
HIGH PERFORMANCE NUMBER THEORETIC TRANSFORMS IN
CRYPTOGRAPHY

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

METIN EVRIM ULU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

CRYPTOGRAPHY

JANUARY 2020

Approval of the thesis:

HIGH PERFORMANCE NUMBER THEORETIC TRANSFORMS IN
CRYPTOGRAPHY

submitted by METIN EVRIM ULU in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Cryptography Department, Middle East Tech-
nical University by,

Prof. Dr. Ömür Uğur
Director, Graduate School of Applied Mathematics

Prof. Dr. Ferruh Özbudak
Head of Department, Cryptography

Assoc. Prof. Dr. Murat Cenk
Supervisor, Cryptography, METU

Examining Committee Members:

Assoc. Prof. Dr. Ali Doğanaksoy
Cryptography, METU

Assoc. Prof. Dr. Murat Cenk
Cryptography, METU

Assoc. Prof. Dr. Ali Ulaş Özgür Kişisel
Mathematics, METU

Assoc. Prof. Dr. Fatih Sulak
Mathematics, Atılım University

Assist. Prof. Dr. Nurdan Saran
Computer Engineering Department, Çankaya University

Date: 15.01.2020

iv

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: METIN EVRIM ULU

Signature :

v

vi

ABSTRACT

HIGH PERFORMANCE NUMBER THEORETIC TRANSFORMS IN
CRYPTOGRAPHY

Ulu, Metin Evrim
Ph.D., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Murat Cenk

January 2020, 69 pages

Theoretical advances in physics opened up a new window into quantum computation.
This window rendered a number of mathematically hard problems unusable for cryp-
tographic applications. For instance, Shor showed that it is possible factor integers
by a quantum algorithm efficiently thus rendering the standard public-key encryption
scheme RSA insecure. In February 2016, NIST launched a standardization process
for post-quantum cryptography algorithms to study the effect of quantum computing
on the current generation of cryptographic algorithms and to build the next generation
cryptosystems that are resistant to quantum attacks.

One type of quantum safe cryptographic systems is based on lattices. In order to im-
prove the performance in lattice based systems, Number Theoretic Transforms (NTT)
are used. In this thesis, the performance of NTT in cryptography is studied. First,
Peikert’s Scheme and its realization BCNS Algorithm and NewHope key encapsula-
tion method is discussed. Next, SWIFFTX hash function that uses NTT as a building
block is presented. Finally, an efficient GPU implementation of SWIFFTX hash func-
tion is provided. Experimental results indicate almost 10x improvement in speed and
5 Watts decrease in power consumption per 216 hashes.

Keywords: NTT, PQC, NewHope, SWIFFT, SWIFFTX

vii

viii

ÖZ

KRİPTOGRAFİ’DE YÜKSEK PERFORMANSLI SAYI KURAMSAL
DÖNÜŞÜMLER

Ulu, Metin Evrim
Doktora, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Murat Cenk

Ocak 2020, 69 sayfa

Son yıllarda meydana gelen fizik’teki teorik gelişmeler, kuantum bilgisayarları üret-
menin ve üzerinde hesaplama yapmanın olanaklı olduğunu gösterdi. Bu durum, varo-
lan ve kullanılan kriptografik algoritmaları değişik seviyelerde güvensiz hale getirdi.
Bunun sebebi ise, algoritmalarda kullanılan matematiksel çözümü zor olan problem-
lerin kuantum bilgisayarlarda verimli olarak çözülebilmesi. Örnegin Shor, tam sayı-
ları asal çarpanlarına ayıran bir algoritmayı henüz kuantum bilgisayarlar var olmadan
tasarlamıştı. Bu sayede, kuantum bilgisayarlar üzerinde, açık anahtar RSA kriptosis-
temi kırılabiliyor. Şubat 2016’da, NIST mevcut durumu incelemek, kuantum hesap-
lamanın varolan kriptosistemler üzerindeki etkisini çalışmak ve yeni nesil kuantum
saldırılara dayanıklı sistemler geliştirebilmek için bir çalışma grubu kurdu.

Kuantum ataklara karşı dayanıklı olan kriptografik sistemlerin bir çeşidi latis tabanlı
sistemlerdir. Bu tür sistemlerde, performansı arttırmak için Sayı Kuramsal Dönüşüm-
ler kullanılmaktadır. Bu tezde, bu dönüşümlerin kriptografik uygulamalardaki pere-
formansları çalışılmıştır. Öncelikle, latis tabanlı Peikert şeması, O’nun gerçekleşti-
rimi olan BCNS algoritması ve NewHope algoritması incelenmiştir. Ardından, bahsi
geçen dönüşüm’leri kullanan SWIFFTX özet fonksiyonu sunulmuştur. Son olarak, bu
fonksiyona ait verimli bir GPU uygulaması verilmiştir. Yapılan testlerde görülmüştür
ki, bu yeni uygulama fonksiyona 10 kat hız kazandırmış, aynı zaman da 216 girdi için
5 Watt güç tasarrufu sağlamıştır.

Anahtar Kelimeler: NTT, PQC, NewHope, SWIFFT, SWIFFTX

ix

x

ACKNOWLEDGMENTS

I would like to thank to my family for their patience and support during my studies.
It would be impossible to accomplish without them. Also, I would like to thank to
my supervisor Assoc. Prof. Dr. Murat Cenk for his guidance, encouragement and
profound comments. I wish him and his family a long and prosperous life.

xi

xii

TABLE OF CONTENTS

ABSTRACT . vii

ÖZ . ix

ACKNOWLEDGMENTS . xi

TABLE OF CONTENTS . xiii

LIST OF TABLES . xvii

LIST OF FIGURES . xviii

LIST OF ALGORITHMS . xix

LIST OF ABBREVIATIONS . xx

CHAPTERS

1 INTRODUCTION . 1

2 NUMBER THEORETIC TRANSFORMS 5

2.1 Introduction . 5

2.2 Fourier Transform . 6

2.3 Fast Polynomial Multiplication 10

3 OPTIMIZATIONS IN MODULAR ARITHMETIC 13

3.1 Introduction . 13

xiii

3.2 Short Barrett Reduction . 13

3.3 Montgomery Forms . 14

4 THE USE OF NUMBER THEORETIC TRANSFORMS IN CRYP-
TOGRAPHY . 17

4.1 Computational Problems on Lattices 17

4.2 BCNS Key Exchange Algorithm 22

4.3 New Hope . 23

4.4 SWIFFT and SWIFFTX . 33

5 NUMBER THEORETIC TRANSFORMS IN SWIFFTX 37

6 AN EFFICIENT GPU IMPLEMENTATION OF SWIFFT AND SWIFFTX 41

6.1 Introduction . 41

6.2 Compute Unified Device Architecture - CUDA 42

6.3 The Reference Implementation 43

6.4 A Parallel Implementation 45

6.5 Further Improvements and Occupancy Analysis 50

6.6 Methodology and Results 51

7 CONCLUSION . 57

REFERENCES . 61

APPENDICES

A TEST DEVICE PROPERTIES . 65

B POWER CONSUMPTION DATA 67

xiv

CURRICULUM VITAE . 69

xv

xvi

LIST OF TABLES

TABLES

Table 4.1 Parameter sets for NewHope Algorithm 29

Table 4.2 Parameter sets for NewHope Algorithm 29

Table 6.1 Experimental Results, Test Round: 214 hashes 52

Table 6.2 Cache Hit Rates . 53

Table 6.3 Memory Throughput Metrics . 54

Table A.1 Test Device Properites . 65

Table B.1 Ported Reference Implementation Power Consumption Data 67

Table B.2 Our Parallel Implementation Power Consumption Data 67

xvii

LIST OF FIGURES

FIGURES

Figure 2.1 Cooley-Tukey Butterfly . 8

Figure 2.2 Gentleman-Sande Butterfly . 9

Figure 4.1 BCNS Key Exchange Algorithm 23

Figure 4.2 Montgomery reduction (R = 218) 31

Figure 4.3 Short Barrett Reduction . 31

Figure 4.4 The Gentleman-Sande butterfly inside odd levels of NTT compu-
tation. All a[j] and W are of type uint16_t. 32

Figure 6.1 SWIFFTX Algorithm . 43

Figure 6.2 Reference Implementation Compiler Stats 44

Figure 6.3 Our Proposed Parallel SWIFFTX Algorithm 45

Figure 6.4 dp2a two-way dot product-accumulate operator 47

Figure 6.5 Kernel Stall Reasons, Reference Impl. (left) vs Our Parallel Impl.
(right) . 55

Figure 7.1 Second Round Candidates . 58

xviii

LIST OF ALGORITHMS

ALGORITHMS

Algorithm 1 NewHope-CPA-PKE Key Generation 24

Algorithm 2 NewHope-CPA-PKE Encryption 25

Algorithm 3 NewHope-CPA-PKE Decryption 25

Algorithm 4 Deterministic sampling of polynomials in Rq from ψn8 27

Algorithm 5 Deterministic generation of â by expansion of a seed 28

xix

LIST OF ABBREVIATIONS

ALU Arithmetic Logic Unit

CCA Choosen Ciphertext Attack

CPA Choosen Plaintext Attack

CUDA Compute Unified Device Architecture

DFT Discrete Fourier Transform

DIT Decimation in Time

DIF Decimation in Frequency

FFT Fast Fourier Transform

GNU GNU is not Unix

GPU Graphical Processing Unit

ITS Independent Thread Scheduling

NTT Number Theoretic Transform

PQC Post-Quantum Cryptography

PTX Parallel Thread Execution

REDC Montgomery Reduction Algorithm

SIMD Single-instruction Multiple-data

SM Streaming Multiprocessor

xx

CHAPTER 1

INTRODUCTION

Cryptography is a branch of mathematics that studies the security of information in

the presence of adversaries. This information can be the data on a secure channel or

just the files on your computers hard drive. Therefore the level of security required

might change variably.

A famous example is the German device called Enigma that has been used dur-

ing World War II. Although being a mechanical device, operated by rotors etc., the

keyspace of this device was 264 ≈ 218 (i.e. more than 18-bits). This number is much

lower than the size of the keyspace of DES, a symmetric cipher that has been used

in the late nineties internationally. DES had a keyspace of 256. Enigma has been

cracked in 1932 by cryptanalysis techniques and this allowed Allies to listen to the

communication among German troops.

Many ciphers have been designed since and most of them are shown to broken by

emerging cryptanalysis techniques. Some of these techniques are purely mathemati-

cal deeply rooted in the concrete branches of mathematics such as topology, algebraic

geometry and analysis, some of them are rooted in the advances in computer science

and engineering. Giant supercomputers made the computations feasible and faster

and this made the impossible possible. Unfortunately, these developments posed cer-

tain challenges over the cryptographers who design these ciphers which are, theoreti-

cally, secure under certain assumptions.

Although the field is dominated by mathematicians and computer scientists, physi-

cists have also showed interest in computation, computability and cryptography. A

1

prominent example might be by the famous Richard P. Feynman. In 1982, Feynman

[12] showed that a quantum computer can outperform a regular one by employing

subatomic particles. However, this computer was not a binary but a probabilistic

one. Developments such as these made awareness in the scientific community to look

deeper into this subject and the field of quantum computing has born.

Industry is still in its infancy yet promising results emerge every day. In 2017, Google

announced its 20-qubit computer. Similarly, IBM, Intel, Rigetti followed them. In

2018, Google announced their 72-qubit quantum computer. In the following year,

IBM announced a 53-qubit one. These numbers coincide with the famous Moore’s

Law which states the number of transistors in a dense integrated circuit doubles about

every two years. If an analog rule is true for quantum-computers then in 10+ years,

there will be a quantum computer of 2048-qubits.

Although realizations of quantum computers are still new, theoretical models have

been developed to estimate or better prove what a quantum computer can do. For

instance, Shor [32] showed that a problem in the NP class called Prime Factorization

can be solved in the existence of such a quantum computer. This proof was only the

beginning. In 1996, Grover [15] showed that a search on the keyspace can be done

faster requiring only square-root of the keyspace computations in the worst case.

These facts led to deeper studies and cryptography community now develops new ci-

phers and algorithms based on the fact that a competitive quantum computer might be

available to an adversary. In April 2016, NIST published a report [3] on post-quantum

cryptography. In this report, it is noted that commonly deployed RSA algorithm will

be insecure by 2030. Therefore, post-quantum resistant algorithms are required and

the Post-Quantum-Cryptography Project was born.

In terms of post-quantum security, symmetric ciphers has an advantage that doubling

the keysize restores their original security. This is not true for public-key and signa-

ture schemes. This is why the NIST Project is focused on them. There are five classes

defined by NIST. The lattice based schemes is one of them. We will focus on this type

and delve into the details.

In this thesis, a number of the post-quantum cryptography algorithms that employ

2

Number Theoretic Transforms are discussed. As mentioned before, these algorithms

are based on problems that are proved to be quantum resistant. Our focus is on the

efficient implementations of these algorithms on today’s computers.

We start with defining building blocks of these algorithms, namely, the Fourier Trans-

forms and efficient methods of modular arithmetic in the following two chapters.

Then, several post-quantum algorithms are presented. Finally, an efficient implemen-

tation of a hash algorithm on GPU is discussed in detail.

3

4

CHAPTER 2

NUMBER THEORETIC TRANSFORMS

2.1 Introduction

In mathematics, Discrete Fourier Transform (DFT) is a function that converts a string

of equally-spaced samples of a function to a same length string of equally-spaced

samples of discrete-time Fourier transform that is a complex-valued function of fre-

quency. DFT can be calculated over any ring.

The material in this chapter follows [10] and [9].

Definition 1. Let C be the algebraically closed complex field and n ∈ N. An ω ∈ C

is called n-th root of unity if it satisfies ωn = 1.

Definition 2. An ω ∈ C is called principal n-th root of unity if it is a n-th root unity

and satisfies ωm 6= 1 with n > m ∈ N.

From now on, assume ωn ∈ C is a principal n-th root of unity.

Lemma 1. ωdkdn = ωkn.

Proof. ωdkdn = (e
2πi
dn)dk = (e

2πi
n)k = ωkn

Corollary 1. Let n ∈ N be an even integer, then ωn/2n = ω2 = −1.

Proof. The first equality is a direct consequence of the previous lemma. Now suppose

ω2 = 1 then, ωn/2n = 1 which contradicts to the fact that ωn ∈ C is a principal n-th

root of unity.

5

Lemma 2. Let n, k ∈ N such that n - k, then
n−1∑
j=0

(ωkn)j = 0

Proof. If n | k such that k = nk′ then
∑n−1

j=0 (ωnk
′

n)j =
∑n−1

j=0 (1)k
′j = n trivially. If

n - k then,

ωkn

n−1∑
j=0

(ωkn)j =
n−1∑
j=0

(ωkn)j+1 =
n−1∑
j=0

(ωkn)j

(ωkn − 1)
n−1∑
j=0

(ωkn)j = 0

Finally, ωkn 6= 1 implies the desired result.

2.2 Fourier Transform

Definition 3. Let R be a ring, n ∈ N and ωn ∈ R be a principal n-th root of unity

such that ωnn = 1 and ωmn 6= 1 for any n > m ∈ N. The discrete Fourier transform is

defined as follows:

DFT :Rn → Rn

A = (a0, . . . , an−1)→ F = (f0, . . . , fn−1)

where fi =
∑n−1

j=0 ajω
ij
n .

The vector A can also be viewed as an element of R[x] such that A =
∑n−1

i=0 aix
i

where degree A = n. Then the equation, DFT (A) = F is simply calculated by

evaluating the polynomial A at ωjn,∀j ∈ Z, 0 ≤ j ≤ n− 1 such that fj = A(ωjn).

Definition 4. Number theoretic transforms (NTT) are specialized discrete Fourier

transforms where the ringR is a finite field.

Theorem 1. Horner’s Rule: The polynomialA(x) can be evaluated in nmultiply-add

operations.

Proof. Consider the following:

A(x) = (((((an−1x+ an−2)x+ an−3)x+ . . .

6

Each parenthesis can be calculated in a single multiply-add operation. By consid-

ering the polynomial evaluation as left-associative fold, A(x) can be evaluated in n

multiply-add operations.

Theorem 2. The naive implementation of DFT has arithmetic complexity of O(n2)

Proof. Calculation of each fj = A(ωjn) has complexity ofO(n) by the Horner’s Rule

and the result follows.

An algorithm invented by Cooley-Tukey, called Fast Fourier Transform, allows the

calculation of DFT and has arithmetic complexity ofO(n logn) when n is a power of

two. Basically, the algorithm employs divide-and-conquer strategy with the following

outline:

1. Divide the problem into two sub-problems of half-size,

2. Solve each sub-problem,

3. Obtain the final solution for the original problem by combining two solutions.

There are in fact, two variants of Fast Fourier transform. The first one is the Cooley-

Tukey algorithm that defines two sub-problems by decimating the input in time.

Definition 5. Radix-2 Decimation-In-Time (DIT) Fast Fourier Transform (FFT).

Let N ∈ N be a power of two and X = FFTN(x) be the fast Fourier transform such

that

Xr =
N−1∑
k=0

xkω
rk
n , ∀r ∈ Z, 0 ≤ r < N, (2.1)

Xr =

N
2
−1∑

k=0

x2kω
r(2k)
N + ωrN

N
2
−1∑

k=0

x2k+1ω
r(2k)
N , ∀r ∈ Z, 0 ≤ r < N, (2.2)

Xr =

N
2
−1∑

k=0

x2kω
r(k)
N
2

+ ωrN

N
2
−1∑

k=0

x2k+1ω
r(k)
N
2

, ∀r ∈ Z, 0 ≤ r < N, (2.3)

7

since ω2
N = ωN

2
. Now define the two sub-problems.

Yr =

N
2
−1∑

k=0

ykω
rk
N
2
, ∀r ∈ Z, 0 ≤ r ≤ N

2
− 1, (2.4)

Zr =

N
2
−1∑

k=0

zkω
rk
N
2
, ∀r ∈ Z, 0 ≤ r ≤ N

2
− 1, (2.5)

where yk = x2k and zk = x2k+1, ∀k ∈ Z, 0 ≤ k < N
2
− 1. It is now possible to

combine the two results by the following:

Xr = Yr + ωrNZr, ∀r ∈ Z, 0 ≤ r ≤ N

2
− 1 (2.6)

Xr+N
2

= Yr − ωrNZr, ∀r ∈ Z, 0 ≤ r ≤ N

2
− 1 (2.7)

using the fact ω
N
2
+r

N = −ωrN , ∀r ∈ Z, 0 ≤ r ≤ N
2
− 1.

In the following figure, Cooley-Tukey butterfly is depicted in which two sub-problems

are combined to get the desired final result. Note that, Zr is multiplied by the twiddle

factor before entering the network.

Figure 2.1: Cooley-Tukey Butterfly
Yr + Xr = Yr + ωrNZr

Zr . − Xr+N
2

= Yr − ωrNZr

ωrN

The second type of FFT is Decimation-In-Frequency Fast Fourier Transform.

Definition 6. Radix-2 Decimation-In-Frequency (DIF) Fast Fourier Transform (FFT)

Let N ∈ N be a power of 2 and X = FFTN(x) be the fast Fourier transform such

8

that

Xr =
N−1∑
l=0

xlω
rl
N , ∀r ∈ Z, 0 ≤ r < N, (2.8)

Xr =

N
2
−1∑

l=0

xlω
rl
N +

N−1∑
l=N

2

xlω
rl
N , ∀r ∈ Z, 0 ≤ r < N, (2.9)

Xr =

N
2
−1∑

l=0

xlω
rl
N +

N
2
−1∑

l=0

xl+N
2
ω
r(l+N

2
)

N , ∀r ∈ Z, 0 ≤ r < N, (2.10)

Xr =

N
2
−1∑

l=0

(xl + xl+N
2
ω
rN

2
N) ωrlN , ∀r ∈ Z, 0 ≤ r < N, (2.11)

For even r = 2k, k ∈ Z,

X2k =

N
2
−1∑

l=0

(xl + xl+N
2
ωkNN) ω2kl

N , ∀k ∈ Z, 0 ≤ k ≤ N

2
− 1, (2.12)

=

N
2
−1∑

l=0

(xl + xl+N
2

) ωklN
2
, ∀k ∈ Z, 0 ≤ k ≤ N

2
− 1, (2.13)

(2.14)

For odd r = 2k + 1, k ∈ Z,

X2k+1 =

N
2
−1∑

l=0

(xl + xl+N
2
ω
(2k+1)N

2
N) ω

(2k+1)l
N , ∀k ∈ Z, 0 ≤ k ≤ N

2
− 1, (2.15)

=

N
2
−1∑

l=0

((xl − xl+N
2

) ωlN) ωklN
2
, ∀k ∈ Z, 0 ≤ k ≤ N

2
− 1. (2.16)

Now define Yk = X2k, Zk = X2k+1, yl = xl + xl+N
2

and zl = (xl − xl+N
2

) ωlN .

Figure 2.2: Gentleman-Sande Butterfly
xl + yl = (xl + xl+N

2
)

xl+N
2

− . zl = (xl − xl+N
2

) ωlN

ωrN

Theorem 3. The arithmetic complexity of DIT FFT algorithm is O(N logN).

9

Proof. There are two sub-problems of size N/2. Total cost of N Xr is N additions

and N/2 multiplications.

T (N) =

2T (N/2) +NAdditions+ N
2
Multiplications, ifN = 2n ≥ 2,

0, ifN = 1

Observe the recurrence relation, for instance for N = 23,

T (8) = 2T (4) + 23Add.+ 22Mult.

= 2(2T (2) + 22Add.+ 2Mult.) + 23Add.+ 22Mult.

= 4T (2) + 24Add.+ 23Mult.

= 4(2T (1) + 2Add.+ 1Mult.) + 24Add.+ 23Mult.

= 8T (1) + (23 + 24)Add.+ (22 + 23)Mult.

= NlogNAdditions+
N

2
logNMultiplications

This shows that the complexity is bounded by O(NlogN).

Theorem 4. The arithmetic complexity of DIF FFT algorithm is O(N logN).

Proof. The proof is almost the same as the DIT case. The only difference in the

algorithm is that additions and subtractions are executed before the multiplication by

the twiddle factors.

2.3 Fast Polynomial Multiplication

There are various applications of Fast Fourier transform. One of them is Fast Poly-

nomial Multiplication. The idea is basically evaluating operands at roots of unity,

multiplying results point-wise then, interpolating back to the resulting polynomial in

order to get the desired result.

Consider two polynomials of degree N defined by

AN(z) =
N∑
l=0

alz
l = aNz

N + . . .+ a1z + a1 (2.17)

10

and

BN(z) =
N∑
l=0

blz
l = bNz

N + . . .+ b1z + b0 (2.18)

where z ∈ C and al, bl ∈ C, l ∈ Z, 0 ≤ l ≤ N . The product of polynomials AN(z)

and BN(z) is a polynomial of degree 2N defined by

C2N(z) = AN(z)BN(z) =
2N∑
l=0

clz
l = c2Nz

2N + . . .+ c1z + c0 (2.19)

where ak = bk = 0 for N < k ≤ 2N and

cl =
l∑

k=0

akbl−k, l ∈ Z, 0 ≤ l ≤ 2N. (2.20)

Theorem 5. Naive polynomial multiplication of two polynomials of degree N has

arithmetic complexity of O(N2).

Proof. Each cl requiresN multiplications and N−1 additions at maximum and there

are 2N + 1 coefficients and the result follows.

Definition 7. Polynomial Multiplication using DFT

Assuming two operands have degree N , the algorithm is composed of the following

steps:

1. Pre-processing: Add N leading zero coefficients to the operands AN(z) and

BN(z) to obtain Ã2N(z) and B̃2N(z) for which ãl, b̃l = 0, l ∈ Z, N < l ≤ 2N .

2. Fast polynomial evaluation: Evaluate Ã2N(z) and B̃2N(z) at powers of 2N+1-

th root of unity, that is

Ãr = ÃN(ωr2N) =
2N∑
l=0

alω
rl
2N , r ∈ Z, 0 ≤ r ≤ 2N (2.21)

and

B̃r = B̃N(ωr2N) =
2N∑
l=0

blω
rl
2N , r ∈ Z, 0 ≤ r ≤ 2N (2.22)

11

3. Point-wise multiplication:

Cr = ÃrB̃r, r ∈ Z, 0 ≤ r ≤ 2N (2.23)

4. Fast polynomial interpolation: Now, we have Cr =
∑2N

l=0 clω
rl
2N+1 which is

basically the DFT of the polynomial C2N(z). Therefore it is possible to obtain

2N + 1 coefficients using inverse DFT such that:

cl =
1

2N + 1

2N∑
r=0

Crω
−rl
2N , l ∈ Z, 0 ≤ l ≤ 2N. (2.24)

This defines a method to multiply two polynomials of degree N by using DFT and

obtain C2N(z), a polynomial of degree 2N .

Theorem 6. The polynomial multiplication algorithm is called Fast Polynomial Mul-

tiplication if it employs FFT for steps 2 and 4 and it has arithmetic complexity of

O(NlogN).

Proof. Steps 2 and 4 have complexities of O(2N log2N) using the either butterfly

defined previously. Point-wise multiplication has complexity of O(2N) so the algo-

rithm has a total complexity of O(2N log2N + 2N) ≈ O(NlogN) where N is a

power of 2.

12

CHAPTER 3

OPTIMIZATIONS IN MODULAR ARITHMETIC

3.1 Introduction

The multiplication of coefficients of polynomials are performed in prime finite fields

and it requires modular reduction having high cost. Therefore, we need optimizations

in order get high performance. In this chapter, two methods of optimizing modular

arithmetic in modulus n ∈ Z are discussed. These are Short Barrett Reduction and

Montgomery Forms.

3.2 Short Barrett Reduction

Barrett reduction is introduced in 1986 by P.D. Barrett. Basically, the algorithm cal-

culates c = a mod n for n ∈ Z.

Definition 8. Short Barrett Reduction

Let 1
n

= s ∈ Q be the multiplicative inverse of n in Q. Then,

a mod n ≡ a− bascmod n (3.1)

The reduction can be implemented naively as follows.

1 unsigned int reduce(unsigned int n, unsigned int a) {

2 unsigned int q = a / n;

3 return a - q * n;

4 }

13

3.3 Montgomery Forms

Next, we discuss discoveries of Peter L. Montgomery.

Definition 9. Montgomery Form of an element in Z/nZ

Let n ∈ N. Then, Montgomery form of an element a ∈ Z/nZ is

aR mod n (3.2)

where R ∈ Z is called the auxiliary modulus with (n,R) = 1.

The auxiliary modulusR defined above is usually a power of the base that the number

a is represented in. The reason for this is basically, if the division operation in a

processing unit by this modulus is faster than the normal division then, the following

optimizations can lead to a better performance.

Theorem 7. Montgomery Modular Addition

The addition of two forms aR, bR ∈ Z/nZ is

aR + bR mod n ≡ (a+ b)R mod n (3.3)

Theorem 8. Montgomery Modular Multiplication

The multiplication of two forms aR, bR ∈ Z/nZ is

(aR)(bR)R−1 mod n ≡ (ab)R mod n (3.4)

The proofs of the above theorems are trivial so omitted. The multiplicative inverse of

R in Z/nZ can be pre-calculated so the only overhead is the extra multiplication by

the inverse.

Theorem 9. Montgomery Modular Reduction - The REDC Algorithm

Suppose a′ ∈ Z/nZ is the Montgomery form of a ∈ Z/nZ. Then a can be calculated

from a′ by applying the following steps.

Let n′ ∈ Z/nZ be a number such that RR−1 − nn′ = 1 ∈ Z.

Let m ≡ (((a′ mod R)n′) mod R).

14

Let t = a′+mn
R

. Then,

a =

t− n, if t ≥ n,

t, otherwise.
(3.5)

Proof. To prove the correctness of the algorithm, observe the following equation.

a′ +mn ≡ (((a′ mod R)n′) mod R)n ≡ a′ + a′n′n ≡ a′ − a′ ≡ 0 mod R (3.6)

This shows that t ∈ Z. Next,

t− n ≡ t mod n ≡ (a′ +mn)R−1 ≡ a′R−1 mod n (3.7)

This shows that a′ is the Montgomery form of a in Z/nZ. Finally, to prove the last

step, observe that m ∈ [0, R− 1], therefore

a′ +mn ∈ [0, U] where U = (Rn− 1) + (R− 1)n < 2Rn (3.8)

Hence, t < 2N and the result follows.

Naturally, in the case of a single multiplication the overhead is heavy. However, if

a number of multiplications are done consecutively, this procedure has a significant

gain since division by R is faster than usual division. In most of the cases, R is taken

to be a power 2 and division is implemented by a shift right operation.

15

16

CHAPTER 4

THE USE OF NUMBER THEORETIC TRANSFORMS IN

CRYPTOGRAPHY

In this chapter, I discuss some of the post-quantum cryptography algorithms and ex-

plore the application of number theoretic transform in these algorithms. First, defi-

nitions of some computational problems on lattices are given. Then, two algorithms,

namely, BCNS and NewHope algorithms and the use of NTT in them are discussed.

Finally, hash algorithms SWIFFT and SWIFFTX are discussed.

4.1 Computational Problems on Lattices

Definition 10. Let n ∈ Z. A lattice L in Rn is a subgroup of the additive group Rn

which is isomorphic to the additive group Zn, and which spans the real vector space

Rn. Given a set of basis vectors {b1, . . . , bn}, L is defined as:

L = {
n∑
i=1

ai · bi : ai ∈ Z} = {B · a : a ∈ Zn} (4.1)

B is called basis matrix.

Following [33], a lattice is a discrete version of a vector subspace. This discreteness

results in the existence of a well-defined smallest element, excluding the zero vector.

Now define the non-zero smallest element by

λ1(L) := min{‖x‖ : x ∈ L, x 6= 0} (4.2)

The successive minimal λi(L) can be also be defined as the smallest radius r ∈ R

17

s.t. the n-dimensional ball of radius r centered at the origin contains i ∈ Z linearly

independent lattice points.

The basis vectors can be left-multiplied by a uni-modular integer matrix to get another

basis for the same lattice. This means

B′ = B · U (4.3)

where the elements of the matrix U are integers with det(U) = 1. Moreover, the

determinant of a basis matrix is an invariant. Given a basis matrix B for a lattice L,

∆(L) =
∣∣det(Bt ·B)

∣∣1/2 (4.4)

is called the discriminant of the lattice. If L has full rank then,

∆(L) = |det(B)| (4.5)

holds. The volume of the fundamental parallel-piped of the lattice bases are denoted

by the above expression, ∆(L), and this volume is constant for a lattice L.

There exists a constant γn which is dependent on n, s.t.

λ1(L) ≤ √γn ·∆(L)1/n. (4.6)

This is proved by Hermite. γn is only known for 1 ≤ n ≤ 8. Nevertheless, for

arbitrary lattices and for n = 1, Hermite showed that the following holds.

λ1(L) ≈
√

n

2πe
·∆(L)1/n (4.7)

The following theorems are included for the sake completeness.

Theorem 10. (Minkowski). Let L be a rank-n lattice and C ⊂ L be a convex sym-

metric body about the origin with V ol(C) > 2n ·∆(L). Then C contains a non-zero

vector x ∈ L.

Corollary 2. (Minkowski’s Theorem). Let L be a n-dimensional lattice. Then the

following holds.

λ1(L) ≤
√
n ·∆(L)1/n (4.8)

18

The dual lattice L∗ is the set of all vectors y ∈ Rn such that y · xT ∈ Z for all

x ∈ L. Given a basis matrix B, it is possible to compute the basis matrix B∗ of L∗ via

B∗ = (B−1)T . Therefore ∆(L∗) = 1/∆(L) holds. The first minimum of L and the

n-th minimum of L∗ are linked by the transference theorem by Banaszczyk. It shows

that for all n-dimensional lattices, the following holds.

1 ≤ λ1(L) · λn(L∗) ≤ n. (4.9)

Thus a lower bound on λ1(L) can be translated into an upper bound on λn(L∗) and

vice versa.

Definition 11. The (Approximate) Shortest Vector Problem (SVP).

Let B be a lattice basis. Then, the SVP problem asks to find a shortest nonzero lattice

vector v ∈ L(B) with ‖v‖ = λ1(L(B)). In the γ-approximate γ-SVP, for γ ≥ 1,

it asks to find a shortest nonzero lattice vector v ∈ L(B) \ {0} of norm at most

‖v‖ ≤ γ · λ1(L(B)).

Definition 12. The (Approximate) Closest Vector Problem (CVP).

Let again B be a lattice basis and let t be the target vector. The CVP problem asks

to find the lattice vector v ∈ L(B) such that the distance to the target ‖v− t‖ is

minimized. In the γ-approximate γ-CVP, for γ ≥ 1, the problem asks to find a lattice

vector v ∈ L(B) such that ‖v− t‖ ≤ dist(t,L(B)) where dist(t,Λ) = inf{‖v− t‖ :

v ∈ Λ} is the distance of t to Λ.

In the SVP problem, there can still be more than one shortest nonzero vectors. The γ-

SVP gets difficult as γ gets closer to 1. The Lenstra, Lenstra, Lovász (LLL) algorithm

[19] solves the SVP problem in polynomial time and with exponential approximation

factor 2O(n). Algorithms that can produce an exact solution or approximate solution

of SVP problem with poly(n) factors either run in 2O(n) and require exponential space

or in 2O(n logn) and require only polynomial space.

The NP-hardness of SVP was shown in [35] for the l∞ norm. In [1], it is proved

that SVP is NP-hard for the l2 norm using randomized reductions and that the corre-

sponding decision problem is NP-complete. The NP-hardness of CVP is proved in

[35]. Nevertheless, practical cryptosystems employ only sub-classes of CVP or SVP

and they are not supposed to be NP-hard (see [17], Remark 6.24).

19

Definition 13. LWE Search Problem

Let T = R/Z be an integer lattice. Let q ∈ Z be a prime and let n = poly(q). Let Us,φ

be a uniform distribution on Znq × T obtained by choosing a vector ai ∈ Znq , ∀i ∈
Z, 0 ≤ i < n uniformly at random, choosing numbers ei, ∀i ∈ Z, 0 ≤ i < n

according to a probability distribution φ on T.

A LWE Search problem asks the questions of finding s ∈ Znq given the set (ai, bi), i ∈
Z, 0 ≤ i < n where

bi =
< ai, s >

q
+ ei (4.10)

and s ∈ Znq is a fixed sample from Us,φ.

Note that, n = poly(q) denotes that n ∈ N is bounded by a polynomial such that

|n| < |g(n′)| for some n′ ∈ N where g(n′) = qn
′ .

Definition 14. LWE Decision Problem

Let poly(q) = n be defined in LWE Search Problem. A LWE Decision Problem asks

the question of given the set S = {(ai, ci)} where ci ∈ Znq , i ∈ Z, 0 ≤ i < n, decide

whether ci’s are randomly sampled from Us,φ or the set is an output defined above in

a LWE Search Problem.

In [31], it has been showed that the above two problems are equivalent under the

assumption of n = poly(q). This also bounds the number of queries to the search

problem to polynomial time.

Theorem 11. A LWE Search and Decision problems are polynomially equivalent if

n = poly(q).

Proof. (=⇒) Assume the existence of a LWE Search Oracle. Solve the problem to

get a candidate s ∈ Znq . Then calculate the following set.

{< ai, s >
q

− bi}, i ∈ Z, 0 ≤ i < n (4.11)

Now, if the set has the same distribution with the errors {ei} then output YES other-

wise output NO.

20

(⇐=) Assume the existence of a LWE Decision Oracle. Then, construct the follow-

ing set.

{(ai + (r, 0, . . . , 0),bi +
rk

q
)} (4.12)

where k ∈ Zq is the guessed value of the first coordinate of s ∈ Znq and r ∈ Zq is

sampled uniformly. Now, if the guess k ∈ Zq was correct, the transformation takes

the distribution Us,φ to itself and to a uniform distribution otherwise. This question

is answered by the LWE oracle. Since there are q values, q queries are enough to

decide a coordinate of s. The other coordinates are decided similarly and the result

follows.

The above proof shows that the number of queries to the decision oracle are bounded

in polynomial time if n = poly(q).

Definition 15. RLWE Search Problem

Let Rq = Zq[x]/(xn + 1) be a ring and n ∈ N is a power of two. Let ai(x) ∈ Rq be

a set of random polynomials, ei(x) ∈ Rq be a set of random polynomials with small

coefficients, s(x) ∈ Rq be a random polynomial again with small coefficients and

bi(x) = ai(x)s(x) + ei(x) (4.13)

∀i ∈ Z such that 0 ≤ i < n.

A RLWE Search Problem asks the question of finding the unknown polynomial s(x)

given the set of (ai(x), bi(x)).

A random polynomial in Rq means that the coefficients are sampled from the set

Zq with uniform distribution. A random polynomial with small coefficients in this

definition denotes a polynomial again with coefficients drawn from a bounded subset

of Zq. In particular cases, this set is set to be the {b−q/4c, . . . , bq/4c − 1} with

uniform distribution. Finally, errors ei(x) have the coefficients drawn from the same

set but this time with a specific distribution, for instance a Gaussian.

The other version of this problem is as follows.

Definition 16. RLWE Decision Problem

21

Decide given (ai(x), bi(x)), ∀i ∈ Z, 0 ≤ i < n, whether the polynomials bi(x) were

constructed as bi(x) = ai(x)s(x) + ei(x), ∀i ∈ Z, 0 ≤ i < n or randomly generated

from the ring Rq.

4.2 BCNS Key Exchange Algorithm

The algorithm is based on the RLWE decision problem. To be able to define the

algorithm in terms of Peikert ([28]), the following definitions are required.

Definition 17. Let q ∈ N. Define the modular rounding function

b·eq,2 : Zq → Z2 (4.14)

x 7→ bxeq,2 = b2
q
xcmod 2 (4.15)

and the cross-rounding function

〈·〉 : Zq → Z2 (4.16)

x 7→ 〈x〉q,2 = b4
q
xcmod 2 (4.17)

Both functions are extended to elements of Rq coefficient-wise. For f = fn−1X
n−1 +

. . .+ f1X + f0 ∈ Rq, define

bfeq,2 = (bfn−1eq,2, . . . , bf0eq,2) (4.18)

〈f〉q,2 = (〈fn−1〉q,2, . . . , 〈f0〉q,2) (4.19)

Definition 18. The doubling function is defined as follows.

dbl : Zq → Z2q (4.20)

x 7→ dbl(x) = 2x− e (4.21)

where e is sampled from the set {−1, 0, 1} with probabilities p−1 = p1 = 1
4

and

p0 = 1
2
.

Lemma 3. For odd q, if v ∈ Z is uniformly random and v̄ $←− dbl(v) ∈ Z2q, then

bv̄e2q,2 is uniformly random given that 〈v̄〉2q,2 is uniformly random.

22

Definition 19. The reconciliation function is defined as follows.

rec(w, b) =

0, ifw ∈ Ib + E mod 2q,

1, otherwise,
(4.22)

where b ∈ {0, 1}, I0 = {0, 1, . . . b q
2
e− 1}, I1 = {−b q

2
c, . . . ,−1} and E = [− q

4
, q
4
) ⊂

R.

Lemma 4. For odd q, let v = w+e ∈ Zq for w, e ∈ Zq such that (2e±1mod q) ∈ E.

Let v̂ = dbl(v). Then rec(2w, 〈v̂〉2q,2) = bv̂e2q,2.

Definition 20. BCNS Key Exchange Algorithm

The algorithm defined in ([28]) is a realization of Peikert’s Scheme. Rounding and

cross-rounding functions are defined above and this algorithm allows parties to ex-

change keys of length 1024-bits.

Figure 4.1: BCNS Key Exchange Algorithm
Decision RLWE Parameters:
q = 232 − 1, n = 1024,
χσ with σ = 8/

√
2π,

a
$←− U(Rq)

Alice Bob
a, e

$←− χ s′, e′
$←− χ

b← as+ e ∈ Rq
b−−−−→ b′ ← as′ + e′ ∈ Rq

e′′ ←− χ
v ← bs′ + e′′ ∈ Rq
v̄

$←− dbl(v) ∈ R2q

b′,c←−−−−−− c← 〈v̄2q,2〉 ∈ {0, 1}n

kA ← rec(2b′s, c) ∈ {0, 1}n kB ← bv̄2q,2e ∈ {0, 1}n

For this algorithm, parameters are chosen to be n = 1024, q = 232−1 = 4, 294, 967, 295,

σ = 8/
√

2π ≈ 3.192. Polynomial arithmetic is done by computing the discrete

Fourier transform via Fast Fourier transform (FFT) algorithms.

4.3 New Hope

NewHope[5, 3] is one of the NIST PQC submission that is based on lattices. It has

high performance due to the use NTT. It is currently a second round candidate. In this

section, we present the basics of the NewHope and provide the the use of NTT in it.

23

The NewHope is a bundle of key encapsulation mechanisms (KEM) denoted as NewHope-

CPA-KEM and NewHope-CCA-KEM. The security of the algorithms are based on

the conjectured quantum hardness of the Ring Learning with Errors (RLWE) prob-

lems. These schemes are derivatives of the NewHope-SIMPLE [4]. NewHope-

SIMPLE is semantically secure public-key encryption (PKE) scheme with respect

to adaptive chosen plaintext attacks (CPA) denoted as NewHope-CPA-PKE. On the

other hand, this public-key encryption is only used inside the key encapsulation mech-

anisms of NewHope-CPA-KEM and NewHope-CCA-KEM and not to be used as an

independent CPA-secure PKE scheme. The reason for that is, the PKE scheme does

not accept arbitrary length messages. The description of the PKE scheme is given in

the following algorithms 1, 2 and 3.

Algorithm 1: NewHope-CPA-PKE Key Generation

1 function NewHope-CPA-PKE.Gen()

2 seed $←− {0, . . . , 255}32

3 z← SHAKE256(64, seed)

4 publicseed← z[0 : 31]

5 noiseseed← z[32 : 63]

6 â← GenA(publicseed)

7 s← PolyBitRev(Sample(noiseseed, 0))

8 ŝ← NTT(s)

9 e← PolyBitRev(Sample(noiseseed, 1))

10 ê← NTT(e)

11 b̂← â ◦ ŝ + ê

12 return(pk = EncodePK(b̂, publicseed), sk = EncodePolynomial(ŝ))

The main data structures of the algorithm are the elements of Rq and vectors. Other

than those, byte arrays are employed. For instance, in the key generation algorithm

seed $←− {0, . . . , 255}32 is used to sample a byte array of 32 uniform integers in the

range 0 to 255.

SHAKE256(l, d) hash function [13] is employed for compression. Here, l is the

number of output bytes and the input data is a byte array d. The amount of data to be

absorbed is the length of d. For instance, v ← SHAKE256(64, seed) is used in the

24

Algorithm 2: NewHope-CPA-PKE Encryption

1 function NewHope-CPA-PKE.ENCRYPT(

2 pk ∈ {0, . . . , 255}7·4/n+32,

3 µ ∈ {0, . . . , 255}32,
4 coin ∈ {0, . . . , 255}32

5)

6 (b̂, publicseed)← DecodePk(pk)

7 â← GenA(publicseed)

8 s′ ← PolyBitRev(Sample(coin, 0))

9 e′ ← PolyBitRev(Sample(coin, 1))

10 e′′ ← Sample(coin, 2)

11 t̂← NTT(s′)

12 û← â ◦ t̂ + NTT(e′)

13 v← Encode(µ)

14 v′ ← NTT−1(b̂ ◦ t̂) + e′′ + v

15 h← Compress(v′)

16 return(c = EncodeC(û, h))

Algorithm 3: NewHope-CPA-PKE Decryption

1 function NewHope-CPA-PKE.DECRYPT(

2 c ∈ {0, . . . , 255}7·n/4+3·n/8,

3 sk ∈ {0, . . . , 255}7·n/4

4)

5 (û, h)← DecodeC(c)

6 ŝ← DecodePolynomial(sk)

7 v′ ← Decompress(h)

8 µ← Decode(v′ − NTT−1(û ◦ ŝ))

9 return(µ)

25

algorithm where a 32 byte random seed is hashed. The result is a byte array consisting

64 elements in the range {0, . . . , 255}.

A common notatiton is used throughout the algorithm. Bracket notation is used

to access element of a byte array (i.e. v[i]). Ranges are accessed via colons (i.e.

x ← v[i : j]). In the algorithm, r ← {0, . . . , 255}x means a byte array of length x.

Similarly, r ← Rq means that r is polynomialRq with zero coefficients. Bit operators

�,�, |,& are defined and used in the C programming language context. Implicit re-

ductions occur when a left shift operation is executed. The modulus depends on the

size of operands. The a|b denotes a bit-wise ’or’. Besides, the a&b denotes a bit-wise

’and’. A byte a[i] is converted to a positive integer z via z = b2i(a[i]). For hexadec-

imal representation, the prefix 0x is employed. Finally, HW (b) is used to denote the

Hamming weight of b.

In the algorithm, NewHope-CPA-PKE.ENCRYPT does not have direct access to a

random number generator. The user supplies a seed coin ∈ {0, . . . , 255}32 and all

randomness is generated from that. This seed should be generated by a true random

value generator. Decryption is deterministic and does not require random values. A

centered binomial distribution ψk of parameter k = 8 is used for the distribution of

the RLWE secret and error. It is possible to sample from ψk for integer k > 0 by

computing the following,

k−1∑
i=0

bi − b′i (4.23)

where bi, b′i ∈ {0, 1} are uniform independent bits. The distribution ψk is centered (its

mean is 0), has variance k/2. This gives a standard deviation of ζ =
√

8/2. Sampling

algorithm from ψ8 is given in Algorithm 4.

The Sample function in the algorithm 4 takes care of the deterministric sampling.

There are two input. First one is a 32-byte seed and the second one is an integer

parameter 0 ≤ nonce ≤ 28 for domain separation. This is because, it allows multiple

polynomials to be sampled from the same seed. The output of Sample is r ∈ Rq

where all n coefficients are independently distributed according to ψ8.

In algorithm 5, GenA algorithm is presented. This function has single input called

seed. The output is â ∈ Rq and it is assumed to be in the NTT domain. This is

26

Algorithm 4: Deterministic sampling of polynomials in Rq from ψn8

1 function Sample(seed←∈ {0, . . . , 255}, positive integer nonce)

2 r← Rq

3 extseed← {0, . . . , 255}34

4 extseed[0 : 31]← seed[0 : 31]

5 extseed[32]← nonce

6 for i = 0 to (n/64)− 1 do

7 extseed[33]← i

8 buf ← SHAKE256(128, extseed)

9 for j = 0 to 63 do

10 a← buf [2 ∗ j]
11 b← buf [2 ∗ j + 1]

12 r64∗i+j = HW (a) + q −HW (b) mod q

13 endfor

14 endfor

15 return(r ∈ Rq)

27

due to the sampling of coefficients of the polynomial from a uniform distribution,

NTT maps polynomials with uniform coefficients to polynomials with uniform co-

efficients. In the function GenA, state ← SHAKE128Absorb(d) is employed to

expand the seed. Inputs to this function is a byte array d. The output is a byte array

of length 200. This byte array includes the internal state after absorbind d. Pseudo-

randomness is obtained by buf, state← SHAKE128Squeeze(j, state). This func-

tion takes a positive integer j which is used to determine the size of the output blocks

of SHAKE128.

Algorithm 5: Deterministic generation of â by expansion of a seed

1 function GenA(seed ∈ {0, . . . , 255}32)
2 â← Rq

3 extseed← {0, . . . , 255}33

4 extseed← seed[0 : 31]

5 for i from 0 to (n/64)− 1 do

6 ctr ← 0

7 extseed[32]← i

8 state← SHAKE128Absorb(extseed)

9 while ctr < 64

10 buf, state← SHAKE128Squeeze(1, state)

11 j ← 0

12 for j < 168 and ctr < 64 do

13 val← b2i(buf [j]) | (b2i(buf [j + 1])� 8)

14 if val < 5 · q then

15 âi∗64+ctr ← val

16 ctr ← ctr + 1

17 end

18 j ← j + 2

19 end

20 end

21 return(â ∈ Rq)

It is possible to convert NewHope-CPA-PKE to an IND-CPA-secure KEM by using

28

Table 4.1: Parameter sets for NewHope Algorithm

Parameter Set NewHope512 NewHope1024

Dimension n 512 1024
Modulus q 12289 12289
Noise Parameter k 8 8
NTT parameter ζ =

√
ω 10968 7

NTT parameter ω 3 49

NTT parameter ω−1 8193 1254

NTT parameter ζ−1 3656 8778

NTT parameter n−1 mod q 12265 12277

Decryption error probability 2−213 2−216

Claimed post-quantum bit-security 101 233
NIST Security Strength Category 1 5

Table 4.2: Parameter sets for NewHope Algorithm

Parameter Set |pk| |sk| |ciphertext|
NewHope512-CPA-KEM 928 869 1088
NewHope1024-CPA-KEM 1824 1792 2176
NewHope512-CCA-KEM 928 1888 1120
NewHope1024-CCA-KEM 1824 3680 2208

the PKE scheme to convey a secret, K. In this scheme, coins and the secret K are

derived by hashing random coins. These input random coins are not directly used

since it might be extract information and analyse the state of random number gener-

ator. The final shared secret is derived from the secret K by hashing. The resulting

NewHope-CPA-KEM algorithms are given in [4].

In [4], two parameter sets are specified for the NewHope algorithm. These are given

in Table 4.1. Note that, the algorithm defined above corresponds to NewHope1024

with n = 1024. Similarly, 4.2 depicts possible public key, secret key and ciphertext

sizes.

After a brief description of the algorithm, it is now possible delve into the details of

the use of NTT in this algorithm. There is an interesting point, however, that should

be noted. In [5], a version of this algorithm is given that employs reconciliation func-

tions. These functions basically removes the errors from the exchanged key where

29

two parties have only approximates of. On the contrary, in this thesis, the version

without those reconciliations [4] is discussed. Nevertheless, the optimizations given

in [5] are also valuable so they are discussed first.

In [5], two implementations are mentioned (Portable C and AVX). In these implemen-

tations, different optimization pathways are taken for different kinds of operations. In

this thesis, I will focus on the portable C implementation. This one aims for general

purpose use, not specific to a particular architecture. There are several areas demand-

ing optimization. These are NTT specific ones, arithmetic related ones and random

sampling optimizations.

I start with NTT. Since log q = 14, ring elements are kept in uint16_t, namely, un-

signed short. Since n = 1024 = 210 and Fast Fourier Transform has a complexity of

O(n logn), there are 10 butterfly stages where each stage has 512 butterflies. Authors

mention that they have picked Gentleman-Sande type FFT (DIF) algorithm. In this

algorithm, input should be bit-reversed for the output to be in correct places after the

evaluation. However, it is possible to omit some of the operations as follows. First,

NTT is not applied to â at all since it is derived from a random seed, and the FFT of

a random seed is also random, â can directly be used as its FFT. Second, in the ap-

plication of NTT to s and e, bit-reversal operation can be omitted since they are also

derived from a discrete binomial distribution. Nevertheless, the NTT cannot be omit-

ted since ŝ and ê are chosen to be small (i.e. coefficients are small in q). Similarly, t̂

is computed in a similar manner and bit-reversal can be omitted. On the other hand,

NTT−1 operations do still require bit-reversals so this optimization is not valid.

Now, it is possible to optimize each butterfly stage independently. There are 5120

butterflies in total each consisting an addition, a subtraction and a multiplication by

the twiddle factor. Authors mention that Montgomery Forms are used with R = 218.

This aligns with the fast 18-bit shift right operation implemented on a general purpose

processing unit. Therefore, all twiddle factors ωi, i ∈ Z, 0 ≤ i < 512 are kept in

memory as 218ωi. Also, these factors should be kept in 32-bit unsigned integers

since 18 + 14 = 32. After each butterfly, a 32-bit integer value is reduced using

Montgomery reduction. using the algorithm in Figure 4.2. In this algorithm,R = 218,

30

m = a′ ∗ 12287 since

R−1R− n′n = 576× 262144− 12287× 12289 = 1 (4.24)

Therefore, it is an application of the REDC algorithm mentioned in the previous sec-

tion. Note that only least significant 18-bits of m is taken into account since when

multiplied by q the most significant bits will overflow 32-bit integer u anyway.

Figure 4.2: Montgomery reduction (R = 218)

1 uint16_t mred(uint32_t a) {

2 uint32_t u;

3 u = (a * 12287);

4 u &= ((1 << 18) - 1);

5 a += u * 12289;

6 return a >> 18;

7 }

There is subtle point to note however. This algorithm will fail for integers above

232 − q(R − 1) = 1073491969. This can be observed by considering the maximum

value of u which is R− 1 and the following.

a = a+ u = 232 − q(R− 1) + (R− 1)q = 232 (4.25)

Next, it is necessary to reduce after modular additions. For this task, algorithm in

Figure 4.3 is employed. This routine reduces any 16-bit unsigned integer to an integer

of at most 14-bits which is congruent modulo q.

Figure 4.3: Short Barrett Reduction

1 uint16_t bred(uint16_t a) {

2 uin32_t u;

3 u = ((uint32_t) a * 5) >> 16;

4 a -= u * 12289;

5 }

There is an interesting observation done by the authors. They realized that addition of

two 214 bits results in at maximum 216 bits. Therefore, since short Barrett reduction

can handle up to 16-bits, Barrett reductions are done only in every second level. The

algorithm for this is given in Figure 4.4. In line 4 of this algorithm, 3 ∗ q is added to

31

the operand of mred. This is to avoid unsigned underflow in the subtraction operation.

Coefficients never grow more than 15-bits and 3q = 36867 > 215.

Figure 4.4: The Gentleman-Sande butterfly inside odd levels of NTT computation.
All a[j] and W are of type uint16_t.

1 W = omega[jTwiddle++];

2 t = a[j];

3 a[j] = bred(t + a[j+d]);

4 a[j+d] = mred(W * ((uint32_t)t + 3*12289 - a[j+d]);

If we set t = 215 − 1, a[j + d] = 0 and W = q − 1, we obtain 12288 ∗ (215 + 3q) =

855662592 < 230 which is safe for REDC algorithm.

Next, I proceed into the details of the use of NTT in [4].

First, BitRev and PolyBitRev are defined as follows.

BitRev(v) =

log2(n)−1∑
i=0

(((v � i) & 1)� (log2(n)− 1− i)) (4.26)

PolyBitRev(s) =
n−1∑
i=0

siX
BitRev(i) (4.27)

Similar to the previous paper, it is said that bit-reversals are omitted for the forward

transformations as all inputs are only random noise. Forward NTT is defined as fol-

lows.

NTT (g) = ĝ =
n−1∑
i=0

ĝiX
i, (4.28)

ĝi =
n−1∑
j=0

γjgjω
ij mod q (4.29)

where γ =
√
ω. The function NTT−1 is the inverse number theoretic transform. The

computation is essentially the same except that it uses ω−1 mod q.

NTT−1(ĝ) = g =
n−1∑
i=0

giX
i, (4.30)

gi = (n−1γ−i
n−1∑
j=0

ĝjω
−ij) mod q. (4.31)

32

This concludes the discussion of NTT in NewHope scheme.

4.4 SWIFFT and SWIFFTX

SWIFFT is a collection of compression functions [21, 22, 29]. The security of it is

based on the computationally hard lattice problems that provides this function with

the property of being provably collision resistant. Therefore, it may be used in digital

signatures and authentication protocols. However, the SWIFFT compression function

has some undesirable properties such as linearity and lack of pseudo-randomness. In

order to remedy this situation and remove these undesirable properties, a new com-

pression function called SWIFFTX, one of the candidates of SHA-3 competition, was

proposed in [6].

SWIFFTX has 256-byte input blocks and 65-byte output blocks. In the default con-

figuration, input byte string is shaped as a 32 column matrix where each column

comprises 8 bytes. The initial round first executes a Number Theoretic Transform

(NTT) on each column and the result is a 64 by 32 matrix. This matrix is then mul-

tiplied by three different constant matrices Ai,∀i ∈ Z, 0 ≤ i < 3 separately. Next,

the diagonals of these three matrices are extracted to form three vectors of dimension

64. These vectors are then translated to byte strings by a translation algorithm and re-

sults are concatenated to form a single byte string. To provide non-linearity, this byte

string is passed through a SBox before fed into the second round. The second round

is similar to the first one yet only a single matrix multiplication is done where con-

stants are provided by A0. Only 25 columns of A0 are used in matrix multiplication.

Finally, there is a carry propagation operation at the end of the round that assembles

the final byte of the output. In SWIFFTX, arithmetic is carried out in the finite field

of characteristic p = 28 + 1 = 257. The total number of constants in the matrices

Ai,∀i ∈ Z, 0 ≤ i < 3 is 3NM where N = 64 is the number of rows and M = 32

is the number of columns. These constants are designed to be random and derived

from the expansion of the transcendental number π via a certain algorithm (see [22])

in order values to fit into the given field.

In this section, I provide a description for the SWIFFT and the SWIFFTX. Let p =

33

28 + 1 = 257, N = 64 and M = 32 with 2N | p − 1. These are the concrete

parameters given in [22].

Definition 21. Let n ∈ Z+,X ∈ Fn×np ,Y ∈ Fnp . Define the column operator Cj :

Fn×np → Fnp as Cj(X) = Y where yi = xij , ∀i ∈ Z, 0 ≤ i < n.

Definition 22. Let n ∈ Z+,X ∈ Fn×np ,Y ∈ Fnp be a square matrix. Define the main

diagonal operator D : Fn×np → Fnp as D(X) = Y where yi = xii, ∀i ∈ Z, 0 ≤ i < n.

Definition 23. The Number Theoretic Transform employed in SWIFFT is defined as

NTTN : FN2 → FNp whereNTTN(u0, . . . , un−1) = (v0, . . . , vn−1), vj =
∑N−1

i=0 uiω
2ij ,

∀j ∈ Z, 0 ≤ j < N , and ω ∈ Fp is the 2N-th root of unity such that ω2N = 1.

Definition 24. Define the unary operator EM : FN×M2 → FN×Mp as E(X) = YX,

where Y ∈ FN×Np with yij = ω2j ∈ Fp, ∀i, j ∈ Z, 0 ≤ i, j < N and ω is the 2N-th

root of unity such that ω2N = 1.

It is now possible to define the first part of the SWIFFT compression function in terms

of the primitives above.

Definition 25. Let U,A ∈ FN×Mp . Define SWIFFT ′ as follows:

SWIFFT ′M : FN×M2 × FN×Mp → FNp

U×A 7→ D(VAT)

where C(V)j = NTTN ◦ Cj ◦ EM(U), ∀j ∈ Z, 0 ≤ j < M .

The above definition shows how to calculate j-th column of the matrix V denoted by

C(V)j . Finally, V is multiplied by AT and D is applied to obtain the result.

SWIFFT ′ basically captures the crucial part of the SWIFFT . The rest deals with

the translation of vectors with elements in Fp to vectors with elements in F2.

Definition 26. Let X ∈ FNp be a matrix and let N ′ = N/8. Define the map G as:

G : FNp → FN ′×N ′p

X 7→ Y

where yij = xi+8∗j , ∀i, j ∈ Z, 0 ≤ i, j < 8.

34

Definition 27. Let N ′ = N/8. Define the translation map T as:

T : ZN ′p → ZN ′256 × Z256

a =
N ′−1∑
i=0

aip
i 7→ b =

N ′−1∑
i=0

bi256i × ((a− (amod 256N
′
))� N).

The above function basically translates vectors from base 256 to base 257 with the

rightmost component being the carry. It is now possible to define SWIFFT.

Definition 28. Let U ∈ FN×Mp be an input matrix and A ∈ FN×Mp be a constant

matrix. Then, SWIFFTM is defined as:

SWIFFTM : FN×M2 × FN×Mp → ZN256 × Z256

U×A 7→
N ′−1∑
i=0

π1(ai)256iN
′ ×
∨N ′−1

i=0
π2(ai)2

i

where N ′ = N/8, U′ = SWIFFT ′M(U,A), ai = T ◦ Ci ◦ G(U′) and πj is the

projection operator onto the j-th component.

SWIFFTX employs SWIFFT as a building block. However, there are two variations.

The first round employs SWIFFTM with parameter M = 32 and the second round

sets M = 25 denoted by M ′ in the following definition.

Definition 29. Let X ∈ FN×M2 be an input matrix and Ai ∈ FN×Mp , ∀i ∈ Z,

0 ≤ i < 3 be three constant matrices. Then, SWIFFTXM is defined as follows:

SWIFFTXM : FN×M2 → ZN+1
256

X 7→ π1(Z) || π2(Z)

where Yi = SWIFFTM(X,Ai), ∀i ∈ Z, 0 ≤ i < 3, U = π1(Y1) || π1(Y2) || π1(Y3),

V = π2(Y1) || π2(Y2) || π2(Y3), P = 0 ∈ Z5
256 is a five byte padding, Z =

SWIFFTM ′(SBox(U || V || P),A0), SBox is a lookup operation and || is the

concatenation operator.

In the following chapter, I present an efficient GPU implementation of this hash func-

tion.

35

36

CHAPTER 5

NUMBER THEORETIC TRANSFORMS IN SWIFFTX

In this chapter, number theoretic transforms in SWIFFTX are discussed. The compo-

sition of NTTN and the multiplication function EM is core to our discussion. How-

ever, it is sufficient to deal only with a column to understand the transform. For this

purpose, the following definition is provided.

F : {0, 1}64 7→ Z64
257 (5.1)

(x0 . . . , x63)→ (y0, . . . , y63) (5.2)

where yi =
∑63

k=0(xk · ωk) · (ω2)ik =
∑63

k=0 xk · ω(2i+1)k ∈ Z257. In terms of the

previous definitions, the equality F = Cl ◦ NTTN ◦ EM holds for a column l ∈
Z, 0 ≤ l < M .

Now if we write the index i for the input as i = i0 + 8i1, i ∈ Z, 0 ≤ i < 63 and k as

k = k0 + 8k1, k ∈ Z, 0 ≤ k < 63 we then have the following:

yi0+8i1 =
63∑
k=0

xk ω
(2i0+16i1+1)k, (5.3)

=
7∑

k0=0

7∑
k1=0

xk0+8k1 ω
(2i0+16i1+1)(k0+8k1), (5.4)

=
7∑

k0=0

(ω16)i1k0
(
ω(2i0+1)k0 ·

7∑
k1=0

ω8k1(2i0+1) · xk0+8k1

)
. (5.5)

where ω16i1 8k1 = 1 since ω128 = 1. Now set mk0,i0 = ω(2i0+1)k0 and tk0,i0 =

37

∑7
k1=0 ω

8k1(2i0+1)xk0+8k1 and the equation becomes

yi0+8i1 =
7∑

k0=0

ω16i1k0(mk0,i0 · tk0,i0). (5.6)

For each k0 ∈ Z, 0 ≤ k0 < 8, consider the vector tk0 = (tk0,0, . . . , tk0,7). This

vector can take 256 different values and the result depends only on the input bits

xk0 , xk0+8·1, . . . , xk0+8·7. This is the first observation done by the authors in [6].

Therefore in the implementation, the input is decimated as follows. Let input be

X0, . . . , X7 whereXk0 = (xk0 , xk0+8·1, . . . , xk0+8·7) ∈ F8
2 where k0 ∈ Z, 0 ≤ k0 < 8.

Now tk0 can be found by a single table lookup operation such that tk0 = T (Xk0). This

table has 256 entries with entries in Z257. The multipliers mk0 = (mk0,0, . . . ,mk0,7)

can also be pre-computed similarly.

The second observation done by the authors in [6] is the following. For a fixed i1 ∈
Z, 0 ≤ i1 < 8, the output y = F (x) can be partitioned into 8 vectors of dimension 8.

yi1 = (y8i1 , y8i1+1, . . . , y8i1+7) ∈ Z8
257 (5.7)

Now for any i0 = 0, . . . , 7, the i0-th component of yi1 depends only on the i0-th com-

ponent of mk0 and tk0 . Besides, the same operation is executed on every coordinate.

This allows parallelization of the computation of the output vectors y0, . . . , y7 using

SIMD instructions. Therefore, each yi1 can be calculated as follows:

yi1 =
7∑

k0=0

ω16i1k0(mk0 · tk0) (5.8)

where vectors mk0 and tk0 are component-wise multiplied. Finally, the resulting equa-

tion is a 8 dimensional Discrete Fourier transform using ω16 as an 8-th root of unity

in Z257. It is shown previouly that it is possible to implement this inO(N logN) with

N = 8 using FFT.

38

Now in the algorithm, ω is chosen to be 42 ∈ Z257. This leads to ω16 ≡ 22 ≡
4 mod 257. Therefore, multiplication by ω16, ω32, ω48 can be implemented by left

shifting by 2, 4, 6 positions respectively.

Reductions in Z257 can be implemented as x ≡ (x & 255) − (x � 8) mod 257. The

modular reduction is still necessary since there is risk of underflow (i.e. the result

being negative).

This concludes our discussion of NTT in SWIFFTX. In the next chapter, an efficient

GPU implementation of SWIFFTX is given.

39

40

CHAPTER 6

AN EFFICIENT GPU IMPLEMENTATION OF SWIFFT AND

SWIFFTX

6.1 Introduction

In this text, I present an efficient parallel implementation of SWIFFTX on GPU.

In order to obtain high performance, we have optimized memory access according

to memory transaction coalescing rules and optimized arithmetic operations using

intrinsics. These are essential for realization of a fast implementation. Furthermore,

shared memory is used to hold all intermediate values. Representing elements of

F257 in signed char posed a certain challenge however, this is resolved by a map and

another additional small routine. Moreover, the serial base 257 to base 256 translation

algorithm is parallelized by using a binomial matrix. Experimental results (Section

6.6) show that our implementation is approximately 1000 times faster than the single-

threaded x86 reference implementation and 10 times faster than the ported reference

implementation. In terms of power consumption, our implementation performs 5

Watts better per 216 hashes and 13 Watts better per 219 hashes.

The rest of the chapter is organized as follows: In Section 6.2, GPU programming

is discussed. In Section 6.3, the reference x86 implementation of SWIFFTX is pre-

sented. This implementation is ported to CUDA without applying a particular op-

timization. Its characteristic is evaluated to determine performance bottlenecks. In

Section 6.4, a parallel version of the SWIFFTX algorithm is presented. In order to

achieve our goal, we investigate further possible optimizations specific to the given

hardware and propose solutions to discords between hardware and software. In Sec-

41

tion 6.5, further improvements such as improving cache hits rates and fixing memory

bank conflicts are discussed. In Section 6.6, a methodology to evaluate performance

of implementations is develop and results are obtained. These results are mostly GPU

specific.

6.2 Compute Unified Device Architecture - CUDA

Compute Unified Device Architecture (CUDA) is very different from general purpose

architectures such as x86 and AMD64. It has a great number of threads. A group

of 32 threads is called a warp. This is the minimal number of threads that can be

spawned simultaneously. Warps can be arranged to form a block. Therefore, the

number of threads in a block is a multiple of 32. Blocks can also be arranged to form

larger blocks called grids. Blocks and grids can be 1, 2 or 3 dimensional to fit into

the requirements of the implementation. In this text, GP104 (GP104-400-A1) chip

manufactured by NVIDIAis targeted. This chip is a member of the sixth generation

NVIDIA Pascalmicro-architecture. In this particular chip, the number of threads in a

block is limited to 210 = 1024 threads. A Streaming Multiprocessor (SM) in this chip

can run two 1024-thread blocks simultaneously and there are 20 of them.

In terms of cache, GP104 has 48 KiB Unified Cache and 2 MiB L2 Cache. In CUDA,

Unified Cache can be used for local/global loads/stores. L2 is a little bit larger and

can be employed for caching global loads/stores. There is also a Texture Cache in

Unified Cache which is used for loading constants. Among others, GP104 has another

96 KiB local fast memory per SM. This memory is called Shared Memory and it is

particularly useful in terms of optimizing an implementation. Basically, the name

shared comes from the fact that this memory area can be divided into smaller chunks

and moreover, can be shared among a block. Although this region is declared to be

fast as registers (2 clocks), it has a limited size and most of the time, determines

the maximum number of warps that can be spawned simultaneously along with other

factors such as number of registers per block, number of threads per block and number

of threads per multiprocessor.

42

6.3 The Reference Implementation

Next we continue with the x86 reference implementation included in CryptoStreams

[14]. The outline of this implementation is given in Figure 6.1. We have kept the

variable names unaltered so that the reader can trace them back to the source code.

Apart from the definition of SWIFFTX in the previous section, this implementation

re-uses the common NTT output for the sake of performance. Assuming a word is

16-bits, elements of Fp are kept in words. Powers of 64-th root of unity are centered

toward zero in the initialization stage. Moreover, NTT is performed via a lookup

table. Similarly, SBox lookup is done on byte basis. Translation to base 256 from

Fp is done in 6 iterations in a very efficient manner. Although this implementation is

very efficient on x86, it still runs on a single-thread. We ported this implementation

to CUDA without applying any further optimizations other than migrating constants

to the device memory.

Figure 6.1: SWIFFTX Algorithm

1 ALGORITHM: SWIFFTX

2 INPUT: uint8_t input[256]; // Input

3 int16_t A_0[N*M], A_1[N*M], A_2[N*M]; // Constants

4 OUTPUT: uint8_t output[65]; // Output

5

6 int32_t fftOut[N*M]; // NTT Output

7 int32_t sum[3*N]; // Three vectors of dimension N

8 uint8_t intermediate[3*N+8]; // Output of the first round

9

10 doNTT_32(input, fftOut); // 32 Column NTT

11 // Multipl. and Diagonal

12 doMultiply_and_Diag_3(fftOut, A_0, A_1, A_2, sum);

13 doTranslate_3(sum, intermediate); // Translate to base 256

14 doSBox(intermediate); // Apply SBox

15 doNTT_25(intermediate, fftOut); // 25 Column NTT

16 doMultiply_and_Diag_1(fftOut, A_0, sum); // Multipl. and Diagonal

17 doTranslate(sum, output); // Translate to base 256

Unlike x86, CUDA architecture provides a high number of registers. The maximum

number of registers per block a CUDA kernel can employ is 255. In cases where more

registers are required, spills occur and load/stores are served by Unified Cache. The

43

reference implementation is register rich. With a block size of a warp (32 threads), the

compiler decides to use 228 registers (Figure 6.2) for the default optimization level 3

(-O3) although we haven’t forced any loop to unroll. Since the implementation is for

x86, it does not employ any shared memory.

According to GP104 specification [23], each SM has a 256 KiB register file. Assum-

ing all 32 bits, a SM can hold up to 65536 registers simultaneously. This kernel has a

block size of 32 (a single warp) and employs 228 registers. A calculation shows, each

block requires 7296 registers. Therefore, each SM can run 65536/7296 ≈ 8.9 warps.

NVIDIAVisual Profiler (nvvp, [26]) tells that the actual value is 8 warps. Moreover,

each SM can run 2048 threads or 64 warps simultaneously, so the utilization is only

12.5%. Contrary to its high register usage, the kernel still requires an additional 8656

bytes stack frame which further slows the execution down.

Figure 6.2: Reference Implementation Compiler Stats

ptxas info : 16786 bytes gmem

ptxas info : Compiling entry function ’_Z14swifftx_kernelPhS_i’

for ’sm_61’

ptxas info : Function properties for _Z14swifftx_kernelPhS_i

8656 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads

ptxas info : Used 228 registers, 340 bytes cmem[0]

44

6.4 A Parallel Implementation

In this section, we present a parallel CUDA implementation of the algorithm. The

outline of our implementation is given in Figure 6.3.

Figure 6.3: Our Proposed Parallel SWIFFTX Algorithm

1 ALGORITHM: SWIFFTX

2 INPUT: uint8_t input[256]; // Input

3 int8_t A_0[N*M], A_1[N*M], A_2[N*M]; // Constants

4 OUTPUT: uint8_t output[65]; // Output

5 NUMBER OF THREADS PER BLOCK: 64

6

7 __shared__ int16_t S_fftOut[N*(M+2)]; // Adjusted NTT Output

8 __shared__ int16_t S_sum[3*N+12]; // Adjusted sum output

9 __shared__ uint8_t S_intermediate[4*N]; // Enlarged intermediate

10 uint32_t *_input = S_sum;

11 // Copy input to shared (4-bytes per thread)

12 doParallel_Copy(input, _input); __syncThreads();

13 // 32 Column NTT

14 doParallel_NTT_32((int8_t *)_input, S_fftOut); __syncThreads();

15 // Multiply and take the diagonal

16 doParallel_Multiply_and_Diag_3(S_fftOut, A_0, A_1, A_2, S_sum);

17 __syncThreads();

18 // Fix leaps

19 doParallel_Adjust(S_fftOut, S_sum); __syncThreads();

20 // Translate to base 256

21 doParallel_Translate_3(S_sum, S_intermediate); __syncThreads();

22 // Apply SBox

23 doParallel_SBox(S_intermediate); __syncThreads();

24 // 25 Column NTT

25 doParallel_NTT_25(S_intermediate, S_fftOut); __syncThreads();

26 // Multipl. and Diagonal

27 doParallel_Multiply_and_Diag_1(S_fftOut, A_0, S_sum);

28 __syncThreads();

29 // Translate to base 256

30 doParallel_Translate(S_sum, S_intermediate); __syncThreads();

31 // Copy results back to device memory

32 doParallel_Copy(intermediate, output);

We select 64 threads, 2 warps per block. This number matches the number of rows

of constant matrices Ai, ∀i ∈ Z, 0 ≤ i < 3. The details of the proposed parallel

45

implementation are as follows.

First, we reserve enough shared memory per block for fast access to intermediate

values. These intermediate values are NM words for the NTT output (fftOut[]),

3N words for the diagonals (sum[]) and 3N + 8 bytes for the output of the first

round (intermediate[]). In total, (NM)2 + (3N)2 + (3N + 8) = 4680 bytes. To

enable fast access to 256 bytes hash input, at the beginning of the kernel, we copy the

input to a shared memory location, specifically, to the space reserved for the diagonal

output. This space will not be used until NTT is completed therefore we can use it

temporarily. Copy is implemented by pointer dereferencing. A 64-thread block can

copy the input in a single step (256 bytes = 64× 4 bytes). For the hash output, only

17 threads are running, the others are idle (17 × 4 bytes = 68 bytes > 65 bytes).

The input is fetched from memory via 128-byte transactions, obeying the memory

coalescing rules. Similarly, the hash output is written to the device memory via 64-

byte transactions almost all the time except the last 8 bytes.

Now, NTT for a column can be done in 8 steps or strides. Therefore, we divide the

NTT into 8 strides where each stride i is responsible for output row 8k + i,∀k ∈
Z, 0 ≤ k < 8. A 64-thread block can process 8 columns at once and 32 columns in

4 steps. Furthermore, the multiplication at the beginning of the NTT is transformed

into a lookup. The size of the lookup table is 256× 8× 8 words with values in F257.

These values are constant and served by the Texture Cache. At the end of the NTT, we

transpose the output to help the inner product operation in the next stage. Reduction

of the field elements is accomplished by the following macro:

#define Q_REDUCE(a) (((a) & 0xFF)− ((a)� 8))

Basically, this macro subtracts the 8− 15th bits from the 0− 7th bits. This reduction

is an instrinsic property of the nega-cyclic field.

We have the NTT output in shared memory. We need to calculate three diagonals for

products AiV T ,∀i ∈ Z, 0 ≤ i < 3. Although this seems to be a straightforward

calculation, Pascal tuning guide [25] informs that the multiplication is a multi-clock

operation in GP104 and the compiler can compile a single multiplication up to 20

instructions. To remedy this situation, we employ an intrinsic called __dp_2a, a two-

way dot product. The definition of this operator is given in Figure 6.4 (PTX Manual

46

[24], Section 9).

Figure 6.4: dp2a two-way dot product-accumulate operator

1 Syntax:

2 dp2a.mode.atype.btype d, a, b, c;

3 .atype = .btype = { .u32, .s32 };

4 .mode = { .lo, .hi };

5

6 Description:

7

8 Two-way 16-bit to 8-bit dot product which is accumulated

9 in 32-bit result. Operand a and b are 32-bit inputs. Operand

10 a holds two 16-bits inputs in packed form and operand b holds

11 4 byte inputs in packed form for dot product. Depending on the

12 .mode specified, either lower half or upper half of operand b

13 will be used for dot product. Operand c has type .u32 if both

14 .atype and .btype are .u32 else operand c has type .s32 .

15

16 Semantics:

17 d = c;

18 // Extract two 16-bit values from a 32-bit input and sign or

19 // zero extend based on input type.

20 Va = extractAndSignOrZeroExt_2(a, .atype);

21 // Extract four 8-bit values from a 32-bit input and sign or

22 // zero extend based on input type.

23 Vb = extractAndSignOrZeroExt_4(b, .btype);

24 b_select = (.mode == .lo) ? 0 : 2;

25 for (i = 0; i < 2; ++i) {

26 d += Va[i] * Vb[b_select + i];

27 }

Now we face the problem that the entries in matricesAi do not fit into int8_t’s (signed

char). According to C++11 standard, signed char can hold values from −128 to 127

if the compiler employs Two’s complement representation. Fortunately, the CUDA

compiler nvcc employs Two’s complement representation; therefore, we can map our

field according to the following function.

47

f : F257 → Int8

f(a) =


a if 0 ≤ a ≤ 127,

127 if a = 128,

a− 257 otherwise.

This representation is different than the diminished-one number system employed in

[16]. In [16], F257 is considered to be the integers in the range 0 to 256 inclusive

and the field is mapped to 8-bits by subtracting 1 from each element while excluding

the zero. The zero case is detected by an additional signal and handled exclusively.

However, in GPU, we have no way of knowing whether a value is zero or not unless

a predicate is executed. Unfortunately, predicates are sources of divergence there-

fore very expensive especially in loop bodies, hence we propose a slightly altered

approach by defining the above function f . The codomain of f is selected to be 8-bit

signed char just to make it compatible with the __dp_2a operator. We have deter-

mined 23 +128’s in Ai,∀i ∈ Z, 0 ≤ i < 3. There are nine in A0, seven in A1,

and seven in A2. We first replace those values with +127’s and do the multiplication.

After computing the diagonal, we add missing values by a small routine called doPar-

allel_Adjust which only employs 23 of the 64 threads in a block. This calculation is

done as follows:

sumj =
∑
i

aji × fftOutij,

sumj =
∑
i

bji × fftOutij +
∑
i

128× fftOutij, bij 6= 128,

sumj =
∑
i

bji × fftOutij +
∑
i

127× fftOutij +
∑
i

fftOutij,

sumj =
∑
i

cji × fftOutij +
∑
i

fftOutij, cij 6= 128.

with ∀j ∈ Z, 0 ≤ j < N and ∀i ∈ Z, 0 ≤ i < M . Note that, the rightmost

summation on the last line is the residue that needs to be added to its respective row j.

To keep doParallel_Adjust procedure simple, we represent a particular adjustment

in a dword. The first byte is the matrix the entry is in, the second is the row, the

third is the column and the fourth is always zero. The last byte is kept for the sake of

memory alignment. Totally, it consumes 23× 4 = 92 bytes.

48

Since __dp_2a is a two-way dot product, 32 columns can be processed totally in 8

calls to variants __dp_2a_lo and __dp_2a_hi. Specifically, this means fetching 2

dwords from fftOut, a dword from Ai and computing the dot product twice using

each variant once. This is a prominent improvement over the original iteration count

of 32 and now, the loop can be unrolled without overloading the instruction fetch

queue. Moreover, this approach also halves the memory transaction size required for

fetching the entries in the matrices Ai.

Next step is to translate the diagonal entries in F257 to F256. In the reference imple-

mentation this is done efficiently in 6 iterations. However, each column has to be

processed by a single thread. To make it parallel, we employ the following binomial

matrix:

typedef int8_t swift_int8_t;

swift_int8_t binom1[8*8] =

1, 1, 1, 1, 1, 1, 1, 1,

0, 1, 2, 3, 4, 5, 6, 7,

0, 0, 1, 3, 6, 10, 15, 21,

0, 0, 0, 1, 4, 10, 20, 35,

0, 0, 0, 0, 1, 5, 15, 35,

0, 0, 0, 0, 0, 1, 6, 21,

0, 0, 0, 0, 0, 0, 1, 7,

0, 0, 0, 0, 0, 0, 0, 1,

;

This matrix is based on the fact that the equation 257n = (256 + 1)n =
∑

i

(
n
i

)
256i

holds. Therefore, the elements bij of binom1 are defined as follows:

bij =


(
j
i

)
if i ≤ j,

0 otherwise,
∀i, j ∈ Z, 0 ≤ i, j ≤ 7.

We compute the product of this binom1 matrix and the vector sum again using

__dp_2a operator. Then for 24 columns, we serially propagate carry bits using only

24 threads. Finally using three threads we propagate three final carry bytes and write

them to the 25-th column.

49

Next, SBox lookup is done. In SWIFFTX, an 8 by 8 bits SBox is employed to pro-

vide non-linearity and this table is accessed byte by byte. Inputs and outputs are

3N + 8 = 204 bytes long. In GP104, shared memory banks are 4-bytes wide. Pro-

cessing the input byte by byte therefore creates 4 times more shared memory write

transactions than necessary. Instead, we lookup 4 values, combine them using logical

shifts and write them at once to comply with the physical shared memory structure.

This concludes the first stage of the algorithm.

Second stage starts with a NTT executed on 25 columns. This does not fit well into

our 64-thread per block implementation. We execute three and a half NTT iterations

to process 25 columns. Adjustment is done only on eight values since the ninth +128

is in column 30. Translation to F256 is applied using the same technique but this

time the output is only 8 + 1 = 9 columns. Finally, the 65-byte output in the shared

memory is written to device memory dword by dword to comply with the memory

transaction coalesing rules. This finalizes major optimizations done on the algorithm.

6.5 Further Improvements and Occupancy Analysis

In Pascal micro-architecture, shared memory is divided into 16 banks where each

bank is 4 bytes. This physical constraint leads to conflicts while writing the NTT

output. To overcome this situation, we add two unused rows to the transposed NTT

output and adjust pointer arithmetic accordingly. Now, the NTT output is (M+2)N =

34× 64 words. In pointer arithmetic, multiplication by 34 is implemented as shift by

5 plus shift by 1. However, this introduces latency when compared to a single shift.

Similarly, we add four rows to sum area, it is 3N + 12 words now. Finally, to prevent

any other alignment issues, we set the size of the intermediate area to 4N bytes.

Since we copy the input to a shared memory location at begining of the kernel, we do

not face any global memory access inefficiencies related to the input. Similarly, the

output is written directly from shared memory to the global memory at the end of the

kernel therefore it is efficient. However, the size of the output is 65 bytes. If several

thousands of hashes are calculated in bulk, this leads to an alignment issue for the

output of the consecutive hashes. Therefore, we modify the output size and set it to

72 bytes to prevent any issues of this kind.

50

Now, NTT lookup table is of size 256 × 8 × 8 words. Each lookup returns a word.

nvvp shows an inefficiency in global load L2 transaction, specifically, the ideal is 2

but the current is 4 transactions per access. This can be remedied only if the lookup

returns a dword. However, the table size in that case becomes too large to fit into L2

Cache therefore left unoptimized. Similarly, nvvp shows an inefficiency of 7.5 to 1 L2

transactions per access while looking up the table SBox. We have tried to implement

the same routine by an 16 × 16 bits SBox yet the speed is reduced, therefore we left

it as is.

Finally, we calculate the occupancy. In one hand, nvcc compiler tells that our kernel

employs 48 registers. GP104, register file is 256 KiB, assuming all 4 bytes, there are

65536 registers in total per SM. A thread employs 48 and a block employs 48× 64 =

3072 registers. Dividing 65536 by this number leads to ≈ 21.3 block limit. On the

other hand, we have the following definitions:

__shared__ int16_t S_fftOut[(M+2)*N];

__shared__ int16_t S_sum[3*N+12];

__shared__ unsigned char S_intermediate[4*N];

Now, S_fftOut is (32 + 2)× 64× 2 = 4352 bytes, S_sum is [(3× 64) + 12]× 2 = 408

bytes and S_intermediate is 4 × 64 = 256 bytes. Therefore, Shared Memory usage

is 5016 bytes in total. Dividing the Shared Memory size 96 Kib by this number leads

to ≈ 19.6 blocks. Therefore, our kernel has a block limit of min(21.3, 19.6) = 19.6.

This leads to 19×64 = 1216 threads per SM or in other words we have 1216/2048 =

0.594, 59.4% occupancy per SM.

6.6 Methodology and Results

All results are obtained on an IntelE5410 CPU system where Linux version is 4.14.104,

GNU glibc version is 2.27, CUDA version is 10.0 and NVIDIAdriver version is

415.27. The method the results are obtained is as follows. Each test round consists

of 214 hashes. First, there is a step to warm the CPU and the GPU up for 10 rounds.

Then, we generate test data for each set of input and sequentially run the algorithm

51

on CPU, then on the GPU and collect the results. Generated input data is classified as

follows: (i) All zeroes: weight 0/byte, (ii) All ones: weight 8/byte, (iii) All random:

non-constant random weight/byte, (iv) All random: weight 4/byte.

This classification allows us to see whether or not the Hamming weight of the input

does effect the performance of our kernel. All random data is generated by glibc

random(3). For all random weight 4/byte test, we employ Fisher-Yates shuffling al-

gorithm [11]. We have generated enough random data for 214 input blocks (222 bytes)

per test round. Furthermore, we set the affinity of the process via sched_affinity(2) to

CPU 0 to get consistent results, avoid kernel rescheduling and cache invalidation.

The results are given in Table 6.1. These results are acquired using GNU gprof

v2.31.1 and nvprof v10.0.130 profilers. Table 6.1 shows execution times of differ-

ent implementations. First one is the x86 reference implementation, the second,

GPU ported reference implementation and the last one is our parallel implementa-

tion. These results strongly indicate that the Hamming weight of the input is irrele-

vant, hence all data in the following tables are collected using non-constant weight

All random data set. Table 6.2 depicts cache hit rates. Table 6.3 depicts memory

throughput metrics obtained by the profiler. Figure 6.5 depicts kernel stall reasons of

implementations. For the reference, test device properties are also included in Table

A.1.

Table 6.1: Experimental Results, Test Round: 214 hashes

Intel NVIDIA NVIDIA
XeonE5410 GeForce GTX1080 GeForce GTX1080

Reference Impl. Ported Reference Our Parallel Impl. Unit
Impl.

All zeroes 3.50× 105 3.76× 103 3.78× 102 µsec
All ones 3.50× 105 3.75× 103 3.78× 102 µsec
All random 3.50× 105 3.77× 103 3.80× 102 µsec
All random weight 4 3.50× 105 3.76× 103 3.80× 102 µsec

Table 6.1 shows almost 10x increase in speed compared to the ported reference imple-

mentation. Global memory accesses in our implementation are very efficient. For all

random test, nvvp shows global store efficiency of 70.8% and global load efficiency

of 74.7%. The kernel employs a total of 5016 bytes of shared memory per block. Un-

52

fortunately, shared memory efficiency is only 52.2%, nevertheless, it is compensated

since it is very fast.

Table 6.2: Cache Hit Rates

Metric Description Reference Impl. Parallel Impl.

tex_cache_hit_rate Unified Cache Hit Rate 67.05% 96.22%
l2_tex_hit_rate Hit rate at L2 cache for all 9.92% 33.75%

requests from texture cache
global_hit_rate Hit rate for global load and 92.77% 92.27%

store in unified l1/tex cache
local_hit_rate Hit rate for local loads and 50.12% 0.00%

stores

The use of shared memory makes data access very fast. However, it is limited only

upto 96 KiB per SM therefore determines the number of warps spawned simulta-

neously. Parallel kernel requires only 48 registers. Decreasing this number via

__launch_bounds leads to spill loads and stores degrading the performance. This

number is sufficient for 19 warps to be spawned simultaneously. Our kernel per-

formes L2 Cache hit rate of 33.7% and Unified Cache hit rate of 96.2% in the very

same test (Table 6.2). These numbers indicate caches are efficiently utilized. Also,

measured occupancy per SM is 57.4%. Since this is above 50%, it is enough to hide

the arithmetic latency of the ALU inside GP104. This is discussed in detail in [36].

In Table 6.3, memory throughput metrics are given. First of all, system memory

access is negligible in both kernels since data is copied to the device memory before-

hand. Next, the device memory usage is reduced making it a bottleneck no more.

Since our kernel employs a less number of registers, there is no local load or store.

Global load throughput is increased by five times and stores are reduced by a half.

Similarly, it is possible to observe Shared Memory throughput which makes a big

difference in our parallel implementation. Unified Cache throughput is increased

since we instruct the assembler to cache everything via the flag (-Xptxas -dlcm=ca).

This is also the reason for the reductions in L2 throughputs.

Figure 6.5 depicts the percentage of stall reasons per kernel. In the reference imple-

mentation, kernel stalls 29% percent due the memory dependencies. Also loading

53

Table 6.3: Memory Throughput Metrics

Metric Description Reference Impl. Parallel Impl.

sysmem_read_throughput System Memory Read 0.00000B/s 0.00000B/s
sysmem_write_throughput System Memory Write 41.824KB/s 475.05KB/s
dram_read_throughput Device Memory Read 132.83GB/s 11.888GB/s
dram_write_throughput Device Memory Write 70.031GB/s 6.5270GB/s
local_load_throughput Local Memory Load 265.30GB/s 0.00000B/s
local_store_throughput Local Memory Store 72.083GB/s 0.00000B/s
gld_throughput Global Load 117.50GB/s 580.49GB/s
gst_throughput Global Store 8.4957GB/s 4.4536GB/s
shared_load_throughput Shared Memory Load 0.00000B/s 1644.9GB/s
shared_store_throughput Shared Memory Store 0.00000B/s 914.47GB/s
tex_cache_throughput Unified Cache 327.27GB/s 1101.5GB/s
l2_tex_read_throughput L2 (Texture Reads) 138.68GB/s 71.209GB/s
l2_tex_write_throughput L2 (Texture Writes) 80.579GB/s 4.4536GB/s
l2_read_throughput L2 (Reads) 139.02GB/s 71.643GB/s
l2_write_throughput L2 (Writes) 80.579GB/s 4.4548GB/s

constants from Texture Cache generates a lot of traffic (24%). Moreover, it is not

possible to learn what is included in stall_other (29%) so, it is better to keep it low

under normal circumstances. In the parallel kernel, the largest percentage is owned

by the execution dependency. In order to lower this value, it is possible to unroll

loops so that compiler can move instructions around and optimize execution depen-

dency. However, all of the loops in our kernel other than the one wrapping the NTT

iterations are already unrolled so there is nothing that can be done. Unrolling that par-

ticular loop leads to register spills so we left it as is. The actual unrolling effect can

also be observed by the 18% stall_inst_fetch metric. Too much unrolling is likely to

overload the instruction fetch queue. In our case, the above configuration works well.

Other metrics are around 10% and almost equally distributed. This is an indication of

a balance between trade-offs.

Additional user-space benchmarking shows that we can calculate 214 hashes in 420

milliseconds on a single x86 thread. The same can be achieved only in 4 milliseconds

on the test device. This data also includes the duration of copying input to the device

memory and getting it back to system memory over PCIe bus. According to these

indicators, the throughput of x86 implementation is 214 × 28 bytes/420 msecs =

54

4 MiB/420 msecs ≈ 10 MiB/sec per thread while the throughput of our CUDA

implementation is 214 × 28 bytes/4 msecs = 4 MiB/4 msecs ≈ 1 GiB/sec where

28 bytes is the hash input block size.

Power consumption metrics have also been collected using nvprof profiler (Table B.1,

B.2). The program is run for only a single test round without a warmup stage. Col-

lected data shows on adaptive power mode, our board consumes 40W per test round

on Reference Implementation and 35W on Parallel Implementation. This suggests

our implementation consumes almost 5 Watts less on adaptive mode per test round.

These values become 56W to 43W when test round hash count is increased to 219.

The difference is almost 13 Watts.

Figure 6.5: Kernel Stall Reasons, Reference Impl. (left) vs Our Parallel Impl. (right)

55

56

CHAPTER 7

CONCLUSION

The NIST’s PQC standardization process is a response to advances in the develop-

ment of quantum computers. These quantum computers exploit quantum mechanical

phenomena to solve mathematical problems that are difficult or intractable for con-

ventional computers. If we assume the existence of large-scale quantum computers

then, they will be able to break current public-key cryptosystems. These systems con-

sist of digital signatures and key-establishment schemes. Quantum computers will

have no a drastic impact on symmetric-key cryptosystems, as said before doubling

the keyspace would restore the original security level.

Round 1 of the standardization process is over and the report can be found in [3].

In this report, it is mentioned that 82 candidates were submitted and 69 first-round

candidates were found eligible for processing. The criteria for eligibility includes

provisions for reference and optimized C code implementations, known-answer tests,

a written specification and required intellectual property statements. In addition, al-

gorithms are required to be implementable in a wide range of hardware and software

platforms.

NIST selected 26 of those 69 candidates to be qualified for the second round. The

security, cost and performance, and algorithm and implementation characteristics of

a candidate in selecting the second-round candidate is considered in this process.

In the report, NIST not only considered the attacks that directly demonstrated that a

candidate fell short of NIST’s stated security targets but also the attacks that brought

the candidate’s underlying security assumptions into question.

57

Figure 7.1: Second Round Candidates

BIKE LEDAcrypt Rainbow
Classic McEliece LUOV ROLLO

CRYSTALS-DILITHIUM MQDSS Round5
CRYSTALS-KYBER NewHope RQC

FALCON NTRU SABER
FrodoKEM NTRU Prime SIKE

GeMSS NTS-KEM SPHINCS+
HQC Picnic Three Bears
LAC qTESLA

The second round qualifiers are given in Table 7.1. The list contains 17 public-key

encryption and key-establishment schemes and 9 digital signature schemes. In this

thesis, one of the PKE scheme candidates NewHope is discussed.

The conference for the second round was held in August 2019, at the University of

California Santa Barbara. In 2020, it is planned to either select finalists for a final

round or select a small number of candidates for standardization.

Another subject discussed in this thesis is SWIFFTX. It is one of the lattice based hash

function that provides provable collision resistance and pseudo-randomness. We have

presented an efficient parallel implementation of SWIFFTX on GPU. Our tests have

showed that the proposed implementation is approximately 1000 times faster than

the single-thread x86 implementation and 10 times faster than the ported reference

implementation. Moreover, the throughput is also increased by 100 times. In terms

of power consumption, our implementation performs 5 Watts better per 216 hashes

and 13 Watts better per 219 hashes.

It should be noted that there are newer architectures such as Volta and Turing than Pas-

cal, a member of the sixth generation CUDA. These newer generations have higher

memory bandwidth and more computation capabilities. Furthermore, the technol-

ogy called Independent Thread Scheduling (ITS) is built into those new architectures.

This technology will probably allow GPU’s to utilize resources more efficiently in

terms of scheduling and synchronization and deliver more speed and throughput if

properly implemented. First idea basically aims to increase the occupancy. It might

58

be possible to implement a version of the algorithm that does not employ any shared

memory instead, passes data across threads via Warp Shuffling. Consequently, this

new implementation and the one that uses shared memory can be run simultaneously

in the presence of ITS and hence a higher occupancy will be achieved. On the other

hand, this might not lead to a significant improvement since we are still facing the

burden of field arithmetic assigned to ALU. The second idea might target the time

lost during synchronization. Figure 6.5 indicates that our kernel is stalled by syn-

chronization primitives by 11% percent. This situation might be improved by ITS

and defining explicit memory reads and writes using volatile keyword.

59

60

REFERENCES

[1] M. Ajtai, The shortest vector problem in l2 is np-hard for randomized reduc-
tions, in Proceedings of the thirtieth annual ACM symposium on Theory of com-
puting, pp. 10–19, 1998.

[2] S. Akleylek, Ö. Dağdelen, and Z. Y. Tok, On the efficiency of polynomial mul-
tiplication for lattice-based cryptography on gpus using cuda, in International
Conference on Cryptography and Information Security in the Balkans, pp. 155–
168, Springer, 2015.

[3] G. Alagic, G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang, Y.-K.
Liu, C. Miller, D. Moody, R. Peralta, et al., Status report on the first round of
the NIST post-quantum cryptography standardization process, US Department
of Commerce, National Institute of Standards and Technology, 2019.

[4] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe, Newhope without recon-
ciliation., IACR Cryptology ePrint Archive, 2016, p. 1157, 2016.

[5] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe, Post-quantum key ex-
change—a new hope, in 25th {USENIX} Security Symposium ({USENIX} Se-
curity 16), pp. 327–343, 2016.

[6] Y. Arbitman, G. Dogon, V. Lyubashevsky, D. Micciancio, C. Peikert, and
A. Rosen, Swifftx: A proposal for the sha-3 standard, Submission to NIST,
2008.

[7] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehlé, Crystals-kyber: a cca-secure module-
lattice-based kem, in 2018 IEEE European Symposium on Security and Privacy
(EuroS&P), pp. 353–367, IEEE, 2018.

[8] J. W. Bos, C. Costello, M. Naehrig, and D. Stebila, Post-quantum key exchange
for the tls protocol from the ring learning with errors problem, in 2015 IEEE
Symposium on Security and Privacy, pp. 553–570, IEEE, 2015.

[9] E. Chu and A. George, Inside the FFT black box: serial and parallel fast Fourier
transform algorithms, CRC Press, 1999.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algo-
rithms, MIT press, 2009.

61

[11] R. Durstenfeld, Algorithm 235: random permutation, Communications of the
ACM, 7(7), p. 420, 1964.

[12] R. P. Feynman, Simulating physics with computers, International journal of the-
oretical physics, 21(6), pp. 467–488, 1982.

[13] P. FIPS, Secure hash algorithm-3 (sha-3) standard: Permutation-based hash and
extendable-output functions, National Institute for Standards and Technology
(NIST), 202(0), 2014.

[14] C. for Research on Cryptography and B. C. R. Security, Masaryk Uni-
versity, Tool for generation of data from cryptoprimitives (block and
stream ciphers, hash functions), https://github.com/crocs-muni/
CryptoStreams, [Online; accessed December-2018].

[15] L. K. Grover, A fast quantum mechanical algorithm for database search, arXiv
preprint quant-ph/9605043, 1996.

[16] T. Györfi, O. Cret, G. Hanrot, and N. Brisebarre, High-throughput hardware
architecture for the swifft/swifftx hash functions., IACR Cryptology ePrint
Archive, 2012, p. 343, 2012.

[17] J. Hoffstein, J. Pipher, J. H. Silverman, and J. H. Silverman, An introduction to
mathematical cryptography, volume 1, Springer, 2008.

[18] W.-K. Lee, S. Akleylek, W.-S. Yap, and B.-M. Goi, Accelerating number theo-
retic transform in gpu platform for qtesla scheme, in International Conference
on Information Security Practice and Experience, pp. 41–55, Springer, 2019.

[19] H. W. Lenstra, A. K. Lenstra, L. Lovfiasz, et al., Factoring polynomials with
rational coeficients, 1982.

[20] R. Lidl and H. Niederreiter, Finite fields, volume 20, Cambridge university
press, 1997.

[21] V. Lyubashevsky and D. Micciancio, Generalized compact knapsacks are col-
lision resistant, in Automata, Languages and Programming, 33rd International
Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006, Proceedings, Part II,
pp. 144–155, 2006.

[22] V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen, Swifft: A modest
proposal for fft hashing, in International Workshop on Fast Software Encryption,
pp. 54–72, Springer, 2008.

[23] NVIDIA, GeForce GTX 1080 Whitepaper, https://international.
download.nvidia.com/geforce-com/international/pdfs/
GeForce%2FGTX%2F1080%2FWhitepaper%2FFINAL.pdf, [Online;
accessed December-2018].

62

https://github.com/crocs-muni/CryptoStreams
https://github.com/crocs-muni/CryptoStreams
https://international.download.nvidia.com/geforce-com/international/pdfs/GeForce%2FGTX%2F1080%2FWhitepaper%2FFINAL.pdf
https://international.download.nvidia.com/geforce-com/international/pdfs/GeForce%2FGTX%2F1080%2FWhitepaper%2FFINAL.pdf
https://international.download.nvidia.com/geforce-com/international/pdfs/GeForce%2FGTX%2F1080%2FWhitepaper%2FFINAL.pdf

[24] NVIDIA, Parallel Thread Execution ISA, https://docs.nvidia.
com/cuda/parallel-thread-execution/index.html, [Online,
accessed April 2018].

[25] NVIDIA, Pascal Tuning Guide, https://docs.nvidia.com/cuda/
pascal-tuning-guide/index.html, [Online, accessed April 2018].

[26] NVIDIA, Visual Profiler, https://docs.nvidia.com/cuda/
profiler-users-guide/index.html%23getting-started,
[Online; accessed April 2018].

[27] C. Nvidia, Nvidia cuda c programming guide, Nvidia Corporation, 120(18), p. 8,
2011.

[28] C. Peikert, Public-key cryptosystems from the worst-case shortest vector prob-
lem, in Proceedings of the forty-first annual ACM symposium on Theory of com-
puting, pp. 333–342, ACM, 2009.

[29] C. Peikert and A. Rosen, Efficient collision-resistant hashing from worst-case
assumptions on cyclic lattices, in Theory of Cryptography, Third Theory of
Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006,
Proceedings, pp. 145–166, 2006.

[30] O. Regev, New lattice-based cryptographic constructions, Journal of the ACM
(JACM), 51(6), pp. 899–942, 2004.

[31] O. Regev, On lattices, learning with errors, random linear codes, and cryptogra-
phy, Journal of the ACM (JACM), 56(6), p. 34, 2009.

[32] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer, SIAM review, 41(2), pp. 303–332, 1999.

[33] N. P. Smart, Cryptography made simple, volume 481, Springer, 2016.

[34] M. E. Ulu and M. Cenk, A parallel gpu implementation of swifftx, Mathematical
Aspects of Computer and Information Sciences, 2019.

[35] P. van Emde Boas, Another np-complete partition problem and the complexity
of computing short vectors in a lattice. mathematics department, university of
amsterdam, Technical report, TR 81-04, 1981.

[36] V. Volkov, Better performance at lower occupancy, in Proceedings of the GPU
technology conference, GTC, volume 10, p. 16, San Jose, CA, 2010.

63

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://docs.nvidia.com/cuda/pascal-tuning-guide/index.html
https://docs.nvidia.com/cuda/pascal-tuning-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html%23getting-started
https://docs.nvidia.com/cuda/profiler-users-guide/index.html%23getting-started

64

APPENDIX A

TEST DEVICE PROPERTIES

Table A.1: Test Device Properites

Property Value Unit

Name, Brand AsusNVIDIA GTX1080
Architecture NVIDIA Pascal
Total amount of global memory 8120 Mbytes
Number of Stream Multiprocessors 20
Number of cores per SM 128
Total Number of cores 2560
GPU / Memory Clock 1734 / 5005 MHz
L2 2097152 bytes
Total amount of constant memory 65536 bytes
Total amount of shared memory per block 49152 bytes
Total number of registers available per block 65536
Warp size 32
Maximum number of threads per multiprocessor 2048
Maximum number of threads per block 1024

65

66

APPENDIX B

POWER CONSUMPTION DATA

Table B.1: Ported Reference Implementation Power Consumption Data

Data/PowerMizer Adaptive (Min/Avg/Max) Max. Perf. (Min/Avg/Max) Unit
Mode

SM Clock 139.00/1313.40/1607.00 1607.00/1607.00/1607.00 MHz
Memory Clock 405.00/3789.80/5005.00 4513.00/4709.80/5005.00 MHz
Temperature 51.00/51.56/52.00 53.00/53.00/53.00 C
Power 10039.00/39879.00/53144.00 46522.00/50178.67/53231.00 mW
Fan 0.00/0.00/0.00 0.00/0.00/0.00 %

Table B.2: Our Parallel Implementation Power Consumption Data

Data/PowerMizer Adaptive (Min/Avg/Max) Max. Perf. (Min/Avg/Max) Unit
Mode

SM Clock 139.00/1019.80/1607.00 1607.00/1607.00/1607.00 MHz
Memory Clock 405.00/2968.20/5005.00 4513.00/4759.00/5005.00 MHz
Temperature 52.00/52.33/53.00 53.38/53.00/54.00 C
Power 9995.00/34898.33/53135.00 47012.00/49984.00/53718.00 mW
Fan 0.00/0.00/0.00 0.00/0.00/0.00 %

67

68

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: ULU, Metin Evrim

Nationality: Turkish (TC)

Date and Place of Birth: April 11-th, 1980, Ankara

Marital Status: Single

E-mail: evrimulu _at_ gmail.com

EDUCATION

Degree Institution Year of Graduation

M.S. M.E.T.U. Cryptography 2011

B.S. M.E.T.U. Mechanical Engineering 2002

High School M.E.T.U. Development Foundation School 1997

PUBLICATIONS

International Conference Publications

M.E. Ulu, [Core-serveR] - A Common Lisp Application Server, International Lisp

Conference, October 2012, Kyoto, Japan

M.E. Ulu, M. Cenk, A Parallel GPU Implementation of SWIFFTX, MACIS, Novem-

ber 2019, Gebze, Turkey

69

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	LIST OF ABBREVIATIONS
	Introduction
	Number Theoretic Transforms
	Introduction
	Fourier Transform
	Fast Polynomial Multiplication

	Optimizations in Modular Arithmetic
	Introduction
	Short Barrett Reduction
	Montgomery Forms

	The Use of Number Theoretic Transforms in Cryptography
	Computational Problems on Lattices
	BCNS Key Exchange Algorithm
	New Hope
	SWIFFT and SWIFFTX

	Number Theoretic Transforms in SWIFFTX
	An Efficient GPU implementation of SWIFFT and SWIFFTX
	Introduction
	Compute Unified Device Architecture - CUDA
	The Reference Implementation
	A Parallel Implementation
	Further Improvements and Occupancy Analysis
	Methodology and Results

	Conclusion
	REFERENCES
	APPENDICES
	Test Device Properties
	Power Consumption Data
	CURRICULUM VITAE

