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ABSTRACT

FRANKENSTEIN3D: HUMAN BODY RECONSTRUCTION FROM
LIMITED NUMBER OF POINTS

Taştan, Oğuzhan

M.S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Yusuf Sahillioğlu

December 2019, 66 pages

We propose a novel approach for reconstructing high-resolution 3D human body

models from extremely small number of 3D points which represent body parts. We

leverage a database of high-resolution 3D models of 100 humans varying from each

other by physical attributes such as age, weight, size etc. We, first, divide the bodies

in database into seven semantic regions. Then, for each input region consisting of

maximum 40 points, we search the database for the best matching body part. For the

matching criterion, we use the distance between novel point-base features of input

points and body parts in the database. We further combine the matched parts from

different bodies into one body which result in a high-resolution human body, with

the help of Laplacian deformation. To evaluate our results, we pick points from each

part of the ground-truth human body models, then reconstruct them using our method

and compare the resulting bodies with corresponding ground-truths. Also, our re-

sults are compared with ARAP-based results. In addition, we run our algorithm with

noisy data to test robustness of our method and run it with input points whose body

parts are manually edited, which produces plausible human bodies that do not even
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exist in our database. Our experiments verify qualitatively and quantitatively that the

proposed approach reconstructs human bodies with different physical attributes from

small number of points successfully and prove that our method is robust to noisy

data.

Keywords: 3D Body Reconstruction, Modelling, Database-Assisted Modelling
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ÖZ

FRANKENSTEIN3D: LİMİTLİ SAYIDA NOKTADAN İNSAN VÜCUDU
OLUŞTURMA

Taştan, Oğuzhan

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Yusuf Sahillioğlu

Aralık 2019 , 66 sayfa

Bu tezde, yüksek çözünürlüklü 3 boyutlu insan vücudunu, insan vücudunun parça-

larını temsil eden son derece az sayıda 3B noktadan yeniden oluşturmak için yeni

bir yaklaşım önerdik. Yaş, ağırlık, boyut vb. gibi fiziksel özelliklere göre birbirinden

farklı 100 insandan oluşan yüksek çözünürlüklü 3 boyutlu modellerin bulunduğu veri

setinden yararlanıyoruz. İlk önce veri tabanındaki modelleri yedi semantik bölgeye

(yani baş, sol kol, sağ kol, göğüs, göbek, sol bacak, sağ bacak) bölüyoruz. Sonra,

maksimum kırk noktadan oluşan her girdi bölümü için, veritabanında en iyi eşleşen

şekli arıyoruz. Eşleştirme kriteri olarak, girdi noktalarının özgün nokta bazlı özellik-

leri ile veritabanındaki vücut parçaları arasındaki mesafeyi kullanıyoruz. Laplacian

deformasyonun yardımı ile, farklı vücutlardan eşleşen parçaları, yüksek çözünürlüklü

bir insan vücudu ile sonuçlanan tek bir vücutta birleştiriyoruz. Sonuçlarımızı değer-

lendirmek için, referans bedenlerin her bir kısmından noktalar aldık, daha sonra yön-

temimizi kullanarak onları yeniden yapılandırdık ve sonuçtaki bedeni karşılık gelen

referans beden ile karşılaştırdık. Ayrıca, sonuçlarımızı ARAP-tabanlı sonuçlar ile kar-

şılaştırdık. Buna ek olarak, yöntemimizin dayanıklılığını test etmek için, yöntemimizi
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gürültü eklenmiş girdi noktaları ile denedik ve ayrıca yöntemimizi, veritabanımızda

bulunmayan makul insan vücutları üreten, parçaları elle düzenlenmiş girdi noktaları

ile çalıştırdık. Deneylerimiz, önerilen yaklaşımın, az sayıdaki noktadan farklı fiziksel

özelliklere sahip insan bedenlerini nicel ve nitel olarak başarılı bir şekilde oluştura-

bildiğini ve gürültülü girdilere karşı dayanıklı olduğunu göstermektedir.

Anahtar Kelimeler: 3B Vücut Oluşturma, Modelleme, Veritabanı Yardımlı Model-

leme
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Modelling human body digitally is one of the most attractive field in computer graph-

ics and these models have wide-ranging applications. In clothing, size and shape of

the body are important to improve cloth comfort and fit [1]. In medicine, the human

model data can be used for arranging the doses of medication [2] and monitoring

the posture of human body [3]. There exist some researches which aims to create

dynamic digital models which mimic physiological and behavioral realism [4], [5].

This thesis considers the problem of generating high-detail 3D human body from

extremely small number of points. Generating human body is already a difficult task

because human body can be in enormous number of different sizes and shapes. More-

over, our task is even more challenging due to the lack of surface features such as

meshes and normal vectors in the input. Another cause of being challenged is the

absence of the correspondence between sparse points and high-resolution models.

In real life, the sparse points can be obtained from 2D images [6] or array of sensors

[7]. [6] proposes a neural network which learns a non-linear mapping from an image

to a set 3D points which represent a human face. [8] proposes a method which learns

salient points on the fingers and pose of hand. Their method can be extended to learn

salient points on human body which can be input to our method. [7] uses wearable

sensors to capture sparse 3D point sets from the human parts. [9] makes use of a small

set of inertial sensors attached to the body. They deforms a base human body based

on the measurements from the sensors to capture the motion of human. Although

they place six sensors to the wrists, lower legs, back and head, increasing the number
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of sensor can produce 3D points on human body which can be input to our method.

1.2 Contributions and Novelties

The main contributions of the thesis are as follows:

• Novel Features For 3D Points : In this thesis, we propose a set of features

which represents the geometry of a set of 3D points. Our experiments show

that the proposed features can effectively distinguish between 3D point sets in

different geometry and also recognize 3D point sets in similar geometry.

• Novel Method for Reconstructing Human Body : A novel method is pro-

posed to reconstruct human body from small number of 3D points by following

a data-driven approach which exploits a database of 3D human body models.

1.3 The Outline of the Thesis

In Chapter 2, the related literature is reviewed by focusing on the studies which aim

to reconstruct human bodies and on specifically the ones which take sparse inputs.

In Chapter 3, the database used, our proposed feature sets and the method for recon-

structing 3D human body are explained. In Chapter 4, the experiments conducted to

show how successful the proposed method reconstructs 3D human bodies are demon-

strated. In Chapter 5, the drawback and limitations of our method are explained. In

Chapter 6, conclusion and future work are discussed. Finally, all models used in this

study are presented in Appendix A.
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CHAPTER 2

RELATED WORK

In this chapter, the studies which aim to reconstruct human bodies are reviewed. Since

there is no directly related work when the input is considered, we focused on the

studies which aim to reconstruct human bodies and faces. Due to the the growing

demand for virtual human models, there is a huge body of literature on reconstructing

human bodies.

The paper which is most similar to ours in the literature handles a dense point cloud

as input to the method [10]. As we do, they leverage a database of high-resolution

3D meshes. Their method semantically divides the meshes into several parts in order

to compare the input with the meshes in the database. Differently from ours, their

method reconstructs a face rather than a full human body. They first align input

points to database by detecting predefined facial landmarks and using them for rigid

pose alignment via Procrustes analysis [11] and then dense alignment to a generic

mesh [12]. After alignment process, each face part is matched to the database using

distance function which is a weighted average of pseudo-landmarks and histograms

of azimuth and elevation components of the surface normals [13, 14]. In contrast to

our extremely sparse input points, they uses dense point clouds;therefore, they are

able to make use of surface-related features such as normals and pseudo-landmarks.

[15] processes several depth frames;which are dense point clouds, by detecting and

cropping the face in each depth frame. Then, these extracted 3D faces are aligned with

each other by using Coherent Point Drift algorithm [16] in order to build a cumulated

face. Then, the lowess non-parametric regression method is used to approximate the

face surface from the cumulated face model and remove outliers from the data. The

resulting 3D face is still noisy, so as to get rid of this noise, first they model the face
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as a 2D manifold embedded in the 3D space. Then,they treat the problem as manifold

reconstruction from noisy data and solved this problem by applying a method which

extends the one described in [17] which is based on a combination of dimensionality

reduction and local weighted regression.

In order to reconstruct a full body, [18] built a full-body scanner and a separate face

scanner, consisting of 40 and 8 DSLR cameras, respectively. This setup creates a

huge body scan data with 4M points. After they scan a full body, they try to align and

fit to a template model by performing the following steps:In initialization step, they

optimize scaling, rotation and translation by using manually selected landmarks us-

ing [19] and optimize the joint angles using inverse kinematics based on linear blend

skinning [20]. After good initialization, fine-scale non-rigid registration is applied by

minimizing an energy which a weighted average of landmark term, fitting term and

regularization term. The landmark term is to minimize the squared distance between

the manually selected landmarks, the fitting term penalizes the squared distance be-

tween corresponding points and the regularization term penalizes the geometric dis-

tortion from the undeformed model ;which is the result of the initialization phase, to

the deformed state, measured by the squared deviation of the per-edge Laplacians.

[21] trains a convolutional neural networks with RGB-D face data in order to recon-

struct faces. Their network has coarse-to-fine architecture in which a medium scale

CNN to regress a medium scale face model followed by a fine scale CNN to recover

the surface details. Both CNN models are trained in a completely self-supervised

manner in that the face shape and details are automatically learned from large scale

unlabelled RGB-D data.

[22] exploits a database of 3D heads of 200 adults which are in a cylindrical repre-

sentation produced by a commercial laser scanner. First, they put all the head models

in the database in full point-to-point correspondence. Then, they create a morphable

model from the head models. Finally, using the morphable model, they create a 3D

head from 2D input image. To do so, a set of rendering parameters and coefficients

of the 3D model are optimized until an image as close as possible to the input image

are produced. Their algorithm generates a 3D face from the current parameters, and

renders an image, and updates the parameters according to the residual difference.
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They started with the average head and with rendering parameters roughly estimated

by the user.

As we do, [23] follows a data-driven method which reconstructs articulated 3D mo-

tion. Their method extracts the all shape information from a set of range scans which

is formed by 200K points and 50K triangles. They put the range scans in full cor-

respondences bu using markers obtained by Correlated Correspondence [24] which

computes the consistent embedding of each instance mesh into the template mesh,

which minimizes deformation, and matches similar-looking surface regions. Then,

their model tries to align the template with each mesh in the data set consisting of

different poses of a human. The deformations are modeled for each triangle of the

template such that the deformations are applied in local coordinate of each triangle

by translating a point of the triangle to the origin. A specific transformation ma-

trix is applied to each triangle and then a rotation is applied which is the rotation of

the triangle’s articulated part. They try to minimize least square error by optimizing

transformation and rotation matrices.

[25] also uses a database of pre-existing rigs and extracting usable body parts from it

in order to construct rigged bodies from given unrigged target meshes. To do so, they

fit together pieces from several different source meshes in the database. Differently

from ours, their input is a dense mesh.

Point-base registration methods are related to our work as they try to reconstruct a new

shape from the existing one by deforming it. As oppose to our method, point-base

registration methods handles inputs which are as dense as the base model instead of

sparser inputs. [26] first embeds the shape into isometric representation. Then, they

optimize this embedding as a variant of the classical intrinsic distortion [27] objective

by using Markov Random Field optimization. [28] tries to align and label two point

clouds in 3D in a simultaneous way until they are as similar as possible and called

this procedure as Procrustes matching. Procrustes matching is defined as to find an

orthogonal transformation which will be applied to input point set and a permuta-

tion which will be applied to the target point set in order to minimize the distances

between resulting point sets. They propose a novel semi-definite programming relax-

ation solution to the problem.
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CHAPTER 3

METHOD

In order to build a human body from limited number of 3D points, we make use of

a database of human bodies. As a preprocess, we compute a set of features for each

body part of each body in the database from the manually selected feature points

and save them. Given a set of 3D points for each body part, we compute a set of

features and find a best-matching part from the parts in the database by comparing

the calculated features of the input points and the saved features of the body parts

in the database. Then, the selected body parts from different bodies are combined

together to build a human body. That is why we call our method as Frankenstein. The

overview of our method shown in Figure 3.1.

3.1 The Database

In this study, the database provided by [23] has been used in order to reconstruct

human body parts from small number of 3D input points. The human bodies in the

database are in full correspondence with each other. Since the database is very large,

only 100 of human body models have been used. Five sample from our database are

shown in Figure 3.3 and the all models are shown in Appendix A.

3.2 Preprocess of the Database

We have semantically divided each body into seven segments shown in Figure 3.4.

The segments are represented by at most 40 ordered 3D points which are manually

selected via a base model in the database, shown in Figure 3.5; and transferred into the
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Figure 3.1: Overview of Our Method

others by using full correspondence between models. After segments are ready, we

have calculated a feature vector for each segment. Our feature vector are computed

from 40 3D points, so we first complete the number of segment border points to 40

with linear fashion by adding a point at the middle of the furthest consecutive points

until it reaches to 40 points. Alternatively, we first fit a non-linear B-spline curve

to the input points and produce 40 uniform parametric points from the fitted curve.

The results of both point completion methods are shown in Fig 3.2. As we can see,

the non-linear method produces smoother and more uniform points than the linear

method does.
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Figure 3.2: Comparison of point completion methods. A: Input points, B: Completed

points by linear method, C: Completed points by non-linear method.

Figure 3.3: Five sample from our database

3.3 3D Features

After completing the contour points, a histogram of 3D distances between each point

to the other points in the contour, called distance histogram features (DHF), is cal-

culated. The contour points are normalized so that they have zero-mean and unit

standard deviation. In addition, we calculate a vector for each point to the others,

calculate the angles between that vectors and x,y,z axis. Then, the histogram of that

angles, called angle histogram feature (AHF), for each axis is calculated. Both fea-

9



Figure 3.4: Human Body Segments

tures are shown in Figure 3.6. Finally, we combine the histograms of each contour

to obtain the feature vector of a human body. Each histogram consists of 20 bins

therefore the feature vector for each body part has a length of 80.

3.4 Body Part Selection

For each body part, we search for the best match in the database by comparing the

feature vector of querying body part and that of each of corresponding body part

in database. The body part in the database with minimum feature distance to the

querying feature vector is selected as best match. In order to calculate distances

between feature maps, we have used L2 distance.

3.5 Merging Selected Body Parts

Since each body part possibly is taken from different human bodies, some weird

appearances come to existence when the selected parts are merged together. In order

to get rid of this weird results and correct the rotation and alignment of the body parts,
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Figure 3.5: Feature points for each body part

we follow a four-step procedure which are described in the subsections. The effect of

each step can be seen Figure 3.8.

3.5.1 Moving Base Points

We first select one of the models from our database and call it the base model. We

will essentially deform this base model in order to get our smooth output. To this

end, we first move the vertices of the base model to the corresponding positions of

the parts that we selected in Section 3.4. Recall that all of the models in our database

are in fixed connectivity, revealing the correspondences immediately.

As mentioned before, since the body parts belong to different bodies there exist some

mismatches. In addition, since the range of rotations of the body parts in the database

is limited, the selected parts do not fully match with the input points in terms of

orientation. As a solution to this problems, we continue with the next steps.
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Figure 3.6: Illustration of DHF for one seed point is shown on the second column

and AHF on the fourth column. The same point set of size 40 is used (first column)

for both feature computations. u represents the vector between any two points in the

point set. DHF is an histogram of ||u|| and AHF is for the angles between u and x-,

y-, z-axis namely, a, b, c, respectively.

3.5.2 Rigid Body Part Alignment

In order to get the selected part (S) and the input points for that part (I) in the same

orientation, we calculate and apply a transformation matrix which transform the se-

lected part into input points. This provides individual alignment of each body parts

separate from each other. To do so, we follow the steps described in [19], first both

point sets are moved to origin (S‘ and I‘) and then, calculate the co-variance matrix

as follows:

C = S‘(I‘)T (31)
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Using this co-variance matrix, the following matrix is constructed

∣∣∣∣∣∣∣∣∣∣∣

C00 + C11 + C22 C12 − C21 C20 − C02 C01 − C10

C12 − C21 C00 − C11 − C22 C01 + C10 C20 + C02

C20 − C02 C01 + C10 −C00 + C11 − C22 C12 + C21

C01 − C10 C20 + C02 C12 + C21 −C00 − C11 + C22

∣∣∣∣∣∣∣∣∣∣∣
(32)

As [19] suggested, in order to find the best orientation, we calculate eigen-vectors of

the matrix. Using these vectors, now we can construct the rigid alignment matrix.

3.5.3 Inter-parts Alignment

To create a consistent human body, the body parts taken from different bodies should

be aligned. To do so, we fix the position of the chest part, light blue colored in Figure

3.4, and add a translation to the head, arms and belly parts; black, yellow, pink and

green colored, respectively, so that the borders of those parts are matched. Then, the

same operation is followed for legs; blue and red colored, to match them with belly

part.

In order to calculate the translation between two part, we first find neighboring edges

i.e. edges which has one vertex at one part and other vertex at the other part. Then,

an average displacement between the vertices of the neighboring edges is calculated.

This displacement is the translation to be needed to align the borders of the body parts

from different bodies.

After this operation, the average points of the borders matched; however, the job has

not done yet because the parts can have different sizes; e.g. width of the borders,

rough and uneven surfaces appears at the borders of parts. To avoid this, we apply a

border smoothing algorithm.
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Figure 3.7: (Left) Output of the Inter-parts Alignment step (Section 3.5.3) after Lapla-

cian smoothing does not yield a perfectly smooth mesh (problems pointed by arrows).

(Right) Smoother and more natural result is obtained when the output of the Inter-

parts Alignment goes directly to our Border Smoothing step (Section 3.5.4). This is

our final resulting model.

3.5.4 Border Smoothing

Since the selected parts come from different human bodies, there exist "surgical scars"

between neighboring body parts. In order to get rid of these abnormalities, we first

simply try Laplacian smoothing [29]. However, the defects around junction points are

large enough such that they cannot be cleared by simple smoothing algorithm shown

in Figure 3.7. The small defects between chest and belly are cleared by the algorithm,

however, the remaining larger defects still exist.

In order to remove the defects more robustly, we solved the Laplacian equation which

moves the points of the base body to the selected part points smoothly. This equation

is the deformation making use of differential coordinates by Laplacian of mesh,which

encodes each vertex relative to its neighbors, defined in [30]. For construction of

Laplacian of mesh, the cotangent weights [31] are used. Since a differential coordi-

nate is a linear combination of a vertex and its neighbors, the process of constructing

14



differential coordinates for all vertices is as follows:

Lv = δ (33)

where L is n-by-n Laplacian matrix, v is n-by-3 matrix in which each row contains a

vertex and δ is n-by-3 matrix storing differential coordinates.

The regularization term of the deformation energy is the least-squares difference be-

tween differential coordinates of the rest-pose of the base model mesh (v0) and the

deformed pose of the base model mesh (v):

Ereg = ‖ Lv0 − Lv ‖2 (34)

On the other hand, the match term is the sum of the squares of the distance between

the corresponding points from the deformed pose mesh and the fixed handles hk

designated by the selected parts from Section 3.4:

Ematch =
N∑
k=1

‖ vk − hk ‖2 (35)

where N is the number of handle points, i.e., 40 from each of the 7 parts, hence 280

for our experiments.

In our case, weighted regularization term and matching term are used to construct

total deformation energy (Eq. 36), then a set of vertices is searched for in order to

minimize the total deformation energy.

Etot = αEreg + Ematch (36)

To minimize Etot, we first take the derivative of it with respect to v and then equate it

to zero. The resulting sparse linear system to be solved instantly for v is as follows:

(αLTL+ I)v = αLTLv0 + h (37)
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where α controls the weight of the regularization energy.

The results of the improvements made in each step can be shown in Figure 4.3. The

largest improvement has been made by rigid body part alignment as each part which

is independent from each other is put together to build a human body. After inter-part

alignment, the error is decreased by important amount. Finally, border smoothing

reduces the error slightly but improves the appearance of the body.
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Figure 3.8: Sample Result. A: Input points, B: Result after moving base points

(3.5.1), C: Result after Rigid Body Part Alignment (3.5.2), D: Result after Inter-parts

Alignment (3.5.3), E: Result after Border Smoothing (3.5.4), F: Ground-truth result
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CHAPTER 4

EXPERIMENTS AND RESULTS

The proposed approach has been evaluated with input body points which are in dif-

ferent poses and sizes. In order to make the evaluation easy and accurate, the input

points are selected from the ground truth body meshes. However, the real-world ap-

plications can be possible such as obtaining the input points directly from 2D images

and feed them to our method to produce 3D model of 2D image. To do so, there

exists various studies in the literature such as [6]. Although [6] works with faces, it

can be possible to extend their work so that the method produces 3D body points by

training their deep learning model with 3D body models. In addition, [32] design a

cascaded coupled-regressor approach by integrating a 3D point distribution model in

order to estimate the 3D landmarks. [7] also estimates 3D landmark on human bodies

by using sensor arrays which are combined with deep learning method which maps

measured capacitance from the sensors to the deformed geometry.

Inputs points, ground truth result and outputs of each steps, explained in previous

section, are shown in Figure 3.8 and Figure 4.1 for two different-shaped inputs. The

final result of our algorithm has been compared with the results of ARAP-based al-

gorithm introduced in [33]. The error metric for comparison is the average Euclidean

distance between the output points and the corresponding ground truth points divided

by average edge length of the ground truth mesh , formulated as follows:

ε =

∑n
i=1 ‖Ii −Gi‖

nτ
(41)

where n is the number of points in meshes, τ is the average edge length of the ground-

truth mesh, Ii is ith point of the output mesh and Gi is ith point of the ground-truth
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mesh.

The constrained points are initialized with the ground-truth matches of the input

points for ARAP method. Sample input points, the base body for ARAP method

and ARAP-based result of the input points are shown in Figure 4.2. Some compar-

isons have been shown in the following figures. In the figures, the order of the bodies

from left to right is as follows; input points, ARAP-based result, our Laplacian-based

result, the ground-truth result. In addition, each body mesh in each figure is colored

by the error with respect to the the ground truth. The error for each point of the mesh

is the distance to the closest point in the ground truth mesh after the output mesh is

rigidly aligned to ground truth mesh using Iterative Closest point (ICP) algorithm.

The average error for each result produced by base method and two different variant

of the proposed method are compared at Table 4.1. One of the variants interpolates

the input points by linear method and the other does this by spline interpolation. The

results show that the proposed method with spline interpolation performs better than

ARAP-based method. In addition, non-linear point completion slightly improves the

reconstruction accuracy compared to the linear point completion method. All errors

in the tables and the figures are calculated using Equation 41 which is the relative

error with respect to average edge length in order to make the errors understandable.

The execution times for each input are shown in Table 4.2.

As shown in Figure 4.4, our method reconstructs the front part of the body better than

ARAP method does although both methods performs similar for the back part of the

body. The difference between methods becomes more clear in Figure 4.5 and Figure

4.6 as our method produces more accurate results for most of the body parts. Despite

the deformation is higher than the other samples in Figure 4.7, both method recon-

structs similar outputs. This means both methods are affected by the deformation in

the same way.

The number of points for each body part is also experimented in this study. The in-

put points are completed up to 10,20,30,40,50 and 100 points by starting different

numbers of points and the resulting body are generated from that points. The starting

points are the different percentages (namely 30%, 40%, 50%, 60%, 70%) of the target

number of points. The comparison of the different number of completed points are
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Figure 4.1: Sample Result. A: Input points, B: Result after moving base points

(3.5.1), C: Result after Rigid Body Part Alignment (3.5.2), D: Result after Inter-parts

Alignment (3.5.3), E: Result after Border Smoothing (3.5.4), F: Ground-truth result

shown in Table 4.3. Most of the cases, the error decreases as the number of points

increases up to 40 points. After 40 points, the error almost remains same although

the number of points increases. Furthermore, after 50%, increasing the starting points

percentage does not change the error significantly. Considering the performance is-

sues, we select 40 points as the most efficient number of input points. We also come
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Table 4.1: Average Error by Methods

Figure No Our Method with

Linear Interpolation

Our Method with

Spline Interpolation

ARAP-Based

Method

4.4 1.146 1.125 1.736

4.5 1.146 1.103 1.23

4.6 1.170 1.121 1.70

4.7 1.359 1.333 1.154

4.8 1.759 1.617 2.284

4.9 1.552 1.429 1.853

4.10 1.178 0.870 0.973

4.11 0.899 0.812 0.933

4.12 1.06 1.02 1.01

4.13 1.528 1.403 0.98

4.14 1.098 1.045 1.183

4.15 1.275 1.254 1.303

4.16 1.047 1.067 1.033

4.17 1.070 0.971 1.007

4.18 2.106 1.876 1.981

4.19 1.773 1.738 1.610

4.20 1.775 1.743 1.96

4.21 1.342 0.98 1.00

4.22 0.974 0.955 0.961

4.23 1.183 1.176 1.281

Average 1.322 1.232 1.359

to conclusion that starting from merely 20 user input points (50% of 40) is sufficient.

We also tried our method with noisy data. To do so, each input point is moved in

random direction with random amount of distance which can be at most the maximum

edge length. Sample outputs with noisy input are shown in Figures 4.24, 4.25, 4.26.

As shown in the figures, our method is robust to noise in the input as it produces body

models which are very similar the ones produced from noiseless input points. As the
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Figure 4.2: Sample result of ARAP-based method. A: Input points, B: Base model

for ARAP method, C: ARAP-based result with ground-truth initialization

noise level increases, the average error of the output increases.

Our method can generate body models do not exist in our database by processing an

input whose some parts are edited manually while other parts remain same. As shown

in Figure 4.27, points on belly and chest parts are moved outward from its center so

as to create a human body which has wider belly and chest then the original one has.
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Figure 4.3: The comparison of outputs of intermediate steps. Top row is the front

view, bottom row is the back view. A: input points, B: output of moving base points

(3.5.1) , C: output of rigid body part alignment (3.5.2), D: output of inter-parts align-

ment (3.5.3), E: output of border smoothing (3.5.4), F: ground-truth. The average

errors from column B to column E are 2.120, 1.291, 1.088, 1.076, respectively.
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Figure 4.4: The comparison of results of Sample1. Top row is the front view, bottom

row is the back view. From left to right, input points, ARAP-based result, result of

our method and ground-truth are shown, respectively. The body parts, namely left

arm, right arm, chest, belly, left leg, right leg and head, are taken from the bodies

with number 12, 40, 91, 79, 91, 91, 75 shown in A, respectively. The average errors

of the second and third columns are 1.736 and 1.125, respectively. The average edge

length of the ground-truth mesh is 0.0144.
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Table 4.2: Execution Times by Methods (in seconds)

Figure No Figure

Matching

(3.4)

Rotation

Align-

ment(3.5.2)

Inter-part

Align-

ment

(3.5.3)

Border

Smooth-

ing (3.5.4)

Our

Method

Total

ARAP-

Based

4.4 1.197 2.043 0.47 5.02 8.73 9.3

4.5 1.164 2.314 0.469 4.97 8.917 9.65

4.6 1.172 2.145 0.468 4.95 8.735 9.72

4.7 1.189 2.095 0.472 5.05 8.806 9.47

4.8 1.175 2.243 0.471 4.98 8.869 9.82

4.9 1.166 2.145 0.467 5.01 8.880 9.52

4.10 1.183 2.189 0.468 4.99 8.770 9.44

4.11 1.171 2.3 0.473 5.06 8.862 9.71

4.12 1.169 2.245 0.475 4.97 8.752 9.49

4.13 1.182 2.123 0.462 5.01 8.812 9.57

4.14 1.177 2.129 0.453 5.03 8.852 9.52

4.15 1.184 2.227 0.442 5.06 8.913 9.41

4.16 1.179 2.165 0.487 5.01 8.841 9.46

4.17 1.181 2.099 0.450 4.99 8.72 9.69

4.18 1.168 2.179 0.459 5.00 8.806 9.58

4.19 1.178 2.211 0.444 5.02 8.853 9.81

4.20 1.187 2.087 0.483 5.05 8.807 9.6

4.21 1.191 2.182 0.462 4.96 8.795 9.48

4.22 1.177 2.149 0.458 5.01 8.794 9.75

4.23 1.195 2.079 0.460 4.99 8.724 9.56
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Figure 4.5: The comparison of results of Sample2. Top row is the front view, bottom

row is the back view. From left to right, input points, ARAP-based result, result of

our method and ground-truth are shown, respectively. The body parts, namely left

arm, right arm, chest, belly, left leg, right leg and head, are taken from the bodies

with number 12, 40, 41, 29, 29, 29, 7 shown in A, respectively. The average errors

of the second and third columns are 1.23 and 1.103, respectively. The average edge

length of the ground-truth mesh is 0.0165.

Table 4.3: Errors by number of points after point completion

10

Points

20

Points

30

Points

40

Points

50

Points

100

Points

30% 2.035 1.326 1.264 1.222 1.222 1.222

40% 1.39 1.354 1.25 1.18 1.183 1.181

50% 1.27 1.319 1.243 1.18 1.18 1.18

60% 1.25 1.25 1.243 1.153 1.151 1.151

70% 1.243 1.229 1.243 1.153 1.153 1.153
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Figure 4.6: The comparison of results of Sample3. Top row is the front view, bottom

row is the back view. From left to right, input points, ARAP-based result, result of

our method and ground-truth are shown, respectively. The body parts, namely left

arm, right arm, chest, belly, left leg, right leg and head, are taken from the bodies

with number 11, 40, 23, 79, 91, 91, 75 shown in A, respectively. The average errors

of the second and third columns are 1.70 and 1.121, respectively. The average edge

length of the ground-truth mesh is 0.0165.
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Figure 4.7: The comparison of results of Sample4. Top row is the front view, bottom

row is the back view. From left to right, input points, ARAP-based result, result of

our method and ground-truth are shown, respectively. The body parts, namely left

arm, right arm, chest, belly, left leg, right leg and head, are taken from the bodies

with number 60, 58, 12, 12, 3, 3, 38 shown in A, respectively. The average errors

of the second and third columns are 1.154 and 1.133, respectively. The average edge

length of the ground-truth mesh is 0.0156.
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Figure 4.8: The comparison of results of Sample5. Top row is the front view, bottom

row is the back view. From left to right, input points, ARAP-based result, result of

our method and ground-truth are shown, respectively. The body parts, namely left

arm, right arm, chest, belly, left leg, right leg and head, are taken from the bodies

with number 1, 12, 89, 89, 32, 32, 75 shown in A, respectively. The average errors

of the second and third columns are 2.284 and 1.617, respectively. The average edge

length of the ground-truth mesh is 0.0162.
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Figure 4.9: The comparison of results of Sample6. Top row is the front view, bottom

row is the back view. From left to right, input points, ARAP-based result, result of

our method and ground-truth are shown, respectively. The body parts, namely left

arm, right arm, chest, belly, left leg, right leg and head, are taken from the bodies

with number 1, 71, 79, 79, 79, 79, 75 shown in A, respectively. The average errors

of the second and third columns are 1.853 and 1.429, respectively. The average edge

length of the ground-truth mesh is 0.0163.
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Figure 4.10: The comparison of results of Sample7. Top row is the front view, bottom

row is the back view. From left to right, input points, ARAP-based result, result of

our method and ground-truth are shown, respectively. The body parts, namely left

arm, right arm, chest, belly, left leg, right leg and head, are taken from the bodies

with number 12, 81, 57, 57, 56, 56, 44 shown in A, respectively. The average errors

of the second and third columns are 0.973 and 0.870, respectively. The average edge

length of the ground-truth mesh is 0.0146.
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Figure 4.11: The comparison of results of Sample8. Top row is the front view, bottom

row is the back view. From left to right, input points, ARAP-based result, result of

our method and ground-truth are shown, respectively. The body parts, namely left

arm, right arm, chest, belly, left leg, right leg and head, are taken from the bodies

with number 8, 80, 25, 25, 50, 50, 38 shown in A, respectively. The average errors

of the second and third columns are 0.933 and 0.812, respectively. The average edge

length of the ground-truth mesh is 0.0149.
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Figure 4.12: The comparison of results of Sample9. Top row is the front view, bottom

row is the back view. From left to right, input points, ARAP-based result, result of

our method and ground-truth are shown, respectively. The body parts, namely left

arm, right arm, chest, belly, left leg, right leg and head, are taken from the bodies

with number 50, 36, 51, 51, 28, 28, 45 shown in A, respectively. The average errors

of the second and third columns are 1.01 and 1.02, respectively. The average edge

length of the ground-truth mesh is 0.0148.
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Figure 4.13: The comparison of results of Sample10. Top row is the front view, bot-

tom row is the back view. From left to right, input points, ARAP-based result, result

of our method and ground-truth are shown, respectively. The body parts, namely left

arm, right arm, chest, belly, left leg, right leg and head, are taken from the bodies with

number 89, 38, 13, 13, 31, 31, 90 shown in A, respectively. The average errors of the

second and third columns are 0.98 and 1.403, respectively. The average edge length

of the ground-truth mesh is 0.0144.
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Figure 4.14: The comparison of results of Sample11. Top row is the front view, bot-

tom row is the back view. From left to right, input points, ARAP-based result, result

of our method and ground-truth are shown, respectively. The body parts, namely left

arm, right arm, chest, belly, left leg, right leg and head, are taken from the bodies with

number 57, 68, 35, 35, 28, 28, 85 shown in A, respectively. The average errors of the

second and third columns are 1.183 and 1.045, respectively. The average edge length

of the ground-truth mesh is 0.0153.
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Figure 4.15: The comparison of results of Sample12. Top row is the front view, bot-

tom row is the back view. From left to right, input points, ARAP-based result, result

of our method and ground-truth are shown, respectively. The body parts, namely left

arm, right arm, chest, belly, left leg, right leg and head, are taken from the bodies with

number 39, 9, 70, 70, 9, 9, 99 shown in A, respectively. The average errors of the

second and third columns are 1.303 and 1.254, respectively. The average edge length

of the ground-truth mesh is 0.0142.
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Figure 4.16: The comparison of results of Sample13. Top row is the front view, bot-

tom row is the back view. From left to right, input points, ARAP-based result, result

of our method and ground-truth are shown, respectively. The body parts, namely left

arm, right arm, chest, belly, left leg, right leg and head, are taken from the bodies with

number 4, 25, 17, 17, 55, 55, 55 shown in A, respectively. The average errors of the

second and third columns are 1.033 and 1.067, respectively. The average edge length

of the ground-truth mesh is 0.0149.
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Figure 4.17: The comparison of results of Sample14. Top row is the front view, bot-

tom row is the back view. From left to right, input points, ARAP-based result, result

of our method and ground-truth are shown, respectively. The body parts, namely left

arm, right arm, chest, belly, left leg, right leg and head, are taken from the bodies with

number 8, 8, 82, 82, 38, 38, 19 shown in A, respectively. The average errors of the

second and third columns are 1.007 and 0.971, respectively. The average edge length

of the ground-truth mesh is 0.0142.
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Figure 4.18: The comparison of results of Sample15. Top row is the front view, bot-

tom row is the back view. From left to right, input points, ARAP-based result, result

of our method and ground-truth are shown, respectively. The body parts, namely left

arm, right arm, chest, belly, left leg, right leg and head, are taken from the bodies with

number 42, 51, 92, 4, 39, 39, 97 shown in A, respectively. The average errors of the

second and third columns are 1.981 and 1.876, respectively. The average edge length

of the ground-truth mesh is 0.0161.
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Figure 4.19: The comparison of results of Sample16. Top row is the front view, bot-

tom row is the back view. From left to right, input points, ARAP-based result, result

of our method and ground-truth are shown, respectively. The body parts, namely left

arm, right arm, chest, belly, left leg, right leg and head, are taken from the bodies with

number 57, 84, 91, 91, 28, 28, 53 shown in A, respectively. The average errors of the

second and third columns are 1.610 and 1.738, respectively. The average edge length

of the ground-truth mesh is 0.0141.
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Figure 4.20: The comparison of results of Sample17. Top row is the front view, bot-

tom row is the back view. From left to right, input points, ARAP-based result, result

of our method and ground-truth are shown, respectively. The body parts, namely left

arm, right arm, chest, belly, left leg, right leg and head, are taken from the bodies with

number 69, 30, 39, 39, 72, 72, 68 shown in A, respectively. The average errors of the

second and third columns are 1.96 and 1.743, respectively. The average edge length

of the ground-truth mesh is 0.0160.
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Figure 4.21: The comparison of results of Sample18. Top row is the front view, bot-

tom row is the back view. From left to right, input points, ARAP-based result, result

of our method and ground-truth are shown, respectively. The body parts, namely left

arm, right arm, chest, belly, left leg, right leg and head, are taken from the bodies with

number 62, 7, 43, 98, 31, 31, 8 shown in A, respectively. The average errors of the

second and third columns are 1.00 and 0.98, respectively. The average edge length of

the ground-truth mesh is 0.0149.
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Figure 4.22: The comparison of results of Sample19. Top row is the front view, bot-

tom row is the back view. From left to right, input points, ARAP-based result, result

of our method and ground-truth are shown, respectively. The body parts, namely left

arm, right arm, chest, belly, left leg, right leg and head, are taken from the bodies with

number 57, 75, 3, 3, 38, 38, 70 shown in A, respectively. The average errors of the

second and third columns are 1.281 and 1.176, respectively. The average edge length

of the ground-truth mesh is 0.0155.
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Figure 4.23: The comparison of results of Sample20. Top row is the front view, bot-

tom row is the back view. From left to right, input points, ARAP-based result, result

of our method and ground-truth are shown, respectively. The body parts, namely left

arm, right arm, chest, belly, left leg, right leg and head, are taken from the bodies with

number 89, 77, 82, 82, 67, 67, 74 shown in A, respectively. The average errors of the

second and third columns are 1.359 and 1.232, respectively. The average edge length

of the ground-truth mesh is 0.0153.
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Figure 4.24: The comparison of results of noisy input. Top row is the front view,

bottom row is the back view. From left to right, input points(noisy input colored as

red, original input colored as blue), result of noisy input , result of original input and

ground-truth are shown, respectively. Noise is generated from Gaussian distribution

with standard deviation of 0.8. The average errors of the second and third columns

are 1.243 and 1.125, respectively. The average edge length of the ground-truth mesh

is 0.0144.
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Figure 4.25: The comparison of results of noisy input. Top row is the front view,

bottom row is the back view. From left to right, input points(noisy input colored as

red, original input colored as blue), result of noisy input , result of original input and

ground-truth are shown, respectively. Noise is generated from Gaussian distribution

with standard deviation of 1. The average errors of the second and third columns are

1.285 and 1.125, respectively. The average edge length of the ground-truth mesh is

0.0144.
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Figure 4.26: The comparison of results of noisy input. Top row is the front view,

bottom row is the back view. From left to right, input points(noisy input colored as

red, original input colored as blue), result of noisy input , result of original input and

ground-truth are shown, respectively. Noise is generated from Gaussian distribution

with standard deviation of 1.5. The average errors of the second and third columns

are 1.458 and 1.125, respectively. The average edge length of the ground-truth mesh

is 0.0144.
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Figure 4.27: Illustration of generating new body by manual editing. Top row is the

front view, bottom row is the back view. From left to right, input points(manually

edited input colored as blue, original input colored as green), result of manually edited

input and result of original input are shown, respectively.
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CHAPTER 5

LIMITATIONS

The most important limitation of the proposed method is that the input points need

to be on the contours of the corresponding body part. As the input points move

away from the contours, the resulting reconstructed body becomes different from the

ground-truth result. This is caused by the fact that the features are designed for defin-

ing a body part as a contour;therefore, given a non-contour point set, our method pro-

duces erroneous result. The erroneous results produced from the input points which

are far from the contours of the body parts are shown in Figure 5.1 and Figure 5.2.
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Figure 5.1: Comparison of the results produced from the input points which are far

from the contours and from the input points which are around the contours. Top row

is the front view,bottom row is the back view. From left to right, input points ( red one

represents the input points which are far from the contours and blue one represents the

input points which are around the contours ), result of red input points,result of blue

input points and ground-truth are shown respectively. The average errors for model

in the second and third column are 2.083 and 1.569 respectively.
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Figure 5.2: Comparison of the results produced from the input points which are se-

lected randomly from each body part and from the input points which are around the

contours. Top row is the front view,bottom row is the back view. From left to right,

input points ( red one represents the input points which are selected randomly from

each body part and blue one represents the input points which are around the contours

), result of red input points,result of blue input points and ground-truth are shown re-

spectively. The average errors for model in the second and third column are 2.639

and 1.569 respectively.
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CHAPTER 6

CONCLUSION AND DISCUSSION

In computer graphics, one of the most studied field is human body modelling. In

order to create human body models, different approaches uses different inputs such

as single RGB-D depth frame [10], multiple depth frames [15], morphable template

models and landmarks [18], 3D point cloud [26]. Differently from previous studies,

in this thesis, a data-driven method which reconstructs human body from sparse input

points is proposed.

The evaluations have shown that proposed method is successful at generating human

body from limited number of points in terms of both accuracy and execution time

with respect to the base method. The proposed method is able to reconstruct bodies

in different shapes and different orientations thanks to the novel point set features.

As a future work, our method can be extended so that the bodies are reconstructed

from 2D images by combining our method and the methods like the one proposed in

[6].
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APPENDIX A

MODELS USED IN OUR ALGORITHM

In this chapter, all models in the database are shown in Figures A.1, A.2, A.3 and A.4.

The set of model which used in this study is a small subset of the SCAPE database

provided by [23] where each model has 12500 vertices and 2500 faces. In addition,

the models in the dataset are in full-correspondence.
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Figure A.1: Models in our database
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Figure A.2: Models in our database
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Figure A.3: Models in our database
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Figure A.4: Models in our database
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