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ABSTRACT 

 

PREDICTION OF FELT INTENSITY FROM GROUND MOTION 

PARAMETERS USING ARTIFICIAL NEURAL NETWORK METHOD 

 

Öztürk, Seda 

Master of Science, Earthquake Studies 

Supervisor: Prof. Dr. Ayşegül Askan Gündoğan 

Co-Supervisor: Prof. Dr. Elçin Kentel Erdoğan 

 

December 2019, 122 pages 

 

Earthquakes are natural phenomena that cause ground shaking and deformations due 

to the nature of the Earth's surface, which is composed of tectonic plates. The sudden 

release of energy on these tectonic plates results in earthquakes. One of the ways to 

measure ground shakings is the macroseismic (or felt) intensity. There are various 

studies on the correlation between felt intensity and ground motion parameters. Most 

of them involve a linear regression method to find an empirical formula for this 

relation. However, assuming a linear correlation may not the best approach since the 

independent variables affecting intensity values show highly non-linear behaviour. 

Therefore, a more flexible model capturing the complexities of these independent 

variables should be constructed. In this thesis, initially, principal component analysis 

(PCA) is applied to identify main independent variables that affect felt intensity. Based 

on the results of PCA and expert knowledge, various artificial neural network (ANN) 

models are built. Feedforward backpropagation method is used with different 

combinations of input variables to study the best predictions of MMI. Most of the 

ANN models resulted in better MMI estimations than those provided in the literature. 
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ÖZ 

 

YAPAY SİNİR AĞLARI METHODU İLE YER HAREKETİ 

PARAMETRELERİ KULLANILARAK DEPREM ŞİDDETİNİN TAHMİN 

EDİLMESİ 

 

Öztürk, Seda 

Yüksek Lisans, Deprem Çalışmaları 

Tez Danışmanı: Prof. Dr. Ayşegül Askan Gündoğan 

Ortak Tez Danışmanı: Prof. Dr. Elçin Kentel Erdoğan 

 

Aralık 2019, 122 sayfa 

 

Depremler, yer yüzeyinin doğası gereği tektonik plakalardan oluşması sebebiyle yer 

sarsıntısına ve deformasyonlara neden olan doğal olaylardır. Tektonik plakalardaki 

ani enerji salımı sebebiyle depremler meydana gelmektedir. Yer sarsıntısını ölçmenin 

yollarından biri makrosismik (veya hissedilen) şiddettir. Hissedilen şiddet ile yer 

hareketi parametreleri arasındaki korelasyon hakkında değişik çalışmalar vardır. 

Aralarındaki ilişkiyi ampirik denklem formunda bulmak için, çalışmaların çoğu lineer 

regresyon metodu içermektedir. Fakat, lineer korelasyon varsayımı, şiddet değerlerini 

etkileyen bağımsız değişkenlerin yüksek derecede lineer olmayan davranış göstermesi 

sebebiyle en iyi çözüm olmayabilir. Bu yüzden, bağımsız değişkenlerin karmaşıklığını 

yakalayan daha esnek bir model oluşturulmalıdır. Bu tezde, öncelikle, hissedilen 

şiddet değerlerini etkileyen esas bağımsız değişkenler temel bileşen analizi 

uygulanarak belirlenmiştir. Temel bileşen analizi ve uzman görüşleri sonucunda, 

çeşitli yapay sinir ağı  modelleri kurulmuştur. Farklı kombinasyonlardaki girdi 

değişkenleri ile ileri beslemeli bir yapay sinir ağları mimarisi ve geri yayılım öğrenme 

metodu kullanılarak en iyi MMI tahminleri üzerine çalışılmıştır. Geliştirilmiş olan 

ANN modellerinin neredeyse hepsinin MMI tahminleri litratürde sunulmuş olanlardan 

daha iyidir. 
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CHAPTER 1  

 

1. INTRODUCTION 

 

1.1. Introduction 

Earthquakes are natural phenomena that cause ground shaking and deformations due 

to the nature of the Earth's surface, which is composed of tectonic plates. The sudden 

release of energy on these tectonic plates results in earthquakes.  

There are both subjective and objective measurements to determine the level of ground 

shaking during a specific earthquake. Measured (instrumental) peak ground motion 

parameters such as peak ground acceleration or velocity are well-known objective 

measurements of an earthquake. On the other hand, macroseismic (or felt) intensity is 

a subjective measurement to classify the earthquake effects based on both human 

responses and technical observations in the field. Since the ground motion networks 

are expanding all over the world, the use of objective measures of ground motions has 

been on the rise. Interestingly, subjective measures, despite their inherent bias and 

uncertainty, have also regained their historical popularity mostly due to their use in 

shaking maps in terms of felt intensity (e.g., Wald et al. 1999, AFAD-RED). These 

maps are used all over the world to determine the meizoseismal area of an earthquake 

for purposes of immediate disaster response as well as long-term management. 

Among various existing intensity scales, the most common ones are the Modified 

Mercalli Scale (MMI), the European Macroseismic Scale (EMS-98), and the Japanese 

Meteorological Agency Scale (JMA). According to Musson and Cecić (2012), the 

MMI scale goes back to the studies of Wood and Neumann (1931), Sieberg (1932), 

and Richter (1958). The current version mostly belongs to Stover and Coffman (1993). 

The MMI scale ranges between I to X, starting from no damage to significant 

structural damage in the built environment. Appendix A shows the detailed description 
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of the MMI scale. Seismic intensity is significantly dependent on several objective 

variables such as earthquake magnitude, distance from the earthquake source, soil 

type, population intensity, building type as well as subjective factors that influence the 

degree of shaking as reported by humans.  

The shaking maps make use of correlations between MMI and instrumental ground 

motion parameters. Thus, it is essential to mathematically relate these measures of 

ground shaking to each other. Globally, there has been a major interest in the study of 

potential correlations between felt intensity and ground motion parameters. A 

common approach is to use linear regression techniques to find an empirical formula 

for such relations. However, to find the felt intensity value from different objective 

measurements assuming a linear correlation between them is not the best approach 

since the parameters exhibit highly non-linear behavior in nature. Therefore, a more 

flexible model that could consider potential nonlinearities should be constructed. 

Artificial Neural Network Method (ANN) is one of the non-parametric approaches 

which has been used in many fields. Different than the traditional regression 

technique, ANN does not convert the input parameters to output value using a 

parametric (or closed) form, yet it analyses the relations between observed inputs of a 

system and observed outputs in detail and provides a black-box model that relates 

inputs to outputs.  

The main objective of this study is to develop an ANN model that estimates MMI 

using measured or computed ground motion parameters. The prerequisite for 

obtaining this relationship is a dataset comprising of detailed information on previous 

earthquakes with different ground motion parameters, and the corresponding felt 

intensity values at locations close to the recording stations. ANN then is trained using 

these datasets to yield the requested felt intensity value when the selected ground 

motion parameters are used as inputs. 
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1.2. Scope and Outline of the Thesis 

The scope of this thesis is to study the relationships between felt intensity and various 

measured or computed ground motion parameters. For this purpose, initially, PCA is 

performed to study the potential correlations between MMI values and various ground 

motion parameters. Later, ANN Method is used with selected independent parameters 

from PCA analysis together with expert knowledge to estimate felt intensity from 

ground motion parameters.  

In Chapter 2, a literature survey is presented, and previous related studies are 

discussed. Then, previous applications related to PCA and ANN methods are 

summarized.   

In Chapter 3, the details of PCA and ANN methods are described.  

In Chapter 4, the seismological parameters that are used in this study are defined, 

followed by a description of the dataset. Then, applications of PCA and ANN methods 

are presented, and results are discussed.  

Finally, in Chapter 5, summary and conclusions are presented. Recommendations for 

further studies are also listed in order to advance and improve this study in the future.  
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CHAPTER 2  

 

2. LITERATURE REVIEW 

 

2.1. Introduction 

In this study, Principal Component Analysis and Artificial Neural Network methods 

are used in order to study the relations between felt intensity and instrumental ground 

motion parameters. Both methods have been used in various applications as part of 

engineering studies. In the following sections, a literature review of related previous 

studies is presented. In addition, a few past studies on correlations of felt intensity and 

seismic ground motions are explained.  

2.2. Previous Applications of Principal Component Analysis 

Although the finance sector is the field that employs this analysis most frequently, it 

is also used in engineering. Some recent engineering applications of PCA are briefly 

described here. 

Iyengar (1983) analyzed 92 earthquake records from the California region with 

Principal Component Analysis in order to classify and reduce the 12 ground motion 

parameters into two principal components. The ground motion parameters used in that 

study are Richter magnitude and duration of the earthquake, peak ground acceleration, 

peak ground velocity, and peak ground displacement in horizontal direction, time to 

the peak horizontal acceleration, ratio of the peak ground acceleration in two 

horizontal directions, ratio of the vertical peak ground acceleration to the horizontal 

peak ground acceleration, epicentral distance, soil conditions, maximum of the pseudo 

relative velocity response spectra, and rate of the zero crossing of the horizontal 

component. Based on the results of PCA, earthquake records are divided into nine 

regions in a 2-D principal component plane. Moreover, using PCA, the authors 
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developed an approach for classification and rating of strong motion records in order 

to analyze the damaging nature of the corresponding earthquakes. 

In this study, nine different seismic parameters are selected, which can potentially be 

used for estimating the felt intensity values. However, these seismic parameters 

(independent variables) have different effects on the output value. Therefore, in order 

to eliminate the least effective parameters, PCA analysis is used. The methodology 

and application of PCA are described in Chapters 3 and 4, respectively.  

Nyugen et al. (2017) used PCA to study damage detection in a bridge located in 

Luxembourg, where artificial damage is applied, and the corresponding changes were 

monitored for a short-term period. It was observed that ambient temperature could 

affect the degree of the damage. PCA was applied in order to discriminate the 

temperature variations in the bridge from the changes related to artificial damage. 

2.3. Previous Applications of Artificial Neural Network 

There are numerous types of artificial neural network approaches which has been used 

all over the world. In the field of civil engineering, artificial neural network is used 

for solving many problems involving prediction of pile capacity as in Teh et al. (1997); 

liquefaction problems as in Tolon and Ural (2012); classification of soils as in Elarabi 

et al. (2008); design of underground structures as in Ornthammarath et al. (2008); river 

flow prediction as in Imrie et al. (2000) or estimating the earthquake performances of 

buildings as in Arslan et al. (2012). In earthquake engineering, even though there are 

not as many examples yet, below are some of the applications of neural network 

method. 

Günaydın (2008) studied the prediction of Peak Ground Acceleration (PGA) from 

various ground motion parameters using an artificial neural network method. Three 

different ANN methods namely feed-forward backpropagation, radial basis function 

and generalized regression neural network methods, were used. A total of 95 

earthquake records from 15 earthquakes in Turkey in between 1999 and 2001 were 

used in that study. From these 95 records, 72 were used as training and 23 were used 
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for testing of the analysis. The input parameters were moment magnitude, focal depth, 

hypocentral distance, and soil conditions. Among the alternative approaches, the feed-

forward backpropagation method showed the best performance in terms of the highest 

R2 value and the smallest error value. 

Tselentis and Vladutu (2010) compiled a ground motion dataset of 310 records from 

151 earthquakes in Greece in order to find a relationship between MMI and different 

seismic parameters such as PGA, PGV, Arias Intensity, acceleration response 

spectrum, and cumulative absolute velocity using neural networks and genetic 

algorithms. A combination of ANN and genetic algorithm technique is used, and the 

model including PGA, Arias intensity, cumulative absolute velocity, moment 

magnitude, and the focal depth is selected with minimum root mean square error 

(RMS) value. After the selection of the input values, linear regression analysis is made 

to find a formula between MMI and the seismic parameters. The performance of the 

relationship is tested, and the results showed satisfactory results.  

Alvarez et al. (2012) carried out a study with a database of 843 ground motion records 

from 63 earthquakes to predict MMI from PGA, PGV, moment magnitude, and 

epicentral distance. Three different nonlinear statistical algorithms were used which 

are support vector regression, artificial neural network, and genetic programming. In 

addition to the study of nonlinear relationships, a robust linear regression relationship 

was provided to make a fair comparison with the nonlinear algorithms. The results 

showed that the neural network method resulted in closer predictions than the other 

nonlinear methods. Moreover, all the nonlinear techniques yielded better predictions 

than linear regressions.  

Narayanakumar and Raja (2016) worked with Himalayan earthquakes in order to 

predict the earthquake magnitude (Richter scale) with selected seismicity parameters 

as input variables. The feed-forward backpropagation method was used with a three-

layer structure. The results showed that this structure yield better results for the smaller 

events with magnitudes between 3 and 5. 
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In most of the previous studies on predicting felt intensity values, linear functional 

forms are used, yet the seismic parameters have non-linear behavior. Therefore, in this 

thesis, Artifical Neural Network Method is used to study the complex relationships 

between MMI and selected instrumental ground motion parameters. Previous studies 

mentioned in the literature review (Tselentis and Vladutu, 2010 and Alvarez, 2012) 

have some similar research with this study. T6yHowever, in this study, earthquake 

dataset in Turkey is used in the ANN analysis to find a relation between MMI and 

different seismic parameters.  Moreover, additional parameters are included in the 

analysis such as PGD, Ia, epicentral distance, and focal depth. 

2.4. Previous Applications on the Relationship between Felt Intensity and 

Instrumental Ground Motion Parameters 

There are numerous studies all over the world on the correlation of felt intensity with 

seismic parameters. In this section, selected studies from the literature are briefly 

described. 

In their pioneering study, Trifunac and Brady (1975) worked with 187 strong-motion 

accelerograms from 57 earthquakes that occurred in the Western United States. The 

authors used peak ground acceleration, peak ground velocity, and peak ground 

displacement as strong ground motion input to regression analyses in order to find a 

correlation between MMI and these parameters. This study showed that local site 

conditions were effective on intensity values and soil class could be employed in the 

future correlation equations as an independent parameter. 

Soon after, Murphy and O’Brien (1977) made intensity predictions using epicentral 

distance (Repi), local magnitude (ML), the geographical region, and earthquake 

duration as independent variables. The authors suggested that using a filtered PGA 

dataset reduced the uncertainties and gave a more reliable correlation between 

intensity and PGA.  

Further studies suggested that Peak Ground Velocity (PGV) may be a good parameter 

for MMI prediction instead of or in addition to PGA. Wald et al. (1999) studied 8 
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moderate to large earthquakes which occurred in California namely the 1971 San 

Fernando earthquake (Mw=6.7), the 1979 Imperial Valley earthquake (Mw=6.6), the 

1986 North Palm Springs earthquake (Mw=5.9), the 1987 Whittier Narrows 

earthquake (Mw=5.9), the 1989 Loma Prieta earthquake (Mw=6.9), the 1991 Sierra 

Madre earthquake (Mw=5.8), the 1992 Landers earthquake (Mw=7.3) and the 1994 

Northridge earthquake (Mw=6.7). The authors found a correlation between felt 

intensity and PGA or PGV using regression analysis. The results showed that PGA 

correlates well with low MMI intensities, whereas PGV correlated well with higher 

MMI intensities. The findings of Wald et al. (1999) have accelerated the intensity 

prediction studies worldwide. 

Atkinson and Sonley (2000) studied 29 California earthquakes with Mw=4.9-7.4 in 

order to find a correlation between MMI and Pseudo Spectral Acceleration (PSA). The 

results showed that while magnitude affected the relationship between MMI and PSA 

for low frequencies, distance had an effect on the corresponding relationship for higher 

frequencies. 

Boatwright et al. (2001) employed a dataset of 66 records from the 1994 Northridge 

earthquake (Mw=6.7) to find a correlation between intensity and selected ground 

motion parameters such as PGA, PGV, and PSA. Regression analysis results showed 

that the correlation between MMI and PGV and PSV was better than that with PGA. 

Arıoğlu et al. (2001) proposed the first local relationship for Turkey using a database 

consisting of 14 peak ground motions from the 17 August 1999 Kocaeli earthquake to 

find a relationship between MMI and maximum PGA with regression analysis 

technique. This relationship was then compared with that of Wald et al. (1999). It is 

observed that the latter relationship yielded smaller MMI values. This difference most 

probably resulted from the different characteristics of the building stocks in California 

and Turkey. Despite being the first attempt for Turkey, the study has some inherent 

limitations due to the use of a limited dataset. 
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Wu et al. (2004) proposed correlations between intensity, earthquake loss, and several 

ground motion parameters for the 1999 Chi-Chi earthquake with regression analysis. 

For the earthquake loss analysis, PGA and SA (at 1 s period) were the parameters that 

gave a higher correlation. However, for the intensity estimations, PGV and SA (at 1 s 

period) values gave more reliable values within the broad magnitude range. PGA was 

not found to be stable for smaller earthquakes in the intensity estimations. 

Kaka and Atkinson (2004) developed various relationships between MMI and PGV 

as well as PSA using data from 18 earthquakes in North America with standard least 

squares regression technique. In addition to comparisons with previous regional 

studies, this study was verified with the ShakeMap application against the observed 

shaking map of the earthquake.  

Afterward, Atkinson and Kaka (2006) defined a relationship between MMI and PGV 

in the New Madrid region with regression analysis. This study suggested that 

including magnitude and distance as independent variables could decrease the 

standard deviation of the model.  

Atkinson and Kaka (2007) proposed a new equation from moderate earthquakes in the 

central United States (CUS) region applicable to higher intensities. 

Tselentis and Danciu (2008) developed new relationships between MMI and ground 

motion instrumental records such as PGA, PGV, PGD, Ia (Arias Intensity), and 

Cumulative Absolute Velocity (CAV). The dataset covered 89 earthquakes from 

Greece. The authors proposed two sets of predictive equations: The first set involved 

simple equations between MMI and selected ground motion parameters with a 

weighted least-squares regression technique. In the second set, magnitude, epicentral 

distance, and local site conditions were also integrated into the model as independent 

variables. The results showed that, in the first set of equations, PGA gave better results 

than any other ground motion parameters. The second set showed that local site effects 

had a small effect on MMI, while magnitude and epicentral distance had more 

significant effects. 
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Faenza and Michelini (2010) used the orthogonal distance regression technique with 

266 data pairs to find a correlation between MCS Intensity with PGV and PGA. The 

relations were verified with USGS-ShakeMap (via https://earthquake.usgs.gov/) 

application. 

Yaghmaei-Sabegh, Tsang, and Lam (2011) worked on a ground motion-intensity 

database which consists of records from events with Mw>6.0 and Repi<250 km. Their 

results showed that PGV was in good correlation with MMI than were PGA and PSA. 

The model was found to be highly dependent on the region. The results of this study 

were consistent with those of Atkinson and Kaka (2007). 

Bilal and Askan (2014) developed two sets of predictive relationships for MMI with 

a linear least-squares regression method. The first set is between MMI and PGA, as 

well as between MMI and PGV. The database consisted of 92 peak ground motion 

parameters (PGA and PGV)- MMI pairs from 14 earthquakes with 5.7<Mw<7.4. The 

results showed that PGA was a more reliable parameter for MMI than PGV since the 

damaged buildings in Turkey are rigid structures of which the damage is better 

correlated with PGA than PGV. The authors proposed a second set of equations, which 

are more refined equations between MMI and PGA/PGV, Mw, Repi. However, this 

second set of equations is more complex, and they include higher modeling errors. 

Comparisons with the previous studies showed that intensity relationships are 

dependent highly on the geographical region due to the dependence of MMI on both 

regional seismicity and local building styles. The simple set of equations of Bilal and 

Askan (2014) are the most recent MMI prediction equations for Turkish earthquakes. 

As mentioned previously, the MMI values are affected by multiple seismic variables, 

including moment magnitude, PGA, PGV, SA, soil conditions, Arias Intensity, 

significant duration, epicentral distance, and focal depth. In order to better predict the 

felt intensity value, these parameters must be evaluated and should be included as an 

input value if necessary, mathematically. In this thesis, the most effective parameters 

are determined using the PCA method to be included in the prediction equation of felt 

https://earthquake.usgs.gov/
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intensity. Most of the previous studies including Arıoğlu et al. (2001) and Bilal and 

Askan (2014) used linear regression analysis technique which may not fully describe 

the potential nonlinear relationships between MMI and the mentioned seismic 

parameters. Therefore, in this thesis, an artificial neural network technique will be 

used with a larger dataset from Turkish earthquakes to predict MMI from different 

sets of inputs composed of seismic parameters mentioned above.   
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CHAPTER 3  

 

3. METHODOLOGY 

 

3.1. Principal Component Analysis 

The main purpose of PCA is to decrease the dimensionality of a dataset that includes 

interrelated variables while keeping the variation in the dataset as much as possible 

(Jolliffe, 2002). This can be established by transforming the dataset to a smaller set of 

uncorrelated attributes that explain most of the variation. Its primary purpose is to 

decrease a broader set of variables into a smaller set of variables called principal 

components.  

These principal components are, in fact, a linear combination of the original dataset 

predominantly altered according to the variation scores in the orthogonal dimension 

(Bohm and Zech, 2010). With the help of this technique, one could reduce the data 

and visualize it easily. Moreover, identification of the principal components will guide 

input selection for the ANN Model and improve the quality of the ANN results. 

In PCA, the first principal component has the highest variation while the second 

principal component has the second-highest variation in the data. All of the 

components are orthogonal with each other. Although the components account for one 

hundred percent variance as a total, most of the variance is found in the first few 

variables. For this reason, the data can be described by fewer variables, and the rest of 

the components may be accepted as unimportant.  
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3.1.1. Stepwise Explanation of Principal Component Analysis 

The flowchart of PCA is given in Figure 3.1 where the steps are explained in detail. 

 

 

Figure 3.1. Flowchart of Principal Component Analysis 

 

The first step in PCA is to organize the data in a matrix form where columns represent 

the variables, and rows represent the number of samples. Equation 3.1 shows a sample 

matrix composed of 𝑝 columns and 𝑛  rows:  

𝑋 = (

𝑥11 ⋯ 𝑥1𝑝

⋮ ⋱ ⋮
𝑥𝑛1 ⋯ 𝑥𝑛𝑝

) 

(3.1) 

 

where 𝑥𝑖𝑗 is the measured data, 𝑖 is the index for the variable 𝑖 = 1,2 … , 𝑛, and 𝑗 is the 

index for the sample number and 𝑗 = 1,2, … , 𝑝.  

Obtain component factor loadings

Analyze the eigenvalues to find the number of principal components

Obtain eigenvalues and eigenvectors

Convert the correlation matrix to a diagonal matrix with an orthogonal 
transformation

Construct correlation matrix 𝑅 as a 𝑝 × 𝑝 matrix

Transform the data matrix into standardized form

Organize input data in a matrix form with 𝑛 rows representing the data and 𝑝
columns representing the variables



 

 

 

15 

 

The next step is to convert the original matrix to a standardized form so that all the 

data in the matrix is in the same range where mean and variance are zero and one, 

respectively. If the PCA is performed with variables which have different units, it is 

necessary to standardize the data.  

Standardization can be done as follows: 

𝑋𝑠 = (

(𝑥11 − 𝑥1̅̅̅)/𝛿1 ⋯ (𝑥1𝑝 − 𝑥𝑝̅̅ ̅)/𝛿𝑝

⋮ ⋱ ⋮
(𝑥𝑛1 − 𝑥1̅̅̅)/𝛿1 ⋯ (𝑥𝑛𝑝 − 𝑥𝑝̅̅ ̅)/𝛿𝑝

) (3.2) 

where 

𝑥�̅� =
1

𝑛
∑ 𝑥𝑖𝑗

𝑛

𝑖=1

, ∀𝑗 (3.3) 

𝛿𝑗
2 =

1

𝑛 − 1
∑(𝑥𝑖𝑗 − 𝑥�̅�)2

𝑛

𝑖=1

, ∀𝑗 (3.4) 

 

The third step is to obtain the correlation matrix according to: 

𝑅 =
1

𝑛 − 1
𝑋𝑠

𝑇𝑋𝑠 = (

1 ⋯ 𝑟1𝑝

⋮ ⋱ ⋮
𝑟𝑝1 ⋯ 1

) (3.5) 

𝑟𝑗𝑘 =
𝛿𝑗𝑘

𝛿𝑗𝛿𝑘

=
∑ [(𝑥𝑖𝑗 − 𝑥𝑗)(𝑥𝑖𝑘 − 𝑥𝑘)]𝑛

𝑖=1

√∑ (𝑥𝑖𝑗 − 𝑥𝑗)2𝑛
𝑖=1 √∑ (𝑥𝑖𝑘 − 𝑥𝑘)2𝑛

𝑖=1

 ∀𝑖, 𝑗 
(3.6) 

 

where 𝑟𝑗𝑘 is the correlation coefficient between 𝑥𝑗 and 𝑥𝑘. 𝑟𝑗𝑘 = 1 whenever j=k.  

The result of the correlation matrix is a 𝑝 × 𝑝 symmetric positive matrix. The diagonal 

elements are equal to 1 due to the normalization.  
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To represent the correlation matrix with directions and magnitudes (vectors) and also 

to get rid of the redundant elements, the correlation matrix needs to be diagonalized:  

𝑅 → 𝑉𝑇𝑅𝑉 = 𝑑𝑖𝑎𝑔(𝜆1 ⋯ 𝜆𝑝) (3.7) 

 

The uncorrelated feature vectors in the rotated space 𝑦𝑖 = {𝑦𝑖1, ⋯ 𝑦𝑖𝑝} are given as:  

𝑦𝑖 = 𝑉𝑇𝑥𝑖 , 𝑥𝑖 = 𝑉𝑦𝑖, ∀𝑖 (3.8) 

 

The next step is to obtain the corresponding eigenvalue and eigenvectors. In order to 

do that, the following linear equation needs to be solved: 

(𝑅 − 𝜆𝑗𝐼)𝑣𝑗 = 0 for 𝑗 = 1,2, … , 𝑝 (3.9) 

 

where 𝜆𝑗 is the eigenvalue and 𝑣𝑗 is the corresponding eigenvector of the correlation 

matrix, 𝑅. The solution is as follows: 

𝑅𝑣𝑗 = 𝜆𝑗𝑣𝑗  for 𝑗 = 1,2, … , 𝑝 (3.10) 

det(𝑅 − 𝜆𝐼) = 0 (3.11) 

 

where 𝑝 is the number of eigenvalues that are obtained from the solutions of the 

characteristic equation (Equation 3.11). The eigenvectors are calculated from 

Equation 3.9 after inserting the related eigenvalue into the equation. The rotation 

matrix 𝑉 is obtained by taking the eigenvectors 𝑣𝑗 as its columns: 

𝑣𝑘𝑗 = (𝑣𝑗)𝑘 (3.12) 
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Rearranging the eigenvalues from the highest to the lowest gives the principal 

components of the correlation matrix. The first principal component is the first 

eigenvalue, which gives the most variation. The second principal component value is 

the second eigenvalue, and so forth. Considering the principal component values in 

the 2-D axis system, assuming that two of the principal components give the most 

variance in the original dataset, the first principal component lies in the x-axis, 

whereas the second PC lies in the y-axis which is the orthogonal axis.  

The eigenvalues represent the variances of the data concerning the principal axes since 

they are the diagonal elements in the correlation matrix. A small eigenvalue means 

that the projection of the data on the axis has a narrow distribution. Therefore, the 

related component is of a small contribution to the data and may be ignored (Bohm 

and Zech, 2010). Similarly, large eigenvalues mean the related component is of large 

contribution to the data, and they belong to the important principal components.  

After finding the principal components, the most crucial step is to analyze the 

eigenvalues to determine the number of principal components. There are two options 

for selecting the number of principal components. First is by looking at the 

eigenvalues. Table 3.1 shows a sample variance table extracted from the Statistical 

Package for the Social Sciences (SPSS) software indicating the eigenvalues of the 

principal components and their percent variance values. An arbitrary rule of thumb is 

to select the principal components such that their eigenvalues are greater than one 

(Kaiser, 1960) which is known as Kaiser criterion. According to the first column of 

Table 3.1, eigenvalues of the first two components can be selected as the principal 

components since the eigenvalues are greater than 1. 
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Table 3.1. Sample Variance Table 

Total Variance Explained 

Component 

Initial Eigenvalues Extraction Sums of Squared Loadings 

Total 

% of 

Variance 

Cumulative 

% Total 

% of 

Variance 

Cumulative 

% 

PC1 6.402 71.136 71.136 6.402 71.136 71.136 

PC2 1.665 18.502 89.638 1.665 18.502 89.638 

PC3 .732 8.134 97.772    

PC4 .201 2.228 100.000    

PC5 9.238E-16 1.026E-14 100.000    

PC6 3.977E-16 4.419E-15 100.000    

PC7 6.981E-17 7.757E-16 100.000    

PC8 8.253E-18 9.170E-17 100.000    

PC9 -1.939E-16 -2.155E-15 100.000    

Extraction Method: Principal Component Analysis. 

 

Another method for selecting the principal components is to look at the Scree Plot, 

which is a plot of the number of principal components versus the eigenvalues. Figure 

3.2 shows a sample scree plot extracted from the SPSS software. To determine the 

number of principal components in the Scree Plot, the starting point of the elbow shape 

or the largest break between the components is used (Cattell, 1966). According to 

Figure 3.2, the elbow shape starts at Principal Component 2, so; one can select two 

principal components.   
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Figure 3.2. Sample Scree Plot 

 

The next step is to obtain the factors  𝑓𝑖𝑗 by carrying out a standardization of the 

transformed variables 𝑦𝑖𝑗. This is achieved with a division by the square root of the 

eigenvalues 𝜆𝑗 :   

𝑓𝑖𝑗 =
𝑦𝑖𝑗 

√𝜆𝑗

 (3.13) 

 

where 𝑖 is the index for the variable 𝑖 = 1,2 … , 𝑛, and 𝑗 is the index for the sample 

number and 𝑗 = 1,2, … , 𝑝.  

The relation of the factors 𝑓𝑖𝑗 with the original data 𝑥𝑖𝑗 is defined as a linear 

transformation with matrix A in which the elements are called the factor loadings:  

𝑥𝑖 = 𝐴𝑓𝑖 , ∀𝑖  or 𝑋𝑇 = 𝐴𝐹𝑇 (3.14) 
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The idea of the PCA analysis is to reduce the number of factors so that the data can be 

described satisfactorily within tolerable deviations, 𝜀: 

𝑥1 = 𝑎11𝑓1 + ⋯ + 𝑎1𝑓𝑘 + 𝜀1 

𝑥2 = 𝑎21𝑓1 + ⋯ + 𝑎2𝑘𝑓𝑘 + 𝜀2 

𝑥𝑃 = 𝑎𝑝1𝑓1 + ⋯ + 𝑎𝑝𝑘𝑓𝑘 + 𝜀𝑝 

(3.15) 

 

with 𝑘 < 𝑝 and the factors 𝑓1, . . . 𝑓𝑘 are uncorrelated.  

There exist some computer programs which perform the principal component 

analysis, do the numerical calculations, and find the component factors. In this thesis, 

SPSS software is used for PCA.  

 

3.2. Artificial Neural Network Method 

3.2.1. Biological Resemblance and General Information about ANN 

The artificial neural network (ANN) system idea is based on the biological forms of a 

human brain. Inside the human brain, there is a large number (approximately 1011) of 

connected elements called neurons (Hagan, 1996). In order to explain the artificial 

neural networks, one must fully understand the parts of neurons (see Figure 3.3).   
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Figure 3.3. Elements of Neurons Inside the Brain (Hagan,1996) 

 

There are three main elements of the neuron: Dendrites, axon, and cell body. Dendrites 

are receptors that can carry the information to the cell body. They are tree-like 

structures, and they get messages from other cells and transmit them to the cell body. 

The cell body is an ellipse-shaped structure, and it is the central part of the neuron. All 

the information is stored in this area. A nerve cell has a long slender fiber, which is 

called an axon. The objective of an axon is to get the information from the cell body 

and transmit it to the other neurons. Although the neurons in the body are not 

continuous, they can still send the information from one to another through synapses. 

The synapse is a structure located in between the axon of one neuron and the dendrite 

of another neuron, and it can pass the chemical or electrical signals from one neuron 

to the next (Hagan,1996). A schematic presentation of an ANN model, together with 

its main components, are given in Figure 3.4. 
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Figure 3.4. Example of an Artificial Neural Network Scheme (Haykin,2009) 

 

Although the structure of an artificial neural network does not have the complexity of 

a biological neural network, there are yet some similarities between them. The main 

components of the ANN structure are; the nodes, the input layer, the weights, the 

hidden layer, summing junctions, activation functions, and the output layer (Hsu et 

al., 1995). 

In ANN, there exist multiple nodes which imitate the neurons in the biological neural 

network. Nodes are organized in layers and all the nodes in the hidden layer are 

connected to each node in the previous layer. In ANN, information first comes to the 

input layer from the information environment similar to the dendrites in a biological 

neural network (BNN). After the input layer, the information is sent to the hidden layer 

with a weight function similar to the synapses in BNN. Weight function determines 

the strength of the connection and this function decides how much effect the input 

node will have on the output layer.  

The hidden layer is an intermediate layer between the input and output layers. Inside 

the hidden layers, there are hidden neurons. The number of hidden neurons are 

identified for each problem considering the complexity of the problem and the number 

of input neurons. If there are not enough hidden neurons in the neural network, then 

the structure fails to learn the algorithm, and the problem can not be solved. Moreover, 
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if there are a lot of unnecessarily hidden neurons, this will result in the memorization 

of the network rather than learning.  

Summing junctions merges the input values with their corresponding synaptic weights 

by using a linear combination. After that, the activation function comes into play. The 

activation function or transfer function is similar to the cell body in BNN. This 

function aims to gather all weighted inputs and apply generally a nonlinear 

transformation and transfer them to determine the output layer. The output layer which 

is similar to the axon in BNN, takes the processed inputs from the activation function 

and generates the output.  

Similar to biological neural networks, in artificial neural networks, information 

operates in a parallel fashion, which means that all nodes are processing 

simultaneously.  

3.2.2. Classification and Network Types of ANN 

There are many classification techniques in ANN. One way is to classify the network 

according to the number of layers, namely, single layer, bilayer, and multilayer neural 

network. 

The most common taxonomy of the neural networks is according to its architecture. 

In Figure 3.5, the taxonomy of neural network architecture is given. There are two 

groups, mainly feed-forward networks and recurrent or feedback networks (Jain et 

al.,1996).  

In the feed-forward neural network, the information flows in only one direction. That 

means the signal comes to the input layer, and later, this data is processed in the hidden 

layer. Finally, by processing the input values with associated weights of the 

connections, calculated data comes to the output layer. Therefore, in this network, the 

output layer is dependent only on the inputs that receive from the previous layers and 

corresponding weights (ASCE Task Committee, 2000a).  
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In feedback networks, data is travelling in both ways creating a loop that is from input 

layer to output layer or from output layer to the input layer. Therefore, feedback 

networks are dynamic, the values are changing continuously until to the balance point. 

Calculations are done and resultant output values feed the network by going back to 

the analysis (Hagan,1996). In this study, a feedforward networks are developed. 

Hence, this method is described in detail. 

 

 

Figure 3.5. Taxonomy of Neural Network Architecture (Jain et al., 1996) 

 

Figure 3.6 summarizes the feedforward neural network architecture. There are 

multiple layers in the structure. Between the layers, there are connections, and these 

connections have some weights. In the input layer, there is no calculation, but the 

information is transmitted to the hidden layer. In the hidden layers, the computations 

are carried out. After the computations, the information is transferred to the output 

layer. In a feedforward network, although there can be single input and a single output 

layer, there is a possibility that there can be no hidden layer (single layer perceptron) 

(Demuth and Beale, 2003) or multiple hidden layers. 
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Figure 3.6. Feed Forward Network 

 

There are also numerous network types according to the problem. In Table 3.2, 

different categories are shown with different network types and intended usage. Some 

of the networks can be used for only one category, yet some of them can be used for 

multiple types of problems. For example, a feed-forward backpropagation network 

can be used almost for all types of problems, and it is commonly used for the first four 

categories in the Table 3.2. Therefore, it is vital to select a network type suitable for 

the problem. 

 

 

 

 

 

 

 



 

 

 

26 

 

Table 3.2. Network Type Selection (Anderson et. al ,1992) 

Category Networks Intended Usage of Network 

Prediction 

- Back Propagation 

- Delta Bar Delta 

- Extended Delta Bar Delta 

- Directed Random Search 

- Higher-Order Neural 

Networks 

- Self Organizing Map into 

Back 

Propagation 

Prediction of output by using 

input values  

Classification 

- Learning Vector Quantization 

- Counter Propagation 

- Probabilistic Neural Network 

Using input values for the 

classification 

Data Association 

- Hopfield 

- Boltzmann Machine 

- Hamming Network 

- Bidirectional Associative 

Memory 

- Spatiotemporal Pattern 

Recognition 

Similar to the classification but it 

identifies the errors in the data 

Data 

Conceptualization 

- Adaptive Resonance Network 

- Self Organizing Map 

Group the data having 

relationships via analyzing the 

inputs 

Data Filtering - Recirculation Smoothen the input data 

 

According to Table 3.2, estimation of the felt intensity from several ground motion 

parameters is a prediction problem. In other words, prediction of output values (MMI) 

from input values (such as PGA, PGV) is performed in this study. The most used 
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algorithm for prediction is the feed-forward backpropagation method, which will be 

described in the below section.  

3.2.3. Designing the ANN Model 

3.2.3.1. Feed-Forward Back Propagation Algorithm 

In the feed-forward backpropagation algorithm, there is one input layer, one or more 

hidden layers, and one output layer. In each layer, one or more neurons are present. 

Calculation steps of the feed-forward backpropagation are summarized below (ASCE 

Task Committee, 2000): 

ANN architecture: 

▪ Identify the input variables 

▪ Determine the number of neurons in the hidden layer using trial and error 

Feed-Forward: 

▪ Initialize weights using random small numbers 

▪ Feed input values to the nodes of the input layer (𝑋𝑖, 𝑖 = 1,2, . . , 𝑛) 

▪ Propagate values to the hidden layer and then to the output layer using 

weights. This is achieved through repeating the following procedure until 

the termination criteria is satisfied: 

 

 Sum input signals reaching to each hidden neuron 

𝑍𝑖𝑛𝑗 = 𝑣𝑜𝑗 + ∑ 𝑥𝑖 𝑣𝑖𝑗 for 𝑖 = 1,2, . . , 𝑛 (3.16) 

 

where 𝑣𝑖𝑗 is the connection weight between input and hidden nodes, and 

𝑣𝑜𝑗 is the bias value, 𝑖 is the number of input nodes, and 𝑗 is the number 

of hidden nodes. The output signal is computed with the application of 

the activation function, 𝑓 (i.e., hyperbolic tangent, sigmoid, etc.)  

𝑍𝑗 = 𝑓(𝑍𝑖𝑛𝑗) (3.17) 

and this signal is sent to the next layer (e.g., the output layer if there is 

only one hidden layer). 
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 Sum each weighted input signal at the output neuron  

𝑌𝑖𝑛𝑘 = 𝑤𝑜𝑘 + ∑ 𝑧𝑗 𝑤𝑗𝑘 for j= 1,2, . . , 𝑝 (3.18) 

where 𝑤𝑜𝑘 is the bias and 𝑤𝑗𝑘 is the connection weight between hidden 

and output nodes, 𝑘 is the number of output nodes. 

Output signal is computed with the application of the activation 

function, 𝑓2  (i.e., hyperbolic tangent, sigmoid, etc.). 

𝑌𝑘 = 𝑓2(𝑌𝑖𝑛𝑘) (3.19) 

 

Back-propagation of error : 

 Each output neuron generates an output, 𝑦𝑘 related to the input 

training pattern, and the error term is computed using the observed 

target, 𝑡𝑘 (Equation 3.20). Later, with that error term, weight correction 

terms to update 𝑤𝑗𝑘 (see Equation 3.21), and bias correction terms to 

update 𝑤𝑜𝑘 (see Equation 3.22) are computed and 𝛿𝑘 values are sent to 

the nodes in the previous layer. 

 

𝛿𝑘 = (𝑡𝑘 − 𝑦𝑘)𝑓′(𝑌𝑖𝑛𝑘) (3.20) 

∆𝑤𝑗𝑘 = 𝜕𝛿𝑘𝑍𝑗  (3.21) 

∆𝑤𝑜𝑘 = 𝛼𝛿𝑘 (3.22) 

 

where 𝛼 is the learning rate. 

 Each hidden neuron sums the delta values (see Equation 3.23), 

and multiplies with the derivative of the activation functions to 

calculate the error term (Equation 3.24). Later, weight correction 

terms to update 𝑣𝑖𝑗 (see Equation 3.25), and a bias correction terms 

to update 𝑣𝑜𝑗 (see Equation 3.26) are computed from the error term.   
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𝛿𝑖𝑛𝑗 = ∑ 𝛿𝑘 𝑤𝑗𝑘 for 𝑘 = 1,2, . . , 𝑚 (3.23) 

𝛿𝑗 = 𝛿𝑖𝑛𝑗𝑓′(𝑍𝑖𝑛𝑗) (3.24) 

∆𝑣𝑖𝑗 = 𝜕𝛿𝑗𝑥𝑖 (3.25) 

∆𝑣𝑜𝑗 = 𝛼𝛿𝑗 (3.26) 

 

Update weights and biases : 

 Bias and weights are updated for each output neuron  

𝑤𝑗𝑘(𝑢𝑝𝑑𝑎𝑡𝑒𝑑) = 𝑤𝑗𝑘(𝑜𝑙𝑑) + ∆𝑤𝑗𝑘  

for 𝑗 = 0,1, . . , 𝑝 

(3.27) 

 

 Bias and weights are updated for each hidden neuron  

𝑣𝑖𝑗(𝑢𝑝𝑑𝑎𝑡𝑒𝑑) = 𝑣𝑖𝑗(𝑜𝑙𝑑) + ∆𝑣𝑖𝑗  

for 𝑖 = 0,1, . . , 𝑛 

(3.28) 

 

There are various transfer functions in ANN, yet in multilayer networks, generally, 

the functions in Equation 3.29, 3.30 and 3.31 are used. In Figure 3.7, an example 

showing the transfer functions is shown.  

Sigmoid Function: 
𝑓(𝑥) =

1

1 + 𝑒−𝑥
 

(3.29) 

   

      Hyperbolic Tangent 

Sigmoid Function: 
𝑓(𝑥) =

2

1 + 𝑒−2𝑥
− 1 

(3.30) 
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       Linear: 𝑓(𝑥) = 𝑥 (3.31) 

 

 

Figure 3.7. Example of Transfer Functions (Demuth and Beale, 2003) 

 

In ANN analysis, selecting the number of hidden neurons is an essential procedure 

since increasing the hidden neurons a lot may result in overfitting. There are various 

empirical relationships from different studies to determine the number of hidden 

neurons. For instance, Hecht-Nielsen (1987) suggested an empirical formula for the 

upper limit of the number of hidden neurons:.  

 

𝑁ℎ = 2 ∗ 𝑁𝑖 + 1 

 

(3.32) 

 

where 𝑁ℎ  is the number of hidden neurons in the hidden layer, 𝑁𝑖  is the number of 

inputs. 

Also, there is a lower bound for the determination of hidden layers. Lai (1997) 

suggested that a minimum number of hidden neurons is equal to the number of inputs. 

In this study, as a starting point, the lower bound suggested by Lai (1997) is used. 

Then, a trial and error procedure is followed to find the most suitable number of hidden 

nodes. 
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CHAPTER 4  

 

4. CASE STUDY FOR TURKEY: RELATIONSHIP BETWEEN MMI AND 

SELECTED PARAMETERS  

 

4.1. Introduction 

In this Chapter, the relationships between MMI and selected seismic parameters are 

studied for Turkey. Initially, the available data is briefly described followed by the 

definitions of the parameters. Then, results of principal component analysis and 

artificial neural network method are presented. 

4.2. Available Data 

In this study, correlations of MMI with several seismic parameters are studied. Thus, 

available MMI values are paired with the seismic parameters from earthquakes in 

Turkey. Focal Depth, Moment Magnitude (Mw), Epicentral Distance (Repi) 

parameters regarding each earthquake and 30 m-average shear wave velocity (Vs30) 

as well as latitude and longitude values of each station are directly downloaded from 

the Strong Ground Motion Database of Turkey (http://kyhdata.deprem.gov.tr). This is 

a national data portal with data from a total of approximately 750 equipped stations 

all over Turkey.  

The dataset in this thesis is composed of 195 ground motion records from 18 

earthquakes covering a range of moment magnitude values from 5.1 to 7.4 (Figure 

4.1).  

 

 

http://kyhdata.deprem.gov.tr/
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Figure 4.1. Locations and magnitudes of earthquakes and corresponding recording stations used in this thesis 

 

Raw accelograms corresponding to these earthquakes are downloaded from the 

mentioned strong motion data portal. In order to produce different ground motion 

parameters, a series of computations are made. MATLAB software is used for that 

purpose where PGA (cm/s2), PGV(cm/s), PGD (cm), Arias Intensity (cm/s), 

Significant Duration (sec) values are extracted from the code. The code employed in 

this thesis is given in Appendix B. 

Among those 195 ground motion records, 92 are gathered from the study of Bilal and 

Askan (2014). Raw ground motion dataset (PGA, and PGV values) is obtained from 

the database of Prime Ministry Disaster and Emergency Management Presidency  

(http://daphne.deprem.gov.tr). For the calculation of other seismic parameters (PGD, 

Arias Intensity, and Significant Duration), the MATLAB code given in Appendix B 

is used. Intensity dataset of Bilal and Askan (2014) was collected from the 

http://daphne.deprem.gov.tr/
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unpublished bulletins and maps prepared by the Earthquake Research Department of 

AFAD. 

The additional intensity data in this thesis are gathered from the USGS Earthquake 

Hazards Program which is a part of the National Earthquake Hazards Reduction 

Program (NEHRP) (https://earthquake.usgs.gov/). In this website, MMI values are 

computed from online public surveys where public from all over the world summarize 

the effects of shaking in nearby regions. Figure 4.2 shows a sample snapshot of MMI 

values obtained from the website. 

MMI values are assigned to the ground motion stations using the nearest MMI value 

within an uncertainty of ±1 MMI unit. The ground motion stations located within a 

range of approximately 5 km distance are paired with the MMI values.   

 

 

Figure 4.2. Reported MMI values of a sample earthquake (https://earthquake.usgs.gov/) 

 

In this thesis, there are a total of 195 input data patterns which include MMI, and 

seismic parameters such as PGA, PGV, PGD, Arias Intensity, Epicentral Distance, 

Focal Depth, Moment Magnitude, Soil Class, and Significant Duration from 18 

earthquakes. A sample raw dataset composed of 14 input data patterns is demonstrated 

in Table 4.1.  The whole dataset is given in Appendix C. 

https://earthquake.usgs.gov/
https://earthquake.usgs.gov/
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Table 4.1. Sample Dataset Used in This Study 
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Table 4.1 (continued) 
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Figures 4.3 and 4.4 display the distance and magnitude distribution of the MMI 

dataset, respectively. As expected, despite significant scatter, MMI values increase 

with increasing Mw while they decrease with increasing epicentral distances. Next, 

Figure 4.5 and 4.6 show the variation of MMI with respect to PGA and PGV, 

respectively. In the same figures, the linear regressions from previous studies which 

are mentioned in Chapter 2 are also presented. The uneven distribution of PGA and 

PGV values at each MMI level is noticeable. To account for this scatter, in most of 

the past studies, mean PGA and PGV values are assigned to each MMI level. In this 

study, a number of ANN models which accept different combinations of input 

variables are developed. While training these models, values of the input variables are 

directly used. Thus, each ANN model is capable of handling all MMI and peak ground 

motion levels. 

As an additional observation, the differences between previous models indicate the 

need for local relationships between intensity and seismic parameters. Therefore, in 

this study, ANN models for Turkey utilizing Turkish earthquake data are developed. 

Additional parameters such as soil classification, epicentral depth, and focal depth 

parameters are included in the analysis in order to further account the regional effects. 
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Figure 4.3. Distance distribution of MMI values 

 

 

Figure 4.4. Moment Magnitude distribution of MMI values 
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Figure 4.5. Variation of MMI with respect to PGA and comparisons with previous studies 

 

 

Figure 4.6. Variation of MMI with respect to PGA and comparisons with previous studies 



 

 

 

39 

 

4.3. Definition of Parameters 

In this section, the ground motion parameters that are used in this study are explained 

briefly.  

PGA, PGV, PGD: The maximum acceleration, velocity, and displacement of the 

ground shaking at a particular time of earthquake are defined as peak ground 

acceleration, peak ground velocity, and peak ground displacement, respectively. Since 

the shaking occurs in 3 directions, 2 horizontal and 1 vertical PGA, PGV, and PGD 

are reported for each records.  

Accelerogram data is downloaded for all earthquake stations related to each 

earthquake (http://kyhdata.deprem.gov.tr). An example of an accelerograph and a 

snapshot of the raw data is given in Figure 4.7. 

 

 

Figure 4.7. An example of an accelerograph and snapshot of the values (http://kyhdata.deprem.gov.tr) 

 

http://kyhdata.deprem.gov.tr/
http://kyhdata.deprem.gov.tr/
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Arias Intensity: Arias intensity is calculated as the square of the acceleration integrated 

over the total duration of the shaking. Similar to the PGA, 𝐼𝑎 is also used as an 

indicator of intensity of the ground motion.  The corresponding formula is given as 

follows: 

 

𝐼𝑎 =
𝜋

2𝑔
∫ [𝑎(𝑡)]2𝑑𝑡

𝑇

0

 

 

(4.1) 

 

where 𝑎(𝑡)is the acceleration data in time domain, 𝑔 is the gravitational acceleration, 

and 𝑇 is the total duration of the earthquake. 

Significant Duration: Strong motion duration is an important parameter to measure 

the potential damage during an earthquake. This parameter usually depends on local 

site conditions, fault characteristics and the distance from the source to the station. 

There are different measures for the strong motion duration namely, bracket, uniform, 

and significant duration. Significant duration is the time between %5 and %95 of Arias 

Intensity (𝐼𝑎) (Trifunac and Brady,1975). This value is determined from the Husid 

plots which are the time history of Arias Intensity scaled to the total intensity. An 

example computation is given in Figure 4.8.  
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Figure 4.8. Example for computation of Significant Duration (D5-95) determined from Husid Plot 

(Husid,1969) 

 

Focal Depth and Epicentral Distance: The point at which the earthquake occurs is the 

focus or hypocenter of the earthquake. The epicenter is the projection of the focus to 

the Earth’s surface. The focal depth is the distance from the focus to the epicenter 

location. The epicentral distance is the distance from the epicenter point to the station 

point where the earthquake ground motion parameters are gathered (Figure 4.9).  
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Figure 4.9. Visual Description of Epicentral Distance and Focal Depth 

 

Soil Classification (Vs30): Shear wave velocity is an important parameter for 

determining the site class. Vs30 is the average shear wave velocity in the top 30 m of 

the soil. According to the National Earthquake Hazards Program- Uniform Building 

Code (NEHRP- UBC), the soils are divided into some classes according to their Vs30 

values (Table 4.2). In this study, soil classes are converted to categoric numbers in 

order to insert as an input value to ANN analyses. Table 4.2 shows the corresponding 

information.  

Table 4.2. Vs30 Soil Classification and Categoric Definitions used in this thesis (NEHRP-UBC) 

Soil 

Class 

Soil Class In 

Numbers 

Soil Type Vs30 Criteria 

A 5 Hard Rock Vs30 > 1500 m/s 

B 4 Rock 760 m/s < Vs30 ≤1500 

m/s C 3 Very Dense Soil and Soft Rock 360 m/s < Vs30 ≤ 760 

m/s D 2 Stiff Soil 180 m/s <Vs30 ≤ 360 

m/s E 1 Soft Clay Soil Vs30 < 180 m/s 

F Not 

Applicable 

Soils Requiring Additional 

Response 

- 
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4.4. Application of Principal Component Analysis using SPSS Software 

Principal Component Analysis is carried out using the factor analysis tool of the 

Statistical Package for the Social Sciences (SPSS) program. For each MMI value, the 

analysis is performed seperately. Results of the analysis include the following 

calculation steps; 

• Generation of the Correlation matrix  

• Generation of the Total Variance Plot 

• Generation of the Scree Plot 

• Generation of the Component Matrix 

Each calculation step is shown in detail in Appendix D, Appendix E, Appendix F, and 

Appendix G, respectively. For MMI=IX, due to the fact that there are only 2 data, 

PCA analysis is not conducted. 

Arithmetic mean of two components of the ground motion parameters (PGA, PGV, 

PGD, Ia, D5-95) are used in order to take into account the widely distributed data values. 

The input values are; 

• Moment Magnitude (Mw) 

• Focal Depth (FD) 

• Epicentral Distance (Repi) 

• Soil Classification (SC) 

• PGA  

• PGV  

• PGD  

• Arias Intensity (Ia)  

• Significant Duration (D5-95)  

 

Using these input variables, PCA analysis for each MMI level is conducted. The 

component matrices generated are given in Appendix G. 

A summary table of the component matrix is given in Table 4.3 for ease of reference. 
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The component matrix shows the correlations between the input variables and the 

principal component. In the component matrix, the principal components and their 

relations with the variables are shown. By definition, the first principal component has 

the largest variation and the second principal component has the second-largest 

variation. 

 As can be seen in Table 4.3, for most of the MMI levels, PGA which has a high 

correlation with MMI is included in the first principal component. This makes sense 

that this parameter is an important indicator of the seismic-resistant design because of 

the fact that the product of PGA and mass represents the inertial force loading the 

structures (Krinitzsky and Chang, 1988). PGV, PGD and Arias Intensity are identifed 

as other variables that have high correlations with MMI levels. This is also expected 

since these parameters are known to correlate with damage to structures with different 

fundamental periods.  

PGA, PGV, PGD, and Arias intensities will be separately included in the analysis 

since highly correlated parameters do not make a drastic change to the outcome value. 

Moreover, PCA results are also compatible with previous studies. Almost all of the 

regression equations developed in the literature use PGA, PGV, PGD, and Ia, 

seperately. This fact is also confirmed with expert knowledge.  
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Table 4.3. Summary Table for the Component Matrix 

MMI =I 

Components Variables 

PC1 PGV FD Mw PGA D5-95 Ia PGD 

PC2 Repi SC      

MMI =II 

Components Variables 

PC1 PGA Repi Ia D5-95    

PC2 PGV PGD FD SC    

PC3 Mw       

MMI =III 

Components Variables 

PC1 PGV Ia PGA FD    

PC2 Mw Repi D5-95     

PC3 SC PGD      

MMI =IV 

Components Variables 

PC1 Mw D5-95 PGV PGD Repi   

PC2 PGA Ia      

PC3 FD       

PC4 SC       

MMI =V 

Components Variables 

PC1 PGV PGD Ia PGA    

PC2 Repi Mw D5-95     

PC3 FD SC      

MMI =VI 

Components Variables 

PC1 PGA Ia PGV Repi D5-95 PGD  

PC2 FD Mw      

PC3 SC       

MMI =VII 

Components Variables 

PC1 PGV PGD FD D5-95 Repi   

PC2 Ia PGA Mw     

PC3 SC       

MMI =VIII 

Components Variables 

PC1 D5-95 Ia FD SC Mw PGA  

PC2 PGV PGD Repi     

MMI =X 

Components Variables 

PC1 FD SC Mw D5-95 Ia PGD PGV 

PC1 PGA       

PC2 Repi       
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4.5. Application of Artificial Neural Network Analysis using NF Toolbox 

Neural Network Analysis is carried out using MATLAB software which contains 

different types of toolboxes in various engineering fields. Using Neural Network 

Toolbox with Neural Net Fitting Toolbar (nftool), several multilayer models are 

created with one input layer, different numbers of hidden neurons in one hidden layer 

and one output layer. 

A two-layer feed-forward network with sigmoid hidden neurons and output neuron is 

used and the models are trained with the Levenberg-Marquardt backpropagation 

algorithm. MATLAB manual states that 'This algorithm is the fastest backpropagation 

algorithm in the toolbox and is highly recommended as a first-choice supervised 

algorithm, although it does require more memory than other algorithms.' In Figure 

4.10, the sample feed-forward algorithm which is extracted from the MATLAB NF 

Toolbar is given. 

 

 

Figure 4.10. Sample Representation of Feed Forward Algorithm in MATLAB NFTOOL (MatLab, 

M.,2012) 

 

In the first part of neural network analysis, the dataset is trained with different 

combinations of input variables chosen based on the results of the principal component 

analysis and expert knowledge. Table 4.4 shows the description of the models created 

using different input variable sets.  
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Table 4.4. Model Descriptions for ANN 

Model Variables included in the Model 

M1 Mw PGA Repi       

M2 Mw PGA Repi SC      

M3 Mw PGA Repi SC FD     

M4 Mw PGA Repi SC FD D5-95    

M5 Mw PGV Repi       

M6 Mw PGV Repi SC      

M7 Mw PGV Repi SC FD     

M8 Mw PGV Repi SC FD D5-95    

M9 Mw PGD Repi       

M10 Mw PGD Repi SC      

M11 Mw PGD Repi SC FD     

M12 Mw PGD Repi SC FD D5-95    

M13 Mw Ia Repi       

M14 Mw Ia Repi SC      

M15 Mw Ia Repi SC FD     

M16 Mw Ia Repi SC FD D5-95    

 

According to the Neural Network Toolbox, the inputs are randomly divided into three 

sets, namely; training, validation, and testing. In this part of the analysis, a total of 170 

datasets are gathered. Due to the limited number of available data, the distribution of 

data for training, validation, and testing is carried out by allocating most of the data 

for training. In other words, to maintain proper training (i.e., adjustment of the weights 

of the ANN models), most of the data is used in the training process. Therefore, 

training, validation and testing data are selected as 90%, 5% and 5%, respectively 

(Figure 4.11). The trained model is then run with 25 new datasets to compare ANN 

model results with other published models in the literature. 

To evaluate the impact of hidden neurons used in the hidden layer, the number of 

hidden neurons is changed, and different models are built. The number of input 

variables are set as the minimum number of hidden neurons and this number is 

increased progressively. Different number of hidden neurons are used, and the 

program is trained for 10 times for each different number of hidden neurons in order 

to evaluate the effect of training data selection on the model performance. The 
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performance of the model is evaluated using the mean square error (MSE) and the 

Pearson’s Correlation Coefficient (R).  

Mean Square Error 

(𝑀𝑆𝐸): 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑥𝑖)2

𝑛

𝑖=1

 

 

(4.2) 

Pearson’s Correlation 

Coefficient (𝑅): 
𝑅 =

∑ (𝑥𝑖 − �̅�𝑛
𝑖=1 )(𝑦𝑖 − �̅�)

√∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1 √∑ (𝑦𝑖 − �̅�)2𝑛

𝑖=1

 (4.3) 

 

where 𝑛 is the number of data, 𝑥, 𝑦, �̅�, and �̅� depict the observed values, predicted 

values, mean value of observed values, and mean value of predicted values 

respectively.   

A summary table is generated for each model with different numbers of hidden 

neurons (Table 4.5). Figure 4.12 shows an example regression plot for ANN training 

model for M3 model and 5 hidden neurons. The other plots are given in Appendix H. 
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Figure 4.11. Input Percentage Selection in NF Tool 
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Table 4.5. Training performances of various ANN models with different number of hidden neurons  

Model 

# of 

Hidden 

Neurons 

Regression 

Value (R) 

Mean Square Error 

(MSE) 

M1  

(Mw,PGA,Repi) 

3 0.87 0.79 

4 0.86 0.84 

M2 

(Mw,PGA, Repi,SC) 

4 0.86 0.76 

5 0.89 0.60 

M3 

(Mw,PGA, Repi,SC,FD) 

5 0.93 0.40 

6 0.93 0.40 

M4 

(Mw,PGA, Repi,SC,FD, D5-95) 

6 0.92 0.42 

7 0.93 0.39 

M5  

(Mw,PGV, Repi) 

3 0.84 0.98 

4 0.87 0.76 

M6 

(Mw,PGV, Repi,SC) 

4 0.85 0.85 

5 0.86 0.83 

M7 

(Mw,PGV, Repi,SC,FD) 

5 0.87 0.72 

6 0.93 0.45 

M8 

(Mw,PGV, Repi,SC,FD, D5-95) 

6 0.91 0.52 

7 0.93 0.45 

M9  

(Mw,PGD, Repi) 

3 0.83 0.85 

4 0.87 0.69 
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Table 4.5. (continued) 

Model 

# of 

Hidden 

Neurons 

Regression 

Value (R) 

Mean Square Error 

(MSE) 

M10 

(Mw,PGD, Repi,SC) 

4 0.84 0.90 

5 0.84 0.86 

M11 

(Mw,PGD, Repi,SC,FD) 

5 0.87 0.73 

6 0.89 0.62 

M12 

(Mw,PGD,Repi, SC,FD, D5-95) 

6 0.91 0.49 

7 0.92 0.46 

M13 

(Mw,Ia, Repi) 

3 0.84 0.89 

4 0.87 0.76 

M14 

(Mw, Ia, Repi,SC) 

4 0.87 0.69 

5 0.87 0.75 

M15 

(Mw, Ia, Repi,SC,FD) 

5 0.87 0.74 

6 0.91 0.5 

M16 

(Mw, Ia, Repi,SC,FD, D5-95) 

6 0.91 0.55 

7 0.94 0.36 

 



 

 

 

52 

 

 

Figure 4.12. Example Regression Plot for ANN Training Model (M3 Model with 5 hidden neurons) 

 

The models highlighted in bold in Table 4.5 are the models with the highest training 

performance. In the second part of the neural network analysis, these models are tested 

with a new dataset for testing purposes. This new data set is composed of 25 patterns 

which are provided in Table 4.6. The data from the earthquake that occurred on 26th 

of September 2019 at Istanbul is also included in the test data. As a result, observed 

and predicted values for the trials are tabulated and MSE and R2 values are calculated. 

These results are also compared with the previous studies which used linear 

regression. In addition to the restrictions recommended by the authors’ and estimated 

MMI values less than or equal to zero are not used in R2 calculations.  In Table 4.7, 

Table 4.8 and Table 4.9, previous equations proposed for MMI-PGA, MMI-PGV, and 

MMI-Ia are shown.  
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Table 4.6. Testing Dataset 

 

 

Table 4.7. Linear Regression Equations proposed for MMI-PGA relationships 

Linear Relationships proposed for MMI-PGA relationships 

No Name Equation 

1 Wald et al. (1999) MMI= -1.66+3.66 log10 (PGA) log10 (PGA) > 1.82 

2 Tselentis and Danciu (2008) MMI= -0.946+ 3.563 log10 (PGA)  

3 Murphy and O'Brien (1977) MMI= (log10 (PGA)-0.25) /0.25 

4 Trifunac and Brady (1975) MMI= (log10 (PGA)-0.14) /0.30 

5 Bilal and Askan (2014) MMI= 0.132+ 3.884 log10 (PGA)  

6 Arıoğlu et. Al. (2001) MMI= 1.748*ln (PGA) -1.078 

7 Faenza and Michelini (2010) MMI= 1.68+ 2.58 log10 (PGA)  

8 Tselentis and Danciu (2008) 
MMI= 2.355+ 1.384*log10 (PGA)+0.297Mw-0.832* 

log10 (Repi)-0.108*SC 

9 Bilal and Askan (2014) 
MMI=-1.692+ 0.793*log (PGA)+1.653Mw-2.746* 

log(Repi) 

 

 

 

Record 

No.

Earthquake 

ID

Station 

ID
Mw 

PGA

(cm/sec2)

PGV

(cm/sec)
PGD(cm)

Arias 

Intensity

(cm/s)

D_5_95 

(sec)

Focal 

Depth

(km)

ED(Epice

ntral 

Distance)

SOIL 

CLASSIFICATION 

(IN NUMBERS)

MMI MMI_NUMBERS

1 CNK02/19 4104 5.1 0.20 0.02 0.16 0.00 59.275 5.80 322 4 I 1

2 MAR09/19 619 5.8 0.45 0.17 18.22 0.00 111.415 7.97 402 2 I 1

3 DNZ08/19 3509 6.0 1.95 0.34 7.31 0.02 61.37 6.96 149 2 II 2

4 MAR09/19 1710 5.8 1.75 0.21 0.83 0.01 76.82 7.97 141 2 II 2

5 BDR07/17 701 6.5 1.39 0.38 2.08 0.02 200.24 19.44 287 4 III 3

6 CNK02/19 1628 5.1 1.59 0.14 4.76 0.00 35.325 5.80 239 3 III 3

7 MAR09/19 301 5.8 1.36 0.24 0.38 0.01 85.71 7.97 309 2 III 3

8 VAN10/11 4404 7.2 1.00 0.67 7.50 0.01 87.74 19.02 405 4 IV 4

9 VAN10/11 7201 7.2 8.45 2.48 18.53 0.34 38.685 19.02 223 3 IV 4

10 MAR09/19 4125 5.8 4.50 0.65 0.61 0.04 33.03 7.97 144 4 IV 4

11 MAR09/19 1628 5.8 15.40 1.30 4.53 0.22 10.41 7.97 101 3 IV 4

12 MAR09/19 1620 5.8 4.12 0.62 4.41 0.05 38.28 7.97 110 3 IV 4

13 MAR09/19 1627 5.8 11.87 1.50 6.87 0.40 48.02 7.97 103 2 IV 4

14 MAR09/19 7708 5.8 13.67 1.48 1.13 0.46 45.725 7.97 91 2 IV 4

15 ADN6/98 110 6.2 30.80 17.90 186.82 2.29 17.3975 46.6 31 3 V 5

16 IZM11/92 3501 6 34.42 10.90 41.61 3.27 12.8725 17.2 43 2 V 5

17 DZC11/99 5902 7.1 5.91 1.84 19.80 0.10 27.58 10.4 309 3 V 5

18 MAR09/19 1642 5.8 17.88 1.19 0.23 0.26 14.47 7.97 97 3 V 5

19 MAR09/19 1629 5.8 24.18 1.59 1.75 1.01 22.185 7.97 95 2 V 5

20 MAR09/19 1630 5.8 17.53 1.17 1.34 0.43 12.74 7.97 96 2 V 5

21 EZR10/83 2503 6.6 161.78 45.73 107.94 51.27 19.225 16.1 35 2 VI 6

22 ORT6/00 1801 6 62.81 7.80 69.54 10.36 36.632 10 15 2 VI 6

23 BDR07/17 4810 6.5 36.04 1.85 2.24 1.54 16.42 19.44 72 3 VI 6

24 KOC8/99 3403 7.4 103.82 15.73 34.60 15.97 9.3825 17 105 2 VII 7

25 VAN10/11 4902 7.2 50.25 13.34 198.77 8.53 32.2455 19.02 95 2 VII 7
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Table 4.8. Linear Regression Equations proposed for MMI-PGV relationships 

Linear Relationships proposed for MMI-PGV relationships 

No Name Equation 

1 Wald et al. (1999) MMI= 2.35+3.47 log10 (PGV) log10 (PGV) > 0.76 

2 Atkinson and Kaka (2007) 
MMI= 4.37+1.32 log10 (PGV) for log10 (PGV) ≤ 0.48 

MMI= 3.54+3.03 log10 (PGV) log10 (PGV) > 0.48 

3 Tselentis and Danciu (2008) MMI= 3.30+ 3.358 log10 (PGV)  

4 Atkinson and Kaka (2004) MMI= 3.96+ 1.79 log10 (PGV)  

5 Faenza and Michelini (2010) MMI= 5.11+ 2.35 log10 (PGV)  

6 Bilal and Askan (2014) MMI= 2.673+ 4.340 log10 (PGV)  

7 Tselentis and Danciu (2008) 
MMI= 5.582+ 1.397*log10 (PGV)-0.78*log (Repi)-

0.073* SC 

8 Bilal and Askan (2014) 
MMI=0.788+ 0.914*log (PGV)+1.412Mw-2.904* log 

(Repi) 

 

Table 4.9. Linear Regression Equations proposed for MMI-Ia relationships 

Linear Relationships proposed for MMI-Ia relationships 

1 Tselentis and Danciu (2008) MMI= 4.395+ 2.040 log10 (Ia)  

2 Tselentis and Danciu (2008) 

MMI= 5.919+ 0.844*log10 (Ia)-0.997*log10 

(Repi)-0.105* SC 

 

The ANN model results and linear regression results are tabulated in Table 4.10, 4.11, 

4.12, and 4.13 depicting the comparison of MMI-PGA, MMI-PGV, MMI-PGD, and 

MMI-Ia, respectively. In the literature, since PGD regression relationships do not 

exist, only the ANN analysis results are shown for the case of PGD. 
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Table 4.10. Comparison of MMI-PGA relationship with Previous Studies 

 

 

Table 4.10 shows that the best ANN model among those with PGA as the main ground 

motion parameter is found to be M1 with the inclusion of Mw, and Repi into the inputs.  

R2 values for the dataset used in Faenza and Michelini (2010) and Bilal and Askan 

(2014) are higher than other regression equations. The result for M1 model has similar 

performances to the regression equations developed by Faenza and Michelini (2010) 

and Bilal and Askan (2014). The reason for this situation is the fact that the dataset 

used in those regression equations belong to Italy and Turkey, respectively, where the 

building stock is similar.   

Predicted results for Arıoğlu et al. (2001) clearly underestimate the observed values 

by at least one intensity unit. The reason for this may be the utilization of only one 

earthquake in the mentioned study. Equations from other previous studies also 

underestimate the observed values. These studies are performed in the California 

M1 M2 M3 M4

Wald et 

al. (1999)

(1)

Tselentis 

and Danciu 

(2008)

(2)-

univariate

Murphy 

and 

O'Brien 

(1977)

(3)

Trifunac 

and 

Brady 

(1975)

(4)

Bilal and 

Askan 

(2014)

(5)

Arıoğlu 

et. Al. 

(2001)

(6)

Faenza 

and 

Michelini 

(2010)

(7)

Tselentis 

and Danciu 

(2008)

(8)-

multivariate

Bilal and 

Askan 

(2014)

(9)-

multivariate

0.20 1 2 2 2 1 NA NA NA NA NA NA NA NA NA

0.45 1 2 2 3 3 NA NA NA NA NA NA 1 NA NA

1.95 2 4 3 4 3 NA NA NA 1 1 NA 2 NA 2

1.75 2 4 4 4 3 NA NA NA NA 1 NA 2 NA 2

1.39 3 3 4 2 4 NA NA NA NA 1 NA 2 NA 2

1.59 3 3 3 3 3 NA NA NA NA 1 NA 2 NA NA

1.36 3 3 2 3 3 NA NA NA NA 1 NA 2 NA 1

1.00 4 3 4 3 4 NA NA NA NA NA NA 2 2 3

8.45 4 4 5 5 5 NA 2 3 3 4 3 4 4 4

4.50 4 4 3 4 5 NA 1 2 2 3 2 3 3 2

15.40 4 4 5 4 4 NA 3 4 3 5 4 5 4 3

4.12 4 4 4 4 4 NA 1 1 2 3 1 3 3 3

11.87 4 4 5 4 4 NA 3 3 3 4 3 4 4 3

13.67 4 4 5 4 4 NA 3 4 3 5 3 5 4 3

30.80 5 5 7 2 2 4 4 5 4 6 5 6 5 6

34.42 5 5 5 6 5 4 5 5 5 6 5 6 5 5

5.91 5 4 4 4 3 1 2 2 2 3 2 4 3 4

17.88 5 4 5 4 4 3 4 4 4 5 4 5 4 3

24.18 5 4 5 5 4 3 4 5 4 6 4 5 4 4

17.53 5 4 5 4 4 3 3 4 4 5 4 5 4 3

161.78 6 7 6 7 7 6 7 8 7 9 8 7 6 7

62.81 6 5 4 6 6 5 5 6 6 7 6 6 6 6

36.04 6 5 4 4 5 4 5 5 5 6 5 6 5 5

103.82 7 7 7 7 6 6 6 7 6 8 7 7 6 7

50.25 7 6 6 6 4 5 5 6 5 7 6 6 5 6

0.66 0.97 1.32 1.83 3.76 2.55 1.81 2.00 1.68 1.90 0.66 0.89 0.97

0.76 0.63 0.50 0.35 0.48 0.66 0.66 0.74 0.81 0.66 0.80 0.65 0.74R2 VALUES

PGA

(cm/sec2)

OBSERVED_

MMI_NUMB

ERS

PREDICTED MMI NUMBERS

MSE VALUES
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region where the structures are considered to be different and more earthquake-

resistant than the building stock in Turkey. Therefore, MMI values from those 

equations (Wald et al., Trifunac and Brady) are lower for the same peak ground motion 

parameters. 

Table 4.11. Comparison of MMI-PGV relationship with Previous Studies 

 

 

Table 4.11 shows that the best ANN model among those with PGV as the main ground 

motion parameter is found to be M7 which includes Mw, Repi, SC, and FD into the 

inputs. However, the ANN model for the PGA relationship has slightly better 

performance than that of the PGV relationship. This is believed to arise from the fact 

that most damaged structures in Turkey are rigid where the damage is better correlated 

with PGA than PGV.  

M5 M6 M7 M8

Wald et 

al. (1999)

(1)

Atkinson 

and Kaka 

(2007)

(2)

Tselentis 

and Danciu 

(2008)

(3)

univariate

Atkinson 

and Kaka 

(2004)

(4)

Faenza 

and 

Michelini 

(2010)

(5)

Bilal and 

Askan 

(2014)

(6)

univariate

Tselentis 

and Danciu 

(2008)

(7)

multivariate

Bilal and 

Askan 

(2014)

(8)-

multivariate

0.02 1 2 2 2 3 NA 2 NA NA 1 NA NA NA

0.17 1 2 2 2 3 NA 3 NA NA 3 NA NA 1

0.34 2 4 4 4 3 NA 4 NA NA 4 1 NA 3

0.21 2 3 4 4 4 NA 3 NA NA 4 NA NA 2

0.38 3 3 3 3 3 NA 4 NA NA 4 1 NA 2

0.14 3 3 3 3 3 NA 3 NA NA 3 NA NA NA

0.24 3 3 2 2 2 NA 4 NA NA 4 NA NA 1

0.67 4 4 4 3 3 NA 4 3 NA 5 2 3 3

2.48 4 4 5 4 5 NA 5 5 NA 6 4 4 4

0.65 4 3 4 4 4 NA 4 3 NA 5 2 4 3

1.30 4 3 4 4 4 NA 5 4 NA 5 3 4 3

0.62 4 3 4 4 4 NA 4 3 NA 5 2 4 3

1.50 4 3 4 4 5 NA 5 4 NA 6 3 4 3

1.48 4 3 4 4 5 NA 5 4 NA 6 3 4 3

17.90 5 5 5 4 7 7 7 8 6 8 8 6 6

10.90 5 6 5 5 5 6 7 7 6 8 7 6 5

1.84 5 4 4 4 3 3 5 4 4 6 4 4 4

1.19 5 3 4 4 4 3 4 4 4 5 3 4 3

1.59 5 3 4 4 4 3 5 4 4 6 4 4 3

1.17 5 3 4 4 4 3 4 4 4 5 3 4 3

45.73 6 6 9 7 8 8 9 9 7 9 10 7 7

7.80 6 6 5 5 6 5 6 6 6 7 7 6 7

1.85 6 4 5 5 5 3 5 4 4 6 4 4 5

15.73 7 7 6 7 7 7 7 7 6 8 8 6 6

13.34 7 6 6 6 5 6 7 7 6 8 8 6 6

0.85 0.96 0.69 1.39 3.19 1.30 1.83 0.90 2.17 3.44 0.71 1.11

0.69 0.63 0.75 0.50 0.26 0.65 0.51 0.26 0.76 0.61 0.48 0.72

MSE VALUES

R2 VALUES

PGV

(cm/sec)

OBSERVED

_MMI_NU

MBERS

PREDICTED MMI NUMBERS
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R2 values for the dataset used in Faenza and Michelini (2010) is the highest from the 

other regression equations. Also, the multivariate relationship proposed for Bilal and 

Askan (2014) has closer performances than that of the ANN model. The reason for 

this situation is the fact that the dataset of the building stocks is similar.   

Moreover, the multivariate relationship proposed for Bilal and Askan (2014) includes 

PGV, Mw, and Epicentral Distance (Repi). The univariate relationships developed by 

Bilal and Askan (2014) have higher MSE and lower R2 than that of multivariate 

relationship. Therefore, including additional parameters apart from PGV improved the 

performance and have closer performances with that of ANN model.    

On the other hand, some of the previous studies suggested that high levels of seismic 

intensity correlate well with PGV (Atkinson and Kaka, 2007; Tselentis and Danciu, 

2008). The probable reason is the fact that the building stock in these regions has more 

ductile properties than that of Turkey. 

Moreover, similar observation as in PGA indicates that equations from other previous 

studies such as Wald et al. (1999), Atkinson and Kaka (2004), and Atkinson and Kaka 

(2007) also underestimate the observed values. These studies are performed in the 

California region where the structures are considered to be different and more 

earthquake-resistant than the building stock in Turkey. Therefore, MMI values from 

those equations are lower for the same peak ground motion parameters. 
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Table 4.12. Results of MMI-PGD relationship 

 

 

Table 4.12 shows that the best ANN model when PGD is used as the main ground 

motion parameter is found to be M10 with the inclusion of Mw, Repi, and SC into the 

inputs. Inclusion of soil class among the input variables is particularly reasonable for 

softer soils, since long period site effects influence the peak ground displacement 

values significantly. 

In the literature, PGD is not commonly used in felt intensity prediction equations since 

PGD is obtained by integrating twice of the acceleration record. This integration might 

involve numerical errors or differences per each numerical method. Thus, PGD value 

is not always constant and stable. Moreover, PGD corresponds mainly to longer 

structural periods.  

M9 M10 M11 M12

0.16 1 2 2 3 3

18.22 1 3 2 NA NA

7.31 2 3 3 4 3

0.83 2 4 3 3 3

2.08 3 3 3 3 4

4.76 3 3 3 3 3

0.38 3 3 3 2 2

7.50 4 3 4 4 4

18.53 4 4 5 5 6

0.61 4 4 4 4 4

4.53 4 5 4 4 5

4.41 4 4 4 4 4

6.87 4 5 4 4 4

1.13 4 5 4 4 4

186.82 5 6 5 5 2

41.61 5 5 5 5 5

19.80 5 4 4 4 3

0.23 5 5 4 4 5

1.75 5 5 4 4 5

1.34 5 5 4 4 5

107.94 6 6 7 6 6

69.54 6 6 6 6 5

2.24 6 5 5 5 5

34.60 7 7 7 7 7

198.77 7 6 7 7 7

0.69 0.62 0.61 1.12

0.75 0.77 0.73 0.51R2 VALUES

PGD(cm)

OBSERVED_

MMI_

NUMBERS

PREDICTED MMI NUMBERS

MSE VALUES
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However, the ANN model with PGD presented in this study could be used in future 

studies to indirectly predict the potential damage to flexible structures with longer 

periods.   

Table 4.13. Comparison of MMI-Ia relationship with Previous Studies 

 

 

Table 4.13 shows that the best ANN model when Ia is used as the main ground motion 

parameter is selected as M15 with the inclusion of Mw, Repi, SC, and FD into the 

inputs. Utilization of Arias Intensity improved predictions of lower MMI values while 

it did not increase the performance for higher MMI values.  

The multivariate relationship proposed by Tselentis and Danciu (2008) includes Ia, 

Epicentral Distance (Repi) and Soil Class (SC). The ANN model with Ia yielded 

higher performance than Ia-based predictive models by Tselentis and Danciu (2008). 

M13 M14 M15 M16

Tselentis 

and 

Danciu 

(2008)

(1)

univariate

Tselentis 

and Danciu 

(2008)

(2)

multivariate

0.0001 1 2 2 2 3 NA NA

0.0014 1 NA 2 2 2 NA NA

0.02 2 4 4 4 3 NA NA

0.01 2 4 4 4 3 NA NA

0.02 3 3 4 4 5 NA NA

0.005 3 3 3 3 3 NA NA

0.01 3 2 2 3 2 NA NA

0.01 4 3 4 4 4 NA 2

0.34 4 5 5 4 6 3 3

0.04 4 4 4 4 4 1 3

0.22 4 4 5 4 4 3 3

0.05 4 4 4 4 4 2 3

0.40 4 4 5 4 4 4 3

0.46 4 4 5 4 4 4 4

2.29 5 6 6 4 4 5 5

3.27 5 5 5 5 5 5 5

0.10 5 4 4 4 3 2 3

0.26 5 4 5 4 4 3 3

1.01 5 4 5 4 4 4 4

0.43 5 4 5 4 4 4 4

51.27 6 6 7 6 7 8 6

10.36 6 6 5 5 5 6 5

1.54 6 4 5 5 5 5 4

15.97 7 7 6 6 6 7 5

8.53 7 6 6 5 5 6 5

0.79 0.74 0.81 1.05 1.86 2.02

0.65 0.73 0.74 0.59 0.64 0.53

MSE VALUES

R2 VALUES

Arias 

Intensit

y(cm/s)

OBSERVED

_MMI_NU

MBERS

PREDICTED MMI NUMBERS
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Therefore, including additional parameters such as Mw, and FD improved the 

performance. 

However, when the performances of the Ia ANN model are compared with the other 

ANN models which employ PGA, PGV, and PGD, it is observed that the arias 

intensity is not a particularly representative parameter for the prediction of felt 

intensity. 
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CHAPTER 5  

 

5. CONCLUSIONS 

 

5.1. Conclusions 

In this thesis, the non-linear relationships between felt intensity (macroseismic) and 

various sets of ground motion parameters are studied through the ANN method using 

data from recent earthquakes in Turkey. The dataset includes a total of 195 ground 

motion records from 18 earthquakes. In order to select the input parameters of the 

ANN models, a combination of the PCA analysis, literature and expert knowledge is 

used.    

The following main conclusions are derived from this study: 

• When PGA is used as the main ground motion parameter, the inclusion of Mw 

and Repi as the inputs to the ANN model, the best model is obtained. The 

performance of the ANN models developed in this study is closer to those of 

Bilal and Askan (2014), and Faenza and Michelini (2010).  

• When PGV is used as the main ground motion parameter, ANN model 

performances are increased by adding Mw, Repi, SC, and FD. Although 

previous studies suggest that only high levels of seismic intensity correlate 

well with PGV, it is observed in this study that including additional variables 

such as Mw, Repi, SC, and FD to the PGV increase the performance at all 

intensity levels. Similar to the case of PGA, the performance of the ANN 

model is similar to those of Bilal and Askan (2014), and Faenza and Michelini 

(2010). 

• When PGD is used as the main ground motion parameter, ANN model 

performance improves when Mw, Repi, and SC are added to the inputs. In the 

literature, PGD is not commonly used in felt intensity prediction equations 
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since PGD corresponds only to longer structural periods. The ANN model with 

PGD presented in this study could be used in future studies to indirectly predict 

the potential damage to flexible structures with longer periods.   

• When Ia is used as the main ground motion parameter together with Mw, Repi, 

SC, and FD the best ANN model is obtained. The ANN model with Ia yielded 

smaller error than Ia based predictive models by Tselentis and Danciu (2008). 

However, when the performances of the Ia model are compared with the 

others, it is observed that the arias intensity is not a representative parameter 

for the prediction of felt intensity.   

• The ANN models with best performances (M1 for PGA, M7 for PGV, M10 

for PGD, M15 for Ia) showed that the addition of significant duration (D5-95) 

to the input variable set does not improve the prediction performance of felt 

intensity.  

• For ANN models with PGD, and Ia, it is observed that addition of site class 

term yields a drastically better performance when compared to the ANN model 

without this term.  

• Most of the existing intensity prediction models exhibit varying performance 

levels at different intensity ranges. However, since trained for the whole felt 

intensity range, developed ANN models give consistent performances 

throughout the entire felt intensity scale. 

• As a final remark, it is observed that ANN handles the inherent complexity 

due to the nonlinearity of the felt intensity prediction problem.  
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5.2. Future Work and Recommendations 

Although the analysis presented in this study suggest some promising findings that 

can be used in future ShakeMap applications in Turkey, there are indeed some 

constraints due to the fact that this study depends solely on a limited dataset. Following 

are some recommendations and future works that can be made for further 

investigation: 

• For reliable analysis, the dataset must be correct and complete in terms of all 

independent variables. For the future studies, it is recommended to use 

multiple sources to achieve a complete dataset such as online databases, 

catalogues or digitized maps.  

• In this study, various parameters such as PGA, PGV, PGD, Ia, Mw, Repi, 

Vs30, FD, D5-95 are used. In the future studies, additional parameters such as 

building types, population density, duration of earthquake, cumulative 

absolute velocity and any other quantitative seismic parameters could be 

inserted to the dataset for further analysis and investigation. 

• In this study, MMI values are used from both United States Geological Survey-

Did You Feel It? (DYFI) website, and from the previous study of Bilal and 

Askan (2014). As previously mentioned, DYFI values are an online public 

survey that people can summarize the effects of shaking in their regions. In 

Turkey, a similar project could be implemented where people should be 

encouraged to actively participate. Such a data source could provide abundant 

data.   

• In the dataset, some of the intensity maps are taken from the study of Bilal and 

Askan (2014) which are not in a digitized form. Those maps could be digitized 

for more accurate felt intensity values. 

• Most of the recorded data belongs to earthquakes which occurred on strike-

slip faults. Therefore, fault type is not included as a parameter in the analysis 

steps. For the future studies, fault type can be added as an additional input 

variable. 
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• An important point which affects the MMI values in a region is the seismic 

design of the nearby buildings. In other words, in regions where most buildings 

comply with the seismic code, lower MMI values will be assigned. Thus, the 

seismic quality of the buildings may be inserted into the dataset for future 

analyses.  
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APPENDICES 

 

A. Detailed Description of MMI Scale 

Figure A.1 shows the detailed description of MMI scale.  

 

 

Figure A.1. Description of MMI Scale (https://www.usgs.gov/media/images/modified-mercalli-intensity-

scale ) 

 

https://www.usgs.gov/media/images/modified-mercalli-intensity-scale
https://www.usgs.gov/media/images/modified-mercalli-intensity-scale
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B. Matlab Script for Converting Seismic Ground Motion Parameters 

Matlab Script for converting seismic ground motion parameters (Brian Carlton, 2005) 

are given below.  

 

%seismicparam 

% This function calculates seismic parameters from an acceleration time 

% series. Specifically, it calculates velocity vs time, displacement vs  

% time, peak ground acceleration (PGA), peak ground velocity (PGV), peak 

% ground displacement (PGD), Arias intensity vs time, total Arias intensity 

% (Ia), time between when 5% and 75% of Ia has occurred (significant 

% duration D5-75), time between when 5% and 95% of Ia has occurred 

% (significant duration D5-95), mean period (Tm), pseudo-acceleration 

% response spectrum (Sa), pseudo-velocity response spectrum (Sv), 

% displacement response spectrum (Sd), and the Fourier amplitude spectrum  

% (FAS). 

% 

% Written by Brian Carlton 18 March 2015 

% 

% SYNTAX 

% [param]=seismicparam(time,acc,damp,LUF,HUF) 

% 

% MANDATORY INPUTS 

% acc = acceleration vector in g 

% time = time vector in seconds, must be the same length as acc 

% 

% OPTIONAL INPUTS 

% damp = damping ratio for response spectra 

%       default = 0.05 

% LUF = lowest usable frequency of response spectra 

%       default = 0.10 

% HUF = highest usable frequency of response spectra 

%       default = (1/dt)/2 (Nyquist frequency) 

% 

% OUTPUT 

% param = MATLAB structure with the following fields 

% 

% param.vel = velocity time series in cm/s 

% param.disp = displacement time series in cm 

% param.PGA = peak ground acceleration in g 

% param.PGV = peak ground velocity in cm/s 

% param.PGD = peak ground displacement in cm 

% param.aint2 = cumulative fraction of Arias intensity occurring with time 

% param.arias = total arias intensity at end of time series in m/s 
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% param.D_5_75 = time between when 5% and 75% of Ia has occurred (significant 

%       duration D5-75) in seconds 

% param.t_5_75 = time when 5% and 75% of Ia has occurred in seconds 

% param.D_5_95 = time between when 5% and 95% of Ia has occurred (significant 

%       duration D5-95) in seconds 

% param.t_5_95 = time when 5% and 95% of Ia has occurred in seconds 

% param.Tm = mean period in seconds according to Rathje et al (2004) 

% param.Period = periods for response spectra 

% param.Sa = pseudo-acceleration response spectrum in g 

% param.Sv = pseudo-velocity response spectrum in cm/s 

% param.Sd = displacement response spectrum in cm 

% param.FAS = Fourier amplitude spectrum in g 

% param.freq = frequencies for Fourier amplitude spectrum in Hz 

function[param]=seismicparam(time,acc,damp,LUF,HUF) 

acc = acc(:); 

time = time(:); 

g = 9.81; 

A   = acc*g; %convert to m/s^2 

dt = time(2)-time(1); 

% Check what variables are specified by the user, if a variable is not 

% specified, then assign the default value 

if exist('damp','var') == 0; 

    damp = 0.05; 

end 

if exist('LUF','var') == 0; 

    LUF = 0.10; 

end 

if exist('HUF','var') == 0; 

    HUF = (1/dt)/2; 

    if HUF > 100; 

        HUF = 100; 

    end 

end 

% TIME SERIES 

param.vel = cumsum(A)*dt*100;  

param.disp = cumsum(param.vel)*dt;  

% PEAK RESPONSES 

param.PGA = max(abs(A))/g;  

param.PGV = max(abs(param.vel));  

param.PGD = max(abs(param.disp));  

% ARIAS INTENSITY 

aint2 = cumsum(A.^2)*pi*dt/(2*g); 

arias = aint2(end); 

param.aint2 = aint2/arias;  
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param.arias = arias;  

% DURATION 

timed = time(aint2>=0.05*arias & aint2<=0.75*arias); 

param.t_5_75 = [timed(1),timed(end)]; 

param.D_5_75 = timed(end)-timed(1); 

timed = time(aint2>=0.05*arias & aint2<=0.95*arias); 

param.t_5_95 = [timed(1),timed(end)]; 

param.D_5_95 = timed(end)-timed(1); 

% RESPONSE SPECTRA 

[Sa,Sv,Sd,T]=rs(acc,dt,damp,LUF,HUF); 

param.Sd=Sd(:); 

param.Sv=Sv(:); 

param.Sa=Sa(:); 

param.Period = T(:); 

% FOURIER AMPLITUDE SPECTRUM 

[f,U]=FAS(dt,acc); 

param.FAS = U; 

param.freq = f; 

% MEAN PERIOD (Rathje et al, 2004) 

fi = f(f>0.25 & f<20); 

Ci = U(f>0.25 & f<20); 

Tm = ((Ci(:)'.^2)*(1./fi(:)))/(Ci(:)'*Ci(:)); 

param.Tm = Tm; 

function[Sa,Sv,Sd,T]=rs(acc,dt,damp,LUF,HUF) 

Acccms=acc*981;%convert from g to cm/s^2 

if dt > .005; 

     beta = .25; 

else beta = 1/6; 

end 

gamma= 0.5; %parameters for Newmark's method 

%average acceleration method gamma = 0.5, beta = .25, linear acceleration  

%method gamma = 0.5, beta = 1/6.  Average acceleration method is 

%unconditionally stable, but less accurate.  Linear acceleration method is 

%stable for dt/T < 0.551 but more accurate (Chopra, 2011) 

Tlong = LUF^-1; %lowest usable frequency = 1/max period 

Tshort = HUF^-1; %highest usable frequency = 1/min period 

T = 10.^linspace(log10(Tshort),log10(Tlong),150); %150 points 

umax = zeros(1,length(T)); 

for j=1:length(T) 

    wn = 2*pi/T(j); 

    m = 1;%then c and k are in terms of damping and natural period 

    k = wn^2; 

    c = 2*wn*damp; 

    khat = k+gamma/beta/dt*c+m/beta/dt^2; 
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    a = m/beta/dt+gamma*c/beta; 

    b = 1/2/beta*m+dt*(gamma/2/beta-1)*c; 

    u = zeros(length(Acccms),1); %oscillator starting from rest 

    udot = zeros(length(Acccms),1);%pre-allocate for speed 

    uddot = zeros(length(Acccms),1); 

    du = zeros(length(Acccms)-1,1); 

    dudot = zeros(length(Acccms)-1,1); 

    duddot = zeros(length(Acccms)-1,1); 

    for i = 1:length(Acccms)-1 

       du(i) = (Acccms(i+1)-Acccms(i)+a*udot(i)+b*uddot(i))/khat; 

       u(i+1) = u(i)+du(i); 

       dudot(i) = gamma*du(i)/beta/dt-gamma*udot(i)/beta+dt*(1-

gamma/2/beta)*uddot(i); 

       udot(i+1) = udot(i)+dudot(i); 

       duddot(i) = du(i)/beta/dt^2-udot(i)/beta/dt-uddot(i)/2/beta; 

       uddot(i+1) = uddot(i)+duddot(i); 

    end 

    umax(j) = max(abs(u));%max displacement for every period T (cm)  

end 

Sd = umax; %displacement in cm 

Sv=2*pi*Sd./T;%pseudo velocity in cm/s 

Sa=2*pi*Sv./T/981;%pseudo acceleration in g 

function[f,U]=FAS(dt,acc) 

Ny = (1/dt)/2; %Nyquist frequency (highest frequency) 

L  = length(acc); %number of points in acc 

NFFT = 2^nextpow2(L); % Next power of 2 from length of acc 

df = 1/(NFFT*dt); %frequency spacing 

U = abs(fft(acc,NFFT))*dt; %Fourier amplitudes  

U = U(2:Ny/df+1); %single sided FAS 

f = linspace(df,Ny,Ny/df)'; %[small, large, number] frequencies 
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C. Dataset used in the Study 

Table C.1. Dataset Used in the Study 
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Table C.1 Dataset Used in the Study (continued) 
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Table C.1 Dataset Used in the Study (continued) 
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Table C.1 Dataset Used in the Study (continued) 
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Table C.1 Dataset Used in the Study (continued) 
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Table C.1 Dataset Used in the Study (continued) 
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Table C.1 Dataset Used in the Study (continued) 
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Table C.1 Dataset Used in the Study (continued) 
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D. Principal Component Analysis- Correlation Matrix 

Table D.2. Correlation Matrix for MMI=I 

Correlation Matrix 

  Mw PGA PGV PGD Ia D5-95 FD ED SC 

C
o

rrelatio
n

 

Mw 1.000 0.868 0.998 0.876 0.760 -0.811 1.000 -0.341 -0.218 

PGA 0.868 1.000 0.869 0.621 0.947 -0.892 0.868 -0.015 -0.656 

PGV 0.998 0.869 1.000 0.894 0.748 -0.809 0.998 -0.378 -0.236 

PGD 0.876 0.621 0.894 1.000 0.393 -0.530 0.876 -0.752 -0.030 

Ia 0.760 0.947 0.748 0.393 1.000 -0.927 0.760 0.283 -0.634 

D5-95 -0.811 -0.892 -0.809 -0.530 -0.927 1.000 -0.811 -0.095 0.473 

FD 1.000 0.868 0.998 0.876 0.760 -0.811 1.000 -0.341 -0.218 

ED -0.341 -0.015 -0.378 -0.752 0.283 -0.095 -0.341 1.000 -0.263 

SC -0.218 -0.656 -0.236 -0.030 -0.634 0.473 -0.218 -0.263 1.000 

 

Table D.3. Correlation Matrix for MMI=II 

Correlation Matrix 

  Mw PGA PGV PGD Ia D5-95 FD ED SC 

C
o

rrelatio
n

 

Mw 1.000 -0.167 0.260 0.255 -0.054 0.459 0.355 0.470 -0.225 

PGA -0.167 1.000 0.036 0.007 0.978 -0.481 -0.138 -0.593 0.297 

PGV 0.260 0.036 1.000 0.990 0.114 0.114 0.586 -0.122 0.317 

PGD 0.255 0.007 0.990 1.000 0.091 0.159 0.551 -0.101 0.308 

Ia -0.054 0.978 0.114 0.091 1.000 -0.309 -0.073 -0.496 0.316 

D5-95 0.459 -0.481 0.114 0.159 -0.309 1.000 0.247 0.668 -0.075 

FD 0.355 -0.138 0.586 0.551 -0.073 0.247 1.000 0.090 0.303 

ED 0.470 -0.593 -0.122 -0.101 -0.496 0.668 0.090 1.000 -0.307 

SC -0.225 0.297 0.317 0.308 0.316 -0.075 0.303 -0.307 1.000 
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Table D.4. Correlation Matrix for MMI=III 

Correlation Matrix 

  Mw PGA PGV PGD Ia D5-95 FD ED SC 

C
o

rrelatio
n

 

Mw 1.000 0.066 0.267 0.279 0.160 0.414 0.502 0.464 -0.166 

PGA 0.066 1.000 0.918 0.300 0.962 -0.266 0.560 -0.426 0.092 

PGV 0.267 0.918 1.000 0.398 0.964 -0.191 0.563 -0.302 -0.022 

PGD 0.279 0.300 0.398 1.000 0.313 -0.019 0.375 0.075 -0.305 

Ia 0.160 0.962 0.964 0.313 1.000 -0.223 0.543 -0.387 0.059 

D5-95 0.414 -0.266 -0.191 -0.019 -0.223 1.000 0.122 0.434 0.130 

FD 0.502 0.560 0.563 0.375 0.543 0.122 1.000 -0.061 0.015 

ED 0.464 -0.426 -0.302 0.075 -0.387 0.434 -0.061 1.000 0.073 

SC -0.166 0.092 -0.022 -0.305 0.059 0.130 0.015 0.073 1.000 

 

Table D.5. Correlation Matrix for MMI=IV 

Correlation Matrix 

  Mw PGA PGV PGD Ia D5-95 FD ED SC 

C
o

rrelatio
n

 

Mw 1.000 0.190 0.333 0.248 0.232 0.550 0.311 0.593 -0.138 

PGA 0.190 1.000 0.217 -0.030 0.718 -0.299 0.208 -0.381 -0.147 

PGV 0.333 0.217 1.000 0.957 0.180 0.224 0.020 0.127 -0.147 

PGD 0.248 -0.030 0.957 1.000 -0.019 0.270 0.000 0.188 -0.127 

Ia 0.232 0.718 0.180 -0.019 1.000 -0.025 0.069 -0.200 -0.142 

D5-95 0.550 -0.299 0.224 0.270 -0.025 1.000 0.112 0.654 -0.145 

FD 0.311 0.208 0.020 0.000 0.069 0.112 1.000 0.211 0.025 

ED 0.593 -0.381 0.127 0.188 -0.200 0.654 0.211 1.000 -0.013 

SC -0.138 -0.147 -0.147 -0.127 -0.142 -0.145 0.025 -0.013 1.000 
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Table D.6. Correlation Matrix for MMI=V 

Correlation Matrix 

  Mw PGA PGV PGD Ia D5-95 FD ED SC 

C
o

rrelatio
n

 

Mw 1.000 -0.117 0.326 0.365 0.027 0.501 -0.065 0.835 -0.011 

PGA -0.117 1.000 0.570 0.450 0.792 -0.403 0.285 -0.362 -0.340 

PGV 0.326 0.570 1.000 0.924 0.655 0.069 0.393 0.079 -0.306 

PGD 0.365 0.450 0.924 1.000 0.634 0.172 0.138 0.145 -0.248 

Ia 0.027 0.792 0.655 0.634 1.000 -0.176 0.153 -0.122 -0.181 

D5-95 0.501 -0.403 0.069 0.172 -0.176 1.000 0.041 0.651 -0.064 

FD -0.065 0.285 0.393 0.138 0.153 0.041 1.000 -0.174 0.035 

ED 0.835 -0.362 0.079 0.145 -0.122 0.651 -0.174 1.000 0.041 

SC -0.011 -0.340 -0.306 -0.248 -0.181 -0.064 0.035 0.041 1.000 

 

Table D.7. Correlation Matrix for MMI=VI 

Correlation Matrix 

  Mw PGA PGV PGD Ia D5-95 FD ED SC 

C
o

rrelatio
n

 

Mw 1.000 -0.326 -0.242 0.121 -0.266 0.558 0.425 0.652 0.106 

PGA -0.326 1.000 0.900 0.497 0.964 -0.535 0.208 -0.581 -0.248 

PGV -0.242 0.900 1.000 0.683 0.875 -0.313 0.237 -0.383 -0.234 

PGD 0.121 0.497 0.683 1.000 0.473 -0.166 0.176 -0.211 0.070 

Ia -0.266 0.964 0.875 0.473 1.000 -0.413 0.195 -0.499 -0.359 

D5-95 0.558 -0.535 -0.313 -0.166 -0.413 1.000 0.250 0.639 -0.181 

FD 0.425 0.208 0.237 0.176 0.195 0.250 1.000 0.234 -0.002 

ED 0.652 -0.581 -0.383 -0.211 -0.499 0.639 0.234 1.000 -0.092 

SC 0.106 -0.248 -0.234 0.070 -0.359 -0.181 -0.002 -0.092 1.000 
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Table D.8. Correlation Matrix for MMI=VII 

Correlation Matrix 

  Mw PGA PGV PGD Ia D5-95 FD ED SC 

C
o

rrelatio
n

 

Mw 1.000 0.398 -0.456 -0.346 0.557 0.386 0.453 0.025 -0.953 

PGA 0.398 1.000 0.334 0.302 0.805 -0.499 0.166 -0.263 -0.234 

PGV -0.456 0.334 1.000 0.817 0.199 -0.522 -0.652 -0.671 0.403 

PGD -0.346 0.302 0.817 1.000 0.044 -0.483 -0.541 -0.558 0.256 

Ia 0.557 0.805 0.199 0.044 1.000 -0.023 0.199 -0.355 -0.429 

D5-95 0.386 -0.499 -0.522 -0.483 -0.023 1.000 0.333 0.300 -0.448 

FD 0.453 0.166 -0.652 -0.541 0.199 0.333 1.000 0.800 -0.224 

ED 0.025 -0.263 -0.671 -0.558 -0.355 0.300 0.800 1.000 0.145 

SC -0.953 -0.234 0.403 0.256 -0.429 -0.448 -0.224 0.145 1.000 

 

Table D.9. Correlation Matrix for MMI=VIII 

Correlation Matrix 

  Mw PGA PGV PGD Ia D5-95 FD ED SC 

C
o

rrelatio
n

 

Mw 1.000 -0.410 0.404 0.534 -0.631 0.889 -0.914 -0.050 0.597 

PGA -0.410 1.000 0.471 0.274 0.935 -0.553 0.744 -0.863 -0.580 

PGV 0.404 0.471 1.000 0.977 0.129 0.457 -0.082 -0.551 0.407 

PGD 0.534 0.274 0.977 1.000 -0.083 0.629 -0.264 -0.391 0.584 

Ia -0.631 0.935 0.129 -0.083 1.000 -0.807 0.876 -0.742 -0.811 

D5-95 0.889 -0.553 0.457 0.629 -0.807 1.000 -0.893 0.256 0.899 

FD -0.914 0.744 -0.082 -0.264 0.876 -0.893 1.000 -0.345 -0.690 

ED -0.050 -0.863 -0.551 -0.391 -0.742 0.256 -0.345 1.000 0.500 

SC 0.597 -0.580 0.407 0.584 -0.811 0.899 -0.690 0.500 1.000 
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Table D.10. Correlation Matrix for MMI=X 

Correlation Matrix 

  Mw PGA PGV PGD Ia D5-95 FD ED SC 

C
o

rrelatio
n

 

Mw 1.000 -0.837 -0.871 0.991 -0.994 1.000 1.000 0.500 1.000 

PGA -0.837 1.000 0.459 -0.902 0.891 -0.843 -0.837 0.056 -0.837 

PGV -0.871 0.459 1.000 -0.798 0.813 -0.865 -0.871 -0.861 -0.871 

PGD 0.991 -0.902 -0.798 1.000 -1.000 0.993 0.991 0.381 0.991 

Ia -0.994 0.891 0.813 -1.000 1.000 -0.995 -0.994 -0.405 -0.994 

D5-95 1.000 -0.843 -0.865 0.993 -0.995 1.000 1.000 0.491 1.000 

FD 1.000 -0.837 -0.871 0.991 -0.994 1.000 1.000 0.500 1.000 

ED 0.500 0.056 -0.861 0.381 -0.405 0.491 0.500 1.000 0.500 

SC 1.000 -0.837 -0.871 0.991 -0.994 1.000 1.000 0.500 1.000 
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E. Principal Component Analysis-Total Variance Table 

Table E.1. Total Variance Table for MMI=I 

Total Variance Explaineda 

Component 

Initial Eigenvalues Extraction Sums of Squared Loadings 

Total 

% of 

Variance 

Cumulative 

% Total 

% of 

Variance 

Cumulative 

% 

1 6.175 68.608 68.608 6.175 68.608 68.608 

2 2.095 23.272 91.881 2.095 23.272 91.881 

3 0.618 6.865 98.746       

4 0.113 1.254 100.000       

5 3.207E-16 3.563E-15 100.000       

6 1.771E-16 1.968E-15 100.000       

7 -2.611E-17 -2.901E-16 100.000       

8 -2.534E-16 -2.815E-15 100.000       

9 -4.191E-16 -4.657E-15 100.000       

Extraction Method: Principal Component Analysis. 

a. Only cases for which MMI = 1 are used in the analysis phase. 

 

Table E.2. Total Variance Table for MMI=II 

Total Variance Explaineda 

Component 

Initial Eigenvalues Extraction Sums of Squared Loadings 

Total 

% of 

Variance 

Cumulative 

% Total 

% of 

Variance 

Cumulative 

% 

1 3.126 34.733 34.733 3.126 34.733 34.733 

2 2.778 30.864 65.597 2.778 30.864 65.597 

3 1.164 12.928 78.525 1.164 12.928 78.525 

4 0.816 9.063 87.588       

5 0.538 5.978 93.566       

6 0.316 3.510 97.076       

7 0.253 2.815 99.892       

8 0.007 0.076 99.967       

9 0.003 0.033 100.000       

Extraction Method: Principal Component Analysis. 

a. Only cases for which MMI = II are used in the analysis phase. 
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Table E.3. Total Variance Table for MMI=III 

Total Variance Explaineda 

Component 

Initial Eigenvalues 
Extraction Sums of Squared Loadings 

Total 

% of 

Variance 

Cumulative 

% Total 

% of 

Variance 

Cumulative 

% 

1 3.717 41.298 41.298 3.717 41.298 41.298 

2 2.096 23.285 64.583 2.096 23.285 64.583 

3 1.259 13.986 78.569 1.259 13.986 78.569 

4 0.638 7.088 85.658       

5 0.538 5.980 91.638       

6 0.458 5.087 96.724       

7 0.227 2.526 99.250       

8 0.049 0.540 99.790       

9 0.019 0.210 100.000       

Extraction Method: Principal Component Analysis. 

a. Only cases for which MMI = III are used in the analysis phase. 

 

Table E.4. Total Variance Plot for MMI=IV 

Total Variance Explaineda 

Component 

Initial Eigenvalues 
Extraction Sums of Squared Loadings 

Total 

% of 

Variance 

Cumulative 

% Total 

% of 

Variance Cumulative % 

1 2.754 30.595 30.595 2.754 30.595 30.595 

2 2.125 23.606 54.201 2.125 23.606 54.201 

3 1.514 16.819 71.020 1.514 16.819 71.020 

4 1.004 11.155 82.175 1.004 11.155 82.175 

5 0.783 8.697 90.872       

6 0.394 4.373 95.245       

7 0.260 2.887 98.132       

8 0.159 1.762 99.894       

9 0.010 0.106 100.000       

Extraction Method: Principal Component Analysis. 

a. Only cases for which MMI = IV are used in the analysis phase. 
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Table E.5. Total Variance Table for MMI=V 

Total Variance Explaineda 

Component 

Initial Eigenvalues 
Extraction Sums of Squared Loadings 

Total 

% of 

Variance 

Cumulative 

% Total 

% of 

Variance Cumulative % 

1 3.289 36.547 36.547 3.289 36.547 36.547 

2 2.612 29.019 65.566 2.612 29.019 65.566 

3 1.054 11.706 77.272 1.054 11.706 77.272 

4 0.880 9.777 87.049       

5 0.505 5.613 92.662       

6 0.416 4.620 97.282       

7 0.142 1.578 98.860       

8 0.079 0.878 99.738       

9 0.024 0.262 100.000       

Extraction Method: Principal Component Analysis. 

a. Only cases for which MMI = V are used in the analysis phase. 

 

Table E.6. Total Variance Table for MMI=VI 

Total Variance Explaineda 

Component 

Initial Eigenvalues 
Extraction Sums of Squared Loadings 

Total 

% of 

Variance 

Cumulative 

% Total 

% of 

Variance Cumulative % 

1 4.053 45.032 45.032 4.053 45.032 45.032 

2 2.066 22.954 67.987 2.066 22.954 67.987 

3 1.205 13.386 81.373 1.205 13.386 81.373 

4 0.697 7.740 89.113       

5 0.390 4.332 93.446       

6 0.293 3.259 96.705       

7 0.243 2.700 99.405       

8 0.045 0.495 99.901       

9 0.009 0.099 100.000       

Extraction Method: Principal Component Analysis. 

a. Only cases for which MMI = VI are used in the analysis phase. 
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Table E.7. Total Variance Table for MMI=VII 

Total Variance Explaineda 

Component 

Initial Eigenvalues 
Extraction Sums of Squared Loadings 

Total 

% of 

Variance 

Cumulative 

% Total 

% of 

Variance Cumulative % 

1 3.803 42.252 42.252 3.803 42.252 42.252 

2 2.770 30.779 73.030 2.770 30.779 73.030 

3 1.336 14.849 87.879 1.336 14.849 87.879 

4 0.515 5.718 93.597       

5 0.444 4.930 98.527       

6 0.086 0.953 99.480       

7 0.042 0.469 99.949       

8 0.004 0.046 99.995       

9 0.000 0.005 100.000       

Extraction Method: Principal Component Analysis. 

a. Only cases for which MMI = VII are used in the analysis phase. 

 

Table E.8. Total Variance Table for MMI=VIII 

Total Variance Explaineda 

Component 

Initial Eigenvalues 
Extraction Sums of Squared Loadings 

Total 

% of 

Variance 

Cumulative 

% Total 

% of 

Variance 

Cumulative 

% 

1 5.183 57.588 57.588 5.183 57.588 57.588 

2 3.050 33.885 91.473 3.050 33.885 91.473 

3 0.767 8.527 100.000       

4 1.411E-15 1.568E-14 100.000       

5 2.380E-16 2.644E-15 100.000       

6 1.212E-16 1.347E-15 100.000       

7 1.002E-17 1.113E-16 100.000       

8 -4.035E-16 -4.483E-15 100.000       

9 -5.063E-16 -5.626E-15 100.000       

Extraction Method: Principal Component Analysis. 

a. Only cases for which MMI = VIII are used in the analysis phase. 
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Table E.9. Total Variance Table for MMI=X 

Total Variance Explaineda 

Component 

Initial Eigenvalues 
Extraction Sums of Squared Loadings 

Total 

% of 

Variance 

Cumulative 

% Total 

% of 

Variance 

Cumulative 

% 

1 7.683 85.370 85.370 7.683 85.370 85.370 

2 1.317 14.630 100.000 1.317 14.630 100.000 

3 5.475E-16 6.084E-15 100.000       

4 4.865E-16 5.406E-15 100.000       

5 1.020E-16 1.134E-15 100.000       

6 -1.318E-16 -1.464E-15 100.000       

7 -2.146E-16 -2.384E-15 100.000       

8 -3.207E-16 -3.563E-15 100.000       

9 -6.703E-16 -7.447E-15 100.000       

Extraction Method: Principal Component Analysis. 
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F. Principal Component Analysis – Scree Plot 

 

Figure F.1. Scree Plot for MMI=I 

 

 
 

Figure F.2. Scree Plot for MMI=II 
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Figure F.3. Scree Plot for MMI=III 

 

 
 

Figure F.4. Scree Plot for MMI=IV 
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Figure F.5. Scree Plot for MMI=V 

 
 

Figure F.6. Scree Plot for MMI=VI 

 



 

98 

 

 
 

Figure F.7. Scree Plot for MMI=VII 

 
 

Figure F.8. Scree Plot for MMI=VIII 
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Figure F.9. Scree Plot for MMI=X 

 

 





 

101 

 

G. Principal Component Analysis-Component Matrix 

Table G.1. Component Matrix for MMI=I 

Component Matrixa,b 

  

Component 

1 2 

PGV 0.975 0.204 

FD 0.972 0.185 

Mw 0.972 0.185 

PGA 0.953 -0.271 

SD -0.893 0.299 

AI 0.862 -0.497 

PGD 0.805 0.582 

ED -0.234 -0.894 

SC -0.427 0.661 

Extraction Method: Principal Component Analysis. 

a. 2 components extracted. 

b. Only cases for which MMI = 1 are used in the analysis phase. 

 

Table G.2. Component Matrix for MMI=II 

Component Matrixa,b 

  
Component 

1 2 3 

PGA -0.868 0.170 0.451 

ED 0.833 -0.150 0.261 

AI -0.773 0.264 0.549 

SD 0.744 0.160 0.269 

PGV   0.936 -0.127 

PGD   0.922 -0.132 

FD 0.286 0.737   

SC -0.374 0.505 -0.265 

Mw 0.540 0.330 0.638 

Extraction Method: Principal Component Analysis. 

a. 3 components extracted. 

b. Only cases for which MMI = II are used in the analysis phase. 



 

102 

 

Table G.3. Component Matrix for MMI=III 

Component Matrixa,b 

  
Component 

1 2 3 

PGV 0.959     

AI 0.958   0.135 

PGA 0.948 -0.166 0.153 

FD 0.695 0.424 0.115 

Mw 0.250 0.852   

ED -0.390 0.725   

SD -0.237 0.694 0.340 

SC   -0.113 0.903 

PGD 0.473 0.363 -0.511 

Extraction Method: Principal Component Analysis. 

a. 3 components extracted. 

b. Only cases for which MMI = III are used in the analysis phase. 

 

Table G.4. Component Matrix for MMI=IV 

Component Matrixa,b 

  
Component 

1 2 3 4 

Mw 0.776   0.427   

SD 0.739 -0.350 0.206 -0.217 

PGV 0.703 0.386 -0.567 0.171 

PGD 0.698 0.170 -0.660 0.174 

ED 0.693 -0.509 0.302   

PGA   0.917 0.241   

AI   0.801 0.296 -0.114 

FD 0.274 0.117 0.543 0.482 

SC -0.239 -0.248   0.805 

Extraction Method: Principal Component Analysis. 

a. 4 components extracted. 

b. Only cases for which MMI = IV are used in the analysis phase. 
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Table G.5. Component Matrix for MMI=V 

Component Matrixa,b 

  
Component 

1 2 3 

PGV 0.923 0.213 0.126 

PGD 0.850 0.315   

AI 0.849 -0.138   

PGA 0.813 -0.397   

ED   0.930   

Mw 0.180 0.877   

SD   0.802 0.126 

FD 0.361 -0.120 0.811 

SC -0.397   0.587 

Extraction Method: Principal Component Analysis. 

a. 3 components extracted. 

b. Only cases for which MMI =V are used in the analysis phase. 

 

Table G.6. Component Matrix for MMI=VI 

Component Matrixa,b 

  
Component 

1 2 3 

PGA 0.960 0.180   

AI 0.915 0.252 -0.168 

PGV 0.883 0.360   

ED -0.712 0.503 -0.137 

SD -0.637 0.528 -0.254 

PGD 0.558 0.432 0.422 

FD   0.750 0.166 

Mw -0.499 0.708 0.237 

SC -0.199 -0.241 0.910 

Extraction Method: Principal Component Analysis. 

a. 3 components extracted. 

b. Only cases for which MMI =VI are used in the analysis phase. 
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Table G.7. Component Matrix for MMI=VII 

Component Matrixa,b 

  
Component 

1 2 3 

PGV -0.912 0.217   

PGD -0.818 0.199   

FD 0.785   0.557 

SD 0.686 -0.118 -0.510 

ED 0.666 -0.485 0.511 

AI   0.897 0.166 

PGA -0.181 0.839 0.500 

Mw 0.651 0.709 -0.172 

SC -0.558 -0.649 0.445 

Extraction Method: Principal Component Analysis. 

a. 3 components extracted. 

b. Only cases for which MMI =VII are used in the analysis phase. 

 

Table G.8. Component Matrix for MMI=VIII 

Component Matrixa,b 

  
Component 

1 2 

SD 0.961 0.275 

AI -0.938 0.344 

FD -0.934   

SC 0.900 0.143 

Mw 0.818 0.346 

PGA -0.760 0.649 

PGV 0.205 0.957 

PGD 0.405 0.886 

ED 0.492 -0.770 

Extraction Method: Principal Component Analysis. 

a. 2 components extracted. 

b. Only cases for which MMI =VIII are used in the analysis phase. 
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Table G.9. Component Matrix for MMI=X 

Component Matrixa,b 

  
Component 

1 2 

FD 1.000   

SC 1.000   

Mw 1.000   

SD 0.999   

AI -0.991 0.131 

PGD 0.988 -0.156 

PGV -0.882 -0.470 

PGA -0.823 0.568 

ED 0.521 0.854 

Extraction Method: Principal Component Analysis. 

a. 2 components extracted. 

b. Only cases for which MMI =X are used in the analysis phase. 
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H. Regression Plots for ANN Training Models 

Table H.1. Table showing the Regression Plots for ANN_Training Models 

Models 

# of 

Hidden 

Neurons 

Regression Plots 

M1 

3 

 

4 
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Table H.1. Table showing the Regression Plots for ANN_Training Models (continued) 

Models 

# of 

Hidden 

Neurons 

Regression Plots 

M2 

4 

 

5 
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Table H.1. Table showing the Regression Plots for ANN_Training Models (continued) 

Models 

# of 

Hidden 

Neurons 

Regression Plots 

M3 

5 

 

6 
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Table H.1. Table showing the Regression Plots for ANN_Training Models (continued) 

Models 

# of 

Hidden 

Neurons 

Regression Plots 

M4 

6 

 

7 
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Table H.1. Table showing the Regression Plots for ANN_Training Models (continued) 

Models 

# of 

Hidden 

Neurons 

Regression Plots 

M5 

3 

 

4 
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Table H.1. Table showing the Regression Plots for ANN_Training Models (continued) 

Models 

# of 

Hidden 

Neurons 

Regression Plots 

M6 

4 

 

5 
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Table H.1. Table showing the Regression Plots for ANN_Training Models (continued) 

Models 

# of 

Hidden 

Neurons 

Regression Plots 

M7 

5 

 

6 
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Table H.1. Table showing the Regression Plots for ANN_Training Models (continued) 

Models 

# of 

Hidden 

Neurons 

Regression Plots 

M8 

6 

 

7 
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Table H.1. Table showing the Regression Plots for ANN_Training Models (continued) 

Models 

# of 

Hidden 

Neurons 

Regression Plots 

M9 

3 

 

4 
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Table H.1. Table showing the Regression Plots for ANN_Training Models (continued) 

Models 

# of 

Hidden 

Neurons 

Regression Plots 

M10 

4 

 

5 

 
 

  



 

117 

 

Table H.1. Table showing the Regression Plots for ANN_Training Models (continued) 

Models 

# of 

Hidden 

Neurons 

Regression Plots 

M11 

5 

 

6 
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Table H.1. Table showing the Regression Plots for ANN_Training Models (continued) 

Models 

# of 

Hidden 

Neurons 

Regression Plots 

M12 

6 

 

7 
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Table H.1. Table showing the Regression Plots for ANN_Training Models (continued) 

Models 

# of 

Hidden 

Neurons 

Regression Plots 

M13 

3 

 

4 
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Table H.1. Table showing the Regression Plots for ANN_Training Models (continued) 

Models 

# of 

Hidden 

Neurons 

Regression Plots 

M14 

4 

 

5 
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Table H.1. Table showing the Regression Plots for ANN_Training Models (continued) 

Models 

# of 

Hidden 

Neurons 

Regression Plots 

M15 

5 

 

6 
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Table H.1. Table showing the Regression Plots for ANN_Training Models (continued) 

Models 

# of 

Hidden 

Neurons 

Regression Plots 

M16 

6 

 

7 

 
 

 

 


