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ABSTRACT

DYNAMIC MODELING OF JOINTS IN 3D STRUCTURAL MODELS

Tekin, Merve
Master of Science, Mechanical Engineering
Supervisor: Prof. Dr. H. Nevzat Ozgiiven

November 2019, 132 pages

In the design and development stages of mechanical structures, one of the most
challenging part is modelling joints. Due to complex dynamic behavior of joints, it is
difficult to build a reliable model for joints using only theoretical approaches, and
therefore usually methods based on experimental measurements are employed. In this
study, a structural modification method is used to find dynamic characteristics of a
bolted joint connecting two beams. A simple formulation based on a structural
modification method is suggested to represent a bolted joint with a complex stiffness
matrix. The method requires the measurement of only the assembled structure, not
individual substructures connected with a bolted joint. The method proposed is
validated by using simulated experiments. The ultimate purpose of this work is to find
a complex stiffness matrix representing a bolted joint in more complicated structures.
Therefore, in the finite element formulation of beams, 3D solid elements are used, and
the complex stiffness matrix corresponding to 3 translations and 3 rotations is
identified from measured FRFs. The performance of the method is compared with a
similar identification using FRF decoupling. The results showed that this new
approach is less sensitive to measurement errors and gives better results compared to

those of the FRF decoupling method.



Keywords: Joint Modeling, Dynamics of Bolted Connections, Structural Modification

Method, Joint Parameter Identification, Finite Element Modeling
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3 BOYUTLU YAPISAL MODELLERDEKI BAGLANTILARIN DINAMIK
MODELLENMESI

Tekin, Merve
Yiiksek Lisans, Makina Miihendisligi
Tez Danmismant: Prof. Dr. H. Nevzat Ozgiiven

Kasim 2019, 132 sayfa

Mekanik yapilarin tasarim ve gelistirme asamalarinda, en zorlu kisimlardan biri de
baglantilar1 modellemektir. Baglantilarin karmasik dinamik davraniglar sebebi ile
sadece teorik yaklasimlar kullanilarak gilivenilir bir baglanti modeli olusturmak
zordur, bu sebeple deneysel dlgiimlere dayanan yontemler kullanilir. Bu ¢alismada,
iki kirisi birbirine baglayan baglanti elemaninin dinamik karakteristigini bulmak i¢in
yapisal degisiklik yontemi kullanilmistir. Civatali baglantiyr karmasik direngenlik
matrisi ile temsil etmek amaciyla yapisal degisiklik yonteminden yola ¢ikilarak basit
bir formulasyon Onerilmistir. Bu yontem sadece montajlanmis yapidan 6l¢iim almay1
gerektirir, civata ile baglanmus alt yapilardan 6l¢iim almaya gerek yoktur. Onerilen
yontem, simule edilmis deneyler ile dogrulanmistir. Bu ¢alismanin nihai amaci daha
karmagik yapilarda kullanilan civatali baglantilar1 karmasik direngenlik matrisi ile
temsil edebilmektir. Bu nedenle kirislerin sonlu elemanlar ile modellenmesinde 3
boyutlu kat1 elemanlar kullanilmis, 3 yondeki 6telenme ve 3 yondeki donmeye karsi
gelen karmasik direngenlik matrisi, 6l¢lilmiis Frekans Tepki Fonksiyonlar1 (FTF)
kullanilarak bulunmusgtur. Bu metodun performansit FTF ayristirma kullanilarak
yapilan benzer tanilama yontemleri ile karsilagtirilmistir. Sonuglar gdstermistir ki bu
yeni yaklasim, kullanilan diger FTF ayristirma yontemleri ile karsilastirildiginda,

Ol¢tiim hatalarina daha az duyarhidir ve daha iyi sonuglar vermektedir.

Vil



Anahtar Kelimeler: Baglanti Modellemesi, Civatali Baglantilarin Dinamigi, Yapisal

Degisiklik Yontemi, Baglanti Parametresi Saptama, Sonlu Elemanlar Modellemesi
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CHAPTER 1

INTRODUCTION

1.1 Overview

In many engineering applications, it is very common to have systems assembled by
means of bolts. They often play a critical role; failure of them can cause the structure
or machine fail catastrophically. Thanks to recent advances in Finite Element (FE)
techniques and availability of FE packages, which are frequently used for the solution
of structural problems, when a solid structure is modeled, a reasonable accuracy is
obtained. However, most of the engineering structures are composed of assembled
substructures, and for the assembled structures, the results of actual tests are generally
different from those of the FE analysis. The most important reason behind this

discrepancy is difficulties in modeling bolted-joints.

Although a joint is known as a source of flexibility in an assembled structure, its
behavior is still not implicitly understood when subjected to dynamic loading. The
ability to model and predict bolted joint behavior is of great concern, especially for
high-impact applications such as defense, aerospace, and automotive engineering
industries. For instance, missiles which are one of the defense industry products that
are being developed in these days, are subjected to vibration due to several reasons
such as stage separation, air turbulence, wind, etc. If these vibrations are at a frequency
close to one of the missile’s natural frequencies, system comes to resonance, which is
the most undesired situation. Extensive studies have revealed over the past years that
the stiffness of joints influences the dynamics of a missile considerably. Bending
stiffness of most rockets and missiles may be reduced by 20-30% due to joints which
may cause decreases in natural frequencies, especially the first modal frequency, as

much as 10-20%. Moreover, the mode shapes and nodal lines would change [1].



Therefore, it is essential to carry out the modal analysis of a missile accurately.
Especially, finding the first modal frequency correctly has great significance. Other
than considering natural frequencies, bolted flange connections are essential parts of
the missile as they connect stages, and flange connections weaken the whole
structure’s load-bearing capacity. Because of the structure’s strong nonlinear
characteristics, the geometric continuity of the missile body is destroyed, and some
difficulties such as excessive local deformation and stress concentration can happen

during loading [2].

Current analytical techniques for modeling bolted joint regions are based on the
assumptions of either a rigid joint connection or simplified linear models.
Nevertheless, they are highly nonlinear. The stiffnesses of joint members in
compression are proportional to the joint members’ interface contact area which
depends on the joint preload and the external loads carried by the joint [3]. The
tightening of bolts creates static loads in the joint. These static loads will add on to
dynamic loads during dynamic excitation of the system. If dynamic load changes are
small compared to static loads, then the dynamic response will have affected slightly
in terms of natural frequency and dissipation [4]. In other words, overall joint region
stiffness is a function of the external loads carried by the joint and this is the reason

for the nonlinearity of a jointed connection.

In light of the above discussion, it can be concluded that accurate modelling of
connection dynamics is a difficult task, and when there are higher loads, it usually
requires a nonlinear model. However, even a nonlinear model is required, the starting
point is to identify the joint parameters corresponding to the linear part of the model,
such as the stiffnesses and damping coefficients. Furthermore, in some applications
using a linear model may be sufficient to obtain reliable results. So it can be seen that
the identification of linear model parameters of joints is important, which also serves

to understand the effect of the joint on the dynamic response of the mechanical system.



1.2  Literature Survey

For many years, numerous studies have been conducted on modeling structural joints
and identifying joint properties. The first category of these studies is the model
updating approaches which require the combined use of experimental data and FEM
model results. However, in order to use updating schemes, the mass and stiffness
matrices of the whole structure including joints are necessary, and in complex systems
obtaining these properties and using them in an updating algorithms is expensive.
Besides, most model updating studies require measured natural frequencies and modal
vectors simultaneously and the application of curve fitting operations in the extraction

of these experimental data, which causes inevitable approximation errors [5-7].

Li [7] proposed a model updating method that uses the so-called reduced-order
characteristic polynomial (ROCP) and it is focused on joint stiffness identification. In
this method, since measured natural frequencies are the only experimental data
required, some of the issues associated with the spatial incompleteness of the

measured displacement/FRF information can be avoided.

The second category of joint identification studies include the methods based on
experimental data which can be either modal or frequency response function (FRF).
In the past, many studies have used modal parameters for the estimation of joint
properties. Some researchers combined mode shapes of structures from experimental
modal analysis with FE model to investigate the joint stiffness and damping properties
[8, 9]. These methods require extraction of accurate mode shapes and natural
frequencies that are prone to measurement errors. Due to complexity of measurements,
they are impractical in real applications. In order to overcome such difficulties, FRFs
of the assembled system and its substructures were directly used for the identification.
The response coupling methods, receptance and impedance coupling, are the subsets
of FRF based methods, in which the assembled structures’ FRFs can be generated
using experimentally or analytically obtained FRFs of the substructures [10, 11].

Conversely, to identify joint parameters, inverse coupling methods can be used.



In the past decades, many researchers have identified joint parameters using FRF
based substructuring methods. These methods are based on identifying the dynamic
behavior of the connection by using known (measured) dynamic behavior of the
coupled system and those of the subsystems. If we consider bolted connections,
structure with joints is referred to as the coupled system and structures obtained when
joint is removed are referred to as the substructures. The joints are modeled with
stiffness and damping elements, and these properties are identified from the

information about the dynamic responses of the coupled system and substructures.

Hong and Lee [12] presented a hybrid method that makes use of the measured,
incomplete FRFs and FRFs computed from an auxiliary finite element model of the
system. The proposed method is straightforward and requires neither modal

parameters nor any condensation techniques for the model.

Yang and Park [13] proposed an iterative method that combines measured FRFs with
the analytical model for the identification of linearized joint parameters. They
estimated unmeasured FRFs from the measured ones by solving an overdetermined
set of linear equations. After the needed FRFs obtained, joint parameters are identified
iteratively with the minimization of loss function. Three different joint models are
evaluated. In the first one, only translational properties are considered. In the second
one, both translational and rotational parameters are included and in the final model,
they additionally considered cross-coupled terms. They have shown that cross-
coupled terms of joints have no significant effect on the response of the assembled

system.

Lee and Hwang [14] proposed an FRF based substructuring method with an iterative
optimization technique, realizing that an inherent error comes from using directly
obtained FRFs. To enhance the efficiency of the iterations during optimization, an

analytic sensitivity formula is proposed and used in the identification procedure.

Tol and Ozgiiven [15] have used a method based on FRF decoupling in order to

successfully identify linear joint parameters of a bolted connection in beams. In that



method, they used FRFs of the substructures obtained theoretically or experimentally
and measured FRFs of the assembled structure. Using these data, translational,
rotational and cross-coupling joint properties, in terms of stiffness and damping
values, are calculated by first applying FRF decoupling formulation and then an

optimization algorithm.

Klaassen et al. [16] extended the work of Tol and Ozgiiven [15] by using the System
Equivalent Model Mixing (SEMM) technique in order to expand the measurement

DOF set. The aim in that study was to identify the joint properties in six DOFs.

Although inevitable measurement errors, ill-conditioning problems and difficulties in
obtaining FRFs corresponding to rotational DOFs cause poor results in real structures
when FRF based substructuring approaches are used, not requiring modal information
Is considered as an advantage. Several studies are still being carried out to apply
different approaches to solve the problems of these FRF based methods.

FRF Decoupling method gives accurate results when exact values are used for all
FRFs. However, for the coupled structure it is a must to use measured FRFs, and the
problem mainly comes from the inability to measure FRFs corresponding to rotational
DOFs, especially at the subsystem interface. Different approaches have been used to
solve this problem. Some researchers used modal expansion techniques, such as
SEREP and Guyan expansions and others applied the so-called Equivalent Multi-Point
Connection (EMPC) method [17,18] in literature.

De Klerk et al. [17] presented the application of EMPC method in their work. They
proposed measuring the subsystems’ interface at multiple nodes in multiple
translational directions as in the case of finite element analysis. As the number of FRFs
used in this kind of coupling corresponds to the number of DOF describing the
interface, rotational information can be implicitly accounted for. They claimed that to
describe all motions of a rigid interface, a minimum of 6 coupling DOF at three nodes

is enough.



1.3 Objective

The objective of this thesis is the modeling and identification of bolted joints in
structures. As can be seen from the review of the previous works in section 1.2, due
to complex dynamic behavior of joints, it is challenging to build a reliable model for
joints using only theoretical approaches, and therefore usually methods based on
experimental measurements are employed. In this study, a structural modification
method which is an FRF based method, is used to identify the parameters of a linear
bolted model. As mentioned above, in several applications a linear model may be
adequate, and for the applications where a nonlinear model is required, the first stage
of constructing a nonlinear model is obtaining linear part of the model. Therefore, an
accurate method to identify the parameters of a linear joint model is very important.
The method proposed in this study requires the measurement of only the FRFs of the
assembled structure, not individual substructures connected with a bolted joint. As it
further explained in Section 1.2, there are several methods developed for the
identification of joint parameters, but almost all of them are focused on two-
dimensional structures, so that even more complicated structures are simplified to 2D
structures. However, most real structures do not have dynamic characteristic which
makes it possible to represent them accurately with simple 2D elements. Therefore,
an identification method for 3D structures is needed. The proposed methodology is
applicable to 2D structures where only two degrees of freedom (DOFs) in translation
and rotation are involved, as well as to 3D structures where all DOFs in translation
and rotation are involved. The bolted joint is modeled with translational and rotational
stiffness and damping elements, for all six DOFs. Therefore, the proposed technique
accounts for the effects of RDOFs. Since such an approach requires the measurement
of FRFs related with rotational DOFs, finite difference method is used and FRFs
corresponding to rotational DOFs are approximated with translational FRFs of the
assembled structure. The applicability of the method suggested is demonstrated and

validated with simulated experiments.



In this study, the FRF Decoupling method developed in an earlier work is also
expanded so that it can be used for 3D structural models, and finally the performance
of the method proposed in this study is compared with that of the FRF Decoupling

method.
1.4 Scope of the Thesis

The outline of the thesis is as follows:

Chapter 2 provides the basic theory of the joint model used and the identification
methods employed. First, the theory of connection dynamics is explained. Then, the
Inverse Structural Modification Method (ISMM) proposed in this study is introduced.
Finally, the FRF decoupling method and its extension to systems with 6 DOF per node
are given. The importance of the RDOF in joint modeling is also explained in this
chapter, and the estimation methods for FRFs corresponding rotational DOF are
presented.

In Chapter 3, several case studies are given to verify and illustrate the application of
the suggested method to 2D structures. In these case studies, where lumped mass
systems and beam structures are used, the joint parameters are extracted in terms of
stiffness and damping matrices by using both the proposed method and the FRF
Decoupling method. The effects of measurement errors on the identified parameters

in both methods are studied and compared with each other extensively.

In Chapter 4, the details of the 3D finite element model used for a bolt connection,
and the simulated experiments using 3D elements are given. Case studies using 3D
elements are presented in this chapter in order to demonstrate the application of
proposed method. The comparison of the performance of the method proposed with
that of the FRF Decoupling method is also presented in this chapter.

Finally, general conclusions and recommendations for future research are presented

in Chapter 5.






CHAPTER 2

JOINTS DYNAMIC MODELING AND IDETIFICATION OF MODEL
PARAMETERS

Complex structures compose of various substructures that are joined together with the
help of different types of joints. Among them, the most commonly used one is bolted
joint. If the dynamics of the joint is known, the dynamics of the whole assembled
structure can be found by using the dynamics of the substructures. However,
predicting the dynamics of the joint accurately is not an easy task since it depends on
various factors such as pretension on the bolt, coefficient of friction, conditions of the
contact surfaces, etc. Once the joint dynamics is determined, the assembled structure’s

dynamics can be found by using mathematical relationships.

In this chapter, firstly, the dynamics of two substructures connected with a joint
represented by a complex stiffness matrix between connecting degrees of freedom is
studied. Then, two different approaches proposed in identifying the parameters of the
joint model employed are given. The first approach is a new method, whereas the
second one is the extended version of a method proposed in a previous study [15]. In
section 2.1, the theory of substructure coupling with connection dynamics is
explained. In sections 2.2 and 2.3, it is shown how structural modification method and

FRF decoupling method are used to identify joint parameters, respectively.

2.1. Theory of Substructure Coupling with Elastic Connection Dynamics

Let us consider that a joint element connects substructures A and B elastically, as
shown in Figure 2-1. The points j and k represent joint degrees of freedom (DOFs),
while r and s represent internal DOFs, and they are not involved in the joint interface.

In this figure, K* is a complex stiffness matrix of the joint and it represents the joint



dynamics. It consists of the stiffness and damping elements. The free body diagrams

of the substructures and the connecting element are given in Figure 2-2.

Figure 2-1 Connection of Two Substructures with Joints

]Omt fe joint
MTA joint M, By, jomt
( ‘ A, Jomne ) C ‘ K My
9,4 A joint joint BC
Ty A x4 J M M, ek
r j joint X

Figure 2-2 Substructures Free Body Diagrams

The relationship between the displacement vectors and the force vectors (composed

of applied forces and moments) in each substructure can be defined as follows:

For substructure A:

{xa} = [aa]{F4}

4 A
[x‘r' \ |—hTT lTT hr] lr]-l f;"
A . M A
! v L _ | Pre Ty Py r (2.1)
%" lhjr by hyj ljjJ | £+ £ | :
lHjAJ Njr  Pjr Njj Djj ijA +M ]omt}
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For substructure B:
{xp} = [ap]{Fp}
ka hkk lkk hkS lks ka + fkjolir.lt
0,° Nk DPrk Mks  Pis| ) Mi® + M /0™t
(= (2.2)
Xs hsi Lok hss s fsB
kesB) Njx  Dsk MNss  DPss k M B }
N
where x,, and 8, represent the translational and rotational displacement vectors at

location p while f, and M, represent the force and moment at location p. [a,]

and [ag] represent receptance matrices for substructures A and B, respectively.

The receptance matrix components are defined as;

hpg =2 (2.3)
fq
X

lyg = M_Z (2.4)
o

g =2 (2.5)
o

Ppq = M_Z (2.6)

The substructure FRFs can be combined by using the joint interface's equilibrium and
compatibility conditions to form the FRFs of the assembled structure [19]. It is
assumed that the joint segment is an element that mainly imposes stiffness and
damping to the structure. In other words, the connection dynamics is modelled by a

complex stiffness matrix between the connection degrees of freedom.

Assume that there is no forces and moments acting on joints externally and that
flexible connection is massless, the equilibrium condition at the joint can be written

as:

11



Jjoint joint
{f] joint} + {fk joint} =0 (2-7)
M; My

Jjoint joint
{Af;.joint} = {Ifw}{kjoint} (2'8)
j
Then the compatibility of translational and rotational displacements at connection

DOFs can be written by using Eqgn. (2.7) as follows:
Cx(ka - XJA) + kx(ka - xjA) = f}jOint (29)
co (é,f - éj") + ko (6,% — 6;,4) = Mot (2.10)

Let us define joint complex stiffness matrix in frequency domain as:

[K* ()] = [kx +0icxa) " +0ic9w] (2.11)
Now, Egns. (2.9) and (2.10) can be written as
{ZZE :ij} = [K* ()] ™ { IQJJZZ} (2.12)
Hjine denotes the inverse of complex stiffness matrix [K*(w)]
[Hjoint] = Ihtt:mt hrr?ointl = [K" ()] (2.13)

where subscript t refers to translational information and subscript r refers to rotational

information of the joint model.
By using Eqn. (2.1), x;4 and 6, can be written as

% = R+ LM+ Ry (7 4 £ + 4+ M) (2.14)

6;" = nie /i + My 1y (i + £777) + pj; (M + MO (2.15)

12



and by using Eqn. (2.2), x,? and 6,” can be written as

% = hye(fi” + fkjomt) + Lge(Mil® + M) + b f,7 + Les M (2.16)
0,° = nkk(ka + fkjomt) + D (M, ® + Mkjomt) + s fs” + piesMs® (2.17)

Then, by using Eqn. (2.12) and replacing f/°™ with —f;/°™ and M,/°™ with

—M;7°™ the following equations can be written
h joint ¢ joint x B —x-A
{h ttjointlg joint} = {QZB _ 9]_1‘1} (2'18)
rr Ji J
By using Eqns. (2.16) and (2.14), the first element of the vector can be written as
httjointfjjoint — hkkka _ hkkf}joint + lkkMkB _ lkijjolTlt + hksng + lkSMSB _

hi £ = LM — by £ — by fi* = LM = LMo (2.19)

and by using Egns. (2.17) and (2.15) the second element of the vector can be written

as
joint  r joint __ B joint B joint B
hyr M; = Nk frew — Nk S + PricMy” — DM +nysfs +

PisMs” =y f = pjr My =y fi =m0 — Myt — pj MO (2.20)
By rearranging Eqn. (2.19), the following equation can be written

- fjjoint ka
oin =
[httj + hyy + hjj gk + l]'j] {ijoint} - [hkk lkk] {MkB} ¥

y) A
]{IC;A}_[hj- l,--]{ff } (2.21)

MA
and by rearranging Eqn. (2.20), the following equation can be written

[hs  Lks] {Aj:; B} - [hj lf

S J

13



B f']omt f B
[nkk N n]] hrrJOlnt n pkk n p]]] { J joint} — [nkk pkk] { k B} +
M; M

A A
[Mks pks]{ﬂ }— [Mr  Pjr] {]C; A}— i Pjjl {IC;A} (2.22)

r )

Combining Egns. (2.21) and (2.22) results in

_htthint + hkk + h” lkk + l l {f]jOint} — hkk lkk] {ka } +
Ny + 1 he?®™ + Dp + pj] M0 Nk Piid (M,°

[Pcs lks] fsB _ [hjr ljr] frA _ [hjj JJ] fl (2.23)

s Prsd (MGE)  1yr PirlM, ) Iy Pl (M '

Rearranging Eqn. (2.23) yields

joint joint B B
{ff o }=—{fk.. }=[ZJ-1[Hkk]{f’< }+[z1-1[Hks]{fs }—

Mj]omt Mkjomt MkB MsB
A A
[Hye] {I{;T A} — [217*[Hy] {]C;A} (2.24)
r J
where [Z] = [Hjpine + Hie + Hyj] = [K* ()17 + [Higel + [Hjj]

Substitution of Eqn. (2.24) into Egns. (2.1) and (2.2) leads to the assembled structure’s
FRFs in terms of the substructures’ FRFs as [20]:

X, [Hrrc Hrjc Hrkc Hrsc] (EA\

X; H,° H;¢ H,° HS||FA
) :| T 1] Jk JSC JB (225)

X c c c
ler Hsj Hsk Hss
X [He—HyZ ' Hy Hyy— HeZ 7 H HyjZ “Hyg Hrjz 1H, (prA]
-1 - - A
X; =|H1'T_H1'1'Z Hjy  Hj; — Hj;Z 7 Hj; HjjZ ™ Hy, Hj;Z™ Hys (2.26)
Xk HiZ “Hjy HaZ “Hj  Hy —Hka H Hks—Hka Hys FkB
Xs HyZ *Hj, HyZ 'Hj;  Hg —HgZ 'Hy He — HgZ 'Hes| \EP)
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Note that, in the above equations Z and H represent submatrices, and for simplicity

matrix sign is not used.

2.2. ldentifying Joint Parameters by Using Inverse Structural Modification

Approach

2.2.1. Matrix Inversion Method

The matrix inversion method was first proposed to calculate the receptances of
damped structures by using those of the undamped structures for a non-proportionally
damped structure by Ozgiiven [21]. Later, it is presented as a general structural
modification method, in which basically, the FRFs of a modified structure are obtained

from those of the original system and the modification matrix [22].

Consider a system represented by a stiffness matrix [K], a mass matrix [M] and a
structural damping matrix [H]. The equation of a motion of the structure can be written

as
[M]{x} + i[H]{x} + [K]{x} = {F} (2.27)

For a harmonic excitation {F}, the steady response of the structure is given by

{x} = (K] — @?[M] + i[HD)THF} (2.28)

from which, the receptance matrix of the structure [a] can be obtained as
[a] = ([K] — w?[M] + i[H]D™! (2.29)

If the structure is modified, then the receptance matrix of the modified system can be

written, in a similarly way, as

[y] = ([[K] + [AK]] — w?[[M] + [AM]] + i[[H] + [AH]]) " (2.30)

where [AK],[AM] and [AH] are the matrices representing stiffness, mass and
damping modifications, respectively. Inverting both sides of the Eqns. (2.29) and
(2.30), and then combining them yields

[vI™ = [al™* + [D] (2.31)
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where [D] is the dynamic structural modification matrix and is expressed as
[D] = [AK] — w?[AM] + i[AH] (2.32)

If Eqn. (2.31) is pre-multiplied by [a] and post-multiplied by [y], it gives
[a] = [y] + [a][D]ly] (2.33)

from which [y] can be obtained as

y] = [[1] + [a][D]] " [] (2.34)

As discussed in [21] and [22], the above formulation is most advantageous when the

structural modification is local, that is, when

_ [[Dmm] (0]
[D]—[ (0] [0]] (2.35)

Then, the receptance matrix of the modified system can be obtained as [22]:

W] = [[1] + [ [Poem]]” (@]

[Vmu]T = [)/um] = [amu][[l] - [Dmm] [me]]

[Vuu] = [auu] - [aum] [Dmm] [Vmu]

Here, subscripts m and u correspond to the structure’s modified and unmodified
regions respectively. Briefly, here the aim is to find the receptances of the modified
system by using the dynamic structural modification matrix [D] (it iS [ Dy, ] when the

modification is local) and the receptance matrix of the original structure.

2.2.2. Using Inverse Structural Modification Method in Identifying Joint Parameters

The structural modification formulation used in the Matrix Inversion Method (MIM)
Is employed in this approach in reverse direction in order to identify the dynamic
properties of a joint. The calculated FRFs of two subsystems coupled with a bolted
joint by using an initially estimated complex stiffness matrix representing the joint

dynamics are taken as the FRFs of the original system, [a]. The measured FRFs of the

16



same assembly are taken as the FRFs of the modified system, [y] and the modification
matrix (in the form of complex stiffness matrix) is calculated by using the formulation
obtained from the Structural Modification Method (SMM) MIM. Thus, the calculated
modification matrix will give the required modification in the initially estimated
complex stiffness matrix in order to have the calculated and measured FRFs be the
same. The complex stiffness matrix representing the bolted joint then can be obtained
by adding the calculated modification matrix to the initially estimated complex
stiffness matrix.

By rewriting Eqn. (2.33) as

[t amel] = [ o

+

ey sl e ol gl (2.36)
[[aum] [auu]] - [[yum] [yuu]] "

[@mm][Dmm] [me]] [[amm] [Diim] [Vmu]]l
2.37
[lturn ] o] rn]] [ D] ] (230

and using Eqgn. (2.37) yields

[amm] = [me] + [amm] [Dmm] [Ymm] (238)
[amm] - [ymm] = [amm] [Dmm] [Ymm] (2-39)

If Egn. (2.39) is pre-multiplied by [a;,,,,]~* and post-multiplied by [¥,,,] 7, dynamic

structural modification matrix can be obtained as

[Dinm] = [@mm] ™ (tmm] = Winm D [Vmm] ™ (2.40)

In the method proposed, the above equation is used to calculate [D,,,,] from the

measured FRFs represented by [y,.] and the FRFs calculated [a,,,,,] by using the

17



initially estimated complex stiffness matrix representing the bolted joint. It should be
noted that in order to calculate [D,,,,] we need only the receptances corresponding to
the joint coordinates. Therefore, [D,,,»] is the modification matrix in the size of the
joint DOFs.

2.2.3. ldentifying Joint Parameters

The procedure for modeling a bolted joint is as follows: Firstly, [a,,,,,,] is calculated
by using finite element model of the structure and an initially estimated complex
stiffness matrix representing the bolted joint. The only measurement required is the
FRFs of the bolted structure at the connection points of the bolt, which defines [y, ]-
Then the modification matrix [D,,,,] is calculated by using Eqgn. (2.40), and finally,
the complex stiffness matrix representing the bolted joint is calculated by adding
[D;m] to the initially estimated complex stiffness matrix. It can be seen that the
computational effort will be considerably reduced since only the receptances

corresponding to the degrees of freedom of the “modified” region is used.

The receptance matrix corresponding to the connection coordinates of the system with

initially estimated bolt parameters can be expressed as follows

H..¢ H.C
I1*%jj I'jk
a = 2.41
] LHR,-C ,Hkkcl (24D

Coupled Structure

[K,'@)]
Predefined

Figure 2-3 Coupled System with Initially Estimated Bolt Parameters
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By using the FRFs of the substructures and predefined (initially estimated) complex
stiffness matrix, coupled system receptance matrix components can be obtained by

using Eqn. (2.26) as follows:

(131 = [H] = [H] [ K6 @)1 + [Hige] + [Hjj]]_l 4] (2.42)
[HxE] = [H] | [Ks @)1 + [Hud] + [H ,]] [Hye] (2.43)
(i€ = [Hind = D) [[KG (@)1 + [ + [H]] [Hiad (2.44)
(i€ = [ [ @)1 + [Hied + [H]] [1] (2.45)

where [Kj (w)] is the initially estimated complex stiffness matrix.

Experimentally measured FRFs of the assembled substructure, as shown in Figure 2-4

can be expressed as follows,

H¢ pH°
[y ]=[E Ve b ] (2.46)
N P T P
Coupled Structure
r S

Figure 2-4 Simulated Experiment Model

1 k_Y_} \_Y_} (2.47)

2nx?2n  2nx2n 2nx?2n 2nx?2n
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[Drmm] = [] CO—OArd. k c;c?rd.] (2.48)
In this work the simulated experimental results calculated using ABAQUS software
were employed, and Eqn. (2.47) is used to calculate [D,,,,] from these simulated
experimental FRFs represented by [v;m], and [, ], the FRFs calculated by using
initially estimated complex stiffness matrix [K;(w)] representing the bolted joint,
which is an n x n matrix, whereas the receptance matrices are 2n x 2n matrices. Here
"n" represents the size of the joint degree of freedoms. After the calculation of
dynamic structural modification matrix [D,,,,,], adding off-diagonal terms of that into
[Kg (w)] will give the identified complex stiffness matrix [K*(w)]. Real parts of this
matrix are used to find stiffnesses and respectively, imaginary parts are used for

damping values which represent the bolted joint characteristics.

2.3. ldentifying Joints Parameters by Using FRF Decoupling Approach

This method is proposed in an earlier study [23] to identify contact dynamics in
machine tools, and later applied to bolted joints [15]. It is based on substructure
coupling method which is commonly used and well-understood for predicting coupled

structures’ dynamics from those of substructures and coupling dynamics.

Let us consider the system shown in Figure 2-4. The assembled system receptance

matrices can be obtained by using Eqgn. (2.26) as follows

[ ] = (Hyr] = [Hyg ] [ @17 + [ + (1] [H] (2.49)
(5] = [Ho] [ 1K @)1 + ] + [H]] (o) (250)
[Her] = Hyed [ @)1 + Hiad + [H]] (] (251)

[Hs€] = [Hes] = [Hed [[K* @)1 + i + [Hy]] [Hi) (2552)
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Complex stiffness matrix, coupling two substructures can be obtain from any of the

equations given above (Eqns. (2.49) to (2.52)):

1= [ [ = 0 e ) | 255
) = [l 1T ] = [ = W] (259
IR 78| S e B 1 ]—[Hkk]]_1 (2.55)
[K*]=[[Hks][ ~ [HesN]” el = (] = ] ] (2.56)

If the assembled structure’s and substructures’ FRF matrices are available at any
frequency, by using any of the above equations, joint identification can be
accomplished and theoretically speaking, it does not make any difference which
equation is used in the identification of the joint parameters. Similarly, theoretically
speaking it also does not make any difference at which frequency these equations are
used. However, the earlier study [15] shows that the equations are very sensitive to
FRF values, some of which are unavoidably measured ones. Therefore, the application

of this method is not very straightforward.

2.4, Estimation of FRFs

Frequency response functions (FRFs) are frequently used in vibration analysis to find
the dynamic characteristics of a structure. Measuring FRFs accurately for all relevant
degrees of freedom is very important. However, measurement of certain FRFs is
impossible due to difficulty in reaching to these points. Besides, measuring all the
elements of an FRF matrix experimentally is very time consuming and expensive. In
this work, in some case studies, three translational and three rotational components

have to be used and measurements of the rotational components are the most
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challenging part due to the need for special and dedicated equipment. Under these
conditions, it is useful to have some solutions that help to obtain accurate estimation

for unmeasured FRFs.

2.4.1. Estimation of FRFs Corresponding to RDOF

In order to obtain the complete description of the system dynamics, it is extremely
important to have information about the rotational FRFs. Silva et al. [24] claim that
FRFs involving rotational information represent 75% of the whole FRF matrix and

cannot be ignored.

The main problem in obtaining FRFs related with rotational degrees of freedom is the
difficulty in applying a pure moment to a test structure, especially to a specified
measurement points and measuring angular displacements. There are several options
for moment excitation, such as twin shaker arrangements, blocks, magnetostrictive
exciters, and synchronized hammers. Among these approaches, twin shaker type and
magnetostrictive type moment exciters have been shown to be particularly successful
but they have an important drawback; exciters inevitably affect the behavior of the test
structure due to the shaker arrangement and they occupy large space. Therefore, they
are impractical for use in many real applications. The approach of using synchronized
hammers is shown to be feasible, but it requires accessibility from both sides of the
test structures which often will not be the case [25]. On the other hand, a particular
finite difference approach referred to as the “central difference” method [26] provides
a simple way of obtaining FRFs involving rotational DOFs with a practical
application. Therefore, in this study, the finite difference technique is used to acquire

rotational data from the translational measurements.

Depending on the position of the accelerometer and the position of the excitation
point, three different formulas can be used. In this work, the central difference
approach by using three points formula is used because of the needed accuracy

requirement.
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In Figure 2-5, an illustration of an arbitrary test structure is shown. Three points on
the structure can be defined: point 2 is the reference point at which RDOF FRFs are
required, and points 1 and 3 are measurement points. The close-accelerometers
method has been performed with three accelerometers placed in constant distance

close to one another, as shown in figure.

Predicted FRFs, [Hpred], which include rotational and coupled information for the

reference point (point 2) from measured translational FRFs can be obtained as

Hy, Hye,
[Horea) = 1" | = Tach () [T @257)

where [H,,.4s] represents the measured translational FRF matrix

H11 H12 H13
[Hmeas] = |H21  Haz  Has (2.58)
H31 H32 H33
and [T,.] denotes the central difference transformation matrix
_ 170 24x 0
where Ax is the constant spacing between points.
V1 V2 V3 Y

Figure 2-5 Finite Difference Method
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Duarte and Ewins [27] claim that spacing between accelerometers affects the quality
of the predictions too much and sensitivity to measurement noise is regarded as being

a drawback of the approach.

It is accepted that it is possible to improve the accuracy of a finite difference equation
by reducing the spacing, but as spacing decreases, small errors or perturbations in the
input data, such as noise or misalignment, result in large errors in the output.
Therefore, it is necessary to find a solution that balances the numerical error of the
finite difference equation with the perturbation propagation error from the data.
Gibbons et al. [28] presented an analytical error analysis to prove the instability of the
finite difference method, and then they proposed a new optimum spacing. This method

requires that the structure exhibits beam-like dynamic behavior.
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CHAPTER 3

JOINT DYNAMICS IDENTIFICATION IN A LUMPED MODEL AND IN BEAMS -
TWO DIMENSIONAL SPACE

In this chapter, the suggested method is verified and demonstrated in three case
studies. In section 3.1, the connection is identified in a discrete system. Then, in
sections 3.2 and 3.3, the applications of the proposed method to two beams connected
with a lap-type bolted joint is presented and the bolted joint properties are extracted
in terms of stiffness and damping matrices. In section 3.2, substructures are modeled
by using finite element method (FEM). Euler-Bernoulli beam elements are used in
obtaining elemental stiffness and mass matrices, from which FRFs are calculated. In
section 3.3, FRFs of the substructures are obtained directly by using the finite element
software ABAQUS, in order to have more accurate results to verify the proposed
method (ISMM). The identified joint parameters are compared with the actual values,
as well as with the values identified by using FRF Decoupling method [15] without
using optimization.

3.1. Identification in Discrete Model

In the first case study, in order to demonstrate and validate the proposed joint
identification method, a system composed of two substructures, each has two DOFs,
and connected with an elastic element is considered. Here, translational stiffness and

a viscous damping element are used in modeling the joint, as illustrated in Figure 3-1.

These two elements can be combined as a joint complex stiffness which can be written

as follows:

K*(@) = (k + jwc) (3.1)

25



Dynamic properties of the substructures and the joint are tabulated in Table 3-1. These

are the values used in the work of Tol [15].

Figure 3-1 a) Two Substructures with a Flexible Joint Element b) Coupled System
[15]

Table 3-1 Dynamic Properties of the Discrete Model Elements

Index Mass, m [kg] Stiffness, & [N/m] Damping. ¢ [N.s/m]
1 5 2500 3
2 3 3500 4
3 4 2000 2
4 2 2500 1
joint - 2000 3

K, (w) which is the initially estimated complex stiffness value, is taken as

K,*(w) = (1000 + jwl5)N/m (3.2)
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The receptance matrix corresponding to the connection coordinates of the system,
which is represented by [a,,,.,,,] in Eqn. (2.40), with initially estimated bolt parameters
can be expressed as follows

Cc c

[, ] = lIHjj Hjx l _ [azz a23] (3.3)

mml — - .
IijC Hia© @32 33

For the experimentally measured FRFs of the assembled structure, simulated

experimental results were used. In this chapter, all calculations are done numerically.

Therefore, in order to obtained simulated experimental results, predefined complex

stiffness value K,"(w) is used.

K;,"(w) = (2000 + jw3)N/m (3.4)
Experimentally measured FRFs of the assembled substructure corresponding to the
connection coordinates of the system can be written as follows

(3.5)

o] = jj l [sz Y23

LHk] EHkk V32 Y33

Since the only measurement required is the FRFs of the bolted system, corresponding
to the connection coordinates, the size of the receptance matrices [0, ] and [Yimml
will be 2x2.

[Dnm] = [@mm] ™ (@mm] = PmmD Vimm] (3.6)

Eqn. (3.6) is used to calculate [D,,,,] from simulated experimental FRFs represented

by [Vimml: and [@,,.,], the FRFs calculated by using initially estimated complex
stiffness K (w) representing the bolted joint:

(D] = [] CO—OArd. k c;(?rd.] 37)

As explained in Chapter 2, after the calculation of dynamic structural modification

matrixX [D,,,,], adding the off-diagonal terms of it to K; (w) will give the identified

complex stiffness K*(w) representing the joint dynamics. The real part of this value
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will give the joint stiffnesses, and the imaginary part will give the damping value,

combination of which represents the bolted joint.

In Figure 3-2 the comparison of the predicted FRF using initially estimated complex
stiffness K;*(w), and the measured FRF using K, " (w) for the assembled substructure

at point r are given.

using K;

= using K;

m

Receptance Amplitude H [m/N]

Frequency [Hz]

Figure 3-2 Comparison of Receptance HS. Calculated Using Initial and Actual

(Predefined) Complex Stiffness Values

Since the simulated experimental FRFs are taken exactly the same as calculated
values, FRFs predicted by using identified joint parameters come out to be identical
to the simulated experimental FRFs. However, in real applications, the experimental
values will include some experimental errors, therefore the same identification is made
by using polluted FRF values. After calculating all required FRFs of the coupled
system, {zH;;°}, {eHi“}, {eH;.¢} and {Hy;}, they are polluted by adding + 5%
noise to simulate real experimental measurements. The noise is generated with the
"normrnd” function of MATLAB with zero mean, normal distribution and standard
deviation of 5% of the maximum amplitude of the system response calculated at that

frequency, as shown in Figure 3-3.
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Receptance Amplitude [m/N]
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Frequency [Hz]

Figure 3-3 H]-Cj for the Coupled Structure

The joint identification can be made at any frequency in the spectrum using the
associated equations. Theoretically, the same values of stiffness and damping should
be found in each case. However, at certain frequencies, the calculated values vary
considerably from the actual values due to the noise in measurements and sensitivity
of the equations to such errors. Therefore, the frequency interval at which joint
dynamics has the maximum effect on the coupled system FRF should be found first.
After that, the average values in that sensitive frequency range is taken as the identified
value. It can be seen from Figure 3-4 that, changing the joint stiffness has no effect on
the FRF of the coupled system between 0-3 Hz (at the first mode). Hence, there is no
point to make identification in that region. However, the situation is totally different
at the second and third modes, therefore the joint parameters are identified at this

sensitive frequency range, which is between 3-9 Hz.

The identified joint stiffness and damping values are given in Figure 3-5 and Figure

3-6, respectively, at all frequency range and also at the sensitive region.
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Figure 3-4 Sensitivity Analysis for Coupled System
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Figure 3-5 Identified Stiffness of the Joint
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Figure 3-6 Identified Damping of the Joint

The results show that in the sensitive frequency range, which is 3-9 Hz for this case,
the proposed method (ISMM) works well. When average values are calculated, results
are found to be 2010.9 N/m for the stiffness and 3.37 N.s/m for damping, whereas the
actual values are 2000 N/m and 3 N.s/m- respectively. The actual values deviate from

0.54 % and 12.4 %, respectively.

In Figure 3-7, the receptance of the coupled system at point r, HS, is regenerated using
identified stiffness and damping values for the joint. As can be seen from the figure,

the regenerated and actual FRFs match perfectly.
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actual Hrr®
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Figure 3-7 Regenerated FRF of the Coupled Structure at Point r

From now on, identified joint parameters are shown only in the sensitive regions, not

in the entire frequency range.

3.2. Identification in Beams Using Finite Element Method

In the second case study, two beams connected with an elastic joint, as shown in Figure
3-8 is used. The boundary condition of substructure A is fixed-free and that of
substructure B is free-free. In order to model the beams, the finite element method
(FEM) is used. The mass and stiffness matrices are found by using finite element
equations [15]. To model the substructures, three nodes are used for beam A and two
nodes are used for beam B. For each node, two degrees of freedom displacement data

are used, one translational and one rotational.

Y2, Iy Y3, F3 Ya, Fy ¥s, Fs

y
E,I,m JHZ,MZ M3 o 64 M, E,I,m 05 M5 |
e
21 ) 3 o [ ) 5 ) X

L/z L/z L

/7

Figure 3-8 Two Beams Connection with Elastic Joint
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For the beams, the same material and dimensional properties are used with Tol [15].

The complex stiffness matrix representing the elastic joint can be defined as follows

kp, + jocg 0
K=" Y :
[ ] 0 kMg +j(1)CM9 (3 8)

where kg, represents the translational stiffness, cr, represents the translational

damping, ke represents the rotational stiffness and ¢, represents the rotational

damping properties of the joint.

As explained before, two different complex stiffness matrices are defined. One
represents the initially estimated matrix which is used to calculate FRFs of the initial
system, and the other represents the actual complex stiffness of the system (which
needs to be identified). The second complex stiffness matrix is used to calculate the

FRFs which represent the measured FRFs.
Complex stiffness matrix used for the initial system is as follows

10® + jw25

0 ] [N/m
0 103 + jw5

K" (@)] = | 39)

Nm/rad

The receptance matrix corresponding to the connection coordinates of the system with

initially estimated bolt parameters can be expressed as
iHj5¢ IH,-kCl (@3] [a34]]
a = = 3.10
(] LijC Hir € [asz]  [agq] (3.10)

and complex stiffness matrix used in the computation of the simulated experimental

values is as follows

6 * 10° + jw50 0

[ ()] = [ 0 5103 + jwl5 (3.11)

Simulated experimental FRFs of the assembled substructure obtained by using

[K,"(w)], for the connection coordinates of the system can be written as
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i [v33s] [v3a ]
= 3.12
W] = LHkJ EHkk l [Vas]  [Vadl ( )

Again, the only measurement required is the FRFs of the coupled structure
corresponding to the connection coordinates, and therefore the size of the receptance
matrices [, and [Y,.,] Will be 4 x 4, since the joint model is composed of both

translational and rotational parameters.

The comparison of the receptance values obtained for the coupled systems at points r

and s, by using initially estimated and actual complex stiffness matrices are shown in

Figure 3-9.
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Figure 3-9 Receptances at Points r and s

After calculating all required FRFs of the coupled system, [zH;;], [eHi €], [eHjx ]

and [gH,,¢], they are polluted with +5% noise in order to simulate experimental

34



measurements. FRFs of the coupled system are directly multiplied with uniformly
distributed data with a mean of 1 with a 5% standard deviation. The noise is generated
with “rand” function of MATLAB. Noise contamination is uniform in all regions of

the FRF curve, as in Figure 3-10.

- Hi(f with 5% noise

actual

Receptance Amplitude[m/N]

1 O’S 1 1 1 1
0 200 400 600 800 1000

Frequency[Hz]

Figure 3-10 HJ; for the Coupled Structure

As discussed in the first case study, to identify joint properties, we should examine the
frequency regions where changing joint properties affect the response of the coupled
system most. Then, the joint properties are identified by taking an average of the
results in that range of frequency.

In this case study, the following ranges are used in the identification of the joint
properties: 200-900 Hz for the translational joint properties and 15-200 Hz for the
rotational joint properties, after studying the effects of joint stiffnesses on FRFs in
Figure 3-11 and Figure 3-12.
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Figure 3-11 Coupled Structure Receptance Sensitivity to kp,,

10'4 F T T T T T T T T T
i —— Ky, =10% Nmyrad
= | (kMﬂ).Q j
E 10° } () 3
o= | -
[0}
o
2
e 10°¢
<
1]
Q
c
1]
a
8 107
[0}
o
10_8 1 1 1 1 1 1 1 1 1

0 100 200 300 400 500 600 700 800 900 1000
Frequency[Hz]

Figure 3-12 Coupled Structure Receptance Sensitivity to kg
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Identified joint stiffnesses and damping values for translational and rotational DOFs

are given in Figure 3-13 and Figure 3-14, respectively.

| — — -identified I(F:’r — 6.2291e+06 [N/m]

actual— 6e+06 [N/m)]

- “r

0.5 I
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o
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-1 ; ; ; ; ;
200 300 400 500 600 700 800 900

Frequency[Hz]
4
15500 . . . . . . .
— — - identified k,,, — 4857.5 [Nm/rad]
1 I actual— 5000 [Nm/rad]
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b
0.5 |
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Frequency[Hz]

Figure 3-13 Identified Translational and Rotational Stiffnesses Representing the

Joint
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Figure 3-14 Identified Translational and Rotational Damping Representing the Joint

The joint parameters identified by using proposed method and the percentage

differences from the actual values are given in Table 3-2.

Table 3-2 Identified Joint Properties

kwme Cmeo
kpy [N/m] | cgy [Ns/m] [Nm/rad] [Nms/rad]
Actual values 6 = 10° 50 5000 15
Identified values | 6.23 = 10° 251.59 4857.5 15.32
Error (%) 3.83 -403.2 -2.85 -2.13
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3.3. Identification in Beams Using Finite Element Software

In this section, the application of the proposed method to two beams connected with
a lap-type bolted joint is presented. As illustrated in Figure 3-15, substructure A has
fixed-free boundary conditions and substructure B has free-free boundary conditions.
Points j and k represent joint coordinates at substructures A and B, respectively. Point
s is tip point of the coupled structure and point r is the middle point of the substructure
A.

Each substructure is modeled with 5 mm length beam elements using finite element
software. In order to model beams, two-dimensional beam elements are used which is
called B21 in ABAQUS. B2l is a linear, Euler-Bernoulli type beam element.
Rectangular cross-section is assigned to these elements. Global mesh size is 1 mm,
therefore for the meshing, 300 elements are used for beam A and 225 elements are
used for beam B. Each node has 3 DOFs. For the boundary condition of clamped
beam, “encastre” type is selected. Since the FEM model is two dimensional, we are

able to obtain both translational and rotational displacement data of the nodes.

Vi, Fj

Substructure A L\BJ‘ M

A
; r . J .4)';
-~
4 ,.‘.\ se
X A
/ Substructure B
k 0., My,
ykl Fk

Figure 3-15 Substructures Coupled with a Joint

Data used to model the beams are given in Table 3-3.
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Table 3-3 Material and Geometric Properties of Beams

Material properties Beam properties

Density (kg /m3) p = 2700 |Beam width (m) w = 0.025
Modulus of elasticity

(N/m?) E = 67.10° | Beam height (m) h = 0.006
Structural Damping 0.01 Length (m) L, =03, Lg =0.225

This system is modeled in ABAQUS to see the dynamic response of the coupled
structure. In order to simulate the bolted joint, translational and rotational spring-
damping elements connected in parallel are used at the matting section, which are
acting in the direction of the degrees of freedom used to define the motion of the
structure. The damping in the joints is assumed viscous. Spring stiffness is defined as
the force per relative displacement, while the viscous damping coefficients defined as

the force per relative velocity.

As can be seen from Figure 3-16, the mode shapes of the coupled structure resemble
those of a cantilever beam, as expected. Therefore, it can be said that to model joint

properly, both translational and rotational parameters have to be used.
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Figure 3-16 Mode Shapes of the Coupled Structure

In this joint model, both rotational and translational joint parameters are used in the
complex joint stiffness matrix, as in the previous case study. In order to increase the
difference between FRFs at the tip point s in the coupled system where the initially
estimated complex joint stiffness [K;"(w)] is used, and in the actual system which
assumed to have the complex joint stiffness [K," (w)], considerably different complex

stiffness values are used in this case study as shown below.
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Complex stiffness matrix used in the initial system:

105 + jw5

oo 0
K" ()] = 0 103 + ij.S]

(3.13)

and complex stiffness matrix used in the actual system (the system of which response

Is taken as simulated experimental values) is as follows:

6 *10° + jw20 0

K, (@)] =
LKz (@)] 0 5% 10% + jwl5

(3.14)

The elements of the complex stiffness matrix representing the bolted joint are defined
in Eqgn. (3.8).

The comparison of the receptance amplitudes in both coupled systems (coupled by
using initially estimated joint parameters and by using the actual values) at points s
and r are shown in Figure 3-17 and Figure 3-18, respectively. Compared to previous
case study, the difference is deliberately increased to see the performance of the
method when the initially estimated complex stiffness matrix is considerably different
from the actual value. As a matter of fact, various different initial estimates are used
to investigate the performance of the method, and it is observed that the initial estimate

does not affect the performance of the method.
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The sensitivity of FRFs to translational and rotational joint stiffnesses in different
frequency regions are determined before the identification of joint parameters. In order
to find sensitive frequency regions, FRFs of the coupled system are used.

The sensitivities of FRFs of the tip point s to joint translational and rotational

stiffnesses are shown in Figure 3-19 and Figure 3-20, respectively.
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Figure 3-20 Sensitivity of System Response at Point s to kg
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From the Figure 3-19 and Figure 3-20, it can be seen that, for the translational joint
parameters, the sensitive frequency regions are between 200-400 Hz and between 600-

800 Hz, and that for the rotational joint parameters is between 650-800 Hz.

On the other hand, if we examine sensitivity of FRFs at point r, we can see that the
sensitive frequency regions may show some variation, as can be seen in Figure 3-21
and Figure 3-22.
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Figure 3-21 Sensitivity of System Response at Point r to kg,
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Figure 3-22 Sensitivity of System Response at r to kg
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From Figure 3-21 and Figure 3-22, it can be seen that, for the translational joint
parameters, the sensitive frequency region is between 200-800 Hz, and that for the
rotational joint parameters is between 700-800 Hz. As can be seen there are slight
changes in sensitive frequency regions, and since identified values are obtained by
averaging results in the sensitive frequency range, changing this range will affect the
identified values. The reason for selecting different frequency regions will be
explained in the next section in more detail; but in brief, FRFs of different points may

be sensitive to each joint parameter at different frequency regions.

Since the equations used for identification in both methods are exact, when exact FRFs
calculated for the actual system are used as simulated experimental results, it is
expected to identify the joint parameters accurately. Any deviation, which may be
considerably high depending on the approach used, is due to experimental
measurement errors. Therefore, in order to simulate experimental measurements
realistically, the calculated FRFs for the actual system are polluted with 5% noise as
described in the previous case studies. By using the polluted values of FRFs calculated
for the actual system and employing Eqn. (3.6), the structural modification matrix
required to modify the initial estimates for the joint parameters is calculated. Then,
the off-diagonal terms of the structural modification matrix are used to modify the
initially estimated complex joint stiffness matrix. Thus, the identification of joint

parameters is performed.

For translational joint parameters, the identified values by using different frequency
ranges, which are 200-400 Hz and 200-800 Hz, are shown in Figure 3-23 and Figure
3-24.
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Figure 3-23 Identified value of Translational Stiffness by Using Different Frequency

Regions
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Figure 3-24 ldentified value of Translational Damping by Using Different Frequency
Regions

For rotational joint parameters, the identified values by using different frequency
ranges, which are 650-800 Hz and 700-800 Hz, are shown in Figure 3-25 and Figure

3-26.
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Figure 3-25 Identified value of Rotational Stiffness by Using Different Frequency
Regions
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Figure 3-26 Identified value of Rotational Damping by Using Different Frequency
Regions

Now, in order to study the effect of the noise on the identification results, FRFs of the
coupled structure, [H; €], [gHir] s [eHix©] and [ zHy;€], are polluted with different
levels of random noise (5% and 10%). The identification results are compared in
Figure 3-27 and Table 3-4.
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Figure 3-27 Effects of Measurement Errors on Identified Joint Parameters

Table 3-4 Identified Joint Parameters and Percentage Errors for Different Noise

Level Representing Measurement Errors

kpy
[N/m]
Actual Values 6 * 10°
Identification with 10  6.172 * 105
% noise

Error (%10) 2.87
Identification with5  6.069 * 105
% noise

Error (%5) 1.15

Cry kmeo Cmo
[Ns/m] [Nm/rad] [Nms/rad]
20 5000 1.5
48.249 3679.6 1.124
141.24 —26.42 —25.07
28.219 4276 1.315
41.09 —14.48 —12.33
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3.3.1. Comparison of Two Methods when Applied to 2D Structural Systems

As explained in Chapter 2, if FRF matrices of the substructures and that of the coupled
structure at any frequency are available, then the FRF Decoupling method can be used
and joint identification can be achieved by using any of the four equations, Egns. (2.53
- 2.56). Each equation uses FRFs of the coupled system for different points. For
example, while Eqn. (2.53) uses HE,. for identification, Eqn. (2.56) uses HS,. It was
observed that the performance of the equations is different and the most accurate
results were obtained when Eqn. (2.53) was used.

However, it was recommended in [15] to use Eqgn. (2.56) for identification since it is
more practical considering the experiments applicability. Therefore, when sensitivity
of the receptance of the coupled system to the joint properties is investigated, FRFs of
the related point should be considered in determining the sensitive frequency region.
However, in the proposed method (ISMM) there is only one equation to apply, and
therefore in finding the sensitive frequency region it may be reasonable to investigate
the variation of the response with joint parameters for the points where maximum

response is observed.

In FRF Decoupling method, Tol and Ozgiiven [15] studied the accuracy of using
different decoupling equations and concluded that to increase the accuracy of the
identification the equation given below is to be used in finding the complex stiffness

matrix representing the joint dynamics
-1

[K*] = l[Hks]- [[Hss] - [Hssc]]_l . [Hsk] - [Hjj] - [Hkk] (3-15)

In that work Eqgn. (3.15) was employed by using the translational and rotational FRFs
at the tip point (point s) of the coupled structure. This approach requires the RDOF
related FRFs at the tip point, as shown in Figure 3-28. All the FRF matrices in this

identification approach are of size 2 by 2.
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Figure 3-28 Coupled Structure [15]

An alternative way of employing the same equation by avoiding the use of RDOF
related FRFs is to use more than one translational FRF at the tip point of the coupled
structure, as shown in Figure 3-29. As it was observed in [15] that this approach yields
more accurate results than the other approach, it was preferred in their experimental
studies. However, extension of this approach to 3 dimensional model is not practical
at all, since the extension of this approach to 3D model will require FRFs in more than
one point in all directions, including the RDOF related ones. Therefore, the first
approach which requires RDOF related FRFs as well, but only in one point, is used

for the comparison.
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Figure 3-29 Coupled Structure [15]

The joint parameters identified by using the proposed method and the FRF Decoupling
method are shown in Figure 3-30 to Figure 3-33.
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Figure 3-30 Identified Translational Stiffness Obtained by Using ISMM and FRF

DM
2000 2000 T
= = - ISMM— 28.219 [Ns/m] — — -FRF DM — 143.25 [Ns/m]
E actual— 20 [Ns/m] g
2 1500 2
== =
L (1
o o
E’ 1000 g
j=H j= 1
E E
] ]
2 500 °
R= h=
[e] (o]
b I b
0 Mttt in -ml,..-.u
200 250 300 350 400 200 250 300 350 400

Frequency[Hz] Frequency[Hz]

Figure 3-31 Identified Translational Damping Obtained by Using ISMM and FRF
DM
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Figure 3-32 Identified Rotational Stiffness Obtained by Using ISMM and FRF DM
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Figure 3-33 Identified Rotational Damping Obtained by Using ISMM and FRF DM

Then, the FRFs of the coupled system at the tip point s are regenerated by using the
joint parameters identified, applying ISMM and FRF DM. They are compared with
each other, as well as with the actual FRFs in Figure 3-34. It can be observed that

ISMM gives much better results.
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Figure 3-34 Comparison of the FRFs of the tip Point Calculated Using Joint
Parameters Identified by Using ISMM and FRF DM
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CHAPTER 4

IDENTIFICATION OF JOINT DYNAMICS IN BEAMS — THREE DIMENSIONAL
SPACE

In this chapter, a bolted joint connecting two beams modelled in 3D space is identified.
The system considered is composed of two beams: The first beam, substructure A, has
fixed-free boundary conditions, and the second beam, substructure B, has free-free
boundary conditions. Since substructures are modeled using three-dimensional brick
elements, each node on substructures has 6 DOFs, including three translational DOFs
(TDOFs) and three rotational DOFs (RDOFs). These beams are connected with a
bolted joint.

In this chapter, two case studies are given. In the first case study, the bolted joint is
modeled by using Spring/Dashpot elements connecting two reference points (RPs),
which are located at the center of the mating surfaces. Since RPs are points, rotational
displacement information can be obtained directly from the finite element software in
order to obtain the FRFs representing the measured values in the simulated
experiment. In the second case study, bolted joint is modeled using 3D brick elements.
In this model, in order to obtain RDOFs related FRFs, finite difference formulation is
used, and therefore some calculations must be done. For both case studies, a complete
joint model includes three translational and three rotational DOFs stiffness and
damping parameters. Therefore, two different finite element simulations were

conducted to investigate the effectiveness of the proposed identification method.

In section 4.1, finite element modeling of the system by using Spring/Dashpot -
elements representing the bolted joint is given. Then, in section 4.2, finite element
modeling of the system by using three-dimensional model of the bolted joint is

presented. In section 4.3, the model used in obtaining simulated experimental data,
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validation and demonstration of the proposed method is given. Comparison of the two

methods also studied in this section.

4.1. Finite Element Simulation of Coupled Beams by Using Spring/Dashpot
Elements for Bolted Joint

In this section, the details of the finite element simulation of coupled beams by using
Spring/Dashpot elements for bolted joint is given. In this model, two substructures are
connected to each other, as shown in Figure 4-1. Two beams are taken identical. The
width of the beams is 0.025 m, the height of the beam cross-sections is 0.006 m, the
length of the beams is 0.3 m, and the damping of the beams is taken structural damping
with a loss factor of 0.01. The material of the beams is aluminum with a modulus of
elasticity (E) of 70 GPa and density of (p) 2700 kg/m3.

Beams have meshed with C3D8R (eight-node brick element with reduced integration)
element which is a general-purpose linear brick element with 3 DOFs at each node.

For each beam, the number of elements used is 1030.

Substructure A

Substructure B

Figure 4-1 Coupled Structure Finite Element Model
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The substructure A is clamped, and substructure B is attached to it through the joint.
As shown in Figure 4-2, Surface 1 represents the surface of substructure A where the
bolt head is in contact, and Surface 2 represents the surface of substructure B where
the nut is in contact. Reference points (RPs) are assigned to the centers of the surfaces

where the bolt head and the nut are in contact with the beams.

Surface 1

b
5 ‘J Surface 2
X

Figure 4-2 Contact Surfaces

In this simplified model, modeling of a bolt is much simpler than solid modeling
because there is no need to define contact pairs. The bolt shank is modeled by using
Spring/Dashpot elements for the three translational and three rotational directions. As
it is shown in Figure 4-3, the nodes (RPs) are connected to the surfaces (Surface 1 and
Surface 2) by means of the so-called kinematic coupling constraint. In kinematic
coupling constraint, the “coupling” nodes which are the nodes on Surface 1 and
Surface 2, are constrained to the rigid body motion of a single node, which are RP1
and RP2. Therefore, the associated nodes (the nodes on the surfaces) are forced to
have the same displacement in all six DOF as a result of the coupling condition. After

that, Spring/Dashpot elements are placed between these two RPs.
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Figure 4-3 Representation of RPs and Coupling Elements

In this approach, the pretension effect is not considered for the bolt. Section cut view

of the model can be seen in Figure 4-4.

Substructure A

Substructure B

Y
z 4 Step: dinamik
X Increment  628: Frequency = 499.1

Figure 4-4 Section View of the Model

In order to fully define the joint, three translational and three rotational springs and

dashpots elements are used.
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4.2. Finite Element Simulation of Two Beams Coupled with a Bolted Joint by
Using 3D Brick Elements

Depending on the level of accuracy required, different modeling approaches are
available for the bolts in a beam connection when ABAQUS FEA is used. Among
several methods, the most accurate method is modeling the bolt’s entire geometry,
including the components such as bolt head and nut, with solid elements. This
modeling method allows contact interactions between all the elements concerned as is
the case in reality. This modeling approach will be explained in Section 4.2.3.
However, firstly some issues about modeling in ABAQUS, such as solver selection,

will be explained.
4.2.1. Selecting Solver

In ABAQUS, two solver options are available, Standard and Explicit. In
ABAQUS/Standard, convergence is checked at the end of each load increment. If the
results have not converged, the size of the loading increment is reduced before another
convergence attempt is made. However, for a very complicated problem, it may not
be able to find a converging solution, and in that case, it will fail. Finding convergent
solutions at multiple time increments in dynamic loading cases is very expensive. For
that reason, ABAQUS/Explicit can be used as an alternative. It uses very small load
increments/time steps, and after each load increment/time step is applied, the analysis
moves on, regardless whether it converges or not. Thus, by using it, complicated
problems can be solved, however it is possible to have a wrong solution. Besides,
because of the very small load increments/ time steps used, computing time is much
higher than Standard version. Accordingly, if the solution converges,
ABAQUS/Standard results in a more accurate solution in less time. Therefore, in this
study ABAQUS/Standard version is used for all analyses.

61



4.2.2. Description of the Finite Element Model

In order to simulate a real experimental case of two beams connected with a bolted
joint as accurately as possible, so that the contact interface can be modelled better and
the simulated experimental values of the required receptances can be obtained more
accurately, the finite element software ABAQUS/Standard is used. It is aimed to

model the bolted joint as closely as possible to a real experimental case.

The solid model, as shown in Figure 4-5 and Figure 4-6, is the most realistic finite
element model of a bolted connection among other modeling methods, such as using
wire elements or beam elements. In this model, in order to mesh both the beams and
the bolt, three-dimensional brick elements, called C3D8R in ABAQUS are used. As
mentioned before, the element is described by eight-noded, linear elements with 3
DOFs at each node. Therefore, when using a three-dimensional brick element in a
model, obtaining rotational displacement information is not possible.

Substructure A

’ Substructure B
Z
X

Figure 4-6 Section View of the 3D Bolted Connection

The external diameters of the bolt head and the nut are taken as those of a real M8 bolt

and nut. If the bolt shank and all associated elements, such as nut, are modeled as one
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part, modeling is faster because of the elimination of tieing associated surfaces of the
bolt as in Figure 4-7. The reason behind this simplification is that because of the high
preload that is likely to exist in the bolt, it can be assumed that there would be no
relative motion between the bolt and the nut. Moreover, the bolt thread was not

modeled since the performance of thread is not our concern in this study.

According to [29], the small depth of the washer suggests asmall variation
in contact pressures, high in magnitude, and unlikely to allow any relative movement
on either surface of the washer. Therefore, it is concluded not to model the washers
underneath the bolt head and the nut, because adding two extra contact interface to the
model would have increased the computational time considerably and would not

increase the accuracy notably.

Figure 4-7 3D Modelling of Bolt Head, Bolt Shank and Nut as One Part

As stated above, this approach allows for assigning contact interactions between all
relevant components/parts that come into contact in a bolted connection. In Figure
4-8 and Figure 4-9, the contact pairs between bolt and beams, and beam and beam are

shown.
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Figure 4-8 Contact Regions Between 1) Bolt Head and Beam A 2) Nut and Beam
B

Figure 4-9 Contact Region Between Beams

As visualized in Figure 4-8 and Figure 4-9, the model includes surface-to-surface
contact elements, which consists of master and slave nodes. They are used on the

interfaces between:

e The bolt head and the upper surface of beam A
e The bolt nut and the lower surface of beam B

e Between the lower surface of beam A and the upper surface of beam B
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4.2.3. Interaction Properties

ABAQUS/Standard offers two formulations for the modeling of the interaction of two
deformable bodies. The first one is a small sliding formulation in which the contact
surfaces are only allowed to undergo relatively small sliding relative to each other, but
surface rotation is permitted. The second one is a finite sliding formulation. This
formulation allows the separation of surfaces as well as finite amplitude of sliding and

arbitrary rotation of the surfaces [30]. In this study, finite sliding formulation is used.

Contact problems in finite element methods are nonlinear. To determine which nodes
are in contact, ABAQUS implements a master/slave contact algorithm. Surfaces
generally transmit shear and normal forces across their interface when they are in
contact. Therefore, the analysis may need to take into account frictional forces that
resist relative sliding of the surfaces. Coulomb friction is a common model of friction
used to define the interaction of the contact surfaces. The model uses a friction
coefficient p to characterize the frictional behavior between the surfaces.

The default friction coefficient is zero. Critical shear stress value depends on the
normal contact pressure. According to the following equations, the tangential motion,
which is sliding, is zero until the surface traction reaches to a critical shear stress value

of
Teritical = WP (4-1)
The equivalent shear stress 7,, = /7412 + 7,2 (4.2)

where u is the coefficient of friction, and p is the contact pressure between the
contacting surfaces. So, this equation says that the contacting surfaces will not slide
relative to each other until the equivalent shear stress across their interface equals to

the limiting frictional shear stress, up.
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Figure 4-10 Frictional Behavior [31]

In Figure 4-10, the solid line summarizes the Coulomb friction model’s behavior; there
is zero slip (zero relative motion) of the surfaces when they are stick condition ( shear
stress < pup).

It can be complicated to simulate ideal friction behavior. ABAQUS utilizes a
formulation of penalty friction with an allowable “elastic slip” shown by the dotted
line in Figure 4-10.

The elastic slip is the small amount of relative motion that occurs between the surfac
es when the surfaces should stick. ABAQUS selects the penalty stiffness (the slope of
the dotted line) automatically to make this allowable “elastic slip” is a very small
fraction of the length of the characteristic element. Since the penalty friction
formulation works well for most problems [3], in this study, penalty friction
formulation is used together with 0.3 coefficient of friction for aluminum-aluminum
contacting surfaces [32]. Contact parameters can be defined from the “Interaction”
module in ABAQUS.

A model of the contact characteristics generally needs parameters for the normal
behavior in addition to tangential behavior. The “hard” contact pressure- overclosure
relationship can be used in ABAQUS to describe the contact model. At constraint
locations, it minimizes the penetration of the slave surface into the master surface as

shown in Figure 4-11.
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Figure 4-11 Default pressure-overclosure relationship [33]

To sum up, contact properties between contacting surfaces, as stated before, were
modeled as a combination of tangential and normal behavior. “Penalty” friction
formula with the friction coefficient value of 0.3 is used for tangential behavior, and
for normal behavior “hard” contact formula is considered with linear contact stiffness.
Since the bolts are more rigid than beam structure, they are denoted as master surfaces

in contact pairs.

4.2.4. Bolt Preload

Since the contact stiffness values are determined based on contact preloads, the bolt

should be preloaded. The analysis has been performed through the following steps;
Initial step: Defining boundary conditions and describing interaction properties.
Stepl: Bolt preloading and activating contact elements.

Step2: Fixing the bolt length.

Step3: Applying dynamic load.

Before the steady-state dynamic analysis step is conducted, a static calculation step is
performed to simulate the bolt’s preload. The calculations resulting from this static
step bring out additional stiffness to the model as contact pairs are made in the

interface, and geometrical non-linearities occur.
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The pretension is simulated by dividing the bolt body into two parallel surfaces in

the bolt shank and apply preload force, as shown in Figure 4-12.

Y

oo

X

Figure 4-12 Preloaded Bolt

For calculating the preload value, Shigley [34] is taken as a reference. Bowman
recommends a preload of 75 percent of proof load [35]. According to Shigley’s
guidelines, the following is recommended to be used for preload:

F; = 0.75E, , for nonpermanent connections, reused fasteners (4.3)
where F, is the proof load, obtained from the equation
E, = A.S, (4.4)
Here S, is the proof strength and A, is the tensile stress area.

According to the above calculation, the minimum preload must be 22784 N for grade
10 steel bolts.

Bolt length is fixed at its current position after applying bolt load (pretension) to the
bolt. This method helps to prevent the problem of elongation of the bolts under the

load. Otherwise, ABAQUS will continue to apply pretension force.
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All three degrees of freedom in the pretension section is restricted during the first two
steps. This degree of freedom served as the artificial boundary condition to avoid the
numerical singularity error that can be arisen from rigid body motion. This artificial
boundary condition is then removed after preloading and activating the contact
properties. Details of the contact pressure (CPRESS output variable) on substructures

and bolt surfaces are given in Figure 4-13 to Figure 4-15.

CPRESS
+3.108e+08 Substructure A-
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+1. 24|
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Substructure A-
lower surface

Step: preload

z ﬂ Increment  7: Step Time = 1.000
Primary Var: CPRESS

Y Deformed Var: U Deformation Scale Factor: +1.000e+00

Figure 4-13 Contact Pressure at Surface Nodes for Substructure A
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Figure 4-14 Contact Pressure at Surface Nodes for Substructure B
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Figure 4-15 Contact Pressure at Surface Nodes for Bolt
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4.2.5. Direct Steady-State Dynamic Analysis

ABAQUS /Standard offers a “direct” steady-state dynamic analysis procedure for

structures undergoing continuous harmonic excitation.

The structure may exhibit material and geometrical nonlinear behavior as well as
contact nonlinearities for the calculation of the base state. Moreover, viscous damping
and discrete damping (such as dashpot elements) can be included in this procedure.
Considering all of these, it can be seen that direct steady-state dynamic analysis is the
most suitable procedure for this study [30]. It should be noted that a “direct solution
steady-state dynamic analysis” is used to calculate the steady-state linearized dynamic
response of the system to harmonic excitation. In order to obtain FRFs of the
assembled structures, 1 N concentrated force is applied and displacement data at the

nodes are extracted.
4.3. Identification of Joint Properties in Beams in 3D Space

In this section, in order to verify and demonstrate the implementation of the suggested
method, two case studies are given. For both case studies, substructures are modeled
using three-dimensional brick elements. The difference between case studies is the

modeling method of the bolted joint as explained before.

In the first case study, the receptance values of the initial system and of the measured
system are calculated by using RPs values. In the second case study, while receptance
values of the initial system are obtained by using RPs values, the receptances in the
measured system are obtained by using the simulated experiment model which uses
three dimensional elements for bolt.

4.3.1. Case Study 1

In this case study, two identical beams, substructure A having fixed-free boundary
conditions and substructure B having free-free boundary conditions, are coupled
elastically with a joint. Each substructure is modeled with the three-dimensional brick

elements using finite element program ABAQUS. In this model, in order to represent
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the bolted joint, spring-/dashpot elements with coupled reference points (RPs) are

used.

In order to use the proposed identification method, the FRFs of the assembled structure
at the connection coordinates are required. The FRFs of the initially estimated bolted
model can be obtained using RPs’ translational and rotational displacement
information, directly. In this case study, the FRFs of the measured system can also be
obtained from the corresponding FE model with the actual values for the connection

dynamics in the same manner.

As can be seen from Figure 4-16, three translational and three rotational springs and

dashpots are placed between connection points (RPS).

Substructure A Substructure B

Figure 4-16 Using Predefined Complex Stiffness Matrix for Both Systems

72



The complex stiffness matrix representing the elastic joint can be defined as follows

Ky + jocCpy 0 0 0 0 0
0 kng + jweyg, 0 0 0 0
(K] = 8 8 kpy +0jwcFy ) +0' 0 0 45)
MO, T JWCyo, 0 0
0 0 0 0 Ky + jwcg, 0
0 0 0 0 0 kMGZ +ijMGZ

where k; is the force to linear displacement stiffness in the i direction, c; is the force
to linear displacement damping in i direction and likewise, ky, is the moment to
angular displacement stiffness in i direction and cy, is the moment to angular
displacement damping in i direction of the joint (i can be x, y and z). The dynamic
properties of the joint for the initially estimated and measured systems are tabulated
in Table 4-1.

The receptance matrix corresponding to the connection coordinates of the system with

initially estimated bolt parameters can be expressed as
H,¢ H,*
[emm] = [ e (4.6)
" LGS HC

Experimentally measured FRFs (simulated experimental values) of the assembled

structure at the connection coordinates of the system can be written as

H..¢C _H.C
By Ek l (4.7)

c c
eHij gHix

[Vimm] = l
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Table 4-1 Joint Parameters for Coupled Structures

initially parameters
estimated need to be
bolt identified
parameters K, (w)]
(K1 (@)]
kg, :  Translational stiffness in the x-direction [N/m] 10° 10°
cpx . Translational damping in the x-direction 1 10
[N.s/m]
kg, . Translational stiffness in the y-direction [N/m] 10° 106
cpy . Translational damping in the y-direction 3 30
[N.s/m]
kr, :  Translational stiffness in the z-direction [N/m] 10° 107
cp, .  Translational damping in the z-direction 2 20
[N.s/m]
kye,: Rotational stiffness in the x-direction 5% 103 103
[N.m/rad]
cme,. Rotational damping in the x-direction 1 5
[N.m.s/rad]
LI Rotational stiffness in the y-direction 5103 10*
[N.m/rad]
Cmo,: Rotational damping in the y-direction 1 10
[N.m.s/rad]
kye,. Rotational stiffness in the z-direction 10?2 103
[N.m/rad]
Cmg,- Rotational damping in the z-direction 1 5
[N.m.s/rad]

As explained before, the only required measurement is the FRFs of the coupled

structure at the connection coordinates, and therefore the size of the receptance
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matrices [0,,,] and [y,.n] will be 12x12, since the joint model is composed of
translational and rotational parameters for all six DOFs. The components of the
receptance matrices are shown in Eqn. (4.8), where p and q represent measurement

and excitation points, respectively.

r C c C Cc Cc C A
prxq preyq pryq xpexq przq prezq
c c C c c c
H Bypq H By, 0y, H 0y,Yq H By, O H 0yp7q H 0y, 02,
c C c C C C
H € Hprq Hyzoeyq Hyzﬂ’q HYpexq HYqu HYpQZq 48
LE*'pq H C C c c (4.8)
Oxp¥q OOy, OxpYq OO, OxpZq OOz,
C C Cc C C C
H H
ZpXq ZpOy ZpYq Zp qu ZpZq Zp qu
H c c c
| H6,,xq 02,0y, 02pYq 020, 02p%q 02,02,

After calculating all required FRFs of the coupled system, dynamic structural
modification matrix [D,,,,] is calculated and by adding off-diagonal terms of it to
[K;"(w)] will give the identified complex stiffness matrix [K* (w)] representing the
joint dynamics in six DOFs.

__ [ J coord.

—A (6x6)
Dl = |~ 4 (6x6)

k coord. (4.9)

[Kigen™ (@)] = [K1"(0)] + [4]

In Figure 4-17, the comparison of the predicted FRF using initially estimated complex

(4.10)

stiffness matrix [K;"(w)], and the measured FRF using [K,"(w) ] for the assembled

substructure at points s and r in y-direction are given.
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Figure 4-17 Receptances at Points r and s in y-direction

As mentioned in Chapter 3, the sensitivity of FRFs to different joint stiffnesses should
be determined before the identification of joint parameters. In Chapter 3, since the
joint model is composed of one translational and one rotational stiffness, there are two
different sensitive frequency regions for the identification. However, for three-
dimensional joint model, all the three translational and three rotational stiffnesses and

damping parameters should be identified at their sensitive regions.
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The sensitivities of FRFs of the tip point s to joint translational and rotational
stiffnesses are shown in Figure 4-18 to Figure 4-23. Sensitivity of the system response

to each joint parameter is investigated and tabulated in Table 4-2.

Changing kg, kng and kg, affects the receptance amplitude of the coupled system
at point s in x-direction as shown in Figure 4-18, Figure 4-22 and Figure 4-23.
Likewise, changing kg, and ke, affects the receptance amplitude of the coupled
system at point s in y-direction as shown in Figure 4-19 and Figure 4-21 and finally
changing kg, and ke _ affects that of in z-direction as shown in Figure 4-20 and

Figure 4-21.

It should be noted that if we are interested in vibrations only in one direction, for
example the vibration of the coupled beams in transverse direction, we need to do
sensitivity analysis only for the parameters kg, and kyg_, since only these two
parameters will affect the response of the system in that direction. In this section, the
sensitivity analysis was performed for all six stiffnesses values, since the responses in

three directions will be examined.
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Table 4-2 Sensitive Regions

Region 1 Region 2
Kpy 200 Hz - 300 Hz 450 Hz - 520 Hz
kg, 180 Hz - 300 Hz -
ke, 20 Hz - 600 Hz -
ko, 50 Hz - 120 Hz 350 Hz - 500 Hz
kwme, 200 Hz - 500 Hz -
kue, 475 Hz - 525 Hz -

Each joint property is identified in the range of frequency where the response is
sensitive to that parameter, and the average of the values are taken in that region. The
ranges that are used in the identification of the joint properties in this case study are
tabulated in Table 4-2.

Now, in order to study the effect of the noise on the identification results, FRFs of the
coupled structure, [gH;;°], [gHir], [Hi"] and [gHy;€], are polluted with 5%
random noise, as explained before. The identification results for translational and

rotational properties are shown in Figure 4-24 to Figure 4-27, respectively.
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It is observed that translational joint stiffness identification results are very good
compared to translational damping values. Note that, the damping properties are prone
to noise much more than the stiffness properties, since their effects on the coupled
system dynamics is much less than those of the joint stiffness values. For the damping
parameters, the frequency ranges used for the identification of stiffness values are
employed. The average values of the identification results in these ranges are given in

Table 4-3 and Table 4-4.

Table 4-3 Identified Translational Joint Parameters and Percentage Errors

Actual Identification Region = Identification Region
Values 1 2
kpy [N/m] 1.017 = 10° 1.013 % 10°
Error (%) 106 1.7 1.3
kg, [N/m] 1.095 * 10°
Error (%) 10° 9.5
kg, [N/m] 1.003 * 107
Error (%) 107 0.3
Crx [N.s/m] 7.799 12.696
Error (%) 10 -22.01 26.96
Cpy [N.s/m] 45976
Error (%) 30 53.253
Cpz [N.s/m] 54.114
Error (%) 20 170.57
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Table 4-4 Identified Rotational Joint Parameters and Percentage Errors

Actual Identification Identification
Values Region 1 Region 2
kuo, [N.m/rad] 965.07 738.77
Error (%) 10° -3.493 -26.123
kue, [N.m/rad] 9838.3
Error (%) 10* -1.617
kyo, [N.m/rad] —40.846
Error (%) 10° -104.08
Cme, [N.m.s/rad] 4.896 4.779
Error (%) 5 -2.08 -4.42
Cme, [N.m. s/rad] 10.074
Error (%) 10 0.74
Cume, [N.m.s/rad] 0.042
Error (%) 5 -99.16

4.3.2. Comparison of Two Methods when Applied to 3D Structural Systems

The joint parameters identified by using the proposed method and FRF decoupling
method, are shown in Figure 4-28 to Figure 4-31. The joint parameters identified by
using two methods and the percentage differences from the actual values are given in
Table 4-5 and Table 4-6.
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Table 4-5 Comparison of Identified Translational Joint Parameters and Percentage
Errors

krx [N/m]
Error (%)

kry [N/m]
Error (%)

kp, [N/m]
Error (%0)
Crx [N.s/m]
Error (%0)
cpy [N.s/m]
Error (%)
Crz [N.s/m]
Error (%)

Actual Values

10°

10°

107

10

30

20

ISMM

1.017 = 106

1.7

1.095 * 10°

9.5

1.003 * 107

0.3
7.799
-22.01

45.976
53.25

54.114
170.57

FRF DM
4.341 = 10°
-56.6
7.014 * 10°
-29.86
9.987 % 10°
-0.13
268.62
2586.2
32.047
6.83
330.49
1552.45

Table 4-6 Comparison of Identified Rotational Joint Parameters and Percentage
Errors

kyo, [N.-m/rad]
Error (%)

ke, [N.m/rad]
Error (%)

ko, [N.m/rad]
Error (%)
Cumo, [N.m.s/rad]
Error (%)
Cmo, [N.m. s/rad]
Error (%)
Cmo, [N.m.s/rad]

Error (%)

Actual Values

103

104

103

10

95

ISMM
965.07
-3.493
9838.3
-1.617
-40.846
-104.08
4.896
-2.08
10.074
0.74
0.042
-99.16

FRF DM
680.68
-31.932
8732.5
-12.675
820.44
-17.95

4.289

-14.22
9.172
-8.28
3.79
-24.2



Knowing natural frequencies and mode shapes of the coupled system may help to
understand the reason of the deviation from the actual FRFs, better. As shown in
Figure 4-32; the first, third, fourth and sixth modes are basically in y direction. On the
other hand, it can be seen that from Figure 4-33 that the second, fifth and seventh

modes are basically in x direction.

Step: nat
Mode 1: Freq= 13.977

step: nat
vode 3:Freq = 84,186

Step: nat
Vode 4: Freq = 246.75

Y
Step: nat
Mode 6:Freq = 467.14 Z

Figure 4-32 Natural Frequencies and Mode Shapes of the Coupled System
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Mode 2: Freqg = 65.598 Mode 5: Freq= 381.49

Step: nat X

Mode 7:Freq= 510.11

Figure 4-33 Natural Frequencies and Mode Shapes of the Coupled System

The FRFs of the assembled system are regenerated by using the joint parameters
identified using ISMM and FRF DM, at the tip point, and they are compared with each
other, as well as with the actual FRF in Figure 4-34 to Figure 4-38.

As it can be seen from Figure 4-34, the FRFs regenerated by using the joint parameters
obtained from ISMM have some deviations from the actual FRFs in x direction in the
third mode which corresponds to the torsional mode of the system (Figure 4-33). From
the sensitivity of the related FRF to ky_ (Figure 4-23), it can be seen that it has the
maximum effect on the FRFs in that frequency regions. This explains why the
accuracy of the regenerated FRF is not so good in this region, as can also be seen from

Table 4-6, since kg, could not be identified accurately.
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Figure 4-34 Comparison of the FRFs of the Tip Point Calculated Using Joint
Parameters Identified by Using ISMM and FRF DM in x Direction

In order to quantify errors for the comparison of FRFs calculated using joint
parameters identified by employing ISMM and FRF DM, two different error criteria
defined in [36] are used.

The first one is “Amplitude Error” which is the difference between the maximum
receptance amplitudes obtained by using joint parameters identified and the exact

maximum receptance amplitude in the frequency range of interest, and it is defined as

obt
ax—Xmax

i xex
Amplitude Error = | A _—

c
Xmax

x100 (4.11)

The second one is “Frequency Error” which is the difference between the resonance
frequency values corresponding to the maximum receptance amplitude obtained and

the exact value. It is expressed as follows

exc obt
Wmax— Wmax

exc
max

Frequency Error = x100 (4.12)
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The errors related with FRFs calculated in x direction in two specific frequency ranges

(Figure 4-35) are given in Table 4-7.
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Figure 4-35 Comparison of the FRFs of the Tip Point in Frequency Ranges

30 Hz - 90 Hz and 445 Hz - 560 Hz

Table 4-7 Amplitude and Frequency Errors for the Receptance HS, in x — Direction

Amplitude Error (%) | Frequency Error (%)
ISMM 6.66 0.25
30 Hz — 90 Hz
FRF DM 29.70 1.24
ISMM -- --
445 Hz — 560 Hz
FRF DM 34.16 0.62
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From Figure 4-36, it can be seen that the FRFs regenerated by using the joint
parameters obtained from ISMM perfectly match with the actual FRF in y direction
(transverse direction) but the FRFs regenerated by using the joint parameters obtained
from FRF DM have some slight deviations from the actual FRF. It is observed that
while the differences between the identified values using ISMM and FRF DM and the
actual ones are not very small, their effect on the system dynamics is not so significant.
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Figure 4-36 Comparison of the FRFs of the Tip Point Calculated Using Joint
Parameters Identified by Using ISMM and FRF DM in y Direction

Again, in order to quantify errors, amplitude error and frequency error are calculated
for the FRFs calculated in y direction by using identified parameters (Figure 4-37)

are given in Table 4-8.
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Figure 4-37 Comparison of the FRFs of the Tip Point Calculated Using Joint
Parameters Identified by Using ISMM and FRF DM

Table 4-8 Amplitude and Frequency Errors for the Receptance HS, in'y — Direction

Amplitude Error Frequency Error
(%) (%)
ISMM 1.89 0
70 Hz — 100 Hz
FRF DM 14.76 0
220 Hz - 265 | ISMM 1.97 0.06
Hz FRF DM 6.65 0.32
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Finally, it can be seen from Figure 4-38 that the FRFs regenerated by using the joint
parameters obtained from ISMM and FRF DM perfectly match with the actual FRF in

z direction.
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Figure 4-38 Comparison of the FRFs of the Tip Point Calculated Using Joint
Parameters ldentified by Using ISMM and FRF DM in z Direction
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4.3.3. Case Study 2

FRFs involving rotational information are of the type, rotation/force,
translation/moment and rotation/moment and they may represent 75% of the whole
FRF matrix which cannot be ignored. The primary reason for the problems in
obtaining rotational data are mainly due to the fact that there are no angular
transducers available or practical means of implementing momentary excitations. In
acquiring a complete view of the system dynamics, data regarding rotational degrees
of freedom plays a major role. In this case study, obtaining RDOF related FRFs from
translational FRFs in identifying joint parameters for all six DOFs is studied. As
explained before, in this case, the bolt is modeled using three-dimensional brick
elements. Therefore, it is not possible to obtain RDOFs related FRFs from the finite
element simulation. Furthermore, in real applications we will need experimentally

measured values.

In order to estimate the RDOF related FRFs of the assembled system at the joint
coordinates, j and k, finite difference method is used as explained in Chapter 2. In this
study, since identification are done for all six DOFs, one set of measurement is not

enough to obtain all the information.

As a reminder of the method, Figure 2-5 given in Chapter 2 can be revisited. Three
points on the structure can be defined: point 2 is the reference point at which RDOF
FRFs are required, and points 1 and 3 are measurement points. The close-
accelerometers method has been performed with three accelerometers placed in
constant distance close to one another, as shown in Figure 4-39. By using Egns. (2.49)
and (2.50), the predicted receptance matrix that includes rotational FRFs for point 2
can be obtained.
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Figure 4-39 Finite Difference Method

In this case study, in order to obtained [y,,,,, | which is the measured receptance matrix

corresponding to joint coordinates, we need at least 4 sets of measurements. The goal
is to obtain as many of the elements of this matrix EHqu ; but it is not possible due to

the geometry of the substructures, which will be explained in section 4.3.3.1.

[(Hyn© Hyo, ¢ Hyey® Hyg ¢ Hyey® Heg ©]
XjXj xleyj Xjyj xjexj XjZj xjezj
c c c c c
Ho, x;” Hoy 0, Hoyy;" Hoy0,~ Hoy s~ Ho, e,
c c c c c c
Hy;x; Hy;e,, Hyy;™ Hyjo,, Hyjz;" Hyo,,
H ¢ = g g g (4.13)
EYj) T c c C c c C :

Hexjx,- Hexjayj Hg, v, Hexjex}. Heszj Hexjezj

C C Cc Cc Cc

H, . H,. H,.,. H,. H,.,. H,.

ZjXj ZJHyj Zjyj zjexj ZjZ] ZJQZJ.
C c c c c

c
_HBijj Hezjeyj Hezjyj Hezjex]. Hezjzj Hezjezj ]

The point corresponding to the joint coordinate “j” is shown as J11 (which is the same

point with rpl) in Figure 4-40 and Figure 4-41.
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Figure 4-41 Force Points for j coordinate

The point corresponding to the joint coordinate “k” is shown as K11 (which is the
same point with rp2) in Figure 4-42 and Figure 4-43.

Figure 4-42 Measurement Points for k coordinate
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Figure 4-43 Force Points for k coordinate

As can be seen from Figure 4-40 to Figure 4-43, there are three measurement and three
excitation points at each axis. In order to explain the procedure better, an example

calculation for estimated Hjjc and ijcis shown below.

Measurement 1

As shown in Figure 4-44, jcX, jbX and jaX are the force excitation points and J3, RP1
and J1 are the measurement points where the accelerometers are placed at. sz is the

constant spacing between points on z axis.

J1

RP1

13
aX

z ~— ‘ —/

jbX

v Oy

jeX

Figure 4-44 Measurement 1 Points

Transformation matrix is obtained using constant spacing as follows
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_ 170 25, 0
[TZC] - 25, [_1 O 1] (4'14)

Then, rotational FRF at points RP1 and RP2 are calculated by using the second-order-
central transformation matrix as follows:

Hxx ery

[Heser] = [ I = [Tyc] [Himeas1]- [TZC]T (4.15)

Hg x Hg,e,

where [H,.1] represents the estimated FRFs in x and 6,, at points RP1 and RP2, and
[Himeas1] denotes the measured translational FRFs at points j1,7p1 and j3 for the
calculation of EHij and k1, rp2 and k3 for the calculation of EHij which are shown
in Egns. (4.16) and (4.17), respectively.

[ Hiijax  Hjijpx  Hjijex |

[Hmeas1] = |Hrp1jax  Hrpijpx  Hrpijex| for EHij (4.16)
| Hisjax  Hjsjpx  Hjzjex |

[ Hiijax  Hiijpx  Hiajex |
[Hmeas1] = |Hrpzjax  Hrp2jox  Hrpzjex| for gHy* (4.17)

| Hisjax  Hisjpx  Hisjex |

Excitation and measurement points are shown in Figure 4-45 and Figure 4-46 for

gH;;€ and gH, ;, respectively.

Figure 4-45 Measurement 1 Points for the Calculation of EHij
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RP2

Figure 4-46 Measurement 1 Points for the Calculation of EijC

Measurement 2

As shown in Figure 4-47, jcZ, jbZ and jaZ are the force excitation points and J2, RP1

and J4 are the measurement points where the accelerometers are placed at. sx is the

constant spacing between points at x axis.

Figure 4-47 Measurement 2 Points

Transformation matrix is obtained using constant spacing as follows

e
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Then, rotational FRF at points RP1 and RP2 are calculated by using the second-order-
central transformation matrix as follows:

sz Hzey

[Hesez] = [ l = [Txcl- [Hmeasz2]- [Txc]T (4.19)

Hy , Hgpg,

where [H,,] represents the estimated FRFs in z and 6, at points RP1 and RP2, and
[Hpeas2] denotes the measured translational FRFs at points j2,7p1 and j4 for the
calculation of EHij and k2, rp2 and k4 for the calculation of EH]-]-C which are shown
in Egns. (4.20) and (4.21), respectively.

[ Hizjaz  Hjzjpz  Hjzjez |

[Hmeasz] = |Hrptjaz  Hrpijpz  Hrpijez| for gHj;¢ (4.20)
| Hisjaz  Hjajpz  Hjajez |

[ Hizjaz  Hikzjpz Hizjez |
[Hmeasz] = |Hrpzjaz  Hrpzjbz - Hrpzjez| for gHy;© (4.21)

| Hiajaz  Hiajpz  Hiajez |

Excitation and measurement points are shown in Figure 4-48 and Figure 4-46 4-49 for

gH;;¢ and gHy;©, respectively.

Figure 4-48 Measurement 2 Points for the Calculation of EHij
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s

Figure 4-49 Measurement 2 Points for the Calculation of EijC

Measurement 3

As stated in Figure 4-50, j2Y, RP1Y and j4Y are the force excitation points and J2,
RP1 and J4 are the measurement points that accelerometers are placed. sx is the

constant spacing between points at x axis.

]ZY *mmmn r 2 ‘\ >y

Figure 4-50 Measurement 3 Points

Rotational FRF at points RP1 and RP2 are calculated by using the transformation

matrix in Eqn. (4.16) as follows:

Hyy Hyez] = [Txc]- [Hmeass]- [Txc]T (4-22)

[Hest3] = ngy HQZGZ
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where [H,,:3] represents the estimated FRFs in y and 6, at points RP1 and RP2, and

[Hpmeas3] denotes the measured translational FRFs at points j2,7p1 and j4 for the

calculation of EHij and k2, rp2 and k4 for the calculation of EH]-]-C which are shown

in Eqns. (4.23) and (4.24), respectively.

Hjs oy
[Hmeas3] = HTPUZY

| Hjajoy

Hyzjoy
[Hmeas3] = HTPZJZY

| Hyajoy

HjZRPlY
HrlePlY
Hj4RP1Y

HkZRPlY
HrpZRPlY
Hk4RP1Y

Hjjjay
H rpljay
Hjajay |

Hyojay
Hrp2j4Y

Hyajay |

for gH;;¢ (4.23)

for gHy;° (4.24)

Excitation and measurement points are shown in Figure 4-51 and Figure 4-52 for

gH;;¢ and gHy;©, respectively.

Figure 4-51 Measurement 3 Points for the Calculation of EH]-J-C
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Figure 4-52 Measurement 3 Points for the Calculation of EijC

Measurement 4

As stated in Figure 4-53, j1Y, RP1Y and j3Y are the force excitation points and J1,
RP1 and J3 are the measurement points that accelerometers are placed. sz is the

constant spacing between points at z axis.

11

Figure 4-53 Measurement 4 Points

Rotational FRF at points RP1 and RP2 are calculated by using the transformation

matrix in Eqn. (4.12) as follows:

H H 0,
[Hest4] = Hyy Hy ] = [Tzc]- [Hmeas4]- [Tzc]T (4-25)
Oxy 0x0x
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where [H,,:4] represents the estimated FRFs in y and 6, at points RP1 and RP2, and

[Hpmeasa] denotes the measured translational FRFs at points j1,7p1 and j3 for the

calculation of EH]-]-C and k1, rp2 and k3 for the calculation of EH]-]-C which are shown

in Eqns. (4.26) and (4.27), respectively.

[Hmeas4] =

[Hmeas4] =

Hi1jiy  Hjirpry
HrpljlY HrlePlY
| Hj3j1Y Hj3RP1Y

HkljlY HklRPlY
HrijlY HrpZRPlY

| Hizjiy - Hisrpiy

Hjyjsy |
Hrp1j3Y
Hjsjsy |

Hk1j3Y
Hrp2j3Y

Hyzjzy |

for gH;° (4.26)

for gHy;° (4.27)

Excitation and measurement points are shown in Figure 4-54 and Figure 4-46 4-55 for

gH;;¢ and gHy;©, respectively.

Figure 4-54 Measurement 4 Points for the Calculation of EH]-]-C
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'_1 RP2

Figure 4-55 Measurement 4 Points for the Calculation of EHk]-C

After four set of measurements, 8 elements of EHqu can be found as shown below:

[ Hyx, ¢ Hye, ¢ 0 0 0 0
Cc Cc
Ho, »  Ho, 0, 0 0 0 0
Cc Cc Cc
c 0 0 Hij/j HJ/jgx- 0 Yj0z;
glj;~ = . " (4.28)
0 0 Ho, y,° He, o, 0 0
J ] 7
0 0 0 0 Hy 2, 0
0 0 Hez.yjc 0 0  Hp o ©
] ] ] .

The components of the matrix which are shown in red are obtained from Measurement
1. The components which are shown in blue, green and orange color are obtained from

Measurement 2, 3 and 4 respectively.

The FRF of the assembled system is regenerated by using the identified parameters of
the bolted joint, and it is compared with the actual FRF in Figure 4-56. As it can be
seen from the regenerated FRFs of the coupled structure in y direction a pretty good
match is obtained. However, the same agreement between the regenerated and the
actual FRFs for the coupled structure in x direction cannot be obtained, as shown in
Figure 4-57. Further investigation showed that the main reason for this difference is
not using all the elements of the receptance matrices shown in Eqn. (4.26), in the
identification. This point will be explained in detail in section 4.3.3.1.
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Figure 4-56 Regenerated FRF of the Coupled Structure Using Identified Joint
Properties in y Direction
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Figure 4-57 Regenerated FRF of the Coupled Structure Using Identified Joint
Properties in x Direction
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In order to study the transferability of the joint properties identified, the identified joint
parameters are used to calculate the receptances of the cantilever beam coupled to a
shorter beam (that is, the substructure B is changed). The predicted FRFs are compared
with the actual ones (simulated experimental values obtained from the FE analysis of
the assembly where 3D elements are used for the bolt). In this case study, the length
of substructure B is selected as 0.2 m and the length of substructure A is kept the same
(0.3 m). As can be seen from Figure 4-56 and Figure 4-58, except a slight deviation
around the first anti-resonance in the response in y-direction, the regenerated FRFs
match are quite in agreement with the actual FRFs. However, the same observation
cannot be made for the response in x direction, as can be seen from Figure 4-59, which
IS an expected observation, as we could not obtain very good results even with the
original substructure B (see Figure 4-57).

10°

= = =regeneration
actual

[m/N]
5 2
[ 28] -y

Cc
55

=
<
o

Receptance Amplitude H
S S
& IS

1045 L

1 O—? 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500

Frequency [Hz]

Figure 4-58 Regenerated FRF of the Coupled Structure (using shorter beam for

substructure B) Using Identified Joint Properties in y Direction
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Figure 4-59 Regenerated FRF of the Coupled Structure (using shorter beam for

substructure B) Using Identified Joint Properties in x Direction

4.3.3.1. Error Analysis

In case study 2, application and validation of the proposed method is shown by using
the simulated experiment data. Since the simulated experiments are expected to reflect
the real experimental conditions, the excitation and measurement points are selected
by considering the real size of an accelerometer. As mentioned in the section 4.1, the
height of the beam cross-sections is 0.006 m. Therefore, we cannot take measurement

from the points shown in Figure 4-60.
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Figure 4-60 Unmeasurable Points

sy

- sy

Figure 4-61 Measurement Scheme
There are some consequences of not being able to take measurement from these points.
When Figure 4-61 is examined, it can be seen that excitation and displacement
measurement in x direction will give the estimated FRFs in x and 6, directions as

follows

Hxx erz ] (4 29)

[Hest x| = Hg x Hg,g
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In the same way, excitation and displacement measurement in z direction will give the

estimated FRFs in z and 6, directions as shown below

sz Hzex ] (4 30)

[Hest 2| = Hy , Hgg

Since we cannot excite and take the displacement measurements from these points, in
the identification of the joint parameters, experimentally measured FRFs of the
assembled structure at the connection coordinates of the system cannot fully be

determined. Since all components of the receptance matrices [gH;;¢], [sHyx"],

[£H;x¢] and [gH,;¢] cannot be obtained, that will bring further errors.

Even if accurate data (without noise) is used in the identification, the effect of not
being able to measure the matrix [Heg, .| given by Eqn. (4.27) will cause errors in
identified parameters as shown in Figure 4-62 and Figure 4-63. Similarly, not being
able to measure the matrix given by Eqn. (4.28) will result in errors in identified

parameters as shown in Figure 4-64 and Figure 4-65.
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CHAPTER 5
CONCLUSION AND FUTURE WORK
5.1. Summary and Conclusions

The main objective of the thesis is to characterize structural joints dynamically. Due
to complex dynamic behavior of joints, it is challenging to build a reliable model for
joints using only analytical methods, and therefore usually models based on
experimental measurements are employed. In this thesis, an FRF based identification
method is suggested to obtain dynamic characteristics of bolted joints. The proposed
method is based on the structural modification method called Matrix Inversion
Method (MIM). The MIM formulation is used in reverse direction. In this approach,
the frequency response functions (FRFs) of the coupled structure are experimentally
measured and FRFs of the coupled system by using an initially estimated set of joint
model parameters are calculated. Then, by using two sets of FRFs of the coupled
systems, measured and calculated, the dynamic parameters of the joint consisting of
stiffness and damping elements are identified using the so-called Inverse Structural
Modification Method (ISMM). The method proposed in this study requires the
measurement of only the FRFs of the assembled structure, not individual substructures

connected with a bolted joint.

The proposed method is applicable to 2D structures where only two degrees of
freedom (DOFs), translation and rotation, are involved, as well as to 3D structures
where all DOFs in translation and rotation are involved. Therefore, the validity and
the application of the proposed method were investigated on different joint models.
The first joint model is used for discrete MDOF systems and it includes only
translational joint parameters, the second model is used for beams and it includes
rotational parameters as well. This model is used in transverse vibrations of bolted
beams. The extended 3D joint model has both translational and rotational stiffness and
damping elements; therefore, identification requires measurements in all translational

directions.
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The validity of the method proposed is demonstrated with various case studies. In
these case studies the experimental FRFs of the coupled structure are obtained using
simulated experiments, where the measurement errors are simulated by polluting the

calculated values.

For the identification of joint parameters in 2D structural systems, in theoretical
computations, as well as in obtaining simulated experimental results, 2D beam
elements with two DOFs (one transverse displacement and one angular displacement)
at each node are used. Both translational and rotational parameters of the joint model
are obtained from the information coming from translational displacements only in
order to simulate actual measurement in which it is not easy to measure angular
displacements directly. In 3D structural systems, however, as the joint model includes
translational and rotational parameters in all six DOFs, it is required to make
translational displacement measurements in all three directions. The identification is
made by using the simulated experiments and by using 3D brick elements with three

translational DOFs at each node.

In this study, in addition to presenting a new identification approach for joint dynamics
and studying its performance with case studies, several observations were made and
some important conclusions were obtained. Some important observations and

conclusions are summarized below.

From case studies, it is observed that using only translational parameters for any of
the joint models does not simulate the real case accurately, and rotational information
is usually important. However, obtaining RDOF related FRFs accurately is not an easy
task in three dimensional model. Furthermore, it is observed from the case studies that
the errors in the identified rotational joint parameters are higher than those of
translational joint parameters. It is also observed that joint damping identification is

prone to measurement errors much more than joint stiffnesses identification.

As it was concluded in previous studies, it is also concluded in this study that in both

methods it is important first to carry out a sensitivity analysis and then make the
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identifications in the frequency regions where the FRFs are sensitive to the related
parameters. All joint parameters are identified at their own sensitive regions but it is
observed that noise has not less effect in the frequency regions which are sensitive to

joint parameters.

It is observed from the case studies that although the errors in identified parameters
may have larger values, the FRFs regenerated by using these identified joint
parameters and actual FRFs of the coupled structure perfectly match for transverse
vibrations for both 2D and 3D bolted beam systems. Moreover, in 3D structural
system, the regenerated FRFs again perfectly match with the actual ones for
longitudinal vibrations of the beam. However, the model (and/or identified
parameters) for the bolted joint for vibrations in the third direction, does not seem to
give promising results. Since in actual applications, the joint dynamics in this direction
will be basically determined by the friction force, at least for higher force levels, a
nonlinear model will be required to represent the joint dynamics accurately in this
direction. Therefore, not having accurate results in x direction will not be so

significant.

The performance of the proposed method is compared with that of the previously
developed joint identification method based on FRF Decoupling [15]. In the previous
work [15], the model is developed for 2D systems, and therefore identification in 3D
structural systems was not possible. In this thesis, the previously proposed method is
also extended to three-dimensional space and the performance of the extended model

is studied.

The effect of measurement errors on the identification results is included by polluting
the simulated FRFs of the assembled structure with 5% random noise. By using
polluted FRFs for simulating measured values, and making use of the FRFs calculated
for the coupled system with initially estimated bolt parameters, identification is made.

Then the average of the values identified at several frequencies in the frequency
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regions sensitive to related joint parameters are calculated and taken as the bolted joint

parameters.

In 3D structural systems, the rotational displacement information is obtained from
translational displacements by using finite difference formulations. However, due to
geometric restrictions, this is not possible in all directions in 3D systems; therefore,
the experimentally measured FRFs of the assembled structure at the connection
coordinates of the system will not be fully determined and that will bring further errors
in the identified parameters of 3D model. It is concluded in this study that in the
identification of 2D joint model parameters which are composed of translational and
rotational terms (excluding cross coupling terms), the proposed method ISMM gives
much better results than FRF Decoupling method. In the identification of 3D joint
model parameters, again excluding cross coupling terms, although the differences
between the identified values obtained by using ISMM and the actual ones are much
lower than the errors in parameters obtained using FRF DM, the effect of this

difference on the regenerated FRFs are not much.

However, in order to generalize the above conclusions in confidence, we need to carry
out real experiments and identify the bolt parameters by using ISMM and FRF DM

with real experimental data.
5.2. Future Work

This research has presented a joint identification technique that is applicable to 2D
and 3D structural systems. It focuses on the linear behavior of the joint and any non-
linear effect in the joint is ignored. Therefore, the effects of nonlinearities need to be
addressed in future studies. Moreover, cross coupling terms can be included into the

joint model.

It may also be recommended to study the different techniques to obtain RDOF related
FRFs. In this study, finite difference formulations were used but there are methods

proposed in recent years, promising much better results than finite difference method.
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As a further work, the method proposed here can be used for more complex structures.
However, before applying the method to different type of structures, the accuracy of

the method need to be validated by using real experimental data.
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