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ABSTRACT 
 

NETWORK-BASED DISCOVERY OF MOLECULAR TARGETED AGENT 

TREATMENTS IN HEPATOCELLULAR CARCINOMA 

 

Fayetörbay, Rumeysa 
MSc, Department of Bioinformatics 

Supervisor: Assoc. Prof. Dr. Nurcan Tunçbağ 
 

    January 2020, 114 pages 

Hepatocellular carcinoma (HCC) is one of the most-deadly cancers and the most common 
type of primary liver cancer. Multikinase inhibitor Sorafenib is one of FDA approved 
targeted agents in HCC treatment. PI3K/AKT/mTOR pathway is altered in about 51% of 
HCC; hence, understanding how Sorafenib and PI3K/AKT/mTOR pathway inhibitors act 
at signaling level is crucial for targeted therapies and to reveal the off-target effects. In 
this work, we use gene expression profiles (GEPs) of HCC cells (Huh7 and Mahlavu) 
which were treated with seven different agents and their combination. Our aim is to reveal 
the important targets and modulators in agent treatments by inferring the dysregulation of 
Interactome. In other words, we search for the mechanism of action of the agents in a 
network context beyond the list of genes. For this purpose, we use the DeMAND 
(Detecting Mechanism of Action based on Network Dysregulation) algorithm developed 
by Califano Lab. DeMAND compares GEPs and assesses the change in the individual 
interactions from weighted interactome obtained from STRING database. As a result, we 
reconstructed 18 agent-specific networks from each GEPs. Each gene and interaction 
within these networks have a value signifies how strongly these genes are affected from 
the chemical network perturbation. Then, we found enriched pathways in each network. 
We initially compared the networks of single agents and their combination; i.e. PI3Ki-α, 
Sorafenib and their combined treatment. Then, we compared all networks simultaneously. 
The simultaneous comparison of the reconstructed networks at gene and pathway levels 
shows that several pathways and proteins are commonly affected across agent treatments 
(e.g., Wnt, HIF-1, Notch pathways and MCM proteins, mTOR). On the other hand, some 
pathways are only affected in a specific agent treatment (e.g., SNARE interactions). 

Keywords: Hepatocarcinoma Network Reconstruction, Therapeutic Agents, DeMAND 
Network Modelling Algorithm, Omics Data Integration, Targeted Cancer Therapy  
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ÖZ 

 

        HEPATOSELLÜLER KARSİNOMDA HEDEFE YÖNELİK    

     MOLEKÜLER AJAN TEDAVİLERİNİN AĞA DAYALI KEŞFİ 

 
 

Fayetörbay, Rumeysa 
Yüksek Lisans, Biyoenformatik Yüksek Lisans Programı  

Tez yöneticisi: Doç. Dr. Nurcan Tunçbağ 
 

         Ocak 2020, 114 sayfa 

Hepatosellüler karsinom en ölümcül kanserlerden biridir ve en sık görülen primer 
karaciğer kanseri türüdür. Multikinaz inhibitörü Sorafenib, hepatosellüler kanser 
tedavisindeki FDA onaylı hedeflenmiş ajanlardan biridir. PI3K/AKT/mTOR yolağı 
hepatosellüler karsinomun yaklaşık % 51'inde değiştirilir, bu yüzden Sorafenib ve 
PI3K/AKT/mTOR yolağı inhibitörlerinin sinyal verme seviyesinde nasıl etki ettiğinin 
anlaşılması, hedefe yönelik terapiler için çok önemlidir ve yan etkilerini (hedef dışı 
etkiler) ortaya çıkarır. Bu çalışmada biz yedi farklı ajan ve onların kombinasyonu ile 
tedavi edilen hepatosellüler karsinom hücrelerinin (Huh7 ve Mahlavu) gen ekspresyon 
profillerini (GEP) kullanıyoruz. Amacımız, ajan tedavilerindeki önemli hedefleri ve 
modülatörleri moleküler etkileşimlerin düzensizliğini anlayarak ortaya çıkarmaktır. Başka 
bir deyişle, biz ajanların etki mekanizmasını genler listesinin haricinde bir ağ kaynağında 
araştırıyoruz. Bu amaçla Califano Lab tarafından geliştirilen DeMAND (Ağ bozulmasına 
dayalı etki mekanizması belirleme) algoritmasını kullanıyoruz. DeMAND, GEP 
karşılaştırır ve STRING veri tabanından elde edilen ağırlıklı interaktomdaki özgün 
etkileşimlerin değişimini değerlendirir. Sonuç olarak, herbir gen ekpresyon profilinden 
ajana özel 18 ağ yeniden oluşturduk. Bu ağlar içindeki her gen ve etkileşimin değeri bu 
genlerin kimyasal ağ bozulmasından ne kadar fazla etkilendiğini gösterir. Daha sonra, biz 
her bir ağda zenginleştirilmiş yolaklar bulduk.  İlk olarak tek ajan tedavilerinin ağlarını ve 
bu ajanların kombinasyonunu karşılaştırdık; yani PI3Ki-α, Sorafenib ve bunların 
birleştirilmiş tedavi şeklini. Ardından, tüm ağları eşzamanlı olarak karşılaştırdık. Yeniden 
yapılandırılmış ağların gen düzeyinde ve yolak seviyesinde eşzamanlı karşılaştırması ajan 
tedavilerinde çeşitli yolak ve proteinlerin yaygın olarak etkilendiğini göstermektedir 
(örneğin, Wnt, HIF-1, Notch yolakları ve MCM proteinleri, mTOR). Öte yandan, bazı 
yolaklar sadece belirli bir ajan tedavisinde etkilenir (örneğin, SNARE interaksiyonları). 

Anahtar Sözcükler: Hepatosellüler Karsinom Yeniden Ağ Kurma, Tedavi Ajanları, 
DeMAND Ağ Modelleme Algoritması, Omik Veri Bütünleşmesi, Hedefe Yönelik Kanser 
Terapisi  
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CHAPTER 1 

CHAPTER 

      INTRODUCTION 

 

Cancer is a general term for diseases that are responsible for the uncontrolled division 
and proliferation in the cells. Through the invasion, nearby tissues might be adversely 
affected. Previously known carcinogenesis factors are infectious carcinogens (HIV, 
HPV, EBV, HBV, HCV, HHV, HTLV, helicobacter pylori, etc.), physical 
carcinogenic agents (radiation and UV light), and chemical carcinogenic agents 
(tobacco smoking, arsenic, benzene, asbestos, acetaldehyde, aflatoxins, etc.) 
(Blackadar, 2016; Plummer et al., 2016). Cancer is one of the top causes of death 
globally. According to the World Health Organization (WHO) reported fact sheet, 
almost 10 million deaths were occurred due to the cancer in 2018. Liver cancer has the 
fourth highest cancer-related mortality in the WHO 2018 report (with nearly 800.000 
deaths). In addition to the statistics of liver cancer, the incidence rate of the liver cancer 
alters diversely from distinct regions of the world and the highest frequency of 
prevalence is detected in Eastern Asia (L. Lin et al., 2019).  

Roughly, a cancer which originates from hepatocytes is identified as primary liver 
cancer. The most common type of primary hepatic malignancy is hepatocellular 
carcinoma (HCC). There are several factors that increase the risk of HCC including 
the infection of hepatitis B or hepatitis C virus, cirrhosis, excessive alcohol, aflatoxins, 
inherited liver diseases (Hemochromatosis, Wilson’s disease, etc.), nonalcoholic fatty 
liver disease, type II diabetes and obesity (Balogh et al., 2016). Treatments of 
hepatoma depend mainly on the stage of the disease, age of the individual, and the 
general health condition of the patient. As treatment options, there are some different 
techniques including surgery, chemotherapy, radiation, liver transplantation, 
immunotherapy, and targeted therapy. The classic chemotherapeutic agents are 
doxorubicin, cisplatin and 5-fluorouracil in liver cancer. Although a single agent or 
combination of these agents decrease the size of the tumor, tumor come back again in 
a period of time (S. Lin, Hoffmann, & Schemmer, 2012; Park et al., 2006). As Balogh 
et al. claimed that, one of the recent methods in hepatoma treatment is targeted therapy 
which is used to target specific molecules in cancerous cells. It is different from 
chemotherapy in the aspect of healthy cell damage. Chemotherapy attacks the cancer 
systemically, destroying both healthy normal cells and tumorigenic cells that divides 
quickly. Unlike chemotherapy, targeted therapy blocks the growth of cancerous cells 
by interfering with proteins that are acting in the processes of tumor progression and 
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proliferation of cancer. Hence, targeted therapy aims to have fewer off-target effects 
that decrease the given harm to the normal body cells (Balogh et al., 2016). 

Sorafenib, Nexavar as a trade name, is one of the FDA approved targeted drugs used 
in HCC treatment. It is a multikinase inhibitor drug that primarily inhibits Raf, LIMK, 
VEGFR and PDGFR kinases (Lai et al., 2018). Due to the repressing functional 
activity of Raf and other receptor tyrosine kinases by suppressing phosphorylation of 
Raf/MEK/ERK pathway, Sorafenib is an efficient alternative while targeting cell 
proliferation and angiogenesis (Adnane, Trail, Taylor, & Wilhelm, 2006). Yet, tumor 
recurrence in most of the patients is arose due to increasingly proliferative signals; 
hence, other targeted drugs in combination with Sorafenib is a necessity.  

In order to compensate for the inhibited pathway, cancerous cells may upregulate 
alternative existing pathways as in the case of PI3K/AKT/mechanistic target of 
rapamycin (mTOR) signalling pathway. This proliferative pathway is much altered in 
primary liver cancer cells (Gedaly et al., 2012). The upregulation of angiogenic signals 
have significant roles in the acquired resistance to Sorafenib; thus, understanding how 
Sorafenib and its combination with PI3K/AKT/mTOR pathway inhibitors act is vital 
for targeted drug therapies and to reveal the off-target effects of the drugs.  

From the pharmacological point of view, mechanism of action (MoA) of a compound 
describes the biochemical reactions that interactor and effector proteins interact, 
enabling to produce the pharmacological effect of the drug. To determine on-target 
and off-target effects of a drug, MoA interrogation questioning is indispensable 
(Scannell, Blanckley, Boldon, & Warrington, 2012). Whether there is a significant 
progress in characterization of MoA, drug discovery pipelines’ productions will be 
considerably arisen (Woo et al., 2015). In the aspect of drug response, MoA is critical 
to detect the interaction dysregulation of a drug in a network–based content beyond 
the list of genes.  

DeMAND (Detecting Mechanism of Action based on Network Dysregulation) is a 
network modelling algorithm to identify the targets and modulators by inferring the 
dysregulation of Interactome subsequent molecular targeted therapeutic perturbation. 
As an alternative to differential gene expression analysis, DeMAND searches for the 
MoA of the drugs, inhibitors of drugs and their combination in a network contextual 
perspective. The algorithm compares GEPs before and after the drug perturbation, and 
determines the alteration in the individual interactions from STRING Interactome 
(Woo et al., 2015).  

In this thesis study, our main purpose is to reconstruct drug specific networks from 
GEPs, and to identify significant targets in treatments of molecular targeted agents 
following the dysregulation of Interactome. Toward this aim, small molecule 
inhibitors that are targeting the cascade of PI3K/AKT/mTOR, including pan-PI3K 
inhibitors, isoform-specific PI3K inhibitor, and isoform-specific or non-specific AKT 
inhibitors, and mTOR inhibitor were analyzed. We used gene expression profiles 
(GEPs) of Huh7 and Mahlavu cells that were treated with multiple distinct drugs, 
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inhibitors and their combination. Both Huh7 and Mahlavu cells were derived from 
HCC cell lines used in this work. Huh7 is a well-differentiated liver cell. However, 
Mahlavu hepatoma cells are poorly-differentiated.  

In our study, 18 drug specific networks were reconstructed by using DeMAND 
approach. Each gene and interaction within these networks corresponds to a certain 
value that demonstrates the level of response to the compound perturbation. Addition 
to network reconstruction and analyses, enriched pathways were analyzed in each 
network. The networks obtained from both single drug and combination of the drugs 
were compared at gene and pathway levels by applying functional enrichment 
analyses. As a result, some pathways/proteins were only affected from a specific drug; 
whereas, the majority of the pathways are commonly affected from drug treatments.  

This thesis is divided into the following chapters: 

In Chapter 2, we primarily provided the literature review including the information 
about HCC, Huh7 and Mahlavu cell lines, and the survival rate of liver cancer. 
Furthermore, we gave detailed information about PI3K/AKT/mTOR pathway, drugs 
and inhibitors, protein-protein interaction databases, and DeMAND algorithm.  

In Chapter 3, we described the experimental dataset and interactome used in this study. 
In addition to the input of our network modeling algorithm, DeMAND analysis, 
functional enrichment analysis, network visualization criteria were given in detail 
throughout this chapter.  

In Chapter 4, we initially gave the statistical outcomes of our reconstructed 
hepatocarcinoma networks provided by our network modeling algorithm, DeMAND. 
Apart from the statistical results, literature targets of drug treatments/inhibitors are 
stated to identify target genes and to check the presence of these genes in the 
reconstructed networks. For determining common characteristics between Sorafenib-
related multiple networks and identifying potential similarities, overlapping genes are 
analyzed. Additionally, we demonstrated all hepatoma networks and several resulting 
functional analyses outcomes of this study that elucidate the inclusion of the 
reconstructed networks in pathways and in significant terminology insights to reveal 
fundamental biological signatures in the light of the literature support.  

Finally, we conclude our thesis study in Chapter 5 with a general overview and discuss 
several of the striking substantial results supporting with literature. These outcomes 
are based on our direct findings from our analyses (Chapter 4). Additionally, we 
suggest potential several candidate targeted agents to improve our targeted therapy 
approach as our future direction.  
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CHAPTER 2 

 

1. LITERATURE REVIEW 

2. 2.1      Comprehending the Underlying Systems Biology of Silent Killer,  

      Hepatocellular Carcinoma 

3. Cancer is a major cause of death worldwide with 9.6 million deaths reported in 
2018. Lung, colorectal, stomach, liver and breast cancer are the most observed 
types of cancer-related deaths (WHO 2018 reported facts). According to the cancer 
statistics in 2018, the incidence of liver cancer continues to increase in females; 
whereas, no substantial difference observed in males (Siegel, Miller, & Jemal, 
2018). This incidence considerably augments more than other cancer types for both 
sexes (Siegel, Miller, & Jemal, 2019).  

4. HCC is the most common type of hepatocarcinoma cells that are malignant tumors 
of the liver. Hepatocarcinoma has multiple distinct etiology. Different factors that 
increase the risk of HCC are including the viral infection (HBV and HCV), alcohol, 
nonalcoholic fatty liver disease (e.g. non-alcoholic steatohepatitis (NASH)), 
cirrhosis, autoimmune disorders, cholestatic disorders, metabolic disorders (e.g. 
Iron metabolism disorder- Hemochromatosis, Wilson’s disease), and obesity 
(Balogh et al., 2016; Pellicoro, Ramachandran, Iredale, & Fallowfield, 2014). As 
a treatment option, chemotherapy demonstrates low level of impact because of the 
heterogeneity of hepatocarcinoma (El-Serag, 2011). In order to better understand 
hepatoma, D’Alessandro et al. suggested using gene expression and proteomics 
profiling data with network models from the perspective of systems biology 
approach (D’Alessandro, Meyer, & Klingmüller, 2013). Additionally, there is a 
very recent study that identify potential hepatocarcinoma drug targets with 
network-based analysis and machine-learning based model, support vector 
machine (SVM). Concisely, Tong et al. initially map distinct genes to both human 
protein-protein interaction network and cellular signaling network. Following the 
mapping process, statistical analyses of networks were evaluated and developed a 
new methodology that predict drug target hepatoma genes. SVM-based analysis to 
build drug target hepatoma predictor is done regarding the dependency scores of 
networks (Tong, Zhou, & Wang, 2019).   

5. There are two hepatocarcinoma cell lines used in this work. Huh7 is a well-
differentiated liver cell line. In 1982, it was initially isolated from a liver tumor in 
a Japanese man (Pridgeon et al., 2016). Huh7, epithelial-like malignant, cells are 
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morphologically similar to the healthy liver cells. Their differences from the 
hepatocytes are their smaller size and structural organization. Well-differentiated 
Huh7 expression is observed in the early stage of HCC and might be rarely in the 
advanced levels (Yuzugullu et al., 2009). Mahlavu is a poorly-differentiated liver 
cell line. It was taken from a human genome. Surprisingly, it is mainly made up of 
L1 repeat elements (HHCM NCBI, 2019). On the contrary, poorly differentiated 
Mahlavu cells have low cytoplasm and variable structure. The expression of 
Mahlavu is detected in the advanced levels of HCC proliferation (Keskin et al., 
2013; Yuzugullu et al., 2009).  

6.  

7. 2.2    The Survival Rate of Primary Liver Cancer 

8. According to the American Cancer Society, the five-year survival percent ratio for 
liver cancer is approximately 18%. The percentage depends on the stage and the 
region of the liver cancer. Whether the cancerous region is limited to a certain 
location within the liver, the percentage is approximately 31% for the next 5 years. 
Surgical operations are the first options when the cancerous part is only in the liver 
and the tumor size is feasible. If the cancer is expanded to other places or organs, 
the overall rate is decreased dramatically for the following 5 years (American 
Cancer Society Facts Report in 2019).  

9. Sorafenib is the first systemic agent approved by the FDA in hepatocarcinoma 
treatment (when HCC cannot be treated with surgery) and extends the survival rate 
up to 10.7 months (in European and United States regions) and 6.5 months (in 
Pacific Asia) (Cheng, Hsu, Shen, Shao, & Hsu, 2014). Since Sorafenib has wide 
range of targets, systematic mechanism of action is poorly understood. It primarily 
inhibits Raf, LIMK, VEGFR and PDGFR kinases. Additionally, it blocks tumor 
proliferation and angiogenesis and induces apoptosis in tumorigenic cells. The 
alteration is about 40% in PI3K/AKT/mTOR pathway for primary liver cancer (L. 
Liu et al., 2006). As a result, understanding how Sorafenib and its combination 
with PI3K/AKT/mTOR pathway inhibitors act is vital for targeted drug therapies 
and to reveal the side effects of the drugs.  

 

10. 2.3     Detecting Mechanism of Action by Network Dysregulation,   

     DeMAND Algorithm 

11. In order to reveal the significant targets and modulators, the dysregulation of 
Interactome is analyzed across different drug treatments. In the aspect of drug 
response, mechanism of action (MoA) is crucial to detect the interaction of a drug 
dysregulation in a network–based content. Basically, DeMAND is an algorithm to 
model networks of molecular interactions for specific cell lines. As required inputs 
for DeMAND, gene expression profiles obtained from drug and control samples 
and a molecular interaction network is necessary. The algorithm compares GEPs 
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before and after the molecular targeted agent perturbation and tests the edge 
dysregulation in the Interactome. Similarly, the change that corresponds to all of 
the interactions from STRING database (as Interactome) is calculated. In order to 
assess the edge dysregulation, the probability density difference before and after 
drug perturbation is calculated by using Kullback-Leibler divergence (KLD). 
Statistical significance for each interaction is determined by the shuffling of gene 
pairs. The combined dysregulation of interactions for each gene is detected by the 
p-values of all of the interactions. Molecular targeted therapeutic agent specific 
networks from each GEPs are reconstructed. The output of DeMAND contains a 
gene list and their level of dysregulation with the corresponding statistical 
significances in the reconstructed network (Woo et al., 2015).   

12. There are multiple known methods to detect mechanism of action in the literature. 
Although experimental detection of MoA is labor-intensive and less informative, 
affinity purification and chromatography assay are leading of this technique 
(Aebersold & Mann, 2003; Ito et al., 2010; Woo et al., 2015). Together with the 
previously mentioned experimental techniques, various computational methods 
are presented. Virtual screening, chemical-based computational approach, seek 
promising candidates which bind to drug targets (Miller, 2002; Rollinger, 
Stuppner, & Langer, 2008). Similarity ensemble approach (SEA) is one of the 
chemoinformatics-based methods. Predicted false-positive result rates are much 
higher than the optimal for the technique (Lounkine et al., 2012). With the help of 
omics data taking into account, after the drug perturbation, gene expression 
profiles which set differentially expressed genes to the corresponding MoA are 
presented. One of the substantial disadvantages of the method might be unaltered 
level of expression of mRNA while subjected to drug despite changing activity of 
protein (subsequent to perturbation of drug) (Lamb et al., 2006; Woo et al., 2015).  

13. By performing reverse engineering techniques, network-based methods are 
developed as leading methods for MoA characterization. To summarize, there are 
2 common mechanisms of network-based methodologies, namely creating a 
reversely engineered regulatory network, and deducing evaluation of dysregulated 
edges after agent perturbations. One of the current studies of network-based 
approaches is mode-of-action by network identification, MNI algorithm. This 
algorithm build a molecular interaction network by using reverse-engineered 
network model (in particular, multiple linear regression models) to whole-genome 
expression profiles. Subsequently, gene expression array data are identified by the 
linear models to detect the targeted genes and cascade inclusion (Bernardo et al., 
2005; Woo et al., 2015).  

14. Another network-based method is the interactome dysregulation enrichment 
analysis, IDEA algorithm. Basically, regulatory interaction network is created by 
Bayesian evidence integration approach. In order to detect drug MoA, the 
alteration of all interactions provided by microarray expression profiles in the 
molecular network is examined. The statistical significance of the alteration of 
dysregulated network perturbation is calculated by mutual information. The targets 
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of the drugs are deduced from the algorithm while checking for the dysregulated 
interactions of the genes in the network. To detect the phenotype of tumor, this 
algorithm is also performed. As a limitation, the systems biology-related algorithm 
need to have sample size more than 100 which makes it unsuitable to choose for 
most of the datasets (Mani et al., 2008; Woo et al., 2015).  

15.  

16. 2.4     Targeting Raf/MEK/ERK Pathway and Parallel Alternative Signaling       

      Cascade, PI3K/AKT/mTOR Pathway 

17. Genomic analysis is occurred for examining hepatocarcinoma cells which reveal 
some of the pathways have abnormalities (D’Alessandro et al., 2013) and these 
aberrancies observed in the pathways may cause hepatocarcinogenesis (Whittaker, 
Marais, & Zhu, 2010). Hanahan and Weinderberg highlighted that the aberrancies 
which are detected in cascades (especially, kinase signaling pathways) lead to 
provoke multiple hallmarked phenotypes of cancer, namely angiogenesis, survival, 
invasion and metastasis, motility, responses due to DNA damage, and proliferation 
(Gross, Rahal, Stransky, Lengauer, & Hoeflich, 2015; Hanahan & Weinberg, 
2011). In one of the recent studies, Castelli et al. highlighted that 
PI3K/AKT/mTOR pathway is one of the most changed signaling cascades in 
hepatocarcinoma with 51% aberrancy rate. Additionally, Ras-
mediated/Raf/MEK/ERK signaling pathway is another altered cascade that has 
shown 43% aberrance ratio in HCC cases (Castelli, Pelosi, & Testa, 2017).  

18. PI3Ks (Phosphatidylinositol-4,5-bisphosphate 3-kinases) are kinases that are 
associated with cellular processes such as proliferation, cell growth, 
differentiation, cell survival, motility and so on (Zhu, Ke, Xu, & Jin, 2019). There 
are three different classes of PI-3 kinases as Class I, Class II and Class III. PI3Ks 
phosphorylate the 3’position hydroxyl group of the inositol ring of 
phosphoinositides. There are two subunits of Class I PI-3 kinases; regulatory and 
catalytic subunits as p85 and p110, respectively. The catalytic isoforms of Class I 
PI3Ks have 4 isoforms PI3Kα, PI3Kβ, PI3Kδ, and PI3Kγ. Activation of tyrosine 
kinase receptor via growth factors promotes PI3K activation. PI3K phosphorylates 
PIP2 (Phosphatidylinositol 4,5-bisphosphate) to PIP3 (Ptdlns(3,4,5)P3). PTEN 
(Phosphatase and tensin homolog) is a tumor suppressor that regulates 
dephosphorylating of PIP3 to PIP2 (Davis, Lehmann, & Li, 2015; Jean & Kiger, 
2014). 

19. AKT (also known as Protein kinase B) is a serine/threonine protein kinase that is 
included in the diverse cellular functions such as proliferation, cell growth, 
apoptosis, cell survival, etc. Following the recruitment to the plasma membrane, 
AKT is phosphorylated and gets activated. AKT is comprised of three isoforms; 
AKT1, AKT2, and AKT3 (Abeyrathna & Su, 2015; Szymonowicz, Oeck, 
Malewicz, & Jendrossek, 2018). mTOR is the abbreviation of mechanistic target 
of rapamycin (originally mammalian target of rapamycin) that is a serine/threonine 
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protein kinase regulates several processes including cell proliferation, survival, 
growth, transcription, motility, etc. mTOR is a member of PI3K-related kinases. 
mTOR has two different intracellular complexes as mTOR complex 1 (mTORC1) 
and mTOR complex 1 (mTORC2), respectively. In cancer, mTOR deregulation is 
observed (Abeyrathna & Su, 2015; Saxton & Sabatini, 2017).  

20. PI3K/AKT/mTOR signaling pathway is a crucial signal transduction cascade that 
regulates several physiological processes, namely cellular growth, proliferation, 
anabolic reactions, survival, cell cycle, motility, glucose metabolism (Gerson, 
Caimi, William, & Creger, 2018; H. Q. Liu et al., 2019). In addition to the critical 
processes, this significant pathway is activated by the following compounds such 
as insulin, SHH, IGF, CaM and EGF. On the other hand, PTEN inactivates the 
signaling pathway by dephosphorylating PIP3 into PIP2. Other inhibitors of this 
signaling cascade are Hb9 (transcription factor), GSK3ß, respectively (Xie et al., 
2019). PTEN acts as a tumor suppressor for the downstream of the PI3K/AKT 
signalling cascade. Very briefly, activation of tyrosine kinase receptor via growth 
factors promotes PI3K activation. PI3K phosphorylates PIP2 and converting it into 
PIP3. Following the translocation mechanisms to the plasma membrane, AKT is 
phosphorylated and turns into activated form. mTORC1, downstream effector 
protein of AKT, is stimulated by phosphorylation of AKT (Chamcheu et al., 2019).  

21. Raf/MEK/ERK signaling pathway is another significantly altered cascade that has 
a role in hepatocarcinogenesis. This pathway regulates several various processes, 
namely cell survival, differentiation, apoptosis, proliferation, and cellular 
senescence (Knight & Irving, 2014; Wen et al., 2019; Yang & Liu, 2017). From 
the perspective of hallmarks of cancer, Maurer et al clarify that Raf kinases 
contribution with Ras-mediations and aberrations in Raf (B-raf and C-raf 
activations) lead to the transformation of hepatotumorigenesis (Maurer, 
Tarkowski, & Baccarini, 2011). Further, Sorafenib is an essential drug which 
targets the cascade of Raf/MEK/ERK. It primarily inhibits Raf kinases, in 
particular B-Raf and C-Raf, and blocking the activity of the other cell surface 
kinase receptors PDGFR, IGFR, VEGFR. As a consequence, the physiological 
processes of angiogenesis and tumor growth is both suppressed by multikinase 
inhibitor, Sorafenib (Yang & Liu, 2017).  

22.  

23. 2.5     Molecular Targeted Therapeutic Agents and Multiple Inhibitor  

     Compounds Used in This Hepatocellular Carcinoma Study  

24. Except Sorafenib, there are novel therapeutic hepatocarcinoma drug agents (in 
particular, Regorafenib, Lenvatinib, Cabozantinib, Ramucirumab) which are 
utilized in the treatment process (Kudo, 2019). Yet, the alteration of the survival 
rate is insubstantial. Thereby, there is an imperative necessity for newly developed 
effective drug targets during the treatment stages of hepatocarcinoma (Tong et al., 
2019).   
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25. Sorafenib is a derivative of phenylurea and nicotinamide (NAM). The mechanism 
of action of Sorafenib is as a protein kinase inhibitor (Wilhelm et al., 2004). It 
basically inhibits tyrosine kinase, a phosphate group from ATP is taken to other 
amino acids (serine/threonine), through elimination of its signal transferring into 
the tumors. It is a multikinase inhibitor that is included in the physiological 
processes of tumor angiogenesis, and tumor apoptosis (Kudo et al., 2016). It 
inhibits intracellular kinases (e.g: Raf, B-Raf, C-Raf), cell surface kinases LIMK, 
VEGFR, PDGFR, KIT, FLT-3, and RET kinases. It further targets tumor cell 
proliferation and tumor growth. It is involved in the treatment of certain cancers 
including renal cell carcinoma (primary kidney cancer), radioactive iodine 
therapy-refractory differentiated thyroid carcinoma, and hepatocellular carcinoma. 
Sorafenib is an essential drug that simultaneously targets the cascade of 
Raf/MEK/ERK (Adnane et al., 2006; Iavarone et al., 2011; Lencioni et al., 2014). 
The most common off-target effects of Sorafenib is fatigue, nausea, abdominal 
pain, diarrhea, hand-foot skin reaction, and hypertension. Heart attack and liver 
failure might be arisen as severe reactions of Sorafenib (Karovic, Shiuan, Zhang, 
Cao, & Maitland, 2016).  

26. Sirolimus, Rapamune as a trade name, was firstly used as an antifungal agent. Dr. 
Surendra Sehgal has isolated it from Streptomyces hygroscopius samples in 1972. 
The active compound was known as Rapamycin due to the native name of the 
founding island as Rapa Nui (Sehgal, 2003). In addition to the founding and 
historical information, it has antiproliferative and antineoplastic properties because 
of suppression of the target of rapamycin, mTOR. It prevents renal transplant 
rejection. It is also involved in the treatment of such a rare disease, 
lymphangioleiomyomatosis. The mechanism of action of Sirolimus is an mTOR 
inhibitor immunosuppressant (Koul & Mehfooz, 2019; Zhan et al., 2018). It 
basically inhibits activation of T cells that has a role in antigenic and cytokine 
production (Sehgal, 2003). It binds to FK-binding protein 12 abbreviated as FKBP-
12, to produce a complex (Koul & Mehfooz, 2019). The immunosuppressant 
complex binds to mTOR, and decreasing the activating of mTOR. As a result, the 
proliferation of cytokine-driven T cell is blocked and cell cycle is arrested at the 
G1 phase and no transition is observed from G1 to S phase (Sehgal, 2003). Some 
of the most adverse effects of Sirolimus in lymphangioleiomyomatosis is chest 
pain, nausea, headache, myalgia, abdominal pain, acne, diarrhea, dizziness, and 
nasopharyngitis. Some of the most adverse reactions of Sirolimus in preventing of 
renal transplant rejection is urinary tract infection, thrombocytopenia, anemia, 
fever, edema, abdominal pain, hypertension, nausea, headache, and arthralgia 
(Rapamune Sirolimus FDA accessible data).  

27. Wortmannin is a fungal steroid compound that is isolated from Penicillium 

funiculosum. It has an impact upon several pathways by inhibiting PI3Ks. The 
irreversible inhibition mechanism of PI3Ks is through a covalent bond between the 
target and the inhibitor; thus, Wortmannin is a covalent inhibitor of PI3Ks. It is a 
highly cell permeable metabolite. It is a pan-PI3K inhibitor that targets PI3K-
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related proteins including PI4K, ATM, DNA-PK, and ATR. It also blocks the 
proliferation of lymphocytes (Deane & Fruman, 2004).  

28. LY294002, (2-4-morpholinyl-8-phenlchromone), is a synthetic cell permeable 
inhibitor of PI3K. It was obtained as a pan-PI3K inhibitor by Eli Lily. It acts as a 
reversible inhibitor and it is a stable compound. LY294002 is less potent than the 
previous PI3K inhibitor, Wortmannin. After the decreasing level of PI3K by 
LY294002, the arrest of the cell cycle is induced and subsequently occurring the 
apoptosis (Mcnamara & Degterev, 2011). Furthermore, it inhibits the BET 
bromodomain proteins (BET inhibitors) including BRD2, BRD3, and BRD4. It 
also blocks the proliferation of B-cells and T-cell lymphocytes (Dittmann et al., 
2014).  

29. Akti-1/2, abbreviation of AKT Inhibitor 1/2, also known as AKT Inhibitor VIII, is 
an allosteric reversible inhibitor that targets AKT1 and AKT2. AKT Inhibitor VIII 
promotes apoptosis and inhibits cell growth, and survival in human hepatoma cells. 
Additionally, Akti-1-2 is isozyme-selective and it is cell permeable (Gilot, 
Giudicelli, Lagadic-Gossmann, & Fardel, 2010; Nitulescu et al., 2016; Zhang, 
Yang, Qu, Zhou, & Jiang, 2016).  

30. Akti-2, also known as AKT Inhibitor XII, is an allosteric inhibitor that specifically 
targets AKT2. Akti-2 is isozyme-selective and it is cell permeable. The blocking 
is dependent upon the domain of pleckstrin homology, which binds 
phosphatidylinositols. These domains play significant roles in intracellular 
signaling (Gilot et al., 2010; Nitulescu et al., 2016).  

31. PI3Ki-α is an isoform specific PI3K inhibitor that targets PI3Ki-α. PIK3CA, 
PIK3CB, PIK3CD, and PIK3CG are the cell signaling genes of PI3K. These genes 
encode distinct PI3K isoforms as PI3K-α, PI3K-β, PI3K-δ, and PI3K-γ, 
respectively. Class I PI-3 kinases have two subunits regulatory and catalytic 
subunits as p85 and p110. From the point of cancer approach and its progress, 
PI3Ki-α has a high priority because of the occurring mutations in PI3KCA gene 
and raised expression level of p110α protein in cancerous cells (Yadav et al., 2016).  

 

32. 2.6     Protein-Protein Interaction Databases 

33. Proteins are essential macromolecules that are involved in several cellular 
mechanisms including replication, cell signalling, metabolic reactions, 
transcription, signal transduction, developmental control, and so on. Detecting the 
interactions of the proteins helps to identify the activity of protein, its function, and 
its role in various biological processes. The whole collection of the interactions of 
the proteins in a cell is called Interactome.  

34. The increasing number of protein-protein interaction (PPI) data that are obtained 
from both experiments (high-throughput and low-throughput experiments) and in 
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silico based predictions are stored into the databases. PPI data are analyzed through 
various methods including protein microarray, yeast two-hybrid system, X-ray 
crystallography, co-immunoprecipitation, nuclear magnetic resonance 
spectroscopy, sequence-based and structure-based techniques, and so on. The 
number of public PPI databases is more than 130 and most of the databases store 
distinct type of characteristics of PPI (Taghizadeh, Safari-Alighiarloo, & Tavirani, 
2015).  

35. Search Tool for the Retrieval of Interacting Genes/Proteins, also known as 
STRING, is a database that retrieves and integrates different kinds of information 
from several PPI resources for many organisms. A score between 0 and 1 which 
indicates confidence score of each PPI is assigned to the associations of the 
proteins. STRING database covers 24.6 M proteins from 5090 organisms; over 2.0 
M interactions in version 11.0. STRING is composed of seven evidence channels 
including the experiments, the curated databases, the text-mining, the co-
expression, the neighborhood, the fusion, and the co-occurrence (Szklarczyk et al., 
2018).  

36. The experimental data of STRING is obtained from the databases including BIND, 
BioGRID, DIP, HPRD, IntAct, MINT, and PID (Szklarczyk et al., 2018). BIND, 
known as Biomolecular Interaction Network Database, is a specialized database 
which deposits both biomolecular interactions and complexes and also the 
cascades (Bader, Betel, & Hogue, 2003). Moreover, Biological General Repository 
for Interaction Datasets, abbreviated as BioGRID, is a curated database that stores 
PPI, the interactions of genetic, and chemical for multiple organisms (Stark et al., 
2006). Additionally, DIP, Database of Interacting Proteins, is a curated biological 
database which archives PPI obtained from the experiments (Xenarios et al., 2000). 
Besides, Human Protein Reference Database, abbreviated as HPRD, is a curated 
database on human proteomic data that mainly includes PPI, post-translational 
modifications, and so on (Keshava Prasad et al., 2009). Further, IntAct, contains 
both curated and direct data, is a particular database which deposits the information 
of PPI and the analysis of these interactions (Kerrien et al., 2012). Also, Molecular 
Interaction Database, shortly MINT, is a storage of curated molecular interactions 
including PPI in distinct representations (Licata et al., 2012). In addition to these 
databases, PID, abbreviated version of Pathway Interaction Database, is a curated 
database that primarily collects the regulatory cellular mechanisms, signalling 
processes and cascades in humans (Schaefer et al., 2009).  

37. The curated data is collected from BioCyc, GO, KEGG, and Reactome (Szklarczyk 
et al., 2018). BioCyc is a curated microbial database collection that supplies the 
information of the cascades and also contributes as a reference to genome. As of 
December 2019, there are 14,735 databases within BioCyc. The database has 3 
major tiers based on the manually curation and determines variety of tools, the 
software of analysis and visualization (Karp et al., 2018). Furthermore, GO (Gene 
Ontology) is a well-known resource which comprehensively aims to provide gene, 
the biological terms of the gene and the corresponding functional annotation of the 
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gene product across all species. The obtained biological terminology is used to 
enable the data interpretation for the enrichment analysis (Carbon et al., 2019). In 
addition, KEGG (Kyoto Encyclopedia of Genes and Genomes) is a curated 
database that is used for the analysis of high-throughput data, pathways, biological 
visualization, drug, chemical compound, disease, etc. through the collection of 
databases and analysis tools. According to Kanehisa et al., the integrated database 
is categorized into four major groups including systems information, genomic 
information, chemical information, and health information, respectively 
(Kanehisa, Sato, Furumichi, Morishima, & Tanabe, 2019). Together with these 
databases, Reactome is a curated open-access database. Given that the pathways, 
visualization, and interactive analysis tools are the major elements in Reactome, 
the database supplies the information of multiple cell events including 
transcriptional regulation, replication, transportation, cell cycle, signal 
transduction, motility, metabolism, immunity, apoptosis, and many others 
(Fabregat et al., 2018).  

Table 2.1: List of protein-protein interaction databases (As of December 2019). 
PPI  

Database 

# of Total 

Proteins 

# of Total 

Interactions 

Organism 

BioGRID 72,690 693,825 70  
HPRD 30,047 41,327 1 (Human) 

GO 1,433,391 --- 4522  
IntAct 114,235 601,388 > 9  
KEGG 29,196,304 --- 6269  
MINT 26,344 131,695 647  

Reactome 94,262 --- 16 
           Some of the unidentified numbers of databases are indicated with dashes. 
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 CHAPTER 3 

 

38. MATERIALS AND METHODS 

39. In this chapter, we concisely detail the methodology of our study that is comprised 
of our dataset which we used to reconstruct molecular targeted therapeutic agents 
treated hepatocarcinoma networks and explain the underlying sections of the 
integrative network modelling.  

40. 3.1     Overview of the Pipeline 

41. The parallel alternative PI3K/AKT/mTOR signaling pathway and the unchanged 
survival ratio of hepatocarcinoma leads to designing a molecular targeted therapy 
in which targeted therapeutic agents with the combination of well-known 
multikinase inhibitor Sorafenib are imperatively needed. In this study, we analyzed 
small molecule inhibitors which are targeting the cascade of PI3K/AKT/mTOR, 
namely pan-PI3K inhibitors, isoform-specific PI3K inhibitor, isoform-specific or 
non-specific AKT inhibitors, mTOR inhibitor through a network-based modelling 
approach. We developed an integrative understanding for the most effective 
PI3K/AKT/mTOR inhibitors that can reduce hepatic tumor growth alone or in 
combination with Sorafenib by using microarray and interactome data with a 
network-based perspective which is outlined in Figure 3.1. The hepatoma 
microarray dataset is generated by Cancer Systems Laboratory (CanSyL). We 
initially performed both steps of pre-processing and quality control by using 
Affymetrix related Bioconductor packages. Further, to normalize the array dataset, 
RMA algorithm is used to determine the optimal expression values. Subsequently, 
in order to reveal the significant targets in distinct molecular targeted agents by 
inferring the dysregulation of the Interactome, we reconstructed multiple 
hepatocarcinoma networks treated with the different drugs/inhibitors or the 
combination of them by DeMAND network modelling algorithm. Apart from the 
reconstruction of hepatoma networks for both HCC cell lines, we start to analyze 
the initial networks and detect significant edges by adjusting threshold to 0.05 for 
KLD.p values in the edge lists. From the perspective of nodes in the network, we 
seek to know how much of them appear as significant by assigning p-value 
threshold to 0.05. Unless these criteria are valid for nodes and edges, we eliminate 
these insignificant nodes and edges. To take a step further, we applied an additional 
filtering where the set of significantly regulated genes (p-value<0.005) were added 
to a set. Next, we searched for the direct interaction of the significant nodes in G. 
Whether both partners of the edges contain significant nodes with respect to the 
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additional filtering, thereafter, we directly added the edges to the largest connected 
component. Afterwards, if one partner of the edge is significant and the other 
partner is insignificant then the first neighbors of the insignificant node is checked 
if at least 3 neighbors are significant then that edge is also added to the filtered 
network. The last step is to find the largest connected component which is our final 
optimal network (See Figure 3.1).  

42. 3.2     Datasets  

43.  
      3.2.1     Gene Expression Profiling 

44. We utilized the gene expression profiles dataset that is designed for the treatment 
of hepatoma cell lines (specifically, Huh7 and Mahlavu) with Sorafenib, 
PI3K/AKT/mTOR signalling pathway inhibitors and the combination of Sorafenib 
with several PI3K/AKT/mTOR pathway inhibitors in this work. Cytotoxic 
activities of PI3K/AKT/mTOR signalling pathway inhibitors in hepatocellular 
carcinoma cell lines were analyzed by using RT-CES assay. Apart from that, the 
IC50 values at 72 hours of incubation of Huh7 and Mahlavu cells were determined 
by Cancer Systems Laboratory (CanSyL) (See Table 3.1). 

Table 3.1: The IC50 values at 72 hours of hepatoma cells had calculated and the 
array experiment concentrations for drugs and inhibitors were specified. 

 
.cel files were the signals obtained from the microarray Affymetrix chips. By using 
R, raw cel files were analyzed. For the purpose of the quality control, preprocessing 
and gene expression analysis processes, mostly used Bioconductor Packages such 
as Affy, Biobase, Affxparser, Affyio, Annotate, Oligo, AnnotationDbi, Limma are 
primarily chosen. In order to have the data in a normalized form, the algorithm 
Robust multi-array average (RMA) is used for determining the expression values.  
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Sorafenib 

B-Raf 
VEGFR 
PDGFR 

10 µM 10 µM 10 µM 

LY294002 PI3K 10 µM 10 µM 10 µM 

Wortmannin PI3K 10 µM 10 µM 10 µM 

Rapamycin mTOR 0.1 µM 0.1 µM 0.1 µM 

PI3Ki-α PI3Ki-α 0.1 µM 0.1 µM 0.1 µM 

 
Akti-1-2 
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There were two liver malignant tumorigenic hepatocytes used in this work. Deliberately, 
these two hepatocarcinoma cell lines with differential PI3K/AKT pathway activities were 
selected. Huh7 cell line has normoactive pathway. On the other hand, due to tumor 
suppressor PTEN deletion, Mahlavu cell line has a hyperactive pathway. Huh7 is a well-
differentiated hepatocarcinoma cell line (Buontempo et al., 2011). Also, Huh7 HCC cells 
have a mutation in p53 (Brito et al., 2012; Iwao & Shidoji, 2014). Huh7, epithelial-like 
malignant, cells are alike to the phenotypes of hepatocytes (Keskin et al., 2013; Yuzugullu 
et al., 2009). Their differences from the hepatocytes are that they tend to be smaller. Well-
differentiated Huh7 expression is related to the early stage of hepatocarcinoma (Yuzugullu 
et al., 2009). Contrarily, Mahlavu is a poorly-differentiated liver cell line (Buontempo et 
al., 2011). Its cells have inadequate level of cytoplasm and variable structure. Poorly-
differentiated Mahlavu is associated with the late stages of hepatocarcinoma (Yuzugullu 
et al., 2009).  

For each cell line, there were 30 samples. Human Genome (HG) U133 Plus 2.0 Array 
Affymetrix was used. There were 10 different experiments (for a single hepatoma cell 
line). 1 out of 10 experiments was DMSO as a control. Per a single experiment, 3 replicates 
were carried out. A single treatment with a drug or a single treatment with 
PI3K/AKT/mTOR signalling pathway inhibitors or combined treatment of Sorafenib and 
several PI3K/AKT/mTOR inhibitors were applied to the samples. 60 samples were used 
in total (See Tables 3.2 and 3.3). 

In the beginning of the sample, letter H represented Huh7 cell line and letter M symbolized 
Mahlavu cell line. Following the cell line indication letter, the abbreviation of the name 
of the treatment was written. Before .cel file extension, the numbers 1, 2, 3 represented 
the three replicates for each sample (See Tables 3.2 and 3.3). 

Table 3.2: Huh7 dataset which we have used in this study. The names of the samples,  
cell lines and the treatment of each sample are indicated. 

Sample File Cell Line Treatment 
H-DMSO-1,2,3.CEL Huh7 Control DMSO 
H-AKTi2-1,2,3.CEL Huh7 Akti-2 
H-PI3Ka-1,2,3.CEL Huh7 PI3Kialpha 
H-SOR-1,2,3.CEL Huh7 Sorafenib 

H-SOR-AKTi2-1,2,3.CEL Huh7 Sorafenib and Akti-2 
H-SOR-PI3Ka-1,2,3.CEL Huh7 Sorafenib and PI3Kialpha 

H-A12-1,2,3.CEL Huh7 Akti-1-2 
H-LY-1,2,3.CEL Huh7 LY294002 

H-Rapa-1,2,3.CEL Huh7 Rapamycin 
H-Wort-1,2,3.CEL Huh7 Wortmannin 
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Table 3.3: Mahlavu dataset that we have used in this study. The names of the samples, 
cell lines and the treatment of each sample are demonstrated. 

Sample file Cell Line Treatment 
M-DMSO-1,2,3.CEL Mahlavu Control DMSO 
M-AKTi2-1,2,3.CEL Mahlavu Akti-2 
M-PI3Ka-1,2,3.CEL Mahlavu PI3Kialpha 
M-SOR-1,2,3.CEL Mahlavu Sorafenib 

M-SOR-AKTi2-1,2,3.CEL Mahlavu Sorafenib and Akti-2 
M-SOR-PI3Ka-1,2,3.CEL Mahlavu Sorafenib and PI3Kialpha 

M-A12-1,2,3.CEL Mahlavu Akti-1-2 
M-LY-1,2,3.CEL Mahlavu LY294002 

M-Rapa-1,2,3.CEL Mahlavu Rapamycin 
M-Wort-1,2,3.CEL Mahlavu Wortmannin 

 
Collectively, we used gene expression profiles (GEPs) of Huh7 and Mahlavu 
hepatocarcinoma cells that were treated with multiple different therapeutic agents (drugs, 
inhibitor compounds and their combined versions). Small molecule inhibitors targeting 
the cascade of PI3K/AKT/mTOR, namely pan-PI3K inhibitors, isoform-specific PI3K 
inhibitor, and isoform-specific or non-specific AKT inhibitors, mTOR inhibitor, and were 
analyzed beyond the list of the genes (See Figure 3.2).  

 

Figure 3.2: The illustrative diagram of molecular targeted agents in 
Raf/MEK/ERK pathway and PI3K/AKT/mTOR cascade are depicted. 
Three targets of Sorafenib and small molecule inhibitors targeting 
PI3K/AKT/mTOR pathway are demonstrated. 
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3.2.2     Interactome 

 

The weighted interactome used in this analysis is obtained from Search Tool for the 
Retrieval of Interacting Genes/Proteins (STRING). The database combined different kind 
of information from several protein-protein interaction resources for many organisms. A 
score between 0 and 1 which indicates confidence score of each PPI is assigned to the 
associations of the proteins. The number of protein-protein interactions in interactome of 
our study is 79.160. These experimentally validated molecular interactions are taken from 
STRING v9.1. STRING database covers 5,214,234 proteins from 1133 organisms, and 
332,235,675 interactions in version 9.1 (Franceschini et al., 2013).  

 

3.3     Network Modelling with DeMAND Algorithm 

 

3.3.1     Theoretical and Algorithmic Backgrounds of DeMAND 

 

In this thesis study, we mainly focused on elucidating the significant molecular targets 
across treatments with multiple targeted agents by inferring the dysregulation of the 
Interactome. In other words, we revealed the mechanism of action of molecular targeted 
therapeutic agents in the context of different HCC networks beyond the list of genes. 
Toward this purpose, we reconstructed multiple hepatocarcinoma networks treated with 
different molecular targeted agents to develop a further understanding of the gene 
perturbation level and compared the significantly enriched biological responses 
predominantly in the aspects of cellular state.  

DeMAND is a Bioconductor package that is developed by Califano Lab. It is a 
combination of experimental and computational methods. Very concisely, DeMAND 
algorithm reveals the mechanism of action of targeted therapeutic agents through the 
dysregulation of the Interactome. In other words, DeMAND searches for the mechanism 
of action of the molecular targeted therapeutic agents in a network context as an alternative 
to differential gene expression analysis. It integrates the possible interactions between 
each entity using a reference interactome to obtain an analysis beyond a gene list. We used 
String interactome for the network reconstruction in our study. From a pharmacological 
perspective, mechanism of action (MoA) of a compound briefly specifies a biochemical 
process in which a molecular targeted therapeutic agent exerts its therapeutic effects. 
According to Scannell et al, in order to determine both on-target and off-target effects of 
the agents, the interrogation of MoA is indispensable (Scannell et al., 2012). Wehling 
mentioned that throughout the phases of clinical trials the majority of drugs turns out to 
be unsuccessful because of these 2 main reasons, insufficient efficacy and potential 
toxicity (Wehling, 2009). As a consequence, whether there is a significant progress in 
characterization of MoA, the production of drug discovery pipelines is constitutively 
activated (Woo et al., 2015).   
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The primarily required inputs for the network modeling algorithm are GEPs (control sets 
and molecular targeted agents treated perturbed sets) as the dataset and the molecular 
interaction network (obtained from a weighted interactome, STRING). From an 
algorithmic perspective, to run DeMAND, the fundamental objects within certain criteria 
are experimental data provided from GEPs (N>=6, N indicates the number of the 
expression signatures), annotation based on the data, interactome, case index (to index the 
molecular targeted therapeutic agents treated samples), and control index (to index the 
control samples) (Woo et al., 2015). In this network modelling approach, N is quite low 
if we compare it to the other network-based genomics methods that makes it 
advantageously preferable for small or average-numbered of datasets.  

Network-based genomics methods for MoA characterization have sample size more than 
100 and initial knowledge of the pathways are required beforehand (Bansal, Gatta, & di 
Bernardo, 2006; Mani et al., 2008; Woo et al., 2015). Integrative analyses with pathways 
and subsets of gene interactions are carried out by these methods. In our study, we have 
20 hepatocarcinoma profiles and 2 of them are standing as controls (treated with DMSO). 
The low number of samples prevents using previously mentioned network-based 
genomics methods. In our dataset, there is not any priorly provided information of 
pathways that makes these methods unsuitable, unlike DeMAND algorithm (Woo et al., 
2015).   

Following providing the inputs, the essential principle of DeMAND algorithm is 
comparisons of GEPs from treatments of molecular targeted agents versus from control 
samples for all of the targeted therapeutic agents. Except for GEPs comparison, the 
dysregulated edges are primarily identified within STRING and the level of dysregulation 
are calculated. To detect the statistical significance of edges, very briefly, 2-dimensional 
probability distribution for all the edges before and after perturbation within STRING is 
assessed. By applying Kullback-Leibler divergence (KLD), the level of alteration in these 
previously mentioned 2-dimensional probability distribution is evaluated. In addition to 
detecting the dysregulated edges, all the genes are subsequently inspected as if to their 
connected edges are among the dysregulated interactions. The output of DeMAND 
algorithm is a list of genes that are belonging to network incorporating with the 
corresponding p-values evaluated by both Fisher’s and Brown’s methods. These p-values 
demonstrate the level of dysregulated interactions around the genes in the network. 
Additionally, DeMAND algorithm provides a reconstructed network in which 2 nodes and 
their perturbed connection is indicated. The statistical significance of the corresponding 
level of edge dysregulation is also provided (KLD and KLD.p (p-value of KLD)) in this 
reconstructed network (Woo et al., 2015).  

To analyze the initial reconstructed networks, we detected significant edges by adjusting 
threshold to 0.05 for KLD.p values in the edge lists. From the perspective of nodes in the 
network, we sought to know how much of them appear as significant by assigning p-value 
threshold to 0.05. Each gene and interaction within these networks had a value signifies 
how strongly these genes were affected from the perturbation of molecular targeted 
therapeutic agents. Using only a p-value threshold gave a hairball-like network G (V, E) 
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and needed more filtering to come up with a better network. In addition to the significance 
of edges, DeMAND algorithm gives also the significance of the nodes. Therefore, we 
applied an additional filtering in which the set of significantly regulated genes (p-
value<0.005) were added to a set. Then, we searched for the direct interaction of the 
significant nodes in G. Afterwards, if one partner of the edge was significant and the other 
partner was insignificant then the first neighbors of the insignificant node would be 
checked if at least 3 neighbors were significant then that edge would also be added to the 
filtered network. The last step was to find the largest connected component which would 
be the final network to be analyzed further. The reconstructed network analysis was 
performed with NetworkX package in Python.  

3.3.2     Statistical Background of DeMAND Algorithm  
 
DeMAND modelling algorithm inputs a molecular interactome Ɛ and a group of gene 
expression profiles, 𝐺𝐸𝑃 in which each pair of genes interact within this network. A 
probability distribution is formed by the expression of genes under certain conditions, and, 
for non-linearity, a molecular targeted therapeutic agent perturbed group 𝐺𝐸𝑃𝑝 and a 
control group (in our case, DMSO-treated) 𝐺𝐸𝑃𝑐, which consist of the calculations of 𝑁 
genes and 𝑀𝑝 and 𝑀𝑐 samples, the summation of priorly defined both samples constituting 
𝑀 samples, are created.  

As a brief summary, probability distribution functions at the integer point (𝑘,𝑙) for the 
samples of molecular targeted therapeutic agent perturbation and control, respectively, are 
constructed through each molecular interaction 𝐺𝑖 ↔ 𝐺𝑗 in the network to determine the 
joint probability distribution of the gene expressions 𝐸𝑖 and 𝐸𝑗 for the genes 𝐺𝑖 and 𝐺𝑗, 
respectively, where 1 ≤ 𝑖, j ≤ 𝑁, 1 ≤ (𝑘,𝑙) ≤ 𝑀 and 1 ≤ 𝑚 ≤ 𝑀. The discrete probability 
distributions are stated as the following distributions (Distribution 1 and Distribution 2).  

   𝑃𝑖𝑝𝑗 (𝑘,) ∝ 𝛴𝑚∈ 𝑀𝑝 (𝑘 ₋ 𝐸𝑖𝑚, ₋ 𝐸𝑗𝑚,,)                                              (1) 

   𝑃𝑖𝑐𝑗 (𝑘,) ∝ 𝛴𝑚∈ 𝑀𝑐 (𝑘 ₋ 𝐸𝑖𝑚, ₋ 𝐸𝑗𝑚,,)                    (2) 

where 𝜎 ≈ 1.06⋅ �̂� ⋅𝑀-1/6 with 𝜎𝑖 and 𝜎𝑗 being the standard deviations of Gaussian function 
and dataset’s standard deviation is given as �̂�.  

Of the priorly defined the distributions of the probability for the samples of control and 
molecular targeted therapeutic agent perturbation, Kullback-Leibler divergence (KLD), 
which implies the amount of deprived information due to an approximation, is computed 
as below to measure the divergence of one of the distributions from the other one 
(Equation 3): 

   (𝑃𝑖𝑐𝑗⧵𝑃𝑖𝑝𝑗) =𝛴𝑘=1
𝑀 𝛴𝑙=1

𝑀 𝑃𝑖𝑐𝑗 (𝑘,) log (
𝑃𝑖𝑗

𝑐 (𝑘,𝑙)

𝑃
𝑖𝑗
𝑝

(𝑘,𝑙)
)                                  (3) 
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In order to assure that the distance between the distributions is symmetric, a measure of 
dysregulation for the edges in the network is calculated as the following equation 
(Equation 4).  

   (𝑃𝑖𝑐𝑗, 𝑃𝑖𝑝𝑗) = 
𝐾𝐿𝐷(𝑃𝑖𝑗

𝑐 \𝑃𝑖𝑗
𝑝

)+𝐾𝐿𝐷(𝑃𝑖𝑗
𝑝

\𝑃𝑖𝑗
𝑐 )

2
                    (4) 

In addition to the KLD calculations, to determine the significance of dysregulation of the 
edges in the network statistically, the 𝑝-value of KLD, which is denoted 𝑃𝑣𝑖𝑗, is found. 

Apart from the edge dysregulation, the dysregulation of genes is also computed by taking 
all the connected edges of a single gene 𝐺𝑖 into consideration. For this purpose, the 𝑝-
values of these interactions, in other words connected edges, are incorporated by Fisher’s 
method. The combined 𝑝-values form a chi-square distribution with 2𝑘 degrees of 
freedom. Here, 𝑘 stands for the number of merged interactions in the following 
distribution, as shown (Distribution 5): 

    𝑥2 = 𝛴𝐺𝑖 ↔ 𝐺𝑗∈ Ɛ ₋ 2 log 𝑃𝑣𝑖𝑗         (5) 

To improve the approach of gene dysregulation, as a gene might have multiple edges 
(interactions) that connect itself to other nodes within a network, the resulting 𝑝-values of 
these interactions are not statistically independent, which is a requirement for the 
application of Fisher’s method. Therefore, an altered version of Brown’s method is used 
to formulate the variance of the chi-square in the following distribution (Variance 6).  

    𝜎2(X2) = 4𝑘 + 𝛴𝑖=1
𝑘 𝛴𝑗=𝑖+1

𝑘 φ(ρ𝑖𝑗)         (6) 

Here, ρ𝑖𝑗 signifies the related connection among the residual parameters of the genes 𝑖 and 
𝑗 and the following function as below (Function 7):  

   φ(ρ𝑖𝑗) = {
ρ𝑖𝑗(3.25 + 0.75ρ𝑖𝑗)           0 ≤ ρ𝑖𝑗 ≤ 1
ρ𝑖𝑗(3.27 + 0.71ρ𝑖𝑗)   − 0.5 ≤ ρ𝑖𝑗 ≤ 0        (7) 

Thereafter, the new assigned degrees of freedom for the chi-square distribution after 
integrating the Function 7 is as the following equation (Equation 8): 

     𝑑𝑓 = 8𝑘2

𝜎2(𝑋2)
           (8)   

The associated connection between interactions is calculated via the related link among 
residuals by relying on the hypothesis that the residuals of two independent interactions 
will not be connected, and a possible connection among the residuals suggests a mutual 
gene within these interactions. Hence, the derived 𝑝-value indicates the statistical 
significance of the gene 𝐺𝑖‘s dysregulation in the network. 
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3.4     Overrepresentation Enrichment Analysis 

In order to have a knowledge on the functional enrichment terms, WebGestaltR package 
was used as a bioinformatics resource; such that, Gene Ontology terms (GO Biological 
Process, GO Molecular Function, GO Cellular Function), and pathway information via 
pathway databases as Reactome and KEGG were obtained (Liao, Wang, Jaehnig, Shi, & 
Zhang, 2019). We provided one column multiple text files for all the corresponding 
situations in the reconstructed hepatocarcinoma networks as our input.  

The significance was assigned to 0.05 which was the threshold value for the False 
Discovery Rate (FDR), the organism was human, standing as “hsapiens” and the 
enrichment method was specified as ORA. Apart from the several essential parameters of 
WebGestaltR, negative logarithms of the corresponding p-values with base 10 were 
calculated and added as a new column into the generated matrix (also known as newly 
adjusted p-values). Each column represented to the adjusted p-values of the corresponding 
drug and/or PI3K/AKT/mTOR signalling pathway inhibitors and each row corresponded 
to the different enrichment term. To further analyze the overall results, several 
heatmaps/plots were drawn to easily visualize the built data matrix.  

 

3.5    Network Visualization with Cytoscape 

18 reconstructed hepatoma networks were visualized in Cytoscape (3.7.0). For the node 
shapes, triangles represented more significant nodes as their p-values were smaller than 
the p-values of circular nodes. Aside from the shape of the nodes, color of the nodes was 
assigned according to the expression level value. For specifying node colors, 
overexpressed genes were indicated by red color and downregulated genes were displayed 
by dark blue color. Whether the expression value of an individual node was 0, white color 
was depicted for the node in the optimized network figure. In addition to the node shapes 
and colors, node size was adjusted with respect to DyNet Rewiring Score (Dn-Score). 
When Dn-Score was close to 0, the size of the node was much smaller. Except for the 
properties of the nodes, edge color was arranged with respect to the Kld.p values 
(calculated by DeMAND). For this purpose, dark red color was set to the more significant 
edges (having less Kld.p values). In addition to the edge color, maximum edge width was 
appointed to less Kld.p values of edges.  

Each network was clustered by clusterMaker2 application plug-in. As concepts of network 
partition, Community clustering (GLay) algorithm was applied to all the reconstructed 
networks of both hepatocarcinoma cell lines. In order to detect the most significant nodes 
in multiple reconstructed hepatocarcinoma networks, we applied to measure the 
betweenness centrality value of the corresponding important nodes.  
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CHAPTER 4 

 

 RESULTS AND DISCUSSION 

 

 

In this chapter, our results of network-based analysis of molecular targeted agent 
treatments in hepatocellular carcinoma are presented. Initially, we detail the statistical 
evidences of our reconstructed HCC networks provided by our model, DeMAND. 
Following that, literature targets of drug treatments/inhibitors are stated to identify target 
genes and to check the presence of these genes in the reconstructed networks. For 
determining common characteristics between Sorafenib-related multiple networks and 
identifying potential similarities, overlapping genes are analyzed. As a concluding 
perspective, we demonstrate several resulting outcomes of this study that elucidate the 
inclusion of the reconstructed networks in pathways and in significant terminology 
insights to reveal fundamental biological signatures.  

 

4.1. Reconstruction of Molecular Targeted Agent Treated Multiple Networks in 

 Hepatocarcinoma 

4.1.1   The Obtained Outputs of DeMAND Algorithm and Statistical Interpretation 

 of the Reconstructed HCC Networks   

From a pharmacological point of view, mechanism of action (MoA) of a compound 
specifies a biochemical process in which a drug exerts its therapeutic effects. According 
to Scannell et al, in order to determine on-target and off-target effects, the interrogation 
of MoA is indispensable (Scannell et al., 2012). Throughout the phases of clinical trials, 
the majority of drugs turns out to be unsuccessful because of these 2 main reasons, 
insufficient efficacy and potential toxicity (Wehling, 2009). Hence, if there is a significant 
progress in characterization of MoA, drug discovery pipelines’ productions will be arisen 
(Woo et al., 2015).   

Lately, network-based methods for MoA characterization have been developed (Bansal et 
al., 2006; Mani et al., 2008). Integrative analyses with pathways and subsets of gene 
interactions are carried out by these methods. As a limitation, the methods need to have 
sample size more than 100 and initial knowledge of the pathways are required beforehand 
(Woo et al., 2015). In our study, we have 20 samples and 2 of them are standing as 
controls. The low number of samples prevents using previously mentioned network-based 
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methods. In our dataset, there is not any priorly provided information of pathways that 
makes these methods unsuitable, unlike DeMAND algorithm. DeMAND searches for the 
mechanism of action of the drugs in a network context as an alternative to differential 
gene expression analysis. It integrates the possible interactions between each entity using 
a reference interactome to obtain an analysis beyond a gene list. In this study, we used 
String interactome for the network reconstruction (Woo et al., 2015). 

This study aims for the analyzing of drugs, inhibitors and their combinations in HCC 
through network-based modelling approach (DeMAND). In this work, we have used the 
microarray (Human Genome U133 Plus 2.0 Affymetrix Array) dataset which has been 
designed for the treatment of hepatocarcinoma cell lines with Sorafenib, 
PI3K/AKT/mTOR signalling pathway inhibitors and the combination of Sorafenib with 
some of PI3K/AKT/mTOR pathway inhibitors. For this purpose, we have 20 array sample 
outputs with different treatments, including DMSO as a control for both cell lines. 
Thereafter, we compare each treatment with control DMSO and generate 9 different 
networks for each HCC cell line. The cell lines are Huh7 and Mahlavu, respectively. All 
experiments are done in three replicates to be reliable and precise. The weighted context-
free interactome (containing only protein-protein interactions) used in our analysis is 
obtained from STRING database. The number of experimentally validated protein-protein 
interactions in the network is 79.160 (Franceschini et al., 2013). 

As an example, the first network of Huh7 cell line is treated with Akti-2 agent. The initial              
reconstructed network is composed of 1387 nodes and 1942 edges. Within p-value 
threshold 0.05, the number of observed nodes is obtained as 465 upon single treatment 
with Akti-2 in Huh7 network. If we further adjust p-value threshold to 0.01, the number 
of significant nodes is obtained as 332 within the same Huh7 network. In addition to the 
p-value thresholds, when we assign FDR cutoff to 0.05, we obtain 261 significant nodes 
upon single treatment with Akti-2. If we further adjust FDR cutoff to 0.01, there are 204 
nodes detected in this Huh7 network. From the perspective of Mahlavu cell line, Akti-2 
treated network includes 1240 nodes and 1938 edges. Within p-value cutoff 0.05, there 
are 633 nodes detected as significant in this network. When we set the p-value cutoff to 
0.01 in the network, there are 475 significant nodes. Apart from the p-value cutoffs, when 
FDR threshold is set to 0.05, the number of significant nodes in the network is 373. Within 
FDR threshold 0.01, there are 258 nodes observed as significant Akti-2 treated Mahlavu 
network (See Table 4.1).   

Furthermore, the sixth reconstructed Huh7 network which is treated with Sorafenib, the 
well-known targeted drug of hepatocarcinoma, is composed of 1487 nodes and 1770 
edges. Within p-value threshold 0.05, the number of observed nodes in this network is 
obtained as 459. Whether we further set p-value threshold to 0.01, the number of 
significant nodes is decreased to 164. Other than the p-value thresholds, when we adjust 
FDR cutoff to 0.05, we obtain only 24 nodes in this Huh7 network. Within FDR cutoff 
0.01, there are only 3 significant nodes identified in the network. For Mahlavu cell line, 
Sorafenib treated network has 1215 nodes and 1607 edges. Within p-value threshold 0.05, 
the number of significant nodes is obtained as 768. When we further decreased the p-value 
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cutoff to 0.01, this network contains 429 significant nodes. Except for the p-value 
thresholds, when FDR cutoff is set to 0.05, the number of nodes is decreased to 237. 
Within FDR cutoff 0.01, there are 113 nodes observed as significant upon single treatment 
with Sorafenib in Mahlavu network (See Table 4.1).  

Table 4.1: The corresponding numbers of the each filtered network belonging to HCC. 
 

Molecular Targeted 

Therapeutic Agents  

 

# of 

Nodes 

 

# of 

Edges 

# of 

Nodes at 

p-value 

0.05 

# of 

Nodes at 

p-value 

0.01 

# of 

Nodes 

at FDR 

0.05 

# of 

Nodes 

at FDR 

0.01 

Huh7 Akti-2  1387 1942 465 332 261 204 
LY294002 1302 2067 692 552 468 319 
Akti-1-2 1340 1851 471 341 265 207 
PI3kialpha  1661 2291 726 288 51 12 
Rapamycin  1131 1600 639 496 403 280 
Sorafenib 1487 1770 459 164 24 3 
Sorafenib-Akti2 1523 1910 553 191 25 6 
Sorafenib-PI3kialpha  1409 1606 547 197 25 0 
Wortmannin 1226 1704 614 456 372 234 
Mahlavu Akti-2 1240 1938 633 475 373 258 
LY294002 1201 1455 443 328 254 193 
Akti-1-2 1250 1966 636 481 382 261 
PI3kialpha  1184 1509 715 352 130 53 
Rapamycin  1167 1468 446 319 240 194 
Sorafenib 1215 1607 768 429 237 113 
Sorafenib-Akti2 1346 1786 707 294 70 18 
Sorafenib-PI3kialpha  1214 1750 797 509 383 203 
Wortmannin 1032 1646 684 480 347 220 

 
In order to have a better network, we further apply an additional filtering. Following that, 
Akti-2 treated Huh7 network contains 342 nodes and 815 edges (See Figures 4.1). Within 
the p-value threshold 0.05, the number of observed nodes is decreased to 218 and likewise, 
the edge numbers, 349. Whether we apply stricter p-value threshold, 0.01, we obtain 214 
significant nodes in Huh7 network. Aside from the p-value thresholds, when we adjust 
FDR cutoff to 0.05, we obtain 199 nodes and 298 edges. Within FDR cutoff 0.01, there 
are 167 significant nodes and 231 edges detected in Akti-2 treated Huh7 network. For 
Mahlavu cell line, the initial reconstructed network treated with Akti-2 contains 390 nodes 
and 910 edges (See Figure 4.3). Within p-value threshold 0.05, the total numbers of 
significant nodes and edges are 347 and 737, respectively. When we further decrease the 
p-value cutoff to 0.01, Akti-2 treated Mahlavu network has 343 significant node. In 
addition to the p-value cutoffs, when FDR cutoff is set to 0.05, the number of nodes is 
decreased to 317 and similarly, the edge numbers, 663. Within FDR cutoff 0.01, there are 
242 nodes and 551 edges observed as significant upon single treatment with Akti-2 in 
Mahlavu network (See Table 4.2).  
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Additionally, Sorafenib treated Huh7 network includes 104 nodes and 144 edges (See 
Figure 4.5). Within p-value threshold 0.05, the total numbers of observed nodes and edges 
in this network is obtained as 77 and 50, respectively. Whether we use stricter threshold, 
at p-value threshold 0.01, the number of significant nodes is decreased to 69. Apart from 
the p-value thresholds, when we assign FDR cutoff to 0.05, the network has only 19 nodes 
and these nodes are not connected to each other with edges. Within FDR cutoff 0.01, there 
are only 3 separated nodes without any edges identified in the network. For Mahlavu cell 
line, Sorafenib treated contains 304 nodes and 624 edges (See Figure 4.8). Within p-value 
cutoff 0.05, the number of significant nodes is obtained as 301 and there are 614 
significant edges. When we further decrease the p-value cutoff to 0.01, the number of 
nodes in the network is decreased to 286. Other than the p-value cutoffs, when FDR cutoff 
is set to 0.05, the numbers of significant nodes and edges in the network are 210 and 370, 
respectively. Within FDR cutoff 0.01, there are 105 nodes and 132 edges observed as 
significant upon single treatment with Sorafenib in Mahlavu network (See Table 4.2).  

Table 4.2: The corresponding numbers of the each filtered network belonging to HCC. 
 

Molecular 

Targeted 

Agents  

 

# of 

Nodes 

 

# of 

Edges 

# of 

Nodes 

at p-

value 

0.05 

# of  

Edges 

at  

pvalue 

0.05 

# of 

Nodes 

at p-

value 

0.01 

# of 

Nodes 

at 

FDR 

0.05 

# of 

Edges 

at 

FDR 

0.05 

# of 

Nodes 

at 

FDR 

0.01 

# of 

Edges 

at 

FDR 

0.01 

Huh7 Akti-2  342 815 218 349 214 199 298 167 231 
LY294002 505 1298 444 1051 432 421 971 303 775 
Akti1-2 334 778 225 365 218 202 309 168 241 
PI3kialpha  222 467 185 322 149 46 10 12 0 
Rapamycin  431 904 381 703 378 357 661 268 535 
Sorafenib 104 144 77 50 69 19 0 3 0 
Sorafenib-
Akti2 

139 227 118 152 96 19 1 4 0 

Sorafenib- 
PI3kialpha  

107 142 88 72 79 19 1 0 0 

Wortmannin 383 797 327 569 326 311 542 215 400 
Mahlavu 
Akti-2 

 
390 

 
910 

 
347 

 
737 

 
343 

 
317 

 
663 

 
242 

 
551 

LY294002 287 539 216 272 204 181 194 158 175 
Akti1-2 402 943 355 755 351 323 684 243 559 
PI3kialpha  271 505 263 477 229 115 114 49 20 
Rapamycin  259 532 201 302 188 177 221 155 201 
Sorafenib 304 624 301 614 286 210 370 105 132 
Sorafenib-
Akti2 

229 416 223 396 185 65 42 17 4 

Sorafenib-
PI3kialpha  

428 964 423 948 411 364 799 202 409 

Wortmannin 369 809 360 779 355 311 674 210 466 
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4.1.2    Visual Illustrations of the Clustered Versions of the Reconstructed Multiple 

 HCC Networks Representative Images  

After reconstructing the hepatocarcinoma networks, 18 networks were initially drawn in 
Cytoscape, to display the optimized network figures. The instructions of the drawing 
network image is shown in the legend of the each figure. For the node properties, color of 
the nodes is assigned according to the expression level value. To be more specific, highly 
expressed genes are displayed by red color; conversely, downregulated genes are 
displayed by dark blue color. The color intensity shows the corresponding value of the 
gene expression level of each individual node. Whether the expression value of an 
individual node is 0, white color will be depicted for the node in the network image. Size 
of the node is adjusted according to the DyNet Rewiring Score (Dn-Score). Whether Dn-
Score is close to 0, the size of the node will be much smaller. As a node shape, a triangular 
node is more significant due to having less p-values than the circular-shaped nodes. In 
addition to the properties of the nodes, edge color is arranged with respect to the Kld.p 
values (calculated by DeMAND). Dark red color is set to the more significant edges 
(having less Kld.p values). Maximum edge width is appointed to less Kld.p values of 
edges.  

After visualizing networks, each network was clustered by clusterMaker2 application. As 
concepts of network partition, Community clustering (GLay) algorithm was applied to all 
the reconstructed networks of both hepatoma cell lines. As an example network image, 
Akti-2 agent treated Huh7 network have 13 different clusters in the clustered version (See 
Figure 4.1). The following figures (Figure 4.1- 4.10, Appendix A.1-8) are corresponding 
clustered network images of Huh7 and Mahlavu cell lines, respectively. The number of 
nodes, edges and clusters in the networks are stated. Afterwards, we used this clusters to 
draw scatter plots of significant networks and further analyses in the following sections.  
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4.1.2.1     Pathway Analyses of Molecular Targeted Agents, Akti-2 and PI3Kia  

HPV infection, WNT and HIF-1 signalling pathways are enriched in a single treatment 
with Akti-2 in Huh7 cells. Multiple studies have shown that HIF and WNT pathways are 
associated with each other. In fact, HIF causes abnormal signalling of WNT pathway, and 
that correlates a crosstalk between these cascades (Bogaerts, Heindryckx, Vandewynckel, 
Van Grunsven, & Van Vlierberghe, 2014; Khalaf et al., 2018). Multiple clusters are 
enriched in several distinct KEGG pathways of cancers, namely gastric, endometrial, 
colorectal, breast, prostate cancers, acute myeloid leukemia, basal cell carcinoma which 
might be associated with off-target effects. The analyzed figure of this network is in 
Appendix section.  

Protein transport is enriched in a treated with a single agent, PI3Ki-α in Huh7 cells. The 
first cluster has also KEGG enrichment terms in platinum drug resistance, and its 
correlated result, colorectal cancer which may be included in off-target effects. 
Additionally, synaptic vesicle cycle and SNARE interactions in vesicular transport are 
enriched in Cluster 4 which indicate a relation with nervous system, and is likely to be 
another off-target effect. The analyzed image of this network may be observed in 
Appendix.  

Several virus infections are detected, namely EBV, HPV, helicobacter pylori, vibrio 
cholera infection in a single treatment with PI3Ki-α in Mahlavu cells. Progesterone-
mediated oocyte maturation is another functional KEGG enrichment term as a member of 
endocrine system.  Energy metabolism and genetic information processing (including 
DNA repair mechanisms) are significantly enriched KEGG terminologies. The analyzed 
network figure might be observed in Appendix. 

In addition to the previously mentioned virus infections, HIV-1 and Kaposi sarcoma-
associated herpesvirus infections are also detected. Hepatitis B, hepatitis C, non-alcoholic 
fatty liver disease are enriched terms that might probably cause HCC. Several signal 
transduction pathways are enriched, including AMPK, FoxO, Ras, JAK-STAT, HIF-1, 
NF-kappa B, VEGF signalling pathways, and immune system responses, namely natural 
killer cell mediated cytotoxic activity, B cell receptor, T cell receptor, chemokine, Toll-
like receptor signalling pathways. Aside from the off-target effects in the previous 
clustered versions of the reconstructed networks, melanoma, glioma, pancreatic cancer, 
chronic myeloid leukemia, and renal cell carcinoma are standing as off-target effects in a 
single treatment with Akti-2 for Mahlavu cell line. 

4.1.2.2     Gene Ontology Biological Process Analyses of Molecular Targeted Agents,    

     Akti-2 and PI3Kia  

Multiple clusters (specifically, clusters 1, 4, 5) are enriched in protein transport (parent 
term, transport), negative regulation of cell cycle (mostly the following child terms, 
negative regulations of mitotic cell cycle, cell cycle process). Second cluster is composed 
of many RNA processing terms, as well. Additionally, RNA metabolic process is 
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significantly enriched parent term for Cluster 3. First cluster also consists of apoptotic 
signalling pathway as a significantly enriched GO biological process functional term. 
Cluster 9 includes translation-related multiple child terms in Huh7 cells treated with 
PI3Ki-α as a single agent. Although PI3Ki-α is used at very low doses, it demonstrates an 
effective behaviour as our conclusion.  

All clusters are enriched in various different categorical terms for biological process. First 
cluster is mostly enriched in localization related child terms. Cluster 4 includes several 
enrichment terms related to cellular metabolic process. Sixth cluster comprises of 
chromosome organization terms, and the second cluster consists of RNA metabolic 
process terms. Additionally, third cluster is enriched in transport-related GO biological 
process functional enrichment terms. Organelle organization and cell growth are induced 
as enrichment terms in Huh7 cells treated with a single agent, Akti-2.  

All clusters are enriched in various different categorical functional terms for GO 
biological process in Mahlavu cells treated with Akti-2 inhibitor. Protein 
dephosphorylation is an enrichment term that is found in several clusters.  Third cluster 
consists of translation and localization associated terminologies. Cluster 8 is enriched in 
transport, immune responses (i.e, regulation of immune response), dephosphorylation, 
viral life cycle. Seventh cluster is enriched in apoptotic process related terms, including 
regulation of apoptotic signalling pathway, leukocyte apoptotic process, cell death, and so 
on. Several off-target biological processes are demonstrated in Cluster 7, namely immune 
system process (child terms, leukocyte migration, cell differentiation, etc.), hematopoietic 
or lymphoid organ development (i.e., hemopoiesis), inflammatory response, and cytokine 
production.  

All clusters are enriched in various different categorical terms for GO biological process. 
Multiple clusters (mostly, third cluster) are enriched in protein transport-related terms 
(parent term, transport). Cluster 10 consists of RNA metabolic processes (i.e., RNA 
processing). Sixth cluster is mostly enriched in DNA repair mechanisms. In addition to 
these, Cluster 9 is enriched in transcription-related processes in Mahlavu cells treated with 
PI3Ki-α as a single agent.   
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4.1.2.3     Overrepresentation Analyses of the Clusters in Sorafenib-Related Multiple 

        Networks 

Hereafter, we compare the common aspects and distinct features of only Sorafenib-related 
multiple reconstructed hepatoma networks. To do this, we first divide heterogeneous 
networks into the different clusters that comprise ultimately more similar nodes and assign 
the same FDR threshold value to all of the networks. Afterwards, negative logarithm base 
10 was applied to the p-values of the genes in all clusters. Consequently, by doing this 
analysis, our objective is to clarify hidden significant terminology more precisely and 
elucidate functional enrichment terms that dispose of background effect of the whole 
unclustered version of the network.  

4.1.2.3.1     KEGG Pathway Analyses of the Clustered Multiple Hepatocarcinoma  

       Networks 

Only 3 significant KEGG pathway enrichment terms for a single treatment with Sorafenib 
in Huh7 network are exhibited in the heatmap (See Appendix B.3). In Figure 4.11a, 7 
different KEGG functional enrichment terms are displayed for the same network in the 
plot. Although Sorafenib-treated Huh7 network comprises 9 distinct clusters, 4 different 
clusters are presented in the plot. The reason is that several clusters do not have an 
enrichment score and corresponding functional enrichment term within the specific cutoff 
or very few gene numbers in the clusters are insufficient to have an enriched term. AMP 
activated kinase (AMPK) signalling pathway, one of the enriched significant cascade of 
cluster 7, modulates several processes, namely energy stability, embryonic development, 
biogenesis of mitochondria, cellular growth and autophagy (Hardie, 2011). As Ferretti et 
al. claimed that, the level of AMPK molecular activity is sharply depleted in hepatoma 
tumors, by considering this, AMPK is known to incorporate in hepatoma cells (Ferretti et 
al., 2019).  

In Figure 4.11b, human papillomavirus infection is one of the significantly enriched 
pathway belonging to Cluster 2 in combined treatment of Sorafenib and Akti-2. Blackadar 
stated that HPV is one of the infectious carcinogens (Blackadar, 2016). Insulin signalling 
pathway is another functionally enrichment term as a member of endocrine system. The 
second Huh7 cluster in combined treatment of Sorafenib and Akti-2 is also enriched in 
endometrial and prostate cancers which may be included in off-target effects.  

In Figure 4.11c, previous studies highlighted that EBV is involved in HCV infection which 
may result in hepatocarcinogenesis (Abdel Sammad, El-Bassuoni, & Talaat, 2013; W. Li 
et al., 2004). Cluster 2 in combined Huh7 treatment of Sorafenib and PI3Ki-α is enriched 
in colorectal, breast and gastric cancers which might be related to off-target effects. In 
addition to the enriched terminologies, after comparing all Sorafenib-related Huh7 
networks, negative regulations of DNA repair, MAPK activity, and DNA replication are 
detected in the combination of Sorafenib and PI3Ki-α.  
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In Figure 4.12a, several virus associations are detected, including viral carcinogenesis, 
HPV, helicobacter pylori infection in a single agent treatment with Sorafenib in Mahlavu 
cells. Also, lipid, carbohydrate and energy metabolisms, DNA repair mechanisms and 
replication, signal transduction (in particular, mTOR signalling) are significantly 
enriched. Gastric and thyroid cancers, fanconi anemia pathway and acute myeloid 
leukemia are enrichment terms that may be included in off-target effects. Additionally, a 
recent study mention that DNA repair mechanisms (in our case, nucleotide excision, base 
excision, mismatch repairs) and DNA replication are supported in Fanconi anemia 
pathway (Rodríguez & DAndrea, 2017) that is a correlation with our finding results.  

In Figure 4.12b, several virus infections are detected, namely HBV, helicobacter pylori, 
vibrio cholera infection in combined treatment with Sorafenib and Akti-2 in Mahlavu 
cells. Progesterone-mediated oocyte maturation is another functionally enrichment term 
as a member of endocrine system. Carbohydrate and energy metabolisms, cell growth 
(specifically, cellular senescence, and cell cycle) are significantly enriched. Lipid 
metabolism is negatively regulated in the combined agents of Sorafenib and Akti-2 in 
Mahlavu cells.  

In Figure 4.12c, several distinct Mahlavu clusters are enriched in virus associations, 
namely viral carcinogenesis, EBV, helicobacter pylori, vibrio cholera infection and 
alcoholism is another significant term in combined treatment with Sorafenib and PI3Ki-
α. Apoptosis is the most significant functional term. Lipid metabolism is negatively 
regulated in the combination of agents, Sorafenib and PI3Ki-α in Mahlavu cells.  
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4.1.2.3.2     GO Biological Process Analyses of the Clustered Multiple Hepatocarcinoma 

        Networks 

Cluster 1 is enriched in several GO biological process enrichment terms, namely cellular 
component organizations (chromatin, chromosome, organelle organizations), primary 
metabolic processes (nucleic acid metabolic process), and DNA damage and repair 
mechanisms (cellular response to DNA damage and stimulus, nucleotide-excision repair). 
Second cluster is enriched in mainly translation-associated events and localization. In 
addition to the functional enrichment term categories given in Cluster 2, third cluster 
comprises the significant processes such as RNA processing, macromolecule metabolic 
process and transport. Cluster 5 significantly enriched in cellular component organization, 
RNA processing and gene expression in a treatment with Sorafenib as a single Huh7 agent 
(See Figure 4.13).  

Cluster 6 is significantly enriched in DNA damage and repair mechanisms and regulation 
of macromolecule metabolic process. Second cluster includes the functional terms, 
namely negative regulation of cell cycle (child terms, negative regulation of mitotic cell 
cycle and cell cycle arrest), regulation of programmed cell death (specifically, regulation 
of apoptotic signalling pathway), RNA metabolic process, and cell death (in particular, 
neuron death) in a combined treatment with Sorafenib and Akti-2 in Huh7 cell line (See 
Figure 4.14).     

Cluster 1 is enriched in cellular response to stress, response to stimulus, regulation of 
biological quality (specifically, regulation of protein stability), cellular process (in 
particular, protein folding), establishment of protein localization, and protein-containing 
complex assembly. In this context, Sauzay and her colleagues highlighted that Sorafenib 
may get involved in the processes of chaperoning and protein folding in Huh7 cell line 
(Sauzay et al., 2018). One of the enrichment terms in second cluster is regulation of 
organelle organization (child term, regulation of cytoskeleton organization). Fifth and 
ninth clusters is enriched in 3 distinct significant terms, including cellular protein 
modifications (protein acylation, peptidyl-lysine modification), macromolecule 
modification (covalent chromatin modification), and cellular protein modification 
processes (post-translational protein modification, protein modification by small protein 
removal) and protein catabolic process, respectively. Significantly enriched genes are 
belonging to protein biosynthesis and protein modification following Sorafenib treated 
hepatoma cells (Cervello et al., 2012), correlating with our results. Third cluster is 
significantly enriched in response to organic substance, RNA processing, RNA 
biosynthetic process, negative regulation of DNA repair and gene expression in a 
combined treatment with Sorafenib and PI3Ki-α in Huh7 cell line (See Figure 4.15).  
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Cluster 1 is solely composed of metabolic process events, including drug metabolic 
process, cofactor metabolic process, generation of precursor metabolites and energy, 
organic substance metabolic processes (nucleoside bisphosphate metabolism, 
ribonucleotide metabolic process), and so on. There are 15 functional enrichment terms 
for the category of GO biological process in the first cluster. Second cluster is enriched in 
several transport associated biological processes and process utilizing autophagic 
mechanism (parent term, cellular process). Third cluster is enriched in several cellular 
catabolic and metabolic processes, translation, signal transduction pathways, cellular 
protein modification processes (protein polyubiquitination, post-translational protein 
modification). Cluster 4 is enriched in several biological process terms. Cellular 
component organization, cellular development process (in particular, muscle cell 
differentiation), intracellular signal transduction (child term, signal transduction by p53 
class mediator), cell-cell signalling by Wnt (parent term, cell communication) are a couple 
of the functional terms in a Mahlavu treatment with Sorafenib as a single agent (See Figure 
4.16).  

Second cluster consists of organelle organization-related terminologies (specifically, 
DNA conformation change, organelle fission), DNA metabolic process (child term, DNA 
recombination), cellular biosynthetic process (e.g. DNA replication), cellular protein 
catabolic process and cellular protein modification process. Third cluster comprises of 
several cellular metabolic processes. In cluster 4, several RNA metabolic process events 
(e.g.,RNA splicing) and macromolecule localization are significantly enriched. Transport 
is main functional enrichment term in Clusters 6 and 7. Cluster 5 includes the parent terms, 
namely localization, translation, nucleic acid metabolic process and cellular component 
biogenesis. One of the enriched terms in Cluster 8 is process utilizing autophagic 
mechanism (parent term, cellular process) in a combined treatment with Sorafenib and 
Akti-2 in Mahlavu cells (See Figure 4.17).  

Second cluster comprises of several intracellular transport categorical functional terms 
and process utilizing autophagic mechanism. Multiple clusters have several enrichment 
terms in the category of negative regulation of cell cycle (e.g., negative regulations of both 
cell cycle progress, mitotic cell cycle, etc.), negative regulation of organelle organization 
and cellular protein localization in the combination of multiple agents, Sorafenib and 
PI3Ki-α in Mahlavu cells (See Figure 4.18).  
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4.2     Literature and Obtained Targets of Drug Treatments and Small Molecule 

 Inhibitors in HCC Networks  

 

The literature and obtained (direct and indirect) targets of molecular targeted agents in our 
hepatocarcinoma networks are examined individually to find out whether our 
reconstructed networks are specific to the perturbations of drugs, inhibitors or their 
combination. Indirect targets are off-target effectors. 

The target of Akti-2 inhibitor is AKT2 gene (Bhutani, Sheikh, & Niazi, 2013). When we 
added an extra filter to our method, no target was observed in the networks of both cell 
lines. In order to demonstrate a target, we selected the first neighbors of selected nodes in 
the network, and obtained AKT2 gene as a target for Akti-2. Akti1-2 inhibits both AKT1 
and AKT2 genes (Bhutani et al., 2013). Again, no target was detected in the networks of 
Huh7 and Mahlavu cell lines. After the selection of the first degree neighbour of nodes, 
AKT2 gene was come up as our target. Before demonstrating the first degree neighbors 
of the nodes, RAC3 and PRKCB were two significant nodes in our network that might be 
related targets for both AKT inhibitors in two inhibitor treated Mahlavu cells (See Table 
4.3).  

The literature targets of LY294002 are PI3KCG and PIM1 (Jacobs et al., 2005; Semba, 
Itoh, Ito, Harada, & Yamakawa, 2002). These targets were not found in both networks. 
LY294002 is a PI3K inhibitor. PIK3R3, MCM2 and MCM8 were important nodes within 
the threshold of extra filtering in Huh7 cells. When we applied the first degree neighbor 
nodes to seek a literature target, mTOR and ATR were found. Liu, et al. suggested that 
both genes are distantly related to Class IV of (P. Liu, Cheng, Roberts, & Zhao, 2009). 
For Mahlavu cells, PIK3C3 and MCM2 were in significant nodes (within the cutoff of 
extra filter). When we picked the first degree neighbors of our nodes, mTOR, ATR, 
MCM2, MCM3, MCM4, MCM5, MCM6 and MCM7 were determined as indirect targets 
(See Table 4.3).  

PI3Ki-α inhibits PI3K alpha isoforms. For Huh7 cells, PIK3C3 (VPS34) and MCM4 
genes were detected in the network as potential significant targets of PI3Ki-α (Burke, 
2018). When we applied the first degree neighbor nodes to find out more important genes, 
ATR, MCM2, MCM4, MCM5, MCM6, and MCM7 were found as off-target effectors. In 
the aspect of Mahlavu cells, PIK3C3, MCM2, MCM5, MCM6 and MCM7 genes were 
seen in the network. To seek more nodes, we picked first degree neighbors of nodes and 
obtained ATM, ATR, and MCM4 as indirect targets (See Table 4.3). 

The literature targets of Rapamycin (trade name: Sirolimus), are mTOR, FKBP1A and 
FGF2 (Lau, So, & Leung, 2013; Lisi, Aceto, Navarra, & Dello Russo, 2015). Interestingly, 
mTOR was obtained as a target for Huh7 cell line. No other target was observed after 
searching for the selected degree node neighbors in Huh7 cells once more. Before carrying 
out our target mTOR in Mahlavu cells, we again applied the first degree neighbors of 
selected nodes within our network. As expected, Rapamycin is involved in mTOR 
signalling pathway and pathways in cancer (See Table 4.3). 
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The well-known literature targets of Sorafenib (trade name: Nexavar) is BRAF, RAF1, 
PDGFR, VEGFR, and FGFR (Morse et al., 2019). It is a multi-kinase inhibitor. Sorafenib 
is involved in several pathways, namely MAPK signalling pathway, ErbB signalling 
pathway, VEGF signalling pathway, pathways in cancer, renal cell carcinoma, thyroid 
cancer, and hepatocellular carcinoma (Katopodis et al., 2019; Smolle, Taucher, Petru, & 
Haybaeck, 2014). Before checking the first degree neighbors, we did not detect any target 
within the strict cutoff for both cell lines, unfortunately. In order to observe nodes, we 
picked the first degree neighbors of nodes and obtained RAF1 and FGFR2 in Huh7 cells. 
BRAF, RAF1, RET and FGFRL1 were determined as our new targets in Mahlavu cells 
(See Table 4.4).   

Sorafenib-Akti2 network is a combination of Sorafenib and Akti-2 inhibitor. Before 
searching for the first degree neighbors, we did not detect any known target within the 
strict cutoff for both cells. To observe nodes, we picked the first degree neighbors of nodes 
and obtained PDGFRB, FGFRL1, AKT1, RAC1 and RAC3 in Huh7 cells. In the aspect of 
Mahlavu cells, RAF1, BRAF, PDGFRA, RET, AKT1 and RAC2 were detected as our 
targets (See Table 4.4). 

Sorafenib-PI3Kialpha network is a combination of Sorafenib and PI3Kialpha. Before 
searching for the first degree neighbors, we did not detect any known target within the 
strict cutoff for both cell lines. In order to observe nodes, we picked the first degree 
neighbors of nodes and obtained PDGFRA, PDGFRB, RET, MCM2, MCM3, MCM4, 
MCM5, MCM6, MCM7, mTOR, and PLK1 in Huh7 cells. In the aspect of Mahlavu cells, 
FGFRL1, MCM4, MCM5, MCM6, MCM7, MCM8, mTOR, and PLK1 were detected as 
our new targets (See Table 4.4). 

The literature targets of Wortmannin are PIK3CG, PLK1, PIK3CA, and PIK3R1. It is a 
PI3K inhibitor. It is more potentially effective than LY294002 (Mcnamara & Degterev, 
2011). PIK3R1, MCM4 and MCM8 were obtained as targets for Huh7 cells. Before 
carrying out mTOR in Huh7 cells, we again applied the first degree neighbors of selected 
nodes within our network. In the aspect of Mahlavu cells, PIK3C3, PIK3R1 and MCM3 
genes were detected in the network. In order to seek more nodes, we picked first degree 
neighbors of nodes and obtained PLK1, mTOR, MCM4 and MCM7 (See Table 4.3). 
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Table 4.3: Obtained targets of Rapamycin and several inhibitors including their involvement in various regulated 
pathways are listed. *sign indicates the previously mentioned multiple description of the genes in the network. 

 

 

Network Cell Line  Obtained Targets  Gene Description Regulated 

Processes/Pathways 

Akti-2  

Akti-1-2 

Huh7, 
Mahlavu 

AKT2 RAC-Beta 
Serine/Threonine (S/T) 
Specific Protein Kinase 
including SH2-like 
domains 

PI3K/AKT/mTOR  
Insuling receptor 
signaling pathway 
MAPK pathway 
Ras pathway 
Cell survival, cell cycle 
progression, 
angiogenesis, 
metabolism, apoptosis 

LY294002  Huh7 PIK3R3, mTOR, ATR, 
MCM2 

Phosphatidylinositol 3-
kinase (PIK3) regulatory 
subunit gamma  
Metabolic homeostasis 
DNA damage sensor  
DNA replication 
licensing factor 

EGFR tyrosine kinase 
inhibitor resistance  
ErbB signaling pathway 
Endocrine resistance  
HIF-1 signaling pathway 
Cell cycle 
p53 signalling pathway 
DNA replication 

LY294002 Mahlavu PIK3C3,mTOR, 
ATR,MCM2,MCM3, 
MCM4, MCM5, MCM6, 
MCM7  

PIK3 catalytic subunit 
type 3  
(S/T) Protein Kinase 
mTOR and ATR  
Mini-chromosome 
maintenance proteins 
(MCM) 

Inositol phosphate 
metabolism 
Metabolic pathways 
Phospholipase D 
pathway 
Fanconi anemia pathway 
Human papillomavirus 
infection 
Cell cycle 

PI3Ki-α Huh7 PIK3C3, ATR,  MCM2, 
MCM4, MCM5, MCM6, 
MCM7 

PIK3 catalytic subunit 
class III 
Ataxia telangiectasia 
and RAD3-related 
Mini-chromosome 
maintenance complex 
components 

Apelin signaling pathway 
Phagosome 
Cellular senescence 
Initial phase of 
eukaryotic DNA 
replication 

PI3Ki-α Mahlavu PIK3C3, ATM, ATR,  
MCM2, MCM4, MCM5, 
MCM6, MCM7 

PIK3 catalytic subunit 
type III  
Ataxia Telangiectasia 
Mutated 
DNA replication 
licensing factors 

Tuberculosis 
Apoptosis 
p53 signaling pathway 
Human 
immunodeficiency virus 
1 infection 
Cell cycle  

Rapamycin Huh7, 
Mahlavu 

mTOR Mechanistic 
(mammalian) target of 
rapamycin 

AMPK signaling 
pathway 

Wortmannin Huh7 PIK3R1, 
MCM4*,MCM8*, 
mTOR* 

PIK3 regulatory subunit 
gamma  
 

Natural killer cell 
mediated cytotoxicity  
GnRH Secretion 
Insulin Resistance  

Wortmannin Mahlavu PIK3C3, PIK3R1*, 
MCM3*, PLK1*, 
mTOR*, MCM4*, 
MCM7* 

PIK3 catalytic subunit 
type III  

Phagosome 
Axon guidance 
Progesterone-mediated 
oocyte maturation 
Insulin signaling 
pathway 
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Table 4.4: Obtained targets of Sorafenib and several agents including their involvement in various regulated 
pathways are listed. *sign indicates the previously mentioned multiple description of the genes in the network. 

 Network Cell 

Line 

Obtained Targets Gene Description Regulated 

Processes/Pathways 

Sorafenib Huh7 RAF1, FGFR2 RAF-1 proto-
oncogene 

Fibroblast growth 
factor receptor II 

MAPK pathway 
Ras pathway 

Regulation of actin 
cytoskeleton 

Sorafenib Mahlavu BRAF, RAF1, RET, 
FGFRL1 

B-RAF proto-
oncogene S/T  
protein kinase 
RAF proto-

oncogene S/T 
protein kinase 

Proto-oncogene 
Tyrosine (Y) 

protein kinase RET 
Fibroblast growth 

factor (FGF) 
receptor-like1 

Hepatocellular 
carcinoma 

Hepatitis C and 
Hepatitis B 

MAPK signaling 
pathway 

Central carbon 
metabolism in 

cancer 
FGF receptor 

signaling pathway 

Sorafenib-

Akti2 

 

Huh7 PDGFRB,AKT1,FGFRL1, 
RAC1,RAC3 

Platelet-derived 
growth factor 
receptor beta 

RAC S/T protein 
kinase 

Fibroblast growth 
factor receptor-like 

I 
Rac family small 

GTPaseI 

MAPK signaling 
pathway 

PI3K/Akt pathway 
Signaling pathways 

regulating 
pluripotency of stem 

cells 
FGF receptor 

signaling pathway 
Ras signaling 

pathway 
Sorafenib-

Akti2 

Mahlavu PDGFRA,BRAF,AKT1,RET, 
RAF1,RAC2 

platelet derived 
growth factor 
receptor alpha 

S/T protein kinase 
AKT S/T kinase1 

RET proto-
oncogene 

RAF-1 proto-
oncogene 

RAS-related C3 
botulinum toxin 

substrate2 

Chemokine pathway 
cAMP signalling 

pathway 
Platelet activation 

Thyroid cancer 
Gap junction 

Focal adhesion 
 

Sorafenib-

PI3Kialpha 

Huh7 PDGFRA*, PDGFRB*, 
RET*, MCM2, MCM3, 

MCM4, MCM5, MCM6, 
MCM7, mTOR* and PLK1 

 
 

MCM proteins 
Polo-like kinase 1 

 

Calcium signaling 
pathway 

JAK-STAT pathway 
ERK signaling 

DNA replication 
Longevity regulating 

pathway 
Oocyte meiosis 

Sorafenib-

PI3Kialpha 

Mahlavu FGFRL1*, MCM4*, 
MCM5*, MCM6*, MCM7*, 

MCM8*, mTOR, PLK1* 

Mechanistic target 
of Rapamycin 

Thermogenesis 
FoxO signaling 

pathway 
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4.3     Common Characteristics of Sorafenib-Related Multiple Network Comparisons   

In order to detect common patterns and traits between Sorafenib-related multiple agents 
treated networks and to identify potential similarities, overlapping genes are analyzed 
through the following steps. 

4.3.1  DeMAND Reveals That Sorafenib Interferes with Protein Folding Through 

 Chaperone Activity in Huh7 Cell Line 

To find out the overlapping part of multiple Huh7 networks and perform more analysis on 
these important genes, Venn Diagrams are initially depicted.  

For a triple comparison of Huh7 cells, Sorafenib treated network includes 104 nodes. The 
combination of Sorafenib treated with PI3Kialpha inhibitor network has 107 nodes. Another 
pairwise combination of Sorafenib and Akti2 treated network contains 139 nodes. The 
number of intersection of three networks which corresponds to the overlapping genes is 15 
(See Figure 4.19).  

For a pairwise diagram instance, Akti2 treated Huh7 network includes 342 nodes. The 
pairwise combination of Sorafenib and Akti2 treated Huh7 network has 139 nodes. The 
number of overlapping proteins of both Huh7 networks shown in the intersection part 
which corresponds to 58 (See Figure 4.19). 

  

 

  
 

 

 

 

  

Figure 4.19: Demonstration of Venn diagrams of Huh7 cell lines. To find out the 
number of overlapping genes in Sorafenib treated network, the combination of 
Sorafenib-Akti2 treated network and the combination of Sorafenib-PI3Kialpha 
treated Huh7 network, Venn Diagrams are depicted. Pairwise Venn diagrams are 
also drawn to observe and compare Sorafenib-treated network versus inhibitors 
(Akti-2 and Pi3kialpha). Sor is the abbreviation of Sorafenib and PI3kia is the 
abbreviation of PI3kialpha in the diagrams.  
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Table 4.5: The overlapping genes in Sorafenib-related multiple Huh7 networks that are 
Sorafenib treated network, the combination of Sorafenib-Akti2 treated network and the 
combination of Sorafenib-PI3Kialpha treated Huh7 network are demonstrated. 

Overlapping Genes in Huh7 Networks 

ATP6V1A BUD31 CCT2 CCT3 DARS 
DHX15 GNL2 HSP90AA1 HSP90AB1 KARS 
KRR1 PFDN2 RPF2 RPS14 SUMO1 

 

Gene Ontology (GO) Biological Process enrichment analysis was performed in order to 
have a general idea about the larger processes in which overlapping genes in Sorafenib-
related multiple Huh7 networks were involved. These overlapping genes mostly took part 
in the protein assembly, organization, transport, cellular component biogenesis, 
chromosome organization, localization, cellular process, homeostatic process, regulation 
of biological quality, metabolic processes and RNA processing (Figure 4.20). The genes 
were resulted in the following enrichment terms such as chaperone-mediated protein 
complex assembly, ribonucleoprotein complex subunit organization, toxin transport, 
ribonucleoprotein complex biogenesis, telomere organization, protein localization to 
nucleus, protein folding, anatomical structure homeostasis, DNA biosynthetic process, 
DNA metabolic process, ncRNA processing (See Figure 4.20). 

 

Figure 4.20: GO biological process no redundant overrepresentation enrichment analysis 
(ORA) of overlapping Huh7 genes was conducted by WebGestaltR package. Functional 
enrichment biological process terms were resulted with a previously given threshold FDR 
≤ 0.05. n was the total number of overlapping genes for each specific biological process 
enrichment terms category in the bar chart. Negative logarithm base 10 was applied to the 
p-values of overlapping genes in Huh7 network. Fold change represented these adjusted 
p-values.  
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GO Molecular Function enrichment analysis was performed in order to have an idea 
about molecular-level activities of overlapping genes in Huh7 network. These overlapping 
genes were mostly involved in enzyme binding and protein binding (Figure 4.21). The 
genes were resulted in functional enrichment terms, including unfolded protein binding, 
protein binding involved in protein folding, ubiquitin-like protein ligase binding, and 
disordered domain specific binding (See Figure 4.21).  
 

 
Figure 4.21: GO molecular function no redundant ORA of overlapping Huh7 genes was 
performed by WebGestaltR. Enriched molecular functional terms were resulted with a 
previously given threshold FDR ≤ 0.05. n was the number of overlapping genes for each 
specific molecular function enrichment terms category in the bar chart. Negative 
logarithm base 10 was applied to the p-values of overlapping genes in Huh7 network. Fold 
change represented these adjusted p-values.  
 
GO Cellular Component enrichment analysis was performed in order to have an idea 
about the locations where overlapping genes in Huh7 network were carried out their 
functions. Cellular component enrichment outcomes of these overlapping genes were 
localized in chaperone complex and myelin sheath (See Figure 4.22).  
 

 
Figure 4.22: GO cellular component no redundant enrichment analysis of overlapping 
Huh7 genes was done by WebGestaltR package. Enriched cellular component terms are 
resulted with a previously given threshold FDR ≤ 0.05. n was the total number of 
overlapping genes for each specific cellular component enrichment terms category in the 
bar chart. Negative logarithm base 10 was applied to the p-values of overlapping genes in 
Huh7 network. Fold change represented these adjusted p-values.  
 
To have an idea about pathways that overlapping genes in Huh7 network were involved 
in, we conducted a KEGG pathway enrichment analysis. Unfortunately, the overlapping 
genes did not have any functional enrichment KEGG pathway terms within FDR threshold 
0.05.  
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Reactome pathway enrichment analysis was performed to have a general idea about 
pathways in which overlapping genes in Huh7 network were taken part in. These 
overlapping genes were mostly included in protein folding, cellular response to heat 
stress, metabolism of amino acids and derivatives, axon guidance, translation, and cilium 
assembly (Figure 4.23). The genes were resulted in the following enrichment terms, 
namely chaperonin-mediated protein folding, HSF1 activation, selenoamino acid 
metabolism, Sema3A PAK dependent axon repulsion, cytosolic tRNA aminoacylation, 
and BBSome-mediated cargo-targeting to cilium (See Figure 4.23).  
 
Three aspects of gene ontology and Reactome pathway induce correlated enriched 
resulting outcomes with each other. One of the enriched consequences of cellular 
localization, chaperone complex, is significantly related to protein binding involved in 
protein folding and unfolded protein binding which refer to chaperone activity as a 
molecular functional term. Of the biological process enrichments associated with 
overlapping Huh7 genes, chaperone-mediated protein complex assembly and protein 
folding are essential terms consistent with the previous results. Given the enriched terms 
of Reactome pathway, protein folding and its child terms, including chaperonin-mediated 
protein folding and cooperation of Prefoldin and TriC/CCT in actin and tubulin folding 
etc. indicate that protein folding is the most significant category of overlapping Huh7 
genes in Reactome pathway. Collectively, these findings suggest that overlapping genes 
in Sorafenib-related multiple Huh7 networks potentially interfere with protein folding 
through chaperone activity.  
In this context, Sauzay et al. highlighted that Sorafenib can get involved in the processes 
of chaperoning and protein folding in Huh7 cell line (Sauzay et al., 2018). 
 

 
Figure 4.23: Reactome pathway enrichment analysis of overlapping Huh7 genes was 
conducted by WebGestaltR package. Enriched terms are resulted with a previously given 
threshold FDR ≤ 0.05. Negative logarithm base 10 was applied to the p-values of 
overlapping genes in Huh7 network. Fold change represented these adjusted p-values. 
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4.3.2     DeMAND Indicates That Sorafenib Modulates Regulation of Autophagy in 

  Mahlavu Cell Line 

 
To find out the overlapping part of multiple Mahlavu networks and perform more analysis 
on these important genes, Venn Diagrams are initially depicted.  

For a triple comparison of Mahlavu cell line, Sorafenib treated network has 304 nodes. An 
example of drug and drug inhibitor together network, combination of Sorafenib treated with 
PI3Kialpha inhibitor, includes 428 nodes. Another example of drug and drug inhibitor 
combination network, Sorafenib and Akti2 network contains 229 nodes. The number of 
intersection of three networks which corresponds to the overlapping genes is 51 (See Figure 
4.24).  

For a pairwise Venn diagram instance, Akti2 treated Mahlavu network has 390 nodes. The 
combination of Sorafenib and Akti2 treated Mahlavu network has 229 nodes. The number 
of overlapping proteins of both Mahlavu networks is 72 (See Figure 4.24). 

 

Figure 4.24: Demonstration of Venn diagrams of Mahlavu cells. In order to find out the 
number of overlapping genes in Sorafenib treated network, the combination of Sorafenib-
Akti2 treated network and the combination of Sorafenib-PI3Kialpha treated Mahlavu 
network, Venn Diagrams are depicted. Pairwise Venn diagrams are also drawn to observe 
and compare Sorafenib-treated network versus inhibitors (Akti-2 and Pi3kialpha). Sor is 
the abbreviation of Sorafenib and PI3kia is the abbreviation of PI3kialpha in the diagrams. 

GO Biological Process enrichment analysis was conducted to have a general idea about 
the larger processes where overlapping genes in Mahlavu network were involved in. These 
overlapping genes mostly took part in DNA repair, response to stimulus, localization, 
transport, cellular component organization or biogenesis, translation, homeostatic process, 
chromosomal organization, several cellular processes, including drug metabolic process 
(See Figure 4.25). The genes were resulted in the large variety of functional enrichment 
terms, namely interstrand cross-link repair, DNA damage response detection of DNA 
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damage, ribonucleoprotein complex localization, trivalent inorganic cation transport, 
protein-DNA complex subunit organization, translational initiation, cell redox 
homeostasis, telomere organization, and antibiotic metabolic process (See Figure 4.25).  

Since the number of overlapping genes in Mahlavu networks was more than Huh7 
networks, more enriched functional term outcomes in various categories were obtained in 
Mahlavu cells. For instance, interstrand cross-link repair, postreplication repair, and 
nucleotide-excision repair are child terms of DNA repair observed in only Mahlavu 
networks.   
Given the numbers and categories of GO biological process terms, parent terminology is 
similar for both cell lines; however, child terms belonging to a particular parent term are 
more various in Mahlavu cells. For example, parent term transport has only a child term 
toxin transport in Huh7 network. The same parent term has 3 child terms, including ATP 
hydrolysis coupled transmembrane transport, ATP hydrolysis coupled cation 
transmembrane transport, and trivalent inorganic cation transport. 
Common GO biological process enrichment terms between Mahlavu and Huh7 cell lines 
are ribonucleoprotein complex biogenesis (parent term: cellular component biogenesis) 
and telomere organization (parent term: chromosome organization).  
 

 

Figure 4.25: GO biological process no redundant ORA of overlapping Mahlavu genes was 
done by WebGestaltR. Functional enrichment biological process terms were resulted with 
a given threshold FDR ≤ 0.05. n was the total number of overlapping genes for each 
specific biological process enrichment terms category in the bar chart. Negative logarithm 
base 10 was applied to the p-values of overlapping genes in Mahlavu network. Fold 
change represented the adjusted p-values.  
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GO Molecular Function enrichment analysis was conducted to have an idea about 
molecular-level activities of overlapping genes in Mahlavu network. These overlapping 
genes were involved in fundamental key concepts, including structural constituent of 
ribosome, ATPase activity, and heat shock protein binding (See Figure 4.26). Common 
GO molecular function enrichment term between Mahlavu and Huh7 cell lines is protein 
binding (at the parent name level). 

 

Figure 4.26: GO molecular function no redundant ORA of overlapping Mahlavu genes 
was done by WebGestaltR package. Enriched molecular functional terms were resulted 
with a given threshold FDR ≤ 0.05. n was the number of overlapping genes for each 
specific molecular function enrichment terms category in the bar chart. Negative 
logarithm base 10 was applied to the p-values of overlapping genes in Mahlavu network. 
Fold change represented the adjusted p-values.  

GO Cellular Component enrichment analysis was performed to have an idea about the 
locations where overlapping genes in Mahlavu network were carried out their functions. 
Cellular Component enrichment outcomes of these overlapping genes were localized in 
several different locations, namely myelin sheath, ribosome, cytosolic part, pigment 
granule, chaperone complex, vesicle lumen, and proton-transporting two-sector ATPase 
complex (See Figure 4.27). Common GO cellular component enriched terms between 
Mahlavu and Huh7 cell lines are chaperone complex and myelin sheath, respectively.  

 

Figure 4.27: GO cellular component no redundant ORA of overlapping Mahlavu genes 
was done by WebGestaltR package. Enriched cellular component terms were resulted with 
a given threshold FDR ≤ 0.05. n was again the number of overlapping genes for each 
specific cellular component enrichment terms category in the bar chart. Negative 
logarithm base 10 was applied to the p-values of overlapping genes in Mahlavu network. 
Fold change represented the adjusted p-values.  
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KEGG pathway enrichment analysis was performed in order to have a general idea about 
pathways in which overlapping genes in Mahlavu network were taken part in. These 
overlapping genes were included in ribosome.  

Reactome Pathway enrichment analysis was conducted to have an idea about pathways 
in which overlapping genes in Mahlavu network were taken part in. The number of 
enriched Reactome pathway terms is obtained as 177 (Figure 4.28). These overlapping 
genes were included in various different categories. The most enriched term groups in 
Reactome pathways are belonging to cell cycle, cellular responses to external stimuli, 
disease, signal transduction, DNA repair, translation, DNA replication, programmed cell 
death, transport of small molecules, axon guidance, immune system, transcription, and 
several metabolism categories, including the metabolism of amino acids and derivatives 
and metabolism of RNA. The genes were resulted in the following enrichment terms, 
namely S phase, cellular responses to stress, infectious disease, degradation of DVL, 
translesion synthesis by POLK, eukaryotic translation initiation, DNA replication pre-
initiation, regulation of apoptosis, iron uptake and transport, regulation of expression of 
SLITs and ROBOs, Dectin-1 mediated noncanonical NF-kB signalling, regulation of 
RUNX3 expression and activity, selenoamino acid metabolism, AUF1 (hnRNP D0) binds 
and destabilizes mRNA (See Figure 4.28).  

Due to the number of overlapping genes in Mahlavu networks was more than Huh7 
networks, more enriched term results in various categories were obtained in Mahlavu 
cells. For instance, cell cycle related terms, including mitotic G1-G1/S phases, S phase, 
mitotic G2-G2/M phases, regulation of mitotic cell cycle, p53-Independent G1/S DNA 
damage checkpoint, and many other child sub-pathways observed in only Mahlavu 
networks.  
Common Reactome pathway enrichment terms between Mahlavu and Huh7 cell lines are 
HSF1-dependent transactivation, HSF1 activation, attenuation phase (parent term of the 
previous 3 terms: cellular response to heat stress (child sub-pathway of cellular responses 
to external stimuli)), and selenoamino acid metabolism (parent term: metabolism of amino 
acids and derivatives).  
 
Three aspects of gene ontology, KEGG and Reactome pathways induce various 
enriched resulting outcomes. One of the enriched consequences of cellular compartment, 
pigment granule, which is derived from lysosome, is related to 2 molecular functional 
terms, namely heat-shock protein binding-through chaperone-mediated autophagy- and 
ATPase activity-through autophagy-. Of the biological process enrichments associated 
with overlapping Mahlavu genes, process utilizing autophagic mechanism, response to 
topologically incorrect protein and protein-containing complex disassembly are essential 
terms. In addition to the biological terms, by incidence, cellular process, response to 
stimulus and cellular component organization are parent terms of the biological 
enrichments. From the perspective of Reactome pathway level enrichment, cellular 
responses to stress, HSF1-dependent transactivation, cellular responses to heat stress and 
attenuation phase refer that cellular response to stress (parent term: cellular response to 
external stimuli) is a remarkable category of overlapping Mahlavu genes in Reactome 



66 
 

pathway. Taken together, these findings observed from distinct ontologies and pathway 
suggest that overlapping genes in Sorafenib-related multiple Mahlavu networks might 
potentially interfere with autophagy through cellular responses to external stimuli (in our 
case, Sorafenib and co-treatments of Sorafenib with inhibitors). 
In the light of previous analysis context, Yazdani, et al. and Dominguez et al. highlighted 
that Sorafenib can get involved in the regulation of autophagy and its subtypes in 
hepatoma cells (Prieto-Domínguez et al., 2016; Yazdani, Huang, & Tsung, 2019).  
 
Another enriched consequences of cellular compartment, proton-transporting two-sector 
ATPase complex, is significantly related to ATPase activity as a molecular functional 
term. Of the biological process enrichments associated with overlapping Mahlavu genes, 
ATP hydrolysis coupled transmembrane transport, trivalent inorganic cation transport, 
and ATP hydrolysis coupled cation transmembrane transport are essential terms with the 
previous results. In addition to the biological terms, by incidence, transport is a parent 
name terminology of the enrichments. Given the enriched terms of Reactome pathway, 
iron uptake and transport and its child term transferrin endocytosis and recycling which 
incorporate the event of ATP hydrolysis remark that transport of small molecules is a 
significant category of overlapping Mahlavu genes in Reactome pathway. Collectively, 
these findings suggest that overlapping genes in Sorafenib-related multiple Mahlavu 
networks Sorafenib can potentially get involved in the processes of ATPase associated 
events which might be involved in transport activity.  
In this context, Jiang et al., emphasized that sodium-potassium pump inclusion is 
constitutively increasing in many cancers. Further, ATPase complex might be involved in 
demonstrating several distinct functions (Jiang et al., 2018).  
 
Another enriched results of cellular compartment, ribosome, is significantly correlated 
with structural constituent of ribosome as a molecular functional term. Given the enriched 
terms of biological process, protein localization to endoplasmic reticulum, cytoplasmic 
translation, translational initiation, and RNA catabolic process are vital category of 
overlapping Mahlavu genes. Subsequently, translation, cellular protein localization, and 
macromolecule catabolic process are parent name terminologies of the biological 
enrichments. From the perspective of KEGG pathway level enrichment, ribosome is a 
crucial functionally enriched term consistent with the previous results. Of the Reactome 
pathway enrichments associated with overlapping Mahlavu genes, translation, 
metabolism of amino acids and derivatives, GTP hydrolysis and joining of the 60S 
ribosomal subunit, eukaryotic translation initiation, peptide chain elongation, and 
formation of a pool of free 40S subunits remark that translation is a crucial category. 
Altogether, these findings observed from distinct ontologies and pathways indicate 
overlapping genes in Sorafenib-related multiple Mahlavu networks potentially interfere 
with translation events.   
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4.4     Functional Enrichment Analyses of the Reconstructed Networks 

 

In order to retrieve biological information about our reconstructed networks of both 
hepatocarcinoma cell lines and identify involved larger biological processes, molecular-
level activities, cellular localizations, and their inclusion in pathways (namely, KEGG and 
Reactome), we performed overrepresentation enrichment analysis for each network. For 
this purpose, WebGestaltR package was used to reveal fundamental biological insights. 
Following that, we drew several heatmaps to visualize network similarity and difference 
and had a prior knowledge on the tendency of enriched terms in the reconstructed networks 
before clustering our dataset.  
 
4.4.1     GO Biological Process Analyses of Huh7 and Mahlavu Cell Lines 

 
As shown in heatmap figure in Appendix, columns indicate 9 reconstructed Huh7 
networks, and rows are the union of corresponding functional enriched GO biological 
process terms in the heatmap. The enriched Huh7 terms were listed by a given threshold, 
FDR ≤ 0.01. To visualize all 9 Huh7 networks together in a single heatmap, this threshold 
was chosen. Thereafter, the negative logarithm base 10 of FDR results of significantly 
enriched terms were applied. We further found that cellular component biogenesis, 
intracellular protein transport, translation, protein localization and folding, cellular 
catabolic process and metabolic process are highly enriched in Sorafenib-treated Huh7 
network. As clearly observed from the enrichment terms, for Huh7 cell line, Sauzay and 
her colleagues have highlighted that Sorafenib intrude on several protein mechanisms, 
namely folding, chaperoning, turnover and production of proteins which correlate with 
our resulted network treated with single agent, Sorafenib (Sauzay et al., 2018). In the 
concept of the most significant enriched terms, Huh7 cells treated with Sorafenib and co-
treatment of Sorafenib and Akti-2 demonstrate similar characteristic pattern. Co-treatment 
of Sorafenib and Akti-2 is resulted in downregulation of enrichment terms, including 
regulation of cell cycle, nucleic acid metabolic process, and cellular component 
organization compared to single treatment of Akti-2. Single treatment with Akti-2 agent 
and Akti-1-2 agent shows nearly the same characteristics. 
 
Contrary to the network similarity, combined treatment of Sorafenib and PI3ki-α indicates 
a different behavioral pattern. Of the GO biological process enrichments associated with 
co-treatment of Sorafenib and PI3ki-α, RNA metabolic process, transcription and RNA 
processing are significant category of the genes in this network. Co-treatment of Sorafenib 
and PI3ki-α negatively regulates cell cycle process and DNA repair compared to single 
treatment of Sorafenib. Singh and her colleagues have highlighted that the alpha isoform 
of PI3K is involved in cell cycle process, DNA repair mechanisms and replication (Singh, 
Dar, & Dar, 2016). Single treatment with PI3ki-α also results in negative regulation of cell 
cycle process. Although PI3Ki-α is used at very low doses, it demonstrates an effective 
behavior, as our conclusion. In the aspect of single agent treatment with PI3ki-α, several 
catabolic processes are enriched, including protein catabolic processes (child term, 
regulation of protein catabolic process and proteasomal protein catabolic process) and 
nucleic acid catabolic process (specifically, RNA catabolic process). Intriguingly, single 
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treatment of PI3ki-α cause several immune responses in Huh7 cells within FDR ≤ 0.01. 
Production of molecular mediator of immune response and somatic diversification of 
immune responses are the child terms of immune system process. Heatmap figure is in the 
section of Appendix B.  
 
We analyze that the total number of enriched GO biological process terms in Sorafenib-
treated network is 73 for Mahlavu cell line (within FDR ≤ 0.01); whereas, this number 
equals to 24 for Sorafenib-treated Huh7 cells (This is an expected result of overall nodes 
in both networks, 304 nodes vs 104 nodes (See Table 4.2), and Mahlavu cell line is more 
aggressive type due to PTEN deficiency which acts as a tumor suppressor for the 
downstream of the PI3K/AKT signaling cascade (Chamcheu et al., 2019). All of the most 
significant terms in Huh7 cells also appear as much significant as in Mahlavu cells. Here, 
the critical point is that since the number of the enrichment terms in Mahlavu cells is 
higher, the number of highly-enriched terms appear as significant is also higher in 
Mahlavu cells. In addition to the most significant enriched terms in Huh7 cells, we found 
several categories of process, namely cellular metabolic process, transcription, organic 
acid metabolic process, cellular component organization, and RNA metabolic process. 
Further, given the numbers and categories of GO biological process terms, RNA metabolic 
and catabolic processes, negative regulation of cell cycle (child term, cell cycle arrest), 
cellular protein localization, translation, intracellular transport, drug metabolic process, 
cellular component biogenesis and chromosome organization. Co-treatment of Sorafenib 
and Akti-2 is resulted in reduction of enrichment terms such as macromolecule 
localization, response to chemical and stimuli compared to single treatment of Akti-2. In 
the concept of the most significant enriched terms, Mahlavu cells treated with Sorafenib 
and co-treatment of Sorafenib and PI3ki-α demonstrate similar characteristic pattern. Of 
the GO biological process enrichments associated with co-treatment of Sorafenib and 
PI3ki-α, translation, intracellular transport, cell cycle phase transition (G1/S phase 
transition, mitotic cell cycle phase transition), transcription, organelle organization, 
response to stimulus, several catabolic processes (proteasomal protein catabolic process, 
regulation of protein catabolic process, RNA catabolic process) are significant enriched 
terminologies. Co-treatment of Sorafenib and PI3ki-α is resulted in inhibition of 
enrichment terms, namely negative regulation of DNA repair and RNA metabolic process 
compared to single treatment of PI3ki-α. Although cell cycle arrest is enriched in Mahlavu 
cells upon treatment with Sorafenib as a single agent, combination of Sorafenib and PI3ki-
α demonstrates a different characteristic, and enriched in cell cycle phase transition-
related terminologies, same as the trend in treatment with PI3ki-α. Again, PI3Ki-α is used 
at very low doses, yet it demonstrates an effective behavior in Mahlavu cells. Heatmap 
figure is in Appendix B section. 
 
4.4.2     GO Molecular Function Analyses of Huh7 and Mahlavu Cell Lines 

Protein binding, transferase activity, catalytic activity, nucleic acid binding, and protein 
folding chaperone are the main enriched GO molecular function terms in combined 
treatment of Sorafenib and PI3kiα. Combined treatment of Sorafenib and PI3kiα is 
resulted in inhibition of enrichment terms binding (bindings of protein-containing 
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complex, chromatin, nucleic acid, and protein) and catalytic activity. As clearly observed 
from the enrichment terms, for Huh7 cell line, Sauzay et al. emphasized that Sorafenib 
intrude on several protein mechanisms, namely folding, chaperoning, turnover and 
production of proteins (Sauzay, et al., 2018). The enriched Huh7 terms were listed by a 
given threshold, FDR ≤ 0.05. Further, single treatment of Sorafenib is resulted in enzyme 
binding (i.e., histone deacetylase binding), transferase activity, pyrophosphatase activity, 
catalytic activity and nucleic acid binding. Freese and her colleagues mentioned that 
histone deacetylase is an enzyme which majorly acts in carcinogenesis and further stages 
of hepatoma. Such that, epigenetics is a newly emerging field in the perspective of targeted 
therapy and if the level of high expression of histone deacetylases is observed, it can be it 
can be concluded that they may contribute to promote hepatocarcinoma by mis-acetylation 
of histone proteins  (Freese et al., 2019; Y. Li et al., 2019). Huh7 cells co-treated with 
Sorafenib and Akti-2 demonstrates similar enrichment characteristic trend with the 
previous networks. Additionally, transcription factor binding (parent term: protein 
binding) is only enriched in this network. In the concept of the significant GO molecular 
function terms, single treatment with both inhibitors (Akti-2 and PI3ki-𝛼) behaves 
differently in Huh7 cells (See Figure 4.15). Co-treatment of Sorafenib and Akti-2 is 
resulted in inhibition of enrichment terms, namely catalytic activity and binding (in 
particular protein binding, nucleic acid binding, chromatin binding). (See Figure 
Appendix B.5) 
 
For Mahlavu cells, combined treatment of Sorafenib and Akti-2 resulted in several GO 
molecular function enrichment terms, including binding, kinase activity, nucleotide 
binding, protein binding, enzyme regulator activity, hydrolyase activity and nucleic acid 
binding. Co-treatment of Sorafenib and Akti-2 is resulted in reduction of enrichment terms 
protein folding chaperone, ubiquitin-like protein ligase binding (parent term enzyme 
binding), damaged DNA binding (parent term nucleic acid binding), protein binding (child 
terms, including SMAD binding, phosphoprotein binding, protein N-terminus binding), 
catalytic activity (child term electron transfer activity), enzyme regulator activity, and 
enzyme binding (histone deacetylase and phosphatase bindings. The enriched Mahlavu 
terms were listed by a given threshold, FDR ≤ 0.05. In addition to Sor-Akti-2 treatment, 
single treatment of Sorafenib is resulted in enzyme binding, transferase activity, 
pyrophosphatase activity, catalytic activity, ATPase activity, and bindings of chromatin, 
enzyme, nucleic acid and proteins. In the context of the significant GO molecular function 
terms, single treatment with both inhibitors (Akti-2 and PI3ki-𝛼) behaves distinctively in 
Mahlavu cells (See Figure 4.16). Combined treatment of Sorafenib and PI3kiα is resulted 
in transferase activity, peptidase activity, nucleic acid binding, enzyme binding, 
transcription factor binding, and protein binding (chaperone binding, misfolded protein 
binding, etc.). Interestingly, kinase regulator activity is significantly enriched in 
combination of Sorafenib and PI3kiα network in Mahlavu cells; however, treatments with 
both single agents, (Sorafenib, PI3kiα) are not enriched with the specific, kinase regulator 
activity. Co-treatment of Sorafenib and PI3kiα is resulted in inducing enrichment terms 
such as translation initiation factor binding, chaperone binding (parent terms: protein 
binding), tRNA binding (nucleic acid binding), metal cluster binding (parent terminology 
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binding), ubiquitin-like protein ligase binding (parent term enzyme binding), ligase 
activity (parent term catalytic activity) (See Figure Appendix B.6). 
 
4.4.3     GO Cellular Component Analyses of Huh7 and Mahlavu Cell Lines 

Single treatment of Sorafenib is enriched in GO cellular compartment enrichments, namely 
replication fork and nuclear chromatin (parent term: chromosome) related to the DNA 
replication. Histone deacetylase-associated genes (first class of HDACs, i.e., HDAC2) are 
observed in nuclear chromatin functional cellular localization term. Although Sorafenib 
suppresses the activity of histone deacetylases, we have observed their corresponded 
enrichment term in tumorigenic cells (T. P. Liu, Hong, & Yang, 2017). Also, euchromatin, 
another enriched term, is related to mRNA synthesis. In addition to transcription, 
translation related terms are observed. The enriched Huh7 terms were listed by a given 
threshold, FDR ≤ 0.05. Huh7 cells co-treated with Sorafenib and Akti-2 demonstrates the 
enrichment terms in translation, nucleic acid metabolic process (child term 
methyltranseferase complex required for mRNA cap), and protein-containing complex 
(child terms Sm-like protein family complex, sno-RNA, spliceosomal complex). Cervello 
et al. highlighted that significantly enriched genes are belonging to transcription, protein 
biosynthesis and protein modification following Sorafenib treated hepatoma cells 
(Cervello et al., 2012), in the sense of correlating with our outcomes. Combined treatment 
of Sorafenib and PI3kiα is resulted in similar enrichment terms transcription and 
translation except transferase complex (child terms complexes of acetyltransferase and 
transferase complex, transferring phosphorus-containing groups), secretory granule (child 
term ficolin-1-rich granule). Herein, co-treatment with Sorafenib and PI3kiα suppresses 
the activity of histone deacetylases in hepatoma cells (See Figure Appendix B.7). 

Mahlavu cells co-treated with Sorafenib and Akti-2 is mainly enriched in localization of 
protein-containing complex (mediator complex, exoribonuclease complex, preribosome, 
peptidase and transferase complexes), chromosome (condensed chromosome, 
chromosomal region). Combination of Akti-2 and Sorafenib is resulted in reduced 
mitochondria related localizations such as mitochondrion and mitochondrial inner 
membrane and DNA replication related terminology compared to single treatment in 
Mahlavu cells. Single treatment of Sorafenib is enriched in nucleus-related GO cellular 
compartment enrichments, including DNA repair complex, nucleolus, chromosome, 
transcription factor complex, and chromatin. Sorafenib demonstrates a distinctive 
enrichment character than the co-treatment of Sorafenib with Akti-2 in the sense of 
protein-containing complexes. Sorafenib-treated Mahlavu cells are also enhanced the 
enrichments of cell junction and membrane protein complex. The network treated with 
only Sorafenib shows similar enrichment characteristic patterns with combined treatment 
of Sorafenib and PI3kiα. Co-treatment of Sorafenib and PI3kiα is enhanced in 
mitochondrion-related enriched terms compared to single treatment of PI3kiα. Whether 
Sorafenib and PI3kiα combination network is compared with the single treatments, more 
nucleus related terms are enriched in the combination drug treatment. The enrichment 
terms observed in the combination network is chromosome, DNA-packaging complex, 
nuclear body, and nucleus. The enriched Mahlavu terms were listed by a given threshold, 
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FDR ≤ 0.05. Interestingly, co-treatment with Sorafenib and PI3kiα suppresses the activity 
of histone deacetylases in Mahlavu cells, unlike single agent (Sorafenib) treatment. In 
Sorafenib treated Mahlavu cells, histone deacetylase molecules are detected in several 
localizations, including nuclear chromatin, ATPase complex, transcription factor complex 
(See Figure Appendix B.8). 
 
4.4.4     KEGG Pathway Analyses of Huh7 and Mahlavu Cell Lines 

 

Nucleotide metabolism, transcription, folding, sorting and degradation are the main 
enriched KEGG pathway terms in combined treatment of Sorafenib and PI3ki-𝛼 Huh7 
network. Interestingly, co-treatment of Sorafenib and PI3ki-𝛼 resulted in inhibition of 
enrichment terms, namely cell growth and death, DNA replication, translation, folding, 
sorting and degradation, proliferation, DNA repair, and transcription. Additionally, single 
agent treatment of Sorafenib is resulted in several KEGG enriched terminologies, 
including translation, transcription, replication and repair. Huh7 cells co-treated with 
Sorafenib and Akti-2 do not provoke any KEGG pathway enrichment terms, except 
translation related terms. Co-treatment of Sorafenib and Akti-2 resulted in inhibition of 
enrichment terms, including carbohydrate metabolism, folding, sorting and degradation, 
cell growth and death, and aging. As an observation, single treatment with both inhibitors 
(Akti-2 and PI3ki-𝛼) behaves dissimilarly in Huh7 cells. In the concept of the significant 
KEGG pathway enriched terms, both Sorafenib and Sorafenib-Akti-2 networks contain 
more common patterns for Huh7 cell line; conversely, Sorafenib-PI3ki-𝛼 network acts 
differently (See Appendix B.3). The enriched Huh7 terms were listed by a given threshold, 
FDR ≤ 0.05. Single treatment with Akti-2 agent and Akti-1-2 agent shows nearly the same 
functional term with their similar expression level. 
 
Combined treatment of Sorafenib and PI3kiα is resulted in inhibition of enrichment terms, 
including folding, sorting and degradation, cell cycle, nucleotide metabolism, DNA 
replication, and infectious viral disease in Mahlavu cells. Co-treatment of Sorafenib with 
PI3ki-𝛼 exhibited enhanced enrichment terms in cell growth and death category 
(specifically, cellular senescence and necroptosis), and transport category (in particular, 
RNA transport). Mahlavu cells co-treated with Sorafenib and PI3ki-𝛼 inhibit carbohydrate 
metabolism enrichment terms. Furthermore, Mahlavu cells co-treated with Sorafenib and 
Akti-2 do not provoke any KEGG pathway enrichment terms in the category of replication 
and repair; whereas, the network is resulted in translation, aging and carbohydrate 
metabolism. Co-treatment of Sorafenib and Akti-2 resulted in inhibition of enrichment 
terms including several signal transduction terms, transport and catabolism (sub-pathway 
term autophagy). Moreover, single treatment of Sorafenib is enriched in several KEGG 
pathways such as lipid and carbohydrate metabolisms, translation, transcription, folding, 
sorting and degradation. Single treatment with Akti-2 and PI3ki-𝛼 acts differently in 
Mahlavu cells. Common KEGG pathway enrichment terminologies between Sorafenib-
PI3ki-𝛼 treated Mahlavu and Huh7 cell lines are folding, sorting and degradation, 
transcription, and nucleotide metabolism. Translation and transcription are mutual KEGG 
pathway terms of co-treatment of Sorafenib and Akti-2 and single treatment of Sorafenib 
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in both hepatoma cell lines (See Appendix B.4). The enriched Mahlavu terms were listed 
by a given threshold, FDR ≤ 0.05.  
 
4.4.5     Reactome Pathway Analyses of Huh7 and Mahlavu Cell Lines 

Common Reactome pathway enrichment terms between Sorafenib-related three networks 
are translation, metabolism of amino acids, axon guidance, and disease (sub-pathway 
terms, including infectious disease, influenza infection, influenza life cycle, influenza 
viral RNA transcription and replication). Primarily, axon guidance is the off-target effect 
observed in Sorafenib-related three Huh7 networks. Blackadar et al. and Plummer et al. 
stated that viruses and bacteria are some of the infectious carcinogens that may cause 
severe situations (Blackadar, 2016; Plummer et al., 2016). El Dika and her colleagues 
mentioned that HBV, liver inflammation, diabetes, non-alcoholic steatohepatitis to 
cirrhosis is promoted by HIV (El Dika, Harding, & Abou-Alfa, 2017). In addition to the 
mutual terminology, Huh7 cells treated with Sorafenib agent is also enriched in Reactome 
pathway events mostly related to translational process, and metabolism of RNA. Cervello 
and his co-workers highlighted that significantly enriched genes are belonging to 
transcription, and protein biosynthesis-related mechanisms following Sorafenib treated 
hepatoma cells (Cervello et al., 2012), in the concept of correlating with our resulting 
outcomes.  

Combined treatment of Sorafenib and Akti-2 resulted in several Reactome pathway Huh7 
enrichment terms that are mainly categorized in translation and rRNA processing. The 
network treated with only Sorafenib demonstrates similar Reactome enrichment 
characteristic patterns with combined treatment of Sorafenib and Akti-2; whereas, 
combined treatment of Sorafenib and PI3kiα indicates a distinctive trend. Combined 
treatment of Sorafenib and PI3kiα resulted in several pathways, including HIV infection 
and HIV-related pathways, RNA metabolic process, transcription, RNA splicing, 
programmed cell death (child terms, apoptosis and regulation of apoptosis), diseases of 
signal transduction, transcription, and so on. These results are validated through the 
similar conclusions with the previous different enrichment ontologies (See Appendix B). 
FGFR2, one of the significant targets of Sorafenib (Morse et al., 2019), related pathways 
are detected in the co-treatment of Sorafenib and PI3ki-𝛼. The parent term name of all the 
sub-pathways is FGFR in disease.  

Common Reactome pathway enrichment terms between Sorafenib-related three Mahlavu 
networks are translation, metabolism of amino acids, programmed cell death, disease 
(virus-related sub-events and infectious disease), cellular responses to external stimuli, 
transcription-related processes, metabolism of RNA, immune system, axon guidance 
(parent term, developmental biology), cellular response to stress (including hypoxia-
related sub-events), transport, signal transduction (mainly, Notch and Wnt signaling), and 
so on. Several studies have shown HIF-related events and WNT pathways are associated 
with each other. Actually, HIF provokes abnormal signaling of WNT pathway, and that 
correlates a crosstalk between these cascades (Bogaerts et al., 2014; Khalaf et al., 2018). 
Additionally, immune system-related sub-pathway events and axon guidance are the off-
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target effect observed in Sorafenib-related three Mahlavu networks. Mahlavu cells treated 
with single agent, Sorafenib is enriched in Reactome pathway events mostly related to 
infectious disease (HIV infection, influenza infection), RNA metabolic process (mRNA 
splicing, mRNA capping, nonsense-mediated decay), energy-related metabolism events, 
namely pyruvate metabolism and citric acid (TCA) cycle, apart from the common 
Reactome pathway terminologies. Although Reactome gives more functional enrichment 
terms, the parent terminology of this database is correlated with the results of KEGG 
pathway. These outcomes are validated through the similar conclusions with the previous 
different enrichment ontologies (See Appendix B).  

Combined treatment of Sorafenib and Akti-2 resulted in several Reactome pathway 
enrichment terms that are mainly categorized in pyruvate metabolism and TCA cycle, 
immune system, transcription, Notch signaling, and programmed cell death (apoptosis) 
other than mutual enrichment terminologies. T cell receptor (TCR) signaling, B cell 
receptor (BCR) signaling, Interleukin-1 family signaling, CLEC7A (Dectin-1) signaling 
which might be associated with off-target effects in the co-treatment of Sorafenib with 
Akti-2. In the aspect of related signal transduction pathway, Huang et al. have emphasized 
the upregulation of Notch4 receptor in 68% of tumorigenic hepatoma cells (Huang, Li, 
Zheng, & Wei, 2019).  

Combined treatment of Sorafenib and PI3kiα resulted in several functional pathways, 
namely Wnt signaling, Notch signaling, signaling by Hedgehog, BCR signaling, signaling 
by nuclear receptors, and telomere maintenance, microRNA biogenesis, programmed cell 
death (apoptosis). BCR signaling, signaling by nuclear receptors (also including sub-
pathway term, Estrogen (ESR)-mediated signaling) are off-target effects upon treatments 
with both agents, Sorafenib and PI3kiα. For the context of related terminologies, Wnt 
signalling dysregulation activates several embryonic development pathways that lead to 
hepatic oncogenesis (Wands & Kim, 2014). The more Notch1 receptor is overexpressed, 
the more tumorigenic potential candidate hepatoma cells become (Ning, Wentworth, 
Chen, & Weber, 2009). Bogaerts et al. suggested that Notch signaling modulates several 
processes including apoptosis that is correlated with our results (Bogaerts et al., 2014). 
Corte and her colleagues mentioned that signaling by Hedgehog is crucial for both 
production of liver cancer cells and their progress by involving with its aberrantly 
activated form at the embryonic developmental stage of healthy liver cells which result in 
stem cell growth and promotion recruiting tumorigenic liver cells derivation (Della Corte 
et al., 2017). From the telomere perspective, Zeng et al. expressed that in order to retain 
the length of telomere, high levels of telomerase enzyme have been found in many cancers 
due to the short length form of telomere is detected in carcinogenesis (Nault, Ningarhari, 
Rebouissou, & Zucman-Rossi, 2019); as a result, both length is hazardous in the context 
of hepatocarcinoma (Zeng et al., 2017). 

 

 

 



76 
 

4.5  Most Significant Nodes in Sorafenib-Related Multiple Reconstructed  

 Hepatocarcinoma Networks 

 

To observe the importance of the nodes in Sorafenib-related multiple reconstructed 
networks, and compare similarities/differences between the networks, the most significant 
nodes based on the value of betweenness centrality are shown in Table 4.7.  In Table 4.7, 
top 10 ranking genes are listed in descending order according to centrality value 
(betweenness centrality) with their correspondent known cellular compartments and 
functions in Sorafenib-related multiple reconstructed networks for both hepatoma cell 
lines. Some of the genes can be detected multiple times in the reconstructed networks.   
As shown in Figure 4.29, top 10 Huh7 genes in a single treatment of Sorafenib are resulted 
in very essential parental term categories, namely metabolism of proteins and RNA, 
developmental biology, infectious disease, and metabolism events. Combined treatment 
of Sorafenib and Akti-2 displays a similar enrichment pattern with Sorafenib-treated 
reconstructed network. In addition to these enrichment terms, co-treatment of Sorafenib 
and Akti-2 network is resulted in signal transduction (specifically, mTOR signalling and 
mTORC1-mediated signalling), and specific stress-related processes, including cellular 
response to heat stress. Apart from the previous networks, the combination of Sorafenib 
and PI3kiα is enriched in metabolism of proteins (in particular, chaperonin-mediated 
protein folding). Huh7 cells treated with this combination demonstrate disparate 
biological characteristic signature than other Sorafenib-treated multiple Huh7 networks.  

mTOR, a Ser/Thr kinase, regulates several crucial cellular aspects, namely metabolism, 
cell growth, and aging. The atypical kinase is a part of two complexes, mTORC1 and 
mTORC2, respectively (Saxton & Sabatini, 2017). In the light of RPS6 and mTOR 
interaction reflecting from our inferences of Reactome pathway analysis, Calvisi et al. 
emphasized that RPS6 is a target of mTORC1 and resulting signals of the targets induce 
lipogenesis in HCC cells. Subsequently, the proteins involved in lipogenesis promotes 
mTOR-mediated cell growth in hepatoma cells (Calvisi et al., 2011). 

As shown in Figure 4.30, top 10 Mahlavu genes in a single treatment of Sorafenib are 
resulted in 164 Reactome pathway enrichment terms (within FDR ≤ 0.05). As its number 
implies, there are many enriched terms. Notch and Wnt signalling have more Reactome 
sub-pathway terminologies in this network. Apart from these crucial pathways, the top 10 
genes provoke enrichment terms such as diseases of signal transduction, MAPK family 
signalling cascades, immune system responses (including cytokine signalings (several 
sub-pathways, IL-1 signaling), and signallings of BCR and TCR). The immune system 
associated signaling pathways are the off-target effects.  

Wnt signalling, a well-known conserved cascade, regulates multiple fundamental 
processes, including cellular differentiation and proliferation, angiogenesis, and stages of 
human embryogenesis (Komiya & Habas, 2008). Further, Wands et al. suggested that Wnt 
signalling dysregulation activates several embryonic development pathways that lead to 
hepatic oncogenesis (Wands & Kim, 2014). Wnt/ß-catenin cascade is known for its role 
in liver cell function and development. Given the enriched terms of Reactome pathway in 
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Figure 4.30, Khalaf and his colleagues have hypothesized that hypoxia and its related term 
pathways (in particular, hypoxia-inducible factors) cause abnormal signalling of Wnt/ß-
catenin (Khalaf et al., 2018). As Bogaerts and her colleagues emphasized that, there is a 
crosstalk between Wnt/ß-catenin and hypoxia that has been validated by the experimental 
results (Bogaerts et al., 2014). 
 
Notch signalling, an evolutionary conserved cascade, modulates several essential 
processes, namely cellular differentiation and proliferation, morphogenesis, stem-cell 
maintenance, and apoptosis (Bogaerts et al., 2014). 4 distinct Notch receptors, 
specifically, Notch1, Notch2, Notch3 and Notch4, are involved in tumorigenesis in 
hepatoma cells (Huang et al., 2019). Of Reactome pathway enrichments associated with 
top ranking genes in a single treatment with Sorafenib, Notch1 and Notch4 involving 
signalling sub-pathways are obtained along with the parent pathway, Notch signalling. 
Huang and his colleagues have emphasized the upregulation of Notch4 receptor in 68% 
of tumorigenic hepatoma cells (Huang et al., 2019). Additionally, Ning and his co-workers 
suggested that the more Notch1 receptor is overexpressed, the more tumorigenic potential 
candidate hepatoma cells become (Ning et al., 2009). 
 
As shown in Figure 4.31, top 10 Mahlavu genes in a combined treatment of Sorafenib and 
Akti-2 are resulted in 79 Reactome pathway enrichment terms (within FDR ≤ 0.05). The 
functional enrichment terms are surprisingly mainly categorized in VEGF signalling, one 
of the notable targets of Sorafenib, ErbB signalling pathway (via EGFR and ErbB-2) and 
immune response. To make it clear, VEGFR2-related term is a Reactome sub-pathway 
that belongs to VEGF signalling. As Gampel and her colleagues suggested that 
KDR/FLK-1 is a gene which encodes VEGFR2 protein (Gampel et al., 2006). At this 
point, the results of the overlapping id of proteins indicate that heatshock family proteins 
(in particular, HSP90 class) and mTOR is a member of the subterm which substantiate no 
targeted gene and VEGF related protein product is observed.  
 
Vascular endothelial growth factor, VEGF, is a metabolically crucial protein that is 
indispensable for the processes of both vascularization and angiogenesis. Of note, 
Angiogenesis is one of the acquired characteristic abilities of the cancerous cells, briefly, 
a hallmark of cancer (Hanahan & Weinberg, 2011). There are 5 types of VEGF ligands, 
namely VEGFA-D and placental growth factor. VEGFR, a Tyrosine kinase receptor, is 
specific for its ligand and 3 major kinds of these receptors are VEGFR1-3 (C. K. Lin et 
al., 2019). In hepatoma cells, the upregulated levels of VEGF expression is detected and 
very high levels of VEGF is marked at metastatic stage (Matsui et al., 2015). Concisely, 
upon stimulation by ligand and its specific VEGF receptor, the process of phosphorylation 
is occurred. As a result, vascular endothelial survival, proliferation and migration are 
constitutively increased (Miettinen, Rikala, Rys, Lasota, & Wang, 2012). At this level, the 
role of Sorafenib is to block the potential activity of VEGFR2 autophosphorylation which 
is intervened by VEGF ligands (Wilhelm et al., 2008).  
Interestingly, top 10 Mahlavu genes in a combined treatment of Sorafenib and PI3Ki-α 
are not resulted in any pathway enrichment terms within our determined FDR cutoff (FDR 
≤ 0.05).  



 
 

Fi
gu

re
 4

.2
9:

 E
nr

ic
he

d 
te

rm
s 

of
 to

p 
ra

nk
in

g 
ge

ne
s 

in
 S

or
af

en
ib

-re
la

te
d 

m
ul

tip
le

 H
uh

7 
ne

tw
or

ks
 a

re
 li

st
ed

 w
ith

 a
 p

re
vi

ou
sly

 
gi

ve
n 

th
re

sh
ol

d 
FD

R
 ≤

 0
.0

5.
 T

he
re

af
te

r, 
ne

ga
tiv

e 
lo

ga
rit

hm
 b

as
e 

10
 w

as
 a

pp
lie

d 
to

 th
e 

p-
va

lu
es

 o
f t

he
 to

p 
ra

nk
in

g 
ge

ne
s 

in
 

he
pa

to
m

a 
ce

lls
. T

he
 x

 ax
is

 is
 a

ss
ig

ne
d 

to
 th

e l
og

ar
ith

m
ic

al
ly

 ad
ju

ste
d 

p-
va

lu
es

. T
he

 co
lo

r i
nt

en
si

ty
, b

as
ed

 o
n 

ad
ju

ste
d 

p-
va

lu
es

, 
sh

ow
s t

he
 le

ve
l o

f s
ig

ni
fic

an
cy

 o
f t

he
 co

rr
es

po
nd

in
g 

fu
nc

tio
na

l e
nr

ic
hm

en
ts

. G
en

e c
ou

nt
 re

fe
rs

 to
 th

e n
um

be
r o

f g
en

es
 in

vo
lv

ed
 

in
 th

e 
co

rre
sp

on
di

ng
 R

ea
ct

om
e 

pa
th

w
ay

 e
nr

ic
hm

en
t c

at
eg

or
y.

 T
he

 to
ta

l n
um

be
r o

f e
nr

ic
he

d 
te

rm
s i

s 3
5.

 
 

78 

 
   

 



 
 

Fi
gu

re
 4

.3
0:

 E
nr

ic
he

d 
te

rm
s o

f t
op

 ra
nk

in
g 

ge
ne

s i
n 

So
ra

fe
ni

b-
tre

at
ed

 M
ah

la
vu

 n
et

w
or

k 
ar

e 
lis

te
d 

w
ith

 a
 p

re
vi

ou
sl

y 
gi

ve
n 

th
re

sh
ol

d 
FD

R
 ≤

 0
.0

5.
 N

ex
t, 

ne
ga

tiv
e 

lo
ga

rit
hm

 b
as

e 
10

 w
as

 a
pp

lie
d 

to
 th

e 
p-

va
lu

es
 o

f t
he

 to
p 

ra
nk

in
g 

ge
ne

s 
in

 h
ep

at
om

a 
ce

lls
. T

he
 y

 a
xi

s 
is

 a
ss

ig
ne

d 
to

 th
e 

lo
ga

rit
hm

ic
al

ly
 a

dj
us

te
d 

p-
va

lu
es

. T
he

 
co

lo
r i

nt
en

si
ty

, b
as

ed
 o

n 
ad

ju
st

ed
 p

-v
al

ue
s, 

de
pi

ct
s t

he
 le

ve
l o

f s
ig

ni
fic

an
cy

 o
f t

he
 c

or
re

sp
on

di
ng

 fu
nc

tio
na

l e
nr

ic
hm

en
ts

. C
ou

nt
of

G
en

es
 re

fe
rs

 to
 th

e 
nu

m
be

r o
f 

ge
ne

s i
nv

ol
ve

d 
in

 th
e 

co
rr

es
po

nd
in

g 
R

ea
ct

om
e 

pa
th

w
ay

 e
nr

ic
hm

en
t c

at
eg

or
y.

 T
he

 to
ta

l n
um

be
r o

f e
nr

ic
he

d 
te

rm
s i

s 1
64

. 
 

 
  

79 



 
 

Fi
gu

re
 4

.3
1:

 E
nr

ic
he

d 
te

rm
s 

of
 to

p 
ra

nk
in

g 
ge

ne
s 

in
 S

or
af

en
ib

-A
kt

i2
 tr

ea
te

d 
M

ah
la

vu
 n

et
w

or
k 

ar
e 

lis
te

d 
w

ith
 a

 p
re

vi
ou

sl
y 

gi
ve

n 
th

re
sh

ol
d 

FD
R 

≤ 
0.

05
. 

A
fte

rw
ar

ds
, n

eg
at

iv
e l

og
ar

ith
m

 b
as

e 1
0 

w
as

 ap
pl

ie
d 

to
 th

e p
-v

al
ue

s o
f t

he
 to

p 
ra

nk
in

g 
ge

ne
s i

n 
he

pa
to

m
a c

el
ls

. T
he

 y
 ax

is
 is

 as
si

gn
ed

 to
 th

e l
og

ar
ith

m
ic

al
ly

 
ad

ju
st

ed
 p

-v
al

ue
s. 

Th
e 

co
lo

r i
nt

en
si

ty
, b

as
ed

 o
n 

ad
ju

st
ed

 p
-v

al
ue

s, 
de

pi
ct

s 
th

e 
le

ve
l o

f s
ig

ni
fic

an
cy

 o
f t

he
 c

or
re

sp
on

di
ng

 fu
nc

tio
na

l e
nr

ic
hm

en
ts

. G
en

e 
co

un
t r

ef
er

s t
o 

th
e 

nu
m

be
r o

f g
en

es
 in

vo
lv

ed
 in

 th
e 

co
rr

es
po

nd
in

g 
R

ea
ct

om
e 

pa
th

w
ay

 e
nr

ic
hm

en
t c

at
eg

or
y.

 T
he

 to
ta

l n
um

be
r o

f e
nr

ic
he

d 
te

rm
s i

s 7
9.

  

 

 

 

80 



81 
 

      Name        Centrality        Location                                                          Function 

 
 
 

Sorafenib treated 
Huh7 network 

 
 

RPL10A      0.453268         Unknown                                       Large ribosomal subunit (60S) component 
ASF1B         0.371925        Nucleus                                         Histone deposition, exchange, removal 
EIF5B          0.344495        Cytoplasm                                     Translation initiation 
FBL              0.329647        Nucleolus                                      rRNA processing through methylation 
RPL8            0.287876       Cytoplasm                                     Large ribosomal subunit (60S) component 
HSP90AB1  0.224688        Cytoplasm, Melanosome              Cell cycle control, signal transduction 
YEATS4      0.214638         Nucleus                                        Transcriptional activation by histone acetylation 
RPL37          0.198145        Unknown                                      Binding to 23S rRNA 
MCTS1        0.196373         Cytoplasm                                    Translation initiation 
RPS4X         0.165124        Cytoplasm                                    Small ribosomal subunit (40S) component 

 
 
 

Sorafenib treated 
Mahlavu network 

 

PCNA           0.149277       Nucleus                                         DNA replication 
MED31         0.100637       Nucleus                                         Mediator complex component 
PFDN5          0.093512      Nucleus, Cytoplasm                      Chaperonin-mediated protein folding 
UBA52          0.076544       Ubiquitin: Cytoplasm, nucleus      Chromatin structure maintenance 
HDAC1         0.071903       Nucleus                                         Histone deacetylation 
SUMO1         0.069055       Nucleus, cell membrane              Nuclear transport, DNA replication and repair 
RPL3             0.060503       Nucleolus, cytoplasm                   Large ribosomal subunit (60S) component 
PSMD2         0.060451       Unknown                                      Cell cycle progression, apoptosis, DNA repair 
HSP90B1      0.054777       ER lumen, melanosome                Processing and secreted proteins transportation 
ATP6V1B2   0.050986       Endomembrane system                Acidifying intracellular eukaryotic organelles 

 
 
 

Sorafenib-Akti2 
treated Huh7 

network 

RPS6             0.186896      Unknown                                      Cell growth control 
PSMD4         0.171179       Unknown                                       Maintenance of homeostasis  
HSP90AB1   0.152654       Cytoplasm, Melanosome              Cell cycle control, signal transduction 
NAT10          0.106472       Nucleolus, Midbody                       Acetylation of histone and tRNA  
RPS24           0.103909      Unknown                                       pre-rRNA processing and 40S maturation 
PFDN2          0.093783       Cytoplasm, Mitochondrion            Chaperonin-mediated protein folding 
RPL13A        0.086199       Cytoplasm                                     Repression of inflammatory genes 
RPS14           0.084463      Unknown                                       Small ribosomal subunit (40S) component 
RPF2             0.083967       Nucleolus                                     Large ribosomal subunit (60S) assembly  
MTOR           0.080149       Lysosome, Cytoplasm                  Cellular metabolism regulator, growth, survival 

 
 
 

Sorafenib-Akti2 
treated Mahlavu 

network 

PCNA           0.115123        Nucleus                                       DNA replication 
RPLP0          0.099738        Nucleus, Cytoplasm                    Large ribosomal subunit (60S) component  
HSP90AB1  0.097462         Cytoplasm, Melanosome            Cell cycle control, signal transduction 
MTOR          0.095784         Lysosome, Cytoplasm                Cellular metabolism regulator, growth, survival 
RPL8            0.086992        Cytoplasm                                   Large ribosomal subunit (60S) component 
HSP90AA1  0.081894         Cell Membrane, Melanosome     Cell cycle control, signal transduction 
CCNB1         0.079462        Nucleus,Cytoplasm,centrosome Cell cycle control at G2/M transition 
MED31         0.077753        Nucleus                                       Mediator complex component  
RUVBL2      0.072295         Nucleoplasm, Cytoplasm            ATPase and DNA helicase activities  
UBA52         0.068779         Ubiquitin: Cytoplasm, nucleus    Chromatin structure maintenance 

 
 
 

Sorafenib-PI3Kia 
treated Huh7 

network 
 

POLR2C       0.254899        Nucleus                                      Eukaryotic mRNA synthesis 
RUVBL2      0.252597         Nucleoplasm, Cytoplasm            ATPase and DNA helicase activities  
TUFM           0.237713        Mitochondrion                             Protein translation in mitochondria 
CAD              0.231285        Nucleus, Cytoplasm                   Nucleotide metabolism  
HSP90AB1   0.201812        Cytoplasm, cell membrane         Cell cycle control, signal transduction 
CCT6A         0.195366        Cytoplasm                                   Folding of Actin and Tubulin  
PSMD4         0.173453        Unknown                                    Maintenance of homeostasis 
SUMO1        0.159236        Nucleus, Cell Membrane            Nuclear transport, DNA replication and repair  
POLR1B       0.145165        Nucleolus                                   Transcription of rRNA 
CCT3            0.130216        Cytoplasm                                  Telomere maintenance  

 
 
 

Sorafenib-PI3Kia 
treated Mahlavu 

network 
 

PCNA           0.102494        Nucleus                                       DNA replication 
NARS           0.090176        Cytoplasm                                   tRNA aminoacylation 
ASF1A          0.085435        Nucleus                                       Histone deposition, exchange, removal 
POLR2B       0.071666        Nucleus                                       mRNA and many non-coding RNAs synthesis 
RPLP0          0.063374        Nucleus, Cytoplasm                    Large ribosomal subunit (60S) component 
HSP90AB1   0.060987        Cytoplasm, Nucleus                    Cell cycle control, signal transduction 
ABCE1         0.058507        Cytoplasm, Mitochondrion           Block activity of Ribonuclease L. 
USP14          0.048995        Cytoplasm, Cell membrane         Deubiquitination 
SUMO1        0.048832         Cell membrane, nucleus             Nuclear transport, DNA replication and repair  
TADA2A        0.046475        Nucleus, chromosome                Chromatin remodelling 

 
  

Table 4.7: Top ranking genes in Sorafenib-related multiple networks of both cell line with their corresponding 
subcellular localizations, functions and centrality values. Centrality refers to the betweenness centrality. 
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CHAPTER 5 

 

45. CONCLUSION 

5.1     Concluding Remarks 

In this thesis study, we focused on elucidating the hidden significant molecular targets or 
modulators in hepatocarcinoma networks which were treated with multiple molecular 
targeted agents by inferring the dysregulation of the Interactome. In other words, we 
revealed the mechanism of action of molecular targeted therapeutic agents in the context 
of multiple different hepatoma networks beyond the list of genes. Toward this purpose, 
we reconstructed 18 hepatocarcinoma networks treated with distinct molecular targeted 
agents to develop a further understanding of the gene perturbation level and compared the 
significantly enriched biological responses predominantly in the aspects of cellular state.  

Acquired resistance to Sorafenib in hepatocarcinoma, the parallel alternative 
PI3K/AKT/mTOR signaling pathway, its high alteration rate (~51%), and the unchanged 
survival ratio of hepatoma leads to designing a molecular targeted therapy in which 
targeted therapeutic agents with the combination of well-known multi-kinase inhibitor 
Sorafenib are imperatively needed. For this purpose, small molecular agents which were 
targeting the cascade of PI3K/AKT/mTOR, namely pan-PI3K inhibitors, isoform-specific 
PI3K inhibitor, and isoform-specific or non-specific AKT inhibitors, and mTOR inhibitor 
were analyzed in two distinct hepatoma cell lines that have a differential PI3K/AKT 
cascade behavior. Huh7 cell line has normoactive pathway. On the other hand, due to 
tumor suppressor PTEN deletion, Mahlavu cell line has a hyperactive pathway. In addition 
to the small compound inhibitors, Sorafenib targets multiple kinases. In this study, 
Raf/MEK/ERK pathway was targeted by Sorafenib (primarily inhibiting Raf kinase), and 
VEGFR and PDGFR were also inhibited by Sorafenib that targeting cellular growth, 
proliferation and angiogenesis (Figure 3.2). From pharmacology-based targeted therapy 
perspective, it is indispensable to understand the underlying mechanism how Sorafenib 
and PI3K/AKT/mTOR pathway inhibitors act at signaling level, and further increasing the 
efficiency of Sorafenib by combined treatments and also to elucidate the off-target effects 
of multiple molecular targeted agents or combination of them.   

We used DeMAND network modelling algorithm developed by Califano Lab to compare 
GEPs (from CanSyL dataset) and assesses the alteration in the individual interactions from 
STRING (Interactome). DeMAND searches for the mechanism of action of the agents in 
a network context as an alternative to differential gene expression analysis. It integrates 
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the possible interactions between each entity using a reference interactome to obtain an 
analysis beyond a gene list. The required steps to have a final optimized reconstructed 
network and the needed additional filtering were detailed in the pipeline (Figure 3.1). 
Experimentally validated PPI obtained from STRING v9.1, although it is a non-context 
specific network, are used to clearly observe the signaling pathways that are involved in 
HCC. By choosing STRING interactome, both direct and indirect targets in the signaling 
pathways can be easily detected. Thereafter, we reconstructed 18 molecular targeted 
specific networks from each GEP. Each gene and interaction within these networks have 
a significant value that corresponds how strongly these genes are affected from the 
chemical network perturbation. Each distinct reconstructed network had a different 
number of genes and interactions (Tables 4.1 and 4.2). In Table 4.1, first two columns 
(except the name of the targeted agents) that indicate the number of reconstructed nodes 
and edges are the solely results of DeMAND. The average number of nodes and edges are 
about 1300 and 1900. The vast amount of the calculated KLD.p values is equal to 1; hence, 
we set specific thresholds to eliminate the least significant and insignificant results in the 
reconstructed networks. In Table 4.2, undirected reconstructed networks with the 
corresponding filtered numbers of nodes and edges are specified. CTNNB1 and GSK3B 
which are famous hepatoma mutations are detected in some of the reconstructed HCC 
networks (e.g., Figures 4.6 and 4.7). CTNNB1 is detected in 26% HCC tumors and both 
mutations are associated with Wnt signalling cascade. 
 
To find out whether our reconstructed networks are specific to the perturbations of drugs, 
small molecule inhibitors or their combination, the literature and obtained targets of 
molecular targeted therapeutic agents in our hepatocarcinoma networks are examined 
individually (Tables 4.3 and 4.4). Obtained targets validate on-target and off-target effects 
in the reconstructed networks. MCM proteins are determined as indirect targets. Off-target 
effects are obtained from ATM and ATR (regulators of damage of DNA) through MCM 
complex subunits which reveal the subunit-related mechanism of action, as well. Both 
ATM and ATR genes are associated with p53 signaling pathway.  
Additionally, since our molecular targeted agents were inhibitors, we did not expect to 
detect their direct targets in the reconstructed networks. For this reason, we also checked 
the first degree neighbors of the nodes to check the presence of the targets. Most of the 
primary targets were not observed in the networks except only one target in LY294002 
agent treated Mahlavu network, PI3Ki-α treated networks of both cell lines, Wortmannin 
agent treated Huh7 network, Rapamycin treated Huh7 network. Both PI3Ki-α and 
Rapamycin are used at very low doses; such that, whether the doses are increased (for 
instance, up to the dose of Sorafenib), we will probably not observe the direct targets in 
the reconstructed networks. Another perspective is that, although PI3Ki-α is used at very 
low doses (0.1 µM), it demonstrates an effective behavior as our conclusion. Its 
combination treatment with multikinase inhibitor Sorafenib works more effectively, 
suggesting that more potential promising targeted agent treatment in hepatocarcinoma. 
DeMAND reveals not only mechanism of action but drug similarity, as well. Co-treatment 
of Sorafenib and Akti-2 displays similar enrichment patterns with Sorafenib-treated 
reconstructed network for Huh7 cell line (e.g., Figure 4.29). RPS6 is a major downstream 
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target of mTORC1 in hepatoma. For the suggested mechanism of action, AKT-mTORC1-
RPS6 is detected which promotes lipogenesis. 
 
After performing overlapping genes analyses, to specifically determine common 
characteristics between Sorafenib-related multiple networks and to identify MoA of 
molecular targeted therapeutic agents in both HCC cells, we figured out that protein 
folding through chaperone-mediated activity is interfered with our well-known 
multikinase inhibitor, Sorafenib in Huh7 cell line (Figures 4.19 - 4.23). We listed the 
common genes in Sorafenib-related multiple reconstructed networks by DeMAND (Table 
4.5). As a literature evidenced support of this association between Sorafenib and protein 
folding through chaperone-mediated activity revealed by DeMAND, Sauzay and her 
colleagues deduced a closer inference in our context (Sauzay et al., 2018).  
 
In the aspect of overlapping genes analyses for Mahlavu cell line, we deciphered that the 
regulation of autophagy (through cellular responses to external stimuli) is potentially 
interfered with our molecular targeted agent, Sorafenib (Figures 4.24 - 4.28). It is based 
on DeMAND’s elucidating discovery for the first time in Mahlavu cells. Yazdani et al. 
and Dominguez et al. suggested the connection between Sorafenib and regulation of 
autophagy with a similar resulting outcome in hepatocarcinoma cell lines (but not 
including Mahlavu cells) (Prieto-Domínguez et al., 2016; Yazdani et al., 2019). Mutual 
genes in Sorafenib-related multiple reconstructed networks by DeMAND are listed (Table 
4.6).  
 
Another overlapping genes analyses for Mahlavu cell line, we suggested that processes of 
ATPase associated events involved in transport activity are potentially intensified with 
our multikinase inhibitor agent, Sorafenib (Figures 4.24 - 4.28). As a literature support of 
this relation between Sorafenib and processes of ATPase associated events involved in 
transport activity revealed by DeMAND, Jiang et al., emphasized that this pump’s 
aberrant activity in several cancers. Sodium-potassium pump inclusion is constitutively 
increasing in many cancers (Jiang et al., 2018). It is again based on the elucidating 
potential discovery of DeMAND for the first time in Mahlavu cells and needs more 
considerable supporting information from HCC clinical studies. HSP90AB1 (heat-shock 
protein) and ATP6V1A (V-type ATPase) are the common overlapping genes detected in 
both hepatoma cell lines. HSP90AB1 is a molecular chaperone protein.  
 
5.2     Future Perspectives 

For targeted therapy approach, we may combine multiple different agents together. In 
this study, we mostly analyzed PI3Ki-α and Akti-2 inhibitors, combination with 
Sorafenib. Whether we add one more agent, associated with mTOR; three agents in 
combined form will be together for more highly efficient molecular targeted therapy. 
From our inferences, mTOR or related TOR complex proteins, are involved in several 
different enrichment categorical terms more often than any other target. Therefore, new 
agent might be dual PI3K/mTOR inhibitors or mTOR inhibitor agent.  
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Recent studies have demonstrated that histone deacetylase promote hepatocarcinoma by 
mis-acetylation of histone proteins  (Freese et al., 2019; Y. Li et al., 2019) in Huh7 cells. 
Such that, we may apply to use histone deacetylase inhibitors (HDACi) for our next step 
(based on our significant results of associated with histone deacetylases). In other words, 
epigenomics data may be integrated into our future network studies in HCC.  
 
Additionally, microRNA biogenesis, our significantly found functional terminology in 
co-treatment of Sorafenib and PI3kiα network, Bai et al. have highlighted that 
microRNAs are included in hepatocarcinogenesis promotion in a very recent study (Bai, 
Gao, Du, Yang, & Zhang, 2019). We may consider about using microRNA inhibitors to 
obtain the outcomes of targeted therapy elaborately and comprehensive understanding. 
 
For more extensive research, we may consider integrating the mutation data related to 
hepatocarcinoma associated with our work and subsequently reveal the mechanism of 
action via network-based molecular targeted therapeutic agent transcriptomics.  
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APPENDIX B 

Functional Enrichment Analyses of the Networks 
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Figure B.2: GO biological process no redundant overrepresentation enrichment analysis of Huh7 cell line was performed by WebGestaltR package. 
Heatmap demonstrates enriched biological process terms for each specific reconstructed Huh7 network. Functional enrichment terms were listed by a 
given threshold, FDR ≤ 0.01. Next, we took the negative logarithm base 10 of FDR values of significantly enriched terms. The total number of enriched 
terms in this heatmap is 146. 
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Figure B.3: KEGG pathway enrichment analysis of Huh7 cells was performed by WebGestaltR. 
Heatmap demonstrates enriched KEGG pathway terms for each specific reconstructed Huh7 
network. Functional enrichment terms were listed by a given threshold, FDR ≤ 0.05. The total 
number of enriched terms in this heatmap is 41. Additionally, we took the negative logarithm 
base 10 of FDR values of significantly enriched terms. The color intensity, based on adjusted 
logarithmic scale of FDR values, shows the level of significancy of the corresponding 
functional enrichments. Unless there is any enrichment score for the corresponding specific 
category of KEGG pathway enrichment terms in the network, white color is depicted for this 
purpose in the heatmap. 
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Figure B.4: Heatmap demonstrates enriched KEGG pathway terms for each specific reconstructed 
Mahlavu network. Functional enrichment terms were listed by a given threshold, FDR ≤ 0.05. The 
total number of enriched terms in this heatmap is 75. Moreover, we took the negative logarithm base 
10 of FDR values of significantly enriched terms. The color intensity, based on adjusted logarithmic 
scale of FDR values, shows the level of significancy of the corresponding functional enrichments.  
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Figure B.5: GO molecular function no redundant ORA of Huh7 cells was performed by WebGestaltR. 
Heatmap demonstrates enriched molecular function terms for each specific reconstructed Huh7 
network. Functional enrichment terms were listed by a given threshold, FDR ≤ 0.05. The total number 
of enriched terms in this heatmap is 55. Afterwards, we took the negative logarithm base 10 of FDR 
values of significantly enriched terms. The color intensity, based on adjusted logarithmic scale of FDR 
values, shows the level of significancy of the corresponding functional enrichments. Unless there is any 
enrichment score for the corresponding specific category of molecular function enrichment terms in the 
network, white color is depicted for this purpose in the heatmap. 
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Figure B.6: GO molecular function no redundant ORA of Mahlavu cells was performed by WebGestaltR. Heatmap 
demonstrates enriched molecular function terms for each specific reconstructed Mahlavu network. Functional 
enrichment terms were listed by a given threshold, FDR ≤ 0.05. The total number of enriched terms in this heatmap is 
64. Following that, we took the negative logarithm base 10 of FDR values of significantly enriched terms. The color 
intensity, based on adjusted logarithmic scale of FDR values, shows the level of significancy of the corresponding 
functional enrichments. Unless there is any enrichment score for the corresponding specific category of molecular 
function enrichment terms in the network, white color is depicted for this purpose in the heatmap. 
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Figure B.7: GO cellular component no redundant ORA of Huh7 cells was performed by WebGestaltR. 
Heatmap demonstrates enriched cellular component terms for each specific reconstructed Huh7 network. 
Functional enrichment terms were listed by a given threshold, FDR ≤ 0.05. The total number of enriched 
terms in this heatmap is 50. Further, we took the negative logarithm base 10 of FDR values of 
significantly enriched terms. The color intensity, based on adjusted logarithmic scale of FDR values, 
shows the level of significancy of the corresponding functional enrichments. Unless there is any 
enrichment score for the corresponding specific category of cellular component enrichment terms in the 
network, white color is depicted for this purpose in the heatmap. 
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Figure B.8: GO cellular component no redundant ORA of Mahlavu cells was performed by WebGestaltR. Heatmap 
demonstrates enriched cellular component terms for each specific reconstructed Mahlavu network. Functional 
enrichment terms were listed by a given threshold, FDR ≤ 0.05. The total number of enriched terms in this heatmap is 
47. Furthermore, we took the negative logarithm base 10 of FDR values of significantly enriched terms. The color 
intensity, based on adjusted logarithmic scale of FDR values, shows the level of significancy of the corresponding 
functional enrichments. Unless there is any enrichment score for the corresponding specific category of cellular 
component enrichment terms in the network, white color is depicted for this purpose in the heatmap. 




