is the 

closest (among all the products) to the observed SD.      

The spatial distribution of observed precipitation and the nine products is shown in 

Figure 3.16, where the station-based precipitation data are converted from point to 

spatial maps using inverse distance weighting interpolation (using data from 3 closest 

neighboring stations). Although IMERG displays the most smooth transitions, the 

spatial distribution of observed annual average precipitation (Figure 3.16a) is visually 
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best captured by IMERG (Figure 3.16b), ECM (Figure 3.16f), and ALR (Figure 3.16g) 

as compared to all the other products.  For example, the northeastern part of the Black 

Sea coastal region has very high observed annual precipitation of (~2500 mm/year) 

while southern parts of this wet region receive much lower precipitation (~500 

mm/year), making a very sharp transition (Figure 3.16a). Location-wise, this sharp 

transition is well captured via all the products except for ERAint (Figure 3.16d), WRF 

(Figure 3.16h), and CFS (Figure 3.16j). 

 

Figure 3.16. Spatial distribution maps for annual average precipitation (mm/year) 

ERA-Interim have very low visual sensitivity to high magnitude precipitation or to 

this sharp transition (Figure 3.16d); perhaps it captures the spatial variability in this 

area the worst, while its predecessor ERA5 has a much better representation of the 

transition even though it overestimates the high precipitation amounts (Figure 3.16e). 

Similarly, the wet strip (~ 800-1000 mm/year) starting from the south-east corner of 
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the country towards the central parts is better captured by IMERG, ECM, and ERA5. 

The spatial precipitation variability over the south-western part is well represented by 

all the products except ERAint, GFS, and CFS. The transitions from the relatively 

wetter (around 800 mm/year) to drier (below 500 mm/year) regions towards the 

central parts are accurately captured by all products except GFS and CFS. 

On average, the highest observed annual precipitation amounts in the study area are 

associated with the lowest elevations (Figure 3.17a). This might be because of the 

orography effect on the precipitation amounts falling over coastlines (i.e., the lowest 

elevation) where the moist air masses pour major amount of precipitation over the 

windward side of those mountains. This is potentially true for the case of the eastern 

Black Sea region (northeast of Turkey). The central parts of Turkey, having an average 

elevation around 500 m to 1500 m (Figure 2.2b), mostly contain dryer stations and 

receive lower amounts of precipitation (Figures 3.16a and 3.17a). It is interesting that 

the observed precipitation is still less over the regions with higher elevations (mostly 

attributed towards mountainous regions) whereas all the products (except ALR) show 

a considerable uptrend in precipitation over highly elevated regions (Figure 3.17a). 

This might be because a gauge station installed over the leeward side of a mountain 

would report less precipitation despite being at high elevation. 

 

Figure 3.17. Annual average precipitation against varying (a) elevations, and (b) slopes 
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With increasing slope (which denotes increasing complexity of topography) till 20%, 

all ten datasets (including the reference dataset and the products) show increasing 

trends in annual average precipitation (Figure 3.17b). Here, we may associate the 

stations with a higher % slope (mountainous regions) to wet regions. However, over 

the regions with slopes greater than 20%, only WRF and ALR follow the decreasing 

trend of the observed precipitation. ALR performs the best in matching the observed 

annual precipitation trends, with a small underestimation, over all the slope classes. 

 

3.2. Evaluation of Merged Forecasts 

After merging the real-time forecast products (ECM, ALR, WRF, GFS, and CFS) by 

the two merging methods (i.e., simple merging and merging after rescaling the 

products), the individual and merged precipitation products were evaluated using the 

ground-based observed data as an independent reference data. The evaluation analyses 

included categorical performance indices and intensity-frequency analysis over a 1-

daily time scale, while evaluation metrics (including Mean, SD, ErrSD, and CC) were 

determined over 1-3 daily time scales. The evaluation procedure was applied to the 

three variables: TP, CP, and LSP. The evaluation results are presented and discussed 

below. 

3.2.1. Daily Evaluation Statistics 

For brevity, only the boxplots depicting three statistics (i.e., CC, Bias, and ErrSD) 

over the entire study area (i.e., 755 stations) for individual and merged forecasts are 

included here. Among the individual forecasts, ECM shows the highest 1-daily CC 

with the observed data (Figures 3.18a to 3.18c) for all three variables (i.e., TP, CP, 

and LSP). However, the simple merge (SimpMRG) of these forecasts is better 

correlated to the observed data than all the individual products, especially in the cases 

of TP (Figure 3.18a) and CP (Figure 3.18b); which shows a considerable improvement 

in CC of the individual products when they are simply merged by taking their 

ensemble mean. On the other hand, as ECM has the highest CC among the individual 
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products, producing a merge of all the forecasts after rescaling them on ECM space 

(i.e., MRG_ECM_reg) results in a product having the highest CC; which shows the 

benefit of choosing a better reference product to produce a merge after regression-

based rescaling. The CC values of the individual products, like CFS and ALR, 

considerably improve (studies like Afshar et al. (2019) have also reported the 

improvement in CC of soil moisture products due to merging) when they are merged 

by either method of merging. 

 

Figure 3.18. For individual and merged forecasts, boxplots for 1-daily CC (from (a) to (c)), Bias 

(from (d) to (f)), and ErrSD (from (g) to (i)) for TP, CP and LSP. The bold black dots show the mean 

of the particular statistics 

Considering the biases of daily products (Figures 3.18d to 3.18f), the SimpMRG 

improves the Bias of only the products having already higher individual Bias (e.g., 

CFS), although the improvement in Bias of those particular products is not as 
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pronounced as it was the case with CC. Moreover, SimpMRG shows higher Bias than 

individual forecasts with lower Bias (e.g., ALR); this is because we are merging low-

bias products with very high-bias products with the same weight. For a given product 

(say ALR), the Bias in the individual product and MRG_ALR_reg product is almost 

the same because in the linear regression-based rescaling, means of all the rescaled 

products are replaced with the mean of the reference product (here it is ALR). 

The daily ErrSD of ECM is the lowest among the individual products for TP (Figure 

3.18g), CP (Figure 3.18h), and LSP (Figure 3.18i). Like the improvement in CC, the 

improvement in 1-daily ErrSD due to merging is substantial. Both merging methods 

(1. Simple merging or taking the ensemble mean of the products, and 2. Simple 

merging the products after rescaling them by linear regression) improve the ErrSD of 

individual products. Merging improves the ErrSD of the individual forecasts not only 

for TP but for CP and LSP as well, which might have a vital implication in the 

operational fields like flood management. 

When the error statistics of TP for individual and merged forecasts are investigated 

over wetness classes, the results show that the 1-daily ErrSD values (Table 3.20) of 

the individual products are improved over all the wetness classes. The combined 

average ErrSD over dry, moderately dry, moderately wet, and wet regions decrease 

from 3.4, 4.4, 5.4, and 7.3 mm/day for the individual products to 2.8, 3.6, 4.4, and 6.3 

mm/day for the merged products. For the same arrangement, daily CC improves from 

0.57, 0.62, 0.66, and 0.64 for the individual products to 0.67, 0.71, 0.76, and 0.74 for 

the merged products (Table 3.21). 

Both the merging methods improve the daily ErrSD (Table 3.22) and CC (Table 3.23) 

over each elevation region. For example, the average ErrSD over the five elevation 

classes decrease from 5.7, 3.8, 3.7, 4.1, and 4.5 mm/day for the combined individual 

products to 4.8, 3.0, 3.0, 3.2, and 3.5 mm/day for the combined merged products 

(Table 3.22). Moreover, for the same arrangement, daily CC improves from 0.63, 0.62, 
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0.60, 0.56, and 0.50 for the combined individual products to 0.72, 0.71, 0.69, 0.66, 

and 0.59 for the combined merged products (Table 3.23). 

Table 3.20. Bias and ErrSD for 1-daily individual and merged forecasts over the entire study area 

and different wetness classes 

Wetness Entire Dry Mod-Dry Mod-Wet Wet 

No. of Stations 755 279 303 123 50 

BIAS  

(mm/day) 

ECM 0.22 0.27 0.19 0.20 0.16 

ALR -0.05 -0.06 -0.07 -0.01 0.03 

WRF 0.31 0.27 0.33 0.29 0.50 

GFS 0.28 0.36 0.39 0.26 -0.76 

CFS 0.61 0.70 0.82 0.39 -0.59 

SimpMRG 0.27 0.31 0.33 0.22 -0.15 

MRG_ECM_reg 0.20 0.26 0.17 0.18 0.14 

MRG_ALR_reg -0.06 -0.07 -0.08 -0.02 0.03 

MRG_WRF_reg 0.30 0.25 0.32 0.28 0.49 

MRG_GFS_reg 0.27 0.35 0.38 0.25 -0.76 

MRG_CFS_reg 0.60 0.68 0.81 0.38 -0.60 

ErrSD 

 (mm/day) 

ECM 3.88 3.04 3.86 4.75 6.52 

ALR 4.42 3.33 4.42 5.51 7.80 

WRF 4.47 3.38 4.49 5.52 7.84 

GFS 4.51 3.57 4.52 5.54 7.18 

CFS 4.78 3.91 4.88 5.51 7.30 

SimpMRG 3.61 2.84 3.63 4.32 6.06 

MRG_ECM_reg 3.53 2.67 3.55 4.37 6.20 

MRG_ALR_reg 3.58 2.72 3.60 4.41 6.26 

MRG_WRF_reg 3.53 2.68 3.56 4.34 6.13 

MRG_GFS_reg 3.70 2.82 3.67 4.54 6.70 

MRG_CFS_reg 3.66 2.81 3.63 4.46 6.57 

 

Table 3.21. CC for 1-daily individual and merged forecasts over the entire study area and different 

wetness classes 

Wetness Entire Dry Mod-Dry Mod-Wet Wet 

No. of Stations 755 279 303 123 50 

CC with the 

Observed Data 

ECM 0.66 0.63 0.67 0.71 0.70 

ALR 0.58 0.55 0.59 0.63 0.59 

WRF 0.62 0.59 0.62 0.66 0.66 

GFS 0.60 0.55 0.61 0.66 0.62 

CFS 0.59 0.54 0.60 0.66 0.62 

SimpMRG 0.70 0.66 0.71 0.76 0.74 

MRG_ECM_reg 0.70 0.67 0.71 0.76 0.74 

MRG_ALR_reg 0.70 0.67 0.71 0.76 0.73 

MRG_WRF_reg 0.70 0.67 0.71 0.76 0.74 

MRG_GFS_reg 0.70 0.66 0.70 0.76 0.73 

MRG_CFS_reg 0.70 0.66 0.70 0.76 0.73 
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Table 3.22. Bias and ErrSD for 1-daily individual and merged forecasts over the entire study area 

and different elevation classes 

Elevation (m) Entire Elev <500 Elev 500-1000 Elev 1000-1500 Elev 1500-2000 Elev > 2000 

No. of Stations 755 237 219 209 77 13 

BIAS  

(mm/day) 

ECM 0.22 0.15 0.21 0.22 0.42 0.42 

ALR -0.05 0.12 0.00 -0.15 -0.37 -0.50 

WRF 0.31 0.31 0.24 0.28 0.51 0.77 

GFS 0.28 -0.21 0.38 0.48 0.87 1.06 

CFS 0.61 0.47 0.66 0.58 0.89 1.27 

SimpMRG 0.27 0.17 0.30 0.28 0.46 0.59 

MRG_ECM_reg 0.20 0.14 0.20 0.21 0.39 0.39 

MRG_ALR_reg -0.06 0.12 -0.01 -0.16 -0.38 -0.52 

MRG_WRF_reg 0.30 0.30 0.23 0.27 0.49 0.74 

MRG_GFS_reg 0.27 -0.22 0.37 0.47 0.85 1.03 

MRG_CFS_reg 0.60 0.46 0.65 0.56 0.87 1.24 

ErrSD 

 (mm/day) 

ECM 3.88 5.16 3.26 3.22 3.52 3.77 

ALR 4.42 5.87 3.76 3.70 3.85 4.11 

WRF 4.47 5.98 3.73 3.65 4.10 4.60 

GFS 4.51 5.44 3.99 4.00 4.48 4.91 

CFS 4.78 6.03 4.25 4.04 4.45 4.85 

SimpMRG 3.61 4.76 3.07 3.00 3.28 3.62 

MRG_ECM_reg 3.53 4.79 2.95 2.91 3.05 3.35 

MRG_ALR_reg 3.58 4.77 2.98 3.00 3.24 3.55 

MRG_WRF_reg 3.53 4.80 2.95 2.88 3.08 3.39 

MRG_GFS_reg 3.70 4.99 3.08 3.04 3.30 3.56 

MRG_CFS_reg 3.66 4.92 3.05 3.01 3.27 3.58 

 

Table 3.23. CC for 1-daily individual and merged forecasts over the entire study area and different 

elevation classes 

Elevation (m) Entire Elev <500 Elev 500-1000 Elev 1000-1500 Elev 1500-2000 Elev > 2000 

No. of Stations 755 237 219 209 77 13 

CC with the 

Observed Data 

ECM 0.66 0.68 0.68 0.66 0.62 0.56 

ALR 0.58 0.62 0.60 0.55 0.50 0.45 

WRF 0.62 0.62 0.63 0.62 0.59 0.54 

GFS 0.60 0.62 0.60 0.58 0.56 0.49 

CFS 0.59 0.63 0.59 0.57 0.52 0.46 

SimpMRG 0.70 0.72 0.71 0.69 0.66 0.59 

MRG_ECM_reg 0.70 0.72 0.72 0.69 0.66 0.60 

MRG_ALR_reg 0.70 0.72 0.71 0.69 0.66 0.60 

MRG_WRF_reg 0.70 0.72 0.72 0.70 0.66 0.60 

MRG_GFS_reg 0.70 0.72 0.71 0.69 0.65 0.59 

MRG_CFS_reg 0.70 0.72 0.71 0.69 0.65 0.58 

 

The similar trends of improvements in daily ErrSD and CC over wetness and elevation 

classes are witnessed over different slope classes as well. Summarizing Table 3.24, 

which shows the Bias and ErrSD of individual and merged forecasts, the ErrSD 

improves from 4.4, 4.3, 5.1, 5.3, and 4.9 mm/day to 3.6, 3.5, 4.1, 4.2, and 3.4 mm/day 
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(over the five slope classes, respectively) due to merging. Although the daily ErrSD 

of the merged products also increases with increasing terrain complexity, they show 

improvement in ErrSD compared to the individual products over each slope class. 

Similarly, merging improves the daily CC (Table 3.25) from 0.60, 0.62, 0.61, 0.63, 

and 0.59 to 0.70, 0.71, 0.71, 0.73, and 0.70 (over the five slope classes, respectively). 

Table 3.24. Bias and ErrSD for 1-daily individual and merged forecasts over the entire study area 

and different slope classes 

Slope (%) Entire Slope < 5% Slope 5-10% Slope 10-15% Slope 15-20% Slope > 20% 

No. of Stations 755 499 170 56 19 11 

BIAS  

(mm/day) 

ECM 0.22 0.18 0.21 0.28 0.53 1.06 

ALR -0.05 -0.03 -0.12 -0.02 -0.10 -0.13 

WRF 0.31 0.29 0.31 0.34 0.78 0.50 

GFS 0.28 0.18 0.32 0.41 0.91 2.61 

CFS 0.61 0.61 0.67 0.53 -0.02 1.48 

SimpMRG 0.27 0.25 0.28 0.30 0.39 1.08 

MRG_ECM_reg 0.20 0.17 0.20 0.27 0.51 1.03 

MRG_ALR_reg -0.06 -0.03 -0.13 -0.03 -0.11 -0.14 

MRG_WRF_reg 0.30 0.28 0.30 0.32 0.76 0.47 

MRG_GFS_reg 0.27 0.17 0.30 0.40 0.89 2.57 

MRG_CFS_reg 0.60 0.60 0.65 0.51 -0.04 1.44 

ErrSD 

 (mm/day) 

ECM 3.88 3.87 3.70 4.36 4.41 3.86 

ALR 4.42 4.34 4.27 5.13 5.52 4.64 

WRF 4.47 4.42 4.29 5.10 5.37 4.62 

GFS 4.51 4.36 4.37 5.50 5.92 6.03 

CFS 4.78 4.74 4.64 5.36 5.29 5.43 

SimpMRG 3.61 3.59 3.45 4.12 4.11 3.69 

MRG_ECM_reg 3.53 3.52 3.38 4.04 4.04 3.15 

MRG_ALR_reg 3.58 3.55 3.46 4.09 4.20 3.39 

MRG_WRF_reg 3.53 3.52 3.38 4.03 3.98 3.18 

MRG_GFS_reg 3.70 3.66 3.55 4.33 4.22 3.58 

MRG_CFS_reg 3.66 3.63 3.48 4.23 4.42 3.45 

 

Table 3.25. CC for 1-daily individual and merged forecasts over the entire study area and different 

slope classes 

Slope (%) Entire Slope < 5% Slope 5-10% Slope 10-15% Slope 15-20% Slope > 20% 

No. of Stations 755 499 170 56 19 11 

CC with the 

Observed Data 

ECM 0.66 0.65 0.68 0.68 0.71 0.67 

ALR 0.58 0.58 0.58 0.58 0.56 0.47 

WRF 0.62 0.61 0.63 0.63 0.67 0.63 

GFS 0.60 0.59 0.61 0.59 0.61 0.58 

CFS 0.59 0.58 0.59 0.59 0.59 0.58 

SimpMRG 0.70 0.70 0.71 0.71 0.73 0.70 

MRG_ECM_reg 0.70 0.70 0.72 0.71 0.74 0.71 

MRG_ALR_reg 0.70 0.70 0.71 0.71 0.73 0.69 

MRG_WRF_reg 0.70 0.70 0.72 0.71 0.74 0.71 

MRG_GFS_reg 0.70 0.69 0.71 0.71 0.73 0.70 

MRG_CFS_reg 0.70 0.69 0.71 0.71 0.73 0.70 
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3.2.2. Intensity-Frequency Analysis 

 

Figure 3.19. Intensity-frequency analysis for 1-daily (a) TP, (b) CP, and (c) LSP. 
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As mentioned earlier, model-based products show dry days (with precipitation < 

1mm/day) as well as the extreme precipitation days (with precipitation > 40mm/day) 

occurring less frequently than the observed data. Here we are assessing the impact of 

merging on this intensity-frequency relation. For total precipitation (TP), overall, 

merging causes even further over- or under-estimation of the observed frequency of 

specific intensity days (Figure 3.19a), where under-estimation occurs for days with 

‘no precipitation’ while over-estimation occurs for light to extreme precipitation days. 

However, the individual and merged products better match the frequency of days with 

precipitation 5-20 mm/day.  

Here, an important thing to note is that, for most of the daily intensity intervals for TP 

(Figure 3.19a), CP (Figure 3.19b), and LSP (Figure 3.19c), SimpMRG performs better 

than all the other merged products (i.e., MRG_ECM_reg, MRG_ALR_reg, 

MRG_WRF_reg, MRG_GFS_reg, and MRG_CFS_reg) which are produced after 

rescaling of the individual products. For TP, SimpMRG, among all the merged 

forecasts, better matches the observed frequency against all the daily intensity 

intervals (Figure 3.19a). Compared to their performance in matching the observed 

frequency of dry days for TP, the merged products show improvement in cases of both 

CP (Figure 3.19b) and LSP (Figure 3.19c). The under-estimation of the frequency of 

days with light to moderate precipitation intensities is also improved in CP and LSP. 

3.2.3. Categorical Performance Indices 

Specifying a threshold of detection (i.e., precipitation >= 1mm/day), the categorical 

performance indices (CPI) were investigated for the individual and merged forecasts. 

Merging generally further improves the POD of individual products for TP (Figure 

3.20a) and LSP (Figure 3.20c); it also improves POD of all the individual products 

(except ECM) for the case of CP (Figure 3.20b). However, it further increases the 

FAR of the products, which already had higher FAR values, especially for TP (Figure 

3.20d) and LSP (Figure 3.20f). Overall, merging seems to improve the CSI of 

individual products for TP (Figure 3.20g), CP (Figure 3.20h), and LSP (Figure 3.20i). 
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Compared to all the merged products produced after rescaling, SimpMRG shows an 

overall better CSI, especially for TP. Whereas, for CP and LSP, MRG_ECM_reg 

shows the highest CSI, as the CSI of individual ECM is already high. 

The choice of reference product for regression-based rescaling and merging has a 

noticeable impact on the performance of merge in CPI. However, a simple merge (i.e., 

ensemble mean) of the forecasts results in overall improvement regarding, especially 

the CSI, which goes in favor of simple merging here. 

 

Figure 3.20. 1-daily Categorical Performance Indices. POD for TP, CP, and LSP ((a) to (c)); FAR for 

TP, CP, and LSP ((d) to (f)); CSI for TP, CP, and LSP ((g) to (i)). The bold black dots represent mean 

values for the particular CPI 
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3.2.4. Improvement in ErrSD and CC Due to Merging 

Here, we investigate the percent improvement in two of the most critical statistics (i.e., 

ErrSD and CC) of the individual products when they are merged by the two methods. 

The individual ECM has less margin of improvement in ErrSD in the sense that it 

already has lower ErrSD. Therefore, SimpMRG and the other merges add the least 

improvement in ErrSD of ECM over 1-3 daily time scales for TP (Table 3.26), CP 

(Table 3.27) and LSP (Table 3.28). Still, this is a very encouraging fact that merging 

can further improve the ErrSD of ECM. Considering TP (Table 3.26) and LSP (Table 

3.28), the average 1-3 daily benefit (improvement in ErrSD) due to merging increases  

Table 3.26. Percent improvement, due to merging, in ErrSD for Total Precipitation of the individual 

products 

Percent Improvement in ErrSD for TP due to Merging 

Data ECM ALR WRF GFS CFS Average 

1-Daily 

SimMRG 8.0 23.1 24.3 28.2 36.0 23.9 

MRG_ECM_reg 11.6 27.1 28.6 33.6 41.7 28.5 

MRG_ALR_reg 9.8 24.9 26.5 31.4 39.4 26.4 

MRG_WRF_reg 11.6 27.2 28.5 33.6 41.7 28.5 

MRG_GFS_reg 6.6 21.6 22.8 26.2 35.4 22.5 

MRG_CFS_reg 7.8 22.9 24.2 29.0 35.3 23.8 

2-Daily 

SimMRG 8.4 24.4 29.5 30.7 37.0 26.0 

MRG_ECM_reg 13.0 29.6 35.3 37.8 44.5 32.0 

MRG_ALR_reg 11.1 27.1 32.9 35.3 41.9 29.7 

MRG_WRF_reg 12.7 29.2 34.6 37.4 44.0 31.6 

MRG_GFS_reg 6.8 22.6 27.8 28.2 36.5 24.4 

MRG_CFS_reg 8.2 24.1 29.5 31.9 35.8 25.9 

3-Daily 

SimMRG 9.1 24.9 33.4 32.3 36.5 27.2 

MRG_ECM_reg 14.3 30.6 40.0 40.1 44.7 33.9 

MRG_ALR_reg 12.1 27.9 37.3 37.4 41.9 31.3 

MRG_WRF_reg 13.6 29.9 38.8 39.3 43.8 33.1 

MRG_GFS_reg 7.5 23.1 31.8 29.6 36.2 25.6 

MRG_CFS_reg 9.1 24.8 33.7 33.9 35.3 27.4 

Average Improvement 10.1 25.8 31.1 33.1 39.3  

 

with the order of individual forecasts: ECM > ALR > WRF > GFS > CFS. Whereas, 

this order changes to ECM > ALR > CFS > GFS > WRF for CP (Table 3.27). 

Considering TP, although SimpMRG considerably improves (on average, 23.9%), the 

ErrSD of the individual products, MRG_ECM_reg and MRG_WRF_reg add more  
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Table 3.27. Percent improvement, due to merging, in ErrSD for Convective Precipitation of the 

individual products 

Percent Improvement in ErrSD for CP due to Merging 

Data ECM ALR WRF GFS CFS Average 

1-Daily 

SimMRG 4.3 21.2 29.1 28.3 22.8 21.1 

MRG_ECM_reg 5.7 23.0 31.2 31.0 24.7 23.1 

MRG_ALR_reg 1.3 18.0 25.9 25.5 19.4 18.0 

MRG_WRF_reg 2.9 19.7 27.4 27.5 21.4 19.8 

MRG_GFS_reg -0.1 16.2 23.8 22.9 17.8 16.1 

MRG_CFS_reg 0.5 16.9 24.8 24.6 18.6 17.1 

2-Daily 

SimMRG 3.1 21.0 33.1 31.8 25.7 22.9 

MRG_ECM_reg 5.2 23.6 36.2 35.9 28.6 25.9 

MRG_ALR_reg -0.1 17.5 29.6 28.9 21.9 19.6 

MRG_WRF_reg 1.9 19.7 31.3 31.7 24.6 21.8 

MRG_GFS_reg -2.4 14.7 26.2 24.3 19.3 16.4 

MRG_CFS_reg -0.7 16.5 28.6 28.2 21.3 18.8 

3-Daily 

SimMRG 2.7 21.0 35.7 33.0 26.8 23.8 

MRG_ECM_reg 5.1 24.0 39.5 38.2 30.4 27.4 

MRG_ALR_reg -0.7 17.3 32.0 30.2 22.9 20.3 

MRG_WRF_reg 1.6 20.0 34.0 33.5 26.0 23.0 

MRG_GFS_reg -3.3 14.1 28.0 24.5 19.8 16.6 

MRG_CFS_reg -0.9 16.8 31.5 30.0 22.6 20.0 

Average Improvement 1.5 19.0 30.4 29.4 23.0  

 

improvement. However, for CP and LSP, the improvement in ErrSD of individual 

products brought by MRG_ECM_reg stands alone as the best among all. Overall, the 

improvement added by merging to the 1-3 daily ErrSD of the individual products is 

larger in the case of LSP (Table 3.28) than CP (3.27). 

For TP, on average, SimpMRG adds a 17.1% improvement in 1-daily CC of the 

individual products (Table 3.29), while MRG_ECM_reg adds the highest 

improvement (17.6%) in CC of the individual products. For TP (Table 3.29) and LSP 

(3.31), ALR receives the greatest improvement in 1-3 daily CC due to merging, as the 

individual ALR shows the lowest correlation with the observed data, thus having more 

margin for improvement. Overall, the improvement added by merging to the 1-3 daily 

CC of the individual products is larger in the case of CP (Table 3.30) than LSP (3.31). 
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Table 3.28. Percent improvement, due to merging, in ErrSD for Large-scale Precipitation of the 

individual products 

Percent Improvement in ErrSD for LSP due to Merging 

Data ECM ALR WRF GFS CFS Average 

1-Daily 

SimMRG -9.5 24.7 37.2 43.5 77.3 34.6 

MRG_ECM_reg 9.6 51.0 68.0 79.1 123.1 66.2 

MRG_ALR_reg 4.3 42.8 59.5 70.4 112.7 57.9 

MRG_WRF_reg 5.6 45.5 59.9 71.4 113.8 59.2 

MRG_GFS_reg -0.7 37.2 51.7 55.4 101.4 49.0 

MRG_CFS_reg -7.4 27.6 41.6 49.9 78.1 38.0 

2-Daily 

SimMRG -11.0 26.7 43.7 42.9 75.0 35.5 

MRG_ECM_reg 10.7 57.9 81.2 84.2 128.3 72.5 

MRG_ALR_reg 4.9 48.3 71.0 74.2 116.5 63.0 

MRG_WRF_reg 4.6 49.1 68.4 72.3 114.0 61.7 

MRG_GFS_reg -1.4 41.0 60.7 55.7 102.2 51.6 

MRG_CFS_reg -9.3 29.2 48.0 49.2 73.9 38.2 

3-Daily 

SimMRG -10.4 27.0 48.8 43.7 73.6 36.5 

MRG_ECM_reg 12.6 59.8 89.6 87.2 129.5 75.7 

MRG_ALR_reg 6.5 49.9 78.4 76.7 117.4 65.8 

MRG_WRF_reg 5.5 49.6 74.4 73.6 113.0 63.2 

MRG_GFS_reg 0.3 42.9 68.3 58.3 103.4 54.6 

MRG_CFS_reg -8.3 29.9 53.8 50.7 72.5 39.7 

Average Improvement 0.4 41.1 61.3 63.2 101.4  

 

Table 3.29. Percent improvement, due to merging, in CC for Total Precipitation of the individual 

products 

Percent Improvement in CC for TP due to Merging 

Data ECM ALR WRF GFS CFS Average 

1-Daily 

SimMRG 6.3 24.0 14.5 19.8 20.7 17.1 

MRG_ECM_reg 6.8 24.6 15.0 20.3 21.3 17.6 

MRG_ALR_reg 6.5 23.9 14.6 20.0 20.9 17.2 

MRG_WRF_reg 6.7 24.5 14.8 20.3 21.2 17.5 

MRG_GFS_reg 5.9 23.6 14.1 19.3 20.3 16.6 

MRG_CFS_reg 5.9 23.5 14.0 19.3 20.1 16.6 

2-Daily 

SimMRG 5.7 23.6 15.1 18.8 16.5 15.9 

MRG_ECM_reg 6.2 24.2 15.6 19.2 17.0 16.4 

MRG_ALR_reg 5.8 23.4 15.2 18.8 16.6 16.0 

MRG_WRF_reg 6.0 24.0 15.4 19.1 16.9 16.3 

MRG_GFS_reg 5.5 23.4 14.9 18.3 16.2 15.7 

MRG_CFS_reg 5.6 23.5 15.1 18.6 16.3 15.8 

3-Daily 

SimMRG 2.7 21.9 17.8 18.8 14.3 15.1 

MRG_ECM_reg 2.2 21.7 18.6 19.3 14.8 15.3 

MRG_ALR_reg 1.8 20.9 18.0 18.8 14.3 14.8 

MRG_WRF_reg 2.0 21.5 18.2 19.1 14.6 15.1 

MRG_GFS_reg 1.2 20.7 17.9 18.4 14.0 14.4 

MRG_CFS_reg 0.6 20.3 18.7 18.9 14.3 14.6 

Average Improvement 4.6 23.0 16.0 19.2 17.2  
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Table 3.30. Percent improvement, due to merging, in CC for Convective Precipitation of the 

individual products 

Percent Improvement in CC for CP due to Merging 

Data ECM ALR WRF GFS CFS Average 

1-Daily 

SimMRG -0.3 39.7 34.5 34.4 49.5 31.6 

MRG_ECM_reg 3.3 44.6 39.5 39.1 55.1 36.3 

MRG_ALR_reg -0.3 38.7 34.6 34.8 49.7 31.5 

MRG_WRF_reg -1.2 38.7 32.7 33.2 48.3 30.3 

MRG_GFS_reg -2.3 37.2 31.9 30.9 46.2 28.8 

MRG_CFS_reg -4.2 35.5 30.2 29.4 42.5 26.7 

2-Daily 

SimMRG -0.3 34.3 33.2 33.8 41.1 28.4 

MRG_ECM_reg 2.9 39.2 38.0 38.8 46.2 33.0 

MRG_ALR_reg 0.3 34.7 34.3 35.2 42.4 29.4 

MRG_WRF_reg -0.9 33.6 31.9 33.2 40.4 27.6 

MRG_GFS_reg -1.4 33.3 31.9 31.2 38.8 26.8 

MRG_CFS_reg -1.8 32.2 31.0 30.9 36.4 25.7 

3-Daily 

SimMRG -1.1 32.7 33.8 34.2 37.3 27.4 

MRG_ECM_reg 2.3 37.7 39.5 39.5 42.7 32.3 

MRG_ALR_reg -0.2 33.5 35.4 35.9 39.1 28.7 

MRG_WRF_reg -1.5 32.0 32.8 33.9 37.0 26.8 

MRG_GFS_reg -1.9 31.9 33.6 31.9 35.3 26.2 

MRG_CFS_reg -2.6 31.0 32.9 31.9 33.4 25.3 

Average Improvement -0.6 35.6 34.0 34.0 42.3  

 

Table 3.31. Percent improvement, due to merging, in CC for Large-scale Precipitation of the 

individual products 

Percent Improvement in CC for LSP due to Merging 

Data ECM ALR WRF GFS CFS Average 

1-Daily 

SimMRG -1.3 33.4 12.1 17.0 26.3 17.5 

MRG_ECM_reg 0.7 36.4 14.8 19.6 28.9 20.1 

MRG_ALR_reg -1.3 32.6 12.3 17.2 26.4 17.4 

MRG_WRF_reg 0.1 35.6 14.0 18.9 28.1 19.3 

MRG_GFS_reg -0.6 34.5 13.2 17.9 27.2 18.4 

MRG_CFS_reg -1.4 33.5 12.4 17.1 26.0 17.5 

2-Daily 

SimMRG -1.1 37.2 14.7 15.7 20.8 17.5 

MRG_ECM_reg 0.8 40.0 17.0 18.0 23.2 19.8 

MRG_ALR_reg -1.5 35.4 14.3 15.3 20.3 16.8 

MRG_WRF_reg 0.1 39.0 16.1 17.2 22.4 19.0 

MRG_GFS_reg -0.4 38.4 15.7 16.5 21.8 18.4 

MRG_CFS_reg -0.7 37.7 15.2 16.2 21.2 17.9 

3-Daily 

SimMRG -1.1 41.9 17.1 15.6 18.8 18.5 

MRG_ECM_reg 0.8 44.7 19.4 17.7 21.1 20.7 

MRG_ALR_reg -1.9 38.8 16.2 14.6 17.8 17.1 

MRG_WRF_reg 0.0 43.5 18.3 16.8 20.2 19.8 

MRG_GFS_reg -0.4 43.0 18.0 16.3 19.7 19.3 

MRG_CFS_reg -0.6 42.6 17.7 16.1 19.3 19.0 

Average Improvement -0.5 38.2 15.5 16.9 22.8  
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From the results presented till now, MRG_ECM_reg might be considered as a merged 

product showing the least ErrSD and the highest CC values for 1-3 daily time scales 

for all the three variables (i.e., TP, CP, and LSP). Thus, Figure 3.31 shows a summary 

of the comparison between the improvement in ErrSD and CC for TP, CP, and LSP 

of the individual products brought by the two merges: SimpMRG and 

MRG_ECM_reg. The larger improvement in accuracy of the individual products 

brought by MRG_ECM_reg indicates the importance of choice of the reference 

product while rescaling the products before merging them (Afshar et al., 2019). 

 

Figure 3.21. Comparison of improvement, due to two merging methods, in ErrSD for TP (a), CP (b), 

and LSP (c) and CC for TP (d), CP (e), and LSP (f) 
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3.3. Evaluation of Merged Research-Grade Products 

After merging the research-grade products (IMERG, TMPA, ERAint, and ERA5) by 

the two merging methods (i.e., simple merging and merging after rescaling the 

products), the individual and merged precipitation products were evaluated using the 

ground-based observed data as truth. The accuracy assessment included categorical 

performance indices and intensity-frequency analysis over daily time scale, while 

evaluation metrics (including Mean, SD, ErrSD, and CC) were determined over daily 

and monthly time scales. The evaluation results are presented and discussed below. 

3.3.1. Daily and Monthly Evaluation Statistics 

Considering the entire study area (i.e., all 755 stations), the individual ERA5 has the 

highest daily CC (Figure 3.22a) among the products. However, when these daily 

datasets are accumulated to a monthly time scale, IMERG shows the highest monthly 

CC (Figure 3.22b) with the observed data. MRG_ERA5_reg shows the highest daily 

CC among the merged products, while taking an ensemble mean (SimpMRG) also 

improves the daily CC of all the individual products by a considerable amount. For 

example, although TMPA has the lowest daily CC, a simple merge of it with the other 

three products improves the daily CC from 0.47 to 0.70. The advantageous thing about 

merging is that it improves the daily CC of even the products (e.g., ERA5), which 

have already high daily CC values. Both merging methods improve the monthly CC 

of TMPA, ERAint, and ERA5. As the Bias is more of a magnitude-dependent variable, 

comparing the biases on daily (Figure 3.22c) or monthly (Figure 3.22d) time scales is 

the same. So, considering monthly Bias in the individual and merged products, 

SimpMRG improves the Bias of ERA5 individual product, which had high Bias 

(Figure 3.22d). However, the selection of the reference product for merging after 

regression-based rescaling is more important in the case of Bias. Daily (Figure 3.22e) 

and monthly (Figure 3.22f) ErrSD of the individual products are considerably 

improved due to SimpMRG. IMERG, having the lowest monthly ErrSD, when used 

as a reference product for rescaling, the resulting merged product MRG_IMERG_reg 
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shows the lowest monthly ErrSD among all the individual and merged products 

(Figure 3.22f). For the sake of brevity, Figure 3.22 includes only the overall (the entire 

study area) CC, Bias, and ErrSD over daily and monthly time scales, while the detailed 

results on monthly scale are presented in following tables (Tables 3.33 to 3.38) over 

wetness, elevation, and slope classes. Please refer to Appendix A for detailed results 

over daily time scale where Appendix Tables 0.1 to 0.6 show the daily metrics for the 

individual and merged products investigated in detail over wetness, elevation, and 

slope classes.     

 

Figure 3.22. For individual and merged research-grade products, boxplots for daily (a) and monthly 

(b) CC, daily (c) and monthly (d) Bias, and daily (e) and monthly (f) ErrSD. The bold black dots 

show the mean of the particular statistics 

 

Considering the monthly error variations over wetness classes, merging improves the 

monthly ErrSD (Table 3.32) of individual products over the entire study area as well 

as over all the wetness classes. The average monthly ErrSD over the four wetness 

classes decrease from 22.4, 26.4, 31.8, and 48.8 mm/month for the combined 
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individual products to 17.8, 23.5, 30.9, and 48.9 for the combined merged products. 

For the same arrangement, daily CC improves from 0.78, 0.80, 0.81, and 0.74 for the 

combined individual products to 0.81, 0.84, 0.85, and 0.79 for the combined merged 

products (Table 3.33). 

Table 3.32. Monthly Bias and ErrSD for individual and merged research-grade products over the 

entire study area and different wetness classes 

Wetness Entire Dry Mod-Dry Mod-Wet Wet 

No. of Stations 755 279 303 123 50 

BIAS  

(mm/mon) 

GPM 8.4 13.1 10.5 1.1 -13.0 

TMPA 5.6 12.6 8.6 -5.2 -24.6 

ERAint 8.3 19.9 9.6 -5.3 -30.4 

ERA5 12.2 15.1 11.6 9.3 7.1 

SimpMRG 8.8 15.5 10.2 0.2 -15.2 

MRG_IMERG_reg 8.6 13.2 10.7 1.6 -12.7 

MRG_TMPA_reg 5.4 12.3 8.3 -5.4 -24.9 

MRG_ERAint_reg 8.5 20.1 9.8 -5.0 -30.2 

MRG_ERA5_reg 12.4 15.3 11.8 9.7 7.4 

ErrSD  

(mm/mon) 

GPM 24.3 19.5 24.1 27.9 42.9 

TMPA 27.7 21.8 27.4 33.4 48.4 

ERAint 29.5 25.5 27.7 33.4 54.0 

ERA5 27.6 22.7 26.6 32.3 49.8 

SimpMRG 24.0 19.7 23.0 27.9 44.6 

MRG_IMERG_reg 23.4 17.0 22.9 30.0 46.5 

MRG_TMPA_reg 23.8 17.1 23.2 31.0 47.8 

MRG_ERAint_reg 25.9 17.8 24.8 34.6 56.8 

MRG_ERA5_reg 24.4 17.7 23.9 31.0 49.0 

 

Table 3.33. Monthly CC for individual and merged research-grade products over the entire study 

area and different wetness classes 

Wetness Entire Dry Mod-Dry Mod-Wet Wet 

No. of Stations 755 279 303 123 50 

CC with the 

Observed Data 

GPM 0.82 0.81 0.84 0.84 0.78 

TMPA 0.79 0.79 0.79 0.78 0.72 

ERAint 0.76 0.74 0.77 0.79 0.71 

ERA5 0.79 0.77 0.80 0.82 0.73 

SimpMRG 0.83 0.81 0.84 0.85 0.79 

MRG_IMERG_reg 0.83 0.82 0.84 0.85 0.79 

MRG_TMPA_reg 0.83 0.82 0.84 0.85 0.79 

MRG_ERAint_reg 0.82 0.80 0.83 0.84 0.78 

MRG_ERA5_reg 0.82 0.80 0.83 0.85 0.78 
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Both the merging methods improve the monthly ErrSD (Table 3.34) and CC (Table 

3.35) over each elevation region. For example, the average monthly ErrSD over the 

five elevation classes decrease from 33.1, 23.2, 24.0, 28.6, and 35.3 mm/month for the 

combined individual products to 31.2, 19.7, 20.8, 24.6, and 30.7 mm/month for the 

combined merged products (Table 3.34). Moreover, for the same arrangement, the 

monthly CC values improve from 0.80, 0.81, 0.79, 0.74, and 0.67 for the combined 

individual products to 0.84, 0.84, 0.82, 0.78, and 0.71 for the combined merged 

products (Table 3.35). 

Table 3.34. Monthly Bias and ErrSD for individual and merged research-grade products over the 

entire study area and different elevation classes. 

Elevation (m) Entire Elev <500 Elev 500-1000 Elev 1000-1500 Elev 1500-2000 Elev > 2000 

No. of Stations 755 237 219 209 77 13 

BIAS 

 (mm/mon) 

GPM 8.4 7.6 9.3 7.8 8.9 14.3 

TMPA 5.6 2.1 6.8 7.0 8.5 10.9 

ERAint 8.3 -3.6 10.7 12.0 25.0 28.5 

ERA5 12.2 9.5 12.0 12.3 19.5 21.8 

SimpMRG 8.8 3.9 9.9 10.0 16.0 19.2 

MRG_IMERG_reg 8.6 8.1 9.5 7.8 8.9 14.3 

MRG_TMPA_reg 5.3 1.9 6.5 6.7 8.2 10.5 

MRG_ERAint_reg 8.5 -3.3 10.9 12.1 25.1 28.5 

MRG_ERA5_reg 12.4 9.8 12.2 12.4 19.6 21.8 

ErrSD  

(mm/mon) 

GPM 24.3 29.8 19.8 21.3 26.0 35.5 

TMPA 27.7 34.0 24.3 24.2 26.9 32.2 

ERAint 29.5 34.9 25.1 26.4 32.4 39.7 

ERA5 27.6 33.6 23.6 24.1 28.9 33.6 

SimpMRG 24.0 29.4 19.9 21.3 25.1 31.3 

MRG_IMERG_reg 23.4 29.6 18.9 20.2 24.7 30.5 

MRG_TMPA_reg 23.8 30.3 19.5 20.4 24.4 30.1 

MRG_ERAint_reg 25.9 35.3 20.3 21.3 24.4 30.7 

MRG_ERA5_reg 24.4 31.6 19.9 20.7 24.3 30.8 

 

Table 3.35. Monthly CC for individual and merged research-grade products over the entire study 

area and different elevation classes 

Elevation (m) Entire Elev <500 Elev 500-1000 Elev 1000-1500 Elev 1500-2000 Elev > 2000 

No. of Stations 755 237 219 209 77 13 

CC with the 

Observed Data 

GPM 0.82 0.84 0.85 0.82 0.75 0.68 

TMPA 0.79 0.79 0.80 0.79 0.75 0.70 

ERAint 0.76 0.77 0.78 0.76 0.71 0.61 

ERA5 0.79 0.80 0.81 0.79 0.75 0.68 

SimpMRG 0.83 0.84 0.85 0.82 0.78 0.71 

MRG_IMERG_reg 0.83 0.84 0.85 0.82 0.78 0.71 

MRG_TMPA_reg 0.83 0.84 0.85 0.82 0.78 0.72 

MRG_ERAint_reg 0.82 0.83 0.83 0.81 0.77 0.69 

MRG_ERA5_reg 0.82 0.83 0.83 0.81 0.77 0.70 
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The similar trends of improvements in monthly ErrSD and CC over wetness and 

elevation classes are observed over different slope classes as well (Table 3.36). For 

example, the monthly ErrSD improves from 26.5, 26.6, 32.5, 37.0, and 31.3 

mm/month to 23.6, 23.7, 30.2, 32.6, and 24.0 mm/month (over the five slope classes, 

respectively) due to merging. Although the monthly ErrSD of the merged products 

also increases with increasing terrain complexity, they show improvement in ErrSD 

compared to the individual products over each slope class. Similarly, merging 

improves the monthly CC (Table 3.37) from 0.79, 0.81, 0.78, 0.72, and 0.71 to 0.83, 

0.83, 0.82, 0.78, and 0.77 (over the five slope classes, respectively). 

Table 3.36. Monthly Bias and ErrSD for individual and merged research-grade products over the 

entire study area and different slope classes 

Slope (%) Entire Slope < 5% Slope 5-10% Slope 10-15% Slope 15-20% Slope > 20% 

No. of Stations 755 499 170 56 19 11 

BIAS 

 (mm/mon) 

GPM 8.4 9.0 8.4 1.5 3.4 23.0 

TMPA 5.6 6.9 6.4 -3.7 -7.9 7.8 

ERAint 8.3 7.9 9.6 2.4 8.8 35.4 

ERA5 12.2 9.9 12.6 14.8 29.5 68.8 

SimpMRG 8.8 8.6 9.4 4.0 8.8 34.1 

MRG_IMERG_reg 8.6 9.3 8.6 1.6 3.4 22.8 

MRG_TMPA_reg 5.3 6.6 6.0 -4.1 -8.3 7.2 

MRG_ERAint_reg 8.5 8.2 9.7 2.5 8.9 35.2 

MRG_ERA5_reg 12.4 10.2 12.8 14.9 29.5 68.5 

ErrSD 

 (mm/mon) 

GPM 24.3 23.4 23.9 29.1 33.4 27.5 

TMPA 27.7 27.2 26.9 31.8 36.7 28.0 

ERAint 29.5 28.8 28.8 35.7 38.3 29.4 

ERA5 27.6 26.6 26.6 33.2 39.4 40.4 

SimpMRG 24.0 23.4 23.4 28.8 31.6 24.8 

MRG_IMERG_reg 23.4 22.6 22.9 29.5 32.3 23.6 

MRG_TMPA_reg 23.8 23.0 23.3 29.8 33.2 24.2 

MRG_ERAint_reg 25.9 25.2 25.2 32.4 33.5 23.7 

MRG_ERA5_reg 24.4 23.6 23.8 30.7 32.4 23.6 

 

Table 3.37. Monthly CC for individual and merged research-grade products over the entire study 

area and different slope classes 

Slope (%) Entire Slope < 5% Slope 5-10% Slope 10-15% Slope 15-20% Slope > 20% 

No. of Stations 755 499 170 56 19 11 

CC with the 

Observed Data 

GPM 0.82 0.83 0.82 0.82 0.76 0.75 

TMPA 0.79 0.79 0.79 0.77 0.70 0.70 

ERAint 0.76 0.76 0.77 0.74 0.70 0.72 

ERA5 0.79 0.79 0.80 0.79 0.73 0.68 

SimpMRG 0.83 0.83 0.83 0.82 0.79 0.78 

MRG_IMERG_reg 0.83 0.83 0.83 0.83 0.79 0.78 

MRG_TMPA_reg 0.83 0.83 0.83 0.82 0.78 0.78 

MRG_ERAint_reg 0.82 0.82 0.82 0.81 0.77 0.77 

MRG_ERA5_reg 0.82 0.82 0.82 0.81 0.77 0.76 
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3.3.2. Intensity-Frequency analysis 

 

Figure 3.23. Daily intensity-frequency analysis of individual and merged research-grade products 

 

Merging causes further under- and over-estimation of the observed frequency of dry 

days (with precipitation < 1mm/day) and light precipitation intensity days (with 

precipitation of 1-5 mm/day), respectively (Figure 3.23). However, SimpMRG 

performs better than all the other merges produced after rescaling of the individual 

products over all the daily intensity intervals. Merging slightly improves the ability of 

individual products to match the frequency of observed days with moderate 

precipitation intensities (i.e., 5-20 mm/day). In matching the observed frequency of 

heavy to extreme precipitation days (i.e., 20-40 to >40 mm/day), SimpMRG slightly 

edges ahead of the other merged products. 

3.3.3. Categorical Performance Indices 
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Merging, generally, improves the POD of individual products (Figure 3.24a). A 

simple merge of the individual products shows an improvement in the POD of even 

ERA5 which already had the highest POD among the individual products. However, 

merging further increases the FAR of the products (Figure 3.24b), although the 

improvement in POD is more than the decline in FAR. SimpMRG shows an overall 

better CSI than the individual and merged products (Figure 3.24c). The choice of 

reference product for regression-based rescaling and merging has a substantial effect 

on the performance of merge in CPI. However, a simple merge (i.e., ensemble mean) 

of the forecasts results in an overall improvement regarding, especially, the CSI, which 

goes in favor of the simple merging of the research-grade products. 

 

Figure 3.24. Daily Categorical Performance Indices for individual and merged research-grade 

products. (a) POD, (b) FAR, and (c) CSI. The bold black dots represent mean values for the particular 

CPI 

 

3.3.4. Improvement in ErrSD and CC Due to Merging 

The improvement added by merging in the daily ErrSD is more significant in cases of 

the individual satellite-based products, whereas monthly ErrSD has more margin for 

improvement in cases of the individual model-based reanalysis products (Table 3.39). 

On average, merging adds more improvement in the ErrSD of individual products on 

the daily time scale. On both the daily and monthly time scales, MRG_IMERG_reg 

adds the greatest average improvement in ErrSD of the individual products. IMERG 



 

 

 

90 

 

receives the least improvement, due to merging, in the monthly ErrSD (Table 3.38), 

as it already has the lowest ErrSD among the individual products. 

Table 3.38. Percent improvement, due to merging, in ErrSD of the individual research-grade 

products 

Percent Improvement in ErrSD due to Merging 

Data IMERG TMPA ERAint ERA5 Average 

Daily 

SimMRG 28.0 61.7 16.1 8.7 28.6 

MRG_IMERG_reg 34.1 69.7 21.7 13.8 34.8 

MRG_TMPA_reg 28.1 61.7 16.2 8.8 28.7 

MRG_ERAint_reg 30.4 65.0 18.0 10.5 31.0 

MRG_ERA5_reg 33.3 68.6 20.7 12.9 33.9 

Monthly 

SimMRG 1.6 17.5 26.0 16.7 15.5 

MRG_IMERG_reg 7.6 23.8 34.7 24.7 22.7 

MRG_TMPA_reg 6.6 21.7 33.5 23.5 21.3 

MRG_ERAint_reg 0.1 15.0 23.7 14.6 13.4 

MRG_ERA5_reg 3.5 19.2 28.4 18.5 17.4 

 

Table 3.39. Percent improvement, due to merging, in CC of the individual research-grade products 

Percent Improvement in CC due to Merging 

Data IMERG TMPA ERAint ERA5 Average 

Daily 

SimMRG 14.8 55.2 13.5 5.6 22.3 

MRG_IMERG_reg 15.4 56.1 14.2 6.3 23.0 

MRG_TMPA_reg 9.4 47.1 8.6 1.1 16.6 

MRG_ERAint_reg 17.0 58.1 14.9 7.0 24.3 

MRG_ERA5_reg 17.7 59.1 15.6 7.7 25.0 

Monthly 

SimMRG 2.9 6.5 10.4 5.6 6.4 

MRG_IMERG_reg 2.9 6.7 10.6 5.8 6.5 

MRG_TMPA_reg 2.7 6.3 10.3 5.6 6.2 

MRG_ERAint_reg 1.3 4.9 8.2 3.6 4.5 

MRG_ERA5_reg 1.7 5.3 8.8 4.0 5.0 
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Figure 3.25. The improvement, added by SimpMRG, in the daily and monthly statistics of the 

individual research-grade products. (a) ErrSD and (b) CC. 

 

MRG_ERA5_reg adds the most substantial average improvement in the daily CC of 

the individual products (Table 3.39), while SimpMRG and MRG_IMERG_reg cause 

the most significant improvements in the CC on the monthly time scale.   

Summarizing, Figure 3.25 shows the percent improvement which SimpMRG brings, 

in daily and monthly ErrSd and CC of the individual products. 

 

3.4. Discussion 

Here, nine products with variety of spatial resolutions (i.e., 0.045o to 0.75o) are 

simultaneously evaluated and inter-compared for their statistical performance against 

the in-situ observed precipitation data. The difference in spatial resolution is 

considered as an influential driver for the accuracy of a given dataset, and 

downscaling/upscaling the spatial resolutions of various datasets to a common 

resolution is considered as an arguable solution. However, this study did not convert 

the datasets with different resolutions to a common resolution. Rather it extracts the 
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products data from the grids closest to the ground-based station locations (i.e., point-

to-grid). This results in addition of no uncertainty introduced by interpolation. The 

author did upscaling IMERG (0.1o), TMPA (0.25o), ERA5 (0.25o), and ERAint (0.75o) 

to a set of coarser resolutions (ranging between 0.15o to 1.5o), and then investigated 

the impact of change in grid-scale resolution on the accuracy of the individual products 

by adopting the point-to-grid evaluation technique. The conclusion was that there was 

no significant change in the accuracy of the products. Therefore, for this study, the 

point-to-grid evaluation methodology has been applied on the products with their 

native spatial resolutions.  

Simultaneous evaluation of all the products against the in-situ observed precipitation 

data indicates that, among the real-time forecasts, ECM has the highest CC as well as 

the smallest ErrSD, which finds its applications in real-time operational purposes like 

energy production, agriculture, and flood forecasting and management. IMERG could 

be referred as the most suitable product (among the research products) for non-real-

time researches and applications like drought management, as it has the highest 

monthly CC and the smallest ErrSD. 

This study included a simultaneous evaluation and inter-comparison of precipitation 

products based on model-based forecasts against those based on model-based 

reanalysis with the intention to investigate the utility of real-time accessible forecasts 

vs. post-real-time accessible reanalysis. However, it did not consider cross merging 

these products (i.e., no forecast has been merged with reanalysis). There are two main 

reasons for not merging forecasts with reanalysis-based products: (1) The differences 

in their processing algorithms and (2) The difference in accessibility which in turn 

decides their specific applications. While producing a forecast, the model estimates a 

wide variety of physical parameters such as precipitation, turbulent fluxes, radiation 

fields, cloud properties, soil moisture, etc. The accuracy of these model-generated 

estimates naturally depends on the quality of the model physics as well as that of the 

analysis data that are always done by operational data assimilation system which could 

be performed to provide an initial condition for a subsequent forecasting. There are 
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frequent improvements or changes in the forecasting model physics as well as in the 

data assimilation processes. On the other hand, reanalysis data are produced the same 

way with a frozen model - so there is no change in time, the resolution is not varying 

with time, and mainly the resolution is lower than the resolution of the analysis data 

produced at the time when the re-analysis data are produced. Reanalysis data are 

regenerated by using data assimilation models and adding more observations from 

several non-real-time dataset. 

As mentioned in Section 2.5.1. that the observed 1-daily TP data obtained from MGM 

did not contain any information about the proportions of CP and LSP within TP for a 

specific day, this study had to rely on the skills of the ECMWF forecast model in 

segregating CP and LSP proportions. Hence, the proportions of CP and LSP for the 

observed data were dependent on ECM. This might have played a role in 

comparatively better performance of ECM and MRG_ECM_reg regarding CP and 

LSP. However, both ECM and MRG_ECM_reg showed values of ErrSD and CC for 

TP competitive to even those for ERA5 and IMERG. This implies that splitting the 

proportions of CP and LSP based on ECM did not have a significance influence on 

the independence of the truth data (i.e., ground-based observation data). 

The choice of the reference product in producing merged products after regression-

based rescaling largely affects the error variability of the merged product. For 

example, among the merged forecasts, MRG_ALR_reg yields the smallest bias 

because ALR has the smallest Bias among all the individual forecasts. Similarly, 

MRG_ECM_reg has the smallest ErrSD and the highest CC compared with the other 

merged forecasts because its reference product (ECM) has the smallest ErrSD and the 

highest CC among the individual forecasts.  
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CHAPTER 4  

 

4. SUMMARY AND CONCLUSIONS 

 

4.1. Summary 

This study evaluates and merges a total of nine precipitation products (two satellite-

based products: GPM IMERGv05 and TMPA 3B42V7; two model-based reanalysis 

products: ERA-Interim and ERA5; and five real-time forecasts: ECMWF HRES, 

ALARO, WRF, GFS, and CFS) by using ground-based observed precipitation data as 

a reference. Evaluation analyses were conducted over stations of the entire study area 

as well as over different classes of stations based on their wetness, elevation, and 

terrain slope. Evaluation procedure included determination of evaluation metrics (i.e., 

Mean, Standard Deviation (SD), Bias, Error Standard Deviation (ErrSD), and 

Correlation Coefficient (CC)) over daily and monthly time scales, as well as, the 

investigation of time-series variability and spatial error variability on the monthly time 

scale. In addition to this, intensity-frequency analysis and analysis related to 

categorical performance indices were conducted over a daily time scale. The spatial 

distribution of annual precipitation was also investigated under the evaluation 

analysis.  

After the initial evaluation of the individual products, they were divided into two 

groups (i.e., real-time forecasts and research-grade products), and the products of each 

group were merged using two methods: a simple merging method and the method of 

simple merging after regression-based rescaling of the products. The individual and 

merged products were then evaluated, and inter-compared using the ground-based 

observed precipitation data. The added utility of merging the real-time forecasts was 

investigated over 1-3 daily time scales, while that of merging the research-grade 

products was investigated over daily and monthly time scales. 
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4.2. Conclusions 

4.2.1. Conclusions from the Initial Evaluation of Individual Products 

• For successor products vs. predecessor products comparison, IMERG and 

ERA5 show lower ErrSD, higher CC, and better CPI compared with their 

predecessors (TMPA and ERAint, respectively). However, TMPA and ERAint 

have smaller bias values compared with those of IMERG and ERA5 

• All the products, except ALR, tend to overestimate the observed precipitation 

not only over dry to moderately dry classes but also over almost all the 

elevation and slope classes 

• Among all nine precipitation products, ALR has the smallest bias (a dry bias 

of 2.6 mm/month), whereas CFS shows the most substantial wet bias (18.7 

mm/month) 

• Averaged over the entire study area, the climatology components of the 

products have lower ErrSD (on average, 19.9 mm/month) and higher monthly 

CC (on average, 0.80) as compared to their anomaly components (ErrSD: 25.1 

mm/month, CC: 0.64) 

• All three meteorological parameters, investigated in this study, have prominent 

role in error variation of the precipitation products. Compared to elevation, 

wetness has a more prominent role in the error variability of the products in 

the study area 

• The errors of the products increase, and their CC values decrease with the 

increasing terrain complexity 

• The performance of model-based products is more adversely affected by 

increasing terrain complexity than that of satellite-based products 

• ECM outperforms the other real-time forecasts regarding CPI, ErrSD, and CC, 

thus indicating its better suitability in operational purposes. 

• IMERG consistently outperforms all the other products regarding ErrSD over 

varying slopes, while ECM shows the second-best ErrSD values after IMERG 
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• Almost all the products have less bias display over the central parts of the study 

area where most of the dry to moderately dry areas as well as flatter areas exist 

4.2.2. Conclusions from Merging of the Real-Time Forecasts 

• The choice of the reference product in producing merged products after 

regression-based rescaling largely affects not only the error variability of the 

merged product, but also its categorical performance indices 

• On average, merging the individual forecasts improves their 1-3 daily ErrSD 

and CC not only over the entire study area, but also over all the wetness, 

elevation, and slope classes 

• SimpMRG performs better than the other merged products (which are 

produced by merging after rescaling) regarding the detection ability against 

various precipitation intensity thresholds 

• Considering total precipitation, SimpMRG, MRG_ECM_reg, and 

MRG_WRF_reg considerably improve the 1-daily ErrSD (on average, 23.9%, 

28.5%, and 28.5%, respectively) and CC (on average, 17.1%, 17.6%, and 

17.5%, respectively) of the individual forecasts 

• Merging the forecasts after rescaling them in the space of ECM (i.e., 

MRG_ECM_reg) brings the highest improvement in 1-3 daily ErrSD and CC 

of the individual forecasts 

4.2.3. Conclusions from Merging of the Research-Grade Products 

• Both the merging methods (1. Simple merging or taking the ensemble mean, 

and 2. Simple merging the products after rescaling them with linear regression) 

consistently improve the monthly CC and ErrSD of the research products 

• Merging improves the daily CC of even the products (e.g., ERA5) which have 

already high daily CC with the observed data 

• On both the daily and monthly time scales, MRG_IMERG_reg adds the most 

significant average improvement in ErrSD of the individual products 
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• Considering CPI, SimpMRG performs better than all the other merged 

products (produced after rescaling the individual products) against all the daily 

intensity intervals 

4.3. Recommendations 

• Real-time and non-real-time datasets could be merged just to investigate their 

added utility in different applications 

• Hybrid merging technique could be applied by taking, at a time, two to nine 

products under consideration 

• Merging could be done by considering only the best performing products (e.g., 

ALR has the smallest bias, ECM has the highest CC and the smallest ErrSD 

over daily time scale, IMERG has the highest CC and the smallest ErrSD over 

monthly time scale) 

• Real-time and seasonal forecasts for different variables could be merged to 

investigate the utility of merging in the applications like crop yield assessment 

4.4. Future Studies 

The intended future studies include:  

• Expanding the list of products to be merged 

• Applying the evaluation and merging analyses over a sub region of Turkey 

with dense network of ground-based gauge stations so that grid-to-grid 

evaluation could be adopted 

• Applying the same analyses of this study by using triple-collocated gauge 

stations data as the truth data 

• A dedicated and comprehensive investigation of utility of real-time forecasts 

against their reanalysis data 

• Applying triple-collocated error technique of merging on different 

combinations like seasonality-anomaly, signal-noise, and complete time series   
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APPENDICES 

 

A. Appendix: Resulting Statistics Tables from Merging the Research-Grade 

Products 

 

Table 0.1. Bias and ErrSD for daily individual and merged research-grade products over wetness 

classes 

Wetness Entire Dry Mod-Dry Mod-Wet Wet 

No. of Stations 755 279 303 123 50 

BIAS 

 (mm/day) 

GPM 0.28 0.42 0.35 0.07 -0.38 

TMPA 0.17 0.39 0.27 -0.16 -0.78 

ERAint 0.28 0.65 0.32 -0.14 -0.95 

ERA5 0.41 0.49 0.39 0.34 0.29 

SimpMRG 0.28 0.48 0.32 0.02 -0.48 

MRG_IMERG_reg 0.28 0.42 0.35 0.07 -0.38 

MRG_TMPA_reg 0.17 0.38 0.26 -0.17 -0.79 

MRG_ERAint_reg 0.28 0.65 0.32 -0.13 -0.95 

MRG_ERA5_reg 0.41 0.49 0.39 0.34 0.29 

ErrSD  

(mm/day) 

GPM 4.59 3.69 4.60 5.38 7.65 

TMPA 5.69 4.66 5.65 6.69 9.24 

ERAint 4.17 3.41 4.08 4.94 7.12 

ERA5 3.94 3.13 3.89 4.73 6.76 

SimpMRG 3.66 2.89 3.58 4.39 6.60 

MRG_IMERG_reg 3.56 2.65 3.50 4.48 6.71 

MRG_TMPA_reg 3.71 2.78 3.62 4.69 7.02 

MRG_ERAint_reg 3.70 2.66 3.62 4.80 7.32 

MRG_ERA5_reg 3.58 2.66 3.55 4.51 6.71 

 

Table 0.2. CC for daily individual and merged research-grade products over wetness classes 

Wetness Entire Dry Mod-Dry Mod-Wet Wet 

No. of Stations 755 279 303 123 50 

CC with the 

Observed Data 

GPM 0.62 0.59 0.64 0.66 0.57 

TMPA 0.47 0.44 0.49 0.49 0.40 

ERAint 0.62 0.58 0.62 0.66 0.64 

ERA5 0.66 0.63 0.67 0.72 0.68 

SimpMRG 0.70 0.67 0.71 0.74 0.68 

MRG_IMERG_reg 0.70 0.67 0.71 0.74 0.68 

MRG_TMPA_reg 0.67 0.64 0.69 0.71 0.63 

MRG_ERAint_reg 0.71 0.68 0.72 0.76 0.71 

MRG_ERA5_reg 0.71 0.68 0.72 0.76 0.71 
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Table 0.3. Bias and ErrSD for daily individual and merged research-grade products over elevation 

classes 

Elevation (m) Entire Elev <500 Elev 500-1000 Elev 1000-1500 Elev 1500-2000 Elev > 2000 

No. of Stations 755 237 219 209 77 13 

BIAS  

(mm/day) 

GPM 0.28 0.26 0.32 0.25 0.30 0.45 

TMPA 0.17 0.05 0.22 0.22 0.27 0.33 

ERAint 0.28 -0.11 0.37 0.40 0.83 0.92 

ERA5 0.41 0.32 0.41 0.41 0.65 0.70 

SimpMRG 0.28 0.11 0.32 0.31 0.52 0.60 

MRG_IMERG_reg 0.28 0.26 0.31 0.25 0.29 0.45 

MRG_TMPA_reg 0.17 0.05 0.21 0.21 0.26 0.31 

MRG_ERAint_reg 0.28 -0.11 0.37 0.40 0.83 0.92 

MRG_ERA5_reg 0.41 0.32 0.41 0.41 0.65 0.70 

ErrSD  

(mm/day) 

GPM 4.59 5.88 3.96 3.93 4.21 4.67 

TMPA 5.69 7.11 5.03 4.95 5.29 5.58 

ERAint 4.17 5.36 3.57 3.52 3.96 4.34 

ERA5 3.94 5.16 3.36 3.29 3.60 3.84 

SimpMRG 3.66 4.80 3.07 3.07 3.37 3.71 

MRG_IMERG_reg 3.56 4.75 2.94 2.98 3.23 3.47 

MRG_TMPA_reg 3.71 4.93 3.08 3.11 3.36 3.59 

MRG_ERAint_reg 3.70 5.15 3.01 3.01 3.16 3.42 

MRG_ERA5_reg 3.58 4.85 2.97 2.96 3.14 3.40 

 

Table 0.4. CC for daily individual and merged research-grade products over elevation classes 

Elevation (m) Entire Elev <500 Elev 500-1000 Elev 1000-1500 Elev 1500-2000 Elev > 2000 

No. of Stations 755 237 219 209 77 13 

CC with the 

 Observed Data 

GPM 0.62 0.66 0.64 0.59 0.52 0.45 

TMPA 0.47 0.51 0.49 0.43 0.38 0.34 

ERAint 0.62 0.63 0.63 0.61 0.57 0.49 

ERA5 0.66 0.68 0.68 0.65 0.61 0.55 

SimpMRG 0.70 0.72 0.72 0.68 0.63 0.56 

MRG_IMERG_reg 0.70 0.72 0.72 0.69 0.63 0.56 

MRG_TMPA_reg 0.67 0.70 0.69 0.65 0.59 0.53 

MRG_ERAint_reg 0.71 0.73 0.72 0.69 0.65 0.58 

MRG_ERA5_reg 0.71 0.73 0.73 0.70 0.65 0.58 
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Table 0.5. Bias and ErrSD for daily individual and merged research-grade products over slope 

classes 

Slope (%) Entire Slope < 5% Slope 5-10% Slope 10-15% Slope 15-20% Slope > 20% 

No. of Stations 755 499 170 56 19 11 

BIAS  

(mm/day) 

GPM 0.28 0.30 0.29 0.08 0.11 0.72 

TMPA 0.17 0.21 0.20 -0.11 -0.28 0.21 

ERAint 0.28 0.27 0.33 0.11 0.29 1.13 

ERA5 0.41 0.33 0.43 0.52 0.97 2.23 

SimpMRG 0.28 0.27 0.30 0.14 0.26 1.06 

MRG_IMERG_reg 0.28 0.30 0.28 0.08 0.10 0.71 

MRG_TMPA_reg 0.17 0.21 0.19 -0.12 -0.30 0.19 

MRG_ERAint_reg 0.28 0.27 0.33 0.11 0.28 1.12 

MRG_ERA5_reg 0.41 0.33 0.43 0.52 0.96 2.22 

ErrSD  

(mm/day) 

GPM 4.59 4.50 4.49 5.21 5.74 4.94 

TMPA 5.69 5.58 5.61 6.38 7.06 6.11 

ERAint 4.17 4.13 4.03 4.73 4.80 4.05 

ERA5 3.94 3.88 3.77 4.55 4.70 4.65 

SimpMRG 3.66 3.61 3.51 4.24 4.47 3.69 

MRG_IMERG_reg 3.56 3.49 3.43 4.20 4.48 3.55 

MRG_TMPA_reg 3.71 3.63 3.58 4.38 4.75 3.82 

MRG_ERAint_reg 3.70 3.66 3.55 4.34 4.42 3.38 

MRG_ERA5_reg 3.58 3.55 3.45 4.18 4.26 3.32 

 

Table 0.6. CC for daily individual and merged research-grade products over slope classes 

Slope (%) Entire Slope < 5% Slope 5-10% Slope 10-15% Slope 15-20% Slope > 20% 

No. of Stations 755 499 170 56 19 11 

CC with the 

Observed Data 

GPM 0.62 0.63 0.62 0.59 0.52 0.49 

TMPA 0.47 0.48 0.46 0.43 0.36 0.30 

ERAint 0.62 0.61 0.63 0.62 0.64 0.62 

ERA5 0.66 0.66 0.68 0.67 0.69 0.63 

SimpMRG 0.70 0.70 0.71 0.69 0.68 0.65 

MRG_IMERG_reg 0.70 0.70 0.71 0.69 0.67 0.63 

MRG_TMPA_reg 0.67 0.67 0.67 0.65 0.60 0.55 

MRG_ERAint_reg 0.71 0.70 0.72 0.70 0.71 0.68 

MRG_ERA5_reg 0.71 0.71 0.72 0.71 0.71 0.68 
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