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ABSTRACT

PREDICTION OF FELT INTENSITY FROM GROUND MOTION
PARAMETERS USING ARTIFICIAL NEURAL NETWORK METHOD

Oztirk, Seda
Master of Science, Earthquake Studies
Supervisor: Prof. Dr. Aysegiil Askan Giindogan
Co-Supervisor: Prof. Dr. El¢in Kentel Erdogan

December 2019, 122 pages

Earthquakes are natural phenomena that cause ground shaking and deformations due
to the nature of the Earth's surface, which is composed of tectonic plates. The sudden
release of energy on these tectonic plates results in earthquakes. One of the ways to
measure ground shakings is the macroseismic (or felt) intensity. There are various
studies on the correlation between felt intensity and ground motion parameters. Most
of them involve a linear regression method to find an empirical formula for this
relation. However, assuming a linear correlation may not the best approach since the
independent variables affecting intensity values show highly non-linear behaviour.
Therefore, a more flexible model capturing the complexities of these independent
variables should be constructed. In this thesis, initially, principal component analysis
(PCA\) is applied to identify main independent variables that affect felt intensity. Based
on the results of PCA and expert knowledge, various artificial neural network (ANN)
models are built. Feedforward backpropagation method is used with different
combinations of input variables to study the best predictions of MMI. Most of the

ANN models resulted in better MMI estimations than those provided in the literature.



Keywords: Modified Mercalli Intensity (MMI), Principal Component Analysis,
Artificial Neural Network Method, Seismic Ground Motion
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Oz

YAPAY SiNiR AGLARI METHODU iLE YER HAREKETI
PARAMETRELERI KULLANILARAK DEPREM SIDDETININ TAHMIN
EDILMESI

Oztirk, Seda
Yuksek Lisans, Deprem Calismalari
Tez Danigmani: Prof. Dr. Aysegiil Askan Giindogan
Ortak Tez Danigsmant: Prof. Dr. El¢in Kentel Erdogan

Aralik 2019, 122 sayfa

Depremler, yer yiizeyinin dogas1 geregi tektonik plakalardan olusmasi sebebiyle yer
sarsintisina ve deformasyonlara neden olan dogal olaylardir. Tektonik plakalardaki
ani enerji salimi sebebiyle depremler meydana gelmektedir. Yer sarsitisini 6lgmenin
yollarindan biri makrosismik (veya hissedilen) siddettir. Hissedilen siddet ile yer
hareketi parametreleri arasindaki korelasyon hakkinda degisik calismalar vardir.
Aralarindaki iliskiyi ampirik denklem formunda bulmak i¢in, ¢alismalarin ¢cogu lineer
regresyon metodu icermektedir. Fakat, lineer korelasyon varsayimi, siddet degerlerini
etkileyen bagimsiz degiskenlerin yliksek derecede lineer olmayan davranis gostermesi
sebebiyle en 1yi ¢oziim olmayabilir. Bu yiizden, bagimsiz degiskenlerin karmasikligini
yakalayan daha esnek bir model olusturulmalidir. Bu tezde, oncelikle, hissedilen
siddet degerlerini etkileyen esas bagimsiz degiskenler temel bilesen analizi
uygulanarak belirlenmistir. Temel bilesen analizi ve uzman goriisleri sonucunda,
cesitli yapay sinir ag1t  modelleri kurulmustur. Farkli kombinasyonlardaki girdi
degiskenleri ile ileri beslemeli bir yapay sinir aglari mimarisi ve geri yayilim 6grenme
metodu kullanilarak en iyi MMI tahminleri iizerine ¢alisilmistir. Gelistirilmis olan
ANN modellerinin neredeyse hepsinin MMI tahminleri litratiirde sunulmus olanlardan

daha iyidir.
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Anahtar Kelimeler: Degistirilmis Mercalli Siddeti (MMI), Temel Bilesen Analizi,
Yapay Sinir Aglar1 Metodu, Sismik Yer Hareketi
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CHAPTER 1

INTRODUCTION

1.1. Introduction

Earthquakes are natural phenomena that cause ground shaking and deformations due
to the nature of the Earth's surface, which is composed of tectonic plates. The sudden

release of energy on these tectonic plates results in earthquakes.

There are both subjective and objective measurements to determine the level of ground
shaking during a specific earthquake. Measured (instrumental) peak ground motion
parameters such as peak ground acceleration or velocity are well-known objective
measurements of an earthquake. On the other hand, macroseismic (or felt) intensity is
a subjective measurement to classify the earthquake effects based on both human
responses and technical observations in the field. Since the ground motion networks
are expanding all over the world, the use of objective measures of ground motions has
been on the rise. Interestingly, subjective measures, despite their inherent bias and
uncertainty, have also regained their historical popularity mostly due to their use in
shaking maps in terms of felt intensity (e.g., Wald et al. 1999, AFAD-RED). These
maps are used all over the world to determine the meizoseismal area of an earthquake

for purposes of immediate disaster response as well as long-term management.

Among various existing intensity scales, the most common ones are the Modified
Mercalli Scale (MMI), the European Macroseismic Scale (EMS-98), and the Japanese
Meteorological Agency Scale (JMA). According to Musson and Ceci¢ (2012), the
MMI scale goes back to the studies of Wood and Neumann (1931), Sieberg (1932),
and Richter (1958). The current version mostly belongs to Stover and Coffman (1993).

The MMI scale ranges between | to X, starting from no damage to significant
structural damage in the built environment. Appendix A shows the detailed description



of the MMI scale. Seismic intensity is significantly dependent on several objective
variables such as earthquake magnitude, distance from the earthquake source, soil
type, population intensity, building type as well as subjective factors that influence the

degree of shaking as reported by humans.

The shaking maps make use of correlations between MMI and instrumental ground
motion parameters. Thus, it is essential to mathematically relate these measures of
ground shaking to each other. Globally, there has been a major interest in the study of
potential correlations between felt intensity and ground motion parameters. A
common approach is to use linear regression techniques to find an empirical formula
for such relations. However, to find the felt intensity value from different objective
measurements assuming a linear correlation between them is not the best approach
since the parameters exhibit highly non-linear behavior in nature. Therefore, a more

flexible model that could consider potential nonlinearities should be constructed.

Anrtificial Neural Network Method (ANN) is one of the non-parametric approaches
which has been used in many fields. Different than the traditional regression
technique, ANN does not convert the input parameters to output value using a
parametric (or closed) form, yet it analyses the relations between observed inputs of a
system and observed outputs in detail and provides a black-box model that relates
inputs to outputs.

The main objective of this study is to develop an ANN model that estimates MMI
using measured or computed ground motion parameters. The prerequisite for
obtaining this relationship is a dataset comprising of detailed information on previous
earthquakes with different ground motion parameters, and the corresponding felt
intensity values at locations close to the recording stations. ANN then is trained using
these datasets to yield the requested felt intensity value when the selected ground

motion parameters are used as inputs.



1.2. Scope and Outline of the Thesis

The scope of this thesis is to study the relationships between felt intensity and various
measured or computed ground motion parameters. For this purpose, initially, PCA is
performed to study the potential correlations between MMI values and various ground
motion parameters. Later, ANN Method is used with selected independent parameters
from PCA analysis together with expert knowledge to estimate felt intensity from

ground motion parameters.

In Chapter 2, a literature survey is presented, and previous related studies are
discussed. Then, previous applications related to PCA and ANN methods are

summarized.
In Chapter 3, the details of PCA and ANN methods are described.

In Chapter 4, the seismological parameters that are used in this study are defined,
followed by a description of the dataset. Then, applications of PCA and ANN methods

are presented, and results are discussed.

Finally, in Chapter 5, summary and conclusions are presented. Recommendations for

further studies are also listed in order to advance and improve this study in the future.






CHAPTER 2

LITERATURE REVIEW

2.1. Introduction

In this study, Principal Component Analysis and Artificial Neural Network methods
are used in order to study the relations between felt intensity and instrumental ground
motion parameters. Both methods have been used in various applications as part of
engineering studies. In the following sections, a literature review of related previous
studies is presented. In addition, a few past studies on correlations of felt intensity and

seismic ground motions are explained.
2.2. Previous Applications of Principal Component Analysis

Although the finance sector is the field that employs this analysis most frequently, it
is also used in engineering. Some recent engineering applications of PCA are briefly

described here.

lyengar (1983) analyzed 92 earthquake records from the California region with
Principal Component Analysis in order to classify and reduce the 12 ground motion
parameters into two principal components. The ground motion parameters used in that
study are Richter magnitude and duration of the earthquake, peak ground acceleration,
peak ground velocity, and peak ground displacement in horizontal direction, time to
the peak horizontal acceleration, ratio of the peak ground acceleration in two
horizontal directions, ratio of the vertical peak ground acceleration to the horizontal
peak ground acceleration, epicentral distance, soil conditions, maximum of the pseudo
relative velocity response spectra, and rate of the zero crossing of the horizontal
component. Based on the results of PCA, earthquake records are divided into nine

regions in a 2-D principal component plane. Moreover, using PCA, the authors



developed an approach for classification and rating of strong motion records in order

to analyze the damaging nature of the corresponding earthquakes.

In this study, nine different seismic parameters are selected, which can potentially be
used for estimating the felt intensity values. However, these seismic parameters
(independent variables) have different effects on the output value. Therefore, in order
to eliminate the least effective parameters, PCA analysis is used. The methodology

and application of PCA are described in Chapters 3 and 4, respectively.

Nyugen et al. (2017) used PCA to study damage detection in a bridge located in
Luxembourg, where artificial damage is applied, and the corresponding changes were
monitored for a short-term period. It was observed that ambient temperature could
affect the degree of the damage. PCA was applied in order to discriminate the

temperature variations in the bridge from the changes related to artificial damage.
2.3. Previous Applications of Artificial Neural Network

There are numerous types of artificial neural network approaches which has been used
all over the world. In the field of civil engineering, artificial neural network is used
for solving many problems involving prediction of pile capacity as in Teh et al. (1997);
liquefaction problems as in Tolon and Ural (2012); classification of soils as in Elarabi
et al. (2008); design of underground structures as in Ornthammarath et al. (2008); river
flow prediction as in Imrie et al. (2000) or estimating the earthquake performances of
buildings as in Arslan et al. (2012). In earthquake engineering, even though there are
not as many examples yet, below are some of the applications of neural network

method.

Gilinaydin (2008) studied the prediction of Peak Ground Acceleration (PGA) from
various ground motion parameters using an artificial neural network method. Three
different ANN methods namely feed-forward backpropagation, radial basis function
and generalized regression neural network methods, were used. A total of 95
earthquake records from 15 earthquakes in Turkey in between 1999 and 2001 were

used in that study. From these 95 records, 72 were used as training and 23 were used



for testing of the analysis. The input parameters were moment magnitude, focal depth,
hypocentral distance, and soil conditions. Among the alternative approaches, the feed-
forward backpropagation method showed the best performance in terms of the highest

R? value and the smallest error value.

Tselentis and Vladutu (2010) compiled a ground motion dataset of 310 records from
151 earthquakes in Greece in order to find a relationship between MMI and different
seismic parameters such as PGA, PGV, Arias Intensity, acceleration response
spectrum, and cumulative absolute velocity using neural networks and genetic
algorithms. A combination of ANN and genetic algorithm technique is used, and the
model including PGA, Arias intensity, cumulative absolute velocity, moment
magnitude, and the focal depth is selected with minimum root mean square error
(RMS) value. After the selection of the input values, linear regression analysis is made
to find a formula between MMI and the seismic parameters. The performance of the

relationship is tested, and the results showed satisfactory results.

Alvarez et al. (2012) carried out a study with a database of 843 ground motion records
from 63 earthquakes to predict MMI from PGA, PGV, moment magnitude, and
epicentral distance. Three different nonlinear statistical algorithms were used which
are support vector regression, artificial neural network, and genetic programming. In
addition to the study of nonlinear relationships, a robust linear regression relationship
was provided to make a fair comparison with the nonlinear algorithms. The results
showed that the neural network method resulted in closer predictions than the other
nonlinear methods. Moreover, all the nonlinear techniques yielded better predictions

than linear regressions.

Narayanakumar and Raja (2016) worked with Himalayan earthquakes in order to
predict the earthquake magnitude (Richter scale) with selected seismicity parameters
as input variables. The feed-forward backpropagation method was used with a three-
layer structure. The results showed that this structure yield better results for the smaller

events with magnitudes between 3 and 5.



In most of the previous studies on predicting felt intensity values, linear functional
forms are used, yet the seismic parameters have non-linear behavior. Therefore, in this
thesis, Artifical Neural Network Method is used to study the complex relationships
between MMI and selected instrumental ground motion parameters. Previous studies
mentioned in the literature review (Tselentis and Vladutu, 2010 and Alvarez, 2012)
have some similar research with this study. T6yHowever, in this study, earthquake
dataset in Turkey is used in the ANN analysis to find a relation between MMI and
different seismic parameters. Moreover, additional parameters are included in the

analysis such as PGD, la, epicentral distance, and focal depth.

2.4. Previous Applications on the Relationship between Felt Intensity and

Instrumental Ground Motion Parameters

There are numerous studies all over the world on the correlation of felt intensity with
seismic parameters. In this section, selected studies from the literature are briefly

described.

In their pioneering study, Trifunac and Brady (1975) worked with 187 strong-motion
accelerograms from 57 earthquakes that occurred in the Western United States. The
authors used peak ground acceleration, peak ground velocity, and peak ground
displacement as strong ground motion input to regression analyses in order to find a
correlation between MMI and these parameters. This study showed that local site
conditions were effective on intensity values and soil class could be employed in the

future correlation equations as an independent parameter.

Soon after, Murphy and O’Brien (1977) made intensity predictions using epicentral
distance (Repi), local magnitude (M.), the geographical region, and earthquake
duration as independent variables. The authors suggested that using a filtered PGA
dataset reduced the uncertainties and gave a more reliable correlation between
intensity and PGA.

Further studies suggested that Peak Ground Velocity (PGV) may be a good parameter
for MMI prediction instead of or in addition to PGA. Wald et al. (1999) studied 8



moderate to large earthquakes which occurred in California namely the 1971 San
Fernando earthquake (Mw=6.7), the 1979 Imperial Valley earthquake (Mw=6.6), the
1986 North Palm Springs earthquake (Mw=5.9), the 1987 Whittier Narrows
earthquake (Mw=5.9), the 1989 Loma Prieta earthquake (Mw=6.9), the 1991 Sierra
Madre earthquake (Mw=>5.8), the 1992 Landers earthquake (Mw=7.3) and the 1994
Northridge earthquake (Mw=6.7). The authors found a correlation between felt
intensity and PGA or PGV using regression analysis. The results showed that PGA
correlates well with low MMI intensities, whereas PGV correlated well with higher
MMI intensities. The findings of Wald et al. (1999) have accelerated the intensity
prediction studies worldwide.

Atkinson and Sonley (2000) studied 29 California earthquakes with Mw=4.9-7.4 in
order to find a correlation between MMI and Pseudo Spectral Acceleration (PSA). The
results showed that while magnitude affected the relationship between MMI and PSA
for low frequencies, distance had an effect on the corresponding relationship for higher

frequencies.

Boatwright et al. (2001) employed a dataset of 66 records from the 1994 Northridge
earthquake (Mw=6.7) to find a correlation between intensity and selected ground
motion parameters such as PGA, PGV, and PSA. Regression analysis results showed
that the correlation between MMI and PGV and PSV was better than that with PGA.

Arioglu et al. (2001) proposed the first local relationship for Turkey using a database
consisting of 14 peak ground motions from the 17 August 1999 Kocaeli earthquake to
find a relationship between MMI and maximum PGA with regression analysis
technique. This relationship was then compared with that of Wald et al. (1999). It is
observed that the latter relationship yielded smaller MM values. This difference most
probably resulted from the different characteristics of the building stocks in California
and Turkey. Despite being the first attempt for Turkey, the study has some inherent

limitations due to the use of a limited dataset.



Wu et al. (2004) proposed correlations between intensity, earthquake loss, and several
ground motion parameters for the 1999 Chi-Chi earthquake with regression analysis.
For the earthquake loss analysis, PGA and SA (at 1 s period) were the parameters that
gave a higher correlation. However, for the intensity estimations, PGV and SA (at1s
period) values gave more reliable values within the broad magnitude range. PGA was

not found to be stable for smaller earthquakes in the intensity estimations.

Kaka and Atkinson (2004) developed various relationships between MMI and PGV
as well as PSA using data from 18 earthquakes in North America with standard least
squares regression technique. In addition to comparisons with previous regional
studies, this study was verified with the ShakeMap application against the observed

shaking map of the earthquake.

Afterward, Atkinson and Kaka (2006) defined a relationship between MMI and PGV
in the New Madrid region with regression analysis. This study suggested that
including magnitude and distance as independent variables could decrease the
standard deviation of the model.

Atkinson and Kaka (2007) proposed a new equation from moderate earthquakes in the

central United States (CUS) region applicable to higher intensities.

Tselentis and Danciu (2008) developed new relationships between MMI and ground
motion instrumental records such as PGA, PGV, PGD, la (Arias Intensity), and
Cumulative Absolute Velocity (CAV). The dataset covered 89 earthquakes from
Greece. The authors proposed two sets of predictive equations: The first set involved
simple equations between MMI and selected ground motion parameters with a
weighted least-squares regression technique. In the second set, magnitude, epicentral
distance, and local site conditions were also integrated into the model as independent
variables. The results showed that, in the first set of equations, PGA gave better results
than any other ground motion parameters. The second set showed that local site effects
had a small effect on MMI, while magnitude and epicentral distance had more

significant effects.
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Faenza and Michelini (2010) used the orthogonal distance regression technique with
266 data pairs to find a correlation between MCS Intensity with PGV and PGA. The
relations were verified with USGS-ShakeMap (via https://earthquake.usgs.gov/)

application.

Yaghmaei-Sabegh, Tsang, and Lam (2011) worked on a ground motion-intensity
database which consists of records from events with Mw>6.0 and Repi<250 km. Their
results showed that PGV was in good correlation with MMI than were PGA and PSA.
The model was found to be highly dependent on the region. The results of this study

were consistent with those of Atkinson and Kaka (2007).

Bilal and Askan (2014) developed two sets of predictive relationships for MMI with
a linear least-squares regression method. The first set is between MMI and PGA, as
well as between MMI and PGV. The database consisted of 92 peak ground motion
parameters (PGA and PGV)- MMI pairs from 14 earthquakes with 5.7<Mw<7.4. The
results showed that PGA was a more reliable parameter for MMI than PGV since the
damaged buildings in Turkey are rigid structures of which the damage is better
correlated with PGA than PGV. The authors proposed a second set of equations, which
are more refined equations between MMI and PGA/PGV, Mw, Repi. However, this
second set of equations is more complex, and they include higher modeling errors.
Comparisons with the previous studies showed that intensity relationships are
dependent highly on the geographical region due to the dependence of MMI on both
regional seismicity and local building styles. The simple set of equations of Bilal and

Askan (2014) are the most recent MMI prediction equations for Turkish earthquakes.

As mentioned previously, the MMI values are affected by multiple seismic variables,
including moment magnitude, PGA, PGV, SA, soil conditions, Arias Intensity,
significant duration, epicentral distance, and focal depth. In order to better predict the
felt intensity value, these parameters must be evaluated and should be included as an
input value if necessary, mathematically. In this thesis, the most effective parameters

are determined using the PCA method to be included in the prediction equation of felt
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intensity. Most of the previous studies including Arioglu et al. (2001) and Bilal and
Askan (2014) used linear regression analysis technique which may not fully describe
the potential nonlinear relationships between MMI and the mentioned seismic
parameters. Therefore, in this thesis, an artificial neural network technique will be
used with a larger dataset from Turkish earthquakes to predict MMI from different

sets of inputs composed of seismic parameters mentioned above.
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CHAPTER 3

METHODOLOGY

3.1. Principal Component Analysis

The main purpose of PCA is to decrease the dimensionality of a dataset that includes
interrelated variables while keeping the variation in the dataset as much as possible
(Jolliffe, 2002). This can be established by transforming the dataset to a smaller set of
uncorrelated attributes that explain most of the variation. Its primary purpose is to
decrease a broader set of variables into a smaller set of variables called principal

components.

These principal components are, in fact, a linear combination of the original dataset
predominantly altered according to the variation scores in the orthogonal dimension
(Bohm and Zech, 2010). With the help of this technique, one could reduce the data
and visualize it easily. Moreover, identification of the principal components will guide

input selection for the ANN Model and improve the quality of the ANN results.

In PCA, the first principal component has the highest variation while the second
principal component has the second-highest variation in the data. All of the
components are orthogonal with each other. Although the components account for one
hundred percent variance as a total, most of the variance is found in the first few
variables. For this reason, the data can be described by fewer variables, and the rest of

the components may be accepted as unimportant.
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3.1.1. Stepwise Explanation of Principal Component Analysis

The flowchart of PCA is given in Figure 3.1 where the steps are explained in detail.

Organize input data in a matrix form with n rows representing the data and p

columns representing the variables

Transform the data matrix into standardized form

\Z

Construct correlation matrix R as a p X p matrix

A4

Convert the correlation matrix to a diagonal matrix with an orthogonal
transformation

\Z

Obtain eigenvalues and eigenvectors

\Z

Analyze the eigenvalues to find the number of principal components

\Z
Obtain component factor loadings

Figure 3.1. Flowchart of Principal Component Analysis

The first step in PCA is to organize the data in a matrix form where columns represent
the variables, and rows represent the number of samples. Equation 3.1 shows a sample

matrix composed of p columns and n rows:
Y11t Xap (3.1)
xnl cee xnp

where x;; is the measured data, i is the index for the variable i = 1,2 ..., n, and j is the

index for the sample numberand j = 1,2, ..., p.
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The next step is to convert the original matrix to a standardized form so that all the
data in the matrix is in the same range where mean and variance are zero and one,
respectively. If the PCA is performed with variables which have different units, it is

necessary to standardize the data.

Standardization can be done as follows:

(11 —%)/81 - (xlp - @)/Sp
Xs = : : (3.2)
(xnl - E)/‘S‘l (xnp - @)/517
where
__1x .
5= xy) (3.3)
i=1
1 n
6]'2 = o— 12(3(1] —E)Z,V] (34)
i=1
The third step is to obtain the correlation matrix according to:
L 1 - 7y
R= X x; =+ -~ (3.5)
n-— 1 rpl eee 1
_ 5]’ _ Z?:l[(xij - x_j)(xik = X)] ..
R e __ " (3.6)
iz (i — X)%  Xie (e — %)

where 7y, is the correlation coefficient between x; and x;. r;, = 1 whenever j=k.

The result of the correlation matrix isap X p symmetric positive matrix. The diagonal

elements are equal to 1 due to the normalization.
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To represent the correlation matrix with directions and magnitudes (vectors) and also

to get rid of the redundant elements, the correlation matrix needs to be diagonalized:

R = VTRV = diag(d, - 1) (3.7)

The uncorrelated feature vectors in the rotated space y; = {y;q,*** i} are given as:

yi =VTx;, x; =Vy;, Vi (3.8)

The next step is to obtain the corresponding eigenvalue and eigenvectors. In order to

do that, the following linear equation needs to be solved:

(R—Av;=0forj=12,..,p (3.9)

where 4; is the eigenvalue and v; is the corresponding eigenvector of the correlation

matrix, R. The solution is as follows:

R'Uj = )ljvj fOI‘j =1,2, v, P (310)

det(R—AD) =0 (3.11)

where p is the number of eigenvalues that are obtained from the solutions of the
characteristic equation (Equation 3.11). The eigenvectors are calculated from
Equation 3.9 after inserting the related eigenvalue into the equation. The rotation

matrix V is obtained by taking the eigenvectors v; as its columns:

Vi = (Vi (3.12)
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Rearranging the eigenvalues from the highest to the lowest gives the principal
components of the correlation matrix. The first principal component is the first
eigenvalue, which gives the most variation. The second principal component value is
the second eigenvalue, and so forth. Considering the principal component values in
the 2-D axis system, assuming that two of the principal components give the most
variance in the original dataset, the first principal component lies in the x-axis,

whereas the second PC lies in the y-axis which is the orthogonal axis.

The eigenvalues represent the variances of the data concerning the principal axes since
they are the diagonal elements in the correlation matrix. A small eigenvalue means
that the projection of the data on the axis has a narrow distribution. Therefore, the
related component is of a small contribution to the data and may be ignored (Bohm
and Zech, 2010). Similarly, large eigenvalues mean the related component is of large

contribution to the data, and they belong to the important principal components.

After finding the principal components, the most crucial step is to analyze the
eigenvalues to determine the number of principal components. There are two options
for selecting the number of principal components. First is by looking at the
eigenvalues. Table 3.1 shows a sample variance table extracted from the Statistical
Package for the Social Sciences (SPSS) software indicating the eigenvalues of the
principal components and their percent variance values. An arbitrary rule of thumb is
to select the principal components such that their eigenvalues are greater than one
(Kaiser, 1960) which is known as Kaiser criterion. According to the first column of
Table 3.1, eigenvalues of the first two components can be selected as the principal
components since the eigenvalues are greater than 1.
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Table 3.1. Sample Variance Table

Total Variance Explained
Initial Eigenvalues Extraction Sums of Squared Loadings
% of Cumulative % of Cumulative

Component Total Variance % Total Variance %
PC1 6.402 71.136 71.136 6.402 71.136 71.136
PC2 1.665 18.502 89.638 1.665 18.502 89.638
PC3 732 8.134 97.772
PC4 201 2.228 100.000
PC5 9.238E-16 1.026E-14 100.000
PC6 3.977E-16 4.419E-15 100.000
PC7 6.981E-17 7.757E-16 100.000
PC8 8.253E-18 9.170E-17 100.000
PC9 -1.939E-16| -2.155E-15 100.000
Extraction Method: Principal Component Analysis.

Another method for selecting the principal components is to look at the Scree Plot,
which is a plot of the number of principal components versus the eigenvalues. Figure
3.2 shows a sample scree plot extracted from the SPSS software. To determine the
number of principal components in the Scree Plot, the starting point of the elbow shape
or the largest break between the components is used (Cattell, 1966). According to
Figure 3.2, the elbow shape starts at Principal Component 2, so; one can select two

principal components.
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Figure 3.2. Sample Scree Plot

The next step is to obtain the factors f;; by carrying out a standardization of the
transformed variables y;;. This is achieved with a division by the square root of the
eigenvalues 4; :

YVij
fij = \//‘JT, (3.13)

where i is the index for the variable i = 1,2 ...,n, and j is the index for the sample

numberand j = 1,2, ..., p.

The relation of the factors f;; with the original data x;; is defined as a linear

transformation with matrix A in which the elements are called the factor loadings:

x; = Af;, Vi or XT = AFT (3.14)
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The idea of the PCA analysis is to reduce the number of factors so that the data can be

described satisfactorily within tolerable deviations, ¢:
Xy =a1fi +tafi t &
Xy = Qp1ft + o+ aufi + & (3.15)

Xp = aplfl + ot apkfk + Ep

with k < p and the factors f;, ... f are uncorrelated.

There exist some computer programs which perform the principal component
analysis, do the numerical calculations, and find the component factors. In this thesis,
SPSS software is used for PCA.

3.2. Artificial Neural Network Method
3.2.1. Biological Resemblance and General Information about ANN

The artificial neural network (ANN) system idea is based on the biological forms of a
human brain. Inside the human brain, there is a large number (approximately 10'*) of
connected elements called neurons (Hagan, 1996). In order to explain the artificial

neural networks, one must fully understand the parts of neurons (see Figure 3.3).
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Synapse

Dendrites
Axon
O Cell Body
O

Figure 3.3. Elements of Neurons Inside the Brain (Hagan,1996)

There are three main elements of the neuron: Dendrites, axon, and cell body. Dendrites
are receptors that can carry the information to the cell body. They are tree-like
structures, and they get messages from other cells and transmit them to the cell body.
The cell body is an ellipse-shaped structure, and it is the central part of the neuron. All
the information is stored in this area. A nerve cell has a long slender fiber, which is
called an axon. The objective of an axon is to get the information from the cell body
and transmit it to the other neurons. Although the neurons in the body are not
continuous, they can still send the information from one to another through synapses.
The synapse is a structure located in between the axon of one neuron and the dendrite
of another neuron, and it can pass the chemical or electrical signals from one neuron
to the next (Hagan,1996). A schematic presentation of an ANN model, together with

its main components, are given in Figure 3.4.
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Figure 3.4. Example of an Artificial Neural Network Scheme (Haykin,2009)

Although the structure of an artificial neural network does not have the complexity of
a biological neural network, there are yet some similarities between them. The main
components of the ANN structure are; the nodes, the input layer, the weights, the
hidden layer, summing junctions, activation functions, and the output layer (Hsu et
al., 1995).

In ANN, there exist multiple nodes which imitate the neurons in the biological neural
network. Nodes are organized in layers and all the nodes in the hidden layer are
connected to each node in the previous layer. In ANN, information first comes to the
input layer from the information environment similar to the dendrites in a biological
neural network (BNN). After the input layer, the information is sent to the hidden layer
with a weight function similar to the synapses in BNN. Weight function determines
the strength of the connection and this function decides how much effect the input

node will have on the output layer.

The hidden layer is an intermediate layer between the input and output layers. Inside
the hidden layers, there are hidden neurons. The number of hidden neurons are
identified for each problem considering the complexity of the problem and the number
of input neurons. If there are not enough hidden neurons in the neural network, then

the structure fails to learn the algorithm, and the problem can not be solved. Moreover,
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if there are a lot of unnecessarily hidden neurons, this will result in the memorization

of the network rather than learning.

Summing junctions merges the input values with their corresponding synaptic weights
by using a linear combination. After that, the activation function comes into play. The
activation function or transfer function is similar to the cell body in BNN. This
function aims to gather all weighted inputs and apply generally a nonlinear
transformation and transfer them to determine the output layer. The output layer which
is similar to the axon in BNN, takes the processed inputs from the activation function

and generates the output.

Similar to biological neural networks, in artificial neural networks, information
operates in a parallel fashion, which means that all nodes are processing

simultaneously.
3.2.2. Classification and Network Types of ANN

There are many classification techniques in ANN. One way is to classify the network
according to the number of layers, namely, single layer, bilayer, and multilayer neural

network.

The most common taxonomy of the neural networks is according to its architecture.
In Figure 3.5, the taxonomy of neural network architecture is given. There are two
groups, mainly feed-forward networks and recurrent or feedback networks (Jain et
al.,1996).

In the feed-forward neural network, the information flows in only one direction. That
means the signal comes to the input layer, and later, this data is processed in the hidden
layer. Finally, by processing the input values with associated weights of the
connections, calculated data comes to the output layer. Therefore, in this network, the
output layer is dependent only on the inputs that receive from the previous layers and
corresponding weights (ASCE Task Committee, 2000a).
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In feedback networks, data is travelling in both ways creating a loop that is from input
layer to output layer or from output layer to the input layer. Therefore, feedback
networks are dynamic, the values are changing continuously until to the balance point.
Calculations are done and resultant output values feed the network by going back to
the analysis (Hagan,1996). In this study, a feedforward networks are developed.

Hence, this method is described in detail.

Neural networks

Feed forward networks Recurrent/ feedback networks
Single-layer Multilayer Radial basis Competitive Kaohonen's Hopficld

perception perception function nets networks S0 network ART models

1&

Figure 3.5. Taxonomy of Neural Network Architecture (Jain et al., 1996)

L

Figure 3.6 summarizes the feedforward neural network architecture. There are
multiple layers in the structure. Between the layers, there are connections, and these
connections have some weights. In the input layer, there is no calculation, but the
information is transmitted to the hidden layer. In the hidden layers, the computations
are carried out. After the computations, the information is transferred to the output
layer. In a feedforward network, although there can be single input and a single output
layer, there is a possibility that there can be no hidden layer (single layer perceptron)
(Demuth and Beale, 2003) or multiple hidden layers.
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Input Layer Hidden Layer Output Layer

Figure 3.6. Feed Forward Network

There are also numerous network types according to the problem. In Table 3.2,
different categories are shown with different network types and intended usage. Some
of the networks can be used for only one category, yet some of them can be used for
multiple types of problems. For example, a feed-forward backpropagation network
can be used almost for all types of problems, and it is commonly used for the first four
categories in the Table 3.2. Therefore, it is vital to select a network type suitable for

the problem.
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Table 3.2. Network Type Selection (Anderson et. al ,1992)

Category Networks Intended Usage of Network
- Back Propagation
- Delta Bar Delta
- Extended Delta Bar Delta
- Directed Random Search
Prediction ) Higher-Order Neural Prediction of output by using
Networks input values
- Self Organizing Map into
Back
Propagation
- Learning Vector Quantization o
o ) Using input values for the
Classification - Counter Propagation o
o classification
- Probabilistic Neural Network
- Hopfield
- Boltzmann Machine
- Hamming Network o L )
o S o Similar to the classification but it
Data Association - Bidirectional Associative . o .
identifies the errors in the data
Memory
- Spatiotemporal Pattern
Recognition
. Group the data having
Data - Adaptive Resonance Network . L )
L o relationships via analyzing the
Conceptualization - Self Organizing Map .
Inputs
Data Filtering - Recirculation Smoothen the input data

According to Table 3.2, estimation of the felt intensity from several ground motion
parameters is a prediction problem. In other words, prediction of output values (MMI)
from input values (such as PGA, PGV) is performed in this study. The most used
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algorithm for prediction is the feed-forward backpropagation method, which will be

described in the below section.
3.2.3. Designing the ANN Model
3.2.3.1. Feed-Forward Back Propagation Algorithm

In the feed-forward backpropagation algorithm, there is one input layer, one or more
hidden layers, and one output layer. In each layer, one or more neurons are present.
Calculation steps of the feed-forward backpropagation are summarized below (ASCE
Task Committee, 2000):

ANN architecture:

= Identify the input variables
= Determine the number of neurons in the hidden layer using trial and error

Feed-Forward:

= |nitialize weights using random small numbers

= Feed input values to the nodes of the input layer (X;,i = 1,2,..,n)

= Propagate values to the hidden layer and then to the output layer using
weights. This is achieved through repeating the following procedure until
the termination criteria is satisfied:

s Sum input signals reaching to each hidden neuron

Zln] =voj+2xivij fori = 1,2,..,n (316)

where v;; is the connection weight between input and hidden nodes, and
v,; is the bias value, i is the number of input nodes, and j is the number

of hidden nodes. The output signal is computed with the application of
the activation function, f (i.e., hyperbolic tangent, sigmoid, etc.)

Z; = f(Zin,) (3.17)

and this signal is sent to the next layer (e.g., the output layer if there is
only one hidden layer).
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o Sum each weighted input signal at the output neuron
Ying = wor + X zjwy forj=1,2,..,p (3.18)

where w, is the bias and wy, is the connection weight between hidden
and output nodes, k is the number of output nodes.

Output signal is computed with the application of the activation
function, f, (i.e., hyperbolic tangent, sigmoid, etc.).

Ve = f2(Ying) (3.19)

Back-propagation of error :

o Each output neuron generates an output, y, related to the input
training pattern, and the error term is computed using the observed
target, t, (Equation 3.20). Later, with that error term, weight correction
terms to update wy, (see Equation 3.21), and bias correction terms to
update w,,, (see Equation 3.22) are computed and &, values are sent to
the nodes in the previous layer.

Ok = (tx — yi)f (Yiny) (3.20)
AWOk = a6k (322)

where « is the learning rate.

o Each hidden neuron sums the delta values (see Equation 3.23),
and multiplies with the derivative of the activation functions to
calculate the error term (Equation 3.24). Later, weight correction
terms to update v;; (see Equation 3.25), and a bias correction terms

to update v, ; (see Equation 3.26) are computed from the error term.
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Sinj = Y 6wy fork =1,2,..,m (3.23)

Update weights and biases :
= Bias and weights are updated for each output neuron

wix (updated) = wj, (old) + Awjy,
(3.27)
forj=0,1,..,p

o Bias and weights are updated for each hidden neuron

v;j(updated) = v;;(old) + Av;;
(3.28)
fori =0,1,..,n

There are various transfer functions in ANN, yet in multilayer networks, generally,
the functions in Equation 3.29, 3.30 and 3.31 are used. In Figure 3.7, an example

showing the transfer functions is shown.

Sigmoid Function: _ (3.29)
fe = 1+e™™
Hyperbolic Tangent 2 (3.30)
. . — f(x) =TT o 1
Sigmoid Function: 1+e
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Linear: f(x)=x (3.31)
a a a
------------ S . =2 DO R 52 O
e 4 y . 1 .
CInG e
""""""" T AT B
a= .’og_\.-g.fp” a = tansig(n) a = purclin{n)
Log-Sigmoid Transfer Function Tan-Sigmoid Transfer Function Linear Transfer Function

Figure 3.7. Example of Transfer Functions (Demuth and Beale, 2003)

In ANN analysis, selecting the number of hidden neurons is an essential procedure
since increasing the hidden neurons a lot may result in overfitting. There are various
empirical relationships from different studies to determine the number of hidden
neurons. For instance, Hecht-Nielsen (1987) suggested an empirical formula for the
upper limit of the number of hidden neurons:.

(3.32)
Ny=2xN;+1

where Nj, is the number of hidden neurons in the hidden layer, N; is the number of

inputs.

Also, there is a lower bound for the determination of hidden layers. Lai (1997)
suggested that a minimum number of hidden neurons is equal to the number of inputs.
In this study, as a starting point, the lower bound suggested by Lai (1997) is used.
Then, atrial and error procedure is followed to find the most suitable number of hidden

nodes.
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CHAPTER 4

CASE STUDY FOR TURKEY: RELATIONSHIP BETWEEN MMI AND
SELECTED PARAMETERS

4.1. Introduction

In this Chapter, the relationships between MMI and selected seismic parameters are
studied for Turkey. Initially, the available data is briefly described followed by the
definitions of the parameters. Then, results of principal component analysis and

artificial neural network method are presented.
4.2. Available Data

In this study, correlations of MMI with several seismic parameters are studied. Thus,
available MMI values are paired with the seismic parameters from earthquakes in
Turkey. Focal Depth, Moment Magnitude (Mw), Epicentral Distance (Repi)
parameters regarding each earthquake and 30 m-average shear wave velocity (Vs30)
as well as latitude and longitude values of each station are directly downloaded from

the Strong Ground Motion Database of Turkey (http://kyhdata.deprem.gov.tr). This is

a national data portal with data from a total of approximately 750 equipped stations

all over Turkey.

The dataset in this thesis is composed of 195 ground motion records from 18
earthquakes covering a range of moment magnitude values from 5.1 to 7.4 (Figure
4.1).
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Figure 4.1. Locations and magnitudes of earthquakes and corresponding recording stations used in this thesis

Raw accelograms corresponding to these earthquakes are downloaded from the
mentioned strong motion data portal. In order to produce different ground motion
parameters, a series of computations are made. MATLAB software is used for that
purpose where PGA (cm/s?), PGV(cm/s), PGD (cm), Arias Intensity (cm/s),
Significant Duration (sec) values are extracted from the code. The code employed in

this thesis is given in Appendix B.

Among those 195 ground motion records, 92 are gathered from the study of Bilal and
Askan (2014). Raw ground motion dataset (PGA, and PGV values) is obtained from
the database of Prime Ministry Disaster and Emergency Management Presidency

(http://daphne.deprem.gov.tr). For the calculation of other seismic parameters (PGD,

Avrias Intensity, and Significant Duration), the MATLAB code given in Appendix B
is used. Intensity dataset of Bilal and Askan (2014) was collected from the
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unpublished bulletins and maps prepared by the Earthquake Research Department of
AFAD.

The additional intensity data in this thesis are gathered from the USGS Earthquake
Hazards Program which is a part of the National Earthquake Hazards Reduction
Program (NEHRP) (https://earthquake.usgs.gov/). In this website, MMI values are

computed from online public surveys where public from all over the world summarize
the effects of shaking in nearby regions. Figure 4.2 shows a sample snapshot of MMI
values obtained from the website.

MMI values are assigned to the ground motion stations using the nearest MMI value
within an uncertainty of £1 MMI unit. The ground motion stations located within a
range of approximately 5 km distance are paired with the MMI values.

rrrrrrrr

TURKEY

Figure 4.2. Reported MMI values of a sample earthquake (https://earthquake.usgs.gov/)

In this thesis, there are a total of 195 input data patterns which include MMI, and
seismic parameters such as PGA, PGV, PGD, Arias Intensity, Epicentral Distance,
Focal Depth, Moment Magnitude, Soil Class, and Significant Duration from 18
earthquakes. A sample raw dataset composed of 14 input data patterns is demonstrated
in Table 4.1. The whole dataset is given in Appendix C.
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Table 4.1. Sample Dataset Used in This Study
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Table 4.1 (continued)
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Figures 4.3 and 4.4 display the distance and magnitude distribution of the MMI
dataset, respectively. As expected, despite significant scatter, MMI values increase
with increasing Mw while they decrease with increasing epicentral distances. Next,
Figure 4.5 and 4.6 show the variation of MMI with respect to PGA and PGV,
respectively. In the same figures, the linear regressions from previous studies which
are mentioned in Chapter 2 are also presented. The uneven distribution of PGA and
PGV values at each MMI level is noticeable. To account for this scatter, in most of
the past studies, mean PGA and PGV values are assigned to each MMI level. In this
study, a number of ANN models which accept different combinations of input
variables are developed. While training these models, values of the input variables are
directly used. Thus, each ANN model is capable of handling all MMI and peak ground

motion levels.

As an additional observation, the differences between previous models indicate the
need for local relationships between intensity and seismic parameters. Therefore, in
this study, ANN models for Turkey utilizing Turkish earthquake data are developed.
Additional parameters such as soil classification, epicentral depth, and focal depth

parameters are included in the analysis in order to further account the regional effects.
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4.3. Definition of Parameters

In this section, the ground motion parameters that are used in this study are explained

briefly.

PGA, PGV, PGD: The maximum acceleration, velocity, and displacement of the
ground shaking at a particular time of earthquake are defined as peak ground
acceleration, peak ground velocity, and peak ground displacement, respectively. Since
the shaking occurs in 3 directions, 2 horizontal and 1 vertical PGA, PGV, and PGD

are reported for each records.

Accelerogram data is downloaded for all earthquake stations related to each
earthquake (http://kyhdata.deprem.gov.tr). An example of an accelerograph and a

snapshot of the raw data is given in Figure 4.7.

300

200

160

10000 12000
100

200

File Edit Format View Help
STRONG GROUND MOTION RECORDS OF TURKIYE

PLACE : KOCAELT MERKEZ METEOROLOII ISTASYON MUDURLUGU
EARTHQUAKE DATE : 17/08/1999 00:@1:39.07 (GMT)

EPICENTER COORDINATES  : 49.70000N-29.91000F

EARTHQUAKE DEPTH (km)  : 15.9

EARTHQUAKE MAGNITUDE  : 7.4Md

STATION ID : 4101

STATION COORDINATES : 40.76650MH-29.91721F

STATION ALTITUDE (m)  : 77

RECORDER TYPE : SMA-1

RECORDER SERIAL NO ;2755

RECORD TIME : 17/88/1999 @0:@1:39.87 (GMT)

UMBER OF DATA : 10398

SAMPLING INTERVAL (sec) : 0.88500000

RAN PGA VALUES (gal)  : (N-S) 171.16720@ (E-W) 224.91190@ (U-D) 146.39190@

Copyright EARTHQUAKE RESEARCH DEPARTMENT
SENERAL DIRECTORATE OF DISASTER AFFAIRS

H-5 E-W ()
-3.980896 -29.553620 8.69079@
-4.830163 -25.219380 4.088279
-1.520163 -20.885130 -8.514233
-1.5208878 -16.558890 -5.116743

0.004809 -12.216650 -9.719255
1.530497 -7.8824a1 -14.32177@
3.056189 -3.548162 -16.65358@
4.581870 0.786078 -13.22779@
2.589672 1.699727 -10.484980
8.585315 2.664249 -5.149557
8.089619 7.821194 -2.117782
-8.949763 8.663995 1.992402
0.483595 3.013611 3.682181
-2.829540 5.816631 1.649066

Figure 4.7. An example of an accelerograph and snapshot of the values (http://kyhdata.deprem.gov.tr)
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Arias Intensity: Arias intensity is calculated as the square of the acceleration integrated
over the total duration of the shaking. Similar to the PGA, I, is also used as an
indicator of intensity of the ground motion. The corresponding formula is given as

follows:

o = o= f a(o)de (4.1)
0

where a(t)is the acceleration data in time domain, g is the gravitational acceleration,

and T is the total duration of the earthquake.

Significant Duration: Strong motion duration is an important parameter to measure
the potential damage during an earthquake. This parameter usually depends on local
site conditions, fault characteristics and the distance from the source to the station.
There are different measures for the strong motion duration namely, bracket, uniform,
and significant duration. Significant duration is the time between %5 and %95 of Arias
Intensity (I,) (Trifunac and Brady,1975). This value is determined from the Husid
plots which are the time history of Arias Intensity scaled to the total intensity. An

example computation is given in Figure 4.8.
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Figure 4.8. Example for computation of Significant Duration (Ds.gs) determined from Husid Plot
(Husid,1969)

Focal Depth and Epicentral Distance: The point at which the earthquake occurs is the
focus or hypocenter of the earthquake. The epicenter is the projection of the focus to
the Earth’s surface. The focal depth is the distance from the focus to the epicenter
location. The epicentral distance is the distance from the epicenter point to the station

point where the earthquake ground motion parameters are gathered (Figure 4.9).
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Figure 4.9. Visual Description of Epicentral Distance and Focal Depth

Soil Classification (Vs30): Shear wave velocity is an important parameter for
determining the site class. Vs30 is the average shear wave velocity in the top 30 m of
the soil. According to the National Earthquake Hazards Program- Uniform Building
Code (NEHRP- UBC), the soils are divided into some classes according to their VVs30
values (Table 4.2). In this study, soil classes are converted to categoric numbers in
order to insert as an input value to ANN analyses. Table 4.2 shows the corresponding

information.

Table 4.2. Vs30 Soil Classification and Categoric Definitions used in this thesis (NEHRP-UBC)

Soil | Soil Class In | g4} Type Vs30 Criteria
Class | Numbers

5 Hard Rock Vs30 > 1500 m/s
B 4 Rock 760 m/s < Vs30 <1500
C 3 Very Dense Soil and Soft Rock 360 m/s < Vs30 <760
D 2 Stiff Soil 180 m/s <Vs30 < 360
E 1 Soft Clay Soil Vs30 < 180 m/s
F Not Soils Requiring Additional -

Applicable | Response
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4.4. Application of Principal Component Analysis using SPSS Software

Principal Component Analysis is carried out using the factor analysis tool of the
Statistical Package for the Social Sciences (SPSS) program. For each MMI value, the
analysis is performed seperately. Results of the analysis include the following

calculation steps;

e Generation of the Correlation matrix
e Generation of the Total Variance Plot
e Generation of the Scree Plot

e Generation of the Component Matrix

Each calculation step is shown in detail in Appendix D, Appendix E, Appendix F, and
Appendix G, respectively. For MMI=IX, due to the fact that there are only 2 data,

PCA analysis is not conducted.

Arithmetic mean of two components of the ground motion parameters (PGA, PGV,
PGD, la, Ds.gs5) are used in order to take into account the widely distributed data values.

The input values are;

e Moment Magnitude (Mw)
e Focal Depth (FD)

e Epicentral Distance (Repi)
e Soil Classification (SC)

e PGA

o PGV

e PGD

e Atrias Intensity (la)

e Significant Duration (Ds.g5)
Using these input variables, PCA analysis for each MMI level is conducted. The

component matrices generated are given in Appendix G.
A summary table of the component matrix is given in Table 4.3 for ease of reference.
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The component matrix shows the correlations between the input variables and the
principal component. In the component matrix, the principal components and their
relations with the variables are shown. By definition, the first principal component has
the largest variation and the second principal component has the second-largest
variation.

As can be seen in Table 4.3, for most of the MMI levels, PGA which has a high
correlation with MMI is included in the first principal component. This makes sense
that this parameter is an important indicator of the seismic-resistant design because of
the fact that the product of PGA and mass represents the inertial force loading the
structures (Krinitzsky and Chang, 1988). PGV, PGD and Arias Intensity are identifed
as other variables that have high correlations with MMI levels. This is also expected
since these parameters are known to correlate with damage to structures with different
fundamental periods.

PGA, PGV, PGD, and Arias intensities will be separately included in the analysis
since highly correlated parameters do not make a drastic change to the outcome value.
Moreover, PCA results are also compatible with previous studies. Almost all of the
regression equations developed in the literature use PGA, PGV, PGD, and la,
seperately. This fact is also confirmed with expert knowledge.
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Table 4.3. Summary Table for the Component Matrix

MMI =I
Components Variables
PC1 PGV FD Mw PGA Ds.95 la PGD
PC2 Repi SC
MMI =II
Components Variables
PC1 PGA Repi la Ds.g5
PC2 PGV PGD FD SC
PC3 Mw
MMI =I11
Components Variables
PC1 PGV la PGA FD
PC2 Mw Repi Ds.95
PC3 SC PGD
MMI =IV
Components Variables
PC1 Mw Ds.g5 PGV PGD Repi
PC2 PGA la
PC3 FD
PC4 SC
MMI =V
Components Variables
PC1 PGV PGD la PGA
PC2 Repi Mw Ds.95
PC3 FD SC
MMI =VI
Components Variables
PC1 PGA la PGV Repi Ds.o5 PGD
PC2 FD Mw
PC3 SC
MMI =VII
Components Variables
PC1 PGV PGD FD Ds.g5 Repi
PC2 la PGA Mw
PC3 SC
MMI =VII1
Components Variables
PC1 Ds.g5 la FD SC Mw PGA
PC2 PGV PGD Repi
MMI =X
Components Variables
PC1 FD SC Mw Ds.g5 la PGD PGV
PC1 PGA
PC2 Repi
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4.5. Application of Artificial Neural Network Analysis using NF Toolbox

Neural Network Analysis is carried out using MATLAB software which contains
different types of toolboxes in various engineering fields. Using Neural Network
Toolbox with Neural Net Fitting Toolbar (nftool), several multilayer models are
created with one input layer, different numbers of hidden neurons in one hidden layer

and one output layer.

A two-layer feed-forward network with sigmoid hidden neurons and output neuron is
used and the models are trained with the Levenberg-Marquardt backpropagation
algorithm. MATLAB manual states that 'This algorithm is the fastest backpropagation
algorithm in the toolbox and is highly recommended as a first-choice supervised
algorithm, although it does require more memory than other algorithms." In Figure
4.10, the sample feed-forward algorithm which is extracted from the MATLAB NF

Toolbar is given.

Hidden Layer Output Layer

Figure 4.10. Sample Representation of Feed Forward Algorithm in MATLAB NFTOOL (MatLab,
M.,2012)

Output

o3|

Input

In the first part of neural network analysis, the dataset is trained with different
combinations of input variables chosen based on the results of the principal component
analysis and expert knowledge. Table 4.4 shows the description of the models created

using different input variable sets.
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Table 4.4. Model Descriptions for ANN

Model Variables included in the Model
M1 Mw | PGA | Repi
M2 Mw | PGA | Repi SC
M3 Mw | PGA | Repi SC FD
M4 Mw | PGA | Repi SC FD | Ds-gs
M5 Mw | PGV | Repi
M6 Mw | PGV | Repi SC
M7 Mw | PGV | Repi SC FD
M8 Mw | PGV | Repi SC FD | Ds-gs
M9 Mw | PGD | Repi
M10 | Mw | PGD | Repi SC
M11 | Mw | PGD | Repi SC FD
M12 | Mw | PGD | Repi SC FD | Ds.gs
M13 Mw la Repi
M14 Mw la Repi SC
M15 Mw la Repi SC FD
M16 Mw la Repi SC FD Ds-95

According to the Neural Network Toolbox, the inputs are randomly divided into three
sets, namely; training, validation, and testing. In this part of the analysis, a total of 170
datasets are gathered. Due to the limited number of available data, the distribution of
data for training, validation, and testing is carried out by allocating most of the data
for training. In other words, to maintain proper training (i.e., adjustment of the weights
of the ANN models), most of the data is used in the training process. Therefore,
training, validation and testing data are selected as 90%, 5% and 5%, respectively
(Figure 4.11). The trained model is then run with 25 new datasets to compare ANN
model results with other published models in the literature.

To evaluate the impact of hidden neurons used in the hidden layer, the number of
hidden neurons is changed, and different models are built. The number of input
variables are set as the minimum number of hidden neurons and this number is
increased progressively. Different number of hidden neurons are used, and the
program is trained for 10 times for each different number of hidden neurons in order

to evaluate the effect of training data selection on the model performance. The
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performance of the model is evaluated using the mean square error (MSE) and the

Pearson’s Correlation Coefficient (R).

Mean Square Error 1w
MSE == (3 — %)’ (4.2)
(MSE): i=1
Pearson’s Correlation B Yic1(xi =i —¥) 4.3)
Coefficient (R): VI (i — X)X (3 — §)? '

where n is the number of data, x, y, x, and y depict the observed values, predicted
values, mean value of observed values, and mean value of predicted values
respectively.

A summary table is generated for each model with different numbers of hidden
neurons (Table 4.5). Figure 4.12 shows an example regression plot for ANN training
model for M3 model and 5 hidden neurons. The other plots are given in Appendix H.
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4\ Neural Fitting (nftool)
Validation and Test Data
Set aside some samples for validation and testing.

Select Percentages
a Randomly divide up the 178 samples:

a Training:

90% 160 samples
G Validation: 5% -: 9 samples
o Testing: 5% v: 9 samples

Restore Defaults

$ Change percentages if desired, then click [Next] to continue.
[ & Neural Network Start ] [ 14 Welcome ]

Explanation
a Three Kinds of Samples:

a Training:

These are presented to the network during training, and the network is
adjusted according to its error.,

G Validation:

These are used to measure network generalization, and to halt training
when generalization stops improving.

a Testing:

These have no effect on training and so provide an independent measure of
netwaork performance during and after training.

[ @ Back H B Next ] [ @Cancel ]

Figure 4.11. Input Percentage Selection in NF Tool
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Table 4.5. Training performances of various ANN models with different number of hidden neurons

Model H?dzfen Regression Mean Square Error
Neurons Value (R) (MSE)
M1 3 0.87 0.79
(Mw,PGA ,Repi) 4 0.86 0.84
M2 4 0.86 0.76
(Mw,PGA, Repi,SC) 5 0.89 0.60
M3 5 0.93 0.40
(Mw,PGA, Repi,SC,FD) 6 0.93 0.40
M4 6 0.92 0.42
(Mw,PGA, Repi,SC,FD, Ds.g5) 7 0.93 0.39
M5 3 0.84 0.98
(Mw,PGV, Repi) 4 0.87 0.76
M6 4 0.85 0.85
(Mw,PGV, Repi,SC) 5 0.86 0.83
M7 5 0.87 0.72
(Mw,PGV, Repi,SC,FD) 6 0.93 0.45
M8 6 0.91 0.52
(Mw,PGV, Repi,SC,FD, Ds.g5) 7 0.93 0.45
M9 3 0.83 0.85
(Mw,PGD, Repi) 4 0.87 0.69
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Table 4.5. (continued)

Model H?d(;fen Regression Mean Square Error
Neurons Value (R) (MSE)
M10 4 0.84 0.90
(Mw,PGD, Repi,SC) 5 0.84 0.86
M11 5 0.87 0.73
(Mw,PGD, Repi,SC,FD) 6 0.89 0.62
M12 6 0.91 0.49
(Mw,PGD,Repi, SC,FD, Ds.g5) 7 0.92 0.46
M13 3 0.84 0.89
(Mw,la, Repi) 4 0.87 0.76
M14 4 0.87 0.69
(Mw, la, Repi,SC) 5 0.87 0.75
M15 ) 0.87 0.74
(Mw, la, Repi,SC,FD) 6 0.91 0.5
M16 6 0.91 0.55
(Mw, la, Repi,SC,FD, Ds.g5) 7 0.94 0.36
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0 Training: R=0.93308

O Data

Output ~= 0.87*Target + 0.54

2 4 6 B 10
Target

Figure 4.12. Example Regression Plot for ANN Training Model (M3 Model with 5 hidden neurons)

The models highlighted in bold in Table 4.5 are the models with the highest training
performance. In the second part of the neural network analysis, these models are tested
with a new dataset for testing purposes. This new data set is composed of 25 patterns
which are provided in Table 4.6. The data from the earthquake that occurred on 26%
of September 2019 at Istanbul is also included in the test data. As a result, observed
and predicted values for the trials are tabulated and MSE and R? values are calculated.
These results are also compared with the previous studies which used linear
regression. In addition to the restrictions recommended by the authors’ and estimated
MMI values less than or equal to zero are not used in R? calculations. In Table 4.7,
Table 4.8 and Table 4.9, previous equations proposed for MMI-PGA, MMI-PGV, and
MMI-la are shown.
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Table 4.6. Testing Dataset

R d | Earthquake | stati PGA PGV Arias D5 95 Focal |ED(Epice SoIL

(:;or @ Igua © al[;on Mw (em/sec2) | (cm/seq) PGD(cm) | Intensity (__) Depth ntral |CLASSIFICATION| MMI | MMI_NUMBERS
° cm/secz) |{emysec emfs) | % | (km) |Distance)| (IN NUMBERS)
1 CNK02/19 4104 5.1 0.20 0.02 0.16 0.00 59.275 5.80 322 4 | 1
2 MAR09/19 619 5.8 0.45 0.17 18.22 0.00 111.415 7.97 402 2 | 1
3 DNZ08/19 3509 6.0 1.95 0.34 7.31 0.02 61.37 6.96 149 2 Il 2
4 MAR09/19 1710 5.8 1.75 0.21 0.83 0.01 76.82 7.97 141 2 I 2
5 BDR07/17 701 6.5 1.39 0.38 2.08 0.02 200.24 19.44 287 4 11 3
6 CNK02/19 1628 5.1 1.59 0.14 4.76 0.00 35.325 5.80 239 3 11 3
7 MAR09/19 301 5.8 1.36 0.24 0.38 0.01 85.71 7.97 309 2 1 3
8 VAN10/11 4404 7.2 1.00 0.67 7.50 0.01 87.74 19.02 405 4 \Y 4
9 VAN10/11 7201 7.2 8.45 2.48 18.53 0.34 38.685 19.02 223 3 |\ 4
10 MAR09/19 4125 5.8 4.50 0.65 0.61 0.04 33.03 7.97 144 4 [\ 4
11 MAR09/19 1628 5.8 15.40 1.30 4.53 0.22 10.41 7.97 101 3 \ 4
12 MAR09/19 1620 5.8 4.12 0.62 4.41 0.05 38.28 7.97 110 3 \Y 4
13 MAR09/19 1627 5.8 11.87 1.50 6.87 0.40 48.02 7.97 103 2 [\ 4
14 MAR09/19 7708 5.8 13.67 1.48 1.13 0.46 45.725 7.97 91 2 |\ 4
15 ADNG6/98 110 6.2 30.80 17.90 186.82 2.29 17.3975 46.6 31 3 \ 5
16 1ZM11/92 3501 6 34.42 10.90 41.61 3.27 12.8725 17.2 43 2 \ 5
17 DzC11/99 5902 7.1 5.91 1.84 19.80 0.10 27.58 10.4 309 3 Vv 5
18 MAR09/19 1642 5.8 17.88 1.19 0.23 0.26 14.47 7.97 97 3 \4 5
19 MAR09/19 1629 5.8 24.18 1.59 1.75 1.01 22.185 7.97 95 2 \4 5
20 MAR09/19 1630 5.8 17.53 1.17 1.34 0.43 12.74 7.97 96 2 \ 5
21 EZR10/83 2503 6.6 161.78 45.73 107.94 51.27 19.225 16.1 35 2 VI 6
22 ORT6/00 1801 6 62.81 7.80 69.54 10.36 36.632 10 15 2 VI 6
23 BDR07/17 4810 6.5 36.04 1.85 2.24 1.54 16.42 19.44 72 3 ) 6
24 KOC8/99 3403 7.4 103.82 15.73 34.60 15.97 9.3825 17 105 2 Vil 7
25 VAN10/11 4902 7.2 50.25 13.34 198.77 8.53 32.2455 19.02 95 2 Vi 7

Table 4.7. Linear Regression Equations proposed for MMI-PGA relationships
Linear Relationships proposed for MMI-PGA relationships

No Name Equation
1 | Wald et al. (1999) MMI=-1.66+3.66 logio (PGA) logio (PGA) > 1.82
2 | Tselentis and Danciu (2008) MMI=-0.946+ 3.563 logio (PGA)
3 | Murphy and O'Brien (1977) MMI= (logio (PGA)-0.25) /0.25
4 | Trifunac and Brady (1975) MMI= (logio (PGA)-0.14) /0.30
5 | Bilal and Askan (2014) MMI=0.132+ 3.884 logio (PGA)
6 | Arioglu et. Al. (2001) MMI= 1.748*In (PGA) -1.078
7 | Faenza and Michelini (2010) MMI= 1.68+ 2.58 logio (PGA)

Tselentis and Danciu (2008)

MM = 2.355+ 1.384*10gy0 (PGA)+0.297Mw-0.832*
logzo (Repi)-0.108*SC

Bilal and Askan (2014)

MMI=-1.692+ 0.793*log (PGA)+1.653Mw-2.746*
log(Repi)
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Table 4.8. Linear Regression Equations proposed for MMI-PGV relationships

Linear Relationships proposed for MMI-PGV relationships

No Name

Equation

1 | Wald et al. (1999)

MM = 2.35+3.47 logy (PGV) logso (PGV) > 0.76

MM = 4.37+1.32 logy (PGV) for logio (PGV) < 0.48

2 | Atkinson and Kaka (2007)
MMI= 3.54+3.03 logio (PGV) logio (PGV) > 0.48
3 | Tselentis and Danciu (2008) MMI= 3.30+ 3.358 logio (PGV)
4 | Atkinson and Kaka (2004) MMI= 3.96+ 1.79 logio (PGV)
5 | Faenza and Michelini (2010) MMI=5.11+ 2.35 logio (PGV)
6 | Bilal and Askan (2014) MMI= 2.673+ 4.340 logio (PGV)
7 | Tselentis and Danciu (2008) MMI= 5.582+ 1.397*l0g10 (PGV)-0.78*log (Repi)-

0.073* SC

8 | Bilal and Askan (2014)

MMI=0.788+ 0.914*log (PGV)+1.412Mw-2.904* log
(Repi)

Table 4.9. Linear Regression Equations proposed for MMI-la relationships

Linear Relationships proposed for MMI-la relationships

1 | Tselentis and Danciu (2008)

MM = 4.395+ 2.040 logso (1a)

2 | Tselentis and Danciu (2008)

MMI= 5.919+ 0.844*l0g1, (12)-0.997*10g10
(Repi)-0.105* SC

The ANN model results and linear regression results are tabulated in Table 4.10, 4.11,
4.12, and 4.13 depicting the comparison of MMI-PGA, MMI-PGV, MMI-PGD, and

MMI-la, respectively. In the literature, since PGD regression relationships do not

exist, only the ANN analysis results are shown for the case of PGD.
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Table 4.10. Comparison of MMI-PGA relationship with Previous Studies

PREDICTED MMI NUMBERS
OBSERVED_ Tselenti's Murphy | Trifunac Bilal and | Aroglu Faenza Tselenti.s Bilal and
PGA Wald et [and Danciu| and and and and Danciu Askan
MMI_NUMB | Askan et. Al. ) -
(ecm/sec2) - M1 M2 M3 M4 |al.(1999)| (2008) O'Brien | Brady Michelini|  (2008) (2014)
ERS (2014) | (2001)
(1) (2)- (1977) | (1975) ©) ©) (2010) (8)- (9)-
univariate (3) (4) (7) multivariate [multivariate

0.20 1 2 2 2 1 NA NA NA NA NA NA NA NA NA

0.45 1 2 2 3 3 NA NA NA NA NA NA 1 NA NA
1.95 2 4 3 4 3 NA NA NA 1 1 NA 2 NA 2
1.75 2 4 4 4 3 NA NA NA NA 1 NA 2 NA 2
1.39 3 3 4 2 4 NA NA NA NA 1 NA 2 NA 2

1.59 3 3 3 3 3 NA NA NA NA 1 NA 2 NA NA
1.36 3 3 2 3 3 NA NA NA NA 1 NA 2 NA 1
1.00 4 3 4 3 4 NA NA NA NA NA NA 2 2 3
8.45 4 4 5 5 5 NA 2 3 3 4 3 4 4 4
4.50 4 4 3 4 5 NA 1 2 2 3 2 3 3 2
15.40 4 4 5 4 4 NA 3 4 3 5 4 5 4 3
4.12 4 4 4 4 4 NA 1 1 2 3 1 3 3 3
11.87 4 4 5 4 4 NA 3 3 3 4 3 4 4 3
13.67 4 4 5 4 4 NA 3 4 3 5 3 5 4 3
30.80 5 5 7 2 2 4 4 5 4 6 5 6 5 6
34.42 5 5 5 6 5 4 5 5 5 6 5 6 5 5
5.91 5 4 4 4 3 1 2 2 2 3 2 4 3 4
17.88 5 4 5 4 4 3 4 4 4 5 4 5 4 3
24.18 5 4 5 5 4 3 4 5 4 6 4 5 4 4
17.53 5 4 5 4 4 3 3 4 4 5 4 5 4 3
161.78 6 7 6 7 7 6 7 8 7 9 8 7 6 7
62.81 6 5 4 6 6 5 5 6 6 7 6 6 6 6
36.04 6 5 4 4 5 4 5 5 5 6 5 6 5 5
103.82 7 7 7 7 6 6 6 7 6 8 7 7 6 7
50.25 7 6 6 6 4 5 5 6 5 7 6 6 5 6

MSE VALUES 066 | 097 | 1.32 | 1.83 3.76 2.55 1.81 2.00 1.68 1.90 0.66 0.89 0.97

R? VALUES 076 | 0.63 | 0.50 | 0.35 | 0.48 0.66 0.66 0.74 0.81 0.66 0.80 0.65 0.74

Table 4.10 shows that the best ANN model among those with PGA as the main ground

motion parameter is found to be M1 with the inclusion of Mw, and Repi into the inputs.

R? values for the dataset used in Faenza and Michelini (2010) and Bilal and Askan
(2014) are higher than other regression equations. The result for M1 model has similar
performances to the regression equations developed by Faenza and Michelini (2010)
and Bilal and Askan (2014). The reason for this situation is the fact that the dataset
used in those regression equations belong to Italy and Turkey, respectively, where the

building stock is similar.

Predicted results for Arioglu et al. (2001) clearly underestimate the observed values
by at least one intensity unit. The reason for this may be the utilization of only one
earthquake in the mentioned study. Equations from other previous studies also
underestimate the observed values. These studies are performed in the California
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region where the structures are considered to be different and more earthquake-

resistant than the building stock in Turkey. Therefore, MMI values from those

equations (Wald et al., Trifunac and Brady) are lower for the same peak ground motion

parameters.

Table 4.11. Comparison of MMI-PGV relationship with Previous Studies

PREDICTED MMI NUMBERS
OBSERVED Atkinson Tselenti.s Atkinson Faenza | Bilal and Tselenti.s Bilal and
PGV MMI NU Wald et and Kaka and Danciu and Kaka and Askan and Danciu Askan
(cm/sec) -MBE;!S M5 M6 M7 M8 al. (1999) (2007) (2008) (2004) Michelini| (2014) (2008) (2014)
(1) ) (3) @ (2010) (6) (7) (8)-
univariate (5) univariate | multivariate [multivariate

0.02 1 2 2 2 3 NA 2 NA NA 1 NA NA NA
0.17 1 2 2 2 3 NA 3 NA NA 3 NA NA 1
0.34 2 4 4 4 3 NA 4 NA NA 4 1 NA 3
0.21 2 3 4 4 4 NA 3 NA NA 4 NA NA 2
0.38 3 3 3 3 3 NA 4 NA NA 4 1 NA 2

0.14 3 3 3 3 3 NA 3 NA NA 3 NA NA NA
0.24 3 3 2 2 2 NA 4 NA NA 4 NA NA 1
0.67 4 4 4 3 3 NA 4 3 NA 5 2 3 3
2.48 4 4 5 4 5 NA 5 5 NA 6 4 4 4
0.65 4 3 4 4 4 NA 4 3 NA 5 2 4 3
1.30 4 3 4 4 4 NA 5 4 NA 5 3 4 3
0.62 4 3 4 4 4 NA 4 3 NA 5 2 4 3
1.50 4 3 4 4 5 NA 5 4 NA 6 3 4 3
1.48 4 3 4 4 5 NA 5 4 NA 6 3 4 3
17.90 5 5 5 4 7 7 7 8 6 8 8 6 6
10.90 5 6 5 5 5 6 7 7 6 8 7 6 5
1.84 5 4 4 4 3 3 5 4 4 6 4 4 4
1.19 5 3 4 4 4 3 4 4 4 5 3 4 3
1.59 5 3 4 4 4 3 5 4 4 6 4 4 3
1.17 5 3 4 4 4 3 4 4 4 5 3 4 3
45.73 6 6 9 7 8 8 9 9 7 9 10 7 7
7.80 6 6 5 5 6 5 6 6 6 7 7 6 7
1.85 6 4 5 5 5 3 5 4 4 6 4 4 5
15.73 7 7 6 7 7 7 7 7 6 8 8 6 6
13.34 7 6 6 6 5 6 7 7 6 8 8 6 6

MSE VALUES 0.85 0.96 0.69 1.39 3.19 1.30 1.83 0.90 2.17 3.44 0.71 1.11

R? VALUES 0.69 0.63 0.75 0.50 0.26 0.65 0.51 0.26 0.76 0.61 0.48 0.72

Table 4.11 shows that the best ANN model among those with PGV as the main ground

motion parameter is found to be M7 which includes Mw, Repi, SC, and FD into the

inputs. However, the ANN model for the PGA relationship has slightly better

performance than that of the PGV relationship. This is believed to arise from the fact

that most damaged structures in Turkey are rigid where the damage is better correlated
with PGA than PGV.
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R2values for the dataset used in Faenza and Michelini (2010) is the highest from the
other regression equations. Also, the multivariate relationship proposed for Bilal and
Askan (2014) has closer performances than that of the ANN model. The reason for

this situation is the fact that the dataset of the building stocks is similar.

Moreover, the multivariate relationship proposed for Bilal and Askan (2014) includes
PGV, Mw, and Epicentral Distance (Repi). The univariate relationships developed by
Bilal and Askan (2014) have higher MSE and lower R? than that of multivariate
relationship. Therefore, including additional parameters apart from PGV improved the

performance and have closer performances with that of ANN model.

On the other hand, some of the previous studies suggested that high levels of seismic
intensity correlate well with PGV (Atkinson and Kaka, 2007; Tselentis and Danciu,
2008). The probable reason is the fact that the building stock in these regions has more

ductile properties than that of Turkey.

Moreover, similar observation as in PGA indicates that equations from other previous
studies such as Wald et al. (1999), Atkinson and Kaka (2004), and Atkinson and Kaka
(2007) also underestimate the observed values. These studies are performed in the
California region where the structures are considered to be different and more
earthquake-resistant than the building stock in Turkey. Therefore, MMI values from

those equations are lower for the same peak ground motion parameters.

57



Table 4.12. Results of MMI-PGD relationship

OBSERVED_
PGD(cm)| MMI_
NUMBERS

PREDICTED MMI NUMBERS

=
©

2
5
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0.16

w

w
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p=4
>
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>
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2.08
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0.38
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0.61

4.53

4.41

6.87

1.13
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41.61
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R? VALUES

0.75

0.77

0.73

0.51

Table 4.12 shows that the best ANN model when PGD is used as the main ground
motion parameter is found to be M10 with the inclusion of Mw, Repi, and SC into the
inputs. Inclusion of soil class among the input variables is particularly reasonable for

softer soils, since long period site effects influence the peak ground displacement

values significantly.

In the literature, PGD is not commonly used in felt intensity prediction equations since
PGD is obtained by integrating twice of the acceleration record. This integration might
involve numerical errors or differences per each numerical method. Thus, PGD value

is not always constant and stable. Moreover, PGD corresponds mainly to longer

structural periods.
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However, the ANN model with PGD presented in this study could be used in future
studies to indirectly predict the potential damage to flexible structures with longer

periods.

Table 4.13. Comparison of MMI-la relationship with Previous Studies

PREDICTED MMI NUMBERS
Tselentis Tselentis
Arias |OBSERVED and .
Intensit |_MMI_NU Danciu and Danciu
viem/s) |~ MBERS m13 M14 M15 M16 (2008) (zg))s)
. (1), multivariate
univariate

0.0001 1 2 2 2 3 NA NA

0.0014 1 NA 2 2 2 NA NA

0.02 2 4 4 4 3 NA NA

0.01 2 4 4 4 3 NA NA

0.02 3 3 4 4 5 NA NA

0.005 3 3 3 3 3 NA NA

0.01 3 2 2 3 2 NA NA
0.01 4 3 4 4 4 NA 2
0.34 4 5 5 4 6 3 3
0.04 4 4 4 4 4 1 3
0.22 4 4 5 4 4 3 3
0.05 4 4 4 4 4 2 3
0.40 4 4 5 4 4 4 3
0.46 4 4 5 4 4 4 4
2.29 5 6 6 4 4 5 5
3.27 5 5 5 5 5 5 5
0.10 5 4 4 4 3 2 3
0.26 5 4 5 4 4 3 3
1.01 5 4 5 4 4 4 4
0.43 5 4 5 4 4 4 4
51.27 6 6 7 6 7 8 6
10.36 6 6 5 5 5 6 5
1.54 6 4 5 5 5 5 4
15.97 7 7 6 6 6 7 5
8.53 7 6 6 5 5 6 5

MSE VALUES 0.79 0.74 0.81 1.05 1.86 2.02

R? VALUES 0.65 0.73 0.74 0.59 0.64 0.53

Table 4.13 shows that the best ANN model when la is used as the main ground motion
parameter is selected as M15 with the inclusion of Mw, Repi, SC, and FD into the
inputs. Utilization of Arias Intensity improved predictions of lower MMI values while

it did not increase the performance for higher MMI values.

The multivariate relationship proposed by Tselentis and Danciu (2008) includes lIa,
Epicentral Distance (Repi) and Soil Class (SC). The ANN model with la yielded

higher performance than la-based predictive models by Tselentis and Danciu (2008).
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Therefore, including additional parameters such as Mw, and FD improved the
performance.

However, when the performances of the la ANN model are compared with the other
ANN models which employ PGA, PGV, and PGD, it is observed that the arias

intensity is not a particularly representative parameter for the prediction of felt
intensity.
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CHAPTER 5

CONCLUSIONS

5.1. Conclusions

In this thesis, the non-linear relationships between felt intensity (macroseismic) and

various sets of ground motion parameters are studied through the ANN method using

data from recent earthquakes in Turkey. The dataset includes a total of 195 ground

motion records from 18 earthquakes. In order to select the input parameters of the

ANN models, a combination of the PCA analysis, literature and expert knowledge is

used.

The following main conclusions are derived from this study:

When PGA is used as the main ground motion parameter, the inclusion of Mw
and Repi as the inputs to the ANN model, the best model is obtained. The
performance of the ANN models developed in this study is closer to those of
Bilal and Askan (2014), and Faenza and Michelini (2010).

When PGV is used as the main ground motion parameter, ANN model
performances are increased by adding Mw, Repi, SC, and FD. Although
previous studies suggest that only high levels of seismic intensity correlate
well with PGV, it is observed in this study that including additional variables
such as Mw, Repi, SC, and FD to the PGV increase the performance at all
intensity levels. Similar to the case of PGA, the performance of the ANN
model is similar to those of Bilal and Askan (2014), and Faenza and Michelini
(2010).

When PGD is used as the main ground motion parameter, ANN model
performance improves when Mw, Repi, and SC are added to the inputs. In the

literature, PGD is not commonly used in felt intensity prediction equations
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since PGD corresponds only to longer structural periods. The ANN model with
PGD presented in this study could be used in future studies to indirectly predict
the potential damage to flexible structures with longer periods.

When la is used as the main ground motion parameter together with Mw, Repi,
SC, and FD the best ANN model is obtained. The ANN model with la yielded
smaller error than la based predictive models by Tselentis and Danciu (2008).
However, when the performances of the la model are compared with the
others, it is observed that the arias intensity is not a representative parameter
for the prediction of felt intensity.

The ANN models with best performances (M1 for PGA, M7 for PGV, M10
for PGD, M15 for la) showed that the addition of significant duration (Ds.gs)
to the input variable set does not improve the prediction performance of felt
intensity.

For ANN models with PGD, and la, it is observed that addition of site class
term yields a drastically better performance when compared to the ANN model
without this term.

Most of the existing intensity prediction models exhibit varying performance
levels at different intensity ranges. However, since trained for the whole felt
intensity range, developed ANN models give consistent performances
throughout the entire felt intensity scale.

As a final remark, it is observed that ANN handles the inherent complexity

due to the nonlinearity of the felt intensity prediction problem.
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5.2. Future Work and Recommendations

Although the analysis presented in this study suggest some promising findings that
can be used in future ShakeMap applications in Turkey, there are indeed some
constraints due to the fact that this study depends solely on a limited dataset. Following
are some recommendations and future works that can be made for further

investigation:

e For reliable analysis, the dataset must be correct and complete in terms of all
independent variables. For the future studies, it is recommended to use
multiple sources to achieve a complete dataset such as online databases,
catalogues or digitized maps.

e In this study, various parameters such as PGA, PGV, PGD, la, Mw, Repi,
Vs30, FD, Ds.gs are used. In the future studies, additional parameters such as
building types, population density, duration of earthquake, cumulative
absolute velocity and any other quantitative seismic parameters could be
inserted to the dataset for further analysis and investigation.

e Inthisstudy, MMI values are used from both United States Geological Survey-
Did You Feel It? (DYFI) website, and from the previous study of Bilal and
Askan (2014). As previously mentioned, DYFI values are an online public
survey that people can summarize the effects of shaking in their regions. In
Turkey, a similar project could be implemented where people should be
encouraged to actively participate. Such a data source could provide abundant
data.

¢ Inthe dataset, some of the intensity maps are taken from the study of Bilal and
Askan (2014) which are not in a digitized form. Those maps could be digitized
for more accurate felt intensity values.

e Most of the recorded data belongs to earthquakes which occurred on strike-
slip faults. Therefore, fault type is not included as a parameter in the analysis
steps. For the future studies, fault type can be added as an additional input

variable.
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An important point which affects the MMI values in a region is the seismic
design of the nearby buildings. In other words, in regions where most buildings
comply with the seismic code, lower MMI values will be assigned. Thus, the
seismic quality of the buildings may be inserted into the dataset for future

analyses.
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Detailed Description of MMI Scale
Figure A.1 shows the detailed description of MMI scale.
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Figure A.1. Description of MMI Scale (https://www.usgs.gov/media/images/modified-mercalli-intensity-
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B. Matlab Script for Converting Seismic Ground Motion Parameters

Matlab Script for converting seismic ground motion parameters (Brian Carlton, 2005)
are given below.

%seismicparam

% This function calculates seismic parameters from an acceleration time

% series. Specifically, it calculates velocity vs time, displacement vs

% time, peak ground acceleration (PGA), peak ground velocity (PGV), peak
% ground displacement (PGD), Arias intensity vs time, total Arias intensity
% (la), time between when 5% and 75% of la has occurred (significant

% duration D5-75), time between when 5% and 95% of la has occurred

% (significant duration D5-95), mean period (Tm), pseudo-acceleration

% response spectrum (Sa), pseudo-velocity response spectrum (Sv),

% displacement response spectrum (Sd), and the Fourier amplitude spectrum
% (FAS).

%

% Written by Brian Carlton 18 March 2015

%

% SYNTAX

% [param]=seismicparam(time,acc,damp,LUF,HUF)

%

% MANDATORY INPUTS

% acc = acceleration vector in g

% time = time vector in seconds, must be the same length as acc

%

% OPTIONAL INPUTS

% damp = damping ratio for response spectra

%  default =0.05

% LUF = lowest usable frequency of response spectra

%  default=0.10

% HUF = highest usable frequency of response spectra

%  default = (1/dt)/2 (Nyquist frequency)

%

% OUTPUT

% param = MATLAB structure with the following fields
%

% param.vel = velocity time series in cm/s

% param.disp = displacement time series in cm

% param.PGA = peak ground acceleration in g

% param.PGV = peak ground velocity in cm/s

% param.PGD = peak ground displacement in cm

% param.aint2 = cumulative fraction of Arias intensity occurring with time
% param.arias = total arias intensity at end of time series in m/s
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% param.D_5_75 = time between when 5% and 75% of la has occurred (significant
%  duration D5-75) in seconds
% param.t_5_75 = time when 5% and 75% of la has occurred in seconds
% param.D_5 95 = time between when 5% and 95% of la has occurred (significant
%  duration D5-95) in seconds
% param.t_5 95 = time when 5% and 95% of la has occurred in seconds
% param.Tm = mean period in seconds according to Rathje et al (2004)
% param.Period = periods for response spectra
% param.Sa = pseudo-acceleration response spectrum in g
% param.Sv = pseudo-velocity response spectrum in cm/s
% param.Sd = displacement response spectrum in cm
% param.FAS = Fourier amplitude spectrumin g
% param.freq = frequencies for Fourier amplitude spectrum in Hz
function[param]=seismicparam(time,acc,damp,LUF,HUF)
acc = acc(’);
time = time(’);
g =9.81,
A = acc*g; %convert to m/s"2
dt = time(2)-time(1);
% Check what variables are specified by the user, if a variable is not
% specified, then assign the default value
if exist('damp','var') == 0;
damp = 0.05;
end
if exist('LUF','var') == 0;
LUF =0.10;
end
if exist(HUF','var") == 0;
HUF = (1/dt)/2;

if HUF > 100;
HUF = 100;
end
end

% TIME SERIES

param.vel = cumsum(A)*dt*100;
param.disp = cumsum(param.vel)*dt;
% PEAK RESPONSES

param.PGA = max(abs(A))/g;
param.PGV = max(abs(param.vel));
param.PGD = max(abs(param.disp));
% ARIAS INTENSITY

aint2 = cumsum(A.A2)*pi*dt/(2*g);
arias = aint2(end);

param.aint2 = aint2/arias;
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param.arias = arias;
% DURATION
timed = time(aint2>=0.05*arias & aint2<=0.75*arias);
param.t_5 75 = [timed(1),timed(end)];
param.D_5_ 75 = timed(end)-timed(1);
timed = time(aint2>=0.05*arias & aint2<=0.95*arias);
param.t_5 95 = [timed(1),timed(end)];
param.D_5 95 = timed(end)-timed(1);
% RESPONSE SPECTRA
[Sa,Sv,Sd, T]=rs(acc,dt,damp,LUF,HUF);
param.Sd=Sd(:);
param.Sv=Sv(:);
param.Sa=Sa(:);
param.Period = T(%);
% FOURIER AMPLITUDE SPECTRUM
[f,U]=FAS(dt,acc);
param.FAS = U;
param.freq = f;
% MEAN PERIOD (Rathje et al, 2004)
fi = f(f>0.25 & f<20);
Ci = U(f>0.25 & f<20);
Tm = ((Ci(:)"A2)*(LHAC)))/I(Ci()™*Ci(2));
param.Tm = Tm;
function[Sa,Sv,Sd, T]=rs(acc,dt,damp,LUF,HUF)
Acccms=acc*981;%convert from g to cm/s"2
if dt > .005;
beta = .25;
else beta = 1/6;
end
gamma= 0.5; %parameters for Newmark's method
%average acceleration method gamma = 0.5, beta = .25, linear acceleration
%method gamma = 0.5, beta = 1/6. Average acceleration method is
%unconditionally stable, but less accurate. Linear acceleration method is
%stable for dt/T < 0.551 but more accurate (Chopra, 2011)
Tlong = LUF?-1; %lowest usable frequency = 1/max period
Tshort = HUF”-1; %highest usable frequency = 1/min period
T = 10.Minspace(log10(Tshort),log10(Tlong),150); %150 points
umax = zeros(1,length(T));
for j=1:length(T)
wn = 2*pi/T(j);
m = 1;%then c and k are in terms of damping and natural period
k =wn”2;
¢ = 2*wn*damp;
khat = k+gamma/beta/dt*c+m/beta/dt"2;
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a = m/beta/dt+gamma*c/beta;
b = 1/2/beta*m-+dt*(gamma/2/beta-1)*c;
u = zeros(length(Acccms),1); %oscillator starting from rest
udot = zeros(length(Acccms),1);%pre-allocate for speed
uddot = zeros(length(Acccms),1);
du = zeros(length(Acccms)-1,1);
dudot = zeros(length(Acccms)-1,1);
duddot = zeros(length(Acccms)-1,1);
for i = 1:length(Acccms)-1
du(i) = (Accecms(i+1)-Accems(i)+a*udot(i)+b*uddot(i))/khat;
u(i+1) = u(i)+du(i);
dudot(i) = gamma*du(i)/beta/dt-gamma*udot(i)/beta+dt*(1-
gamma/2/beta)*uddot(i);
udot(i+1) = udot(i)+dudot(i);
duddot(i) = du(i)/beta/dt*2-udot(i)/beta/dt-uddot(i)/2/beta;
uddot(i+1) = uddot(i)+duddot(i);
end
umax(j) = max(abs(u));%max displacement for every period T (cm)
end
Sd = umax; %displacement in cm
Sv=2*pi*Sd./T;%pseudo velocity in cm/s
Sa=2*pi*Sv./T/981;%pseudo acceleration in g
function[f,U]=FAS(dt,acc)
Ny = (1/dt)/2; %Nyquist frequency (highest frequency)
L = length(acc); %number of points in acc
NFFT = 2”nextpow2(L); % Next power of 2 from length of acc
df = 1/(NFFT*dt); %frequency spacing
U = abs(fft(acc,NFFT))*dt; %Fourier amplitudes
U = U(2:Ny/df+1); %single sided FAS
f = linspace(df,Ny,Ny/df)’; %[small, large, number] frequencies
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Dataset used in the Study

C.

Table C.1. Dataset Used in the Study
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Table C.1 Dataset Used in the Study (continued)
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Table C.1 Dataset Used in the Study (continued)
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Table C.1 Dataset Used in the Study (continued)
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Table C.1 Dataset Used in the Study (continued)
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Table C.1 Dataset Used in the Study (continued)
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Table C.1 Dataset Used in the Study (continued)
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Table C.1 Dataset Used in the Study (continued)
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D. Principal Component Analysis- Correlation Matrix

Table D.2. Correlation Matrix for MMI=I

Correlation Matrix

Mw | PGA | PGV | PGD la Ds.95 FD ED SC

Mw 1.000 | 0.868 | 0.998 | 0.876 | 0.760 | -0.811 | 1.000 | -0.341 | -0.218

PGA 0.868 | 1.000 | 0.869 | 0.621 | 0.947 | -0.892 | 0.868 | -0.015 | -0.656

PGV 0.998 | 0.869 | 1.000 | 0.894 | 0.748 | -0.809 | 0.998 | -0.378 | -0.236

0 PGD 0.876 | 0.621 | 0.894 | 1.000 | 0.393 | -0.530 | 0.876 | -0.752 | -0.030
;1) la 0.760 | 0.947 | 0.748 | 0.393 | 1.000 | -0.927 | 0.760 | 0.283 | -0.634
§' Ds o -0.811 | -0.892 | -0.809 | -0.530 | -0.927 | 1.000 | -0.811 | -0.095 | 0.473
FD 1.000 | 0.868 | 0.998 | 0.876 | 0.760 | -0.811 | 1.000 | -0.341 | -0.218

ED -0.341 | -0.015 | -0.378 | -0.752 | 0.283 | -0.095 | -0.341 | 1.000 | -0.263

SC -0.218 | -0.656 | -0.236 | -0.030 | -0.634 | 0.473 | -0.218 | -0.263 | 1.000

Table D.3. Correlation Matrix for MMI=II
Correlation Matrix
Mw | PGA | PGV | PGD la Ds.95 FD ED SC

Mw 1.000 | -0.167 | 0.260 | 0.255 | -0.054 | 0.459 | 0.355 | 0.470 | -0.225

PGA -0.167 | 1.000 | 0.036 | 0.007 | 0.978 | -0.481 | -0.138 | -0.593 | 0.297

PGV 0.260 | 0.036 | 1.000 | 0.990 | 0.114 | 0.114 | 0.586 | -0.122 | 0.317

0 PGD 0.255 | 0.007 | 0.990 | 1.000 | 0.091 | 0.159 | 0.551 | -0.101 | 0.308
g la -0.054 | 0.978 | 0.114 | 0.091 | 1.000 | -0.309 | -0.073 | -0.496 | 0.316
§' Ds o 0.459 | -0.481 | 0.114 | 0.159 | -0.309 | 1.000 | 0.247 | 0.668 | -0.075
FD 0.355 | -0.138 | 0.586 | 0.551 | -0.073 | 0.247 | 1.000 | 0.090 | 0.303

ED 0.470 | -0.593 | -0.122 | -0.101 | -0.496 | 0.668 | 0.090 | 1.000 | -0.307

SC -0.225 | 0.297 | 0.317 | 0.308 | 0.316 | -0.075 | 0.303 | -0.307 | 1.000
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Table D.4. Correlation Matrix for MMI=I1I

Correlation Matrix

Mw | PGA | PGV | PGD | la | Dses | FD | ED | SC

Mw 1.000 | 0.066 | 0.267 | 0.279 | 0.160 | 0.414 | 0.502 | 0.464 | -0.166
PGA 0.066 | 1.000 | 0.918 | 0.300 | 0.962 | -0.266 | 0.560 | -0.426 | 0.092
PGV 0.267 | 0.918 | 1.000 | 0.398 | 0.964 | -0.191 | 0.563 | -0.302 | -0.022

o |PGD 0.279 | 0.300 | 0.398 | 1.000 | 0.313 | -0.019 | 0.375 | 0.075 | -0.305
g la 0.160 | 0.962 | 0.964 | 0.313 | 1.000 | -0.223 | 0.543 | -0.387 | 0.059
S |Dses 0.414 | -0.266 | -0.191 | -0.019 | -0.223 | 1.000 | 0.122 | 0.434 | 0.130
FD 0.502 | 0.560 | 0.563 | 0.375 | 0.543 | 0.122 | 1.000 | -0.061 | 0.015

ED 0.464 | -0.426 | -0.302 | 0.075 | -0.387 | 0.434 | -0.061 | 1.000 | 0.073

SC -0.166 | 0.092 | -0.022 | -0.305 | 0.059 | 0.130 | 0.015 | 0.073 | 1.000

Table D.5. Correlation Matrix for MMI=IV
Correlation Matrix

Mw | PGA | PGV | PGD | la | Dses | FD | ED | SC

Mw 1.000 | 0.190 | 0.333 | 0.248 | 0.232 | 0.550 | 0.311 | 0.593 | -0.138
PGA 0.190 | 1.000 | 0.217 | -0.030 | 0.718 | -0.299 | 0.208 | -0.381 | -0.147
PGV 0.333 | 0.217 | 1.000 | 0.957 | 0.180 | 0.224 | 0.020 | 0.127 | -0.147

o |PGD 0.248 | -0.030 | 0.957 | 1.000 |-0.019 | 0.270 | 0.000 | 0.188 | -0.127
§ la 0.232 | 0.718 | 0.180 | -0.019 | 1.000 | -0.025 | 0.069 | -0.200 | -0.142
S Doss 0.550 | -0.299 | 0.224 | 0.270 |-0.025 | 1.000 | 0.112 | 0.654 | -0.145
FD 0.311 | 0.208 | 0.020 | 0.000 | 0.069 | 0.112 | 1.000 | 0.211 | 0.025

ED 0.593 | -0.381 | 0.127 | 0.188 |-0.200 | 0.654 | 0.211 | 1.000 | -0.013

SC -0.138 | -0.147 | -0.147 | -0.127 | -0.142 | -0.145 | 0.025 | -0.013 | 1.000
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Table D.6. Correlation Matrix for MMI=V

Correlation Matrix

Mw | PGA | PGV | PGD | la | Dsss | FD ED SC

Mw 1.000 |-0.117 | 0.326 | 0.365 | 0.027 | 0.501 | -0.065 | 0.835 | -0.011
PGA -0.117 | 1.000 | 0.570 | 0.450 | 0.792 | -0.403 | 0.285 | -0.362 | -0.340
PGV 0.326 | 0.570 | 1.000 | 0.924 | 0.655 | 0.069 | 0.393 | 0.079 | -0.306

o |PGD 0.365 | 0.450 | 0.924 | 1.000 | 0.634 | 0.172 | 0.138 | 0.145 |-0.248
g la 0.027 | 0.792 | 0.655 | 0.634 | 1.000 | -0.176 | 0.153 | -0.122 | -0.181
S |Dses 0.501 | -0.403 | 0.069 | 0.172 | -0.176 | 1.000 | 0.041 | 0.651 | -0.064
FD -0.065 | 0.285 | 0.393 | 0.138 | 0.153 | 0.041 | 1.000 | -0.174 | 0.035

ED 0.835 | -0.362 | 0.079 | 0.145 | -0.122 | 0.651 | -0.174 | 1.000 | 0.041

SC -0.011 | -0.340 | -0.306 | -0.248 | -0.181 | -0.064 | 0.035 | 0.041 | 1.000

Table D.7. Correlation Matrix for MMI=VI
Correlation Matrix

Mw | PGA | PGV | PGD | la | Dsss | FD ED SC

Mw 1.000 | -0.326 | -0.242 | 0.121 | -0.266 | 0558 | 0.425 | 0.652 | 0.106
PGA -0.326 | 1.000 | 0.900 | 0.497 | 0.964 | -0.535 | 0.208 | -0.581 | -0.248
PGV -0.242 | 0.900 | 1.000 | 0.683 | 0.875 | -0.313 | 0.237 | -0.383 | -0.234

o |PGD 0.121 | 0.497 | 0.683 | 1.000 | 0473 | -0.166 | 0.176 | -0.211 | 0.070
§ la -0.266 | 0.964 | 0.875 | 0.473 | 1.000 | -0.413 | 0.195 | -0.499 | -0.359
g Ds.os 0558 | -0.535 | -0.313 | -0.166 | -0.413 | 1.000 | 0.250 | 0.639 | -0.181
FD 0425 | 0208 | 0.237 | 0176 | 0.195 | 0.250 | 1.000 | 0.234 | -0.002

ED 0652 | -0.581 | -0.383 | -0.211 | -0.499 | 0.639 | 0.234 | 1.000 | -0.092

SC 0.106 | -0.248 | -0.234 | 0.070 | -0.359 | -0.181 | -0.002 | -0.092 | 1.000
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Table D.8. Correlation Matrix for MMI=VII

Correlation Matrix

Mw | PGA | PGV | PGD | la | Dses | FD ED sc

Mw 1.000 | 0.398 | -0.456 | -0.346 | 0557 | 0.386 | 0.453 | 0.025 | -0.953
PGA 0.398 | 1.000 | 0.334 | 0302 | 0.805 | -0.499 | 0.166 | -0.263 | -0.234
PGV -0.456 | 0.334 | 1.000 | 0.817 | 0.199 | -0.522 | -0.652 | -0.671 | 0.403

o |PGD -0.346 | 0302 | 0.817 | 1.000 | 0.044 | -0.483 | -0.541 | -0.558 | 0.256
§ la 0557 | 0.805 | 0.199 | 0.044 | 1.000 | -0.023 | 0.199 | -0.355 | -0.429
S Ds.os 0.386 | -0.499 | -0.522 | -0.483 | -0.023 | 1.000 | 0.333 | 0.300 | -0.448
FD 0.453 | 0.166 | -0.652 | -0.541 | 0.199 | 0.333 | 1.000 | 0.800 | -0.224

ED 0.025 | -0.263 | -0.671 | -0.558 | -0.355 | 0.300 | 0.800 | 1.000 | 0.145

sC -0.953 | -0.234 | 0.403 | 0.256 | -0.429 | -0.448 | -0.224 | 0.145 | 1.000

Table D.9. Correlation Matrix for MMI=VIII
Correlation Matrix

Mw | PGA | PGV | PGD | la | Dses | FD ED sc

Mw 1.000 | -0.410 | 0.404 | 0534 | -0.631 | 0.889 | -0.914 | -0.050 | 0.597
PGA -0.410 | 1.000 | 0.471 | 0.274 | 0.935 | -0.553 | 0.744 | -0.863 | -0.580
PGV 0404 | 0471 | 1.000 | 0977 | 0.129 | 0.457 | -0.082 | -0.551 | 0.407

o |PGD 0534 | 0274 | 0977 | 1.000 | -0.083 | 0.629 | -0.264 | -0.391 | 0.584
é la -0.631 | 0935 | 0.129 | -0.083 | 1.000 | -0.807 | 0.876 | -0.742 | -0.811
S | Dsss 0.889 | -0.553 | 0.457 | 0.629 | -0.807 | 1.000 | -0.893 | 0.256 | 0.899
FD -0.914 | 0.744 | -0.082 | -0.264 | 0.876 | -0.893 | 1.000 | -0.345 | -0.690

ED -0.050 | -0.863 | -0.551 | -0.391 | -0.742 | 0.256 | -0.345 | 1.000 | 0.500

SC 0597 | -0.580 | 0.407 | 0584 | -0.811 | 0.899 | -0.690 | 0.500 | 1.000
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Table D.10. Correlation Matrix for MMI=X

Correlation Matrix

Mw | PGA | PGV | PGD | la | Dses | FD ED sc

Mw 1.000 | -0.837 | -0.871 | 0.991 | -0.994 | 1.000 | 1.000 | 0.500 | 1.000
PGA -0.837 | 1.000 | 0.459 | -0.902 | 0.891 | -0.843 | -0.837 | 0.056 | -0.837
PGV -0.871 | 0.459 | 1.000 | -0.798 | 0.813 | -0.865 | -0.871 | -0.861 | -0.871
o |PGD 0.991 | -0.902 | -0.798 | 1.000 | -1.000 | 0.993 | 0.991 | 0.381 | 0.991
§ la -0.994 | 0.891 | 0.813 | -1.000 | 1.000 | -0.995 | -0.994 | -0.405 | -0.994
f Ds.os 1.000 | -0.843 | -0.865 | 0.993 | -0.995 | 1.000 | 1.000 | 0.491 | 1.000
FD 1.000 | -0.837 | -0.871 | 0.991 | -0.994 | 1.000 | 1.000 | 0.500 | 1.000
ED 0.500 | 0.056 | -0.861 | 0.381 | -0.405 | 0.491 | 0.500 | 1.000 | 0.500
sC 1.000 | -0.837 | -0.871 | 0.991 | -0.994 | 1.000 | 1.000 | 0.500 | 1.000
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E. Principal Component Analysis-Total Variance Table

Table E.1. Total Variance Table for MMI=I

Total VVariance Explained?®

Initial Eigenvalues

Extraction Sums of Squared Loadings

% of Cumulative % of Cumulative
Component Total Variance % Total Variance %
1 6.175 68.608 68.608 6.175 68.608 68.608
2 2.095 23.272 91.881 2.095 23.272 91.881
3 0.618 6.865 98.746
4 0.113 1.254 100.000
5 3.207E-16 | 3.563E-15 100.000
6 1.771E-16 | 1.968E-15 100.000
7 -2.611E-17 | -2.901E-16 100.000
8 -2.534E-16 | -2.815E-15 100.000
9 -4.191E-16 | -4.657E-15 100.000

Extraction Method: Principal Component Analysis.

a. Only cases for which MMI = 1 are used in the analysis phase.

Table E.2. Total Variance Table for MMI=II

Total Variance Explained?

Initial Eigenvalues Extraction Sums of Squared Loadings
% of Cumulative % of Cumulative
Component Total Variance % Total Variance %
1 3.126 34.733 34.733 3.126 34.733 34.733
2 2.778 30.864 65.597 2.778 30.864 65.597
3 1.164 12.928 78.525 1.164 12.928 78.525
4 0.816 9.063 87.588
5 0.538 5.978 93.566
6 0.316 3.510 97.076
7 0.253 2.815 99.892
8 0.007 0.076 99.967
9 0.003 0.033 100.000
Extraction Method: Principal Component Analysis.
a. Only cases for which MMI = 1 are used in the analysis phase.
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Table E.3. Total Variance Table for MMI=III

Total Variance Explained?®

Initial Eigenvalues Extraction Sums of Squared Loadings
% of Cumulative % of Cumulative
Component Total Variance % Total Variance %
1 3.717 41.298 41.298 3.717 41.298 41.298
2 2.096 23.285 64.583 2.096 23.285 64.583
3 1.259 13.986 78.569 1.259 13.986 78.569
4 0.638 7.088 85.658
5 0.538 5.980 91.638
6 0.458 5.087 96.724
7 0.227 2.526 99.250
8 0.049 0.540 99.790
9 0.019 0.210 100.000
Extraction Method: Principal Component Analysis.
a. Only cases for which MMI = 111 are used in the analysis phase.
Table E.4. Total Variance Plot for MMI=IV
Total Variance Explained?
Initial Eigenvalues Extraction Sums of Squared Loadings
% of Cumulative % of
Component Total Variance % Total Variance | Cumulative %

1 2.754 30.595 30.595 2.754 30.595 30.595
2 2.125 23.606 54.201 2.125 23.606 54.201
3 1.514 16.819 71.020 1.514 16.819 71.020
4 1.004 11.155 82.175 1.004 11.155 82.175
S 0.783 8.697 90.872
6 0.394 4.373 95.245
7 0.260 2.887 98.132
8 0.159 1.762 99.894
9 0.010 0.106 100.000

Extraction Method: Principal Component Analysis.

a. Only cases for which MMI = 1V are used in the analysis phase.
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Table E.5. Total Variance Table for MMI=V

Total Variance Explained?®

Initial Eigenvalues

Extraction Sums of Squared Loadings

% of Cumulative % of
Component Total Variance % Total Variance | Cumulative %
1 3.289 36.547 36.547 3.289 36.547 36.547
2 2.612 29.019 65.566 2.612 29.019 65.566
3 1.054 11.706 77.272 1.054 11.706 77.272
4 0.880 9.777 87.049
5 0.505 5.613 92.662
6 0.416 4.620 97.282
7 0.142 1.578 98.860
8 0.079 0.878 99.738
9 0.024 0.262 100.000

Extraction Method: Principal Component Analysis.

a. Only cases for which MMI = V are used in the analysis phase.

Table E.6. Total Variance Table for MMI=VI

Total Variance Explained?

Initial Eigenvalues

Extraction Sums of Squared Loadings

% of Cumulative % of
Component Total Variance % Total Variance | Cumulative %
1 4.053 45.032 45.032 4.053 45.032 45.032
2 2.066 22.954 67.987 2.066 22.954 67.987
3 1.205 13.386 81.373 1.205 13.386 81.373
4 0.697 7.740 89.113
> 0.390 4.332 93.446
6 0.293 3.259 96.705
7 0.243 2.700 99.405
8 0.045 0.495 99.901
9 0.009 0.099 100.000

Extraction Method: Principal Component Analysis.

a. Only cases for which MMI = VI are used in the analysis phase.
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Table E.7. Total Variance Table for MMI=VII

Total Variance Explained?®

Initial Eigenvalues Extraction Sums of Squared Loadings
% of Cumulative % of
Component Total Variance % Total Variance | Cumulative %

1 3.803 42.252 42.252 3.803 42.252 42.252
2 2.770 30.779 73.030 2.770 30.779 73.030
3 1.336 14.849 87.879 1.336 14.849 87.879
4 0.515 5.718 93.597
5 0.444 4.930 98.527
6 0.086 0.953 99.480
7 0.042 0.469 99.949
8 0.004 0.046 99.995
9 0.000 0.005 100.000

Extraction Method: Principal Component Analysis.

a. Only cases for which MMI = VII are used in the analysis phase.

Table E.8. Total Variance Table for MMI=VIII

Total Variance Explained?

Initial Eigenvalues Extraction Sums of Squared Loadings

% of Cumulative % of Cumulative
Component Total Variance % Total Variance %
1 5.183 57.588 57.588 5.183 57.588 57.588
3.050 33.885 91.473 3.050 33.885 91.473
0.767 8.527 100.000

1.411E-15 1.568E-14 100.000

2.380E-16 2.644E-15 100.000

1.212E-16 1.347E-15 100.000

1.002E-17 1.113E-16 100.000

O N o] WD

-4.035E-16 | -4.483E-15 100.000

9 -5.063E-16 | -5.626E-15 100.000

Extraction Method: Principal Component Analysis.

a. Only cases for which MMI = VII1 are used in the analysis phase.
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Table E.9. Total Variance Table for MMI=X

Total Variance Explained?®

Initial Eigenvalues

Extraction Sums of Squared Loadings

% of Cumulative % of Cumulative
Component Total Variance % Total Variance %
1 7.683 85.370 85.370 7.683 85.370 85.370
2 1.317 14.630 100.000 1.317 14.630 100.000
3 5.475E-16 | 6.084E-15 100.000
4 4.865E-16 | 5.406E-15 100.000
5 1.020E-16 | 1.134E-15 100.000
6 -1.318E-16 | -1.464E-15 100.000
7 -2.146E-16 | -2.384E-15 100.000
8 -3.207E-16 | -3.563E-15 100.000
9 -6.703E-16 | -7.447E-15 100.000

Extraction Method: Principal Component Analysis.
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F. Principal Component Analysis — Scree Plot
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Figure F.1. Scree Plot for MMI=I

Eigenvalue

Scree Plot

o

T T T T T
3 4 E] ] 7

Component Number

o=

Figure F.2. Scree Plot for MMI=II
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Figure F.3. Scree Plot for MMI=111
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Figure F.4. Scree Plot for MMI=IVV
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Figure F.5. Scree Plot for MMI=V
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Figure F.6. Scree Plot for MMI=VI
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Figure F.7. Scree Plot for MMI=VII
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Figure F.8. Scree Plot for MMI=VIII
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Figure F.9. Scree Plot for MMI=X
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G. Principal Component Analysis-Component Matrix

Table G.1. Component Matrix for MMI=I

Component Matrix®P

Component
1 2

PGV 0.975 0.204
FD 0.972 0.185
Mw 0.972 0.185
PGA 0.953 -0.271
SD -0.893 0.299
Al 0.862 -0.497
PGD 0.805 0.582
ED -0.234 -0.894
SC -0.427 0.661
Extraction Method: Principal Component Analysis.

a. 2 components extracted.

b. Only cases for which MMI =1 are used in the analysis phase.

Table G.2. Component Matrix for MMI=II
Component Matrix®P
Component
1 2 3

PGA -0.868 0.170 0.451
ED 0.833 -0.150 0.261
Al -0.773 0.264 0.549
SD 0.744 0.160 0.269
PGV 0.936 -0.127
PGD 0.922 -0.132
FD 0.286 0.737

SC -0.374 0.505 -0.265
Mw 0.540 0.330 0.638

Extraction Method: Principal Component Analysis.

a. 3 components extracted.

b. Only cases for which MMI = 11 are used in the analysis phase.
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Table G.3. Component Matrix for MMI=I1I

Component Matrix®P

Component
1 2 3
PGV 0.959
Al 0.958 0.135
PGA 0.948 -0.166 0.153
FD 0.695 0.424 0.115
Mw 0.250 0.852
ED -0.390 0.725
SD -0.237 0.694 0.340
SC -0.113 0.903
PGD 0.473 0.363 -0.511
Extraction Method: Principal Component Analysis.
a. 3 components extracted.
b. Only cases for which MMI = I11 are used in the analysis phase.
Table G.4. Component Matrix for MMI=IV
Component Matrix®P
Component
1 2 3 4
Mw 0.776 0.427
SD 0.739 -0.350 0.206 -0.217
PGV 0.703 0.386 -0.567 0.171
PGD 0.698 0.170 -0.660 0.174
ED 0.693 -0.509 0.302
PGA 0.917 0.241
Al 0.801 0.296 -0.114
FD 0.274 0.117 0.543 0.482
SC -0.239 -0.248 0.805

Extraction Method: Principal Component Analysis.

a. 4 components extracted.

b. Only cases for which MMI =1V are used in the analysis phase.
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Table G.5. Component Matrix for MMI=V

Component Matrix®P

Component
1 2 3

PGV 0.923 0.213 0.126
PGD 0.850 0.315
Al 0.849 -0.138
PGA 0.813 -0.397
ED 0.930
Mw 0.180 0.877
SD 0.802 0.126
FD 0.361 -0.120 0.811
SC -0.397 0.587
Extraction Method: Principal Component Analysis.
a. 3 components extracted.
b. Only cases for which MMI =V are used in the analysis phase.

Table G.6. Component Matrix for MMI=VI

Component Matrix®
Component
1 2 3

PGA 0.960 0.180
Al 0.915 0.252 -0.168
PGV 0.883 0.360
ED -0.712 0.503 -0.137
SD -0.637 0.528 -0.254
PGD 0.558 0.432 0.422
FD 0.750 0.166
Mw -0.499 0.708 0.237
SC -0.199 -0.241 0.910

Extraction Method: Principal Component Analysis.

a. 3 components extracted.

b. Only cases for which MMI =VI are used in the analysis phase.
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Table G.7. Component Matrix for MMI=VII

Component Matrix®P

Component
1 2 3

PGV -0.912 0.217
PGD -0.818 0.199
FD 0.785 0.557
SD 0.686 -0.118 -0.510
ED 0.666 -0.485 0.511
Al 0.897 0.166
PGA -0.181 0.839 0.500
Mw 0.651 0.709 -0.172
SC -0.558 -0.649 0.445
Extraction Method: Principal Component Analysis.
a. 3 components extracted.
b. Only cases for which MMI =VII are used in the analysis phase.

Table G.8. Component Matrix for MMI=VIII

Component Matrix®?
Component
1 2

SD 0.961 0.275
Al -0.938 0.344
FD -0.934
sC 0.900 0.143
Mw 0.818 0.346
PGA -0.760 0.649
PGV 0.205 0.957
PGD 0.405 0.886
ED 0.492 -0.770

Extraction Method: Principal Component Analysis.

a. 2 components extracted.

b. Only cases for which MMI =VII1 are used in the analysis phase.
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Table G.9. Component Matrix for MMI=X

Component Matrix®P

Component
1 2
FD 1.000
SC 1.000
Mw 1.000
SD 0.999
Al -0.991 0.131
PGD 0.988 -0.156
PGV -0.882 -0.470
PGA -0.823 0.568
ED 0.521 0.854

Extraction Method: Principal Component Analysis.

a. 2 components extracted.

b. Only cases for which MMI =X are used in the analysis phase.
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H. Regression Plots for ANN Training Models

Table H.1. Table showing the Regression Plots for ANN_Training Models
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Table H.1. Table showing the Regression Plots for ANN_Training Models (continued)

# of
Models Hidden Regression Plots
Neurons
Training: R=0.85856
10 O Data _.-'O
i
g
2
(1]
!'_
R
4 S
[]
1
5
j= 8
]
o
, L
2 4 6 8 10
Target
M2
Training: R=0.8925 o
0w
[a]
o
+
7]
2
(1]
3
5 ~
(=]
]]
i
5
[= 8
5
o
L
2 4 6 8 10
Target

108



Table H.1. Table showing the Regression Plots for ANN_Training Models (continued)

# of
Models Hidden Regression Plots
Neurons
Training: R=0.93308
10 -
O Daa C.
-
L
=
+
@
[
(1]
!'_
5 &
o]
]
1
5
o
s
o
L
2 4 6 8 10
Target
M3
Training: R=0.93164
10 O Data __..8'
[Ty ]
=
+
B
o
(2]
t
o
6 e
]
2
S
2
=
O
L
2 4 6 8 10
Target

109



Table H.1. Table showing the Regression Plots for ANN_Training Models (continued)

Output ~= 0.87*Target + 0.56
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Table H.1. Table showing the Regression Plots for ANN_Training Models (continued)
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Table H.1. Table showing the Regression Plots for ANN_Training Models (continued)

Output ~=0.73*Target + 1.1
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Table H.1. Table showing the Regression Plots for ANN_Training Models (continued)
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Table H.1. Table showing the Regression Plots for ANN_Training Models (continued)

Output ~= 0.84*Target + 0.65
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Table H.1. Table showing the Regression Plots for ANN_Training Models (continued)

Output ~= 0.75*Target + 1
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Table H.1. Table showing the Regression Plots for ANN_Training Models (continued)
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Table H.1. Table showing the Regression Plots for ANN_Training Models (continued)
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Table H.1. Table showing the Regression Plots for ANN_Training Models (continued)

Output ~=0.84*Target + 0.7
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Table H.1. Table showing the Regression Plots for ANN_Training Models (continued)

Output ~= 0.76*Target +1

# of
Models Hidden Regression Plots
Neurons
Training: R=0.83974
o
-
®
2
(1]
-y
3 o
Il
t
5
o
s
o
2 4 6 8 10
Target
M13
Training: R=0.86966
4

Target

119




Table H.1. Table showing the Regression Plots for ANN_Training Models (continued)

Output ~= 0.76*Target + 1
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Table H.1. Table showing the Regression Plots for ANN_Training Models (continued)
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Table H.1. Table showing the Regression Plots for ANN_Training Models (continued)
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