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ABSTRACT 

 

MODELLING AND FORECASTING AGE-SEGMENTED MORTALITY: 

EVALUATION OF LEE-CARTER METHOD AND ITS EXTENSIONS 

 

Alşan Kılıç, Raife Sıdar 

Master of Science, Statistics 

Supervisor: Prof. Dr. Barış Sürücü  

Co-Supervisor: Prof. Dr. A. Sevtap Selçuk Kestel 

 

 

December 2019, 75 pages 

 

Mortality dynamics deal with the human mortality from birth to death giving insights 

for the population in different aspects; age, year, gender and enable to ascertain crucial 

mortality trends as well. Over the last decades, ample new methods have been 

developed and the mortality modelling has been evolved into more effective ways. 

Among these models, the pioneering and the most seminal one is Lee-Carter model 

(Lee & Carter, 1992). From its development, Lee-Carter model has been intensively 

studied and its variants with different structures have been proposed. While the 

performance of mortality models has been examined under various issues so far, the 

modelling of mortality over age patterns for different stages of human life has yet to 

be studied. Therefore, in this study, our purpose is to utilise a new approach differing 

from literature by investigating the performance of piecewise mortality models via 

structural breakpoints for age dimension. Accordingly, the mortality data of three 

different countries for the eighty-one years averagely; Australia, Japan and Portugal 

are examined by Lee-Carter model and its extensions with regards to the age structure 

of corresponding countries. The results reveal that each country has different age 

structures for female and male subpopulations and the age intervals within these 
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structures have different characteristics regarding significance of accuracy of these 

methods. The findings imply the need for a use of different age breaks for female and 

male subpopulations and the selection of best suited methods for each corresponding 

age intervals regarding accuracy of mortality forecasts. 

 

Keywords: Piecewise Mortality Modelling, Lee-Carter Model, Functional 

Demographic Model, Structural Breakpoints of Age, Mortality Forecasting  
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ÖZ 

 

YAŞA GÖRE AYRILMIŞ MORTALİTENİN MODELLENMESİ VE 

TAHMİN EDİLMESİ: LEE-CARTER YÖNTEMİ VE TÜREVLERİNİN 

İNCELENMESİ 

 

Alşan Kılıç, Raife Sıdar 

Yüksek Lisans, İstatistik 

Tez Danışmanı: Prof. Dr. Barış Sürücü  

Ortak Tez Danışmanı: Prof. Dr. A. Sevtap Selçuk Kestel 

 

 

Aralık 2019, 75 sayfa 

 

Mortalite dinamikleri, insanların doğumdan ölüme kadar olan süreçte populasyonun 

yaşı, ilgili yıllar, cinsiyet ve başka diğer birçok alt-grup vasıtasıyla bilgiyi sunarak; 

oldukça önemli ölümlülük trendleri hakkında da sonuç çıkarmayı sağlamaktadır. Son 

on yılda, mortalitenin modellenmesi amacıyla birçok yeni yöntemler geliştirilmiş ve 

mortalitenin modellenmesi çok daha farklı ve etkili bir şekilde sağlanmaya 

başlanılmıştır. Söz konusu modeller içerisinde, öncül ve en çığır açan model ise Lee-

Carter modeli olmuştur (Lee & Carter, 1992). Bu süreçten itibaren, Lee-Cater modeli 

üzerinde yoğun bir şekilde çalışılmış ve ilgili modelin farklı yapılara sahip türevleri 

önerilmiştir. Mortalite modellerinin performansı, bugüne kadar birçok farklı problem 

bağlamında araştırılmış olmasına karşın; mortalitenin insan hayatının farklı 

dönemlerine özgü yaş aralıklarına göre modellenmesi, araştırılan bir husus 

olmamıştır.  Dolayısıyla bu çalışmanın amacı, yapısal yaşsal kırılım noktaları baz 

alınarak, parçalı mortalite modellerinin tahmin performansının, literatürden farklı 

olarak yeni bir yaklaşım kullanılarak incelenmesidir. Bu doğrultuda çalışmada 

Avustralya, Japonya ve Portekiz olmak üzere üç farklı ülkenin ortalama seksen-bir 



 

 

viii 

 

yıllık mortalite verileri, ülkelerin sahip olduğu farklı yaşsal yapılar bağlamında Lee-

Carter modeli ve türevleri yardımıyla incelenmiştir. Sonuçlar, her bir ülkenin kadın ve 

erkek alt populasyonlarının farklı yaşsal yapılara sahip olduğunu ve söz konusu yaşsal 

yapıların mevcut olduğu yaş aralıklarındaki mortalitenin ilgili yöntemlerle tahmin 

edilmesinde tahmin doğruluklarının anlamlı özelliklere sahip olduğunu 

göstermektedir. Bulgular, kadın ve erkek alt populasyonlarının sahip olduğu farklı 

yaşsal kırılımların göz önünde bulundurulması ve gelecek süreçler için mortalitenin 

tahmin edilmesinde, söz konusu yaş aralıklarına en uygun ve optimistik olan 

yöntemlerin seçilmesi gerekliliğini ortaya koymaktadır. 

 

Anahtar Kelimeler: Parçalı Mortalite Modellemesi, Lee-Carter Model, Fonksiyonel 

Demografik Model, Yaşsal Yapısal Kırılım, Mortalitenin Tahmini 
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CHAPTER 1  

 

1. INTRODUCTION 

 

1.1. Background of the Thesis 

Over the past two centuries, depending on the advancements in health status and 

medical science, more qualified working conditions and improvement of life standards 

pertaining to very different aspects; life expectancy has sharply increased both 

globally and at nationally. Thereby, mortality reduction has been the most crucial 

development of this era. As a result, several patterns describing human mortality 

dynamics has changed. While this alteration affects human lives intrinsically, it also 

transforms the basic concepts for actuarial extent in many terms which put the 

longevity of human life at the center.  

Mortality dynamics deals with the human mortality from birth to death and gives 

insights for the population at different aspects; age, year, gender, varied sub-groups, 

etc. Main sources for human mortality data are generally population censuses, official 

statistics and population registers (Camarda, 2008). This data enables to ascertain 

mortality and longevity trends of countries pertaining to segregated information.  

In the literature, several mortality models emphasize mortality from different 

concepts. Until 1980’s, mortality modelling was widely expressed by on mathematical 

functions which actually fit observed mortality rates. However, over the last decades, 

ample productive new methods have taken place and the mortality modelling has been 

evolving into different and more effective structural and statistical techniques. One of 

these methods and probably change the mortality forecasting concept is Lee-Carter 

method (Lee & Carter, 1992). The principle of the Lee-Carter models is based on 

extrapolation of the past rends of mortality in age and time by forecasting mortality 

risk, and hedging longevity risk (Liu et al., 2019; Booth et al, 2006). It is still the most 
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used method for mortality projections of official data of several countries due to its 

simplicity and reliability of the results. 

After the process of Lee-Carter model was proposed, several extensions and variants 

of this model were presented. These extensions have different characteristics in terms 

of improvement or additional features for certain aspects of Lee-Carter model (Booth 

& Tickle, 2008; Cairns et al., 2009; Lee & Miller, 2001; Hyndman & Ullah, 2007). 

Since then, also several issues with regards to mortality modelling were investigated. 

Mortality rates are intensely affected by diseases, epidemic illnesses, wars etc. at 

certain years, ages and gender groups. These conditions make some shifts at mortality 

rates of populations. Along with several aspects examined, one of them is the problem 

of structural change in mortality rates at time dimension. Some studies were conducted 

to handle the structural change in time (van Berkum et al., 2014; Coelho & Nunes, 

2011); however, the performance of mortality models in the case of structural change 

in age dimension is an area which has yet to be studied.  

 

1.2. Purpose of the Thesis 

Although the performance of mortality models in the case of structural change in time 

has been studied in the literature (van Berkum et al., 2014; Coelho & Nunes, 2011), 

there are no concrete examples for mortality modeling in terms of structural 

breakpoints for age. From this point of view, the purpose of this study is to propose a 

new methodology for mortality modelling by constructing models to specific age 

intervals which are chosen with regards to divided breakpoints of age and to build 

piecewise mortality modeling perspective within the same population. Accordingly, 

Lee-Carter model and its extensions and functional demographic models are utilized 

within the perspective of age breakpoints. We take into consideration demographic 

data for Australia, Japan and Portugal which is available in the Human Mortality 

Database (2019) that ensures the number of deaths and the exposure to risk for 

individuals age x in the calendar year t specifically. Using this data of countries, the 
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purpose of this study is to model and forecast log-mortality rates for female and male 

populations independently with regards to breakpoints of age with specific age 

intervals. 

 

1.3. Organization of the Thesis 

In accordance with the purpose of the thesis, this study comprises of five chapters. 

The first chapter gives brief introduction about the study in terms of background and 

scope. Chapter 2 which explains fundamentals of mortality concepts in terms of basic 

terms and notations. In Chapter 3, development of mortality modelling is explained 

and early methods are stated. In this chapter, classification of different models as 

parametric and stochastic mortality methods is clarified and principal methods are 

examined in detail. The application process of the thesis and results pertaining to 

methodology are presented in Chapter 4. In this chapter, a new approach from the 

related literature is explained and corresponding steps are conducted. The mortality 

data of selected countries is examined by mortality curves of each population. From 

this point, breakpoints of age for female and male subpopulations are determined and 

significance of mortality rates within the age intervals divided by the age breaks are 

investigated. By these age breaks, piecewise mortality models which are Lee-Carter 

method and its several extensions are performed for each population. The accuracy of 

the models is validated by out-of-sample approach and evaluation of the methods are 

investigated. As a final chapter, Chapter 5 explains conclusions for the study and gives 

recommendations of future practices. 
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CHAPTER 2  

 

2. FUNDAMENTAL CONCEPTS OF MORTALITY LAWS 

 

2.1. Nature of Mortality Data 

Mortality dynamics deals with the human mortality from birth to death and gives 

insights for the population at different aspects such as age, year, gender and varied 

sub-groups. Main sources for human mortality data are generally population censuses, 

official statistics and population registers (Camarda, 2008). This data enables to 

ascertain mortality and longevity trends of countries pertaining to segregated 

information.  

The whole information of human mortality data is tooled by a table called as 

“mortality (or life) table”. Mortality table for a specific population for a specific year 

is defined by descending xl which describes the number of people living at age x.  Age 

holds the values x = 0, 1, … , n; where n is a natural upper bound or maximum age 

such that 0xl   and 1 0xl + = .  

Mortality tables can be obtained by two methods. First approach is gathering the table 

by cohorts where a cohort is defined as an actual group of individuals whose birth date 

is the same year or decade (Wilmoth, 2005). The cohort of people born in year t is 

longitudinally observed and the number of people living in year t is calculated through 

the following years for the same cohort. In the long run, xl  for  x = 0, 1, … , n are 

obtained. Second approach is period life table where a period represents time interval. 

Within the time interval, it assumes that a hypothetical cohort of people experiencing 

demographic events, in other words mortality is observed only for chosen period of 

time (Danesi, 2014).  
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A standard tool for summarizing such data is called Lexis diagram (Lexis, 1875). This 

diagram contains vital mortality dynamics such as births and deaths requiring changes 

according to time, age or cohort. The diagram consists of coordinate system where 

time (period) is shown at x-axis and age on y-axis (Rau et al., 2017). It is a diagram 

representing demographic events. Via Lexis diagrams, the information of age at death, 

time of death and the time of birth cohort can be easily obtained (Camarda, 2008). 

In Figure 2.1, diagram presents life dynamics for cohorts between time interval t - 1 

and t. Here each 45º line represents each individual who was born at specific time at 

age zero. Along with the line, red points represent the death of an individual at specific 

time and the age.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. An example of a Lexis diagram 
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Another visualization of Lexis diagram is presented at Figure 2.2. Here, at between 

time t - 1 and t for birth cohorts of ten individuals, the number of deaths from relevant 

cohort is one; at age one the number of survived individual is nine for time t and t + 

1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. An alternative example of a Lexis diagram 

 

2.2. Measures of Mortality 

“Mortality” describes the numbers of deaths in a given specific cause and specific 

period of time. Here, “time” indicates the interval in terms of time when the death of 

an individual occurs. Time, which is denoted by ( )T x , is a non-negative continuous 

random variable (when the opposite is not mentioned) and refers the interval [t, t + 1). 

Death density function of random variable of time, which is denoted by ( )f t , is always 

greater or equal than zero. 
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pdf: ( )

cdf: ( ) ( )

f t

F t P T t




=  
 

 ( ) 1f t dt



−

=  

 Since it is only measured for positive values; 

 
0

( ) 0 for 0 then ( ) 1f t t f t dt



=  =  

 

2.2.1. Central Death Rate 

Central death rate or simply (age-specific) death rate is defined as rate of deaths for 

specific age x in specific time period. Here, xl  expresses the (average) population of 

individual aged for time t and xd  represents number of deaths for time t for those 

whose last birthday age is x; while X is age-at-death random variable. xd  also means 

as the total number of deaths between ages x and x+1. 

 1x x xd l l += −  (2.1) 

Accordingly, 

 ( , ) x

x

d
m t x

l
=  (2.2) 

xd : total number of deaths for time t for those whose last birthday age is x 

xl : (average) population size of individuals aged x for time t 

Central death rate is sometimes cited as crude death rate xm  where the average 

population is generally calculated by an estimate of the population whose last birthday 

age is x at the middle of the calendar year t (Cairns et al., 2019). 
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2.2.2. Mortality Rate 

Mortality rate is the probability that an individual aged exactly x at exact time between 

t and t + 1 dies; or survives until time t + 1. 

  ( , ) ( )q t x P T x t=  , 0t   (2.3) 

This is the probability that an individual aged x dies within t years. Mortality rate can 

also be denoted as t xq  while t xq  represents the probability of an individual dying; t xp  

corresponds the probability that an individual aged x lives t years more and attains age 

x + t. 

 

2.2.3. Survival Function 

As T is a non-negative random variable for time t; survival function is the probability 

that a survival time of an individual is greater than time t. This function is denoted by 

( )S t . The formula for the survivor function is, 

 ( ) ( ) 1 ( ) 1 ( )S t P T t P T t F t=  = −  = −   (2.4) 

 

where; 

 ( ) ( ),  0F t P T t t=    

and 
0

( ) ( )

t

F t f t dt=   

 

Since the density function ( )f t  is the derivative of the cumulative distribution 

function; the notation below can also be used: 

 ( ) ( ) ( )f t F t S t = = −  (2.5) 
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Note that survivor function has properties as: 

i) (0) 1S =  

ii) ( ) 0S  =  

iii) If  1 2t t  then 1 2( ) ( )S t S t  

 

2.2.4. Force of Mortality (Hazard Rate) 

Force of mortality (also known as force of failure, hazard rate or hazard function in 

different areas) indicates instantaneous rate for an individual who dies at exact time t 

and exact age x. Force mortality at age x is defined as follows where t is denoted by 

infinitely small period of time: 

 
0

1
( , ) lim ( | )

t
t x P X t t X t

t


 →

 
=  +   

 (2.6) 

or more simply, force of mortality can be written as: 

 
 

0

( )
( , ) lim

t

P T x t
t x

t


→


=  (2.7) 

As a non-negative function x  must have properties as below: 

i) For all 0,x   0x   

ii) 
0

xdx


=   

There is a strict relationship between the force of mortality and survival function. 

Therefore, x  can be formulated in terms of survival function ( )S x : 

 
( ) ( ) ( )

( ) ( )
( 0) ( )

P x T x t F x t F x
P T t P x T x t

P T S x

  + + −
 = =   + =


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then 

 
0 0

( ) ( ) 1 ( ) ( )
lim lim

( ) ( )

1 1
    ( ) ( )

( ) ( )

x
t t

F x t F x F x t F x

tS x S x t

d d
F x S x

S x dx S x dx


→ →

+ − + −
= =

= = −

 

and we will eventually obtain survival function as: 

 
0

( ) exp

x

yS x dy
 

= − 
 
  (2.8) 

It is also possible to formulate force of mortality (or hazard ratio), mortality rate and 

death rate as: 

 
( ) ( ) ( )

( , )
( ) 1 ( ) ( )

f t f t S t
t x

S t F t S t


−
= = =

−
, 0t   (2.9) 

and  

 

1

0

( )t x x tq S t dt +=   (2.10) 

 
1

0

( )

t x
t x

q
m

S t dt

=



 (2.11) 

We should also notice that for very small values of t , x t   can be expressed as the 

probability that an individual who attained age x, dies between the times x and x t  : 

 ( )x t P t X t t X t     +   (2.12) 

 

2.2.5. Approximation Assumptions 

Population censuses and other data resources comprise number of deaths given 

stratified in a specific calendar year, age, and gender. Intrinsically, we use the equation 

2.2 to calculate death rates from the original data sources. However, to estimate the 
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mortality rate and force of mortality from the pure death rate, we need to make 

assumptions to clarify the relative terms (Cairns, 2013). Accordingly, in actuarial 

practice, these approximations are needed to get the life tables for all actual ages. As 

a result, death rate and mortality rate can be used as similar terms; both can be used 

interchangeably in regards to their values. The principal lying behind this perception 

requires two assumptions (Cairns et al., 2007): 

(1)  Because of the reason that the force of mortality of human populations 

( , )t x  fluctuates with a slow pace over time; force of mortality is assumed 

stationary and standing as constant for each integer age and calendar year: 

 for all 0 , 1s u    ( , ) ( , )t s x u t x + + =  

This assumption expresses that the force of mortality is constant for each 

of integer age and calendar year. 

(2) Population is stationary and the size of the population for all ages stands 

constant over time of the calendar year.  

From the equations 2.10 and 2.11 these assumptions indicate: 

i) ( , ) ( , )m t x t x=  

ii) ( , ) 1 exp[ ( , )] 1 exp[ ( , )]q t x t x m t x= − − = − −  

while relationship (a) is generally used for analysis of death rate (Brouhns et al., 2002) 

and relationship (b) is appropriate for the analysis of mortality modelling. 

Additional assumption requires treating xd  as a random variable. ,x tD  is a matrix 

where , ,( )x t x tD d=  and ,x te  is a measure of the average population size aged x last 

birthday in calendar year t, the so-called central exposure to risk. For fixed ,x te values, 

then ,x tD  has a Poisson distribution (Currie, 2016): 

 , , ,~ ( )x t x t x tD Poisson e   (2.13) 

,x tD
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If we approximate the initial value of exposed to risk as: 

 , , ,

1

2
x t x t x tE e d +  (2.14) 

and ,( )x tE E=  as the matrix of initial exposures, then  has a Binomial distribution 

(Currie, 2016): 

, , ,~ ( , )x t x t x tD Binomial E q  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,x tD
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CHAPTER 3  

 

3. MORTALITY MODELLING 

 

3.1. General Overview 

Over the past two centuries, depending on the advancements in health status and 

medical science, more qualified working conditions and improvement of life standards 

pertaining to very different aspects; life expectancy has sharply increased both 

globally and at nationally. Thereby, mortality reduction has been the most crucial 

development of this era. As a result, several patterns describing human mortality 

dynamics has changed. While this alteration affects human lives intrinsically, it also 

transforms the basic concepts for actuarial extent in many terms which put the 

longevity of human life at the center.  

Longer life expectancy has also brought about specific mortality-related risks. As a 

result of the changes in life dynamics; the terms of mortality, longevity and short-term 

catastrophic mortality risks have become such complex issues that increasingly 

occupied annuity providers’ and life insurers’ attention (Cairns et al., 2006). As a 

result, ability to drawing a specific outline on what is beyond, and anticipating the 

implications and the projections of the future for the next generations have become a 

critical topic. Specifically, modelling mortality for human populations has become 

important especially in health and actuarial sciences with regarding elderly care, 

provision of pensions, social planning, and governmental policies for changed life 

dynamics. One can infer that this also means encountering the possibility of some 

serious economic and social concerns before they occur. 

In the related literature, several mortality models emphasize mortality from different 

concepts. Until 1980’s, mortality modelling was widely expressed by on mathematical 

functions which actually fit observed mortality rates. However, over the last decades, 
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ample productive new methods have taken place and the mortality modelling has been 

evolving into different and more effective structural and statistical techniques. 

Although there are some reviews to classify models for mortality (Booth & Tickle, 

2008; Cairns et al., 2009; Hunt & Blake, 2018); to our knowledge, there is not a single 

and broadly adopted classification for the models globally. There are many types of 

different mortality models. Booth and Tickle (2008) classified mortality models have 

been mainly united under three approaches: (i) expectation, (ii) explanation and (iii) 

extrapolation. In expectation approach, mortality forecasting is entirely based on the 

expert’s opinion where demographic or specific information are taken in to account. 

Since this method depends on the subjective manners, it may highly have bias. While 

explanatory methods rely on structural or causal epidemiological models which 

contain risk factors and causes of death; extrapolative methods seem to be the most 

promising approach that take into account past mortality trends for future structures. 

Despite the fact that classifications vary from one author to another and it may seem 

subjective at some points; there are also basic and natural classifications pertaining to 

the intrinsic properties of the models. Therefore, the mortality models that are critical, 

common and have broader application in scientific research will be presented under 

the following titles of this chapter. 

 

3.2. Parametric Mortality Modelling 

Before reaching up to today’s level of development, mortality research has been very 

significant area since the very beginning of the 19th century. In the literature, the first 

theoretical model for mortality was proposed by De Moivre in 1725. After this 

discovery, many models were generated and formulations were made. Among the 

parametric models, one can draw attention to generalizations for force of mortality 

notations. The main reason behind this utilization is that force of mortality simply 

detects the change or fluctuation of risk of death over the specific age and time 

(Pascariu et al., 2019). 
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3.2.1. De Moivre’s Law of Mortality 

De Moivre suggested the deaths occur in accordance with uniform distribution (De 

Moivre, 1725) which reflects ( )T x  distributes uniformly between 0 and x− . 

Therefore, 

 
1

( )f x


=  for 0 x    

and force mortality, 

 
1

x
x




=
−

 (3.1) 

 

3.2.2. Gompertz’s Law of Mortality 

Gompertz (1825) proposed a model where force of mortality (hazard rate) x  at age 

x has exponential growth form with the initial degree of mortality and the rate where 

mortality increases along with age x. Hence, 

 bx

x ae =  (3.2) 

      for 0a  and 0b   

a: parameter for adult mortality level 

b: accelerating parameter 

 

3.2.3. Makeham’s Law of Mortality 

Afterwards Makeham (1867) modified the Gompertz model where he added a 

parameter representing age-independent death risk and exponential form of mortality 

for different ages. The Makeham model predicts that at the beginning of the 

individual’s life, the mortality slowly increases from infancy to childhood and young 

adulthood depending on age. After the adulthood, it has almost linear shape in 

accordance with increasing age (Cohen et al., 2018). Force of mortality is 
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 bx

x c ae = +  (3.3) 

          for 0c   

and probability density function as 

 ( ) exp (1 )bx bxa
f x ae cx e

b

 
= − + − 

 
 

a: adult mortality level 

b: accelerating parameter 

c: non-senescent mortality independent of age 

Note that both Gompertz and Makeham models considers mortality for only period of 

adult ages (Camarda, 2008). 

 

3.2.4. Perks Model 

Known as one of the logistic models, Perks (1932) proposed a model where force 

mortality is written as: 

1

x

x x

e

e

 

 


+

+
=

+
 (3.4) 

for , 0    

α: infant mortality rate 

β: senescence mortality rate 

where he noted that the highest ages, mortality deceleration occurs (Gavrilova & 

Gavrilov, 2014). 
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3.2.5. Weibull Model 

Another parametric model was suggested by Weibull (1951). He proposed this model 

to describe the durability and failure of some technical components in engineering. 

According to Weibull model, force of mortality is described as: 

 x x =  (3.5) 

for  

 , 0    

α: scale parameter 

β: shape parameter 

 

3.2.6. Siler Model 

In 1983, Siler proposed a three-component model developed for survival data of 

animals. According to Siler model, the force mortality is written as the sum of 

constants representing age independent infancy and old age mortality (Siler, 1983): 

 31

1 2 3

b xb x

x a e a a e −−= + +  (3.6) 

for 1 2 3, , 0a a a  and 1 3, 0b b   

a: level of decline 

b: rate of decline 

 

3.2.7. Heligman-Pollard Model 

Among the parameterization models, Heligman-Pollard model has been stated to be 

the most well known one. In 1980, Heligman and Pollard suggested a model consisting 

of eight-parameter and three terms covering human life-span ages which represents 

mortality patterns in childhood, young adulthood and elderliness. However, the 
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parameters are limited in use because of the instability and interdependencies (Booth 

& Tickle, 2008). The Heligman-Pollard model is denoted by: 

 
2( ) ( ln )

1

C
x

x B E lnx xFx
x x

x

q GH
A De

p GH
 + − += = + +

+
 (3.7) 

A to H: eight parameters referring different spans for ages 

1x xp q= −  

 

3.3. Stochastic Mortality Modelling 

Today, with the help of improvements in mortality modelling of countries using 

reliable data, it is clear that the most widely accepted approach for mortality modelling 

has the nature of stochastic processes (Cairns et al., 2009). This approach is an 

alternative way of modelling mortality which enables to predict the uncertainty via 

prediction of expected errors at specific time (Alho, 1998). They represent the 

advantage of randomness of mortality via probability assumptions (Hahn, 2014). 

Among the mortality models and especially stochastic models, one in particular has 

changed the whole concept as a milestone and been receiving great deal of attention, 

which Lee and Carter proposed it in 1992 (Lee & Carter, 1992). To forecast the 

mortality, they used only a two-factor model, which has good predictive power and 

simple structure (Deaton & Paxson, 2004). Since then many extensions has been 

studied and proposed based on Lee-Carter model (Renshaw & Haberman, 2003; 

Cairns et al, 2006; Plat, 2009). 

 

3.3.1. Lee-Carter (LC) Model 

In 1992 Ronald D. Lee and Lawrence R. Carter suggested a method that models 

human mortality simply by log-bilinear form for the central death rate. This model has 

become a pioneering model which estimates and forecasts age-specific death rates and 
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life expectancy (Lee & Carter, 1992). Today, it is considered as a milestone in the 

stochastic modelling and is still the most widely accepted model with its developed 

extensions (Carfora et al., 2017). 

Lee and Carter have constructed a powerful one-parameter model which allows time 

trend with age-specific loadings to fit and forecast death rates of the US population 

between years of 1900 and 1987. The model is: 

( )xt x x t xtlog m    = + +                         (3.8) 

2~ (0, )xt N    

where  

xtm  is the central death rate at age x in year t 

x  is a set of age-specific constants representing the general pattern of mortality by 

age, in other word differences in mortality by age, 

x  is a set of age-specific constants representing the relative speed of change at each 

age, or differences in relative rates of change by age, 

x t   is tendency of age-specific death rates to move together; t  is an index (a time 

trend) of level of mortality, or year-to-year changes in the general level of mortality, 

and 

xt  is the error term at age x in year t 

Note that the parameters: 

 
1

( )x xt

t

log m
T

 =   (3.9) 

 0t

t

 =  

 1x

x

 =  
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The value of central death rate depends on the overall mortality index t modulated 

by age x . The shape of x  indicates for rates declining over time related with t  

(Groot, 2011). The period effect t  is often modelled as random-walk process or 

especially as an ARIMA(0,1,0) process. Here for almost all applications of LC, the 

random walk drift is used: 

 1t t t   −= + +  (3.10) 

 2~ (0, )t N    

where   is the drift parameter and t  is an error term while xt  and t  are 

independent. 

The error terms are assumed to distribute 2(0, )N  . 

 

3.3.1.1. Parameter Estimation 

Lee and Carter used singular value decomposition (SVD) in order to get a least squares 

solution for the estimation of x  and t . The SVD (Trefethen & Bau, 1997) splits the 

matrix of ( )xtlog m into the product of three matrices; (i) age, (ii) singular values and 

(iii) time components (Booth et al., 2002). 

The parameter vector  x  is calculated as the mean of ( )xtlog m  over time t. Therefore, 

 
1

ˆ ˆ( )x xtt
log m

T
 =   

and 

 ˆ( )xt xt xY log m = −  

 x t xtY  =  
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If we denote Z matrix with p q  dimensions of rank r; then according to equation 

below; U is an orthogonal matrix with p p  dimensions, V is an orthogonal matrix 

with q q dimensions and d is an diagonal matrix with p q  such that: 

 Z UdV =  (3.11) 

where  

( )jiV  =  is the inverse matrix of ( )ijV = . For m n ; 

 

1,1 1, 1 1,1 1,

2

,1 , ,1 ,

0 0

0 0

0

p q

p p p p q q q

u u d v v

d
A x x

u u d v v

     
     
     =
     
     
          

 

If we denote xtZ Y=   for 1,2, ,x X=   and 1,2, ,t T=  then we obtain first 

approximation of xtY  as: 

 1 1 1

1 1 1
ˆ ( ) ( )xt x tY dU x V x b = =  

and 

 1

1,1 1,2 1,
ˆ ( )x Xu u u =   

 1

1 1,1 1,2 ,1
ˆ ( )x Td v v v =    

By the equation 3.9, we get x  and t  as below: 

 
1

1,1 1,2 1,

,1

1ˆ ( )x X

xx

u u u
u

 = 


 

 
1

1 1,1 1,2 ,1

,1

1
ˆ ( )x T

xx

d v v v
u

 =   


 

Note that here ( )U x  represents the age; d singular value and ( )V t  time components 

(Coffie, 2015). 



 

 

24 

 

The model is fitted by matrix ˆ
xtY  from estimated parameters ˆ

x  and ˆ
x  as: 

 

1

2

ˆ

ˆ
ˆˆˆlog( )

ˆ
n

xt

xt

xt x x

xt

Y

Y
m

Y

 

 
 
 

= +  
 
 
  

    (3.12) 

 

3.3.2. Lee-Miller (LM) Model 

The Lee-Miller method is classified among the variants of Lee-Carter model as 

properties below: 

1. Fitting period commences from 1950. 

2. Improvement of t  comprises of fitting by life expectancy e(0) for year t. 

3. The jump-off rates are considered as actual rates. 

Lee and Miller (2001) obtained incompliance between fitted mortality rates 

of the final year of corresponding period and actual mortality rates. Thus, error of 

jump-off was equaled to 0.6 years in life expectancy as pooled. The jump-off error 

was eliminated by performing actual rates for jump-off year (Shang et al. 2011). 

 

3.3.3. Booth-Maindonald-Smith (BMS) Model 

Booth-Maindonald-Smith (BMS) Model is also classified as one of the extensions of 

LC method. It has different aspects from LC method by the properties as below 

(Booth, Maindonald, & Smith, 2002): 

1. The period of fitting is based on the statistical ‘goodness of fit’ perception; 

with the assumption that t  is linear. 

2. Adjustment of t  is based on the fitting for the distribution of age of deaths 

instead of total numbers of deaths. 
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In BMS method, appropriate fitting period is obtained by lowest ratio for the mean 

deviances (Shang et al. 2011).  

 

3.3.4. Poisson Log-Bilinear Model 

After Lee-Carter (LC) model was proposed, several extensions of the model were 

established. One of them is poisson log-linear model developed by Brouhns et al. 

(2002) which is also called as Poisson LC model. Since the original Lee-Carter model 

assumes homoscedasticity for the error terms; this assumption might be unrealistic at 

some aspects (Brouhns et al., 2002; Renshaw & Haberman, 2003). Brouhns et al. 

(2002) argued that observed number of deaths for advanced ages differ from early 

ages. It is expressed as “the logarithm of the observed force of the mortality is more 

variable at older ages than at younger ages because of the much smaller absolute 

number of deaths at older ages” (p. 378).  

Accordingly, they proposed a log-bilinear Poisson regression model for SDV in the 

original Lee-Carter approach. They modelled time as a factor and considered the 

model the same as LC model which is: 

 ln( )xt x x tm   = +  (3.13) 

but without error term, as the error is contained by Poisson random variant. 

Accordingly, 

, , ,~ ( )x t x t x tD Poisson E m  

where xtE  death exposure and xtm  is death rate which is written as x x t

xtm e
  +

= , and 

 1x

x

 =  

 0t

t

 =  
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Here, instead of using Ordinary Last Squares Estimation (OLS) by SVD; parameters 

x , x  and t  are obtained by Maximum Likelihood Estimation (MLE) approach. 

 

3.3.5. Renshaw-Haberman Model 

The Renshaw-Haberman model is classified among the variants of LC model that has 

an additional cohort effect (Renshaw & Haberman, 2006). Renshaw and Haberman 

found that there was a significant improvement over the Lee-Carter model (Alijean & 

Narsoo, 2018). The most crucial improvement was that the standardized error terms 

displayed very low dependence on birth year, contrast to Lee-Carter method.  

Renshaw-Haberman model also handles the number of deaths with Poisson 

distribution. The model has the same constraints as the previous models: 

 (1) (2) (2) (3) (3)ln( )xt x x t x t x xtm      −= + + +  (3.14) 

where (3)

t x −  is the parameter which denotes the cohort effect for persons aged x in 

year t-x; and restrictions, 

(2) 0t

t

 =  

(2) 1x

x

 =  

(3)

,

0t x

x t

 − =  

(3) 1x

x

 =  

In terms of the estimation of parameters, Renshaw-Haberman model can be stated to 

be more difficult than the LC model (Sweeting, 2017).  
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3.3.6. P-Splines 

Mortality data characteristically have outlier values. That is especially valid for older 

ages because of their limited number of individuals. This case takes an effect when 

the estimation procedure for mortality rates of people aged 90 and older (D’Amato & 

Russolillo, 2011). The smoothing methods might be effective in order to avoid this 

inconvenient data structure originated in high variation of these ages (Delwarde, 

Denuit and Eilers, 2007). 

Accordingly, Currie et al. (2004) present a technique of B-splines and P-

splines to get better estimation: 

 
,

log[ ( , )] ( , )ay

ij ij

i j

m x t B x t=  (3.15) 

with smoothing of the ij  in the age and cohort. 

 

3.3.7. Age-Period-Cohort (APC) Model 

Currie (2006) proposes Age-Period-Cohort (APC) model which has the equation as 

below: 

 (1) (2) (3)1 1
log[ ( , )] x t t x

a a

m x t
n n

   −= + +  (3.16) 

Here, an  is total number of ages existing in the data. The model is also a special 

version of Renshaw-Haberman model when the parameters are taken as: 

 (2) 1
x

an
 =  

 (3) 1
x

an
 =  
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The model is more efficient and robust than the Renshaw-Haberman model. 

Additionally, Currie (2006) operates P-splines to fit parameters smoothly (Bozikas & 

Pitselis, 2018). 

 

3.3.8. Cairns-Blake-Dowd (CBD) Model 

The Cairns-Blake-Dowd (CBD) model uses logit transformation for each probability 

of specific year as (Cairns et al, 2009): 

 (1) (2)

,logit[ ( , )] ( )tx t t t xY q t x x x  = = + − +  (3.17) 

where 

(1)

t  is a parameter for level of mortality in year t, 

(2)

t  is a parameter displaying the effect between age and mortality, 

x  is the mean age for specific age interval, 

,t x  is error term distributed normally with zero mean and constant variance. 

 

3.3.9. Hyndman-Ullah (HU) Model 

In LC model and other variants of it, there is a problem of age smoothness and 

heterogenic deaths over years (Girosi & King, 2007). In addition to this condition, LC 

variants only consider one principal component. Hyndman and Ullah (2007) improves 

LC model in several ways. They presented a functional data model which utilises 

second and higher order principal components to get additional variation in mortality 

rates. This model operates penalized regression spline with partial monotonic 

constraint in order to smooth log-mortality rates. HU method which is also known as 

‘functional demographic (data) model as (Rabbi, 2018): 

 ,( ) ( ) ( )t i t i t i t im x f x x = +  (3.18) 
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 1,...,i p= , 1,...,t n=  

 

where, 

( )t im x  is the observed log-mortality rate for age ix  in year t 

( )t ix  is amount of noise changing with ix  in year t 

,t i  is an independent and identically distributed random variable with normal 

distribution. 

 

3.3.10. Weighted Hyndman-Ullah Model 

Weighted Hyndman-Ullah method uses the same smoothing technique as HU method, 

however this model considers geometrically lessening weights for estimation of 

parameters by using weighted penalized regression splines. This allow model is based 

on more recent data rather than distant past (Shang at al., 2011). 

 
,

1

( ) ( ) ( ) ( )
J

t j t j t

j

f x a x b x k e x
=

= + +  (3.19) 

for 1,...,t n=  

where 

( )a x is mean function 

( )jb x  is the set for first J functional principal components 

,t jk  denotes set of uncorrelated principal component score 

( )te x  is error function
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CHAPTER 4  

 

4. APPLICATION AND RESULTS 

 

4.1. Description of the Data 

The data used in this study is provided from Human Mortality Database (HDM). It is 

an online database, funded mainly by the Department of demography at the University 

of California, Berkeley and the Max Planck Institute for Demographic Research. The 

database includes mortality data for 37 countries or areas. The datasets are segregated 

by either period data or cohort data accordingly (HMD, 2019). The countries’ data is 

available for ages 0 to 110 and beyond and time periods of countries may differ 

according to the recording years. 

For this study, the data of three countries; Australia, Japan and Portugal are considered 

in regard to mortality rates. These countries are chosen based on the criteria of median 

age for the population which represents young, average and advanced population age 

(Table 4.1). The data involves the number of deaths and births, exposures to risk, 

mortality rates and life-expectancy at birth. For analyses, the ages 0 – 89 are 

considered where age 89 was selected as a cutoff point. The reason for choosing this 

cutoff point for age is the fact that older ages display inconsistency and fluctuations 

(Shang et al., 2010). In general, after age 90, the size of the population turns into 

discernibly narrower, causing less credible results. 
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Table 4.1. The median ages and time span for the chosen countries 

Country Median Age Time Span 

Australia 37.3 years 1921-2016 

Japan 46.7 years 1947-2017 

Portugal 44.3 years 1940-2015 

 

 

4.2. General Characteristics of Mortality Curves 

The term “mortality curve” is visualization for the progression of mortality of a 

specific population over both the age and time dimensions. Mortality curves describe 

age-specified (log) death (mortality) rates over the time span which are years. It gives 

significant insights about mortality trends as well as its development over time 

(Haldrup & Rosenskjold, 2019).  

In the last century, significant changes in general mortality trends have been observed; 

especially for life expectancy in developed countries. Accordingly, with regards to 

mortality rates, mortality curves display a similar structure over the ages. Additionally, 

mortality levels tend to decline by time for all ages. Also, for both genders, the shape 

of curves shows similar features across the countries. These declines are mostly valid 

at younger ages (Vaupel 2010; Christensen et al. 2009). In early childhood, infant 

mortality shows the declining characteristics while at the late teens and at the 

beginning of age 20’s, mortality display rapid increase which is called as “accident 

hump” (Heligman & Pollard 1980). After this process, mortality rates slowly increase 

by age almost log-linearly (Haldrup & Rosenskjold, 2019). Especially beyond ages 80 

– 85, mortality levels have a very slow pace.  

In the review of Wong-Fupuy & Haberman (2004), there are remarks pertain to age-

time for log age-specific death rates. These are: “There is a broad consensus across 

the resulting projections: (i) an approximately log-linear relationship between 

mortality rates and time, (ii) decreasing improvements according to age”. 
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4.2.1. Comparison of Mortality Curves for Selected Countries 

When investigating mortality dynamics for selected three countries; Australia, Japan 

and Portugal, the general mortality patterns explained in previous title are also valid. 

In Figures 4.3, 4.4. and 4.5; top panels represent age-specific log-mortality rates over 

corresponding years as a series of smoothed curves (functional observations). Here, 

multiple years were plotted by the rainbow palette, which displays the most recent 

years as the color of purple. In other words, the first years are in red which is followed 

by orange, yellow, green, blue, and indigo, while the most recent one plotted in purple 

(Hyndman & Shang 2010). These figures typically display age-specific mortality 

curves by progressively increasing mortality rates as age increases. 

The bottom panels represent the progress of death rates over time. This structure can 

be held as a time series of ages 0 to 89. Here, in general, older ages are seen by bottom 

lines which start from the colors of purple to younger ages by red colors. It can be 

inferred from the figures that decreasing improvements for mortality corresponding 

age over time. This feature can be seen by a slope of the log-death rate plots decreasing 

with age. Figure 4.3, 4.4 and 4.5 bottom panels show log death rates for males and 

females for selected ages as univariate time series.  

Mortality rates are intensely affected by diseases, epidemic illnesses, wars etc. at 

certain age and gender groups. Mortality curves display the effects of these 

circumstances explicitly. Among the three countries; Portugal has the highest general 

mortality rate and this case is also valid for both female and male subpopulations. On 

the other hand, Japanese population has the lowest mortality level at total and also at 

female and male subpopulations. In general, mortality rates are an extremely high 

level at the early ages of life around 0-1 years, then dropped at a low level between 8-

10 years. From this point, at the very beginning of the life, at very young ages; 

Portuguese population has the highest mortality rate among the three countries, while 

Japanese population has the lowest mortality rate. Accident hump of each country for 

male subpopulations have sharp structure relative to female subpopulations. 
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Additional information can be derived from the corresponding mortality curves of the 

countries. The effects of World War II can be clearly seen for both Japanese female 

and male subpopulations by high level of mortality rate at corresponding years. 

If the country profiles examined uniquely, in Australia for both female and male 

subpopulations; it is clearly inferred that mortality rates have exponentially decreasing 

pattern until the early 10’s. From these ages on, mortality rates have increasing form 

up to late 20’s. The accident hump is much more explicit and severe for male 

subpopulation and the location of it has slightly older age for males. For Australian 

female subpopulation, mortality rates almost linearly increase from the beginning of 

30’s. Decreasing of mortality rates with regards to mean value occur especially for 

ages around 31, 41, 51, 55, 71 and 77 while there is an unusual increase at the age of 

11. For Australian male subpopulation, mortality rates almost linearly increase from 

the beginning of 40’s. Mortality rates with regards to mean value decrease especially 

for ages around 27, 41, 51, 66 and 81 while there is an increase at the age of 10. 

As mentioned above, Japanese population has the lowest mortality rates in both 

subpopulations. Mortality rates for Japanese both female and male subpopulations 

have smooth exponential decreasing profile through the early 10’s. From these ages 

on, mortality rates have increasing structure up to around the early years of 20’s. The 

accident hump is more apparent and wider for male subpopulation as well. Male 

subpopulation has different increasing form around the age 29. Both populations have 

almost linearly increasing mortality rates with regards to mean value from the late 20’s 

(Figure 4.2). 

In Portugal for both female and male subpopulations; mortality rates have 

exponentially decreasing pattern until the early 10’s. The accident hump is very 

explicit and severe for male subpopulation and the location of it has slightly older age 

for males while for female subpopulation hump is almost unclear. Decreasing of 

female mortality rates with regards to mean value occur especially for ages around 29, 
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31, 41, 49, 51 and 71 while male subpopulation, mortality rates with regards to mean 

value decrease especially for ages around 29, 31, 41, 61 and 81. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Smoothed log-mortality rates for years 1921 to 2016 and log-mortality rates for ages 0 to 

89 in Australia 
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Figure 4.2. Smoothed log-mortality rates for years 1947 to 2017 and log-mortality 

rates for ages 0 to 89 in Japan 
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Figure 4.3. Smoothed log-mortality rates for years 1940 to 2015 and log-mortality rates for ages 0 to 

89 in Portugal 
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4.3. Proposed Methodology: Piecewise Mortality Modelling 

In this study, different approach from the related literature is proposed. This 

methodology provides the piecewise mortality modelling by segmented age intervals 

for the first time in the literature. The proposed approach enables to determine 

different age structures with regards to significant variations of mortality rate of 

female and male subpopulations by divided breakpoints of age; and to build piecewise 

mortality models within the same population. This approach puts forward a new 

methodology for mortality modelling field by constructing models to specific age 

intervals which are chosen with regards to forecast accuracy. Within this scope, the 

application process comprises of sequential of complementary two steps: 

i. Before investigating the data for different mortality methods; it is needed 

to consider the mortality – age relation structure. Accordingly, structural 

breaks of ages for distribution of mortality rates are obtained. Using 

determined breakpoints of age; before – between – after the breakpoints, 

the data are separated into three parts. 

ii. By using the age-segmented data intervals, different mortality forecasting 

methods are applied for log age-specific mortality rates to obtain point 

forecasts and to enable the comparison among the methods for selected 

countries for female and male subpopulations. These methods are 

evaluated in terms of their accuracy. As a continuation of this step, best 

forecasted models are determined for; (a) different age intervals and (b) 

female and male subpopulations for each country. 

 

4.4. Determining Structural Breaks for Ages 

In mortality field, a general approach is employed especially at modelling process 

which takes using the logarithmic scale of mortality rates. The logic behind this 

approach is that by using logarithmic scale of mortality rates, detection of possible 

differences in mortality between age groups becomes straightforward. At this point, 
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to determine the structural breakpoints of age for each time span, the log-mortality 

rates of each country are considered. Specifically, female and male total populations 

for each country are examined. 

There are fruitful research showing changes that have been evidence for the declining 

mortality rates (Booth et al., 2002; Shang et al., 2010). Several studies showed the 

breaking years at which significant shifts for mortality rates (Perron, 2008; Coelho, 

2012). However, there is a lack of scientific information for statistically determined 

age shifts in terms of mortality levels. For this purpose, the analyses for structural 

breaks for ages 0 to 89 of different three countries for female and male populations 

are conducted. After the breakpoints for ages are obtained, the significance of age-

segmented mortality rates for different age parts is validated. 

In order to gather the structural breakpoints at ages for mortality rates, the standardized 

procedure of the Bai-Perron test for unknown multiple breakpoints was performed 

(Bai & Perrron, 2003; 1998). This procedure was explained by Bai & Perron (2003) 

as: “The problem of testing for multiple structural breaks is addressed by tests with 

null hypothesis of no break versus an alternative hypothesis of an arbitrary number of 

breaks, which allows for a specific to general modeling strategy in consistent 

determination of appropriate number of breaks”. These breakpoints divide data when 

significant deviation exists in related series. The estimation process consists of 

regression analysis with constant as regressor explaining potential serial correlation 

with nonparametric adjustments.  

Bai-Perron method considers multiple structural break model with m breaks (m+1 

regimes) as below: 

 

1

2

1

              

k k k k

k k k k

k k k m k

y x z u

y x z u

y x z u

 
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 = + +
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1 2
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k K
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=

= +
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where, ky  is observed dependent variable at series k, kx  and kz  are vectors of 

covariates and u is the residual term, while  ’s are subjects to change (1 to m+1). 

For the analysis, the mean of log-mortality rates via pooled related time span for three 

countries with regards to female and male populations are utilised. The sequential 

testing framework showed at least two significant age breaks for each six 

subpopulations. The significant breakpoints of ages for the countries and 

subpopulations are presented in Table 4.2. 

 

Table 4.2. The estimates of breakpoints at ages for countries and subpopulations 

Country Subpopulation Estimates 
breakpoints at age* F-statistics 

Australia 
Female 16, 46 136.406; 38.080 

Male 16, 36 100.657; 35.866 

Japan 
Female 16, 46 142.888; 9.458 

Male 16, 38 142.442; 36.706 

Portugal 
Female 16, 45 163.728; 40.222 

Male 16, 40 143.850; 19.604 

     * Significant at the 0.05 level 

 

As shown in figures 4.4, 4.5 and 4.6 for each country respectively, after obtaining 

structural breakpoints of ages for mean of log-mortality rates, the age span of 

subpopulations for each country are divided into three related age intervals 

accordingly: 

- Australia: Female: (i) Ages 0 – 16, (ii) Ages 17 – 46 and (ii) Ages 47 – 89 

     Male: (i) Ages 0 – 16, (ii) Ages 17 – 36 and (ii) Ages 37 – 89 

- Japan: Female: (i) Ages 0 – 16, (ii) Ages 17 – 46 and (ii) Ages 47 – 89 

Male: (i) Ages 0 – 16, (ii) Ages 17 – 38 and (ii) Ages 39 – 89 

- Portugal: Female: (i) Ages 0 – 16, (ii) Ages 17 – 45 and (ii) Ages 46 – 89 

    Male: (i) Ages 0 – 16, (ii) Ages 17 – 40 and (ii) Ages 41 – 89 
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Figure 4.4. The breakpoints of age for Australian subpopulations with corresponding mean 

distribution 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. The breakpoints of age for Japanese subpopulations with corresponding mean distribution 
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Figure 4.6. The breakpoints of age for Portuguese subpopulations with corresponding mean 

distribution 

 

Additional comparative analyses are performed to differentiate the age-segmented 

log-mortality rates in terms of their significance across countries and subpopulations. 

Kruskal-Wallis statistics for whether three age intervals under 5% significance level 

have the same mean value are conducted. The related means are shown in Table 4.3. 

Performing six different Kruskal-Wallis tests, all of the null hypotheses are rejected 

(p < 0.05). The results indicate that the distributions of log-mortality rates are not the 

same for different age intervals for all selected countries and subpopulations. 

Accordingly, it can be concluded that different age groups which can be classified as 

young, adult and advanced ages affect the mortality (Figures 4.7, 4.8 and 4.9). 
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Table 4.3. Means of mortality rates for segmented ages over countries and subpopulations 

Country 
Female   Male 

Age Group Mean SD  Age Group Mean SD 

Australia 

0-16 -3.134 0.429   0-16 -2.998 0.408 

17-46 -2.842 0.188  17-36 -2.763 0.052 

47-89 -1.673 0.525  37-89 -1.636 0.603 

Japan 

0-16 -3.185 0.4623   0-16 -3.086 0.439 

17-46 -2.890 0.1618  17-38 -2.799 0.087 

47-89 -1.703 0.5539  39-89 -1.652 0.603 

Portugal 

0-16 -2.860 0.5392   0-16 -2.773 0.515 

17-45 -2.813 0.1422  17-40 -2.605 0.109 

46-89 -1.655 0.5740   41-89 -1.522 0.546 
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4.5. Forecasting Mortality Models 

This section aims to evaluate the performance of distinguished forecasting methods 

for selected countries; Australia, Japan and Portugal. Since the age span of countries 

divided into three different age intervals for both female and male populations, in total 

18 series are obtained. The selected countries have data before 1950 to keep consistent 

comparisons between models (Shang et al., 2010). It was crucial to have a long period 

of data, with regards to get consistent estimators (Box, Jenkins & Reinsel, 2008). Note 

that the ages are from 0 to 89 with regards to avoid erratic rates at older ages (Shang, 

2016). 

The models used in the study consists of Lee-Carter variants by followed Shang et al. 

(2011) which are Lee & Carter (1992), Lee & Miller (2001), Booth et al. (2002) and 

nonparametric variants of Hyndman-Ullah (2007) methods as below: 

i. Lee-Carter method (LC) 

ii. Lee-Carter method without adjustment (LCnone) 

iii. Lee-Miller method (LM) 

iv. Booth-Maindonald-Smith method (BMS) 

v. Hyndman-Ullah method (HU) 

vi. Hyndman-Ullah method with data from 1950 (HU50) 

vii. Weighted Hyndman-Ullah method (HUw) 

In Table 4.4, the starting year for fitting period of each country are presented. Since 

BMS method chooses the optimal fitting period independently; commencing years of 

subpopulations show some differences in this method. Accordingly, these years are 

different for each age interval. Also, due to its theoretical using, the starting period 

Lee-Miller method is set for the year of 1950.  

The point forecasts of each method, evaluation and comparison of their forecast 

accuracies and all other analyses conducted in this thesis are implemented by 

“demography” package of R (R Development Core Team, 2019). 
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Table 4.4. Starting years of fitting period for each country and methods 

Country LC LCnone LM BMS[f]* 

Australia 1921 1921 1950 1922, 1921, 1940 

Japan 1947 1947 1950 1947, 1952, 1948 

Portugal 1940 1940 1950 1955, 1953, 1940 

Country BMS[m]* HU HU50 HUw 

Australia 1922, 1924, 1922 1921 1950 1921 

Japan 1951, 1951, 1948 1947 1950 1947 

Portugal 1940, 1952, 1943 1940 1950 1940 

 

4.5.1. Forecast Evaluation 

For estimating mortality for future projections, the out-of-sample validation technique 

is used. According to this technique, comparison observed mortality rates and the 

point forecast of log age-specific death rates over all age intervals and years are 

conducted. 

The procedure for splitting the observed data and then evaluating forecasts is 

widespread in forecasting literature (Chatfield, 2000). In applications, it is agreed that 

particular methods should be assessed for accuracy by utilising point out-of-sample 

tests rather than in-sample tests (Tashman, 2000). This procedure commences with 

splitting the historical data series into (i) fitting period as a training set and (ii) 

forecasting period as a test set. The fitting period is employed to determine and 

estimate models; on the other hand, the forecasting period is used to assess the 

accuracy of forecasting models via forecast horizon which is the number of time 

periods between these two sets (Tashman, 2000). 

For this study, as mentioned above, the data of each country is divided into a fitting 

period and forecasting period. The length of the fitting period varies across the 

countries as the starting period differs among countries. On the other hand, the 

forecasting period is set the last 30 years (i.e., 1987 – 2016) for all countries; hence 

the rest of the data is reserved as fitting period. 
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 By using the data from the fitting period, one-step to 30-step-ahead point forecasts 

are computed and forecast errors are determined by comparing the forecasts with 

actual out-of-sample data for each country and each subpopulation across age 

intervals. For each country, seven out-of-sample validation are conducted for each age 

interval and sex. In total, a-hundred and twenty-six out-of-sample exercises are 

performed. 

 

4.5.2. Assessing the Performance of Mortality Forecasting Models 

Suppose a data set involves observations 1 2, ,..., Tm m m , and the data is divided into 

two parts: (i) training data 1 2( , ,..., )Nm m m  and (ii) test data 1 2( , ,..., )N N Tm m m+ + . To 

assess the accuracy of related forecasting method, the parameters are estimated by 

using training data, accordingly the next T – N observations are forecasted. Then 

forecasted values are compared with test data which consist of actual observations. 

The h-step-ahead forecast is denoted by ˆ
N h N

m
+

which is an estimation of actual 

observation. Therefore, the forecast errors are defined as the difference between the 

actual values in test set and forecasts by training set as (Hyndman, 2015): 

 ˆ
t t t N

e m m= −  

 for 1, 2,...,t N N T= + +  

In this study, to assess and compare the performance of mortality methods, the mean 

absolute forecast error (MAFE) is used as a measure of accuracy for the point forecasts 

for log-mortality rates. The MAFE is an average of absolute errors across different 

age intervals, forecast horizons and forecast periods (Shang et al., 2010). It measures 

the precision of forecasts, regardless of sign (Shang, 2015): 

 
30

, ,

1

1
ˆ

30

p

x k x k

k x i

MAFE m m
I = =

= −

  (4.2) 
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where ,x km  represents the actual age specific log-death rates in age group x in the kth 

year of forecasting period and ,
ˆ

x km  is the related point forecast. Note that, since the 

age span of country data is split into three intervals, I describes the total number of 

single ages in the corresponding age interval. 

 

4.5.3. Out-of-Sample Validation 

By using the above mentioned error measure, the point forecast accuracies are 

investigated of the seven methods by fitting periods. MAFEs are calculated for one-

step-ahead to 30-step-ahead forecasts averaged over countries, female and male 

subpopulations and age intervals.  

Table 4.5 and Table 4.6 provide summaries for the point forecast accuracy of female 

and male subpopulations based on the MAFE averaged over countries and 

corresponding age intervals. The highest forecast accuracy, which has the lowest error 

is remarked by drawing bold symbols in these tables. 

In general, MAFE measure for male groups tend to show higher values compared to 

female groups. The result of the analyses shows that nonparametric variants of 

Hyndman-Ullah methods are more accurate than parametric Lee-Carter variants. 

Specifically, Weighted Hyndman-Ullah method (HUw) forecasts are more accurate 

than the other six methods at total by minimum MAFE measure. According to this 

measure, out of 18 indicators, HUw method is the best performer with 5 indicators 

which is followed by HU50 and LM methods (4 indicators for each), HU method (3 

indicators) and the original LC method and LCnone method (1 indicator for each).   

On the other hand, the analyses show notable results for female and male populations 

across different age intervals. If the general pattern of age intervals is classified as (i) 

young, (ii) adult and (ii) advanced ages for each subpopulation; especially for female 

populations at adult ages LC methods and its variants seem to have lower MAFEs; 

while at advances ages HU methods and its variants have more accurate forecasts in 

terms of MAFEs. 
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Additionally, the examinations across countries reveal some specific features for each 

country uniquely. The methods which gave the most accurate forecasts for each 

country over different age intervals are specified. The results show that each country 

has a particular model on its behalf for age intervals approximately for female and 

male subpopulations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

52 

T
ab

le
 4

.5
. 
A

cc
u

ra
cy

 o
f 

p
o

in
t 

fo
re

ca
st

 o
f 

lo
g

-m
o

rt
a

li
ty

 r
a

te
s 

fo
r 

fe
m

a
le

 s
u

b
p

o
p
u

la
ti

o
n

s 
m

ea
su

re
d

 b
y 

M
A

F
E

 o
f 

p
ie

ce
w

is
e 

m
o

rt
a

li
ty

 m
o

d
el

li
n

g
 a

p
p

ro
a

ch
 

A
u
st

ra
li

a 
L

C
 

L
C

n
o
n
e 

L
M

 
B

M
S

 
H

U
 

H
U

5
0
 

H
U

w
 

 
A

g
e 

0
-1

6
 

0
.0

0
0
4
2
1

9
1
7
 

0
.0

0
0
1
7
5
0
6
8
 

0.
00

00
92

95
68

 
0
.0

0
0
1
7
1
7
2
6

 
0
.0

0
0
1
9
7
6
2
8
 

0
.0

0
0
1
0
7
0
3
 

0
.0

0
0
1
0
4
9
3
8
 

 
A

g
e 

1
7
-4

6
 

0
.0

0
0
5
1
2

6
7
5
 

0
.0

0
0
2
7
0
1
5
4
 

0.
00

01
30

42
9 

0
.0

0
0
2
8
1
0
1
8

 
0
.0

0
0
1
8
2
1
9
7
 

0
.0

0
0
1
5
6
6
1
2

 
0
.0

0
0
1
4
3
5
1
2
 

 
A

g
e 

4
7
-8

9
 

0
.0

0
3
7
5

9
3
8
 

0
.0

0
3
9
9
4
8
3
3
 

0
.0

0
2
1
6
6
4
8
7
 

0
.0

0
2
7
9
4
8
9
7

 
0
.0

0
4
3
9
3
9
7
3
 

0.
00

20
89

48
5 

0
.0

0
3
5
6
2
4
6
3
 

Ja
p
an

 
  

  
  

  
  

  
  

 
A

g
e 

0
-1

6
 

0
.0

0
0
2
9
1

7
4
1
 

0
.0

0
0
3
4
3
9
3
 

0
.0

0
0
2
8
0
2
8
5
 

0
.0

0
0
2
9
8
0
3
8

 
0.

00
02

26
05

9 
0
.0

0
0
2
3
4
1
1
5

 
0
.0

0
0
2
3
1
5
9
9
 

 
A

g
e 

1
7
-4

6
 

0
.0

0
0
4
3
3

6
9
7
 

0
.0

0
0
3
2
0
0
3
1
 

0
.0

0
0
3
9
5
2
4
1
 

0
.0

0
0
3
5
5
3
9
6

 
0.

00
02

82
11

 
0
.0

0
0
3
4
5
7
4
9

 
0
.0

0
0
3
3
8
7
6
5
 

 
A

g
e 

4
7
-8

9
 

0
.0

0
3
9
8

7
7
6
 

0
.0

0
5
3
1
8
6
1
7
 

0
.0

0
3
8
7
6
3
2
 

0
.0

0
4
7
6
6
6
5

 
0
.0

0
3
3
3
9
7
8
3
 

0.
00

21
81

22
2 

0
.0

0
2
4
0
8
1
2
7
 

P
o
rt

u
g
al

 
  

  
  

  
  

  
  

 
A

g
e 

0
-1

6
 

0
.0

0
0
4
0
5

3
0
9
 

0
.0

0
0
3
6
8
3
8
9
 

0
.0

0
0
2
4
2
9
5
3
 

0
.0

0
0
1
9
2
0
6
3

 
0
.0

0
0
3
3
6
9
0
5
 

0
.0

0
0
3
0
9
4
7
4

 
0.

00
01

49
44

 
 

A
g
e 

1
7
-4

5
 

0
.0

0
0
2
9
6

8
1
2
 

0.
00

01
66

86
7 

0
.0

0
0
3
8
2
2
6
3
 

0
.0

0
0
1
9
0
3
5

 
0
.0

0
0
1
9
0
6
6
1
 

0
.0

0
0
1
9
8
8
9
7

 
0
.0

0
0
2
0
2
8
6
9
 

  
A

g
e 

4
6
-8

9
 

0
.0

0
8
3
1

7
3
9
 

0
.0

0
9
8
7
3
9
6
3
 

0
.0

0
5
7
4
4
2
5
3
 

0
.0

0
9
1
7
5
9
3

 
0
.0

0
8
3
2
7
9
3
3
 

0
.0

0
4
7
9
0
9
1
7

 
0.

00
47

65
82

3 
 

      

 



 

53 

T
ab

le
 4

.6
. 
A

cc
u

ra
cy

 o
f 

p
o

in
t 

fo
re

ca
st

 o
f 

lo
g

-m
o

rt
a

li
ty

 r
a

te
s 

fo
r 

m
a

le
 s

u
b

p
o

p
u

la
ti

o
n

s 
m

ea
su

re
d

 b
y 

M
A

F
E

 o
f 

p
ie

ce
w

is
e 

m
o

rt
a

li
ty

 m
o

d
el

li
n

g
 a

p
p

ro
a

ch
 

A
u
st

ra
li

a 
L

C
 

L
C

n
o
n
e 

L
M

 
B

M
S

 
H

U
 

H
U

5
0
 

H
U

w
 

 
A

g
e 

0
-1

6
 

0
.0

0
0
5
6
6
9
5
7
3
 

0
.0

0
0
2
9
1
3
2
0
0
 

0.
00

00
78

46
59

 
0
.0

0
0
2
4
3
0

0
2
3
 

0
.0

0
0
3
4
0
3
1
1
0
 

0
.0

0
0
1
5
3
8
1
5
1

 
0
.0

0
0
1
2
4
2
8
2
6
 

 
A

g
e 

1
7
-3

6
 

0
.0

0
1
1
5
6
1
5
0
0
 

0
.0

0
0
5
8
3
5
7
9
0
 

0
.0

0
0
3
9
9
7
0
6
3
 

0
.0

0
0
5
9
9
5
8
2
0

 
0
.0

0
0
6
1
5
3
3
3
7
 

0
.0

0
0
4
9
3
7
5
2
3

 
0.

00
03

19
11

89
 

 
A

g
e 

3
7
-8

9
 

0
.0

0
8
5
2
1
5
0
3
3
 

0
.0

1
2
1
2
7
5
3
7
 

0
.0

0
6
1
3
9
3
6
3
 

0
.0

0
9
4
5
5
2
8
3

 
0
.0

0
5
2
8
3
3
7
3
 

0.
00

27
53

06
97

 
0
.0

1
0
3
4
1
1
1
7
 

Ja
p
an

 
  

  
  

  
  

  
  

 
A

g
e 

0
-1

6
 

0
.0

0
0
3
0
9
9
0
5
 

0
.0

0
0
3
8
1
6
6
6
 

0
.0

0
0
2
8
6
4
6
 

0
.0

0
0
2
9
0
2
5
6

 
0.

00
02

32
03

7 
0
.0

0
0
2
4
9
5
4
2

 
0
.0

0
0
2
5
9
8
4
3
 

 
A

g
e 

1
7
-3

8
 

0
.0

0
0
6
3
0
2
 

0
.0

0
0
4
5
6
9
1
9
 

0
.0

0
0
5
2
4
5
3
7
 

0
.0

0
0
4
8
0
1
7
3

 
0
.0

0
0
3
4
3
6
2
8
 

0.
00

02
35

86
3 

0
.0

0
0
2
9
9
7
4
 

 
A

g
e 

3
9
-8

9
 

0
.0

0
2
5
8
7
7
8
3
 

0
.0

0
3
0
3
8
1
8
5
 

0.
00

22
59

63
8 

0
.0

0
3
0
5
8
4
1
9

 
0
.0

0
2
4
0
2
6
6
3
 

0
.0

0
2
6
4
9
4
8
2

 
0
.0

0
3
0
0
9
7
3
7
 

P
o
rt

u
g
al

 
  

  
  

  
  

  
  

 
A

g
e 

0
-1

6
 

0
.0

0
0
5
7
4
3
6
9
 

0
.0

0
0
5
5
9
5
5
1
 

0
.0

0
1
9
4
0
1
8
7
 

0
.0

0
0
4
2
6
5
4

 
0
.0

0
0
5
4
9
8
9
5
 

0
.0

0
0
5
6
6
5
2
8

 
0.

00
01

71
85

3 
 

A
g
e 

1
7
-4

0
 

0.
00

04
18

06
 

0
.0

0
0
4
2
9
9
1
6
 

0
.0

0
0
6
4
7
2
3
6
 

0
.0

0
0
6
9
4
9
9

 
0
.0

0
0
4
7
1
0
5
2
 

0
.0

0
0
5
6
9
7
2
5

 
0
.0

0
0
5
2
4
4
 

  
A

g
e 

4
1
-8

9
 

0
.0

0
8
7
2
9
6
1
7
 

0
.0

1
0
6
2
8
7
6
3
 

0
.0

0
6
2
7
3
4
4
 

0
.0

0
9
5
1
0
4
5
7

 
0
.0

1
0
0
7
2
3
9
3
 

0
.0

0
7
0
5
9
2
8
7

 
0.

00
45

10
35

 
  



54 

 

4.5.4. Optimistic Methods for Age-Segmented Mortality 

The forecast accuracy of all 7 models (four LC variants; three HU variants) across 

countries and corresponding age intervals for female and male populations in terms of 

mean absolute forecast error (MAFE) for mortality rates are given in Table 4.5 and 

Table 4.6.   

When the forecast accuracies of different methods are investigated specific to 

countries, it can be seen that for different age intervals, different methods have the 

highest forecast accuracy. On the other hand, in general, specifically to countries both 

genders show the same method in terms of higher accuracy at age groups which are 

classified as young ages. This condition is only valid for young ages. As age is getting 

older, consistency between the methods for female and male groups in terms of adult 

and advances age intervals become dissimilar. 

Australia female and male populations have different methods in terms of MAFE 

values for each age interval. However, when the results are compared regarding age 

intervals describing as (i) young, (ii) adult and (iii) advanced age, with regards to 

accurate method, only for adult age group, mortality method differentiates by gender 

giving other two methods for remaining age intervals the same. 

 In terms of MAFE, for Australia female subpopulation, Lee-Miller method is most 

accurate model for both age interval (i) 0 – 16 years and (ii) 17 – 46 years while 

Hyndman-Ullah method starting from fitting period of 1950 gives the most accurate 

results in terms of forecasting mortality rates. Observed log-mortality rates of years 

1987 to 2016 and corresponding 30 years ahead forecast of log-mortality rates are 

presented in Figure 4.10 which displays different mortality models for each three age 

intervals with regards to the lowest errors. 

For male subpopulation, in terms of MAFE, the lowest errors are found for (i) Lee-

Miller method for age interval 0 – 16; (ii) weighted Hyndman-Ullah method for age 

interval 17 – 36 and (iii) Hyndman-Ullah method starting from fitting period of 1950 

for age interval 37 – 89 (Figure 4.10). 
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In terms of the lowest MAFE values for first age interval corresponding young ages 

(0 – 16 years), for both Japan female and male, Hyndman-Ullah method produce 

optimistic forecasts. 

For Japan female subpopulation, Hyndman-Ullah method is most accurate model for 

both age intervals 17 – 46 years. On the other hand, for the age interval containing 47 

– 89 years, Hyndman-Ullah method starting from the fitting period of 1950 gives the 

most accurate results in terms of forecasting mortality rates (Figure 4.11).  

For male subpopulation, in terms of MAFE, the lowest errors are found for Hyndman-

Ullah method starting from the fitting period of 1950 for age interval of 17 – 38 years 

and Lee-Miller method for age interval 39 – 89 of years (Figure 4.11).  

On the other hand, analyses for Portugal display almost the same results for female 

and male subpopulations. For both subpopulations, the age interval of years 0 – 16 

years, weighted Hyndman-Ullah method produce optimistic forecasts. For female 

subpopulation, Lee-Carter method provides the lowest error for age interval of years 

17 – 45; while for male subpopulation, Lee-Carter method without adjustment 

produces the lowest error with regard to MAFE for age interval of years 41 – 89 years 

(Figure 4.12). 

If the results are examined within the general perspective, it is inferred that each 

country has different appropriate methods with regards to different age intervals which 

is classified as (i) young, (ii) adult and (iii) advances ages. In general, for Australia 

LM method seems to give optimistic results at total; while for Japan and Portugal, HU 

and HUw methods seem to generate optimistic forecasts respectively. 

 

4.5.5. Comparison of Piecewise Mortality Modelling Approach with Overall 

Modelling 

To validate effectiveness of piecewise mortality modelling approach; general way of 

mortality modelling process for the data of selected countries over female and male 

subpopulations is performed as an additional step.  
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At this procedure, mortality data of each country and subpopulations are utilised for 

forecasting mortality over the whole age span; instead of divided age span with 

breakpoints of age and comparison of these two approaches is performed in terms of 

accuracy of point forecast for mortality rate at specified age. 

At this stage, mortality rates of selected countries for female and male subpopulations 

are examined for the whole age span which contains the ages 0 – 89 overall. As done 

in previous sections, the forecast accuracy of all 7 models (four LC variants; three HU 

variants) across countries for female and male populations in terms of mean absolute 

forecast error (MAFE) for log-mortality rates are calculated. MAFEs are obtained for 

one-step-ahead to 30-step-ahead forecasts averaged over countries, female and male 

subpopulations according to out-of-sampling framework. 

Table 4.7 presents summaries for the point forecast accuracy of female and male 

subpopulations based on the MAFE averaged over countries for overall age span. The 

highest forecast accuracy, which has the lowest error is remarked by drawing bold 

symbol in the table. 
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When the forecast accuracies of different methods are investigated specific to 

countries, different methods have the highest forecast accuracy in terms of lowest error 

term. The result of the analyses showed that nonparametric variants of Hyndman-

Ullah methods (5 indicators) are more accurate than parametric Lee-Carter variants (1 

indicators). Specific to countries (i) HU and HU50 methods are most accurate models 

for Australian female and male subpopulations respectively, (ii) HU and BMS 

methods are most accurate models for Japanese female and male subpopulations 

respectively and (iii) HUw method is the most accurate model for both female and 

male subpopulations. 

To perform the comparison between piecewise mortality modelling approach with 

overall mortality modelling; age 15 is chosen as a pattern. Accordingly, absolute 

forecast errors of age 15 for the last year of forecasting period (i.e. 2016 for Australia, 

2017 for Japan and 2015 for Portugal) are considered for each country and 

subpopulations. For piecewise mortality modelling approach, the optimistic method 

for corresponding age interval is selected and point forecast error for age 15 is 

calculated. On the other hand, for overall mortality modelling, point forecast error of 

age 15 is calculated by optimistic method for each subpopulation. As a final step, 

corresponding values are compared with regards to minimum of absolute forecast 

error:  

 ˆ
t t t N

e m m= −  for 1, 2,...,t N N T= + +  

The names of optimistic methods for proposed piecewise mortality modeling approach 

and general approach along with the corresponding forecast errors of point forecast 

for age 15 are presented in Table 4.8. Here, the highest forecast accuracy, which has 

the lowest error is remarked by drawing bold symbol. 
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The results show notable information about these two approaches. As seen in Table 

4.8, piecewise mortality modelling approach gives the minimum errors with regards 

to forecast of log-mortality rate of age 15 across female and male populations and 

different countries. The proposed method presents more accurate forecast in terms of 

mortality rates. This provides the principle that the division of the whole age span into 

age intervals proposing more realistic forecasts of mortality rate. The results also 

implicate that age breaks comprise critical information in terms of forecast accuracy. 
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CHAPTER 5 

 

5. CONCLUSION 

 

Mortality which can also be described as the risk for occurring of death, has vigorous 

structure and changes over the years, ages and genders continuously. As the significant 

and utter changes have taken into place in human lives in the last century, the term of 

mortality has become much more critical. The importance lying behind is to 

understand the corresponding population for both present mortality dynamics and 

future demographical projections. Accordingly, the mortality structure has been 

affecting many areas; social policies, health care, pension finances, education etc. both 

public and private levels. 

Standing at central place, the first attempts of mortality analyses and modeling have 

begun centuries ago and as of now, various methods have been developed. One of 

these methods and probably change the mortality forecasting concept is Lee-Carter 

method (Lee & Carter, 1992). The principle of the Lee-Carter models is based on 

extrapolation of the past rends of mortality in age and time by forecasting mortality 

risk, and hedging longevity risk (Liu et al., 2019; Booth et al, 2006). It is still the most 

used method for mortality projections of official data of several countries due to its 

simplicity and reliability of the results. On the other hand, several variants and 

extensions of Lee-Carter model have been proposed with regards to improve different 

aspects of mortality trend fitting and projection of this method (Booth & Tickle, 2008). 

Accordingly, some of the variants of Lee-Carter model which were proposed by Lee 

& Miller (2001), Booth et al., (2002) and Hyndman & Ullah (2007) have been 

accepted and used widely. Especially, Hyndman-Ullah model which is also called as 

functional demographic (data) model, is among the most accurate models (D’Amato 

et al., 2011). 
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Although the performance of mortality models in the case of structural change in time 

has been studied in the literature (van Berkum et al., 2014; Coelho & Nunes, 2011), 

there are no concrete examples for mortality modeling in terms of structural 

breakpoints for age. From this point of view, in this thesis, Lee-Carter model and its 

extensions and functional demographic models are utilized within the perspective of 

age breakpoints. We take into consideration demographic data for Australia, Japan 

and Portugal which is available in the Human Mortality Database (2019) that ensures 

the number of deaths and the exposure to risk for individuals age x in the calendar year 

t specifically. Using this data of countries, the purpose of this study is to model and 

forecast log-mortality rates for female and male populations independently with 

regards to breakpoints of age. The pattern of age structure for each population on the 

mean of log-mortality rates is investigated within the framework proposed by Bai & 

Perrron (2003). With the results of the sequential testing framework; two breakpoints 

for age are found significant for each country and female and male populations. By 

two age breakpoints, log-mortality rate of each country over female and male 

subpopulations are divided into three parts accordingly; resulting in three different age 

intervals. After obtaining the specific age intervals particular to each subpopulation, 

series of Kruskal-Wallis tests are performed to determine whether there are 

statistically significant difference between the age intervals. These three age intervals 

for every six subpopulations are found significantly differentiating from one to 

another (p < 0.05). 

After breakpoints of age for each three countries and two genders determined; a total 

of 18 subpopulations are obtained according to corresponding age intervals. Specific 

to these subpopulations uniquely, different mortality forecasting methods which are 

Lee-Carter variants and Hyndman-Ullah variants are performed. These methods are 

evaluated in terms of mean absolute forecast error (MAFE) for mortality rates. Results 

display consistent outcomes with studies previously conducted in related literature 

(Rabbi & Mazzuco, 2018; Shang, 2015; Shang et al. 2011).  

 



67 

 

However, in addition to the literature, the results of this study show that different 

methods give the most accurate and optimistic forecasts even for the same gender 

group but different age intervals. Additionally, to validate the effectiveness of the 

proposed approach, comparison procedure is conducted. As expected, the proposed 

piecewise mortality modelling approach gives more accurate forecasts rather than 

overall mortality modelling approach. 

In conclusion, this study presents evidence based information to perform mortality 

modelling for age intervals which is segmented differently by their common statistical 

features. This approach puts forward a new methodology for mortality modelling field 

by constructing models to specific age intervals which are chosen with regards to 

divided breakpoints of age. Consequently, the division of the whole age span into 

characteristic age intervals enables us to give more realistic forecasts of mortality rate 

by piecewise mortality modelling. The results implicate that age breaks comprise 

crucial information in terms of forecast accuracy of different methods and thus for a 

more realistic mortality forecasting process, this approach should be taken into 

consideration. Specifically, the different age breaks for female and male 

subpopulations uniquely should be considered and best suited alternative methods for 

these age intervals should be preferred when it comes to mortality forecasting for the 

future. Additional new methods should be applied for this problem to enable to assess 

the best fitting model for a given of age intervals instead of the whole age span. At 

this point, joint distribution of mortality rates within the different age intervals should 

be investigated and alternative nonparametric approaches should be employed.  
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