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ABSTRACT

ELECTROMAGNETIC INTERACTION COMPLEXITY REDUCTION
USING DEEP LEARNING

Karaosmanoğlu, Barışcan

Ph.D., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Özgür Ergül

December 2019, 125 pages

In this thesis, we present a novel approach to accelerate electromagnetic simulations

by the multilevel fast multipole algorithm (MLFMA). The strategy is based on a pro-

gressive elimination of electromagnetic interactions, resulting in trimmed tree struc-

tures, during iterative solutions. To systematically perform such eliminations, arti-

ficial neural network (ANN) models are constructed and trained to estimate errors

in updated surface current coefficients. These column eliminations are supported by

straightforward row eliminations, leading to increasingly sparse tree structures and

matrix equations as iterations continue. We show that the proposed implementation,

namely trimmed MLFMA (T-MLFMA), leads to significantly accelerated electro-

magnetic simulations of large-scale objects, while the accuracy is still much better

than the high-frequency techniques. T-MLFMA can be seen as an exemplar of imple-

mentations, where machine learning is successfully integrated into an electromagnetic

solver for enhanced simulations.

Keywords: Integral equations, machine learning, multilevel fast multipole algorithm

(MLFMA)
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ÖZ

ELEKTROMANYETİK ETKİLEŞİM KARMAŞIKLIĞININ DERİN
ÖĞRENİM KULLANARAK DÜŞÜRÜLMESİ

Karaosmanoğlu, Barışcan

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Özgür Ergül

Aralık 2019, 125 sayfa

Bu tezde, çok seviyeli hızlı çokkutup yöntemi (ÇSHÇY) ile gerçekleştirilen elekt-

romanyetik benzetimlerin hızlandırılması amacıyla yeni bir yaklaşım sunulmuştur.

Strateji, iteratif çözümler esnasında elektromanyetik etkileşimlerin aşamalı olarak

elenmesine ve kırpılmış ağaç yapılarının oluşturulmasına dayalıdır. Bu tür elemeleri

sistematik olarak gerçekleştirmek için, yapay sinir ağı (YSA) modelleri güncellenen

yüzey akım katsayılarındaki hataları tahmin etmek için oluşturulmuş ve eğitilmiştir.

Bununla ilgili sütun elemelerinin doğrudan satır elemeleri ile de desteklenmesiyle,

iterasyonlar devam ettikçe artan seyreklikteki ağaç yapıları ve matris denklemleri

elde edilmiştir. Önerilen kırpılmış ÇSHÇY (K-ÇSHÇY) adındaki uygulamanın, bü-

yük ölçekli nesnelerin elektromanyetik simulasyonlarını önemli ölçüde hızlandırdığı,

yüksek frekans tekniklerinden de çok daha doğru olduğu gösterilmiştir. K-ÇSHÇY,

iyileştirilmiş benzetimler için makine öğreniminin elektromanyetik çözücülere başa-

rılı bir şekilde entegre edildiği bir örnek uygulama olarak görülebilir.

Anahtar Kelimeler: İntegral denklemleri, makine öğrenimi, çok seviyeli hızlı çokku-

tup yöntemi (ÇSHCY)
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CHAPTER 1

INTRODUCTION

Accurate and efficient methods to solve electromagnetic radiation and scattering prob-

lems have extensively been investigated for many years. Among alternatives, the

multilevel fast multipole algorithm (MLFMA) [1, 2] is a well-known method to ac-

celerate electromagnetic analysis based on integral equations. Direct computations of

electromagnetic interactions in the method of moments (MOM) lead to a large com-

putational burden due to the per-iteration complexity of O(N2) for N discretization

elements. MLFMA, on the other hand, calculates the interactions in a grouped man-

ner so that this computational complexity can be reduced toO(N logN) both in terms

of processing time and memory. Its efficiency makes MLFMA a favorable method

to perform matrix-vector multiplications (MVM) in iterative solutions of electromag-

netic problems. At the same time, iteration counts required for solutions must also

be kept at low levels to reach efficient simulations. In this context, selection of the

underlying integral-equation formulation is known to have significant impacts on it-

erative convergence. For example, in the case of perfect electric conductors (PECs),

the combined-field integral equation (CFIE) [3] is often preferred to the electric-field

integral equation (EFIE) and the magnetic-field integral equation (MFIE), wherever

possible (e.g., for closed conductors), although it provides less accurate results in

comparison to EFIE with classical discretization schemes [4–7]. However, even when

CFIE is used, iteration counts for large-scale problems can be excessively large so

that preconditioning techniques [8–10] become inevitable. Recently, parallelization

techniques have also been commonly practiced to further accelerate electromagnetic

simulations. For MLFMA, an efficient parallelization requires advanced partitioning

schemes based on hierarchical strategies [11–13] that can lead to scalable solutions

on hundreds of cores.
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Despite all efforts, some of which are briefly summarized above, electromagnetic

simulations still need to be accelerated to meet challenging requirements in practical

applications. While diverse high-frequency techniques are available in the literature,

their limited accuracy often makes them impractical in many applications. Therefore,

novel strategies are needed to accelerate available methods with minimum losses in

their accuracy. In this thesis, we present a new technique based on systematic modi-

fications of tree structures in MLFMA solutions. Specifically, we introduce trimmed

tree structures that are obtained by sparsifying full tree structures during iterative so-

lutions carried out via MLFMA. The trimming operations need to be performed care-

fully to detect and eliminate unnecessary interactions. For this purpose, we employ

machine learning (ML), which has recently become popular in the literature thanks

to the unique computational opportunities provided by this approach.

Artificial neural networks (ANNs) and their convolutional forms, i.e., convolutional

neural networks (CNNs) [14], have been studied for many years in the context of

regression and classification applications, especially in the computer-vision area [15,

16]. Recently, researches in electromagnetics, including numerical studies, have also

started to benefit from ML techniques. In general, data processes required by elec-

tromagnetic simulations can be accelerated by ML techniques, while pre-processing

and post-processing stages can be enhanced. As particular examples, such techniques

have been used for antenna design and optimization [17,18], visual estimation of scat-

tering solutions [19], and source reconstruction in inverse scattering problems [20].

ML techniques have also been used to accelerate simulations [21], as well as to en-

hance direct solutions of magnetic problems [22]. In all these works, however, ML

techniques are employed as specialized tools and they are not fully integrated into

electromagnetic solvers to make them efficient for simulations of arbitrary geome-

tries.

In the main part of this work, as briefly mentioned above, we present a novel approach

to accelerate large-scale electromagnetic simulations via MLFMA by systematically

trimming tree structures during iterative solutions. For this purpose, ML techniques

are fully integrated into the MLFMA solver for rigorous estimations of converged

coefficients. Specifically, during an iterative solution, the convergence of the equiv-

alent surface current is examined by an ANN, which decides unneeded interactions
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and trims the MLFMA tree structure as the iterations continue. As the tree structure

is progressively sparsified, the processing time per iteration decreases, while the it-

erative convergence is also accelerated. Hence, a remarkable speedup is achieved in

comparison to the full MLFMA, with limited deterioration in the accuracy as opposed

to high-frequency techniques.

As a separate part of this thesis, we present another application of ML techniques in

large-scale electromagnetic simulations of three-dimensional objects [19]. Simula-

tions of electrically large geometries require long solution durations, while meaning-

ful visual results may be obtained at the early stages of a simulation if the available

information is intelligently used. Inspired by the ML-aided super-resolution appli-

cations, we present CNN structures that can provide visual estimations of accurate

solutions, which cannot be obtained otherwise, using approximate and coarse simu-

lations.

Finally, we also present a novel approach of using deep residual CNN structures to

predict electromagnetic scattering error levels in iterative solutions of large-scale ob-

jects [23]. A CNN structure is trained by using surface current images to predict

the error level in the forward scattering. Hence, by using the predicted error in the

forward scattering, one can define alternative convergence criteria.

The chapters in this thesis are organized as follows. In Chapter 2, we present surface

integral equations for the PEC objects starting from Maxwell’s equations. Then, we

briefly show the conversion of the physical problem into a mathematical problem by

using MOM. The following part briefly explains the addition theorem and the stages

of MLFMA. In Chapter 3, we present the trimming scheme and the implementation

of the trimmed MLFMA (T-MLFMA). We show the sparsification of MOM matrices

and explain the basis and testing function trimming operations in detail. Then, we

show the stages of the basis function trimming using ML, starting from generating

datasets to training ML models. In Chapter 4, we present various numerical results

obtained with the developed T-MLFMA implementations. We start with proof-of-

concept simulations and then present various simulations for the performance of T-

MLFMA. In Chapter 5, we show the other applications of ML for electromagnetic

simulations. Finally, in Chapter 6, we summarize the thesis and provide our conclud-
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ing remarks.
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CHAPTER 2

SOLUTIONS OF ELECTROMAGNETICS PROBLEMS USING SURFACE

INTEGRAL EQUATIONS

2.1 Surface Integral Equations

Maxwell’s equations for simple (linear, isotropic, and homogeneous) media and time-

harmonic sources (with exp(−iωt) time dependence) can be written in the frequency

domain as

∇×E(r) = iωµH(r) (2.1)

∇×H(r) = −iωεE(r) + J(r) (2.2)

∇ ·E(r) =
1

ε
ρe(r) (2.3)

∇ ·H(r) = 0, (2.4)

where ω is the angular frequency (ω = 2πf ), and ε and µ represent the permittivity

and the permeability (magnetic permittivity). In the above, E and H are the electric

and magnetic field intensities, while J and ρe are the electric current density and the

electric charge density, respectively, which are related to each other via the continuity

equation as

∇ · J(r) = iωρe. (2.5)

In all these expressions, time-harmonic fields and sources depend on the position r =

xx̂ + yŷ + zẑ. The equivalence principle on general (penetrable and impenetrable)

objects requires both electric and magnetic sources. In this thesis, we consider only

PECs, which require only electric sources.

The Helmholtz equation for the electric field can be obtained directly by evaluating
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the curl of Equation (2.1) and using Equations (2.2) and (2.3) with the identity

∇×∇× f v = ∇∇ · f v −∇2f v, (2.6)

which gives

∇×∇×E(r) = iωµ∇×H(r) (2.7)

∇∇ ·E(r)−∇2E(r) = iωµ
(
− iωεE(r) + J(r)

)
(2.8)

1

ε
∇ρe(r)−∇2E(r) = ω2µεE(r) + iωµJ(r) (2.9)

∇2E(r) + k2E(r) = −iωµJ(r) +
1

ε
∇ρe(r), (2.10)

where k = ω
√
µε is the wavenumber. Similarly, we evaluate the curl of Equation (2.2)

and use Equations (2.1) and (2.4) to obtain the Helmholtz equation for the magnetic

field as

∇×∇×H(r) = −iωε∇×E(r) +∇× J(r) (2.11)

∇∇ ·H(r)−∇2H(r) = −iωε
(
iωµH(r)

)
+∇× J(r) (2.12)

−∇2H(r) = +ω2µεH(r) +∇× J(r) (2.13)

∇2H(r) + k2H(r) = −∇× J(r). (2.14)

The electric and magnetic fields can be written in terms of vector and scalar potentials

as

E(r) = iωAm(r)−∇φe(r) (2.15)

H(r) =
1

µ
∇×Am(r), (2.16)

where Am is the magnetic vector potential and φe is the electric scalar potential. By

applying the Lorentz gauge

∇ ·Am(r) = iωεµφe(r), (2.17)

Helmholtz equations for the potentials can be obtained, which can be written as

∇2φe(r) + k2φe(r) = −1

ε
ρe(r) (2.18)

∇2Am(r) + k2Am(r) = −µJ(r). (2.19)
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The point-source response of Equations (2.18) and (2.19), i.e., the free-space Green’s

function, can be written as

g(r, r′) =
exp(ik|r − r′|)

4π|r − r′|
, (2.20)

where r is the observation point and r′ is the source point. The Helmholtz equations

in (2.18) and (2.19) can be solved for arbitrary electric current and charge densities

by using the homogeneous-space Green’s function. The expression for φe and Am

for arbitrary sources can be written as

φe(r) =
1

ε

∫
dr′g(r, r′)ρe(r

′) (2.21)

Am(r) = µ

∫
dr′g(r, r′)J(r′). (2.22)

Inserting (2.21) and (2.22) into (2.15) and (2.16) gives the electric field and the mag-

netic field in terms of the electric current and charge densities as

E(r) = ikη

∫
dr′
(
J(r′) +

1

k2
∇′ · J(r′)∇

)
g(r, r′) (2.23)

H(r) =

∫
dr′∇g(r, r′)× J(r′), (2.24)

where η =

√
µ

ε
is the intrinsic impedance of the medium. The electric and magnetic

fields can be expressed in terms of integro-differential operators as

E(r) = ηT {J}(r) (2.25)

H(r) = K{J}(r), (2.26)

where

T {X}(r) = ik

∫
dr′
(
X(r′) +

1

k2
∇′ ·X(r′)∇

)
g(r, r′) (2.27)

K{X}(r) =

∫
dr′X(r′)×∇′g(r, r′). (2.28)

The electromagnetics problems involving three-dimensional PEC objects can be for-

mulated by using the equivalence principle, as shown in Figure 2.1. In the equiva-

lent problem, the objects are represented by virtual surfaces and equivalent electric

surface current densities, which lead to zero total electromagnetic fields inside the

virtual surfaces. The outer region of the virtual surfaces is an unbounded free space,

and nonzero electromagnetic fields occur due to incoming and scattered fields. Con-
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Original Problem Equivalent Problem

Metallic

J

J J

Figure 2.1: Applying the equivalence theorem to an electromagnetics problem in-

volving metallic objects.

sider a metallic region D bounded by a surface S as shown in Figure 2.2, where n̂

represents the outward surface normal direction. The equivalent electric surface cur-

rents are related to the tangential components of the electric and magnetic fields at

the boundary as

J(r) = n̂×H(r) (2.29)

−M(r) = n̂×E(r) = 0. (2.30)

The scattered electric and magnetic fields due to J(r) can be calculated by using

(2.25) and (2.26). Using the integro-differential operators, we obtain

n̂×Hsca(r) + n̂×H inc(r) = J(r) (2.31)

n̂×K{J}(r) + n̂×H inc(r) = J(r) (2.32)

n̂×Esca(r) + n̂×Einc(r) = 0 (2.33)

ηn̂× T {J}(r) + n̂×Einc(r) = 0, (2.34)

where Hsca and H inc are incident and scattered magnetic fields, while Esca and Einc

are incident and scattered electric fields. The operator K is commonly seperated into

principal-value and limit parts as

K{X}(r) = KPV {X}(r)− 4π − Ω

4π
n̂×X(r), 0 ≤ Ω ≤ 4π (2.35)

where KPV is the principal-value part and Ω is the solid angle at the observation

point. Using (2.35) and (2.32), the magnetic-field integral equation (MFIE) can be
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Einc, Hinc
n̂

Figure 2.2: Boundary on a PEC surface.

written as

Ω

4π
J(r)− n̂×KPV {J}(r) = n̂×H inc(r). (2.36)

Rearranging the terms in Equation (2.34), the electric-field integral equation (EFIE)

can be written as

−ηn̂× n̂× T {J}(r) = n̂× n̂×Einc(r). (2.37)

2.2 Method of Moments

Electromagnetics problems can be solved numerically by solving dense matrix equa-

tions obtained via MOM [24, 25], which can be generalized as

L{f}(r) = g(r), (2.38)

where L represents the linear operator applied on the unknown vector function f to be

found and g represents the known vector function. In this work, L can be considered

as linear combinations of T and K, while g (namely, the right-hand-side vector or

the excitation vector) includes incident electric and magnetic fields. The unknown

vector function can be expanded as

f(r) ≈
N∑
n=1

a[n]bn(r), (2.39)

where bn (n = 1, . . . , N ) are known basis functions and a represents the unknown

coefficient vector to be found. Testing (2.38) by using testing functions tm (m =

1, . . . , N ) gives∫
drtm(r) ·

N∑
n=1

a[n]L{bn}(r) =

∫
drtm(r) · g(r). (2.40)
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Rearranging the terms in (2.40) leads to

N∑
n=1

a[n]

∫
drtm(r) ·L{bn}(r) =

∫
drtm(r) · g(r), (2.41)

which can be rewritten as a matrix equation as

N∑
n=1

a[n]Z̄[m,n] = w[m], m = 1, 2, . . . , N, (2.42)

where

Z̄[m,n] =

∫
drtm(r) ·L{bn}(r) (2.43)

w[m] =

∫
drtm(r) · g(r). (2.44)

In this study, we apply a Galerkin scheme for the discretization of surface integral

equations, i.e., we use tm(r) and bn(r) as the same set of functions.

2.3 Discretization

Triangular discretizations are widely used to model three-dimensional objects due to

their flexible geometrical representations. To discretize surface integral equations,

we use linear functions, such as the Rao-Wilton-Glisson (RWG) functions [4] that are

defined on surface triangulations. An RWG function is defined on two neighbouring

triangles with a common edge, as shown in Figure 2.3, and it can be written as

bRWG
n (r) =



ln
2An1

(r − rn1), r ∈ Sn1
ln

2An2
(rn2 − r), r ∈ Sn2

0, r ∈ elsewhere,

(2.45)

where ln is the length of the common edge, and An1 and An2 are the surface areas

of the first triangle Sn1 and the second triangle Sn2, respectively. In addition, rn1

and rn2 are the corner points opposite to ln on Sn1 and Sn2. Besides its simplicity,

the RWG functions are divergence-conforming, providing finite charge values every-

where, which can be written as
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Figure 2.3: Illustration of an RWG function.

∇ · bRWG
n (r) =



ln
An1

, r ∈ Sn1

− ln
An2

, r ∈ Sn2

0, r ∈ elsewhere.

(2.46)

Discretizing integro-differential equations MFIE and EFIE in (2.36) and (2.37) gives

N ×N impedance matrices, which can be written as

Z̄
EFIE

[m,n] = iωµ0

∫
Sm

drtm(r) ·
∫
Sn

dr′bn(r′)g0(r, r
′)

+
1

iωε0

∫
Sm

dr∇ · tm(r)

∫
Sn

dr′g0(r, r
′)∇′ · bn(r′) (2.47)

Z̄
MFIE

[m,n] =
1

2

∫
Sm

drtm(r) · bn(r)

+

∫
Sm

drtm(r) · n̂×
∫
PV,Sn

dr′bn(r′)×∇′g0(r, r′), (2.48)

while the right-hand-side vectors can be written as

wEFIE[m] = −
∫
Sm

drtm(r) ·Einc(r), (2.49)

wMFIE[m] = −
∫
Sm

drtm(r) · n̂×H inc(r). (2.50)
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Applying RWG discretization, Z̄EFIE and Z̄
MFIE in (2.47) and (2.48) can be written as

Z̄
EFIE

[m,n, a, b] = iωµ0Ama,nb
∫
Sma

dr(r − rma) ·
∫
Snb

dr′(r′ − rnb)g0(r, r
′)

+
4

iωε0
Ama,nb

∫
Sma

dr

∫
Snb

dr′g0(r, r
′) (2.51)

Z̄
MFIE

[m,n, a, b] = −Ama,nbδma,nb
2

∫
Sma

dr(r − rma) · (r − rnb)

+Ama,nb
∫
Sma

dr(r − rma) · n̂×
∫
PV,Snb

dr′(r′ − rnb)×∇′g0(r, r′), (2.52)

where

Ama,nb =
lmln

4AmaAnb
γmaγnb. (2.53)

In the above, we have γnb, γma = ±1, depending on the direction of the basis and

testing functions on triangles. Also, δma,nb = 1 when the integration is performed

on a shared triangle for the basis and testing functions, while δma,nb = 0 elsewhere.

The integrations in (2.49), (2.50), (2.51), and (2.52) are performed numerically using

Gaussian quadratures [26] and the required singularity extractions due to g0(r, r
′)

and ∇′g0(r, r′) are performed according to [27] and [28].

2.4 Multilevel Fast Multipole Algorithm

Applying MOM to surface formulations gives dense matrix equations, which can be

written as

Z̄ · a = w, (2.54)

where Z̄ is the known N × N impedance matrix, w is the known RHS vector con-

taining the excitation information created by external sources, and a is the unknown

current coefficient vector to be found. The construction of an N × N matrix has a

time and memory complexity ofO(N2). A direct inversion of such a matrix using the

Gaussian elimination method requires O(N3) time complexity, which is a computa-

tional load that cannot be handled by the state-of-the-art computers for large values of

N . Therefore, iterative methods, such as the biconjugate gradient stabilized method

(BiCGStab), generalized minimal residual method (GMRES), and flexible-GMRES

(FGMRES), are preferred for efficient solutions of matrix equations. These iterative

methods are based on Krylov subspace methods, and they require at least one MVM
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Figure 2.4: Recursive clustering of a target object to construct a tree-structure.

per iteration during an iterative solution. A direct MVM still requiresO(N2) compu-

tational operations, making it difficult to solve large-scale problems. Consequently,

the fast multiple method (FMM) was developed for efficient solutions of large-scale

radiation and scattering problems [29, 30]. On the other hand, FMM has O(N3/2)

memory and time complexity, making this method inapplicable as the problem size

grows. A multi-level scheme of FMM, namely the MLFMA [1, 31], fulfills the need

for fast interaction calculations in large-scale problems with O(N logN) memory

and time complexity.

In an MLFMA implementation, a tree-structure is constructed to perform interaction

computations in a group-by-group manner. The object is placed into a box, which

is recursively divided into sub-boxes considering only non-empty domains, as shown
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in Figure 2.4. The recursive division is terminated when the size of the boxes reach

around λ/4 at the lowest level. The constructed tree structure with non-empty boxes

determine the rules for near and far interactions, depending on the distance between

boxes. Applying a one-box-buffer scheme, near-interactions and far-interactions are

determined, which can be shown in a matrix form as

Z̄
N · a + Z̄

F · a = w, (2.55)

where Z̄N is the near-interaction matrix that is calculated directly and stored in mem-

ory, while Z̄
F is the far-interaction matrix that is calculated on-the-fly.

MLFMA is based on the factorization and diagonalization of the Green’s function

using the Gegenbauer’s addition theorem. Factorization of the Green’s function is

expressed as an expansion of spherical wave summation, which can be written as

exp(ik|w + v|)
4π|w + v|

=
ik

4π

∞∑
t=0

(−1)t(2t+ 1)jt(kv)h
(1)
t (kw)Pt(ŵ · v̂), (2.56)

where w and v are vectors in three dimensions and |w| = w > v = |v|. In (2.56), jt

is the spherical Bessel function with order t, h(1)t is the spherical Hankel function of

the first kind with order t, and Pt is the Legendre polynomial. Then, diagonalization

is applied, where the spherical waves are expressed in terms of plane waves by using

the identity

jt(kv)Pt(ŵ · v̂) =
1

4π(i)t

∫
d2k̂ exp(ikk̂ · v)Pt(k̂ · ŵ), (2.57)

where d2k̂ represents the sampling over the unit sphere and k̂ is the radial direction.

We express the diagonalized form of the Green’s function as

exp(ik|w + v|)
4π|w + v|

=
ik

4π

∞∑
t=0

it(2t+ 1)h
(1)
t (kw)

∫
d2k̂ exp(ikk̂ · v)Pt(k̂ · ŵ) (2.58)

=
ik

4π

∫
d2k̂ exp(ikk̂ · v)

∞∑
t=0

it(2t+ 1)h
(1)
t (kw)Pt(k̂ · ŵ). (2.59)

Finally, we define shifting and translation operators as

β(k̂,v) = exp(ikk̂ · v) (2.60)

α(k̂,w) =
∞∑
t=0

it(2t+ 1)h
(1)
t (kw)Pt(k̂ · ŵ) (2.61)
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Figure 2.5: Interaction between a basis and a testing function.

to rewrite the diagonalized form of the Green’s function as

exp(ik|w + v|)
4π|w + v|

=
ik

4π

∫
d2k̂β(k̂,v)α(k̂,w). (2.62)

In practice, the infinite summation in the translation operator is terminated at a finite

value [32], which can be written as

τ ≈ 1.73ka+ 2/15(d0)
2/3(ka)1/3, (2.63)

where a is the box size and d0 is the desired number of accurate digits. The useful

property of the diagonalized Green’s function is that the shifting operator can easily

be decomposed as shown in Figure 2.5, which can be written as

exp(ik|w + v|)
4π|w + v|

=
exp(ik|w + v1 + v2|)

4π|w + v1 + v2|

≈ ik

4π

∫
d2k̂β(k̂,v1)β(k̂,v2)ατ (k̂,w). (2.64)

Using the idea of the decomposed shifting operator in (2.64), we can construct a

group-by-group calculation in a multi-level scheme. In this scheme, β(k̂,v1) and

β(k̂,v2) represent the aggregation and disaggregation operations. Since the multi-

level scheme requires different τ values at each level (box size), sample transforma-

tions between levels are performed via interpolation and anterpolation [33] during the

aggregation and disaggregation stages.
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2.5 Novelties

In this section, we briefly present our works that have build a basis for the main topic

considered in this thesis. We categorize these works as formulations, discretizations,

kernels, preconditioners, and applications.

In the formulation studies, we consider accurate and efficient solutions for both pene-

trable and impenetrable (PEC) objects. Using surface formulations, solutions of pen-

etrable objects are sensitive to object shape and electromagnetic characteristics, such

as permittivity and permeability. For large negative permittivity values and near-zero

permittivity/permeability values, matrix equations obtained by surface formulations

typically become ill-conditioned and/or inaccurate. A modified combined-tangential

formulation (MCTF) [34–38] is presented for fast and accurate solutions of objects

with large negative permittivities. MCTF is compared with the conventional formu-

lations and its superiority is shown in terms of accuracy and iterative convergence.

Similarly, a new mixed formulation [39–42] is presented for rigorous solutions of

objects with near-zero permittivity and/or permittivity values. Numerical compar-

isons show that the conventional formulations mostly fail in terms of accuracy and

convergence, while the new mixed formulation yields a good accuracy and stability

over wide ranges of relative permittivity and permeability values. We also present a

hybrid-field integral equation (HFIE) [43–47] to obtain accurate and efficient solu-

tions for PEC objects with fine geometrical details. Electrically small details cause

challenges for EFIE in terms of iterative convergence. On the other hand, MFIE and

CFIE fail to provide accurate results. In the hybrid formulation, we apply CFIE with

different weights over the given object, where the parts of the object with fine details

are formulated via higher EFIE weights and the parts with large smooth surfaces are

formulated by using higher MFIE weights.

In the context of discretization studies, we present a new approach based on numer-

ical constructions of testing functions [48–51] for improving the accuracy of MFIE

and CFIE with low-order discretizations. Considering numerical solutions, testing

functions are designed by enforcing the compatibility of the MFIE systems with the

accurate coefficients obtained by solving EFIE. We demonstrate accuracy improve-

ments on scattering problems, where the testing functions designed at a single fre-
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quency are used in frequency ranges. The proposed approach is easy to implement

by using existing codes, while it improves the accuracy of MFIE and CFIE without

deteriorating the efficiency of iterative solutions.

In the kernel studies, we eliminate the low-frequency breakdown of the diagonalized

Green’s function by using approximate diagonalization (AD) [52–62] and by using

additional digits via mixed precision arithmetics (MPA) [63–65] instead of hardware-

based fixed numbers of digits. We show that AD is stable for arbitrarily short dis-

tances with respect to wavelength. The diagonalization is based on scaled spherical

functions and plane waves, where a scaling factor is used to stabilize special functions

with small arguments. Optimization of the scaling factor leads to accurate diagonal-

izations, which can be used for efficient simulations of multi-scale objects, multi-level

solutions of potential formulations, and multi-level solutions of objects with near-

zero-index materials. The conventional diagonalization of the Green’s function can

also be stabilized by using MPA for accurate computations of subwavelength interac-

tions. MPA provides a direct remedy for the low-frequency breakdown of the standard

diagonalization based on plane waves and it enables straightforward implementations

for low-frequency problems.

In the preconditioner studies, nested iterative solutions [66,67] using full and approx-

imate MLFMA are presented for efficient analysis of electromagnetic problems. The

developed mechanism is based on preconditioning an iterative solution via another

iterative solution, and this way, nesting multiple solutions as layers.

Finally, in application-based studies, we cover a plethora of applications, such as an-

alyzing and optimizing nanowires [68–79], solving complex metallic and penetrable

structures at optical frequencies [80–84], designing solar cell structures with high ab-

sorption rates [85–88], optimizing photonic crystals [89–92] for beamforming, and

modelling surface corrugations [93, 94]. We also focus efficient combinations of

MLFMA with heuristic optimization algorithms, such as genetic algorithms [95–99],

as well as solutions of large targets [100, 101].
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CHAPTER 3

TRIMMED MULTILEVEL FAST MULTIPOLE ALGORITHM

In this chapter, we present the details of T-MLFMA. First, we explain the application

of the trimming scheme on MOM matrices. Then, we present the trimming scheme on

MLFMA tree structures. Third, we provide the details of trimming testing functions.

Finally, we show the details of the basis-function-trimming implementation using

ML.

3.1 Trimming Scheme on MOM Matrix

Consider the matrix equation in (2.54), where Z̄ is an N ×N matrix. The unknown

a can be calculated within a desired error level by using Krylov subspace vectors,

which can be written as

Kr(Z̄,w) = span{w, Z̄ ·w, Z̄2 ·w, ..., Z̄r−1 ·w}. (3.1)

In this expression, r is the order of the subspace, which is smaller than or equal to

N . The error of the solution is expected to decrease as the iterations continue, i.e.,

as the number of Krylov subspace vectors increases. The decreasing error also

shows that the contributions of the Krylov subspace vectors become smaller as the it-

erations continue, although these contributions can be essential to achieve the desired

error level. In order to have a better understanding of the Krylov subspace vectors,

we investigate the powers of matrix Z̄ and the vectors constituting Equation (3.1)

for a sample problem. To illustrate the concept and elaborate the proposed strategy,

Figure 3.1 depicts pictures of the impedance matrix related to a perfectly conducting

sphere of radius 300 mm. The geometry is illuminated by a plane wave at 1 GHz

and it is discretized with λ/10 triangles, leading to a matrix equation involving 4080

unknowns. The powers of matrix Z̄ for this problem are shown in Figure 3.1, where
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Figure 3.1: Powers of the impedance matrix for a scattering problem involving a 2λ

sphere formulated via CFIE.
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logarithmic scaling is used as

log10

(
Z̄
n∣∣∣∣Z̄n∣∣∣∣
fro

)
, n = 1, 2, 3, 4, 5, 6. (3.2)

Specifically, Z̄n is divided by its Frobenius norm to make clear comparisons between

matrix elements. Due to the nature of iterative solvers, unknown equivalent surface

currents and the corresponding scattered fields on equivalence surfaces converge to

true solutions as iterations proceed. On the other hand, after a number of iterations,

some interactions in an MVM provide smaller contributions to the iteration updates.

It can be observed that some regions of the matrices in Figure 3.1 are significantly

dominant, while the rest become exponentially smaller. Large differences between

matrix elements indicate that only a limited region of the matrix effectively represents

the overall matrix. The vectors of the Krylov subspace for the same problem are

calculated and shown in Figure 3.2. In this plot, the vertical axis indicates the testing

functions, while the subspace vectors are shown in the horizontal axis. The subspace

vectors are calculated as

log10

(
Z̄
n ·w∣∣∣∣Z̄n ·w

∣∣∣∣
2

)
, n = 1, 2, 3, ...N. (3.3)

Most of the subspace vectors converge before n = 20, and the changes in the element

values between the vectors become insignificant after n = 40. Hence, we can omit the

interactions of the converged regions since they provide less significant contributions.

We also observe converging behavior when the same scattering problem is formulated

by using EFIE as well, as depicted in Figure 3.3. In these results, large portions of

the vectors converge before n = 20. Therefore, independent from the formulation,

we observe locally converged regions in MVMs.

The trimming-scheme-integrated iterative solution workflow is shown in Figure 3.4.

In a regular iterative solution, at iteration i, the solver gives vector ai to the MVM

operator and takes back the result vector wi, as shown with the solid arrows. The

dashed arrows represent the trimming process during the iterative solution. Basis

function trimming and testing function trimming processes are performed separately.

In an ideal scenario, we could compare the input vector ai with the final solution a

to determine the converged coefficients. But, since we do not have the final result,

and interactions cannot be checked one by one (otherwise, the complexity would be
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Figure 3.2: Krylov subspace vectors for a scattering problem involving a 2λ sphere

formulated via CFIE.
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Figure 3.3: Krylov subspace vectors for a scattering problem involving a 2λ sphere

formulated via EFIE.
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Trimming

ai

wi Z · a  = w¯

Figure 3.4: Workflow of iterative solutions with trimming method.

O(N2)), we employ ML to predict which interactions can safely be omitted. Specif-

ically, during an iterative solution, the progress in equivalent surface currents are

observed and the corresponding error levels are predicted at each iteration by an ML

technique. The ML technique estimates the error in the surface currents so that the

converged current coefficients (matrix columns) can be omitted in the far-zone in-

teraction computations, leading to an increasingly sparser matrix as the iterations

continue (basis trimming). In a more straightforward manner, the calculated scattered

fields are also compared with the given right-hand-side vector and the matrix rows

corresponding to sufficiently small error values are omitted (testing trimming). We

present the details of the implemented ML-based basis trimming and straightforward

testing trimming in the following sections of this chapter.

To illustrate the concept and elaborate the proposed strategy, Figure 3.5 depicts pic-

tures of the impedance matrix related to the above mentioned perfectly conducting

sphere of diameter 2λ. The GMRES algorithm is used as the iterative solver. For

omitting interactions, the convergence threshold is set to 10%, i.e., a basis/testing

function and the related interactions are dropped if the corresponding error (of cur-

rent/field) is smaller than 10%. Figure 3.5 presents the matrix density with respect

to the GMRES iterations and the status of the impedance matrix at the intervals of

five iterations. The impedance matrix is decomposed into near-zone and far-zone

matrices, while a 4-level MLFMA tree-structure determines near-zone and far-zone

interactions. In the figure, white and red regions correspond to near-zone and far-
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Figure 3.5: Trimmed matrix layout for a 2λ PEC sphere at five different iterations and

the corresponding matrix density with respect to iterations.
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zone interactions, whereas the black areas (rows and columns) represent the omitted

far-zone interactions. We observe that the matrix becomes increasingly sparse with

the final density value of 5.45%, which corresponds to the near-zone matrix density

value. As the iterations continue, we can reduce the computational complexity of

MVM operation from O(N logN) to O(N), which is the computational complexity

of the near-zone matrix.

3.2 Trimming Scheme on MLFMA

Now, we discuss the application of the trimming scheme in the context of MLFMA.

In a regular MLFMA implementation, aggregation, translation, and disaggregation

stages share the same tree-structure at each and every iteration. Aggregation cal-

culations start from the lowest level of the tree-structure, involving the aggregation

of fields of smaller clusters into radiated fields of larger clusters until the top level.

Translation calculations start after the aggregation, and they occur between clusters at

the same level, involving the transfer of radiated fields into incoming fields between

far-zone clusters. Disaggregation calculations follow the translation and they are per-

formed in the opposite direction of the aggregation, i.e., starting from the top-level

clusters, incoming fields are disaggregated to smaller clusters until the lowest level.

These calculations are repeated at each and every iteration, making the MVM time per

iteration constant. As shown in the previous section, some portions of a matrix, i.e.,

converged regions of surface currents and scattered fields, can be omitted. Therefore,

we implement an interaction trimming method into MLFMA to obtain a significant

acceleration in MVMs at the cost of reduced but controlled accuracy. On the other

hand, such a trimming operation is not trivial and it requires significant changes in

MLFMA tree structures for all stages of aggregation, translation, and disaggregation.

First, MLFMA stages in a trimmed scheme may follow different tree-structures due to

non-symmetric convergence behaviors of basis and testing functions. Second, once

a trimming is applied, it must propagate to all branches of the tree to obtain maxi-

mum efficiency from the trimming process. Third, the elimination process in a tree

structure should be formed cumulatively based on the evolution of the tree structure

with respect to iterations. Otherwise, the convergence of the iterative solution may

deteriorate.
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Regular Tree Structure

Trimmed Tree Structure

Figure 3.6: The interaction scheme for a regular tree structure and a trimmed tree

structure.

We show the difference between a regular tree structure and a trimmed tree structure

in Figure 3.6. Colors of the boxes represent clusters at different levels. Red solid

arrows show translations, while black dashed arrows represent the aggregation direc-

tions (or opposite disaggregation directions). As it is shown, all of the boxes must be

involved in the regular calculations. On the other hand, some boxes (black color) are

omitted in the trimmed tree. A box is omitted if all contained discretization elements

or all sub-boxes are already excluded. An omitted box is not included in aggregation

(or disaggregation) and translation operations.

The basis and testing trimming operators in Figure 3.4 update aggregation and dis-

aggregation schemes at the end of each iteration. The steps followed in a trimming

operation for testing functions and disaggregation tree branches are given in Algo-

rithm 1. In the first step, the testing function error calculator (TFEC) calculates the

errors associated with the testing functions. For such calculations, TFEC uses the lat-

est MVM result vector wi and the right-hand-side vector w, and then returns β as the

error value. If β for a testing function is below the given threshold, it is excluded from

26



Algorithm 1 Trimming Testing Functions and Disaggregation Tree Branches
1: for m = 1 : N do

2: β = TFEC(w[m],wi[m])

3: if β < threshold then

4: exclude tm

5: end if

6: end for

7: for level = L : 3 do

8: for box = 1 : Blevel do

9: if all testing functions in box are excluded then

10: exclude box from translation

11: exclude box from disaggregation

12: end if

13: end for

14: Update Blevel

15: end for

MLFMA calculations for the rest of the solution. In the second step, starting from the

bottom level, the disaggregation tree is updated. If all testing functions are excluded

for a box at the bottom level, it is excluded from translation and disaggregation calcu-

lations. Then, the higher levels are updated with a similar procedure until the whole

tree is scanned. The steps followed in trimming operations for basis functions and

aggregation tree branches are given in Algorithm 2. The algorithm is similar to Al-

gorithm 1. In the first step, the basis function error predictor (BFEP) estimates the

errors associated with all basis functions. BFEP consists of an ML technique to make

reliable estimations since the reference (final) values do not exist (and obtaining the

final values is the ultimate goal of the iterative solution). The iterative solver provides

the latest (e.g., last three) solution vectors to BFEP to obtain the predictions. Then,

BFEP provides the error value of α for each basis function. If α for a basis function

is below the given threshold, it is excluded from MLFMA calculations for the rest of

the solution. In the second step, starting from the bottom level, the aggregation tree is

updated. If all basis functions are excluded for a box at the bottom level, it is excluded

from aggregation and translation calculations. In a similar fashion, the higher levels
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Algorithm 2 Trimming Basis Functions and Aggregation Tree Branches
1: for n = 1 : N do

2: α = BFEP(ai[n],ai−1[n],ai−2[n])

3: if α < threshold then

4: exclude bn

5: end if

6: end for

7: for level = L : 3 do

8: for box = 1 : Blevel do

9: if all basis functions in box are excluded then

10: exclude box from aggregation

11: exclude box from translation

12: end if

13: end for

14: Update Blevel

15: end for

are updated considering new empty boxes until the tree is completely scanned. When

basis and testing function trimming operations are properly performed, we obtain a

new MVM operator, which can perform faster MVMs in comparison to the previous

MVM operators. MLFMA that works on such trimmed tree structures, which become

increasingly sparser as iterations continue, is called T-MLFMA.

To demonstrate the improved efficiency of T-MLFMA, we consider a scattering prob-

lem involving the Flamme geometry with an electrical size of 64λ. Using λ/10 tri-

angles, the constructed matrix equation involves 811,080 unknowns. The object is

illuminated by a horizontally polarized plane wave at 30◦ angle from the back (−x
axis). The convergence thresholds in T-MLFMA are defined as 10% for both surface

currents (basis functions) and tested scattered fields (testing functions). Figures 3.7

and 3.8 present the status of the trimmed basis and testing functions on the geome-

try at the intervals of ten iterations. White regions on the geometries correspond to

included basis/testing functions, while yellow, red, and black areas depict triangles

with one, two, and three excluded edges, respectively. The white and black regions

in the aggregation and disaggregation trees in Figures 3.7 and 3.8 show the included
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Figure 3.7: Basis/testing function trimming layout for a scattering problem involving

the Flamme geometry with an electrical size of 64λ. Results of iterations 10, 20, and

30 are considered.
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Figure 3.8: Basis/testing function trimming layout for a scattering problem involving

the Flamme geometry with an electrical size of 64λ. Results of iterations 40, 50, and

60 are considered.
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and excluded boxes. The bottom layers of the tree figures represent the basis/testing

functions, while the lowest level boxes reside in the second layer. At the higher levels,

the number of boxes decreases, but each box contains significantly large numbers of

basis/testing functions. Thus, these larger boxes are represented by wider areas. We

observe that the tree branches become increasingly sparser as the iterations proceed.

We present further details of this numerical experiment in Chapter 4.

3.3 Testing Function Error Calculation Using Straightforward Check

In order to perform a straightforward calculation, TFEC requires the residual error

Ri = w − Z̄ · ai (3.4)

at the end of each iteration. The absolute relative residual error, the return value of

TFEC, for any testing function m is calculated as

β =
|Ri[m]|
|w[m]|

. (3.5)

The value of β also has a physical meaning in terms of scattered fields. An MVM

result gives scattered fields on the tested regions. Then, the residual error represents

the difference of incident fields and calculated scattered fields. Therefore, β in Equa-

tion (3.5) corresponds to the error of T-MLFMA when satisfying boundary conditions

on the tested regions.

3.4 Trimming Basis Functions Using ML

ML techniques are based on learning specific tasks from the given information. There

are three main learning approaches in ML, i.e., supervised learning, unsupervised

learning, and reinforcement learning. A supervised learning is based on a given

dataset, where the input data and the output data are labeled. The training algorithm

forces the ML model to make a correlation between the input and output data. There-

fore, the success of the ML model depends on the comprehensiveness of the dataset.

In the unsupervised learning approach, the training algorithm shares only the input

data with the ML model. In this case, the ML model should discover the correlation

in the dataset. The reinforcement learning approach uses both supervised and unsu-

pervised techniques. The dataset contains labeled input and outputs. However, the
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learning algorithm does not directly share the output reference with the ML model,

while it states whether the model gives a correct or an incorrect answer. In this study,

we prefer the supervised learning approach on the artificial neural networks (ANN)

based on the structure of our data type.

In the following part, we explain the steps that we follow to construct an ML-based

BFEP. First, we present the details of the dataset content. Then, we explain the ML

model parameters of the error predictor, as well as the training details.

3.4.1 Details of Dataset

We consider geometries with various types and sizes in our dataset since it is essen-

tial to construct a comprehensive dataset to train a successful ML model. In the con-

structed raw dataset, NASA Almond geometry [102] (16λ×128, 32λ×64, 64λ×64),

Flamme geometry [103] (16λ× 128, 32λ× 64, 64λ× 64), cube geometry (16λ× 8,

32λ×8), and sphere geometry (16λ×1, 32λ×1, 64λ×1) are considered. Therefore,

the raw dataset consists of 256 + 256 + 16 + 3 = 531 full-wave simulations. The total

number of iterations for each model are shown in Table 3.1.

Table 3.1: The models used in the raw dataset

Model Size λ
Number of

Solutions

Total Number

of Iterations

Sphere 16 1 27

Sphere 32 1 31

Sphere 64 1 38

Cube 16 8 196

Cube 32 8 225

Almond 16 128 2615

Almond 32 64 1470

Almond 64 64 1817

Flamme 16 128 11040

Flamme 32 64 7508

Flamme 64 64 6534
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The electromagnetic scattering problems are formulated by using CFIE and discretized

with λ/10 RWG functions. The solutions are obtained by using GMRES, where the

required MVMs are accelerated via MLFMA with 1% maximum error. In each so-

lution, the geometry is illuminated via a plane wave with random propagation and

polarization, while surface current coefficients are saved in each iteration. This way,

various surface current distributions are obtained.

The inputs of the ML structure represent a history of surface current coefficients for

every iteration. Coefficients of the most recent three iterations, i.e., ai, ai−1, and

ai−2, are selected. Before using as inputs, these coefficients are divided element-wise

by using coefficients of another iteration. In this study, we use ai−3 for the division

process, while the average of ai, ai−1, and ai−2 works as well. The division process

is required for the generalization of the current-coefficient behavior over iterations.

Finally, the coefficients are separated into their real and imaginary parts, which are

set as inputs of the constructed ML structure, while the element-wise relative errors

in ai with respect to the final result are set as outputs.

3.4.2 Details of Error Predictor Model and Training Results

In the last decade, ANNs and convolutional neural networks have been shown in the

literature with their detection, classifications, and prediction capabilities. Therefore,

ANN structures are perfect candidates for the error estimation operation in this study.

The main purpose of the ANN model in our work is to provide error predictions of

given current coefficients as accurate and as fast as possible. We can achieve fast

predictions by using compact structures involving small numbers of layers and small

numbers of neurons on each layer. The accuracy performance of an ANN model

depends on the quality and size of the provided dataset, while there is always a min-

imum size for an ANN to learn the given data. In this work, we are able to construct

a relatively small ANN for the target task. We show the layout of the ANN model

in Figure 3.9. Our model consists of four-layers (10 + 8 + 5 + 1 = 24 neurons).

We feed the input layer with the normalized coefficients, which are fully connected

to the first-layer neurons. Then, the activation functions use the weighted sum on the

neurons. This procedure is followed by the second, third, and output layers, while

the output layer provides the predicted error. The first, second, and third layers use
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Figure 3.9: The layout of the four-layered ANN error predictor model.

rectified linear units as their activation functions, and the last layer uses the sigmoid

function. The sigmoid function at the output has a crucial role since error values can

be extremely large and it trims large input values to one. This property brings addi-

tional simplicity to the predicted large values. Constructed ANN model is trained via

Adam optimizer [104] by using mean-absolute-error (MAE) loss function for 2000

epochs. MAE gives the current coefficient error in the prediction. Hence, minimiz-

ing MAE implies having a better preciseness on the error predictions. During the

training, 95% of the complete dataset is used as the training dataset, while the rest

is used for validation. The training stage requires approximately 2 hours on Google

Colaboratory servers with NVidia Tesla K80 GPUs. Hence, we can reach 1 million

predictions per second with the proposed ANN model on one CPU core.

We train the above mentioned ANN model on different datasets, which consist of the

problems in the raw dataset. To make a wider comparison, each trained ANN using

a dataset is tested on all other datasets. The MAE values obtained in these tests are

shown in Figure 3.10. At first glance, we expect each ANN model to perform the

most accurate result on the trained dataset. However, we observe otherwise due to the

small number of layers of the ANN model. Also, the models trained with the cube

and sphere datasets have the widest coverage; but they fail for the Flamme datasets as

well as for the largest sphere. Such an error variation is strongly undesirable for our

applications, i.e., the trained ANN should work consistently for a variety of data. The
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models trained with the Flamme datasets, on the other hand, lead to a higher average

MAE, but they provide more stable performances for different datasets.

As a successful dataset, we consider the results of 16λ NASA Almond and Flamme

geometries together. These geometries are discretized with 55,545 and 51,669 un-

knowns, respectively. We randomly pick five solutions for each geometry to construct

the dataset. The total processing times for the NASA Almond and Flamme solutions

to build the final dataset are 50.62 minutes and 158.62 minutes, respectively. Only the

first 45 iterations of each simulation are used since the most vital convergence behav-

iors occur at the beginning of iterative solutions. To finalize the dataset, we omit sam-

ples with current errors larger than 100%, leading to 15,303,079 current samples in

the final dataset. As also shown in Figure 3.10, this set provides the best MAE levels,

i.e., approximately 0.06 MAE, with a considerably small variation among datasets, in

comparison to the other attempts.

3.5 Performance Comparison of ML and Manual Error Predictions

We also consider an alternative approach to predict the error in current coefficients by

using a manually defined function

α =
|ai[n]− ai−2[n]|
|ai−2[n]|

. (3.6)

Manual error prediction function is compared with the ML approach on the raw

dataset of the 64λ Flamme geometry. Predictors are expected to pick which basis

functions reach the set error level, while the current error detection level is set to

10%. Here, we analyze the error in three different categories, i.e., total error, over-

estimation, and underestimation. The total errors are combinations of overestima-

tion and underestimation errors. Overestimation of an error means that the real error

value is lower than the predicted error, while underestimation means otherwise. In

an overestimated error case, the predictor misses the currents to be trimmed; hence,

the accuracy is not affected. In an underestimated error case, however, the predictor

trims currents that are not converged yet during the iterative solution. Consequently,

the main error sources in the trimming mechanism are the underestimated errors.

As shown in Figure 3.11, the ML-based error prediction is superior to the manual er-

ror prediction with a huge difference in terms of total error. The ML-based prediction
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Figure 3.10: Prediction performance of the trained ANN model for different datasets.

MAE values are shown as the error criteria.

Figure 3.11: Total error, overestimated error, and underestimated error for ML-based

and manual error predictions.
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gives a peak error at around 15%, while the manual prediction provides more than

20% error in most of the region. Also, we note that the main error contributions of

the manual prediction are from underestimated errors, which can lead to uncontrol-

lable accuracy in the developed T-MLFMA. The errors for the ML-based prediction

are of both underestimated and overestimated types. As a matter of fact, overesti-

mated errors are mainly localized at the beginning of the iterative solutions, and they

slightly reduce the efficiency of T-MLFMA.

To sum up, T-MLFMA requires an error predictor, which should be working with

an error level as low as possible to accurately trim basis function. As shown in this

chapter, ML-based predictors outperforms manually defined error prediction func-

tions for trimming basis functions. Further examples on the comparison of ML-based

and manual error prediction approaches are presented in the next chapter.
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CHAPTER 4

NUMERICAL RESULTS

In this chapter, we present numerical simulation results using T-MLFMA for vari-

ous cases. We start with the proof-of-concept simulations involving geometries with

various sizes. Then, we show trimming threshold analysis and trimming counter anal-

ysis for basis and testing functions in T-MLFMA. In the fourth and fifth sections, we

discuss trimming operation on near-zone interactions and the reusability of trimmed

tree-structures of T-MLFMA. In the sixth section, we consider an illumination sweep

for various geometries. The seventh section discusses various solutions involving dif-

ferent geometries and formulations. In the last section, we show the performance of

T-MLFMA as a preconditioner.

4.1 Proof-of-Concept Simulations

This section covers initial simulation results for T-MLFMA as a proof-of-concept.

The simulations are first performed using MLFMA to obtain reference results. Then,

we use T-MLFMA for the same simulations and compare the results in terms of ac-

curacy of surface current coefficients and far-zone scattered electric fields, as well

as number of iterations, total solution time, and the last MVM time. In these sim-

ulations, we select the Flamme geometry as the target model, considering various

electrical sizes of 16λ, 32λ, and 64λ. The model of the Flamme geometry is shown in

Figure 4.1. The model is illuminated via a plane wave with θ = 90◦, φ = 30◦ propa-

gation direction and horizontal polarization. Electromagnetic scattering problems are

formulated by using CFIE (with equally weighted EFIE and MFIE) and discretized

with λ/10 triangles. The numbers of unknowns are 51,669 for the 16λ problem,

202,863 for the 32λ problem, and 811,080 for the 64λ problem. The problems with
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xy

z

Figure 4.1: Model of the Flamme geometry.

sizes 16λ, 32λ, and 64λ are solved by using seven MLFMA levels, eight MLFMA

levels, and nine MLFMA levels, respectively. The T-MLFMA simulations are per-

formed in three different ways for each Flamme size; only basis function trimming,

only testing function trimming, and both basis and testing function trimming. We

also obtain trials with different trimming threshold factors, i.e., 0.1, 0.01, and 0.001.

Each problem is solved both without any preconditioner and with a block-diagonal

preconditioner (BDP).

The solutions in this section include two adjustments in terms of the application of

T-MLFMA. The first adjustment is using the reference surface current coefficients for

the basis function trimming to show the concept of T-MLFMA. In this context, the

BFEP operator given in the previous chapter is altered as

α =

∣∣∣arefi [n]− ai[n]
∣∣∣∣∣∣arefi [n]

∣∣∣ . (4.1)

The second adjustment is that the trimming operators count the numbers of below-

threshold-error states for each basis or testing function. Specifically, the trimming

operators omit basis and testing functions after the fifth below-threshold-error state.

We note that this adjustment brings additional stability in T-MLFMA simulations.

Simulation results involving the Flamme geometry are listed in Table 4.1, Table 4.2,

and Table 4.3 for electrical sizes of 16λ, 32λ, and 64λ, respectively. Results in the

tables include surface current coefficient errors (called current error), far-zone scat-
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tered electric field errors (called field error), numbers of iterations, and total solution

times. Surface current coefficient errors are calculated as

Current Error(%) =

∥∥aref − a
∥∥
2

‖aref‖2
× 100, (4.2)

where aref and a are the reference and target current coefficient vectors. In this ex-

pression, ‖·‖2 represents the L2-norm (Euclidean distance). Far-zone scattered elec-

tric field errors are calculated as

Farfield error(%) =

√∑3600
s=1

∥∥Eref
s −Es

∥∥2
2√∑3600

s=1

∥∥Eref
s

∥∥2
2

× 100, (4.3)

where Eref
s and Es are reference and target far-zone scattered electric field vectors

sampled at 0.1◦ steps in azimuth. The results show that the field errors always remain

below the threshold factor. Besides, we can reduce the field errors and surface current

errors by decreasing the threshold factor, which shows the error controllability of

the trimming approach. Additionally, T-MLFMA becomes MLFMA for very small

values of the trimming threshold factor, such as 0.0001. The results for the number

of iterations show impressive acceleration, i.e., the number of iterations is reduced

by 2.48 times for the 16λ problem (2.28 times when BDP is used), 4.80 times for

the 32λ problem (3.85 times when BDP is used), and 5.56 times for the 64λ problem

(4.25 times when BDP is used). Hence, the reduction in the number of iterations is

higher for electrically large problems. Using T-MLFMA, the solution time is reduced

by 2.86 times for the 16λ problem (2.89 times when BDP is used), 6.43 times for

the 32λ problem (5.44 times when BDP is used), and 7.29 times for the 64λ problem

(5.17 times when BDP is used), compared to the reference MLFMA simulations.

The reduction in the overall solution time is higher than the reduction in the number

of iterations since the trimming process reduces the MVM time per iteration as the

solution continues.

Figures 4.2, 4.3, 4.4, 4.5, 4.6, and 4.7 present the bistatic far-zone electric field in-

tensity on the x-y plane (see Figure 4.1 for the coordinates) obtained by using the

conventional MLFMA and the proposed T-MLFMA with basis and testing function

trimming. The far-zone electric field intensity plots show good consistency between

T-MLFMA and MLFMA. These figures also depict the iterative solutions (residual

errors with respect to flexible GMRES iterations), where the faster convergence of
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T-MLFMA is remarkable. The figures further illustrate the ratios of the included ba-

sis/testing functions in MVMs by T-MLFMA (dropping as the iterations continue),

as well as the processing times per MVM. We observe that the MVM time from the

first iteration to the last iteration clearly decreases as the residual error drops to below

0.001.

Table 4.1: Simulation results for a scattering problem involving the Flamme geometry

with an electrical size of 16λ.

Method
Trimming

Error
PC

Current

Error (%)

Far-Field

Error (%)

Number

of Iter.

Solution

Time (h)

Ref. - - - - 221 0.86

Ref. - BDP - - 151 0.55

Basis T. 0.001 - 0.06 0.04 220 0.89

Basis T. 0.01 - 1.34 0.79 202 0.79

Basis T. 0.1 - 10.4 4.46 153 0.55

Basis T. 0.001 BDP 0.00 0.00 151 0.62

Basis T. 0.01 BDP 0.93 0.49 145 0.59

Basis T. 0.1 BDP 9.20 4.08 108 0.40

Test T. 0.001 - 0.11 0.04 219 0.86

Test T. 0.01 - 6.24 0.66 177 0.67

Test T. 0.1 - 42.1 4.73 93 0.32

Test T. 0.001 BDP 0.02 0.01 151 0.56

Test T. 0.01 BDP 5.27 0.66 116 0.43

Test T. 0.1 BDP 40.1 4.66 67 0.21

B+T T. 0.001 - 0.16 0.04 218 0.90

B+T T. 0.01 - 5.95 0.68 175 0.69

B+T T. 0.1 - 42.1 4.88 89 0.30

B+T T. 0.001 BDP 0.02 0.01 151 0.56

B+T T. 0.01 BDP 5.27 0.67 115 0.42

B+T T. 0.1 BDP 40.1 4.81 66 0.19
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Table 4.2: Simulation results for a scattering problem involving the Flamme geometry

with an electrical size of 32λ.

Method
Trimming

Error
PC

Current

Error (%)

Far-Field

Error (%)

Number

of Iter.

Solution

Time (h)

Ref. - - - - 389 6.89

Ref. - BDP - - 274 4.90

Basis T. 0.001 - 0.07 0.04 388 6.49

Basis T. 0.01 - 2.37 0.82 351 5.77

Basis T. 0.1 - 14.4 2.39 217 2.97

Basis T. 0.001 BDP 0.04 0.02 274 4.51

Basis T. 0.01 BDP 3.19 0.48 262 4.22

Basis T. 0.1 BDP 14.9 2.61 175 2.44

Test T. 0.001 - 0.32 0.04 386 6.81

Test T. 0.01 - 19.3 1.46 234 4.00

Test T. 0.1 - 31.3 2.60 85 1.26

Test T. 0.001 BDP 0.07 0.02 274 4.89

Test T. 0.01 BDP 15.0 1.00 202 3.53

Test T. 0.1 BDP 29.0 2.41 71 1.06

B+T T. 0.001 - 0.33 0.04 385 6.02

B+T T. 0.01 - 19.4 1.49 231 3.61

B+T T. 0.1 - 31.3 2.62 81 1.07

B+T T. 0.001 BDP 0.08 0.03 274 4.39

B+T T. 0.01 BDP 15.4 1.09 199 3.17

B+T T. 0.1 BDP 29.0 2.75 71 0.90
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Table 4.3: Simulation results for a scattering problem involving the Flamme geometry

with an electrical size of 64λ.

Method
Trimming

Error
PC

Current

Error (%)

Far-Field

Error (%)

Number

of Iter.

Solution

Time (h)

Ref. - - - - 434 31.9

Ref. - BDP - - 289 20.4

Basis T. 0.001 - 0.29 0.06 431 28.9

Basis T. 0.01 - 1.71 0.38 333 21.9

Basis T. 0.1 - 6.70 2.16 199 11.4

Basis T. 0.001 BDP 0.37 0.23 288 19.9

Basis T. 0.01 BDP 1.21 0.35 229 15.9

Basis T. 0.1 BDP 6.94 2.08 144 8.86

Test T. 0.001 - 1.00 0.08 381 27.9

Test T. 0.01 - 8.87 0.84 220 15.2

Test T. 0.1 - 32.9 3.16 82 5.10

Test T. 0.001 BDP 0.83 0.25 257 18.8

Test T. 0.01 BDP 7.17 0.77 171 12.1

Test T. 0.1 BDP 26.2 2.09 69 4.30

B+T T. 0.001 - 0.92 0.09 382 25.0

B+T T. 0.01 - 9.00 0.85 217 14.2

B+T T. 0.1 - 32.9 3.09 78 4.40

B+T T. 0.001 BDP 0.89 0.29 256 18.0

B+T T. 0.01 BDP 7.15 0.80 169 11.5

B+T T. 0.1 BDP 26.2 2.32 68 3.90
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Figure 4.2: Solutions of a scattering problem involving the Flamme geometry with

an electrical size of 16λ. Solutions are not accelerated with any preconditioner.
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Figure 4.3: Solutions of a scattering problem involving the Flamme geometry with

an electrical size of 16λ. Solutions are accelerated with the BDP preconditioner.
45



FGMRES Iterations
0 100 200 300 400

R
es

id
ua

l E
rr

or

10-3

10-2

10-1

100

FGMRES Iterations
0 100 200 300 400

In
cl

ud
ed

 B
as

is
 a

nd
T

es
tin

g 
F

un
ct

io
ns

 (
%

)

0

25

50

75

100

FGMRES Iterations
0 100 200 300 400

M
V

M
 T

im
e 

(s
)

0

20

40

60

Bistatic Angle (deg)
0 45 90 135 180 225 270 315 360F

ar
-Z

on
e 

E
le

ct
ric

 F
ie

ld
 In

te
ns

ity
 (

V
)

10-4

10-3

10-2

10-1

100

Figure 4.4: Solutions of a scattering problem involving the Flamme geometry with

an electrical size of 32λ. Solutions are not accelerated with any preconditioner.
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Figure 4.5: Solutions of a scattering problem involving the Flamme geometry with

an electrical size of 32λ. Solutions are accelerated with the BDP preconditioner.
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Figure 4.6: Solutions of a scattering problem involving the Flamme geometry with

an electrical size of 64λ. Solutions are not accelerated with any preconditioner.

FGMRES Iterations
0 50 100 150 200 250 300

R
es

id
ua

l E
rr

or

10-3

10-2

10-1

100

FGMRES Iterations
0 50 100 150 200 250 300

In
cl

ud
ed

 B
as

is
 a

nd
T

es
tin

g 
F

un
ct

io
ns

 (
%

)

0

25

50

75

100

FGMRES Iterations
0 50 100 150 200 250 300

M
V

M
 T

im
e 

(s
)

0

50

100

150

200

250

Bistatic Angle (deg)
0 45 90 135 180 225 270 315 360F

ar
-Z

on
e 

E
le

ct
ric

 F
ie

ld
 In

te
ns

ity
 (

V
)

10-4

10-3

10-2

10-1

100

Figure 4.7: Solutions of a scattering problem involving the Flamme geometry with

an electrical size of 64λ. Solutions are accelerated with the BDP preconditioner.
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4.2 Trimming Threshold Analysis

In this section, simulations with T-MLFMA for different trimming threshold levels

(0.2, 0.1, 0.05, and 0.01) are presented. Basis function and testing function trimming

operators are separately applied with a counter value of 1, where BFEP is applied

with both ML and manual approaches. The Flamme geometry with an the electri-

cal size of 64λ is used as the target, where the geometry is illuminated by a plane

wave with propagation direction θ = 90◦ and φ = 30◦, and with horizontal polariza-

tion. Backscattering errors shown in this section are calculated as in Equation 4.3 by

considering ±10◦ range at around the backscattering angle.

The simulation results obtained by T-MLFMA using basis function trimming with

the ML approach are shown in Table 4.4. Surface current errors, far-zone electric

field errors, and backscattering field errors are consistently reduced as the trimming

threshold is decreased. The far-zone electric field errors are considerably below the

threshold values, while the backscattering errors can be reduced in a controllable

manner. Using T-MLFMA can also reduce the number of iterations as we increase

the trimming threshold, while multiple times of speedup can be achieved in terms of

the solution time. In Figure 4.8, we show the far-zone scattered electric field values

with respect to the bistatic angle in the azimuth plane. In general, the fields obtained

with T-MLFMA match well with the reference fields obtained with MLFMA. We

obtain a decent match in the backscattering range, even with high trimming thresh-

olds, such as 0.2. Figure 4.8 also depicts the iterative solutions (residual errors with

respect to flexible GMRES iterations), where the faster convergence of T-MLFMA is

remarkable. Figure 4.8 further illustrates the ratios of the included basis/testing func-

tions in the MVMs by T-MLFMA, which are dropping as the iterations continue, as

well as the processing times per MVM. T-MLFMA effectively reduces the number of

active basis functions such that the MVM time per iteration at the end of the solution

reaches the half of a full MVM time (for the trimming threshold values of 0.2 and

0.1).

The solution details of simulation results obtained by T-MLFMA using basis func-

tion trimming with the manual approach are shown in Table 4.5. We observe that

the surface current errors, far-zone electric field errors, and backscattering field errors
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Table 4.4: Details of the simulation results obtained by T-MLFMA with the ML-based

basis function trimming for a scattering problem involving the Flamme geometry

(64λ).

Method
Trimming

Error

Current

Error (%)

Far-Field

Error (%)

Backsca.

Error (%)

Number

of Iter.

Solution

Time (h)

Ref. - - - - 289 21.9

Basis (ML) 0.01 7.49 0.89 7.57 171 12.7

Basis (ML) 0.05 22.8 2.01 10.7 89 6.02

Basis (ML) 0.1 25.8 3.10 15.6 77 4.92

Basis (ML) 0.2 30.8 5.69 35.5 68 4.09

FGMRES Iterations
0 25 50 75 100 125 150

R
es

id
ua

l E
rr

or

10-3

10-2

10-1

100

FGMRES Iterations
0 25 50 75 100 125 150

In
cl

ud
ed

 B
as

is
 a

nd
T

es
tin

g 
F

un
ct

io
ns

 (
%

)

0

25

50

75

100

FGMRES Iterations
0 25 50 75 100 125 150

M
V

M
 T

im
e 

(s
)

0

50

100

150

200

250

Bistatic Angle (deg)
0 45 90 135 180 225 270 315 360F

ar
-Z

on
e 

E
le

ct
ric

 F
ie

ld
 In

te
ns

ity
 (

V
)

10-4

10-3

10-2

10-1

100

Reference
T-MLFMA: 0.01
T-MLFMA: 0.05
T-MLFMA: 0.1
T-MLFMA: 0.2

200 205 210 215 220
0

0.01

0.02

0.03

0.04

0.05

Figure 4.8: Solutions of a scattering problem involving the Flamme geometry with

an electrical size of 64λ. Basis function trimming with the ML approach is applied.

49



Table 4.5: Details of the simulation results obtained by T-MLFMA with the manual

basis function trimming for a scattering problem involving the Flamme geometry

(64λ).

Method
Trimming

Error

Current

Error (%)

Far-Field

Error (%)

Backsca.

Error (%)

Number

of Iter.

Solution

Time (h)

Ref. - - - - 289 21.9

Basis (Man) 0.01 23.2 1.98 11.0 87 5.84

Basis (Man) 0.05 30.4 4.84 28.1 66 3.99

Basis (Man) 0.1 35.9 7.43 49.2 59 3.34

Basis (Man) 0.2 42.9 10.3 69.0 55 2.85
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Figure 4.9: Solutions of a scattering problem involving the Flamme geometry with an

electrical size of 64λ. Basis function trimming with the manual approach is applied.
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are reduced as the trimming threshold is decreased, while the reduction values are

significantly worse than those obtained with the ML-based approach. The far-zone

electric field errors and the backscattering errors are almost twice as the correspond-

ing results of the ML-based approach. In addition, the error does not seem to be

controllable with the manual approach. In Figure 4.9, we show the far-zone scattered

electric field values with respect to the bistatic angle in the azimuth plane. Figure 4.9

further illustrates the ratios of the included basis/testing functions in the MVMs by

T-MLFMA, as well as the processing times per MVM. The basis function elimination

in T-MLFMA for this solution set is even faster than that of the previous set, while

the MVM time at the end of the solution reaches below the half of the full MVM

time. On the other hand, although the speedup levels are promising, T-MLFMA with

manual trimming requires at least 0.05 threshold level (equivalent to 0.2 threshold

level with the ML-based trimming) for an acceptable accuracy.

The simulation results obtained by T-MLFMA using testing function trimming are

shown in Table 4.6. The surface current errors, far-zone electric field errors, and

backscattering field errors, which consistently drop with the trimming threshold, are

similar to the results obtained by using the ML-based basis function trimming. The

far-zone electric field errors are considerably below the given threshold values, while

the backscattering errors are observed to be reduced in a controllable manner. Us-

ing T-MLFMA can also reduce the number of iterations as we increase the trimming

threshold, while multiple times of speedup can be achieved in terms of the solution

time. In Figure 4.10, we show the far-zone scattered electric field values with respect

to the bistatic angle in the azimuth plane. The fields obtained with T-MLFMA match

well with the reference fields obtained with MLFMA, where its stability is even bet-

ter than the previous two sets of solutions (basis function trimming). To obtain an

acceptable accuracy in the backscattering range, we need to use at least a trimming

threshold of 0.1. Figure 4.10 also depicts the iterative solutions, ratios of the included

basis/testing functions in MVMs, and processing times per MVM. The MVM time

per iteration can be lowered to less than 50% of the full MVM time at the late stages

of the solution.
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Table 4.6: Details of the simulation results obtained by T-MLFMA with testing func-

tion trimming for a scattering problem involving the Flamme geometry (64λ).

Method
Trimming

Error

Current

Error (%)

Far-Field

Error (%)

Backsca.

Error (%)

Number

of Iter.

Solution

Time (h)

Ref. - - - - 289 21.9

Testing 0.01 16.5 1.27 7.95 114 8.28

Testing 0.05 26.9 2.19 14.9 68 4.28

Testing 0.1 32.0 4.20 33.3 62 3.57

Testing 0.2 40.4 7.79 67.6 55 2.98
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Figure 4.10: Solutions of a scattering problem involving the Flamme geometry with

an electrical size of 64λ. Testing function trimming is applied.
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4.3 Trimming Counter Analysis

The trimming process affects the accuracy of MVMs as it is based on omitting basis

and/or testing functions. Trimming basis and testing functions, performed via esti-

mators, cause errors due to mispredictions. The effect of these mispredictions can be

reduced by allowing the basis and/or testing functions to continue interacting for a

certain number of iterations after a trimming decision. The number of iterations after

a trimming decision can be determined by a counter. In this section, we present sim-

ulation results obtained with this kind of a counter applied in the trimming operation.

We particularly consider results by using T-MLFMA with basis function trimming

and testing function trimming separately for various counter values, while we apply

both ML-based and manual-based approaches for BFEP. The trimming error thresh-

old is set as 0.1 for both basis and testing functions. The Flamme geometry with an

electrical size of 64λ is used as the target, while the geometry is illuminated by a

plane wave with propagation direction θ = 90◦ and φ = 30◦, and with horizontal

polarization.

The simulation results obtained by T-MLFMA using basis function trimming with

the ML approach are shown in Table 4.7. The surface current errors, far-zone electric

field errors, and backscattering field errors are consistently reduced as the trimming

counter is decreased. The far-zone electric field errors are considerably below the

threshold values, and the results are noticeably stable. Note that, the limit case of

the increased counter size is the full MLFMA, and we can observe that the conver-

gence behavior shows this characteristics. T-MLFMA still provides multiple times

of speedup in terms of the solution time, even for a counter value of five. We also

observe that the total solution time increases by approximately 13% for the trimming

counter value of five in comparison to the trimming counter value of one, while the

backscattering error improves by almost 20%. In Figure 4.11, we show the far-zone

scattered electric field values with respect to the bistatic angle in the azimuth plane.

The field values obtained with T-MLFMA demonstrate converging behavior towards

the reference field values. We obtain a decent match in the backscattering range,

even with a base trimming counter value of zero. Figure 4.11 also depicts the itera-

tive solutions (residual errors with respect to the flexible GMRES iterations), where
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Table 4.7: Details of the simulation results obtained by T-MLFMA with the ML-

based basis function trimming using different trimming counter values for a scattering

problem involving the Flamme geometry (64λ).

Method Counter
Current

Error (%)

Far-Field

Error (%)

Backsca.

Error (%)

Number

of Iter.

Solution

Time (h)

Ref. - - - - 289 21.9

Basis (ML) 0 27.5 3.92 19.8 74 4.64

Basis (ML) 1 25.8 3.10 15.6 77 4.99

Basis (ML) 2 25.0 2.76 14.1 80 5.22

Basis (ML) 3 24.5 2.53 13.6 82 5.38

Basis (ML) 4 24.0 2.46 13.7 84 5.55

Basis (ML) 5 23.6 2.36 12.9 84 5.68
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Figure 4.11: Solutions of a scattering problem involving the Flamme geometry with

an electrical size of 64λ. ML-based basis function trimming with different trimming

counter values is applied.
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the convergence of T-MLFMA is clearly faster than the convergence of the reference

MLFMA. Figure 4.11 further illustrates the ratios of the included basis/testing func-

tions in the MVMs by T-MLFMA, which clearly reach below the 10% level as the

iterations continue. T-MLFMA effectively reduces the number of active basis func-

tions such that the MVM time per iteration at the end of the solution reaches the half

of a full MVM time (for the trimming counter values of 0 and 1).

The simulation results obtained by T-MLFMA using basis function trimming with

the manual approach are shown in Table 4.8. The surface current errors, far-zone

electric field errors, and backscattering field errors, which are generally high for low

values of the trimming counter, can gradually be reduced as the trimming counter

is decreased. The far-zone electric field errors and backscattering errors are clearly

higher than the values obtained with the ML-based approach. Although the manual-

based approach follows the limit case (becoming the regular MLFMA for sufficiently

large trimming counter values), this approach does not provide a reliable operation

since its stability is not predictable. The base limit value of zero for this approach fails

since all basis functions are omitted in a few iterations, which clearly shows the lack

of controllability for the manual basis function trimming approach. In Figure 4.12,

we show the far-zone scattered electric field values with respect to the bistatic angle in

the azimuth plane. The fields obtained with T-MLFMA present a slowly converging

behavior with respect to the reference fields obtained with MLFMA after the third

trimming counter. Figure 4.12 also depicts the iterative solutions (residual errors for

flexible GMRES iterations), where the T-MLFMA convergence is clearly faster than

the convergence of the reference solution. Figure 4.12 further illustrates the ratios

of the included basis/testing functions in MVMs by T-MLFMA, which are reaching

below the 3% level as the iterations continue. The basis function elimination of T-

MLFMA for this solution set is even faster than elimination in the previous set and

the MVM time at the end of the solution reaches below the half of the MVM time of

the reference solution.

The simulation results obtained by T-MLFMA using testing function trimming are

shown in Table 4.9. The surface current errors, far-zone electric field errors, and

backscattering field errors are consistently reduced as the trimming counter is in-

creased. The far-zone electric field error is a bit high for the base counter value of
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Table 4.8: Details of the simulation results obtained by T-MLFMA with the man-

ual basis function trimming using different trimming counter values for a scattering

problem involving the Flamme geometry (64λ).

Method Counter
Current

Error (%)

Far-Field

Error (%)

Backsca.

Error (%)

Number

of Iter.

Solution

Time (h)

Ref. - - - - 289 21.9

Basis (Man) 0 76.1 61.9 120 42 1.44

Basis (Man) 1 35.9 7.43 49.2 59 3.36

Basis (Man) 2 31.5 5.84 38.5 65 3.83

Basis (Man) 3 29.7 4.88 28.8 68 4.09

Basis (Man) 4 28.5 4.22 23.7 69 4.23

Basis (Man) 5 27.6 3.71 19.7 71 4.36
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Figure 4.12: Solutions of a scattering problem involving the Flamme geometry with

an electrical size of 64λ. Manual basis function trimming with different trimming

counter values is applied.
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Table 4.9: Details of the simulation results obtained by T-MLFMA with testing func-

tion trimming using different trimming counter values for a scattering problem in-

volving the Flamme geometry (64λ).

Method Counter
Current

Error (%)

Far-Field

Error (%)

Backsca.

Error (%)

Number

of Iter.

Solution

Time (h)

Ref. - - - - 289 21.9

Testing 0 40.2 7.17 62.0 56 3.10

Testing 1 32.0 4.20 33.3 62 3.59

Testing 2 29.3 3.03 22.9 64 3.83

Testing 3 27.9 2.55 18.0 66 4.08

Testing 4 26.9 2.28 15.3 67 4.18

Testing 5 26.2 2.09 13.2 69 4.40
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Figure 4.13: Solutions of a scattering problem involving the Flamme geometry with

an electrical size of 64λ. Testing function trimming with different trimming counter

values is applied.
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zero (but still below the threshold), but it gets improved rapidly, and the solutions

show noticeably stable results. T-MLFMA for testing function presents a faster con-

vergence behavior than the previous solution sets. T-MLFMA still provides multiple

times of speedup in terms of solution time, while its acceleration is better than the

basis function trimming. However, we note that basis and testing function trimming

must be implemented together to obtain the peak level of acceleration. We also ob-

serve that the total solution time increases by around 12% for the trimming counter

value of five compared to the trimming counter value of one, while the backscattering

error improves by almost 60%. ML-based basis function trimming and testing func-

tion trimming procedures become compatible for the counter value of five since their

error levels coincide. In Figure 4.13, we show the far-zone scattered electric field val-

ues with respect to the bistatic angle in the azimuth plane. The field values obtained

with T-MLFMA present a rapidly converging behavior with respect to the reference

fields obtained with MLFMA. We obtain a decent match in the backscattering range,

starting from the trimming counter value of one. Figure 4.13 also depicts the itera-

tive solutions (residual errors for flexible GMRES iterations), where the T-MLFMA

convergence is straight and sharp for all values of the counter. Figure 4.13 further

illustrates the ratios of the included basis/testing functions in MVMs by T-MLFMA,

which reach the bottom level after the second half of the iterative solution. T-MLFMA

reduces the basis functions such that the MVM time per iteration is lowered to less

than the half of the full MVM time at the late stages of the solutions.

4.4 Trimming Near-Zone Interactions

In this section, we show the simulation results for an extended trimming process,

which also omits near-zone interactions, in addition to far-zone interactions. During

iterative solutions, as the excluded basis and testing functions are selected, the cor-

responding columns and rows of the near-zone interaction matrix are omitted, while

the diagonal elements are always kept. The physical interpretation of this approach is

extending the trimming operation to short-distance interactions.

This section includes the solution of two geometries, the NASA Almond and the

Flamme, each with 64λ electrical size. Model of the NASA Almond geometry is

shown in Figure 4.14. The models are discretized with λ/10 triangles, leading to
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z

Figure 4.14: Model of the NASA Almond geometry.

893,727 and 811,080 unknowns for the NASA Almond and the Flamme, respectively.

We obtain simulation results by using T-MLFMA with both basis function and testing

function trimming operations, while we consider the ML-based approach for BFEP.

The results are obtained for different error thresholds, while the trimming counter

value is set to one.

We illuminate the NASA Almond geometry by a plane wave from two different an-

gles, i.e., (θ = 90◦, φ = 30◦) and (θ = 90◦, φ = 210◦). The corresponding simulation

results are shown in Figure 4.15a and Figure 4.15b, respectively. The figures depict

the iterative solutions for different error threshold values, where the iterative conver-

gence fails for high error threshold values in T-MLFMA. We are unable to make a

comparison with the reference MLFMA result due to the non-convergent behavior of

the T-MLFMA solutions. The figures also show the ratios of the included basis/test-

ing functions in MVMs by T-MLFMA. A stable elimination is observed for the basis

function. Nevertheless, the elimination of the testing functions starts to stagnate after

a sharp drop, which triggers a divergence or stagnation of the iterative solution.

We illuminate the Flamme geometry by a plane wave from two different angles, i.e.,

(θ = 90◦, φ = 30◦) and (θ = 90◦, φ = 210◦), while the corresponding simulation re-

sults are shown in Figure 4.16a and Figure 4.16b, respectively. The iterative solution

behavior for the Flamme geometry is the same as the one in the previous solution set,

i.e., we cannot obtain an iterative convergence to the desired residual error for both

illuminations. In each case, the residual error drops until a point, then it diverges and

stagnates. The breakdown point can be shifted by using lower threshold error values

in T-MLFMA, but the iterative solution eventually degenerates. In Figure 4.16, we
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Figure 4.15: Solutions of scattering problems involving the NASA Almond geometry

with an electrical size of 64λ using T-MLFMA with an extended trimming scheme.

(a) Illumination from (θ = 90◦, φ = 30◦) and (b) illumination from (θ = 90◦, φ =

210◦).

also show the ratios of the included basis/testing functions in MVMs by T-MLFMA.

BFEP trims the basis functions rapidly, while the testing function trimming stops and

stagnates. Although the MVM time per iteration is reduced as a result of the elimi-

nated basis/testing functions, the overall iterative solutions deteriorate and we cannot

obtain a reasonable solution at the end.

The results shown in this section clearly shows that near-zone interactions should not

be included in the trimming process.
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Figure 4.16: Solutions of scattering problems involving the Flamme geometry with

an electrical size of 64λ using T-MLFMA with an extended trimming scheme. (a)

Illumination from (θ = 90◦, φ = 30◦) and (b) illumination from (θ = 90◦, φ = 210◦).

4.5 Reusing Tree Structures

In this section, the reusability of T-MLFMA tree-structures is investigated. We first

perform T-MLFMA simulations for the NASA Almond and the Flamme with electri-

cal sizes of 64λ. The geometries are illuminated via plane waves with two different

propagation angles, i.e., (θ = 90◦, φ = 30◦) and (θ = 90◦, φ = 210◦), and with

horizontal polarization. The trimming error is selected as 0.1 for both basis and test-

ing functions using a trimming counter value of one. We save the state of the tree-

structure (kept boxes) at iterations with residual errors of 0.1, 0.05, and 0.01. Then,

we directly use the tree-structures obtained for these residual errors in T-MLFMA so-
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lutions (with static tree structures), without applying further trimming. Note that the

tree-structures corresponding to higher residual errors are sparser. In these numeri-

cal examples, our aim is to understand if we can reuse a tree structure designed by

T-MLFMA.

The simulation results obtained for the NASA Almond geometry with both illumi-

nations are given in Table 4.10. T-MLFMA solutions with low reuse errors (residual

errors of the original T-MLFMA) give extremely high error values for both surface

currents and far-zone scattered fields. These are obviously due to the elimination

of highly critical interactions. As we expect, the current and far-zone error values

become lower for the simulations obtained with higher reuse error values. The tree-

structures obtained at the early stages of the iterations include only small numbers of

trimmed basis and testing functions. Therefore, the number of iterations and solution

time results do not represent any improvement. The far-zone scattered electric field

values with respect to the bistatic angle, given in Figure 4.17, support the comments

above; solutions with sparser tree structures do not show any resemblance with the

reference solutions.

The simulation results obtained for the Flamme geometry with both illuminations are

given in Table 4.11. We observe results that are similar to those in the previous so-

lution set. On the other hand, T-MLFMA solutions with low reuse errors give even

higher errors for both surface currents and far-zone scattered fields. It seems that

the discarded interactions are even more critical for the Flamme geometry. Although

the iteration counts and solution times are lower than those of the reference simu-

lation, we cannot obtain a reliable static T-MLFMA with an acceptable error level.

The far-zone scattered electric field values with respect to the bistatic angle, given in

Figure 4.18, agree with the comments above; solutions with sparser tree structures

are significantly different from the reference solutions.

These results described above show that iteration-dependent dynamic tree structures

obtained with T-MLFMA are unique for each geometry and illumination. Static tree

structures cause uncontrollable errors, which lead to significantly inaccurate simu-

lations. Therefore, T-MLFMA should be used with dynamic tree structures, which

evolve as iterative solutions are performed.
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Table 4.10: Details of the simulation results obtained by T-MLFMA for a scattering

problem involving the NASA Almond geometry (64λ) with previously obtained tree

structures.

Method φ (deg)
Reuse

Error

Current

Error (%)

Far-Field

Error (%)

Number

of Iter.

Solution

Time (h)

Ref. 30 - - - 37 3.27

Reuse 30 0.01 118 250 31 2.74

Reuse 30 0.05 72.2 48.9 36 3.17

Reuse 30 0.1 2.90 0.14 37 3.26

Ref. 210 - - - 36 3.20

Reuse 210 0.01 129 254 32 2.85

Reuse 210 0.05 71.2 39.5 36 3.20

Reuse 210 0.1 0.00 0.00 36 3.20
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Figure 4.17: Solutions of scattering problems involving the NASA Almond geometry

with an electrical size of 64λ using T-MLFMA with previously obtained tree struc-

tures. (a) Illumination from (θ = 90◦, φ = 30◦) and (b) illumination from (θ = 90◦,

φ = 210◦).
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Table 4.11: Details of the simulation results obtained by T-MLFMA for a scattering

problem involving the Flamme geometry (64λ) with previously obtained tree struc-

tures.

Method φ (deg)
Reuse

Error

Current

Error (%)

Far-Field

Error (%)

Number

of Iter.

Solution

Time (h)

Ref. 30 - - - 289 21.9

Reuse 30 0.01 121 372 57 4.27

Reuse 30 0.05 113 237 88 6.64

Reuse 30 0.1 96.6 121 96 7.19

Ref. 210 - - - 289 21.9

Reuse 210 0.01 176 355 58 4.39

Reuse 210 0.05 167 248 100 7.56

Reuse 210 0.1 116 55.3 110 8.33
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Figure 4.18: Solutions of scattering problems involving the Flamme geometry with

an electrical size of 64λ using T-MLFMA with previously obtained tree structures. (a)

Illumination from (θ = 90◦, φ = 30◦) and (b) illumination from (θ = 90◦, φ = 210◦).
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4.6 Simulation Results For Various Illuminations

Electromagnetic scattering problems possess different numerical solution character-

istics for different illuminations, although the target geometry and the impedance ma-

trix remain the same. This section presents solutions of scattering problems involving

the Flamme and an aircraft geometry illuminated by plane waves with various prop-

agation angles. Considering these examples, we can further observe the capabilities

and limitations of T-MLFMA simulations extensively. We fix the illuminations on

the x-y plane, where φ changes from 0 to 180◦ with 10◦ discrete steps. The starting

illumination angle of φ = 0 corresponds to illuminating the back sides of the geome-

tries (nozzles), while φ = 180◦ corresponds to illuminating the front sides of them

(corresponding to the inlet of the aircraft).

The model of the aircraft geometry is presented in Figure 4.19. The aircraft is 15.58 m

long and geometrically simplified. We terminate the inlet after it penetrates into the

main body by approximately 3.4 m. The nozzle, on the other hand, is closed directly

by a plate. The model is excited at 1 GHz; hence, it has an electrical size of 51.9λ.

The surface current density on the aircraft geometry is expanded via 776,049 RWG

functions. The Flamme geometry, considered in this section, has an electrical size of

64λ, as in the previous examples.

Similar to the earlier results, the electromagnetic scattering problems are formulated

by using CFIE and solved iteratively via flexible GMRES. We further accelerate the

iterative solutions by applying a block-diagonal preconditioner. The simulations are

performed via T-MLFMA by using a trimming counter value of five and with rela-

tively high error thresholds, i.e., 0.1, 0.2, and 0.3. We also consider PO results for

these geometries to make extensive comparisons including a high-frequency tech-

nique.

In Figure 4.20, we show the far-zone scattered electric field values with respect to the

bistatic angle in the azimuth plane for the Flamme geometry. We can observe a good

match between the T-MLFMA and reference solutions. The scattering levels obtained

with T-MLFMA follow the reference scattering levels consistently for the whole axis,

including the forward-scattering and reflection directions. On the other hand, the PO
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results mostly underestimate the scattering levels or miss strong scattering directions.

Figure 4.20 also shows the focused views of the backscattering ranges for all illumi-

nations. T-MLFMA simulations provide reliable scattering values that are consistent

with the reference values, even for weak backscattering responses. In Tables 4.12

and 4.13, quantitative results for this solution set is presented. The surface current

errors and far-zone scattered electric field errors are consistently low, similar to the

results in the previous sections. The backscattering errors are relatively higher for

low scattering levels, while convergence can still be satisfied with smaller trimming

threshold errors. In terms of the solution time, the reference solutions require 190 it-

erations and 12.72 hours in average. In comparison to these, the T-MLFMA solutions

with 0.3 trimming error require 55 iterations and 2.43 hours in average. Therefore,

we obtain 70% iteration reduction and more than 80% solution-time reduction using

T-MLFMA.

The simulation results for the aircraft geometry are similar to the results of the previ-

ous solution set. In Figure 4.21, we show the far-zone scattered electric field values

with respect to the bistatic angle in the azimuth plane for the aircraft geometry. In

scattering results, we observe a good match between the T-MLFMA and reference

solutions. In addition, the scattering levels are consistent for the whole bistatic range.

On the other hand, the PO results overestimate the field values at around the forward-

scattering direction and underestimate in the backscattering range. Figure 4.21 also

shows the focused views of the backscattering ranges for all illuminations. The T-

MLFMA simulations provide accurate scattering values that match with the reference

values, while they also show converging behavior. In the regions with weak backscat-

tering responses, T-MLFMA provides consistently oscillating fields with small shifts.

In addition, we can reduce the shifts easily by using lower trimming threshold values.

In Tables 4.14 and 4.15, quantitative simulation results for the aircraft geometry are

presented. The surface current errors are consistently low, while the far-zone scat-

tered electric field errors are considerably below the threshold values. In terms of the

solution time, the reference solutions require 384 iterations and 25.74 hours in aver-

age. On the other side, the T-MLFMA solutions with 0.3 trimming errors require 66

iterations and 2.69 hours in average. Therefore, we obtain more than 80% iteration

reduction and 90% solution-time reduction.
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Figure 4.19: Model of a fighter aircraft geometry.
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Figure 4.20: Solutions of scattering problems involving the Flamme geometry (64λ)

with different illuminations.
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Figure 4.21: Solutions of scattering problems involving the aircraft geometry (51.9λ)

with different illuminations.
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Table 4.12: Details of the simulation results obtained by T-MLFMA for a scattering

problem involving the Flamme geometry (64λ).

Method
Basis

Error
φ (deg)

Current

Error (%)

Far-Field

Error (%)

Backsca.

Error (%)

Number

of Iter.

Solution

Time (h)

Ref. - 0 - - - 221 14.8

TMLFMA 0.1 0 15.6 3.18 12.5 70 3.36

TMLFMA 0.2 0 17.9 4.78 19.6 65 3.21

TMLFMA 0.3 0 21.6 7.03 29.0 63 2.76

PO - 0 97.3 59.4 121 - 0.29

Ref. - 30 - - - 289 20.0

TMLFMA 0.1 30 26.5 2.28 14.8 68 3.38

TMLFMA 0.2 30 28.0 3.38 20.0 65 3.24

TMLFMA 0.3 30 30.3 4.79 30.8 63 2.82

PO - 30 89.8 35.1 101 - 0.27

Ref. - 60 - - - 254 16.8

TMLFMA 0.1 60 25.2 1.45 24.4 58 2.90

TMLFMA 0.2 60 25.3 1.62 26.0 57 2.75

TMLFMA 0.3 60 26.3 2.01 27.9 56 2.60

PO - 60 84.1 23.9 73.3 - 0.22

Ref. - 90 - - - 185 12.2

TMLFMA 0.1 90 9.50 0.83 16.0 46 2.28

TMLFMA 0.2 90 9.51 0.98 15.9 45 2.15

TMLFMA 0.3 90 9.60 1.24 16.9 45 2.06

PO - 90 72.5 24.5 152 - 0.22

Ref. - 120 - - - 105 7.20

TMLFMA 0.1 120 7.31 0.65 18.3 48 2.29

TMLFMA 0.2 120 7.42 0.80 18.9 49 2.19

TMLFMA 0.3 120 7.63 1.08 19.5 50 2.11

PO - 120 63.4 23.0 136 - 0.22
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Table 4.13: Details of the simulation results obtained by T-MLFMA for a scattering

problem involving the Flamme geometry (64λ).

Method
Basis

Error
φ (deg)

Current

Error (%)

Far-Field

Error (%)

Backsca.

Error (%)

Number

of Iter.

Solution

Time (h)

Ref. - 150 - - - 137 9.05

TMLFMA 0.1 150 13.0 2.06 40.4 57 2.61

TMLFMA 0.2 150 13.5 2.13 44.9 56 2.43

TMLFMA 0.3 150 14.5 2.27 50.1 54 2.28

PO - 150 73.7 31.0 102 - 0.27

Ref. - 180 - - - 137 9.05

TMLFMA 0.1 180 10.7 2.87 78.7 63 2.98

TMLFMA 0.2 180 12.4 4.03 76.1 59 2.62

TMLFMA 0.3 180 15.0 4.50 88.0 56 2.40

PO - 180 80.4 47.5 94.4 - 0.36

Table 4.14: Details of the simulation results obtained by T-MLFMA for a scattering

problem involving the aircraft geometry (51.9λ).

Method
Basis

Error
φ (deg)

Current

Error (%)

Far-Field

Error (%)

Backsca.

Error (%)

Number

of Iter.

Solution

Time (h)

Ref. - 0 - - - 283 19.0

TMLFMA 0.1 0 7.73 2.15 3.42 69 2.93

TMLFMA 0.2 0 8.29 2.40 3.81 67 2.58

TMLFMA 0.3 0 9.22 2.70 4.25 66 2.46

PO - 0 95.5 52.5 14.4 - 0.35

Ref. - 30 - - - 310 20.8

TMLFMA 0.1 30 7.49 1.07 7.17 67 3.00

TMLFMA 0.2 30 7.94 1.22 7.66 67 2.73

TMLFMA 0.3 30 8.61 1.47 7.97 65 2.48

PO - 30 85.3 28.7 91.4 - 0.24
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Table 4.15: Details of the simulation results obtained by T-MLFMA for a scattering

problem involving the aircraft geometry (51.9λ).

Method
Basis

Error
φ (deg)

Current

Error (%)

Far-Field

Error (%)

Backsca.

Error (%)

Number

of Iter.

Solution

Time (h)

Ref. - 60 - - - 349 23.4

TMLFMA 0.1 60 13.3 1.46 34.2 74 3.32

TMLFMA 0.2 60 14.1 1.60 36.8 72 2.91

TMLFMA 0.3 60 15.3 1.88 40.7 69 2.72

PO - 60 76.5 17.5 101 - 0.24

Ref. - 90 - - - 392 26.3

TMLFMA 0.1 90 20.0 2.02 6.34 78 3.50

TMLFMA 0.2 90 20.4 1.93 6.48 75 3.33

TMLFMA 0.3 90 21.1 1.99 6.76 73 2.93

PO - 90 74.6 25.9 105 - 0.22

Ref. - 120 - - - 438 29.4

TMLFMA 0.1 120 29.4 1.92 47.1 69 3.05

TMLFMA 0.2 120 29.6 1.93 47.2 66 2.80

TMLFMA 0.3 120 29.9 2.03 48.4 64 2.68

PO - 120 75.7 16.2 69.5 - 0.20

Ref. - 150 - - - 468 31.4

TMLFMA 0.1 150 25.6 2.18 29.8 74 3.70

TMLFMA 0.2 150 27.2 2.97 40.3 71 3.34

TMLFMA 0.3 150 30.0 3.73 55.5 68 3.00

PO - 150 78.5 27.0 81.8 - 0.19

Ref. - 180 - - - 448 30.0

TMLFMA 0.1 180 24.0 1.96 4.76 64 3.06

TMLFMA 0.2 180 25.8 2.67 8.21 59 2.72

TMLFMA 0.3 180 27.9 4.04 14.2 57 2.56

PO - 180 88.6 55.5 100 - 0.27
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4.7 Numerical Results for Various Electromagnetic Problems

In this section, we present simulation results for different electromagnetic problems,

such as scattering, radiation, and transmission problems. The scattering problems

include the NASA Almond, the Flamme, and an aircraft geometry. In the radiation

problem, we discuss the results of simulations of a patch array antenna. Finally, in

the transmission problem, simulations of an array of split-ring resonators (SRR) in

resonance and off-resonance frequencies are shown.

4.7.1 Scattering Problems

In this part, we present analyses of different types of geometries. The NASA Almond

is considered as a canonical geometry, while the Flamme and an aircraft geometry

are considered as real-life applications. We model all geometries as PEC solid bod-

ies, which are formulated with CFIE. The surface current densities on the geometries

are expanded with the RWG functions on λ/10 triangles, while the Galerkin scheme

is used to select the testing functions. We consider plane wave illumination and solve

the corresponding matrix equations iteratively by using flexible GMRES. Also, the

iterative solutions are accelerated via the block-diagonal preconditioner. We obtain

the solutions by using regular MLFMA as the reference, T-MLFMA with ML-based

BFEP, T-MLFMA with manual-based BFEP, and PO. In the following simulation re-

sults of this subsection, the trimming threshold of the basis functions (α) is set as

0.1. The trimming threshold of the testing functions (β) is set as 0.05 to obtain less

than 5% error in the overall scattered fields. We compare the results of the simula-

tions in five categories; surface current error, far-zone scattered electric field error,

backscattering error, number of iterations, and solution time.

The first problem involves the NASA Almond geometry. The model is 600 mm long

and excited at 32 GHz, which corresponds to an electrical length of 64λ. The number

of unknowns for this problem is 893,727. The geometry is illuminated by a plane

wave with propagation direction θ = 90◦ and φ = 30◦, and with horizontal polariza-

tion. Figure 4.22 presents the bistatic far-zone electric field intensity on the x-y plane

obtained by using the conventional MLFMA and the proposed T-MLFMA, as well as

with the PO using the same discretization. The far-zone electric field intensity plots
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Figure 4.22: Solutions of a scattering problem involving the NASA Almond geometry

with an electrical size of 64λ using T-MLFMA.

show a good match between T-MLFMA and MLFMA, while the PO values surpris-

ingly agree with the MLFMA values. The reasonably accurate far-zone results of PO

are due to the simplicity of the geometry, while we note that it still does not provide

the oscillatory behavior at around the backscattering direction. Figure 4.22 also de-

picts the residual errors with respect to FGMRES iterations, where it is apparent that

the iterations are reduced with T-MLFMA. Figure 4.22 further shows the ratio of the

included basis/testing functions, as well as the MVM time per iteration for FGMRES

iterations. The trimming process starts after the fifth iteration and continues until the

end of the solution, while the MVM time is reduced from 320 s (first iteration) to

78 s (last iteration) for T-MLFMA with ML-based BFEP. In Table 4.16, we present

further details of the analysis of the NASA Almond geometry. PO provides visually

consistent far-zone results, but it gives more than 25% far-field error. T-MLFMA, on

the other hand, provides quite small surface current errors and far-zone electric field

errors, while the overall far-zone errors are below 5% as targeted. Another important
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Table 4.16: Details of the Simulation Results for 64λ NASA Almond

Method
Current

Error (%)

Far-Field

Error (%)

Backsca.

Error (%)

Number

of Iter.

Solution

Time (h)

Ref. - - - 37 3.27

Manual 4.54 2.04 19.5 27 1.69

ML 4.04 1.12 13.4 29 1.93

PO 53.2 27.7 22.6 - 0.28

detail is that the manual-based approach doubles the far-zone and backscattering er-

ror values in comparison to the ML-based method. Overall, T-MLFMA reduces the

number of iterations by 12% and reduces the solution time by 40%.

The second scattering problem involves of the Flamme geometry. The model is

600 mm long and excited at 32 GHz, which corresponds to an electrical length of

64λ. The surface current density on the geometry is expanded with 811,080 RWG

functions. The geometry is illuminated by a plane wave with propagation direction

θ = 90◦ and φ = 30◦, and with horizontal polarization, i.e., the incident wave propa-

gates towards the nozzle. This illumination direction is selected due to the difficulty

of the scattering problem, which involves strong multiple reflections and diffractions.

Figure 4.23 presents the bistatic far-zone electric field intensity on the x-y plane ob-

tained by using the conventional MLFMA and the proposed T-MLFMA, as well as

with PO using the same discretization. The far-zone electric field intensity results

show a good match between T-MLFMA and MLFMA in terms of field levels and

oscillations. The PO values, however, significantly deviate from the MLFMA values,

generally underestimating field levels, especially in the backscattering (210◦) direc-

tion due to the multiple reflections and diffractions from the geometry. Figure 4.23

also depicts the residual errors with respect to FGMRES iterations, where it is appar-

ent that the iterations are reduced with T-MLFMA. Figure 4.23 further shows the ratio

of the included basis/testing functions, as well as the MVM time per iteration. The

trimming process starts after the fifth iteration and continues until the end of the solu-

tion, while the MVM time is reduced from 275 s (first iteration) to 32 s (last iteration)

for T-MLFMA with ML-based BFEP. In Table 4.17, we present further details of the
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Figure 4.23: Solutions of a scattering problem involving the Flamme geometry with

an electrical size of 64λ using T-MLFMA.

analysis of the Flamme geometry. PO leads to more than 35% far-zone error, and

it gives more than 100% backscattering error. T-MLFMA, especially using the ML-

based approach, provides small far-zone electric field error. Specifically, the overall

far-zone errors are below 5%, almost half of the target error. In addition, T-MLFMA

provides accurate and consistent results in the backscattering region. The manual-

based approach yields more than twice far-zone and backscattering errors compared

to the ML-based method, showing the issues in this approach in terms of error con-

trollability. Overall, T-MLFMA reduces the number of iterations by 77% and reduces

the solution time by 84%. T-MLFMA gives a solution time reduction higher than the

reduction in the number of iterations due to the accelerated MVMs as the iterations

continue.

At the third and final scattering problem, we consider a fighter aircraft geometry. The

model, shown in Figure 4.19, is 15.58 m long and excited at 1 GHz, which corre-
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Table 4.17: Details of the Simulation Results for the 64λ Flamme

Method
Current

Error (%)

Far-Field

Error (%)

Backsca.

Error (%)

Number

of Iter.

Solution

Time (h)

Ref. - - - 289 21.9

Manual 36.3 7.28 50.3 58 2.53

ML 28.0 3.11 19.0 66 3.41

PO 89.8 35.1 101 - 0.23

sponds to an electrical length of 51.9λ. The surface of the target is discretized with

517,366 triangles, which leads to 776,049 RWG functions. The target is illuminated

by a plane wave with propagation direction θ = 90◦ and φ = 180◦, and with horizon-

tal polarization, i.e., the incident wave propagates towards the inlet. Low-detectability

of the fighter aircraft from the nose is crucial, hence this is a critical illumination an-

gle for radar-cross-section analysis. Illumination from the nose is also a problematic

numerical problem since the inlets of the aircraft involve strong resonances and cause

high backscattering values. Therefore, obtaining accurate results with efficient sim-

ulations is very important. Figure 4.24 presents the bistatic far-zone electric field

intensity on the x-y plane obtained by using the conventional MLFMA and the pro-

posed T-MLFMA, as well as with the PO using the same discretization. The far-

zone electric field intensity results show a remarkable match between T-MLFMA and

MLFMA, although the aircraft geometry is not included in the dataset to train the

ML model. The T-MLFMA results successfully show the dips and peaks of the field

oscillations. The PO values, however, completely deviate from the MLFMA values

with underestimation of scattering. Specifically, PO underestimates the backscat-

tering (0◦) value by almost two orders of magnitude. Figure 4.24 also depicts the

residual errors with respect to FGMRES iterations, where it is apparent that the itera-

tions are reduced with T-MLFMA. Figure 4.24 further shows the ratio of the included

basis/testing functions, as well as MVM time per iteration. The trimming process

rapidly starts and continues until all basis/testing functions are omitted at the end of

the solution, while the MVM time is reduced from 225 s (first iteration) to only 21 s

(last iteration) for T-MLFMA with ML-based BFEP. In Table 4.18, we present further

details of the analysis of the aircraft geometry. PO leads to more than 55% far-zone
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Figure 4.24: Solutions of a scattering problem involving the aircraft geometry with

an electrical size of 51.9λ using T-MLFMA.

error, and it gives more than 100% backscattering error. T-MLFMA, especially using

the ML-based approach, gives small far-zone electric field error, i.e., the overall far-

zone error is only 2.6% (5% is the target error). The backscattering value obtained

by using T-MLFMA agrees very well with the reference solution by an error of 6.7%.

The manual-based approach yields more than three times far-zone error and more

than five times backscattering error in comparison to the ML-based method. These

error levels clearly demonstrate that the manual-based approach should not be used in

critical simulations, where error controllability is required. Overall, T-MLFMA with

ML-based BFEP reduces the number of iterations by 86% and the solution time by

90%.
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Table 4.18: Details of the Simulation Results for the 51.9λ Aircraft

Method
Current

Error (%)

Far-Field

Error (%)

Backsca.

Error (%)

Number

of Iter.

Solution

Time (h)

Ref. - - - 448 28.6

Manual 34.7 7.81 35.2 51 1.94

ML 25.8 2.61 6.72 60 2.70

PO 88.6 55.5 100 - 0.27

4.7.2 Radiation Problems

Next, we consider a radiation pattern calculation involving a free-standing patch array.

The geometry used is inspired by the 5 × 5 patch antenna array presented in [105],

where the current phases of the elements are optimized to obtain a directive radiation

pattern. The primary 5×5 array is repeated four times in both x and y directions with

changing excitation values, leading to a larger array that consists of 20 × 20 patch

antennas. Each element is a 3 × 3 mm square PEC plate with zero thickness, and

they are placed periodically with 3 mm gaps between them. We also note that each

patch is excited from its bottom by using a current source (1 A and optimized phase)

at 24.5 GHz. Uisng a discretization with 0.6 mm triangles (∼ λ/20), a total of 34,400

RWG functions are defined for the whole array. The array model and the phase values

of the excitations are shown in Figure 4.25a.

Since the surfaces have zero thickness, we formulate the electromagnetic radiation

problem by using EFIE. Figure 4.25b presents the normalized radiation patterns on

the z-x plane obtained by using the conventional MLFMA and the proposed T-MLFMA.

The radiation patterns are normalized with the maximum field value of the reference

result. In T-MLFMA, we set the basis function trimming threshold α as 0.01 consid-

ering the electrically small size of the discretization. We also set the testing function

trimming threshold β as 0.05 to keep the overall far-zone electric field error below

5%. The radiation pattern results show a remarkable match between T-MLFMA and

MLFMA, although the ML dataset includes only CFIE solutions without any antenna

geometry. In Table 4.19, we present further details of the radiation simulations. Sur-
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Figure 4.25: (a) Model and excitation details for the 20× 20 patch array. (b) Normal-

ized radiation pattern of the array.
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Table 4.19: Details of the Simulation Results for the 20× 20 patch antenna array

Method
Current

Error (%)

Far-Field

Error (%)

Number

of Iter.

Solution

Time (h)

Ref. - - 144 0.35

Manual 10.5 14.9 73 0.13

ML 10.3 1.66 128 0.24

prisingly, T-MLFMA versions give similar surface current error values, while the

far-zone electric field errors of the ML-based and manual-based approaches are com-

pletely different. The manual-based approach gives almost nine times more field

error than the ML-based method, although it is two times faster. T-MLFMA with the

ML-based approach gives a small far-zone electric field error, i.e., it is only 1.66%

(target error is 5%). Overall, T-MLFMA with ML-based BFEP reduces the number

of iterations by 11% and the solution time by 31%.

4.7.3 Transmission Problems

As the final numerical simulation set in this section, we consider transmission prob-

lems involving an SRR array. The SRR array is inspired by the simulations considered

in [98]. The details of the model is shown in Figure 4.26. Each SRR element consists

of two nested oppositely slitted circular PEC rings with zero thicknesses. The width

of the slits is 0.192 mm. The outer and inner radii of the larger ring are 2.87 mm

and 2.19 mm, while the outer and inner radii of the smaller ring are 1.79 mm and

1.15 mm. The array contains 3 × 20 × 15 SRR elements, which are periodically

placed on the x-y plane with 7 mm distance and regularly arranged along the z axis

with 12 mm gap. The SRR array designed with the dimensions given above exhibits a

strong resonance and becomes opaque between 8.2 GHz and 9 GHz. In the rest of the

frequency range, it behaves as a transparent object. We illuminate the SRR array via

a Hertzian dipole source with +y directed dipole moment, which is placed at 50 mm

distance from the center of the array on the x axis. We use a 0.75 mm triangular mesh

to discretize the geometry, leading to a square matrix equation that consists of 57,600

unknowns.

81



1.15

1.79

2.19

2.87

0.192

7.0

7.0

Dipole
Source

138.7

y

x

19.7

y

z

12.0

168

Tr
an

sm
is

si
o

n
 

Z
o

n
e

Figure 4.26: Details and dimensions (in mm) of the 3× 20× 15 SRR array structure

that is designed to resonate at around 8.5 GHz.

This problem is also formulated by using EFIE since the geometry consists of open

surfaces. We illuminate the SRR array at 8.5 GHz (resonance frequency) and 9.5 GHz

(off-resonance frequency). Figure 4.27 presents the near-zone electric field intensity

on the x-y plane in the vicinity of the SRR array obtained by using the conventional

MLFMA and the proposed T-MLFMA. We set the basis function trimming threshold

α as 0.005 due to the electrically small size of the discretization and highly sensitive

characteristics of the geometry. We also set the testing function trimming threshold β

as 0.1 to obtain the overall electric field error below this value. The near-zone electric

field error is calculated as

Nearfield error(%) =

√∑S
s=1

∥∥Eref
s −Es

∥∥2
2√∑S

s=1

∥∥Eref
s

∥∥2
2

× 100, (4.4)

where S is the number of near-zone samples in the transmission region, Eref
s is the

reference electric field, and Es is the electric field obtained with T-MLFMA in the

transmission region. As shown in Figure 4.27, the transmission region starts right

after the SRR array geometry. The near-zone electric field distributions show a re-
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Figure 4.27: Electric field in the vicinity of the 3 × 20 × 15 SRR array. The array is

illuminated by a dipole.
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Table 4.20: Details of the Simulation Results for the 3× 20 SRR array

Method
Freq.

(GHz)

Current

Error (%)

Nearfield

Error (%)

Number

of Iter.

Solution

Time (h)

Ref. 8.5 - - 775 2.66

Ref. 9.5 - - 457 1.86

Manual 8.5 37.6 30.2 736 0.65

Manual 9.5 24.1 17.6 301 0.42

ML 8.5 22.6 13.9 783 0.99

ML 9.5 8.60 7.92 349 0.67

markable match between T-MLFMA and MLFMA. T-MLFMA provides very suc-

cessful results at the off-resonance frequency, while small discrepancies are observed

at the resonance frequency. In Table 4.20, we present further details of the simula-

tion results for the SRR array. ML-based T-MLFMA simulations provide near-zone

electric field error below the threshold value at the off-resonating frequency, while it

exceeds 10% at the resonance frequency. This is due to the numerically challenging

nature of the array when SRRs resonate. The manual-based approach, on the other

hand, gives more than two times larger near-zone electric field errors in comparison to

the ML-based method, although it is only 30% faster. Overall, T-MLFMA with ML-

based approach reduces the number of iterations by 23% and reduces the solution

time by 63% at the off-resonating frequency. At the resonance frequency, however, it

increases the number of iterations by 1%, while it still reduces the solution time by

62%.

4.8 T-MLFMA Preconditioner

In this section, we propose an alternative practice of the trimming scheme for precon-

ditioning based on approximate forms of T-MLFMA. Approximate MLFMA (AMLFMA)

versions are used as preconditioners in the literature [9]; so we integrate the trimming

scheme in this kind of accelerated simulations. Specifically, we use the outer and

inner solution scheme, where we use FGMRES for outer solutions and GMRES for

inner solutions. The termination criterion for FGMRES is set as 0.001 relative resid-
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ual error, while GMRES solutions are restricted to only 0.1 residual error and maxi-

mum 10 iterations. The inner-solution MVMs are performed via trimmed AMLFMA

(T-AMLFMA), where AMLFMA is obtained by changing the number of harmonics,

i.e., the harmonic numbers are multiplied with an approximation factor (A-Factor) at

all levels of the given tree structure. The MVM scheme works as a regular MLFMA

for the A-Factor value of 1, while it reduces into only near-zone interactions for the

A-Factor value of 0.

We share the numerical simulations in this section in two categories, i.e., outer solu-

tions with regular MLFMA and outer solutions with T-MLFMA. We select scattering

from the aircraft geometry as the test scenario for the performance assessment of the

introduced preconditioner. The aircraft geometry is illuminated via a plane wave from

the nose (with propagation angle θ = 90◦ and φ = 180◦, and with horizontal polar-

ization). We formulate the scattering problem with CFIE and accelerate the reference

solution by using the BD preconditioner. We again consider surface current errors,

far-zone electric field errors, number of iterations, and solution times to assess the

performance of the preconditioner.

In the first solution set, we present the analysis of the aircraft geometry by using T-

MLFMA accelerated via the T-AMLFMA preconditioner. The trimming process de-

tects the converged basis and testing functions to omit at each iteration of the outer so-

lution. The outer solution shares the list of the remaining basis and testing functions,

as well as the trimmed tree structure with the inner solutions. Then, T-AMLFMA,

in an inner solution, directly uses the trimmed structure. We test various A-Factor

values for T-AMLFMA, leading to the results in Figure 4.28. The figure depicts the

far-zone scattered electric field values with respect to the bistatic angle in the azimuth

plane. We observe the agreement of the T-MLFMA solutions with the reference solu-

tion in the whole bistatic range. Figure 4.28 also shows the iterative convergence and

gives the ratio of the included basis (solid lines) and testing (dashed lines) functions.

We observe that the iterative convergence of T-MLFMA is significantly accelerated

by the preconditioner. Figure 4.28 further illustrates the MVM time per iteration for

FGMRES iterations, where the solid lines represent the MVM time per iteration and

the dashed lines represent the inner solution time per iteration. The required time

for an outer MVM and for an inner solution are both significantly reduced thanks to
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Figure 4.28: Solutions of a scattering problem involving the aircraft geometry With

Electrical Size of 51.9λ by using T-MLFMA and T-AMLFMA Preconditioner.

the trimmed basis and testing functions. In Table 4.21, the details of the simulation

results for this solution set are presented. All T-MLFMA solutions give the far-zone

electric field error below the 5% threshold, even for the A-Factor value of 0, which

offers 95% iteration reduction and 96% solution time reduction.

In the second solution set, we present the analysis of the aircraft geometry by us-

ing MLFMA as the outer solver and T-AMLFMA as the inner solver for precondi-

tioning. We first perform solutions with the AMLFMA preconditioner, without any

trimming process, for various A-Factor values. Then, we perform solutions by using

T-AMLFMA for various A-Factor values and different trimming threshold values.

The trimming process is the same as the one in the previous solution set. Specifically,

the converged basis and testing functions are omitted at each iteration of the outer

solution, and then, the trimmed layout is directly applied to the inner solution MVMs

(T-AMLFMA). In Table 4.22 and Figure 4.29, the details of the simulation results
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Figure 4.29: Solutions of a scattering problem involving the aircraft geometry by

using regular MLFMA and T-AMLFMA.
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Table 4.21: Details of the Simulations Involving the Aircraft Geometry Using T-

MLFMA and T-AMLFMA Preconditioner

Method A-Factor
Trimming

Error

Current

Error (%)

Far-Field

Error (%)

Number

of Iter.

Solution

Time (h)

Ref. - - - - 448 28.6

T-MLFMA 0 0.1/0.05 31.9 4.79 22 1.10

T-MLFMA 0.2 0.1/0.05 24.2 2.97 14 1.85

T-MLFMA 0.3 0.1/0.05 23.2 3.29 12 1.85

T-MLFMA 0.5 0.1/0.05 22.5 2.19 11 2.57

Table 4.22: Details of the Simulations Involving The Aircraft Geometry With Elec-

trical Size of 51.9λ Using Regular MLFMA (for Outer Solutions) and T-AMLFMA

(for Inner Solutions)

Method A-Factor
Trimming

Error

Current

Error (%)

Far-Field

Error (%)

Number

of Iter.

Solution

Time (h)

Ref. - - - - 448 28.6

MLFMA 0 - 1.39 0.36 246 16.4

MLFMA 0.2 - 2.11 0.36 81 13.9

MLFMA 0.3 - 2.87 0.35 64 12.3

MLFMA 0.5 - 3.31 0.36 57 17.6

MLFMA 0.2 0.001/0.0001 2.14 0.37 82 14.6

MLFMA 0.3 0.001/0.0001 2.87 0.35 64 12.3

MLFMA 0.5 0.001/0.0001 3.06 0.35 62 18.8

MLFMA 0.2 0.01/0.001 1.65 0.35 166 18.5

MLFMA 0.3 0.01/0.001 1.69 0.35 157 19.2

MLFMA 0.5 0.01/0.001 1.82 0.35 169 27.6

MLFMA 0.2 0.1/0.01 1.89 0.35 226 18.2

MLFMA 0.3 0.1/0.01 1.43 0.35 219 18.6

MLFMA 0.5 0.1/0.01 1.59 0.36 217 22.0

are presented. The surface current errors and the far-zone scattering errors are all

significantly small since we use regular MLFMA in the outer solver. The numbers of

iterations and the solution times for the T-AMLFMA preconditioner with a low trim-

ming threshold are similar to those obtained with the AMLFMA preconditioner with
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the same A-Factor values. However, as we increase the trimming threshold, the T-

AMLFMA preconditioner becomes an AMLFMA preconditioner with the A-Factor

value of 0, which corresponds to using the near-zone matrix for the inner solutions.

For higher trimming thresholds, the tree structure of T-AMLFMA becomes sparse

quite rapidly with significant numbers of omitted far-zone interactions. Therefore,

MVMs of the inner solutions only include near-zone interactions. This process can

also be observed in the iterative convergence results in Figure 4.29. The T-AMLFMA

preconditioner turns into the near-zone interactions, independently of the A-Factor

value.

As a result, we conclude that T-AMLFMA can be used as a strong preconditioner for

T-MLFMA solutions. We obtain 2.4 times acceleration in the solution time compared

to T-MLFMA without preconditioning in Table 4.18, while we also obtain 11.2 times

acceleration in the solution time compared to the fastest solutions with the AMLFMA

preconditioner in Table 4.22. However, we observe that T-AMLFMA is not a suitable

preconditioner for MLFMA.
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CHAPTER 5

OTHER APPLICATIONS

In this chapter, we present two of our works in the scope of ML-aided electromagnetic

simulations. The first section shows visual surface current estimations at the early

stages of iterative solutions using deep CNNs. In the second section, we present

error prediction for scattered electromagnetic fields from electrically large geometries

using ML.

5.1 Visual Result Prediction in Electromagnetic Simulations Using Machine

Learning

Simulations of electrically large geometries require long solution durations, while

meaningful visual results may be obtained at the early stages of a simulation, if the

available information is intelligently used. In this section, we present deep residual

CNN structures that can provide visual estimations of accurate solutions, which can-

not be obtained otherwise, using approximate and coarse simulations. We train CNN

models to use the surface current images obtained at the early stages of iterative solu-

tions and to estimate the corresponding images of the final solutions. The structure of

the CNN model for visual result prediction, training details of the CNN model, and

numerical results are shown in the following subsections.

5.1.1 Surface Current Estimation

Despite the peak technology provided by MLFMA and similar fast algorithms, solu-

tions of large-scale problems still require excessive processing times, while industrial

applications often need faster simulations and even reasonable predictions of final re-

sults, e.g., surface currents induced on metallic surfaces as focused here, before fine

91



No

Full-wave Simulations

Generate Surface Current Images

Generate CNN Model

Train CNN Model

Evaluate Model

Satisfying
Results? 

Deploy CNN Model

Yes

Yes

No

Model 
Converged?

Figure 5.1: Workflow of the CNN model training for surface current estimation.

tunings in both design processes and simulations. Unavailability of this kind of in-

formation in most high-frequency techniques further necessitates the use of full-wave

solvers as tools, while supporting them with new approaches like machine learning.

Focusing on surface current density distributions, calculated currents at early itera-

tions of a solution, which result in high residual errors (HREs) from the perspective

of the iterative solver, can be considered as coarse and low-resolution images. On the

other side, calculated surface currents at the end of an iterative solution, which gives

the target low residual error (LRE), can be considered as a high-resolution image.

By using the well-established concepts in the super-resolution studies, we propose a

surface current estimation method to predict LRE images from HRE images.

The proposed surface current estimation method includes CNN models, which must

be carefully built and trained. A workflow to obtain a successful CNN model is given
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in Figure 5.1. The first step is to create a sufficiently large raw dataset for the training

process, which directly affects the overall performance of the model. For this purpose,

many full-wave simulations are performed to obtain HRE solutions, as well as large

numbers of LRE solutions, to be saved. Then, we follow a nested loop procedure to

(1) generate image dataset of surface currents for training and (2) generate and train

the CNN model. In the inner loop (generating the CNN model), the network param-

eters, such as the length and width of the constructed layers, are determined. If the

trained model cannot sufficiently validate the given dataset, the network parameters

are manually changed. In the outer loop (generating image dataset), images including

appropriate representations of surface currents are determined. If the trained model

cannot make sufficiently successful predictions for the trials in the evaluation dataset,

which are not included in the training dataset, the whole image set is reproduced

by manually changing the orientation and color representation. We note that such

updates do not require new electromagnetic simulations.

The operations above are carefully performed until the trained CNN model provides

satisfactory image predictions. We note that the constructed CNN structures do not

guarantee perfect estimations of all current distributions and they are naturally prone

to mistakes particularly at difficult locations, such as sharp edges and corners; but,

the quality of estimations can be improved by using larger datasets to train these

networks at the cost of increased computational loads. While this trade-off between

the preciseness and the efficiency can be considered depending on the application, our

results show that the constructed CNN structures can be excellent to predict general

aspects of current distributions rather than providing pointwise accuracy. This kind

of predictions can be crucial for large-scale scatterers, particularly in radar scenarios,

where geometric modifications on targets must be tested quickly before long-term

detailed analyses. Specifically, the developed CNN structures can provide extremely

fast but essential information on the distribution of the current density, e.g., locations

for high current density values, that may allow engineers to quickly test geometric

modifications.
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5.1.2 Numerical Results

In this part, we present the application of the workflow described in the previous sub-

section via numerical examples. First, details of raw and image datasets are shared,

followed by model parameters of a CNN. Then, sample results for surface current

estimations by the trained CNN model are presented. All results involve electromag-

netic scattering problems involving metallic objects in the frequency domain. Sur-

faces are discretized with λ/10 triangular elements, where λ is the wavelength of the

host medium (vacuum). GMRES iterative solver is used to solve matrix equations,

while the matrix-vector multiplications are performed via MLFMA with 1% maxi-

mum error.

In the constructed raw dataset, NASA Almond geometry (16λ × 128, 32λ × 64,

64λ × 64), Flamme geometry (16λ × 128, 32λ × 64, 64λ × 64), cube geometry

(16λ× 8, 32λ× 8), and sphere geometry (16λ× 1, 32λ× 1, 64λ× 1) are considered.

Therefore, the raw dataset consists of 256+256+16+3 = 531 full-wave simulations.

In each solution, the geometry is illuminated via a plane wave with random propaga-

tion and polarization. This way, diverse surface current distributions are obtained on

the geometries. During the iterative solutions, HRE and LRE thresholds are used as

0.3 and 0.001, respectively. Absolute surface current density values are plotted using

a linear scale between 0 and 15 mA/m to construct the image dataset. The surface

current distributions obtained with HRE and LRE solutions are viewed from six dif-

ferent angles; left, right, front, back, top, and bottom. The view plots are adjusted

according to the electrical sizes of the geometries by using 8 pixels per wavelength.

Then, all images are divided into 64 × 64-pixel (smaller) RGB images to construct

compact input and output data for the training stage. Empty zones that do not contain

any solution information (geometry surface) are automatically discarded by assigning

black color to the related pixels. As a consequence of all these operations, the final

image dataset consists of 29,636 nonempty 64× 64-pixel RGB images.

The general structure of the CNN model presented here is inspired by the model given

in [106], whereas an overview of the model is shown in Figure 5.2. The model re-

quires an arbitrary-sized HRE input image and provides an LRE image prediction

of the same size. At each layer, 2D convolutions with 5 × 5 kernels are performed.
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Figure 5.2: A block diagram of the CNN structure used for visual surface current

estimation. Details of each layer are given as initials, i.e., k represents the size of

convolution kernels and f represents the number of convolution filters.

Each convolutional layer, except the output layer, contains 30 filters. The convolution

layers are followed by rectified linear unit (ReLU) activation functions. Batch nor-

malization is applied right before each ReLU to balance the data on the main branch.

At the output layer, the model is terminated by a sigmoid function to keep the output

image values bounded. The residual blocks used in this model contains three con-

volution layers, one of which makes a shortcut. At the end of a residual block, the

main and shortcut branches are added in an element-wise manner and forwarded to

an ReLU. We note that the overall model, including two residual blocks, consists of

seven layers. The model is trained via the Adam optimizer [104] by using mean-

absolute-error loss function.

The image dataset is shuffled and split into training and validation sets. In the follow-

ing results, the training set contains 90% of the dataset, whereas the remaining 10%

is used for validation. The CNN model is trained for 500 epochs until the training

and validation loss function values stagnate. The model is further validated on com-

plete images after the training. We note that, although the training is performed on
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Figure 5.3: Surface current estimation for 64λ NASA Almond geometry.
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Figure 5.4: Surface current estimation for 64λ Flamme geometry.
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64 × 64-pixel images, the deployed model can work on arbitrary image sizes. As an

example to processing times, the final model evaluates a single 512× 512-pixel RGB

image in 880 ms using a single core of a CPU. Some prediction examples for the 64λ

NASA Almond geometry are given in Figure 5.3. In this figure, the rows include

solutions for different illuminations, while the columns include HRE solutions, LRE

predictions, and LRE solutions, respectively. The relative tensor norm errors between

LRE images and HRE images are 16.4%, 19.8%, and 20.9%, while the corresponding

prediction errors are 9.8%, 7.8%, and 7.1%. The CNN model also provides visual

improvements, such as better representations of the low-high current transition zones

and and high-current regions, which are not clearly visible in the HRE images.

As a second set of numerical examples, 64λ Flamme geometry is considered in Fig-

ure 5.4. The relative tensor norm errors between LRE images and HRE images

are 34.7%, 46.8%, and 50.5%, while the corresponding prediction errors are 18.0%,

29.4%, and 29.5%. Although the HRE images (obtained with the full-wave solver as

references) are significantly different from the LRE images, the predictions provide

better representations of the current distribution on the nose, at the back, and at the top

of the Flamme geometry. As a comparison in terms of computational requirements, a

complete full-wave simulation of the Flamme geometry requires 7.6 hours (100 iter-

ations), whereas the corresponding HRE solution required by the CNN model can be

obtained in only 18 minutes (4 iterations).

5.2 Error Prediction in Electromagnetic Simulations Using Machine Learning

In this section, we present a novel approach of using deep residual CNN structures

to predict electromagnetic scattering error levels in iterative solutions of large-scale

objects. We train deep residual CNN models to use the surface current images at

the iterative solutions to estimate the electromagnetic far-zone scattering error levels.

Therefore, we can use the result of the CNN models as an alternative error criteria for

the iterative solutions. The simulation environment, the details of the training dataset,

and the numerical results are presented in the following subsections.
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5.2.1 Simulation Environment

In this part, machine learning is again applied within a simulation environment based

on surface integral equations for metallic objects in the frequency domain. Prob-

lems are formulated by using CFIE, which is discretized by using the RWG functions

on λ/10 discretizations, where λ is the wavelength in the host medium. Obtained

dense matrix equations are solved iteratively using GMRES until 10−3 residual error

is reached. Matrix-vector multiplications required for iterations are accelerated via

MLFMA with 1% maximum error. Iterative convergences are further accelerated by

using BDP.

5.2.2 Details of Data Set and CNN Model

Now, we briefly consider important details of dataset generation and deep CNN mod-

els, before sample training results.

In order to train a deep learning system, a considerably large data set is required. In

the following results, more than 500 full-wave solutions are studied. In these solu-

tions, NASA Almond (16λ, 32λ, 64λ), Flamme (16λ, 32λ, 64λ), and cube (16λ, 32λ)

geometries are considered. In each iterative-solution stage, the coefficient vector is

saved for all iterations. Thus, more than 30,000 coefficient vectors are obtained to

generate the dataset. Then, these coefficient vectors are used as both input and out-

put. For the input, surface current distributions are viewed from six different angles;

top, bottom, left, right, front, and back. Then, these plots are combined in a single

256 × 256 pixel RGB image. Images are saved in pairs by combining the results of

consecutive iterations. In order to prevent layout duplication in the input set, image

pairs are randomly rotated. For the output set, forward-scattered electric field values

are calculated by using coefficient vectors. Then, complex relative errors in forward

scattering are calculated, by using the final forward-scattering value as reference. In

order to finalize the output set, a threshold value is applied on the forward-scattering

values. An error level above the threshold is set as zero, else is set as one. For the rest

of this section, the threshold value is considered as 1% forward-scattering error.

The main purpose of the developed CNN model is predicting whether the forward-
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Figure 5.5: A block diagram of the deep CNN structure used for error prediction

in electromagnetic simulations. Details of each layer are given as initials, i.e., k

represents the size of convolution kernels and f represents the number of convolution

filters.

scattering error level is below the given threshold or not by investigating surface

current images of two consecutive iterations. Therefore, a classification network is

required for this task. Since convolutional structures provide successful results for

classification and association tasks, a deep CNN model is constructed, as described

in Figure 5.5. The CNN model requires two RGB images (six frames) and gives a

binary output. It starts with a 2D convolution layer, followed by four residual blocks.

Then, two more 2D convolution layers and three fully connected layers are stacked

consecutively, which makes a total of 18 layers in the model. Rectified linear unit

(ReLU) is used as the activation function. The network is finalized with a softmax

function due to the classification task. After ReLU or a residual block, maxpooling is

applied to downsample the considered frame into half from both vertical and horizon-

tal axis. The residual block in this model consists of four convolution layers. One of

layers makes a shortcut branch starting from the beginning of the residual block and it

is reconnected to the main branch after the third convolution layer. The frames of the

main and shortcut branches are added in an element-wise manner. During training,

categorical cross-entropy loss function and Adam optimizer are used.

The data set is split into two as training and validation sets. The training set con-

sists of 90% of the data set, while the remaining 10% is used for validation to check

the convergence of the model during the training. The model is trained for only 100
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Figure 5.6: Forward-scattering error predictions with respect to GMRES iterations

for sphere geometries of size 16λ, 32λ, and 64λ.

epochs to reach 95.76% training accuracy and 95.4% validation accuracy. For further

validation, sphere geometry, which is not included in the training data set, is con-

sidered. Current images of surface currents on 16λ, 32λ, and 64λ spheres are given

to the trained network and forward-scattering error is predicted (whether it is above

1% or not). Forward-scattering errors and predictions based on the trained model

are given in Figure 5.6. Solid lines represent forward-scattering errors, while circu-

lar markers specify predictions. Green markers and red markers indicate the correct

and failed predictions, respectively. We observe that the trained CNN model provides

very accurate predictions, while it only mispredicts in the threshold region.
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CHAPTER 6

CONCLUSION

We present novel approaches to accelerate MLFMA solutions of three-dimensional

electromagnetic problems. As the major contribution, we consider the integration

of an ML technique into MLFMA to generate efficient tree structures. Specifically,

during iterative solutions, electromagnetic interactions are systematically eliminated,

leading to faster matrix-vector multiplications as iterations continue, whereas itera-

tive convergences are also improved as a result of the sparsification. For eliminat-

ing matrix columns, basis functions (converged current coefficients) are estimated

via ML techniques that are integrated into the MLFMA solver. By also eliminating

matrix rows, i.e., testing functions, based on more straightforward checks with the

right-hand-side elements, impedance matrices become increasingly sparser as itera-

tions continue. Reduced numbers of iterations and decreased MVM (per iteration)

times lead to significant accelerations in terms of overall solution times. Numerical

results on complex structures show that electromagnetic interactions can significantly

be eliminated, and the resulting T-MLFMA implementation can provide as much as

10 times acceleration in comparison to the conventional MLFMA.

We also demonstrate a novel ML approach to visually estimate solutions of electro-

magnetic problems using CNN models. The models are trained to use surface current

pictures obtained at the early stages of iterative solutions and predict the correspond-

ing images of final solutions. Initial experiments show that the proposed estimation

methodology provides promising results, while it is also open to improvements, par-

ticularly with new advances in ML strategies. The application of similar approaches

for the estimation of scattered fields or quantities other than current distributions is

also open for further research.
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Finally, we show error prediction in electromagnetic simulations using deep CNN

structures. As a particular example, a structure is trained by using surface current

images to predict the error level in the forward scattering. Promising numerical ex-

periments, showing successful predictions even for objects out of training sets, are

obtained. This is the first time that ML is used for this kind of an error prediction to

the best of our knowledge, while our initial results support the recent trend in seeking

help from ML concepts in diverse ways to facilitate electromagnetic simulations.
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[47] B. Karaosmanoğlu and Ö. Ergül, “Hybrid surface integral equations for op-

timal analysis of perfectly conducting bodies,” in Proc. IEEE Antennas and

Propagation Soc. Int. Symp., pp. 1160–1161, 2015.
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[64] Ö. Ergül and B. Karaosmanoğlu, “Using multiple-precision arithmetic to pre-

vent low-frequency breakdowns in the diagonalization of the green’s function,”

109



in Proc. Progress in Electromagnetics Research Symp. (PIERS), pp. 2311–

2315, 2014.
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[82] B. Karaosmanoğlu, A. Yılmaz, U. M. Gür, and Ö. Ergül, “Solutions of plas-

monic structures using the multilevel fast multipole algorithm,” in Proc. Third

International EMC Conference, 2015.
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[92] B. Karaosmanoğlu, Ş. Yazar, and Ö. Ergül, “Design of optical couplers via

optimization of photonic crystal structures,” in Turkish, URSI-Turkey Scientific

Symp., 2018.
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[99] B. Karaosmanoğlu, H. İbili, and Ö. Ergül, “Homogenization of structures with

113



negative permeability using genetic algorithms,” in Turkish, URSI-Turkey Sci-

entific Symp., 2018.
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1. B. Karaosmanoğlu and Ö. Ergül, “Visual Result Prediction in Electromagnetic

Simulations Using Machine Learning,” IEEE Antennas Wireless Propag. Lett., vol. 18,

pp. 2264–2266, 2019.
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23. B. Karaosmanoğlu, A. Yılmaz, and Ö. Ergül, “Development and application of a

broadband multilevel fast multipole algorithm for challenging multiscale problems,”

in Proc. Progress in Electromagnetics Research Symp. (PIERS), 2016.
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32. T. Ciftci, B. Karaosmanoğlu, and Ö. Ergül, “Low-cost inkjet antennas for RFID

applications,” in Proc. IEEE Radio and Antenna Days of the Indian Ocean, 2015.
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3. B. Karaosmanoğlu, H. İbili, S Güler, and Ö. Ergül, “Accurate solutions of electro-

magnetic problems involving very large targets,” in Turkish, 9th Congress of Defense

Technologies, 2018, pp. 913–917. F. Mutlu, B. Karaosmanoğlu, and Ö. Ergül, “De-
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