
SCHEDULABILITY ANALYSIS OF REAL-TIME MULTI-FRAME
CO-SIMULATIONS ON MULTI-CORE PLATFORMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MUHAMMAD UZAIR AHSAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

COMPUTER ENGINEERING

JANUARY 2020

Approval of the thesis:

SCHEDULABILITY ANALYSIS OF REAL-TIME MULTI-FRAME
CO-SIMULATIONS ON MULTI-CORE PLATFORMS

submitted by MUHAMMAD UZAIR AHSAN in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy in Computer Engineering Depart-
ment, Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün
Head of Department, Computer Engineering

Prof. Dr. Halit Oğuztüzün
Supervisor, Computer Engineering, METU

Examining Committee Members:

Prof. Dr. Ali H. Doğru
Computer Engineering, METU

Prof. Dr. Halit Oğuztüzün
Computer Engineering, METU

Prof. Dr. Ahmet Coşar
Computer Engineering, THK University

Prof. Dr. Ece Güran Schmidt
Electrical and Electronics Engineering, METU

Assoc. Prof. Dr. Kayhan İmre
Computer Engineering, Hacettepe University

Date: 17/01/2020

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Muhammad Uzair Ahsan

Signature :

iv

ABSTRACT

SCHEDULABILITY ANALYSIS OF REAL-TIME MULTI-FRAME
CO-SIMULATIONS ON MULTI-CORE PLATFORMS

Ahsan, Muhammad Uzair
Ph.D., Department of Computer Engineering

Supervisor: Prof. Dr. Halit Oğuztüzün

January 2020, 110 pages

For real-time simulations, the fidelity of simulation does not depend only on the func-

tional accuracy of simulation but also on its timeliness. It is helpful for developers if

we can analyze and verify that a simulation will always meet its timing requirements

while keeping an acceptable level of accuracy. Abstracting the simulated processes

simply as software tasks allows us to transform the problem of verifying timeliness

into a schedulability analysis problem where tasks are checked if they are schedulable

under real-time constraints or not. In this paper we extended a timed automaton based

framework due to Fersman and Yi for schedulability analysis of real-time systems,

for the special case of real-time multi-frame co-simulations. We found that there

are some special requirements posed by multi-frame simulations which necessitate

changes and improvements in the existing framework. We made the required theo-

retical extensions to the framework and then implemented our extended framework

in UPPAAL, a tool for modeling, simulation and verification of real-time systems

modeled as timed-automata, and tested on an example.

v

Keywords: Schedulability Analysis, Real-time Simulations, Co-simulations, Task

Automaton , Timed Automaton

vi

ÖZ

ÇOK-ÇEKİRDEKLİ PLATFORMLARDA GERÇEK ZAMANLI
ÇOK-ÇERÇEVELİ EŞ-BENZETİM İÇİN ÇİZELGELENEBİLİRLİK

ÇÖZÜMLEMESİ

Ahsan, Muhammad Uzair
Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Halit Oğuztüzün

Ocak 2020 , 110 sayfa

Gerçek-zamanlı benzetimlerde, benzetimin doğruluğu sadece işlevsel doğruluğa de-

ğil benzetim adımlarının zamanında tamamlanmasına da bağlıdır. Benzetimin za-

manlama gereksinimlerini, kabul edilebilir doğruluk seviyesini tutturarak, her du-

rumda karşıladığını, bir çözümleme işlemi sonucunda göstermek, geliştiricilere yar-

dımcı olacaktır. Bu çalışmada benzetilen süreçler yazılım görevleri olarak soyut-

lanmıştır. Bu bizim gerçek-zaman kısıtlarını sağlama problemini çizelgelenebilirlik

problemine dönüştürmemizi sağlar. Bu problem, görevlerin gerçek-zaman kısıtları

altında çizelgelenebilir olup olmadığına karar verilmesini içerir. Bu çalışmada, Fers-

man ve Yi tarafından ortaya konulmuş olan, zaman-devingeni tabanlı bir çizelgele-

nebilirlik çerçevesini, çok çerçeveli eş-benzetimler için genişletmekteyiz. Bu çalış-

mada, çok-çerçeveli benzetimlere özel gereksinimleri karşılamak üzere mevcut çer-

çevede genişletmeler yapıldı. Gereken kuramsal genişletmeler yapıldıktan sonra yeni

çerçeve; zaman-devingeni olarak modellenen gerçek-zamanlı sistemler için bir mo-

delleme, benzetim ve doğrulama aracı olan UPPAAL kullanılarak gerçekleştirildi ve

vii

bir örnek üzerinde sınandı.

Anahtar Kelimeler: Servis Odaklı Mimari, Koreografi Modeli, Koreografi Dili, De-

ğişkenlik Yönetemi, Model Tabanlı, Yazılım Üretim Bantları

viii

To my family and people who are reading this page

ix

ACKNOWLEDGMENTS

SI would like to thank my supervisor Professor Dr. Halit Oğuztüzün for his continu-

ous support, encouragement and guidance. It was a great pleasure and honor to work

with him for all these years. This work would not have been possible without his

mentoring, experience and knowledge.

There are numerous other people who helped me in one way or the other during my

studies in METU. First of all my teachers at METU who enriched my knowledge

greatly and which include wonderful people like Dr. Ayşenur Birtürk, Assoc. Prof.

Dr. Murat Manguoğlu, Prof. Dr. Ismail Hakkı Toroslu, Prof. Dr. Ahmet Coşar, Prof.

Dr. Sibel Tari and Dr. Umut Durak to name a few. I would especially like to thank

Dr. Sibel Tari whose encouragement and praise were a source of pride and self-belief

that helped me cross the line eventually. I am also thankful to Assoc. Prof. Dr. İlkay

Yavrucuk from the Department of Aerospace Engineering, METU for providing the

technical details about the helicopter simulation used as a case study in this thesis.

I would also thank my lab mates and all other Turkish and Pakistani friends whose

friendship, love and help made my stay very comfortable and pleasant.

I would also like to express my gratitude to Government of Pakistan who provided

me the opportunity to study in Middle East Technical University, one of the leading

university in the region.

Me and my family are indebted to the Turkish nation in general and our Turk neigh-

bours at Öveçler Mahallesi in particular whose friendly attitude and love for Pak-

istanis was a source of unlimited joy and happiness. The love that me, my wife and

children experienced here has become an indelible part of our memory which we shall

cherish all our lives. Thank you all.

Lastly, I would like to thank my family for supporting and believing in me. It would

have been near impossible to survive this long journey without their help and support.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xvii

CHAPTERS

1 INTRODUCTION . 1

1.1 Real-time Multi-frame Co-Simulation 4

1.2 Timed Automaton and Task Automaton 8

1.2.1 Timed Automata Theory . 8

1.2.2 Task Automaton . 10

1.3 Schedulability Analysis Problem and the Proposed Approach for So-
lution . 11

1.4 Related Work . 12

2 THE FRAMEWORK FOR SCHEDULABILITY ANALYSIS 17

2.1 Multi-Frame Co-Simulation Model 17

xi

2.2 The Proposed Framework . 21

2.2.1 The Task Model . 22

2.2.1.1 Task Type (Or Task) 23

2.2.1.2 Task Automata . 25

2.2.1.3 Precedence DAG . 26

2.2.2 The Schedulability Analyzer 27

2.2.2.1 Precedence Handling in Proposed Framework 27

2.2.2.2 Simplifications . 36

2.2.2.3 Other Considerations in SV Automaton Design 48

2.2.2.4 The Schedulability Verifier (SV) Automaton Construction 56

2.2.2.5 The Cancellation Handler (CH) Automaton Construction 64

3 FRAMEWORK IMPLEMENTATION . 67

3.1 Schedulability Verifier (SV) Implementation 70

3.1.1 SV Locations . 70

3.1.2 SV Transitions . 70

3.2 Cancellation Handler (CH) Implementation 78

3.2.1 CH Locations . 78

3.2.2 CH Transitions . 79

3.3 Helper Automata . 80

3.3.1 UpdatePrecedentLists . 80

3.3.2 Add2ActivePrecedents . 81

3.3.3 GetNBWait Automaton . 85

3.3.4 RTCalc Automaton . 85

xii

3.4 The Functionality Verification Experiment 86

3.4.1 Results . 88

4 HELICOPTER SIMULATOR CASE STUDY 91

4.1 Introduction . 91

4.2 Helicopter Simulator . 91

4.3 Application of Schedulability Analysis Framework 93

4.4 Proposed Improvement . 94

4.5 Schedulability Analysis . 97

4.6 Conclusion . 100

5 CONCLUSION . 101

REFERENCES . 103

CURRICULUM VITAE . 109

xiii

LIST OF TABLES

TABLES

Table 3.1 Tasks in Car’s Power Window Simulation 88

Table 4.1 Task Attributes of FM, I/O and VS Terrain Info Tasks 99

Table 4.2 Schedulability Analysis Results . 99

xiv

LIST OF FIGURES

FIGURES

Figure 1.1 Co-simulation with runnable code 6

Figure 1.2 Co-simulation with Tool coupling 6

Figure 2.1 Co-Simulation System Model 21

Figure 2.2 Task States . 23

Figure 2.3 Task Automata for a simple periodic simulation task TaskX . . . 26

Figure 2.4 Binding precedence between tasks with different periodicities . . 29

Figure 2.5 Handling of Non-binding constraints 36

Figure 2.6 Only active precedent tasks satisfy pre-condition (25) 39

Figure 2.7 Solution to the problem of determining which active precedent

tasks to consider using Task-sets . 47

Figure 2.8 The Schedulability Verifier (SV) 63

Figure 2.9 The Cancellation Handler (CH) 66

Figure 3.1 The Schedulability Verifier (SV) 72

Figure 3.2 The Schedulability Verifier (SV) part A 73

Figure 3.3 The Schedulability Verifier (SV) part B 74

Figure 3.4 Cancellation Handler (CH) Automaton 80

xv

Figure 3.5 The automaton that updates the lists of active precedent tasks . . 81

Figure 3.6 The automaton that adds active precedent tasks to appropriate lists 83

Figure 3.7 The automaton that determines the waiting time due to any non-

binding precedent task . 84

Figure 3.8 The automaton that calculates Response Times 86

Figure 3.9 The graph showing precedent constraints among power window

simulation tasks . 87

Figure 4.1 Dependency Graph among Helicopter Simulator Modules 93

Figure 4.2 Dependency Graph without cyclic dependencies 95

Figure 4.3 Time delay between actual pilot action and when it is read be

VS update task . 96

Figure 4.4 Dependency graph and arrival patterns of task related to visual

display . 98

xvi

LIST OF ABBREVIATIONS

ABBREVIATIONS

CH Cancellation Handler

DAG Directed Acyclic Graph

DL Deadline

FMI Functional Mockup Interface

FSA Finite State Automaton

FY Fersman & Yi

HWIL Hardware-in-the-Loop

RT Real-Time / Response Time

ST Simulation Time

SV Schedulability Verifier

TA Timed Automaton / Task Automaton

WCCT Worst Case Cancellation Time

WCET Worst Case Execution Time

xvii

xviii

CHAPTER 1

INTRODUCTION

Over the period of last several years, Computer simulation has become one of the key

methods for the verification and validation of functional as well as timing properties

of engineering systems, especially the ones which are very large and distributed in na-

ture. A Computer simulation provides convenient and cost effective way to safely test

and analyze critical engineering systems even under conditions that are prohibitively

hazardous or costly to be applied in real life. For example, analyzing the perfor-

mance of an aircraft during a storm, or testing the effects of leak in a nuclear reactor.

Moreover, traditional integrated system testing is possible only after the system is

built completely, but computer simulation enables integrated testing of a system even

during its development phases by using simulated models in place of sub-systems

that are not built yet. Hence, simulations have become an integral part of the design

and development process of modern engineering systems. Computer simulations are

not limited to engineering systems only and are commonly used in a variety of so-

cial, economical and scientific disciplines to analyze a system or a process, study its

evolution in time and evaluate the possible outcomes.

To simulate any system or process, the primary requirement is development of a sim-

ulation / mathematical model for the system or process that is being simulated. The

model defines dynamic behavior of the simulated system using mathematical equa-

tions. The simulation model is then executed by a simulation engine generating the

behavior of the actual system or process. We may refer to these simulation mod-

els simply as models, system models or sub-system models wherever the meaning is

clear from the context. Typically, the term system model is used for models that con-

tain several sub-system models within themselves. Since every simulation is required

1

to be functionally accurate to certain extent, known as the level of fidelity, it is the

responsibility of the simulation model designer to develop a model that is function-

ally and logically accurate enough to achieve the desired level of fidelity. There is a

special set of computer simulations, however, which have an additional requirement

to meet; a requirement which does not depend upon the accuracy of the simulation

model but rather on the performance of the simulation engine. This additional require-

ment is that of generating the correct timed behavior of the actual system being sim-

ulated. This additional time constraint may be imposed for the purpose of verifying

the timing correctness of the simulated system or it may be an inherent requirement

arising because of some particular simulation setup; for instance a Hardware-in-the-

Loop (HWIL) simulation where some of the components in the simulation are actual

hardware components. These simulations are called "real-time simulations" and their

fidelity does not only depend upon the functional accuracy but also on the timeliness

of the simulation execution. To explain this timeliness property, we need to define

two more terms: the Simulation Time and Wall-clock Time.

Simulation Time Simulation time refers to a virtual time that is maintained by the

simulation software / engine itself. Since computer simulations proceed in small time

steps, the simulation-time is also incremented in discrete steps. The software main-

tains this time for each sub-system model as well for the whole system. Individual

model’s simulation time is incremented with each time step corresponding to the step

size, while system simulation time usually follows sub-system models’ simulation

time and reaches a certain time instant only when all the sub-systems have either

reached or surpassed that instant. The rate of increment of simulation time is usually

not constant.

Wall-clock Time Wall-clock time also called real-time is the physical time that is

elapsed during which a simulation is running. Since it is the actual time, it increases

continuously with a constant rate.

Now, the timeliness property of real-time simulations mentioned above can be ex-

plained as the property which dictates that simulation time of a system model as well

as its constituent sub-system models must be greater than or equal to the wall-clock

2

time at least at instants where the model has to interact with an entity external to it-

self. Let us call this constraint between simulation-time of models and the wall-clock

time as the real-time constraint. The simulation- and wall-clock times referred here

are measured with respect to start of simulation instant when both times are taken as

zero. Since the progression of time in a simulation is managed by the simulation soft-

ware itself and not by the system model that is being simulated, real-time simulation

is possible only if the simulation software has the capability to do it.

If we can somehow prove that, during a simulation run of a system, the execution of

each sub-system model is carried out in a way such that none of them ever violates

its real-time constraint then such a proof enhances our confidence in the simulation

results and so helps us in making better design choices which results in more efficient

and safer systems. The process of obtaining such a proof is termed as schedulability

analysis.

In this work, we developed a schedulability analysis framework for the case of real-

time multi-frame co-simulations: a special kind of real-time simulations which are

distributed in nature with sub-system models being possibly simulated on distinct ma-

chines. Real-time multi-frame co-simulations are introduced in detail in section 1.1.

Since schedulability analysis is only concerned with timing correctness, determining

functional accuracy of a simulation run is beyond the scope of this work. Our work in-

clude presentation of a model for real-time multi-frame co-simulations, development

of a schedulability analysis framework for the presented model based on an exist-

ing timed-automata based framework for schedulability analysis of real-time systems

[22, 24] , and finally implementation and demonstration of the new framework.

In the remainder of this chapter, sections 1.1 and 1.2 are dedicated to definition and

explanation of some of the terms and concepts that formed the basis of our work

followed by a description of the schedulability analysis problem and our approach

to its solution in sub-section 1.3. The chapter ends with section 1.4 describing some

related works that have been done on similar problems.

3

1.1 Real-time Multi-frame Co-Simulation

Consider an actual engineering system that is composed of physical as well as vari-

ous software components.The distinct physical components or processes in this sys-

tem naturally run independently and concurrently without the need of any computing

resources. The software components or tasks of the same system, however, require

computing resources and need to be scheduled such that they can monitor and/or con-

trol the physical components of the system in real time. Now consider a real-time

simulation counterpart of the same engineering system. In this simulated environ-

ment, majority of physical components or processes, being simulated using respective

simulation models, are just software processes or tasks which require processors and

computing resources to run. Let us call these software tasks as Simulation Software

Tasks as their existence is only possible in a computer simulation environment and

not in actual systems.

To understand the nature of these simulation software tasks, note that a simulation

model provides the differential or difference equations that describe the dynamic be-

havior of the modeled system. We know that a simulation is run one small step at

a time and that all the continuous state variables of every sub-system model in the

simulation need to be updated at each such step by a numerical solver or integrator.

For each simulation step, the numerical solver uses the values of state variables and

possibly theirs derivatives at the start of the step to calculate the state variable values

for the time instant that marks the end of that step. These software processes that per-

form numerical integration of the mathematical simulation models are precisely what

constitute the set of simulation software tasks. These processes are computationally

intensive requiring considerable processor time. For the purposes of our discussion,

we may refer to these simulation software tasks simply as software tasks or just tasks.

These tasks that are related to numerical solution of models in addition to the actual

software tasks of the embedded software greatly increases the total number of tasks

that need to be scheduled by real-time simulation scheduler. A modern real-time sim-

ulation system, e.g. a flight simulator, may consist of hundreds of tasks running in

parallel. While in older days it was not deemed feasible to have as many proces-

sors as the number of tasks in a simulation to enable true parallel execution; with

4

the introduction of manycore technology, the possibility of each task having its own

dedicated thread or core for execution has become very much realistic. There are

processors now available which have as much as 72 cores each capable of running 4

parallel threads resulting in total of 288 available threads. In fact with manycore pro-

cessors being slated as the future of computing, it is even desirable to make efficient

use of multiple cores available and run softwares task on a dedicated thread as much

as possible. However, to realize such multi-core executions, the simulation tasks, i.e.

numerical solvers for each simulated sub-system model need to run in parallel on

separate cores.

There are two possible ways to distribute these numerical solvers to multiple cores or

processors; either the sub-system models are developed such that they are equipped

with a solver within their code in addition to the dynamic equations for the modeled

system or, alternatively, separate instances of specialized simulation softwares with

specialized numerical solvers can be run on separate cores doing the numerical solu-

tion for their respective models independently. This kind of simulation architecture

where each model is solved independently in parallel, possibly on a dedicated core,

and where one simulation tool acts as the master of the simulation, executing the

simulation tasks and performing coordination among them, is called Co-Simulation

architecture. The first case, where a model has its own solver, is often termed Co-

Simulation with runnable code [26] while the case where distinct simulation soft-

wares, often referred to as simulation tools, are run on multiple processors within one

integrated simulation is called Co-Simulation with Tool coupling [26]. Figures 1.1

and 1.2 show the architectures of these two kinds of co-simulations. In the first case,

the master communicates with the runnable code directly while in the tool coupling

case, API wrapper functions are usually needed that translate the APIs provided by

target simulation tool into a form usable by the co-simulation master.

Co-simulation does not only enable efficient distributed simulation but there are situ-

ations where co-simulation offers the most natural choice of simulation architecture.

Consider a simulation that involves sub-system components from a wide variety of

domains including cyber (i.e. computational), electrical, mechanical, hydraulic and

thermal etc. In such a simulation, the system models belonging to different domains

may need to run at different frequencies, for example, mechanical component models

5

Figure 1.1: Co-simulation with runnable code

Figure 1.2: Co-simulation with Tool coupling

6

might not require to be solved as often as a fast electronic system models. If a single

numerical solver is used for all the subsystems in a simulation with different execution

frequencies, it would be highly inefficient. So, using different solvers for each sub-

system and running them separately with different time-step sizes, i.e. co-simulating

them seems to be the favorable solution.

Before proceeding further, let us define some terms that will be used throughout this

work as follows,

• The simulation time steps mentioned in the above discussion are commonly

called integration steps which refer to the fact that numerical integration algo-

rithms are used to advance the time of a simulation model.

• The integration step size is simply the amount of time by which the current sim-

ulation time is advanced and for real-time simulations, it is normally constant

[17].

• The frame time or frame of a model is the time interval between data transfers to

or from other simulation entities that are external to that model. These external

entities can either be a hardware component or other sub-system models. A

frame can contain one or more integration steps [17].

• The simulations that use different step sizes for different models are called

multi-rate simulations [27] or simulations with multi-framing [34].

• We can now redefine real-time constraint introduced earlier in terms of the

frame as the constraint that simulation time of a simulation model must be

greater than or equal to the wall-clock time at the end of each of its frame.

Real-time Multi-frame Co-Simulation: Now that we have defined all the relevant

terms, the composite term of Real-time Multi-frame Co-Simulation becomes almost

self explanatory and can be defined as a simulation where sub-system models with

distinct frame length requirements are executed in parallel possibly on dedicated pro-

cessors such that each and every simulated sub-system satisfies the real-time con-

straint.

7

Up till recently, researchers developed co-simulation solutions that are either appli-

cation specific or simulation tool specific [5, 4, 39, 14, 15]. Consequently, there was

no common interface standard that is both generic enough to support communication

with models from every domain and powerful enough to be used in any simulation; be

it real-time or non-real-time, multi-rate or with single step-size. Functional Mockup

Interface (FMI) is one such interface standard designed to bridge this gap. FMI is

described as an interface standard being developed for exchange of dynamic models

among different simulation tools and co-simulation [26]. This means that FMI not

only supports co-simulation but also solves the problem of model- exchange between

different simulation tools. Although, our work does not emphasize on how to imple-

ment the co-simulation architecture, we certainly recognize FMI as an important step

toward co-simulation; independent of tools or application domain.

1.2 Timed Automaton and Task Automaton

As will be discussed in section 1.3, the schedulability analysis framework that we

shall propose is extension of an existing framework which is based on task automata;

which in turn is based upon theory of timed automata. Therefore, It seems suitable

to define basic concepts related to timed automata theory and task automaton in this

introductory section before using them to build our framework.

1.2.1 Timed Automata Theory

The theory of timed automaton was first presented by Alur and Dill in 1994 [6] and

soon after its introduction it became a popular formalism to model real-time systems.

Various tools were then developed using the timed automaton theory to model-check

real-time systems; a well-known tool among these is UPPAAL [31]. Although UP-

PAAL is based on timed automata theory, the syntax and semantics of timed automa-

ton implemented in UPPAAL is a little different than that of original theory presented

in [6]. However, since almost all of the timed automata based real-time schedulability

research uses UPPAAL as implementation tool and hence UPPAAL’s timed automa-

ton model, we would also stick to this convention and use UPPAAL’s semantics as

8

the basis of our work. The syntax and semantics of timed automaton as presented in

UPPAAL are described below.

A timed automaton is defined a finite state automaton (FSA) with a set of non-negative

real valued clocks. Clock constraints or guards are used to constraint the transitions

or edges of a timed automaton. Hence the edges of a timed automaton can be an-

notated with guards in addition to the discrete symbols used in any ordinary FSA.

The allowable form of clock guards is defined as conjunctions over conditional ex-

pressions of the form c ∼ n or c − ć ∼ n, where c and ć are clocks, n is an integer

and ∼ is one of {<,≤,=, >,≥}. The automaton nodes or locations can also have

associated clock constraints called invariants which determine the amount of time

the automaton can pass in a particular location. Every clock defined in the automaton

increments with the same rate but any of them can be reset to zero during a transition

between locations. Thus the value of each clock actually equals the amount of time

that has elapsed since that clock was last reset.

Following are the formal definitions of a timed automaton and its semantics [11].

Here,B(C)is used to represent the set of clock constraints over a set of clocks C.

Timed Automaton (TA): A timed automaton is a tuple 〈L, l0, C, A,E, I〉, where

• L is a set of locations

• l0 ∈ L is the initial location

• C is the set of clocks

• A is the set of actions

• E ⊆ L×A×B(C)×2C×L is a set of edges between locations with an action,

a guard and a set of clocks to be reset

• I : L→ B(C) assigns invariants to locations

Semantics of a TA: The semantics of a TA 〈L, l0, C, A,E, I〉 is defined as a la-

beled transition system with possibly infinite states of the form (l, u) where l ∈ L

9

and u : C → R+is the clock assignment, (l0, u0) is the initial state where u0 is a

clock assignment that maps every clock in C to zero.There are two types of possible

transitions,

• Delay transitions: (l, u)
d−→ (l, u + d) if ∀d́ : 0 ≤ d́ ≤ d⇒ u + d́ satisfies I(l),

where d ∈ R+ and u + d increments the value every clock in C by d.

• Action transitions: (l, u)
a−→ (ĺ, ú) if ∃e = (l, a, g, r, ĺ) ∈ E such that u satisfies

the guard g, ú is equal to u for all the clocks except the clocks in r which are

reset to zero and ú satisfies I(ĺ)

1.2.2 Task Automaton

The works of Norstrom [38] and Fersman [23] were the first to propose the use of an

extension of timed automaton to define task arrival patterns in a task schedulability

problem. The main idea was to assign to each action transition[38] or alternatively,

a location[23], a task so that each transition or location represents the release of the

associated task. This extended timed automaton was later considered for real-time

tasks’ scheduling analysis and was renamed as task automaton [20]. These two slight

variations of this task automaton can be formally defined as follows:

Task Automaton: A task automaton with a task set P is defined as a tuple

〈L, l0, C, A,E, I, T 〉 where,

• 〈L, l0, C, A,E, I〉 is the standard time automaton

• In [38], T : A → P is a partial function that assigns actions to tasks, while in

[23] T : L→ P is a partial function assigning locations to tasks

T is defined as a partial function which means that there can be action transitions or

locations that are not associated with any task.

10

1.3 Schedulability Analysis Problem and the Proposed Approach for Solution

In a real-time system, a set of software tasks is said to be schedulable if it is possible

for every task in the set to meet its deadline. Schedulability analysis then can be

defined as a process that determines if a task-set is schedulable given the properties

(execution-times, arrival times etc.) of the tasks and the imposed constraints (task

deadlines, resources requirements etc.)

Since we consider the execution or numerical solution of simulation models in a real-

time co-simulation simply as software tasks (see sub-section 1.1), this assumption

transforms the problem of ensuring the timing correctness of real-time co-simulation

into a problem of real-time schedulability analysis of the given simulation task-set.

Similar to the case of real-time systems, a schedulable real-time simulation is one in

which every simulation task is guaranteed to satisfy its real-time constraint.

It is generally accepted that no amount of testing can guarantee that the proposed

schedule is infallible under all circumstances. Therefore, in order to verify that

a particular scheduling algorithm will never cause any task to miss a deadline, a

proof using some formal method is required. There are a number of formal methods

for schedulability analysis available in the literature based on different task models,

system configuration (uni- or multi-processor) and other scheduling characteristics

[36, 45, 46].

Many of these analysis methods are ad-hoc techniques without any formal theory to

support them. But there is one class of analysis methods that are based on timed au-

tomata [6, 1, 2] or an extension of them termed as task automata [24, 22, 20]. These

works use task automata to define a system’s task model, a fundamental notion in

the theory of real-time schedulability analysis. A task model basically represents an

abstraction of different tasks’ behaviors that are considered important for the problem

at hand. A task model based on task automaton is considered as the most general and

most expressive form which encompasses almost all other task models in the literature

[44]. The primary advantage of using an established automata theory based analysis

technique is that the analysis procedure can be automated by using the model check-

ing techniques and tools already developed for that theory. This automation becomes

11

more desirable when the number of tasks is very large. In addition to verification, the

automata model can be used to synthesize an optimal scheduler as well [2, 7].

Our goal in this work is to perform schedulability analysis for real-time multi-rate

co-simulations to prove the timing correctness of these simulations. As mentioned

earlier, verification of functional accuracy of simulations is beyond the scope of this

work. Due to the advantages discussed above, we selected a timed automata based

approach as the basis of our analysis technique. Although timed automata based tech-

niques may suffer from problem of state explosion or in some cases high complexity

and even undecidability [20], but we simplify our problem by making the assump-

tion of having a dedicated processor core for each task. As result, unlike a general

scheduler which inevitably deals with queues of tasks for one or more processors and

may also be required to handle preemptions and resumptions, there will be no tasks

(other than instances of same task type, see section 2.1) in our co-simulation system

model waiting in the queue for processor core and instead of preemptions (followed

by resumptions), we will be dealing with task cancellations only. The co-simulation

system model is described in detail in section 2.1.

We identified one particular timed automata based schedulability analysis framework

by Fersman and Yi [24] (FY framework) as our basis for further analysis. The FY

framework transformed the schedulability analysis problem into a state reachability

problem of a timed automaton. We worked on same principle and transformed our

problem as the state reachability problem. After the necessary theoretical extension

of the FY framework, we implemented the schedulability analyzing timed automaton

in UPPAAL [31], which is a popular timed automata based tool for model-checking.

The implemented framework was verified on a toy problem before being applied to

real world case study of a helicopter simulator.

1.4 Related Work

To the best of our knowledge, this work is the first attempt in presenting a frame-

work for schedulability analysis of a real-time simulation. All the existing works are

concerned with schedulability of actual real-time systems and not the real-time simu-

12

lations. However, this existing work is definitely related to and in fact forms the basis

of our work. Hence, the rest of this section will describe the research done on the

schedulability analysis of actual real-time systems.

Research on real-time schedulability analysis techniques has a long history. Liu and

Layland’s work [36] is often considered as one of the earliest and most prominent

work that not only introduced the, still popular, fixed priority scheduling algorithms

like Rate Monotonic and Earliest Deadline First but also analyzed these schedul-

ing techniques. After this seminal work, researchers have developed schedulability

analysis techniques that range from devising exact analytical tests [29, 8, 12] that

determine schedulability of a real-time system, to providing feasibility tests whose

performance is judged by the acceptance ratio [12, 32] ; and from techniques devel-

oped for uni-processor systems [40] to the ones that are applicable to multi-processor

systems [30, 16, 9] or distributed systems [46, 33].

One important aspect of any scheduling analysis technique is the task model or mod-

els for which it is applicable. Typically, a task model provides information about

task arrival patterns, e.g. whether they are periodic or sporadic, and task resource

requirements, e.g. best/worst case execution times or any other shared resource re-

quirements. Task models are important because, given a task model, a designer can

work out what scheduling strategy is feasible for the given constraints, also called

Scheduler synthesis. On the other hand, given a scheduling technique, a task model

can be used to determine if a set of tasks is schedulable or not. This is called Schedu-

lability analysis.

One of the earliest task models was a periodic task model introduced back in 70s

by Liu and Layland [36] and it became the basis for many subsequent works. In

a periodic task model, tasks are generated strictly at fixed intervals of time but this

assumption of periodicity cannot be considered true for all the real-time systems and

so different task models were introduced to model non-periodic and irregular tasks

arrivals. These include sporadic models [10, 35], multi-frame models[37] and graph

based models[43, 19]. For a detailed survey of task models, please, see [44].

As described in section 1.2, researchers were quick to realize that timed automa-

ton based formalism can be extended to model task arrival patterns. These extended

13

timed automata were termed task automata [20] and as it turned out, task automata

were categorized as the most expressive task model in the literature [44]. Task au-

tomata are expressive enough to encompass all other task models like periodic or

sporadic real-time tasks and can also describe concurrency and synchronization. But

with expressiveness comes the problem of increased complexity. There have been

some studies that analyze the complexity and decidability of schedulability analysis

techniques based on task automata [20, 22]. Besides task-automata based research,

which we will describe in more detail in next two paragraphs, other prominent works

on scheduling analysis that used timed-automata include [18, 13].

Our work is based on task automata which are used in a number of schedulability

analysis research works. The authors of [20] analyzed the real-time schedulability of

tasks on a single processor. A task was represented as a 3-tuple (B,W,D), where B is

the best-case execution time of the task, W is the worst-case execution time (WCET)

and D is the deadline for the task relative to its time of release. A number of scenarios

were analyzed for decidability and the authors concluded that the scheduling problem

for many scheduling strategies is decidable unless all three of the following conditions

hold true,

1. Scheduling strategy allows preemption

2. The best-case and worst-case execution time of tasks is different

3. A task release time is based on the precise finishing time of some other task

In [21, 22], the authors examined the schedulability of fixed-priority systems using

task automata. They also studied the case of data dependent control, where release

time of a task may depend on a specific value of some shared variable and hence on

the time-point when some previous task finished execution. In this work the task were

represented as pair (W,D), where W is the WCET and D is the relative deadline. It

was showed that without data dependent control, the scheduling problem for a fixed

priority system can be solved by using only two extra clocks, in addition to the clocks

already present in task automata. However, for the case of data dependent control

the solution of scheduling problem for the same system requires n + 1 additional

clocks, where n is the number of tasks in the system. In a further improvement of

14

[21], the same authors introduced a more generic framework for real-time schedu-

lability analysis using task automata [24]. The new model was able to handle more

general precedence relations and resource constraints and they showed that schedula-

bility analysis problem for this extended case can be solved using the same technique

that was introduced in [21]. In another research, the scheduling analysis using task

automata was extended to multi-processor setting [30]. And the authors found one

more negative result as compared to the single processor case in [20]. More pre-

cisely, they showed that in a multi-processor setting, the truth of only the first two

conditions mentioned above is sufficient for the solution of scheduling problem to

fall in undecidable category. This undecidability property is still an open problem for

the case of single processor scheduling. A popular tool used in some of the above

mentioned works and that uses timed automata to model-check real-time systems is

UPPAAL [31]. The syntax and semantics of timed automata used in UPPAAL is a

little different than that of original timed automata theory in [6]. But almost all of

the timed automata based real-time schedulability research uses UPPAAL’s model of

timed-automata and so we also used the same semantics in our work. See section 1.2

for the details of these semantics.

Rest of this thesis is organized as follows,

Chapter 2 first describes a system model for multi-frame co-simulation before pre-

senting the details of our proposed framework for schedulability analysis of multi-

frame real-time co-simulations. The shortcomings in the initial proposal and the so-

lutions are also discussed in this chapter.

Chapter 3 deals with the implementation details of the proposed framework. The im-

plementation is done in UPPAAL and the chapter discusses details of main schedu-

lability analysing automaton, termed CheckingAutomaton, as well as the supporting

automata and functions. The verification of the implemented framework using a toy

problem is also discussed in this chapter.

The last chapter 4 presents the application of our proposed schedulability analysis

framework on a real life case study of a helicopter simulator.

15

16

CHAPTER 2

THE FRAMEWORK FOR SCHEDULABILITY ANALYSIS

This chapter constitutes the core of our work and describes the framework developed

for schedulability analysis of real-time multi-frame co-simulations. As mentioned in

the previous chapter, the proposed framework is an extension of FY framework [24]

which was developed as a generic approach for schedulability analysis of real-time

tasks. This chapter discusses in detail the proposed extensions to the FY framework,

why the extensions are required in the first place and how to handle the issues arising

due to the new extensions. The chapter ends with description of a special timed-

automaton called Schedulability Verifier (SV) that actually performs the schedulability

analysis of a co-simulation.

To begin with, the first thing to consider for the development of a framework that

is meant for schedulability analysis of real-time multi-frame co-simulations is the

precise model of a real-time multi-frame co-simulation itself. Hence, the next section

is dedicated to definition of the required co-simulation model which will then serve

as the foundation on which our whole schedulability analysis framework is built.

2.1 Multi-Frame Co-Simulation Model

In an effort to ensure that our defined co-simulation model reflects the industry stan-

dard co-simulations, we based the model on the co-simulation model presented in

Functional Mockup Interface (FMI) standard 2.0 [26]. The FMI presents an interface

standard for model exchange between different simulation platforms as well as for

co-simulations. But before describing the model of a system that we feel accurately

captures a multi-frame co-simulation, let us first list the assumptions that we make

17

for our model.

1. The system executing the co-simulation has as many processor cores available

as there are number of software tasks.

2. Each processor core has been assigned a task at design time which is fixed for

the entire period of simulation.

3. Software tasks can be aborted at any time during their execution.

4. The aborted task is responsible for leaving its acquired resources clean.

The software tasks mentioned here include the simulation tasks that perform the nu-

merical integration of state variables for simulated physical systems as well as the

pure software tasks that are actually executed in some embedded computer in the sys-

tem. Purpose of the first assumption is to avoid cyclic dependencies among different

task types that can arise as a consequence of processor core sharing. Similarly, cyclic

dependencies occurring due to precedence constraints or data dependencies among

tasks assigned to different cores also need to be avoided (see section 2.2.1). The

cyclic dependencies among tasks are undesirable in our proposed framework because

they make our analysis approach, discussed in section 2.2.2.3, unusable. However,it is

worth mentioning here that the restriction imposed by this first assumption above can

be relaxed if there is a scheduling mechanism where multiple task types are assigned

to the same core but it is ensured that instances of any task type will be released at

times such that their execution can never interfere with the execution of instances of

another task type that are assigned to the same core. This means that, for each core,

at any single point of time there is only one such task type whose instances are either

executing or ready to execute on that core, thus avoiding cyclic dependencies.

An important thing to note is that our model allows multiple instances of the same task

type to be active at the same time and therefore there can be a scenario where multiple

instances of the same task type are waiting for the same processor core. This kind

of interdependency among instances of same task type does not cause our analysis

procedure to fail and is handled in the proposed framework by using waiting task

queues for each core that keep the waiting instances of the task type assigned to that

core. But what scenario can cause the multiple instances of the same task type to be

18

active at the same time with one executing and others waiting in the task queue? The

intuition says that since our system model assumes that we have a dedicated processor

core for each task, there should be no waiting queue. This intuition is especially true

if the scheduling algorithm is a conservative one so that the co-simulation master does

not schedule future instances of a task unless all previous instances of that task type

have finished their execution. However, if we consider a scheduling algorithm that

can optimistically schedule task instances without waiting for earlier instances of the

same type to finish then there can be a situation where waiting queue is required. An

example of such a scenario is illustrated in section 2.2.2.2

Assumption no. 2 allows the tasks to be only statically assigned to processor cores

and thus relieves the scheduler of selecting a core for execution at runtime and also

prohibits task migration between different processors during a simulation.

Task abortion or cancellation discussed in assumption no. 3 is a concept that is dif-

ferent than that of task preemption in general scheduling problems. A preemption is

eventually followed by a resumption of the task from the same state at which it was

preempted. In task abortion, however, the task can never resume execution from the

same execution point but can only be restarted by re-performing the canceled integra-

tion step again. This task cancellation feature appears in the FMI standard as well,

however, unlike our model, FMI does not allow re-performance of current integra-

tion step but restricts that the simulation must be canceled altogether. We feel this

restriction to be too strict and allow the simulation to continue after a task cancel-

lation. However, to ensure smooth simulation run in an event of task cancellation,

assumption no. 4 makes the canceled task responsible to leave the system in a clean

state. This means that the task cancellation requires processor time itself because of

the housecleaning steps it needs to take in order to leave the system resources clean.

The task cancellations are usually caused by certain events during a simulation. An

event can be defined as any unplanned occurrence in a simulation, such as a failure of

a hardware component in a HWIL simulation or an input from a human in Human-in-

the-Loop simulation. These unplanned occurrences or events can affect the simulation

in different ways including cancellation of current integration steps of some tasks,

change in periodicities of certain tasks and/or release of special event handling tasks

19

etc.

As described in the FMI standard [26], our system will be a co-simulation with a

master that orchestrates and synchronizes the running of the simulation. Tasks are

allowed to communicate with the master only and not directly with each other, the

master is then responsible for forwarding the communicated data to the destination

task, if any. This communication between the tasks and master does not necessarily

have to occur at the end of each integration step but are only allowed at fixed com-

munication time-points as required by the master. These communication time-points,

however, must coincide with end time of an integration step. Fig. 2.1 shows this

co-simulation architecture. For the sake of simplicity, we assume the communica-

tion between the master and the task to have a constant delay and that this delay is

included in the worst case execution time of each task.

Besides communication between the tasks, the master is also responsible for schedul-

ing or invoking each task for execution. A scheduler is therefore a part of the master

and is responsible for executing tasks in a way such that no task misses its deadline

while at the same time ensuring that the precedence constraints between them are not

violated.

But a scheduler can only schedule a task after it is released or become active. There

are a number of task models mentioned previously that can be used to describe the re-

lease or activation pattern of tasks in a system. In our system model, tasks are usually

periodic during normal system operation with possibly each task having a different

periodicity but at the same time there can be sporadic tasks as well which may be-

come active in response to some particular event. Moreover for periodic tasks, we do

not restrict the task periodicities to be fixed and allow them to be changed dynami-

cally at runtime. To represent such a complicated task arrival pattern, we selected the

task automata based task model for our work which is the most expressive task model

in the literature and can incorporate almost any task arrival pattern. It has an added

advantage of being backed by sound formal theory and availability of task automata

based tools for model-checking and code generation [7]. The downside of being the

most expressive task model is that the complexity of scheduling analysis based on it

is the highest as well. But coupled with the simplifying assumption described above,

20

Figure 2.1: Co-Simulation System Model

we believe that the complexity of scheduling analysis for our system model using

timed automata based task model will be tractable.

2.2 The Proposed Framework

The real-time schedulability analysis in the case of multi-frame real-time, possibly

FMI-based, co-simulation actually amounts to analyzing the scheduler component of

the co-simulation master to check if it is possible for it to schedule the tasks in real-

time for a given task arrival pattern and its constraints. Therefore, for our purpose

of real-time scheduling analysis of a real-time co-simulation, we can assume the co-

simulation master as being composed of two distinct components. First is a scheduler

component that will schedule the tasks such that no task will violate the real-time

constraint while allowing for precedence constraints to be met. It is worth mentioning

here that while every real-time constraint is absolutely essential to meet; many, but not

all, of the precedence constraints can be relaxed in real-time co-simulation in order

to ensure the mandatory task deadlines. We will come back to this issue later and

discuss it in detail. The second component of the master can be considered as being

composed of the rest of the master’s functionality but the feature of our interest in this

second part is the one that defines the task model. A task model includes definition

21

of the tasks’ arrival patterns, worst-case execution times, deadlines, and precedence

relations between them. The scheduler part uses this information from the task model

to make its scheduling decisions. We will call these two parts of co-simulation master

as thescheduler and the task model.

The two parts described above are precisely the building blocks of our schedulability

analysis framework as well. Hence, following sub-sections 2.2.1 and 2.2.2 will re-

spectively describe task model and scheduler, i.e. the building blocks of the proposed

framework. However, in sub-section 2.2.2, where we define the scheduler part, our

goal will not be to actually schedule a task but to just simulate the scheduler decisions

and check if there is a scenario where a scheduler decision leads to unschedulability.

Therefore, we shall not be defining the actual scheduler but a mechanism to mimic

the scheduling decisions and monitor the task instances for any violation of deadline.

Since we intend to extend the timed-automata based framework of real-time schedu-

lability analysis introduced by Fersman et al. in [24] and [21], timed automata will

naturally play a major role in our proposed framework as well. More specifically, a

pair of timed automata will be defined that will simulate scheduling decisions of the

co-simulation master and monitor unschedulability while a slight variation of timed

automata, i.e. task automata [24], will be a major part of our task model description.

2.2.1 The Task Model

The task model component of the master is defined as a 3-tuple 〈S,A,G〉 where,

• S is a set of task types. Each member of the set S defines a single type of task

• A is a task automata that defines the task arrival patterns

• G is a Directed Acyclic Graph (DAG) that defines precedence constraints be-

tween tasks

Following is the detailed description of each component of the task model tuple.

22

Figure 2.2: Task States

2.2.1.1 Task Type (Or Task)

Any simulation can be considered as being composed of different tasks each perform-

ing a specific function in the simulation. For our purpose of schedulability analysis,

it does not matter what a task actually does, instead, the properties that matter are the

task’s timing and precedence constraints. Therefore, we will represent a task as an

abstraction termed as Task Type that will contain only those attributes that are of our

interest. Multiple instances of a task type can exist in a system at the same time. We

shall use the term task to refer to both task type and its instance wherever the actual

meaning is clear from the context. Before proceeding further, let us define the three

possible states of task instances in our framework,

• Idle: When a task instance is waiting to be released by master

• Waiting: When a task is released but is waiting either for some precedent task

to finish execution or for processor time. In a multi-core platform such as ours,

waiting for processor time means that a task has to wait for a previous instance

of the same task type as itself to finish execution. To see how this scenario is

possible, refer to section 2.2.2.1

• Executing: When the task is actually executing on a processor

The three states and transitions possible between them are shown in fig. 2.2. A task

23

is termed active during waiting or executing states, so, any reference to an active task

means that it is either waiting or executing. The response time (ResponseTime) of a

task is the time elapsed between the instant when it was released and instant when it

finishes execution. Therefore, ResponseTime is equal to the time during which a task

is active which in turn is equal to the sum of times the task spends in waiting and

executing states.

In most of the schedulability analysis works, a task type is usually defined by two

static attributes: task’s worst-case execution time and its relative deadline. But in our

case, the deadline cannot be fixed at the time of task type definition simply because

our system model allows the tasks to have dynamic periodicities. And since the dead-

line for a periodic simulation task is dependent on its periodicity and hence its current

integration interval (both are equal in real-time simulations), it cannot be defined as

a static attribute. More specifically, the greater the integration interval, the greater

time is allowed for the task to finish, i.e. greater relative deadline and vice versa. We

will, therefore, define this Deadline attribute as a dynamic property for our task types

which will be assigned a value by the co-simulation master at runtime whenever a

task instance is released for execution.

Recall that we have assumed in our real-time co-simulation system model that a task

can be canceled at any time after its release by the master. We also assumed that a can-

celed task will leave the system in a clean and stable state. To reach this clean state,

a canceled task typically needs to perform some additional tasks like relinquishing of

resources, resetting state variable, garbage collection etc. These housekeeping tasks

needed for cancellation need processor time and so we defined a term called Worst

Case Cancellation Time (WorstCaseCancelT ime). WorstCaseCancelT ime is

the maximum amount of time that a task may need to perform these housekeep-

ing tasks in an event of cancellation. We will add this cancellation-time attribute

to our task type definition with the name WorstCaseCancelT ime and define it

as the largest time that can elapse between a cancellation request from the mas-

ter and completion of that cancellation by the task. Both WorstCaseExecT ime

and WorstCaseCancelT ime are static task attributes and are assumed to be de-

termined beforehand. Two more attributes are added in task type definition that

will be required for real-time schedulability analysis. These are the tasks’ current

24

simulation time (SimulationT ime) and its current integration interval (Current-

IntegrationInterval). The CurrentIntegrationInterval is required to maintain

SimulationT ime, by continuously accumulating it, and also to predict the next ar-

rival time of a task while SimulationT ime is needed in handling precedence con-

straints among tasks, as explained in 2.2.2.1.

The formal definition of task type is therefore a 5-tuple 〈WCET,WCCT,DL,-

CII, ST 〉, where

• WCET ,WCCT are static attributes representing the task’s WorstCaseExec-

Time and WorstCaseCancelT ime respectively

• DL,CII represent the task’s Deadline and CurrentIntegrationInterval and

are assigned values at runtime by the master

• ST is the task’s current SimulationT ime being constantly updated using the

CurrentIntegrationInterval

2.2.1.2 Task Automata

The next thing required in our task model is the task arrival patterns. To define the ar-

rival pattern of tasks, a task automata will be used which is actually a timed automaton

with some locations annotated with task(s) [24]. A transition to a location annotated

with a task means that the task used in annotation now leaves the idle state and moves

to waiting state. One minor modification in our case is that before each task get-

ting ready for execution, the master will set the CurrentIntegrationInterval and

Deadline parameters of that task.

Typically, task automata is a collection of automata where each task automaton can

define arrival pattern of one or more tasks. For example, a task automaton for a simple

periodic simulation task is shown in figure 2.3. The figure shows that the first instance

of the periodic simulation task, TaskX, is released after an initial offset time once the

system is initialized. From then onwards, the automaton remains in one location and

waits for a duration equal to the task periodicity at the end of which it loops back to

the same location to release the next instance of TaskX. This continues until the task’s

25

Figure 2.3: Task Automata for a simple periodic simulation task TaskX

clock variable indicates that end of simulation time is reached at which the automaton

terminates at Stop location.

2.2.1.3 Precedence DAG

The precedence constraints can be naturally represented as DAG where the nodes

represent the tasks and the edges between them denote the presence of a precedence

constraint. Use of DAG means that cyclic constraints are not allowed. The importance

of restriction on cyclic precedence relations is explained in subsection 2.2.2.1. As

discussed in subsection below, the proposed analysis framework have two kinds of

precedence constraints and so the precedence DAG for our framework needs to have

two types of edges to represent the two kinds of constraints.

26

2.2.2 The Schedulability Analyzer

We shall now turn our attention to the second building block of our framework that

corresponds to the second part of co-simulation master, that is the scheduler. As men-

tioned earlier, our goal in this work is not to schedule tasks but to simulate scheduling

decisions and verify schedulability. Hence, it is more precise to term this part as

Schedulability Analyzer instead of scheduler. This Schedulability Analyzer part will

primarily consist of two timed automata: one that simulates majority of scheduling

decisions and also checks the condition of unschedulability, and the second that sim-

ulates just one critical scheduling decision; that of handling cancellation of an active

task instance due to release of some binding precedent task (See sub-section 2.2.2.1

for definition of binding precedent task). We shall call the first automaton as Schedu-

lability Verifier (SV) and the second as Cancellation Handler (CH).

Before proceeding to describe the construction of SV and CH, it is necessary to de-

scribe how our framework handles precedence constraints among tasks. This new

precedence handling mechanism is the basic difference between the FY framework

and our proposed framework, therefore, we shall build upon this difference and intro-

duce the related concepts and terms as we go forward.

2.2.2.1 Precedence Handling in Proposed Framework

We shall first briefly describe how precedence constraints are handled in the existing

FY framework. This description will be followed by a discussion on shortcomings

of this precedence handling mechanism before presenting our proposed method to

handle precedence constraints for the case of multi-frame real-time co-simulations.

Precedence Handling in FY Framework

The FY framework uses a matrix of Boolean variables to define precedence be-

tween tasks of a given task set. The framework defined just one kind of precedence

constraint that was mandatory for a dependent task to satisfy. The n × n Boolean

matrix represented a precedence DAG G, where n is the number of tasks and each

27

matrix entry g is either true or false with gi,j = true if a task Pi must be preceded

by task Pj and false otherwise. The precedence constraint for a task Pi is therefore,

just the conjunction of all gi,j , such that 1 ≤ j ≤ n. Another matrix of size n × n

is used where every time a task Pj finishes execution, all gj,i are set to true and gi,j

to false, where 1 ≤ j ≤ n, indicating that all tasks that are dependent on Pj can

proceed for execution while all tasks preceding Pj must execute at least once before

the next execution of Pj .

Shortcomings of FY Framework

The problem with this relatively simple precedence handling is that it forces each

precedence constraint to be satisfied every time and that the real-time schedulability

under these mandatory precedence constraints does not depend only on the Worst-

CaseExecT imes of tasks but also on the fact that all related tasks either have same

periodicity, i.e. they become ready for execution all at the same time, or the precedent

tasks have periodicity shorter than that of dependent task. If this is not true, that

is, a dependent task P has a shorter periodicity and hence shorter deadline than its

preceding task Q; then as shown in Fig. 2.4, no matter how short is the WorstCase-

ExecT ime of P , a mandatory precedence constraint between P and Q will cause

each successive P instance to finish more closer to its deadline and eventually causing

a P instance (P4 in Fig. 2.4) to miss its deadline. The vertical lines in the figure denote

the release time of each task instance and also serve as the deadlines for the previous

task instance.

28

Figure 2.4: Binding precedence between tasks with different periodicities

Proposed Precedence Handling

The target of our proposed framework are real-time co-simulations with tasks hav-

ing different frame sizes. In such multi-frame real-time co-simulations, contrary to

the assumption in the FY framework, the tasks can, and usually do, have differ-

ent periodicities. Another point of concern is that normal data dependency kind of

precedence constraints among periodic simulation tasks need not be a binding prece-

dence constraint since in many cases it is possible to advance the simulation with

extrapolated old data to ensure that no task misses its deadline. However, this should

not mean that the co-simulation master will always ignore the data dependency con-

straints among periodic simulation tasks because it is always desirable, for the sake

of accuracy of the simulation, to wait for fresh outputs from the preceding tasks if

the dependent task’s deadline permits it. In other words, if there is a possibility of

improving the simulation accuracy by delaying a task’s execution without violating

its deadline, then the master should go for the delayed execution.

Of course, not all the precedence constraints will give co-simulation master the free-

dom to choose between delayed or immediate task executions. That is, beside the

non-binding precedence constraints, there will be some precedence constraints that

are mandatory and for these constraints the master doesn’t have the option of go-

ing ahead with the execution of the dependent task before the precedent task finishes

execution. We envision these binding precedence constraints to be restricted to the

29

case where a task is dependent upon some sporadic task or a periodic task that pro-

duces random outputs at each invocation. The examples of such tasks include event

handling tasks or one-time tasks required during mode-transitioning. Since it is not

possible to use old outputs from these tasks, the dependent task must wait until their

completion.

So, now we need to have two kinds of precedence constraints in our real-time co-

simulation system: one that defines a non-binding relation and is commonly used to

represent precedent constraints among periodic simulation tasks, and the other that

defines a binding precedence relation where the precedent task is usually a sporadic

task. We will differentiate these two precedence constraints as non-binding constraint

and binding constraint.

Like the FY framework, an n× n matrix is used to represent the two kinds of prece-

dence constraints where n is equal to the number of tasks in the system. Each entry

Ei,j in the matrix denotes whether or not there is a precedence constraint between

tasks Pi and Pj and also the type of constraint, if any. Therefore, Ei,j ∈ {B,N, Ø},
where Ø denotes No constraint while symbols B and N denote the existence of a

binding or non-binding constraint respectively.

However, the information represented in the above matrix is not enough for our pur-

poses. There must be a way for co-simulation master to determine how much the

execution of the task under analysis has to be delayed because of some binding con-

straint; or for the case of non-binding constraints, whether or not it is suitable to

wait at all for a non-binding precedent task to finish, and if yes, then how long. The

FY framework does not provide any information for the master to make such a de-

cision. Our framework will improve upon this and will help the master in deciding

between accuracy and real-time requirements by providing the necessary information

described below.

Additional Information Required for Proposed Precedence Handling

1. Remaining Response Time: One important piece of information is the Remain-

ing Response Time (RemResponseT ime) of each precedent task Q at the time of

30

arrival of the dependent task P . The master can use this information to determine if

execution of P can be delayed - to get fresh outputs from the precedent tasks without

violating P ’s deadline - by checking the following condition,

Deadline(P) ≥ RemResponseT ime(Q) + WorstCaseExecT ime(P) (21)

The amount of time that a task P can wait is calculated by considering the largest

RemResponseT ime of a precedent task Q for which condition (21) is true.

But the notion of RemResponseT ime presumes that the actual response time

(ResponseTime) is already known and so the RemResponseT ime of an active task

Q can be calculated as,

RemResponseT ime(Qactive) =ResponseT ime(Qactive)

− TimeSinceActive(Qactive) (22)

And for the tasks that are currently idle, the RemResponseT ime will be,

RemResponseT ime(QIdle) =TimeToNextArrival(QIdle)

+ ResponseT ime(QIdle) (23)

The important question now is that is it possible to find the values of all the vari-

ables on the right-hand sides of the above two equations? Fortunately, the fact that

precedence constraints are restricted to be represented as DAG makes it possible to

calculate the ResponseT imes of all the precedent tasks. Since a DAG means there

are no cyclic precedence constraints among the tasks, it is possible for us to sort the

tasks topologically and list them such that any task Q that is defined as precedent of

a task P will come ahead of P in the list. This sorted list resembles a list of tasks

with fixed priorities and enables us to use the technique employed for fixed priority

31

tasks by Fersman et al. in [21] which was actually based on a much older technique

used for calculating worst case response times using rate-monotonic analysis for pe-

riodic tasks [29]. In this technique, a task’s worst case response time is calculated by

adding its execution time and the time that it spends while waiting for other higher

priority tasks to finish. We can use a technique similar to that of [21] and use our

framework to analyze the tasks in order of the topologically sorted list so that at the

time of analyzing a task P , we can be sure that all its precedent tasks have already

been analyzed (since all of them are ahead of P in the sorted list) and their respective

ResponseT imes have been calculated. A task should be analyzed for the entire sim-

ulation scenario defined by the given task automata before moving on to the analysis

of next task in the list.

A clock variable is required in our SV timed automaton to determine TimeSinceActive

by accumulating the time starting from the instant when a task Q became active. For

determining the TimeToNextArrival of an idle task, the task’s CurrentIntegration-

Interval parameter can be used since for periodic tasks in a real-time simulation

CurrentIntegrationInterval is equal to their periodicity. Therefore,

TimeToNextArrival(QIdle) =CurrentIntegrationInterval(QIdle)

− TimeSinceActive(QIdle) (24)

Since we need a separate clock for each active and idle precedent task, it seems that

number of clocks in our timed automaton for analysis will be large despite the fact

that we were hoping to use as less clocks as possible in our timed automaton just as

in [21]. This is undesirable because the complexity of performing model checking

on a timed automaton increases rapidly as the number of clock variables increases.

Fortunately, we were able to minimize the number of clocks in our automaton and the

actual number of clocks required is discussed in section 2.2.2.3.

2. Simulation Time: Besides RemResponseT ime of the precedent task, there is

one other parameter that needs to be taken into consideration by the master of a multi-

frame real-time co-simulation before deciding to delay the execution of a dependent

32

task. This parameter is the SimulationT ime of tasks. We know that in any simula-

tion, SimulationT ime of a simulation task is advanced in steps equal to its current

periodicity or integration interval. But in a multi-frame co-simulation, tasks have dif-

ferent periodicities and therefore, their SimulationT imes are not in synchrony with

each other. For example, consider tasks Q and P running with the periodicities of

3msec and 5msec respectively. At the start of the simulation, both tasks will start

with simulation-time zero. But in subsequent simulation loops, the simulation time

of Q will increment as 3msec, 6msec, 9msec and so on, while the simulation time of

P will increment with step size of 5 as 5msec, 10msec, 15msec. The two tasks will

re-synchronize with each other at the least common multiple (LCM) of their period-

icities. Now, if task P is dependent upon task Q then it means that it will require Q’s

output every time it executes, i.e. at simulation times 5msec, 10msec and so on. But

the Q only produces outputs at multiples of 3msec. In such a scenario, the master

is responsible to handle this precedence relation in a way that can counter this lack

of synchronization. As discussed earlier, the master can either decide to use old or

extrapolated outputs from the precedent task Q in order to meet P ’s deadline or it can

wait for fresh Q outputs. This decision depends upon three possible scenarios at the

time of task P ’s arrival. These scenarios are described below,

Case 1: If SimulationT ime of Q has already moved past the SimulationT ime of

P then the master should use interpolation which provides better approximation

than extrapolation.

Case 2: If Q’s SimulationTime is less than P ’s at the time of latter’s arrival then there

can be two sub-scenarios based on task P ’s deadline,

• If P ’s deadline is such that it satisfies the condition given in (21) then

the master should delay execution of task P and employ interpolation

afterwards.

• If P ’s deadline does not satisfy condition (21) then the master should

proceed ahead with extrapolated outputs.

Case 3: In the last case, where SimulationT imes of Q and P are equal, the master

can use the outputs of Q directly without any need of extra- or inter-polation.

33

Above discussion shows that the only case where a master needs to check if delaying

execution of P for a periodic precedent task Qperiodic will help in simulation accuracy

is when,

SimulationT ime(Qperiodic) < SimulationT ime(P) (25)

This means that condition (21) needs to be evaluated only for those periodic precedent

tasks which satisfy this condition (25).

However, condition (25) needs to be modified for the case of sporadic precedent tasks.

It is because sporadic tasks do not have a notion of simulation-time defined for them.

Therefore, instead of simulation-time, we consider the release-time for the sporadic

precedent tasks and define the condition as follows,

ReleaseT ime(Qsporadic) ≤ SimulationT ime(P) (26)

For non-binding precedent tasks, whether periodic or sporadic, condition (25) or (26)

serve as the pre-condition that must be satisfied before checking condition (21) to

decide if the execution of dependent task should be delayed. On the other hand,

for binding precedent tasks, condition (25) or (26) alone provide the “necessary and

sufficient” condition to delay execution of the dependent task.

Fig. 2.5 below can help to understand how a master will handle non-binding con-

straints among periodic simulation tasks. Execution trace of two task types P and

Q are shown in the figure. The real-time instants on the of P and Q’s execution

timeline are denoted as RTQi and RTPi respectively while the simulation-time in-

stants are shown on the same timelines as STQi and STPi. It is important to note

that the real-time instants and simulation-time instants, in each task’s execution trace,

with the same subscripts denote the same time instant in their respective timelines,

e.g. RTQ2 = STQ2. As shown in the figure, instances of a task Q, shown as

Q1, Q2 and Q3 are released for execution at real-time instants RTQ1, RTQ2, and

RTQ3 respectively. Instances of another task P , represented as P1, P2, P3 and P4

are released for execution at real-time instants RTP1, RTP2, RTP3 and RTP4 re-

spectively. Each release time instant is the deadline for the previous task instance, i.e.

previous task instance should have completed execution before the new instance of the

same task is released for execution. The width of a task ellipse is equal to the task’s

34

WorstCaseExecT ime and so represents its executing state. The time between the

points when a task instance finishes execution and when a new instance is released by

the master is when the task is considered to be Idle. Task SimulationT imes are also

overlapped on the time line but SimulationT ime values are shown only at points

where real-time and task SimulationT ime are not equal to each other. Assume that

task P uses some data produced by the task Q and is therefore dependent on it while

task Q has no precedent constraints.

• To start with, both Q1 and P1 use the initial values of their inputs and start

execution immediately.

• By the time instance P2 is released for execution at RTP2, task Q1 has already

reached SimulationT ime value STQ2 such that STQ2 > RTP2, therefore,

P2 does not need to wait for anything and it can proceed by interpolating Q’s

outputs at SimulationT imes RTQ1 and RTQ2 for the time RTP2.

• When instance P3 is released at real-time instant RTP3, it is determined that

RemResponseT ime of already executing Q2 and WorstCaseExecT ime and

Deadline of P3 satisfies the condition (21). So P3’s execution is delayed and

it remains in the waiting state for a duration d at the end of which Q’s output

values at SimulationT ime STQ2 and STQ3 are interpolated to calculate the

input values at RTP3 for the task P3.

• For task instance P4, waiting for instance Q3 to finish execution is not possible

because in that case instance P4 will result in violating its deadline as shown

by the dotted task P4 ellipse. Therefore, in this case only the outputs at time

RTQ3 are used and are either extrapolated or used as is for P4 instance to start

execution immediately.

• For the case where instances of both Q and P are released at the same real-

time instant (not shown in this figure), neither extrapolation nor interpolation is

required and P ’s instance can directly use Q’s outputs.

The next section presents some possible simplifications to the framework in order to

reduce its time and space requirements when implemented in UPPAAL. The part of

the work discussed up till now has been published in [3].

35

Figure 2.5: Handling of Non-binding constraints

2.2.2.2 Simplifications

We shall now see if it is possible to re-visit and simplify some of the concepts defined

above in order to get an analysis framework that has same features as described above

but is lesser in complexity.

1. Precedence Handling Simplification

Recall that in previous sub-section we argued that to handle precedence constraints

the SV automaton needs to calculate RemResponseT ime of all precedent tasks us-

ing equations (22), (23) and (24). Consequently the automaton needs to define a

clock variable to continuously maintain TimeSinceActive for each precedent task.

Since number of clock variables are a major reason for increase in time and space

requirements of UPPAAL’s verification engine [47], we wondered if it is possible to

reduce the requirement of these clock variables. This leads us to the question: do

we need to calculate the RemResponseT imes of every precedent task while ana-

lyzing a dependent task for real-time schedulability? Fortunately, the answer to this

question is negative, that is, we do not need to calculate RemResponseT imes of all

36

the precedent tasks of the task under analysis. In the following, we shall fist prove

that a dependent task does not need to wait for any precedent task, binding or non-

binding, that is idle at the time of its arrival. Consequently, we do not need to calculate

RemResponseT ime of any idle precedent task.

Proof: No instance of a task under schedulability analysis is ever required to wait

for any precedent tasks that are idle at the time of its arrival.

To prove the above statement, we refer to a couple of facts given below

1. Fact 1: The condition (25) serves as the pre-conditions which a precedent task

that needs to be waited upon must satisfy

2. Fact 2: In real-time simulations, the simulation-time of a task must keep ahead

or be at least equal to the real-time at all times

We claim that the condition (25) of precedent task’s simulation-time being less than

the simulation-time of dependent task is only true when a precedent task is active at

the time of dependent task’s arrival. Proof of our initial statement logically follows

the proof of this claim. Hence, if we can prove this claim then the inteded statement

also stands proven. The arguments provided below prove our claim,

1. Consider a task S that has reached a simulation-time t2 by starting a numerical

integration step at an earlier time t1

2. Fact 2 implies that it is not possible for the master to pass through time instant

t2 and execute any task other than S at some real-time instant t3, where t3 > t2,

without first executing task S’s next instance at t2 such that this new instance

will bring S’s simulation-time to a value which is either greater than or equal

to t3

3. This means that at real-time instant t3, task S can either be idle having already

reached some simulation-time greater than or equal to t3 or it can be active such

that the active instance will take S’s simulation-time from t2 to a value greater

than t3

37

4. The conclusion in (iii), reached for real-time instant t3 and task S, can be gen-

eralized for any real-time instant and any task in a simulation. So, in general

terms, at any real-time instant t during a simulation, every task in that simula-

tion is either active with its simulation-time less than t or is idle having reached

a simulation-time greater than or equal to t

5. This generalized result can again be re-stated for the special case of tasks that

are related with precedent constraints as,

At any real-time instant at which a dependent task is released, every precedent

task is either active with its simulation-time less than that of dependent task’s

simulation-time or is idle having reached a simulation-time greater than or

equal to that of dependent task.

This conclusion is same as our original claim and proves that only active prece-

dent tasks have simulation-time less than a dependent task at the time of depen-

dent task’s arrival

Fig. 2.6 graphically shows how the simulation-times of active and idle precedent tasks

are related with simulation-time of dependent task. The figure is similar to fig. 2.5 in

that it shows execution traces of tasks P , Q and R over their timelines. The timelines

represent continuous real-time and are drawn such that they are in sync with each

other which means that any vertical line cuts the timelines at exactly same real-time

instant. Simulation-times are also shown on the same timelines, however, these are

not continuous and increment in discrete steps whenever a task finishes execution.

Solid vertical lines denote the release time of a task as well as serve as the deadline for

previous execution of the same task. Other conventions regarding real-time instants

and simulation-time instants are also same as in Fig. 2.5, that is,

• The label for real-time instants of a task start with RT while simulation-time

instants start with ST

• Each time instant shown has a subscript and the real-time and simulation-time

of a task with same subscript denote the same time-instant value

38

Figure 2.6: Only active precedent tasks satisfy pre-condition (25)

While reading Fig. 2.6, it is important to remember that a simulation-time with sub-

script i might appear earlier in the timeline but it has a value that is actually equal to

the real-time instant shown with subscript i on the same timeline.

Let us assume that task R is currently under analysis and it uses some inputs from

two non-binding precedent tasks P and Q. The execution of R1, the first instance of

R, does not need any explanation as it simply uses default inputs. However, at time

RTR2 when R2 is released for execution, the master needs to see if it can wait for

any of the precedent task P or Q. The relationships between current simulation-time

of task R with those of Q and P at release of each R’s instance other than R1 are

also shown in the figure. These relationships, according to condition (25), determine

which precedent tasks need to be checked by the master for a wait time calculation.

It is clear that at each instant of R’s release, our claim that simulation-time of only

active precedent task can be less than that of dependent task stands true.

Now that we have established that RemResponseT ime of only active precedent

tasks is relevant for the purpose of schedulability analysis, a careful look reveals

that we can do away with some active precedent tasks as well. It is easy to note

39

that in case of binding precedent tasks, calculating the RemResponseT ime of only

one precedent task, which is active at the time of dependent task’s arrival and is

going to take the longest time to finish, is sufficient since it gives master the required

information to calculate the mandatory waiting time. Thus we can safely disregard

the binding precedent tasks that are active but are going to finish earlier than some

other binding task.

This is where our effort to simplify precedence handling to reduce the required num-

ber of clock variables ends. Unlike in the case of binding constraint, where only the

longest running binding precedent task was important, we may need to test Rem-

ResponseT ime of every non-binding precedent task for condition (21). This is nec-

essary since there can be a situation where in order to ensure the dependent task’s

deadline, it is only possible to wait for few non-binding precedent tasks to finish

while ignoring other precedent tasks with higher RemResponseT imes.

2. Task Type Definition Simplification

Recall that in section 2.2.2.1, the sole purpose of including SimulationT ime at-

tribute in Task type definition was mentioned as to determine which precedent tasks

need to be checked for wait time calculation of a dependent task. But now the above

discussion about idle and active precedent tasks leads us to conclude that we do not

need to maintain SimulationT imes of the tasks since the purpose for which these

were used was automatically served by considering only those precedent tasks that are

active at the time of arrival of task that is under analysis. At this point, we can safely

strike the SimulationT ime parameter out of task type definition so now we have just

four attributes in it; the task WorstCaseExecT ime, task WorstCaseCancelT ime,

Deadline and the CurrentIntegrationInterval. But recall again that Current-

IntegrationInterval was only used to maintain SimulationT ime of tasks and to

calculate TimeToNextArrival of idle precedent tasks. Now SimulationT ime is

not needed and there is no need to check TimeToNextArrival as well as we do not

need to check the idle precedent tasks any more. Therefore, CurrentIntegration-

Interval is no longer required and can be removed from Task type definition. So, the

final task type definition will have just three indispensable attributes of WorstCase-

40

ExecT ime, WorstCaseCancelT ime and Deadline. The new simplified definition

of task type is then just a 3-tuple 〈WCET,WCCT,DL〉.

Precedent Task sets: A Solution to a problem with the proposed simplifications

In the last sub-section, we have concluded that there is no need to maintain simulation-

times of every precedent task and it is sufficient, at the start of execution of a depen-

dent task, to check only the precedent tasks that are active at that time. There was no

other qualification mentioned in the discussion leading to this conclusion, therefore,

all active precedent tasks are qualified to be considered for waiting time calculation.

However, as we will see below, for a particular system state, considering all prece-

dent tasks for waiting time calculation may not only be redundant but can also lead

to incorrect schedulability analysis. In the discussion below, we will explain this spe-

cial system state and the reason why it is problematic to consider all active precedent

tasks when system is in that state. Afterwards, we will propose a solution using the

concept of Precedent Task sets.

The Problematic System State Recall that in section 2.1 we said that our system

model allows multiple instances of the same task type to be active at the same time

and that a task waiting queue keeps track of these multiple active instances. This

system feature may lead to the problematic system state where some active precedent

tasks should not be considered for waiting time calculation. The problematic system

state is defined as the state having following two particular properties,

1. There are one or more instances of dependent task waiting in the queue

2. There is at least one active precedent task in the system whose simulation time

(or in case of sporadic precedent task, release time) is greater than the simula-

tion time of some dependent task instance in the queue

Here, we present an example scenario which results in the problematic system state.

As mentioned in section 2.1, this system state can be reached when the scheduling

algorithm optimistically releases new instances of a task without waiting for previous

instance to finish. Consider there are three tasks in a system with following attributes,

41

Task P:

Periodicity: 1.2 msec

Framelength: 2.4 sec

WCET: 200 msec

WCCT: 50 msec

Task Q:

Periodicity: 600 msec

Framelength: 1.2 sec

WCET: 500 msec

Task S:

Periodicity: Sporadic

WCET: 300 msec

Assume task P depends upon the task Q and an event handling sporadic task S and

that we are currently analyzing the schedulability of task P .

We know that in real-time simulations, the scheduler or simulation master must syn-

chronize the simulation-time of a task with real-time at the end of each of the task

frame. This means that in our example scenario, the master needs to synchronize the

two times at the end of each 1.2 second interval. We assume that the master in our

example system schedules tasks optimistically and, between the time-instants where

it needs to synchronize with real-time, it runs the simulation as fast as possible.

We shall define the current system state by the current set of active task instances,

both analyzed and precedent. For the dependent task type that is under analysis,

we differentiate between two stages of active task instances: one that is currently

executing and others that are waiting in a queue. Therefore, we have three kinds of

active task instances that define the system state: Executing task instance, Tasks in

waiting queue and Active precedent tasks.

Let us now assume a particular simulation scenario and see how the system state

changes as the simulation proceeds. The following simulation trace shows the task

instances coupled with the simulation-time value at the time of their release, also

referred to as release-time.

• At the start, instances P1 and Q1 are released at simulation-time = real-time =

0.0

State 0 at ST = RT = 0msec:

– Executing task instance: (P1, 0.0)

– Waiting task queue: EMPTY

– Precedent task list: (Q1, 0.0)

42

• The master takes the next steps almost instantly, proceeding the simulation-

time to 600 msec and scheduling the next Q instance optimistically.

State 1 at ST = 600msec ; 0.0sec < RT :

– Executing task instance: (P1, 0.0)

– Waiting task queue: EMPTY

– Precedent task list: (Q1, 0.0), (Q2, 0.6)

• Now as the master waits for real-time to catch up with simulation time at 1.2

secs assume that an event "s" occurs when real-time reaches 200 msec trigger-

ing an event handling task S. Since P is dependent on task S, the master now

needs to rollback its simulation-time back to 200msec, canceling all tasks that

were released at simulation-time greater than 200msec. The master also cancels

the currently executing P instance and while the cancellation is in progress, it

adds two more P instances to the queue; one which takes P ’s simulation-time

up to the event-instant and the second which further proceeds P ’s time till the

end of canceled integration interval. Note that the second P instance must be

preceded by an instance of binding precedent task S. The system state at this

point is,

State 2 at ST = 200msec ; RT = 200msec:

– Executing task instance: (Pcancel, 0.0)

– Waiting task queue: (P1, 0.0), (P2, 0.2)

– Precedent task list: (Q1, 0.0), (Sb, 0.2)

• The master again proceeds the simulation-time without waiting for previous

task instances to finish and schedules the next tasks optimistically,

State 3 at ST = 600msec ; 200msec < RT < 250msec:

– Executing task instance: (Pcancel, 0.0)

– Waiting task queue: (P1, 0.0), (P2, 0.2)

43

– Precedent task list: (Q1, 0.0), (Sb, 0.2), (Q2, 0.6)

At this point it can be easily checked that system states 2 and 3 in the above simulation

scenario exhibit the two properties defined for a state to be considered problematic.

Thus, states 2 and 3 both are problematic system states.

To understand the problem with such system states, recall that while presenting prece-

dence handling simplifications we proved that all precedent tasks that satisfy condi-

tion (25) or (26) must be active at the time when dependent task starts execution. As

a result of this proof, it was decided that we do not need to evaluate either condi-

tion (25) or (26) explicitly and only need to see if a precedent task is active at the time

of waiting time calculation and then proceed with its RemResponseT ime calcula-

tion followed by evaluation of condition (21). But the observations made below show

that when the system is in problematic state the reciprocal of the property proved

above is not true. That is, if the system is in problematic state then there can be

some precedent tasks that are although active but still do not satisfy condition (25) or

(26). The said observations can be made by considering system state 2 or 3 described

earlier,

• At State 2: Tasks’ release times show that for task instance P1, both active

precedent tasks Q1 and Sb do not satisfy conditions (25) and (26) respectively

and therefore should not be considered for waiting time calculation.

• At State 3: The precedent tasks Q1 , Sb, and Q2 do not satisfy conditions

(25) or (26) for dependent task P1 while Q2 does not qualify condition (25)

for P2. Again, these precedent tasks should not be considered for waiting time

calculation despite of them being active at the time.

Hence evaluating all active precedent tasks at the time of dependent task’s arrival may

lead to incorrect schedulability analysis and, therefore, the analysis approach needs

to be rectified accordingly.

Precedent Task sets The above discussion suggests that we need to differentiate

between a precedent task that was released before the release of a particular depen-

dent task instance and the one that was released afterwards. An obvious approach

44

for the sporadic precedent tasks is to tag each released task with its release time and

evaluate condition (26) to decide if an active precedent task should be considered for

waiting time calculation or not. This solution, however, is not possible because of

an implementation issue in UPPAAL. The clocks in UPPAAL are special variables

which cannot be saved in any other kind of variable. This means that the simula-

tion clock value at release instant of an task cannot be saved as a tag, making this

solution unimplementable. Another possible solution is to maintain a separate clock

for each task to maintain every task’s simulation-time. Simulation-times then can be

used to see if a precedent task satisfy condition (25) for a dependent task instance

in the queue. However, we still want to avoid simulation-times as maintaining these

clocks for all precedent tasks as well as for the task under analysis adds unnecessary

complexity to SV.

A simpler solution to differentiate among precedent tasks is to divide them into sets

such that each set is composed of only those tasks whose release-times lie either be-

tween the release times of two consecutive dependent task (say P) instances in the

queue or are greater than that of last P instance in the queue. For the case of ac-

tive non-binding precedent tasks, let us name these different sets as ANBTasksetk,

where 0 ≤ k ≤ maxQsize. Here, maxQsize is a pre-defined parameter that de-

fines the maximum size of the queue that holds the waiting dependent task instances.

Each non-binding task, when becomes active, is then placed in the set ANBTaskseti

where i is the current number of P instances waiting in the queue and therefore

ANBTaskseti represents a set of active non-binding precedent tasks which became

active after the ith P instance in the queue but before the (i+1)th P instance. Clearly,

i cannot exceed maxQsize and so the number of ANBTasksets is also bounded by

maxQsize + 1 for queue sizes ranging from 0 to maxQsize.

Also, note that the need for differentiating between active precedent tasks means that

we have to change the handling of active binding precedent tasks as well. Now we

cannot accomplish our analysis goal by keeping track of just one active binding prece-

dent task, i.e. the longest-running one. Rather, just like non-binding precedent asks,

we need to divide the binding precedent tasks into task sets termed as ABTasksetk,

where again 0 ≤ k ≤ maxQsize. Again, members of each binding precedent task set

ABTaskseti have the property of having been arrived at a time when i instances of

45

P are already waiting in the queue. This means that we need to keep track of multiple

active binding tasks such that each tracked binding task is the longest-running one

selected from a set of active binding precedent tasks. The longest-running task from

any ABTasksetn is referred to as LRBindingTaskn.

Although there can be multiple P instances waiting in the queue for execution, but

the waiting time calculation is only done for the P instance which is at the head

of the queue. This means that every waiting time calculation depends only upon

the precedent tasks in ANBTaskset0 and the LRBindingTask0; since these are the

only active precedent tasks that arrived before the P instance at the head of the queue.

After performing the waiting time calculation, as the P instance is serviced out of

the queue, the ANBTAskset0 and LRBindingTask0 are cleared and the precedent

tasks in ANBTasksetm and LRBindingTaskm are moved to ANBTasksetm−1

and LRBindingTaskm−1 respectively.

Figure 2.7 helps in visually explaining the implementation of precedent task sets.

The problematic states 2 and 3 are shown in the figure but with one difference; the

active precedent tasks are now associated with a TasksetNo tag instead of their re-

lease times. This new tag, maintained with each active precedent task instance, has

the value equal to the number of P instances waiting for execution at the time of

corresponding precedent task instance’s release. We termed this tag as TasksetNo

since it represents the task set the associated task belongs to. The tag also represents

the number of P instances in the queue that should be executed before the precedent

tasks in this task set can be considered for waiting time calculation. The TasksetNo

of each active precedent task decrements as the P instances leave the queue for ex-

ecution and so a time comes when its value becomes equal to zero indicating that

the this task-set can now be considered for waiting time calculation of the current P

instance at the head of the queue.

The sequence of actions performed to implement precedence handling using the con-

cept of precedent task sets is explained below as our example system moves from

State 3 to State 6 shown in figure 2.7.

• State 3: ST = 600msec ; 200msec < RT < 250msec :

46

Figure 2.7: Solution to the problem of determining which active precedent tasks to

consider using Task-sets

47

– State 3 ends when Pc finishes execution at RT = 250msec

– Waiting time for P1 is then calculated without considering any precedent

task since none of them has TasksetNo tags as zero.

• State 4: ST = 600msec ; 250msec ≤ RT < 450msec :

– Pc is serviced out and P1 goes into execution

– TasksetNo tags of precedent tasks are decremented by 1.

– The updated TasksetNo of Q1 and Sb is now 0, therefore, these tasks be-

comes eligible to be considered for wait time calculation of next P in-

stance, P2

• State 5: ST = 600msec ; 450msec ≤ RT < 500msec :

– P1 is serviced out at RT = 450msec

– RemRsponseT ime of Q1 and Sb is evaluated to check if execution of P2

should be delayed. Since Sb was released when RT = 200msec and Sb’s

WCET is 300 msec, P2 must wait for another 50 msec.

• State 6: ST = 600msec ; RT = 500msec :

– P2 goes into execution

– At RT = 500msec both Q1 and Sb finishes execution and so they are

deleted from the list of active precedent tasks

– TasksetNo tag of remaining active precedent task, i,e, Q2 is decremented

by 1

– Q2 can now be considered for delayed execution of any future instance of

task P

2.2.2.3 Other Considerations in SV Automaton Design

Scope

The timed automaton that we define for schedulability analysis is termed as a Schedu-

lability Verifier (SV) as it basically verifies schedulability of a task type and checks

48

if it is possible for any of its instance to have a response time greater than its as-

signed deadline, and therefore is unschedulable. The SV described here is actually a

template automaton that needs to be instantiated for schedulability analysis of each

task type. Therefore, it is obvious that the schedulability analysis performed by any

instantiated SV checks the schedulability of only a single task type.

Like in the FY framework [21], SV encodes the problem of unschedulability as a

reachability problem but the difference between SV and the automaton defined in

[21] is that the SV checks all the task instances of the task type it is instantiated for

and an ERROR state is reached whenever any one of the task instance is determined

to be violating its deadline. Whereas the authors of [21] defined an automaton that

checks a single instance of a task type for unschedulability which was selected non-

deterministically for the analysis.

This SV feature of being able to analyze one task type at a time means that the analysis

procedure has to be repeated for every task type in order to ensure the schedulabil-

ity of the entire system. However, an instantiated SV analyzes the entire simulation

scenario in a single step, that is, all the instances of the analyzed task type that are

executed in the given simulation scenario are checked for schedulability in single

analysis iteration and any task instance can be declared as unschedulable if it causes

the SV to reach the ERROR location. If a task is found schedulable then we can pro-

ceed with the next task in the topological sorted order of precedence DAG. But before

proceeding to next step, the SV needs to save an important piece of information from

current analysis step. It needs WorstCaseRespT ime of the analyzed task type in or-

der to use it in the analyses of its dependent task types as discussed earlier. Therefore,

if all the task instances are found schedulable then a companion automaton, termed

RTCalc automaton, keeps track of response times and at the end gives us an integer

value which is the ceiling of the maximum response time experienced among all the

instances of the task under analysis, i.e.

WorstCaseRespT ime(Pi) = dmax1≤i≤n(ResponseT ime(Pi))e (27)

where n is the total number of instances of task type P executed in the analyzed

49

simulation scenario.

Number of Clocks

There are some constants defined in the each instantiation of SV which determine the

maximum number of clocks defined in that instance of SV. These constants are,

• maxQsize: This defines the maximum number of instances of the task under

analysis that can be in the queue at one time waiting for execution. A clock is

required for each waiting task.

• maxActiveNonBindingTasks: This constant defines the maximum number of

non-binding precedent tasks that can be active at any given moment. A clock is

required for each active non-binding task.

A clock is required for each binding precedent task as well. But the maximum number

of active binding precedent tasks that we may need to maintain is equal to maxQsize

as mentioned above. Therefore, the total number of clocks defined in a SV is,

nClocks = 2×maxQsize + maxActiveNonBindingTasks + 2 (28)

One of the two additional clocks is used to maintain the time since execution of the

longest running precedent task while the other is used in SV for multiple purposes;

e.g used in invariants to restrict the time spent in waiting or executing states or used

as guards when a task finishes waiting or execution.

Clock Count Growth

The complexity of a timed-automaton greatly depends on the number of clock used in

it. To determine the practical usability of any timed-automata based framework, it is

important to know the factors that cause the clock count to grow and also understand

how these factors affect the count. We shall now discuss the two parameters that ac-

cording to equation 28 effects the number of clocks in our framework i.e. maxQsize

and maxActiveNonBindingTasks.

50

i. maxQsize This parameter defines the maximum number of instances of the task

under analysis that can be waiting in the queue for execution. All the tasks in

the queue will be of the same type but may be with different relative deadlines.

The intuition says that since our system model assumes that we have a dedicated

thread for each task, therefore there should be no waiting queue. This intuition

is especially true if the scheduling algorithm is a conservative one so that the

co-simulation master does not schedule future instances of a task unless all pre-

vious instances of that task type have finished their execution. However, if we

consider a scheduling algorithm that can optimistically schedule task instances

without waiting for earlier instances of the same type to finish; and combine

it with our other three assumptions described in section 2.1 above then there

can be a situation where waiting queue is required. These three system as-

sumptions allow the tasks to have different frame lengths with no restrictions

and also allow task cancellations with the possibility that the task cancellation

process may need processor time for itself.

A frame of a task type can be single or multiple integration-steps long. Let

us first consider the case where a frame of the task under analysis P is one

integration-step long. Since in real-time simulations the simulation-time of a

task must be greater than or equal to the wall-clock time at the end of each

frame, therefore in case of tasks with one integration-step long frames, the

deadline for each task instance is equal to one integration-step which in turn is

equal to task periodicity. This means that that the real-time constraint dictates

that a P instance must finish execution before arrival of next P instance and so,

it seems, that queue will always be empty. There is, however, one exception.

Suppose the integration interval of the currently executing P instance, p1, is

from t1 to t2. Now during the p1’s execution an event, that also affects the task

P , occurs in the system at time instant te. A normal event handling mechanism

will now cause the p1’s execution to be canceled so that after cancellation the

task’s simulation-time is again t1. The scheduler will again schedule the same

task but with integration interval from t1 to te followed by a task with integra-

tion interval from te to t2. This second task instance will incorporate the effects

of the event that caused the cancellation. The frame length during this event

handling doesn’t need to change in terms of time interval but is temporarily

51

changed to two integration-steps long if measured in terms of integration-steps.

These two task instances are scheduled by the scheduler at a time when instance

p1 is in cancellation process, so both of these two P instances will be queued

for execution. So we see that even in cases of tasks with one integration-step

long frames, there can be a situation where task instances are waiting in the

queue. Specifically, to be able to handle one event during an integration inter-

val, the maxQsize must be equal to 2. This maximum length can, however,

increase if we allow handling of multiple tasks during one integration interval.

Formally, for a task whose frame length in one integration step,

maxQsize1 = nEvents + 1 (29)

Where,

• Subscript of maxQsize depicts the frame length of task in terms of num-

ber of integration steps

• nEvents is the number of events allowed to be handled in a single inte-

gration interval

However, the maximum queue size for tasks with frame lengths of more than

one integration interval can increase; but only if the task instances are again

scheduled optimistically. Since a designer can have maximum relaxation in

task deadlines when all task instances or integration-steps in a frame have the

end-of-frame as their deadlines. Therefore, theoretically it is possible for a

scheduler to schedule a task with frame length of n integration-steps n times

without violating any deadlines and so there can be an instant where waiting

queue might contain all n task instances. Also note that any event occurring in

the system after the scheduling of m ≤ n task instances can only affect the mth

instance. So, maxQsize for the case of task with frame length of n integration-

steps can be defined as the maximum queue size required to hold n waiting task

instances with the possibility of event handling in the last instance, i.e.

52

maxQsizen = (n− 1) + nEvents + 1

= n + nEvents (210)

Where subscript of maxQsize and nEvents are same as defined for eq 29

ii. maxActiveNonBindingTasks maxActiveNonBindingTasks defines the maxi-

mum number of non-binding precedent tasks that can be active at the time of

task instance’s arrival. This parameter can be inferred from the precedence

DAG given in task model by counting the number of non-binding incoming

edges to the node that corresponds to the task under analysis.

Schedulability Analysis Stage: Before or After Scheduler Design? We have de-

liberately looked over one practical problem with RemResponseT imes up till now.

Despite the fact that it is possible to calculate and maintain the ResponseT imes of

all instances of all precedent tasks during analysis, it would not be possible for the

co-simulation master at runtime to know the accurate value of the ResponseT ime of

a precedent task instance which is currently in Waiting state. This is simply because

ResponseT ime of each instance of a task is not a constant and depends on the state of

the system during the time it is active. Therefore, the precise value of ResponseT ime

of an instance of a precedent task is not known when it is time for master to calculate

its RemResponseT ime before scheduling a dependent task. Now, there are two ways

to look at the position of our real-time schedulability analysis in the entire real-time

co- simulation process.

• First, we can assume that a scheduler component of the master is designed first

and then we analyze it for real-time schedulability. In this case, the scheduler

has no other choice but to predict the ResponseT ime of a precedent task in

waiting state. This prediction can be based on the available history of the task

instances and can be estimated as the maximum ResponseT ime that has been

encountered so far. But such a prediction is not risk free as there is no guar-

antee that the ResponseT ime of current instance will not exceed the historical

maximum ResponseT ime. Alternatively, to be on the safe side, the scheduler

53

may assume the ResponseTime of waiting task to be equal to its Deadline, as-

suming that it will not violate its deadline. This approach is safe but can result

in a very pessimistic estimate of ResponseT ime for tasks with higher dead-

lines but lower WorstCaseExecT ime and consequently affects the accuracy

of the simulation negatively. The equation 22 in this case will be re-written as

follows,

RemResponseT ime(Pactive) = Predicted_RT (Pactive)

− TimeSinceActive(Pactive) (211)

For the analysis step in this first scenario, we need to emulate the Response-

Time predicted by the actual scheduler and cannot use the ResponseT imes of

precedent tasks found in the previous analyses steps.

• Alternatively, we can view the analysis stage to be taken place before the sched-

uler design. This will allow us to use the previous analyses of the tasks that

are defined as precedent to the one under analysis. We can find the worst-

case ResponseT ime (WorstCaseRespT ime) of a precedent task as we now

have a task’s ResponseT imes for the entire simulation scenario. Since the

ResponseT ime of particular task instance in a scenario can never surpass

its WorstCaseRespT ime in that scenario, therefore we can safely use the

WorstCaseRespT ime in place of predicted ResponseT ime in equation above

and so that it becomes,

RemResponseT ime(Pactive) =WorstCaseResponseT ime(Pactive)

− TimeSinceActive(Pactive) (212)

These WorstCaseRespT ime of each task can then be provided to next stage of

scheduler design which can use these to make more accurate scheduling decisions.

But if a task in a particular scenario is found to be unschedulable because of some

non-binding precedent tasks, this is probably because of the fact that although Rem-

ResponseT imes of the non-binding precedent tasks were calculated using their Worst-

CaseRespT imes and it was checked that these calculated RemResponseT imes will

not result in a violation of deadline using condition 21 but some event occurring after

54

the calculation of non-binding wait time rendered this wait time it to be too big and

caused the unschedulability. To schedule in such a scenario, we may need to adjust the

calculation of RemResponseT imes in the analysis stage such that the non-binding

waiting time calculated at actual runtime can never cause unschedulability. Since

the non-binding waiting time is equal to the largest RemResponseT imes value for

which condition 21) is true, therefore, we need to adjust the RemResponseT imes

of problem causing precedent tasks to a higher value so that for them the condi-

tion 21, after adjustment, evaluates as false. The RemResponseT imes calcula-

tion in equation 212 suggests that the only parameter that can used to increase the

RemResponseT ime values of a precedent task is its WorstCaseRespT ime for this

scenario. Therefore, what we need to do is to find the problem causing precedent task

and increase its WorstCaseRespT ime value such that it doesn’t satisfy condition 21

at that point of time anymore. In one of the subsequent sections, it is mentioned that

we actually maintain a list of active non-binding precedent tasks in descending or-

der of their RemResponseT imes. This increasing of WorstCaseRespT ime will

continue for each subsequent task in the sorted list until the simulation scenario be-

comes schedulable. Let us introduce a new term, ResponseT ime for Schedulabil-

ity (RespTmForSchedulability), and by RespTmForSchedulability we mean the

value that should be used instead of WorstCaseRespT ime in eq 212 for determin-

ing its RemResponseT ime to ensure schedulability of its dependent task in a partic-

ular simulation scenario. RespTmForSchedulability of a task can be equal to a task’s

WorstCaseRespT ime in that scenario or it can be a tuned up WorstCaseRespT ime.

So the equation that will actually be used for the calculation of RemResponseT imes

will be,

RemResponseT ime(Pactive) =ResponseTmForSchedulability(Pactive)

− TimeSinceActive(Pactive) (213)

Instead of providing RespTmForSchedulability of each task for each scenario sepa-

rately to the scheduler design stage, it seems more practical to calculate the maximum

of these RespTmForSchedulability of a task in every simulation scenario which

can be termed as the maximum RespTmForSchedulability (MaxRespTmFor-

Schedulability) of a task. This MaxRespTmForSchedulability of each task can

then be supplied as a parameter to the scheduler, which can then use these in its

55

RemResponseT ime calculations with confidence. We would like to take the second

view for our analysis effort and therefore, the scheduler in this case will be parametric

and will use the MaxRespTmForSchedulability values of the tasks supplied by the

analysis stage in making runtime decisions.

Finally, we are in a position to describe the construction of the timed automaton that

will analyze the real-time schedulability of a real-time co-simulation. Although real-

time scheduling in a system where each task has a dedicated execution thread seems

hardly any problematic but this seemingly trivial scheduling problem becomes inter-

esting when we allow tasks to change periodicities at runtime and also take prece-

dence constraints into account in addition to the usual timing constraints. The prece-

dence constraints expressed as DAG can be used to topographically sort the tasks

which can be considered equivalent to a sorting according to fixed priorities. It is

therefore possible to use the same principle as in [21] to define a timed automaton

for each task type that calculates the maximum response time of its instances. The

main result of [21] was that if tasks are executed according to fixed priorities then the

schedulability problem can be solved for each task type separately and for a single

processor can be encoded simply as the reachability problem of a timed automaton

using only two extra clocks (other than the ones already used in task automata defini-

tion).

2.2.2.4 The Schedulability Verifier (SV) Automaton Construction

Before proceeding with description of SV construction, let us first describe few data

structures that are used in the definition of SV.

• queue, a queue whose maximum size is defined by a SV parameter maxQsize

and has elements which are a tuple (clock, int). This queue keeps the instances

of P while they are waiting for execution. The clock member of each queue

element represents the time spent after the associated task instance became ac-

tive while int is the relative deadline value set by the co-simulation master at

the time of release of this task instance.

• ANBTasks, an array that holds all the active non-binding precedent tasks. As

56

discussed before, the active precedent tasks are divided into a number of task

sets, therefore for each element of ANBTasks array, we need to maintain

a 3-tuple (ANBTasksetNo., TaskId, clock). The array is maintained in a

doubly sorted manner with elements first stored in ascending order of their

ANBTasksetNo, and then the elements with the same ANBTasksetNo are

stored in descending order of their remaining response times.

• ABTasks, an array that holds active longest running binding tasks for each

ABTaskset. Since number of ABTasksets is bounded by maxQsize, there-

fore, size of ABTasks array is also equal to maxQsize. The fact that number

of ABTasksets and size of ABTasks have the same value at all times allows

us to use the index of each ABTasks entry as its ABTaskset number. There-

fore, the elements of the array are a tuple (TaskId, clock), where the clock

again maintains the time spent by the associated task while being active.

A timed automaton consists of nodes called locations and edges denoting transition

between locations. Below is the description of all the locations and the edges between

them as defined in the SV. We shall refer to the task type which is under analysis as

P while the precedent tasks that will feature in our discussion shall be referred to as

Q. Similarly, the automaton location names in the SV that are subscripted by p refer

to the task under analysis whereas other subscripts are used for locations dealing with

precedent tasks. See fig. 2.8 below for a graphical representation of the automaton.

1. Idle Location To start with, the SV is in Idle location. At this location there are

two possibilities for SV to change its state.

1. If an instance of the task under analysis, i.e. P releases for execution. This

event will cause the automaton to immediately move to Executing_p location

where it will remain for a duration which is either equal to P ’s WCET or in

case of task cancellation, the sum of the duration the task executed before can-

cellation and its WCCT.

2. If an instance of one of the precedent tasks releases. In this case, the SV moves

to location named Active_q. This location is where the SV remains until an

57

instance of P arrives or till all the active precedent tasks finish execution.

2. Active_q Location In Active_q location, the SV keeps track of all the ac-

tive non-binding precedent tasks and maintains them in appropriate ANBTasksets.

Moreover, it also tracks one, the longest-running, active binding task from each

ABTaskset. The time spent by these precedent tasks while being active is mea-

sured by a clock variable, separate for each precedent task. The SV keeps a check on

the clock associated with the active precedent task that has the largest response time

(WorstCaseRespT ime), calculated in previous SV analysis iterations (referred to

as rq in figure 2.8). As soon as this clock surpasses its associated task’s Worst-

CaseRespT ime, the SV moves back to Idle location, clearing all precedent task lists

indicating that there are no more precedent tasks that are active now.

The other outgoing transition from Active_q is taken when an instance of the ana-

lyzed task P is released with a relative deadline d. At this event, the SV moves to a

new location called BindingWait.

3. BindingWait Location This is the location where the SV emulates the delay

due to a binding precedence task that a co-simulation master must introduce be-

fore allowing the next instance of P to execute. The duration of this mandatory

delay equals the remaining response time of the longest-running binding precedent

task in ABTaskset0. Therefore the action taken with all incoming transitions to

BindingWait location is to call getBindingWait() function. This function checks

the LRBindingTask0, the longest-running binding precedent task for P ’s instance

at the head of the queue, and returns its WorstCaseResponseT ime calculated in

one of the earlier analyses steps as LRBindingTask_WCRT

As mentioned in discussion of Active_q location, a clock variable for each precedent

already tracks the time since that task is active. Therefore, using the clock vari-

able corresponding to LRBindingTask0 and the LRBindingTask_WCRT value

returned by the getBindingWait() function call, we can easily calculate the Rem-

ResponseT ime of LRBindingTask0 according to equation 212. However, to real-

ize this delay in UPPAAL, we didn’t perform this RemResponseT ime calculation

58

but rather used the following invariant for BindingWait location that ensures that

the time spent in this location equals the RemResponseT ime of LRBindingTask0.

The invariant used is,

LRBindingTask0.clk < LRBindingTask_WCRT

where LRBindingTask0.clk is the clock variable that tracks the time since LR-

BindingTask0 is active

The two events that can cause SV to leave the BindingWait location are,

• If clock LRBindingTask0.clk progresses to eventually cause the above invari-

ant to become false. In this case the SV moves to check if it can wait for any

active non-binding precedent task to finish execution.

• When the number of tasks in the waiting queue is one and if that only waiting P

instance is canceled by the co-simulation master. The SV, in this event, moves

to a location called Finishp.

4. CheckNBIndexToWait Location This is a location which can only be arrived

at via BindingWait location. When SV exits the BindingWait location due to the

location invariant becoming false, it needs to check if there are any active non-binding

precedent tasks that can be waited for before proceeding with the execution of next

P instance in the queue. The outgoing transition from BindingWait, which is also

incoming to CheckNBIndexToWait location, performs this action of checking the

active non-binding precedent tasks by calling getNonBindingWait(). This function

call returns the index of a non-binding precedent task from the list of active precedent

tasks. i.e. ANBTaskset0. The task at the returned index has a remaining response

time value such that it is the greatest by which the waiting P ’s instances can be de-

layed without violating any deadline. The getNonBindingWait() also returns the

ResponseTmForSchedulability of the same non-binding precedent task.

59

CheckNBIndexToWait location is defined as a committed location in UPPAAL

which means that no time can be passed while the automaton is in this location.

Therefore, the location is immediately exited by simply checking if the index returned

by the getNonBindingWait() function is a valid one which means that there is non-

binding precedent task that is worth waiting for, or if the returned index is invalid, i.e.

equals to -1, which shows that there is no non-binding precedent task to wait for. In

the first case, the SV moves to NonBindingWait location while in the second case,

the SV moves to Executing_p location.

5. NonBindingWait Location This location is entered if the index returned by get-

NonBindingWait() function call, described above, is greater than -1, i.e. valid. As

mentioned earlier, this index refers to a non-binding precedent task, within ANB-

Taskset0, which has the largest ResponseTmForSchedulability value, also re-

turned by the same function call, such that it is safe for all the instances of P in

the queue to wait for its completion. The invariant used is similar to the one in

BindingWait location but this time the above mentioned ResponseTmForSchedul-

ability is used on the right of the inequality instead of the WorstCaseResponseT ime.

The invariant, therefore, is,

NBTasks[index].clk < ResponseTmForSchedulability

There are three conditions on which the SV exits this location.

1. The waiting time expires, i.e the above invariant become false. In this case, the

SV simply starts executing the P instance at the head of the queue by moving

to Executing_p location.

2. A new instance of P is released such that it cannot tolerate to delay its execu-

tion till the expiration of the waiting time. This condition is tested by making

transition to a new committed location, CheckNewTaskDL, which decides to

move back to NonBindingWait location if the condition is false or move to

Executing_p if the condition is found true.

60

3. If there is only one task in the waiting queue and that P instance in the queue

gets canceled. This will cause the SV to move to Finishp location.

6. Executing_p Location This location emulates the time spent while executing an

instance of the task P . It can be entered either from Idle location when an instance of

task P gets released with no active precedent tasks or after exhausting all the waiting

periods, binding and/or non-binding.

The SV remains in Executing_p location either for a duration that is equal to

WCET of P or, in case of the executing instance being canceled, for a duration that

is equal to the sum of time spent before the cancellation and P ’s WCCT (Worst Case

Cancellation Time).

The exit from this location will cause the SV to move to Finish_p location

7. Finish_p Location Finish_p location is entered whenever an instance of task

P , which is either at the head of the queue or is executing, got canceled or when a

P instance finishes execution. As shown in figure 2.8 below, the cancellation can be

done while waiting for precedent tasks to finish execution or while a task is executing.

On the other hand, a P instance can complete execution in Executing_p location

only. Therefore, the incoming edges to Finish_p location are from BindingWait,

NonBindingWait or Executing_p locations.

It is again a committed location and so the SV exits this location immediately and

move to one of the three other locations; Idle, Active_q or BindingWait based on

the following three mutually exclusive conditions.

1. If there is no P instance in the queue AND there is no active precedent task,

the SV moves to Idle location

2. If there are no P instance in the queue but there are one or more active precedent

tasks, the SV moves to Active_q location

61

3. If there are P instances waiting in the queue, the SV then moves to BindingWait

location

8. CheckNewTaskDL Location This location was mentioned above and described

as a committed location that checks the deadline of a new instance of P , released

while the system is waiting for a non-binding precedent task to finish, and determine

if the new P instance can safely wait for the remaining of the non-binding wait period

or not.

The only incoming edge to this location is from NonBindingWait location while the

two outgoing edges lead the SV to either Executing_p or back to NonBindingWait

based on the result of above mentioned condition being false or true respectively.

9. ERROR Location ERROR is a special location which is only entered when an

instance of P is found to be violating its deadline.

The SV enters ERROR location only when a P instance actually passes its allowed

deadline before completing its execution. That is to say that, even though it seems

possible, we did not employ any predictive technique to foretell a deadline violation or

unschedulability. The reason for not predicting the unschedulability is the uncertainty

that comes with allowing task cancellations. Clearly, one or more cancellations of

active P instances will alter any unschedulability prediction made for the canceled or

the waiting P instances.

Therefore, the places where a P ’s instance’s clock can surpass its deadline are either

when SV is in BindingWait location or in Executing_p location. It cannot happen

in NonBindingWait location because,

• Firstly, the SV moves to NonBindingWait only when it determines that all

the P instances already in the queue can safely wait

• The deadline of any new P instance is checked immediately to foresee any

possible deadline violation. If a possible future deadline violation is found, the

SV immediately moves to Executing_p location

62

Fi
gu

re
2.

8:
T

he
Sc

he
du

la
bi

lit
y

V
er

ifi
er

(S
V

)

63

2.2.2.5 The Cancellation Handler (CH) Automaton Construction

As mentioned before, the Cancellation Handler (CH) automaton mimics the decisions

taken by a simulation master while handling cancellation of an active instance of task

under analysis. Like SV, CH is also designed as a template automaton which needs to

be instantiated for a particular task model. More specifically, transitions guards that

are subscripted with q are to be replaced with transition guards referring to binding

precedent tasks. Similarly, transitions which use a guard or action with subscript p

are replaced with corresponding guard or action for the task under analysis.

As shown in figure 2.9, CH automaton has 4 locations. The description of each loca-

tion and the transitions coming into or out of theses locations is given below.

1. Start Location Start is obviously the initial location of the CH automaton. Here

the automaton waits for release of a binding precedent task Q. A released task Q can

result in cancellation of the latest active instance of analyzed task, P . To handle this

scenario there are two transitions defined as coming out of Start location. At the

time of Q’s release

• If qSize > 0 then this means that the latest active instance of P resides in the

waiting queue and so the CH moves to CancelLastQueued location

• If (qSize == 0)&&(IsExecutingp == true) then this shows that latest P in-

stance is currently executing. In this case the CH automaton makes a transition

to CancelExecuting location

There is no transition for the condition when (qSize == 0) && (IsExecutingp ==

false) because in this case there is no active instance of task P to be canceled.

2. CancelLastQueued Location As mentioned above, this location is reached

when an instance of task Q is released for execution and qSize > 0. The loca-

tion handles the cancellation of latest instance of task P that is present in the wait-

ing queue. The decisions made during this cancellation handling involves checking

two boolean conditions with three possible outcomes. The three outgoing transitions

64

corresponding to three outcomes and the enabling condition for each transition is

described below.

• If no time has passed between release of last P instance and release of Q AND

Q is not an sporadic task then a transition leads the CH back to Start location

without taking any cancellation action. This is because it is determined that

latest instances of both P and Q are released at the same simulation time instant

with Q not being sporadic means that its outputs at this instant are already

available.

• If no time has passed between release of last P instance and release of Q AND

Q is an sporadic task then another transition is defined that again takes CH

back to Start location. However, this new transition also performs the action

of canceling the last P instance and then releasing another instance. This new P

instance executes after the execution of Q as no Q outputs are available because

of it being sporadic.

• If some simulation time has passed between release of last task P and release

of task Q then this means that task P needs to be canceled and the canceled task

is to be replaced with two P instances. One that takes P up to the instant where

task Q was released and the second that progresses P after Q finishes execution.

The transition defined in this case takes CH to ReleaseExtra location

3. CancelExecuting Location As the name suggests, this location handles the can-

cellation of an executing instance of a task P . The three outgoing transitions from this

location are similar to the three transitions going out of CancelLastQueued location.

That is, all transitions are annotated with same actions and lead to same correspond-

ing locations. However, the only difference is in transition guards where instead of

checking the release time of last P instance, execution time of currently executing P

is checked against release time of task Q.

4. ReleaseExtra Location The purpose of this location is to simply release an

extra P instance and so the only transition out is back to Start location releasing an

instance of task P .

65

Figure 2.9: The Cancellation Handler (CH)

66

CHAPTER 3

FRAMEWORK IMPLEMENTATION

This chapter describes the implementation details of our proposed schedulability anal-

ysis framework. As mentioned earlier in section 1.3, the tool used for the implemen-

tation of our framework is Uppaal 4.1, 64-bit version (www.uppaal.org).

Chapter 2 outlined the main components of the proposed schedulability analysis

framework. This design outline serves as the basis for actual framework implemen-

tation in Uppaal along with additions and modifications that are naturally required

while translating any conceptual design into actual implementation. The most impor-

tant part of our framework design was a couple of timed automata that we termed as

Schedulability Verifier (SV) and Cancellation Handler (CH) (see section 2.2.2). Both

SV and CH were defined as template automata that need to be instantiated for schedu-

lability analysis of a particular task type. Recall that in SV and CH template designs,

we followed the convention of using letter P, as standalone or as a subscript, to refer

to the task type that is under analysis and Q for tasks that are defined as precedents to

task P. For example, release_p was used as guard for transitions that were meant to

synchronize with release event of the task under analysis. Since such synchronization

between Uppaal automata is achieved through use of Channels (described below),

our framework implementation will replace these release_ guards with appropriate

channel labels. A channel named release_AnalyzedTask is defined for synchroniza-

tion of automata upon release of task under analysis and an array of channels, re-

lease_PrecTask[], is defined to achieve synchronization for multiple precedent tasks.

Each element of release_presTask[] array is used for synchronization over release

event of one of the precedent tasks in task model. Hence, to instantiate SV or CH,

all the transitions which mention release_p as the synchronizing event are replaced

67

www.uppaal.org

by transitions that use release_AnalyzedTask as synchronization channel. Similarly,

all transitions with release_q as firing event are replaced by a set of transitions where

each transition is annotated with an element of release_precTask[] channel array.

Since only an instantiated automaton can be implemented, following steps must al-

ready be completed before proceeding with the our proposed framework implemen-

tation

• A task model has been defined

• A task type P has been identified in the task model as the one that will be

analyzed for schedulability

• The SV and CH templates have been instantiated using task P and its precedent

tasks Qs

A sample Uppaal implementation of an SV for analyzing schedulability of a task

defined with two precedent tasks is shown in figure 3.1. Figures 3.2 and 3.3 are the

zoomed in versions of the parts A and B of figure 3.1 respectively.

Apart from SV, CH and task automata that define the release pattern of the tasks,

the implementation of schedulability framework contains some helper automata as

well. These helper automata are invoked from SV to perform different actions just

like function calls in other programming languages. Besides automata Uppaal sup-

ports function definition in the form of normal text based code as well. However, the

difference between the two is the inability of text coded functions to handle clock

variables. A clock variable is a special variable defined in Uppaal’s automaton and

can only be compared, reset or used as location invariants in an automaton definition.

So helper automata are defined instead of simple function calls when the action to be

performed requires access to clock variables.

Invocation of helper automaton requires a mechanism for communication between

different automata. To achieve this communication or synchronization between au-

tomata Uppaal uses a concept of Channels. Synchronization is done by annotating

the transitions in an automaton with Synchronization labels. These synchronization

labels are of the form c! or c?, where c is the name of a channel. Two transitions of

68

different automata can synchronize if their guards are satisfied and if they are anno-

tated with synchronization labels c1! and c2? respectively, where c1 and c2 evaluate

to the same channel name. The transition labeled with c! can be thought of as a

‘calling transition’ and the one with label c? as the ‘listening transition’.

A list of these helper automata along with a brief description of their purpose is given

below. The implementation details of helper automata will be given in section 3.3

• UpdatePrecedentLists: This automaton, when invoked by the SV, updates the

active precedent task lists. It goes through the lists of active non-binding and

binding precedent tasks and removes those tasks whose time since being active

has surpassed their corresponding worst case response times. The channel that

performs synchronization between SV and UpdatePrecedentLists is named as

UpdatePrecLists

• Add2ActivePrecednts: This automaton is called from SV whenever a prece-

dent task is released for execution. The automaton places the precedent task

instance at an appropriate precedent task list with the appropriate TasksetNo. It

uses add2PrecedentLists channel to listen to this call from SV

• GetNBWait: GetNBWait is called by SV to determine the time that the next

task P waiting for execution can allow for active non-binding precedent tasks

to finish. getNonBindingWait channel is used to listen to this call from SV

• RTCalc: RTCalc helper automaton computes the response time of instances of

task P. The SV calls this automaton when one of the following events occur,

– When an instance of task P is released for execution. This call is made

through resetRT channel and is meant to ask RTCalc to start response time

calculation for this P instance

– When a P instance finishes execution. This call is made to stop P’s re-

sponse time calculation. The channel used to perform this action is called

SaveRTifMax. This channel name signifies the fact that on this call RT-

Calc not only stops response time calculation but also saves it as worst

case response time of the task type P if it is the maximum among all the

response time calculations up till now

69

– When an instance of task P gets canceled either during execution or while

waiting for execution. This call is made through cancelRTCalc channel

and causes the RTCalc to stop calculating the response time for the can-

celed task

The next two sections describe implementation details of the SV and CH followed by

a section describing implementation of helper automata.

3.1 Schedulability Verifier (SV) Implementation

A SV implementation for schedulability analysis of a task with two precedent tasks is

shown in figures 3.1, 3.2 and 3.3. For ease of explanation we have colour coded the

SV so that specific type of transitions and locations are easily identifiable.

3.1.1 SV Locations

The locations in SV are shown with two colours only. The green coloured locations

are same as the ones defined in section 2.2.2.4 while describing SV design. These

locations are also numbered in the same sequence as they appeared in the above re-

ferred section so that the details about any of these locations can be easily traced by

the reader. The other type of locations, shown in magenta, are intermediate locations

that are introduced to perform required actions in specific order while transitioning

from one green location to the next. Note that all magenta locations are either marked

as U (urgent) or C (committed) which signify that these are only transit locations since

time is not allowed to pass when an Uppaal automaton is in committed or urgent lo-

cation.

3.1.2 SV Transitions

We shall now discuss the SV implementation by focusing on one distinctly coloured

set of transitions at a time.

70

Magenta: The magenta coloured transition sequences in figures 3.1, 3.2 and 3.3

represent the actions performed when a precedent task Q is released for execution.

These sequences wherever they appear in SV are all similar except the one that origi-

nates from initial or Idle location which differs in the final stage reached at the end of

transition sequence. While every other magenta transition sequence ends in the same

location from where it starts, the one that starts from Idle locationl leads to Acivte_q

location. Every magenta sequence include two intermediate locations before reaching

the final location. As mentioned before, these intermediate locations are introduced

just to perform the requisite actions in correct order before reaching the final location.

The first magenta transition in the sequence listens to release_q channel to synchro-

nize with the release event of task Q. For the case of Idle location, the first transition

also resets clock variable cq and sets the variable rq equal to the response time of

task Q. The SV uses cq and rq variables in Active_q location by using the expression

cq < rq as the location invariant. A location invariant in Uppaal specifies a condition

that must be satisfied at all times the automaton is in that particular location. So this

particular invariant, cq < rq, means that SV can remain in Active_q location until

clock variable cq surpasses the precedent task’s response time rq. At the end of first

magenta transition, the SV reaches the first intermediate location. At this stage, the

second transition is fired and calls another timed automaton that adds the released

task Q to an appropriate list of active precedent tasks within an appropriate task set.

As mentioned above, the automaton called for this purpose is Add2ActivePrecedents

shown in figure 3.6. The last magenta transition in sequences originating from lo-

cations other than the Idle location checks if the remaining response time of newly

released precedent task is greatest among all active precedent tasks. If yes then it

resets cq and rq, otherwise an alternate transition is taken that leaves the cq and rq

values unchanged.

71

Fi
gu

re
3.

1:
T

he
Sc

he
du

la
bi

lit
y

V
er

ifi
er

(S
V

)

72

Figure 3.2: The Schedulability Verifier (SV) part A

73

Fi
gu

re
3.

3:
T

he
Sc

he
du

la
bi

lit
y

V
er

ifi
er

(S
V

)p
ar

tB

74

Green: Green coloured transitions fire when an instance of task P releases for ex-

ecution. The first transition in the sequence leads to an intermediate location from

where a second transition moves SV to final location in the sequence. Action on first

transition is always the same and causes the task instance to be added to a queue of

task P instances waiting for execution. However, the action taken on second transi-

tion and the location reached after it depends upon the SV location at the time of P’s

release. Following are the possible SV locations from where green transitions can

originate. For each originating location, a description of actions taken after the first

transition from that location are also given below,

• Idle: Idle is the initial location of SV. When a P instance releases at this loca-

tion then, after the first transition, the next transition takes SV to Executing_p

location which simulates execution of task P. The actions performed with the

second transition include removing the analyzed task instance at the head of

waiting queue, resetting clock c, setting values of ri to analyzed task’s WCET,

setting task instance’s deadline to a valued provided in the task model and call-

ing RTCalc helper automaton to start calculating response time of the freshly

released task instance

• Active_q: If the SV is in Active_q location then release of task P will cause the

automaton to move to Arrived_p location from where a second transition takes

SV to another temporary location invoking UpdatePrecLists helper automaton

in the process. The last transition in the sequence ends at CheckBindingWait

location where the automaton checks if any binding precedent task is currently

active and needs to be waited upon

• BindingWait, Executing_p: When SV is in one of BindingWait or Execut-

ing_p location then the second transition in the green sequence takes the SV

back to original location while calling the RTCalc automaton to start response

time calculation

• NonBindingWait: This location simulates the delaying of a task’s execution

because of some non-binding precedent task. In this location if a new instance

of task P is released for execution then, after the first transition, there are two

possibilities for the next transition. Which possibility actually executes depends

75

upon weather new task’s deadline allows for the remaining non-binding waiting

time to finish or not. In first case the next transition takes SV back to NonBind-

ingWait location while in second case, SV moves to Executing_p location. The

actions performed with second transition in latter case are same as the ones

performed when new task was released when SV was in Idle location

Blue: The blue transitions in SV represent automaton moves that are made when

an instance of task P got canceled by the simulation scheduler. The cancellation can

occur while SV is in one of wait locations, that is, BindingWait and NonBindingWait

location or in Executing_p location. It is already understood that the task canceled

by scheduler is the latest instance that is released for execution. Hence, at the time

of any cancellation there may be zero or more task instances waiting in the queue for

execution.

When a task is canceled while SV is in one of the wait locations then the next location

depends upon whether there are any other task instances waiting in the queue for

execution. If yes then SV moves back to the wait location after removing the canceled

task from the queue, or in the second case it moves to Finish_p location.

If task cancellation occurs while SV is in Executing_p location then the automaton

loops back to the same location after performing the cancellation actions. However,

the actions performed during the transition depends again upon status of the waiting

queue. If waiting queue is empty then this means that the canceled task instance is

actually the one that is currently being executed. In this case the executing task is

replaced by a dummy task whose execution time is equal to WCCT of the task P. On

the other hand if waiting queue is not empty then the SV simply removes the last task

instance in the queue and comes back to Exeucuting_p location.

Yellow: Few transitions leading to or originating from Finish_p location are shown

in yellow colour in figures 3.1,3.2 and 3.3. As mentioned before Finish_p is reached

when either a task P instance finishes execution or when waiting queue got empty due

to cancellation of a task instance. The only yellow transition sequence that leads to

Finish_p transition originates from Executing_p location. The first transition in this

76

sequence stops at a temporary location and calls the RTCalc automaton over SaveR-

TifMax channel to stop calculating the response time of the task that just finished

execution and also save it as task’s WCET if the calculated response time is the max-

imum among all the previous task instances. The second transition of this sequence

calls UpdatePrecLists automaton and ends at Finish_p location. Three yellow tran-

sitions originate from Finish_p as well leading to three different SV locations. If the

waiting queue is not empty then the SV moves to CheckBindingWait after passing

through a temporary location location or else a decision is made either to move to

Idle if there are no active precedent tasks or to Active_q location otherwise.

Orange: The orange coloured transitions represent the paths taken by SV while

evaluating binding or non-binding waiting times. These transitions can originate from

CheckBindingWait, CheckNonBindingWait or BindingWait locations. If the binding

wait value, calculated while reaching CheckBindingWait location, is greater than zero

then an orange transition takes SV from CheckBindingWait to BindingWait location

where it will remain there until waiting time is over. However, if the wait value is

equal to zero then the SV proceeds to evaluate non-binding waiting time by calling

GetNBWait automaton over getNonBindingwait channel and then reaches CheckNon-

BindingWait location. At this location the returned value from GetNBWait is exam-

ined and if it is greater than -1 then the SV moves to NonBindingWait location where

it stays until the completion of wait time or arrival of a new instance of task P whose

deadline does not allow the remaining waiting time to complete.

Black The transitions leading to Executing_p are shown in black colour except the

one that originates from Idle location which is shown in green colour. Executing_p

is the location which represent the time spent during execution of an instance of task

P. The actions perform with these black coloured transitions include removing the

analyzed task instance at the head of waiting queue, resetting clock c, setting values

of ri to analyzed task’s WCET, setting task instance’s deadline to a valued provided in

the task model and calling RTCalc helper automaton to start calculating response time

of the freshly released task instance. One more transition is shown in black colour

which takes SV from Active_q back to Idle location when cq becomes equal to rq.

77

Red: Red coloured transitions in SV all lead to the ERROR location. These tran-

sitions originate from one of BindingWait, NonBindingWait or Executing_p location.

These transitions are fired when a clock associated with an active task P instance

surpasses its allowed deadline.

3.2 Cancellation Handler (CH) Implementation

The implementation of CH automaton in Uppaal is shown in figure 3.4. Uppaal allows

parameters to be defined with automaton definition to which values can be passed

at the time of automaton instantiation. CH is also implemented as a parameterized

automaton that takes two parameters named taskID and bSporadic. This taskID pa-

rameter is meant to refer to the binding precedent task against which the CH instance

handles cancellation and the boolean parameter bSporadic shows if the precedent

task referred to by taskID is sporadic in nature or not. The introduction of parameters

allows us to instantiate CH automata for multiple binding precedent tasks without

changing the automaton definition. Within the automaton definition, taskID is used

as an index of release_precTask[] array so that each instantiated CH reacts to release

of the binding precedent task that is passed as parameter to it.

3.2.1 CH Locations

Just as the SV locations in figure 3.1, figure 3.4 also shows the CH locations in two

colours only. The green coloured locations are the ones that are defined in CH de-

sign described in section 2.2.2.5. The magenta locations DecisionLoc1 and Decision-

Loc2 are introduced because of some practical considerations and has no affect on

the actual working of automaton. In fact, if we can imagine two super locations: one

comprising of CancelLastQueued and DecisionLoc2, and another containing Can-

celExecuting and DecisionLoc1 then these super locations will closely resemble the

CancelLastQueued and CancelExecuting locations as defined in section 2.2.2.5. An

End location, marked as red, is also introduced to allow the automaton stop in case of

deadline miss.

78

3.2.2 CH Transitions

We have stuck to the convention of using same colour for similar transitions, therefore

we shall describe the CH transitions based on their colours.

Blue: The blue coloured transitions are fired with release of the binding precedent

task whose id as passed as parameter taskID. These transition move the automaton

from Start location to either CancelLastQueued location if qSize > 0 or to Can-

celExecuting location if (qSize == 0) && (bTaskExecuting == true).

Orange: The decision to cancel the latest instance of task P depends upon rela-

tive release times of P and binding precedent task Q instances AND whether task Q

is sporadic or periodic. Orange coloured transitions are taken when no task P can-

cellation is required because the release times of both analyzed and precedent task

instances are same and also task Q is not a sporadic task. These transitions always

end up back at the Start location.

Magenta: When the condition defined for orange transitions evaluates to false then

this means that the latest instance of task P must be canceled. One of the two magenta

transition is fired at this point and calls for cancellation of analyzed task by perform-

ing synchronization over cancel_AnalyzedTask channel. The transitions move the CH

either from CancelLastQueued to DecisionLoc2 location or from CancelExecuting to

DecisionLoc1 location.

Black: Black transitions are labeled with release_AnalyzedTask synchronization

channel and are meant to release a new instance of task under analysis. These transi-

tions can originate from DecisionLoc1, DecisionLoc2 or ReleaseExtra locations. At

DecisionLoc1 or DecisionLoc2, a black transition can either lead to ReleaseExtra or

to Start location depending on the decision to release two or one new P instance. As

discussed earlier, this decision is taken on the basis of relative release times of tasks

P and Q. The only black transition leading out of ReleaseExtra location moves the

CH back to Start location.

79

Figure 3.4: Cancellation Handler (CH) Automaton

3.3 Helper Automata

Let us now describe the implementation details of helper automata that are mentioned

in the previous section. As discussed, these automata are called by SV to perform

different actions just like a function or method call.

3.3.1 UpdatePrecedentLists

UpdatePrecedentLists automaton is called by SV whenever an instance of task P is

ready for execution with active precedent tasks present in the system. On receiving the

call, the automaton goes through the lists of active non-binding and binding precedent

tasks to search for tasks that have completed execution or have become irrelevant.

Some active precedent tasks may become irrelevant if the instance of P which was

supposed to wait for them has already finished execution. The completed tasks are

searched by comparing each task’s associated clock with its WCET while tasks that

are no longer relevant are identified by the value of their TasksetNo tag being less than

zero. For a detailed discussion on TasksetNo tag please refer to section 2.2.2.2.

The implementation of UpdatePrecedentTask is shown in figure 3.5. It can be seen

that after receiving the call from SV the automaton moves to CheckANBList location

80

Figure 3.5: The automaton that updates the lists of active precedent tasks

where it loops through active non-binding precedent list. There are two transitions

shown with this location that loop back to the same location. These transitions have

complimentary guard conditions so that when a task is neither complete nor irrelevant

then the left transition is taken which simply causes the automaton to skip to the next

task in the list while if one of the above condition is true then right transition is taken

which removes the task under consideration from the list.

After updating non-binding precedent list the automaton moves to CheckABList lo-

cation shown in magenta colour. Here, the procedure is repeated for the list of active

binding precedent tasks.

3.3.2 Add2ActivePrecedents

The Add2ActivePrecedents automaton adds the released precedent task either to list

of active non-binding tasks or to list of binding tasks if it determines that this will

be the longest running binding precedent task. As shown in figure 3.6, starting from

the initial location at the top the automaton first decides if the released task is a non-

binding or binding precedent task. The blue coloured locations and transitions repre-

sent the actions taken when the precedent task is non-binding while magenta coloured

elements show the case of binding precedent task.

81

When adding a non-binding task to the active non-binding task list the automaton first

loops through the list until it finds an entry that is empty or has TasksetNo greater than

or equal to the current size of the queue containing active instances of task P. If the

automaton finds an empty location before it finds a task with TasksetNo greater than

or equal to current queue size then this means that there is no task previously added

in the current task set so the automaton simply adds this task to empty location as the

first member of new task set. However, if the search hits a task that has TasksetNo

equal to current queue size then it again loops through all the tasks in this task set

until a task is found whose remaining response time is less than that of the new task.

The new task is then inserted at this position in the list. The third possibility is that in

the first search the automaton hits a task that has TasksetNo greater than the current

queue size. In this case again the new task is inserted at this position.

In cases the task to be added is a binding task then the automaton first determines if

there is a task in the list at location qSize. If no, then simply add this new task at

this location. However, if qSize location is non-empty then the new task will replace

the existing task only if the new task has response time greater than the remaining

response time of current task at list index qSize.

82

Fi
gu

re
3.

6:
T

he
au

to
m

at
on

th
at

ad
ds

ac
tiv

e
pr

ec
ed

en
tt

as
ks

to
ap

pr
op

ri
at

e
lis

ts

83

Fi
gu

re
3.

7:
T

he
au

to
m

at
on

th
at

de
te

rm
in

es
th

e
w

ai
tin

g
tim

e
du

e
to

an
y

no
n-

bi
nd

in
g

pr
ec

ed
en

tt
as

k

84

3.3.3 GetNBWait Automaton

The SV calls GetNBWait to decide if it is possible to wait for some active non-binding

precedent task to finish execution before proceeding with the execution of task P

instance at the head of the queue. This call is made after the SV finishes dealing with

possible wait time due to some active binding precedent task. GetNBWait automaton

upon receiving the call first performs an update operation on active non-binding list

which is similar to the one performed by UpdatePrecedentLists automaton described

in subsection 3.3.1. After update the automaton then goes through the list of active

non-binding precedent tasks with TasksetNo tag equal to zero and search for a task

with largest remaining response time value, RTS_max, such that all P tasks waiting

in the queue can afford to wait for RTS_max time units. If such a non-binding

precedent task is found then GetNBWait returns the index of that precedent task to

SV otherwise a value of −1 is returned indicating that it is not possible to wait for

any non-binding precedent task.

The figure 3.7 shows the implementation of GetNBWait automaton. The blue area

is the one that performs the list update operation while the magenta coloured area is

where the search for aforementioned precedent task is made.

3.3.4 RTCalc Automaton

RTCalc automaton is used to calculate and save the response times of the task P in-

stances during the schedulability analysis process. These response times are then

used in the next pass of schedulability analysis in which the next task in topological

order is analyzed for real-time schedulability. As can be seen in the figure 3.8, there

is only one working location (shown in blue) in RTCalc automaton apart from the

initial location. There are four transitions that loop back to this working location.

Three of these transitions synchronize with call from SV while the fourth is the one

that actually increments response times of active P instance. The three synchroniz-

ing transitions are shown in blue, magenta and green colours and are called at the

following events,

• Blue transition is fired when a new instance of task P is released for execution.

85

Figure 3.8: The automaton that calculates Response Times

The SV calls RTCacl to start response time calculation at this event

• Magenta transition is taken at the completion of a task P

• Green transition is called when a task P intance is canceled before completing

successfully.

In the next section, we shall verify the correctness of our implementation by applying

it on a system which is simple enough that we can analyze its schedulability manually

as well. The results obtained by manual as well as automatic analysis can then be

compared to verify the correctness of implemented framework.

3.4 The Functionality Verification Experiment

A simple case of a car’s power window simulation was selected for this experiment

[41]. The power window system works by reacting to user’s pressing of window up or

down button. A microcontroller reads the user input and outputs a command signal to

DC motor which runs to move a scissor mechanical assembly that in turn moves the

car window. However, the user input is overridden if an obstacle is detected in the path

of an upward moving window. The obstacle event causes the controller to cancel its

current command to move window up and instead issue a new command to move the

86

Figure 3.9: The graph showing precedent constraints among power window simula-

tion tasks

window down a few centimeters. To realize the defined functionality, the simulation

was assumed to be composed of six simulation tasks which are: Controller Task, User

Input Task, Obstacle Event Handling Task, DC Motor Task, Scissor Mechanism Task

and Window Move Task.

The DAG that describes the precedent constraints or dependencies among these tasks

is given in Fig. 3.9. All the dependency relations in the graph are non-binding prece-

dent constraints with the only exception of the relation between Controller and

ObstacleEventHandler tasks which is defined as a binding constraint and shown

by a solid line in the figure.

In our experiment, we analyzed the schedulability of Controller task. The tasks

concerned to this analysis experiment along with their description and attributes are

given in table 3.1.

The CA is instantiated by taking the Controller task as the AnalayzedTask while

considering UserInput and ObstacleEventHadndler as the precedent tasks. Since

the problem of schedulability is now transformed into a state reachability problem, the

only query that needed to be tested in order to check the schedulability is, Is there any

system state where CA is in ERROR location?, or formally, E <> CheckingAutomaton.-

ERROR. This query is verified using UPPAAL’s verifier.

87

Table 3.1: Tasks in Car’s Power Window Simulation

Task Name Description Attributes

Controller Task

A task that emulates the

actions of a microcontroller

used in a car’s power window

WCET = 3 time units

WCCT = 2 time units

Period = 8 time units

User Input Task

A task that periodically

checks if the user has pressed

window up or down button

WCET = 4 time units

WCCT = 1 time units

Period = 5 time units

Obstacle Event

Handling Task

A task that is triggered if

an obstacle is detected in the

path of the car window while

it is moving up

WCET = 1 time units

WCCT = 1 time units

Sporadic: Can arrive between

495 to 505 time units

3.4.1 Results

The schedulability analysis results of the system described above are summarized

below,

• For the cases where the obstacle event occurred between 496th to 498th time

units or between 502nd to 504th time unit, the Controller task was found

schedulable

• In rest of the cases, the Controller task was found unschedulable

To understand these results, note that the UserInput task with periodicity 5 arrives

when simulation-time is 495 time units. The Controller task which arrives at 496th

time unit and depends on UserInput task can safely wait for UserInput task to

finish and still meet its own deadline at 504 time units, the next instant when new

Controller instance will arrive. So the scheduler will decide to delay the execution

of Controller task till 499 time units. Now if the obstacle event occurs between 496

to 498 time units, the scheduler has enough time to cancel the waiting Controller

task and then execute two new Controller instances with combined WCET of 6 time

88

units. No cancellation time is required by Controller task during this period since it

is still in waiting state. On the other hand, if obstacle event between 499 to 501 time

units then it does not leave enough time for two new Controller task invocations and

so these sub-scenarios were found unschedulable by our framework. The last case

is when obstacle event occurs between 502 and 505 time units. This case is trivially

schedulable since by the 502nd time unit the Controller task has already completed

execution and so the obstacle event has no affect.

The results obtained through manual analysis match exactly with the ones produced

by our implementation of schedulability analysis framework. This verifies the func-

tional correctness of our framework implementation

89

90

CHAPTER 4

HELICOPTER SIMULATOR CASE STUDY

4.1 Introduction

After the implementation of our proposed framework and its initial testing on toy

problems, it was time to test the framework’s applicability for an actual real-time

simulator. For this purpose a helicopter simulator [48] was selected as the subject

of our case study. In the following sections we shall first describe the architecture

and task model of the helicopter simulator followed by a discussion on steps that are

needed to make the our schedulability analysis applicable to the selected simulator.

Next we will propose an improvement in the simulator’s task model and since the

proposed improvement will need schedulability analysis to fine tune the task model,

we shall then apply our schedulability analysis framework for this purpose and present

the results for simulator designers.

4.2 Helicopter Simulator

The helicopter simulator selected for the case study is composed of several software

modules or tasks communicating with each other using UDP messages over Ethernet.

The execution of all the tasks is synchronized by a Sync task that sends a particular

message to every other software task whenever that specific task needs to advance

through a single simulation step. Theoretically the Sync task can run each of the other

tasks on a different rate but in our studied system all the simulator tasks are being

run at a rate of 60Hz. Hence, the Sync task sends a message simultaneously to each

module after every 16.67 msec and upon receiving this message every task executes

91

and then sends its outputs to other related tasks. The tasks which are meant to be the

destinations of these outputs must be able to receive and save these outputs so that it

can use them as inputs for the next simulation step.

The tasks that are part of the helicopter simulator are as follows,

1. Simulator Management Console (SMC): This task is responsible for general

simulator management including starting or stopping the simulation, initializa-

tion, runway selection etc.

2. Flight Module (FM): This is the main task that is responsible for the flight

model calculations based on aircraft’s current position, speed, attitude, envi-

ronmental conditions as well as inputs from the helicopter operator.

3. Input / Output Module (I/O): This task basically detects inputs from helicopter

operator and communicates them to FM and other tasks.

4. Visual System (VS): This task is responsible for the main visual display of the

simulator.

5. Glass Cockpit Gateway (GCG): This task acts as a gateway for information

from FM to the multifunction display described below.

6. Multifunction Display (MFD): This task takes input from GCG and displays

aircraft’s current speed and different sensor measurements on the screen.

The communication between the simulator tasks and the Sync task can be depicted

as a dependency graph whose edges correspond to the communication link between

tasks and the nodes represent the simulator tasks themselves. This graph is shown in

figure 4.1.

Every task other than the Sync task is dependent on the “run” message from the Sync

task without which it cannot proceed further. This kind of dependency is termed as

binding dependency in our proposed framework since it is the case where dependent

task cannot proceed until it gets the input from the precedence task, i.e. the depen-

dency is satisfied. All the other dependencies depicted in the graph are non-binding

dependencies which means that the task does not have to wait forever for new inputs

from the precedent task and can proceed with old inputs.

92

Figure 4.1: Dependency Graph among Helicopter Simulator Modules

4.3 Application of Schedulability Analysis Framework

The actual simulator architecture conforms partially to the co-simulation architecture

proposed in our framework in that the execution of each task is controlled by a mas-

ter called Sync task. However, one difference is that the communication between the

tasks is independent and not through any simulation master. Moreover, the simula-

tor master in this case is actually just the Sync task which serves as a kind of dumb

simulation master that does not make any run-time decision based on current simu-

lator state. We will, therefore, for our purpose of schedulability analysis assume a

smarter simulation master that will make decisions on run-time to make the simula-

tion more functionally accurate without undermining the timeliness of the simulation.

The smart simulation master is also a part of simulator improvements proposed in the

next section.

The dependency graph in figure 4.1 is not usable for schedulability analysis in our

framework since it contains cyclic dependencies between VS and FM as well as be-

tween SCM and FM. In order to proceed further, it is necessary to resolve this problem

93

of cyclic dependencies. A closer examination of the messages exchanged between the

cyclically dependent tasks reveals the following pattern,

• FM requires information from SMC for initialization or when the simulation

status is changed, i.e. either paused or stopped.

• FM sends a message to SMC only when reporting an aircraft crash event.

• FM needs information from VS about the terrain in the vicinity of the aircraft.

• FM sends information to VS about aircraft’s updated position and status after

the current flight model calculations.

To break the cyclic dependencies, we split the VS task and SMC task into two. VS

becomes a combination of VS Terrain info and VS Update while SCM is divided into

SMC Init/Status task and SMC Update. The first part of both these tasks provides

input to the FM task while the other reads output from the FM. The new dependency

graph without cyclic dependencies is shown in figure 4.2.

4.4 Proposed Improvement

In flight simulators, an important factor is that of visual delay or visual transport delay

[28]. Visual transport delay can be defined as the delay that occurs between the instant

when the pilot performs some action and the time when the affect of this action is seen

by the pilot. Although the FAA Part 60 requirement for a Level D simulator is 100

msec for helicopters [28], experience suggests that lower visual transport delays are

desirable since various studies have linked simulator visual delays with increase in

pilot workload [25], deterioration of pilot performance and simulator sickness.

An empirical estimation of the visual transport delay for the helicopter simulator pre-

sented above reveals that average delay is 82.87 msec while maximum delays can be

up to 90.5 msec. Figure 4.3 below shows, for the case of our helicopter simulator,

how to estimate the visual transport delay from the instant when a pilot takes an ac-

tion to the time when this information reaches the task responsible for visual system

update. The figure presents timeline of three simulator tasks: the I/O task, the FM

94

Figure 4.2: Dependency Graph without cyclic dependencies

95

Figure 4.3: Time delay between actual pilot action and when it is read be VS update

task

task and VS Update task. The vertical dashed lines indicate when each task becomes

active. Since all the tasks currently run at 60 Hz frequency, all of them become active

at the same time.

The worst case visual transport delay can occur when the pilot takes action just after

the I/O task starts execution, the instant depicted in figure 4.3 as W while average

delay, shown as Av, can be determined by assuming the pilot action to be taking

place in the middle of the duration between two I/O tasks. Total delay in worst and

average cases will be approximately 49.34 msec and 41.67 msec respectively before

the information about the pilot action reaches the VS update task.

After the VS Update task gets the new data from FM task, there are more delays

before the new scene can be displayed on the simulator screen. These delays are

studied in [42] and are found out to be caused by V-Sync, graphical hardware and

pixel adjustment. They calculated the total delay due to these factors to be 41.2 msec

[42]. Adding all the delays we get worst case visual transport delay as 90.5 msec.

Although 90.5 msec is an acceptable delay by the official standards, however, research

has shown that significantly lower delays can improve the simulator fidelity in some

pilot tasks [28]. Keeping this in mind, the simulator designers wanted to reduce the

visual transport delays without modifying the current simulator hardware. For this

96

purpose following steps were recommended,

• Increase the arrival frequencies of FM and I/O tasks

• Make I/O task a binding precedent task to FM task so that arrival of an I/O task

can interrupt a currently executing FM task

• Employ a smart scheduler that can make scheduling decisions based on remain-

ing response times of precedent tasks

With regards to proposed increased frequencies of FM and I/O tasks, a restriction was

placed by simulator designers that the frequencies of both tasks should remain less

than or equal to 120 Hz.

4.5 Schedulability Analysis

The problem left for us was to find a combination of FM and I/O task frequencies

such that the transport delay between pilot action and its observed effect minimizes

while at the same time FM task instances always remain schedulable. Keep in mind

that an I/O task arrival in the proposed improvement can cancel an executing FM task

and replace it with two instances of FM task; one that deals with simulation time up to

the I/O instant while the second proceeds FM task time from the I/O instant onwards.

A new dependency graph of tasks that are related with visual transport delay, along

with their arrival frequencies, is shown in figure 4.4. There is no line connecting

the smart scheduler with VS terrain info task since it is noted that VS terrain info is

actually just a sub-task, shown separately only to avoid cyclic dependency, and is run

automatically after every VS update sub-task with an offset of 15 msec approx. Since

the arrival rates of FM and I/O tasks are to be increased from 60 Hz, their frequencies

are shown to lie somewhere between 60 and 120 Hz. Relevant task times of FM, I/O

and VS Update tasks, as provided by the simulator designers, are given in table 4.1.

We shall now employ our schedulability analysis framework on this problem to deter-

mine the conditions under which the schedulability of the FM task can be guaranteed.

97

Figure 4.4: Dependency graph and arrival patterns of task related to visual display

A smart scheduler can then be designed to make use of analysis results and make the

simulator faster as well more accurate.

First, a system of automata needs to be defined that contains task automata, the

CheckingAutomaton and all other supporting automata required by the schedulability

analysis framework. Hence three task automata systems were instantiated that defined

the arrival pattern of each task in table 4.1 along with their time attributes. FM task

was defined as the analyzed task and the other two were defined as precedent tasks

where VS Terrain Info was a non-binding precedent task while I/O was defined as

binding precedent task. CancelationDecider automaton was defined to monitor I/O

task arrivals and decides at the arrival of each I/O instance if the analyzed task needs

to be canceled or not.

Next, the schedulability of the automata system defined above was tested by vary-

ing the arrival rates of FM and I/O and running the Uppaal’s verifier for each task

frequency combination to check reachability of CheckingAutomaton’s ERROR state.

The arrival frequency of FM task was varied from 70 Hz to 120 Hz with an inter-

val of 10 Hz. For each FM task arrival rate, experiments were performed by vary-

98

Table 4.1: Task Attributes of FM, I/O and VS Terrain Info Tasks

Task Name

Worst Case

Execution Time

(WCET)

Worst Case

Cancellation

Time (WCCT)

Deadline

FM 4 msec 1 msec Same as task periodcity

I/O 1 msec NA Same as task periodicty

VS Terrain Info 16.7 msec NA 16.7 msec

ing I/O task frequencies ranging from 75 Hz to 120 Hz with an increment of 5 Hz.

However, for each FM task frequency, schedulability was not tested for cases where

I/OFreq < FMFreq. The results of these experiments are given in table 4.2.

Table 4.2: Schedulability Analysis Results

HHH
HHH

HHH
HHH

FM Freq
(Hz)

I/O Freq
(Hz)

75 80 85 90 95 100 105 110 115 120

70 S S S S S S S S S S

80 – S NS NS NS S NS NS NS NS

90 – – – S NS NS NS NS NS NS

100 – – – – – S NS NS NS NS

110 – – – – – – – S NS NS

120 – – – – – – – – – S

• S: Schedulable

• NS: Not Schedulable

• – : Not tested

The analyses results show that for FM arrival frequency of 70 Hz, the system remains

schedulable for all I/O task frequencies ranging from 75 Hz to 120 Hz. However, for

the case of 80 Hz only two I/O arrival frequencies of 80 and 100 Hz are schedulable.

For the rest of the FM arrival rates, the only schedulable case is when I/O arrival

frequency is same as that of FM task.

99

4.6 Conclusion

In this work, an actual real-time helicopter simulator was selected as case study to test

the applicability of our proposed schedulability analysis framework. The information

about the simulator architecture and simulator tasks was gathered from the simulator

designers including the task arrival patterns and other time related attributes. Af-

terwards, a possible area of improvement was identified in the simulator design and

it was suggested that a decrease in visual transport delay would improve simulator

fidelity in some pilot tasks. The steps recommended to achieve the goal of decreas-

ing visual transport delay included increase in arrival frequencies of FM and I/O and

employment of a smart simulator scheduler that takes into account the remaining re-

sponse times of precedent tasks before scheduling the dependent task.

The proposed improvement of increasing task arrival rates called for the application

of our schedulability analysis framework to determine which combination of task ar-

rival rates are schedulable by a smart scheduler. Hence, multiple analysis experiments

were performed with different task frequency combinations and the results were then

reported to the simulator designers. The results can be used by the designers to select

one optimum task frequency combination or, alternatively, they can select multiple

schedulable frequency combinations and run the simulator in multi-mode configura-

tion. In this configuration the simulator switches to a mode with higher task arrival

rates during highly dynamic simulation phases and shifts back to lower task frequency

combination when simulation is in relatively lower dynamic phase.

100

CHAPTER 5

CONCLUSION

This research has aimed to present a framework for schedulability analysis of real-

time co-simulations. To the best best of our knowledge, it is the first attempt in this

direction as all the related literature surveyed for this work deals with schedulabil-

ity analysis of actual real-time systems only. The framework gives the simulation

designers confidence that the designed simulation is always schedulable. In case a

simulation is found unschedulable, the framework can also suggest some parameters

to the designer of simulation master helping him / her to make the simulation schedu-

lable again.

The real-time co-simulation model to which the proposed framework is applicable

provides freedom of choice to the simulation designers in some key areas while

putting some restrictions as well. The freedom that the co-simulation model offers

is in terms of frame length of the sub-system simulation models and also the activa-

tion pattern of each sub-system model. That is, the presented model not only allows

each sub-system model in a simulation to have distinct frame length but also allows a

single simulation model to have different frame lengths in different scenarios during

a simulation run. The activation patterns of simulation models are referred to as task

arrival patterns in our co-simulation model and are defined by task automata. The

survey in [44] declares task automaton as the most expressive method for defining a

task arrival pattern, so consequently the proposed co-simulation model allows a sim-

ulation designer to describe simulation models’ activation patterns in most expressive

way possible. There are a couple of limitations too. The first one requires the sim-

ulation to be executed on a multi-core platform such that each simulation model is

run on a separate independent core. This is not a major restriction considering the

101

manycore processors that are available in the market today and the expectation that

the core density will increase in future. The second assumption that the model makes

is that simulation models or tasks do not have cyclic precedent constraints among

themselves. This assumption is again not very restrictive as it is usually possible to

break the cyclic dependencies for schedulability analysis as shown in the case study

in chapter 4.

After carefully definition of the co-simulation model, a timed-automata based schedu-

lability analysis framework for real-time systems [22] was selected as the base to

start the development of new framework for schedulability analysis of real-time co-

simulations. To start with, it was observed that the precedence constraint handling

offered by the selected framework needs to be improved for the case of real-time co-

simulations. Building upon this observation, the new framework was then developed

considering special features of real-time co-simulations. Since clocks are a major

source of complexity in timed automata systems, simplifications were also presented

in the initial precedence handling method which reduces clock variables in the new

timed automata based framework.

The development of the framework was followed by implementation in UPPAAL.

The special schedulability analysing automata, Schedulability Verifier (SV) and Can-

cellation Handler (CH), were defined as template automata in our proposed frame-

work. Therefore, in an implementation of the framework these automata need to be

instantiated according to available task-set and the task under analysis. The imple-

mented framework was first tested for functional verification and then was applied on

a helicopter simulator to propose a possible improvement to the simulator designers.

102

REFERENCES

[1] Yasmina Abdedda, Eugene Asarin, and Oded Maler. Scheduling with Timed

Automata. Theoretical Computer Science, 354(2):272–300, 2006.

[2] Y. Abdeddaim, A. Kerbaa, and O. Maler. Task graph scheduling using timed

automata. Proceedings International Parallel and Distributed Processing Sym-

posium, 2003.

[3] Muhammad Uzair Ahsan and Mehmet S. Halit Oğutüzün. Schedulability Anal-

ysis of Real-time Multi-frame Co-simulations on Multi-core Platforms. Turk-

ish Journal of Electrical Engineering & Computer Sciences, 27(5):3599–3616,

2019.

[4] Ahmad Al-Hammouri, Vincenzo Liberatore, Huthaifa Al-Omari, Zakaria Al-

Qudah, Michael S Branicky, and Deepak Agrawal. A Co-simulation Platform

for Actuator Networks. In Proceedings of the 5th International Conference on

Embedded Networked Sensor Systems, SenSys ’07, pages 383–384, New York,

NY, USA, 2007. ACM.

[5] Ahmad T. Al-Hammouri. A comprehensive co-simulation platform for cyber-

physical systems. Computer Communications, 36(1):8–19, 12 2012.

[6] Rajeev Allur and David L Dill. A theory of timed automata. Theoretical Com-

puter Science, 126:183–235, 1994.

[7] Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and Wang

Yi. TIMES: A Tool for Schedulability Analysis and Code Generation of Real-

Time Systems. In Kim Larsen and Peter Niebert, editors, Formal Modeling and

Analysis of Timed Systems, volume 2791 of Lecture Notes in Computer Science,

pages 60–72. Springer Berlin / Heidelberg, 2004.

[8] Neil Audsley, Alan Burns, Mike Richardson, Ken Tindell, and Andy J Wellings.

103

Applying New Scheduling Theory To Static Priority Preemptive Scheduling.

Software Engineering Journal, (September):284–292, 1993.

[9] Sanjoy Baruah and Theodore Baker. Schedulability analysis of global edf.

Real-Time Systems, 38(3):223–235, 2008.

[10] S.K. Baruah, A.K. Mok, and L.E. Rosier. Preemptively scheduling hard-real-

time sporadic tasks on one processor. In 11th Real-Time Systems Symposium,

pages 182–190. IEEE, 1990.

[11] Gerd Behrmann, Alexandre David, and Kim G Larsen. A Tutorial on Uppaal

4.0. 2006.

[12] E. Bini and G.C. Buttazzo. Schedulability analysis of periodic fixed priority

systems. IEEE Transactions on Computers, 53(11):1462–1473, 2004.

[13] Abdeldjalil Boudjadar, Jin Hyun Kim, Kim G Larsen, and Ulrik Nyman. Com-

positional Schedulability Analysis of An Avionics System Using UPPAAL.

In International Conference on Advanced Aspects of Software Engineering.

{ICAASE}, pages 140–147, 2014.

[14] Michael S Branicky, Vincenzo Liberatore, and Stephen M Phillips. Networked

control system co-simulation for co-design. In American Control Conference,

2003. Proceedings of the 2003, volume 4, pages 3341–3346. IEEE, 2003.

[15] Anton Cervin, Martin Ohlin, and Dan Henriksson. Simulation of networked

control systems using TrueTime. In Proc. 3rd International Workshop on Net-

worked Control Systems: Tolerant to Faults, 2007.

[16] Jinchao Chen, Chenglie du, Fei Xie, and Zhenkun Yang. Schedulability analysis

of non-preemptive strictly periodic tasks in multi-core real-time systems. Real-

Time Systems, 2015.

[17] Roy Crosbie. Real-Time Simulation Using Hybrid Models. In Katalin Popovici

and J. Mosterman Pieter, editors, Real-Time Simulation Technologies: Princi-

ples, Methodologies, and Applications, chapter Real-Time, pages 4–31. CRC

Press. Taylor & Francis Group, 2013.

104

[18] Alexandre David, Jacob Illum, Kim G Larsen, and Arne Skou. Model-Based

Framework for Schedulability Analysis Using UPPAAL 4.1. In Model-based

design for Embedded Systems, pages 93–119. 2009.

[19] Pontus Ekberg and Wang Yi. Schedulability analysis of a graph-based task

model for mixed-criticality systems. Real-Time Systems, 52(1):1–37, 2016.

[20] Elena Fersman, Pavel Krcal, Paul Pettersson, and Wang Yi. Task automata:

Schedulability, decidability and undecidability. Information and Computation,

205(8):1149–1172, 8 2007.

[21] Elena Fersman, Leonid Mokrushin, Paul Pettersson, and Wang Yi. Schedulabil-

ity Analysis Using Two Clocks. In Tools and Algorithms for the Construction

and Analysis of Systems, volume 2619, pages 224–239. Springer Berlin Heidel-

berg, 2003.

[22] Elena Fersman, Leonid Mokrushin, Paul Pettersson, and Wang Yi. Schedu-

lability analysis of fixed-priority systems using timed automata. Theoretical

Computer Science, 354(2):301–317, 3 2006.

[23] Elena Fersman, Paul Pettersson, and Wang Yi. Timed Automata with Asyn-

chronous Processes : Schedulability and Decidability. Lecture Notes in Com-

puter Science, pages 67–82, 2002.

[24] Elena Fersman and Wang Yi. A Generic Approach to Schedulability Analysis

of Real-Time Tasks. Nordic Journal of Computing, 11(2):129–147, 2004.

[25] Nina Flad, Frank M. Nieuwenhuizen, Heinrich H. Búlthoff, and Lewis L.

Chuang. System delay in flight simulators impairs performance and increases

physiological workload. In Engineering Psychology and Cognitive Ergonomics,

pages 3–11, Cham, Switzerland, 2014. Springer International Publishing.

[26] FMI. Functional Mock-up Interface for Model Exchange and Co-Simulation,

2014.

[27] C W Gear and D R Wells. Multirate linear multistep methods. BIT Numerical

Mathematics, 24(4):484–502, 1984.

105

[28] Peter Jarvis, Bernard Lalonde, and Daniel Spira. Flight simulator modeling

and validation approaches and pilot-in-the-loop fidelity. In AIAA Modeling and

Simulation Technologies Conference and Exhibit, Honolulu, Hawaii, 2008.

[29] Mathai Joseph and P Pandya. Finding response times in a real-time system. The

Computer Journal, 29(5):390–395, 1986.

[30] Pavel Krcal, Martin Stigge, and Wang Yi. Multi-processor Schedulability Anal-

ysis of Preemptive Real-Time Tasks with Variable Execution Times. (1):274–

289, 2007.

[31] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. Interna-

tional Journal on Software Tools for Technology Transfer, 1(1-2):134–152, 2

2014.

[32] Sylvain Lauzac, Rami Melhem, and Daniel Mossé. An improved rate-

monotonic admission control and its applications. IEEE Transactions on Com-

puters, 52(3):337–350, 2003.

[33] Thi Thieu Hoa Le, Luigi Palopoli, Roberto Passerone, and Yusi Ramadian.

Timed-automata based schedulability analysis for distributed firm real-time sys-

tems: a case study. International Journal on Software Tools for Technology

Transfer, 15(3):211–228, 7 2012.

[34] Jim Ledin. Simulation Engineering. CMP Books, Lawrence, Kansas, 2001.

[35] John Lehoczky P., Lui Sha, and Jay Strosnider K. Enhanced Aperiodic Respon-

siveness in Hard Real-Time Environments, 1987.

[36] C. L. Liu and James W. Layland. Scheduling Algorithms for Multiprogramming

in a Hard Real-Time Environment. Journal of the ACM, 20(1):46–61, 1973.

[37] A.K. Mok and D. Chen. A multiframe model for real-time tasks. 17th IEEE

Real-Time Systems Symposium, pages 22–29, 1996.

[38] C. Norstrom and a. Wall. Timed automata as task models for event-driven

systems. Proceedings Sixth International Conference on Real-Time Comput-

ing Systems and Applications. RTCSA’99 (Cat. No.PR00306), pages 182–189,

1999.

106

[39] James Nutaro, Phani Teja Kuruganti, Laurie Miller, Sara Mullen, and Mallikar-

jun Shankar. Integrated hybrid-simulation of electric power and communica-

tions systems. In Power Engineering Society General Meeting, 2007. IEEE,

pages 1–8. IEEE, 2007.

[40] Risat Mahmud Pathan. Fault-tolerant and real-time scheduling for mixed-

criticality systems. Real-Time Systems, 50(4):509–547, 2014.

[41] Sameer M Prabhu and Pieter J Mosterman. Model-Based Design of a Power

Window System: Modeling , Simulation , and Validation. Society for Experi-

mental Machines IMAC Conference, 2004.

[42] Bern Stegeman, Herman J. Damveld, Olaf Stroosma, Marinus van Paassen, and

Max Mulder. Effects of visual delay in flight simulators. In AIAA Modeling and

Simulation Technologies (MST) Conference, Boston, MA, 2013.

[43] Martin Stigge, Pontus Ekberg, Nan Guan, and Wang Yi. The Digraph Real-

Time Task Model. 17th IEEE Real-Time and Embedded Technology and Appli-

cations Symposium, pages 71–80, 4 2011.

[44] Martin Stigge and Wang Yi. Models for Real-Time Workload: A Survey. In

Proceedings of a conference organized in celebration of Professor Alan Burns’

sixtieth birthday, pages 133–159, 2013.

[45] K. W. Tindell, a. Burns, and a. J. Wellings. An extendible approach for ana-

lyzing fixed priority hard real-time tasks. Real-Time Systems, 6(2):133–151, 3

1994.

[46] Ken Tindell and John Clark. Holistic shedulability analysis for distributed hard

real-time systms. Microprocessor and Microprogramming, 40(2-3):117–134,

1994.

[47] Uppaal 4.0: Small Tutorial, 2009. Accessed: 2019-11-10.

[48] I. Yavrucuk, E. Kubali, and O. Tarimci. A low cost flight simulator using virtual

reality tools. IEEE Aerospace and Electronic Systems Magazine, 26(4):10–14,

April 2011.

107

108

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Ahsan, Muhammad Uzair

Nationality: Pakistani

Date and Place of Birth: 25.02.1979, Karachi

Marital Status: Married

EDUCATION

Degree Institution Year of Graduation

M.S. GIK Institute of Engineering Sciences and Technology 2004

B.E. NED University of Engineering and Technology 2002

PROFESSIONAL EXPERIENCE

Year Place Enrollment

16 Ministry of Defence, Pakistan GM (Tech)

PUBLICATIONS

Ahsan, M.U., Oğuztüzün, M.S.H., Schedulability Analysis of Real-time Multi-frame

Co-simulation for Multi-core Platforms, 2019. Turkish Journal of Electrical Engi-

neering & Computer Sciences 27(5), pp: 3599 - 3616.

109

International Conference Publications

Abbasi, A.Z., Ahsan, M.U., Shaikh, Z.A., and Nasir, Z. CAWD: A tool for designing

context-aware workflows. In The 2nd International Conference on Software Engi-

neering and Data Mining, pp: 128 - 133. IEEE

110

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	introduction
	Real-time Multi-frame Co-Simulation
	Timed Automaton and Task Automaton
	Timed Automata Theory
	Task Automaton

	Schedulability Analysis Problem and the Proposed Approach for Solution
	Related Work

	The Framework for Schedulability Analysis
	Multi-Frame Co-Simulation Model
	The Proposed Framework
	The Task Model
	Task Type (Or Task)
	Task Automata
	Precedence DAG

	The Schedulability Analyzer
	Precedence Handling in Proposed Framework
	Simplifications
	Other Considerations in SV Automaton Design
	The Schedulability Verifier (SV) Automaton Construction
	The Cancellation Handler (CH) Automaton Construction

	Framework Implementation
	Schedulability Verifier (SV) Implementation
	SV Locations
	SV Transitions

	Cancellation Handler (CH) Implementation
	CH Locations
	CH Transitions

	Helper Automata
	UpdatePrecedentLists
	Add2ActivePrecedents
	GetNBWait Automaton
	RTCalc Automaton

	The Functionality Verification Experiment
	Results

	Helicopter Simulator Case Study
	Introduction
	Helicopter Simulator
	Application of Schedulability Analysis Framework
	Proposed Improvement
	Schedulability Analysis
	Conclusion

	Conclusion
	REFERENCES
	CURRICULUM VITAE

