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ABSTRACT

OPTION PRICING IN INTEREST RATE DERIVATIVES

Küçüksaraç, Doruk

Ph.D., Department of Financial Mathematics

Supervisor : Assoc.Prof.Dr. Seza Danışoğlu

January 2020, 88 pages

The valuation of interest rate derivatives and embedded options in fixed-income se-
curities is crucial for market practitioners. Although there have been many models to
price interest rate derivatives, the inconsistency across the assumptions of the models
creates difficulty in aggregating interest rate exposures. Besides, the models tend to
be applicable to specific cases. In this regard, adaptation of a general methodology
to price all interest rate derivatives without making additional assumptions has crit-
ical importance. This study is expected to contribute to the literature by providing
a general approach that can be applied to any fixed-income security with regular or
irregular cash flows using the Vasicek model. The methodology involves four main
steps: (i) deriving the closed-form solution for the interest rate derivatives traded in
the market, (ii) estimating the Vasicek model parameters, (iii) deriving the exhibit so-
lution for the interest rate derivatives and (iv) plugging the estimated Vasicek model
parameters to price the security. This methodology provides a general solution that
is applicable to all interest rate derivatives with regular or irregular cash flows. Ad-
ditionally, it allows aggregation of exposures to different interest rate derivatives and
allows the derivation of sensitivities of the option values to the changes in model
parameters. Although the study provides empirical evidence for European type of
options, it also can be applied to price American or Bermudan type of options as
well. Besides, the methodology can be implemented using other interest rate models
with desirable properties.
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ÖZ

FAİZE DAYALI TÜREV ÜRÜNLERDE OPSİYON FİYATLAMASI

Küçüksaraç, Doruk

Doktora, Finansal Matematik Bölümü

Tez Yöneticisi : Dr. Seza Danışoğlu

Ocak 2020, 88 sayfa

Sabit getirili menkul kıymetlerdeki faize dayalı türev ürünlerin ve gömülü opsiyonla-
rın değerlemesi piyasa oyuncuları açısından önem arz etmektedir. Faize dayalı türev
ürünlerini fiyatlandırmak için akademik yazında çok sayıda model geliştirilmiş ol-
masına rağmen, söz konusu modellerin varsayımları arasındaki tutarsızlık, özellikle
faiz oranındaki değişimlere karşı risklerin birleştirilmesi kapsamında zorluk oluştur-
maktadır. Ayrıca, modellerin belli durumlara yönelik olarak geliştirildiği ve genelleş-
tirme kapsamında uygun olmadığı gözlenmektedir. Bu bağlamda, ürün bazlı olarak
varsayım yapmadan genel bir metodolojinin kullanılarak faize dayalı türev ürünle-
rin fiyatlandırılması kritik önem taşımaktadır. Bu çalışmanın, Vasicek modeli altında
düzenli veya düzensiz nakit akışları olan sabit getirili menkul kıymetlere uygulanabi-
lecek genel bir yaklaşım sağlayarak literatüre katkı sağlaması beklenmektedir. Uyar-
lanan yöntem temel olarak dört adımdan oluşmaktadır: (i) piyasada işlem gören faize
dayalı türev ürünler için Vasicek modeli ile ilgili formülün türetilmesi, ( ii)Vasicek
model parametrelerinin tahmin edilmesi, (iii) fiyatlandırılması amaçlanan faize da-
yalı türev ürün için de Vasicek modeli altında formülasyon gerçekleştirilmesi ve (iv)
tahmin edilmiş olan Vasicek model parametre tahminlerinin fiyatlama kapsamında
kullanılması. Bu metodoloji, düzenli veya düzensiz nakit akışlarına sahip tüm faize
dayalı türev ürünlerine uygulanabilecek genel bir çözüm sunmaktadır. Ayrıca, faiz
kaynaklı maruziyetlerin tutarlı bir şekilde hesaplanabilmesi ve faize dayalı opsiyon
değerlerinin model parametrelerine olan duyarlılıklarının türetilmesi de sağlanmak-
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tadır. Çalışmada yer alan sonuçlar Avrupa tipi opsiyonlar için bulunmuş olmakla be-
raber çalışmanın sonuçları Amerikan ve Bermudan tarzı opsiyon sözleşmelerine de
uyarlanabilir. Ek olarak, metodolojinin gerekli özellikleri sağlayan diğer faiz model-
leri ile de uygulanması mümkündür.

Anahtar Kelimeler: Faize dayalı türev ürünler, Vasicek modeli, swaption, erken ödeme
opsiyonu
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CHAPTER 1

SWAPTION IMPLIED DENSITY FUNCTIONS

1.1 INTRODUCTION

The interest rate derivatives market has expanded enormously during the last decade.

In fact, the most commonly traded financial instruments in the global financial mar-

kets are interest rate derivatives. As of April 2019, the notional amount outstanding

for interest rate contracts is approximately 12 trillion USD where the most traded

securities are interest rate swaps and forward rate agreements according to the esti-

mates of the Bank of International Settlements (BIS). The BIS study also indicates

that the trading of interest rate derivatives has increased in the last three years mainly

due to expectations about short-term interest rates of developed markets as well as the

increase in non-market facing trades and compression trades. Besides the trade vol-

umes, the instruments traded tend to be more complicated, which increases the need

for sophisticated and practical models for pricing these instruments. Additionally, the

popularity of the fixed-income securities with embedded options such as callable and

puttable bonds or prepayment options on mortgage loans fuel the demand for hedging

against changes in interest rates.

Given the size of interest rate derivatives and embedded options in the global finan-

cial markets, it is crucial to extract the interest rate expectations embedded in these

contracts. Measuring interest rate expectations is especially crucial for portfolio man-

agers, investors, risk managers and policymakers in terms of formation of trade rec-

ommendations, valuation of fixed-income securities including financial derivatives,

inferring market assessments and estimating potential risk of portfolios. Besides, ex-
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traction of interest rate expectations of the market participants provides significant

information for policymakers and regulators. Central banks place emphasis on ob-

taining market expectations mainly in order to control or direct these expectations

with the aim of strengthening the transmission mechanism of monetary policy. Be-

sides, since interest rate expectations also provide a signal about the state of the econ-

omy, recession concerns and inflation expectations priced in the financial securities,

central banks put significant effort to interpreting the signals in the fixed income prod-

ucts. Additionally, since the interest rate derivatives and other fixed income securities

constitute the largest share in global financial markets, their trading has crucial impli-

cations on financial stability.

Figure 1.1: Turnover and Composition in Interest Rate Derivatives Markets

Given the importance of interest rate expectations priced in the market, the questions

of how to extract the expectations and which fixed-income securities to use for this

purpose arises. There are a variety of fixed income securities that can be used: Trea-

sury bonds, swaps, bond futures, bond forward contracts, caps, floors or swaptions.

In this regard, fixed income products with option characteristics such as interest rate

caps, floors or swaptions can be used to obtain density functions for interest rates,

allowing us to have an idea about the probability attached to different interest rate

levels at a future point in time whereas the other fixed income securities without op-

tion characteristics would give an idea about the expected value rather than a density

function. Therefore, it is possible to interpret the market’s assessment of the degree

of uncertainty or the direction of expected changes in interest rates. Besides, it is
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possible to obtain the likelihood of extreme changes in interest rate levels, which is

invaluable for portfolio managers and risk managers as well as market regulators.

A key challenge is that the pricing of and hedging with interest rate derivatives are

more difficult than those for equity and foreign currency derivatives due to several

factors. First, the behavior of interest rates tends to be more complicated, which

generally exhibits a mean-reverting process. Secondly, the pricing of most of the

interest rate products requires modeling of the entire yield curve. Additionally, the

fact that interest rates are used both for discounting and defining the payoff of interest

rate derivatives makes pricing more complicated, which generally requires changing

measures to make computations more plausible. In this regard, it is crucial to obtain

robust and simple pricing mechanisms for interest rate derivatives, especially for the

ones with option characteristics. Given the fact that density functions can be used to

price similar fixed-income securities, it is a useful pricing tool for market practitioners

since it provides an opportunity to compute prices that are consistent with market

prices. Additionally, since the fixed-income securities are traded in the market, it

allows using these securities to hedge against interest rate changes.

Given the usefulness of the density functions for policymakers and portfolio man-

agers, obtaining density functions for the underlying interest rates implied by the

market prices has drawn attention in the literature. However, most of the studies have

focused on estimating risk-neutral density functions mostly for equity and FX markets

and the studies regarding interest rates are relatively limited in number. For instance,

density functions for European FX options are widely estimated by using data from

emerging markets. Models used in previous studies have different advantages and

disadvantages. Typically, the methodologies adopted in the literature require a great

deal of data processing and use complex estimation techniques. As a result, option-

based density functions are less widely applied by the market practitioners. Instead,

nonparametric models have become popular and are widely used by many central

banks due to the fact that these models have a good fit to data and offer flexibility in

application.

This thesis is expected to contribute to the literature in terms of extracting interest

rate expectations for different maturities that can be used for pricing purposes and as a
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hedging tool for other fixed-income positions. The density functions also are expected

to be useful for policymakers in their efforts to form interest rate expectations and to

analyze the systemic risks for financial stability. Additionally, this is the first study

that provides density functions for Turkish lira interest rates.

The next section reviews the literature regarding the methods used to extract the den-

sity functions in the previous studies, covering the methodologies implemented for

FX and equity as well. Next, preliminary mathematical properties and characteris-

tics of fixed-income securities used are introduced. The empirical findings section

presents the implied volatility curve that can be used to price similar products with

different strike rates, as well as density functions obtained between January 2013 and

November 2019 along with the moments of the density functions.

1.2 LITERATURE REVIEW

Density functions obtained through option contracts reflect the variations in true prob-

ability as well as risk premia that market participants attribute to market prices of

various assets such as exchange rates, stock prices and interest rates. These den-

sity functions enable investors and policymakers to examine the impact of economic

events and policy changes on market prices from a forward-looking perspective. In

the literature, there are numerous methods/approaches for the extraction of expecta-

tions from a sound option pricing mechanism, and it is possible to categorize them as

structural and non-structural approaches.

Within these approaches, there exist subgroups that resemble each other in terms of

the characterization of the underlying asset. The approaches adopted in the literature

for the derivation of density functions are illustrated in the figure below. Full charac-

terization of the pricing mechanism of the underlying asset is presented under struc-

tural approaches whereas nonstructural models aim to approximate density functions

via parametric or nonparametric methods without figuring out the complete pricing

process of the underlying asset. Option pricing based on the Black-Scholes-Merton

formula or the Black volatility model assumes that the price of underlying asset fol-

lows a lognormal distribution and implied volatility is constant over all strike prices.
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Figure 1.2: Density Estimation Methodologies

Although these assumptions do not hold in practice, the Black-Scholes-Merton for-

mulation is used extensively in the market. In the case of swaptions, the Black volatil-

ity is used in practice as a volatility quote.

Structural models aim to make up for the inability of the Black-Scholes-Merton model

by defining the stochastic process of the underlying asset such that the empirical prop-

erties of asset returns would be in line with the process defined. Jump diffusion and

stochastic volatility models are two mainstream approaches under this category in the

literature. Merton (1976) was the first one to use jump diffusion models allowing

the price of the underlying asset to exhibit sudden jumps. In this case, the likelihood

of tail events is not negligible, satisfying the leptokurtic feature of the empirical asset

return distributions. Kou (2002) and Zhang et al (2012) are examples of studies adopt-

ing jump diffusion models for characterizing the asset price movements. The main

advantage of these models is that the risk-neutral densities obtained have heavier tails

that are consistent with the empirical features of realized asset prices. The drawback

of these models is the oversimplifying assumptions regarding the jump process in an

attempt to come up with a closed-form solution. Kou (2002), and Kou et al. (2004)

assume an exponential distribution whereas Merton assumes lognormal distribution

for the price jumps with reference to their tractability properties.

Another stream of structural models is the stochastic volatility models which account

for the time-varying property of implied option volatility. Heston (1993) is the pi-
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oneer in this strand of the risk-neutral density literature. Heston assumes a mean-

reverting process for the volatility and with this assumption, he demonstrates that

spot returns over long periods have asymptotically normal distributions and that the

positive correlation between volatility and spot returns produces a fat right tail and

thin left tail. Overparametrization and calibration considerations are the problems

preventing these models from being used extensively in the literature although the

progress over the Black-Scholes-Merton model provided by these models cannot be

denied. For instance, Rosenberg and Engle (2002) fit a stochastic volatility model to

S&P 500 index returns as an application of stochastic volatility models for incorpo-

rating the risk prevailing in the market and decompose true densities from risk-neutral

densities.

On the other end of the literature, models do not aim to characterize the process of

the underlying asset price completely. These non-structural models define a structure

for the terminal distribution directly so that the parameters of the assumed structure,

if any, are chosen to approximate the underlying asset price data as much as pos-

sible. Models in the non-structural group can be further classified as parametric,

semi-parametric and non-parametric, depending on the degree of the characterization

of the risk-neutral distribution. In this regard, risk-neutral densities are defined com-

pletely by parametric models, as compared to a partial characterization proposed by

semi-parametric and non-parametric models.

In the context of parametric models, Melick and Thomas (1997) use a linear combi-

nation of lognormal distributions for estimating the distribution of the price of under-

lying asset. This mixture of distributions approach has been proposed to overcome

the problem of underestimation of tail events in the case of the Black-Scholes-Merton

model. This stream of models reflects the market participants’ expectations regarding

extreme events more accurately. These models have a degrees of freedom problem

due to an inadequate number of strike price against a high number of parameters to

be estimated when several distributions are taken into account. Therefore, the power

of this approach is diminished by data limitations. Furthermore, there is no objective

way or a consensus for the determination of the number of distributions to include in

the mixture of distributions. Lastly, this approach is not useful for the construction of

dynamic hedging as it does not characterize the process of the prices of underlying
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assets explicitly.

The second branch of nonstructural models is the semi-parametric models, where the

risk-neutral densities are aimed to be approximated at maturity. Edgeworth expansion

and Hermite polynomials are examples of approximation techniques to distributions

of options in this category. The Hermite polynomial approximation method involves

approximation of risk-neutral density by an expansion around a lognormal distribu-

tion using Hermite polynomials. The theoretical foundations of this approach are

shown by Madan and Milne (1994) and an application is given in Abken, Madan, and

Ramamurtie (1996) and Coutant, Jondeau, and Rockinger (2001). Another kind of

approximation of option valuation is the Edgeworth expansion proposed by Jarrow

and Rudd (1982).

The final category to be reviewed in this section for the estimation of risk-neutral den-

sities obtained from options is nonparametric methods which do not assume any form

of a parametric model for the distribution and therefore allow greater flexibility in fit-

ting risk- neutral distribution to observed data. Kernel regressions, tree-based models

and curve-fitting models are the three most widely used approaches in this category.

For instance, Ait-Sahalia and Lo (1998) extracts the risk-neutral densities from S&P

500 index option prices, consider both time series and cross-sectional variation in

option prices and assume that option pricing formulation is a nonlinear function of

option characteristics. As in the case of the mixture of distributions approach, the use

of Kernel regression methods is problematic as a result of data limitations.

Rubinstein (1994) first introduces tree-based models for the pricing of options where

state-contingent prices are obtained through observed European option prices. These

prices are then used to characterize the tree by minimizing the gap between the tree

implied probabilities and probabilities obtained from the tree of Cox et al (1979).

Rubinstein’s model is generalized by Jackwerth (1997) for obtaining a better fit. At

the same time as Rubinstein, Dupire (1994) fit an implied trinomial tree, Derman and

Kani (1994) use a binomial tree as Rubinstein did with one difference such that their

tree models combine multiple maturities matching RNDs for different maturity dates.

Curve fitting models aim to characterize the implied volatility structure in the space of

strike prices or option deltas based on market observations obtained for transactions or
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quotations. Shimko (1993) proposes a method for fitting the implied volatilities with

respect to strike prices through a quadratic polynomial function so that option prices

can be obtained for a continuum of strike prices using the Black-Scholes-Merton

option price formulation. Breeden and Litzenberger (1978) results are then utilized

to transform option prices into risk-neutral densities. As an alternative approach to

the method proposed by Shimko, Malz (1996) estimates implied volatility by using

option deltas in order to avoid consistency problems that arise with the use of strike

prices. In addition, the smoothness of the volatility smile is improved as the degree of

smoothness for the delta space is higher as compared to the one obtained with strike

prices.

Several studies exist in the literature comparing different approaches for the deriva-

tion of risk-neutral densities from option prices, however, there is not a single best

method which dominates others in terms of its applicability in practice. For instance,

Campa et al. (1998) compare cubic splines, an implied binomial tree, and a mixture

of lognormal distributions methods, in addition to the studies by Cooper (1999) and

Jondeau et al. (2000) comparing different methods. The results of these studies are

inconclusive in terms of the superiority of a single method. Additionally, the number

of studies on the extraction of density functions for interest rates is relatively limited.

Among the limited number of studies, Malz (2014) is the one that uses swaption mar-

ket to find the density function of swap rates. The Malz study also provides evidence

that the use of nonparametric models are preferable over other models in terms of

simplicity and goodness of fit to data. This thesis uses the Malz methodology and

analyzes the cross-currency swaption market for estimating the density function for

Turkish interest rates.

1.3 PRELIMINARY

This section provides the basic mathematical properties used in the following sec-

tions. Besides the mathematical properties, this section also introduces the financial

securities, cross-currency swaps, interest rate swaps and interest rate swaptions with

their basic characteristics and payoff structures. Finally, since swaption pricing is per-

formed under swap measure, first the measure change theorem is introduced together

8



with the numeraire applications widely used in the literature.

1.3.1 Measure Change

Given that P and Q are two probability measures, there exists a unique nonnegative

F-measurable function f such that

P(A) =
∫
A

fdQ (1.1)

The measurable function f is said to be the Radon-Nikodym derivative. It is also

called as the density of P with respect to Q and is denoted by dP
dQ . It can be stated that

for any random variable X for which EQ[X dP
dQ ] <∞

EP [X] = EQ
[
X
dP
dQ

]
(1.2)

If the numeraires of N and M with measures QN and QM respectively, then the price

of any asset V relative to N or M is martingale under QN or QM respectively, and the

following holds:

N(t)EQN
[
V (T )

N(T )
|Ft
]
=M(t)EQM

[
V (T )

M(T )
|Ft
]

(1.3)

This can be expressed as follows:

EQN
[
V (T )

N(T )
|Ft
]
= EQM

[
V (T )

N(T )

N(T )/N(t)

M(T )/M(t)
|Ft
]

(1.4)

The Radon-Nikodym derivative is given by

dQN

dQM =
N(T )/N(t)

M(T )/M(t)
(1.5)

1.3.2 Numeraire Applications

This section describes money market account, zero-coupon bond and annuity as ex-

amples of numeraires that are commonly used to price interest rate derivatives.

9



1.3.2.1 Money Market Account as a Numeraire

Money market account can be defined as a deposit that continuously earns the instan-

tenous short rate, which can be deterministic or stochastic. Let M(0) be the initial

value of the money market account. The process for the money market account at

time t, M(t), is given by the following differential equation:

dM(t) = r(t)M(t)dt (1.6)

Since a money market account earns the instantaneous risk-free rate, the volatility of a

money market account is equal to zero. The value ofM(t) is equal to the accumulated

value of the money market account across time.

M(t) = e
∫ t
0 r(s)dsM(0) (1.7)

The money market account is also associated with the stochastic discount factor. If

D(t, T ) stands for the stochastic discount factor from time t to T , it can be expressed

as follows:

D(t, T ) =
M(t)

M(T )
= e−

∫ T
t r(s)ds (1.8)

In this regard, the value of any asset V (t), can be found using the following equation:

V (t) = EQ [V (T )D(t, T )] = EQ
[
V (T )e−

∫ T
t r(s)ds

]
(1.9)

The money market account is used frequently to price derivatives that have an under-

lying asset of equity or foreign exchange. Such pricing typically assumes that interest

rate is deterministic. Since the effect of the interest rate on the value of derivatives

with the underlying asset of equity or foreign exchange is small, the assumption of

deterministic interest rate is considered to be reasonable. If interest rates are assumed

to be deterministic, then the factor D(t, T ) can be taken outside of the expectation

operator. However, the use of money market accounts in the valuation of interest

rate derivatives is not realistic given that the payoff structure is dependent on interest

rates. Since both variables are stochastic, it requires the joint distribution between

V (t) and D(t, T ) to be estimated in order to compute the expectation. Therefore, the

risk-neutral measure that is related to money market accounts is not the most practical

measure to price interest rate derivatives.
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1.3.2.2 Bond Price as a Numeraire

A zero-coupon bond denoted by P (t, T ) is a financial security that pays a certain

amount of money at a predetermined time T in the future. The credit risk for a zero-

coupon security is assumed to be negligible. In the case of deterministic interest

rates, both money market accounts and bond prices are equilavent in terms of their

use in the pricing of derivatives. If interest rates are stochastic, then both differ from

each other in the sense that the value of bond price at maturity T is known at time t

whereas the value of money market account at time T can only be known at time T .

The measure associated with the zero-coupon bond, P (t, T ), is called as T -forward

measure. In the environment of stochastic interest rates, the bond price and stochastic

discount factor are related to each other as follows:

P (t, T ) = EQ [P (T, T )D(t, T )|Ft] = EQ [D(t, T )|Ft] (1.10)

In other words, the zero-coupon bond price is equal to the expected value of the

stochastic discount factor under the risk-neutral measure. However, the risk-neutral

measure is not comfortable to price securities dependent on interest rates. The relation

between the risk-neutral measure and T -forward measure can be expressed as follows:

V (t) = EQ [V (T )D(t, T )|Ft] (1.11)

V (t) = ET
[
V (T )D(t, T )

D(T, T )P (t, T )

D(t, T )P (T, T )
|Ft
]
= P (t, T )ET [V (T )|Ft] (1.12)

Since the discount factor to price the security V (t) is outside the expectations op-

erator under the T -forward measure, this approach requires the calculation of the

expected value of V (T ) under the T -forward measure, which avoids the calculation

of joint probability between stochastic variables. In this regard, the zero-coupon bond

maturing at time T is especially useful to price derivatives with the same maturity T .

1.3.2.3 Annuity as a Numeraire

One of the most commonly used numeraires in the valuation of fixed-income securi-

ties is annuity measure. Annuity is a series of payments made at equal predetermined
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intervals, which is, in fact, a linear combination of bond prices. In this respect, the

value of annuity at time t which starts at time tm and matures at time tn is expressed

as follows:

A(t, tm, tn) =
n∑

j=m+1

P (t, tj)(tj − tj−1) (1.13)

The measure associated with annuity numeraire is called as the swap measure. This

measure is especially useful for the securities whose value dependent on the entire

yield curve. Consider the case that the value of security V (tm) can be expressed as

follows:

V (tm) = SpreadA(tm, tm, tn) (1.14)

where Spread is a stochastic variable that will be determined at time tm. The val-

uation of the security under the risk-neutral measure as stated below requires the

calculation of joint distribution, which complicates the situation.

V (t) = EQ [V (tm)D(t, tm)|Ft] (1.15)

However, the price of the security under the swap measure can be written as follows:

V (t) = EA
[
V (tm)D(t, tm)

D(tm, tm)A(t, tm, tn)

D(t, tm)A(tm, tm, tn)
|Ft
]

(1.16)

Since the value of V (tm) is dependent on A(tm, tm, tn), V (t) can be expressed as

follows.

V (t) = A(t, tm, tn)EA [Spread|Ft] (1.17)

The use of swap measure requires the expected value of the Spread under the swap

measure rather than calculating the joint distribution. In this regard, the swap measure

is useful for the pricing of swaption and constant maturity swaps whose value is

dependent on the entire yield curve.

1.3.3 Cross-Currency Swaps

A cross-currency swap is an agreement between two counterparties for the exchange

of interest payments based on a notional principal amount at predetermined periods

of time. Consider two counterparties A and B in a cross-currency swap. Counter-

party A makes floating payments to Counterparty B in foreign currency at specific

time intervals whereas Counterparty B makes fixed payments to Counterparty A in
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domestic currency during the life of swap contract. At the initiation of the swap and at

maturity, both parties exchange notional principal amounts in respective currencies.

In this regard, from the point of view of a fixed rate receiver in domestic currency,

a cross-currency swap can be considered a short position in a floating rate bond in

foreign currency and a long position in a fixed rate bond in domestic currency.

Vt0 = Vt0,fixed leg − Vt0,f loating legSt0 (1.18)

where Vt0,fixed leg and Vt0,f loating leg stand for the value of fixed-leg in domestic cur-

rency and the value of floating-leg in foreign currency, respectively. St0 stands for the

value of one unit of foreign currency in exchange for domestic currency at time t0.

The value of fixed leg is the discounted value of fixed cash flows; coupon payments

and notional amount.

Vt0,fixed leg =
m∑
i=1

St0NcτP (t0, ti) + St0NP (t0, tm) (1.19)

where c is the fixed rate in domestic currency, N stands for the notional amount and τ

denotes the payment frequency. The value of the floating leg in foreign currency can

be expressed as follows:

Vt0,f loating leg =
m∑
i=1

NL(ti−1, ti)τP
f (t0, ti) +NP f (t0, tm) (1.20)

where L(ti−1, ti) stand for the floating interest rate for the period between ti−1 and ti.

Although the floating cash flows are not known at the initiation of the swap contract,

the value of floating leg can be found out. In this regard, the value of swap can be

written as follows:

Vt0 =
m∑
i=1

St0NτcP (t0, ti) + St0NP (t0, tm)

−

(
m∑
i=1

St0N
{
P f (t0, ti−1)− P f (t0, ti)

}
+ St0NP

f (t0, tm)

) (1.21)

Vt0,f loating leg =
m∑
i=1

N
{
P f (t0, ti−1)− P f (t0, ti)

}
+NP f (t0, tm) = N (1.22)

Vt0 =
m∑
i=1

NτcSt0P (t0, ti) + St0NP (t0, tm)− St0N = 0 (1.23)
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since the discounted value of L(ti−1, ti)τ is equal to the (P f (t0, ti−1)− P f (t0, ti)).

Cross-currency swap pricing is said to determine the fixed rate in the swap contract

such that the value of swap is equal to zero at the initiation of the contract.

c =

(
1

τ

)(
1− P (t0, tm)∑m
i=1 P (t0, ti)

)
(1.24)

It can be seen that the cross-currency swap rate is in fact a function of entire yield

curve. The pricing of interest rate swaps is also quite similar to the pricing of cross-

currency swaps.

1.3.4 Interest Rate Swaps

An interest rate swap is a contract between two counterparties to exchange fixed inter-

est rate payments against floating interest rate payments on a predetermined notional

amount for a given period of time. In this regard, the interest rate swaps can be con-

sidered as the exchange of fixed-coupon bond with floating-coupon bond with the

same maturity. The floating rates used in the interest rate swap contracts are gener-

ally Libor rates of the domestic currency. Since the payments of interest rate swap

contracts are in the same currency for both fixed and floating rate payers, the notional

amounts are not exchanged at the initiation and at the maturity of the swap contract.

The fixed rate in an interest rate swap is determined such that the value of the swap at

the initiation of the contract is equal to zero. The value of an interest rate swap from

the perspective of fixed rate payer can be considered as a long position in a floating

rate bond and a short position in a fixed rate bond. Since the value of floating rate

bond is equal to its par value at the initiation, the fixed rate is equal to the coupon

rate of fixed coupon bond traded at par value. In this respect, the fixed rate in an

interest rate swap contract at time t0 which matures at time tm is the same as with the

cross-currency swap rate contract, which is shown below:

c =

(
1

τ

)(
1− P (t0, tm)∑m
i=1 P (t0, ti)

)
(1.25)

The pricing mechanism of interest rate swaps and cross-currency swaps is exactly

the same, which leads to the same fixed rate. In theory, fixed rates in both interest

rate swaps and cross-currency swaps are expected to be the same and in practice, it
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is observed that they tend to move quite closely where there are minor differences

mainly due to liquidity conditions and counterparty risk.

1.3.5 Swaptions

Interest rate swaption is an option on an interest-rate swap which gives the holder to

enter into the swap at a predetermined date and predetermined rate. Swaptions are

used to benefit from favorable interest rate fluctuations, which is a kind of insurance

against changes in interest rates. In return for the insurance or protection, the option

holder pays a premium at the initiation of the swaption contract. The swaptions are

mainly classified based on the types of legs where the option holder has the right

to pay or receive the fixed rate; receiver swaption or payer swaption. A receiver

(payer) swaption gives the holder the right to enter into a swap contract where the

holder receives (pays) the fixed rate. In this respect, the option will be exercised for a

receiver (payer) swaption if the swap rates are below (above) the predetermined strike

rates. In this respect, a receiver (payer) swaption provides a kind of protection against

declining (increasing) swap rates. This can be seen in the following payoff equations

for swaptions. The payoff of a European payer swaption at the maturity tm can be

expressed as:

PayoffPayer Swaption = A(tm, tm, tn)max {fs(tm, tm, tn)−K; 0} (1.26)

and the payoff of receiver swaption at the maturity tm is;

PayoffReceiver Swaption = A(tm, tm, tn)max {K − fs(tm, tm, tn); 0} (1.27)

where K is strike rate, fs(tm, tm, tn) is forward swap rate and A(tm, tm, tn) is the

value of annuity at time tm as

A(tm, tm, tn) =
n∑

i=m+1

P (tm, ti)(ti − ti−1) (1.28)

Swaptions must specify not only the maturity of the option but also the tenor of the

underlying swap. Therefore, swaption prices or implied volatilities are quoted on a

matrix. Since the interest rate swap and cross-currency swap rates are expected to be

the same in theory, the methodology for interest rate swaption is also applicable for

the cross-currency swaption as well.
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Figure 1.3: Bloomberg Data for Swaptions

1.4 DATA AND METHODOLOGY

This section presents the details about the cross-currency swaption and cross-currency

swap data used in the density function estimation. In this regard, this part also pro-

vides a summary about the Nelson-Siegel model which is used to obtain the zero-

coupon swap rates together with the Black model used in the pricing of cross-currency

swaption.

1.4.1 Data

The value of the swaption is a function of several variables including time-to-maturity,

strike price, implied volatility and forward swap rate. The data for swaption contracts

on USDTRY cross-currency swaps is obtained from Bloomberg. These products are

traded in over the counter (OTC) markets and the data is quotation data rather than

transaction data. The data set covers the daily observations for the period between

January 2013 to November 2019. Since swaption requires the specification about not

only about the maturity of the option but also the tenor of the underlying swap, the

quotations for the maturity of the swaptions include the range from one-month to 10-

years whereas the tenor of the underlying swaps is in the range of three months to

10-years. However, the anecdotal evidence indicates that most of the traded contracts

are concentrated on certain maturities such as 1-year and 5-year specifications.
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Hence, the study uses swaption contracts in these specifications. The daily data is

obtained from Bloomberg, and the biggest price/quotation provider is Tullett Prebon.

At-the-money (ATM) convention in the swaption market is quoting ATM forward

(ATMF) strike level. The swaption market quotes are in terms of implied volatilities

on Black-Model. Lastly, the implied volatility is available for nine different strike

levels as shown in the figure. As seen in the figure, ATM forward level for 1Y1Y

swaption is 11.24 percent. Implied Black volatility for 1Y1Y swaption is 44.37 per-

cent with strike rate 200 bps less than ATM Forward level which corresponds to 9.24

percent. Besides the implied volatility in swaption, the term structure of forward swap

rates is needed for the computation for the annuity factor in swaption pricing. In this

regard, the term structure of currency swap rates is obtained through Nelson-Siegel

methodology which the details are presented in the following parts.

Figure 1.4: Black Implied Volatility for 1Y1Y Swaptions

The study aims to extract the density function for swap rates for different specifica-

tions, including 1y1y, 1y10y and 5y5y swaptions. To simplify, 1y10y swaption allows

extracting the 10-year swap rates in 1-year forward time. The methodology can be

adapted to other swaption methodologies easily, but the study uses the most active

part of the swaption curve. The following figures show the Black implied volatil-

ity for 1y1y, 5y5y and 1y10y swaption specifications for the period between January

2013 to November 2019. It can be observed that implied volatility levels tend to show

fluctuations during the last two years whereas it was relatively stable for the period

between 2013 and 2017. Another interesting observation is that implied volatilities
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for 5y5y specification, 5-year swap rate for 5-year forward tends to be more stable

compared to 1y1y and 1y10y swaption specifications, which means that the market

expectations tend to be more volatile in the short term.

Figure 1.5: Black Implied Volatility for 1Y10Y Swaptions

Figure 1.6: Black Implied Volatility for 5Y5Y Swaptions

1.4.2 Methodology

The section firstly presents the Nelson-Siegel model to derive the zero-coupon swap

yield curve. Then it introduces the Black model for swaptions and provides the math-

ematical properties of swaption pricing. Lastly, the transition from swaption prices to

density function is summarized.
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1.4.2.1 Nelson-Siegel Model

One of the most popular and most commonly used yield curve methodologies is the

Nelson-Siegel method. The Nelson-Siegel methodology, which has been extensively

utilized by many central banks and market practitioners, assumes that the zero rates

can be described explicitly by the following functional form.

r(m) = β0 + β1

(
1− e−mτ
−m

τ

)
+ β2

(
1− e−mτ
−m

τ

− e−
m
τ

)
(1.29)

where m denotes the time to maturity, β, τ are the parameter set to be estimated. The

model is quite flexible in terms of fitting negatively/positively sloped and humped

yield curves. Additionally, the model-in-fit tends to provide robust and accurate re-

sults so that it can also be used to find out the fair price for the securities. Besides,

the parameters of the model characterize the yield curve in such a way that β1 and β2

stand for the level and slope of the yield curve, respectively whereas β3 is interpreted

as the curvature of the yield curve.

Due to the flexibility and good of fit data, the Nelson-Siegel methodology is imple-

mented to find out the zero-coupon swap rates for the value of annuity in the Black

swaption pricing formula. In this regard, the common methodology to find out the

optimal parameter set is to minimize the squared difference between weighted price

errors, which are obtained by the difference between actual and fitted prices.

In this regard, the Bloomberg swap quotation data at maturities from 1 month to

120 months are used to find out zero-coupon currency swap rates for each day. As

mentioned above, currency swap rates are quoted as par-rates rather than zero-coupon

rates. In order to find out the zero-coupon swap rate, the fixed leg of the cross-

currency swap is treated as a fixed coupon bond with coupon rate equal to the currency

swap rate and the value of the fixed leg of the cross-currency swap rate is equal to the

par value. This comes from the fact that the value of a floating bond is equal to par

value. In order to find out Nelson-Siegel parameters for cross-currency swap rates,

the difference between the actual prices and fitted prices weighted by the inverse of

Macaulay duration of the fixed leg of the swap is minimized. The objective function
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can be expressed as follows:

minβ

L∑
i=1

(
P i
t0
− P i,fitted

t0

Di
t0

)2

(1.30)

where Di
t0

stands for the Macaulay duration of fixed-leg of the cross-currency swap.

P i
t0

and P i,fitted
t0 stand for the actual and fitted prices for bond i, respectively. L

denotes the number of bonds used in the estimation.

1.4.2.2 Black Model

The Black model is one of the convenient models to value financial derivatives whose

value depends on the level of interest rates but not the shape of the entire yield curve.

In this regard, it is widely implemented for financial derivatives such as European in-

terest rate options such as caplets, floorlets, bond options, futures options and swap-

tions. Due to the simplicity and practical use of the model, most of the traded products

in the fixed income securities are quoted in terms of Black model implied volatilities.

In this regard, the traders use it a lot to quote their prices directly using the Black

model and hedge their interest rate exposure using Black delta.

The main property of the Black model is that it does not assume that the underlying

variable satisfies any particular stochastic dynamics, it only states that the final distri-

bution of the underlying is known. In the case of swaptions, the underlying interest

rate, forward swap rate, is assumed to be lognormally distributed. In this regard, the

model requires only the estimation of the volatility of forward swap rates. Since the

model assumes that the forward swap rate is lognormally distributed, it allows an

explicit formula for pricing European options.

Under the Black model, the forward swap rate is assumed to have a lognormal dis-

tribution under the swap measure. Then forward swap rate at tmcan be expressed as

fs(tm, tm, tn) = fs(t, tm, tn)e
σε
√
tm−t− 1

2
σ2(tm−t) (1.31)

where ε and σ stand for standard normal variable and the Black volatility, respec-

tively. The volatility parameter does not necessarily say anything about the standard

deviation of the logarithm of underlying at times other than T . The volatility param-
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eter is expressed as the lognormal annualized volatility of the underlying rate. The

Black model for swaptions treats the par rate since it is the rate at which the present

value of the floating legs is equal to the present value of the fixed legs. In this regard,

the valuation of swaptions under the Black model considers only the excess of the par

rate over the strike rate, which is a kind of call option on the rate.

1.4.2.3 Swaption Pricing

This section provides the methodology behind the swaption pricing under the Black

model using the swap measure. In this regard, the swaption pricing formula for payer

swap is illustrated here. The payer-receiver swaption parity can be used to find out

the price of receiver swaption. Fixed rate payer position in an interest rate swap can

be replicated by a long position on floating rate bond and short position on fixed rate

bond. In this regard, the value of a fixed rate payer swap at time tm , Vswap(tm, tn),

can be expressed as follows:

Vswap(tm, tn) = Vfloating(tm, tn)− Vfixed(tm, tn) (1.32)

where tm is starting time of swap and tn is the maturity of swap. Now consider the

value of the swaption at maturity, tm, with the underlying swap expiring at tn.

Vswaption(tm, tm, tn) = [Vswap(tm, tn, fs(tm, tm, tn))− Vswap(tm, tn, K)]+ (1.33)

where Vswap(tm, tn, fs) is the value of swap starting at tm, ending at tnwith swap rate

fs and Vswap(tm, tn, K) is the value of swap starting at tm, ending at tn with swap

rate K.

Vswaption(tm, tm, tn) = max {Vswap(tm, tn, fs(tm, tm, tn))− Vswap(tm, tn, K), 0}
(1.34)

Let A denote the annuity and P (tm, ti) is price of a bond at tmwith maturity ti.

A(tm, tm, tn) =
n∑

i=m+1

P (tm, ti)(ti − ti−1) (1.35)

Then the value of swaption at the maturity can be written as factoring out annuity.

Vswaption(tm, tm, tn) = max {fs(tm, tm, tn)−K, 0}A(tm, tm, tn) (1.36)
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One of the approaches to find out the value of the swaption at time t is to compute the

expectation of V under Q-measure where t < tm., which is described as follows:

Vswaption(t, tm, tn) = EQt
[
A(tm, tm, tn)e

−
∫ tm
t r(s)dsmax {fs(tm, tm, tn)−K; 0}

]
(1.37)

or in integral form

Vswaption(t, tm, tn) =

∫ ∞
−∞

A(tm, tm, tn)e
−

∫ tm
t r(s)dsmax {fs(tm, tm, tn)−K, 0} dPQ

(1.38)

Finding out the price of swaption under the risk-neutral measure requires computing

the joint distribution between the stochastic discount factor, forward swap rate and

annuity, which makes calculations complicated. However, it is possible to price the

swaption using numeraire change. In this regard, right side of the equation is multi-

plied and divided by A(t, tm, tn) to change probability measure.∫ ∞
−∞

A(tm, tm, tn)

A(t, tm, tn)
e−

∫ tm
t r(s)dsdPQ =

∫ ∞
−∞

∑n
i=m+1 P (tm, ti)e

−
∫ tm
t r(s)ds

A(t, tm, tn)
dPQ

(1.39)

It is known that under the risk-neutral measure the price of a zero-coupon bond price

can be found as follows:∫ ∞
−∞

P (tm, ti)e
−

∫ tm
t r(s)dsdPQ = P (t, ti) (1.40)

Since the following holds under the risk-neutral measure,∑n
i=m+1 P (t, ti)

A(t, tm, tn)
=

∫ ∞
−∞

dPA = 1 (1.41)

it is possible to define the new probability measure, which is called as swap measure.

dPA = dPQA(tm, tm, tn)

A(t, tm, tn)

M(t)

M(tm)
(1.42)

Therefore, the value of swaption under the probability measure A can be stated as

follows:

Vswaption(t, tm, tn) =

∫ ∞
−∞

A(t, tm, tn)max {fs(tm, tm, tn)−K, 0} dPA (1.43)

Since A(t, tm, tn) is t-measurable it can be factored out the expectation operator.

Vswaption(t, tm, tn) = A(t, tm, tn)

∫ ∞
−∞

max {fs(tm, tm, tn)−K; 0} dPA

= A(t, tm, tn)EAt [fs(tm, tm, tn)−K]+
(1.44)
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As can be seen from the equation, the only stochastic variable under the swap mea-

sure is the forward swap rate. The Black model assumes that forward swap rate is

lognormally distributed under swap measure. Then forward swap rate at tm can be

expressed as follows:

fs(tm, tm, tn) = fs(t, tm, tn)e
σε
√
tm−t− 1

2
σ2(tm−t) (1.45)

where σ is the Black volatility. The good side of the Black model is that it only

requires the volatility of forward swap rate.

Vswaption(t, tm, tn) is defined as follows:

A(t, tm, tn)

∫ ∞
−∞

[(
fs(t, tm, tn)e

σε
√
tm−t− 1

2
σ2(tm−t) −K

)+
e−

1
2
ε2 1√

2π
dε

]
(1.46)

For fs(t, tm, tn)eσε
√
tm−t− 1

2
σ2(tm−t) > K;

ε >
ln( K

fs(t,tm,tn)
) + 1

2
σ2(tm − t)

σ
√

(tm − t)
= −

[
ln(fs(t,tm,tn)

K
)− 1

2
σ2(tm − t)

σ
√

(tm − t)

]
(1.47)

The term between brackets on the right hand side of equation called as d2. Hence

ε > −d2, equation becomes

Vswaption(t, tm, tn) = A(t, tm, tn)

∫ ∞
−d2

fs(t, tm, tn)e
σε
√
tm−t− 1

2
σ2(tm−t)− 1

2
ε2 1√

2π
dε

− A(t, tm, tn)K
∫ ∞
−d2

e−
1
2
ε2 1√

2π
dε

(1.48)

∫∞
−d2 e

− 1
2
ε2 1√

2π
dε is equal to N(d2). Define ε′ = ε− σ

√
tm − t.

Then, Vswaption(t, tm, tn) is defined as follows:

A(t, tm, tn)

(∫ ∞
−d1

fs(t, tm, tn)e
− 1

2
ε
′2 1√

2π
dε
′ −K

∫ ∞
−d2

e−
1
2
ε2 1√

2π
dε

)
(1.49)

where d1 = −
ln(

fs(t,tm,tn)
K

)+ 1
2
σ2(tm−t)

σ
√

(tm−t)
.

So the value of the swaption by the Black model at time t is

Vswaption(t, tm, tn) = A(t, tm, tn) [fs(t, tm, tn)N(d1)−KN(d2)] (1.50)
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d1 = −

[
ln(fs(t,tm,tn)

K
) + 1

2
σ2(tm − t)

σ
√
(tm − t)

]
(1.51)

d2 = −

[
ln(fs(t,tm,tn)

K
)− 1

2
σ2(tm − t)

σ
√
(tm − t)

]
(1.52)

1.4.2.4 Breeden-Litzenberger Method

The extraction of density function from the option prices traded in the market is based

on the Breeden-Litzenberger study. They state that the second mathematical deriva-

tive of the option price with respect to strike price leads to the formation of density

function under the relevant measure. In other words, if the pricing scheme is under

the risk-neutral measure, the density obtained from option prices is risk-neutral mea-

sures. For the case of swaptions, the value of payer swaption in a swap measure is

expressed as follows:

PS(t, tm, tn, K) = A(t, tm, tn)

∫ ∞
−∞

max {fs(tm, tm, tn)−K; 0} g(fs)dfs

PS(t, tm, tn, K) = A(t, tm, tn)

∫ ∞
K

(fs(tm, tm, tn)−K)g(fs)dfs

(1.53)

where g(fs) is the density function under annuity measure, K is the strike price and

fs(tm, tm, tn) is the forward swap rate at time tm starting at tm and maturing at tn.

The first derivative of payer swaption with respect to strike price leads to the following

equation.
∂PS(t, tm, tn, K)

∂K
= −A(t, tm, tn)

[∫ ∞
K

g(fs)dfs

]
(1.54)

The second derivative with respect to K gives the relation between density function

and option prices.

∂2PS(t, tm, tn, K)

∂K2
= A(t, tm, tn)g(fs)|∞K = A(t, tm, tn)g(K) (1.55)

Then; the density function can be written as follows. In this respect, using the option

prices traded in the market it is plausible to extract densities.

g(K) =
∂2PS(t, tm, tn, K)

∂K2

1

A(t, tm, tn)
(1.56)
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1.5 EMPIRICAL FINDINGS

This section presents the empirical findings for swaption implied density function.
Firstly, the following figure summarizes the steps for the estimation of the density
function of swap rates.

Figure 1.7: Roadmap for Swaption Implied Density Function Estimation

Swaption implied density function estimation requires the implied Black implied

volatilities of plain-vanilla swaptions with different deltas. However, as mentioned

above, the strike prices are quoted based on the difference with respect to the for-

ward swap rate. The Bloomberg provides quotations 200, 100, 50, 25 basis points

around the forward swap rate, which means that there are 9 quotations for swaptions.

In this regard, the first step in the density function estimation is to translate strike

rates into deltas. In this respect, Black model is used to find out implied deltas. It

should be noted that although the strike rates are always the same around the forward

swap rates, the Black model implied deltas differ each day, which makes swaption

quotations different from FX option implied quotations where they are quoted based

on deltas. To transform strike rates into Black model implied deltas, the following

equation is solved numerically.

δ = N

(
−

[
ln(fs(t,tm,tn)

K
) + 1

2
σ2(tm − t)

σ
√
(tm − t)

])
A(t, tm, tn) (1.57)

The daily evolution of the Black delta values of 1 year swaptions with 1 and 10

year swap maturity and 5 year swaption with 5 year swap maturity are calculated for

25



the given strike prices. The results for the observation period from January 2013 to

November 2019 identify the evolution of market interest rates as well as markets’

pricing behavior in the respective maturities. For instance, the rise in spot interest

rates in 2018 led to increase in the delta values for swaptions with strike levels, which

reflect the level shift in the expectations.

Figure 1.8: Black Delta for Strike Rates in 1Y1Y Payer Swaptions

Figure 1.9: Black Delta for Strike Rates in 1Y10Y Payer Swaptions

Using the implied volatilities for swaptions it is possible to obtain swaption prices

using Black model. Since the market quotations are in Black implied volatility, the

calculation shows the swaption premium demanded in the market. In this regard,

the following figures clearly demonstrate the periods of market stress and deteriora-

26



tions in market expectations about the future interest rates. For instance, following

the Fed’s tapering of its quantitative easing monetary policy announcement in May

2013, there had been substantial amount of capital outflows from the emerging mar-

ket countries. During this period capital flows to Turkey also weakened and volatility

in the financial markets heightened. When negative global financing conditions were

combined with the relative deterioration in the inflation of the Turkish economy both

the CBRT policy interest rates and market interest rates increased. And as it can

be clearly seen from the figures markets’ pricing of higher interest rate levels also

elevated. Although it was relatively milder than the post Taper Tantrum period an-

other episode of unfavorable global financial conditions and deterioration in Turkish

macroeconomic indicators led to significant amount of capital outflows and turmoil

in domestic financial markets in the third quarter of 2018. The rise in the level of

swaption premiums after August 2018 is striking where the premiums increased sub-

stantially during that period and subside in the following months reflecting the limited

normalization of market sentiment.

Figure 1.10: Black Delta for Strike Rates in 5Y5Y Payer Swaptions
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Figure 1.11: Swaption Prices for Different Specifications

1.5.1 Volatility Smile

Through the translation of strike rates into deltas, the characterization of implied

Black volatility/Black delta space is completed, which is an important step since the

volatility-delta pairs are used for density function estimation. The next step is to

estimate the implied volatility curve. In this regard, the implied volatility curve is es-

timated through clamped cubic spline methodology based on the following equation.

Using implied volatilities for all nine deltas available for each day, the clamped-cubic

spline approach produces a fitted implied volatility that matches the data almost per-

fectly where the clamped property ensures that extrapolated implied volatilities for

deep out-of-the-money or deep-in-the-money options are equalized to the implied

volatilities of the options with the closest deltas in the input data. In this regard, the

implied volatility is a function of Black delta in order to capture the volatility smile.

σmalzt (δ) = γ1+γ2(δ− δ(atmft))+γ3(δ− δ(atmft))2+γ4(δ− δ(atmft))3 (1.58)

Using the estimated coefficients of the cubic polynomial function, the implied volatil-

ity levels are calculated for a range of strike prices. The relationship between the

strike rates and implied volatility is illustrated in the following figures for the pe-

riod between January 2013 and November 2019. The parameter optimization results

show that the difference between the fitted implied volatilities and the actual implied

volatilities is quite negligible. In order to work with the largest possible strike rate
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range, on the upside the implied volatility curve is extrapolated up to 50 percent for

some of the cases. On the other hand, as a natural constraint of the applied Black

Model, zero percent constitutes a natural lower bound for the strike price range.

For all of the swaption contracts, there exists a persistent positive difference be-

tween the implied volatilities of out-of-the-money or in-the-money options and at-

the-money options and this observation is more significant for the 5 year swaptions

with 5 year swap maturity. These positive differences indicate that there exists volatil-

ity smile, especially for longer maturity options. Inspection of the movements of the

volatility curves throughout the time provides information regarding risk perception

of market participants.

Figure 1.12: Implied Volatility Surface in 1Y1Y Swaptions

Figure 1.13: Implied Volatility Surface in 1Y10Y Swaptions
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Figure 1.14: Implied Volatility Surface in 5Y5Y Swaptions

1.5.2 Swaption Implied Density Functions

In this regard, for each strike rate level which the methodology aims to assign a prob-

ability, strike rates are converted into relevant deltas and implied volatility is calcu-

lated using the estimated the volatility-delta pair. After the estimation of implied

volatility, the next step is to calculate the implied payer swaption prices using Black

option model. In this regard, swaptions with 1 and 5 year maturity on 1, 10 and 5

year swaps are valued using the implied volatilities estimated with cubic polynomial

functions. The density function estimation requires the second derivative of payer

swaption price with respect to strike price. In this regard, the incremental changes

in strike rates should be small so that the numerical differentiation gives precise re-

sults. Using this methodology, swaption implied density functions are obtained for

1y1y,1y10y and 5y5y swaption specifications.

The density function estimated for three representative dates in 2019 are displayed in

the following figures. Firstly looking to the developments in 1Y1Y swaption density

it can concluded that shorter term expectations are more sensitive to current market

interest rates. Since the interest rates were relatively high at the beginning of 2019

and have declined gradually throughout the year, market expected annual rates had a

higher mean and median level in January and also the probability assigned to realiza-

tion of higher interest rate in one year time was also high. Following the downward
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trend in the market rates the density functions also shifted to left during the year and

likelihood of lower future interest rates increased. However, for 1Y10 and 5Y5Y

swaptions the patterns are a little different. Especially, for 5 year maturity swaption it

seems that long term interest rate pricings seem more dependent on macroeconomic

indicators, since a significant leftward shift in densities have observed in late 2019

when the macroeconomic back drop have become more supportive.

Figure 1.15: Comparison of Swaption Implied Density Functions for 1Y1Y Swap-
tions

Figure 1.16: Comparison of Swaption Implied Density Functions for 1Y10Y Swap-
tions
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Figure 1.17: Comparison of Swaption Implied Density Functions for 5Y5Y Swap-
tions

The historical development of the density functions are presented in the following

figures. The first observation is there had been a persistent rightward trend until the

last quarter of 2018 which indicates that the market participants pricing of higher

future interest rate levels both in the short and in the medium term. However, from

thereafter swaption implied densities for all of the swaption contracts have started to

shift to the left, reflecting an improvement in the expectations for the funding costs.

Besides, the dispersion of the distributions widens sharply after 2018, which reflects

the dramatic rise in the uncertainty regarding the market expectations in this period.

Accordingly, the probability of extreme values for future interest rates increase during

the aforementioned risk-off periods, which is visible through the extended tails of

density functions.

The changes in the density functions might also be related to the changing behavior

of liquidity for the underlying asset cross-currency swap and swaption as well. Since

there is a regulation which limits the FX swap and cross-currency swap positions

with offshore counterparties, which creates decline in the liquidity for a temporary

period, the shifts in the density functions might be related to the changing conditions

in liquidity rather than shift in expectations. In this regard, the density functions im-

plicitly covers the liquidity conditions and changes in risk-premia as well as liquidity

conditions.
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Figure 1.18: Swaption Implied Density Function in 1Y1Y Swaptions

Figure 1.19: Swaption Implied Density Function in 1Y10Y Swaptions
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Figure 1.20: Swaption Implied Density Function in 5Y5Y Swaptions

These inferences are also supported by the evolution of first four moments of the

the swaption implied density functions. The upward trend in the expected values of

the density functions from the second half of 2013 throughout the following year

was followed by a relatively stable period around 10 percent for the following four

years. However, as it is clearly represented that the market expectations deteriorated

in the following period, volatility have heightened and the level of uncertainty have

elevated.

The density function can also be used to price swaptions with different characteristics.

Consider the case that an investor has an interest in a 1y10y swaption with a strike

price not quoted in the market. In this regard, swaption implied density estimation

might provide a useful solution due to the fact that it is possible to obtain probabilities

for forward swap rates under annuity measure. Since the swaption price is equal to

the multiplication of annuity (a kind of discounting for multiple cash flows) with

the swaption payoff under the annuity measure, swaption implied density estimation

provides a solution consistent with market prices.

Another equilavent solution is to use implied volatility/delta relation to find out the

relevant delta to find out the implied volatility. Then the next step is to obtain im-

plied volatility relevant to the delta level and calculate the swaption price. Simi-

larly, the methodology can be extended to the cases where the swaption maturity is

not quoted. In this regard, one of the most plausible ways is to bootstrap the swap-
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tion implied volatility across the time-to-maturity. In other words, suppose that in-

vestor is interested in a 1,5y10y swaption. In this regard, since the market quotes

for 1y10y,2y10y,3y10y,5y10y and 10y10y are available, it is possible to bootstrap the

1,5y10y swaption implied volatility fitting a cubic polynomial curve. Then it is pos-

sible to price swaptions with different strike rates. This methodology in this regard is

quite useful and extendable to many specifications.

(a) 1Y1Y Expectation (b) 1Y1Y Skewness (c) 1Y1Y Kurtosis

(d) 1Y10Y Expectation (e) 1Y10Y Skewness (f) 1Y1Y Kurtosis

(g) 5Y5Y Expectation (h) 5Y5Y Skewness (i) 5Y5Y Kurtosis

Figure 1.21: Density Moments Swaption Specifications

1.6 CONCLUSION

Interest rate derivatives are the most commonly traded securities in the global finan-

cial markets. Given the increasing size of fixed-income securities and complexity in

the securities issued, extraction of interest rate expectations from the traded securities

provides crucial information for portfolio managers, investors, risk managers and pol-

icymakers in terms of formation of trade recommendations, valuation of fixed-income

securities including financial derivatives, inferring market assessment, estimating po-
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tential risk of the portfolios. In this regard, the fixed income products with option

characteristics are used to obtain density functions for interest rates so that it is possi-

ble to interpret the market’s assessment of the degree of uncertainty or the direction of

expected changes in interest rates. Given the wide range of areas applicable for poli-

cymakers and portfolio managers, extraction of density functions for the interest rates

consistent with the market prices is crucial. In this regard, this study implements one

of the most popular and widely used methodologies, Malz methodology, to extract

the swaption implied density functions for Turkish lira swap rates. This is the first

study that extracts the the density functions for interest rates in Turkey, which uses

cross-currency swaptions data from the period between January 2013 to November

2019.

The methodology implemented in the study involves many steps including from trans-

lation of strike rates into Black deltas, estimating an implied volatility curve and pric-

ing swaptions for a wide range of strike rates and obtaining density function. The

empirical findings for Turkish lira swap rates for 1y1y, 1y10y and 5y5y specifica-

tions provide critical observations about the changing market expectations about the

interest rates, the probability of extreme increases or decreases priced in the cross-

currency swaptions. The density functions for the period between January 2013 and

November 2019 show that the investor’s expectations tend to deteriorate after 2018

where the density functions shifted to the higher levels and tails of the density func-

tions become flattered. The shifts in the density functions might also be attributed

to the changing liquidity conditions in cross-currency swap and cross-currency swap-

tion markets as well. Additionally, the swaption implied density functions provide

important clues for policymakers and fixed-income portfolio managers in terms of

extracting interest rate expectations and forming trade strategies. Given the size of

interest rate dependent securities it is crucial to figure out the possible effect of deteri-

orating outlook in the interest rates on the balance sheets of banking sector. Although

the swaptions might not be used by the financial institutions directly, the information

about the probabilities of relevant interest rates provide useful tool for risk managers.

Besides that, swaption implied density functions can be used to price similar products

since it allows to obtain state prices for each possible interest rate level, which can be

used to price other fixed-income securities with relevant adjustments. Additionally,
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the information about the possibilities about different states also provide signals for

policymakers about the recession fears or inflation concerns.

In this regards, the swaption implied density function is expected to contribute to the

literature in terms of extracting interest rate expectations for different maturities and

pricing and hedging tool for other fixed-income positions. Since the density functions

have a wide range of areas that can be used, it is believed to be useful for policymakers

in terms of extracting the interest rate expectations and analyzing the systemic risks

for the financial stability. Additionally, since the density functions include liquidity

conditions of the relevant interest rate markets, it might be useful tool to measure the

liquidity premium priced into the financial securities.
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CHAPTER 2

OPTION PRICING IN INTEREST RATE DERIVATIVES

2.1 INTRODUCTION

The trading of interest rate derivatives and fixed-income securities has been substan-

tially increased in the global financial markets. The changing expectations about the

interest rates in developed and developing countries have increased the demand for

hedging and speculative trading for interest rate derivatives. Besides the growing

issuance of new fixed-income securities by corporates and sovereigns has been an-

other factor for the increase in trading of interest rate derivatives. Although most

of the traded interest rate derivatives are concentrated on plain-vanilla products such

as interest rate swaps, forward rate agreements or cross-currency swaps, the trading

volume of interest rate derivatives with option characteristics has been growing as

well. One of the reasons for the growing size of interest rate derivatives with op-

tion characteristics might be attributed to the low level of interest rates, which tend

to increase speculative positions. Additionally, the zero-interest rate levels in many

developed countries put a downward floor on the market rates, which might also lead

to an increase in demand for interest rate options. Another important factor might

be growing options embedded in fixed-income securities such as callable or putable

bonds or embedded options in loans such as prepayment options on mortgage loans or

mortgage-backed securities. In this regard, developing a methodology to price fixed-

income securities and hedge against changes in interest rates are crucial for portfolio

managers, strategists and risk managers as well as policymakers.

Considering the growing size and complexity of interest rate derivatives, the valua-
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tion of these securities is crucial for both market practitioners and academics as wells.

However, market practice is to use different models for different interest rate deriva-

tives. For instance, the forward swap rate is assumed to be lognormally distributed

under the Black model whereas the cap rate is assumed to be in another application,

which creates inconsistency among the assumptions used in these models. In this re-

gard, from the perspective of portfolio managers, this inconsistency creates difficulty

in terms of aggregating the exposures among interest rate derivatives. Additionally,

this practice does not allow generalization for the pricing of interest rate derivatives,

which provides partial solutions for each interest rate derivative.

Although there have been many models used to price out interest rate derivatives,

these models tend to have drawbacks in terms of complexity, overparameterization,

the allowability of a closed-form solution, consistency with the market prices and

applicability. Additionally, some of the models tend to be only applicable to specific

cases, which might not be generalized. In this regard, it is important to develop

simple models consistent with market prices. Additionally, allowability of a closed-

form solution is also useful for market practitioners in terms of pricing and hedging.

In this regard, this study employs the Vasicek model which can be used to price all

interest rate derivatives due to the analytical tractability of the model. In this regard,

the study aims to contribute to the literature in terms of applying a model which can

be generalized to many areas in interest rate derivatives such as caps, floorlets, call

or put options on bonds and swaptions. Besides the methodology also allows pricing

embedded options on mortgage loans, callable bonds and puttable bonds with any

cash flow structure, including regular and irregular cash flow structures. Lastly, the

methodology can be adapted to the pricing of American or Bermudan type of option

pricing.

The methodology relies on the fact that it is possible to obtain a closed-form solution

for European call or put options on zero-coupon bonds under the Vasicek model. Then

using the traded securities in the market, it is possible to obtain the Vasicek model

parameters, which can be used to price out fixed-income securities with a similar

maturity structure. Then the next step is to derive the closed-form solution for the

interest rate derivatives that’re demanded to be priced out under the Vasicek model.

Since the bond prices are assumed to be lognormally distributed under the Vasicek
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model and the Vasicek model captures the main properties of short rate including

mean-reversion and existence of long-run mean of short rate, the methodology can be

adapted to many interest rate derivatives such as caps, floors, swaptions, bond options

including zero-coupon or coupon-bearing bonds. Besides these derivatives, it can

be applicable to embedded options such as prepayment options on mortgage loans or

callable bonds. Another advantage of the methodology is that it can be used for fixed-

income securities with irregular cash flow structures. Since the methodology allows a

closed-form solution for many interest rate derivatives or embedded options, it is also

possible to obtain the sensitivities of the relevant interest rate derivatives with respect

to the model parameters; mean-reversion, short rate, long-run mean of short rate and

volatility of short rate.

In this regard, this study uses cross-currency swaptions data which is used to find

out the Vasicek parameters. Firstly, the closed-form solution for European swaptions

under the Vasicek model is obtained and the parameters are estimated using nonlinear

least squares. The results indicate that the Vasicek model parameters tend to have a

good model-in-fit to the market data. Then the study provides time-series of European

call and put option values for callable and puttable bonds for the period between

January 2013 and November 2019 using the estimated Vasicek model parameters.

Additionally, the methodology is adapted to the European prepayment option on a

mortgage loan. Then the sensitivities of the option values to the model parameters are

presented, which provide important implications for hedging exposures in interest rate

derivatives. Besides pricing European options, the methodology can be implemented

for American or Bermudan type of options. In this regard, the contribution of the

study is to provide an empirical framework that can be enhanced using other interest-

rate models with desirable properties and allows aggregation of interest rate exposure

in a consistent way.

The next section provides the preliminary mathematical properties that will be used

in the following parts including Vasicek model, measure change from risk-neutral

measure to forward measure and pricing a call option on zero-coupon bond under the

Vasicek model. Then the following section derives the swaption premium using the

Vasicek model and provides details about the estimation of Vasicek model parameters

using the swaption data. Besides, the section also provides the explicit formula for
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a call option on callable bond, put option on puttable bond and prepayment option

on a mortgage loan. Then the last section provides empirical findings, which the

Vasicek model is implemented to price the aforementioned interest rate derivatives

from January 2013 to November 2019. The section also presents the comparative

statistics, the sensitivities of the option values with respect to the changes in the model

parameters.

2.2 PRELIMINARY

This section presents the preliminary models and the mathematical properties of the

relevant models used in the following sections. In this regard, the Vasicek model is

introduced together with the closed-form solution for bond prices. Then the method-

ology of measure change from risk-neutral measure to forward measure is presented.

The new dynamics for short rate and bond prices are shown under the forward mea-

sure. Then, the properties of moments for short rate are derived. Lastly, the pricing of

a call option on a zero-coupon bond under the Vasicek model is derived, which will

be used to price options in fixed-income securities, where can be expressed as a linear

function of bond options.

2.2.1 Vasicek Model

Vasicek term structure model is one of the most extensively used interest rate models

for the pricing of fixed income derivatives. The main property of the model is that the

underlying short rate assumes to revert back to its long-run mean at a rate which is

called as the mean reversion rate. Under the risk-neutral measure, the instantaneous

short rate, r(t) follows the stochastic differential equation:

dr(t) = α(β − r(t))dt+ σdWQ(t) (2.1)

where α and β stand for the mean-reversion rate and long-run mean of the instanta-

neous short rate, respectively. WQ(t) denotes the Brownian motion under the risk-

neutral measure and the volatility term governs the size of the fluctuations in the short

rate. One of the important properties of the Vasicek model is that it allows a positive
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probability of getting negative interest rates. Under the model, the bond prices are

assumed to be lognormally distributed so that a closed-form solution for zero-coupon

bond prices can be derived. In this regard, the price of a zero-coupon bond is ex-

pressed as follows:

P (t, T ) = A(t, T )e−C(t,T )r(t) (2.2)

where

A(t, T ) = exp

{C(t, T )− (T − t)}
{
α2β − σ2

2

}
2

− σ2C(t, T )2

4α

 (2.3)

C(t, T ) =
1− e−α(T−t)

α
(2.4)

Besides the zero-coupon bond prices, an explicit form for European option on a zero-

coupon bond or coupon-bearing bond together with swaptions, caplets and floorlets

can be obtained under the Vasicek model. However, the option pricing under the

Vasicek model requires changing measure from risk-neutral measure to relevant mea-

sure, which will be covered in the next part.

2.2.2 Measure Change

The money market account grows at instantaneous short rate, r(t). In this regard,

the incremental change in the value of money market account M(t) is equal to the

following:

dM(t) =M(t)r(t)dt (2.5)

As can be seen from the equation, the incremental change in the value of money

market account is deterministic and there is no volatility in the value of money market

account.

Under the risk-neutral measure, zero-coupon bond price, P (t, T ) has the following

dynamics

dP (t, T ) = P (t, T )r(t)dt+ σP (t, T )P (t, T )dW
Q(t) (2.6)

where σP (t, T ) stands for volatility of bond price at time t that’s maturing at time T.
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Consider a replicating porfolio, V (t), consisting of θ units in money market account

and γ units in zero-coupon bond.

V (t) = θ(t)M(t) + γ(t)P (t, T ) (2.7)

The incremental change in value of the replicating portfolio is equal to the following:

dV (t) = θ(t)dM(t) + γ(t)dP (t, T )

=

[
V (t)− γ(t)P (t, T )

M(t)

]
M(t)r(t)dt+ γ(t)dP (t, T )

(2.8)

The next step is to plug the process of zero-coupon bond price into the incremental

change in the value of the replicating portfolio.

dV (t) = V (t)r(t)dt− γ(t)P (t, T )r(t)dt+ γ(t)P (t, T )r(t)dt

+ γ(t)σP (t, T )P (t, T )dW
Q(t)

(2.9)

Then the change in the replicating portfolio can be expressed as follows under the

risk-neutral measure.

dV (t) = V (t)r(t)dt+ γ(t)σP (t, T )P (t, T )dW
Q(t) (2.10)

σV (t, T ) is defined as:

σV (t, T )V (t) = γ(t)σP (t, T )P (t, T ) (2.11)

Then, the replicating portfolio satisfies:

dV (t) = V (t)r(t)dt+ σV (t, T )V (t)dWQ(t) (2.12)

The next step is to find out the dynamics of normalized price dynamics. By the

product rule, the normalized derivative price dynamics is obtained.

d

[
V (t)

P (t, T )

]
=

dV (t)

P (t, T )
+ V (t)d

[
1

P (t, T )

]
+ dV (t)d

[
1

P (t, T )

]
=
V (t)r(t)dt+ σV (t, T )V (t)dWQ(t)

P (t, T )

+ V (t)

[
−1

P (t, T )2
dP (t, T ) +

dP (t, T )2

P (t, T )3

]
+
(
V (t)r(t)dt+ σV V (t)dWQ(t)

) [−dP (t, T )
P (t, T )2

+
dP (t, T )2

P (t, T )3

]
(2.13)
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d

[
1

P (t, T )

]
=

−1
P (t, T )2

dP (t, T ) +
1

P (t, T )3
dP (t, T )2

= −r(t)P (t, T )dt+ σp(t, T )P (t, T )dW
Q(t)

P (t, T )2

+
1

P (t, T )3
σ2
p(t, T )P (t, T )

2dt

=
−r(t)dt− σp(t, T )dWQ(t)

P (t, T )
+
σ2
p(t, T )

P (t, T )
dt

=

[
σ2
p(t, T )− r(t)

]
P (t, T )

dt− σp(t, T )

P (t, T )
dWQ(t)

(2.14)

d
[

1
P (t,T )

]
is plugged in the dynamics of normalized derivative price.

d

[
V (t)

P (t, T )

]
=
V (t)r(t)dt+ σV (t, T )V (t)dWQ(t)

P (t, T )

+
V (t)

P (t, T )

[
σ2
p(t, T )− r(t)

]
dt

− V (t)

P (t, T )
σp(t, T )dW

Q(t)

− σV (t, T )V (t)σP (t, T )

P (t, T )
dt

(2.15)

The last step provides the steps for measure change.

d

[
V (t)

P (t, T )

]
=

V (t)

P (t, T )
σV (t, T )dW

Q(t)

+
V (t)

P (t, T )
σ2
p(t, T )dt−

V (t)

P (t, T )
σP (t, T )dW

Q(t)

− V (t)

P (t, T )
σV (t, T )σP (t, T )dt

=
V (t)

P (t, T )

[
σ2
p(t, T )− σV (t, T )σP (t, T )

]
dt

+
V (t)

P (t, T )
[σV (t, T )− σP (t, T )] dWQ(t)

=
V (t)

P (t, T )
σP (t, T ) [σP (t, T )− σV (t, T )] dt

+
V (t)

P (t, T )
[σV (t, T )− σP (t, T )] dWQ(t)

=
V (t)

P (t, T )
[σV (t, T )− σP (t, T )]

[
dWQ(t)− σP (t, T )dt

]

(2.16)
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The new process, dW T , is defined as;

dW T (t) = dWQ(t)− σP (t, T )dt (2.17)

where W T is a Brownian motion under a new measure by Girsanov’s theorem. It can

be observed that the normalized derivative price dynamics V (t)
P (t,T )

is martingale with

respect to the new forward measure.

d

[
V (t)

P (t, T )

]
=

V (t)

P (t, T )
[σV (t, T )− σP (t, T )] dW T (t) (2.18)

Since the relation between Brownian motions under two different measures is known,

the dynamics of short rate can be derived.

dr(t) = α [β − r(t)] dt+ σdWQ(t) (2.19)

Under the new measure, the short rate satisfies the following dynamics.

dr(t) = α [β − r(t)] dt+ σ
[
dW T (t) + σP (t, T )dt

]
(2.20)

dr(t) = α [β − r(t)] dt+ σdW T (t) + σσP (t, T )dt (2.21)

It can be seen that the drift term changes under the new measure.

dr(t) = α
[
β̃ − r(t)

]
dt+ σdW T (t) (2.22)

where β̃ = β + σσP (t,T )
α

The last step is to find out the dynamics of zero-coupon bond price dynamics under

the new T -forward measure.

dP (t, T ) = r(t)P (t, T )dt+ σP (t, T )P (t, T )dW
Q(t)

= r(t)P (t, T )dt+ σP (t, T )P (t, T )
[
dW T (t) + σP (t, T )dt

]
=
[
r(t)P (t, T ) + σ2

P (t, T )P (t, T )
]
dt+ σP (t, T )P (t, T )dW

T (t)

= P (t, T )
[
r(t) + σ2

P (t, T )
]
dt+ σP (t, T )P (t, T )dW

T (t)

(2.23)

which shows that the drift term of bond price dynamics differs from the short rate

under the risk-neutral measure. The next part describes the characteristics of the

short rate under the T -forward measure.
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2.2.3 Moments of Short Rate on T-Forward Measure

In the previous section, it is shown that the short rate has the following dynamics

under the T -forward measure.

dr(t) = [αβ − αr(t) + σσP (t, T )] dt+ σdWQT (t) (2.24)

Since there is a closed-form solution of the bond price under the Vasicek model,

which is shown below, it is possible to obtain the parametric form of the volatility of

bond prices as:

P (t, T ) = e−C(t,T )r(t)A(t, T ) (2.25)

Taking the logarithm of both sides gives

lnP (t, T ) = −C(t, T )r(t) + lnA(t, T ) (2.26)

Under the new measure, the variance of the bond price can be expressed as follows:

V arQT [lnP (t, T )] = σp(t, T )
2

= C(t, T )2V arQT [r(t)]

= C(t, T )2σ2

(2.27)

The following equation comes from the bond pricing formula under Vasicek model.

σp(t, T ) = −C(t, T )σ (2.28)

where

C(t, T ) =
1− e−α(T−t)

α
(2.29)

Then,

dr(t) =
[
αβ − αr(t)− σ2C(t, T )

]
dt+ σdWQT (t) (2.30)

d
[
eαtr(t)

]
= αeαtr(t)dt+ eαtdr(t)

= αeαtr(t)dt+ eαt
[
αβ − αr(t)− σ2C(t, T )

]
dt+ eαtσdWQT (t)

= eαt
[
αβ − σ2C(t, T )

]
dt+ eαtσdWQT (t)

(2.31)
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Substitute C(t, T ) into equation.

C(t, T ) =
1− e−α(T−t)

α
(2.32)

d
[
eαtr(t)

]
= eαt

[
αβ − σ21− e−α(T−t)

α

]
dt+ eαtσdWQT (t)

= eαtαβdt− eαt
(
σ2

α

)(
1− e−α(T−t)

)
dt+ eαtσdWQT (t)

= eαtαβdt− eαt
(
σ2

α

)
dt+ e−α(T−2t)

σ2

α
dt+ σeαtdWQT (t)

(2.33)

Integrate over (tm, ti)

eαtir(ti)− eαtmr(tm) = β
[
eαti − eαtm

]
− σ2

α2

[
eαti − eαtm

]
+

σ2

2α2

[
e−α(T−2ti) − e−α(T−2tm)

]
+ σ

∫ ti

tm

eαµdWQT (u)

(2.34)

r(ti) = e−α(ti−tm)r(tm) +

[
β − σ2

α2

] [
1− e−α(ti−tm)

]
+

σ2

2α2

[
e−α(T−ti) − e−α(T+ti−2tm)

]
+ σ

∫ ti

tm

e−α(ti−u)dWQT (u)

(2.35)

r(ti) = r(tm)e
−α(ti−tm) + γ(tm, ti) + σ

∫ ti

tm

e−α(ti−u)dW T (u) (2.36)

where

γ(tm, ti) =
[
β − σ2

α2

] [
1− e−α(ti−tm)

]
+ σ2

2α2

[
e−α(T−ti) − e−α(T+ti−2tm)

]
.

The expected value and variance of the short rate under T -forward measure are given

by

EQT [r(ti)|Ftm ] = r(tm)e
−α(ti−tm) + γ(tm, ti) (2.37)
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and

V arQT [r(ti)|Ftm ] = σ2EQT
[∫ ti

tm

e−2α(ti−u)du

]
= σ21− e−2α(ti−tm)

2α

(2.38)

by Ito Isometry.

2.2.4 Pricing Call Option on a Zero-Coupon Bond

This section presents the closed-form solution for the value of a call option on a zero-

coupon bond with maturity date ti at time t. The swaption pricing or any embedded

option on a coupon-bearing bond can be considered as a series of European call or

put options on zero-coupon bonds with different time-to-maturity and different strike

prices. Therefore, it is crucial to understand the dynamics of option pricing on zero-

coupon bonds.

The first step is to model the dynamics of bond price under the risk-neutral measure,

which is described below.

dP (t, ti) = P (t, ti)r(t)dt+ P (t, ti)σp(t, ti)dW
Q(t) (2.39)

Assuming that the call option expires at time tm, the pricing of a call option on a

coupon-bearing bond requires the use ofQtmmeasure. The next step shows the neces-

sary adjustment from the risk-neutral measure to Qtmmeasure using the methodology

described in previous sections.

dWQtm (t) = dWQ(t)− σp(t, tm)dt (2.40)

The next step is to describe the dynamics of bond price, P (t, ti) under the new mea-

sure.

dP (t, ti) = P (t, ti) [r(t) + σp(t, tm)σp(t, ti)] dt+ P (t, ti)σp(t, ti)dW
Qtm (t) (2.41)

dlnP (t, ti) =
∂lnP (t, ti)

∂t
dt+

∂lnP (t, ti)

∂P (t, ti)
dP (t, ti)+

1

2

∂2lnP (t, ti)

∂P (t, ti)2
dP (t, ti)

2 (2.42)
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dlnP (t, ti) =

[
r(t) + σp(t, tm)σp(t, ti)−

1

2
σp(t, ti)

2

]
dt+ σp(t, ti)dW

Qtm (t)

(2.43)

The next step provides the functional form of the bond price that matures at time ti.

lnP (t, ti) = lnP (t0, ti) +

∫ t

t0

[
r(s) + σp(s, tm)σp(s, ti)−

1

2
σp(s, ti)

2

]
ds

+

∫ t

t0

σp(s, ti)dW
Qtm (s)

(2.44)

lnP (tm, ti) = lnP (t, ti) +

∫ tm

t

[
r(s) + σp(s, tm)σp(s, ti)−

1

2
σp(s, ti)

2

]
ds

+

∫ tm

t

σp(s, ti)dW
Qtm (s)

(2.45)

P (tm, ti) = P (t, ti)e
∫ tm
t µp(s)ds+

∫ tm
t σp(s,ti)dW

Qtm (s) (2.46)

where µp(s) = r(s) + σp(s, tm)σp(s, ti)− 1
2
σp(s, ti)

2.

The mean and variance of the logreturn of bond prices are expressed under the new

measure, which will be used in the following steps.

EQtm [lnP (tm, ti)|Ft] = lnP (t, ti) +

[∫ tm

t

(σp(s, tm)σp(s, ti)−
1

2
σp(s, ti)

2)ds

]
+ EQtm

[∫ tm

t

r(s)ds

]
= µm

(2.47)

V arQtm [lnP (tm, ti)|Ft] = V arQtm
[∫ tm

t

r(s)ds

]
+

∫ tm

t

σ2
p(s, ti)ds = σ2

m (2.48)

The next step is to price the call option on a zero-coupon bond with maturity date ti

under the new Qtmmeasure.

V (t)

P (t, tm)
= EQtm

[
V (tm)

P (tm, tm)
|Ft
]
= EQtm [V (tm)|Ft] (2.49)
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V (t) = P (t, tm)EQtm
[
(P (tm, ti)−K)+|Ft

]
(2.50)

where V (tm) is the value of call option on a zero-coupon bond. In integral form, the

term can be expressed as follows:

V (t) = P (t, tm)

∫ ∞
−∞

(P (tm, ti)−K)+
1√
2πσm

e
− 1

2

[
lnP (tm,ti)−µm

σm

]2
dlnP (tm, ti)

(2.51)

Define ey = P (tm, ti) so lnP (tm, ti) = y

V (t) = P (t, tm)

∫ ∞
−∞

(ey −K)+
1√
2πσm

e−
1
2 [
y−µm
σm

]
2

dy (2.52)

and for the values of ey > K, or y > lnK,

V (t) = P (t, tm)

∫ ∞
lnK

(ey −K)
1√
2πσm

e−
1
2 [
y−µm
σm

]
2

dy (2.53)

Define z = y−µm
σm

,therefore dy = σmdz

V (t) = P (t, tm)

∫ ∞
lnK−µm
σm

(ezσm+µm −K)
1√
2πσm

e−
1
2
z2σmdz

= P (t, tm)

∫ ∞
lnK−µm
σm

ezσm+µme−
1
2
z2 1√

2π
dz −KP (t, tm)

∫ ∞
lnK−µm
σm

e−
1
2
z2 1√

2π
dz

(2.54)

Define eµm+σmz− 1
2
z2 = e(µm+ 1

2
σ2
m)e−

1
2
(z−σm)2 and z′ = z − σm

EQtm [(P (tm, ti)−K]+ =

∫ ∞
lnK−µm−σ2m

σm

1√
2π
e(µm+ 1

2
σ2
m)− 1

2
(z′)2dz′

−K
∫ ∞
lnK−µm
σm

1√
2π
e−

1
2
z2dz

(2.55)

EQtm [(P (tm, ti)−K]+ = e(µm+ 1
2
σ2
m)φ

[
−lnK + µm + σ2

m

σm

]
−Kφ

[
−lnK + µm

σm

]
(2.56)

The next step shows the call option price on a zero-coupon bond.

V (t) = P (t, tm)e
(µm+ 1

2
σ2
m)φ

[
−lnK + µm + σ2

m

σm

]
− P (t, tm)Kφ

[
−lnK + µm

σm

]
(2.57)
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However, µm and σm should be plugged into the formula using the following equa-

tions.

µm = EQtm [lnP (tm, ti)|Ft]

= EQtm
[
ln
(
e−C(tm,ti)r(tm)A(tm, ti)|Ft

)]
= EQtm [−C(tm, ti)r(tm) + ln (A(tm, ti)|Ft)]

= ln (A(tm, ti))− C(tm, ti)EQtm [r(tm|Ft)]

(2.58)

σ2
m = V arQtm [lnP (tm, ti)|Ft]

= V arQtm [lnA(tm, ti)− C(tm, ti)r(tm)|Ft]

= C(tm, ti)
2V arQtm [r(tm)|Ft]

(2.59)

The last step in the pricing is to plug the expected value and variance of short rate

under the new measure, which is covered in the previous sections. Then the price of

the call option on a zero-coupon bond can be found out as follows:

ZBC [t, tm, ti, K] = P (t, ti)φ(h)−KP (t, tm)φ(h− σ̃) (2.60)

where ZBC [t, tm, ti, K] stands for the value of the call option on a zero-coupon bond

at time t, where the option expires at time tm and bond expires at ti.

σ̃ = σ

√
1− e−2α(tm−t)

2α
C(tm, ti) (2.61)

C(tm, ti) =
1− e−α(ti−tm)

α
(2.62)

h =
1

σ̃
ln

[
P (t, ti)

P (t, tm)K

]
+
σ̃

2
(2.63)

The price of a put option on a zero-coupon bond can be found out using the put-call

parity for bond options.

ZBC(t, tm, ti, K) +KP (t, tm) = ZBP (t, tm, ti, K) + P (t, ti) (2.64)

where ZBP (t, tm, ti, K) denotes put option on a zero-coupon bond with time-to-

maturity tm − t and strike price K. P (t, ti) and P (t, tm) reflect the prices of bonds

with maturity ti and tm, respectively. At the maturity of the option, both sides have

the same payoff structure, which allows to obtain put option prices on bonds using

the parity condition.
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Figure 2.1: Put-Call Parity for Bond Options

2.3 DATA AND METHODOLOGY

This section presents the data and methodology for the pricing of European call op-

tion and put option values on interest rate derivatives and embedded options on fixed

income securities. In this regard, the methodology will not be only applicable to fixed

income securities with regular cash flows such as coupon-bearing bonds or swaps but

also fixed income securities with different cash flow structures. In this regard, the

roadmap for the valuation of call or put options on fixed income securities can be

shown in the following diagram.

The main idea behind the methodology is to find out European call or put option

values on fixed income securities consistent with the prices of traded securities. In

this regard, the methodology uses the fact that it is possible to express options on

fixed income securities as a series of call or put options on zero-coupon bonds. If the

call or put options on fixed income securities can be expressed as a function of call

or put options on zero-coupon bonds, then it is possible to find out prices consistent

with the market prices. In other words, since a closed-form solution for call or put

option on a zero-coupon bond is derived under the Vasicek model, then the model can

be extended to find out closed-form solutions for call or put options on fixed income

securities other than zero-coupon bonds.

However, finding out prices for call or put options consistent with the market prices
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Figure 2.2: Methodology for Pricing Embedded Options

requires the parameter estimation of the Vasicek model. In this regard, the methodol-

ogy firstly derives the closed-form solution for European swaptions under the Vasicek

model. Then using the daily swaption quotes for Turkish lira rates from the period

between January 2013 and November 2019, market prices of swaptions are obtained

through the Black model since the quotes reflect the Black volatility. Then using the

market prices of European swaptions and closed-form solution for swaption under the

Vasicek model, the model parameters are found out using nine different strike rates

for swaptions. The roadmap for the methodology is also presented in the next figure.

In this respect, the next part provides the methodology for the pricing of swaption

under the Vasicek model.

Figure 2.3: Roadmap for Pricing Embedded Options
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2.3.1 Swaption Pricing Under Vasicek Model

An explicit formula for swaptions can be derived under the Vasicek model. The payoff

of a European payer swaption at maturity is equal to the maximum of the difference

between the value of swap at market swap rate and value of swap at the predetermined

strike rate and zero. In other words, if the market swap rate at the maturity of the

swaption is greater than the agreed strike rate, then the payer swaption is exercised

since the option holder is able to pay at a lower rate than the market rate. However,

when the market swap rate is lower than the agreed strike rate, the payer swaption

is not exercised since it will be optimal to pay at a lower rate in the market. In this

regard, as described in the previous sections, the value of swaption at the maturity can

be expressed as follows:

Vp(tm, tm, tn) = max

{
P (tm, tm, r)− P (tm, tn, r)−

n∑
i=m+1

CP (tm, ti, r); 0

}

Vp(tm, tm, tn) = max

{
P (tm, tm, r)−

n∑
i=m+1

CFiP (tm, ti, r); 0

}
(2.65)

where C stands for the predetermined strike price of the swaption and CFi denotes

the cash flows stemming from the fixed payments of the swap together with the one

at the maturity.

The next step is to decompose the cash flows such that the swaption can be priced

out in an easier way. In this regard, the trick is to consider P (tm, tm) as the strike

price since it is deterministic and to find out the critical short rate which equates the

value of future payments after the maturity of swaption with the strike price. In other

words, the yield curve is constructed with the critical short rate and future payments

are discounted with this artificial yield curve. The fact that bond price is a monotonic

function of short rate allows using this approach, which is known as the Jamshidian

approach which states that the prices of options on coupon-bearing bonds can be

obtained using options on zero-coupon bonds in a one-factor interest rate model.

Vp(tm, tm, tn) = max

{ n∑
i=m+1

CFiP (tm, ti, r
∗)−

n∑
i=m+1

CFiP (tm, ti, r); 0

}
(2.66)
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where P (tm, tm, r) =
∑n

i=m+1CFiP (tm, ti, r
∗) and r∗ is the artificial short rate

which equates the future cash flows of the swap with the par amount, P (tm, tm).

Then the next step is to apply the Jamshidian approach, which relies on the fact that

bond prices are monotonic functions of short rate.

Vp(tm, tm, tn) = max

{ n∑
i=m+1

CFi(P (tm, ti, r
∗)− P (tm, ti, r)); 0

}

Vp(tm, tm, tn) =

n∑
i=m+1

CFimax {P (tm, ti, r∗)− P (tm, ti, r); 0}

(2.67)

Since the option on a zero-coupon bond can be found out using the forward measure,

it can be expressed as follows:

Vp(t, tm, tn) = P (t, tm)EQtm
[ n∑
i=m+1

CFi[max {P (tm, ti, r∗)− P (tm, ti, r); 0] |Ft

]

Vp(t, tm, tn) = P (t, tm)

n∑
i=m+1

CFiEQtm [max {P (tm, ti, r∗)− P (tm, ti, r); 0} |Ft]

(2.68)

The term in brackets max {P (tm, ti, r∗)− P (tm, ti, r); 0} is equal to the payoff of

a put option on a bond worth P (tm, ti, r) with strike price P (tm, ti, r∗) at time tm.

Since a closed-form solution exists for European put option on a zero-coupon bond

under the Vasicek Model, European swaption price can be obtained under the Vasicek

model.

ZBP (tm, tm, ti) = max {P (tm, ti, r∗)− P (tm, ti, r); 0}

ZBP (t, tm, ti) = P (t, tm)EQtm [max {P (tm, ti, r∗)− P (tm, ti, r); 0} |Ft]
(2.69)

where ZBP (t, tm, ti) reflects the price of European put option on a zero-coupon bond

at time t. Using the closed-form solutions for the European put options on bonds

under Vasicek model, it is possible to express the swaption price as follows:

V (t, tm, tn) =

n∑
i=m+1

CFiZBP (t, tm, ti, Ki) (2.70)

After the derivation of the closed-form solution for the swaption under the Vasicek

model, the next step is to present the methodology that will be used to obtain the
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Vasicek model parameters using swaption quotes. In this regard, since the swaption

prices are quoted in the Black model, firstly swaption prices are obtained using the

Black model. Then the Vasicek model parameters (short rate, mean-reversion rate,

long-run mean of short rates and volatility of short rate) are estimated through nonlin-

ear least squares. In this regard, the objective function is the square of the difference

between the market prices and the Vasicek model estimated prices.

The steps for the parameter estimation can be summarized as follows:

For each of the specifications for 5y5y, 1y1y and 1y10y swaptions, the Vasicek model

parameters are estimated seperately for each day from January 2013 to November

2019. The estimation methodology can be examplied for the specification of 5y5y

swaptions.

• Calculate the option premium of payer swaption for different strike rates using

Black implied volatility

• Derive the swaption premium for payer swaption using Vasicek model

• Estimate the Vasicek model parameters using nonlinear least squares through

minimization of the squared differences between the market prices and Vasicek

implied model prices

• Obtain the parameter estimates for Vasicek model

The next section presents the methodology of European call and put option pricing

on fixed-income securities.

2.3.2 Call Option Pricing

This part provides the methodology of how to price call options on fixed income

securities. In this regard, call option on fixed income securities such as coupon-

bearing bond, mortgage loan or any security with irregular cash flow is exercised

only if the discounted value of the remaining cash flows at the maturity of the option

is greater than the strike price. Therefore, the value of a European call option at time
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tm on fixed income security with cash flows CFi at time ti is expressed as follows:

Vc(tm, tm, tn) = max

{ n∑
i=m+1

CFiP (tm, ti, r)−K; 0

}
(2.71)

Using the Jamshidian approach, there exists a critical short rate such that the dis-

counted value of the remaining cash flows with the critical short rate is equal to strike

price.

Vc(tm, tm, tn) = max

{ n∑
i=m+1

CFiP (tm, ti, r)−
n∑

i=m+1

CFiP (tm, ti, r
∗); 0

}
(2.72)

such that K =
∑n

i=m+1CFiP (tm, ti, r
∗). Then, maximum operator can be factored

out so that the value of swaption at maturity becomes equal to the series of Euro-

pean call options on zero-coupon bonds with different time-to-maturities and different

strike prices.

Vc(tm, tm, tn) = max

{ n∑
i=m+1

CFi(P (tm, ti, r)− P (tm, ti, r∗)); 0

}

Vc(tm, tm, tn) =

n∑
i=m+1

CFimax {P (tm, ti, r)− P (tm, ti, r∗); 0}

(2.73)

Then the last step is to compute the expected value under the forward measure so that

the closed-form solution can be found out for call options on fixed income securities

with irregular cash flows.

Vc(t, tm, tn) = P (t, tm)EQtm
[ n∑
i=m+1

CFi[max {P (tm, ti, r)− P (tm, ti, r∗); 0}]|Ft

]

Vc(t, tm, tn) = P (t, tm)

n∑
i=m+1

CFiEQtm [max {P (tm, ti, r)− P (tm, ti, r∗); 0}]|Ft]

(2.74)

The term in brackets max {P (tm, ti, r)− P (tm, ti, r∗); 0} is equal to the payoff of a

call option on a bond worth P (tm, ti, r) with strike price P (tm, ti, r∗). Since a closed-

form solution exists for call options on zero-coupon bonds under the Vasicek Model,

the European prepayment option price or European call option value on callable
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bonds can be considered as a series of European call options on bonds with differ-

ent time-to-maturities and different strike prices.

ZBC(tm, tm, ti) = max {P (tm, ti, r)− P (tm, ti, r∗); 0}

ZBC(t, tm, ti) = P (t, tm)EQtm [max {P (tm, ti, r)− P (tm, ti, r∗); 0} |Ft]
(2.75)

where ZBC(t, tm, ti) reflects the price of call option on a zero-coupon bond at time

t. Using the closed-form solutions for the call options on bonds under Vasicek model,

it is possible to express as follows:

Vc(t, tm, tn) =

n∑
i=m+1

CFi ZBC(t, tm, ti, Ki) (2.76)

Vc(t, tm, tn) =
n∑

i=m+1

CFi ZBC(t, tm, ti, Ki)

=
n∑

i=m+1

CFi {P (t, ti)φ(hi)−KiP (t, tm)φ(hi − σ̃i)}
(2.77)

where

hi =
1

σ̃i
ln

[
P (t, ti)

P (t, tm)Ki

]
+
σ̃i
2

(2.78)

σ̃i = σi

√
1− e−2α(tm−t)

2α
C(tm, ti) (2.79)

C(tm, ti) =
1− e−α(ti−tm)

α
(2.80)

Then the next part applies the same methodology for put options on fixed income

securities.

2.3.3 Put Option Pricing on Bonds

In the previous section, it is shown that the call options on fixed income securities

with any cash flow structure can be expressed as a series of European call options

on zero-coupon bonds with different time-to-maturities and different strike prices.

Similar to the previous approach, it is possible to express a put option on security
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with irregular or regular cash flow as a series of European put options on zero-coupon

bonds.

The value of a put option on security with irregular cash flow (which generalizes the

methodology) at the maturity is equal to the following:

Vp(tm, tm, tn) = max

{
K −

n∑
i=m+1

CFiP (tm, ti, r); 0

}
(2.81)

Similarly, there exists a critical short rate that equates the discounted value of remain-

ing cash flows with the critical rate to the strike price.

Vp(tm, tm, tn) = max

{ n∑
i=m+1

CFiP (tm, ti, r
∗)−

n∑
i=m+1

CFiP (tm, ti, r); 0

}
(2.82)

Factoring out maximum operator leads to composition that the put option on a fixed

income security is a series of put options on zero-coupon bonds.

Vp(tm, tm, tn) = max

{ n∑
i=m+1

CFi(P (tm, ti, r
∗)− P (tm, ti, r)); 0

}

Vp(tm, tm, tn) =

n∑
i=m+1

CFimax {P (tm, ti, r∗)− P (tm, ti, r); 0}

(2.83)

Then using the closed-form solution for put options on zero-coupon bonds under the

Vasicek model, an explicit formula for put option on any cash flow structure can be

obtained.

V (t, tm, tn) =

n∑
i=m+1

CFiZBP (t, tm, ti, Ki) (2.84)

where the put option price can be found out using Put-Call Parity for bond options.

ZBP (t, tm, ti, Ki) = ZBC(t, tm, ti, Ki) +KiP (t, tm)− P (t, ti) (2.85)

2.4 EMPIRICAL FINDINGS

This section firstly presents the estimated Vasicek model parameters using the swap-

tion quotes. Then call option values on a coupon-bearing bond and prepayment option

on a mortgage loan are priced out using the estimated Vasicek model parameters from
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January 2013 to November 2019. Besides, put option values on a puttable bond are

computed to compare the behaviour of put and call option values during the same

period. Lastly, the section also provides comparative statistics to analyze the effect of

model parameters on the value of call and put options, which is crucial for hedging

and speculation against the interest rate changes.

2.4.1 The Estimation of Vasicek Model Parameters

Since the main motivation is to price call and put options consistent with the market

prices of similarly traded securities, firstly the results of the Vasicek model parameter

estimation are presented. The figures below show the estimation for short rate, mean-

reversion rate, long-run mean of short rate and volatility of short rate obtained from

the 1y10y swaption prices with different strikes. Besides the parameter estimations, it

is crucial to understand the dynamics leading to changes in the model parameters and

correlation between each other, which can be used for the formation of trade ideas,

measuring illiquidity in the market or forecasting.

The figure shows the estimation of short rate from January 2013 to November 2019.

It can be seen that the short rate seems to be quite in line with the market interest rates

which is observed to rise after 2013 when the central banks of developed countries

have announced the signals for exit from quantitative easing. Additionally, spikes

in short rate in 2018 and 2019 are observed, which coincides with the local market

developments in Turkey. In this regard, the short rate estimations seem to be stable

across time and consistent with the market developments.

To figure out whether the estimated parameters provide a good model-in-fit for Eu-

ropean swaption prices, the study also compares the quoted Black implied volatility

and model-implied Black implied volatility. In this regard, the swaption prices under

the estimated Vasicek models are calculated and converted into Black implied volatil-

ity to calculate the mean-absolute errors. The results indicate that the mean absolute

errors for 5y5y swaption specification are around 1.16 percent compared to quoted

Black implied volatility whereas the mean absolute errors for 1y10y and 1y1y swap-

tion specifications are 2.60 percent and 2.59 percent, respectively. Given the levels

for implied volatilities for swaptions, the model-in-fit of the model seems to be quite
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reasonable.

Figure 2.4: Estimated Short Rate from 1y10y Swaption

Mean-reversion rate seems to be declining after the period of 2013. However, during

the period between 2014 and 2018 the mean-reversion rates are quite stable across

time. Additionally, it is observed that the mean-reversion rate tends to decline in the

last two years. It can be stated that the mean-reversion rate tends to decline during

periods of rises in short rates. It is also observed that the mean-reversion rate tends

to be at the lowest levels during the last periods, which might be associated with the

liquidity of the market and changes in the expectations of the market participants. If

there is uncertainty about the fair value of short rates, it is likely to cause a decline in

mean-reversion rates. In this regard, the parameter estimations from mean-reversion

rates seem to be robust as well.

Long-run mean of short rate estimations tends to be quite stable similar to short rate

estimations. It is observed that the expectations for short rate tend to rise for Turkish

rates during the periods after 2013 and peak at the periods of early 2019. However,

it is observed that the model parameters tend to decline in the last ten months to the

historical levels. The parameter estimation, volatility of short rate, seems to be fluctu-

ating more compared to other parameters. However, it is observed that the estimations

seem to be concentrated around the levels of 9 and 11 percent. Although there is a

sharp decline in the volatility of short rate in 2018, it is observed that it tends to rise

to historical levels quickly.
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Figure 2.5: Estimated Mean-Reversion from 1y10y Swaption

Figure 2.6: Estimated Long-Run Mean of Short Rate from 1y10y Swaption

The parameter estimations for the swaption specifications of 5y5y and 1y1y are also

obtained. These parameter values are used to price out the call and option values on

fixed income securities. The estimates of the parameter values obtained from different

swaption specifications seem to be in line with the ones presented here.

2.4.2 Pricing Call and Put Options on Fixed Income Securities

Since the Vasicek model parameters are estimated for all swaption specifications, the

next step is to use the parameter values to find out the prices of call and put options on

fixed income securities. In this regard, the following charts provide option values for
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Figure 2.7: Estimated Volatility of Short Rate from 1y10y Swaption

different underlying assets; callable bonds, mortgage loan and puttable bonds from

January 2013 to November 2019. Each point in the figures indicates the option value

that’s priced using the optimized Vasicek parameters.

Firstly, the prices of call options on callable bonds with 1y1y,1y10y and 5y5y specifi-

cations are obtained. Consider 1y10y specification, meaning that call option with the

maturity of 1 year and callable bond has remaining maturity 11 years but callable at

par at the end of year 1. The call option values with different specifications are also

computed. The figures show that call option values tend to be more volatile in the last

years. During the period of 2018, the sharp rise in short rates leads to lower call op-

tion values since the expected value of the call option declines significantly although

the decline in mean-reversion rates leads to an increase in the value of call options.

In other words, the rise in short rates cancels out the effect of the mean reversion rate.

A similar situation is also observed for 5-year call option values on 10-year callable

bonds and 1-year call option values on 2-year callable bonds. The rise in short rates

tends to be a dominating factor for this period. Additionally, it is observed that call

option values tend to rise in 2019 where the short rates tend to have a declining trend

during this period where the other parameters such as volatility and mean-reversion

rate remain relatively stable during this period.

Comparing the call option values across 1y1y, 5y5y and 1y10y specifications, it is

observed that the call option value is the smallest for 1-year call option value on 2-
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year callable bond since the maturity of the underlying is the shortest. Besides, call

option value is greater for 1y10y specification than 1y1y specification.

Figure 2.8: 1 Year Option Value on 2 Year Callable Bond

Figure 2.9: 1 Year Option Value on 11 Year Callable Bond

In addition to the call option pricing on callable bonds, the next step is to price a

prepayment option on a mortgage loan with equal installments. A prepayment op-

tion on a mortgage loan can be considered as a series of call options on zero-coupon

bonds with different time-to-maturities and different strike prices. In this regard, the

call option values on zero-coupon bonds are weighted by the cash flow structure in

mortgage loans. Since the mortgage loan is paid at equal payments, it can be stated

that not only interest payments but also some portion of the notional amounts are paid

during the life of mortgage loan, which makes a difference from the callable bonds.
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Figure 2.10: 5 Year Option Value on 10 Year Callable Bond

Additionally, the strike prices in mortgage loans are equal to the discounted value of

the remaining cash flows with the initial yield-to-maturity of the loan, namely out-

standing balance in a mortgage loan. Therefore, the strike prices for the prepayment

option on the mortgage loan differ.

When the prepayment option costs are analyzed over time, it is observed that they are

in line with the tendency of the call option values on callable bonds. However, the

prepayment option values tend to be different due to the differences in strike prices

and cash flow structure. Additionally, the prepayment option prices tend to increase

during periods of higher short rates due to the fact that short rates are expected to

revert back to its long-run mean. In this regard, the periods of spikes in short rates

coincide with higher prepayment option prices for the mortgage loans initiated during

those periods.

In addition to call and prepayment option values, put option values on fixed income

securities can be obtained using the same methodology. In this regard, put option on

fixed-income securities can be considered as a series of put options on zero-coupon

bonds weighted by the cash flow structure of the underlying security. The put option

values can be obtained from using the put-call option parity for bond options, which

is described in the previous sections. Since the increases in short rates lead to a rise

in the expected value from put options on puttable bonds, the values of put options

tend to increase during the periods of spikes in short rates during 2018. However,
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Figure 2.11: 1-Year Prepayment Option Value on 11-Year Mortgage Loan

Figure 2.12: 1-Year Prepayment Option Value on 11-Year Mortgage Loan

as the rates tend to decline in 2019, the put option values on puttable bonds decline

significantly. It is observed that put option values tend to be quite small before the

period of 2018 whereas put option values after 2018 tend to be quite volatile. This is

also observed in call option values on callable bonds and prepayment option values.

It can be stated that the quick changes in the short rates across the curve tend to result

in volatility in the option values, which also necessitates the need for hedging against

interest rate risks. In this regard, the next section provides comparative statistics for

the values of call and put options depending on the changes in the parameters; short

rate, mean-reversion rate, long-run mean of short rates and volatility of short rates.
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Figure 2.13: 5-Year Prepayment Option Value on 10-Year Mortgage Loan

Figure 2.14: 1-Year Option Value on 2-Year Putable Bond

2.4.3 Comparative Statistics

The closed-form solution for the option values on fixed-income securities allows ex-

amining the comparative properties directly without relying on numerical methods.

In this regard, the functional form regarding the option values show that the value

of options on fixed-income securities depends on the short rate, mean-reversion rate,

long-run mean of short rate and volatility of short rate, time to maturity of the under-

lying asset together with the strike price. In this regard, the sensitivities of the option

values with respect to these parameters are exemplified in this section.

In this regard, the following figures are formed using the example of a 5-year call
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Figure 2.15: 1-Year Option Value on 10-Year Puttable Bond

Figure 2.16: 5-Year Option Value on 10-Year Puttable Bond

option on a 10-year coupon-bearing bond with strike price at par, in other words, 10-

year coupon-bearing bond callable at the end of 5th year. In this regard, the bond is

assumed to have monthly constant coupon payments during the life of the bond, with

coupon rate equal to 12 percent annual. Besides the callable bond, the sensitivities

of a 5-year put option value on 10-year coupon-bearing bond with respect to the

variables are also analyzed. The differences between call option and put option values

with respect to the parameters are also compared.

Firstly, the sensitivities of the option values to the changes in short rate are analyzed

in the following figures. For the case of call option on a bond, it can be observed that

keeping all others constant the call option value is a decreasing function of short rate.
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The changes in short rate affect call option value in two ways. Firstly, the increases

in short rate reduce the value of the remaining cash flows so that the expected value

of the call option becomes smaller. Additionally, the increases in short rates also

reduce the present value of the strike prices, which leads to an increase in the value

of call option. However, the example shows that the first effect dominates the other

one for the case of call option. Besides, it can be observed that the effect of short rate

becomes smaller as the short rate increases.

Figure 2.17: Sensitivity of Option Value on Callable Bond With Respect to Short
Rate

Figure 2.18: Sensitivity of Option Value on Putable Bond With Respect to Short Rate

Besides call option, the effect of short rate on put option is ambiguous due to the

offsetting effects of short rate on option values. Figures show that the increases in
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short rate firstly lead to an increase in put option values, but after some level of short

rate, the effect of short rate increases leads to a decline in put option values. Firstly,

the increases in short rate initially lead to increases the value of put option due to the

fact that the rises in short rate increase the expected value of the put option. However,

after some level of short rate the second channel, decline in the value of strike prices,

dominates the first effect. Therefore, the effect of short rate increases on the put option

values is indeterminate, which is crucial for the hedging behavior for put options

written on bonds or interest rate derivatives.

The effect of changes in strike prices on the value of call and put options on coupon-

bearing bonds is illustrated in the following figures. It can be observed that the value

of call options is negatively related to the strike prices. In other words, the value of

call option on callable bonds tends to decline with the increase in strike prices. This

stems from the fact that higher strike price leads to a decline in the expected payoff

from the call option on coupon-bearing bond since higher strike price reduces the

likelihood that call option is exercised. Additionally, it can be observed that the effect

of strike prices becomes less pronounced with the increases in strike prices.

Figure 2.19: Sensitivity of Option Value on Callable Bond With Respect to Strike
Price

In the case of put options on bonds or puttable bonds, the higher strike price is as-

sociated with higher put option values on puttable bonds since higher strike prices

increase the expected payoff from the put option on coupon-bearing bond or puttable

bonds. Besides, the relation between the strike prices and put option values tends to
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be nonlinear in the sense that the increase in put option values becomes more pro-

nounced with the increase in strike prices.

One of the key determinants of the option values in coupon-bearing bonds is the

volatility of short rate. Under the Black-Scholes model, option values are increasing

functions of volatility regardless of call or put options. However, in the case of interest

rate derivatives, the effect of volatility on call and put option values might differ

depending on the level of volatility. The changes in volatility level influence the value

of call and put options in two ways. Firstly, volatility has a convexity effect, which

leads to an increase in the value of call and put options since increases in volatility

result in higher expected payoff from the option. The second channel stems from the

effect of volatility on the underlying bond prices. However, in the case of call options

on bond, convexity effect dominates the second channel and call option prices are

increasing functions of the volatility of short rate. However, the effect of volatility on

the put option values is ambiguous. Up to some level of volatility of short rate, put

option values tend to increase, which stems from the dominating effect of convexity

channel. However, the effect of volatility on the value of underlying bond becomes

more pronounced, which leads to a decline in the value of put options. In other words,

after a threshold level of volatility, put option prices tend to be a decreasing function

of volatility.

Figure 2.20: Sensitivity of Option Value on Putable Bond With Respect to Strike
Price

The relationship between time-to-maturity of call and put options on coupon-bearing
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Figure 2.21: Sensitivity of Option Value on Callable Bond With Respect to Volatility

Figure 2.22: Sensitivity of Option Value on Putable Bond With Respect to Volatility

bonds is complicated. Although the increases in time-to-maturity of options lead to

higher option values on the Black-Scholes model, the relationship becomes slightly

different in call and put options on coupon-bearing bonds. In the case of call options

on bonds, the increase in the time-to-maturity of options is generally associated with

decline in call option prices. This stems from the property of the mean-reverting be-

havior of short rates. For small values of time-to-maturity, the option value is quite

close to the intrinsic value. However, as the time-to-maturity of the option increases,

the future distribution of underlying asset converges to a stationary distribution. In

this regard, it can be stated that the expected payoff of call options does not increase

with time-to-maturity sufficiently to offset the effect of an increase in the period which

73



the expected payoffs are discounted. Therefore, for large values of time-to-maturity,

the value of call options tends to be a decreasing function of time-to-maturity. In the

case of put options on coupon-bearing bonds, the increase in the period which the ex-

pected payoffs are discounted leads to higher put option values until some level. How-

ever, the effect of time-to-maturity tends to reduce put option value. The following

figures also provide an example of complicating relation between time-to-maturity

and option values.

Figure 2.23: Sensitivity of Option Value on Callable Bond With Respect to Time-to-
Maturity

Figure 2.24: Sensitivity of Option Value on Putable Bond With Respect to Time-to-
Maturity

Another important parameter for the value of call and put options on coupon-bearing

bonds is the long-run mean of short rate. Under the Vasicek model, short rate reverts
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back to its long-run mean at a mean-reversion rate. Keeping the short rate and other

parameters constant, the increases in the long-run mean of short rate tend to have

a decreasing effect on the value of call option values since the short rates tend to

converge to higher long-run mean. Therefore, the increases in the long-run mean of

short rates lead to a decline in the expected payoff from call option. However, the

increases in the long-run mean tend to have an increasing effect on the put option

values due to the fact that it leads to higher expected payoffs. In this regard, the

long-run mean and put option values are positively associated with each other.

Figure 2.25: Sensitivity of Option Value on Callable Bond With Respect to Long-Run
Mean

Figure 2.26: Sensitivity of Option Value on Putable Bond With Respect to Long-Run
Mean

Mean-reversion rate is also another determinant of option values on coupon-bearing
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bonds. The increases in mean-reversion rates tend to influence negatively both the call

and put option values since the higher mean-reversion rate means quicker adjustment

which tends to reduce the option value on bonds. The following figures also show the

negative relation between the mean-reversion rate and option values.

To sum, the sensitivities of model parameters on the value of call and put options tend

to differ compared to the Black-Scholes model. The differences in the sensitivities are

especially crucial for the hedging behaviour of these securities. Since changes in short

rates affect both the price of underlying assets and discount factors, these effects tend

to reinforce each other. Additionally, the effect of parameters such as volatility, time-

to-maturity of options, mean-reversion rate and long-run mean tend to have slightly

different results for call and put options.

Figure 2.27: Sensitivity of Option Value on Callable Bond With Respect to Mean
Reversion
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Figure 2.28: Sensitivity of Option Value on Putable Bond With Respect to Mean
Reversion

2.5 CONCLUSION

The valuation of interest rate derivatives or embedded options in fixed-income secu-

rities is crucial for market practitioners and risk managers. Although there have been

many models to price interest rate derivatives based on different assumptions, the

inconsistency of the assumptions across different interest rate derivatives creates dif-

ficulty in aggregating interest rate exposures or risk management for fixed-income se-

curities. Besides, the models tend to be specific to interest rate derivatives rather than

providing a general picture of the interest rate derivatives. In this regard, the adap-

tation of a general methodology to price all interest rate derivatives without making

additional assumptions has critical importance. This study is expected to contribute to

the literature by providing a general approach that can be applied to any fixed-income

security with regular or irregular cash flows using the Vasicek model.

The option pricing for interest rate derivatives involves four steps. The first step is to

derive the explicit formula for an interest rate derivative traded in the market in order

to estimate the Vasicek model parameters. In the context of the study, an explicit

formula for the cross-currency swaption is derived. Then the next step is to estimate

the Vasicek model parameters through nonlinear least squares for the period between

January 2013 and November 2019 using daily quotes. The next step is to derive the
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closed-form solution for the interest rate derivative which is demanded to price out.

The last step is to plug the estimated Vasicek model parameters into the closed-form

solution and price the interest rate derivative. Since the methodology uses interest

rate derivatives traded in the market for parameter optimization, it can be said that

the option pricing on the fixed-income security is consistent with the market prices.

Additionally, since there is a closed-form solution, it is much easier and useful to

derive the sensitivities of the option value to the changes in the model parameters,

which is crucial for hedging behaviour.

In this regard, the study estimates the Vasicek model parameters using cross-currency

swap quotes traded in the market. The parameter estimates for 1y1y, 5y5y and 1y10y

swaption specifications tend to be quite stable over time and consistent with each

other, which provides a good signal about the reliability of the model. Additionally,

model-in-fit errors tend to be quite small. Then the call option on a callable bond, put

option on a puttable bond together with prepayment option on a mortgage loan are

priced using the estimated Vasicek parameters. The option values tend to fluctuate

during the last 2 years, where there is a significant amount of volatility in spot rates.

During this period, call option and prepayment option values tend to decline as the

short rate rises then increase to normal levels together with the decline in short rates.

However, the behavior of put option values tends to increase at first together with the

rise in short rate. The time-series observations for the option values also reflect the

market sentiment about the interest rates.

Then the last step is to obtain the comparative statistics of the option values for the

changes in the short rate, mean-reversion rate, volatility of short rate and long-run

mean of short rate, which provides important details in terms of hedging against the

interest rate risks. The sensitivities of the option values tend to behave differently

than the Black-Scholes model due to the main fact that interest rates not only affect

the payoff structure of the derivatives but also discount terms. Therefore, the effect

of parameters tends to behave differently after threshold levels. The comparative

statistics are especially important for the aggregation of interest rate exposures, which

requires a more detailed examination due to the nonlinear relationship between the

model parameters and option values.
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The results of the study show that interest rate derivatives and embedded options in

fixed-income securities can be priced out consistent with the market prices. Addi-

tionally, the use of a simple and unique model for the valuation of all interest rate

contingent assets and liabilities allows portfolio-managers to aggregate the interest

rate exposure without relying on different models. Besides, this also creates the op-

portunity to figure out the sensitivities of the interest rate dependent securities with

respect to the model parameters, where it cannot be reached using different models

with their specific model parameters. Although the study presents the applications for

European type of options on interest rate derivatives or European type of embedded

options on fixed-income securities it can be applied to Bermudan or American type

of interest rate derivatives through numerical solutions. Although the study uses the

Vasicek model, which provides a good model-in-fit and allows generalization to all

types of interest rate derivatives, other interest rate models wit suitable properties that

allow generalization can be applied as well.
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