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ABSTRACT 

 

ASSESSMENT OF DISCRIMINATION OF MAFIC ROCKS USING TRACE 

ELEMENT SYSTEMATICS WITH MACHINE LEARNING 

 

Öztürk, Mehmet Sinan 

Doctor of Philosophy, Geological Engineering 

Supervisor: Assoc. Prof. Dr. Kaan Sayıt 

 

December 2019, 294 pages 

 

Having an important role in the elucidation of the evolution of ancient oceans and 

related continental fragments, the determination of original tectonic settings of ancient 

igneous rocks is an essential part of the geodynamic inferences. Geochemical 

classification of mafic rocks is important for the tectono-magmatic discrimination of 

igneous rocks especially when geological information is insufficient as the link of the 

igneous rocks to their original tectonic setting had been erased due to large scale 

events.  

Starting from 1960s, first traditional methods (functions of elements or element ratios, 

bivariate and ternary diagrams of elements or element ratios), and then, recently, 

modern methods such as decision trees, support vector machines, sparse multinomial 

regression and random forest have been applied to develop tectono-magmatic 

discrimination methods.  

The purpose of this study is to assess new and better classification methods which are 

both statistically and geochemically rigorous using trace element systematics with 

decision tree learning, an effective machine learning method for classification. Dataset 

included a large number of samples well distributed through different tectonic settings 

(continental arcs, continental within-plates, mid-oceanic ridges, oceanic arcs, oceanic 



 

 

 

vi 

 

back-arc basins, oceanic islands and oceanic plateaus) as classes. Data is gathered 

from high quality articles which is known to follow accurate geochemical sampling 

procedures and have their samples analyzed in internationally accredited and 

trustworthy laboratories. Only element ratios have been used as features in order to 

increase the successful applicability of constructed decision trees to external datasets. 

With this study, successful decision trees with their alternatives are proposed for the 

tectono-magmatic discrimination between (1) subduction and non-subduction 

settings, (2) arc-related and back-arc-related settings within subduction settings, (3) 

oceanic arcs and continental arcs within arc-related settings, (4) oceanic and 

continental settings within subduction settings, (5) oceanic arcs and oceanic back-arcs 

within subduction-related oceanic settings, (6) mid-oceanic ridges + oceanic plateaus 

and oceanic islands + continental within-plates within non-subduction settings, (7) 

mid-oceanic ridges and oceanic plateaus within non-subduction settings and (8) 

oceanic islands and continental within-plates within non-subduction settings. 

 

 

Keywords: Decision trees, machine learning, tectonic discrimination, mafic rocks, 

trace elements  
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ÖZ 

 

MAFİK KAYAÇLARIN AYIRDIMLANMASININ ESER ELEMENT 

SİSTEMATİĞİ KULLANILARAK MAKİNE ÖĞRENİMİ İLE 

DEĞERLENDİRİLMESİ 

 

Öztürk, Mehmet Sinan 

Doktora, Jeoloji Mühendisliği 

Tez Danışmanı: Doç. Dr. Kaan Sayıt 

 

Aralık 2019, 294 sayfa 

 

Eski magmatik kayaçların original tektonik ortamlarının belirlenmesi, eski 

okyanusların ve ilgili kıta parçalarının evriminin aydınlatılmasında önemli bir rol 

oynamakla birlikte; jeodinamik çıkarımların yapılması açısından önemli bir konudur. 

Mafik kayaçların jeokimyasal sınıflandırması, özellikle kayaç ile original tektonik 

ortamı arasındaki bağlantının büyük ölçekli olayların etkisiyle silindiği ve yeterli 

jeolojik bilginin mevcut olmadığı durumlarda, magmatik kayaçların tektono-

magmatik olarak ayırdımlanması için önemli hale gelmektedir.  

1960’lı yıllardan başlayarak, tektono-magmatik ayırdımlama yöntemleri geliştirmek 

amacıyla, önce geleneksel yöntemler (element veya element oranlarının kullanıldığı 

fonksiyonlar, iki veya üç değişkenli diyagramlar) ve daha sonra ise, özellikle son 

zamanlarda karar ağaçları, destek vektör makineleri, seyrek multinomial regresyon ve 

rastgele orman gibi modern yöntemler kullanılmıştır.  

Bu çalışmanın amacı, eser element sistematiği ile birlikte sınıflandırmalar için etkin 

bir makine öğrenimi yöntemi olan karar ağacı öğrenmesini kullanarak hem istatistiksel 

hem de jeokimyasal açıdan daha titiz, daha yeni ve daha iyi sınıflandırma yöntemleri 

önermektir. Çalışmada kullanılan verisetinde, sınıflar olarak farklı tektonik ortamlara 

(kıtasal yay, kıta içi tabakaları, okyanus ortası sırtları, oknayus yayları, okyanus yay 
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arkası havzaları, okyanus adaları ve okyanus platoları) ait iyi dağılım gösteren çok 

sayıda numune içermektedir. Veri, doğru jeokimyasal numuneleme prosedürleri takip 

edilerek örneklenen ve uluslararası akreditasyona sahip güvenilir laboratuvarlarda 

analiz edilmiş numunelerin kullanıldığı yüksek kaliteli makalelerden elde edilmiştir. 

Sınıflandırmada, oluşturulan karar ağaçlarının harici very setlerine de başarıyla 

uygulanabilmesi amacıyla, parameter olarak sadece element oranları kullanılmıştır. 

Bu çalışma ile, (1) yitim zonlarında yer alan ve yer almayan tektonik ortamlar, (2) 

yitim zonlarında, yay içerisinde veya yay gerisinde bulunan tektonik ortamlar, (3) yay 

içerisinde yer alan okyanus yayları (OA) ve karasal yaylar (CA), (4) yitim zonlarında 

okyanusal ortama ait ve karasal ortama ait tektonik ortamlar, (5) okyanusal ortama ait 

yitim zonlarında yay içerisinde (OA) veya yay gerisinde (OBAB) yer alan tektonik 

ortamlar, (6) yitim zonlarında yer almayan tektonik ortamlar arasında okyanus ortası 

sırtı ve okyanus platosu (MOR ve OP) ile okyanus adası ve karasal kıta içi (OI ve 

CWP), (7) okyanus ortası sırtı (MOR) ve okyanus platosu (OP) ile (8) okyanus adası 

(OI) ve karasal kıta içi (CWP) tektonik ortamlarını birbirinden başarıyla ayırdımlamak 

amacıyla alternatifleri ile birlikte, karar ağaçları oluşturulmuş ve önerilmiştir. 

Anahtar Kelimeler: Karar ağaçları, makine öğrenimi, tektonik ayırdımlama, mafik 

kayaçlar, eser elementler 
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CHAPTER 1  

 

1. INTRODUCTION 

 

1.1. Purpose and Scope 

The determination of original tectonic settings of ancient igneous rocks is an essential 

part of the geodynamic inferences since it plays an important role in the elucidation 

of the evolution of ancient oceans and related continental fragments. As a natural 

consequence of plate tectonics, the Earth’s lithospheric plates go through the Wilson 

cycles, which ends up with the destruction of oceanic lithosphere, and eventually the 

collisional orogenesis. It is not surprising that these large-scale events may have totally 

erased the link of the igneous rocks to their original position/setting. The 

fragmentation and slicing are very effective in the orogenic systems so that most 

oceanic- and continent-derived pieces occur as tectonic slices or blocks within the 

subduction-accretion complexes and mélanges. Thus, tectono-magmatic 

discrimination of igneous rocks, especially within such occurrences has always been 

an important problem to solve when relevant geological information is insufficient. In 

this regard, the geochemical features of rocks are of critical importance (Pearce and 

Cann, 1973). 

On the third phase of geochemistry, which begins with the development of new 

qualitative and quantitative geochemical methods; new definitions, such as 

abundance, accuracy, and precision, have been released and gained importance. The 

true representation of rocks by the sample became much more critical along with these 

definitions. Measurement of accuracy with the use of standard samples was probably 

the first steps of today’s quality assurance and quality control (QA/QC) procedures. 

Shaw and Bankier (1954) emphasized the importance of statistics in geochemistry as 

the best technique for handling a large amount of geochemical data in the literature. 
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They applied several statistical evaluation methods such as F-test and modified t-test 

for the diabases from Ontario and stated that the application of statistical methods 

could be very important for geochemists, especially related to the distributions of 

observations in geochemistry. 

The idea (Ahrens, 1954a, 1954b; Chayes, 1954) that deals with any connection 

between the nature and chemical composition of rocks initially focused on the 

distribution of elements within igneous rocks. Ahrens (1954a) examined the chemical 

composition of diabases and granites from different locations such as New England 

and Ontario with a wide range of chemical properties and evaluated the frequency 

distributions of thirteen elements (K, Rb, Cs, F, Sc, Zr, Cr, Co, La, Pb, Mo, Ga, and 

V). He stated that the concentration of these elements shows a log-normal distribution 

in a specific igneous rock; hence, they require log-transformation in order to compare 

the dispersion of different elements and make predictions about the nature of igneous 

rocks. Chayes (1954), on the other hand, suggested that log-normal distribution would 

only be possible for trace and minor elements but not for major elements in crystalline 

rocks. Ahrens (1954b) presented more examples for the distributions of elements in 

granites, diabases, and muscovites and emphasized three elements for granites: Ga 

(small dispersion), Zr (moderate dispersion) and Cr (extreme dispersion). Ahrens 

(1954b) evaluated the distribution of elemental ratios (K/Rb, Rb2O/TiO2 and Sr/Ca) 

for the first time and also examined the relationship between the arithmetic 

mean/geometric mean ratio and the magnitude of dispersion in order to support the 

similar findings with the previous study. 

Discrimination methods have not only been applied in order to discriminate original 

tectonic settings of basalts and other volcanic rocks but for some other reasons such 

as rock classification (Kuno, 1960; Kushiro and Kuno, 1963; Streckeisen, 1967; 

Winchester and Floyd, 1977; Barker, 1983; Ewart, 1982; Le Bas et al., 1986), rock 

series discrimination based on various factors such as alkalinity (Chayes, 1966; Irvine 

and Baragar, 1971; Miyashiro, 1975; Miyashiro and Shido, 1975; Peccerillo and 

Taylor, 1976; Floyd and Winchester, 1975, Hastie et al., 2007), oceanic-continental 
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separation (Ahrens, 1954a, 1954b, Chayes, 1964, 1965; Chayes and Velde, 1965), and 

nature of magma sources (Pearce and Stern, 2006). Apart from basic igneous rocks, 

tectonomagmatic discrimination methods have also been applied for other type of 

rocks such as intermediate or acidic rocks (Taylor and White, 1966; Arth, 1979; 

Bailey, 1981; Pearce et al., 1984; Whalen et al., 1987; Eby, 1992; Gorton and Schandl, 

2000; Pandarinath, 2008; Verma et al., 2012; Verma and Verma, 2013; Verma and 

Oliveira, 2013; Verma et al., 2013; Verma et al., 2015), or sedimentary rocks (Roser 

and Korsch, 1986; Bhatia and Crook, 1986; Amstrong-Altrin and Verma, 2005; 

Verma and Altrin, 2013 and Verma and Altrin, 2016). Rocks have also been 

discriminated not only based on their geochemistry but on their mineralogy 

(Morimito, 1988). 

Kuno (1960) classified basaltic rocks under three groups: tholeiites, high-alumina 

basalts, and alkali basalts. Kushiro and Kuno (1963), on the other hand, modified this 

classification using mantle norm calculations and major element chemistry of rocks. 

They plotted samples in binary diagrams of Na2O+K2O vs CaO+MgO and Na2O+K2O 

vs SiO2 in order to discriminate different types of basalts from each other visually. 

They did not consider the tectonic discrimination of igneous rocks but using binary 

diagrams for the visual representation for classification of basalts guided other 

researchers to apply similar methods in tectonic discrimination of igneous rocks. 

The idea that the magmas from different tectonic settings such as volcanic arcs, back-

arcs, ocean floors or within-plates may be discriminated through the differences in 

their chemistry was first pioneered by Pearce and Cann (1971, 1973); but before them, 

Chayes and Velde (1965) had already attempted to distinguish two basalt types of 

island arcs and ocean islands from each other just by using discrimination functions 

of major elements (Verma, 2010). 

The concept of tectono-magmatic discrimination is simply based on the comparison 

of previously determined element concentrations or ratios in the rocks of unknown 

tectonic setting with those of known tectonic setting (Pearce and Cann, 1973). Most 
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of these tectono-magmatic discrimination methods have been designed for basic and 

ultrabasic rocks with SiO2 < 52% (Rivera-Gómez and Verma, 2016). However, there 

are also fewer diagrams for intermediate or acidic rocks with SiO2 > 52% or even 

sedimentary rocks (Bailey, 1981; Bhatia, 1983; Bhatia and Crook, 1986; Roser and 

Korsch, 1986; Gorton and Schandl, 2000; Dare et al., 2009). 

From these methods, traditional tectono-magmatic discrimination diagrams (bivariate 

or ternary) are well-known and highly preferred by the researchers even today. 

Especially, ternary diagrams have the major advantage of visualizing three variables 

in two dimensions, providing visibility of relative proportions of all variables in a 

single diagram (Verma, 2017). Usually, traditional discrimination diagrams are easy 

to use; but, despite their advantage of visualizing capacity, they are considered to be 

fairly inaccurate (Vermeesch, 2006a). Based on the application of traditional diagrams 

to a variety of tectonic settings by several researchers (eg. Li, 2015), it was concluded 

that they are not functioning effectively as they do not provide high success rates 

(Verma, 2010), especially when used for tectono-magmatic discrimination of 

hydrothermally altered or highly weathered rocks or of older, complex or transitional 

settings (Rivera-Gómez and Verma, 2016). There are also some inconsistencies 

related to magma mixing, crustal contamination, degree of partial melting, and mantle 

versus crustal origin (Verma, 2017). Many discrimination diagrams are not 

statistically rigorous for several reasons such as their decision boundaries are drawn 

by eye (Vermeesch, 2006a). They violate the basic assumption of randomness and the 

normal distribution of the plotted variables (Verma, 2015). Another important defect 

of these diagrams is the use of a limited database for the construction of these diagrams 

(Verma, 2017). Diagrams are created using only a limited amount of samples of a 

certain sampling area, which limits users to classify only data from similar tectonic 

settings. They can also discriminate only a few (two or three) tectonic settings 

(Agrawal, 1999; Agrawal and Verma, 2007; Verma, 2010). The existence of 

overlapped regions with combinations of two or more tectonic settings in a single 

decision field prevents a complete classification. Unclassified regions in ternary 
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diagrams are another problem, which returns no result for samples plotting on these 

regions. For traditional discrimination diagrams, closure (constant sum) is another 

problem (Chayes, 1960, 1971; Aitchison, 1983, 1984, 1986, Agrawal and Verma, 

2007) and is not generally considered carefully (Chayes, 1971; Aitchison, 1986; 

Woronow and Love, 1990). Diagrams are also vulnerable to the existence of missing 

data as their success ratio falls drastically (Vermeesch, 2006a).  

Discrimination diagrams are highly preferred as they do not require complicated 

discriminant methods. Since the first use of discrimination diagrams in order to 

classify different tectonic settings by Pearce and Cann (1973), a variety of 

discrimination diagrams have been proposed by different authors. For having the 

major advantage of their visualizing capacity in two dimensions, these diagrams have 

been frequently used by both petrologists and non-petrologist for many years (Verma, 

2017). The researchers proposing the first tectonic discrimination diagrams in the 

early 1970s, had access only to a limited number of trace elements that could be 

analysed with analytical methods such as X-ray Fluorescence Spectrometry (XRF) 

and Instrumental Neutron Activation Analysis (INAA) with reasonable accuracy. 

Mobile elements such as Rb, Ba, and Sr restricted or eliminated the use of these 

diagrams for altered samples. However, with the development of inductively- coupled 

plasma mass spectrometry (ICP-MS) in 1970s, it became possible to analyse a wide 

spectrum of trace elements, with lower detection limits and higher analytical accuracy, 

allowing researchers such as Pearce, Wood and Shervais to choose elemental 

ratios/groups that best reflect the elemental fractionation for the crustal/mantle 

processes operating within diverse tectonic settings. It has been approved that magma 

compositions from different tectonic settings have a wide range of distributions. The 

number of analyses of basalts has increased drastically obtaining researchers to have 

access to a huge database of analytical data (Li, 2015). 

Because of the continuous debate for the application of traditional discrimination 

methods as a result of low success ratios, researchers are encouraged to search for 

newer robust discrimination methods such as advance of new multi-dimensional 
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discrimination diagrams, which is based on linear discriminant analysis (LDA) of log-

transformed ratios of major elements and selected relatively immobile major and trace 

elements (eg. Agrawal et al., 2004 using major elements; Verma et al.,2006 using log-

transformed ratios of major elements; Agrawal et al., 2008; Verma et al.,2011 using 

log-transformed ratios of relatively immobile trace elements) or machine learning 

methods such as decision trees (Vermeesch, 2006a), random forests, support vector 

machines (SVM) or sparse multinomial regression (SMR) (Ueki, 2017) or 

modification of existing traditional discrimination diagrams by application of linear 

discriminant analysis (LDA) (Vermeesch, 2006b). 

For the development of multi-dimensional discrimination diagrams, compositional 

data have been handled by some studies (Aitchison, 1981, 1983, 1984, 1986; Egozcue, 

2003). These studies suggested log-ratio transformation for the solution of problems 

arising from compositional data. Caution is required while handling compositional 

data through conventional statistical methods (eg. Pearson, 1897; Chayes, 1960; 1971; 

Aitchison, 1983, 1984; 1986; Rollinson, 1993, Egozcue et al., 2003; Pawlowsky-

Glahn and Egozcue, 2006; Agrawal and Verma, 2007; Buccianti, 2013; Verma, 2015). 

For statistical handling of compositional data, Aitchison (1981, 1984, 1986) 

developed a solution in terms of log-transformation prior to the application of 

conventional statistical tools (Verma et al., 2016). Later, Egozcue et al. (2003) 

provided another type of log-ratio transformation (Verma, 2015). Data is normally 

distributed as long as multivariate discordant outliers are detected and eliminated 

(Verma, 2015). Additive log-ratio transformation of Aitchison (1981) was used by 

several researchers (Verma et al., 2006; Agrawal et al., 2008; Verma and Agrawal, 

2011) for basic and ultrabasic igneous rocks. Development of multi-dimensional 

discrimination diagrams generally follows the order of construction of training 

databases, log-ratio transformations, discordant outlier detection and elimination, 

application of statistical tests for the choice of elements, application of multi-variate 

technique of linear discriminant analysis, and determination of probability-based 

tectonic field boundary equations. Probability values for individual samples were 



 

 

 

7 

 

calculated using methods of Agrawal (1999) and Verma and Agrawal (2011) and used 

to decide the tectonic fields in which a given sample plots (Verma, 2017). One of the 

disadvantages of multi-dimensional discrimination diagrams is the use of complex 

equations that have to be solved for these probability calculations. The development 

of a computer program is necessary for an efficient, accurate and routine application 

of these diagrams (Verma et al., 2016).  

Several discriminant-function based multi-dimensional discrimination diagrams 

(Agrawal et al., 2004, 2008; Verma et al., 2006; Verma and Agrawal, 2011) are 

proposed to identify tectonic settings. These diagrams generally focused on the 

discrimination of five tectonic settings: island arcs, continental arcs, continental rifts, 

oceanic islands, and continental collisions (Verma, 2017). In general, binary and 

ternary discrimination diagrams are found to be less useful than multi-dimensional 

diagrams (Verma, 2017; Gomez and Verma, 2016; Verma and Oliveira, 2015; Verma 

et al., 2015; Li, 2015, Pandarinath, 2014; Pandarinath and Verma, 2013, Verma et al., 

2012; Verma, 2010; Sheth, 2008). Indeed, Verma (2010) concluded that newer 

methods such as the multidimensional diagrams worked satisfactorily with a high 

success rate as a result of his evaluation of all discrimination diagrams through an 

extensive database. The success rate of discrimination diagrams falls drastically when 

used with granitic or felsic rocks and sedimentary rocks (Rivera-Gómez and Verma, 

2016). 

Application of decision trees in the development of tectono-magmatic discrimination 

methods is limited to Vermeesch (2006a), which only discriminated three tectonic 

settings (island arcs, mid-ocean ridges and ocean islands). The use of mobile elements 

and isotope ratios for decision trees decreased their efficiency and applicability. 

Therefore, new decision tree alternatives are required using an extensive geochemical 

database in order to discriminate a variety of tectonic settings (more than six).  

This study focuses on finding a more effective way for the tectono-magmatic 

discrimination methods of basic igneous rocks (basalts, trachybasalts, picrobasalts, 



 

 

 

8 

 

foidites and tephrites/basanites). For this purpose, it is aimed first to assess the trace 

element systematics of the basic igneous rocks from different tectonic settings. This 

is followed by the integration of the decision tree algorithm on the selected 

geochemical features of these rocks. Although the main focus remains on the rocks of 

basic chemical composition, extensive external datasets of intermediate/acidic 

igneous rocks (basaltic andesites, basaltic trachyandesites, phonotephrites, andesites, 

trachyandesites, tephriphonolites, phonolites, trachytes/trachydacites, dacites and 

rhyolites along with basalts, trachybasalts, picrobasalts, foidites and 

tephrites/basanites) are also be used in order to evaluate the applicability of provided 

decision trees for the more evolved compositions. 

1.2. Review of Tectono-Magmatic Discrimination Methods of Basic Igneous 

Rocks 

In order to discriminate basalts and other basic igneous rocks based on their original 

tectono-magmatic settings, following the use of a single discriminating criteria of 

elements (such as Chayes, 1964; Chayes, 1965) or functions with the combination of 

elements (such as Chayes and Velde, 1965), the traditional discrimination diagrams 

(bivariate or ternary) have first been proposed by several researchers (bivariate: Pearce 

and Gale, 1977; Pearce and Norry, 1979; Shervais, 1982; Pearce, 1982; ternary: Pearce 

and Cann, 1973; Pearce et al., 1977; Wood, 1980; Mullen, 1983; Meschede, 1986; 

Cabanis and Lecolle, 1989). Discriminating functions with a combination of elements 

or element ratios have also been applied in traditional discrimination diagrams by 

several researchers (Pearce, 1976; Butler and Woronow, 1986). 

Traditional discrimination diagrams are still in use for nearly four decades in order to 

classify different tectono-magmatic settings such as island arc, continental rift, ocean 

floor, ocean island and mid-oceanic ridge on the basis of their chemistry and their 

effectiveness is frequently tested and evaluated by many other researchers (Verma, 

2010, 2016; Li, 2015; Gomes and Verma, 2016; Verma, 2017). 
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These diagrams have been followed by multi-dimensional discriminant function 

diagrams with the implementation of statistical methods such as log-ratio 

transformation and linear discriminant analysis (Agrawal et al., 2004; Verma et al., 

2006; Agrawal et al., 2008) or with the implementation of machine learning methods 

such as decision tree learning (Vermeesch, 2006a) or support vector machines (SVM), 

random forest and sparse multinomial regression (SMR) approaches (Ueki et al., 

2017). 

1.2.1. Elements as Discriminating Criteria 

Chayes (1964) and Chayes (1965) applied a single element’s concentration (TiO2) as 

a discriminating criterion.  

Chayes (1964) searched through an extensive database of oceanic island basalts 

(Atlantic, Indian and Pacific) and circumoceanic basalts (Japan, South Pacific, South 

America, Central America, Mexico, Alaska and Aleutian Chain, Kamchatka and 

Kurile Chain and Indonesia) on the basis of their chemistry and included 834 analyses 

of oceanic and 1003 analyses of circumoceanic rocks.  

He evaluated the sample distributions of Thornton-Tuttle index and proposed a 

classification based on TiO2 content and the degree of alkalinity (relative to SiO2 and 

Al2O3) and came up with a statement that oceanic basalts are normatively alkaline and 

contain more than 1.75% TiO2 content in discrimination of oceanic and circumoceanic 

basalts from each other. 

Chayes (1965) examined the distribution of elements for oceanic and circumoceanic 

basalts and determined that the average TiO2 content of circumoceanic and ocean 

island basalts are 1.15% and 3.05% with respectively. Although there are similar 

differences through other oxides, they are highly overlapped.  

He also stated that TiO2 content of rocks along with alkalinity is a discriminating 

factor between oceanic and circumoceanic basalts with a discrimination value of 
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1.75%. Out of 360 circumoceanic basalts, 32 samples and out of 497 oceanic basalts, 

29 samples have been misclassified based on TiO2 content. 

1.2.2. Traditional Bivariate Diagrams 

Traditional bivariate diagrams are generally based on immobile or high field strength 

elements such as Ti, Zr, Nb, Y, and V, providing an advantage for these diagrams to 

be applied for discrimination of altered samples.  

Pearce and Cann (1973) published a binary diagram in order to discriminate ocean-

floor basalts, low-potassium tholeiites and calc-alkali basalts from island arcs using 

Ti and Zr. The Ti-Zr diagram (Figure 1.1) is applicable to the altered samples. Ocean-

floor basalts (regions B and D), low-K tholeiites (regions A and B) and calc-alkali 

basalts (regions B and C) are discriminated with this diagram. 

 

 

Figure 1.1. Bivariate diagram of Ti versus Zr by Pearce and Cann (1973) 
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Dilek and Furnes (2009) recently published another bivariate diagram of Ti versus Zr 

(Figure 1.2) in order to discriminate arc tholeiites, boninites, and mid-oceanic ridge 

basalts from each other.  

 

 

Figure 1.2. Bivariate diagram of Ti versus Zr by Dilek and Furnes (2009) 

 

Pearce (1975) studied four suites of volcanic rocks in Cyprus to investigate their past 

tectonic environments. Pearce (1975) published a new tectonic discrimination diagram 

based on Cr along with Ti (Figure 1.3) as a modified version of Pearce and Cann 

(1973). He studied volcanic rocks of Cyprus to understand the tectonic history of the 

island. The Troodos Massif is an ophiolite complex with a sequence of, from bottom 

to top (Moores and Vine, 1971), a plutonic complex (Böttcher, 1969), sheeted 

intrusive complex, lower pillow lavas, upper pillow lavas and pelagic sediments 

(Robertson and Hudson, 1973). These rocks have features of both ocean-floor and 
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island-arc. Pearce (1975) used 6 samples of lower pillow lavas, 13 samples of diabases 

and 9 samples of upper pillow lavas from Troodos Massif in Cyprus. 

 

 

Figure 1.3. Bivariate diagram of Pearce (1975) 

 

Pearce (1975) first applied Ti-Zr-Y and Ti-Zr diagrams (Pearce and Cann, 1971, 1973) 

in order to eliminate rock samples of within-plate origin. However, these diagrams are 

not satisfactory enough to distinguish between ocean-floor and volcanic arc settings. 

As elements Sr, Rb, and K are highly affected by alteration, Pearce (1975) carefully 

applied Ti-Zr-Sr diagram (Pearce and Cann, 1973). Most samples fall into ocean-floor 

basalts; Sr-enriched samples fall into island-arc field. Pearce (1975) developed a new 

discrimination diagram using elements Ti and Cr in order to distinguish ocean-floor 

and island-arc basalts. According to the Ti-Cr discrimination diagram, the lower 
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pillow lavas and diabases of the Troodos Massif fall into both ocean-floor basalts and 

island arc tholeiites, whereas the upper pillow lavas have low Cr concentrations 

indicating an island-arc origin as previously defined by Miyashiro (1973). He used 

samples from Pearce and Cann (1973) to construct a bivariate diagram of Ti-Cr in 

order to discriminate ocean-floor basalts (OFB) and island arc low-K tholeiites (LKT). 

The importance of Ti is its relative insensitivity to secondary processes (Cann, 1970). 

Cr is also not largely affected by alteration (Bloxam and Levis, 1972) and a good 

discriminator between ocean floor and island-arc basalts (Figure 1.3). 

Pearce and Gale (1977) studied the tectonic environments of formation of 

volcanogenic massive sulfide deposits and porphyry tin and copper deposits. They 

considered stable trace element geochemistry of meta-basalts in these deposits 

(especially Ti, Zr, Y, Nb, Cr and rare earth elements) and suggested a bivariate 

diagram of Ti/Y versus Zr/Y (Figure 1.4) in order to discriminate two grouped tectonic 

settings from each other using a dividing line; which are the combination of different 

tectonic settings: plate margins including island arcs and mid-ocean ridges (ocean-

floor basalts) or within-plates including rifts and ocean island settings. This diagram 

is analogous to the Ti-Zr-Y diagram of Pearce and Cann (1973). 

Pearce and Norry (1979) used analysis data of HFSE (High-Field Strength Elements) 

along with Ti, Zr, Y, and Nb from mafic and volcanic rocks. By the comparison of the 

results of these analyses, they published a new discrimination diagram using Zr/Y 

ratio and Zr (Figure 1.5). This element ratio to element diagram has a logarithmic scale 

in both axes and discriminated between island-arc, MOR and within-plate settings. On 

the diagram, Zr content increases from island-arc and mid-oceanic ridge towards 

within-plate basalts. Island-arc basalts, though some overlap exists, have lower Zr and 

Zr/Y ratio with respect to mid-ocean ridge basalts. Alkali basalts both in mid-ocean 

ridges and within-plate regimes have the highest Zr/Y ratios. This element ratio-ratio 

bivariate diagram is still widely applied for discrimination of these settings. 
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Figure 1.4. Bivariate diagram of Pearce and Gale (1977) 

 

 

Figure 1.5. Bivariate diagram of Pearce and Norry (1979) 



 

 

 

15 

 

Pearce et al. (1981) introduced a Ti-Zr diagram (Figure 1.6) for the lavas of the Oman 

ophiolite, using lower back-arc spreading units and upper arc units. The diagram 

discriminates within-plate lavas, mid-ocean ridge basalts, and arc lavas from each 

other. Pearce et al. (1981) used samples of various sources as Pearce (1980) and Aldiss 

(1978). In the diagram, the field defined for mid-ocean ridge basalts is completely 

intersected with arc lavas and within-plate lavas. 

 

 

Figure 1.6. Bivariate diagram of Pearce et al. (1981) 

 

Pearce (1982) published three diagrams: a binary diagram of Nb/Y versus Ti/Y ratios 

on a log-log scale (Figure 1.7), K2O/Yb versus Ta/Yb ratios on a log-log scale (Figure 

1.8), and Ce/Yb versus Ta/Yb ratios on a log-log scale (Figure 1.9). 
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Figure 1.7. Bivariate diagrams of Peace (1982) using Ti/Y versus Nb/Y 

 

 

Figure 1.8. Bivariate diagrams of Peace (1982) using K2O/Yb versus Ta/Yb 
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Figure 1.9. Bivariate diagrams of Peace (1982) using Ce/Yb versus Ta/Yb 

 

Shervais (1982) used analyses of Ti and V to construct a new bivariate diagram that 

can discriminate four tectonic settings within both modern and ophiolitic lavas: ocean 

basins, island arcs, back-arc basins, and continental interiors. Shervais (1982) stated 

that MORB has a uniform distribution of Ti/V without difference between N-MORB 

and E-MORB, and also tholeiitic flood basalts can be discriminated from MORB 

despite their similarity. Tholeiitic and alkali basalts plot in distinct fields with 

minimum overlap, reflecting several factors such as mantle sources, degree of partial 

melting, and volatiles. Volcanic rocks from island arc-related settings may be divided 

into three groups based on their alkalinity, and they show broad variations of Ti and 

V. Basalts in back-arc basins show overlaps with MOR and island arc volcanic rocks. 

These settings were discriminated by the Ti versus V diagram of Shervais (1982), 

using equi-Ti/V boundaries drawn by eye (Figure 1.10). 
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Figure 1.10. Bivariate diagram of Shervais (1982) 

 

Pearce (1983) published two diagrams: a bivariate diagram of Ta/Yb versus Th/Yb 

(Figure 1.11) and a bivariate diagram of Zr versus Zr/Y (Figure 1.12). The first 

diagram is quite similar to diagrams of Pearce et al. (1981), discriminating arc-related 

basalts from within-plate and mid-oceanic ridge basalts, using a similar structure of 

enclosed regions. A somewhat similar version, but including Nb (instead of Ta) was 

proposed by Pearce and Peate (1995). The second diagram, on the other hand, simply 

discriminates continental arcs from oceanic arcs using a single line. Pearce (1983) 

stated that continental arcs have a higher ratio of Zr/Y compared to oceanic arcs, 

regardless of their Zr content. 
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Figure 1.11. Bivariate diagrams by Pearce (1983) using Ta/Yb versus Th/Nb 

 

 

Figure 1.12. Bivariate diagrams by Pearce (1983) using Zr versus Zr/Y 
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Pearce et al. (1984) published a bivariate diagram of Cr vs TiO2 (Figure 1.13) in order 

to discriminate SSZ (supra-subduction zone) ophiolites from MOR ophiolites. The 

SSZ ophiolite mantle is generally more residual than that of MOR ophiolites. They 

are derived by higher degrees of melting of a similar source or by similar degrees of 

melting of a less fertile source. 

 

 

Figure 1.13. Bivariate diagram of TiO2 versus Cr by Pearce et al. (1984) 

 

Dilek et al. (2007), on the other hand, modified this diagram and published another 

bivariate diagram of Y versus Cr as this diagram (Figure 1.14) in order to discriminate 

between boninites, arc tholeiites and mid-ocean ridge basalts from each other. Dilek 

et al. (2007) used magmas of Western-type ophiolites in order to define regions of 

MORB and lavas and dikes of the Eastern-type ophiolites in order to define regions 

of island arc tholeiites and boninites. 
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Figure 1.14. Bivariate diagram of Y versus Cr by Dilek et al. (2007) 

 

Hollocher et al. (2012) published two bivariate diagrams (Figure 1.15 and Figure 1.16) 

in order to discriminate mid-oceanic ridge basalts, ocean islands and a variety of arc-

type basalts from each other. Hollocher et al. (2012) used the analysis results of the 

samples from the Upper Allochthon metamorphosed igneous rocks of the 

Scandinavian Caledonides in Norway over a large region with well-defined but 

discontinuous units, for which analysis data were taken from PetDB. Data were 

filtered in order to include only volcanic glass with a SiO2 range of 45-55%. Element 

conversion using a conversion factor was applied in order to increase the number of 

samples plotted in diagrams. The filtered dataset included 1.586 mid-oceanic ridge 

basalts, 518 oceanic-arc and 1.793 continental arc, 1.021 alkaline arc, 958 back-arc 

basin, and 2.438 ocean island samples. Discriminant lines were drawn by eye with 

wide overlapping fields. 
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Figure 1.15. Bivariate diagrams of Hollocher (2012) using La/Yb vs Nb/La 

 

 

Figure 1.16. Bivariate diagrams of Hollocher (2012) using La/Yb vs Th/Nb 
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Saccani (2015) published a new bivariate tectonomagmatic discrimination diagram 

using N-MORB-normalized values of Th and Nb for the tectonomagmatic 

discrimination of different ophiolitic basalts (Figure 1.17). More than 2000 ophiolitic 

basalts from ten different basalt localities were used in order to obtain this diagram. 

The diagram is used for discrimination of convergent and divergent plate settings from 

each other and also discrimination of back-arcs, subduction unrelated settings and 

rifted margins, fore-arcs, intra-arcs, island arcs and volcanic arcs. 

 

 

Figure 1.17. Bivariate diagrams of Saccani (2015) using normalized values of Th versus Nb 
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1.2.3. Traditional Ternary Diagrams 

Traditional ternary diagrams, as in the bivariate diagrams, are also based on relatively 

immobile elements such as Ti, P, Zr, Hf, Nb, Y, and V. The use of these elements in 

discrimination diagrams is an advantage for the application of diagram for altered 

samples and especially from older terrains (Verma, 2010). Ternary diagrams can also 

be replaced by natural log-ratio bivariate diagrams (Verma and Agrawal, 2010). 

Pearce and Cann (1973) used analyses for Ti, Zr, Y, Nb, and Sr in basaltic rocks from 

different tectonic settings to construct their discrimination diagrams. The distinctions 

between different tectonic settings in the discrimination diagram were obtained by 

selected elements as axes instead of discrimination functions, used by Pearce and Cann 

(1971). Present-day volcanic rocks are classified based on tectonic settings associated 

with their eruption. They defined four major groups: ocean-floor basalts as diverging 

plate margins, volcanic arc basalts as converging plate margins, ocean-island basalts 

and continental basalts as within-plate regimes. Pearce and Cann (1973) selected 

randomly distributed rock samples from known tectonic settings in a statistically 

sufficient quantity. Samples were fresh, yet a small number was altered. Altered 

samples were not involved in diagrams of Sr. The results of analyses from the 

literature were also used when acceptable. A compositional limit of 20% > CaO+MgO 

> 12% were used to select rock samples. Pearce and Cann (1973) used 72 samples of 

ocean floor basalts from ocean ridges, 46 samples of low-K tholeiites, 60 samples of 

calc-alkali basalts and 9 samples of shoshonites from volcanic arcs, 78 samples of 

ocean island basalts from ocean islands and 35 samples of continental basalts from 

continental settings for the construction of discrimination diagrams. Elements to be 

used for discrimination were selected as (1) they have great variation in concentration, 

(2) they are insensitive to secondary processes such as weathering and/or 

metamorphism, (3) their analyses are reproducible. Ti-Zr-Y diagram (Figure 1.18) is 

first used to discriminate basalts erupted in both oceanic and continental plates. 

Within-plate basalts (region A), calc-alkaline basalts (region B and C), ocean floor 

basalts (region C) and low-K arc tholeiites (region C and D) are discriminated through 
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this diagram. For the rock samples not classified as “within-plate basalt” by 

discrimination by the Ti-Zr-Y diagram, Pearce and Cann (1973) established another 

ternary diagram using Ti-Zr-Sr (Figure 1.19). Tectonic discrimination diagrams are 

much more efficient when constructed based on stable elements as they are not easily 

affected by secondary processes such as weathering and metamorphism (Pearce, 

1975). The discrimination diagrams of Pearce and Cann (1971, 1973) are highly 

efficient for distinguishing magma types as they use stable elements Ti, Zr, Y, and 

Nb. Cr is another fairly stable element which is resistant to alteration (Bloxam and 

Levis, 1972). 

 

 

Figure 1.18. Discrimination diagrams of Pearce and Cann (1973) using Ti/100-Zr-Y*3 
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Figure 1.19. Discrimination diagrams of Pearce and Cann (1973) using Ti/100-Zr-Sr/2 

 

Wood et al. (1979) stated that discrimination using Zr-Ti-Y is problematic for magma 

types erupted at tectonically anomalous ridge segments with respect to those erupted 

at normal ridge segments. They also stated that these discrimination diagrams: (1) fail 

at the discrimination of tectonically different mid-ocean ridge segments, and (2) are 

restricted to a certain number of immobile trace elements detected by X-ray 

fluorescence (XRF). Wood et al. (1979) developed a new discrimination diagram 

using different elements (Th, Ta, Hf) which can be efficiently detected by instrumental 

neutral activation analysis (INAA). Wood et al. (1980) reconsidered the Hf/3-Th-Ta 

diagram (Wood et al., 1979) by using additional data (Figure 1.20). By the addition of 
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new data, Wood et al. (1980) modified the previous diagram so that it is possible to 

discriminate calc-alkaline lavas from island arc tholeiites. Wood et al. (1980) enlarged 

some fields and modified boundaries. 

 

 

Figure 1.20. Discrimination diagram of Wood (1980), modified after Wood et al. (1979) using Hf/3, 

Th and Nb/16 

 

Mullen (1983) divided the entire ternary field into six regions: ocean-island tholeiites 

(region A), mid-oceanic ridge basalts (region B), island arc tholeiites (region C), 

boninites (region D), calc-alkaline basalts (region E) and ocean-island alkali basalts 

(region F) using basic and ultrabasic rocks from different oceanic tectonic settings 

(Figure 1.21). Boninites and calc-alkaline basalt fields are not divided from each other 
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by a solid line. Since the diagram uses Mn, which is a relatively mobile element, it is 

especially applicable for fresh samples. 

 

 

Figure 1.21. Discrimination diagram of Mullen (1983) using TiO2, MnO*10, P2O5*10 

 

Meschede (1986) published the Zr-Nb-Y diagram (Figure 1.22) with a suggestion for 

two different types of ocean-floor basalt as N-MORB and E-MORB (also known as 

P-MORB) and their discrimination from each other using immobile trace element Nb. 

N-MORBs are depleted in incompatible trace elements, yet E-MORBs are generally 

enriched. Meschede (1986) used a ternary diagram of Zr/4, Nb*2, and Y in order to 

discriminate four tectonic settings for basaltic rocks. Within-plate alkali basalts 

(region A and B), within-plate tholeiites (region B and D), E-MORB (region C) and 
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N-MORB (region E) are discriminated through this diagram. The fields for these 

settings were defined on the basis of 1800 analyses of modern basalts with a 

compositional range between 12 and 20 for CaO + MgO. The fields are within-plate 

alkali basalts, within-plate tholeiites, E-MORB, N-MORB, and volcanic arc basalts. 

 

 

Figure 1.22. Discrimination diagram of Meschede (1986) using 2*Nb, Zr/4 and Y 

 

Cabanis and Lecolle (1989) used a comparatively small number of samples in order 

to publish a tectonic discrimination diagram on a ternary plot of La-Y-Nb 

concentrations (Figure 1.23). The diagram is used for the discrimination between 

volcanic arc basalts, continental basalts, and oceanic basalts. Volcanic arc basalts are 

subdivided into two groups: calc-alkali basalts and island-arc tholeiites. The settings 
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are defined in enclosed regions and there are regions where no tectonic setting is 

provided. 

 

 

Figure 1.23. Discrimination diagram of Cabanis and Lecolle (1989) using Y/15, La/10 and Nb/8 

 

1.2.4. Traditional Diagrams with Discriminating Functions 

Pearce (1976) performed linear discriminant analysis for major element oxides in 

order to discriminate six tectonic settings from each other: ocean floor basalts, island 

arc tholeiites, calc-alkali basalts, shoshonites, ocean-island basalts, continental 

basalts. A maximum number of 75 samples for each tectonic setting is selected from 

different localities. Only analyses where CaO+MgO are between 12 and 20% are 

selected. Only fresh samples were used. He published five discriminant functions 
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(Table 1.1). based on major element oxides (DF1, DF2, DF3, DF4, and DF5) and 

presented two discrimination diagrams based on DF1-DF2 DF3 (Figure 1.24) and 

DF1-DF3 (Figure 1.25). 

 

Table 1.1. Discrimination functions used in diagrams of Pearce (1976) 

Discrimination Functions 

DF1 
+0.0088SiO2-0.0774TiO2+0.0102Al2O3+0.0066FeO-0.0017MgO-0.0143CaO-

0.0155Na2O-0.0007K2O 

DF2 
-0.0130SiO2-0.0185TiO2-0.0129Al2O3-0.0134FeO-0.0300MgO-0.0204CaO-

0.0481Na2O+0.0715K2O 

DF3 
-0.221SiO2-0.0532TiO2-0.0361Al2O3-0.0016FeO-0.0310MgO-0.0237CaO-

0.0614Na2O-0.0289K2O 

 

 

 

Figure 1.24. Discrimination diagrams of Pearce (1976) using DF1 and DF2 
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Figure 1.25. Discrimination diagrams of Pearce (1976) using DF2 and DF3 

 

Butler and Woronow (1986) proposed an alternative approach to the tectonic 

discrimination of igneous rocks by using principal component analysis. They created 

a bivariate graph which uses two principal components (Table 1.2) in the form of 

functions of Ti, Zr, Y, and Sr (Figure 1.26). The settings discriminated in this graph 

are similar to Pearce and Cann (1973), yet this graph is accepted to be more 

mathematical with respect to the original Ti-Zr-Y diagram. 

 

Table 1.2. Discrimination functions used in diagrams of Butler and Woronow (1986) 

Discrimination Functions 

Score 1 0.3707Ti-0.0668Zr-0.398Y+0.8362Sr 

Score 2 -0.3376Ti-0.5602Zr+0.7397Y +0.1582Sr 
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Figure 1.26. Discrimination diagrams of Pearce (1976) using DF1 and DF2 

 

Velikonslavinsky and Kykrylov (2014) published new tectono-magmatic 

discrimination diagrams (Figure 1.27) for basalts from tectonic settings of island-arcs, 

within-plates, mid-ocean ridges, and post-collisional settings using discrimination 

functions (Table 1.3). They used a database from global geochemical datasets such as 

GEOROC, PetDB, IGBA, RidgeDB. They used a two-stage discrimination. At first 

stage, they discriminate WPB, IAB and MOR creating discriminating functions with 

combinations of elements including major oxides (SiO2, TiO2, Al2O3, FeO* (total iron 

in form of FeO), MgO, CaO, Na2O, K2O, P2O5, Rb, Sr, Y, Zr, Nb, La, Ce, Nd, Sm, 

Eu, and Yb). At the second stage, PCB (basalts of post-collisional setting) is separated 

with discriminating functions by a combination of major oxides and minor elements 

(Rb, Sr, Y, Zr, and Nb). 
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Figure 1.27. Discrimination diagrams of Velikoslavinsky and Kykrylov (2014) using discrimination 

functions of (A) by major element contents, (B) by inert minor element contents 
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Table 1.3. Discrimination functions used in diagrams of Velikoslavinsky and Kykrylov (2014) 

Discrimination Functions by major element contents  

DF1 

-4.6761ln(TiO2/SiO2)+2.5330ln(Al2O3/SiO2)-

0.3884ln(Fe2O3/SiO2)+3.9688ln(FeO/SiO2)+0.8980ln(MnO/SiO2)-

0.5832ln(MgO/SiO2)-0.2896ln(CaO/SiO2)-

0.2704ln(Na2O/SiO2)+1.0810ln(K2O/SiO2)+0.1845ln(P2O5/SiO2)+1.5445 

DF2 

+0.6751ln(TiO2/SiO2)+4.5895ln(Al2O3/SiO2)-

2.0897ln(Fe2O3/SiO2)+0.8514ln(FeO/SiO2)+0.4334ln(MnO/SiO2)-

1.4832ln(MgO/SiO2)-2.3627ln(CaO/SiO2)-

1.6558ln(Na2O/SiO2)+0.6757ln(K2O/SiO2)+0.4130ln(P2O5/SiO2)+13.1639 

Discrimination Functions by inert minor element contents 

DF1 0.3518ln(La/Th)+0.6013ln(Sm/Th)-1.3450ln(Yb/Th)+2.1056ln(Nb/Th)-5.4763 

DF2 -0.305ln(La/Th)-1.1801ln(Sm/Th)+1.6189ln(Yb/Th)+1.226ln(Nb/Th)-0.9944 

 

 

1.2.5. New Multi-Dimensional Diagrams with Discriminating Functions 

Agrawal et al. (2004) applied linear discriminant analysis in order to discriminate 

Pliocene to recent basic rocks on the basis of their major element chemistry (Figure 

1.28). Four tectonic settings were discriminated: island arc, continental rift, ocean 

island, and mid-oceanic ridge. 1159 samples with SiO2 content less than 52% were 

selected for discriminant analysis. Field boundaries were derived by computing 

probability functions. Multi-dimensional discrimination diagram of discriminant 

functions DF1 and DF2 (Table 1.4) obtained a success ratio of 76% to 96%. 
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Figure 1.28. Representative discrimination diagram from Agrawal et al. (2004) 

 

Table 1.4. Discrimination functions used in diagrams of Agrawal et al. (2004) 

Discrimination Functions 

DF1 
+0.258SiO2+2.395TiO2+0.106Al2O3+1.019Fe2O3-6.778MnO+0.405MgO+ 

0.119CaO+0.071Na2O-0.198K2O+0.0613P2O5-24.064 

DF2 
+0.730SiO2+1.119TiO2+0.156Al2O3+1.332Fe2O3+4.376MnO+0.493MgO+ 

0.936CaO+0.882Na2O-0.291K2O-1.572P2O5-59.472 

 

Verma et al. (2006) published five new discriminant function diagrams (Figure 1.29) 

based on extensive database representatives of basic and ultrabasic rocks using 

discrimination functions (Table 1.5). Tectonic settings discriminated are island arc, 

continental rift, ocean-island, and mid-oceanic ridge. 2732 samples were selected and 
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major element data was used for discriminant analysis. The diagrams were obtained 

after log-transformation. They also obtained a high success ratio between 82% to 97%.  

 

 

Figure 1.29. Representative discrimination diagram from Verma et al. (2006) 

 

Table 1.5. Discrimination functions used in diagrams of Verma et al. (2006) 

Discrimination Functions 

DF1 

-4.6761ln(TiO2/SiO2)+2.5330ln(Al2O3/SiO2)-

0.3884ln(Fe2O3/SiO2)+3.9688ln(FeO/SiO2)+0.8980ln(MnO/SiO2)-

0.5832ln(MgO/SiO2)-0.2896ln(CaO/SiO2)-

0.2704ln(Na2O/SiO2)+1.0810ln(K2O/SiO2)+0.1845ln(P2O5/SiO2)+1.5445 

DF2 

+0.6751ln(TiO2/SiO2)+4.5895ln(Al2O3/SiO2)-

2.0897ln(Fe2O3/SiO2)+0.8514ln(FeO/SiO2)+0.4334ln(MnO/SiO2)-

1.4832ln(MgO/SiO2)-2.3627ln(CaO/SiO2)-

1.6558ln(Na2O/SiO2)+0.6757ln(K2O/SiO2)+0.4130ln(P2O5/SiO2)+13.1639 
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Upon the problems in major and trace element based discrimination diagrams, 

Agrawal et al. (2008) published new discrimination function based diagrams focusing 

on five trace elements (La, Sm, Yb, Nb, Th) and four log-transformed ratios (La/Th, 

Sm/Th, Yb/Th, Nb/Th). The tectonic settings discriminated are island arc, continental 

rift, ocean island, and mid-ocean ridges. A total of 1645 samples were selected for 

linear discriminant analysis. Agrawal presented a multidimensional discrimination 

diagram (Figure 1.30) based on discriminant functions of DF1 and DF2 (Table 1.6) in 

which continental rifts and ocean islands are plotted in a single region when all four 

tectonic settings are to be discriminated at the same time. They also presented four 

diagrams discriminating three settings out of four each time: IAB, OI, and CRB; 

MOR, IAB, CRB; MOR, IAB, OI and OI, CRB, MOR. 

 

 

Figure 1.30. Representative discrimination diagram from Agrawal et al. (2008) 
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Table 1.6. Discrimination functions used in diagrams of Verma et al. (2006) 

Discrimination Functions 

DF1 0.3518ln(La/Th)+0.6013ln(Sm/Th)-1.3450ln(Yb/Th)+2.1056ln(Nb/Th)-5.4763 

DF2 -0.305ln(La/Th)-1.1801ln(Sm/Th)+1.6189ln(Yb/Th)+1.226ln(Nb/Th)-0.9944 

 

Verma and Agrawal (2011) published new tectonic discrimination diagrams for basic 

and ultrabasic volcanic rocks (Figure 1.31). They applied log-transformation to five 

HFSE: TiO2, Nb, V, Y, and Zr. The database was compiled from previous studies of 

Verma et al. (2006), Agrawal et al. (2004, 2008), and Verma (2010). 1877 analyses 

were used for discriminant analysis. The tectonic settings discriminated are island 

arcs, continental rifts, ocean-islands, and mid-ocean ridges. Five HFSE elements and 

their log-transformed ratios (Nb/TiO2, V/TiO2, Y/TiO2, and Zr/TiO2) were used in 

discriminant functions obtaining success ratios between 80% and 94%. Verma and 

Agrawal (2011) also published one diagram in which continental rifts and ocean 

islands are plotted on the same region and four diagrams their triple combinations of 

four tectonic settings were discriminated separately. 

1.2.6. Discrimination using Machine Learning Methods 

Vermeesch (2006a) used the decision tree learning method of machine learning and 

built two decision trees in order to discriminate between three different tectonic 

settings for basaltic rocks; mid-ocean ridges, ocean islands, and island arcs. He used 

756 samples from global geochemical datasets of PetDB and GEOROC with their 

major and trace element and isotope ratio measurements in order to build decision 

trees. The first tree uses all samples with all elements and isotope ratios (Figure 1.32). 

The second one only uses altered samples and immobile elements, thus expected to be 

resistant against weathering and/or metamorphism (Figure 1.33). He stated that the 
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success ratio for the application of the decision tree reaches up to 89% for the first tree 

and 84% for the second tree.  

 

 

Figure 1.31. Representative discrimination diagrams from Verma and Agrawal et al. (2011) 

 

Agrawal and Verma (2007), on the other hand, stated several problems for Vermeesch 

(2006a): The dataset included major deficiencies, classification results are 

irreproducible, reported success ratios are inaccurate, the criteria of classification is 

not objective, comparison of classification tree with LDA is inadequate and inviolable 

rules of multivariate nature of geochemical compositions have been violated. 
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Figure 1.32. Decision tree from Vermeesch (2006a) using all elements 
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Figure 1.33. Decision tree from Vermeesch (2006a) using only relatively immobile elements 
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Ueki (2017) applied three different machine learning techniques (support vector 

machine, sparse multinomial regression, and random forest) in order to discriminate 

magmas from eight different tectonic settings using representative basalt compositions 

from global geochemical datasets (PetDB and GEOROC). Data published before 1990 

were eliminated in order to prevent analytical uncertainties, and outliers were 

excluded. The samples from problematic localities such as Azores, the Galapagos, 

Iceland, and Chile, etc) were eliminated. A total of 2074 samples were used for 

discrimination. The tectonic settings to be discriminated are back-arc basins, 

continental arcs, continental floods, island arcs, intra-oceanic arcs, mid-oceanic 

ridges, oceanic islands, and oceanic plateaus. For discrimination, 20 elements 

including major elements (SiO2, TiO2, Al2O3, Fe2O3, CaO, MgO, Na2O, K2O), along 

with selected trace element (Sr, Ba, Rb, Zr, Nb, La, Ce, Nd, Hf, Sm, Gd, Y, Yb, Lu, 

Ta, Th) and 5 isotopic ratios (206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb, 87Sr/86Sr and 

143Nd/144Nd) were used. Ueki used geochemical compositional data normalized using 

a one-parameter Box-Cox transform before the application of machine learning 

algorithms. The performance of discriminations obtained by machine learning 

techniques was evaluated by 10-fold cross-validation. Ueki showed that modern 

techniques of machine learning can be a better option for tectono-magmatic 

discrimination of igneous rocks having high success ratios for support vector machine, 

sparse multinomial regression, and random forest.  

These modern techniques of machine learning along with the traditional methods are 

still being tested by other researchers (Verma, 2017; Gomez and Verma, 2016; Verma 

and Oliveira, 2015; Verma et al., 2015; Li, 2015, Pandarinath, 2014; Pandarinath and 

Verma, 2013, Verma et al., 2012; Verma, 2010; Sheth, 2008) and compared with 

traditional discrimination methods (bivariate and ternary diagrams).. 
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CHAPTER 2  

 

2. DATABASE AND METHODOLOGY 

 

2.1. Data Gathering and Import 

The complete database is compiled for 5,114 samples of mainly basic and to a lesser 

extent ultrabasic igneous rocks from known locations of uncontroversial tectonic 

settings from all over the world directly from published literature. The database 

includes the articles generally published after 1995 (with some exceptions). The aim 

is to include the chemical analyses with high precision and accuracy so that the ratios 

would reflect the true fractionation between the elements. This is actually very critical, 

since any false fractionation effect, which may have raised from analytical errors, have 

the potential of misclassification of the data. Therefore, the database is constructed on 

high-quality data that best reflects the true geochemical nature of the investigated 

basic lithology.      

The geology, lithology, mineralogy, and geochemistry of samples along with source 

rock characteristics of each location are referred from the original articles. Global 

geochemical databases such as GEOROC-Mainz or PetDB are avoided in the 

construction of the database as they have significant errors that may result in false 

interpretations (Gomez and Verma, 2016). 

2.2. Data Cleaning 

The database initially included all available samples from related articles. However, a 

variety of samples are eliminated in three-stages based on certain criteria.  
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Initially, the problematic samples are eliminated from the database. Some of the 

problematic samples include non-igneous lithologies. These are characterized by 

sedimentary or metamorphic samples, which are analyzed to get petrogenetic 

inferences, such as slab-derived contributions, nature of the source, crustal 

contamination. Some other problematic samples, however, are characterized by 

apparent numerical inconsistencies with the rest of the samples in the dataset, which 

result in unrealistic element ratios. This problem can be related to analytical errors or 

can be simply attributed to typos made during the preparation of the manuscript. If all 

samples from a certain data source are problematic, then the data source is completely 

removed from the database or transferred to another database.  

On the second stage, the data cleaning is solely based on the rock type of samples. The 

rock type is evaluated by chemical classification using the plot of LeMaitre (1987). 

Since this study intends to discriminate the basic rocks, the igneous varieties included 

in the database are basalts, trachybasalts, picrobasalts, foidites, tephrites/basanites. 

Apart from continental arcs, there is a vast number of basaltic rocks sampled from the 

other tectonic settings. Continental arcs, however, include a somewhat limited amount 

of mafic compositions. The reason is mainly that continental arcs have a thick 

continental lithospheric cap, which increases the change of mafic magmas to interact 

with the continental crust whose composition significantly differs from that of oceanic 

crust (e.g. Davidson et al.,1989; Bryant et al.,2006; Stern 2010). Thus, the increasing 

interaction between continental crust and greater residence times of the magmas 

within the crustal magma chambers results in the extensive fractionation of mafic 

magmas, which in turn produces a significant amount of highly evolved varieties (i.e. 

intermediate and silicic members) (e.g. Wilson 1989). Therefore, for continental arcs 

only, basaltic andesites and basaltic trachyandesites are also included in the database 

in order to increase the number of samples for this tectonic setting, which allowed to 

make a better comparison by homogenizing the sample distribution. All other rock 

types (i.e. intermediate and acidic varieties) are eliminated from the database at this 

stage.  
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On the final stage, all samples with missing values for critical elements are eliminated 

from the database. The elements, determined as “critical element” are Th, La, Nb, Y, 

Yb, Zr, Hf, Sm, Nd, and TiO2, which are selected due to their petrogenetic significance 

in different tectonic settings (which will be explained in the following paragraphs). 

2.3. Classes (Tectonic Settings) 

Classes (target features) in the database are characterized by seven tectonic settings, 

namely continental arc, continental within-plate (including continental rifts and 

continental flood basalts), mid-ocean ridge, oceanic arc, oceanic back-arc basin, 

oceanic island, and oceanic plateau. The classification is intended to include nearly all 

the tectonic settings. The continental back-arcs, however, is excluded due to the 

limited number of samples available in the literature, which considerably inhibits 

evaluating their petrogenetic features for discrimination. The continental back-arcs, 

therefore, are ignored here for the construction of discrimination methods.  

Another issue related to the classes is about oceanic back-arcs. Oceanic back-arcs 

genetically stay in between the mid-ocean ridges and arcs. They begin their life by 

rifting of the arcs, which can be triggered by the slab roll-back (e.g. Martinez and 

Taylor, 2002; 2006). This processes result in extension and rifting of the arc, as well 

as the upwelling of the asthenosphere. This stage is accompanied by diffuse 

magmatism (e.g. Todd et al.,2010). The rifting and thinning of the arc crust eventually 

reach a point where the oceanic crust is generated and spreading starts. Thus, the life 

of an oceanic back-arc can be simply divided into two stages as rifting and spreading. 

It is important to note that since the rifting back-arcs are immature (i.e not evolved to 

spreading stage), they display arc-like geochemical characteristics. The spreading 

back-arcs, on the other hand, are mature, and they show geochemical features between 

what is called “BABB-type” and MORB-type. In this study, only spreading back-arcs 

are taken into account into the evaluation, since they represent the true geochemical 

nature of oceanic back-arc systems. Brief information about the tectonic settings 

included in the classification is as follows: 
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- Continental arcs represent divergent plate boundaries, where the oceanic lithosphere 

is subducted beneath the continental lithosphere. The generation of primary magmas 

primarily occurs via flux-induced melting and may be sourced from asthenospheric 

and/or continental lithospheric mantle. The presence of continental crust may add 

some chemical complexities to the mantle-derived magmas en route the surface.    

- Continental within-plate settings are away from the plate boundaries, and the 

magmatism here does not involve any recent subduction contribution. The magmatism 

can be induced by mantle plumes, which results in continental flood magmatism or 

occurs via rifting (can be associated with/without plumes), resulting in continental rift 

magmatism.       

- Mid-oceanic ridges represent divergent plate boundaries where the two lithospheric 

are moving apart from each other. A great amount of oceanic lithosphere is created at 

mid-ocean ridges. The magmatism is generated by adiabatic decompression melting, 

which mainly leads to large degrees of melting. While most of the magmatism occurs 

at the axis, some appear to be concentrated off-axis in the form of seamounts.      

- Oceanic arcs are similar to continental arcs in that they also represent the convergent 

plate boundaries, and subduction is involved. However, in oceanic arcs, the 

subduction occurs beneath another oceanic lithosphere, so the system is entirely 

oceanic (i.e. the continental lithosphere is not involved). The melting is similarly 

occurring through mainly the flux-melting. Oceanic arcs are relatively simple systems 

compared to the continental arcs since they do not include continental crust in their 

petrogenesis.     

- Oceanic back-arcs are extensional systems created behind the arcs. They are 

somewhat between mid-ocean ridges and oceanic arcs. Mature back-arcs are 

characterized by spreading, creating oceanic lithosphere like mid-ocean ridges. 

However, because subduction is involved, unlike mid-ocean ridges, they may have a 

subduction component similar to oceanic arcs. Melting takes place via flux-induced 

melting and/or decompression melting.  
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- Oceanic plateaus are among oceanic within-plate settings (Richards et al., 1989). 

They include a large volume of basaltic products, covering vast areas on the ocean 

floor. The magmatism is believed to be created by decompression melting of large 

plume-heads, which results in the production of very large volumes of mafic magma 

in a short period. They are somewhat similar to continental flood magmatism in this 

respect.  

- Oceanic islands are also oceanic within-plate settings, like the oceanic plateaus 

(Davies, 1990). Oceanic islands are generally characterized by chains of volcanoes, 

whose origins are generally thought to be linked to mantle plumes. Although oceanic 

islands are mainly made up of voluminous mafic products, the size is not comparable 

to those of oceanic plateaus. 

Brief information (tectonic settings, number of compiled references, number of 

locations, number of samples) is given in Table 2.1. 

 

Table 2.1. Brief Information on Tectonic Settings 

Tectonic setting Number of 

references 

Number of 

locations 

Number of 

samples 

Continental Arcs 15 6 322 

Continental Within-Plates 28 15 678 

Mid-Oceanic Ridges 17 8 2,213 

Oceanic Arcs 26 15 604 

Oceanic Back-Arcs 11 9 208 

Oceanic Islands 15 11 715 

Oceanic Plateaus 13 5 374 

TOTAL 125 69 5,114 

 

Several locations selected for database are Andes, Aeolian and Aegean Sea for 

continental arcs, Africa, Brazil and Paraguay for continental within-plates, East 
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Pacific Rise, Mid-Atlantic Ridge, Indian and Atlantic Ridges for mid-oceanic ridges, 

Greater and Lesser Antilles, Mariana and Vanuatu for oceanic arcs, Manus Basin, Lau 

Basin and Izu Bonin for oceanic back-arcs, Hawaii, Iceland and Young Rurutu for 

oceanic islands and Kerguelen, Ontong Java and Manihiki for oceanic plateaus. 

2.4. Feature Selection 

The database initially included all available information in related articles such as 

major elements (SiO2, TiO2, Na2O, K2O, FeO / Fe2O3, MgO, MnO, CaO, Al2O3, P2O5), 

minor and trace elements (Th, La, Nb, Y, Yb, Zr, Hf, Sm, Nd, Ce, Dy, Pr, Eu, Gd, Tb, 

Ho, Er, Tm, Lu, Pb, Rb, Sr, Ba, Cs, Ta, U, Sc, V, Cr, Ni, Cu, Co, Sb, Zn) and isotope 

ratios (87Sr/86Sr, 143Nd/144Nd, 206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb).  

Although there are many elements available to consider, it is not so straightforward to 

apply all of them when the effects of alteration considered. Alteration of the igneous 

rock can occur during weathering or metamorphism. The igneous rocks generated at 

mid-ocean ridges, for example, start experiencing hydrothermal metamorphism 

immediately after their production at the ridge axis (e.g. Bach and Früh-Green, 2010). 

During this process, which may involve temperatures up to ~400℃, can modify the 

oceanic crustal lithologies up to amphibolite facies (e.g. Seyfried et al.,1991; Bach 

and Früh-Green, 2010). With the ongoing spreading, the effect of hydrothermal 

metamorphism diminishes, as the lithologies are displaced away from the ridge axis. 

Following this, the alteration continues, but under very low-temperature conditions 

this time (low-T alteration/weathering). The altered oceanic crust can be further 

modified during subduction (e.g. Pearce and Peate, 1995; Spandler et al.,2004). The 

crustal lithologies undergo dehydration with increasing temperature, and they can be 

metamorphosed, for example, under blueschist to eclogite facies following a cold 

subduction. 

Whether it is of continental or oceanic origin, old igneous rocks are likely to be altered. 

In addition, as mentioned above, some lithologies may go through multiple stages of 

alteration as the fate of subducted oceanic crustal rocks. The critical thing here is that 
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the introduction of fluid phase may mobilize some elements, causing their loss or gain 

in the host lithology. The mobilization is known to primarily effect the low-ionic 

potential elements, such as Rb, Ba, K, Si etc. In contrast, the elements with 

intermediate ionic potential, like HFSE and REE (Rare Earth Element) are mainly 

known to be fluid-immobile (e.g. Pearce 1975; Staudigel et al.,1996; Bach and Früh-

Green, 2010). Although the stability of the latter group of elements (HFSE and REE) 

are mostly valid under weathering and low-grade metamorphic conditions 

(greenschist facies), their relative immobility have also been reported for higher-grade 

metamorphic conditions (i.e. amphibolite, blueschist, and eclogite facies; Spandler et 

al.,2004; John et al.,2010; Sayit et al.,2016). Mobilization may cause significant 

fractionation of the mobile elements (among themselves and/or relative to immobile 

ones). Their use (either as absolute abundances or ratios) should be carefully handled 

or avoided when making petrogenetic inferences. Therefore, for altered rocks, the use 

of fluid-immobile elements would be a better choice to infer pristine geochemical 

features inherited from the protolith/original rock. 

Considering the potential effects of mobilization on the altered rocks as explained 

above, only the fluid-immobile elements are considered in this study. It must be noted 

that most major and minor elements are known to be mobile in fluids. The most 

resistant ones appear to be Ti, Al, P, and Cr. However, apart from Ti, the others can 

also be mobilized to some extent under hydrothermal metamorphism (Pearce 1975). 

Thus, of these, only Ti is included in this study as an element that can reflect the 

pristine geochemical features under a broad spectrum of alteration conditions.        

Isotope ratios are among the least used discriminators when taking into account the 

tectonomagmatic discrimination methods published thus far. The only study in this 

regard is that of Vermeesh (2006A), who involved 87Sr/86Sr for the decision-tree-based 

tectonomagmatic discrimination. Sr isotopic ratio, however, can be strongly affected 

through interaction with seawater (e.g. Bach et al.,2003), which makes it a highly 

unreliable discriminator. On the other hand, Nd and Pb isotopic ratios remain 

unaffected upon interaction with seawater, thus they can act as better proxies for the 
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tectonomagmatic discrimination. However, in spite of this petrogenetic superiority, 

the higher analytical costs of isotopic systems make them less available for most 

datasets. Also, age-correction poses another problem. Since isotopic ratios can 

significantly differ from the measured ones, this issue requires the precise age for 

every sample included for the petrogenetic considerations. However, providing age 

data for every sample on the ancient rocks is a highly difficult job, especially regarding 

the ones from the mélanges. Thus, although the isotopic ratios may serve some 

invaluable information, their low applicability makes them less deserved features for 

fingerprinting of the igneous rocks.   

Another issue to be noted that absolute values of relatively immobile elements are 

only used for calculation of ratios but not used in the construction of discrimination 

methods. This is one of the critical points in this study since the Orange software is 

not able to calculate the elemental ratios from the absolute abundances, which might 

be suitable for the construction of decision trees. Thus, the consideration of elemental 

ratios, which is believed to be of a petrogenetic significance, is devised and introduced 

manually, not by the software. One of the advantages of using ratios over absolute 

abundances is to minimize the effect of fractional crystallization (FC). Another strong 

constraint comes from the fact that since the partitioning of fluid-immobile trace 

elements is highly dependent on the residual mineralogy, they are powerful features 

in reflecting petrogenetic characteristics, including the nature of mantle source region, 

degree of partial melting, and contribution of subduction components (e.g. Pearce 

1983; McKenzie and O’Nions 1991; Weaver 1991; Shaw 2006).  

Using element ratios instead of absolute abundances also increases the discrimination 

ability of constructed decision trees as an element ratio would be much more 

discriminating feature when compared to absolute abundance of each element used in 

calculation of ratio (e.g. Th/Nb compared to Th and Nb) (Figure 2.1).                  
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Figure 2.1. The difference between the discrimination potential of element ratios and their absolute 

abundance 

 

One of the problems when dealing with the datasets is the missing data, which make 

their use undesirable since this situation would cause in a significant bias and 

inconsistentiences in the tectonomagmatic discrimination. Thus, although they are 

relatively immobile, the large amounts of missing data regarding the REE, Ce, Dy, Pr, 

Eu, Gd, Tb, Ho, Er, Tm, and Lu are ignored as they result in the loss of huge amounts 

of data. Selected relatively immobile elements are Th, La, Nb, Y, Yb, Zr, Hf, Sm, Nd 

and TiO2. Selected relatively immobile elements are highly correlated with elements 

ignored due to the large amount of missing data, therefore, their elimination has no 

negative effect on the performance of constructed decision trees (Figure 2.2). 
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Figure 2.2. Representative example to strong correlation between selected relatively immobile elements 

and elements eliminated due to high amount of missing data 

 

Applied ratios of immobile elements are Th/Nb, La/Nb, Th/La, Zr/Hf, Zr/Nb, La/Y, 

La/Yb, Nb/Y, Nb/Yb, Sm/Y, Sm/Yb, Nd/Zr, La/Sm, Sm/Hf, Y/Yb, Zr/Sm, Zr/Y, 

Zr/Yb, Th/Y, Th/Yb, Sm/Nd, Sm/Nb, Zr/TiO2, Nd/TiO2, Nb/TiO2, TiO2/Y and 

TiO2/Yb. An additional feature as Nb/Nb* is also added with a formula of  

𝑁𝑏

𝑁𝑏∗
 =

𝑁𝑏
0.658

√ 𝑇ℎ
0.0795

.
𝐿𝑎

0.648
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2.5. Splitting Database 

The database is first divided into two datasets: Training-test dataset and external 

dataset. Then, training-test dataset is randomly divided by Orange software as training 

dataset and test dataset in proportions of 80% and 20%, with respectively. Training 

dataset is the dataset used in the construction of discrimination methods. The test 

dataset is the dataset similar to training dataset and used for the initial test for the 

performance of discrimination methods. The external dataset is the dataset different 

than the training and test datasets and used for the test for external applicability of 

discrimination methods to different tectonic settings and locations all over the world. 

2.6. Methodology (Decision Tree Learning) 

2.6.1. Non-Mathematical Explanation of Decision Tree Learning 

Data science is the discipline of processing and analyzing data for the purpose of 

extracting valuable knowledge. The term “data science” was first used in the 1960s 

but became popular recently with developments in technology. Various domains such 

as commerce, medicine, and research are applying data-driven discovery and 

prediction in order to gain some new insights, such as Google, which tracks user clicks 

in order to improve its search engine results and ads. 

Data science is the science of exploring data in order to discover useful patterns and 

obtain valuable insights. The use of decision trees is one of the promising and popular 

approaches of data science. Decision trees are simple but also successful techniques 

for predicting and explaining the relationship between various features (such as 

element concentration or ratio of element concentration) of an item (such as a rock) 

and its target value (such as its tectonic setting). 

Decision trees are multi-purpose applications especially for classification problems as 

they are self-explanatory and easy to follow, flexible in handling a variety of input 

data, adaptable in processing datasets with errors and missing data, and useful for large 

datasets. They are successful predictors for a relatively small computational effort. 
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When a decision tree is used for a task of classification instead of regression, it is 

generally defined as “classification tree”. Classification trees are used to classify an 

object or an instant (such as a rock) into a predefined set of classes (such as tectonic 

settings) based on their attribute values (geochemical features such as element 

concentrations or ratios of element concentrations). Decision trees have a typical 

structure which is like a tree, starting with a root node and ending with leaf nodes 

(Figure 2.3).  

 

 

Figure 2.3. Structure of a decision tree 

 

Decision trees are very popular techniques due to their simplicity and transparency. A 

decision tree can be defined as a classifier as a recursive partition of the instance space 

or as a predictor, h: X →Y, that predicts a label associated with an instance x following 

a route from a root node to a leaf node. Y can be defined as classes, for this case, is 

tectonic settings, such as mid-oceanic ridge, continental arc, continental within-plate, 

oceanic arc, oceanic back-arc, oceanic island, oceanic plateau. X can be defined as 

features, for this case, as ratios of certain relatively immobile elements. Decision trees 

are widely applied to prediction problems.  

The decision tree is made of nodes. The amount of nodes depends on the factors such 

as complexity of tree, size of tree. A node without any incoming edge is known as root 
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node. Classification starts with root node. Nodes with one incoming edge and at least 

two outgoing edges are called as either internal node or test node. All other nodes are 

called either leave or terminal node or decision node. 

Depending on the level of depth, each internal node splits internal space into at least 

two sub-spaces based on the result of a discrete function. At the end of the 

classification by a decision tree, each leaf is assigned to one class representing the 

most appropriate target value.  

Instances are classified by navigating from the root of the tree until a leaf node based 

on the tests along the path, including root node, each internal node and finally a leaf 

node. Decision tree induction is closely related to rule induction. Each path from the 

root of a decision tree to one of the leaves can be transformed into a rule simply by 

combination of all conditions along the way.  

Generally, decision trees that are not complex are preferred in order to prevent 

overfitting. Tree complexity has a significant effect on accuracy. Complexity of a tree 

can be measured by these metrics: total number of nodes, total number of leaves, tree 

depth and number of attributes used. 

Decision tree learning requires three main components: task T, experience E, and 

performance P. In this case, T is classifying rocks based on their tectonic settings, E 

is the tectonic settings of rock samples in training set, and P is the percentage of 

samples correctly classified. 

The data used to train the model is called the training set. The training set is presented 

in the form of a table, in which each row represents rocks, and each column represents 

the feature of those rocks such as element concentrations or ratios of element 

concentrations. One column, on the other hand, corresponds to the target attribute, 

which is the tectonic setting of rock. 

The concept of overfitting is essential for the success of decision trees. If a decision 

tree classifier perfectly fits training data but fails to classify external datasets 
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successfully, it is called “overfitting” (Figure 2.4). That means that the decision tree 

did not learn but summarized the data. In the decision trees, overfitting is generally 

observed as a result of too many nodes relative to the amount of training data. 

Another concept is underfitting, on which decision tree fails both for the training data 

and external dataset. In bigger trees, the classifier tends to overfit; yet in smaller trees, 

there is a tendency of classifier towards underfitting (Figure 2.4). 

 

 

Figure 2.4. Underfitting and overfitting examples 

 

However, the classification of all instances successfully is not possible of selected 

feature space. Therefore, we have to restrict decision tree to a small portion of possible 

solutions and to find the optimum size for decision tree (Figure 2.5). The optimum 

size for decision tree avoids both underfitting and overfitting. 

Decision trees are one of the effective techniques for classification. They assure 

computational feasibility and allow the representation of multi-dimensional decision 

space as a two-dimensional tree graph. Building a tree may seem to be complicated. 

On the other hand, using a classification tree is extremely simple. 
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Figure 2.5. Representation of optimum model based on prediction errors on training and external 

datasets 

 

2.6.2. Mathematical Explanation of Decision Tree Learning 

Only brief information is given for the mathematical explanation of decision tree 

learning. For detailed information, Breiman (2017) shall be referred. 

In a typical decision tree, a training set is introduced, and the goal is to form a 

classification model to predict previously unseen samples, which are known as test set 

or external set. 

A training set is denoted as S = B(A ∪ y) where A denotes the set of input attributes 

containing n attributes: A = {a1, . . . , ai, . . . , an} and y represents the class variable or 

the target attribute. Attributes can be either nominal or numeric.  

For a training set S with input attributes set A = {a1, a2, . . ., an} and a nominal target 

attribute y from an unknown fixed distribution D over the labeled instance space, the 

goal is to induce an optimal classifier with minimum generalization error. 
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The generalization error is defined as the misclassification rate over the distribution 

D, which can be expressed by the equation  

𝜀(𝐷𝑇(𝑆), 𝐷) = ∑ 𝐷(𝑥, 𝑦). 𝐿(𝑦, 𝐷𝑇(𝑆)(𝑥))

(𝑥,𝑦)∈𝑈

 

where L (y, DT(S), D) is the zero one loss function defined with equations  

𝐿(𝑦, 𝐷𝑇(𝑆)(𝑥) =  {
0 𝑖𝑓 𝑦 = 𝐷𝑇(𝑆)(𝑥) 
1 𝑖𝑓 𝑦 ≠ 𝐷𝑇(𝑆)(𝑥)

} 

The main goal is to induce the best classifier or a set of classifiers that most accurately 

classify the members of instance space. 

An induction algorithm or simply inducer (also known as learner) is an entity that 

obtains a training set and forms a model that generalizes the relationship between the 

input attributes and the target attribute and to produce a classifier. 

The notation DT represents a decision tree inducer, and DT(S) represents a 

classification tree that is induced by performing DT on a training set S. Using DT(S), 

it is possible to predict the target value of a tuple xq. This prediction is denoted as 

DT(S)(xq). 

Suppose we have N data points with J dimensions, which can be expressed as 

Xn={𝑥1
𝑛,…., 𝑥𝑗

𝑛,…., 𝑥𝐽
𝑛} (1 ≤ n ≤ N). All data points belong to one of K classes YN = 

c1 | … | ck | … | cK and classification of these data points based on the classes is 

expected by using J features. For this case, N represents the number of basic igneous 

rock samples, J represents ratios of selected relatively immobile elements, K 

represents tectonic settings as classes. 

The basic idea behind classification trees is to approximate the parameter space by a 

piece size constant function, in other words, to partition X into M disjoint regions 

{R1,…..,Rm,…..,RM} (Figure 2.6). 
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A partition is defined by two quantities at any stage of the recursive process: the split 

variables j (1 ≤ j ≤ J) and the split point s (-∞ < s < ∞). The purpose is to find the 

partition, where the node impurity Qm(T) is minimum.  

 

 

Figure 2.6. Representation of a decision tree in a two-dimensional graph 
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Let pmk be the proportion of class k observations in node m, then  

𝑄𝑚(𝑇) =  ∑ 𝑝𝑚𝑘

𝐾

𝑘=1

(1 − 𝑝𝑚𝑘) 

This particular form of Qm (T) is called the “Gini index of diversity”. The recursive 

partitioning process continues until all the end-nodes are “pure” i.e. all belong to the 

same class. The maximum sized tree thus obtained perfectly describes the training 

data. In other words, it has zero bias. However, for the purpose of prediction, this tree 

is not optimal, because it overfits the training data, causing high variance. 

The tree with optimal predictive power is smaller than the largest possible tree and 

can be found by “cost-complexity” pruning. Define the “cost-complexity criterion” of 

a tree T as  

𝑐𝑝∝(𝑇) =  ∑ 𝑁𝑚𝑄𝑚(𝑇)+∝ |𝑇|

|𝑇|

𝑚=1

 

with |T| the number of terminal nodes in T, Nm the number of observations in the mth 

terminal node, Qm(T) the “node impurity” defined by equation and α a tuning 

parameter. For a given α ≥ 0, it is possible to find the subtree Tα ⸦ T0 that minimizes 

cpα(T) over all possible subtrees of the largest possible tree T0 

𝑇∝ =
𝑎𝑟𝑔𝑚𝑖𝑛 
𝑇 ⊂ 𝑇0

𝑐𝑝∝(𝑇) 

Repeating this procedure for a range of values 0 ≤ α ≤ ∞ produces a finite nested 

sequence of trees {T0, Tα1, ..., Tαmax}. Except for T0, these trees no longer have only 

pure end-nodes. Impure end-nodes are assigned the class that dominates them. 

Prediction errors versus the number of nodes are plotted for each of the nested 

subtrees.  



 

 

 

63 

 

Trees with fewer nodes tend to have a larger bias. The smallest tree with 

misclassification error not exceeding minimum misclassification error plus one 

standard error is selected as the final decision tree. 

2.6.3. Evaluation of Decision Trees 

Several indicators are evaluated in order to determine and evaluate the quality of the 

decision tree. Evaluation of the decision tree performance is a fundamental aspect of 

data science and machine learning. The inducer receives a training set as input data 

and constructs a decision tree. Both the decision trees and inducer can be evaluated as 

an evaluation criterion. 

2.6.3.1. Generalization Error and Classification Accuracy 

Let DT(S) be a decision tree for a training set S. The generalization error of DT(S) is 

its probability to misclassify an instance selected from instance space. 

The classification accuracy of a decision tree is one minus the generalization error, 

and is the primary evaluation criteria for decision trees. 

The training error is defined as the percentage of correctly classified samples in the 

training set. The training error can also be used instead of the classification accuracy, 

but it can result in bias especially with an inducer with a risk of overfitting. 

2.6.3.2. Alternatives for Accuracy Measurement 

Precision is an alternative to measure the performance of decision tree. Precision 

measures the number of positive samples also classified as positive by decision tree. 

Precision = (True positive) / (True positive + False positive) 

Another parameter is sensitivity (which is also known as recall), which is the ratio of 

true positives to the total number of positives. 

Sensitivity = True positive / Positive 
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Generally, there is a tradeoff between precision and sensitivity. An increase in one 

parameter results in a decrease in the other one (Figure 2.7). The problem, in this case, 

is known as multi-criteria decision making, which can easily be solved by weighted 

sum model. Using this technique, two criteria are combined into a single criterion by 

using appropriate weighting. The basic principle is the additive utility assumption. The 

F-measure can be calculated with the formula: F = 2.P.R /(P+R), which can also be 

explained graphically as the difference between classification (false positive + true 

positive) with actual (true positive + false negative) (Figure 2.8). 

 

Figure 2.7. Graph of recall versus precision 

 

 

Figure 2.8. Representation of false positive (FP), true positive (TP) and false negative (FN) 
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The F-measure can have a value between 0 and 1. It obtains its highest value when 

two sets (classification and actual) are identical and the lowest value when they are 

completely different. 

2.6.3.3. Confusion Matrix 

The confusion matrix gives information about the number of correctly and incorrectly 

classified samples for each class (Table 2.2). A positive example, classified correctly 

is defined as a true positive (TP), misclassified defined as false positive (FP). 

Likewise, a negative example, classified correctly is defined as a true negative (TN), 

misclassified defined as false negative (FN). 

 

Table 2.2. Structure of a confusion matrix 

 Predictive Negative Predictive Positive 

Negative Examples A B 

Positive Examples C D 

 

Based on TP, TN, FP, FN; which are shown as c, d, a, b in the figure, with respectively; 

several calculations can be made: 

 Accuracy is (a+d)/(a+b+c+d) 

 Misclassification rate is (b+c)/(a+b+c+d) 

 Precision is d/(b+d) 

 True positive rate (recall) is d/(c+d) 

 False positive rate is b/(a+b) 

 True negative rate (specificity) is a/(a+b) 

 False negative rate is c/(c+d) 
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2.6.3.4. ROC Curve 

ROC (Receiver Operating Characteristics) curve is another measure, which is the 

graphical representation for the tradeoff between true positive and false positive rates 

(Figure 2.9). The ideal point on the ROC curve would be (0,1) where all positive 

examples are classified correctly, and no negative examples are misclassified. 

 

 

Figure 2.9. Graph of true positive rate versus false positive rate 

 

2.6.3.5. Lift Curve 

Lift is another popular method for the evaluation of probabilistic methods. (Figure 

2.10). Lift is a measure of the effectiveness of a classification model calculated as the 

ratio between the results obtained with and without the model. Lift curves are visual 

aids for evaluating performance of classification models. However, confusion matrix 

evaluates models on the whole population, whereas lift curves evaluate a part or 

portion of population. 
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Figure 2.10. Lift curve graph 

 

2.6.3.6. Area Under Curve (AUC) 

Area under curve (AUC) is a useful metric for the performance of classifier as it is not 

affected by the imbalance of training set. Therefore, it is more informative to evaluate 

AUC instead of misclassification rate. It can be used to compare different models if 

their ROC curves are intersecting (Figure 2.11). Bigger AUC is an indicator for a 

better model. 

 

 

Figure 2.11. Graph of true positive versus false positive  
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2.6.4. Splitting Decision Trees 

Decision tree induces generally split decision trees using univariate discrete splitting 

functions. In other words, an internal node is split according to the value of a single 

attribute.  

2.6.4.1. Impurity-based criteria 

Given a random variable x with k discrete values, distributed according to P = (p1, p2, 

. . ., pk), an impurity measure is a function φ: [0, 1] k → R that satisfies the following 

conditions: 

• φ (P)≥0. 

• φ (P) is minimum if ∃i such that component pi = 1. 

• φ (P) is maximum if ∀i, 1 ≤ i ≤ k, pi = 1/k. 

• φ (P) is symmetric with respect to components of P. 

• φ (P) is smooth (differentiable everywhere) in its range 

It should be noted that if the probability vector has a component of 1 (the variable x 

gets only one value), then the variable is defined as pure. On the other hand, if all 

components are equal the level of impurity reaches the maximum. 

Given a training set S the probability vector of the target attribute y is defined as: 

𝑃𝑦(𝑆) = (
|𝜎𝑦=𝑐1 = 𝑆|

|𝑆|
, … ,

|𝜎𝑦=𝑐|𝑑𝑜𝑚(𝑦)| = 𝑆|

|𝑆|
) 

2.6.4.2. Information Gain 

Information Gain is an impurity-based criterion that uses the entropy measure 

(originating from information theory) as the impurity measure. 
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Information gain is closely related to the maximum likelihood estimation (MLE), 

which is a popular statistical method used to make inferences about parameters of the 

underlying probability distribution from a given dataset. 

2.6.4.3. Gini Index 

The Gini index is an impurity-based criterion that measures the divergences between 

the probability distributions of the target attributes values. 

2.6.4.4. Gain Ratio 

The gain ratio normalizes the information gain with this equation: 

𝐺𝑎𝑖𝑛 𝑅𝑎𝑡𝑖𝑜(𝑎𝑖 , 𝑆) =  
𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑎𝑖𝑛(𝑎𝑖 , 𝑆)

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑎𝑖 , 𝑆)
 

The information gain is calculated for all attributes. As a consequence of considering 

only attributes that have performed at least as well as the average information gain, 

the attribute that has obtained the best ratio gain is selected. Quinlan (1988) has shown 

that the gain ratio tends to outperform simple information gain criteria, both in 

accuracy and in terms of classifier complexity. A penalty is assessed for the 

information gain of a continuous attribute with many potential splits. 

2.6.5. Stopping Decision Trees 

A decision tree is grown until a stopping criterion is provided. The following 

conditions are generally accepted and applied as effective stopping criteria: 

1. All instances in each leaf of the training set are correctly classified (belonging 

to the same class) 

2. The maximum tree depth is reached. 

3. The number of cases in the terminal node is less than the minimum number of 

cases for parent nodes. 

4. If nodes are split, the number of cases in one or more child nodes would be 

less than the minimum number of cases for child nodes. 
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5. The best splitting criterion is not greater than a certain threshold. 

2.6.6. Pruning Decision Trees 

If a constructed decision tree results in overfitting, then the pruning of decision tree is 

applied, and the common method is cost-complexity pruning. 

Cost complexity pruning (also known as weakest link pruning or error complexity 

pruning) proceeds in two stages (Breiman, 2017). In the first stage, a sequence of trees 

T0, T1, . . ., Tk is built on the training data where T0 is the original tree before pruning 

and Tk is the root tree. In the second stage, one of these trees is chosen as the pruned 

tree, based on its generalization error estimation. The tree Ti+1 is obtained by 

replacing one or more of the sub-trees in the predecessor tree Ti with suitable leaves. 

The sub-trees that are pruned are those that obtain the lowest increase in the apparent 

error rate per pruned leaf: 

𝛼 =
𝜀(𝑝𝑟𝑢𝑛𝑒𝑑(𝑇, 𝑡), 𝑆) − 𝜀(𝑇, 𝑆)

|𝑙𝑒𝑎𝑣𝑒𝑠(𝑇)| − |𝑙𝑒𝑎𝑣𝑒𝑠(𝑝𝑟𝑢𝑛𝑒𝑑(𝑇, 𝑡))|
 

where ε (T, S) indicates the error rate of the tree T over the sample S and |leaves (T)| 

denotes the number of leaves in T. Pruned (T, t) denotes the tree obtained by replacing 

the node t in T with a suitable leaf. In the second phase, the generalization error of 

each pruned tree is estimated. The best pruned tree is then selected. If the given dataset 

is large enough, the authors suggest breaking it into a training set and a pruning set. 

The trees are constructed using the training set and evaluated on the pruning set. On 

the other hand, if the given dataset is not large enough, they propose using cross-

validation methodology, despite the computational complexity implications. 

2.6.7. Advantages and Disadvantages of Decision Trees 

The main advantages of decision trees can be listed as: 

1. They are self-explanatory and easy to follow. A decision tree can be easily 

understood and followed by non-professional user. 

2. They can handle both nominal and numeric input attributes. 
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3. Their representation is rich. 

4. They can handle datasets with errors and missing data. 

5. Decision trees are considered to be non-parametric. In other words, they do 

not include any assumptions about the spatial distribution or about classifier 

structure. 

6. Decision trees are simple as they only require to follow conditions along a 

single path from the root to the leaf. 

On the other hand, the disadvantages of a decision tree can be listed as: 

1. They mostly require that the target attribute to have only discrete values. 

2. They show low performance when complex interactions are present. 

3. They are over-sensitive to irrelevant attributes or to noises making decision 

trees unstable. A minor change in one split may change everything from that 

split to the leaf nodes. 

4. Missing data and errors can be handled, but extreme effort and attention are 

required. 

2.6.8. Application of Decision Tree Learning to Tectono-Magmatic 

Discrimination 

Tectono-magmatic discrimination methods for mafic igneous rocks are constructed 

and suggested by using the Decision Tree Method in Orange (a free Data Mining 

software) based on tectonic settings as classes and ratios of relatively immobile 

elements as features. The database is divided into three groups: Training dataset, test 

dataset, and external dataset. The training dataset is used to construct the tectono-

magmatic discrimination methods. The test dataset is used to run an initial control for 

the quality of constructed trees. External datasets are used to check the external 

applicability of constructed trees in varying conditions (such as geographical location, 

geological setting, geochemical characteristics, geological age, alteration etc). 

Multiple decision trees are constructed for the tectono-magmatic discrimination of 

basic and ultrabasic igneous rocks (Figure 2.12). First, subduction-related settings are 
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discriminated from non-subduction-related settings. Subduction settings are 

continental arcs, oceanic arcs, and oceanic back-arcs, whereas non-subduction settings 

are continental within-plates, mid-oceanic ridges, oceanic islands and oceanic 

plateaus. 

Three alternative decision trees are constructed for tectono-magmatic discrimination 

between subduction settings and non-subduction settings. The first decision tree 

involves only ratios of relatively immobile elements and has only one branch. The 

second decision tree is a multi-branched decision tree that involves ratios of relatively 

immobile elements and also Nb/Nb* ratio. Element ratios using TiO2 are eliminated 

for the third decision tree to propose an alternative decision tree. 

As the first alternative of tectono-magmatic discrimination between subduction and 

non-subduction settings, a decision stump is constructed. 

Out of 2.642 samples (training and test set), 2.114 samples are used to construct the 

decision tree, and 528 samples are used to test the decision tree. 

Selected features are only element ratios of selected immobile elements (Th, La, Nb, 

Y, Yb, Zr, Hf, Sm, Nd, TiO2). Absolute values of immobile elements are only used 

for calculation of element ratios and then ignored in the construction of decision trees.  

Out of selected element ratios (Th/Nb, La/Nb, Th/La, Zr/Hf, Zr/Nb, La/Y, La/Yb, 

Nb/Y, Nb/Yb, Sm/Y, Sm/Yb, Nd/Zr, La/Sm, Sm/Hf, Y/Yb, Zr/Sm, Zr/Y, Zr/Yb, 

Th/Y, Th/Yb, Sm/Nb, Sm/Nd, Zr/TiO2, TiO2/Y, TiO2/Yb, Nd/TiO2, Nb/TiO2), Th/Nb 

is the feature with highest information gain (0.528), gain ratio (0.264), and gini index 

(0.276) (Table 2.3) for the tectono-magmatic discrimination between subduction and 

non-subduction settings. 

As the second alternative of tectono-magmatic discrimination between subduction and 

non-subduction settings, a multi-branched decision tree is constructed. 
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Figure 2.12. Flowchart for the tectono-magmatic discrimination of rocks 
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Selected features are only element ratios of selected immobile elements (Th, La, Nb, 

Y, Yb, Zr, Hf, Sm, Nd, TiO2). Absolute values of immobile elements are only used 

for calculation of element ratios and then ignored in the construction of decision trees. 

 

Table 2.3. Information gain, gain ratio and gini index of most discriminative features 

Feature Information Gain Gain Ratio Gini Index 

Th/Nb 0.528 0.264 0.276 

La/Nb 0.445 0.222 0.229 

Sm/Nb 0.214 0.107 0.098 

Zr/Nb 0.173 0.086 0.072 

Sm/Hf 0.155 0.078 0.085 

 

 Selected ratios of relatively immobile elements are Th/Nb, La/Nb, Th/La, Zr/Hf, 

Zr/Nb, La/Y, La/Yb, Nb/Y, Nb/Yb, Sm/Y, Sm/Yb, Nd/Zr, La/Sm, Sm/Hf, Y/Yb, 

Zr/Sm, Zr/Y, Zr/Yb, Th/Y, Th/Yb, Sm/Nb, Sm/Nd, Zr/TiO2, TiO2/Y, TiO2/Yb, 

Nd/TiO2, Nb/TiO2 along with Nb/Nb* ratio. 

As the third alternative of tectono-magmatic discrimination between subduction and 

non-subduction settings, another multi-branched decision tree is constructed.  

Selected features are only element ratios of selected immobile elements (Th, La, Nb, 

Y, Yb, Zr, Hf, Sm, Nd, TiO2). Absolute values of immobile elements are only used 

for calculation of element ratios and then ignored in the construction of decision trees.  

Selected ratios of relatively immobile elements are Th/Nb, La/Nb, Th/La, Zr/Hf, 

Zr/Nb, La/Y, La/Yb, Nb/Y, Nb/Yb, Sm/Y, Sm/Yb, Nd/Zr, La/Sm, Sm/Hf, Y/Yb, 

Zr/Sm, Zr/Y, Zr/Yb, Th/Y, Th/Yb, Sm/Nb, Sm/Nd along with Nb/Nb* ratio. Ratios 

of relatively immobile elements including TiO2 (Zr/TiO2, TiO2/Y, TiO2/Yb, Nd/TiO2, 

and Nb/TiO2) are ignored for the alternative decision tree. 
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If this classification returns with a result of subduction-related settings, then one of 

two approaches would be selected.  

At the first approach, the arc-related settings are discriminated from the back-arc 

setting and then arc-related settings are discriminated from each other.  

For discrimination of arc and back-arc settings, out of 668 samples (training and test 

set), 535 samples are used to construct the decision tree, and 133 samples are used to 

test decision tree. Later, for discrimination of oceanic arc from continental arc settings 

within arc-related samples, out of 562 samples (training and test set), 450 samples are 

used to construct decision tree, and 112 samples are used to test decision tree. 

At the second approach, oceanic settings are discriminated from continental settings, 

and then oceanic settings are discriminated from each other. 

For the discrimination of oceanic and continental settings, out of 668 samples (training 

and test set), 535 samples are used to construct the decision tree, and 133 samples are 

used to test the decision tree. Later, for discrimination of oceanic arc from oceanic 

back-arc settings within samples of oceanic setting, out of 487 samples (training and 

test set), 390 samples are used to construct decision tree, and 97 samples are used to 

test decision tree. 

If the classification returns with a result of non-subduction-related settings, then first 

mid-oceanic ridges and oceanic plateaus are discriminated from continental within-

plates and oceanic islands.  

If non-subduction-related setting is either mid-oceanic ridge or oceanic plateau, then 

these are discriminated from each other. If it is either continental within-plate or 

oceanic island, then these are discriminated from each other. 

For the discrimination of non-subduction-related settings into two parts as mid-

oceanic ridge and oceanic plateau as first part and continental within-plates and 

oceanic islands as second part, out of 1.974 samples (training and test set), 1.580 

samples are used to construct decision tree, and 394 samples are used to test decision 
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tree. Later, for discrimination of mid-oceanic ridges from oceanic plateaus within the 

first part, out of 1.120 samples (training and test set), 896 samples are used to construct 

decision tree, and 224 samples are used to test decision tree. For discrimination of 

continental within-plates from oceanic islands within the second part, out of 854 

samples (training and test set), 684 samples are used to construct decision tree, and 

170 samples are used to test decision tree. 
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CHAPTER 3  

 

3. RESULTS 

 

3.1. Constructed Decision Trees 

Multiple sets of decision trees are constructed for the tectono-magmatic discrimination 

for basic igneous rocks (1) between subduction (SUB) and non-subduction 

(NONSUB) settings, (2) between arc and back-arc-related settings, (3) within arc-

related settings, (4) between oceanic and continental settings, (5) within oceanic 

settings, (6) between mid-oceanic ridge (MOR) / oceanic plateau (OP) and oceanic 

island (OI) / continental within-plate (CWP), (7) between MOR and OP, (8) between 

OI and CWP. Two multi-branched decision trees are constructed for each sets. 

For the first decision tree, all element ratios are included as features; yet, for the second 

one, TiO2-related ratios are not included in order to construct an alternative decision 

tree. 

3.1.1. Discrimination Between Subduction and Non-Subduction Settings 

The first set of decision trees is constructed for the tectono-magmatic discrimination 

between SUB and NONSUB settings. SUB settings are continental arcs (CA), oceanic 

arcs (OA) and oceanic back-arc basins (OBAB) whereas NONSUB settings are MOR, 

OP, OI and CWP. 

In addition to the decision trees, a decision stump (Figure 3.1) is also constructed in 

order to examine if it may result underfitting even when an effective discriminating 

feature (e.g. Th/Nb) is applied. Nb/Nb* ratio is not included in the construction of 

decision stump. 

The first decision tree has 4 levels in depth using Nb/Nb* at first level, TiO2/Yb at the 

second level, Zr/Nb at third level, and La/Nb at the fourth level (Figure 3.2). Nb/Nb* 
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is an effective discriminating feature due to the diverse behavior of Th and La relative 

to Nb. The second decision tree has only 2 levels in depth, using Nb/Nb* at first level 

and Nb/Y at the second level (Figure 3.3). No further levels could be constructed for 

further discrimination. 

Decision rules for constructed decision trees are given in Figure 3.4, Figure 3.5 and 

Figure 3.6, respectively. 

 

 

Figure 3.1. Decision stump for discrimination between subduction and non-subduction settings 

 

 

Figure 3.2. The first decision tree to discriminate between subduction and non-subduction settings 
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Figure 3.3. The second decision tree to discriminate between subduction and non-subduction settings 

 

 

Figure 3.4. Decision rule for the decision stump 

 

 

Figure 3.5. Decision rule for the first decision tree 
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Figure 3.6. Decision rule for the second decision tree 

 

3.1.2. Discrimination Within Subduction Settings 

The second set of decision trees is constructed for the tectono-magmatic 

discrimination within subduction-related settings. Subduction-related settings are OA, 

CA and OBAB (Table 3.1).  

If the sample is either classified or already known as “SUB”, a further discrimination 

within subduction-related settings is required. Two alternative paths are provided at 

this stage: discrimination between (1) arc and back-arc-related settings, (2) oceanic 

and continental settings. 

 

Table 3.1 Subduction settings 

Subduction Settings Arc vs Back-Arc Oceanic vs Continental 

Oceanic Back-Arcs Back-Arc 
Oceanic 

Oceanic Arcs 
Arc 

Continental Arcs Continental 
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3.1.2.1. The First Path for Discrimination Within Subduction Settings 

The first path involves two-stage discrimination within subduction settings: (1) 

between arc and back-arc-related settings, (2) within arc-related settings.   

3.1.2.1.1. Discrimination Between Arc and Back-Arc-Related Settings 

Two decision trees are constructed for the tectono-magmatic discrimination between 

arc and back-arc-related settings. Both decision trees have 5 levels of depth. The first 

decision tree (Figure 3.7) use Nb/Nb* at first level, Nd/Zr at the second level, TiO2/Y, 

and Nd/TiO2 at the third level, Y/Yb at fourth level and Zr/Hf at fifth level. The second 

decision tree (Figure 3.8), on the other hand, use Nb/Nb* at first level, Nd/Zr at second 

level, Zr/Hf and Zr/Nb at third level, Zr/Y and Y/Yb at fourth level and Nd/Zr and 

Zr/Hf at fifth level. 

 

 

Figure 3.7. The first decision tree to discriminate between arc and back-arc-related settings 
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Figure 3.8. The second decision tree to discriminate between arc and back-arc-related settings 

 

Decision rules for constructed decision trees are given in Figure 3.9 and Figure 3.10, 

respectively. 

 

 

Figure 3.9. Decision rule for the first decision tree 
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Figure 3.10. Decision rule for the second decision tree 

 

3.1.2.1.2. Discrimination Within Arc-Related Settings 

Two decision trees are constructed for the tectono-magmatic discrimination within 

arc-related settings (oceanic arcs and continental arcs from each other). Both decision 

trees have 7 levels of depth. The first decision tree (Figure 3.11) use Zr/TiO2 at first 

level, Th/Nb and La/Nb at second level, Nd/TiO2 and Zr/Yb at third level, Zr/TiO2, 

La/Yb and Y/Yb at fourth level, Y/Yb, Sm/Hf and Zr/Hf at fifth level, Nb/Nb*, Zr/Sm 

and La/Nb at sixth level and Nb/Y, Th/Y, Sm/Hf and Zr/Hf at seventh level. The 

second decision tree (Figure 3.12) use Zr/Sm at first level, La/Nb and Sm/Y at second 

level, Nb/Nb* and Y/Yb at third level, Th/La, Sm/Hf and Zr/Y at fourth level, La/Y, 

Sm/Nd, Nb/Nb*, Sm/Hf and La/Nb at fifth level, Sm/Hf, Zr/Nb, La/Y, Th/La and 

Nb/Y at sixth level and Sm/Y, Nb/Nb* and Zr/Hf at seventh level. Decision rules for 

constructed decision trees are given in Figure 3.13 and Figure 3.14, respectively. 
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Figure 3.11. The first decision tree to discriminate within arc-related settings 
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Figure 3.12. The second decision tree to discriminate within arc-related settings 

F
ig

u
re

 3
.1

2
. 

T
h
e 

se
co

n
d

 d
ec

is
io

n
 t

re
e 

to
 d

is
cr

im
in

at
e 

w
it

h
in

 a
rc

-r
el

at
ed

 s
et

ti
n

g
s 



 

 

 

86 

 

 

Figure 3.13. Decision rule for the first decision tree 
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Figure 3.14. Decision rule for the second decision tree 
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3.1.2.2. The Second Path for Discrimination Within Subduction Settings 

The second path involves two-stage discrimination within subduction settings: (1) 

between oceanic and continental settings, (2) within oceanic settings.   

3.1.2.2.1. Discrimination Between Oceanic and Continental Settings 

Two decision trees are constructed for the tectono-magmatic discrimination between 

oceanic and continental settings. Both decision trees have 7 levels of depth. The first 

decision tree (Figure 3.15) use Sm/Yb at first level, Nd/Zr at second level, Th/Nb and 

Y/Yb at third level, Zr/TiO2, La/Nb, Nb/Nb* and La/Sm at fourth level, La/Nb, Nd/Zr 

and Nb/Yb at fifth level, TiO2/Y, Nb/Nb* and Th/Nb at sixth level and Zr/Hf and 

Th/La at seventh level. The second decision tree (Figure 3.16) use Sm/Yb at first level, 

Nd/Zr at second level, Th/Nb and Y/Yb at third level, Th/La, La/Nb, Nb/Nb* and 

La/Sm at fourth level, Sm/Hf, Nd/Zr and Nb/Yb at fifth level, La/Nb, Nb/Nb* and 

Th/Nb at sixth level and Nb/Y, Zr/Hf and Th/La at seventh level. Decision rules for 

constructed decision trees are given in Figure 3.17 and Figure 3.18, respectively. 

3.1.2.2.2. Discrimination Within Oceanic Settings 

Two decision trees are constructed for the tectono-magmatic discrimination within 

oceanic settings (oceanic arcs and oceanic back-arc basins from each other). Both 

decision trees have 6 levels of depth. The first decision tree (Figure 3.19) use Th/Nb 

at first level, Sm/Yb and Zr/Hf at second level, La/Nb and Th/Nb at third level, 

Nb/Nb*, Nd/Zr and TiO2/Yb at fourth level, Nb/Nb* and Zr/Hf at fifth level and Y/Yb 

and Nb/Yb at sixth level. The second decision tree (Figure 3.20) use Th/Nb at first 

level, Sm/Yb and Zr/Hf at second level, La/Nb and Th/Nb at third level, Nb/Nb*, 

Nd/Zr and La/Sm at fourth level, Nb/Nb* and Sm/Y at fifth level and Y/Yb at sixth 

level. Decision rules for constructed decision trees are given in Figure 3.21 and Figure 

3.22, respectively.  
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Figure 3.15. The first decision tree to discriminate between oceanic and continental settings 
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Figure 3.16. The second decision tree to discriminate between oceanic and continental settings 
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Figure 3.17. Decision rule for the first decision tree 
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Figure 3.18. Decision rule for the second decision tree 



 

 

 

93 

 

 

Figure 3.19. The first decision tree to discriminate within oceanic settings 
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Figure 3.20. The second decision tree to discriminate within oceanic settings 
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Figure 3.21. Decision rule for the first decision tree 
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Figure 3.22. Decision rule for the second decision tree 
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3.1.3. Discrimination Within Non-Subduction Settings 

The third set of decision trees is constructed for the tectono-magmatic discrimination 

within non-subduction settings. Subduction settings are MOR, OP, OI and CWP. At 

first stage, MOR and OP (Group 1) are discriminated from OI and CWP (Group 2). If 

the sample is classified as Group 1, a further discrimination is required between MOR 

and OP. If the sample is classified as Group 2, a discrimination is applied between OI 

and CWP. 

3.1.3.1. Discrimination Between Group 1 (Mid-Oceanic Ridge and Oceanic 

Plateau) and Group 2 (Oceanic Island and Continental Within-plate) Settings 

The first step of discrimination within non-subduction settings is discrimination of 

samples into two sub-groups: group 1 consisting samples of mid-oceanic ridges and 

oceanic plateaus and group 2 consisting samples of oceanic islands and continental 

within-plates. 

Two decision trees are constructed for the tectono-magmatic discrimination within 

non-subduction settings (MOR and OP as Group 1, OI and CWP as Group 2). Both 

decision trees have 7 levels of depth. The first decision tree uses Sm/Yb at first level, 

Nd/Zr at second level, Th/Nb and Y/Yb at third level, Zr/TiO2, La/Nb, Nb/Nb* and 

La/Sm at fourth level, La/Nb, Nd/Zr and Nb/Yb at fifth level, TiO2/Y, Nb/Nb* and 

Th/Nb at sixth level and Zr/Hf and Th/La at seventh level (Figure 3.23).  

The second decision tree uses Sm/Yb at first level, Nd/Zr at second level, Th/Nb and 

Y/Yb at third level, Th/La, La/Nb, Nb/Nb* and La/Sm at fourth level, Sm/Hf, Nd/Zr 

and Nb/Yb at fifth level, La/Nb, Nb/Nb* and Th/Nb at sixth level and Nb/Y, Zr/Hf 

and Th/La at seventh level (Figure 3.24).  

Decision rules for constructed decision trees are given in Figure 3.25 and Figure 3.26, 

respectively. 
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Figure 3.23. The first decision tree to discriminate within non-subduction settings  
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Figure 3.24. The second decision tree to discriminate within non-subduction settings 

F
ig

u
re

 3
.2

4
. 

T
h
e 

se
co

n
d

 d
ec

is
io

n
 t

re
e 

to
 d

is
cr

im
in

at
e 

w
it

h
in

 n
o

n
-s

u
b
d

u
ct

io
n

 s
et

ti
n

g
s 



 

 

 

100 

 

 

 

Figure 3.25. Decision rule for the first decision tree 
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Figure 3.26. Decision rule for the second decision tree 
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3.1.3.2. Discrimination Between Mid-Oceanic Ridges and Oceanic Plateaus 

Two decision trees are constructed for the tectono-magmatic discrimination between 

MOR and OP. The first decision tree has 6 and the second one has 7 levels of depth. 

The first decision tree uses Th/Y at first level, Zr/Hf at second level, Nb/ TiO2 at third 

level, Th/Y and Zr/Y at fourth level, Zr/Y, Zr/Nb, and Th/La at fifth level, Th/La and 

Nb/Nb* at sixth level (Figure 3.27).  

The second decision tree uses Th/Y at first level, Zr/Hf at second level, Zr/Nb at third 

level, Sm/Yb and Zr/Hf at fourth level, Zr/Nb, La/Nb, Y/Yb and Zr/Hf at fifth level, 

Th/La, La/Y and Zr/Nb at sixth level and Sm/Y at seventh level (Figure 3.28).  

Decision rules for constructed decision trees are given in Figure 3.29 and Figure 3.30, 

respectively. 

3.1.3.3. Discrimination Between Oceanic Islands and Continental Within-plates 

Two decision trees are constructed for the tectono-magmatic discrimination between 

OI and CWP. Both decision trees have 8 levels of depth. The first decision tree uses 

Nb/Y at first level, Zr/Yb at second and third levels, Sm/Nb and Zr/Y at fourth level, 

Th/Nb and TiO2/Y at fifth level, Th/Nb, Nb/ TiO2, Y/Yb and Zr/Hf at sixth level, 

Sm/Nd, Th/La, Sm/Yb, Nb/Y and Th/La at seventh level and La/Y, Zr/Nb, Zr/Yb, 

Sm/Nb and La/Sm at eighth level (Figure 3.31).  

The second decision tree uses Nb/Y at first level, Zr/Yb at second and third levels, 

Sm/Nb and Zr/Y at fourth level, Th/Nb and Sm/Nb at fifth level, Th/Nb, Sm/Nb, Zr/Y 

and Zr/Hf at sixth level, Sm/Nd, Y/Yb, Zr/Yb and Nb/Yb at seventh level and La/Y, 

Zr/Nb and Sm/Nd at eighth level (Figure 3.32).  

Decision rules for constructed decision trees are given in Figure 3.33 and Figure 3.34, 

respectively. 
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Figure 3.27. The first decision tree to discriminate between Mid-Oceanic Ridges and Oceanic Plateaus  
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Figure 3.28. The second decision tree to discriminate between Mid-Oceanic Ridges and Oceanic Plateaus   
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Figure 3.29. Decision rule for the first decision tree 
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Figure 3.30. Decision rule for the second decision tree 
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Figure 3.31. The first decision tree to discriminate between Ocean Islands and Continental Within-Plates  
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Figure 3.32. The second decision tree to discriminate between Ocean Islands and Continental Within-Plates   
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Figure 3.33. Decision rule for the first decision tree 
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Figure 3.34. Decision rule for the second decision tree 
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3.2. Classification Results (Decision Trees) 

3.2.1. Discrimination Between Subduction and Non-Subduction Settings 

One decision stump using Th/Nb ratio (Figure 3.35) and two multi-branched decision 

trees (Figure 3.36 and Figure 3.37) are constructed for the discrimination between 

subduction and non-subduction settings. Using training set, success ratios for 

discrimination at each level of depth are determined. 

 

 

Figure 3.35. Classification results of the decision stump to discriminate between subduction and non-

subduction settings 

 

For confusion matrix, showing the tectono-magmatic discrimination results for 

training+test and external datasets; true positive (TP) represents samples of subduction 

settings classified as subduction, true negative (TN) represents samples of non-

subduction settings classified as non-subduction, false positive (FP) represents 

samples of non-subduction settings classified as subduction and false negative (FN) 

represents samples of subduction settings classified as non-subduction. 

When confusion matrix for training and test datasets are evaluated, the overall success 

ratio for tectono-magmatic discrimination between subduction and non-subduction 

settings is high for all levels of three decision trees (Table 3.2). 

 



 

 

 

112 

 

 

Figure 3.36. Classification results of the first decision tree to discriminate between subduction and non-subduction settings 

F
ig

u
re

 3
.3

6
. 

C
la

ss
if

ic
at

io
n

 r
es

u
lt

s 
o
f 

th
e 

fi
rs

t 
d
ec

is
io

n
 t

re
e 

to
 d

is
cr

im
in

at
e 

b
et

w
ee

n
 s

u
b
d

u
ct

io
n

 a
n

d
 n

o
n

-s
u

b
d
u

ct
io

n
 s

et
ti

n
g

s 



 

 

 

113 

 

 

Figure 3.37. Classification results of the second decision tree to discriminate between subduction and 

non-subduction settings 

 

Table 3.2. Confusion Matrix Summary for Training and Test Datasets for Tectono-Magmatic 

Discrimination Between Subduction and Non-Subduction Settings 

 Tree 1 Tree 2 Tree 3 

 Level 1 Level 1 Level 2 Level 3 Level 4 Level 1 Level 2 

TP 577 591 587 591 591 591 591 

TN 1,932 1,928 1,964 1,962 1,964 1,928 1,962 

FP 42 46 10 12 19 46 12 

FN 91 77 81 77 77 77 77 

 

When confusion matrix for external datasets are evaluated, the overall success ratio 

for tectono-magmatic discrimination between subduction and non-subduction settings 

remain high for all levels of three decision trees (Table 3.3). 

Decision stump correctly discriminated all articles except 1 article from CA, 4 articles 

from CWP, 6 articles from OA, 4 articles from OBAB, 1 article from OI and 1 article 

from OP (Table 3.4). Only 6 articles have major fails at discrimination between 

subduction and non-subduction related settings for training and test sets. 
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Table 3.3. Confusion Matrix Summary for External Datasets for Tectono-Magmatic Discrimination 

Between Subduction and Non-Subduction Settings 

 Tree 1 Tree 2 Tree 3 

 Level 1 Level 1 Level 2 Level 3 Level 4 Level 1 Level 2 

TP 375 396 395 396 396 396 393 

TN 1,937 1,942 1,981 1,977 1,977 1,942 1,979 

FP 69 64 25 29 29 64 27 

FN 91 70 71 70 70 70 73 

 

 

Table 3.4. Misclassifications in training and test datasets by decision trump for discrimination between 

subduction and non-subduction settings 
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Mullen 2017 Cascade Arc CA 35 6 17.14 

Coe 2008 South Africa CWP 27 23 85.19 

Gibson 2000 Picrite CWP 16 3 18.75 

Janney 2002 South Africa CWP 11 2 18.18 

Mirnejad 2006 Leucite Hills CWP 10 10 100.00 

Bedard 1999 Canada OA 12 2 16.67 

Jolly 2007 Greater Antilles Arc OA 37 5 13.51 

Jolly 2008 Greater Antilles Arc A OA 98 1 1.02 

Pearce 2005 Mariana OA 11 1 9.09 

Todd 2012 Fiji Tonga OA 13 5 38.46 

Tollstrup 2010 Izu Bonin OA 51 2 3.92 

Beier 2015 Manus Basin OBAB 6 5 83.33 

Leat 2004 Sandwich OBAB 5 3 60.00 

Pearce 1995 Lau OBAB 25 24 96.00 

Pearce 2005 Mariana OBAB 53 33 62.26 

Jackson 2010 Samoa OI 135 1 0.74 

Neal 2002 Kerguelen OP 35 3 8.57 
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Decision stump mainly sustains its success for external datasets (Table 3.5). All CA 

and OI are classified correctly. Misclassifications for MOR in external dataset are 

observed. Other than these, the general trend of misclassifications in training and test 

datasets is also observed in external dataset. 

 

Table 3.5. Misclassifications in external datasets by decision stump for discrimination between 

subduction and non-subduction settings 
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Davies 2006 Aldan Shield CWP 7 7 100.00 

Frey 1996 Bunbury CWP 10 2 20.00 

Gibson 1993 Rio Grande Rift CWP 15 7 46.67 

Gibson 1995 Brazil Paraguay CWP 25 11 44.00 

Gibson 1995 Southeast Brazil CWP 32 5 15.63 

Gibson 2005 Tristan CWP 14 12 85.71 

Mana 2015 East African Rift CWP 29 3 10.34 

Olierook 2016 Bunbury CWP 8 6 75.00 

Xu 2001 SW China CWP 25 11 44.00 

Kelley 2013 EPR MAR MOR 562 2 0.36 

Pyle 1995 Indian Pacific MOR 17 1 5.88 

Jolly 2008 Greater Antilles Arc B OA 78 1 1.28 

König 2008 Subduction Zones OA 6 3 50.00 

Straub 2010 Izu Bonin OA 48 2 4.17 

Tamura 2011 Mariana OA 19 2 10.53 

Wharton 1994 Viti Levu OA 6 1 16.67 

Woodhead 2001 Mixed OA 23 1 4.35 

Bezos 2009 Lau Basin OBAB 34 34 100.00 

Harrison 2003 East Scotia OBAB 5 5 100.00 

Ikeda 2016 Mariana OBAB 15 12 80.00 

Ishizuka 2009 Izu Bonin OBAB 30 21 70.00 

Mortimer 2007 South Fiji Northland OBAB 12 9 75.00 

Frey 2002 Kerguelen OP 17 1 5.88 

Weis 2002 Kerguelen OP 29 1 3.45 
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The first decision tree is more successful at discrimination of subduction and non-

subduction-related settings (Table 3.6). The amount of articles with misclassification 

slightly increase but number of articles with major fails decrease from 6 to 4. Most of 

misclassifications are solved at advanced levels of decision tree, using multiple 

criteria. 

 

Table 3.6. Misclassifications in training and test datasets by first decision tree for discrimination 

between subduction and non-subduction settings 
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Hickey Vargas 2016 Andean CA 55     1 2         

Mullen 2017 Cascade Arc CA 35 6 17 7 20 6 17 6 17 

Coe 2008 South Africa CWP 27 22 81             

Gibson 2000 Picrite CWP 16 2 13     2 13     

Hanghoj 2003 East Greenland CWP 103 1 1             

Larsen 2003 West Greenland CWP 23 1 4 1 4 1 4 1 4 

Mirnejad 2006 Leucite Hills CWP 10 10 100             

Arevalo 2010 Mixed MOR 512 5 1 5 1 5 1 5 1 

Kempton 2002 Indian MOR 63 2 3 2 3 2 3 2 3 

Nauret 2006 Central Indian MOR 34 1 3 1 3 1 3 1 3 

Bedard 1999 Canada OA 12 3 25 3 25 3 25 3 25 

Jolly 2007 Greater Antilles  OA 37 4 11 4 11 4 11 4 11 

Jolly 2008 Greater Antilles  OA 98 1 1 1 1 1 1 1 1 

Todd 2012 Fiji Tonga OA 13 3 23 5 38 3 23 3 23 

Beier 2015 Manus Basin OBAB 6 5 83 5 83 5 83 5 83 

Leat 2004 Sandwich OBAB 5 3 60 3 60 3 60 3 60 

Pearce 1995 Lau OBAB 25 17 68 17 68 17 68 17 68 

Pearce 2005 Mariana OBAB 53 31 58 31 58 31 58 31 58 

Neal 2002 Kerguelen OP 35 2 6 1 3 1 3 1 3 
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The first decision tree is also applicable to external datasets successfully, especially to 

CA, OI and OP (Table 3.7). Other than this, the trend of misclassifications for training 

and test dataset is similar to that of external dataset. 

 

Table 3.7. Misclassifications in external datasets by first decision tree for discrimination between 

subduction and nonsubduction settings 
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Davies 2006 Aldan Shield CWP 7 7 100 4 57 7 100 7 100 

Frey 1996 Bunbury CWP 10 1 10 1 10 1 10 1 10 

Gibson 1993 Rio Grande Rift CWP 15 7 47 3 20 4 27 4 27 

Gibson 2005 Tristan CWP 14 12 86             

Olierook 2016 Bunbury CWP 8 5 63 5 63 5 63 5 63 

Shuying 2015 South China CWP 12 1 8 1 8 1 8 1 8 

Xu 2001 SW China CWP 25 4 16 2 8 2 8 2 8 

Jenner 2012 Mixed MOR 588 1 0 1 0 1 0 1 0 

Kelley 2013 EPR MAR MOR 562 7 1 7 1 7 1 7 1 

Pyle 1995 Indian Pacific MOR 17 1 6 1 6 1 6 1 6 

Jolly 2008 Greater Antilles  OA 78     1 1         

König 2008 Subduction Zone OA 6 3 50 3 50 3 50 3 50 

Straub 2010 Izu Bonin OA 48 2 4 2 4 2 4 2 4 

Woodhead 2001 Mixed OA 23 1 4 1 4 1 4 1 4 

Bezos 2009 Lau Basin OBAB 34 21 62 21 62 21 62 21 62 

Harrison 2003 East Scotia OBAB 5 5 100 5 100 5 100 5 100 

Ikeda 2016 Mariana OBAB 15 12 80 12 80 12 80 12 80 

Ishizuka 2009 Izu Bonin OBAB 30 18 60 18 60 18 60 18 60 

Mortimer 2007 South Fiji  OBAB 12 8 67 8 67 8 67 8 67 
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The second decision tree is both simpler in structure and more successful at 

discrimination of subduction and non-subduction-related settings for training and test 

datasets (Table 3.8). 18 articles have misclassifications, only 4 of which have major 

failures. The decision tree is especially successful for CA, OI and OP. 

 

Table 3.8. Misclassifications in training and test datasets by second decision tree for discrimination 

between subduction and non-subduction settings 
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Mullen 2017 Cascade Arc CA 35 6 17 6 17 

Coe 2008 South Africa CWP 27 22 81     

Gibson 2000 Picrite CWP 16 2 13 2 13 

Hanghoj 2003 East Greenland CWP 103 1 1 1 1 

Larsen 2003 West Greenland CWP 23 1 4     

Mirnejad 2006 Leucite Hills CWP 10 10 100     

Arevalo 2010 Mixed MOR 512 5 1 5 1 

Kempton 2002 Indian MOR 63 2 3 2 3 

Nauret 2006 Central Indian MOR 34 1 3 1 3 

Bedard 1999 Canada OA 12 3 25 3 25 

Jolly 2007 Greater Antilles Arc OA 37 4 11 4 11 

Jolly 2008 Greater Antilles Arc A OA 98 1 1 1 1 

Todd 2012 Fiji Tonga OA 13 3 23 3 23 

Beier 2015 Manus Basin OBAB 6 5 83 5 83 

Leat 2004 Sandwich OBAB 5 3 60 3 60 

Pearce 1995 Lau OBAB 25 17 68 17 68 

Pearce 2005 Mariana OBAB 53 31 58 31 58 

Neal 2002 Kerguelen OP 35 2 6 1 3 
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The second decision tree, similar to the decision stump and decision tree, is also 

successfully applicable to external datasets (Table 3.9). Only 4 articles (2 CWP, 1 OA 

and 1 OBAB) have major failures. OI and OP are correctly discriminated.  

 

Table 3.9. Misclassifications in external datasets by second decision tree for discrimination between 

subduction and non-subduction settings 
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Bryant 2006 Andes CA 3     1 33 

De Astis 2000 Aeolian CA 23     1 4 

Santo 2004 Aeolian CA 31     1 3 

Davies 2006 Aldan Shield CWP 7 7 100 7 100 

Frey 1996 Bunbury CWP 10 1 10 1 10 

Gibson 1993 Rio Grande Rift CWP 15 7 47 1 7 

Gibson 1995 Brazil Paraguay CWP 25 12 48     

Gibson 1995 Southeast Brazil CWP 32 5 16     

Gibson 2005 Tristan CWP 14 12 86     

Mana 2015 East African Rift CWP 29 1 3     

Olierook 2016 Bunbury CWP 8 5 63 5 63 

Shuying 2015 South China CWP 12 1 8 1 8 

Xu 2001 SW China CWP 25 4 16 3 12 

Jenner 2012 Mixed MOR 588 1 0 1 0 

Kelley 2013 EPR MAR MOR 562 7 1 7 1 

Pyle 1995 Indian Pacific MOR 17 1 6 1 6 

König 2008 Subduction Zones OA 6 3 50 3 50 

Straub 2010 Izu Bonin OA 48 2 4 2 4 

Woodhead 2001 Mixed OA 23 1 4 1 4 

Bezos 2009 Lau Basin OBAB 34 21 62 21 62 

Harrison 2003 East Scotia OBAB 5 5 100 5 100 

Ikeda 2016 Mariana OBAB 15 12 80 12 80 

Ishizuka 2009 Izu Bonin OBAB 30 18 60 18 60 
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The trends of misclassifications for training – test datasets and external datasets are 

similar to each other.  

3.2.2. Discrimination Within Subduction Settings 

3.2.2.1. The First Path for Discrimination Within Subduction Settings 

The first path involves two-stage discrimination within subduction settings: (1) 

between arc and back-arc-related settings, (2) within arc-related settings. 

3.2.2.1.1. Discrimination Between Arc and Back-arc-related Settings 

Two multi-branched decision trees (Figure 3.38 and Figure 3.39) are constructed for 

the discrimination between arc and back-arc-related settings. Using training set, 

success ratios for discrimination at each level of depth are determined. 

For confusion matrix, showing the tectono-magmatic discrimination results for 

training+test and external datasets; true positive (TP) represents samples of back-arc-

related settings classified as back-arc, true negative (TN) represents samples of arc-

related settings classified as arc, false positive (FP) represents samples of arc-related 

settings classified as back-arc and false negative (FN) represents samples of back-arc-

related settings classified as arc.  

When confusion matrix for training and test datasets are evaluated, the overall success 

ratio for tectono-magmatic discrimination between arc and back-arc-related settings 

are higher for the last two levels of two decision trees (Table 3.10). 

When confusion matrix for external datasets are evaluated, the overall success ratio 

for tectono-magmatic discrimination between arc and back-arc-related settings 

decreases in varying degrees for the second trees (Table 3.11). 
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Figure 3.38. Classification results of the first decision tree to discriminate between arc and back-arc-related settings 
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Figure 3.39. Classification results of the second decision tree to discriminate between arc and back-arc-related settings 
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Table 3.10. Confusion Matrix Summary for Training and Test Datasets for Tectono-Magmatic 

Discrimination Between Arc and Back-arc-related Settings 

Tree 1 2 

Level 2 3 4 5 2 3 4 5 

TP 86 84 92 92 86 82 89 88 

TN 550 557 553 556 550 554 554 556 

FP 12 5 9 6 12 8 8 6 

FN 20 22 

 

 

 

 

 

 

14 14 20 24 17 18 

 

Table 3.11. Confusion Matrix Summary for External Datasets for Tectono-Magmatic Discrimination 

Between Arc and Back-arc-related Settings 

Tree 1 2 

Level 2 3 4 5 2 3 4 5 

TP 68 62 62 62 68 68 58 58 

TN 348 348 347 347 348 354 350 351 

FP 16 16 17 17 16 10 14 13 

FN 34 40 40 40 34 34 44 44 

 

The first decision tree correctly discriminated articles of subduction settings as arc-

related and back-arc-related settings except of 8 articles for training and test datasets 

(Table 3.12). For this 8 articles, no major failures in discrimination is observed. 

Misclassifications in the first levels are solved through the deeper levels in decision 

tree. 

The first decision tree is relatively more successful at OA and CA with respect to 

OBAB for the discrimination of arc- and back-arc-related settings in training and test 

datasets. Only 1 articles from OA has misclassification with a misclassification ratio 

less than 10%. 
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Table 3.12. Misclassifications by first decision tree for discrimination between arc and back-arc settings 
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Mullen 2017 Cascade Arc CA 35 4 11 3 9 3 9 3 9 

Bedard 1999 Canada OA 12 2 17 1 8 3 25 1 8 

Jolly 2007 Greater Antilles  OA 37     1 3   

Jolly 2008 Greater Antilles OA 98     1 1 1 1 

Pearce 2005 Mariana OA 11 1 9 1 9 1 9 1 9 

Beier 2015 Manus Basin OBAB 6 1 17 1 17 1 17 1 17 

Pearce 1995 Lau OBAB 25 6 24 6 24 2 8 2 8 

Pearce 2005 Mariana OBAB 53 13 25 13 25 11 21 11 21 

 

 

The first decision tree sustains its success for discrimination between arc and back-

arc-related settings for external datasets (Table 3.13). External articles from CA can 

be correctly classified, whereas misclassifications are observed for OA and OBAB. 3 

articles (1 from OA and 2 from OBAB) completely fail at discrimination. Other than 

these 3 articles, 3 more articles also have major failure. However, decrease in the 

classification ratio in these articles does not affect the overall success ratio as their 

sample amounts are rather limited to less than 10 samples per article. The general trend 

of misclassifications in external dataset is similar to that of training and test datasets. 
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Table 3.13. Misclassifications by first decision tree for discrimination between arc and back-arc settings 
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König 2008 Subduction  OA 6 6 100 6 100 6 100 6 100 

König 2010 Subduction  OA 4 2 50 2 50 2 50 2 50 

Pearce 1999 W. Pacific OA 5 1 20 1 20 1 20 1 20 

Straub 2010 Izu Bonin OA 48 2 4 2 4 2 4 2 4 

Tamura 2011 Mariana OA 19 4 21 4 21 5 26 5 26 

Woodhead 2001 Mixed OA 23 1 4 1 4 1 4 1 4 

Harrison 2003 East Scotia OBAB 5 5 100 5 100 5 100 5 100 

Ikeda 2016 Mariana OBAB 15 3 20 3 20 3 20 3 20 

Ishizuka 2009 Izu Bonin OBAB 30 15 50 20 67 20 67 20 67 

Mortimer 2007 South Fiji  OBAB 12 5 42 6 50 6 50 6 50 

Sinton 2003 Manus OBAB 6 6 100 6 100 6 100 6 100 

 

The second decision tree is also successful at discrimination between arc and back-

arc-related settings (Table 3.14). 8 articles have misclassifications with only 1 major 

failure. The misclassifications in the first levels are later solved with increasing levels 

of depth.  Only 1 article from CA has misclassification. These two decision trees give 

similar results for training and test dataset when considered. 
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Table 3.14. Misclassifications by second decision tree for discrimination between arc and back-arc 

settings 
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Mullen 2017 Cascade 

Arc 

CA 35 4 11 4 11 5 14 4 11 

Bedard 1999 Canada OA 12 2 17     1 8     

Pearce 2005 Mariana OA 11 1 9 1 9 1 9 1 9 

Peate 1997 Vanuatu OA 37 1 3 1 3         

Todd 2012 Fiji Tonga OA 13 4 31 2 15 1 8 1 8 

Beier 2015 Manus 

Basin 

OBAB 6 1 17 5 83 5 83 5 83 

Pearce 1995 Lau OBAB 25 6 24 6 24 2 8 2 8 

Pearce 2005 Mariana OBAB 53 13 25 13 25 11 21 11 21 

 

The second decision tree sustains its success for external dataset (Table 3.15). Similar 

to the first decision tree, all articles from CA in external dataset are correctly 

discriminated and the general trend for misclassification through the articles and 

tectonic settings for external dataset is similar to that for training and test dataset. 

Two articles of OBAB completely fails at discrimination, however, the amount of 

samples per articles is limited so their effect on overall ratio of success remain limited. 
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Table 3.15. Misclassifications by second decision tree for discrimination between arc and back-arc 

settings 
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Jolly 2008 Greater Antilles B OA 78         1 1     

König 2008 Subduction  OA 6 6 100 1 17 1 17 1 17 

König 2010 Subduction  OA 4 2 50 1 25 1 25 1 25 

Pearce 1999 Western Pacific OA 5 1 20 1 20 1 20 1 20 

Straub 2010 Izu Bonin OA 48 2 4 2 4 2 4 2 4 

Tamura 2011 Mariana OA 19 4 21 4 21 6 32 6 32 

Wharton 1994 Viti Levu OA 6         1 17 1 17 

Woodhead 2001 Mixed OA 23 1 4 1 4 1 4 1 4 

Harrison 2003 East Scotia OBAB 5 5 100 5 100 5 100 5 100 

Ikeda 2016 Mariana OBAB 15 3 20 3 20 4 27 4 27 

Ishizuka 2009 Izu Bonin OBAB 30 15 50 15 50 22 73 22 73 

Mortimer 2007 South Fiji  OBAB 12 5 42 5 42 7 58 7 58 

Sinton 2003 Manus OBAB 6 6 100 6 100 6 100 6 100 

 

3.2.2.1.2. Discrimination Within Arc-related Settings 

Two multi-branched decision trees (Figure 3.40 and Figure 3.41) are constructed for 

the discrimination within arc and related settings. Using training set, success ratios for 

discrimination at each level of depth are determined. 
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Figure 3.40. Classification results of the first decision tree to discriminate within arc-related settings  
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Figure 3.41. Classification results of the second decision tree to discriminate within arc-related settings 
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For confusion matrix, showing the tectono-magmatic discrimination results for 

training+test and external datasets; true positive (TP) represents samples of oceanic 

arcs classified as oceanic arc, true negative (TN) represents samples of continental 

arcs classified as continental arc, false positive (FP) represents samples of continental 

arcs classified as oceanic arc and false negative (FN) represents samples oceanic arcs 

classified as continental arc.  

When confusion matrix for training and test datasets are evaluated, the overall success 

ratio for tectono-magmatic discrimination between oceanic arc and continental arc 

settings have an increasing trend with increasing levels in depth for both decision trees 

(Table 3.16). 

When their applicability to external datasets are evaluated, both decision trees with 

their all levels shall be accepted to be applicable for tectono-magmatic discrimination 

between oceanic arc and continental arc settings with a decrease in their success ratios 

(Table 3.17). 

 

Table 3.16. Confusion Matrix Summary for Training and Test Datasets for Tectono-Magmatic 

Discrimination Between Oceanic Arc and Continental Arc Settings 

Tree 1 2 

Level 2 3 4 5 6 7 2 3 4 5 6 7 

TP 308 298 368 367 362 370 360 360 352 367 372 368 

TN 147 168 120 128 162 160 105 105 149 160 166 171 

FP 34 13 61 53 19 21 76 76 32 21 15 10 

FN 73 83 13 14 19 11 21 21 29 14 9 13 

 

The first decision tree is successful at the discrimination between OA and CA (Table 

3.18). The amount of articles with misclassifications are higher when compared to that 

in previous discriminations. However, amount of misclassifications per articles are 

small so that only 1 article has major failure at discrimination. 
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Table 3.17. Confusion Matrix Summary for External Dataset for Tectono-Magmatic Discrimination 

Between Oceanic Arc and Continental Arc Settings 

Tree 1 2 

Level 2 3 4 5 6 7 2 3 4 5 6 7 

TP 106 99 175 176 164 157 176 176 139 163 169 178 

TN 136 136 83 68 75 72 54 54 73 95 108 107 

FP 5 5 58 73 66 69 87 87 68 46 33 34 

FN 117 124 48 47 59 66 47 47 84 60 54 45 

 

The first decision tree is also applicable to external datasets yet, the amount of 

misclassifications per articles slightly increase with more major failures. (Table 3.19). 

The second decision tree is similar to the first decision tree for discrimination of 

training and test dataset (Table 3.20) and for external dataset (Table 3.21). The trends 

of misclassification are similar between first and second decision tree and between 

training-test dataset and external dataset. There is no unexpected abrupt change in 

success ratio for a specific tectonic setting or an article. 

3.2.2.2. The Second Path for Discrimination Within Subduction Settings 

3.2.2.2.1. Discrimination Between Oceanic and Continental Settings 

Two multi-branched decision trees (Figure 3.42 and Figure 3.43) are constructed for 

the discrimination between oceanic and continental settings. Using training set, 

success ratios for discrimination at each level of depth are determined. For confusion 

matrix, showing the tectono-magmatic discrimination results for training+test and 

external datasets; true positive (TP) represents samples of oceanic settings classified 

as oceanic, true negative (TN) represents samples of continental settings classified as 

continental, false positive (FP) represents samples of continental settings classified as 

oceanic and false negative (FN) represents samples of oceanic settings classified as 

continental.  
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Table 3.18. Misclassifications by first decision tree for discrimination between oceanic arc and 

continental-arc settings 

JO
U

R
N

A
L

 

C
L

A
S

S
 

S
A

M
P

L
E

S
 

L
E

V
E

L
 2

 E
R

R
O

R
S

 

L
E

V
E

L
 2

 E
R

R
O

R
 %

 

L
E

V
E

L
 3

 E
R

R
O

R
S

 

L
E

V
E

L
 3

 E
R

R
O

R
 %

 

L
E

V
E

L
 4

 E
R

R
O

R
S

 

L
E

V
E

L
 4

 E
R

R
O

R
 %

 

L
E

V
E

L
 5

 E
R

R
O

R
S

 

L
E

V
E

L
 5

 E
R

R
O

R
 %

 

L
E

V
E

L
 6

 E
R

R
O

R
S

 

L
E

V
E

L
 6

 E
R

R
O

R
 %

 

L
E

V
E

L
 7

 E
R

R
O

R
S

 

L
E

V
E

L
 7

 E
R

R
O

R
 %

 

Gertisser 2000 Aeolian CA 5         1 20 1 20     4 80 

Hickey Vargas 2016 Andean CA 55 1 2 1 2 8 15 8 15 3 5 5 9 

Hickey Vargas 2016 Chile CA 34 1 3 1 3 26 76 26 76 1 3 4 12 

Metrich 2001 Aeolian CA 10         2 20 2 20 2 20 2 20 

Mullen 2017 Cascade Arc CA 35 9 26 9 26 18 51 11 31 11 31 3 9 

Portnyagin 2015 Kamchatka CA 3         3 100 3 100         

Simon 2014 Kamchatka CA 39 23 59 2 5 3 8 2 5 2 5 3 8 

Bedard 1999 Canada OA 12 5 42 5 42 5 42             

Hickey Vargas 2013 Daito OA 8 4 50 4 50         2 25 1 13 

Jolly 2007 Greater Antilles  OA 37 14 38 14 38 3 8 3 8 4 11 1 3 

Jolly 2008 Greater Antilles  OA 98 15 15 20 20 8 8 7 7 8 8 1 1 

Pearce 1995 South Sandwich OA 14             1 7     1 7 

Pearce 2005 Mariana OA 11 2 18 2 18                 

Peate 1997 Vanuatu OA 37 8 22 10 27 1 3 5 14 4 11 2 5 

Rojas Agramonte 2017 

Lesser Antilles 

OA 15 9 60 9 60 3 20 3 20 4 27 4 27 

Singer 2007 Auletian OA 48 18 38 18 38         8 17 4 8 

Todd 2012 Fiji Tonga OA 13 2 15 2 15     2 15 1 8 3 23 

Tollstrup 2010 Izu Bonin OA 51 4 8 7 14 1 2 1 2 3 6 2 4 

Yogodzinski 2015 Western 

Auletian 

OA 19 7 37 7 37                 
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Table 3.19. Misclassifications by first decision tree for discrimination between oceanic arc and 

continental-arc settings 
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Bailey 2009 Santorini CA 45 1 2 1 2 12 27 27 60 26 58 18 40 

Bryant 2006 Andes CA 3         1 33 1 33 1 33 1 33 

Calanchi 2002 Aeolian CA 8 2 25 2 25 8 100 8 100 8 100 8 100 

De Astis 1997 Aeolian CA 18         2 11 2 11 1 6 3 17 

De Astis 2000 Aeolian CA 23 1 4 1 4 8 35 8 35 4 17 6 26 

Ianelli 2017 North Patagonian  CA 9 1 11 1 11 4 44 4 44 4 44 3 33 

Santo 2004 Aeolian CA 31         20 65 20 65 19 61 28 90 

Zelenski 2018 Kamchatka CA 4         3 75 3 75 3 75 2 50 

Finney 2008 Okmok OA 3                         

Jolly 2008 Greater Antilles Arc  OA 78 43 55 50 64 13 17 14 18 23 29 13 17 

König 2008 Subduction Zones OA 6             1 17 1 17 1 17 

König 2010 Subduction Zones OA 4             1 25 1 25 1 25 

Leslie 2009 Fiji Arc OA 11 6 55 6 55         2 18     

Pearce 1999 Western Pacific OA 5 4 80 4 80 3 60 1 20 1 20 2 40 

Stellin 2002 Shishaldin OA 4 1 25 1 25                 

Straub 2010 Izu Bonin OA 48 33 69 33 69 27 56 24 50 22 46 28 58 

Tamura 2011 Mariana OA 19 9 47 9 47         3 16 3 16 

Wharton 1994 Viti Levu OA 6 1 17 1 17 1 17             

Woodhead 2001 Mixed OA 23 5 22 5 22 2 9 4 17 3 13 3 13 
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Table 3.20. Misclassifications by second decision tree for discrimination between oceanic arc and 

continental-arc settings 
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Gertisser 2000 Aeolian CA 5 5 100 5 100 5 100 2 40 2 40 2 40 

Hickey Vargas 2016 Andean CA 55 3 5 3 5 2 4 3 5 3 5 3 5 

Hickey Vargas 2016 Chile CA 34 5 15 5 15 5 15     1 3 3 9 

Metrich 2001 Aeolian CA 10 10 100 10 100 10 100             

Mullen 2017 Cascade Arc CA 35 19 54 19 54 4 11 10 29 3 9 2 6 

Simon 2014 Kamchatka CA 39 34 87 34 87 6 15 6 15 6 15     

Bedard 1999 Canada OA 12         1 8 1 8 1 8 1 8 

Hickey Vargas 2013 Daito OA 8 3 38 3 38 3 38 3 38     2 25 

Hochstaedter 2001 Izu Bonin OA 2         1 50             

Jolly 2007 Greater Antilles OA 37 5 14 5 14 6 16 3 8 3 8 3 8 

Jolly 2008 Greater Antilles  OA 98 2 2 2 2 6 6 3 3 3 3 3 3 

Pearce 1995 South Sandwich OA 14         4 29             

Pearce 2005 Mariana OA 11                     1 9 

Peate 1997 Vanuatu OA 37 5 14 5 14 5 14 2 5 2 5     

Rojas Agramonte 2017 Lesser 

Antilles 

OA 15 3 20 3 20 3 20 1 7 1 7 1 7 

Singer 2007 Auletian OA 48 10 21 10 21 12 25 5 10 4 8 3 6 

Todd 2012 Fiji Tonga OA 13 1 8 1 8 3 23 3 23 2 15 3 23 

Tollstrup 2010 Izu Bonin OA 51         1 2 1 2 1 2 2 4 

Yogodzinski 2015 W Auletian OA 19                     2 11 
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Table 3.21. Misclassifications by second decision tree for discrimination between oceanic arc and 

continental-arc settings 
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Bailey 2009 Santorini CA 45 27 60 27 60 8 18 28 62 10 22 10 22 

Bryant 2006 Andes CA 3 1 33 1 33 1 33             

Calanchi 2002 Aeolian CA 8 8 100 8 100 8 100 1 13 2 25 2 25 

De Astis 1997 Aeolian CA 18 10 56 10 56 10 56 3 17 3 17 3 17 

De Astis 2000 Aeolian CA 23 14 61 14 61 14 61 4 17 5 22 5 22 

Ianelli 2017 N Patagonian  CA 9             2 22 2 22 2 22 

Santo 2004 Aeolian CA 31 27 87 27 87 27 87 8 26 11 35 12 39 

Jolly 2008 Antilles Arc B OA 78 18 23 18 23 22 28 27 35 18 23 10 13 

König 2008 Subduction  OA 6         2 33 2 33 2 33 2 33 

König 2010 Subduction  OA 4         3 75 3 75 3 75 3 75 

Leslie 2009 Fiji Arc OA 11         1 9 1 9 1 9 1 9 

Pearce 1999 W Pacific OA 5         1 20 1 20 1 20 1 20 

Straub 2010 Izu Bonin OA 48 9 19 9 19 30 63 12 25 14 29 14 29 

Tamura 2011 Mariana OA 19 4 21 4 21 4 21 4 21 4 21 3 16 

Wharton 1994 Viti Levu OA 6         1 17 1 17 1 17 1 17 

Woodhead 2001 Mixed OA 23         4 17 1 4 2 9 3 13 
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Figure 3.42. Classification results of the first decision tree to discriminate between oceanic and continental settings  
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Figure 3.43. Classification results of the second decision tree to discriminate between oceanic and continental settings 
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When confusion matrix for training and test datasets are evaluated, the overall success 

ratio for tectono-magmatic discrimination between oceanic and continental settings 

have an increasing trend with increasing levels in depth for both decision trees (Error! 

Not a valid bookmark self-reference.). When their applicability to external datasets 

is evaluated, the first decision tree seems to fail as a result of overfitting for both 

tectonic settings, oceanic and continental, whereas the second decision tree seems to 

fail as a result of overfitting only for discrimination of continental settings (Table 

3.23). 

 

Table 3.22. Confusion Matrix Summary for Training and Test Datasets for Tectono-Magmatic 

Discrimination Between Oceanic and Continental Settings 

Tree 1 2 

Level 2 3 4 5 6 2 3 4 5 6 

TP 452 452 455 459 467 451 451 454 460 467 

TN 101 101 133 151 163 100 100 131 145 151 

FP 80 80 48 30 18 81 81 50 36 30 

FN 35 35 32 28 20 36 36 33 27 20 

 

Table 3.23. Confusion Matrix Summary for External Dataset for Tectono-Magmatic Discrimination 

Between Oceanic and Continental Related Settings 

Tree 1 2 

Level 2 3 4 5 6 2 3 4 5 6 

TP 274 274 271 268 264 284 284 294 292 302 

TN 113 113 84 97 100 100 100 72 84 75 

FP 28 28 57 44 41 41 41 69 57 66 

FN 51 51 54 57 61 41 41 29 33 23 

 

Two decision trees have similar results on discrimination of samples from articles of 

subduction-related settings for both training and external datasets. First decision tree 

is successful for the discrimination of training dataset (Table 3.24) with only 1 major 

failure and sustains its success for external dataset (Table 3.25). 
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Table 3.24. Misclassifications by first decision tree for discrimination between oceanic and continental 

settings 
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Gertisser 2000 Aeolian CA 5 5 100 5 100 5 100 5 100 5 100 

Hickey Vargas 2016 Andean CA 55 6 11 6 11 2 4 6 11 2 4 

Hickey Vargas 2016 Chile CA 34 14 41 14 41 14 41 3 9 3 9 

Metrich 2001 Aeolian CA 10         2 20         

Mullen 2017 Cascade Arc CA 35 19 54 19 54 18 51 11 31 5 14 

Portnyagin 2015 Kamchatka CA 3         2 67         

Simon 2014 Kamchatka CA 39 36 92 36 92 5 13 5 13 3 8 

Bedard 1999 Canada OA 12                 2 17 

Hickey Vargas 2013 Daito OA 8 2 25 2 25 4 50 2 25 2 25 

Jolly 2007 Greater Antilles 

Arc 

OA 37 6 16 6 16 3 8 3 8 3 8 

Jolly 2008 Greater Antilles 

Arc A 

OA 98 2 2 2 2 7 7 4 4 3 3 

Pearce 2005 Mariana OA 11         2 18         

Peate 1997 Vanuatu OA 37 7 19 7 19 2 5 3 8 2 5 

Rojas Agramonte 2017 Lesser 

Antilles 

OA 15 5 33 5 33 3 20 3 20 2 13 

Singer 2007 Auletian OA 48 9 19 9 19 4 8 7 15 2 4 

Tollstrup 2010 Izu Bonin OA 51         2 4 1 2 2 4 

Yogodzinski 2015 W Auletian OA 19 2 11 2 11 3 16         

Pearce 1995 Lau OBAB 25         1 4 1 4     

Pearce 2005 Mariana OBAB 53 1 2 1 2 1 2 3 6 1 2 

 

The trend of misclassifications through the articles of training (Table 3.26) and 

external (Table 3.27) datasets are similar in the second decision tree.  
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Table 3.25. Misclassifications by first decision tree for discrimination between oceanic and continental 

settings 
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Bailey 2009 Santorini CA 45 14 31 14 31 18 40 14 31 11 24 

Bryant 2006 Andes CA 3             1 33 1 33 

Calanchi 2002 Aeolian CA 8 5 63 5 63 8 100 8 100 8 100 

De Astis 1997 Aeolian CA 18 1 6 1 6 4 22 5 28 5 28 

De Astis 2000 Aeolian CA 23 1 4 1 4 5 22 6 26 6 26 

Ianelli 2017 N Patagonian 

Andes 

CA 9         2 22 1 11 1 11 

Santo 2004 Aeolian CA 31 7 23 7 23 20 65 9 29 9 29 

Jolly 2008 Greater Antilles 

Arc B 

OA 78 11 14 11 14 19 24 9 12 13 17 

König 2008 Subduction Zones OA 6             1 17 1 17 

König 2010 Subduction Zones OA 4             1 25 1 25 

Leslie 2009 Fiji Arc OA 11 3 27 3 27     1 9 1 9 

Pearce 1999 Western Pacific OA 5 3 60 3 60 3 60 3 60 4 80 

Straub 2010 Izu Bonin OA 48 11 23 11 23 27 56 18 38 25 52 

Wharton 1994 Viti Levu OA 6 1 17 1 17 2 33 1 17 2 33 

Woodhead 2001 Mixed OA 23 1 4 1 4 3 13 1 4 2 9 

Bezos 2009 Lau Basin OBAB 34             2 6 2 6 

Harrison 2003 East Scotia OBAB 5 4 80 4 80     4 80     

Ikeda 2016 Mariana OBAB 15 1 7 1 7     1 7 1 7 

Ishizuka 2009 Izu Bonin OBAB 30 11 37 11 37 6 20 14 47 10 33 

Mortimer 2007 South Fiji  OBAB 12 5 42 5 42 2 17 4 33 2 17 

Sinton 2003 Manus OBAB 6             1 17 1 17 
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Table 3.26. Misclassifications by second decision tree for discrimination between oceanic and 

continental settings 
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Gertisser 2000 Aeolian CA 5 5 100 5 100 5 100 5 100 5 100 

Hickey Vargas 2016 Andean CA 55 6 11 6 11 2 4 6 11 1 2 

Hickey Vargas 2016 Chile CA 34 14 41 14 41 13 38 2 6 3 9 

Metrich 2001 Aeolian CA 10         2 20     2 20 

Mullen 2017 Cascade Arc CA 35 20 57 20 57 23 66 20 57 18 51 

Portnyagin 2015 Kamchatka CA 3         2 67         

Simon 2014 Kamchatka CA 39 36 92 36 92 3 8 3 8 1 3 

Bedard 1999 Canada OA 12                 2 17 

Hickey Vargas 2013 Daito OA 8 3 38 3 38 4 50 2 25 1 13 

Jolly 2007 Greater Antilles 

Arc 

OA 37 6 16 6 16 3 8 3 8 2 5 

Jolly 2008 Greater Antilles 

Arc A 

OA 98 2 2 2 2 6 6 1 1 2 2 

Pearce 2005 Mariana OA 11         1 9         

Peate 1997 Vanuatu OA 37 7 19 7 19 3 8 3 8 2 5 

Rojas 2017 Lesser Antilles OA 15 5 33 5 33 3 20 3 20 2 13 

Singer 2007 Auletian OA 48 9 19 9 19 4 8 8 17 5 10 

Todd 2012 Fiji Tonga OA 13         1 8 1 8     

Tollstrup 2010 Izu Bonin OA 51         5 10 4 8 1 2 

Yogodzinski 2015 West 

Auletian 

OA 19 2 11 2 11 3 16     2 11 

Pearce 2005 Mariana OBAB 53 1 2 1 2     1 2     
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Table 3.27. Misclassifications by second decision tree for discrimination between oceanic and 

continental settings 
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Bailey 2009 Santorini CA 45 25 56 25 56 28 62 25 56 24 53 

Bryant 2006 Andes CA 3             1 33 1 33 

Calanchi 2002 Aeolian CA 8 5 63 5 63 8 100 8 100 8 100 

De Astis 1997 Aeolian CA 18 1 6 1 6 4 22 5 28 5 28 

De Astis 2000 Aeolian CA 23 1 4 1 4 5 22 6 26 7 30 

Ianelli 2017 Patagonian 

Andes 

CA 9 1 11 1 11 3 33 2 22 2 22 

Santo 2004 Aeolian CA 31 7 23 7 23 20 65 9 29 18 58 

Zelenski 2018 Kamchatka CA 4 1 25 1 25 1 25 1 25 1 25 

Finney 2008 Okmok OA 3                     

Jolly 2008 Greater Antilles 

Arc B 

OA 78 11 14 11 14 20 26 10 13 12 15 

Leslie 2009 Fiji Arc OA 11 3 27 3 27     1 9 1 9 

Pearce 1999 Western Pacific OA 5                 1 20 

Straub 2010 Izu Bonin OA 48 3 6 3 6 5 10 4 8 5 10 

Wharton 1994 Viti Levu OA 6 1 17 1 17 2 33 1 17 1 17 

Woodhead 2001 Mixed OA 23 1 4 1 4 3 13         

Harrison 2003 East Scotia OBAB 5 5 100 5 100     5 100     

Ikeda 2016 Mariana OBAB 15                 1 7 

Ishizuka 2009 Izu Bonin OBAB 30 12 40 12 40 5 17 12 40 6 20 

Mortimer 2007 South Fiji  OBAB 12 5 42 5 42 2 17 4 33 2 17 
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3.2.2.2.2. Discrimination Within Oceanic Settings 

Two multi-branched decision trees (Figure 3.44 and Figure 3.45) are constructed for 

the discrimination within oceanic settings. Using training set, success ratios for 

discrimination at each level of depth are determined. 

For confusion matrix, showing the tectono-magmatic discrimination results for 

training+test and external datasets; true positive (TP) represents samples of oceanic 

back-arcs classified as oceanic back-arcs, true negative (TN) represents samples of 

oceanic arcs classified as oceanic arcs, false positive (FP) represents samples of 

oceanic arcs classified as oceanic back-arcs and false negative (FN) represents 

samples of oceanic back-arcs classified as oceanic arcs. When confusion matrix for 

training and test datasets are evaluated (Table 3.28), the overall success ratio for 

tectono-magmatic discrimination between oceanic arc and oceanic back-arc settings 

have an increasing trend with increasing levels in depth for classification of oceanic 

back-arcs but decreasing trend for classification of oceanic arcs at both decision trees. 

When their applicability to external datasets are evaluated, both decision trees with 

their all levels shall be accepted to be applicable for tectono-magmatic discrimination 

between oceanic arc and oceanic back-arc settings without a significant decrease in 

their success ratios (Table 3.29). 

The first decision tree successfully discriminates OA and OBAB from each other for 

both training (Table 3.30) and external (Table 3.31) dataset with only 6 articles for 

training and 10 articles for external dataset with misclassifications. Each dataset has 

only 1 article with major failure. Misclassifications through articles have similar 

trends. The second decision tree is also very similar to the first one for both training 

(Table 3.32) and external (Table 3.33) datasets. 
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Figure 3.44. Classification results of the first decision tree to discriminate within oceanic settings 
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Figure 3.45. Classification results of the second decision tree to discriminate within oceanic settings 
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Table 3.28. Confusion Matrix Summary for Training and Test Datasets for Tectono-Magmatic 

Discrimination Between Oceanic Arc and Oceanic Back-Arc Settings 

Tree 1 2 

Level 2 3 4 5 6 2 3 4 5 6 

TP 77 83 97 94 98 77 83 97 98 99 

TN 378 377 366 376 374 378 377 366 371 369 

FP 3 4 15 5 7 3 4 15 10 12 

FN 29 23 9 12 8 29 23 9 8 7 

 

Table 3.29. Confusion Matrix Summary for External Dataset for Tectono-Magmatic Discrimination 

Between Oceanic Arc and Oceanic Back-Arc Settings 

Tree 1 2 

Level 2 3 4 5 6 2 3 4 5 6 

TP 54 77 80 80 81 54 77 80 81 81 

TN 219 219 211 213 208 219 219 211 197 195 

FP 4 4 12 10 15 4 4 12 26 28 

FN 48 25 22 22 21 48 25 12 21 21 

 

Table 3.30. Misclassifications by first decision tree for discrimination between oceanic arc and 

oceanic back-arc settings 
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Bedard 1999 Canada OA 12 2 17 2 17 2 17 2 17 2 17 

Hochstaedter 2001 Izu 

Bonin 
OA 2         1 50     1 50 

Peate 1997 Vanuatu OA 37         1 3 1 3 1 3 

Todd 2012 Fiji Tonga OA 13 1 8 1 8 7 54 2 15 3 23 

Beier 2015 Manus  OBAB 6 1 17 1 17 1 17 1 17 1 17 

Pearce 2005 Mariana OBAB 53 21 40 20 38 12 23 14 26 11 21 
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Table 3.31. Misclassifications by first decision tree for discrimination between oceanic arc and 

oceanic back-arc settings 
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König 2008 Subduction OA 6 1 17 1 17 1 17 1 17 1 17 

Pearce 1999 W. Pacific OA 5         1 20 1 20 2 40 

Straub 2010 Izu Bonin OA 48 2 4 2 4 3 6 2 4 5 10 

Tamura 2011 Mariana OA 19         4 21 4 21 4 21 

Wharton 1994 Viti Levu OA 6         2 33 1 17 2 33 

Woodhead 2001 Mixed OA 23 1 4 1 4 1 4 1 4 1 4 

Ikeda 2016 Mariana OBAB 15 5 33 5 33 5 33 5 33 5 33 

Ishizuka 2009 Izu Bonin OBAB 30 24 80 9 30 7 23 7 23 6 20 

Mortimer 2007 South Fiji  OBAB 12 8 67 5 42 4 33 4 33 4 33 

Sinton 2003 Manus OBAB 6 6 100 6 100 6 100 6 100 6 100 

 

 

Table 3.32. Misclassifications by second decision tree for discrimination between oceanic arc and 

oceanic back-arc settings 
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Bedard 1999 Canada OA 12 2 17 2 17 2 17 3 25 3 25 

Hochstaedter 2001 Izu Bonin OA 2         1 50     1 50 

Jolly 2007 Greater Antilles Arc OA 37         1 3 3 8 3 8 

Jolly 2008 Greater Antilles Arc A OA 98     1 1 1 1 1 1 1 1 

Peate 1997 Vanuatu OA 37         1 3 1 3 1 3 

Todd 2012 Fiji Tonga OA 13 1 8 1 8 7 54 2 15 3 23 

Beier 2015 Manus Basin OBAB 6 1 17 1 17 1 17 1 17 1 17 

Pearce 2005 Mariana OBAB 53 21 40 20 38 12 23 11 21 9 17 
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Table 3.33. Misclassifications by second decision tree for discrimination between oceanic arc and 

oceanic back-arc settings 
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König 2008 Subduction  OA 6 1 17 1 17 1 17 1 17 1 17 

Pearce 1999 Western Pacific OA 5         1 20 2 40 2 40 

Straub 2010 Izu Bonin OA 48 2 4 2 4 3 6 5 10 6 13 

Tamura 2011 Mariana OA 19         4 21 12 63 12 63 

Wharton 1994 Viti Levu OA 6         2 33 1 17 2 33 

Woodhead 2001 Mixed OA 23 1 4 1 4 1 4 1 4 1 4 

Ikeda 2016 Mariana OBAB 15 5 33 5 33 5 33 5 33 5 33 

Ishizuka 2009 Izu Bonin OBAB 30 24 80 9 30 7 23 6 20 6 20 

Mortimer 2007 South Fiji  OBAB 12 8 67 5 42 4 33 4 33 4 33 

Sinton 2003 Manus OBAB 6 6 100 6 100 6 100 6 100 6 100 

 

3.2.3. Discrimination Within Non-Subduction Settings 

3.2.3.1. Discrimination Between Group 1 (Mid-Oceanic Ridge and Oceanic 

Plateau) and Group 2 (Oceanic Island and Continental Within-plate) Settings 

Two multi-branched decision trees (Figure 3.46 and Figure 3.47) are constructed for 

the discrimination between group 1 (mid-oceanic ridge and oceanic plateau) and group 

2 (oceanic island and continental within-plate) of non-subduction settings. Using 

training set, success ratios for discrimination at each level of depth are determined. 

 

  



 

 

 

149 

 

 

Figure 3.46. Classification results of the first decision tree to discriminate between mid-oceanic ridge + oceanic plateau and oceanic island + 

continental-within plates 
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Figure 3.48. Classification results of the second decision tree to discriminate between mid-oceanic ridge + oceanic plateau and oceanic island + continental-within plates 
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For confusion matrix, showing the tectono-magmatic discrimination results for 

training+test and external datasets; true positive (TP) represents samples of group 2 

classified as group 2, true negative (TN) represents samples of group 1 classified as 

group 1, false positive (FP) represents samples of group 1 classified as group 2 and 

false negative (FN) represents samples of group 2 classified as group 1. 

When confusion matrix for training and test datasets are evaluated, the overall success 

ratio for tectono-magmatic discrimination between group 1 (mid-oceanic ridges and 

oceanic plateaus) and group 2 (oceanic islands and continental within-plates) settings 

are increasing with the increasing depth of the first decision tree (Table 3.34). For the 

second decision tree, on the other hand, it is increasing for group 2 but nearly stable 

for group 1 with slight fluctuations at third and fourth levels. 

 

Table 3.34. Confusion Matrix Summary for Training and Test Datasets for Tectono-Magmatic 

Discrimination Between Group 1 and Group 2 of Non-Subduction Settings 

ree 1 2 

Level 2 3 4 5 6 7 2 3 4 5 6 7 

TP 680 765 769 763 763 812 680 765 769 763 763 814 

TN 1,082 1,048 1,057 1,071 1,071 1,078 1,082 1,048 1,056 1,077 1,077 1,077 

FP 38 72 63 49 49 42 38 72 64 43 43 43 

FN 174 89 85 91 91 42 174 89 85 91 91 40 

 

When confusion matrix for external datasets are evaluated, the overall success ratio 

for tectono-magmatic discrimination between group 1 (mid-oceanic ridge and oceanic 

plateaus) and group 2 (oceanic islands and continental within-plates) related settings 

decreases in varying but not significant degrees for the second trees (Table 3.35). Both 

decision trees obtain very similar success for discrimination of group 2 with increasing 

level of depth but a reverse pattern for discrimination of group 1 is observed so that 
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the success ratio for the discrimination of group 1 decreases with increasing level of 

depth for both decision trees, which can imply the potential of overfitting for group 1. 

 

Table 3.35. Confusion Matrix Summary for External Dataset for Tectono-Magmatic Discrimination 

Between Group 1 and Group 2 of Non-Subduction Settings 

Tree 1 2 

Level 2 3 4 5 6 7 2 3 4 5 6 7 

TP 406 473 479 461 461 489 406 473 479 461 461 489 

TN 1,432 1,258 1,298 1,318 1,318 1,350 1,432 1,258 1,320 1,372 1,372 1356 

FP 35 209 169 149 149 117 35 209 147 95 95 111 

FN 133 66 60 78 78 50 133 66 60 78 78 50 

 

Both decision trees successfully discriminate group 1 (MOR and OP) and group 2 (OI 

and CWP) from each other for both training and external datasets. There are no major 

failures for the discrimination of training set by the first decision tree (Table 3.36). 4 

articles from CWP, 4 articles from MOR, 5 articles from OI and 3 articles OP have 

misclassifications. The first decision tree is successfully applicable to external datasets 

(Table 3.37) with only 2 articles completely misclassified. Trend of misclassification 

through the articles are similar to each other for both training and external datasets. 

Second decision tree is quite similar to the first decision tree based on the distribution 

of misclassifications through the training (Table 3.38) and external (Table 3.39) 

datasets. Both decision tree is successful for discrimination of training set and 

applicable to external datasets without having any abrupt change in success ratios. 

Second decision tree has also no major failures in training dataset but a few articles 

with major and complete failures, which does not effect the overall ratio of success 

for this decision tree as the amount of samples in these articles are limited. 
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Table 3.36. Misclassifications by first decision tree for discrimination between group 1 and group 2 of 

non-subduction settings 
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Hanghoj 2003 E Greenland CWP 103 15 15 9 9 8 8 9 9 9 9 4 4 

Larsen 2003 W Greenland CWP 23 6 26 5 22 5 22 5 22 5 22 5 22 

Peate 2003 E Greenland CWP 41 13 32         1 2 1 2 1 2 

Rooney 2012 Afar Plume CWP 33 1 3 1 3 1 3 1 3 1 3 1 3 

Arevalo 2010 Mixed MOR 512 11 2 27 5 23 4 19 4 19 4 12 2 

Gale 2011 MAR MOR 70 12 17 14 20 14 20 12 17 12 17 12 17 

Kempton 2002 Indian MOR 63     1 2 1 2 1 2 1 2     

Yi 2000 Atlantic MOR 15 4 27 8 53 8 53 4 27 4 27 4 27 

Dixon 2008 Hawaii OI 52 7 13 6 12 6 12 6 12 6 12 2 4 

Jackson 2010 Samoa OI 135 6 4         1 1 1 1 1 1 

Kokfelt 2006 Iceland OI 80 53 66 33 41 33 41 33 41 33 41 15 19 

Salters 2010 Walvis OI 37 19 51 17 46 17 46 19 51 19 51 6 16 

Stracke 2003 Iceland OI 43 43 100 15 35 15 35 15 35 15 35 7 16 

Neal 2002 Kerguelen OP 35 11 31 12 34 12 34 11 31 11 31 13 37 

Sano 2012 Shatsky OP 99     4 4 1 1 1 1 1 1     

Tim 2011 Manihiki OP 13     1 8 1 8 1 8 1 8 1 8 
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Table 3.37. Misclassifications by first decision tree for discrimination between group 1 and group 2 of 

non-subduction settings 
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Davies 2006 Aldan Shield CWP 7 1 14         1 14 1 14     

Endress 2011 Egypt CWP 14 12 86 6 43     6 43 6 43     

Frey 1996 Bunbury CWP 10 10 100 10 100 10 100 10 100 10 100 10 100 

Furman 2006 Afar Plume CWP 37 2 5 1 3 1 3 2 5 2 5 2 5 

Gibson 1995 SE Brazil CWP 32 1 3 1 3 1 3 1 3 1 3 1 3 

Mana 2015 EAR CWP 29 2 7 1 3 1 3 1 3 1 3 1 3 

Olierook 2016 Bunbury CWP 8 7 88 6 75 6 75 6 75 6 75 6 75 

Shuying 2015 South China CWP 12 4 33 3 25 3 25 4 33 4 33 3 25 

Xu 2001 SW China CWP 25 1 4 1 4 1 4 1 4 1 4 1 4 

Jenner 2012 Mixed MOR 588 7 1 23 4 19 3 19 3 19 3 25 4 

Kelley 2013 EPR MAR MOR 562 21 4 80 14 63 11 45 8 45 8 50 9 

Zhang 2014 South Pacific MOR 118     72 61 48 41 48 41 48 41     

Gibson 2005 Tristan OI 32 24 75 19 59 19 59 22 69 22 69 13 41 

Kitagawa 2008 Iceland OI 107 35 33 17 16 17 16 22 21 22 21 12 11 

Peate 2010 Iceland OI 18 2 11 1 6 1 6 2 11 2 11 1 6 

Borisova 2002 Kerguelen OP 7 3 43 7 100 7 100 7 100 7 100 7 100 

Frey 2002 Kerguelen OP 17 1 6 1 6 2 12 2 12 2 12 8 47 

Shafer 2004 Ontong Java OP 10     1 10 1 10 1 10 1 10     

Tejada 2002 Ontong Java OP 63     1 2 1 2 1 2 1 2 1 2 

Trela 2015 Kerguelen OP 19     15 79 15 79 13 68 13 68 13 68 

Weis 2002 Kerguelen OP 29         5 17 5 17 5 17 5 17 
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Table 3.38. Misclassifications by second decision tree for discrimination between group 1 and group 

2 of non-subduction settings 
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Hanghoj 2003 East 

Greenland 
CWP 103 15 15 9 9 8 8 9 9 9 9 4 4 

Larsen 2003 West 

Greenland 
CWP 23 6 26 5 22 5 22 5 22 5 22 5 22 

Peate 2003 East 

Greenland 
CWP 41 13 32         1 2 1 2 1 2 

Rooney 2012 Afar 

Plume 
CWP 33 1 3 1 3 1 3 1 3 1 3 1 3 

Arevalo 2010 Mixed MOR 512 11 2 27 5 21 4 15 3 15 3 13 3 

Brandl 2012 EPR MOR 10     2 20 2 20             

Gale 2011 MAR MOR 70 12 17 14 20 14 20 12 17 12 17 12 17 

Yi 2000 Atlantic MOR 15 4 27 8 53 8 53 4 27 4 27 4 27 

Dixon 2008 Hawaii OI 52 7 13 6 12 6 12 6 12 6 12 2 4 

Jackson 2010 Samoa OI 135 6 4         1 1 1 1 1 1 

Kokfelt 2006 Iceland OI 80 53 66 33 41 33 41 33 41 33 41 15 19 

Salters 2010 Walvis OI 37 19 51 17 46 17 46 19 51 19 51 6 16 

Stracke 2003 Iceland OI 43 43 100 15 35 15 35 15 35 15 35 5 12 

Neal 2002 Kerguelen OP 35 11 31 12 34 12 34 11 31 11 31 13 37 

Sano 2012 Shatsky OP 99     4 4 4 4 1 1 1 1     

Tim 2011 Manihiki OP 13     1 8             1 8 
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Table 3.39. Misclassifications by second decision tree for discrimination between group 1 and group 

2 of non-subduction settings 
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Davies 2006 Aldan 

Shield 
CWP 7 1 14         1 14 1 14     

Endress 2011 Egypt CWP 14 12 86 6 43     6 43 6 43     

Frey 1996 Bunbury CWP 10 10 100 10 100 10 100 10 100 10 100 10 100 

Furman 2006 Afar 

Plume 
CWP 37 2 5 1 3 1 3 2 5 2 5 2 5 

Gibson 1995 SE Brazil CWP 32 1 3 1 3 1 3 1 3 1 3 1 3 

Mana 2015 EAR CWP 29 2 7 1 3 1 3 1 3 1 3 1 3 

Olierook 2016 Bunbury CWP 8 7 88 6 75 6 75 6 75 6 75 6 75 

Shuying 2015 South 

China 
CWP 12 4 33 3 25 3 25 4 33 4 33 3 25 

Xu 2001 SW China CWP 25 1 4 1 4 1 4 1 4 1 4 1 4 

Jenner 2012 Mixed MOR 588 7 1 23 4 22 4 22 4 22 4 28 5 

Kelley 2013 EPR MAR MOR 562 21 4 80 14 79 14 36 6 36 6 41 7 

Pyle 1995 Indian 

Pacific 
MOR 17     1 6 1 6 1 6 1 6 1 6 

Gibson 2005 Tristan OI 32 24 75 19 59 19 59 22 69 22 69 13 41 

Kitagawa 2008 Iceland OI 107 35 33 17 16 17 16 22 21 22 21 12 11 

Peate 2010 Iceland OI 18 2 11 1 6 1 6 2 11 2 11 1 6 

Borisova 2002 

Kerguelen 
OP 7 3 43 7 100 7 100 7 100 7 100 7 100 

Frey 2002 Kerguelen OP 17 1 6 1 6 2 12 2 12 2 12 8 47 

Shafer 2004 Ontong 

Java 
OP 10     1 10 1 10 1 10 1 10     

Trela 2015 Kerguelen OP 19     15 79 15 79 13 68 13 68 13 68 

Weis 2002 Kerguelen OP 29         5 17 5 17 5 17 5 17 
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3.2.3.2. Discrimination Between Mid-Oceanic Ridges and Oceanic Plateaus 

Two multi-branched decision trees (Figure 3.48 and Figure 3.49) are constructed for 

the discrimination between mid-oceanic ridge and oceanic plateau. Using training set, 

success ratios for discrimination at each level of depth are determined. 

For confusion matrix, showing the tectono-magmatic discrimination results for 

training+test and external datasets; true positive (TP) represents samples of oceanic 

plateaus classified as oceanic plateaus, true negative (TN) represents samples of mid-

oceanic ridges classified as mid-oceanic ridges, false positive (FP) represents samples 

of mid-oceanic ridges classified as oceanic plateaus and false negative (FN) represents 

samples of oceanic plateaus classified as mid-oceanic ridges. 

When confusion matrix for training and test datasets are evaluated, the overall success 

ratio for tectono-magmatic discrimination between mid-oceanic ridges and oceanic 

plateaus are continuously increasing with the increasing level of depth in both decision 

trees with a few exceptions (Table 3.40). 

When confusion matrix for external datasets are evaluated, the overall success ratio 

for tectono-magmatic discrimination between mid-oceanic ridges and oceanic 

plateaus decreases in varying degrees for the second trees (Table 3.41).  

The first decision tree is quite successful at the discrimination of MOR and OP for 

training dataset, especially for samples of articles from MOR (Table 3.42). Only 1 

article from MOR has misclassification and this is solved at sixth level.  

The same success is also observed in external dataset with a similar trend for the 

distribution of misclassification through the articles of MOR and OP (Table 3.43).   
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Figure 3.49. Classification results of the first decision tree to discriminate between mid-oceanic ridge and oceanic plateaus  
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Figure 3.50. Classification results of the second decision tree to discriminate between mid-oceanic ridge and oceanic plateaus 
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Table 3.40. Confusion Matrix Summary for Training and Test Datasets for Tectono-Magmatic 

Discrimination Between Mid-Oceanic Ridge and Oceanic Plateau Settings 

Tree 1 2 

Level 2 3 4 5 6 7 2 3 4 5 6 7 

TP 176 118 162 159 167 167 176 121 161 175 175 171 

TN 744 891 879 895 907 907 744 883 882 877 877 906 

FP 165 18 30 14 2 2 165 26 27 32 32 3 

FN 35 93 49 52 44 44 35 90 50 36 36 40 

 

Table 3.41. Confusion Matrix Summary for External Dataset for Tectono-Magmatic Discrimination 

Between Mid-Oceanic Ridge and Oceanic Plateaus 

Tree 1 2 

Level 2 3 4 5 6 2 3 4 5 6 7 

TP 113 52 66 64 53 113 50 61 66 66 38 

TN 966 1,236 1,206 1,252 1,277 966 1,210 1,217 1,188 1,188 1,270 

FP 388 68 98 52 27 388 94 87 116 116 34 

FN 50 111 97 99 110 50 113 102 97 97 125 

 

The second decision tree is also quite similar to the first decision tree on the basis of 

the success ratios and the distributions of misclassifications through the articles and 

the tectonic settings.  

It is quite successful at the discrimination of MOR and OP at training dataset (Table 

3.44) and also applicable to external dataset (Table 3.45).  

For both decision trees, MOR is much more successfully discriminated with respect 

to OP and the trend of misclassifications through the articles in training set and 

external dataset is similar to each other without any abrupt change in success ratio for 

any specific articles or tectonic settings.  
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Table 3.42. Misclassifications by first decision tree for discrimination between mid-oceanic ridge and 

oceanic plateaus 
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Arevalo 2010 Mixed MOR 51

2 

85 17 15 3 27 5 14 3 2 0 

Fitton 2004 Ontong Java OP 64 6 9 10 16 10 16 10 16 10 16 

Neal 2002 Kerguelen OP 35 6 17 35 10

0 

8 23 8 23 8 23 

Sano 2012 Shatsky OP 99 21 21 39 39 22 22 32 32 24 24 

Tim 2011 Manihiki OP 13 2 15 9 69 9 69 2 15 2 15 

 

Table 3.43. Misclassifications by first decision tree for discrimination between mid-oceanic ridge and 

oceanic plateaus 
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Jenner 2012 Mixed MO
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58

8 

16

6 

28 46 8 53 9 23 4 18 3 

Kelley 2013 EPR MAR MO
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2 
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29 20 4 38 7 24 4 8 1 

Zhang 2014 South Pacific MO

R 

11

8 

7 6 2 2 7 6 5 4 1 1 

Borisova 2002 Kerguelen OP 7 7 10

0 

7 10

0 

7 10

0 

7 10

0 

7 10

0 

Frey 2002 Kerguelen OP 17 9 53 10 59 10 59 10 59 10 59 

Hastie 2016 Curacao OP 4     2 50 2 50 2 50 2 50 

Shafer 2004 Ontong Java OP 10 5 50 6 60 6 60 7 70 6 60 

Tejada 2002 Ontong Java OP 63 1 2 45 71 43 68 43 68 43 68 

Trela 2015 Kerguelen OP 19 6 32 19 10

0 

7 37 7 37 19 10

0 

Weis 2002 Kerguelen OP 29 13 45 13 45 13 45 13 45 13 45 

White 2004 Ontong Java OP 6 1 17 1 17 1 17 2 33 2 33 
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Table 3.44. Misclassifications by second decision tree for discrimination between mid-oceanic ridge 

and oceanic plateaus 
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Arevalo 2010 Mixed MOR 51

2 

85 17 22 4 26 5 29 6 29 6 3 1 

Gale 2011 MAR MOR 70 33 47     1 1 1 1 1 1     

Nauret 2006 Central Indian MOR 34 5 15 2 6     1 3 1 3     

Niu 1997 2002 EPR MOR 77 1 1 1 1     1 1 1 1     

Fitton 2004 Ontong Java OP 64 6 9 8 13 12 19 7 11 7 11 7 11 

Neal 2002 Kerguelen OP 35 6 17 35 10

0 

6 17 6 17 6 17 6 17 

Sano 2012 Shatsky OP 99 21 21 38 38 22 22 21 21 21 21 24 24 

Tim 2011 Manihiki OP 13 2 15 9 69 10 77 2 15 2 15 3 23 
 

Table 3.45. Misclassifications by second decision tree for discrimination between mid-oceanic ridge 

and oceanic plateaus 
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Jenner 2012 Mixed MOR 588 166 28 48 8 33 6 45 8 45 8 6 1 

Kelley 2013 EPR MAR MOR 562 163 29 43 8 46 8 62 11 62 11 27 5 

Pyle 1995 Indian Pacific MOR 17 2 12 1 6 1 6 2 12 2 12     

Zhang 2014 South Pacific MOR 118 7 6 2 2 7 6 7 6 7 6 1 1 

Borisova 2002 Kerguelen OP 7 7 100 7 100 7 100 7 100 7 100 7 100 

Frey 2002 Kerguelen OP 17 9 53 16 94 15 88 14 82 14 82 14 82 

Hastie 2016 Curacao OP 4     4 100 4 100 4 100 4 100 4 100 

Shafer 2004 Ontong Java OP 10 5 50 6 60 6 60 6 60 6 60 8 80 

Tejada 2002 Ontong Java OP 63 1 2 34 54 31 49 31 49 31 49 33 52 

Trela 2015 Kerguelen OP 19 6 32 19 100 7 37 7 37 7 37 19 100 

Weis 2002 Kerguelen OP 29 13 45 13 45 18 62 14 48 14 48 26 90 

White 2004 Ontong Java OP 6 1 17 6 100 6 100 6 100 6 100 6 100 
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3.2.3.3. Discrimination Between Oceanic Islands and Continental Within-plates 

Two multi-branched decision trees (Figure 3.50 and Figure 3.51) are constructed for 

the discrimination between oceanic island and continental within-plates. Using 

training set, success ratios for discrimination at each level of depth are determined. 

For confusion matrix, showing the tectono-magmatic discrimination results for 

training+test and external datasets; true positive (TP) represents samples of ocean 

islands classified as ocean islands, true negative (TN) represents samples of 

continental within-plates classified as continental within-plates, false positive (FP) 

represents samples of continental within-plates classified as ocean islands and false 

negative (FN) represents samples of ocean islands classified as continental within-

plates. 

When confusion matrix for training and test datasets (Table 3.46) and external datasets 

(Table 3.47) are evaluated, the overall success ratio for tectono-magmatic 

discrimination between oceanic islands and continental within-plates are continuously 

increasing with increasing level of depth in both decision trees. The success ratios for 

the discrimination of both oceanic islands and continental within-plates reach their 

maximum at the highest level of depth in both decision trees. 
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Figure 3.51. Classification results of the first decision tree to discriminate between oceanic island and continental-within plates 
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Figure 3.52. Classification results of the second decision tree to discriminate between oceanic island and continental-

within plates 
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Table 3.46. Confusion Matrix Summary for Training and Test Datasets for Tectono-Magmatic 

Discrimination Between Ocean Islands and Continental Within-plates 

Tree 1 2 

Level 3 4 5 6 7 8 3 4 5 6 7 8 

TP 397 394 399 399 419 431 397 394 425 425 425 445 

TN 298 315 334 334 337 345 298 315 309 309 309 327 

FP 78 61 42 42 39 31 78 61 67 67 67 49 

FN 81 84 79 79 59 47 81 84 53 53 53 33 

 

Table 3.47. Confusion Matrix Summary for External Dataset for Tectono-Magmatic Discrimination 

Between Oceanic Islands and Continental Within-plates 

Tree 1 2 

Level 3 4 5 6 7 8 3 4 5 6 7 8 

TP 51 48 54 54 61 63 51 48 58 58 58 64 

TN 231 251 247 247 242 237 231 251 225 225 225 226 

FP 71 51 55 55 60 65 71 51 77 77 77 76 

FN 186 189 183 183 176 174 186 189 179 189 179 173 

 

Both decision trees are quite successful for the discrimination between ocean islands 

and continental within-plates for training sets. The first decision tree has no major 

failures through the articles of both tectonic settings for training dataset (Table 3.48). 

The success ratio for discrimination of ocean islands and continental within-plates are 

close to each other. However, the success ratio of decision tree for the discrimination 

of ocean islands at external datasets falls drastically (Table 3.49). This is not an 

indication of an overfitting. This is the complex nature of misclassified samples from 

ocean islands and continental within-plates that makes nearly impossible for decision 

tree to correctly discriminate them from each other. The same trend of 

misclassifications are also observed for the second decision tree at discrimination of 

samples from both training (Table 3.50) and external (Table 3.51) datasets.  
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Table 3.48. Misclassifications by first decision tree for discrimination between oceanic islands and 

continental within-plates 
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Aviado 2015 West Antarctic CWP 19 12 63 12 63 5 26 5 26 5 26 6 32 

Furman 2006 Turkana Kenya CWP 42 7 17 7 17 1 2 1 2 1 2 2 5 

Gibson 2000 Picrite CWP 16 2 13 2 13 3 19 3 19 2 13     

Hanghoj 2003 East Greenland CWP 10

3 

11 11 11 11 11 11 11 11 8 8 8 8 

Johnson 2005 Siberia CWP 18 15 83 15 83 9 50 9 50 10 56 2 11 

Larsen 2003 West Greenland CWP 23 6 26 6 26 5 22 5 22 5 22 6 26 

Peate 2003 East Greenland CWP 41 24 59 8 20 8 20 8 20 8 20 4 10 

Rooney 2012 Afar Plume CWP 33                     3 9 

Dixon 2008 Hawaii OI 52 5 10 5 10 5 10 5 10 4 8 2 4 

Geldmacher 2000 Madeira OI 49 7 14 8 16 14 29 14 29 14 29 6 12 

Gurenko 2006 Canary OI 44         2 5 2 5     1 2 

Jackson 2010 Samoa OI 13

5 

9 7 11 8 12 9 12 9 12 9 16 12 

Kokfelt 2006 Iceland OI 80 32 40 32 40 31 39 31 39 22 28 14 18 

Millet 2009 Azores OI 21 1 5 1 5 3 14 3 14 3 14 2 10 

Woodhead 1996 Mangaia OI 17         11 65 11 65 4 24 6 35 
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Table 3.49. Misclassifications by first decision tree for discrimination between oceanic islands and 

continental within-plates 
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Davies 2006 Aldan Shield CWP 7 3 43 2 29         1 14 1 14 

Endress 2011 Egypt CWP 14 1 7     12 86 12 86 10 71 10 71 

Frey 1996 Bunbury CWP 10 3 30 3 30 3 30 3 30 3 30 3 30 

Furman 2004 East African Rift CWP 29                 1 3 4 14 

Furman 2006 Afar Plume CWP 37 2 5 2 5 2 5 2 5 5 14 7 19 

Gibson 1993 Rio Grande Rift CWP 15 9 60 9 60 1 7 1 7 1 7 1 7 

Gibson 1995 Brazil Paraguay CWP 25 11 44 4 16 3 12 3 12 4 16 4 16 

Gibson 1997 Trindade CWP 3         2 67 2 67 2 67 2 67 

Gibson 2005 Tristan CWP 14 13 93 2 14 1 7 1 7 1 7 1 7 

Mana 2015 East African Rift CWP 29 10 34 10 34 8 28 8 28 9 31 7 24 

Olierook 2016 Bunbury CWP 8 5 63 5 63 5 63 5 63 5 63 5 63 

Shuying 2015 South China CWP 12 4 33 4 33 2 17 2 17 2 17 5 42 

Xu 2001 SW China CWP 25 10 40 10 40 16 64 16 64 16 64 15 60 

Gibson 2005 Tristan OI 32 22 69 22 69 16 50 16 50 13 41 11 34 

Hanyu 2011 Young Rurutu OI 21 6 29 9 43 9 43 9 43 9 43 9 43 

Kitagawa 2008 Iceland OI 10

7 

97 91 97 91 95 89 95 89 94 88 94 88 

Lassiter 2003 Raivavae OI 14 6 43 6 43 8 57 8 57 7 50 9 64 

Morgan 2009 Hawaii OI 45 45 100 45 10

0 

45 100 45 10

0 

45 100 45 10

0 

Peate 2010 Iceland OI 18 18 100 18 10

0 

18 100 18 10

0 

16 89 14 78 

Davies 2006 Aldan Shield CWP 7 3 43 2 29         1 14 1  

Endress 2011 Egypt CWP 14 1 7     12 86 12 86 10 71 10  
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Table 3.50. Misclassifications by second decision tree for discrimination between oceanic islands and 

continental within-plates 
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Aviado 2015 West Antarctic CWP 19 12 63 12 63 5 26 5 26 5 26 6 32 

Furman 2006 Turkana Kenya CWP 42 7 17 7 17 1 2 1 2 1 2 2 5 

Gibson 2000 Picrite CWP 16 2 13 2 13 3 19 3 19 2 13     

Hanghoj 2003 East Greenland CWP 10

3 

11 11 11 11 11 11 11 11 8 8 8 8 

Janney 2002 South Africa CWP 11 1 9                     

Johnson 2005 Siberia CWP 18 15 83 15 83 9 50 9 50 10 56 2 11 

Larsen 2003 West Greenland CWP 23 6 26 6 26 5 22 5 22 5 22 6 26 

Mirnejad 2006 Leucite Hills CWP 10                         

Peate 2003 East Greenland CWP 41 24 59 8 20 8 20 8 20 8 20 4 10 

Rooney 2012 Afar Plume CWP 33                     3 9 

Tappe 2011 Greenland CWP 33                         

Dixon 2008 Hawaii OI 52 5 10 5 10 5 10 5 10 4 8 2 4 

Geldmacher 2000 Madeira OI 49 7 14 8 16 14 29 14 29 14 29 6 12 

Gurenko 2006 Canary OI 44         2 5 2 5     1 2 

Jackson 2010 Samoa OI 13

5 

9 7 11 8 12 9 12 9 12 9 16 12 

Kokfelt 2006 Iceland OI 80 32 40 32 40 31 39 31 39 22 28 14 18 

Millet 2009 Azores OI 21 1 5 1 5 3 14 3 14 3 14 2 10 

Salters 2010 Walvis OI 37 26 70 26 70                 

Stracke 2003 Iceland OI 43 1 2 1 2 1 2 1 2         

Woodhead 1996 Mangaia OI 17         11 65 11 65 4 24 6 35 
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Table 3.51. Misclassifications by second decision tree for discrimination between oceanic islands and 

continental within-plates 

JO
U

R
N

A
L

 

C
L

A
S

S
 

S
A

M
P

L
E

S
 

L
ev

el
 3

 

L
ev

el
 3

%
 

L
ev

el
 4

 

L
ev

el
4

%
 

L
ev

el
 5

 

L
ev

el
5

%
 

L
ev

el
 6

 

L
ev

el
6

%
 

L
ev

el
 7

 

L
ev

el
7

%
 

L
ev

el
 8

 

L
ev

el
8

%
 

Carlson 1996 Southern Brazil CWP 14                         

Davies 2006 Aldan Shield CWP 7 3 43 2 29 2 29 2 29 2 29 2 29 

Endress 2011 Egypt CWP 14 1 7     12 86 12 86 12 86 10 71 

Frey 1996 Bunbury CWP 10 3 30 3 30 3 30 3 30 3 30 3 30 

Furman 2004 East African Rift CWP 29                     4 14 

Furman 2006 Afar Plume CWP 37 2 5 2 5 3 8 3 8 3 8 5 14 

Gibson 1993 Rio Grande Rift CWP 15 9 60 9 60 10 67 10 67 10 67 9 60 

Gibson 1995 Brazil Paraguay CWP 25 11 44 4 16 4 16 4 16 4 16 4 16 

Gibson 1995 Southeast Brazil CWP 32                         

Gibson 1997 Trindade CWP 3         2 67 2 67 2 67 2 67 

Gibson 2005 Tristan CWP 14 13 93 2 14 2 14 2 14 2 14 2 14 

Leroex 2003 Kimberlite Africa CWP 28                         

Mana 2015 East African Rift CWP 29 10 34 10 34 11 38 11 38 11 38 9 31 

Olierook 2016 Bunbury CWP 8 5 63 5 63 5 63 5 63 5 63 5 63 

Shuying 2015 South China CWP 12 4 33 4 33 4 33 4 33 4 33 5 42 

Xu 2001 SW China CWP 25 10 40 10 40 19 76 19 76 19 76 16 64 

Gibson 2005 Tristan OI 32 22 69 22 69 14 44 14 44 14 44 13 41 

Hanyu 2011 Young Rurutu OI 21 6 29 9 43 9 43 9 43 9 43 9 43 

Kitagawa 2008 Iceland OI 10

7 
97 91 97 91 95 89 95 89 95 89 96 90 

Lassiter 2003 Raivavae OI 14 6 43 6 43 6 43 6 43 6 43 4 29 

Morgan 2009 Hawaii OI 45 45 100 45 10

0 
45 100 45 10

0 
45 100 45 10

0 

Peate 2010 Iceland OI 18 18 100 18 10

0 
18 100 18 10

0 
18 100 14 78 
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CHAPTER 4  

 

4. DISCUSSION 

 

4.1. Discussion of Decision Trees  

4.1.1. Discussion Based on Information Gain 

Information gain is an important parameter for the selection of features in the 

construction of decisin trees (Table 4.1). Element ratios with greater information gain 

values are better discriminators and are preferred in decision trees.  

Th/Nb and Nb/Nb* are useful discriminating features for discrimination between 

subduction and non-subduction settings. Th and Nb behave as incompatible elements 

during peridotitic upper mantle melting (e.g. Sun and McDonough, 1989). The 

mineral phases in the mantle peridotite (olivine, clinopyroxene, orthopyroxene, spinel, 

garnet) at these conditions are characterized by very low Dmelt/liquid; thus they have 

only a minimal effect on the fractionation of Th/Nb. Their behavior, however, may 

change significantly in subduction systems owing to dehydration and melting of the 

slab and its mineralogy. During these processes, Th remains highly incompatible; it is 

partitioned into the sediment melt and transferred into the mantle wedge (e.g. Elliott 

et al., 1997). In contrast, Nb is retained in the slab, which is mainly linked to the 

presence of Ti-bearing accessory phases, such as rutile (e.g. Ayers and Watson, 1993). 

Thus, the transfer of Nb to the overlying mantle wedge is negligible. While the mantle 

wedge remains pristine in terms of Nb (no addition), it becomes Th-rich with the flux 

of this element via sediment melt. Therefore, during the subduction process, Th and 

Nb are significantly fractioned, which causes the generation of magmas with high 

Th/Nb signatures. It must also be noted that La (a LREE) displays somewhat a similar 

behavior to Th since it is mobilized by slab-derived sediment melt. However, since Th 

is relatively more incompatible than La, Th/Nb serves a more sensitive indicator of 
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the subduction component. The use of Nb/Nb* is due to the diverse behavior of Th 

and La relative Nb, as explained before. Since the subduction-related magmas are 

generally Th and La rich over Nb, they display negative anomalies. In this respect, 

Nb/Nb* ratio is useful to see the magnitude of this relative depletion. In addition, 

because of the integration of both Th and La at the same time, Nb/Nb* may act as a 

better subduction indicator than Th/Nb. 

 

Table 4.1. Information gain values of selected features for tectono-magmatic discriminations 

Feature Sub 

Nonsub 

Arc 

Backarc 

OA 

CA 

Oceanic 

Continental 

OA 

OBAB 

MOR+OP 

OI+CWP 

MOR 

OP 

OI 

CWP 

La/Nb 0.445 0.166 0.149 0.128 0.208 0.108 0.112  

La/Sm     0.086 0.378  0.052 

La/Y   0.016   0.478 0.033 0.056 

La/Yb   0.019 0.016  0.482   

Nb/Nb* 0.550 0.203 0.079 0.093 0.262 0.010 0.030  

Nb/TiO2       0.086 0.075 

Nb/Y 0.147  0.029   0.424  0.078 

Nb/Yb     0.019 0.460  0.077 

Nd/TiO2  0.132 0.025 0.059     

Nd/Zr  0.175  0.062 0.240 0.520   

Sm/Hf 0.155  0.085 0.044  0.150   

Sm/Nb 0.214       0.051 

Sm/Nd   0.023     0.094 

Sm/Y  0.147 0.039 0.042 0.165  0.118 0.148 

Sm/Yb     0.150 0.477 0.105 0.097 

Th/La   0.004   0.169 0.103 0.021 

Th/Nb 0.528 0.196   0.253 0.087  0.042 

Th/Y   0.019    0.162  

Th/Yb   0.015    0.141  

TiO2/Y  0.037  0.016  0.416  0.065 

TiO2/Yb 0.115    0.035 0.480   

Y/Yb  0.019 0.046 0.036 0.020 0.396 0.006 0.048 

Zr/Hf  0.083 0.091 0.038 0.151 0.062 0.085 0.033 

Zr/Nb 0.173 0.039 0.003 0.005   0.151  

Zr/Sm   0.168  0.207    

Zr/TiO2   0.166 0.141  0.055   

Zr/Y  0.016 0.166 0.141   0.050 0.165 

Zr/Yb   0.089 0.075    0.192 
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In contrast to Th/Nb and Nb/Nb*, which are used to assess the presence of the 

subduction component, the role of Nb/Y and TiO2/Yb ratios are different. Nb, Ti, Y, 

and Yb behave similarly during dehydration and melting of the slab; they are all 

strongly conservative and retained in the slab (e.g. Pearce and Peate, 1995). Their 

partitioning during the melting of mantle peridotite, however, is different. Nb is highly 

incompatible, while Ti, Y, and Yb are all less incompatible than Nb (e.g. Sun and 

McDonough, 1989). Thus, Nb/Y and TiO2/Yb can be fractionated under low degrees 

of melting. In addition to melting, these ratios can also be controlled based on the 

nature of the mantle source (depleted vs. enriched). For example, N-MORBs, which 

are thought to be derived from depleted mantle sources (under moderate to high 

degrees of melting), are characterized by low Nb/Y and TiO2/Yb ratios (e.g. Sun and 

McDonough, 1989; Niu and Batiza, 1997; Hoernle et al., 2011). In contrast, enriched 

magmas, such as E-MORBs and most OIBs, are characterized by high Nb/Y and 

TiO2/Yb ratios, owing to the involvement of enriched sources and low-degree of 

partial melting (e.g. Sun and McDonough, 1989; Chauvel et al., 1992; Workman et 

al., 2004).    

Furthermore, since melt extraction depletes the source more in Nb, the mantle source 

domains that have previously experienced a melt extraction(s) is characterized by even 

lower Nb/Y and TiO2/Yb ratios than those of N-MORBs (e.g. Pearce and Parkinson, 

1993). This phenomenon is observed in some MORs and oceanic arcs, which seems 

to have tapped pre-depleted mantle sources (e.g. Pearce et al., 1995; Niu and Batiza, 

1997). Additionally, the presence of residual garnet can make a substantial effect on 

Y and Yb, since these elements are strongly partitioned into garnet (e.g. McKenzie 

and O’Nions, 1991). Therefore, melt generation involving garnet-bearing mantle 

sources can result in magmas with high Nb/Y and TiO2/Yb ratios. 

Although having relatively high information gain, gain ratio and gini index values, 

Sm/Nb and Sm/Hf ratios are not preferred by any of the three decision trees at all. 
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For discrimination between arc and back-arc-related settings, the element ratios used 

in these trees have relatively high information gain. However, features with high 

information gain values (e.g. Th/Nb, La/Nb, and Sm/Y) are not preferred within two 

decision trees constructed for discrimination of arc and back-arc-related settings. 

In the classification of subduction-related settings, the Nd/Zr ratio appears as a new 

ratio, not found in the previous discrimination. This element ratio contains trace 

elements Nd and Zr, which display somewhat similar incompatibilities (e.g. Sun and 

McDonough, 1989). Thus, except for the small degrees of partial melting, these 

elements are expected not to fractionate significantly. However, a material like 

sediment, which can be added to the mantle source of subduction zone magmas, may 

cause a strong fractionation of this ratio. Sediments are known to be some distinct 

geochemical features. For example, they are generally depleted in Zr (and Hf) relative 

to Nd (and Sm) (e.g. Plank and Langmuir 1998). Thus, the addition of sediments with 

high Nd/Zr ratios (e.g. via sediment melt) to the mantle source would directly affect 

the composition of resulting magmas, leading to high Nd/Zr signatures. 

For discrimination between OA and CA, the element ratios used in these trees have 

relatively high information gain. However, Zr/Y having high information gain value 

is not preferred within two decision trees constructed for discrimination of OA and 

CA. In the discrimination between the oceanic and continental arcs, Zr/TiO2 and 

Zr/Sm appear as the main discriminants. Regarding these pairs, Zr is relatively more 

incompatible than both Ti and Sm (e.g. Sun and Donough, 1989). Zr and Ti are 

subduction-immobile, while Sm is slightly subduction-mobile (Pearce and Peate 

1995), thus it may cause some enrichment to some extent (though not much) in the 

mantle wedge. Based on the partitioning behavior, the melts derived from depleted 

sources under medium to high degrees of melting are characterized by lower Zr/TiO2 

and Zr/Sm ratios (relative to the ones originated from enriched sources and/or by low 

degrees of melting). Similarly, melt extraction would drive any mantle source domain 

to lower values in both Zr/TiO2 and Zr/Sm. Sm/Y operates somewhat similarly to 

Zr/TiO2 and Zr/Sm since Sm is more incompatible than Y. With increasing Zr/TiO2 
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and Zr/Sm, Sm/Y can also be expected to increase due to source enrichment and/or 

decreasing degree of melting. 

For discrimination between oceanic and continental settings, the element ratios used 

in these trees have relatively high information gain. However, Zr/TiO2 having 

maximum information gain value is not preferred within two decision trees. Zr/Y ratio 

appears to be at the top discrimination between oceanic and continental subduction-

related settings. In this pair, both elements are subduction-immobile, thus unaffected 

by the slab-derived contributions to the mantle wedge (e.g. Pearce and Stern 2006). 

The operation of this ratio is somewhat similar to Zr/Sm and Zr/Ti, though the 

incompatibility difference is more significant between Zr and Y (e.g. Sun and 

McDonough, 1989). The source depletion would tend to lower Zr/Y ratio. In contrast, 

decreasing degrees of partial melting would tend to increase this ratio. 

Also, due to strong partitioning of Y into garnet, Zr/Y can be significantly 

fractionated, if garnet remains as a residual mineral in the source; thus partial melting 

processes involving garnet-bearing sources may have a substantial effect in the 

fractionation of Zr/Y (particularly under low degrees of partial melting). 

For discrimination between OA and OBAB, the element ratios used in these trees have 

relatively high information gain. However, Zr/Sm having high information gain value 

is not preferred within two decision trees constructed for discrimination of OA and 

OBAB. The discrimination between oceanic arcs and back-arcs starts with Th/Nb, 

which has been used also as a major feature in distinguishing between subduction and 

non-subduction settings. Since the chemical behaviors of these elements are given 

before, it is repeated here. However, in the discrimination of oceanic arcs and 

backarcs, Zr/Hf seems to have involved at the upper levels, whose behavior deserves 

some discussion. Zr and Hf are both subduction-immobile elements; thus their 

contributions to the mantle wedge are negligible. Zr is slightly more incompatible than 

Hf, which makes Zr to be concentrated more in the melt. Therefore, small degrees of 

partial melting may produce magmas with relatively high Zr/Hf ratios when compared 
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with high degrees of melting. Similarly, source depletion would lower the Zr/Hf ratio 

of the source due to the extraction of Zr with the melt. 

For discrimination between MOR+OP and OI+CWP of non-subduction settings, the 

element ratios used in these trees have relatively high information gain. However, 

La/Y, La/Yb and TiO2/Yb having high information gain value are not preferred within 

two decision trees constructed for discrimination. In the classification of non-

subduction settings, Sm/Yb and Nd/Zr appear as the main discriminators. The 

behavior of Sm/Yb is very similar to Sm/Y (as explained before). Sm is more 

incompatible than Yb, though the extent of fractionation is strongly controlled by the 

aluminous mineral phase in the source. Yb, as one the HREE, is highly compatible 

with garnet (e.g. Johnson 1998). Spinel, on the other hand, with low Dmelt/solid, 

cannot retain Yb. Thus, while the melting of a garnet-bearing mantle source may lead 

to an extensively fractionated Sm/Yb ratio, spinel-bearing sources would leave this 

ratio relatively unfractionated. Consequently, the depth of melting may have a 

substantial effect on the Sm/Yb ratio, based on which the aluminous phase would be 

stable. Nd/Zr, on the other hand, is sensitive to the degree of partial melting regardless 

of the type of aluminous phase. A low degree of partial melting and/or source 

enrichment would result in higher Nd/Zr ratios. 

For discrimination between MOR and OP, the element ratios used in these trees have 

relatively high information gain. However, Th/Y having high information gain value 

is not preferred within two decision trees constructed for discrimination. Th/Yb is 

preferred instead of Th/Y behaving very similar for this discrimination. Th/Y ratio 

used at the first level display very similar fractionation behavior to Nb/Y during the 

melting of peridotite under upper mantle conditions. Th is a highly incompatible 

element, while Y is compatible, especially if garnet remains as a residual phase (e.g. 

McKenzie and O’Nions 1991). Thus, Th/Y ratio can be easily fractionated during low 

degrees of partial melting. The involvement of garnet would amplify this effect 

further. Also, since Th is highly incompatible, depleted sources are characterized by 
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lower Th/Y ratios compared to enriched sources. Similarly, melt extraction also drives 

Th/Y ratio to lower levels. 

For discrimination between OI and CWP, the element ratios used in these trees have 

relatively high information gain. However, Sm/Y is not preferred within two decision 

trees constructed for discrimination. Sm/Yb is preferred instead of Sm/Y behaving 

very similar for this discrimination. The discrimination between CWP and OI 

probably constitutes the most difficult classification due to the compositional 

resemblance of lavas generated in these settings (Figure 4.1 and Figure 4.2), which 

arise from their derivation from similar mantle sources and under similar degree of 

partial melting (e.g. Furman et al.,2006; Panter et al.,2006).  

 

 

Figure 4.1. Comparison of spider-diagrams between samples from continental within-plates 

misclassified as oceanic island and samples of oceanic islands correctly classified (normalization 

coefficients are based on Sun and McDonough, 1995) 
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Since they include no or minimal subduction component in most cases, subduction-

sensitive ratios Th/Nb and Nb/Nb* do not work at the uppermost level. However, 

some CWP lavas are result of very low degree of melting under great depths. These 

ones, with potassic/ultrapotassic compositions, are extremely enriched in 

incompatible elements (e.g. Janney et al.,2002). Thus, a ratio including a highly 

incompatible element and compatible element that can be retained by garnet (like 

Nb/Y) can be useful for the first order classification. 

 

 

Figure 4.2. Comparison of spider-diagrams between samples oceanic islands misclassified as 

continental within-plate and samples of continental within-plate correctly classified (normalization 

coefficients are based on Sun and McDonough, 1995) 

 

From information gain values of element ratios, it can be observed that the complexity 

of discriminations increases towards the right side of the table as the effectiveness of 

element ratios to discriminate settings decrease. 



 

 

 

179 

 

4.1.2. Discussion Based on Lift Curves and ROC Curves 

When lift curves (Figure 4.3) are evaluated, it can be stated that most of the 

classifications are constructed based on a model but not random. ROC curve of 

decision trees (Figure 4.4) also indicates that the decision trees are successful with 

high AUC values and classification ratios and developed based on a model having 

AUC values greater than 0.5. Most of the classifications based on decision trees are 

close to a wizard pattern, especially discrimination of  

(1) OA-CA,  

(2) Oceanic and continental settings,  

(3) OA-OBAB,  

(4) MOR+OP and OI+CWP, and 

(5) OI-CWP. 

Interestingly, decision trees for discrimination of MOR-OP and OI-CWP have 

problems for the classification of external datasets by correct discrimination of OP, 

OI and CWP. However, lift curve and ROC curves suggest that these 

misclassifications are not based on the failure of decision tree models but based on the 

characteristics of external samples and they can be inseparable due to several 

geochemical or petrological constraints, which will be discussed and explained using 

spider-diagrams. 

4.1.3. Discussion Based on Statistical Evaluation of Decision Trees 

Statistical parameters to consider the quality of decision trees are AUC (Area Under 

ROC Curve), classification accuracy, f value, precision and recall values. When lift 

curves and ROC are compared with area under ROC (AUC), classification accuracy, 

f value, precision and recall values (Table 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8 and 4.9), 

nearly all decision trees have high AUC and classification accuracy values, which 

indicates that they are constructed based on a model, which is successful in 

discrimination of two settings as classes from each other.  
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Figure 4.3. Lift curve for tectonic discriminations 
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Figure 4.4. ROC for tectonic discriminations 
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Table 4.2. Statistical considerations for discrimination between subduction and non-subduction 

settings 

 SUBDUCTION - NONSUBDUCTION 

 Tree 1 Tree 2 Tree 3 

Level 1 1 2 3 4 1 2 

AUC 0.912 0.916 0.924 0.925 0.924 0.912 0.925 

Cl.Acc. 0.943 0.948 0.960 0.961 0.962 0.943 0.961 

F 0.882 0.948 0.959 0.960 0.961 0.882 0.960 

Precision 0.915 0.948 0.960 0.961 0.962 0.915 0.962 

Recall 0.851 0.948 0.960 0.961 0.962 0.851 0.961 

 

Table 4.3. Statistical considerations for discrimination between arc and back-arc settings 

  ARC - BACKARC 

  TREE 1 TREE 2 

 Level 2 3 4 5 2 3 4 5 

AUC 0.840 0.840 0.835 0.824 0.840 0.847 0.793 0.785 

Cl.Acc. 0.906 0.907 0.908 0.908 0.906 0.908 0.905 0.907 

F 0.900 0.902 0.904 0.904 0.900 0.903 0.900 0.904 

Precision 0.899 0.901 0.903 0.903 0.899 0.902 0.899 0.902 

Recall 0.906 0.907 0.908 0.908 0.906 0.908 0.905 0.907 

 

Table 4.4. Statistical considerations for discrimination between oceanic and continental arcs 

  Oceanic Arc – Continental Arc 

  TREE 1 TREE 2 

 Level 2 3 4 5 6 7 2 3 4 5 6 7 

AUC 0.807 0.834 0.849 0.865 0.853 0.833 0.791 0.791 0.860 0.863 0.843 0.818 

Cl.Acc. 0.762 0.756 0.778 0.811 0.833 0.822 0.771 0.771 0.798 0.833 0.844 0.827 

F 0.767 0.759 0.781 0.815 0.836 0.825 0.755 0.755 0.790 0.833 0.845 0.828 

Precision 0.779 0.766 0.786 0.827 0.843 0.832 0.766 0.766 0.793 0.833 0.846 0.829 

Recall 0.762 0.756 0.778 0.811 0.833 0.822 0.771 0.771 0.798 0.833 0.844 0.827 
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Table 4.5. Statistical considerations for discrimination between oceanic and continental settings 

  OCEANIC CONTINENTAL 

  TREE 1 TREE 2 

 Level 2 3 4 5 6 2 3 4 5 6 

AUC 0.735 0.735 0.847 0.878 0.870 0.731 0.731 0.834 0.859 0.845 

Cl.Acc. 0.811 0.811 0.813 0.860 0.864 0.807 0.807 0.817 0.856 0.862 

F 0.799 0.799 0.818 0.862 0.864 0.795 0.795 0.820 0.854 0.860 

Precision 0.801 0.801 0.829 0.865 0.865 0.797 0.797 0.825 0.853 0.860 

Recall 0.811 0.811 0.813 0.860 0.864 0.807 0.807 0.817 0.856 0.862 

 

Table 4.6. Statistical considerations for discrimination between Oceanic Arc and Oceanic Back-Arc 

Basins 

  OA - OBAB 

  TREE 1 TREE 2 

 Level 2 3 4 5 6 2 3 4 5 6 

AUC 0.876 0.889 0.906 0.909 0.898 0.876 0.889 0.912 0.912 0.914 

Cl.Acc. 0.905 0.905 0.913 0.921 0.913 0.905 0.905 0.915 0.921 0.918 

F 0.898 0.901 0.910 0.917 0.912 0.898 0.901 0.912 0.917 0.915 

Precision 0.907 0.903 0.911 0.919 0.911 0.907 0.903 0.913 0.919 0.916 

Recall 0.905 0.905 0.913 0.921 0.913 0.905 0.905 0.915 0.921 0.918 

 

Table 4.7. Statistical considerations for discrimination between Group 1 and Group 2 of Non-

Subduction Settings 

  MOR+OP and OI+CWP 

  TREE 1 TREE 2 

 Level 2 3 4 5-6 7 2 3 4 5-6 7 

AUC 0.942 0.958 0.966 0.966 0.958 0.942 0.958 0.966 0.965 0.955 

Cl.Acc. 0.878 0.893 0.909 0.916 0.938 0.878 0.893 0.909 0.918 0.942 

F 0.877 0.893 0.909 0.916 0.938 0.877 0.893 0.908 0.918 0.942 

Precision 0.883 0.893 0.911 0.916 0.938 0.883 0.893 0.910 0.919 0.942 

Recall 0.878 0.893 0.909 0.916 0.938 0.878 0.893 0.909 0.918 0.942 
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Table 4.8. Statistical considerations for discrimination between Mid-Ocean Ridge and Oceanic 

Plateau 

  MID-OCEAN RIDGE - OCEANIC PLATEAU 

  TREE 1 TREE 2 

 Level 2 3 4 5 6 2 3 4 5 6 7 

AUC 0.820 0.845 0.876 0.874 0.849 0.820 0.842 0.867 0.875 0.875 0.842 

Cl.Acc. 0.825 0.879 0.925 0.924 0.934 0.825 0.868 0.921 0.922 0.922 0.934 

F 0.836 0.868 0.924 0.921 0.931 0.836 0.853 0.919 0.920 0.920 0.932 

Precision 0.857 0.872 0.923 0.922 0.933 0.857 0.859 0.918 0.919 0.919 0.932 

Recall 0.825 0.879 0.925 0.924 0.934 0.825 0.868 0.921 0.922 0.922 0.934 

 

Table 4.9. Statistical considerations for discrimination between Ocean Island and Continental Within-

Plate 

  OCEAN ISLAND - CONTINENTAL WITHIN-PLATE 

  TREE 1 TREE 2 

 Level 3 4 5-6 7 8 3 4 5-6-7 8 

AUC 0.837 0.864 0.897 0.908 0.897 0.837 0.864 0.893 0.886 

Cl.Acc. 0.807 0.827 0.851 0.870 0.863 0.807 0.827 0.961 0.855 

F 0.807 0.828 0.851 0.870 0.862 0.807 0.828 0.861 0.855 

Precision 0.807 0.828 0.851 0.870 0.862 0.807 0.828 0.862 0.855 

Recall 0.807 0.827 0.851 0.870 0.863 0.807 0.827 0.861 0.855 

 

 

4.2. Discussion of Classification Results 

4.2.1. Discrimination Between Subduction and Non-Subduction Settings 

For training and test datasets, the decision stump correctly classified 1,932 samples of 

non-subduction out of 1,974 with a success ratio of 97.87% and 577 samples of 

subduction out of 668 with a success rate of 86.38%. Decision stump using Th/Nb is 
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more effective for the tectono-magmatic discrimination of samples from non-

subduction settings compared to those from subduction settings. 

The first decision tree is more successful than the decision stump at all levels. The 

maximum classification ratio for samples of subduction settings is at levels 1, 3 and 4 

with a success ratio of 88.47% (591 out of 668) and for samples of non-subduction 

settings is at level 2 and 4 with a success ratio of 99.49% (1964 out of 1974). The 

introduction of TiO2/Yb ratio to the second tree at the second level negatively affects 

the correct classification of subduction samples with a decrease by 4 and the 

introduction of Zr/Nb ratio to the second tree at the third level adversely affects the 

correct classification of non-subduction samples with a decrease by 2. 

The second decision tree is also more successful than the decision stump at all levels 

except its first level for samples of non-subduction. The second decision tree has a 

simple structure, which makes the application of this tree easier for users. This tree 

has the same classification ratio of the second tree for the samples of subduction with 

a success ratio of 88.47% (591 out of 668). However, for non-samples of non-

subduction, the second decision tree can only achieve the success ratio of the second 

tree at its third level with a success ratio of 99.39% (1,962 out of 1,974). For the second 

decision tree, the introduction of Nb/Y ratio at the second level has no effect on the 

classification rate of subduction but has a positive impact on samples of non-

subduction with an increase by 34. 

For external datasets, the decision stump has a correct classification ratio of 96.56% 

for samples of non-subduction (1,937 out of 2006) and 80.47% for samples of 

subduction (375 out of 466). Although success ratios decrease about 1% for non-

subduction and 6% for subduction, decision stump shall be accepted to be a successful 

method to discriminate between subduction and non-subduction settings with a single 

discriminating feature (Th/Nb).  

The first decision tree has its maximum classification ratio at levels 1, 3, and 4 for 

samples of subduction with a success ratio of 84.98% (396 out of 466) and level 2 for 
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samples of non-subduction with success ratio of 98.75% (1,981 out of 2,006). With 

the introduction of Zr/Nb ratio at the third level of the second tree, the correct 

classification for samples of non-subduction decreases by 4, and the introduction of 

La/Nb ratio at the fourth level had no positive or negative effect relative to level 3. 

The introduction of TiO2/Yb has a negligible negative impact on correct classification 

for samples of subduction samples with a decrease by 1. The first decision tree is more 

applicable to external datasets when compared to decision stump, although success 

ratios decrease about 1% for non-subduction and 3% for subduction. Both level 2 for 

its simplicity and level 4 for its maximum success ratio for both training-test and 

external datasets shall be preferred. 

The second decision tree is also more applicable to external datasets when compared 

to decision stump along with a simple structure with only 2 levels in depth. This tree 

has its maximum classification ratio at level 1 for samples of subduction with a success 

ratio of 84.98% (396 out of 466) and level 2 for samples of non-subduction with 

success ratio of 98.65% (1,979 out of 2,006). The introduction of Nb/Y has a slightly 

negative effect on the correct classification of subduction with a decrease by 3 but a 

considerable positive impact on that of non-subduction with an increase by 37. 

Therefore, the overall success ratio of level 2 of the second decision tree is much better 

than level 1. The success ratios for application of this decision tree to external datasets 

decrease by about 1% for non-subduction and 4% for subduction. 

The decision trump has only single level of depth using Th/Nb ratio (also known as 

decision stump) obtained a very high success ratio for all datasets (more than 90% in 

overall) and became more successful for samples of non-subduction with respect to 

those of subduction eliminating the risk of underfitting due to its simple structure. The 

success ratio of this decision tree is distributed homogeneously through the articles 

from different locations, with a few exceptions for the training and test datasets. 

For training and test datasets, 45 articles out of 63 having 2,045 samples are classified 

correctly with 100% success ratio. 18 articles have misclassifications with varying 
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misclassification ratios. Mid-oceanic ridges are completely classified as “non-

subduction setting” with a 100% success ratio. Continental arcs, continental within-

plates, oceanic arcs, oceanic islands are quite successful for the discrimination 

between subduction and non-subduction. Misclassifications for the decision stump are 

only 6 samples of continental arcs out of 181 samples from 7 articles, 38 samples of 

continental within-plates out of 376 samples from 12 articles, 16 samples of oceanic 

arcs out of 381 samples from 14 articles and only 1 samples of oceanic islands out of 

478 samples from 9 articles. For continental arcs, Mullen (2017) of Cascade Arcs is 

the only article, having misclassifications with a misclassification ratio of 17.14% (6 

out of 35). For continental within-plates, Mirnejad (2006) of Leucite Hills and Coe 

(2008) of South Africa are misclassified as “subduction” by decision trump with 

misclassification rates of 100% and 85.19%, with respectively. Gibson (2000) and 

Janney (2002), on the other hand, obtained relatively high success ratios with low 

misclassification rates. 

For oceanic arcs, 6 articles have slight misclassification rates ranging from 1% to 38%: 

Jolly (2008a), Tollstrup (2010), Pearce (2005), Jolly (2007), Bedard (1999) and Todd 

(2012) with an order of increasing misclassification rate. Oceanic back-arcs generally 

failed at discrimination between subduction and non-subduction settings. All 5 articles 

have larger misclassification rates, with 4 of them having a misclassification rate 

greater than 50%. Pearce (2005) almost completely failed with a misclassification rate 

of 96% (24 out of 25 samples). Oceanic islands and oceanic plateaus are also quite 

successful for the discrimination between subduction and non-subduction. Only 1 

sample of oceanic island is misclassified out of 478 samples from 9 articles, and only 

3 samples of oceanic plateaus are misclassified out of 211 samples from 4 articles.  

The decision stump is also successfully applicable to the tectono-magmatic 

discrimination of external datasets. For external datasets, 38 articles out of 62 having 

1,406 samples are classified correctly with 100% success ratio. 24 articles have 

misclassifications with varying misclassification ratios. Continental arcs and oceanic 

islands are entirely classified with 100% success ratio. Mid-oceanic ridges and oceanic 
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plateaus are also quite successful for the discrimination between subduction and non-

subduction. Only 3 samples of mid-oceanic ridge are misclassified out of 1,304 

samples from 5 articles, and only 2 samples are misclassified out of 163 samples from 

9 articles. Oceanic back-arcs and continental within-plates generally failed at the 

discrimination between subduction and non-subduction settings. For oceanic back-

arcs, 5 articles out of 6 completely failed for discrimination. For continental within-

plates, 9 articles out of 16 have misclassifications with rates ranging between 10% and 

100%. Davies (2006) of Aldan Shield, Gibson (2005) of Tristan, and Oliebrook (2016) 

of Bunbury failed for the discrimination almost completely. In spite of having 

misclassifications in several articles for oceanic arcs, the only problematic one is 

König (2008), with samples from various subduction zones with a misclassification 

rate of 50%.  

The first decision tree became more successful compared to the decision stump, and 

misclassifications have a homogeneous distribution through the articles from different 

locations for training and test datasets. For training and test datasets, 48 articles out of 

63 having 1,674 samples are classified correctly with 100% success ratio. 15 articles 

have misclassifications with varying misclassification ratios. Oceanic islands are 

completely classified with 100% success ratio at all levels of this decision tree. 

Continental arcs, mid-oceanic ridges, oceanic arcs and oceanic plateaus are also quite 

successful for the discrimination between subduction and non-subduction. 

Misclassifications for the second tree are only 6 samples of continental arcs out of 181 

samples from 7 articles, 8 samples of mid-oceanic ridges out of 909 samples from 12 

articles, 11 samples of oceanic arcs out of 381 samples from 14 articles and 1 sample 

of oceanic plateau out of 211 samples from 4 articles. 

The first decision tree is also much more effective for the discrimination of continental 

within-plates when compared to decision stump with only 1 misclassification out of 

376 samples from 12 articles. The problem in tectono-magmatic discrimination of 

oceanic back-arcs can not be solved at the second tree. All articles from oceanic back-

arc have large amounts of misclassifications with ratios more than 50% except one 
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(24%). When different levels of this decision tree are evaluated, especially the 

introduction of TiO2/Yb ratio at level 2 can correctly discriminate most of the 

continental within-plates, that have been misclassified at level 1. However, 

interestingly, increasing level of depth for the second decision tree seems to have no 

positive or negative effect on the misclassifications at the first level. For such articles, 

there is no apparent difference between level 1 and level 4. Therefore, levels 2, 3 and 

4 shall be used for discrimination between subduction and non-subduction without 

having a significant difference in their success ratios.  

The first decision tree is also successfully applicable to the tectono-magmatic 

discrimination of external datasets. For external datasets, 45 articles out of 62 having 

1,055 samples are classified correctly with 100% success ratio. 17 articles have 

misclassifications with varying misclassification ratios. Continental arcs, oceanic 

islands, and oceanic plateaus are completely classified with 100% success ratio at all 

levels of this decision tree. This result indicates that Nb/Nb* ratio is quite effective 

discriminating feature for these three tectonic settings. Mid-oceanic ridges and 

oceanic arcs are also quite successful for the discrimination between subduction and 

non-subduction. Misclassifications for the second tree are only 9 samples of mid-

oceanic ridges out of 1,304 samples from 5 articles and 6 samples of oceanic arcs out 

of 223 samples from 12 articles. The problem in tectono-magmatic discrimination of 

continental within-plates and oceanic back-arcs can not be solved for the external 

datasets at the second tree. Only Gibson (2005) of Tristan can be correctly classified 

with the introduction of TiO2/Yb ratio at the second level. Other than the introduction 

of TiO2/Yb ratio, increasing the level of depth in the second decision tree seems to 

have no positive or negative effect for the articles misclassified at the first level.  

Therefore, for external datasets, levels 2 and 4 of the first decision tree shall be used 

for discrimination between subduction and non-subduction.  
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The second decision tree also became more successful compared to the decision stump 

through articles from different locations in spite of having a simple structure when 

compared with the first decision tree. 

For training and test datasets, 47 articles out of 63 having 1,578 samples are classified 

correctly with 100% success ratio. 16 articles have misclassifications with varying 

misclassification ratios. Oceanic islands are completely classified with 100% success 

ratio at all levels of this decision tree.  

Continental arcs, mid-oceanic ridges, oceanic arcs, and oceanic plateaus are quite 

successful for the discrimination between subduction and non-subduction.  

Misclassifications for the second decision tree are only 6 samples of continental arcs 

out of 181 samples from 7 articles, 8 samples of mid-oceanic ridges out of 909 samples 

from 12 articles, 11 samples of oceanic arcs out of 381 samples from 14 articles and 

1 sample of oceanic plateau out of 211 samples from 4 articles. Continental within-

plates cannot be correctly classified at the first level of this decision tree, but with the 

introduction of Nb/Y ratio at the second level, only 3 samples are misclassified out of 

376 samples from 12 articles. Oceanic back-arcs cannot be discriminated with the 

second decision tree just like the other decision trees, so they are considered as 

problematic. 

The second decision tree is also successfully applicable for tectono-magmatic 

discrimination of external datasets, just like to previous two decision trees. Among all 

decision trees constructed for the tectono-magmatic discrimination between 

subduction and non-subduction, no underfitting or overfitting has been observed. 

For external datasets, 45 articles out of 62 having 1,055 samples are classified 

correctly with 100% success ratio. 17 articles have misclassifications with varying 

misclassification ratios. Oceanic islands and oceanic plateaus are completely 

classified correctly with 100% success ratio at all levels of this decision tree. 

Continental arcs are classified correctly at the first level, but with the addition of Nb/Y 
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ratio at the second level, 3 misclassifications are observed out of 96 samples from 7 

articles.  

However, Nb/Y ratio is a very effective discriminating feature for continental within-

plates as it correctly classifies nearly all samples misclassified in the previous level. 

Mid-oceanic ridges and oceanic arcs are quite successful for the discrimination 

between subduction and non-subduction. Misclassifications for the second decision 

tree are only 9 samples of mid-oceanic ridges out of 1,304 samples from 5 articles and 

6 samples of oceanic arcs out of 223 samples from 12 articles. Oceanic back-arcs 

cannot be discriminated for both training-test and external datasets with the second 

decision tree just like the other decision trees, so they are considered as problematic. 

The success rates obtained from Th/Nb, Nb/Nb*, TiO2/Yb, and Nb/Y, appear to be 

consistent with their diverse fractionation in different tectonic settings. The different 

chemical behavior of Th (and La) and Nb during subduction-related processes make 

Th/Nb an efficient discriminator. 

However, Nb/Nb* when coupled with element ratios TiO2/Yb and Nb/Y (garnet-

sensitive) produces even better results. This is also expected, since Nb/Nb* enables 

simultaneous use of Th and La, and the TiO2/Yb and Nb/Y are garnet-sensitive. 

The garnet signature (high Ti/Yb and Nb/Y ratios) is not typical in mid-ocean ridges 

and subduction systems since the melting dominantly takes place in the stability field 

of spinel (e.g. Pearce and Parkinson, 1993; Niu and Batiza, 1997; Arevalo Jr. and 

McDonough, 2010). At within-plate settings, however, this feature becomes 

widespread due to deeper depths of melting that occurs within the stability field of 

garnet (e.g. McKenzie and O’Nions 1991). Since MORs do not involve subduction 

component in their petrogenesis, the low Ti/Yb and Nb/Y samples would be expected 

to include mostly subduction-related ones. As reflected from the success rates, 

TiO2/Yb and Nb/Y effectively discriminate subduction-related samples (low Nb/Nb*) 

having low Ti/Yb and Nb/Y. 
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Although Th/Nb and Nb/Nb* are very useful discriminants on the subduction-non-

subduction classification, there are some instances in which the source-related features 

cause distinction between these two classes nearly impossible. The kimberlite samples 

from South Africa (Coe et al.,2008) and the lamproites from the Leucite Hills 

(Mirnejad and Bell 2006) are two examples that are classified by high 

misclassification rates based on these two variables. The main reason for such 

occurrences is the involvement of the SCLM source that has been metasomatized by 

slab-derived components during a previous/ancient subduction event. Since the SCLM 

is able to preserve such signatures for an extended period of time (e.g. McKenzie and 

O’Nions 1983), a recent melting event on the subduction-metasomatized domains on 

such a mantle source would result in subduction-related geochemical signatures even 

though there is no active subduction involved (e.g. Gibson et al.,1993). Thus, 

subduction-related geochemical signatures can also be produced at a CWP setting, 

which similar to those from subduction settings. The Th-Nb-La systematics of such 

CWP melts are indistinguishable from those produced at subduction zones, which in 

turn makes Th/Nb and Nb/Nb* inefficient for the discrimination. 

Although some potassic/ultrapotassic kimberlitic magmas carry subduction-related 

geochemical signatures as discussed above, their highly enriched nature makes them 

quite different than those originated from the subduction zones. Since the 

potassic/ultrapotassic magmas form by very small-degree partial melting, their 

elemental budget is ultra-enriched in terms of highly incompatible elements (e.g. 

Fraser and Hawkesworth 1992; Araujo et al.,2001; Coe et al.,2008). Therefore, Th, 

Nb, La abundances of these magmas are too high when compared with those from 

subduction zones (Figure 4.5). Furthermore, the potassic/ultrapotassic CWP melts are 

generated at great depths involving garnet as a residual phase. This leads to extensive 

fractionation between incompatible elements and HREE, which in turn results in 

extremely high ratios of Nb/Y and Ti/Yb (e.g. LeRoex et al.,2003) (Figure 4.5). Since 

such extreme values are not common from the subduction zones, the element ratios 
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such as Nb/Y and Ti/Yb can be useful discriminators in the cases that Th/Nb and 

Nb/Nb* does not work. 

 

 

Figure 4.5. Comparison of spider-diagrams between samples continental within-plates and subduction-

related settings (normalization coefficients are based on Sun and McDonough, 1995) 

 

It is seen from the above discussion that some lithologies from CWP settings can be 

recovered in the process of tectonomagmatic classification using some of their 

petrogenetic features, although they fail at the upper classification levels. Another case 

in which the classification is difficult comes from BAB settings. As mentioned in 

Chapter 2, the BABs are like a hybrid between MORs and arcs.  

As a natural consequence of this dual nature, the magmas generated at the BABs 

display a compositional spectrum between these two extremes (e.g. Pearce et 

al.,1995b; Leat et al.,2004; Pearce et al.,2005). Some BAB magmas show MORB-like 

subduction-immobile chemistry with the addition of subduction component (relative 

Th-LREE enrichment), known as “BABB-type” chemistry.   
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Some, on the other hand, exhibit geochemical characteristics close to the end-members 

(MORB- and OAB-like). Such BAB magmas are derived from identical mantle 

sources to either that of MORBs or OABs. The BAB melts produced by 

decompression melting of MORB-source mantle with no subduction influx would be 

very akin to melts generated at MORs (Figure 4.6).  

Thus, such cases pose a great problem in discrimination of subduction samples (in this 

case, BAB) from non-subduction ones (MOR). Therefore, the misclassification 

problem between some BABs and MORs does not appear to arise from the 

inefficiency of the decision tree classification. Instead, some MOR and BAB melts are 

indistinguishable in terms of their trace element systematics. 

 

 

Figure 4.6. Comparison of spider-diagrams between samples from OBAB misclassified as MOR and 

samples from MOR (normalization coefficients are based on Sun and McDonough, 1995) 
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4.2.2. Discrimination Within Subduction Settings 

4.2.2.1. The First Path for Discrimination Within Subduction Settings 

4.2.2.1.1. Discrimination Between Arc and Back-arc-related Settings 

For training and test datasets, the first tree correctly classified 556 samples of arcs out 

of 562 with a success ratio of 98.93% and 92 samples of back-arcs out of 106 with a 

success ratio of 86.79%. This decision tree is much more successful for the 

discrimination of arc samples with respect to back-arc samples. However, this may be 

a result of a limited number of samples in back-arcs as reliable data for back-arcs in 

literature is also limited. The introduction of Y/Yb at the fourth level increased 

correctly classified subduction samples by 8 whereas misclassifications in non-

subduction samples also increased by 4. These misclassifications are solved by the 

introduction of Zr/Hf at the fifth level. 

A very similar pattern is also observed in the second decision tree. The second decision 

tree is less successful for the discrimination of back-arc samples with 89 samples out 

of 106 with a success ratio of 83.96%; however, there are no differences for the 

discrimination of arc samples. 

When the structures of decision trees are evaluated, the first decision tree obtains the 

highest success ratio at the fifth level for both tectonic settings, whereas the second 

decision tree at the fourth level for back-arcs and the fifth level for arcs. In the second 

decision tree, introduction of Zr/Y and Y/Yb at fourth level increased correctly 

classified subduction samples by 7 but has no positive or negative effect on non-

subduction samples and Nd/Zr and Zr/Hf at fifth level increased correctly classified 

non-subduction samples by 1 whereas misclassifications for subduction samples 

increased by 1 at this level. 
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Different than the general trend of their success ratio with an increasing level in 

depths, both decision trees are more successful in the lower levels at the discrimination 

of arc and back-arc-related settings for external datasets. Both decision trees have their 

maximum success ratio at the second level in depth for back-arcs with 68 samples out 

of 102 (66.67% success ratio).  

The first decision tree is the most successful for discrimination of arcs in the second 

and third levels with 348 samples out of 364 (95.60% success ratio), whereas the 

second decision tree is the most successful in the third level with 354 samples out of 

364 (97.25% success ratio). 

For the first decision tree, success for the discrimination of back-arcs decreases with 

the introduction of TiO2/Y and Nd/TiO2 at the third level, and that of arcs decreases 

with the introduction of Y/Yb at the fourth level. However, these decreases are 

negligible compared to the decrease in success for the second decision tree at its fourth 

level with the introduction of Zr/Y and Y/Yb, which results in an additional 10 

misclassifications for back-arcs and 4 misclassifications for arcs. 

Both decision trees are more successful for the discrimination of arcs with respect to 

that of back-arcs for both training+test datasets and external datasets. 

When the contradiction between the success ratios of both decision trees at the 

discrimination of training+test datasets and external datasets, it shall be assumed that 

deeper decision trees may be more successful at the discrimination of training and test 

set but fail more for the discrimination of external datasets, resulting in overfitting. 

Therefore, considering the results for training+test sets and external datasets, fourth 

and fifth levels shall be preferred considering the geochemical and petrological 

properties of rock samples and comparison with article-based discussion. 

The first decision tree obtained a very high success ratio for all datasets (more than 

90% overall) and became more successful for samples of arc with respect to those of 

back-arc-related settings. The success ratio of this decision tree is distributed 
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homogeneously through the articles from different locations, with a few exceptions 

for the training and test datasets. 

For training and test datasets, 18 articles out of 26 having 411 samples are classified 

correctly with 100% success ratio. 8 articles have misclassifications with varying 

misclassification ratios. Continental arcs and oceanic arcs quite successful for the 

discrimination between arc and back-arc-related settings. Misclassifications for the 

first decision tree are only 3 samples of continental arcs out of 181 from 7 articles and 

3 samples of oceanic arcs out of 381 from 14 articles. Similarly, with the 

discrimination between subduction and non-subduction settings, oceanic back-arcs 

have misclassification through all articles. Only one article (Leat, 2004 of South 

Sandwich) can be completely classified.  

However, the misclassification rates for this classification are relatively lower than the 

first set of classifications between subduction and non-subduction. 25 

misclassifications through 106 samples of oceanic back-arcs from 5 articles result in 

a success ratio of 76.42%. The increasing level of depth for the first decision tree 

seems to have no significant positive or negative effect for the misclassifications at 

the first level with few exceptions. Todd (2012) of Fiji Tonga and Peate (1997) of 

Vanuatu are correctly classified at the second level, and Jolly (2007) of Greater 

Antilles Arcs is only misclassified at the fourth level. For other articles, there is no 

obvious difference between level 1 and level 5. Therefore, levels 3, 4 and 5 shall be 

used for discrimination between arc and back-arc-related settings without having a 

significant difference in their success ratios. 

The first decision tree is also successfully applicable for the tectono-magmatic 

discrimination of external datasets. For external datasets, 15 articles out of 26 having 

293 samples are classified correctly with 100% success ratio. 11 articles have 

misclassifications with varying misclassification ratios. Continental arcs are 

completely classified with 100% success ratio at all levels of this decision tree. This 

result indicates that Nb/Nb* ratio is quite effective discriminating feature for these 
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tectonic settings. Oceanic arcs are quite successful for the discrimination between arc 

and back-arc-related settings. Misclassification for the second tree is 17 samples of 

oceanic arcs out of 223 from 12 articles. Oceanic back-arcs are still problematic and 

can be discriminated with relatively lower success ratios in the discrimination between 

arc and back-arc-related settings. 40 misclassifications out of 102 samples from 6 

articles result in a very low success ratio of 60.78%. Harrison (2003) of East Scotia 

and Sinton (2003) of Mantus are completely misclassified. Only Bezos (2009) of Lau 

Basin can be correctly classified with 100% success ratio. Ikeda (2003) of Mariana 

has 3 misclassifications out of 15 samples with a success ratio of 80%. The other two 

articles have misclassifications 50% and 67%, respectively.  

The problem for the correct classification of oceanic back-arcs in the discrimination 

of arc and back-arc-related settings, as well as between subduction and non-

subduction settings can not be solved in training and test datasets and is also observed 

in external datasets. The second decision tree is successfully applicable for the 

tectono-magmatic discrimination of training and test datasets, and the results are quite 

similar to those obtained from the first decision tree but with better success ratios. 

For training and test datasets, 19 articles out of 26 having 508 samples are classified 

correctly with 100% success ratio. 7 articles have misclassifications with varying 

misclassification ratios. Continental arcs and oceanic arcs quite successful for the 

discrimination between arc and back-arc-related settings. Misclassifications for the 

first decision tree are only 4 samples of continental arcs out of 181 from 7 articles and 

2 samples of oceanic arcs out of 381 from 14 articles. Similarly, with the first decision 

tree, oceanic back-arcs have misclassification through all articles. Only one article 

(Leat, 2004 of South Sandwich) can be completely classified. The misclassification 

rates for the second decision tree are relatively higher with respect to the first decision 

tree. 29 misclassifications through 106 samples of oceanic back-arcs from 5 articles 

result in a success ratio of 72.64%, with a decrease of 3.78%. The increasing level of 

depth for the second decision tree seems to have no significant positive or negative 

effect for the misclassifications at the first level with few exceptions. Only Peate 
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(1997) of Vanuatu are correctly classified at the fourth level, and Jolly (2007) of 

Greater Antilles Arcs can also be classified at the fourth level. For other articles, there 

is no obvious difference between level 1 and level 5. Therefore, levels 3, 4 and 5 shall 

be used for discrimination between arc and back-arc-related settings without having a 

significant difference in their success ratios.  

The second decision tree is also successfully applicable to the tectono-magmatic 

discrimination of external datasets. For external datasets, 14 articles out of 26 having 

287 samples are classified correctly with 100% success ratio. 12 articles have 

misclassifications with varying misclassification ratios. Continental arcs are 

completely classified with 100% success ratio at all levels of this decision tree. This 

result indicates that Nb/Nb* ratio is quite effective discriminating feature for these 

tectonic settings. Oceanic arcs are quite successful for the discrimination between arc 

and back-arc-related settings. Misclassification for the second tree is 13 samples of 

oceanic arcs out of 223 from 12 articles. Oceanic back-arcs are still problematic and 

can be discriminated with relatively lower success ratios in the discrimination between 

arc and back-arc-related settings. 44 misclassifications out of 102 samples from 6 

articles result in a very low success ratio of 56.86%. Harrison (2003) of East Scotia 

and Sinton (2003) of Manus are completely misclassified. Only Bezos (2009) of Lau 

Basin can be correctly classified with 100% success ratio. Ikeda (2003) of Mariana 

has 4 misclassifications out of 15 samples with a success ratio of 73%. The other two 

articles have misclassifications 58% and 73%, respectively. The problem for the 

correct classification of oceanic back-arcs in the discrimination of arc and back-arc-

related settings, as well as between subduction and non-subduction settings, can not 

be solved in training and test datasets and is also observed in external datasets. 

The discrimination between arcs and oceanic back-arcs appears to be resolved with 

relatively high classification rates. One of the reasons for this lies behind the spreading 

factor of the mature oceanic back-arcs (see Chapter 1 for details), which tend to 
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involve more MORB mantle component with less subduction input (leading to higher 

Nb/Nb*).  

The arcs, on the other hand, include a strong subduction component in their 

petrogenesis (resulting in lower Nb/Nb*). Thus, Nb/Nb* ratio (found lesser in oceanic 

back-arcs, but more in arcs) works well as an efficient discriminant for arcs and 

oceanic back-arcs, by filtering about 90% arcs at the first level of the decision tree. 

Also, Nd/Zr ratio, which can be strongly fractionated based on the contribution from 

sediment melt, seem to operate efficiently for the lower levels after Nb/Nb* filter. 

In this discrimination, one of the major factors for misclassification of some oceanic 

backarcs arises from their significant subduction component. Although spreading 

backarcs mainly tap a mantle source somewhat similar to that of MORs, the amount 

of subduction component may change among the segments based on factors, including 

arc proximity and direction of mantle flow. Thus, the lavas produced in some segments 

can possess strong subduction signatures, with high Nb/Nb* ratios. This causes such 

backarc lavas to resemble those from arcs, which in turn leads their misclassification. 

4.2.2.1.2. Discrimination Within Arc-related Settings 

For training and test datasets, the first decision tree correctly classified maximum 370 

samples of oceanic arcs out of 381 with a success ratio of 97.11% at its seventh level 

and 168 samples of continental arcs out of 181 with a success ratio of 92.82% at its 

third level. The introduction of Zr/TiO2, La/Yb and Y/Yb at fourth level drastically 

decreases the successful classification rate of the first decision tree for continental arcs 

by 48 misclassifications and this negative effect could only be solved with the 

introduction of Zr/Sm and La/Nb at sixth level. However, the introduction of the ratios 

at the fourth level has a great positive effect at the classification rate of oceanic arcs 

with 77 additional correct classifications. Therefore, if a simple decision tree is to be 

preferred for the first decision tree, the third level shall be preferred for rocks of 

continental origin, and the fourth level shall be preferred for rocks of oceanic origin. 



 

 

 

201 

 

However, if this information is limited or not available, the seventh level of the first 

decision tree shall be used for both tectonic settings.  

The same trend is also observed for the second decision tree. The introduction of 

Th/La, Sm/Hf, and Zr/Y at the fourth level has a negative effect on the discrimination 

of oceanic arcs with a decrease by 16 and positive effect on the discrimination of 

continental arcs with an increase by 44. However, the general trend is an increase in 

the success ratio for both tectonic settings with an increase of level in depth for the 

second decision tree. This decision tree correctly classified 372 samples of oceanic 

arcs out of 381 with a success ratio of 97.64% and 171 samples of continental arcs out 

of 181 with a success ratio of 94.48%. 

The first decision tree correctly classified maximum 176 samples of continental arcs 

out of 223 with a success ratio of 78.93% at the fifth level and 136 samples of oceanic 

arcs out of 141 with a success ratio of 96.45% at second and third levels. The 

introduction of Zr/TiO2, La/Yb, and Y/Yb at the fourth level drastically decreases the 

success ratio for the discrimination of continental arcs with a decrease by 53, and this 

negative effect cannot be solved for the deeper levels of the first decision tree. 

Therefore, overfitting for the classification of continental arcs can be assumed starting 

from the fourth level of the decision tree. Interestingly, the introduction of ratios at the 

fourth level increases the success ratio for the discrimination of oceanic arcs with an 

increase by 76. However, starting from the fifth level, the success ratio for the 

discrimination of oceanic arcs also decreases with an increasing level of depth similar 

to that of continental arcs in the first decision tree. When the classification results of 

the first decision tree for the external dataset are examined, second and third levels 

shall be preferred if the origin of rocks are continental, fourth, and fifth levels shall be 

preferred if the origin of rocks are oceanic. Deeper levels are assumed to result in 

overfitting, which results in the failure of a decision tree when applied to external 

datasets. 
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The second decision tree correctly classified maximum 178 samples of continental 

arcs out of 223 with a success ratio of 79.82% at the seventh level and 108 samples of 

oceanic arcs out of 141 with a success ratio of 76.60% at sixth level. The success ratio 

for the second decision tree increases with an increasing level of depth. Therefore, no 

overfitting is observed in the second decision tree. The second decision tree is indeed 

successful for the discrimination of oceanic arcs in the second and third levels, but this 

success decreases with the introduction of Th/La, Sm/Hf, and Zr/Y at the fourth level 

with a decrease by 37. This negative effect is solved with the introduction of La/Y, 

Sm/Nd, Nb/Nb*, Sm/Hf and La/Nb at the fifth level. For the discrimination of oceanic 

arcs, on the other hand, there is a continuous increase in the success ratio. When the 

classification results of the second decision tree for the external dataset are examined, 

the seventh level shall be preferred for discrimination of oceanic arcs and continental 

arcs. 

The first decision tree is much more successful for the discrimination of continental 

arcs, and the second decision tree is relatively more successful for the discrimination 

of oceanic arcs.  

The first decision tree obtained a very high success ratio for all datasets and became 

successful for samples of both oceanic arcs and continental arcs. The success ratio of 

this decision tree is distributed homogeneously through the articles from different 

locations, with few exceptions for the training and test datasets. 

For training and test datasets, only 6 articles out of 21 having 63 samples are classified 

correctly with 100% success ratio. 15 articles have misclassifications with varying 

misclassification ratios. No settings are completely classified with 100% success ratio. 

Misclassifications for the first decision tree are 18 samples of continental arcs out of 

181 from 7 articles and 19 samples of oceanic arcs out of 381 from 14 articles.  

For continental arcs, misclassifications generally tend to increase at the fourth and 

fifth levels with the introduction of Zr/TiO2, La/Yb and Y/Yb at the fourth level, Y/Yb, 

Sm/Hf and Zr/Hf at fifth level. Portnyogin (2015) of Kamchatka and Simon (2014) of 
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Kamchatka can be completely classified with a success ratio of 100%. Gertisser (2000) 

of Aeolian, on the other hand, can be correctly classified at the sixth level with a 

success ratio of 100% but with the introduction of Sm/Hf and Zr/Hf at seventh level, 

4 misclassifications are observed with a misclassification rate of 80%. Other than this 

article, misclassification rates for the sixth and seventh levels for all articles of 

continental arcs are low within a range of 8-20%. 

For oceanic arcs, misclassifications are highly dominated in first levels with less and 

homogeneous distribution through higher levels. Bedard (1999) of Canada, 

Hochstaedter (2001) of Izu Bonin, Pearce (2005) of Mariana, Schuth (2004) of 

Solomon Islands and Yogodzinski (2015) of Western Auletian can be completely 

classified with a success ratio of 100%. Hickey and Vargas (2013) of Daito can be 

correctly classified at fifth level but 2 and 1 misclassifications with a success ratio of 

25% and 13%, with respectively in sixth and seventh levels with the introduction of 

Sm/Hf, Zr/Nb, La/Y, Th/La and Nb/Y at sixth level and Sm/Y, Nb/Nb* and Zr/Hf at 

seventh level. 

Other than this article, misclassification rates for the sixth and seventh levels for all 

articles of oceanic arcs are low within a range of 3-27%. The first decision tree is 

successful for the discrimination of oceanic and continental arcs at its sixth and 

seventh levels; therefore, these levels shall be preferred. 

The first decision tree is more successfully for the tectono-magmatic discrimination 

of external datasets. 

For external datasets, 16 articles out of 26 having 306 samples are classified correctly 

with 100% success ratio. 10 articles have misclassifications with varying 

misclassification ratios. For external datasets, the success ratio for the classification 

of continental arcs decreases much more with respect to that of oceanic arcs, especially 

with the increasing level of depth. Bryant (2006) of Andes, De Astis (1997) of 

Aeolian, Santo (2004) of Aeolian and Zelenski (2018) of Kamchatka can be 

completely classified with a success ratio of 100% whereas Bailey (2009) of Santorini, 
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Calanchi (2002) of Aeolian, De Astis (2000) of Aeolian and Ianelli (2017) of North 

Patagonian Andes can be classified with 1-2 misclassification errors in the second and 

third levels. However, for deeper levels of the first decision tree, success ratio 

drastically falls, and an overfitting is clearly observed for the discrimination of 

continental arcs for the levels above fourth level, with the introduction of Zr/TiO2, 

La/Yb and Y/Yb at fourth level, Y/Yb, Sm/Hf and Zr/Hf at fifth level, Nb/Nb*, Zr/Sm 

and La/Nb at sixth level and Nb/Y, Th/Y, Sm/Hf and Zr/Hf at seventh level, resulting 

64 more misclassifications in continental arcs. However, this situation changes in the 

opposite direction for the classification of oceanic arcs within the discrimination 

between continental and oceanic arcs. Most of the articles can be classified more 

accurately with the increasing level of depth with an increase of correctly classified 

samples by 51. Finney (2008) of Okmok, König (2008, 2010) of various subduction 

zones, Stellin (2002) of Shishaldin, Tamura (2011) of Mariana, Bezos (2009) of Lau 

Basin, Harrison (2003) of East Scotia, Ikeda (2016) of Mariana, Ishizuka (2009) of 

Izu Bonin, Mortimer (2007) of South Fiji and Sinton (2003) of Manus are all articles, 

correctly classified with a success ratio of 100%. The misclassification for oceanic 

arcs decreases down to 66 out of 325, with a success ratio of 79.69%. Therefore, the 

application of the first decision tree to the discrimination between oceanic arcs and 

continental arcs are complicated and may require a cross-check with the application 

of another decision tree developed for the discrimination between oceanic and 

continental settings. If the sample is known or thought to be of oceanic in origin, then 

the sixth or seventh levels of the first decision tree shall be preferred more 

conveniently or the second or third levels shall be preferred if it is of continental in 

origin. The second decision tree is successfully applicable for the tectono-magmatic 

discrimination of training and test datasets, and the results are quite similar to those 

obtained from the first decision tree but with better success ratios. For training and 

test datasets, 7 articles out of 21 having 121 samples are classified correctly with 100% 

success ratio. 14 articles have misclassifications with varying misclassification ratios. 

However, misclassification ratios through articles are more homogeneous and smaller 

with respect to those in the first decision tree, ranging between 7-20% with quite a few 
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exceptions. For continental arcs, Portnyogin (2015) of Kamchatka, Metrich (2001) of 

Aeolian, and Simon (2014) of Kamchatka can be correctly classified at either sixth or 

seventh levels. 

Total misclassifications for continental arcs for discrimination between continental 

and oceanic arcs are 10 samples out of 181 from 7 articles. Only Gertisser (2000) of 

Aeolian has a misclassification rate of 40% with 2 misclassifications. Other articles 

have less than 10% misclassification rates with 1-3 misclassifications. For oceanic 

arcs, Hochstaedter (2001) of Izu Bonin, Hickey and Vargas (2013) of Daito, Pearce 

(1995) of South Sandwich, Pearce (2005) of Mariana, Peate (1997) of Vanuatu, Schuth 

(2004) of Solomon Islands and Yogodzinski (2015) of Western Auletian are correctly 

classified with a success ratio of 100% in either sixth or seventh level of the second 

decision tree. Similarly, to continental arcs, total misclassifications for oceanic arcs 

are also more homogeneously distributed through articles with fewer misclassification 

ratios, ranging between 3% and 25% with misclassifications ranging between 1-3 for 

each article with one exception (10 misclassifications out of 45). 

The second decision tree is also successfully applicable for the tectono-magmatic 

discrimination of external datasets. For external datasets, only 4 articles out of 20 

having 14 samples are classified correctly with 100% success ratio. 16 articles have 

misclassifications with varying misclassification ratios.  

For continental arcs, Bryant (2006) of Andes and Zelenski (2018) of Kamchatka are 

correctly classified with a success ratio of 100%. Only Santo (2004) of Aeolian has a 

misclassification rate of 39% with 12 misclassifications out of 31 samples. However, 

other articles of continental arcs have limited misclassifications with ratios ranging 

between a narrow range of 17-25% with misclassifications ranging between 2-5%.  

For oceanic arcs, Finney (2008) of Okmok and Stellin (2002) of Shishaldin can be 

correctly classified with a success ratio of 100%. Two articles of oceanic arcs, Jolly 

(2008) of Greater Antilles Arc and Straub (2010) of Izu Bonin have misclassifications 

greater than 10. Other articles have misclassifications in a range of 1-3 with 
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misclassification ratios of 9-33%. The second decision tree is much more successful 

at greater depths for the discrimination of both oceanic arcs and continental arcs. 

For oceanic arcs, only for the fourth level, the success ratio decreases drastically with 

the introduction of Th/La, Sm/Hf and Zr/Y by a decrease of 37. However, these 

misclassifications are solved with the introduction of La/Y, Sm/Nd, Nb/Nb*, Sm/Hf 

and La/Nb at the fifth level. The success ratio for discrimination of continental arcs 

continually increases with the increasing levels of decision tree and reaches its 

maximum at the sixth level with 108 correct classifications and to 107 at the seventh 

level. When the success ratio of the second decision tree for discrimination of oceanic 

arcs and continental arcs are evaluated and compared to the first decision tree, second 

decision tree shall be accepted to be more successful, especially for the highest levels 

(sixth and seventh) and shall be preferred for discrimination of both oceanic arcs and 

continental arcs without requiring any cross-check with other discriminations. The 

sixth and seventh level of the second decision tree is notably much more successful 

with respect to the first decision tree and to lowest levels of itself with an increase of 

correct classifications by 53 (as double as from 54 to 107). 

The discrimination between the oceanic and continental arcs is not straightforward, 

like that between arcs and backarcs. In this case, since both classes (oceanic arcs and 

continental arcs) include a significant amount of subduction component in their 

petrogenesis, it is not surprising that the ratios Th/Nb and Nb/Nb* do not work at the 

uppermost level for the discrimination between oceanic and continental arcs. 

However, the ratios like Zr/TiO2 and Zr/Sm are able to make a first-order separation, 

mainly for the oceanic arcs.  

Since the oceanic arcs generally involve highly depleted source regions, they tend to 

have lower ratios of Zr/Ti and Zr/Sm when compared with continental arcs. This 

filtering appears to work at the upper levels, by constraining a large number of oceanic 

arcs. Another useful feature seems to be Sm/Y. High Sm/Y coupled with high Zr/Sm 

ratios are more common in continental arcs than oceanic arcs. Indeed, the Sm/Y 
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achieves to filter oceanic and continental arcs for a reasonable success rate at the upper 

levels of the decision tree. 

4.2.2.2. The Second Path for Discrimination Within Subduction Settings 

4.2.2.2.1. Discrimination Between Oceanic and Continental Settings 

For training and test datasets, the first decision tree correctly classified a maximum of 

467 samples of oceanic setting out of 487 with a success ratio of 95.89% at the sixth 

level and 163 samples of continental setting out of 181 with a success ratio of 90.06% 

at sixth level. The success ratio of classification of the first decision tree continuously 

increasing with increasing level of depth, therefore, without any doubt for training and 

test datasets, the sixth level of the first decision tree shall be preferred for the 

discrimination of oceanic and continental settings. 

The second decision tree shows the same trend with the first decision tree, with a 

continuous increase in the success of classification for both oceanic and continental 

settings. The second decision tree correctly classified a maximum of 467 samples of 

oceanic setting out of 487 with a success ratio of 95.89% at the sixth level and 151 

samples of continental setting out of 181 with a success ratio of 83.43% at sixth level. 

When classification results for training and test datasets are examined, both decision 

trees have the same success for discrimination of oceanic settings but the first decision 

tree is much more successful for the discrimination of continental settings. Therefore, 

for a general application, the sixth level of the first decision tree shall be preferred. 

This is an indication for the positive effect of TiO2-related ratios.  

The first decision tree correctly classified 274 samples of oceanic settings out of 325 

with a success ratio of 84.31% at second and third levels and 113 samples of 

continental settings out of 141 with a success ratio of 80.15% at second and third 

levels. The success ratio of the decision tree at higher levels gradually decreases as an 
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indicator of overfitting. The introduction of Zr/Y and Nd/TiO2 at fourth level, Y/Yb, 

TiO2/Y, Nb/Nb*, Zr/Hf and Sm/Hf at fifth level and La/Yb, Y/Yb, Sm/Hf and 

Nd/TiO2 at sixth level affects negatively the classification ratio of oceanic settings. 

Classification of continental settings, on the other hand, is negatively affected only by 

the introduction of Zr/Y and Nd/TiO2 at the fourth level. Therefore, the second and 

third levels of the first decision tree shall be preferred when classification results of 

external datasets are considered. 

The second decision tree correctly classified 302 samples of oceanic settings out of 

325 with a success ratio of 92.92% at the sixth level and 100 samples of continental 

settings out of 141 with a success ratio of 70.92% at second and third levels. As 

previously mentioned, the second decision tree fails as a result of overfitting for the 

discrimination of continental settings. When the classification of external datasets is 

considered, the sixth level of the second decision tree shall be preferred for the 

discrimination of oceanic settings if the origin of rock is known to be oceanic. For 

both decision tree, success ratio decreases drastically for discrimination of continental 

settings, with a decrease by 29 for the first decision tree with the introduction of Zr/Y 

and Nd/TiO2 at fourth level and by 28 for the second decision tree Zr/Y and Sm/Y at 

the fourth level.  

The first decision tree obtained a very high success ratio for all datasets and became 

more successful for samples of oceanic settings with respect to those of continental 

settings. The success ratio of this decision tree is distributed homogeneously through 

the articles from different locations for the training and test datasets. 

For training and test datasets, 11 articles out of 26 having 124 samples are classified 

correctly with 100% success ratio. 15 articles have misclassifications with varying 

misclassification ratios. The first decision tree is quite successful for the classification 

of oceanic back-arcs for the discrimination between oceanic and continental settings. 

Only one article, Pearce (2005) of Mariana has 1 misclassification for each and 2 in 

total out of 70 samples. Other articles of oceanic back-arcs can be correctly classified 
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with 100% success ratio. The first stage of the second path, which first discriminates 

between oceanic and continental settings, is more successful in discrimination of 

oceanic back-arcs rather than discriminating between arc and back-arc-related 

settings. 

For continental arcs, Metrich (2001) of Aeolian, Portnyogin (2015) of Kamchatka can 

be correctly classified in fifth and sixth levels of the first decision tree. The other 

articles of continental arcs have limited misclassifications with ratios ranging between 

4% and 14%. The only exception is Gertisser (2000) of Aeolian, which completely 

fails in the first decision tree at all levels. 

The fifth and sixth levels of the first decision tree are more successful with respect to 

lower levels. For instance, the misclassifications in Hickey Vargas (2016) of Chile 

decreases from 14 (41%) to 3 (9%) with the introduction of Y/Yb, TiO2/Y, Nb/Nb*, 

Zr/Hf and Sm/Hf at fifth level and La/Yb, Y/Yb, Sm/Hf and Nd/TiO2 at sixth level. 

For oceanic arcs, Bedard (1999) of Canada, Hochstaedter (2001) of Izu Bonin, Pearce 

(2005) of South Sandwich, Pearce (2005) of Mariana, Schuth (2004) of Solomon 

Islands, Tollstrup (2010) of Izu Bonin and Yogodzinski (2015) of Western Auleatian 

can be correctly classified with a success ratio of 100% for the fifth and sixth levels 

of the first decision tree. Total misclassifications for oceanic arcs in the discrimination 

between oceanic and continental settings are 18 out of 381 from 14 articles with 

misclassifications ranging between 2 and 3, with ratios ranging between 3% and 13%. 

When success ratio of the first decision tree for discrimination between oceanic and 

continental settings, especially higher levels are much more successful, and their 

success increases with the introduction of Y/Yb, TiO2/Y, Nb/Nb*, Zr/Hf and Sm/Hf 

at fifth level and La/Yb, Y/Yb, Sm/Hf and Nd/TiO2 at sixth level. 

The first decision tree is also successfully applicable for the tectono-magmatic 

discrimination of external datasets. For external datasets, only 5 articles out of 26 

having 35 samples are classified correctly with 100% success ratio. 21 articles have 

misclassifications with varying misclassification ratios. For continental arcs, Zelenski 
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(2018) of Kamchatka can be correctly classified with a success ratio of 100% at all 

levels. However, Bryant (2006) of Andes and Ianelli (2017) of North Patagonian, 

Andes can be correctly classified at lower levels (second and third) in spite of having 

misclassifications in higher levels, especially with the introduction of Zr/Y and 

Nd/TiO2 at fourth level, Y/Yb, TiO2/Y, Nb/Nb*, Zr/Hf and Sm/Hf at fifth level. For 

oceanic arcs, Finney (2008) of Okmok, Stellin (2002) of Shishaldin and Tamura 

(2011) of Mariana can be correctly classified with a success ratio of 100% at all levels 

of the first decision tree. Total misclassifications for oceanic arcs are 59 out of 223 

from 12 articles, and misclassifications are homogeneously distributed to all articles 

with quite a few exceptions. Only Pearce (1999) of Western Pacific fails in the 

discrimination with a misclassification ratio of 80%. For König (2008, 2010) from 

various subduction zones, the first decision tree is successful for lower levels but 

misclassifications are observed in higher levels with the introduction of Y/Yb, TiO2/Y, 

Nb/Nb*, Zr/Hf and Sm/Hf at fifth level and La/Yb, Y/Yb, Sm/Hf and Nd/TiO2 at sixth 

level. For oceanic back-arcs, Harrison (2003) of East Scotia can be correctly classified 

with a success ratio of 100%. Bezos (2009) of Lau Basin, Ikeda (2016) of Mariana 

and Sinton (2003) of Manus can be classified in the second or third levels of the first 

decision tree, but misclassifications are observed at higher levels. 

The second decision tree is successfully applicable for the tectono-magmatic 

discrimination of training and test datasets, and the results are quite similar to those 

obtained from the first decision tree but with relatively lower success ratios. For 

training and test datasets, 10 articles out of 26 having 148 samples are classified 

correctly with 100% success ratio. 16 articles have misclassifications with varying 

misclassification ratios. The second decision tree is quite successful for the 

discrimination of oceanic back-arcs. For oceanic back-arcs, Beier (2015) of Manus 

Basin and Leat (2004) of South Sandwich Pearce (1995) of Lau and Pearce (2005) of 

Mariana can be correctly classified within the discrimination between oceanic and 

continental settings.  
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For continental arcs, Gertisser (2000) of Aeolian fails at classification with a 

misclassification ratio of 100% out of 5 samples. Mullen (2017) of Cascade Arc also 

has problems with 50% misclassification ratio. Portnyogin (2015) of Kamchatka can 

be correctly classified with a success ratio of 100%. Other articles have quite a few 

misclassifications ranging between 1 and 3. For oceanic arcs, Bedard (1999) of 

Canada, Hochstaedter (2001) of Izu Bonin, Schuth (2004) of Solomon Islands, Pearce 

(1995) of Lau and Pearce (2005) of Mariana can be correctly classified at fifth and 

sixth levels. There are quite a few misclassifications in discrimination of oceanic arcs 

with misclassification ratios ranging between 2% and 13%. With a few exceptions, 

fifth and sixth levels of the second tree shall be preferred for discrimination between 

oceanic and continental settings as success ratio increases with increasing level of the 

decision tree, by 16 samples for oceanic settings and by 51 for continental settings. 

Starting from the fourth level, the addition of each level has a positive impact on the 

classification of both oceanic and continental settings. 

The second decision tree is also successfully applicable for the tectono-magmatic 

discrimination of oceanic settings in external datasets; however, the success ratio for 

discrimination of continental settings gradually decreases with increasing level of 

depth in the second decision tree.  

For external datasets, 9 articles out of 26 having 104 samples are classified correctly 

with 100% success ratio. 17 articles have misclassifications with varying 

misclassification ratios. The second decision tree is also successful for the correct 

classification of oceanic back-arcs in external datasets. Only 9 misclassifications for 

oceanic back-arcs are observed out of 102 samples from 6 articles. Bezos (2009) of 

Lau Basin, Harrison (2003) of East Scotia, and Sinton (2003) of Manus can be 

correctly classified with a success ratio of 100%. Sixth level of this decision tree is 

especially quite successful with the positive impacts of the addition of higher levels 

and introduction of Zr/Y and Sm/Y at fourth level, Y/Yb, Nb/Nb*, Zr/Hf and Sm/Hf 

at fifth level and La/Yb, Zr/Y, Zr/Hf and La/Nb at sixth level. For oceanic arcs, Finney 

(2008) of Okmok, König (2008 and 2010) of various subduction zones, Stellin (2002) 



 

 

 

212 

 

of Shishaldin, Tamura (2011) of Mariana and Woodhead (2001) of different locations 

can be correctly classified with a success ratio of 100%. Jolly (2008) of Greater 

Antilles Arc has 15 misclassifications that form the majority of misclassifications in 

oceanic arcs. 

These misclassifications cannot be solved at any stage of the second decision tree, 

however, they increase at the fourth level with the introduction of Zr/Y and Sm/Y and 

decrease at the fifth level with the introduction of Y/Yb, Nb/Nb*, Zr/Hf and Sm/Hf. 

Other articles have few misclassifications with ratios ranging between 9% and 20%. 

Discrimination of continental arcs in external datasets is problematic as 

misclassifications increase in nearly all articles. No articles cannot be correctly 

classified with all of its samples. Calanchi (2002) of Aeolian fails for discrimination 

with a misclassification ratio of 100%. Other major failures are Bailey (2009) of 

Santorini and Santo (2004) of Aeolian with misclassification ratio greater than 50%. 

Other articles have, on the other hand, misclassifications less than 10. The second 

decision tree is more successful at the discrimination of oceanic settings with respect 

to continental settings when the application to external datasets is evaluated. 

Overfitting can be possible for continental settings, especially for continental arcs. 

However, as the best choice, the fifth level of the second decision tree shall be 

preferred. 

Among two decision trees, the first decision tree is more successful for discrimination 

of continental settings, and the second decision tree is more successful for 

discrimination of oceanic settings. In both decision trees, success ratios decrease with 

increasing levels of depth for continental settings of external datasets. Therefore, 

considering the classification results of both training-test and external datasets, the 

fifth and sixth levels of the first decision tree along with the fifth level of the second 

decision tree shall be preferred, and a cross-check shall be applied. 

For the classification of continental and oceanic settings, the strong subduction 

fingerprint Nb/Nb* is not preferred at the top of the classification. This case is very 



 

 

 

213 

 

similar to that between continental and oceanic arcs since the subduction component 

is very strong within the two classes, namely continental arcs, and oceanic arcs and 

back-arcs. This time Zr/Y ratio appears to do a good job at the first level of 

discrimination. In the oceanic arcs and back-arcs, the source region is generally 

depleted (characterized by N-MORB source mantle or even depleted) than that of 

continental arcs. The exceptions are few and include some oceanic arcs and back-arcs 

that has produced enriched lavas. The continental arcs, on the other hand, may involve 

relatively a more enriched mantle source with the involvement of continental 

lithospheric mantle, lower-degrees of partial melting and crustal contamination. Thus, 

continental arcs can be expected to have higher Zr/Y ratios, in general. This feature 

really seems to be efficient, allocating a large number of oceanic arcs and back-arcs 

towards the low Zr/Y side. 

4.2.2.2.2. Discrimination Within Oceanic Settings 

For training and test datasets, the first decision tree correctly classified a maximum of 

378 samples of oceanic arcs out of 381 with a success ratio of 99.21% at the second 

level, and 98 samples of oceanic back-arc basins out of 106 with a success ratio of 

92.45% at sixth level.  

The second tree correctly classified maximum 378 samples of oceanic arcs out of 381 

with a success ratio of 99.21% at the second level and 99 samples of oceanic back-arc 

basins out of 106 with a success ratio of 93.4% at sixth level. 

When the classification results of two decision trees are examined for training and test 

datasets, when a simple structure is to be preferred, second level of both decision trees 

is a good discriminator for oceanic arcs but for a general purpose, sixth level of 

decision trees shall be preferred for discrimination between oceanic arcs and oceanic 

back-arcs. If the origin of rock is considered to be of a back-arc, then the second levels 

of both decision trees shall be applied. 
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Both decision trees much more successfully discriminate oceanic arcs when compared 

to oceanic back-arcs for training and test datasets. 

The first decision tree correctly classified maximum 219 samples of oceanic arcs out 

of 223 with a success ratio of 98.21% at second and third levels and 81 samples of 

oceanic back-arc basins out of 102 with a success ratio of 79.41% sixth levels. The 

second decision tree obtained the same maximum success ratios at the same levels 

with the first decision trees. 

For both decision trees, the classification rate increases with the increasing level of 

depth for oceanic back-arcs until the fourth level, but deeper levels have no significant 

positive or negative effect on the success ratio. 

The greater levels in the first decision tree show fluctuations. The success ratio for 

discrimination of oceanic arcs decreases with the introduction of Nb/Nb*, Nd/Zr and 

TiO2/Yb at the fourth level and Y/Yb and Nb/Yb at sixth level but increases with the 

introduction of Nb/Nb* and Zr/Hf at fifth level.  

However, the success ratio for the discrimination of oceanic arcs at the greater levels 

in the second decision tree continuously decreases with the introduction of Nd/Zr and 

La/Sm at the fourth level, Nb/Nb* and Sm/Y at fifth level and Y/Yb at sixth level. 

This is an indication of overfitting that much deeper decision trees ignoring TiO2-

related ratios would be expected to fail more at external datasets. 

When their success ratios for discrimination of external datasets are examined, if the 

origin of rock is thought to be arc-related then second and third levels of the first 

decision tree, otherwise, fifth and sixth levels of the first decision tree shall be 

preferred. For the second decision tree, the fourth level shall be preferred for 

discrimination between oceanic arcs and oceanic back-arcs. 

The first decision tree obtained a very high success ratio, especially for oceanic arcs. 

The discrimination of oceanic back-arcs is, on the other hand, is a little problematic 
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with a lower success ratio. The success ratio of this decision tree is distributed 

homogeneously through the articles from different locations, with a few exceptions 

for the training and test datasets. 

For training and test datasets, 12 articles out of 19 having 347 samples are classified 

correctly with 100% success ratio. 7 articles have misclassifications with varying 

misclassification ratios. For oceanic arcs, Hickey and Vargas (2013) of Daito, Jolly 

(2007 and 2008) of Greater Antilles Arc, Pearce (1995) of South Sandwich, Pearce 

(2005) of Mariana, Rojas and Agramonte (2017) of Lesser Antilles, Schuth (2004) of 

Solomon Islands, Singer (2007) of Auletian, Tollstrup (2010) of Izu Bonin and 

Yogodzinski (2015) of Western Auletian can be correctly classified with a success 

ratio of 100% at sixth level. Hochstaedter (2001) of Izu Bonin and Peate (1997) of 

Vanuatu can be correctly classified at third or fifth levels, but with the introduction of 

Nd/Zr and TiO2/Yb at fourth level and Y/Yb and Nb/Yb at the sixth level, their 

discrimination ratios decrease with misclassifications. For oceanic back-arcs, 20 

misclassifications out of 106 samples from 5 articles are observed in the 

discrimination between oceanic arcs and oceanic back-arcs. Leat (2004) of Sandwich 

and Pearce (1995) of Lau can be correctly classified with a success ratio of 100%. 

When the classification results for the discrimination of oceanic arcs and oceanic back 

arcs are evaluated for the first decision tree, fifth and sixth levels shall be preferred. 

The first decision tree is also successfully applicable for the tectono-magmatic 

discrimination of external datasets. 

For external datasets, 8 articles out of 18 having 155 samples are classified correctly 

with 100% success ratio. 10 articles have misclassifications with varying 

misclassification ratios. For oceanic back-arcs, Bezos (2009) of Lau Basin and 

Harrison (2003) of East Scotia can be correctly classified with a success ratio of 100%. 

Sinton (2003) of Manus, on the other hand, fails completely for this discrimination. 

The other three articles have misclassifications ranging between 4 and 6 and ratios 

between 20% and 33%. For oceanic arcs, Finney (2008) of Okmok, Jolly (2008) of 
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Greater Antilles Arc, König (2010) of various subduction zones, Leslie (2009) of Fiji 

Arc and Stellin (2002) of Shishaldin can be correctly classified with a success ratio of 

100%. Other articles have misclassifications ranging between 1 and 5 with a broader 

range misclassification ratio as 4-40%. Pearce (1999) of Western Pacific can be 

correctly classified at the third level but misclassifications are observed in higher 

levels of depth. The first decision tree is more successful, especially for the 

discrimination of oceanic back-arcs at higher levels with the introduction of Nd/Zr 

and TiO2/Yb at the fourth level, Nb/Nb* and Zr/Hf at fifth level and Y/Yb and Nb/Yb 

at sixth level. Therefore, when the classification results for discrimination between 

oceanic arcs and oceanic back-arcs are evaluated, fifth and sixth levels of the first 

decision tree shall be preferred for the discrimination between oceanic arc and oceanic 

back-arcs. 

The second decision tree is successfully applicable for the tectono-magmatic 

discrimination of training and test datasets, and the results are quite similar to those 

obtained from the first decision tree but with better success ratios. 

For training and test datasets, 10 articles out of 19 having 212 samples are classified 

correctly with 100% success ratio. 9 articles have misclassifications with varying 

misclassification ratios. For oceanic arcs, Hickey and Vargas (2013) of Daito, Pearce 

(1995) of South Sandwich, Pearce (2005) of Mariana, Rojas and Agramonte (2017) 

of Lesser Antilles, Schuth (2004) of Solomon Islands, Singer (2007) of Auletian, 

Tollstrup (2010) of Izu Bonin and Yogodzinski (2015) of Western Auletian can be 

correctly classified with a success ratio of 100%. Total misclassifications for oceanic 

arcs in discrimination between oceanic arcs and oceanic back arcs are 12 out of 381 

from 14 articles with a range of 1 to 3 for each article. 

The second decision tree is quite successful at oceanic arcs. However, Hochstaedter 

(2001) of Izu Bonin, Jolly (2007 and 2008) of Greater Antilles Arc and Peate (1997) 

of Vanuatu can be correctly classified at second and third levels; however, 

misclassifications are observed in higher levels with introduction of Nd/Zr and La/Sm 
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at fourth level, Nb/Nb* and Sm/Y at fifth level and Y/Yb at sixth level. For oceanic 

back-arcs, Leat (2004) of Sandwich and Pearce (1995) of Lau can be correctly 

classified with a success ratio of 100% at the sixth level. Other articles have 

misclassifications decreasing with increasing level of depth and finally have 19 

misclassifications out of 106 samples from 5 articles.  

The second decision tree is also successfully applicable for the tectono-magmatic 

discrimination of external datasets. 

For external datasets, 7 articles out of 26 having 139 samples are classified correctly 

with 100% success ratio. 19 articles have misclassifications with varying 

misclassification ratios. For oceanic arcs, Finney (2008) of Okmok, Jolly (2008) of 

Greater Antilles Arc, König (2010) of various subduction zones, Leslie (2009) of Fiji 

Arc and Stellin (2002) of Shishaldin can be correctly classified with a success ratio of 

100% at all levels of the second decision tree. Pearce (1999) of Western Pacific, 

Tamura (2011) of Mariana and Wharton (1994) of Viti Levu can be classified at 

second and third levels whereas misclassifications are observed with the introduction 

of Nd/Zr and La/Sm at fourth level, Nb/Nb* and Sm/Y at fifth level and Y/Yb at sixth 

level. Ikeda (2016) of Mariana, Ishizuka (2009) of Izu Bonin, Mortimer (2007) of 

South Fiji and Sinton (2003) of Manus can be classified with misclassifications 

decreasing with increasing levels of depth. 

When the classification results of the second decision tree for both training-test and 

external datasets are evaluated, fourth, fifth, and sixth levels of both decision trees 

shall be preferred with an acceptable amount of misclassifications, especially in 

problematic locations with geochemical, petrological complexities. 

The Th/Nb ratio, which appears as the major discriminator, is a very sensitive 

subduction indicator. The classification this time is very similar to that for arcs and 

oceanic-back-arcs, so the same ideas are valid here. The arcs have a stronger 

subduction component due to the fluxing of slab-derived fluids/melts into the mantle 



 

 

 

218 

 

wedge (e.g. Pearce et al.,2005). This process, however, is weaker in the oceanic back-

arcs with the more contribution from MOR-type mantle, but with less subduction input 

(e.g. Leat et al.,2004). Indeed, this idea, so the sensitivity of Th/Nb based on the slab-

derived influx, is proven by the high classification rates with over 90% arcs being 

allocated towards the higher Th/Nb ratios. Although it is not effective as Th/Nb, Zr/Hf 

appears to be useful as separating half of the arcs with very high efficiency, based on 

the depleted character of the arcs with low Zr/Hf ratios. 

4.2.3. Discrimination Within Non-Subduction Settings 

4.2.3.1. Discrimination Between Group 1 (Mid-Oceanic Ridge and Oceanic 

Plateau) and Group 2 (Oceanic Island and Continental Within-plate) Settings 

For training and test datasets, the first decision tree correctly classified 812 samples 

of group 2 (oceanic islands and continental within-plates) out of 854 with a success 

ratio of 95.08% and 1,082 samples of group 1 (mid-oceanic ridge and oceanic 

plateaus) out of 1,120 with a success ratio of 96.61%. This decision tree is quite 

successful for discrimination of both group 1 and group 2 for training and test datasets. 

Discrimination of group 1 is nearly stable to all levels of the first decision tree with 

small fluctuations. Misclassification of group 1 increase by 34 with the Th/Nb and 

Y/Yb at the third level, but, decreases stepwise at higher levels with introduction of 

Zr/ TiO2, La/Nb, Nb/Nb* and La/Sm at fourth level, La/Nb, Nd/Zr and Nb/Yb at fifth 

level, TiO2/Y, Nb/Nb* and Zr/Hf and Th/La at seventh level. Th/Nb at the sixth level 

has no positive or negative effect on the classification rate of group 1. The first 

decision tree becomes much more successful for the discrimination of group 2 with an 

increasing level of depth and reaches its maximum 812 correct classifications at the 

seventh level with an increase by 49 following the introduction of Zr/Hf and Th/La at 

the seventh level. This may indicate that these two ratios seem to be a good indicator 

for the problematic samples of group 2, which can not be correctly classified at lower 

levels of depth. 
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The second decision tree has a very similar pattern at its increasing levels of depth 

when compared to the first decision tree. For training and test datasets, the second 

decision tree correctly classified 814 samples of group 2 (oceanic islands and 

continental within-plates) out of 854 with a success ratio of 95.32% and 1,082 samples 

of group 1 (mid-oceanic ridge and oceanic plateaus) out of 1,120 with a success ratio 

of 96.61%. The second decision tree is also quite successful for the discrimination of 

both group 1 and group 2 for this discrimination for training and test datasets. 

Discrimination of group 1 is nearly stable to all levels of the first decision tree with 

small fluctuations. Misclassifications of group 1 increase by 34 with the Th/Nb and 

Y/Yb at third level, but, decreases again stepwise at higher level with introduction of 

Zr/TiO2, Th/La, La/Nb, Nb/Nb* and La/Sm at fourth level, Sm/Hf, Nd/Zr and Nb/Yb 

at fifth level, La/Nb, Nb/Nb* and La/Nb, Nb/Nb* and Th/Nb at sixth level and Nb/Y, 

Zr/Hf and Th/La at seventh level have no positive or negative effects on the 

classification rate of group 1. The second decision tree also becomes much more 

successful for the discrimination of group 2 with increasing level of depth and reaches 

to its maximum 814 correct classifications at the seventh level with an increase by 51 

following the introduction of Nb/Y, Zr/Hf, and Th/La at the seventh level. This may 

indicate that these two ratios seem to be a good indicator for the problematic samples 

of group 2, which can not be correctly classified at lower levels of depth. 

When the classification rates of two decision trees for training and test datasets are 

evaluated and compared to each other, and through different levels of depth, the 

seventh levels of both decision trees shall be preferred with only difference of element 

ratios. Therefore, the availability of elements in the dataset shall also be a factor to 

choose the decision tree or a cross-check shall be done in order to compare their 

results. 

For external datasets, the first decision tree correctly classified 489 samples of group 

2 out of 539 with a success ratio of 90.72% and 1,432 samples of group 1 out of 1467 

with a success ratio of 97.61%. For discrimination of group 2 (oceanic islands and 



 

 

 

220 

 

continental within-plates), the success ratio of classification increases with increasing 

level of depth in the first decision tree and reaches its maximum at the seventh level. 

The discrimination of group 1 (mid-oceanic ridges and oceanic plateaus), on the other 

hand, has its maximum success ratio of classification at the second level, but the 

success ratio drastically decreases at the third level by 174 with the introduction of 

Th/Nb and Y/Yb. For higher levels, success ratio increases with increasing level of 

depth of the first decision tree but can not reach to the ratio at the second ratio (82 

correct classifications less than that of the second level with a success ratio difference 

of 3.34%). The introduction of Th/Nb at the sixth level has no positive or negative 

effect on the classification rates. 

When the classification rates of the first decision tree in the discrimination between 

group 1 and group 2 are evaluated, the seventh level of this decision tree shall be 

preferred ignoring the success ratio difference for the discrimination of group 1. The 

decision tree proves itself to be applicable to external datasets without any serious 

classification problems. 

The second decision tree correctly classified 489 samples of group 2 out of 539 with 

a success ratio of 90.72% and 1,432 samples of group 1 out of 1467 with a success 

ratio of 97.61%. The maximum success ratios of two decision trees for discrimination 

of both groups are exactly the same. There are also no differences at all for the 

classifications of group 2 at each level but slight differences are observed at the 

classification of group 1. The success ratio of the second decision tree for group 1 at 

the seventh level is 1,356 with an increase of 6 with respect to the first decision tree. 

The introduction of Th/La, La/Nb, Nb/Nb* and La/Sm at fourth level, Sm/Hf, Nd/Zr 

and Nb/Yb at fifth level, La/Nb, Nb/Nb* and Th/Nb at sixth level, on the other hand, 

is more effective and successful in the discrimination of group 1. This may indicate 

that ratios of Th with La and Nb may be more effective with respect to that with Nb 

only for the discrimination of mid-oceanic ridges and oceanic plateaus in this 

discrimination. 
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When the classification rates of the second decision tree in the discrimination between 

group 1 and group 2 are evaluated and compared with the first decision tree, the 

seventh level of both decision trees shall be preferred ignoring the success ratio 

difference for the discrimination of group 1. The decision trees are both successfully 

applicable to external datasets without any serious classification problems. 

The first decision tree obtained a very high success ratio for all datasets and became 

successful for samples of both group 1 and group 2 of non-subduction settings. The 

success ratio of this decision tree is distributed homogeneously through the articles 

from different locations, with few exceptions for the training and test datasets. 

For training and test datasets, only 23 articles out of 37 having 782 samples are 

classified correctly with 100% success ratio. 14 articles have misclassifications with 

varying misclassification ratios. No settings are entirely classified with 100% success 

ratio. The first decision tree is quite successful for the classification of continental 

within-plates. Only 4 articles out of 12 have misclassifications: Hanghoj (2003) of 

East Greenland, Larsen (2003) of West Greenland, Peate (2003) of East Greenland, 

and Rooney (2012) of Afar Plume have misclassifications of 4, 5, 1 and 1, with 

respectively. Total misclassifications for continental within-plates are 11 out of 376 

samples. Classification ratios also increase with increasing level of depth. For mid-

oceanic ridges, only 2 articles have misclassifications out of 12 articles. Arevalo 

(2010) of varying ridges and Gale (2011) of Mid-Atlantic Ridge have 12 

misclassifications for each. The increasing level of depth and introduction of new 

features have nearly no effect on the classification of Gale (2011) but decrease 

misclassifications in Arevalo (2010). For oceanic islands, Geldmacher (2000) of 

Madeira, Gurenko (2006) of Canary, Millet (2009) of Azores and Woodhead (1996) 

of Mangaia can be correctly classified with a success ratio of 100%. Kokfelt (2006) 

has 53 misclassifications (53%) at the second level, but with an increasing level of 

depth, it decreases down to 15 (19%). Jackson (2010) of Samoa has only 1 

misclassification whereas Salters (2010) of Walvis and Stracke (2003) of Iceland have 

6 and 7 misclassifications, respectively. For oceanic plateaus, only 1 article is 
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problematic, but the others can be correctly classified. Neal (2002) of Kerguelen has 

13 misclassifications with a misclassification ratio of 37%. The increasing level of 

depth has nearly no effect on these misclassifications. 

The first decision tree is more successfully for the tectono-magmatic discrimination 

of external datasets. For external datasets, 18 articles out of 37 having 403 samples 

are classified correctly with 100% success ratio. 19 articles have misclassifications 

with varying misclassification ratios. For external datasets, the first decision tree 

remains to be successful for the classification of continental within-plates. 7 articles 

have a total of 24 misclassifications out of 302 samples from 16 articles. Frey (1996) 

of Bunbury and Olierook (2016) of Bunbury fail with a misclassification ratio of 100% 

and 75%, respectively. Furman (2006) of Afar Plume, Gibson (1995) of Southeastern 

Brazil, Mana et al. (2015) of East African Rift, Shuying (2015) of South China and 

Xu (2001) of SW China have misclassifications in a range of 1-3 with 

misclassification ratios less than 10%. 

For mid-oceanic ridges, 2 articles out of 5 have misclassifications. There are large 

amounts of misclassifications in these articles but with quite a few misclassification 

ratios due to great amount of samples in the articles. Jenner (2012) of varying ridges 

and Kelley (2013) of East Pacific Rise and Mid-Atlantic Ridge have 75 

misclassifications in total with misclassification ratios of 4% and 9%, respectively. 

The second level is the most successful for the discrimination of mid-oceanic ridges, 

but with the introduction of Th/Nb and Y/Yb at the third level, the success ratio falls 

drastically. This pattern of success ratios with an increasing level of depth is also 

observed in oceanic plateaus. For oceanic islands, only 3 articles have 

misclassifications: Gibson (2005) of Tristan, Kitagawa (2008) of Iceland, and Peate 

(2010) of Iceland have misclassifications of 13, 12, and 1, with respectively. For 

oceanic plateaus, Borisova (2002) of Kerguelen fails completely in the classification 

of oceanic plateaus with a misclassification ratio of 100%. Other problematic articles 

are Frey (2002) of Kerguelen and Trela (2015) of Kerguelen with 8 and 13 

misclassifications and 47% and 68% misclassification ratios, respectively. 



 

 

 

223 

 

When classification ratios for the first decision tree through the training and test 

datasets and external datasets are evaluated, it can be considered to be more successful 

for continental within-plates and mid-oceanic ridges and applicable to all settings. The 

second level of the decision tree is more successful at external datasets, but 

considering their success ratios through all samples, the seventh level of this decision 

tree shall be preferred. 

The second decision tree is successfully applicable for the tectono-magmatic 

discrimination of training and test datasets, and the results are quite similar to those 

obtained from the first decision tree but with better success ratios. For training and 

test datasets, 23 articles out of 37 having 782 samples are classified correctly with 

100% success ratio. 14 articles have misclassifications with varying misclassification 

ratios. The second decision tree is also quite successful in the discriminations of 

continental within-plates and mid-oceanic ridges. The same articles have nearly the 

same misclassifications for all tectonic settings in this decision tree. There are no 

significant changes in both classifications and misclassifications in the second 

decision tree with respect to the first one. The only difference is that the second 

decision tree seems to be more successful at intermediate levels such as the fourth and 

fifth levels in the classification of training and test datasets. The second decision tree 

is similar in terms of its applicability for the tectono-magmatic discrimination of 

external datasets when compared to the first decision tree. 

For external datasets, the second decision tree correctly classified 449 samples from 

18 articles out of 36 articles. Just similar to the classification results for training and 

test dataset, the same articles also have nearly the same misclassifications for all 

tectonic settings in this decision tree. There are no significant changes in both 

classifications and misclassifications in the second decision tree with respect to the 

first one. When the classification rates for both decision trees in the discrimination of 

group 1 and group 2 within non-subduction settings are considered, the seventh level 

of both decision trees shall be preferred for the discrimination. 
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The classification within the non-subduction settings is complex, since it includes four 

tectonic settings. More importantly, some lavas from the diverse settings may display 

similar signatures due to their derivation from mantle sources with somewhat similar 

characteristics. With all these complexities, however, the first discrimination factor 

Sm/Yb works very efficiently. Among the two main classes, the MOR-OP pair 

involves melt generation mainly taking place in the spinel field and/or high degrees of 

melting that may cause exhaustion of garnet. Consequently, this results in relatively 

low Sm/Yb ratios. CWP-OI pair, however, involve deeper melting within the stability 

field of garnet, which causes melts with high Sm/Yb ratios. 

4.2.3.2. Discrimination Between Mid-Oceanic Ridges and Oceanic Plateaus 

For both decision trees, the maximum classification rate for oceanic plateaus is 

obtained at the second level. The classification rate for discrimination of mid-oceanic 

ridges, on the other hand, increases drastically at the third level and shows a smooth 

pattern with a slight increase with respect to that in third level. However, the maximum 

classification rate for mid-oceanic ridges is obtained at the highest level of depth for 

both decision trees. 

For training and test datasets, the first decision tree correctly classified 176 samples 

of oceanic plateaus out of 211 with a success ratio of 83.41% at the second level and 

907 samples of mid-oceanic ridges out of 909 with a success ratio of 99.78% at sixth 

level. The first decision tree is quite successful at the discrimination of mid-oceanic 

ridges with only 2 misclassifications. 

The introduction of Th/La and Nb/Nb* at the sixth level is quite successful 

discriminating feature for mid-oceanic ridges increasing the correct classifications by 

12. However, the most effective level of the first decision tree is the third level, in 

which Nb/TiO2 is introduced, increasing correct classifications by 147. The 

classification rate of oceanic plateaus is at its maximum at the second level but 
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decreases drastically by 58 with the introduction of Nb/TiO2 at third level. This 

decrease can be eliminated with the introduction of Th/Y and Zr/Y at fourth level. 

Starting from the fourth level, classification rate of oceanic plateaus shows 

fluctuations through its highest level, and the sixth level has only 9 less correct 

classifications with respect to the second level.  

When classification rates of the first decision tree for the discrimination between 

oceanic plateaus and mid-oceanic ridges for training and test datasets are evaluated, 

even though the maximum classification rate for oceanic plateaus are obtained at the 

second level, the sixth level shall be preferred for the discrimination. 

The second decision tree correctly classified 176 samples of oceanic plateaus out of 

211 with a success ratio of 83.41% at the second level and 906 samples of mid-oceanic 

ridges out of 909 with a success ratio of 99.67% at sixth and seventh levels. The first 

decision tree is quite successful at the discrimination of mid-oceanic ridges with only 

3 misclassifications. The introduction of Th/La, La/Y, and Zr/Nb at sixth level and 

Sm/Y at seventh level is quite a successful discriminating feature for mid-oceanic 

ridges increasing the correct classifications by 9. However, the most effective level of 

the first decision tree is the third level, which has the introduction of Zr/Nb, increasing 

correct classifications by 139. The classification rate of oceanic plateaus is at its 

maximum at the second level but decreases drastically by 55 with the introduction of 

Nb/Nb at third level. This decrease can be eliminated with the introduction of Sm/Yb 

and Zr/Hf at fourth level, Zr/Nb, La/Nb, Y/Yb and Zr/Hf at fifth level. Starting from 

the fifth level, classification rate of oceanic plateaus shows fluctuations through its 

highest level, and seventh level has only 5 less correct classifications with respect to 

the second level.  

When classification rates of the second decision tree for the discrimination between 

oceanic plateaus and mid-oceanic ridges for training and test datasets are evaluated, 

even though the maximum classification rate for oceanic plateaus are obtained at the 

second level, the seventh level shall be preferred for the discrimination. As a summary, 
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the highest levels of both decision trees shall be preferred separately or together for 

cross-check. 

For external datasets, the first tree correctly classified 113 samples of oceanic plateaus 

out of 211 with a success ratio of 53.55% and 1,277 samples of mid-oceanic ridges 

out of 1,304 with a success ratio of 97.93%. The second decision tree is very similar 

to the first decision tree with only 7 less classification for mid-oceanic ridges. Both 

decision trees fail for the discrimination of the oceanic plateaus for external datasets 

with only a 53.55% maximum success ratio at their second levels. The other levels 

can only reach half of this success ratio. Therefore, for the classification of oceanic 

plateaus in the discrimination between oceanic plateau and mid-oceanic ridges, 

geochemical features may not be sufficient for this external dataset with requirement 

of additional information. For both decision trees, the seventh levels shall be preferred 

when their applicability to training and test and external datasets are evaluated, just 

considering any risk of the failure for classification of oceanic plateaus for external 

datasets. 

The first decision tree obtained a very high success ratio for all datasets and became 

successful for samples of mid-oceanic ridges but have major failures for the 

discrimination of oceanic plateaus, especially in external datasets. The success ratio 

of this decision tree is distributed homogeneously through the articles from different 

locations, with few exceptions for the training and test datasets. 

For training and test datasets, 11 articles out of 16 having 397 samples are classified 

correctly with 100% success ratio, and all of these are the articles of mid-oceanic 

ridges. 5 articles have misclassifications with varying misclassification ratios. Mid-

oceanic ridges are almost perfectly classified with only 2 misclassifications out of 

1120 samples.  

For oceanic plateaus, the first decision tree is the most successful at classification of 

Tim (2011) of Manihiki with 2 misclassifications and 85% success ratio. For other 

three articles, Fitton (2004) of Ontong Java, Neal (2002) of Kerguelen and Sano 
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(2012) of Shatsky have 10, 8, and 24 misclassifications with ratios of 16%, 23% and 

24%, with respectively. These ratios are acceptable for training and test datasets 

considering the geological, geochemical and petrological complexity of oceanic 

plateaus and their similarity to mid-oceanic ridges. However, this complexity makes 

it more difficult for decision trees to be applicable into external datasets and complete 

failures can be observed.   

For this reason, the first decision tree is still applicable and quite successful to mid-

oceanic ridges in discrimination between mid-oceanic ridges and oceanic plateaus, but 

major failures at the discrimination of oceanic plateaus are observed. 

For external datasets, only 2 articles out of 14 having 36 samples are classified 

correctly with 100% success ratio, and all of these are the articles of mid-oceanic 

ridges. 12 articles have misclassifications with varying misclassification ratios. Mid-

oceanic ridges are quite successfully classified with 27 misclassifications out of 1,304 

samples. For oceanic plateaus, Borisova (2002) of Kerguelen and Trela (2015) of 

Kerguelen completely fail with misclassification ratio of 100%. White (2004) of 

Ontong Java and Weis (2002) of Kerguelen are the most acceptable classifications 

with misclassification ratios less than 50% but all others have misclassification ratios 

greater than 50%. 

The second decision tree is successfully applicable for the tectono-magmatic 

discrimination of training and test datasets, and the results are quite similar to those 

obtained from the first decision tree but with better success ratios. 

Just similar to the classification results for training and test dataset, the same articles 

also have nearly the same misclassifications for all tectonic settings in this decision 

tree. There are no significant changes in both classifications and misclassifications in 

the second decision tree with respect to the first one. 

The discrimination between MOR and oceanic plateaus appears to be a difficult task. 

However, regarding the training and test sets Th/Y ratio achieves to distinguish a good 



 

 

 

228 

 

portion of MOR samples at the first level. MORBs are known to largely tap the 

depleted mantle, associated with moderate to high degrees of partial melting (e.g. 

Zindler and Hart 1986; Klein and Langmuir 1987; Niu et al.,1996). OPs, on the other 

hand, are believed to involve plume sources with an intrinsic depleted component (e.g. 

Kerr et al.,1995; Fitton et al.,2003). However, the depletion levels are more extreme 

in MORs, perhaps owing to the presence of ultra-depleted, D-DMM-type mantle 

domains (e.g. Niu and Batiza 1997; Workman and Hart 2005). Thus, Th/Y ratios are 

lower for at least some MORs, which in turn enables their discrimination at the upper 

levels from OPs. In spite of relatively high classification rates in training and test sets, 

the misclassifications encountered in the OP samples appear to be the generation of 

melts with very similar characteristics to some MORs (Figure 4.7), which in turn is 

linked to the similarity of their mantle sources. 

 

 

Figure 4.7. Comparison of spider-diagrams between samples from oceanic plateaus misclassified as 

mid-ocean ridges and samples of mid-ocean ridges correctly classified (normalization coefficients are 

based on Sun and McDonough, 1995) 
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4.2.3.3. Discrimination Between Oceanic Islands and Continental Within-plates 

For training and test datasets, the first decision tree correctly classified 431 samples 

of oceanic islands out of 478 with a success ratio of 90.17% at the eighth level and 

345 samples of continental within-plates out of 376 with a success ratio of 91.76% at 

the eighth level. Classification rates of the first decision tree in discrimination of 

oceanic islands and continental within-plates are increasing for both the oceanic 

islands and continental within-plates with increasing level of depth and reach to their 

maximum level at the deepest level. The introduction of each level to the first decision 

tree has a positive impact for discrimination of either oceanic islands or continental 

within-plates or even both. Therefore, when the classification rates of first decision 

tree are evaluated, the eighth level shall be preferred. 

The second decision tree correctly classified 445 samples of oceanic islands out of 

478 with a success ratio of 93.10% and 327 samples of continental within-plates out 

of 376 with a success ratio of 86.97%. The first decision tree is more successful for 

the discrimination of continental within-plates, whereas the second decision tree is 

more successful for that of oceanic islands. 

The classification ratios of the second decision tree are continuously increasing from 

the third level to its eighth level. However, introduction of Th/Nb and Sm/Nb at fifth 

level, Th/Nb, Sm/Nb, Zr/Y and Zr/Hf at sixth level, Sm/Nd, Y/Yb, Zr/Yb and Nb/Yb 

at seventh level has no positive or negative effect for discrimination of either oceanic 

islands or continental within-plates. 

Similar to the first decision tree, when the classification rates of the second decision 

tree for discrimination of oceanic islands and continental within-plates are evaluated, 

the eighth level shall be preferred. 

For external datasets, the first tree correctly classified 63 samples of oceanic islands 

out of 237 with a success ratio of 26.25% and 251 samples of continental within-plates 

out of 302 with a success ratio of 83.11%. The second decision tree is very similar to 
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the first decision tree, with only one more classification for oceanic islands. Both 

decision trees fail for the discrimination of the oceanic islands for external datasets 

with only 26.25% maximum success ratio at their eighth levels. The other levels have 

a similar success ratio to that level. Therefore, for the classification of oceanic plateaus 

in the discrimination between oceanic islands and continental within-plates, 

geochemical features may not be sufficient for this external dataset with requirement 

of additional information. For both decision trees, eighth levels shall be preferred 

when their applicability to training and test and external datasets are evaluated, just 

considering any risk of the failure for classification of oceanic plateaus for external 

datasets. 

The first decision tree obtained a very high success ratio for all datasets and became 

successful for samples of both oceanic islands and continental within-plates in training 

and test datasets.  

The success ratio of this decision tree is distributed homogeneously through the 

articles from different locations, with a few exceptions for the training and test 

datasets. For training and test datasets, only 7 articles out of 21 having 177 samples 

are classified correctly with 100% success ratio. 14 articles have misclassifications 

with varying misclassification ratios.  

For continental within-plates, Aviado (2015) of West Antarctic and Peate (2003) of 

East Greenland, on the other hand, is correctly classified at the seventh level of the 

first decision tree. Mirnejad (2006) of Leucite Hills is correctly classified at the second 

level, but misclassifications are observed at higher levels. For oceanic islands, 

Gurenko (2006) of Canary has misclassifications with ratio of 63%.  

The overall classifications for both oceanic islands and continental within-plates are 

quite high, and misclassifications are homogeneously distributed through articles for 

training and datasets other than these articles, misclassifications ranging between 2% 

and 35%. 
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For external datasets, only 3 articles out of 22 having 74 samples are classified 

correctly with 100% success ratio. 19 articles have misclassifications with varying 

misclassification ratios.  

For continental within-plates, Carlson (1996) of South Brazil, Gibson (1995) of 

Southeast Brazil, and Leroex (2003) of Africa can be classified correctly with 

classification ratio of 100%. Endress (2011) of Egypt, Xu (2001) of SW China, and 

Gibson (1997) of Trindade are articles failed at classification of the first decision tree 

in discrimination between oceanic islands and continental within-plates. The other 

articles have few misclassifications with relatively small misclassification ratios.  

For oceanic islands, on the other hand, classification of oceanic islands failed as all 

articles have major misclassifications with the misclassification ratios ranging from 

34% to a complete failure of 100% for Morgan (2009) of Hawaii. 

The second decision tree is similar to those obtained from the first decision tree.  

The same articles have nearly the same misclassifications for all tectonic settings in 

this decision tree. There are no significant changes in both classifications and 

misclassifications in the second decision tree with respect to the first one. The 

differences are Gibson (2000) of picrites also has misclassifications at the latest level 

of this decision tree. Johnson (2005) of Siberia has much higher misclassification ratio 

of 78%. Woodhead (1996) of Mangaia can be classified correctly with 100% ratio. 

There are also fewer changes in misclassifications of other articles, but no other major 

differences are observed between two decision trees for training and test datasets. 

The classification results and ratios for the external datasets are also quite similar 

between two decision trees. Gibson (1995) of Southeast Brazil and Leroex (2003) of 

Africa can also be correctly classified with second decision trees.  

Misclassifications also show slight fluctuations but nearly the same when compared 

to that of the first decision tree. 
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The discrimination between CWP and OI probably constitutes the most challenging 

classification due to compositional resemblance of lavas generated in these settings, 

which arise from their derivation from similar mantle sources and under similar degree 

of partial melting. Since they include no or minimal subduction component in most 

cases, subduction-sensitive ratios Th/Nb and Nb/Nb* do not work at the uppermost 

level. However, some CWP lavas are result of very low degree of melting under great 

depths. These ones, with potassic/ultrapotassic compositions, are incredibly enriched 

in incompatible elements. Thus, a ratio including a highly incompatible element and 

compatible element that can be retained by garnet (like Nb/Y) can be useful for the 

first order classification. 

  

4.3. Comparison with Traditional Discrimination Methods 

In this section, the decision trees are compared with traditional discrimination methods 

to understand i) if there is any advantage of using them, and ii) to what extent they are 

successful over the traditional methods. In fact, when the traditional methods are 

considered, none of them appear to be able to discriminate all seven tectonic settings. 

Such result is actually expected since the discrimination of all tectonic settings on a 

single plot is extremely difficult with the limited number of elements used. 

Furthermore, considering the published diagrams thus far, even their combination is 

not able to distinguish all tectonic settings. Thus, in this respect, using the decision 

trees can be very advantageous in the tectonomagmatic characterization of a sample 

with no known affinity. Though they can be useful, the applicability of published 

diagrams seems to be limited compared to the decision trees. For the discrimination 

between subduction and non-subduction settings, the ternary diagram of Wood (1980) 

and bivariate diagrams of Pearce (1983) and Saccani (2015) can be applied, whereas 

for discrimination within subduction settings, Saccani (2015) is useful. However, no 

traditional discrimination method is available for discrimination within non-

subduction settings, which can be compared with the decision trees.  



 

 

 

233 

 

4.3.1. Wood (1980) for Discrimination Between Subduction and Non-Subduction 

Settings 

The ternary diagram of Wood (1980) using Hf/3-Th-Nb/16 can be used in order to 

discriminate between subduction and non-subduction settings. Samples of both 

subduction (Figure 4.8) and non-subduction (Figure 4.9) settings are plotted in the 

diagram separately. Samples of subduction settings are classified with a higher success 

ratio when compared to those of non-subduction settings. However, the success ratio 

is about 80% (Figure 4.8). Some of the samples are plotted in unidentified regions 

whereas others mainly fall into N-MORB with E-MORB, tholeiitic within-plate 

basalts, and alkaline within-plate basalts with decreasing frequency.  

 

 

Figure 4.8. Samples of subduction settings plotted on Wood (1980) diagram 



 

 

 

234 

 

 

Samples of non-subduction settings are, on the other hand, obtained a relatively lower 

success ratio from the diagram of Wood (1980). Th enrichment in samples resulted in 

the plot of these samples to calc-alkaline field, and Hf enrichment resulted in the plot 

of samples to unidentified field (Figure 4.9). There are a large number of samples 

plotted in the unidentified fields, which decreasing the success ratio of below 70%. 

When these diagrams are compared to decision trees, decision trees are much more 

successful in discrimination of both subduction and non-subduction settings. 

 

 

Figure 4.9. Samples of non-subduction settings plotted on Wood (1980) diagram 
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4.3.2. Pearce and Peate (1995) for Discrimination Between Subduction and Non-

Subduction Settings 

The bivariate diagram of Pearce and Peate (1995) using Th/Yb and Nb/Yb can be used 

in order to discriminate between subduction and non-subduction settings. Samples of 

both subduction (Figure 4.10) and non-subduction (Figure 4.11) settings are plotted in 

the diagram separately. Samples of non-subduction settings are classified with a 

higher success ratio when compared to those of subduction samples. A significant 

amount of samples from subduction settings fall into MORB array or to the field below 

the MORB array. The success ratio is about 80%. Samples from non-subduction 

settings generally fall into MORB array. However, there is misclassification of about 

80%, due to the samples plotting into subduction field (above the MORB array). When 

these diagrams are compared to decision trees, decision trees are much more 

successful in discrimination of both subduction and non-subduction settings. 

 

Figure 4.10. Samples of subduction settings plotted on Pearce and Peate (1995) diagram 
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Figure 4.11. Samples of non-subduction settings plotted on Pearce and Peate (1995) diagram 

 

4.3.3. Saccani (2015) for Discrimination Between Subduction and Non-

Subduction Settings and Within Subduction Settings 

Bivariate diagram of Saccani (2015) using ThN and NbN can be used in order to 

discriminate between subduction and non-subduction settings. The diagram can also 

be used in order to discriminate within subduction settings and to discriminate arc 

settings from back-arc settings. Samples of subduction settings are plotted in the 

diagram (Figure 4.12). A large amount of samples is plotted in the field defined as 

divergent plate and within-plate settings. Samples of non-subduction settings are 

plotted in the diagram (Figure 4.13). Saccani (2015) is relatively more successful in 

discrimination of non-subduction samples with respect to subduction samples. The 

samples show a linear trend in overall. However, a large amount of samples is still 

misclassified as convergent plate setting (nascent forearc). 
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Figure 4.12. Samples of subduction settings plotted on Saccani (2015) diagram 

 

 

Figure 4.13. Samples of non-subduction settings plotted on Saccani (2015) diagram 
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Samples of arc settings are plotted in the diagram (Figure 4.14). Saccani (2015) is 

relatively more successful in discrimination of arc samples with respect to back-arc 

samples. However, there are samples misclassified as divergent plate and within-plate 

settings. Many samples are also plotted in the BABB region.  

 

Figure 4.14. Samples of arc settings plotted on Saccani (2015) diagram 

 

Samples of back-arc settings are plotted in the diagram (Figure 4.15). For back-arc 

settings, the relative ratio of misclassified samples is higher with respect to the 

discrimination of other settings (subduction, non-subduction, and arc), and Saccani 

(2015) has the lowest success ratio at the discrimination of back-arc settings. The 

samples are misclassified either as divergent plate and within-plate settings or arc 

setting. 
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Figure 4.15. Samples of back-arc settings plotted on Saccani (2015) diagram 

When these diagrams are evaluated, it can be seen that decision trees are more 

successful than the traditional diagrams on the discrimination between subduction and 

non-subduction settings, within subduction settings (between arc and back-arc 

settings). 

 

4.4. Recommended Decision Trees for Discriminations 

4.4.1. Recommended Decision Trees for Discrimination between Subduction and 

Non-Subduction 

One decision stump (single-level decision tree) and two decision trees are constructed 

for discrimination between subduction and non-subduction. The decision tree cannot 

be longer simplified as it has only one level. It is also not necessary to simplify the 

third (alternative) decision tree as it has only two levels and both levels are necessary. 
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The second decision tree, on the other hand, can be simplified to the second level 

(Figure 4.16). 

 

 

Figure 4.16. Recommended simplified version of the first decision tree for the discrimination between 

subduction and non-subduction 

 

With the simplification in the second decision tree, the success ratio decreases by 

0.15% and increase in misclassifications by 4. Therefore, it can be considered that the 

simplified version of the first decision tree can also be used with losing an insignificant 

rate of success in the discrimination between subduction and non-subduction settings. 

4.4.2. Recommended Decision Trees for Discrimination between Arc and Back-

arc 

Simplified versions for both decision trees constructed for the discrimination between 

arc and back-arc settings are proposed. 

The decision trees are simplified to the second level of the original decision tree, with 

a decrease in success ratio of 0.89% for the first decision tree (Figure 4.17) and 0.75% 

for the second decision tree (Figure 4.18) with an increase in misclassifications by 6 

and 5, with respectively. 
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Figure 4.17. Recommended simplified version of the first decision tree for the discrimination between 

arc and back-arc settings 

 

 

Figure 4.18. Recommended simplified version of the alternative decision tree for the discrimination 

between arc and back-arc settings 

 

Therefore, it can be considered that the simplified version of both decision trees can 

also be used with losing an insignificant rate of success in the discrimination between 

arc and back-arc settings. 
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4.4.3. Recommended Decision Trees for Discrimination between Oceanic Arc 

and Continental Arc 

Simplified versions for both decision tree constructed for the discrimination between 

oceanic arc and continental arc settings are proposed. The decision trees are simplified 

with a decrease in success ratio of 2.66% for the first decision tree (Figure 4.19) and 

8.90% for the second decision tree (Error! Reference source not found.) with an i

ncrease in misclassifications by 15 and 50, with respectively. 

Therefore, it can be considered that the simplified version of both decision trees can 

also be used with losing a relatively insignificant rate of success in the discrimination 

between oceanic arc and continental arc settings. 

4.4.4. Recommended Decision Trees for Discrimination between Oceanic and 

Continental Settings 

Simplified versions for both decision trees constructed for the discrimination between 

arc and back-arc settings are proposed. The decision trees are simplified with a 

decrease in success ratio of 7.03% for the first decision tree (Figure 4.21) and 6.28% 

for the second decision tree (Figure 4.22) with an increase in misclassifications by 47 

and 42, with respectively. 

Therefore, it can be considered that the simplified version of both decision trees can 

also be used with losing a relatively insignificant rate of success in the discrimination 

between oceanic arc and continental arc settings. 
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Figure 4.19. Recommended simplified version of the first decision tree for the discrimination between Oceanic Arc and Continental Arc 
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Figure 4.20. Recommended simplified version of the first decision tree for the discrimination between Oceanic Arc and Continental Arc 
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Figure 4.21. Recommended simplified version of the first decision tree for the 

discrimination between oceanic and continental settings 
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Figure 4.22. Recommended simplified version of the second decision tree for the discrimination between oceanic and continental settings 
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4.4.5. Recommended Decision Trees for Discrimination between Oceanic Arc 

and Back-arc 

Only one simplified version for both decision tree (Figure 4.23) constructed for the 

discrimination between oceanic arc and oceanic back-arc settings is proposed. 

The decision tree is simplified with a decrease in success ratio of 7.39% for both 

decision trees with an increase in misclassifications by 36. 

Therefore, it can be considered that the simplified version of both decision trees can 

also be used with losing a relatively insignificant rate of success in the discrimination 

between oceanic and settings. 

4.4.6. Recommended Decision Trees for Discrimination between Group 1 and 

Group 2 of Non-Subduction Settings 

Only one simplified version for both decision tree (Figure 4.24) constructed for the 

discrimination between MOR+OP (Group 1) and OI+CWP (Group 2) is proposed. 

The decision tree is simplified with a decrease in success ratio of 2.93% for both 

decision trees with an increase in misclassifications by 58. 

Therefore, it can be considered that the simplified version can also be used with losing 

an insignificant rate of success in the discrimination between MOR+OP and OI+CWP. 

4.4.7. Recommended Decision Trees for Discrimination between Mid-Ocean 

Ridges and Oceanic Plateaus  

Simplified versions for both decision trees constructed for the discrimination between 

MOR and OP are proposed. 

The decision trees are simplified with a decrease in success ratio of 1.96% for the first 

decision tree (Figure 4.26) and 3.92% for the second decision tree (Figure 4.28) with 

an increase in misclassifications by 22 and 44, with respectively. 
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Figure 4.23. Recommended simplified version for the discrimination between oceanic arc and back-arc basin settings 
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Figure 4.24. Recommended simplified version of the first decision tree for the discrimination MOR+OP 

and OI+CWP 
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Figure 4.26. Recommended simplified version of the first decision tree for the discrimination between 

MOR and OP 
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Figure 4.28. Recommended simplified version of the second decision tree for the discrimination between MOR and OP 
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Therefore, it can be considered that the simplified version of both decision trees can 

also be used with losing a relatively insignificant rate of success in the discrimination 

between MOR and OP. 

4.4.8. Recommended Decision Trees for Discrimination between Oceanic Islands 

and Continental Within-Plates 

Simplified versions for both decision trees constructed for the discrimination between 

OI and CWP are proposed. 

The decision trees are simplified with a decrease in success ratio of 4.68% for the first 

decision tree (Figure 4.30) and 5.26% for the second decision tree (Figure 4.31) with 

an increase in misclassifications by 40 and 45, with respectively. 

Therefore, it can be considered that the simplified version of both decision trees can 

also be used with losing a relatively insignificant rate of success in the discrimination 

between OI and CWP. 
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Figure 4.30. Recommended simplified version of the first decision tree for the discrimination between Ocean Islands and Continental Within-Plate 
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Figure 4.31. Recommended simplified version of the alternative decision tree for the discrimination 

between Ocean Islands and Continental Within-Plate  
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CHAPTER 5  

 

5. CONCLUSIONS 

 

Decision trees are constructed for the tectono-magmatic discrimination of mafic 

igneous rocks in order to discriminate between (1) subduction and non-subduction 

settings, (2) arc-related and back-arc-related settings within subduction settings, (3) 

oceanic arc and continental arc within arc-related settings, (4) oceanic and continental 

settings within subduction settings, (5) oceanic arc and oceanic back-arc within 

subduction-related oceanic settings, (6) mid-oceanic ridge + oceanic plateau and 

oceanic island + continental within-plate within non-subduction settings, (7) mid-

oceanic ridge and oceanic plateau within non-subduction settings and (8) oceanic 

island and continental within-plate within non-subduction settings. 

For the discrimination between subduction and non-subduction settings, one decision 

stump and two decision trees are constructed. The decision trees have 4 and 2 levels 

of depth, with respectively. The element ratios used in these trees are Th/Nb, Nb/Nb*, 

TiO2/Yb, Zr/Nb, La/Nb and Nb/Y. All decision trees discriminated successfully with 

a success ratio of 97-99% for non-subduction and 86-88% for subduction settings. 

Most journals in the dataset are correctly classified with 100% success ratio.  

Within subduction settings, for discrimination between arc and back-arc-related 

settings, two decision trees are constructed. The decision trees have 5 levels of depth. 

The element ratios used in these trees are Nb/Nb*, Nd/Zr, TiO2/Y, Nd/TiO2, Y/Yb, 

Zr/Hf, Zr/Nb, Zr/Y and Y/Yb. All decision trees discriminated successfully with a 

success ratio of 98% for arc and 83-86% for back-arc-related settings. There is no 

difference between two decision trees for the discrimination for arc-related settings.  
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Within arc-related settings, for discrimination between oceanic arcs and continental 

arcs, two decision trees are constructed. The decision trees have 7 levels of depth. The 

element ratios used in these trees are Zr/TiO2, Th/Nb, La/Nb, Nd/TiO2, Zr/Yb, La/Yb, 

Y/Yb, Sm/Hf, Zr/Hf, Nb/Nb*, Zr/Sm, La/Nb, Nb/Y, Th/Y, Sm/Y, Th/La, Zr/Y, La/Y, 

Sm/Nd and Zr/Nb. All decision trees discriminated successfully with a success ratio 

of 97-98% for continental arcs and 92-94% for oceanic arcs. 

Within subduction settings, for discrimination between oceanic and continental 

settings, two decision trees are constructed. The decision trees have 6 levels of depth. 

The element ratios used in these trees are Zr/Y, La/Nb, Nd/TiO2, Zr/Nb, Y/Yb, 

TiO2/Y, Nb/Nb*, Zr/Hf, Sm/Hf, La/Yb, Nd/Zr and Sm/Y. All decision trees 

discriminated successfully with a success ratio of 95-96% for oceanic and 83-90% for 

continental settings. The second decision tree is weaker at discrimination of 

continental settings. 

Within subduction-related oceanic settings, for discrimination between oceanic arc 

and oceanic back arcs, two decision trees are constructed. The decision trees have 6 

levels of depth. The element ratios used in these trees are Th/Nb, Sm/Yb, Zr/Hf, 

La/Nb, Nb/Nb*, Nd/Zr, TiO2/Yb, Y/Yb, Nb/Yb, La/Sm and Sm/Y. All decision trees 

discriminated successfully with a success ratio of 99% for oceanic arcs and 92-93% 

for oceanic back arcs. 

Within non-subduction settings, for the discriminaton of mid-oceanic ridge and 

oceanic plateau (group 1) from oceanic island and continental within-plate (group 2), 

two decision trees are constructed. The decision trees have 7 levels of depth. The 

element ratios used in these trees are Sm/Yb, Nd/Zr, Th/Nb, Y/Yb, Zr/TiO2, La/Nb, 

Nb/Nb*, La/Sm, Nb/Yb, TiO2/Y, Zr/Hf, Th/La, Sm/Hf, Nb/Y. All decision trees 

discriminated successfully with a success ratio of 96% for group 1 and 95% for group 

2. 
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Within non-subduction settings, for the discriminaton of mid-ocean ridge and oceanic 

plateau, two decision trees are constructed. The decision trees have 6 and 7 levels of 

depth, with respectively. The element ratios used in these trees are Th/Y, Zr/Hf, 

Nb/TiO2, Zr/Y, Zr/Nb, Th/La, Nb/Nb*, Sm/Yb, Sm/Y, La/Nb, Y/Yb and La/Y. All 

decision trees discriminated successfully with a success ratio of 83% for oceanic 

plateaus and 99% for mid-oceanic ridges. The decision trees are much more successful 

for discrimination of mid-oceanic ridges. 

Within non-subduction settings, for the discriminaton of oceanic island and 

continental within-plate, two decision trees are constructed. The decision trees have 8 

levels of depth. The element ratios used in these trees are Nb/Y, Zr/Yb, Sm/Nb, Zr/Y, 

Th/Nb, TiO2/Y, Nb/TiO2, Y/Yb, Zr/Hf, Sm/Nd, Th/La, Sm/Yb, La/Y, Zr/Nb, La/Sm, 

Y/Yb and Nb/Yb. All decision trees discriminated successfully with a success ratio of 

90% for oceanic islands and 91% for continental within-plate. 

The success ratios for external datasets are also similar to the training set for nearly 

all decision trees, avoiding any risk of underfitting and overfitting. The decision trees 

only fail in external datasets for the discrimination of oceanic plateau from mid-ocean 

ridge (54%) and for the discrimination of continental within-plate from oceanic island 

(26%). In these discriminations, two tectonic settings (oceanic plateaus and 

continental within-plates) cannot be discriminated in external datasets. 

A final recommendation for the decision trees is made by simplifying decision trees 

to a certain level of depth in a cost of an ignorable loss in success ratio. 

There are no traditional discrimination methods available in literature to discriminate 

all tectonic settings included in this study. There are few diagrams discriminating 

subduction settings from non-subduction settings and discriminating within 

subduction setting between arc and back-arc settings. The decision trees constructed 

in this study are more successful when compared to traditional methods. 

Discrimination methods constructed with decision tree can only classify three tectonic 
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settings. Decision trees constructed using other modern methods such as support 

vector machines or random forests tend to memorize the datasets achieving high 

success ratio but tend to overfit and fail at external datasets, with different 

characteristics related to training set. All modern methods use online databases such 

as GeoRoc or PetDB. They also use mobile elements, isotope ratios and absolute 

values of elements. Therefore, their success falls drastically in external datasets. 
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