AN ANALYSIS OF MIDDLE SCHOOL STUDENTS’
GENERALIZATION OF LINEAR PATTERNS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF SOCIAL SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ZEYCAN KAMA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
THE DEPARTMENT OF
ELEMENTARY SCIENCE AND MATHEMATICS EDUCATION

JANUARY 2020






Approval of the Graduate School of Social Sciences

Prof. Dr. Yasar KONDAKCI

Director

| certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

Assoc. Prof. Dr. Elvan SAHIN

Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Zelna TUNC PEKKAN Prof. Dr. Mine ISIKSAL BOSTAN

Co-Supervisor Supervisor

Examining Committee Members
Prof. Dr. Ayhan Kiirsat ERBAS (METU, MSE)

Prof. Dr. Mine ISIKSAL BOSTAN (METU, MSE)

Assoc. Prof. Dr. Zelha TUNC PEKKAN  (MEF Uni., MFBEB)
Prof. Dr. Yezdan BOZ (METU, MSE)

Assist. Prof. Dr. Reyhan TEKIN SITRAVA (Kirikkale Uni., MATO)






I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, | have fully cited and referenced all

material and results that are not original to this work.

Name, Last name: Zeycan KAMA
Signature



ABSTRACT

THE ANALYSIS OF MIDDLE SCHOOL STUDENTS’ GENERALIZATION OF

LINEAR PATTERNS

Kama, Zeycan
M.S., Department of Elementary Science and Mathematics Education
Supervisor: Prof. Dr. Mine ISIKSAL-BOSTAN

Co-Supervisor: Assoc. Prof. Dr. Zelha TUNC PEKKAN

January 2020, 170 pages

The purpose of the present study was to explore sixth, seventh, and eighth grade
students’ generalizations of patterns using arithmetical generalization, algebraic
generalization, and naive induction. In addition to studying their generalization
process, the study also focuses on how this process of generalization differs according
to their grade level. The study employed a qualitative case study design. The data

were collected from five sixth grade, four seventh grade, and five eighth grade



students during the spring semester of the 2015-2016 academic year. Data were

collected through the Pattern Test and individual interviews.

The findings revealed the use of four generalization approaches: (i) algebraic
generalization strategies only, (ii) a combination of arithmetical generalization and
algebraic generalization strategies, (iii) a combination of arithmetical generalization
and naive induction strategies, and (iv) a combination of arithmetical generalization,
algebraic generalization, and naive induction strategies. It was found that the
combination of arithmetical generalization and algebraic generalization was the most
frequent generalization approach, while the combination of arithmetical
generalization, algebraic generalization, and naive induction was the least frequent
ones used by the students in all grade levels in this study. Moreover, the use of
algebraic generalization strategies only was observed by the sixth graders only. It was
also seen that sixth, seventh, and eighth-grade students used arithmetical
generalization strategies in order to find near terms of the pattern. In order to find the
far terms or the general term, they either used algebraic generalization strategies or

naive induction strategy.

Keywords: Pattern Generalization, Middle School Students, Arithmetical

Generalization, Algebraic Generalization, Naive Induction
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ORTAOKUL OGRENCILERININ DOGRUSAL ORUNTULERI

GENELLEMELERININ INCELENMESI

Kama, Zeycan
Yiiksek Lisans, Ilkdgretim Fen ve Matematik Egitimi
Tez Yoneticisi: Prof. Dr. Mine ISIKSAL-BOSTAN

Ortak Tez Yoneticisi: Dog. Dr. Zelha TUNC PEKKAN

Ocak 2020, 170 sayfa

Bu c¢alismanin amaci altinci, yedinci ve sekizinci sinif 6grencilerinin dogrusal
ortintiileri aritmetik genelleme, cebirsel genelleme ve naif timevarim kullanarak
genelleme sireclerini incelemektir. Genelleme sireclerini incelemeye ek olarak, bu
calisma aymi zamanda genelleme siireglerinin sinif seviyelerine gore gosterdigi
farkliliklara da odaklanmaktadir. Bu ¢alismada nitel durum calismast deseni

kullanilmistir. Veriler 2015-2016 akademik yilinin bahar déneminde bes altinci sinif,

Vi



dort yedinci smif ve bes sekizinci siif 6grencisinden toplanmuistir. Veri kaynaklarini
Oriintii Testi ve bireysel goriismeler olusturmaktadir.

Bulgular, (i) sadece cebirsel genelleme stratejileri, (ii) aritmetik genelleme ve cebirsel
genelleme stratejilerinin kombinasyonu, (iii) aritmetik genelleme ve naif tiimevarim
stratejilerinin kombinasyonu ve (iv) aritmetik genelleme, cebirsel genelleme ve naif
tlimevarim stratejilerinin kombinasyonunu igeren dort tir genelleme siirecini ortaya
cikarmistir. Bulgular, 6grencilerin sinif diizeyine gore incelendiginde, aritmetik
genelleme ve cebirsel genelleme kombinasyonunun tiim sinif seviyelerinde en sik
yapilan genelleme siireci tiirii oldugunu, aritmetik genelleme, cebirsel genelleme ve
naif timevarim kombinasyonunun ise en az yapilan genelleme silreci oldugunu
gOstermistir. Ayrica, sadece cebirsel genelleme stratejilerini iceren genelleme stireci
tirti yalmzca altinct simif diizeyinde goriilmistiir. Ek olarak, altinci, yedinci ve
sekizinci siif seviyesindeki 0grencilerin Oriintiiniin yakin terimlerini bulmak icin
aritmetik genelleme stratejisini kullandiklari, uzak terimleri veya genel terimi bulmak
icin ise ya cebirsel genelleme stratejileri yada naif tiimevarim stratejilerini

kullandiklar1 goriilmiistiir.

Anahtar Kelimeler: Oriintii Genelleme, Ortaokul Ogrencileri, Aritmetik Genelleme,

Cebirsel Genelleme, Naif Tiimevarim
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CHAPTER 1

INTRODUCTION

Algebraic reasoning is an essential landmark for students to progress in mathematics
at school and their career in science, engineering, and economics (Greenes, Cavanagh,
Dacey, Findell, & Small, 2001; Moses & Cobb, 2001). It is the fundamental element
of mathematical thinking (Windsor, 2010), which enables students to go into a
“deeper underlying structure of mathematics” (Cai & Knuth, 2005, p. 1). Students
with algebraic reasoning skills can develop advanced ways of thinking, including
solving problems, noticing structures between quantities, generalizing, modeling, and
justifying (Cai & Knuth, 2011). Due to the importance of algebraic reasoning, an
increasing number of researchers, policy-makers, and mathematics educators
emphasized that algebra instruction should become a part of the elementary
mathematics curriculum (Carraher, Schliemann, Brizuela, & Earnest, 2006).
Furthermore, the National Council of Teachers of Mathematics [NCTM] (2000, 2006,
2010) suggested that algebra is an integral strand in K-12 curriculum and it is

important to develop algebraic reasoning starting from kindergarten.

By integrating objectives related to algebraic reasoning into all grade levels in the K-

12 strand, it was aimed to start the development of algebraic reasoning among young



students and to provide the necessary ground for higher-level abstract mathematics
(NCTM, 2000). Nevertheless, there is a severe barrier for students to develop
algebraic reasoning skills and gain the above objectives. The obstacle in front of
students is the dominant focus on arithmetic at primary grades (Warren, 2003). State
differently, traditionally, it was believed that algebra should be taught after arithmetic
for students to be cognitively ready (Patton & De Los Santos, 2012). Therefore, until
recently, the primary school curriculum focused on arithmetic and middle school
curriculum focused on algebra (Kamol & Ban Har, 2010). Because algebra follows
arithmetic in most elementary school curricula, students could not get used to the
thinking ways required for algebra (Warren, 2003). Lee (1996, p. 87) used the phrase
“cultural shock” to portray students’ reactions while entering into the algebraic
culture from that of arithmetic. The cultural-shock, which was experienced by
elementary students, was articulated as ‘transition from arithmetic to algebra’ in

mathematics education literature.

To case the transition from arithmetic to algebra, various researchers recommended
the necessity of meaningful experiences in arithmetic, which would help students
develop algebraic thinking (Mcrae-Childs, 1995). There are some big ideas, which
are the foundation of both arithmetic and algebra (Carpenter, Franke, & Levi, 2003).
Having these ideas develops students’ arithmetic knowledge and forms the basis for
algebraic knowledge. Generalization of patterns is one of the big ideas that students
should acquire in elementary grades. In the related literature, the root of algebraic

reasoning is considered as generalization (Carraher et al., 2006; Mason, Graham, &



Johnston-Wilder, 2005) because generalization enables students to have powerful
mathematical ideas by developing the knowledge structure of the mind (Carpenter &
Levi, 1999; Dreyfus, 1991). It exists “both within and outside of mathematics”
(Kaput, 2000, p. 3). Kieran (2004) expressed that much of the meaning-making

process occurs during generalization activities.

As a way of introducing elementary students to generalization, literature has
recommended linear patterning tasks (NCTM, 2000, 2010; Van de Walle, Karp, &
Bay-Williams, 2007). Among the objectives of the Common Core Standards, NCTM

recommended

...numerical and geometric patterns and express them mathematically in
words or symbol...analyze the structure of the pattern and how it grows or
changes...and use their analysis to develop generalizations about the
mathematical relationships in the pattern (2000, p. 159).

This recommendation suggests that the generalization process centers strongly around
patterns. Patterning tasks are not only the start of the way through algebraic reasoning
(Kieran, 1989) but also a helpful way of introducing students with formal algebraic

thinking (Lannin, 2005).

According to Dienes (1961), algebra can be understood when students generalize a
pattern to any term after generalizing it to some near and far terms. Similarly, Radford
(2006) defined algebraic generalization as a process of searching for a common point
that can be generalized to all near and far terms of the pattern and which can be used
to express any term. In parallel with related literature, in middle school mathematics
curricula, patterns generally include terms in an ordered sequence, i.e., from near

3



terms to far terms in ascending order (Ministry of National Education [MONE],
2013). While students expand the pattern from near terms to far terms, they
experience both near and far generalization processes. The movement from near terms
to far terms necessitates the transition from arithmetic thinking to algebraic thinking.
For example, a student can generalize a pattern to the 5t term by adding the constant
difference to the previous terms through arithmetic thinking. On the other hand, a
student’s generalization of a pattern to the 100t term necessitates the algebraic
relationship between the term and the term number through algebraic thinking.
NCTM (1997) recommended students having experience with patterning activities
since the flow from near terms to far terms helps to make a connection from the

numeric-elementary level to a more general-algebraic level.

1.1. Statement of the Problem and Research Questions of the Study

Despite the considerable importance of the concept of generalization in terms of the
transition from arithmetic to algebra, literature indicated some problematic areas
regarding the concept of pattern-generalization, first of which was the emphasis on
procedural skills of students during the instruction. It was reported that mathematics
instruction dominantly centered on the procedures of forming the general rule of the
pattern (Lannin, Barker, & Townsend, 2006). Therefore, students could not develop
a conceptual understanding of the nature of the generalization; instead, they
developed their techniques of how to generate the rule of the pattern (Maudy, Didi,
& Endang, 2018). For example, in a study conducted by Girit and Akyz (2016), it

was reported that students “got used to multiply something and add something for

4



getting a rule” (p. 261). Therefore, the first problematic area was generalizing patterns
procedurally as a result of rule-based instruction. As a result of this problem, students
might not be able to develop algebraic generalization skills, since algebraic
generalization can be understood when students generalize a pattern to any term after
generalizing it to some near and far terms (Dienes, 1961). Indeed, they might be more

tended to use short-cut strategies such as the trial and error strategy.

The trial and error strategy was named differently by different researchers. For
example, Lannin (2005, p. 234) named it as “guess and check” strategy and Radford
(2008, p. 85) called it “naive induction” strategy. Students’ tendency to use trial and
error/naive induction strategy has been reported many times in the literature (Becker
& Rivera, 2005; Lannin, 2005; Radford, 2008, 2010a; Vale & Pimentel, 2009).
Through naive induction, students do not look for a generality in the pattern. They
just make guesses with the purpose of finding the rule of the pattern. Therefore, naive
induction strategy does not belong to the nature of generalization (Radford, 2010a).
In order to overcome this problem, students’ algebraic generalization skills will be
investigated focusing on not only the general rule of the pattern, but also the near and
far terms in detail in this study. In other words, in this study, students’ detailed process
of generalizing near terms and far terms of the pattern will be investigated in terms of
arithmetical generalization, algebraic generalization, and trial and error/naive
induction. The detailed process of near and far generalizations will highlight the
subtle steps behind students’ generalization process. By starting from first few terms

and progressing through distant terms, students will be able to show their



development of algebraic generalizations in a progressive way. It will also reveal
whether students connect the process of near and far generalization to the process of
finding the general rule in a conceptual way. All in all, the present study would
provide valuable information about how students conduct the pattern generalization

process in a progressive way.

Another problematic area in terms of the concept of pattern-generalization was the
existence of “zone of emergence of algebraic thinking” (Radford, 2010b, p. 36). Zone
of emergence of algebraic thinking referred to the gap between students’ beginning
to think algebraically and their capability to use symbolic algebra (Radford, 2010b).
Algebraic generalization has traditionally been recognized as symbolic
generalization. Nevertheless, this is a limited perspective, which leaves many
children, who are unable to use symbolic algebra, behind. Students do not reach the
level of symbolic algebra all at once. They pass through a progressive process (Aké,
Godino, Gonzato, & Wilhelmi, 2013; Garcia-Cruz & Martinon, 1998; Godino et al.,
2014; Maudy et al., 2018; Radford, 2010a). This process starts with realizing a
common point in given first few terms of a pattern (Aké et al., 2013; Godino et al.,
2014; Radford, 2010a). According to the literature, students typically tend to realize
the additive relationship between consecutive terms of the pattern as a first step. This
type of generality is called as arithmetic. Then, they notice a “factual” generality with
algebraic nature, which enables to make a relation between the positions of the given
terms and their numerical value (Radford, 2003, p. 46). By using this common point,

students can find the numerical value of particular terms. Lee (1996, p. 95) called it



as “algebraically useful pattern”. One step ahead, students no longer deal with
particular terms. Instead, they directly express how to find the numerical value of any
term in the form of a general rule by using natural language through a “contextual
generalization” (Radford, 2003, p. 50). Eventually, they express their general rule by
using symbols through symbolic algebra (Maudy et al., 2018; Radford, 2010a). All in
all, as literature showed, there are subtle shifts from arithmetical generalization to
symbolic generalization. In other words, lack of algebraic symbols does not
necessarily show inability to think algebraically (Zazkis & Liljedahl, 2002). Thus, it
is of great importance to investigate students’ generalization skills by including the
subtle shifts of algebraic generalization. In the present study, students’ generalization
process will be investigated within the scope of Radford’s generalization layers,
which are factual, contextual, and symbolic generalizations. Thus, an analysis of
students’ reasoning would give precious information about how students reach

symbolic algebra by passing through factual and contextual generalizations.

Considering the problematic areas mentioned above, which are the emphasis on
procedural skills of students during the instruction and the existence of zone of
emergency of algebraic thinking, the purpose of the study is to explore sixth, seventh,
and eighth grade students’ generalizations of patterns using arithmetical
generalization, algebraic generalization, and naive induction. Based on curricular
restrictions, linear patterns were used in the present study. In addition to studying

their generalization process, the study focuses also on the ways in which this process



of generalization differs according to their grade level. Research questions of the

study were given below:

e How do sixth, seventh, and eighth grade students generalize linear patterns
using arithmetical generalization, algebraic generalization, and naive
induction?

e To what extent do these generalizations differ in terms of their grade level?

1.2. Definition of Important Terms

Pattern is defined as structural or numerical regularity (Papic & Mulligan, 2005).
Patterns can be classified according to their structure (Van de Walle et al., 2007) or
according to the expression of the general rule (Stacey, 1989). Structurally, a pattern
is called as numeric if their terms include numbers. It is called as figural if their terms
include geometric figures (Chua & Hoyles, 2014). On the other hand, a pattern is
called as linear or quadratic since their general terms can be expressed as an+b [a
refers to the common difference of the pattern; n refers to the position of the term; b
refers to the constant of the pattern] or an2+bn+c [a refers to the half of the constant
amount between the differences of successive terms of a quadratic pattern; n refers
to the position of the term; b refers to the “2nd term-1st term-3a’; ¢ refers to the ‘Ist
term-b-a’], respectively (Chua & Hoyles, 2014). Since Turkish middle school
mathematics curriculum (MONE, 2013, 2018) included linear patterns in numeric and
figural form, only linear-numeric and linear-figural patterns are referred in the present

study. More specifically;



Linear-figural pattern refers to the patterns whose terms are in the form of geometric
figures (Van de Walle et al., 2007) and whose general term can be expressed as an+b,
n refers to the position of the terms (Stacey, 1989). For example, consider the linear-
figural pattern in Figure 1 whose terms are in the form of circles and general term can

be expressed as 2n+3, where n is the position of the terms.

OO0 00 0000
000 0OO0OO0OO0O OOOOO

fig. 1 fig. 2 fig. 3

Figure 1. A linear-figural pattern (Radford, Bardini, & Sabena, 2006, p. 395)

Linear-numeric pattern refers to the patterns whose terms are in the form of numbers
(Van de Walle et al., 2007) and general term can be expressed as an+b (Stacey, 1989).
For example, in Figure 2, terms are in the form of numbers and general term can be

expressed as 6n-2, where n is the position of the terms.

4,10,16,22, .

Figure 2. The linear-numeric pattern example from Stacey (1989, p. 149)

Pattern generalization is defined as perceiving the common ground on some terms of
the pattern, being able to apply this commonality to all terms of the pattern and
providing a direct expression about general term of the pattern (Radford, 2008). In
this study, pattern generalization refers to a process in which students notice a

commonality on given terms, expand the pattern to near terms and generate a rule to



reach the far terms and express the general rule either with natural language or with

letters.

Near terms of the pattern refer to the terms of the pattern, which can be reached by
counting step by step onto previous term in a practical way (Stacey, 1989). In this

study, fourth, fifth, and tenth terms of the pattern are accepted as near term.

Far terms of the pattern refer to the terms of the pattern, which can not be practically
reached by counting step by step onto previous term (Stacey, 1989). As an instance,

100th term, 1000t term, and so on.

General rule/term of the pattern is defined as a general formula that can be applied to
any term of the pattern (Van de Walle et al., 2007). For example, general rule/term of

given pattern ‘2,4, 6, ..., ..., 12, ... can be expressed as 2n or twice the term number.

Arithmetical generalization is defined as a process in which students notice a
commonality based on the additive /recursive relationship between the consecutive

terms of a linear pattern (Gutiérrez, 2013; Radford, 2012).

Algebraic generalization is defined as a process of searching for a common point
based on the relationship between the position of the terms and their numerical value
that can be generalized to all near and far terms of the linear pattern and which can be

used to express any term (Radford, 2008).

Naive induction is defined as trial and error strategy, through which students make
guesses with the purpose of finding the general rule without looking for a generality

in the linear pattern (Radford, 2010a).
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1.3. Significance of the Study

One of the reasons behind the high significance of pattern-generalization tasks is that
they enable students experience both recursive and explicit reasoning during
generalizing the pattern to near and far terms. To be clearer, a typical pattern
generalization task enables students express two types of rules, which are recursive
rule and explicit rule. A recursive rule includes a step-by-step approach, i.e. a
recursive rule includes the relationship from output to output; while an explicit rule
includes the relationship from input to output, in which the value of any output can
be found by using inputs, where input refers to the term numbers and output refers to
corresponding terms (Lannin et al.,, 2006; Rubenstein, 2002). For instance, in
following the number sequence, 2, 4, 6, 8, ..., ‘the expression ‘add two to find the next
term’ is a recursive expression; while the expressions ‘multiplying term number with
2 gives the related term’ or ‘2n’ are examples of explicit expressions. It can be said
that recursive rules have an arithmetical nature, and explicit rule have an algebraic
nature. Thus, the connection between recursive and explicit rules helps students to
overcome the transition from arithmetic to algebra (Lannin et al., 2006; NCTM,
2000). Furthermore, it helps to construct meaningful algebraic generalizations and to
make sense of symbol use in algebra (Moss, Beatty, Shillolo, & Barkin, 2008; Stacey
& MacGregor, 2001). Nevertheless, several studies reported students’ difficulty not
only in forming explicit rules more than recursive rules (Chua & Hoyles, 2014), but
also in connecting recursive and explicit rules to each other (Arzarello, 1992; Lannin

et al., 2006; Swafford & Langrall, 2000). According to Lee (1996), the problem for
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most of the students was not “seeing the pattern”, but it was “seeing an algebraically
useful pattern” (p. 95). Therefore, investigating how middle school students form
recursive and explicit rules toward pattern generalization tasks is essential. The results
of the present study would give precious information related to the abilities and
difficulties of students in terms of constructing recursive and explicit rules with
arithmetical and algebraic generalizations, respectively. Furthermore, considering the
limited number of studies focusing on the relationship between recursive and explicit

rules increases the significance of the current study.

In accordance with the general trend, almost entire mathematics curricula expect
beginner algebra students to be able to use symbolic algebra. This expectation brings
into existence “the zone of emergence of algebraic thinking”, which is between
students’ beginning to think algebraically and their capability to use letters as
algebraic symbols (Radford, 2010b, p. 36). In order to fill the zone, literature indicates
pre-symbolic type of generalizations (Redden, 1996; Stacey & MacGregor, 1995) It
is because algebraic generalization has a progressive nature, which develops from
pre-symbolic type of generalizations into symbolic type of generalizations (Rivera,
2013). Pre-symbolic type of generalizations include generalizations conducted with
presymbolic forms such as gestures, pictures, words, numbers, and combinations of
forms (Rivera, 2013). Yet, as reported in the literature, many teachers do not
recognize presymbolic type of generalizations (Demonty, Vlassis, & Fagnant, 2018).
Therefore, they design their instructions by focusing on practicing techniques to form

symbolic generalizations (Lannin et al., 2006). Nevertheless, this approach prevents
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students from understanding the progressive nature of pattern generalization (Lannin
et al., 2006). Additionally, it leads the mathematics educators and researchers to view
students’ generalization as dependent on accurate usage of symbolic generalization
rather than as a process from pre-symbolic generalization to symbolic generalization.
Radford called presymbolic type of generalizations as factual generalization and
contextual generalization and symbolic type of generalization as symbolic
generalization. According to Radford (2003), factual, contextual, and symbolic
generalizations follow each other so as to produce symbolic algebra. One of the
focuses of the present study is to analyze students’ generalization processes
depending on presymbolic and symbolic type of generalizations, i.e. factual,
contextual, and symbolic generalizations. Thus, the results of present study might
provide valuable information for mathematics educators and policy makers in
revealing how students use the pre-symbolic type of generalizations before symbolic
generalization. It might contribute to the related literature by offering valuable
educational implications, which eliminate the zone of emergence of algebraic thinking

in designing the algebraic course contents of elementary students.

The other significance of the study is that findings of the study has the potential to
provide information on progressive development of students’ algebraic reasoning
based on the schooling level. Most of the elementary mathematics curricula around
the world, including Turkish mathematics curriculum, introduce students with algebra
at the middle school (grades 5-8). Thus, students at the fifth or sixth grade level are

called as beginning algebra students. According to the literature, the transition from
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arithmetic to algebra problem was mostly seen with beginning algebra students
(Baroody & Ginsburg, 1983; Falkner, Levi, & Carpenter, 1999; Knuth, Alibali,
Weinberg, McNeil, & Stephens, 2005; Knuth, Stephens, McNeil, & Alibali, 2006;
Sfard, 1995; Sfard & Linchevski, 1994). Actually, while students progress in middle
school grades, they are expected to connect arithmetic and algebraic reasoning in the
first sense and to develop increasingly complex abstract algebraic reasoning
afterwards (Knuth et al., 2005). In this sense, some researchers investigated algebraic
reasoning levels of students from different grade levels and reached supportive
results. According to the literature, students’ algebraic reasoning levels increased as
their grade level increased (Kama & Isiksal-Bostan, 2016; Ley, 2005). Through this
study, in light of the literature, sixth, seventh, and eighth grade students’ algebraic
reasoning skills were investigated through pattern-generalization activities in order to
see whether they show more complex algebraic reasoning skills and a variety of
generalization ways across increasing grade levels. Therefore, the results of this study
would reveal the existing trends of algebraic reasoning in terms of different grade

levels.
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CHAPTER 2

LITERATURE REVIEW

The purpose of this study is to explore the sixth, seventh, and eighth grade students’
generalizations of patterns using arithmetical generalization, algebraic generalization,
and naive induction. In addition to studying their generalization process, the study
also focuses on the ways in which this process of generalization differs according to
their grade level. Accordingly, the literature review section was organized in a way
that in the first part, various definitions and components of algebraic thinking were
reviewed in the light of historical development of algebra. In the second part, pattern
generalization was explained in detail and Radford’s pattern generalization
framework was explored as the theoretical framework of the current study. In the third
part, related studies on generalization strategies of students and difficulties students
experience during pattern generalization were reviewed. Finally, the summary of

literature review was given.

2.1. Historical Development of Algebraic Thinking

To understand the nature of algebraic thinking, it is necessary to know the emergence
of algebra throughout history. Algebra has emerged centuries after arithmetic, almost

a millennium-time (Carraher, Schliemann, Brizuela, & Earnest, 2014; Reves, 1951).
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About 4000 years ago, the first traces of algebra were seen in Mesopotamia (Katz &
Barton, 2007). According to the literature, history of algebra is divided into three
stages: the rhetorical stage, the syncopated stage, and the symbolic stage
(Nesselmann, 1842). This distinction was made based on the development of
language in algebra. In other words, the rhetorical stage was purely verbal, while both
words and symbols were used in the syncopated stage. On the other hand, the
symbolic algebra stage was only symbolic and grounded modern algebra with

symbolism, which is still used today (Heefer, 2009).

The rhetorical stage lasted from the beginning of the algebra until nearly 250 AD.
During this stage, mathematical problems, solutions and calculations were completely
expressed by using words and everyday language (Puig & Rojano, 2004). Unknown
was expressed as ‘heap’ by Egyptians, as ‘length’ or ‘area’ by Babylonians and
Greeks, and as ‘thing’ or ‘root’ by Arabics (Van Amerom, 2002). For example, in
order to solve the quadratic equation of the type ‘squares and numbers equal to roots’,
which can be expressed as x2+c=bx in modern algebraic language, Al-Khwarizmi
offered a completely verbal solution (Katz, 2007). It included directions such as
taking half the number of ‘things’, squaring it, subtracting the constant, finding the
square root and then adding it to the roots that were found (Katz, 2007). No symbols

or abbreviations were used.

Around 250 AD, Diophantus presented abbreviations as the shortened forms of words
(Van Amerom, 2002). This was the beginning of the syncopated algebra stage (Van

Amerom, 2002). This stage lasted until the middle of the 17th century (Nesselmann,
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1842). During this stage, mathematical expressions were presented by using both
natural language and abbreviations (Spagnolo, 2000). For instance, Arabics used the
first letter of the words to express the powers of the unknown in the 9th century (Van
Amerom, 2002). Western Europeans used r and s by shortening res and cosa in the

13th century (Van Amerom, 2002).

In the 17th century, French mathematician Frangois Viete used capital letters to
represent numerical quantitites (Sfard, 1995). He made a distinction between
coefficients and parameters (Sfard, 1995). By doing so, he made it possible to use
letters to represent more than one quantity as well as to introduce the concept of
variable (Sfard, 1995). Viete’s work was the beginning of the symbolic algebra stage.
After that time, all mathematical calculations and relations were represented by using
sign systems. Furthermore, the symbolic algebra stage brought a new dimension to
algebra beyond equation-solving. Signs and symbols represented general quantities,

not a single unknown (Harper, 1987).

In conclusion, as the history of algebra reviewed above shows, algebra was built based
on arithmetical techniques over long years (Van Amerom, 2002), especially in
rhetorical and syncopated stages. In both these stages, the aim behind algebraic
algorithms was to find the solutions of the equations and unknowns (Katz, 1997).
Unknown was a specific number as maintained by Al-Khwarizmi: “What people
generally want in calculating... is a number” (as cited in Katz, 1997, p. 31). Even
though letters were used in the syncopated stage, they did not have the function of

expressing generality (Erbas, 2005). They were used to represent unknowns;
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therefore, the use of abbreviations could not develop algebra one step further, which
is generality (Van Amerom, 2002). Till the introduction of modern algebraic
symbolism by Viete in the 17th century, the aim behind algebra was to find the
solutions of the equations and unknowns in an arithmetic way (Katz, 2007). The work

of Viete enabled to generalize and abstract arithmetic.

All in all, historical development of algebraic thinking was grounded on arithmetical
needs such as searching short cuts for solving equations or finding unknowns
arithmetically. However, over the years, algebraic thinking has emerged with the
generalization of arithmetical facts. In the following part, various definitions and

characteristics of algebraic thinking are reviewed.

2.1.1. Algebraic thinking.

Algebra and algebraic thinking have been defined by many researchers in the
mathematics education literature. According to the widely accepted definition of
algebra in the literature, algebra is generalized arithmetic (Booth, 1988; Carraher,
Schliemann, & Schwartz, 2007; Gavin & Sheffield, 2015; Mason, 1996; Philipp &
Schappelle, 1999; Samo, 2009; Subramaniam & Banerjee, 2004; Usiskin, 1988).
According to the literature, viewing algebra as generalized arithmetic is a milestone
through the development of algebraic thinking (Usiskin, 1988). Vygotsky (1986)
supports this notion by describing arithmetic concepts as preconcepts and algebraic
concepts as real concepts. According to Vygotsky, the progress from preconcepts to
real concepts can be achieved by abstracting and generalizing arithmetical facts. In

other words, algebra is the generalization of given arithmetical rules, operations and
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statements (Wang, 2015). Based on the related literature, it can be stated that
arithmetic thinking is a crucial part of algebraic thinking (Ralston, 2013). For
example, Peck and Jencks (1988) consider it as a necessity in a way that algebraic
thinking should come naturally as the result of students’ observations of the way
arithmetic works. By referring to algebraic thinking, Kaput (1999) states that it is a
process of generalizing mathematical structures from particular examples,
justification and expression of generalizations. In addition, NCTM (2000) set four
standards related to algebraic thinking which are “understand patterns, relations, and
functions; represent and analyze mathematical situations and structures using
algebraic symbols; use mathematical models to represent and understand quantitative
relationships; analyze change in various contexts” (p. 37). Among these standards,
understanding patterns, relations and functions is a continuous standard for school
mathematics for all grade levels (NCTM, 2000), since it provides meaningful
experiences during the transiton from arithmetic thinking to algebraic thinking (Orton
& Orton, 1999). As parallel to the standarts of NCTM (2000), Van de Walle et al.
(2007) defined algebraic thinking as generalizing numbers and operations,
formalizing them with a meaningful sign system, and exploring the patterns and

functions.

All in all, it is obvious that generalization is one of the common points in various
definitions of algebraic thinking, and it is accepted as the key element of algebraic
thinking (Mason, 1996). In the next section, the concept of generalization is reviewed

in the light of the literature.
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2.2. Generalization

Generalization is a reasoning process, which goes beyond particular instances and
reaches relationships of those instances (Kaput, 1999). Thus, it is extremely important
in terms of transition from arithmetic to algebra. Carraher, Martinez, and Schliemann
(2008) define it as “some property or technique holds for a large set of mathematical
objects or conditions” (p. 3). Making mathematical generalization is crucial since it
enables to construct mathematical knowledge and experience (Mason, Burton, &
Stacey, 2011). According to the literature, generalization has three components,
which are (1) “grasping a commonality noticed on some elements of a sequence S”,
(i) “being aware that this commonality applies the all the terms of S, and (iii) “being
able to use it to provide a direct expression of whatever term of S” (Radford, 2010a,
p. 42). As the components of generalization indicate, it is fundamental to develop a
generalization based on some concrete examples, and then to show its currency for
abstract examples or any number, and finally to express it algebraically. Therefore, it
can be deduced that the components of generalization represent the transition from

arithmetic to algebra due to the flow from concrete to abstract terms.

The literature has also indicated a “cognitive gap” which beginning algebra students
experience during the progression from arithmetic to algebra (Herscovics &
Linchevski, 1994, p. 63). It is argued that the progress from arithmetic to algebra is
possible when students learn to operate with unknowns instead of specific numbers
(Warren, 2003). In order to fill the gap, the recent mathematics education literature

has suggested some pedagogical approaches to introduce algebra. One of these
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approaches is the pattern generalization approach (Carraher et al., 2008; Jones, 1993;

Kieran, 1989; Orton & Orton, 1999; Witzel, 2015).

Pattern generalization approach has a progressive nature, which provides a proper
base to develop algebraic thinking considering algebra as generalized arithmetic (Tall,
1992). In order to generalize a pattern, students are required to experience a gradual
process, which involves three important steps related to near terms, far terms, and the
general term (Radford, 2008). In other words, to generalize a pattern algebraically, it
is required (i) to notice the common structure in the given terms and to find near terms
by using commonality, (ii) to expand the commonality to far terms, and (iii) to

establish a general description to find any term in the sequence (Radford, 2008).

Studies conducted so far have shown that when students are asked about near terms
of the pattern, they tend to use additive relationship in an arithmetical sense (Stacey,
1989). In other words, they mostly focus on the relationship between consecutive
terms and use expressions to find a term by using previous terms (Van de Walle et
al., 2007). On the other hand, when far terms of the pattern are asked, additive
relationship is not sufficient (Van de Walle et al., 2007). There is a need for an
algebraic rule to find the far term. For example, in the given number sequence 2, 4,
6, ...,..., 12, ...°, students need to notice the twice relationship between terms and
the term number to be able to calculate the hundredth term since it is not practical to
expand the given pattern by adding 2 till the hundredth term. In this regard, it can be
said that arithmetic thinking can be adequate to reach near terms, while algebraic

thinking is necessary to find far terms and that the movement from near terms to far
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terms necessitates transition from arithmetic thinking to algebraic thinking. NCTM
(1997) recommended that students have experience with patterning activities since
the flow from near terms to far terms helps to make a connection from the numeric-
elementary level to a more general-algebraic level. As students work with near terms
through arithmetic thinking, they start to notice the limitations of the arithmetic
processes and tend more to use algebraic thinking (Lannin et al., 2006). Thus, by
working on far terms, students develop their algebraic thinking skills and explore the
general term of the pattern (Radford, 2014). Far generalization helps students
overcome the difficulties about expressing generality with formal algebraic language
(Zazkis, Liljedahl, & Chernoff, 2008). In this regard, as Ontario Ministry of Education
(2013) stated, algebraic generalization can be constructed by moving from near terms

to far terms.

The following section describes the pattern generalization framework used in the
present study. After describing the theoretical framework of the present study, related

studies on the generalization process of students are summarized.

2.2.1. Theoretical framework of the present study.

In the present study, Radford’s pattern-generalization framework was used. Radford
(2000, 2001) developed and applied the Theory of Knowledge Objectification (TKO)
in the field of algebraic generalization. The reasons behind this choice were his
longitudinal research since the 1990s in this field and the fact that generalization is
both universal and learnable (Radford, 2008). In the TKO, the meaning of

‘objectification’ is as important as the meaning of ‘knowledge’. Object refers to
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anything that can be referred, directed at or indicated (Sabena, Radford, & Bardini,
2005). Mathematical object is defined as anything which can be indicated or labeled
during mathematical constructions or communications (Godino, 2002) such as
mathematical language (terms, expressions, notations, etc.), mathematical situations
(problems, exercises, etc.), mathematical actions (operations, algorithms, procedures,
etc.), mathematical concepts (line, point, function, etc.), and so on (D’ Amore, 2007).
Thus, objectification is a process of showing a [mathematical] object to someone

(Sabena et al., 2005).

On the other hand, Radford defined knowledge as culturally-historically encoded
actions in people’s memory. Therefore, objectification of knowledge refers to the
process in which students participate in an activity in order to notice and make
meaning of knowledge (Radford, 2010b). The main principle behind objectification
of knowledge is its progressive manner. According to the TKO, individuals obtain
knowledge in a progressive manner (Radford, 2003). For example, in patterning
activities, students first perceive the common point in the given terms of the sequence,
then generalize it beyond the given terms to apply it to other elements, and finally
reach an expression of generality for any term. All these steps point to different levels
of algebraic generality, some of which are more complex than the others (Radford,

2010a).

In his theory, Radford focused on the main difference between arithmetical and
algebraic generalization, which is the fact that algebraic generalization allows to

calculate indeterminate objects (Radford, 2008). In other words, algebraic
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generalization gives results beyond arithmetical generalization. In line with this,
Radford (2010a) defined generalization of patterns as “the capability of grasping a
commonality noticed on some elements of a sequence S, being aware that this
commonality applies to all the terms of S and being able to use it to provide a direct
expression of whatever term of S.” (p. 42). As the definition indicates, algebraic
generalization has different levels, some of which are more complex than the others
(Radford et al., 2006). Through the Theory of Knowledge Objectification, Radford

formed a generalization framework based on the levels.

Before explaining the generalization framework, there is an important point to
mention. Radford made a distinction between generalization and non-generalization,
which he called as naive induction (Radford, 2010a). Through naive induction,
individuals form some rules based on their predictions and then check whether they
are valid or not on a few cases (Radford, 2010a). For example, in a linear-figural
patterning activity, in which there are 4, 6, and 8 points in the first three terms of the
sequence, students tried the rule ‘the number plus 3’ or ‘n+3’; however, it worked
only for the first term. Then, they used ‘4n’ and then ‘2n+1°, and finally, they tried
the ‘2n+2’ rule and reached the given terms of the pattern. Since this process is
conducted based on probability and includes trial and error, naive induction is
different from the generalization framework in the Theory of Knowledge

Objectification.
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Figure 3. Linear-figural pattern from Radford (2006, p. 4)

The generalization framework distinguishes between arithmetic generalization and
algebraic generalization. In arithmetic generalization, students notice the
commonality in the given figures at an arithmetic level and provide a recursive
expression in the form of ‘Ux+Il=Ux+common difference’ (Gutiérrez, 2013).
However, they do not provide a general expression in an algebraic way. For instance,
when students are asked about the 100th term of the sequence in Figure 3, their
solution way of expanding the sequence term by term till the term 100 is an example
of arithmetical generalization. The most important characteristic of arithmetic
generalization is lack of analyticity (Radford, 2012), i.e. dealing with indeterminate

objects as if they were known, which is the main characteristic of algebra.

Algebraic generalization, as different from arithmetic generalization, is the pathway
towards explicit expressions. Explicit expression is defined as functional expression,
which allows for calculating dependent variables based on the independent variables
(Barbosa, Vale, & Palhares, 2009). In pattern generalization tasks, independent
variable is the position of the terms, i.e. term number, while the dependent variable is
the value of the term itself. When students reach algebraic generalization and form an
explicit expression, they can calculate any term based on the relationship between

term and term number. In addition to this, Radford (2001) defined three hierarchical
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levels of algebraic generalization, which are factual, contextual, and symbolic
generalizations. The first level of algebraic generalization defined by Radford (2001)
is factual generalization. Below is an example of factual generalization of the pattern

given in Figure 3:

Student: It [the first figure] is one, one, plus three; [the second figure is] two,
two, plus three; [the third figure is] three, three, plus three. For this reason, the
25th figure becomes twenty-five, twenty-five, plus three.

Factual generalization is not only the lowest level of algebraic generalization, but also
the most concrete form among the others. It is limited with specific terms of the
pattern. To express factual generalization, particular terms of the pattern are used
within a concrete formula (Radford, 2001). In factual generalization, students explore
the mathematical structure of the pattern and notice another type of commonality that
they can apply to any particular term just as students’ application of the factual rule

to the 25t figure in the above example.

The second level of generalization is contextual generalization (Radford, 2001). It is
more abstract than factual generalization. It is beyond the specific terms of the pattern.
It is the first step that students give a name to “indeterminacy” (Radford, 2010a, p.
51). To deal with indeterminacy, students need to use abstract terms such as ‘number
of the term’ or ‘the figure’. A general rule, which is expressed through contextual
generalization, includes descriptive terms such as “the general rule is 2 times the
number of the figure and plus 1”. Through contextual generalization, any term can be
found within an abstract formula. They conduct mathematical operations on those

abstract concepts such as the expression ‘doubling the number of the figure and plus
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three’. An example of contextual generalization of a given pattern in Figure 3 is

illustrated below:

Student: If it is 1 [the first figure], | do one, one, plus three. If it is five [the
fifth figure], 1 do five, five plus three. Right? | always do this. How can | say
that?... | add the figure plus the figure, and plus three. | mean, it is always
doubling the number of the figure and plus three.

Symbolic generalization is the most abstract level of algebraic generalization. To
express symbolic generalization, alphanumeric symbols and letters are used such as
“the general rule is “2n+1” (Radford, Bardini, & Sabena, 2007). It is one-step further
than contextual generalization. In this type of generalization, the letter ‘n’ is the
replacement of ‘the number of the figure’ (Radford, 2010a). In both contextual and
symbolic generalizations, students reach an explicit expression, which is about the
relationship between the term and position of the term [number of the term]. However,
as contextual generalization includes abstract natural language terms such as ‘the
figure’ or ‘the number of the figure’, symbolic generalization reduces the form of
contextual generalization through alphanumeric symbols just as the example given
(Radford et al., 2007). Below is an example of symbolic generalization of the pattern

represented in Figure 3:

Student: So, it would be n plus n and plus 3... It is n+n+3! (The student writes
(n+n)+3). There are two n’s. I think, I can write it as 2.n +3.

In sum, Radford’s framework covers pattern generalization as a process from
arithmetic to algebra. In this process, there are soft and subtle shifts, which are factual,
contextual, and symbolic generalizations. The aim of the present study is to explore

the pattern generalization process of students through transition from arithmetic to
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algebra, which is related to Radford’s generalization framework. For this reason,
Radford’s generalization framework was used in this study. The uses of Radford’s
pattern generalization framework in mathematics education research were reviewed

in the section that follows.

2.2.1.1. Uses of Radford’s generalization framework in mathematics education

research.

Hunter and Miller (2018) conducted an early algebra study using Radford’s
generalization framework. The aim of their study was to reveal how patterning tasks
can develop students’ understanding of growing patterns. With this purpose, they
selected 27 second grade (6 year old) students. Through the study, the students
developed the concept of linear growing patterns in 30 minute lessons. In each lesson,
the students did pair work and engaged in group discussions through teacher
facilitation. At the end of the study, the students reached factual and contextual
generalizations. Similarly, Miller (2014) conducted an early algebra study whose
purpose was to explore young Australian Indigenous students’ generalization process.
The students were from second and third grade level. The researcher asked the
students to generalize linear figural patterns. The result of the study showed that the
students were capable of using only contextual generalization. They did not engage

in factual generalization or use letters through symbolic generalization.

On the other hand, Cooper and Warren (2011) conducted a study with third, fourth,
and fifth grade students on how they generalize patterns in terms of Radford’s

generalization layers. They also used linear growing patterns during the study. As a
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result of the study, the researchers reported that the students moved through factual
to contextual and symbolic generalizations while generalizing linear patterns. In
parallel with Cooper and Warren (2011), Miller and Warren (2012) also reported
students” movement from factual to contextual and symbolic generalizations while

generalizing linear patterns.

In addition to Radford’s hierarchical generalization strategies, the literature represents
a wide range of generalization strategies. In the next part, related studies on

generalization strategies of students are reviewed.

2.3. Related Studies on Students’ Generalization Strategies

As explained above, Radford’s generalization strategies are mainly distinguished
from each other based on their arithmetic or algebraic nature. In parallel with
Radford’s sense, there are a variety of strategies in the related literature, which have
either arithmetic or algebraic nature. Nevertheless, they were named differently by
different researchers in spite of having similar meanings. For example, Radford’s
arithmetical generalization strategy was called as counting strategy in Stacey (1989),
recursive in Ley (2005), looking for difference in Orton and Orton (1999), procedural
activity in Garcia-Cruz and Martindn (1998), and so on. Some detailed explanations

were given below.

In the related literature, while most of the studies focused on the generalization of
linear patterns, some studies examined the generalization of both linear and quadratic

patterns. Since the current study investigated the generalization of linear patterns,
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detailed information on the results of linear patterns are specifically reviewed in this
section. As examining the generalization skills of students, related patterning tasks
included items related to near terms, far terms, and general term. As students were
conducting near generalization, far generalization, and global generalization
processes, past studies dominantly focused on which strategies students used during
those processes and what kind of difficulties students experienced meanwhile.
According to the review of the literature, past studies related to the pattern-
generalization processes are conducted with students from primary school level (7-11
years old), middle school level (12-14 years old) or high school level (15-18 years

old).

In one of the studies conducted with primary grade students, Hargreaves, Threllfal,
Frobisher, and Shorrocks-Taylor (1999) examined primary students’ methods of
generalizing number sequences. 487 students whose ages varied from 7 to 11
participated in the study. Students were asked about continuing/completing the linear
and quadratic patterns to/with near terms and explaining, describing or providing a
general rule about the pattern. Students were not necessarily expected an algebraic
general rule due to their early ages. Results of the study revealed three methods of
generalization: looking for difference, looking at the nature of the numbers, and
looking for multiplication tables. According to the researchers, the first two strategies,
i.e. looking for difference and looking at the nature of the numbers, have low
complexity, while looking for multiplication tables has high complexity. The strategy

of looking for difference focuses on the constant difference between successive terms
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of the pattern. It includes the recursive relationship of term-to-term. It corresponds to
the arithmetical generalization strategy of Radford (2001). The second strategy of
looking at the nature of the numbers includes noticing a common property related to
the nature of the numbers that is valid for all numbers in the pattern such as oddness
and evenness of the terms. For example, a student classifies the given number
sequence, 3-8-13-18-23, as an odd number and an even number right after each other.
However, this strategy does not allow students to reach any kind of generalization.
The last strategy of looking for multiplication tables involves forming a relationship
between the pattern and another sequence from the multiplication table. For example,
a student generalizes the given number sequence, 2-5-8-11-14, in a way that ‘it goes
on in 3s, yet, it is always 1 less than 3 times table, 3-6-9-12-15". The researchers
viewed the last strategy among the others as the closest one to algebraic
generalization, since it may lead students to extend the pattern to other near and far
terms by using the relationship ‘3 times table minus 1°. According to the results of
the study, almost all students could find the near terms with looking for difference
strategy at continuing/completing patterns to/with near terms. Yet, few students could
answer the general rule question. Additionally, researchers reported two types of
generalization process, which are single-type (i.e. using one strategy at answering
questions) and mixed-type (i.e. using more than one strategy at answering questions).
They resulted that there were some students who used mixed strategies. However,
students who used single type of strategy outnumbered students who used mixed
strategies at this level. In addition, as students’ grade level increased, the frequency

of mixed strategies increased.
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In another study, Bourke and Stacey (1988) worked with 371 primary students from
fourth, fifth, and sixth grade levels (9-11 years old) in order to examine their problem-
solving skills. They formed a problem-solving test, which included several problems
from different mathematical domains. One of the problems was about the

generalization of a linear pattern, which included a Ladder figure (see Figure 4).

LADDERS

With 8 matches, I can make a ladder I I
with 2 rungs like this | I

With 11 matches, I can make this ladder

with 3 rungs. ——H I I

How many matches are needed to make the same sort of ladder with 4 rungs?

How many matches are needed to make a ladder with 5 rungs?

I know that it takes 335 matches to make a ladder with 111 rungs. How many matches
would be needed to make a ladder with 112 rungs?

How many matches would you need to make a ladder with 20 rungs?

How many matches are needed for a ladder with 1000 rungs?

Figure 4. Ladder question from Stacey (1989, p. 148)

In Ladders, students were asked about generalizing given pattern to the 4w and 5th
terms as near generalization and to the 20t and 1000t terms as far generalization.
Upon Bourke and Stacey (1988), Stacey (1989) represented the analysis results of
students’ responses to the Ladders by naming four main generalization strategies that
fourth, fifth, and sixth grade students used in Bourke and Stacey (1988). Those
strategies were counting strategy, difference strategy, whole-object strategy, and
linear strategy. The counting strategy included the repetitive and recursive counting
process till the asked term such as counting by 3s to the 100th term with a calculator.
The difference strategy involves multiplying the common difference, which is 3
matches in the question of Ladders, with the asked term such as multiplying 1000
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with 3 to find the 1000th term. The whole-object strategy includes the assumption that
a multiple of a smaller term gives the value of a bigger term (If the 3rd term includes
11 matches, the 30th term includes 110 matches). Lastly, the linear strategy includes
explicit reasoning. For instance, in Stacey’s study, the students recognized the
structure of the pattern and formed the general rule accordingly such as finding the
number of matches in the 1000th term as 3002 since there are 1000 matches on each
side of the ladder (students ignore the 2 matches at the top) and 1000 matches in the
middle and 2 at the top of the ladder, the sum of which is 3002. According to the
results, fifth and sixth grade students showed similar performances with each other

and better performance than fourth grade students did in Ladders pattern.

In another study conducted by Ley (2005), primary students’ generalization strategies
were investigated through five different types of linear patterns: figural, geometric,
table, numeric, and word problem. In Ley’s study (2005), 97 students from second
grade to fifth grade were asked to generalize linear patterns to 5t term, 9t term, and
41w term. Throughout the study, three generalization strategies were observed, which
are recursive, whole-object, and explicit. Ley’s whole-object strategy carries the same
meaning as Stacey’s (1989). The recursive strategy, on the other hand, refers to
adding repetitively upon previous term to find the further terms, which corresponds
to the counting strategy in Stacey’s (1989) study. The explicit strategy corresponds to
the linear strategy of Stacey (1989). It includes understanding the structure of the
pattern and reaching an algebraic rule related to any term of the pattern. Researcher

also defined ineffective strategy, when students’ responses included guessing or
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another random answer. According to the results of the study, recursive reasoning
was the mostly seen strategy on near generalization tasks (5t and 9t terms) with a
percentage of 61.4 in average. On the other hand, explicit strategy was seen far less
than recursive reasoning with a percentage of 20.2 in average on far generalization
task (41th term). Similar with Hargreaves et al. (1999), Ley (2005) observed
participants using more than one strategy in their generalization process; yet, she did
not analyze students’ use of mixed strategies and reported the highest strategy among
mixed strategies of students. From grade level perspective, there was no
developmental trend in the use of recursive strategy. However, as students’ grade
level increased, the use of explicit strategy increased and the use of ineffective

strategies decreased.

In addition to these studies conducted with primary school students, literature is
wealth on middle school students pattern-generalization processes (Amit & Neria,
2008; Barbosa, 2011; Lannin, 2005; Lin & Yang, 2004; Orton & Orton, 1999; Stacey,
1989). In one of them, seventh and eighth grade Taiwanese students’ reasoning ways
of pattern generalization activities were investigated by Lin and Yang (2004). It is
worth mentioning that elementary mathematics curricula in Taiwan does not include
pattern generalization topic. Therefore, participants did not have any knowledge
related to the pattern generalization. 1181 seventh graders and 1105 eighth graders
participated in the study. Students’ responses to the survey were coded under six
categories: (i) seeing an improper pattern, (ii) seeing some useful but incomplete

pattern or only with correct result, (iii) seeing a complete pattern only with correct
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arithmetic or photo-picture (manipulation), (iv) seeing a complete pattern with correct
result and verbal explanation, (v) seeing a complete pattern towards correct algebraic
strategies, and (vi) not showing to see any pattern. According to the results of the
study, 34.9% of seventh grade students and 45% of eighth grade students had
arithmetic reasoning, while 0.1% of seventh grade students and 0.6% of eighth grade
students showed algebraic reasoning. In addition to that, almost half of seventh and
eighth graders either did not see any pattern or saw an improper pattern at linear

patterns.

In another study conducted with pre-algebra middle school students, Amit and Neria
(2008) investigated the generalization strategies of 50 students who are at the
beginning of sixth and seventh grade level. They asked students to generalize given
patterns (figural-linear, figural non-linear and verbal non-linear) to the next term as
near generalization, to the 10th term as far generalization, and to write any term by
using n. To classify students’” answers, they defined two strategies:
recursive/operational/local strategy and functional/conceptual/global strategy.
Recursive/operational/local strategy refers to the counting strategy, while
functional/conceptual/global strategy refers to the linear strategy in Stacey’s (1989)
study. According to the results of the linear patterning task, almost all students first
generalized the pattern to the next term by using the recursive strategy. After finding
the next term, some students continued to generalize the pattern to 10th term with
recursive relationship. Yet, they failed to find the any term, since they insisted on

recursive strategy. On the other hand, some of them jumped to finding the any term
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and found the general rule of the pattern with functional relationship. When they
found the general rule, they used it to calculate the far terms. In other words, those
students did not follow the gradual generalization format which includes the order of
near generalization, far generalization, and global generalization. Instead, they
created their generalization process the order of which is near, global, and far.
Furthermore, researchers observed that students, who could successfully generalize

the linear pattern, generally used more than one strategy within the same question.

One of the major studies on pattern generalization was conducted by Stacey (1989).
Stacey (1989) investigated middle school students’ generalization strategies of linear
patterns including Ladders pattern (see Figure 4) in order to compare primary and
middle students’ responses to the same pattern. The participants were 140 students
from seventh and eighth grade level (12-13 years old). Results of the study showed
that students mostly used the counting strategy for near generalization regardless of
their grade level. When they were asked about generalizing the pattern to far terms,
the counting strategy was inadequate. In such a situation, they employed either the
difference or whole-object strategy. Very few students used the linear strategy for far
generalization. Furthermore, there was no change in the strategies of students across
different grade levels. Additionally, the students were more successful at generalizing
the pattern to near terms than far terms. From grade level perspective, seventh and
eighth grade students showed similar performances at near and far generalization
tasks. Another important finding of Stacey’s (1989) study was that 64% of the

students used more than one strategy while generalizing linear patterns. Stacey (1989,
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p. 147) called this situation as “inconsistency of choice of model”. In detail, 22% of
the students used a combination of the whole-object and difference strategies, while
21% of the students used a combination of the whole-object and linear strategies, 15%
of the students used a combination of the difference and linear strategies, and 6% of

the students used a combination of the whole-object, difference, and linear strategies.

Orton and Orton (1999) extended the study of Stacey (1989). They studied with 10-
13 year old students about their pattern generalization methods when there are linear
and quadratic patterns. They reached the same results with Stacey (1989) that many
students changed methods in near and far generalization tasks within the same
question. They expressed that participants could get the most success when they
combined recursive method in near generalization and explicit/linear method in far
generalization. They also observed the combination of whole-object and difference
methods during changing of methods. Yet, they did not present detailed analysis of
results related to changing of methods. Else than changing of methods, Orton and
Orton (1999) presented their results based on the age of the students. During
presenting their results, they grouped students based on their ages as 10-11 year old
students, 11-12 year old students, and 12-13 year old students. According to the
results, at finding 20t and 100t terms, 10-11 year olds and 11-12 year olds performed
similarly with fifty percent approximately; while 12-13 year olds performed better
than them (over 60 percent). On the other hand, few students could generalize the
pattern to nth term regardless of their grade level. 0.7% of 10-11 year old students,

7.0% of 11-12 year old students, and 19.4% of 12-13 year olds could find nth term
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through linear method. In other words, as students aged, they performed better.
According to the researchers, the reasons behind students’ having difficulty at
generalizing patterns are their being incompetent at arithmetic, their persistency at
recursive method, and the use of ineffective methods such as whole-object and

difference.

Else than cross-sectional studies on pattern generalization such as Stacey (1989),
Orton and Orton (1999) or Amit and Neria (2008), Barbosa (2011) investigated
middle school students’ pattern generalization development in time with a
longitudinal study. She studied with 54 Portuguese students from sixth grade level
(11-12 years old). Through the study, near and far generalization tasks of increasing
linear patterns were asked to students in clinical interviews over 6 months. Students
were grouped in 27 pairs. The results of the study revealed that the students used five
generalization strategies, which are counting, whole-object, difference, explicit, and
guess and check. According to the results of the first task, more than half of students
used counting strategy at near generalization and almost a quarter of students used
whole-object strategy. Furthermore, there was only 1 pair of students who used
recursive strategy. After 4 months of experience with patterning activities, another
increasing linear pattern was asked to the participants of the study. According to the
result of the second task, 22 pairs used counting strategy, 4 pairs used difference
strategy, and 2 pairs used explicit strategy at near generalization. Besides, 22 pairs
used explicit strategy, 4 pairs used difference strategy, and 1 pair used counting

strategy at far generalization. In other words, the number of students who used explicit
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strategy increased from 12 pairs to 22 pairs at far generalization. The number of
students who used difference strategy increased from 16 pairs to 21 pairs at near
generalization. The number of students who did not answer the question or incorrectly
used the whole-object strategy decreased from 6 pairs to O pairs at far generalization.

Overall, students were more successful at near generalization than far generalization.

Just as Barbosa (2011), Lannin (2005) also examined sixth grade students’
generalization processes. As different than Barbosa (2011), Lannin (2005) used
spreadsheets throughout the study and formed a framework involving explicit and
non-explicit strategies. During the study, 25 sixth grade students were asked to
generalize and justify their generalizations through computer spreadsheets. While he
called counting and recursive strategies as non-explicit, he classified the whole-
object, guess-and-check, and contextual strategies as explicit strategies. Since the first
three strategies were explained before, the last two strategies are explored here. The
guess-and-check strategy involves trying many rules on the given pattern. The
contextual strategy involves figuring out a rule based on the given structure in the
pattern. Lannin’s contextual strategy (2005) might correspond to Stacey’s linear
strategy (1989) or Ley’s explicit strategy (2005). According to Lannin (2005), since
doing operations on spreadsheets is easier, in his study, the students were more likely
to use the guess-and-check strategy. Additionally, he described the whole-object and
guess-and-check strategies as distractor strategies since they focus on empirical-

particular results more than the general structure of the pattern. Lannin (2005) also
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expressed that sixth grade students’ inadequate operational skills in mathematics

prevents them developing algebraic generalizations.

Else than studies conducted with primary and middle school students, studies
conducted with high school students also present important results. In a study
conducted by Mason, Graham, Pimm, and Gowar (1985), the pattern-generalization
process of students were categorized into four stages, which are seeing, saying,
recording, and testing. To identify the pattern, to describe it with words, to record the
findings and to test the formula are the corresponding explanations of the four stages.
Lee and Wheeler (1987) analyzed high school students’ generalization processes
using Mason etal. (1985)’s framework. They asked students a ‘dot rectangle problem’
as shown in Figure 5. According to the results of the study, 163 out of 176 students
could find the number of dots in the fifth rectangle, while only 26 students could find
the 100th term and the general term of the pattern. Lee and Wheeler (1987) found that
“seeing the pattern” was not a problem for students. What was difficult for students
was “seeing an algebraically useful pattern” (p. 95). In other words, students were
able to notice the arithmetical structure of the pattern, but they could not relate it to
algebra. The researchers also concluded that as far as the saying phase is concerned,
students did not describe the pattern verbally nor did they test their findings in the

testing phase.
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« . I o o - The drawing at the left represents a set of
overlapping rectangles.

.

The first contains 2 dots.

M The second contains 6 dots.
The third contains 12 dots.
-t - The fourth contains 20 dots.

How many dots in the fifth rectangle?
How many dots in the hundredth rectangle? How do you know?
How many dots in the g th rectangle? How do you know?

Figure 5. The dot rectangle problem (Lee, 1996, p. 94)

In another study by Becker and Rivera (2005), ninth grade students’ generalization
skills were examined through a qualitative study. Two of the purposes of the study
were to examine the generalization strategies of successful students and to understand
the obstacles behind students’ having successful generalizations. They asked students
linear patterning tasks including items asking for the next few terms, 10th term, and
general term. They worked with 22 students from a beginning algebra course. The
results of the study revealed 23 different generalization strategies that students used.
These strategies were either numerical or figural. Successful students mostly used at
least two strategies while solving different items of the question. The results of the
study also showed that students had difficulties in answering all the items of the
generalization questions. Five of the 22 students were able to generalize all parts,
while four students were able to make generalization partially. The remaining 13
students were not able to make generalizations at all. According to the researchers,
students, who had difficulties at generalizing, mostly used numerical strategies at the
beginning of the question and insisted on using only one strategy at all items of the
question. They also could not connect different generalization strategies with each

other.
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Garcia-Cruz and Martinon (1998) also conducted a study with high school students
who are 15-16 years old. They firstly conducted interviews with 11 students and then
performed a teaching experiment including small group and whole class discussions
with 18 students. Researchers asked students about how to generalize a linear pattern
to 4th, 5th, 10th, 20t, and nw term. At the end of the study, they defined three
hierarchical levels of generalization, which are procedural activity, local
generalization, and global generalization. The procedural activity involves the
recursive relationship between successive terms of the pattern. It mostly focused on
the constant difference of the linear pattern. At this stage, students find the required
term of the pattern by adding the constant difference onto known terms repetitively.
The second stage, local generalization, involves the use of a specific rule to apply on
specific terms. For example, in a given number sequence ‘6, 11, 16, 21, .....", students
identify the relationship of the pattern with multiples of 5 in a way that ‘the first term
is 5 plus 1, the second term is 2 times 5 plus 1, the third term is 3 times 5 plus 1. It is
always 1 more than the multiples of 5. Thus, the 100th term is 100 times 5 plus 1. As
the example shows, the student formed a specific rule by adding 1 to the required
multiple of 5. The final stage is global generalization. In global generalization,
students adapt the rule, which is formed during local generalization, for new patterns.
In other words, the specific rule, which is formed before, is used for new situations.
In addition to defining three hierarchical levels of generalization, researchers resulted
that students dominantly shifted from procedural activity to local generalization

within the same question.
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2.4. Summary of the Literature Review

In conclusion, the related literature showed that pattern generalization activities
increase students’ development of algebraic thinking skills and provide experience
with numerical relationships between inputs and outputs of a pattern (NCTM, 2000;
Orton & Orton, 1999). It helps beginning algebra students to make the transition from
arithmetic to algebra due to its progressive nature from near terms to far terms and
the general term. Yet, related studies showed that students have difficulties in seeing
the algebraic structure during pattern generalization (Becker & Rivera, 2005; Lee &
Wheeler, 1987; Lin & Yang, 2004; Orton & Frobisher, 2004; Rivera & Becker, 2006).
The difficulties experienced by students generally arise from the persistence on the
recursive approach, the insufficient understanding of arithmetical operations, the
misusage of some strategies such as the usage of whole-object strategy without
adjusting to the pattern, and the search for short-cut strategies such as guess and check
strategy. To be able to overcome these difficulties, it is necessary to analyze students’
strategy use during pattern generalization process. In spite of its important role in
terms of the development of algebraic thinking, the studies on patterning strategies at
elementary grade levels are inadequate in the literature (Vale, 2009; Waters, 2004).
As reported in the literature, generalization strategies are basically distinguished from
each other based on their arithmetic or algebraic nature. For that reason, results of the
present study would be a significant contribution to the literature in terms of revealing
the abilities and difficulties of students in constructing and connecting arithmetic and

algebraic generalizations.
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The review of the literature showed that past studies which examined students’ pattern
generalization processes dominantly applied a gradual generalization format which
follows a path from near generalization to far generalization and general term/nth
term (Barbosa, 2011; Becker & Rivera, 2005; Garcia-Cruz & Martinon, 1998; Lee &
Wheeler, 1987; Ley, 2005; Orton & Orton, 1999; Stacey, 1989). In these studies,
students were not offered any flexibility of creating their own generalization
processes. Yet, some studies showed that when students were free to choose, they
could create different generalization processes such as starting off with near
generalization, jumping to finding general term/nth term, and returning to far
generalization through calculation of general term (Amit & Neria, 2008; Rivera &
Becker, 2006). Considering the gains of each generalization process, the order of the
generalization processes students applied could provide important clues about the
specific points that they had difficulties at the whole process. In other words, when a
student chose to conduct near generalization at first, to find nth term as second, and
to conduct far generalization at last, it can be inferred that the student can apply near
generalization easily while s/he can apply far generalization difficultly. Yet, there is
a gap in the literature in this area. In the current study, researcher did not apply a
gradual generalization format during the data collection process. Even if the questions
in the Pattern Test included items consisting of the order of near, far, and global
generalizations, students were free to create their own generalization process. Thus,
results of this study would provide valuable information about general trends in

students’ generalization process sequences.
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Related literature revealed two types of generalization process: single type
generalization, mixed-type generalization. Single type generalization included only
one generalization strategy at whole-generalization process, while mixed-type
generalization included at least two generalization strategies. As indicated in the
literature, there is evidence that students use mixed generalization strategies within
the generalization process more than single type generalizations (Barbosa et al., 2009;
Noss, Healy, & Hoyles, 1997; Rivera, 2010; Stacey, 1989). However, many studies
in the literature have so far investigated single type of generalizations, which included
only one generalization strategy (Barbosa, 2011; Cai & Knuth, 2011; Hargreaves et
al., 1999; Lannin, 2005; Ley, 2005; Rivera & Becker, 2007). In other words, when
students used more than one strategy at answering one generalization question, past
studies did not give detailed information about which strategies were combined, how
the frequency of each strategy was or how the order of the strategies was. Instead,
they just expressed that they observed multiple strategies by giving shallow
information (Becker & Rivera, 2005; Garcia-Cruz & Martinon, 1998; Hargreaves et
al., 1999; Orton & Orton, 1999; Stacey, 1989). In addition to this, some studies
ignored the situation of students’ using multiple strategies. When a student used more
than one strategy at answering one generalization question, the student’s answer was
coded either by the more general strategy (Stacey, 1989) or by the highest-ranking
strategy (Ley, 2005). In other words, past studies did not provide sufficient
information on the use of multiple strategies during the whole-generalization process.

There is a gap in the literature on how students use mixed generalization strategies.
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All in all, the purpose of the present study is to investigate students’ generalization

process in detail including both single-type strategies and mixed-type strategies.
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CHAPTER 3

METHOD

The aim of this study is to reveal sixth, seventh, and eighth grade students’
generalizations of patterns using arithmetical generalization, algebraic generalization,
and naive induction as well as whether their generalization process differs in terms of
their grade level. In line with these purposes, research design, the procedure, the pilot
study, the participants, the data collection procedure, the data collection tool, data

analysis, validity, reliability, and limitations of the study are explained in this chapter.

3.1. Research Design

The purpose of the study is to understand elementary students’ algebraic thinking
skills deeply through pattern tasks. Based on the purpose of the study, qualitative
research methods were used in this study, since qualitative research strategies enable
researchers to have a detailed understanding of the issue and gain an insight into the

deeper thoughts and behaviors of participants (Creswell, 2007).

Creswell (2007) defined five approaches of qualitative inquiry design, which are
narrative, phenomenology, grounded theory, ethnography, and case study. Each

approach was built on one another in a way that they all share common points as well
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as basic differences. Narrative design involves experiences and stories told by
participants, while phenomenology design focuses on the commonality in stories and
experiences told by participants (Creswell, 2013). Grounded theory design, on the
other hand, aims at exploring a theory and forms a framework based on the data
gathered from the participants who had the same experiences (Creswell, 2013).
Ethnography design shows similar characteristics with grounded theory in terms of
analyzing many participants who have gone through same processes. Yet, it differs
from grounded theory in terms of shared locations of the participants where they form
common behaviors, beliefs, and languages (Creswell, 2013). The aim of ethnography
is to find out the mechanism behind the culture, not to develop an in-depth
understanding of the issue through the case. Lastly, case study aims at understanding

an issue thoroughly using the case/s.

Case study has been described in many ways in the literature. It involves “an in-depth
description and analysis of a bounded system” (Merriam, 2009, p. 40). Yin (2009)
defined it as an inquiry method, which examines a real-life phenomenon deeply
whose boundaries with the context are not apparent. Creswell (2013), on the other

hand, mostly focused on the procedure by defining it as

A qualitative approach in which the investigator explores a real-life,
contemporary bounded system (a case) or multiple bounded systems (cases)
over time, through detailed, in-depth data collection involving multiple
sources of information (e.g., observations interviews, audiovisual material,
and documents and reports), and reports a case description and case themes
(p. 459).
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Definitions of the case study indicate that cases are identified as bounded systems
within a case study. In a case study, a case can only be identified as a unit of analysis
in a bounded system (Merriam, 2009). The literature emphasizes the importance of
defining the bounded system in detail while describing the cases (Stake, 2005; Yin,
2009). In a typical case study, a unit of analysis might be a person (Yin, 2009). It can
also be a program, an organization, or a small group of people. Yin (2009) categorized
case study designs in a 2x2 framework based on the unit of analysis (see Figure 6).
Categories of the framework are determined according to two criteria: the number of
cases (single or multiple) and the number of unit of analysis (holistic or embedded).
Single case designs including single unit of analysis are characterized as holistic,
whereas single case designs including multiple unit of analysis are characterized as
embedded (Yin, 2009). Multiple case designs including single unit of analysis are
characterized as holistic while multiple case designs including multiple unit of

analysis are characterized as embedded (Yin, 2009).

single-case designs multiple-case designs
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Figure 6. Case study categorization developed by Yin (2009, p. 46)
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The current study is a multiple case study. There are three cases, which are the small
groups of students from sixth, seventh, and eighth grade levels, as the present study
addresses middle school students’ generalizations of patterns through linear pattern
tasks. The unit of analysis in this study is the pattern generalization structures of
middle school students. The context of the study is bounded with a public middle
school in Ankara. Therefore, the design of the study is holistic-multiple case study as

seen in Figure 7.

A public middle school in Cayyolu, Ankara
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Figure 7. Design of the study: holistic multiple case study

3.2. Sampling and Participants

Main sampling strategies are probability and nonprobability sampling (Merriam,
2009). Probability sampling enables researcher to generalize from sample to the
population (Merriam, 2009). However, the main concern of qualitative research is not
statistical generalization. Thus, nonprobability-sampling strategies have been
accepted as the basic sampling strategy in qualitative designs (Merriam, 2009). The

present study uses purposeful sampling among nonprobability sampling strategies.
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Purposeful sampling allows choosing informative cases and reach in-depth
understanding of the study (Patton, 2002). Due to the convenient location and time,
the participants of the study were selected from the public school in which the
researcher was working as a mathematics teacher for eight months by the time data

collection started.

The school was a state middle school located in Cankaya district of Ankara. It was
located in a rural area. Yet, with the construction projects around the village, the rural
area was turning into urban area. In this neighbourhood, there were four state middle
schools at all. This school was not a crowded school since it was opened in 2013-
2014 academic year. In the public school during 2015-2016 academic year, there were
about 120 middle school students in all grade levels (i.e., 5th, 6th, 7th, and 8t). There
were two classes for each grade level in the school. The size of the classes was about
15 students. There were two mathematics teachers in the school. While one of the
teachers, i.e. the researcher, was assigned to teach mathematics lesson in one sixth
grade, one seventh grade, and two eighth grade classes, the other teacher was assigned
to teach in two fifth grade, one sixth grade, and one seventh grade classes. The
researcher was also assigned to teach math application lesson in all sixth, seventh,

and eighth grade classes.

Students’ age ranged from 11 to 14. Socioeconomic statuses of students were
generally moderate. The parents of the students were usually graduated from high
school. Their mothers were mostly housewives, while their fathers were either civil

servant or worker in the private sector. Students dominantly had one or two
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brothers/sisters, with whom they share the same room at their houses. Furthermore,
students generally had a moderate academic profile in terms of mathematics lesson.
They were neither highly successful nor unsuccessful in mathematics lesson. They

were also willing to participate in lessons and to take responsibilities academically.

During the selection of the participants, all students were clearly informed about the
purpose of the study. Since the researcher knew all the students personally, she
selected the most suitable participants who could provide rich information for the
study. There were three criteria during the selection process of the participants. The
first criteria was the grade level of the students. Since the topic ‘generalization of
linear patterns’ belongs to 6th, 7th, and 8th grade level in the National Elementary
Mathematics Education Curriculum, it was necessary for the participants to be at
sixth, seventh or eighth grade level (MONE, 2013). The second criterion was
students’ enthusiasm about the mathematics lesson. The researcher determined the
enthusiastic students based on three ways, which are (i) observing students personally
in mathematics and math application lessons, (ii) taking the opinion of the second
mathematics teachers about each student, and (iii) observing students’ activities in
Math Club. This criterion arised from my view that students who are enthusiastic
about the mathematics lesson would be more open to give answers to the questions in
the interview protocol and provide rich information. The last criterion was students’
talkativeness. The researcher operationalized this criterion based on students’
participation in class discussions. In the current study, the individual interviews were

conducted with one participant at one time; therefore, it was important that the
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participants be willing to talk. In order to overcome possible biases during the
selection of the participants was reviewed by the second mathematics teacher in the
school. Then, 14 participants (five students from 6th grade level, four students from
7th grade level, and five students from 8th grade level) were selected among the

volunteer students.

As mentioned above, the present study includes three cases, which are sixth grade
students, seventh grade students, and eighth grade students. As a result of selection
process, five sixth grade students among 35 students, four seventh grade students
among 38 students, and five eighth grade students among 30 students were selected
as participants. They were from the both classrooms that the researcher and the other
teacher taught. There was one female, four male students from eighth grade; one
female, three male students from seventh grade; and two female, three male students

from sixth grade.

3.3. Data collection

3.3.1. Setting.

The context of the present study was bounded with a public school located in Cayyolu,
Ankara. It had eight classrooms, one conference room, and one library. The study
took place in the conference room of the school. The conference room was 7 meter
by 8 meter in size. It had windows on east side. During the study, all chairs were
placed at the back side of the room in order to increase available space (see Figure 8).

The room had dark blue curtains with a blackboard at one end. To set up best video
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lighting during recording, curtains were all closed and lightings were on during the

study.

In the course of interview, a table of 1 meter by 2 meter in size was placed in the
center of the room with two chairs at each side, one for the participant, one for the
researcher. The location of the researcher’s chair was suitable to see the test paper of
the participant. There were two cameras with two tripods and one voice-recorder. The
voice recorder was placed in front of the participant next to the test paper. One of the
cameras took close-up record on the test paper of the participant with hand
movements of the participant. The other one took mid-shot record focusing on the

face of the participant.

These physical settings were fixed for all participants.

Figure 8. Physical setting of the conference room

3.3.2. Data collection instruments.

In this study, data were collected through a Pattern Test and interviews.
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3.3.2.1. The pattern test.

The Pattern Test included six open-ended pattern tasks adapted from the literature.

While selecting the questions, a table of specification (see Table 1) was prepared

considering the related objectives from the National Elementary Mathematics

Education Curriculum (MONE, 2013, 2018).

Table 1. Table of Specification for the Pattern Tasks based on the objectives of
National Mathematics Education Curriculum (MONE, 2013, 2018)

Objectives

Grade
Level

Related
Tasks

Students should be able to recognize the number patterns
with fixed difference between consecutive terms of the
patterns, find the rule of the pattern, and complete the
pattern by identifying the missing item.

[Aralarindaki fark sabit olan sayi Oriintiilerini tanur,
Oriintliniin kuralin1 bulur ve eksik birakilan 6geyi
belirleyerek oruntlyl tamamlar.] (MONE, 2018)

T2, T4, T6

Students should be able to expand and form the number
pattern with fixed difference between consecutive terms of
the pattern.

[Aralarindaki fark sabit olan say1 Oriintiisiinii genisletir ve
olusturur.] (MONE, 2018)

T2, T4, T6

Students should be able to form increasing or decreasing
number patterns according to a certain rule and explain the
rule.

[Belli bir kurala gore artan veya azalan say1 Oriintiileri
olusturur ve kuralin1 agiklar.] (MONE, 2018)

T2, T4, T6

Students should be able to construct the required steps of
the given number and shape patterns whose rule are given.
[Kurali verilen say1 ve sekil driintiilerinin istenen adimlarmi
olusturur.] (MONE, 2013, 2018)
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Table 1 (continued)

Students should be able to express the rule of the arithmetic

sequences with letter and find the required step of the sequence 11,12,
whose rule is expressed with letter. -I‘I-'% -‘I|-'L(15
[Aritmetik dizilerin kuralin1 harfle ifade eder; kural1 harfle ifade '
edilen dizinin istenilen terimini bulur.] (MONE, 2013)

Students should be able to express the rule of the number patterns T1 T2
with letter and find the required step of the pattern whose rule is 7 _|_3’ T 4’
expressed with letter. T5’ T61

[Say1 oriintiilerinin kuralini harfle ifade eder, kurali harfle ifade
edilen 6rintiniln istenilen terimini bulur.] (MONE, 2018)

Based on the curricular restrictions, the questions in the Pattern Test were classified
as linear-numeric and linear-figural questions. Additionally, the purpose of the
instrument was to collect data about participants’ algebraic reasoning skills. Basic
algebraic reasoning skills are to identify the pattern, to extend the pattern to near and
far terms, to find out the general term, and to generate a rule for the pattern (Threlfall,
1999). Therefore, while determining the questions for the Pattern Test, the researcher
aimed to select items which would enable the participants to identify a pattern, to
predict near and far terms, and to find the general term. Students were expected to
apply anyone of the generalization strategies among arithmetical generalization,
algebraic generalization, and naive induction during solving each queston in the
Pattern Test. Since each question was adapted from the literature, the validity and
reliability of the questions were provided in the related studies. Accordingly, each
question included four or five items related to near generalization, far generalization,

and the general rule.
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The Pattern Test included three linear-figural pattern questions. The difference
between the consecutive steps of the figural patterns in the questions was the same.

These questions are first, third, and fifth questions.

The first question in the Pattern Test was adapted from Van de Walle et al. (2007). In
the original version of the task (see Figure 9), students were asked to fill in the blanks
in the given table for near and far terms. Additionally, it included a direction about

writing the general rule with words and symbols.

Step 1 Step 2 Step 3

® Complete a table that shows number of triangles
for each step.

Step Number 1 2 3 4 Beas:| 10 20

Number of Triangles

e How many triangles are needed for step 10? Step
20? Step 100? Explain your reasoning.

® Write a rule (in words and/or symbols) that gives
the total number of pieces to build any step number

(n).

Figure 9. The original version of first question (Van de Walle et al., 2007, p. 269)

In order not to lead students in a particular solution direction, the researcher removed
the table part from the question. In addition, the general rule was asked without
directing students to use words or symbols. The reason behind is not to limit students’
answers with the use of table, words, and symbols. Instead, near, far, and general
terms were asked in regular items. Additionally, rather than triangles, circles were

used due to the practicality of drawing as in Figure 10.
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Step | Step 2 Step 3 Step4 Step 5 Step 6

At the above pattern with circles,

How many circles does the fourth step have?

How many circles does the tenth step have?

How many circles does the fiftieth step have?

. How can you express the general rule of the pattern?

oo o —

Figure 10. The adapted version of first question from the instrument

The third question in the Pattern Test was adapted from Mason et al. (2005). In its
original version, only general rule of the pattern was asked in terms of nth term as

seen in Figure 11. There was no item related to near or far terms.

Task 6.2.1 Gnomon Numbers

For each of the picture sequences, decide on a rule that generates these and subsequent pictures in
the sequence. How many objects (circles, squares) are needed to make the n picture?

o&)égoég)o

Figure 11. The original version of third question (Mason et al., 2005, p. 117)

In order to use the question, the researcher added new items to the question which
asks for near and far steps such as fourth, fifth, tenth, and fiftieth steps. These items
were added in order to reach the objectives of the study related to students’
generalization processes of near and far terms. Moreover, ‘the general rule’
expression was used instead of the expression ‘nth term’ not to direct students to

symbol use. The adapted question was as follows:
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Step 1 Step 2 Step 3 Step 4 Step 3 Step 6

At the above pattern with circles,

How many circles does the fourth step have?

How many circles does the fifth step have?

How many circles does the tenth step have?

How many circles does the fiftieth step have?

How can you express the general rule of the pattern?

o0 op W

Figure 12. The adapted version of third question from the instrument

The fifth question in the Pattern Test was adapted from Stacey (1989). It included the
construction of a ladder using matches as seen in Figure 13. Stacey (1989) presented
the pattern with two images rather than a sequence image. In addition, she
contextualized the step number as ‘the number of rungs’. Moreover, although near
and far terms of the pattern were asked in original version, the question did not ask

about general term of the pattern as follows:

LADDERS

with 2 rungs like this —_—

With 11 matches, 1 can make this ladder

with 3 rungs. ——%

With 8 matches, I can make a ladder I | I..__

How many matches are needed to make the same sort of ladder with 4 rungs?

How many matches are needed to make a ladder with 5 rungs?

I know that it takes 335 matches to make a ladder with 111 rungs. How many maitches
would be needed to make a ladder with 112 rungs?

How many matches would you need to make a ladder with 20 rungs?

How many matches are needed for a ladder with 1000 rungs?

Figure 13. The original version of fifth question (Stacey, 1989, p. 148)

59



In order to use the question in the present study, staging of the question was modified
in a way that the pattern was broken into growing stages. Also, the expression of ‘step
number’ was used instead of the expression of ‘the number of rungs’. Lastly, an item
related to general term of the pattern was added in order to see students’ processes of
generalizing a pattern to any term in accordance with the objectives of the study. The

adapted question was as given:

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

At given pattern above, the ladder is constructed by using matches.
How many matches does the fourth step have?

How many matches does the fifth step have?

How many matches does the tenth step have?

How many matches does the hundredth step have?

How can you express the general rule of the pattern?

® a0 o W

Figure 14. The adapted version of fifth question from the instrument

The Pattern Test also included three linear-numeric pattern questions. The difference
between the consecutive steps of the numeric patterns was the same. These questions
are second, fourth, and sixth questions. Each question was adapted from related

literature. The original versions and the changes are given below.

The second question in the study was adapted from Graham (2005). It included a

numeric pattern whose first term is 5 and which increases by 3 at each step. In the
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question, only near terms were asked. There was no item related to far terms or the

general rule as given in Figure 15:

Find the difference between terms for each sequence and hence write down the
next two terms of the sequence.

5,18, 11, 14, 19 . ..

Figure 15. The original version of second question (Graham, 2005, p. 263)

In order to use in the present study, new items, which ask for far terms and the general
term, were added in order to reach the objectives of the study. No further modification

was made as below:

a. What would be the fourth term in the sequence?
b. What would be the fifth term in the sequence?
c. What would be the tenth term in the sequence?

d. What would be the hundredth term in the sequence?

e. How can you express general term in the sequence?

Figure 16. The adapted version of second question

The fourth question in the Pattern Test was adapted from Sacey (1989). It included a
numeric pattern whose first term is 4 and which increases by 6 at each step. In its
original version, Stacey (1989) asked about near terms of the pattern in ‘fill in the
blank’ type question and far term. She did not mention the general rule as given

below:
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4,10,16,22, , ,

a. Fill in the blanks.
b. Find the hundrenth term in the sequence.

Figure 17. The original version of fourth question (Stacey, 1989, p. 149)

In order to use in the present study, the first term of the sequence was modified as 12
and the constant difference remained the same. The reason behind was to observe
students’ generalization processes in a numeric sequence Whose terms are multiples
of 6 when the difference between the consecutive terms is 6. In addition, a new item
was added related to the general rule of the pattern as the objectives of the study

required. Thus, the adapted version of the question was as follows:

12,18,24, ..., ...,42, ..., ...

a. What would be the fourth term in the sequence?
b. What would be the tenth term in the sequence?
c. What would be the fiftieth term in the sequence?

d. How can you express general term in the sequence?

Figure 18. The adapted version of fourth question

The sixth question in the Pattern Test was adapted from Rivera and Becker (2011). It
included the construction of a square using smaller blue squares as seen in Figure 19.
In its original version, the question was asked as a figural pattern whose sequence is
4,8, 12, and 16. Furthermore, students were asked to find the general formula in two

different ways. There was no item related to near or far terms as given below:
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Consider the sequence of four figures below.

Stage 3 Stage 4

Obtain two different ways (or formulas) that will enable you to find the total num-
ber of gray squares (S) at any stage number (n). Then explain why you think each
way (or formula) makes sense to you.

1. Formula I:
Explanation:

2. Formula 2:
Explanation:

Figure 19. The original version of sixth question (Rivera & Becker, 2011, p. 339)

In order to use the question in the present study, figural pattern was transformed into

numeric pattern in order to see students’ generalization processes at linear-numeric

patterns. Then, new items were added related to near and far terms to observe

students’ different generalization processes in both near and far terms. Lastly, the

expression at any stage number (n) was removed not to limit students with letter use.

The adapted version of the question was as follows:
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a. What would be the fourth term in the sequence?

b. What would be the fifth term in the sequence?

¢. What would be the tenth term in the sequence?

d. What would be the hundredth term in the sequence?

¢. How can you express general term in the sequence?

Figure 20. The adapted version of sixth question

3.3.2.2. The interviews.

According to Patton (2002), qualitative interviews can be conducted in three ways
that are the standardized open-ended interview, the general interview guide approach,
and the informal conversational interview. In the standardized open-ended interview
approach, the predetermined questions are asked to the interviewee in the same
manner by protecting the question order (Patton, 2002). The general interview guide
approach is less structured than the standardized open-ended interview (Turner,
2010). In this approach, the interviewer can change the order of the questions
according to the interviewee’s responses (Turner, 2010). There is a list of topics to be
asked and the interviewer is free to explore those topics in a limited time based on the
information taken from the interviewee. The informal conversational interview, i.e.
unstructured interview, contains no predetermined questions. Interview questions are
generated according to the interviewee and flow of the talk (McNamara, 2009). While
its advantages include flexibility and deeper communication, necessity of a lot of time

and an experienced interviewer is the disadvantage of the informal conversational
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method. Patton (2002) mentioned that it is possible to combine these three approaches
as interviewing in a qualitative study. In this study, | selected the general interview
guide approach (see Figure 21 for the General Interview Guide) since it enables to

change the order of the questions depending on the interviewee’s responses.

The General Interview Guide for Patterning Test
How did the interviewee describe the pattern?

o (for figural) shape

e (for all) numeric relationship
In what ways did the interviewee generalize the pattern?

e Near generalization (4t term, 5th term, 10th term, etc.)
e Far generalization (100th term, 1000th term, etc.)

(If the interviewee used trial-and-error strategy) What did the interviewee
consider during the trial and error?

How did the interviewee reach the general rule of the pattern?

e Examples
e Counter-examples

How did the interviewee express the general rule of the pattern?

e Letters
e Natural language (Speech, writing language)

Figure 21. The General Interview Guide for the Patterning Test

3.3.3. Pilot study.

The pilot study of the present study was conducted during the spring semester of

2015-2016 academic year. The purposes of the pilot study were to determine the
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suitableness of the pattern questions in the Pattern Test, to review the interview

protocol, and to predict the necessary time for completing the Pattern Test.

The first version of the Pattern Test included twelve pattern questions in three
categories: linear-numeric, linear-figural, and linear-verbal (word problem). There
were four numeric linear questions, four figural linear questions, and four verbal
linear questions. Each question had three items for near terms, two items for far terms,
and one item for the general term of the pattern. The first version of the instrument
was piloted in a public school in Cankaya, Ankara with 25 seventh grade students.
The participants of the pilot study were selected according to the convenient time and
location. They were asked to answer all the questions in the Pattern Test.
Additionally, they were asked to put a question mark in case they did not understand
something in the Pattern Test. After completing the Pattern Test, three volunteer
students out of 25 students were selected for the pilot study of the interview protocol.

Predetermined interview questions were asked to them.

Students completed the Pattern Test in approximately 90 minutes. A few students left
the Pattern Test unsolved. Some students mentioned that too many items (items (a),
(b),(c), (d), (e), and (f)) related to each question as well as plenty of the same-kind of

questions bored them. For instance, here is a student’s reaction to the Pattern Test:

It asks for a hundredth step of the pattern...Again...I had already explained in
the previous item...I really got bored...As I said before, the general rule of
the pattern is three times the term number and plus two. Thus, the number on
a hundredth step is 302.
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After the pilot study of the first version of the instrument, the results of the pilot study
were discussed with two experts from the field. In the light of their recommendations,
some changes were made on the instrument such as (i) the number of questions were
decreased in order to reduce the necessary time to complete the Pattern Test, (ii)
linear-verbal pattern questions were removed from the Pattern Test since they gave
similar results with linear-numeric patterns, (iii) six items were decreased to four or
five items not to discourage participants, and (iv) ‘Explain your answer’ part which
was at the end of each item was deleted for near term items. Thus, the predetermined

version was changed as seen in Table 2.

Table 2. Predetermined and revised version of the pattern tasks after the first pilot
study.

Predetermined Version Revised Version
four linear-numeric questions three linear-numeric questions
four linear-figural questions three linear-figural questions

four linear-verbal questions

The revised version of the instrument was piloted again with 15 volunteer sixth grade
students from a public school in Cankaya, Ankara. It included six questions that were
three linear-numeric and three linear-figural. Students completed the revised
instrument in 40-50 minutes. After the second pilot study, the final version of the
Patterning Test was constructed. Then a further interview was conducted with one
selected student among 15 sixth grade students. During the pilot study of the interview
protocol, the researcher aimed to determine whether there were any unnecessary,
unreasonable or confusing questions. The final version of the interview protocol was

prepared after the feedbacks from experts and from the pilot study. After the pilot
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study, one question was removed from the interview protocol since students
mentioned the question as confusing and gave irrelevant answers. The removed
question was ‘(If the interviewee use trial-and-error strategy) What did the
interviewee consider during trial and error?’ Furthermore, the counter-example
expression was removed from the interview protocol since it leaded students to

unclear answers.

3.3.4. Data collection process.

The data were collected during the spring semester of 2015-2016 academic year, after
official permissions were obtained from Middle East Technical University Human
Subjects Ethics Committee (see Appendix A) and Ministry of Education (see
Appendix B). After informing the administration of the school, the researcher selected
the participants of the main study among the volunteer students. Each participant was

asked to sign Informed Consent Form and Parental Approval Form.

The data of the study were collected through task-based interviews. The researcher
interviewed with one participant at one time while s/he was answering the questions
in the Pattern Test. The data were collected during the school hours. For example,
while a participant was solving the first question in the Pattern Test, the researcher
asked about how she could describe the given pattern. Then, when s/he found the near
and far terms of the given pattern, the researcher asked about how the participant
generalized the pattern to those terms. All in all, the researcher asked the interviewing
questions from the Interview protocol for each of the questions in the Pattern Test, as

the participant was solving them. The implementation of the Pattern Test and the
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interview took almost one hour. Interviews were conducted one by one at a private
room in the school. The physical setting of the room was arranged accordingly in
order to prevent any interruption. Additionally, to make the participant comfortable,
the researcher reminded the confidentiality of the identities and the voluntary
participation at the beginning of each interview session. All the interviews were

audiotaped and videotaped.

3.4. Data Analysis

Qualitative studies include huge amounts of data and to make sense of the data is the
most difficult part of the process, which is data analysis. Through qualitative data
analysis, the data are transformed into findings by “preparing and organizing the data
for analysis, reducing the data into themes through a process of coding and
condensing the codes, and finally representing the data in figures, tables or
discussion” (Creswell, 2007, p. 148). According to Patton (2002), there is no formula

or recipe, but just guidance.

The data in qualitative research can be analyzed inductively or deductively. The
difference between them lies at existing of a framework. In inductive analysis,
patterns, themes, and codes were explored through qualitative data without an existing
framework which is called as open-coding (Patton, 2002). In contrast, deductive
analysis includes an existing framework and hypothesis related to relationship

between concepts. In this study, data were analysed with a deductive approach.
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In this study, data analysis was conducted in order to examine middle school students’
pattern-generalization process with regard to arithmetical generalization, algebraic
generalization, and naive induction. In order to analyze data, deductive approach was
employed. Main categories were determined and defined up-front which were naive
induction, arithmetic generalization, and algebraic generalization, taken from Theory
of Knowledge Objectification proposed by Radford (2000). Pre-determined
categories of data analysis process were presented in Figure 22 (see in detail in
Theoretical Framework part). Coding system for the three categories were explained,

respectively.

Generalization Framework of
Radford (2000)

[

Naive
Induction

Arithmetic
Generalization

Algebraic
Generalization

Factual
Generalization

Contextual
Generalization

Symbolic
Generalization

Figure 22. Generalization Framework of Radford

The coding system for the three categories of Radford’s generalization framework

were explained in detail based on the pattern example given in Figure 23.

70



Figure 1 Figure 2 Figure 3

Figure 23. The toothpick pattern from Radford (2003, p. 45)

Students’ answers were coded as naive induction if trial and error strategy was
employed during pattern generalization. Radford (2010a), as mentioned in Chapter 2,
made a distinction between generalization and naive induction. Naive induction
includes trial and error strategy. Students try simple rules related to given pattern such
as ‘step number times 3 plus 2’ or ‘step number times 3’ and check it on particular
steps of the pattern. According to Radford (2010a), they just make inductions through
hypothesis, not a generalization. Thus, responses of students were coded as naive
induction if there is trial and error. Below is an example of students’ answers, which

could be categorized under naive induction for the toothpick pattern in Figure 23:

How can | find the general rule of this pattern? If | multiply term number with
3, it works for the first term (1 times 3 equals 3 toothpicks), but it does not
work for the second term (2 times 3 equals 6 toothpicks). Second term has 5
toothpicks. Then, I will try to multiply term number with 2 and add 1. It works
for the first term (1 times 2 plus 1 is 3 toothpicks); it also works for second
and third terms (2 times 2 plus 1 is 5 toothpicks and 3 times 2 plus 1 is 7
toothpicks). Yes, that is the general rule. Multiply with 2 and add 1.

Students’ answers were coded as arithmetical generalization if students explored the
recursive relationship between consecutive terms of the pattern by focusing on the

common difference. For example, a student’s answer ‘this pattern always continues
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by adding two to the previous term.’ for the pattern in Figure 23 could be categorized

under arithmetical generalization.

Algebraic generalization is distinguished from arithmetic generalization includes
three sub-categories that are factual generalization, contextual generalization, and

symbolic generalization.

Students’ answers were coded as factual generalization if students found the
particular terms of the pattern within a concrete formula. Factual generalization, as
explained in Chapter 2, is the most concrete form of algebraic generalization. A rule,
which is formed with factual generalization, does not include any abstract terms.
Furthermore, it is applied to only particular terms. In the following, there are some

examples of factual generalization for the pattern in Figure 23:

Look! First term has 3 toothpicks, I can say it is 1 plus 2. Second term has 5
toothpicks, which is 2 plus 3. Third term has 7 toothpicks, which is 3 plus 4.
Then, 10t term will have 10 plus 11 toothpicks. 100t term will have 100 plus
101 toothpicks.

As seen from the example, student noticed a concrete rule on the first three terms of
the pattern as 1 plus 2 for the first term, 2 plus 3 for the second term, and 3 plus 4 for
the third term. Then, she found 10t and 100w terms with this rule. As seen from the
example, student did not mention any abstract term during the factual generalization.

Only particular terms were included in the process of factual generalization.

Students’ answers were coded as contextual generalization if students used abstract
cooncepts such as ‘number of the term’ or ‘the figure’ and conducted mathematical

operations on those abstract concepts such as the expression ‘doubling the number of
72



the figure and plus three’. As an example of contextual generalization of the pattern

given in Figure 23:

Therefore, it can be said that the general rule of this pattern is the number of
the term plus the number of the next term.

Students’ answers were coded as symbolic generalization if they expressed the
generalization with alphanumeric symbols just as the expression of ‘2n+3’ (Radford
et al., 2007). It is one-step further than contextual generalization. In this type of
generalization, the letter ‘n’ is the replacement of ‘the number of the figure’ (Radford,
2010Db). In both contextual and symbolic generalizations, students reach an explicit
expression, which is about the relationship between term and position of the term
[number of the term]. Symbolic generalization allows reducing the form of contextual
generalization through alphanumeric symbols (Radford et al., 2007). As an example

of symbolic generalization of the pattern given in Figure 23:

| can write the general rule of the pattern as: N+N+1.

First step of the analysis was to determine a manageable classification system or
codebook as seen above. Secondly, all the audio-taped and video-taped interviews
were transcribed in order to prepare for content analysis. Content analysis is a
technique to analyze texts, especially verbatim transcripts which includes identifying,
coding, categorizing, classifying, and labeling the primary patterns in the data (Patton,
2002, p. 463). In this study, content analysis began by reading all field notes and
verbatim transcripts over and over again. Then, with the help of colored markers and
post-its, primary coding of generalization types was conducted with regard to
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predetermined codebook. If a new category was observed in the data more than a few

times, sensitizing concept was formed to orient new data.

The transcribed data is first coded by the researcher. In order to ensure dependability,
transcription was coded by another coder, a mathematics teacher, with given coding
sheet. After both the researcher and the teacher coded the same sample (the
transcribed data of 5 students’ answers to all questions among 14 students), the results
were compared. The interrater reliability was 83% for the initial coding. After
discussion, the researcher and the second coder had an overall inter-rater reliability
of 90%. As a last step of data analysis, the transcript of data is analyzed in terms of
categories of Radford’s generalization framework, which are arithmetical
generalization, algebraic generalization (including sub-levels: factual generalization,

contextual generalization, and symbolic generalization), and naive induction.

3.5. Trustworthiness

3.5.1. Credibility.

Lincoln and Guba (1985) used the term credibility to describe internal validity.
Credibility in qualitative research is about the correspondence of research results with
reality (Merriam, 2009). To ensure credibility, Merriam (2009) mentioned five
strategies which are triangulation, member checks, adequate engagement in data
collection, researcher’s role/reflexivity, and peer review. In this study, credibility was

provided by applying researcher’s role/reflexivity and peer review.
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The first strategy was researcher’s role/reflexivity which means that “the process of
reflecting critically on the self as researcher, the “human as instrument’ ” (Lincoln &
Guba, 2000, p. 183). The researcher of the present study explained her role clearly
with all biases and assumptions about the study. The detailed information about the
researcher’s role is explained below. The second strategy was peer review which is a
way of the external check of the research process as the same as inter-rater reliability
in quantitative research (Creswell, 2007). The role of peer reviewer is described as
an individual that keeps the researcher honest, asks difficult questions about
methodology and interpreting the data (Lincoln & Guba, 1985). To ensure peer
review, one of my colleagues from mathematics education, who is a doctoral student
in the Mathematics and Science Education department, participated during the study.
She reviewed the study through the preparation of interview protocol, collection of
data, and analysis of data. Additionally, the feedbacks of my advisor and co-advisor

were regarded carefully.

3.5.2. Dependability/Consistency.

The second concern of the trustworthiness in qualitative research is to ensure
reliability. Lincoln and Guba (1985) used the term dependability/consistency to
describe the reliability in qualitative research. Reliability generally refers to stability
of responses to multiple coders of data sets in qualitative research which was called
inter-rater reliability (Creswell, 2009). In this study, reliability was established

through inter-rater reliability.
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After transcribing interviews, the researcher coded the transcription and formed a
coding sheet which explains the codes. Then, transcription was coded by another
coder, a mathematics teacher, with the given coding sheet. After both the researcher
and the teacher coded the same sample, the results were compared. The researcher
and the second coder had an overall inter-rater reliability of 90%. Lastly, the final

version of coded transcripts and agreement on codes and categories were established.

3.5.3. Transferability.

The third concern of the trustworthiness in qualitative research is to ensure external
validity. External validity is about the generalizability of the results from sample to
the population; yet, qualitative studies do not have concerns related to statistical
generalizability (Merriam, 2009). Therefore, Lincoln and Guba (1985) used an
equivalent term ‘transferability’ in qualitative study rather than external validity in
quantitative study. To ensure transferability, the researcher should give detailed
description of the study (Merriam, 2009). Lincoln and Guba (1985) called this
strategy thick description. Since the researcher describes participants and settings of
the study in detail, researcher enables readers whether to transfer information to other
settings due to the shared characteristics (Creswell, 2007). In this study, the researcher
tries to provide rich and thick descriptions of the cases and the findings in order to

communicate the findings effectively.
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3.6. Role of the Researcher and Biases

During the study, the researcher was working as a mathematics teacher at the public
school in which data was collected. There were only two mathematics teachers in the
school. Thus, all students in the school knew the researcher from mathematics lessons.
Moreover, the researcher had a good communication with each student in the school.
This situation was for the benefit of the researcher in several ways. Firstly, when the
researcher mentioned the purpose of the study, most of the students volunteered to
participate in the study. Secondly, since the researcher knew students in person, she
could select the information-rich participants among volunteer students. Also, due to
the good communication with participants, participants felt comfortable expressing
themselves during data collection. Nevertheless, there was a risky situation related to
the effects of teacher-student relationship. They might either think their participation
compulsory, or fear low grades in the class. To prevent it, the researcher underlined
the voluntary participation repeatedly after expressing the data collection process in
detail. Additionally, at the beginning of each interview session, the participants were
explained that they could express any of their ideas without fear of wrong answers.
Researcher also gave the guarantee of not grading participants according to the

interviews.

As mentioned before, the data was collected in a way that researcher interviewed one
participant at one time while s/he was answering the questions on the data collection
tool. At the beginning of each session, the participants were asked to express their

answers and thoughts loudly all the time. Additionally, the duration of each interview
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was identified according to the time students needed to complete the test. Lastly,
orienting the interviewee through welcomed answers by thanking, by shaking the
head or by confirmative sounds is among general mistakes that researcher makes
during the interview (Patton, 2002). To overcome it, the interviewer paid great
attention not to use words of thanks or confirmation, or bodily gestures which give
clue in the Pattern Test. The interviewer said phrases like ‘7 see’ or ‘I understand’
after interviewee’s responses. If interviewer observes interviewee’s working hard for
any question or activity, supportive sentences were used such as ‘I am aware that was
a challenging question and you worked really hard’. When the interviewer needed
more in-depth responses, phrases like ‘Could you explain what you meant in detail?’
or ‘Can you explain your work here?’ were used. In addition, if the interviewee is in
struggle for a long time, interviewee says ‘I see you struggling around. Do you think
there can be an alternative way of this question?’. Lastly, when the interviewee keeps
silent for a long time, interviewer breaks the silence with phrases like ‘What do you

think?’ or ‘Do you have anything in your mind?’.

3.7. Limitations

There were some limitations and possible biases in this study. Firstly, inexperience of
researcher was one of the limitations of this study. Patton (2002) states that while
experienced, well-trained observer increases credibility of the inquiry, there are
doubts in the report of inexperienced observers. | had no experience of interviewing
or qualitative study, thus to reduce this limitation, | have worked with my advisor and

co-advisor at all stages of data collection and a second observer watched all the video-
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records and checked transcriptions of the video-records. Additionally, this study
explored students’ algebraic reasoning only with researcher’s pattern questions.
Asking different questions could give different results and enable to make different

interpretations of algebraic reasoning.

3.8. Ethics

In order to ensure ethical issues, firstly, all participants’ identities in this study are
protected and extra care is given to ensure that none of the information collected
would embarrass or harm them. Secondly, participants are treated with respect during
the research. They are not lied or audio/video taped without their permission. They
are informed about the research and interview process. Furthermore, participants are
ensured that they can quit any time they wanted. Lastly, it is ensured that no physical

or psychological harm will come to participants.

79



CHAPTER 4

FINDINGS

The aim of this study is to explore the sixth, seventh, and eighth grade students’
generalizations of patterns using arithmetical generalization, algebraic generalization,
and naive induction. In addition to studying their generalization process, the study
focuses also on the ways in which this process of generalization differs according to

their grade level. Research question of the study was given in the following:

e How do sixth, seventh, and eighth grade students generalize linear patterns
using arithmetical generalization, algebraic generalization, and naive
induction?

e To what extent do these generalizations differ in terms of their grade level?

In the guidance of the research question, which was given above, this chapter was
organized based on the sixth, seventh, and eighth grade students’ generalization of

linear patterns arithmetically, algebraically or in terms of naive induction.
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4.1. Sixth, Seventh, and Eighth Grade Students’ Generalization of Linear

Patterns

As expressed above, the present study aimed to reveal sixth, seventh, and eighth grade
students’ generalization approaches, which included one or more than one
generalization strategies such as arithmetical generalization, algebraic generalization,
and naive induction. In this study, 6 linear patterning tasks were analyzed for 5 sixth
grade students, 4 seventh grade students, and 5 eighth grade students. The analysis of
the students’ answers revealed that sixth, seventh, and eighth grade students mostly
used at least two generalization strategies (arithmetical generalization, algebraic
generalization or naive induction) on the 6 patterning tasks. These students were
grouped according to the sets of strategies they used within the process of
generalization. All in all, the analysis of the students’ answers revealed four
generalization approaches which are (i) algebraic generalization strategies only, (ii)
the combination of arithmetical generalization and algebraic generalization strategies,
(iii) the combination of arithmetical generalization and naive induction strategies, (iv)
the combination of arithmetical generalization, algebraic generalization, and naive

induction strategies.

4.1.1. Sixth grade students’ generalization of linear patterns.

Table 3 represents the generalization approaches the sixth grade students used during
the generalization of patterns. According to Table 3, the combination of arithmetical
generalization and algebraic generalization was the most frequent generalization

approach used by the sixth graders. The second and third mostly used generalization
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approaches were algebraic generalization only and the combination of arithmetical

generalization and naive induction, respectively.

Table 3. Sixth grade students’ generalization approaches including the variation of
strategies used

ALGonly  AGand ALG AGand | AG ALG
QL L o
P5
Q2 P1 Eg Eg
Qs od ot
P5
« B n
Q5 P3 Eé P2 P4
% s i P2

Notation: P, participant; ALG, algebraic generalization; AG, arithmetical
generalization; I, naive induction

4.1.1.1. Generalization approach including algebraic generalization only.

The generalization approach including only algebraic generalization strategies was
the second most frequently used one among the sixth grade students. It emerged eight
times in the present study. The detailed generalization processes were represented in

Table 4.
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Table 4. Sixth grade students’ generalization approach including algebraic
generalization only

# of . Algebraic Generalization Strategies
Questions
P1
contextual generalization [general rule]
(calculates near and far terms by applying the general rule)
symbolic generalization [general rule]
Q1 P3
contextual generalization [general rule]
(calculates near and far terms by applying the general rule)
symbolic generalization [general rule]
P1
contextual generalization [general rule]
(calculates near and far terms by applying the general rule)
symbolic generalization [general rule]
Q3 -
P1
contextual generalizaton [general rule]
(calculates near and far terms by applying the general rule)
symbolic generalization [general rule]
Q4 P3
contextual generalization [general rule]
(calculates near and far terms by applying the general rule)
symbolic generalization [general term]
P3
Q5 symbolic generalization [general rule]
(calculates near and far terms by applying the general rule)
P1
factual generalization
contextual generalization [general rule]
symbolic generalization [general rule]
(calculates near and far terms by applying the general rule)
P3
factual generalization [near & far term]
symbolic generalization [general rule]
Notation: P, participant

Q2

Q6

As indicated in Table 4, two students in first, fourth, and sixth questions and one
student in second and fifth questions generalized linear patterns using only the

algebraic generalization strategies. As an example for the fourth question,
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Q4/P3: The general rule of this pattern is the number of the next step times 6..
As an instance, in order to find the number in the first step, | multiply 2 by 6,
which is 12. In order to find the number in the second step, | multiply 3 by 6,
which is 18. 4 times 6 is 24, which is the number in the third step. (Student
writes 36 for the fifth step, 66 for the tenth step. Then, he multiplies 51 by 6
and writes 306 for the fiftieth step. At last, he writes n+1.6 for the general
rule.)

As seen from the example, P3 started the generalization process by forming the
general rule of the pattern by mentioning an abstract word ‘the step number’, which
was coded as contextual generalization. After expression of the general rule, he
exemplified the general rule for the calculation of the numbers in the second, third,
and fifth steps. Then, he calculated the numbers in 10t and 50t steps with the general
rule he found. At last, he wrote the symbolic form of the general rule, which was
coded as symbolic generalization. Below is another example of the generalization

process from sixth question including only algebraic generalization strategies:

Q6/P1: (Student writes the number of the terms below the terms.) In this
question, 1 times 4 is 4, which is the number in the first step. 2 times 4 is 8,
which is the number in the second step. 3 times 4 is 12, which is the number
in the third step. Therefore, the rule is the step number times 4. So, | write n
times 4 (student writes n4).. Then, the number in the 10t step will be 40. The
number in the 20t step will be 80. The number in the 100w step will be 400.

As the above example showed, P1 firstly generalized the pattern to first, second, and
third steps by forming a numeric rule of ‘multiplying with 4°, which was coded as
factual generalization. Then, he expressed the general rule by mentioning ‘step

number’, which was coded as contextual generalization. At the end, he wrote the

general rule with symbolic generalization.
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4.1.1.2. Generalization approach including the combination of arithmetical

generalization and algebraic generalization.

The sixth grade students’ generalization processes most frequently included both
arithmetical generalization and algebraic generalization. The combination of
arithmetical generalization and algebraic generalization emerged 14 times in the

present study. The detailed generalization processes were represented in Table 5.

Table 5. Sixth grade students' generalization approach including the combination of
arithmetical generalization and algebraic generalization

# of The Combination of Arithmetical Generalization and Algebraic
Questions Generalization Strategies
P2

arithmetical generalization

contextual generalization [general rule]

(calculates near and far terms by applying the general rule)

P4

arithmetical generalization [near term]

factual generalization [near & far term]

symbolic generalization [general rule]

P5

arithmetical generalization [near term]

symbolic generalization [general rule]

(calculates near and far terms by applying the general rule)

P4

arithmetical generalization [near term]

symbolic generalization [general rule]

02 (calculates near and far terms by applying the general rule)
P5
arithmetical generalization
symbolic generalization [general rule]

(calculates near and far terms by applying the general rule)

Q1
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Table 5 (continued)

# of The Combination of Arithmetical Generalization and Algebraic
Questions  Generalization Strategies
P2

arithmetical generalization [near term]
contextual generalization [general term]
(calculates far terms by applying the general rule)

P4

arithmetical generalization [near term]

symbolic generalization [general term]

(calculates near and far terms by applying the general rule)

Q3

P5

arithmetical generalization

symbolic generalization [general term]

(calculates near and far terms by applying the general rule)

P4

arithmetical generalization

symbolic generalization [general term]

(calculates near and far terms by applying the general rule)

Q4 P5

arithmetical generalization
symbolic generalization [general term]
(calculates near and far terms by applying the general rule)

P1
arithmetical generalization
contextual generalization [general rule]
symbolic generalization [general rule]]
Q5 (calculates near and far terms by applying the general rule)

P5

arithmetical generalization

symbolic generalization [general term]

(calculates near and far terms by applying the general rule)

P4

arithmetical generalization [near term]

symbolic generalization [general term]

(calculates near and far terms by applying the general rule)

Q6 P5
arithmetical generalization
factual generalization
symbolic generalization [general term]
(calculates near and far terms by applying the general rule)

Notation: P, participant
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In detail, three students in the first and third questions, two students in the second,
fourth, fifth, and sixth questions generalized linear patterns using the arithmetic and
algebraic generalization models. Below is a related example from P1 in the fifth

question:

Q5/P1: There are 5 [matches] in the first step. There are 8 [matches in the
second step] and 11 [matches in the third step]. Since it is increased by 3, it
[the general rule] is the step number times 3 and plus 2 (student writes n3+2).
When | multiplied 1 by 3 and added 2, it is 5 here [in the first step]. When |
multiplied 2 by 3 and added 2, it is 8 [in the second step]. When I multiplied
3 by 3 and added 2, it is 11 [in the third step]. In the fourth step, 4 times 3 is
12 and 12 plus 2 is 14. In the fifth step, 5 times 3 is 15 and 15 plus 2 is 17..
So, [in order to calculate the tenth step] 10 times 3 is 30. 30 plus 2 is 32. In
the 100th step, 100 times 3 is 300 and 300 plus 2 is 302.

Another example could be given from P4’s answer to question 1:

Q1/P4: In this question, it is 3, 6, and 9. It is increased by 3 in each step. So, |
will add 3. So, this [fourth step] is 12. In the fifth step, it will be increased by
3 again, it [the fifth step] will be 15.

Q1/R: How many circles are needed to reach the tenth step?
Q1/P4: To reach the tenth step, | should multiply 10 by 3.
Q1/R: Why?

Q1/P4: Because it always increases by 3. Therefore, (student writes 10x3=30);
30 circles are needed. To reach the 50t step, | should multiply 50 by 3.
Because, all of it increases by 3. It [the fiftieth step] is 150.

Q1/R: How can you express the general rule of the pattern?

Q1/P4: The general rule of the pattern can be expressed as 3n, because it is
increased by 3 in each step.

Q1/R: What is n?

Q1/P4:n ... Rule ...
Q1/R: For example, when you asked the tenth step, what did you put in place
of n?

Q1/P4: I put 10.
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Q1/R: Can you give us an example of this general rule?

Q1/P4: For example, we have to do 2 times 3 to find the second step. n should
be replaced by 2. So we find that the second step is 6 and if we want to find
the third step, we should replace n with 3 and we can see that it's 9.

The above dialogue represents the whole generalization process of P4 at the first
question. As seen from the example, P4 reached the number of circles in the fourth
and fifth terms by adding the common difference, which is 3, to the previous terms.
This was coded as arithmetic generalization. In order to reach the number of circles
in the 10w term, she multiplied 10 by the common difference, just as she multiplied
50 by the common difference to calculate the 50t term. Since she formed a rule to
find the number of circles in the 10t and 50t terms at the numerical level, this part of
the generalization process was coded as factual generalization, which is the first sub-
model of algebraic generalization. When she was asked about the general rule, she
expressed it as 3n. Thus, she moved to symbolic generalization, which is the third

sub-model of algebraic generalization.

4.1.1.3. Generalization approach including the combination of arithmetical

generalization and naive induction.

In the present study, the combination of arithmetical generalization and naive
induction was used 7 times within a generalization process. Two students in second
and third questions and one student in fourth, fifth, and sixth questions used both the
arithmetical generalization and naive induction during pattern generalization. Table 6

shows the detailed structures.
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Table 6. Sixth grade students' generalization approach including the combination of
arithmetical generalization and naive induction strategies

# of
Questions

The Combination of Arithmetical Generalization and Naive
Induction Strategies

Q1

Q2

P2
arithmetical generalization [near & far term]
naive induction [general rule]

P3

arithmetical generalization [near term]

naive induction [general rule]

(calculates near and far terms by applying the general rule)

Q3

P1

arithmetical generalization [near term]

naive induction [general rule]

(calculates near and far terms by applying the general rule)

P3

arithmetical generalization [near term]

naive induction [general rule]

(calculates near and far terms by applying the general rule)

Q4

P2

arithmetical generalization [near term]

naive induction [general rule]

(calculates far terms by applying the general rule)

Q5

P2

arithmetical generalization [near term]

naive induction [general rule]

(calculates near and far terms by applying the general rule)

Q6

P2
Arithmetical generalization [near & far term]
Naive induction [general rule]

Notation: P, participant

As seen in Table 6, each student firstly used arithmetical generalization to generalize

the linear patterns to near and/or far terms. Then, they employed the naive induction

strategy to find the general rule. Below is an example from the fifth question;
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Q5/P2: There are 5 in the first step, 8 in the second step, and 11 in the third
step. So it has increased by 3. The fourth step becomes 14 and the fifth step
becomes 17.. Term number times 2? Not suitable for the second step. Term
number times 3..plus 2? (For the first term) 1 times 3 plus 2 is 5. It worked.
(For the second term) 2 times 3 plus 2 is 8. Yes, the general rule is term number
times 3 plus 2°.

P2 reached the number of toothpicks in the fourth and fifth terms by adding 3 to the
previous terms that was coded as arithmetical generalization. Then, he used the naive
induction strategy while trying some rules for finding the general rule as it can be

seen in the example.

4.1.1.4. Generalization approach including the combination of arithmetical

generalization, algebraic generalization, and naive induction.

In the current study, the combination of arithmetical generalization, algebraic
generalization, and naive induction strategies was the least frequent generalization
approach that the sixth grade students used. This combination emerged once. One
student in the fifth question used all three strategies during the pattern generalization

process. The detailed structure was represented in Table 7.

Table 7. Sixth grade students' generalization approach including the combination of
arithmetical generalization, algebraic generalization, and naive induction strategies

# of The Combination of Arithmetical Generalization, Algebraic
Questions  Generalization, and Naive Induction Strategies

Ql -
Q2 -

Q3 -

Q4 :
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Table 7 (continued)

P4
arithmetical generalization [near term]
Q5 naive induction
symbolic generalization [general rule]
(calculates near and far terms by applying the general rule)

Q6 -

Notation: P, participant

Here is an example from question 5,

Q5/P4: There are 5 toothpicks (shows the first step). There are 8 toothpicks
(shows the second step) is 8. There are 11 toothpicks (shows the third step).
The difference between them is 3. They increase by 3. Then, it's supposed to
be 14 in the fourth step. Let's show it by drawing (draws toothpicks). Already,
| have found the answer as 14. Let's check the answer now (counts the
toothpicks he draws). There are 14 toothpicks here, so | found it right. In order
to build the fifth step, we need to draw 6 rows of toothpicks (draws right
below) because they build more than one toothpick per step. In the fifth step
(counts the toothpicks he drew), 17 toothpicks were needed. We need to check
our rule again. 11 plus 3 was 14. 14 plus 3 is 17. We found it right. In the sixth
step, there are 20 toothpicks. 17 plus 3, 20 is correct.

To build the tenth step, we need to do 11 times 11 as it builds one more
toothpick from step number in each step. Therefore, we need to multiply 11
by 11 and find 111. To find the hundredth step, we need to multiply 101 by
101. 1101.

R: Have you reached any general rule?

P4: Yeah. I’ll write the rule now. N+1 times N+1. For example, we want to
find the seventh step. We replace N with 7. Then we should calculate 7 plus 1
is 8. 8 times 8, 64. It didn’t work.. However, | know these are true (shows part
a, b, ¢, and d)... 3N plus 1? (writes the general rule as 3N+1 times 3N+1). |
will calculate the sixth step again. 6 times 3, 18 plus 1, 19. 19 times 19 does
not work again.

R: How many toothpicks do you think are in the tenth step?

P4:111.. Let me figure out how many toothpicks are in the seventh step (draws
the seventh step). 23 toothpicks need to be in the seventh step. As we found,
it continues to increase by 3. Then our rule should include 3N. Yes, our rule
should be 3N+2. Let me give an example. The first step 3 times 1 plus 2, 5.
Correct. In the second step, 3 times 2 plus 2, 8. Correct. In the third step 3
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times 3, 9 plus 2, 11. Correct. In the fourth step, 4 times 3, 12 plus 2, 14 is
Correct. Therefore, that is our rule. The tenth step must be 3 times 10 plus 2
according to the rule 3N+2 so it is 32. Then to find 100t step, you have to
have 3 times 100 plus 2. Then it is 302.

As seen from the above example, P4 found the number of toothpicks in the fourth,
fifth, and sixth steps by counting the toothpicks in her drawing and by adding the
constant difference onto the previous terms, which was coded as arithmetical
generalization. Then, she erroneously calculated the number of toothpicks in the 10t
and 100t steps by forming a rule ‘(n+1).(n+1)’. By trial and error strategy, she tried
two rules, which are (n+1) times (n+1) and (3n+1) times (3n+1); yet, she noticed that
they were not working. So, this part of the generalization process was coded as naive
induction. After all, she noticed that the general rule should include 3n since the
common difference is 3 and expressed the general rule as 3n+2. She ended her

generalization process with symbolic generalization.

4.1.2. Seventh grade students’ generalization of linear patterns.

Table 8 represents the generalization approaches the seventh grade students used
during the generalization of patterns. According to the Table 8, the combination of
arithmetical generalization and algebraic generalization was the most frequent
approach the seventh grade students used. The second and third mostly used
generalization approaches were the combination of arithmetical generalization,
algebraic generalization, and naive induction and the combination of arithmetical
generalization and naive induction, respectively. On the other hand, only algebraic

generalization strategies were never used by the seventh grade students.
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Table 8. Seventh grade students’ generalization approaches including the variation of
strategies used

ALG only AGand ALG AGandlI Ai’ﬂﬁ'}G’
P6
P7
Ql P8
P9
P7 P6
Q2 P9 P8
P7 P6
Q3 P8 P9
P6
Q4 P8 P7
P9
P7 P6
Q5 P8 P9
P7
Q6 P8 P6
P9

Notation: P, participant; ALG, algebraic generalization; AG, arithmetical
generalization; I, naive induction
4.1.2.1. Generalization approach including the combination of arithmetical

generalization and algebraic generalization.

Since the use of only algebraic generalization was not seen among the seventh grade
students, the results about the combination of arithmetical generalization and
algebraic generalization were represented directly. The seventh grade students’
generalization processes most frequently included both arithmetical generalization
and algebraic generalization. This combination emerged 16 times in the present study.

The detailed generalization processes were represented in Table 9.
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Table 9. Seventh grade students' generalization approach including the combination
of arithmetical generaliation and algebraic generalization

# of
Questions

The Combination of Arithmetical Generalization and Algebraic
Generalization Strategies

Q1

P6

arithmetical generalization

factual generalization [near & far term]
(student passed the question for some time)
arithmetical generalization [near term]
symbolic generalization [general rule]

P7

arithmetical generalization [near term]
factual generalization [near & far term]
(student passed the question for some time)
symbolic generalization [general rule]

P8

arithmetical generalization [near term]
factual generalization [near & far term]
contextual generalization [general rule]

P9

arithmetical generalization [near term]
factual generalization [far term]
contextual generalization [general rule]

Q2

P7

arithmetical generalization [near term]
factual generalization [far term]

contextual generalization [general rule]
(student passed the question for some time)
symbolic generalization [general rule]

P9

arithmetical generalization

factual generalization [far term]
contextual generalization [general rule]

Q3

P7

arithmetical generalization

contextual generalization

arithmetical generalization [near term]

factual generalization [near term]

contextual generalization [general rule]
(calculates far terms by applying the general rule)
symbolic generalization [general rule]
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Table 9 (continued)

# of The Combination of Arithmetical Generalization and Algebraic
Questions Generalization Strategies

P8

arithmetical generalization [near term]

contextual generalization [general rule]
(calculates far terms by applying the general rule)

Q3

P6

arithmetical generalization [near term]

contextual generalization [general rule]

symbolic generalization [general rule]

(calculates near and far terms by applying the general rule)

P8
arithmetical generalization [near term]
Q4 factual generalization [near term]
contextual generalization [general rule]
(calculates far terms by applying the general rule)

P9

arithmetical generalization [near term]

factual generalization [near term]

contextual generalization [general rule]
(calculates far terms by applying the general rule)

P7

arithmetical generalization [near term]

factual generalization [near & far term]
symbolic generalization [general rule]

@ P8

arithmetical generalization [near term]
contextual generalization [general rule]
(calculates far terms by applying the general rule)

P7

arithmetical generalization [near term]

symbolic generalization [general term]

(calculates near and far terms by applying the general rule)

P8

arithmetical generalization [near term]

contextual generalization [general rule]

(calculates near and far terms by applying the general rule)

Q6

P9

arithmetical generalization [near term]
factual generalization [far term]
contextual generalization [general rule]

Notation: P, participant
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In detail, one student in the first and fourth questions, one student in all questions
except fourth question, another student in all questions except second one, and
another student in the first, second, fourth, and sixth questions generalized linear
patterns using the arithmetic and algebraic generalization models. Below is a related

example from question 3:

Q3/P8: There are 3 circles here (at the first step). There are 5 circles here (at
the second step). There are 7 circles here (at the third step) . When 2 is added
to 3, itis 5. When 2 is added to 5, it is 7. Now, | have to reach the sixth step.
| can add 2 to 7 to find the fourth step, which is9. Whenladd2to0 9, itis 11
which is the fifth step. When I add 2 to 11, it is 13 and it is the sixth step. This
pattern increases by 2 at each step.

R: How can we find the number of circles in the tenth step?

P8: We can multiply the step number with the remaining number. 2 times 4 is
8. 8 plus 1 is 9. For the fifth step 2x5=10. When 1 is added to 10, it is 11. In
this sixth step, | multiply 6 with 2, 12. Then, | add 1, 13. Always, we should
multiply by 2 and add 1.

R: Can you explain the general rule you found to find the number in any step?
P8: Since this pattern always increases by 2, | multiply 2 with the desired
number of steps. Then | add 1. Because | saw that, | had to add 1 in the first
step. I multiply 10 by 2 in the tenth step, 20, I add 1, 21. When we multiply
50 by 2 for the fiftieth step, 100. When we add 1 to 100, it is 101. The general

rule in this question is to multiply the incrementing number by the step number
and add 1.

P8’s generalization process exemplified the movement from arithmetical
genealization to algebraic generalization strategies. Firstly, he repetitively added 2 to
the previous terms and found the number of circles in the fifth and sixth steps, which
was coded as arithmetical generalization. Then, in order to reach the number of circles

in the tenth step, he expressed the general rule of the pattern as ‘multiplying step
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number with 2 and adding 1°. So, this part of the generalization process was coded as
contextual generalization. There is another example from question 5 in the following:
Q5/P7: Drawing: Each step increases by 3. 5 in the first step and 8 in the
second step. Can | draw?
R: Whatever you want.

P7: (Draws an arrow towards fourth step) I draw an arrow, so | would not draw
it again. | added three on it. There are 11 in the third step. There are 14 in the
fourth step. Fifth step is 17.

R: How did you find 17?

P7: Adding 3 at each time.

R: What number is there in the tenth step?
P7: Tenth step is 32.

R: How did you find 32?

P7: If the first step was 3, then it'd be 30. However, the first step is 5 which is
2 more than 3. If | started at 3, it was 30; | added 2, because the first step is 5.
Therefore, it is 32.

R: Which number is included in the hundredth step?

P7: 302.

R: How can the general rule be expressed?

P7:ntimes 3 plus 2.

R: How did you get this rule?

P7: In the second step, the step number is 2, 2 times 3, 6; plus 2, 8. In the
second step there are 8 bars. (Student writes (n.3) +2 ) In the third step 3 times
3, 9; plus 2, 11. Also, there is 11 bars really.

As illustrated in the example, P7 found the number of bars in the fifth step by adding

3 to the number of bars in the fourth step with arithmetical generalization. When he

97



was asked about the tenth term, he developed a rule by assuming that the pattern
began with 3; and he also calculated the hundredth term in this way, which was an
example of the factual generalization. At last, he expressed the general rule of the
pattern with letters as n times 3 plus 2. P6’s generalization process of the pattern in

question 4 is also an example of this trend:

Q4/P6: First, let me write term numbers on top of the terms. Now, how much
it is increased in each step? It is increased by six. It is always six. 36 comes
after 30. It is always increased by six.

| probably found the general rule. If | say say n to step number, then it is nx6
+ 6.

R: How did you find?

P6: Firstly, | thought about that. For example, I multiplied by 6 and then |
added 6.

R: Have you tried for the others?

P6: Yes, I tried. For example, the fifth step is 36. | will try in the tenth step; it
is 10x6 + 6 = 66. | think it is true. 50x6 + 6 = 306 in the fiftieth step. This is
the general rule.

P6 used arithmetical generalization and found the number in the fifth step as 36. Then,
she expressed the general rule of the pattern as n times 6 plus 6 with symbolic
generalization and calculated the numbers in the 50t and 100t steps by applying this

general rule.

4.1.2.2. Generalization approach including the combination of arithmetical

generalization and naive induction.

In the current study, the combination of arithmetical generalization and naive

induction strategies was the least frequent generalization approach that the seventh
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grade students used. This combination emerged twice. One student in the fifth
question and one student in the sixth question used this combination of strategies
during the pattern generalization process. The detailed structure was represented in

Table 10.

Table 10. Seventh grade students’ generalization approach including the combination
of arithmetical generalization and naive induction strategies

# of The Combination of Arithmetical Generalization and Naive
Questions Induction Strategies
Ql -
Q2 -
Q3 -
Q4 -
P9
Q5 arithmetical generalization [near term]
naive induction
P6
Q6 arithmetical generalization [near term]

naive induction [general rule]
(calculates near and far terms by applying the general rule)
Notation: P, participant

As seen in Table 10, the student firstly used arithmetical generalization to generalize
the linear patterns to near terms. Then, she employed the naive induction strategy to

find the general rule. As an example;

Q6/P6: I'm writing the steps again. 1, 2, ..., 8. Now, it increases by 4 in each
step. This is 16 (points the fourth step). This is 20 (points the fifth step), This
is 28 (points the seventh step). This is 32 (points the eighth step). Fifth step is
20. Fourth step is 16. Now, I'm going to find the rule. Again, | say n to the
step number.. | think, it was nxn + 3.

R: How did you get that rule?

P6: In the first step. It is 1x1 + 3 =4.... I'm thinking of another rule right now.
Oh, | found it. It is n times 4. That is so simple.

R: Why is that? Can you explain?
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P6: When | write the differences between each step, it can be found
immediately. I did so. I tried, for example. When | made n times 4 in the first
step, it turned out right. I thought I would try it because it is always 4. It went
right up to the eighth step. It is probably true. There are 10x4 = 40 in the tenth
step. There are 20x4 = 80 in the twentieth step. There are 400 in the hundredth
step.

As exemplified in above example, P6 reached the numbers in the fifth, sixth, seventh,
and eighth terms by adding 3 to the previous terms that was coded as arithmetical
generalization. Then, she used the naive induction strategy and tried some rules for
finding the general rule such as n times n plus 3 and n times 4. When she noticed that
the rule ‘n times 4’ works, she used it to calculate the numbers in the tenth, twentieth

and hundredth steps.

4.1.2.3. Generalization approach including the combination of arithmetical

generalization, algebraic generalization, and naive induction.

In the present study, the combination of arithmetical generalization, algebraic
generalization, and naive induction was used 6 times within a generalization process.
One student in the second, third, and fifth questions, another student in the third and
fourth questions, and one student in the second question used all three strategies

during pattern generalization. Table 11 shows the detailed structures.

Table 11. Seventh grade students’ generalization approach including the combination
of arithmetical generalization, algebraic generalization, and naive induction strategies

# of The Combination of Arithmetical Generalization, Algebraic
Questions Generalization, and Naive Induction Strategies

Q1 -

100



Table 11 (continued)

# of The Combination of Arithmetical Generalization, Algebraic
Questions  Generalization, and Naive Induction Strategies
P6

arithmetical generalization [near term]

naive induction

(student passed the question for some time)
symbolic generalization [general rule]

(calculates far terms by applying the general rule)

Q2 P8

arithmetical generalization [near term]

naive induction

factual generalization

contextual generalization [general rule]
(calculates far terms by applying the general rule)

P6
naive induction
arithmetical generalization
contextual generalization [general rule]
symbolic generalization [general rule]
Q3 (calculates near and far terms by applying the general rule)

P9

arithmetical generalization [near term]

factual generalization [near term]

naive induction [general rule]

(calculates far terms by applying the general rule)

P9

arithmetical generalization [near term]
factual generalization [near and far term]
naive induction [general rule]

Q4

P6

contextual generalization [general rule]

naive induction

arithmetical generalization [near term]

naive induction [general rule]

(calculates near and far terms by applying the general rule)

Q5

Q6 -

Notation: P, participant
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Here is a related example from question 3:

Q3/P6: Just like we solved in the previous question. So, (n + 1) times (n + 1).
n is the step number again. | will try again. It did not work in this question. |
guess, | found it; (N + 1) x2.

R: How did you get it?

P6: | counted both here and there, therefore it is 4. | mean, | calculated as 8,
but it was 7. (N + 1) x 2 does not work, either. Let me find the fourth step.
Here it is increasing only horizontally. There will be 5 horizontally. In
addition, it is also increasing by 1 upwards. Oops, (step number) it is here.
The bottom increases by 1 and it becomes equal to the above step. N + 1 + N.
| found the rule now. The fourth step is 4 + 1 + 4 = 9. It works. In the fifth

step it is 11. Yes, itis also true. 11 + 10 = 21 in the tenth step. In the fiftieth
step, it is 101.

P6’s answer starts with the naive induction process. He tried two rules, but none of
them gave the terms of the pattern. Suddenly, he saw the arithmetical increase
between terms of the pattern in a figural way and then noticed the relationship of the
number of circles with the term number, which leaded him to contextual and symbolic

generalizations.

4.1.3. Eighth grade students’ generalization of linear patterns.

Table 12 represents the generalization approaches the eighth grade students used
during the generalization of patterns. According to Table 12, the combination of
arithmetical generalization and algebraic generalization was the most frequent set the
eighth grade students used. The second and third mostly used generalization
approaches were the combination of arithmetical generalization and naive induction

and the combination of arithmetical generalization, algebraic generalization, and
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naive induction, respectively. On the other hand, only algebraic generalization was

the least among the others.

Table 12. Eighth grade students’ generalization approaches including the variation of
strategies used

AG, ALG,

ALG only AGand ALG AGandlI
and |

P12
01 P11 P13 P15

P14
P13 P11
Q2 P14 P12 P15
P11 P12
Q3 P14 P13 P15
P11
P12
Q4 P13
P14
P15

P11
Q5 P12 P13

P14 P15

P12

P13

P14

P15

Notation: P, participant; ALG, algebraic generalization; AG, arithmetical
generalization; I, naive induction

Q6 P11

4.1.3.1. Generalization approach including only algebraic generalization

strategies.

The generalization process including only algebraic generalization was the least
frequently used generalization process among the eighth grade students. It emerged
twice in the present study. The detailed generalization processes were represented in

Table 13.
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Table 13. Eighth grade students’ generalization approach including algebraic
generalization only

ZEZStions Algebraic Generalization Strategies
P11

01 factual generalization
symbolic generalization [general rule]
(calculates near and far terms by applying the general rule)

Q2 -

Q3 -

Q4 -

Q5 -
P11

Q6 symbolic generalization [general rule]

(calculates near and far terms by applying the general rule)
Notation: P, participant

As indicated in Table 13, in the first and sixth questions, one student generalized
linear patterns using only the algebraic generalization strategies. Below is an example

from question 1:

Q1/P11: In the first step, there are three circles. There are six circles in the
second step. When | multiply 1 with 3, it gives first term. When | multiply 2
with 3, it gives second term. Therefore, the rule is n times 3.

(He writes 10 x 3 = 30 as the tenth term; he writes 50 x 3 = 150 as the fiftieth
term)

(He writes general rule as n x 3)
R: What does n represent?

P11: Term number.

P11 firstly expressed the first and second terms by using a rule, multiplying with 3
rule that was coded as factual generalization and then stated the general rule by using

letters as n times 3.
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4.1.3.2. Generalization approach including the combination of arithmetical

generalization and algebraic generalization.

The eighth grade students’ generalization processes most frequently included both
arithmetical generalization and algebraic generalization. The combination of
arithmetical generalization and algebraic generalization emerged 18 times in the

present study. The detailed generalization processes were represented in Table 14.

Table 14. Eighth grade students' generalization approach including the combination
of arithmetical generaliation and algebraic generalization

# of The Combination of Arithmetical Generalization and Algebraic
Questions Generalization Strategies
P12

arithmetical generalization [near rule]
factual generalization [far rule]
contextual generalization [general rule]
P13
arithmetical generalization [near rule]
factual generalization [near rule]
contextual generalization [general rule]
(calculates near and far terms by applying the general rule)
P14
arithmetical generalization
factual generalization [near & far rule]
contextual generalization [general rule]
symbolic generalization [general rule]
P13
arithmetical generalization [near rule]
factual generalization [near rule]
(student passed the question for some time)
factual generalization
Q2 contextual generalization [general rule]
(calculates far terms by applying the general rule)
P14
arithmetical generalization [near term]
factual generalization [near & far term]
symbolic generalization [general term]

Q1
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Table 14 (continued)

# of The Combination of Arithmetical Generalization and Algebraic
Questions Generalization Strategies
P11

arithmetical generalization [near rule]

(student passed the question for some time)
contextual generalization [general rule]

symbolic generalization [general rule]

(calculates far terms by applying the general rule)

Q3 P14
arithmetical generalization
factual generalization
contextual generalization [general rule]
symbolic generalization [general rule]
(calculates far terms by applying the general rule)

P11

arithmetical generalization [near rule]
factual generalization [far rule]
symbolic generalization [general rule]

P12

arithmetical generalization [near rule]

symbolic generalization [general rule]

(calculates near and far terms by applying the general rule)

P13

arithmetical generalization [near rule]
Q4 factual generalization [far rule]

contextual generalization [general rule]

P14

arithmetical generalization [near rule]

symbolic generalization [general rule]

(calculates far terms by applying the general rule)

P15

arithmetical generalization

factual generalization

symbolic generalization [general rule]

(calculates near and far terms by applying the general rule)

P12

arithmetical generalization [near rule]

symbolic generalization [general rule]

(calculates near and far terms by applying the general rule)

Q5 P14

arithmetical generalization [near rule]
symbolic generalization [general rule]
(calculates near and far terms by applying the general rule)
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Table 14 (continued)

# of The Combination of Arithmetical Generalization and Algebraic
Questions Generalization Strategies
P12

arithmetical generalization [near rule]
factual generalization [near rule]
symbolic generalization [general rule]
(calculates near and far terms by applying the general rule)
P13
arithmetical generalization [near rule]
contextual generalization [general rule]
Q6 (calculates near and far terms by applying the general rule)
P14
arithmetical generalization [near rule]
symbolic generalization [general rule]
(calculates near and far terms by applying the general rule)
P15
arithmetical generalization [near rule]
symbolic generalization [general rule]
(calculates near and far terms by applying the general rule)
Notation: P, participant

In detail, all five students in the fourth question, four students in the sixth question,
three students in the first question, and two students in the second, third, and fifth
questions generalized linear patterns using the arithmetical and algebraic

generalization strategies. Below is a related example from question 4:

Q4/P13: Here (in the second step) 6 is added. Here, 6 is added also (in the
third step). When 6 is added to 24, it is 30. When 6 is added to 30, it is 36.
When 6 is added to 36, it is 42. When 6 is added to 42, it is 54. When 6 is
added to 54, it is 60. There's 36 in fifth step. In the tenth step ..... How can |
find the tenth step? I'll keep adding. 66 is the ninth step. When 6 is added to
66, it is 72 which is the tenth step. My fiftieth step ....... How can we find my
fiftieth step?

o Ale ale
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Figure 24. The schema drawn by P13
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(Through the schema he drew) There is something like this. For example,
when the second step is multiplied by 6, then itis 12 (it refers to the first term).
Multiplying 3 by 6 is 18 (refers to the second term). It asks for the fiftieth step
and the previous step is the forty-ninth step. It should also be at the fifty-first
step. We do not know the number in the fiftieth step. However, 6 is added.
That is 50 times 6, 300 (writes for the forty-ninth step). It is 51 times 6, 356
(writes for the fiftieth step). How can we explain the general rule here? |
multiply the step number of the next step by increasing the number. For
example, multiply 51 and 6 for the fiftieth step.

P13’s generalization process started with arithmetical generalization. She found the
number in the tenth term by constantly adding 6 to the previous terms. Then, she
explored that the product of 2 and 6 gives the first term and the product of 3 and 6
gives the second term as the factual generalization rule which she expands to the
fiftieth term as the product of 51 and 6. She expresses the general rule without using
letter with contextual generalization. Another example could be given from P15’s

generalization process from question 6:

Q6/P15: Let me find the increasing number. It increased by 4. Then, |
increased by 4 again. | mean, it increased by 4. Why did I try so hard? (Deletes
the table) It increased by 4. It increased by 4 and then it became 16; It
increased by 4 and then it became 20. n times 4 is the general rule (writes 4n)

R: How did you find it?

P15: | looked at the fifth step again. 5 times 4, 20. 6 times 4 is 24 for the sixth
step. The tenth step is 40, while the twentieth step is 80 and the hundredth step
is 400.

As shown in P15’s generalization process, she firstly mentioned the constant increase
between successive terms of the pattern as 4 with arithmetical generalization. Then,
she symbolizes the general rule as 4n with symbolic generalization. After symbolic

generalization, she calculated the numbers in the tenth, twentieth, and hundredth step
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by applying the rule. P14’s generalization process also included the combination of

arithmetical and algebraic generalization strategies.

4.1.3.3. Generalization approach including the combination of arithmetical

generalization and naive induction.

In the present study, the combination of arithmetical generalization and naive
induction was used 7 times within a generalization process. One student in the second
and fifth questions, one student in the second and third questions, and three students
in the fifth question used both arithmetical generalization and naive induction during

pattern generalization. Table 15 shows the detailed structures.

Table 15. Eighth grade students' generalization approach including the combination
of arithmetcal generalization and naive induction strategies

# of The Combination of Arithmetical Generalization and Naive
Questions Induction Strategies

Q1 -

P11
arithmetical generalization [near rule]
naive induction [general rule]
02 (calculates far terms by applying the general rule)
P12
arithmetical generalization [near rule]
naive induction [general rule]
(calculates far terms by applying the general rule)
P12
arithmetical generalization [near rule]
naive induction [general rule]
03 (calculates far terms by applying the general rule)
P13
arithmetical generalization
naive induction [general rule]
(calculates near and far terms by applying the general rule)

Q4 :
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Table 15 (continued)

# of The Combination of Arithmetical Generalization and Naive
Questions Induction Strategies
P11

arithmetical generalization [near rule]

naive induction [general rule]

(calculates far terms by applying the general rule)
P13

arithmetical generalization [near rule]

naive induction [general rule]

(calculates far terms by applying the general rule)
P15

arithmetical generalization [near rule]

naive induction [general rule]

(calculates near and far terms by applying the general rule)

Q6 -

Notation: P, participant

Q5

As seen in Table 15, each student firstly used arithmetical generalization to generalize
the linear patterns to near terms. Then, they employed the naive induction strategy to

find the general rule. Below is an example from question 3;

Q3/P12: 3, 5, 7. It increases by two. 7, 9, 11, 13. Okay, it increased by two.
The fifth step is 11. 13, 15, 17. 7 and 15 are not related. | was going to find by
using them. 17, 19, 21. The difference is seven times.

R: What do you mean by saying the difference is seven times?

P12: The number in the tenth step [which is 21] is seven times the number in
the first step [which is 3]. Then, the number in the twentieth step must be seven
times the number in the tenth step. Doesn’t it? Does n + 1 work? It works. But
does it work for three (does it work for the third step)? N + 4-1 Excuse me.
But it works for the second step. I'll see something... If we multiply 1 by 3, it
does not work.

R: Where does it work, where not?

P12: Aaa. | found it. nX2 + 1.

R: Where did you find? How did you find?
P12: It came to my mind.
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R: Why did you choose to multiply by 2?

P12: To reach 3 (which is the first step).

R: So, you're trying.

P12: Yeah. Then I got 50. 101. | found it right.
R: Does this rule work for all steps?

P12: Yeah.

R: Can you give an example?

P12: It holds for 3 (the third step). Also, it holds for 2 (the second step). Then
it works for others, too. For example, does it hold for the fourth step? Multiply
4 by 2. Yeah, it works. Done.

P12’s generalization process first included arithmetical generalization. He found the
number of circles in the tenth step using arithmetical generalization. Then, he tried
many rules such as n plus 1, n plus 4 minus 1 or multiplying by 3. Yet, none of them
worked for all the terms of the pattern. Then, he found a working rule, which is n
times 2 plus 1, which was coded as naive induction. Another example from question

5 is given as follows:

Q5/P11: Toothpick sticks are increased by 3. If we increase 3, the fourth step
I 5, 8, 3,11, 3, and 14. The fifth step is 17. I'm trying to find the general rule.
| found it. 10 times 3 plus 2.

R: How did you get this answer?

P11: According to the numbers between each step. | tried one by one. Firstly,
I did n times 5; it did not hold. Then I multiplied with 4 (multiplied the step
number). Then | tried it with 3. It worked when | added the required number.
(He writes nx3 + 2 to general rule) The tenth step is 32nd. In addition, the
hundredth step is 302.

The dialogues of P11 started with arithmetical generalization. He found the fifth term
by adding 3 to the fourth term. Then, P11 tried some rules such as multiplying term

number with 5, with 4, and with 3 in order with the naive induction process.
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4.1.3.4. Generalization approach including the combination of arithmetical

generalization, algebraic generalization, and naive induction.

In the current study, the combination of arithmetical generalization, algebraic
generalization, and naive induction strategies was the third most frequent
generalization approach that the eighth grade students used. This combination
emerged three times. In detail, one student used this generalization approach in the

first, second, and third questions. The detailed structure was represented in Table 16.

Table 16. Eighth grade students' generalization approach including the combination
of arithmetical generalization, algebraic generalization, and naive induction strategies

# of The Combination of Arithmetical Generalization, Algebraic
Questions Generalization, and Naive Induction Strategies
P15

arithmetic generalization [near rule]
naive induction
arithmetical generalization [near rule]
factual generalization [far rule]
symbolic generalization [general rule]
P15
arithmetical generalization [near rule]
naive induction
Q2 (student passed the question for some time)
factual generalization
symbolic generalization [general rule]
(calculates far terms by applying the general rule)
P15
arithmetical generalization [near rule]
naive induction
Q3 arithmetical generalization [near rule]
factual generalization [near rule]
symbolic generalization [general rule]
(calculates far terms by applying the general rule)

Q4 :

Q1
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Table 16 (continued)

# of The Combination of Arithmetical Generalization, Algebraic
Questions Generalization, and Naive Induction Strategies

Q5 -
Q6 -

Notation: P, participant

An example is given from question 1 as follows:

Q1/P15: This pattern consists of circles; there are three (circles in the first
step), then six (circles in the second step), then nine (circles in the third step).
Then, I guess it will be 12 (fourth step). How many circles are required?
Probably 12. In fact, exactly 12. How can we do it now? If we give n, it
becomes (n + 2) (In the first step, he put 1 in the place of n and added 2 to
reach 3). However, n + 2 does not work, because in the second step, when |
replace n with 2, I have to find 4. Can it be the exponential of 3? (He calculates
over the second step) No, that would be ridiculous.

Then, let me just say as 3, 6, 9; it is easier. (On the figure, he writes 3 to the
first step, 6 to the second step, 9 to the third step, 12 to the fourth step, 15 to
the space in the fifth step, 18 to the sixth step.)

Let me think of the rest as a table (he writes the number of steps on the bottom
line and the terms on the top line as seen in Figure 25).

lilohilir? Cevabinizi agiklayimz.

Figure 25. The terms and term numbers written by P15

To find the number of circles in the fiftieth step ..... If the first step is 3, then
what is the fiftieth step? Can there be a crossover here? No way. To find the
fiftieth step, we can multiply 50 with 3; therefore, there are 150 circles.

If it is increased by 3 in the first step, then it becomes 150 in the fiftieth step.
For example, let me try in others. In the fourth step, | multiply 4 by 3 and it is
12, which is similar to what | found by counting. In the fifth step, | multiply 5
by 3 and the result is 15. Yes, the same answer. Hence, the rule is correct.
The general rule of the pattern is n times 3 (he writes nx3). n, the step number.
For example, n = 2 for the second step. 2 times 3 is 6. It is also true for the
third step.
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As illustrated in the above example, the student finds the number of circles at the
fourth step with arithmetical generalization. Afterwards, he tried some rules through
naive induction; but they did not work. After the failure of the induction process, he
moved back to arithmetical generalization and expanded the pattern to the sixth step.
After arithmetical generalization, he formed a rule, which is multiplying by 3 and
expanding the pattern to fourth and fifth terms by using this rule. This part of the
generalization process exemplified factual generalization. Finally, he wrote the

general rule with letters through factual generalization.

4.1.4. Differences/Similarities between the generalization approaches of

sixth, seventh, eighth graders.

Sixth, seventh, and eighth grade students’ generalization approaches have some
similarities and differences between them. Table 17 represents the distribution of the

generalization approaches of sixth, seventh, and eighth grade students.

Table 17. The distribution of the generalization approaches of sixth, seventh, and
eighth graders

6th 7th 8th
grade grade grade
level level level

arithmetical g.
the factual g. 2times  6times  9times
combination of _contextual and/or symbolic g.
AG and ALG arithmetical g.

contextual and/or symbolic g.

12 times 6 times 7 times

total number of the combination of AG and

ALG 14 times 12 times 16 times
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Table 17 (continued)

6th 7th 8th
grade grade grade

level level level
factual g. . 2 times - 1time

ALG only contextual and/or symbolic g.

contextual and/or symbolicg. 6 times - 1 time
total number of ALG only 8 times - 2 times
the combination of AG and | 7 times 2 times 7 times
the combination of AG, ALG, and | 1time 6times 2 times
not classified - 4 times 3 times

Notation: AG, arithmetical generalization; ALG, algebraic generalization; I, naive

induction
As seen from Table 17, the first similarity was that the most frequent generalization
approach at all grade levels was the combination of arithmetical generalization and
algebraic generalization. On the other hand, considering the sub-levels of algebraic
generalization (factual, contextual, and symbolic generalizations), sixth graders differ
from seventh and eighth graders in terms of the dominance of the movement from
arithmetical generalization to contextual and/or symbolic generalizations over the
movement from arithmetical generalization to factual generalization and contextual

and/or symbolic generalizations.

There was a difference between the sixth, seventh, and eighth grade students’
generalization approaches, which is about the algebraic generalization strategies only.
It can be summarized that the generalization approach including algebraic
generalization strategies only was the second mostly used approach at sixth grade
level, while the seventh and eighth grade students either did not use it at all or used it

rarely. Furthermore, considering the sub-levels of algebraic generalization, sixth
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grade students mostly used contextual and/or symbolic generalizations more than the

movement from factual generalization to contextual and/or symbolic generalizations.

Thirdly, the sixth and eighth graders used the generalization approach including the
arithmetical generalization and naive induction more than the seventh graders. In
other words, the movement from arithmetical generalization to naive induction was
the third and second mostly used approach at the sixth and eighth grade level,

respectively. Nevertheless, it was used twice by the seventh graders.

Lastly, the combination of arithmetical generalization, algebraic generalization, and
naive induction was observed at the seventh grade level more than the sixth and eighth

grade level.

4.2. Summary of the Findings

In sum, middle school students dominantly used at least two generalization strategies
while generalizing linear patterns. The analysis of students’ answers revealed four
categories of generalization approaches, which included (i) only algebraic
generalization strategies, (ii) the combination of arithmetical generalization and
algebraic generalization strategies, (iii) the combination of arithmetical generalization
and naive induction strategies, and (iv) the combination of arithmetical
generalization, algebraic generalization, and naive induction strategies. It was found
that the combination of arithmetical generalization and algebraic generalization was
the most frequent generalization approach at all grade levels, while the combination

of arithmetical generalization, algebraic generalization, and naive induction was the
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least frequent one used by the students in all grade levels. Furthermore, the use of

algebraic generalization strategies only was observed by the sixth graders only.
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CHAPTER 5

DISCUSSION AND CONCLUSION

The purpose of this study is to explore the sixth, seventh, and eighth grade students’
generalizations of patterns using arithmetical generalization, algebraic generalization,
and naive induction. In addition to studying their generalization process, the study
also focuses on the ways in which this process of generalization differs according to

their grade level.

Accordingly, in the first part of the chapter, the findings related to the students’ usage
of arithmetical generalization, algebraic generalization, and naive induction during
pattern generalization are discussed in the light of the previous studies. Then, in the
second part of the chapter, the implications of the study are discussed and some

recommendations for future studies are given in the third part.

5.1. Discussion of the Generalization Process of Linear Patterns

The research question of the current study is about the sixth, seventh, and eighth grade
students’ generalization process of linear patterns. In order to answer it, Radford’s
generalization strategies were considered during the data analysis, which are
arithmetical generalization, algebraic generalization, and naive induction. The

analysis of students” answers revealed that the students used a variety of
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generalization strategies while generalizing patterns to near and far terms and while
finding the general rule. In other words, they used at least two generalization
strategies while generalizing linear patterns to near, far, and nth terms. Therefore, the
data analysis revealed four categories of generalization types based on the sets of
strategies the students used, which are the combination of algebraic generalization
strategies, the combination of arithmetical generalization and algebraic generalization
strategies, the combination of arithmetical generalization and naive induction
strategies, and the combination of arithmetical generalization, algebraic

generalization, and naive induction strategies.

After identifying students’ generalization types based on the sets of strategies, the
frequency of the emergence of each generalization type was compared for different
grade levels. When the generalization types of sixth, seventh, and eighth grade
students were compared based on their grade level, it was seen that there were some
similarities and differences between them. The first similarity was that the
generalization including the combination of arithmetical generalization and algebraic
generalization was the most frequent generalization approach regardless of students’
grade level. Specifically, more than half of the students from each grade level
generalized linear patterns using both arithmetical generalization and algebraic
generalization strategies. Indeed, the findings also showed that they used arithmetical
generalization strategy in order to generalize the pattern to near terms and algebraic

generalization strategies in order to generalize the pattern to far terms or to find the
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general rule. In other words, the students followed a path from arithmetical

generalization to algebraic generalization.

This result is consistent with the related literature (Amit & Neria, 2007; Lannin, 2004;
Lannin et al., 2006; Orton & Orton, 1999; Stacey & MacGregor, 2001). Past studies
indicated that it is natural to start generalizing patterns with recursive reasoning
through arithmetical generalization (Lannin, 2004); since it is easy to add the constant
difference onto the previous term while expanding the pattern to near terms (Garcia-
Cruz & Martindn, 2002). In addition, the literature also showed that the nature of the
patterning tasks might help students determine the generalization strategies (Barbosa
& Vale, 2015; Lannin et al., 2006). According to Lannin et al. (2006), the patterning
tasks might lead students to recursive thinking if the pattern is represented
sequentially, i.e. step by step. In the present study, all six patterns in the Patterning
Test were in the form of a sequential pattern. On the other hand, generalizing a pattern
to far terms also leads students to have more tendency to understand the algebraic
structure of the pattern (Stacey, 1989). Indeed, near and far generalization are of great
importance to students as they make students feel the need for a general rule to reach
far terms easily (Chua & Hoyles, 2014). Therefore, the reason behind the flow from
arithmetical generalization to algebraic generalization might be either the sequential
nature of the patterning tasks or the near and far generalization questions, which might
direct students to use arithmetical generalization strategies first and to use algebraic

generalization strategies afterwards.
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Another similarity between different grade level students’ generalization process is
the naive induction strategy. As indicated in the literature, naive induction is just
about predicting the general rule of the pattern by trying out rules and checking
whether the rules work or not. The data analysis of the present study revealed two
types of generalization processes including naive induction strategy, which are the
combination of arithmetical generalization and naive induction and the combination
of arithmetical generalization, algebraic generalization, and naive induction.
According to the frequencies, the combination of arithmetical generalization and
naive induction was hardly observed at the seventh grade level, whereas almost one-
fifth of the sixth and eighth grade students generalized linear patterns using both
arithmetical generalization and naive induction. On the other hand, the combination
of arithmetical generalization, algebraic generalization, and naive induction was
seldom observed at the sixth and eighth grade level, while one-quarter of the seventh
grade students used this type of generalization. All in all, it can be deduced that the
naive induction strategy existed at all grade levels although its frequency is low. This
finding showed consistencies with the related literature, which reported students’
tendency to use naive induction in patterning tasks (Barbosa, 2011; Lannin et al.,
2006; Ozdemir, Dikici, & Kultur, 2015; Rivera & Becker, 2005). As the literature
indicated, mathematics instruction mostly focused on the procedures of constructing
the general rule of the pattern (Lannin et al., 2006). Then, students could not
understand the algebraic structure of the pattern conceptually (Noss et al., 1997).

Instead, they could just practice their procedural skills about how to construct a
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general rule. Therefore, the lack of conceptual instruction on pattern generalization

might have had an impact on students’ usage of the naive induction strategy.

On the other hand, there was also a difference between the sixth, seventh, and eighth
grade students. The difference was about the generalization type including only the
algebraic generalization strategies. According to the findings, at the sixth grade level,
the generalization type including only the algebraic generalization strategies was used
8 times by two students in the first, fourth, and sixth questions, by one student in the
second question and another student in the fifth question. At the seventh grade level,
this type of generalization was not observed. At the eighth grade level, it was used 2
times by one student in the first and sixth questions. It can be concluded that the
generalization type including only the algebraic generalization strategies was the
second mostly used type for the sixth grade students, whereas the seventh and eighth
grade students either did not use it at all or used it rarely. This finding revealed that
the sixth grade students showed more complex algebraic generalization skills in terms
of algebraic generalization strategies compared to the seventh and eighth grade
students. This result was inconsistent with the related literature, which showed
progressive development of students’ algebraic generalization skills across increasing
grade levels (EI Mouhayar, 2018). However, some past studies reported younger
students’ tendency to use algebraic strategies more than older students (Rivera, 2013).
When the Turkish middle school mathematics curriculum was reviewed, it was
observed that the curricular objectives related to pattern generalization are only seen

in the fifth and sixth grade mathematics curriculum (MONE, 2013). Students in the
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fifth grade are expected to construct the required steps when the rule of the number
and shape patterns is given, and the students in the sixth grade are expected to express
the general rule of the linear patterns with letters and to find the required steps when
the rule is expressed with letters (MONE, 2013). Thus, while students in the fifth and
sixth grade levels could engage in patterning activities, the seventh or eighth grade
students did not have any patterning activities. Thus, the high frequency of the
generalization process including only algebraic generalization strategies at the sixth
grade level and absence of it at the seventh and eighth grade levels might be attributed

to the differences in mathematics curricula of different grade levels.

In addition to the similarities and differences between different grade level students,
the current study revealed another important finding when students’ generalization
process was examined in terms of near, far, and nth terms. Almost all the students
extended the patterns to near terms with arithmetical generalization as the first step
of their generalization process. Then, they were asked to generalize the pattern to far
terms. However, they were reluctant to look for generalization of far terms. They
mostly skipped that question and directly tried to find the general term in a procedural
way. In other words, the majority of the students from each grade level were engaged
in a generalization process in which they gave priority to find the general rule over
finding particular terms especially far terms. When they found the general rule, they
used it to calculate the far terms, which were asked as sub-questions of the patterning

task. Put differently, since the students did not generalize the pattern to far terms with
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factual generalization, they lacked the connection between arithmetical generalization

and algebraic generalization.

While this result showed consistencies with some of the past studies (Ozdemir et al.,
2015), it was inconsistent with some of them (Cooper & Warren, 2011; Miller &
Warren, 2012; Radford, 2003). According to Radford (2003), factual, contextual, and
symbolic generalizations should follow each other so that students could move from
numerical level generalization to algebraic level generalization in a meaningful
manner. There were also many studies, which focused on the importance of far term
generalization. Being able to generalize the pattern to far terms shows students’
conceptual understanding of the nature of the generalization (Lannin et al., 2006).
Thus, it is highly important to enable students to engage with factual generalization
to generalize the pattern to far terms. This result might stem from two reasons. First
of all, as expressed before, there are two objectives related to pattern generalization
in the Turkish middle school mathematics curriculum; however, those objectives do
not include the process of generalizing the patterns to near or far terms. Instead, they
focus on finding the general rule (MONE, 2013). In addition, the pattern
generalization tasks in Turkish mathematics textbooks might not enable students to
explore the nature of the generalization, since they include patterning tasks, which
encourage students to find the rule of the pattern before extending the pattern to far
terms (Ayber, 2017). Furthermore, they do not include sufficient tasks related to
‘patterns’ topics (Ayber, 2017). All in all, the reason behind the finding of the present

study, which is students’ giving priority to finding the general rule over generalizing
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the pattern to far terms, might stem either from the rule-based objectives about
pattern-generalization in the Turkish middle school mathematics curriculum or from
the rule-based pattern generalization tasks included in Turkish mathematics

textbooks.

5.2. Implications

To ensure conceptual understanding of algebraic generalization, educational
environments should be designed in a way that students could explore the nature of
generalization tasks and conduct near and far generalizations progressively, instead
of practicing the techniques of finding the general term of the pattern in a rule-based
way. In order to provide such educational environments, first, the Turkish
mathematics education curriculum should cover pattern-generalization more
conceptually. In other words, there are two objectives related to pattern-generalization
in the elementary mathematics curriculum, the first of which is “Students should form
the desired steps in numeric and figural linear patterns whose rule is given” at the fifth
grade level and “Students express the general rule of linear patterns with letters and
finds the desired terms of the patterns when the rule is expressed with letters” at the
sixth grade level (MONE, 2013). In both of these objectives, the focus is on the rule
of the pattern. Thus, objectives related to the structure of the patterns and near and far
generalization of the patterns could be added to the middle school mathematics

curriculum before emphasizing the general rule of the pattern.

Furthermore, as reported by Ayber (2017), Turkish mathematics textbooks include

insufficient number of patterning tasks. Furthermore, the patterning tasks in the books
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lead students to find the general rule before near and far generalizations. Thus, the
content of the textbooks could be revised accordingly. The number of patterning tasks
could be increased and the content of the tasks could include near and far

generalizations before general rule, progressively.

Moreover, as the literature revealed, teachers do not have sufficient knowledge about
the relationship between arithmetic and algebra (Demonty et al., 2018) and about the
generalization of patterns (Girit, 2016). They introduce generalization of patterns to
students in a rule-based way (Lannin et al., 2006). Thus, teachers could develop
themselves in terms of arithmetical and algebraic generalizations. In order to enhance
teachers’ knowledge on arithmetical and algebraic generalizations, seminars or

workshops could be organized.

5.3. Recommendations for Further Research

The present study focused on the generalization process of the sixth, seventh, and
eighth grade students using arithmetical generalization, algebraic generalization, and
naive induction. Based on the results, some recommendations for further studies could

be made.

First, the results were limited with the sample of the present study from a public
school in Cankaya district of Ankara. Thus, it would be helpful to select students from
different type of schools such as private schools. Additionally, the participants of the
present study were selected based on the predetermined criteria, which were students’

grade level, enthusiasm about mathematics lesson, and talkativeness. By including
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students’ success among the criteria, existing trends between successful students

and/or unsuccessful students could be revealed.

Secondly, the results of this study were limited with the sixth, seventh, and eighth
grade students’ trends of patten-generalization approaches. Nevertheless, while some
reserchers reported the development of students’ algebraic reasoning as grade level
increased, some studies resulted similar algebraic reasoning structures regardless of
grade level. For this reason, by expanding the age range from the fifth grade to twelfth

grade, existing trends across increasing grade levels could be revealed.

In addition, there were six pattern tasks in the present study, all of which were
represented in a sequential manner. According to the literature, the sequential patterns
might encourage students to use recursive relations and discourage them from using
algebraic relations. Therefore, in further studies, the nature of the pattern tasks might
not be limited with sequential patterns. Lastly, the pattern tasks were numeric or
figural pattern tasks in this study. Therefore, a further study could be conducted with
the purpose of finding out the differences between the students’ approaches of

generalizing numerical patterns and figural patterns.
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C: PATTERN TEST/ORUNTU TESTI

2 8o codoo

=

Peooe

1.adim

2.adim 3.adim 4.adim 5.adim 6.adim

Cemberler kullanilarak olusturulan yukaridaki 6riintiide:

Dordiincii adimi olusturmak i¢in ka¢ ¢ember gereklidir?

Besinci adimi olusturmak icin kag cember gereklidir?

Onuncu adimi olusturmak i¢in kac gember gereklidir? Cevabinizi agiklayiniz.

Yiiziincii adimi olusturmak igin kag¢ ¢ember gereklidir? Cevabinizi agiklayiniz.

Herhangi bir adimdaki ¢ember sayisini bulmak icin Oriintiinlin genel kurali nasil ifade

edlleblllr‘? Cevabinizi agiklayiniz.

AP oo oTe

5,8,11, ..., ..., 20, ..., ... olarak verilen orintin{n:

Doérdiincii adiminda hangi say1 vardir?

Besinci adiminda hangi say1 vardir?

Onuncu adiminda hangi say1 vardir? Cevabinizi agiklaymiz.

Yiiziincii adiminda hangi say1 vardir? Cevabinizi agiklaymiz.

Herhangi bir adimdaki sayiy1 bulmak igin Oriintiiniin genel kurali nasil ifade edilebilir?

evabinizi agiklayniz.

D B0 S 0000

w

oo

1.adim

2.adim 3.adim 4.adim 5.adim 6.adim

Cemberler kullanilarak olusturulan yukaridaki 6riintiide:

Dordiincii adimi olusturmak i¢in ka¢ ¢ember gereklidir?

Besinci adimi olugturmak icin kag cember gereklidir?

Onuncu adimi1 olusturmak igin kag¢ gember gereklidir? Cevabinizi agiklayiniz.

Yiiziincii adimi olusturmak igin kag¢ gember gereklidir? Cevabinizi agiklayimiz.

Herhangi bir adimdaki ¢ember sayisini bulmak igin Oriintiiniin genel kurali nasil ifade

edlleblhr‘? Cevabinizi agiklayniz.
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4, 12,18, 24, ..., ..., 42, ..., ... olarak verilen 6riintlndn;

a. Dordiincii adiminda hangi say1 vardir?

b. Besinci adiminda hangi say1 vardir?

C. Onuncu adiminda hangi say1 vardir? Cevabinizi agiklaymiz.

d. Yiiziincii adiminda hangi say1 vardir? Cevabinizi agiklaymiz.

e. Herhangi bir adimdaki sayiy1 bulmak i¢in oriintiiniin genel kurali nasil ifade edilebilir?
Cevabinizi agiklayiniz.

1.adim 2.adim 3.adim 4.adim 5.adim 6.adim

o

Yukarida verilen oriintiide kiirdanlardan merdiven insa edilmektedir. Buna gore:

Dordiincii adimi inga etmek i¢in kag kiirdan gereklidir?

Besinci adimi insa etmek i¢in kag kiirdan gereklidir?

Onuncu adimi inga etmek i¢in kag kiirdan gereklidir? Cevabinizi agiklayiniz.

Yiiziincii adimi inga etmek i¢in kag kiirdan gereklidir? Cevabinizi agiklaymiz.

Herhangi bir adimdaki kiirdan sayisin1 bulmak icin Oriintiiniin genel kurali nasil ifade
ed11eb1l1r‘? Cevabinizi aciklayiniz.

Peo T

6 4,8,12, ..., ..., 24, ..., ... olarak verilen Griintuniin:

a. Dérdiincii adiminda hangi say1 vardir?

b. Besinci adiminda hangi say1 vardir?

C. Onuncu adiminda hangi say1 vardir? Cevabinizi agiklayiniz.

d. Yiiziincii adiminda hangi say1 vardir? Cevabinizi agiklayiniz.

e. Herhangi bir adimdaki sayry1 bulmak i¢in oOrlintiiniin genel kurali nasil ifade edilebilir?
Cevabimizi aciklayiniz.
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D: TURKISH SUMMARY/TURKCE OZET

ORTAOKUL OGRENCILERININ DOGRUSAL ORUNTULERI

GENELLEME SURECLERININ INCELENMESI

Giris

Kiiltiir, bir topluma 6zgii diisiince ve eserlerin biitiinii olarak tanimlanirken; kiiltiir
soku, kiiltir bakimindan biiyiilk degismeler karsisinda sasirma, olaylara akil
erdirememe olarak tanimlanmaktadir. Lee (1996) 6grencilerin aritmetik kiiltiirden
cebirsel kiiltiire gecis slirecindeki durumlarini kiiltiir soku s6z 6begiyle ifade eder.
Lee (1996)’ye gore, cebirsel kiiltiire sahip kisiler ortak kurallari, ortak iletigim

yollarini1 ve ortak dili paylagsmaktadir.

Bilindigi iizere, ilkokul matematik egitimi agirlikli olarak aritmetiksel kazanimlara
odakl1 iken, ortaokul matematik egitimi cebirsel kazanimlara odakli siirdiiriillmektedir
(Kamol ve Ban Har, 2010). Tarihsel surecte, cebirin aritmetikten asirlar sonra ortaya
¢ikmig olmasimin bu gelenege kaynaklik ettigi diistiniilmektedir (Patton ve De Los
Santos, 2012). Tarihsel siirece benzer olarak, Ogrenciler once aritmetikte

uzmanlasmakta, ardindan cebirle tamigsmaktadirlar. Bu durum, &grencilerin
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aritmetikten cebire gegis silirecinde uyum problemleri yasamalarina ve biligsel
eksikliklere sebep olmaktadir (Booth, 1984, 1988; Kieran, 1991, 1992; Linchevski ve
Herscovics, 1996; Sfard ve Linchevski, 1994). Mason (1996), aritmetikten cebire
gecis siirecinde yasanan zorluklarin {istesinden gelmek i¢in Oriintii/genelleme

aktivitelerinin en etkili yol oldugunu ifade etmektedir.

Oriintlilerin genellenmesi yaklagimi, erken cebir egitimi ve cebirsel diisiinme
becerilerinin gelisimi agisindan 6zel bir yere sahiptir. Zazkis ve Liljedahl (2002),
cebirde her seyin oriintiilerin bir genellemesi oldugundan, Oriintiilerin matematigin
kalbi ve 6zili oldugunu ifade etmislerdir. Bundan baska, cebirin literatiirde en ¢ok
kabul goren tanimi cebirin aritmetigin genellemesi oldugudur (Booth, 1988; Carraher,
Schliemann ve Schwartz, 2007; Gavin ve Sheffield, 2015; Mason, 1996; Philipp ve
Schappelle, 1999; Samo, 2009; Subramaniam ve Banerjee, 2004; Usiskin, 1988).
Buna gore, genellemenin cebirin ve cebirsel diistinmenin dogasinda oldugu
cikarimina ulasilabilir. Ayni ¢ikarima, cebirsel diisiinmenin g¢esitli tanimlarina
bakildiginda da ulagilmaktadir. Van de Walle, Karp ve Bay-Williams (2007)’a gore,
cebirsel diisiinme, Oriintiileri ve fonksiyonlar1 kesfetme, sayilar ve sekiller arasindaki
iliskilere dayanarak genellemelere ulasma ve bu genellemeleri sembollerle ifade
etmedir. National Council of Teachers of Mathematics [NCTM] (2000), erken
cebirsel diisiinme becerilerini say1 ve sekil orlintiilerinin yapisint analiz edebilme,
arasindaki iligkileri kesfedebilme ve bulgulart kelimelerle yada sembollerle

belirtebilme olarak ifade etmistir.
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Mason, Graham ve Johnston-Wilder (2005), genellemenin dogal bir i¢giidii oldugunu,
okula baslayan her 6grencinin genelleme ve soyutlama iggiidiisii oldugunu ifade
etmistir. NCTM (2000)’e gore, ‘Oriintiileri ve iliskileri anlamak’ anaokulundan
ortadgretime biitiin simf seviyelerinde siirekli bir konudur. Oriintiiler, hem cebirsel
diistinme becerilerinin gelisimine katkida bulunurken (Lee, 1996; Mason, 1996), hem
de cebirsel sembolleri kullanma iizerine temel insa etmektedir (Zazkis ve Liljedahl,

2002).
Arastirma Sorulari
Bu ¢aligmada ele alinan iki arastirma sorusu asagida verilmistir.

e Altinci, yedinci ve sekizinci sinif dgrencileri, aritmetik genelleme, cebirsel
genelleme ve naif timevarim kullanarak dogrusal oriintiileri nasil geneller?

e Bu genellemeler sinif seviyelerine gore ne 6l¢iide farklilik gosterir?

Kuramsal Cergeve

Bu ¢alisgmada benimsenen kuramsal ¢ergeve Radford (2006)’un oriintll genelleme
kuramidir. Radford (2003) 1990 yillarinda 120 adet sekizinci sinif Ggrencisinin
katildig1, 3 yil siiren bir ¢alisma yiiriitmiistiir. Bu ¢alismanin amaci 6grencilerin
cebirsel diistinme becerilerinin  olusumunu ve gelisimini derinlemesine
anlayabilmektir. Radford (2010a)’a gore, Ogrencilerin cebirsel diisiinmeye

baslamalar1 ve formal cebirsel dili dogru kullanabilmeleri arasinda biligsel bir bogluk
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bulunmaktadir. Radford un teorisi, bu biligsel boslugu doldurmaya yonelik ihtiyaca

dayanmaktadir.

00O OO0 0000
OO0 0000 00000

Figure 1 Figure 2 Figure

Sekil 1. Dogrusal Sekil Oriintiisii (Radford, 2006, s. 4)

Radford, aritmetik genelleme ve cebirsel genelleme yontemlerini genelleme
yontemleri olarak; naif tlimevarim yontemini ise genelleme olmayan yontem olarak
smiflandirmistir. Naif tiimevarim, kurali deneme yanilma yoluyla tahmin etmeye
yonelik bir yontem olarak tanimlanmistir (Radford, 2010a). Ornegin, Sekil 1’de
verilen Orlintlinlin genel kuralin1 bulmaya yonelik olarak su 6grencinin cevab1 ‘Bu
oriintiiniin kural1 5n olsa, 5 kere 1, 5 eder. Birinci terimde tutuyor. 5 kere 2, 10. ikinci
terimde tutmadi. 3 ile carpsam 2 eklesem, ikinci adimda gene tutmadi. 2 ile garpsam
3 eklesem, birinci adimda tutuyor. Ikinci adimda da tutuyor. Ugiincii adimda da
tutuyor. O zaman Oriintliniin kurali 2 ile ¢arpip 3 eklemek.’ Naif timevarim siirecine

ornek olarak verilebilir.

Bunun disinda, Radford’a gore, 6grencilerin genelleme bi¢imleri aritmetik genelleme
ve cebirsel genelleme olmak iizere ikiye ayrilmaktadir. Cebirsel genelleme ise kendi
icinde olgusal genelleme, kavramsal genelleme ve sembolik genelleme olarak tice
ayrilmaktadir. Aritmetik genelleme, oOgrencilerin Oriintiiniin ardisik terimleri

arasindaki ortak farki farkedip, ‘Ux+1=Ux+ortak fark’ formunda yinelemeli bir ifade

153



olusturmasidir (Gutiérrez, 2013). Ornegin, Sekil 1°de verilen sekil oriintiisiinde,
Ogrencilerin Orlintiiniin her adiminda ikiser ikiser arttigini sOylemesi, aritmetik

genellemeye ait bir ifadedir.

Olgusal genelleme, temel seviyedeki cebirsel genellemedir. Olgusal genelleme
kapsamindaki ifadeler Oriintiiniin verilmis adimlar1 i¢in gegerlidir (Radford, 2010).
Ornegin, 6grencilerin Sekil 1°de verilen &riintiiniin ilk terimini “bir, bir, art1 iig..... ,
ikinci terimini “iki, iki, art1 ii¢...” olarak ortaya koymasi ve 25. Terimi °25, 25, art1 3’
olarak ifade etmesi, olgusal genelleme olarak adlandirilir. Ancak, herhangi bir
adimdaki ¢ember sayisini bulmak i¢in, aritmetik genelleme yada olgusal genelleme
yeterli olmamaktadir. Bu yiizden, Radford, kavramsal genellemeyi tanimlamistir.
Kavramsal genelleme, aritmetik ve olgusal genellemelerden daha derin olup,
Orlintiiniin verilmis adimlarinin diginda herhangi baska bir adima 6riintiiniin kuralini
soyutlayabildikleri durumu ifade eder. Kavramsal genellemeye 6rnek olarak,
ogrencinin Sekil 1’deki soruya su cevabi verilebilir: “birinci adimda bir, bir, art1 iig;
ikinci adimda iki, iki, art1 li¢; dolayisiyla onuncu adimda on, on, art1 ii¢ olur... O
zaman genel kural adim sayisini iki ile ¢arpip ti¢ eklemektir.” (Radford, 2010a). Son
olarak, sembolik genelleme, driintiiniin kuralin1 alfaniimerik sembollerle ifade etmeye
denmektedir. Sekil 1’de verilen Oriintiiniin kural1 ‘Eger genel kural adim sayisini1 2 ile
carpip 3 eklemek ise, formiil de 2.n+3 olur.” olarak ifade edildiginde, bu sembolik

genellemeye 6rnek olusturur.

Mevcut ¢alisma kapsaminda, 6grencilerin cebirsel diisiinme becerileri, Radford’un
orinti genelleme kuramma dayanilarak arastirilmistir. Ogrencilerin  riintiileri
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genelleme bigimleri, Radford’un tanimladigi dort bi¢im (aritmetik, olgusal,

kavramsal, sembolik) altinda incelenmistir.

Yontem

Cahisma Deseni

Ortaokul 6grencilerinin aritmetik genelleme, cebirsel genelleme ve naif timevarim
yontemlerini kullanarak yaptigi genelleme siireclerini kesfetmeyi amaglayan bu
calismada, nitel arastirma yontemlerinden durum g¢aligmasi deseni kullanilmistir.
lgili literatiire gore, dort farkli tiirde durum calismasi vardir: biitiinciil tek durum
deseni, biitiinciil ¢oklu durum desent, i¢ ige gecmis tek durum deseni ve i¢ ice gegmis
¢oklu durum deseni (Yin, 2009). Mevcut ¢calismada bu tiirler arasindan biitiinciil goklu

durum deseni kullanilmustir.
Katihmcilar

Katilimcilar, arastirmanin amacia yonelik olarak Ankara’daki bir devlet
ortaokulunun, altinci, yedinci ve sekizinci smiflarinda egitim goren Ogrenciler
arasindan secilen 5 altinci sinif, 4 yedinci sinif, 5 sekizinci sinif 6grencisidir. Bu
calismada toplanan verinin zenginligi O6nemli oldugu i¢in amacgli Orneklem
kullanilmistir. Uygun yer ve zaman nedeniyle, arastirmaya katilanlar arastirmacinin
sekiz ay boyunca matematik 6gretmeni olarak calistig1 devlet okulundan segilmistir.
Katilimcilarin se¢iminden 6nce, 6grencilere ¢alismanin amaci hakkinda agikca bilgi
verilmistir. Arastirmaci, tim Ogrencileri kisisel olarak tanidigindan, ¢alisma icin

zengin bilgi saglayabilecek en uygun katilimcilar1 segmistir. Ogrencilerin yaslari 11
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ile 14 arasinda degismektedir. Ogrencilerin sosyoekonomik durumlar1 genellikle

ortalamadir. Ogrencilerin aileleri kamu ve 6zel sektdr calisanlaridir.
Veri Toplama Araclan

Bu c¢alismada veriler Oriintii Testi ve bireysel gériismeler vasitastyla toplanmistir.

Veri toplama araglari ile ilgili detayl bilgi asagida verilmistir.
Orlintu Testi

Bu caligsmanin verileri Oriintii Testi yoluyla toplanmustir. Oriintii Testi’nde 6 adet agik
uglu dogrusal 6riintii sorusu vardir. Sorular ge¢gmis ¢alismalarda kullanilan sorulardan
uyarlanmistir.  Sorulart  secerken, Ulusal Ilkdgretim Matematik  Egitim
Miifredatindaki ilgili hedefleri dikkate alarak bir belirtke tablosu hazirlanmistir.
Miifredat dogrusal say1 ve sekil oOriintiileri ile sinirhidir (Milli Egitim Bakanligi
[MEB], 2013, 2018). Miifredat kisitlamalarina dayanarak, testteki sorular dogrusal-
sayisal ve dogrusal-sekilsel sorular olarak smiflandirilmistir. Ek olarak, bu testin
amac1 katilimcilarin cebirsel akil yiiriitme becerileri hakkinda veri toplamaktir. Temel
cebirsel akil yiiriitme becerileri, Orilintilyii tanimlamak, oriintiiyii yakin ve uzak
terimlere genisletmek, genel terimi bulmak ve Oriintii i¢in genel bir kural
olusturmaktir (Threlfall, 1999). Bu nedenle, teste iliskin sorulari belirlerken
arastirmaci, katilimeilarin bir 6riintii tanimlamasini, oriintiiyli yakin ve uzak terimlere
genellemesini ve genel terimi bulmasini saglayacak maddeleri segmeyi amacglamistir.
Buna gore, her soru yakin genelleme, uzak genelleme ve genel kural ile ilgili dort
veya bes maddeyi icermistir. 25 6grenci ile yapilan pilot ¢calisma sonucu Oriintii Testi

tekrar diizenlenmistir.
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Bireysel Goriismeler

Bu calismada, goriisiilen kisinin yanitlarina bagli olarak sorularin siralamasini
degistirmeye ve gerekirse ek sorular sormaya olanak verdigi i¢in, yari-yapilandirilmig
goriisme yaklagimi kullanilmistir. Yari-yapilandirilmig goriisme rehberi, bir 6grenci

ile yapilan pilot ¢calisma sonucunda tekrar diizenlenmistir.
Veri Toplama Sureci

Veri toplama siirecinde 6grenciler ile teker teker goriisme yapilmistir. Bu goriismeler
sirasinda dgrenciler Oriintii Testi’ndeki sorular1 cevaplamislar, arastirmaci ise bu
sirada gerekli durumlarda 6grenciye sorularin cevaplarina dair nasil ve neden sorulari
sormustur. Ornegin ‘Oriintiiniin onuncu adimindaki ¢ember sayisin1 nasil buldun?’.

Son olarak, biitiin goriisme, ses ve goriintii kaydina tabi tutulmustur.
Veri Analizi

Nitel arastirmalarda veri analizi, verinin analiz i¢in hazirlanmasi ve diizenlenmesi,
verinin kodlama sireci sonucunda belirli bir diizene indirgenmesi ve nihayetinde
verinin sekiller, tablolar veya tartisma sekilinde ifade edilmesi siireglerini kapsar
(Creswell, 2007). Bu yiizden, ilk olarak biitiin ses ve goriintii kayitlar1 yaziya
dokiilmiistiir. Ikinci adim kodlama olmustur. Kodlar (i) gegmiste konuyla ilgili
yapilan ¢aligsmalar ve (ii) ana ¢alisma siiresince toplanan veriler géz Oniine alinarak

tiiretilmistir.

Yaziya dokiilen veriler ilk Once arastirmaci tarafindan kodlanmustir. Giivenirligi

saglamak icin, bir baska kodlayict kodlama protokoliinii arastirmacinin hazirladigi
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kodlar1 agiklayan bir kodlama anahtarini kullanarak tekrar etmistir. Veri analizinin
son adimi olarak, yaziya dokiilmiis veri kodlari, kategoriler agisindan analiz edilmis,

figlrler, tablolar ve tartisma seklinde temsil edilmistir.

BULGULAR
Bu boliim altinci, yedinci ve sekizinci sinif Ogrencilerinin aritmetik genelleme,
cebirsel genelleme ve naif timevarim yontemlerini kullanarak olusturdugu genelleme

siireclerine dayanarak diizenlenmistir.

Altinci, Yedinci ve Sekizinci Simif Seviyesindeki Ogrencilerin Dogrusal

Oriinttleri Genelleme Suiregleri

Ogrencilerin genelleme siireglerinin analizi, altinci, yedinci ve sekizinci smif
Ogrencilerinin Oriintii genelleme siirecinde en az iki genelleme stratejisi (aritmetik
genelleme, cebirsel genelleme, naif timevarim) kullandiklarini ortaya koymustur.
Bulgulara gore, (i) sadece cebirsel genelleme stratejilerini, (ii) aritmetik genelleme ve
cebirsel genelleme stratejilerinin kombinasyonunu, (iii) aritmetik genelleme ve naif
timevarim stratejilerinin kombinasyonunu ve (iv) aritmetik genelleme, cebirsel
genelleme ve naif tiimevarim stratejilerinin  kombinasyonunu igeren dort tiir
genelleme siireci ortaya ¢ikmustir.

Sadece Cebirsel Genelleme Stratejilerini iceren Genelleme Siireci

Mevcut ¢alismada sadece cebirsel genelleme stratejilerini iceren genelleme sireci
altinct smif seviyesinde 8 kez, sekizinci siif seviyesinde 2 kez goriilmiistiir. Yedinci

smif seviyesinde ise goriilmemistir.
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Detayl1 olarak, altinci sinif seviyesinde, birinci, dordiincii ve altinci sorularda iki
ogrenci ve ikinci ve besinci sorularda bir 6grenci; sekizinci sinif seviyesinde, birinci
ve altinci sorularda bagka bir 6grenci dogrusal Oriintiileri sadece cebirsel genelleme
stratejileri kullanarak genellemistir. Asagida altinci sinif seviyesindeki bir 6grencinin

altinc1 sorudaki oriintliyli genelleme stirecinden bir 6rnek verilmistir:

S6/P1: (Ilk olarak terimlerin altina terim sayilarini yazar) Bunda 1 ile 4’ii
carptim, 4 etti. 2 ile 4’1 ¢arptim, 8 etti. 3 ile 4’ii carptim, 12 etti. Bunun kural
ise adim say1s1 ¢arp1 4. Bununla (ikinci adimda 2’yi gosterir) 4’{i ¢arptigimda
8 ediyor. O zaman n ¢arp1 4 yaptyorum (n4 yazar).

R: Kuralin1 6rnekleyebilir misin?

P1: Dordiincii adimda da 16 ediyor. Besinci adimda da 20 ediyor. Onuncu
adimda da 40 ediyor. Yirminci adimda da 80 ediyor. Yiiziincii adimda da 400
ediyor.

Ornekten de anlasilacagi iizere, P1 ilk dnce, olgusal genelleme olarak kodlanan ‘4 ile
carpma’ sayisal kuralini olusturarak birinci, ikinci ve iigiincii adimlara genellemistir.
Ardindan genel kurali, kavramsal genelleme olarak kodlanan ‘adim numarasi’ni

sOyleyerek ifade etmis, sonunda ise genel kurali sembolik genelleme ile yazmustir.

Aritmetik Genelleme ve Cebirsel Genelleme Kombinasyonunu iceren Genelleme

Sireci

Altinci, yedinci ve sekizinci smif seviyesindeki Ogrencilerde en cok goriilen
genelleme sireci aritmetik genelleme ve cebirsel genelleme kombinasyonunu
icermistir. Mevcut ¢aligmada bu genelleme siireci altinct sinif seviyesinde 14 kez,

yedinci siif seviyesinde 16 kez, sekizinci sinif seviyesinde ise 18 kez gortilmiistiir.
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Detayli olarak, altinci sinif seviyesinde, birinci ve {igiincii sorularda ii¢ 6grenci, ikinci,
dordiincii, besinci ve altinet sorularda iki 6grenci; yedinci sinif seviyesinde, birinci ve
dordiincii sorularda bir 6grenci, dordiincii soru hari¢ diger tiim sorularda bir 6grenci,
ikinci soru harig diger tiim sorularda baska bir 6grenci ve birinci, ikinci, dordiincii ve
altinc1 sorularda bir 6grenci; sekizinci smif seviyesinde, birinci soruda ti¢ 6grenci,
ikinci, ligiincii, besinci sorularda iki 6grenci, dordiincii soruda bes dgrenci ve altinci
soruda dort 6grenci dogrusal oOriintiileri hem aritmetik hem cebirsel genelleme
stratejilerini  kullanarak genellemistir. Asagida altinc1 simif seviyesindeki bir

Ogrencinin besinci soruyu genelleme siirecinden bir 6rnek verilmistir:

S5/P1: Ik adimda 5 tane var, (ikinci adimda) 8 tane var, (ii¢iincii adimda) 11
tane var. Burda 3’er 3’er arttig1 i¢in adim sayis1 ¢arp1 3 art1 2 (n3+2 yazar).
Burda (birinci adimda) 3’1 carptigimizda 3 ediyor, 2 ekledigimizde 5 ediyor.
(Ikinci adimda) 3 ile 2’yi ¢arptigimizda 6 ediyor, 2 ekledigimizde 8 ediyor.
Ucte, 3 ile carptigimizda 9, 2 ekledigimizde 11 ediyor. Dérdiincii adimda da
4 ile 3’1 carpacagiz, 12 ediyor, 2 ekledigimizde 14 ediyor. Besinci adimda 5
ile 3’1 ¢arptigimizda 15, 2 daha, 17. Onuncu adimda da 10 ile 3’iin ¢arpimi
30 ediyor, 2 ekleyecegiz, 32. Yiiziincii adimda da 100 ile 3’i ¢arpacagiz, 300
edecek, 2 ekleyecegiz, 302.

P1 genelleme siirecine ardisik adimlar arasindaki sabit farki vurgulayarak aritmetik
genelleme ile baglamistir. Ardindan genel kurali ‘adim sayisi ¢arp1 3 art1 2” diye ifade
ederek kavramsal genellemeye gecmistir. Hemen ardindan kavramsal genelleme ile
buldugu genel kurali harfler ile ifade etmis, bu da sembolik genelleme olarak
kodlanmistir. Son olarak birinci, ikinci, iiglincli, dordiincii, besinci, onuncu ve

yliziincili adimdaki sayilar1 buldugi genel kurali uygularak hesaplamistir.
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Aritmetik Genelleme ve Naif Tiimevarim Kombinasyonunu Iceren Genelleme

Sireci

Mevcut caligmada aritmetik genelleme ve naif tiimevarim kombinasyonunu igeren
genelleme siireci altinc1 sinif seviyesinde 7 kez, yedinci sinif seviyesinde 1 kez,

sekizinci smif seviyesinde ise 7 kez goriilmiistiir.

Detayl1 olarak, altinci sinif seviyesinde, ikinci ve tigiincii sorularda iki 6grenci,
dordiincii, besinci ve altinct sorularda ise bir 6grenci; yedinci sinif seviyesinde, altinci
soruda bir Ogrenci; sekizinci smif seviyesinde ise birinci, dordiincii ve altinci
sorularda iki 6grenci ve ikinci ve besinci sorularda bir 6grenci; sekizinci sinif
seviyesinde ikinci ve besinci sorularda bir 6grenci, ikinci ve ligiincii sorularda bir
Ogrenci, besinci soruda li¢ 6grenci dogrusal oriintiileri aritmetik genelleme ve naif
tlimevarim stratejilerini kullanarak genellemistir. Asagida altinci sinif seviyesindeki

bir 6grencinin besinci sorudaki oriintliyli genelleme siirecinden bir 6rnek verilmistir:

S5/P2: Birinci adimda 5 tane, ikinci adim 8, {iglincii adimda 11 tane oldugu
icin 3’er 3’er artmis. 11°e 3 eklersem 14 eder. Demek ki dordiincii adimi insa
etmek i¢in 14 tane kiirdan gerekli. Besinci adim igin 14’e 3 eklersek 17 eder,
17 tane kiirdan lazim.. Adim sayis1 carp1 2 desek.. Ikinci adimda tutmuyor.
Adim sayis1 ¢arp1 3 art1 2 desek? (Birinci adimda) 1 kere 3 art1 2, 5 eder. Oldu.
(ikinci adimda) 2 kere 3 art1 2, 8 eder. Evet, genel kural adim sayis1 garp1 3
art1 2.

P2, aritmetik genelleme olarak kodlanan, 6nceki terimlere 3 ekleyerek dérdlnci ve
besinci terimlerdeki kiirdan sayisina ulasmistir. Daha sonra genel kurali bulmak i¢in

bazi1 kurallar denereyerek naif tiimevarim stratejisini kullanmigtir.
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Aritmetik Genelleme, Cebirsel Genelleme ve Naif Tiilmevarim Kombinasyonunu

Iceren Genelleme Siireci

Mevcut caligmada, aritmetik genelleme, cebirsel genelleme ve naif tiimevarim
kombinasyonunu igeren genelleme siireci altinci siif seviyesinde 1 kez, yedinci sinif

seviyesinde 7 kez, sekizinci sinif seviyesinde ise 3 kez goriilmiistiir.

Detayli olarak, altinci smif seviyesinde besinci soruda bir 6grenci; yedinci smif
seviyesinde, ikinci, tiglincii ve besinci sorularda bir 6grenci, li¢lincii, dordiincii ve
besinci sorularda bir 6grenci ve dordiincii soruda baska bir 6grenci dogrusal oriintiileri
aritmetik genelleme, cebirsel genelleme ve naif timevarim stratejilerini kullanarak
genellemistir. P6’nin tiglincii sorudaki genelleme siirecine iliskin 6rnek asagida

verilmistir:

S3/P6: Aymi arkada ¢6zdiigiimiiz gibi. Yani (n+1) garp1 (n+1). n yine adim
sayist. Tekrar deneyecegim. Bunda tutmadi. Aaa buldum sanki. (n+1)x2.

R: Nasil ulastin buna?

P6: Soyle hem boyle yana hem buray1 saydim 4 oldu. Yani ben 8 yaptim ama
7’ymis. (N+1)x2... Bu da tutmuyor. Once dérdiincii adimi bulayim. Burada
sadece yatay artiyor. 5 tane yatay olacak. Yukariya dogru da yine 1 artiyor.
Aaa (adimin) kendisi varmig burada. Alttaki 1 artip yukaridaki adimin kendisi
oluyor. N+1+N. Kurali buldum simdi. Dordiinci adim 4+1+4=9. Bu tuttu.
Besinci adimda da 11. Evet bu da dogru. Onuncu adimda 11+10=21. Ellinci
adimda da 101.

P6 genelleme siirecine naif timevarim ile baslamistir. Iki kural denemis, fakat
bunlarin higbiri Oriintliniin terimlerini saglamamistur. Birden Oriintiiniin ardisik

figUrleri arasindaki aritmetik artis1 gormiis ve terimlerdeki gember sayisi ve terim
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sayis1 arasindaki iliskiyi farketmistir. Bu sebeple, 6grencinin bu siireci kavramsal

genelleme ve sembolik genelleme olarak kodlanmuistir.

Tartisma

Bu ¢aligmada 6grencilerin aritmetik genelleme, cebirsel genelleme ve naif tiimevarim
stratejilerini kullanarak yaptigi, dogrusal oriintiileri genelleme siirecleri incelenmistir.
Ogrencilerin genelleme siireglerinin analizi altinci, yedinci ve sekizinci smf
Ogrencilerinin Oriintlii genelleme siirecinde en az iki genelleme stratejisi (aritmetik
genelleme, cebirsel genelleme, naif timevarim) kullandiklarini ortaya koymustur.
Bulgulara gore, (i) sadece cebirsel genelleme stratejilerini, (ii) aritmetik genelleme ve
cebirsel genelleme stratejilerinin kombinasyonunu, (iii) aritmetik genelleme ve naif
tiimevarim stratejilerinin kombinasyonunu ve (iv) aritmetik genelleme, cebirsel
genelleme ve naif tiimevarim stratejilerinin  kombinasyonunu igeren dort tor

genelleme siireci ortaya ¢ikmistir.

Ogrencilerin, kullandiklar1 genelleme stratejilerini temel alan genelleme tiirleri
belirlendikten sonra, altinci, yedinci ve sekizinci smif seviyelerine gore
kiyaslandiginda aralarinda bazi benzerlikler ve farkliliklar oldugu gériilmiistiir. ik
benzerlik, aritmetik genelleme ve cebirsel genelleme kombinasyonunu igeren
genellemenin, 6grencilerin sinif seviyesine bakilmaksizin en sik kullanilan genelleme
stireci oldugudur. Bulgular ayn1 zamanda, oriintiiyii yakin terimlere genellemek icin
aritmetik genelleme stratejisini, ve uzak terimlere genellemek veya oriintiiniin genel
kuralin1 bulmak iginse cebirsel genelleme stratejilerini kullandiklarmi gostermistir.

Bagka bir deyisle, 68renciler aritmetik genellemeden cebirsel genellemeye dogru bir
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yol izlemistir. Bu bulgular, ge¢mis ¢alismalarin sonuglari ile tutarlilik géstermektedir
(Amit ve Neria, 2007; Lannin, 2004; Lannin, Barker ve Townsend, 2006; Orton ve
Orton, 1999; Stacey ve MacGregor, 2001). Ge¢miste yapilan ¢alismalar, Oriintiileri
genellemeye aritmetik genelleme ile baglamanin dogal oldugunu gostermistir
(Garcia-Cruz ve Martinon, 2002; Lannin, 2004). Buna ek olarak, literatiir ayni
zamanda genelleme stratejilerini belirlerken oriintii sorularinin dogasinin 6grenciler
i¢in belirleyici olabilecegini gostermistir (Barbosa & Vale, 2015; Lannin vd., 2006).
Ornegin, 6riintii sorularinin sirali dizi seklinde adim adim gésterilmesi, 6grencileri
yinelemeli akil yiiriitmeye, yani aritmetik genellemeye, yonlendirebilir. Mevcut
calismada da, Oriintii Testi'ndeki tiim oriintiiler sirali dizi seklinde adim adim
gosterilmistir. Ote yandan, literatiirde, bir érintiyi uzak bir terime genellemenin
Oriintliniin cebirsel altyapisinin anlasilmasina yardim ettigi ifade edilmistir. Bu
yiizden, bu caligmada aritmetik genellemeden cebirsel genellemeye akisin yiliksek
oranda olmasinin sebebi ya Oriintiiniin terimlerinin sirali dizi seklinde verilmesi yada

yakin ve uzak genelleme sorularinin sorulmasi olabilir.

Biitiin smif seviyelerinde ortak olan baska bir bulgu da her sinif seviyesinde diisiik
oranda naif tiimevarimin yani deneme yanilma stratejisinin kullanilmis olmasidir.
Benzer sonuglar, gegmis ¢alismalarda da goriilmistiir (Barbosa, 2011; Lannin vd.,
2006; Ozdemir, Dikici ve Kultir, 2015; Rivera ve Becker, 2005). Literatiirde
belirtildigi gibi, matematik egitimi ¢ogunlukla 6riintiiniin genel kuralin1 olusturmaya
yonelik prosediirel bilgiye odaklanmustir (Lannin vd., 2006). Bu yiizden 6grenciler

orlintiilerin cebirsel yapisini kavramsal olarak anlayamamaktadir (Noss, Healy ve
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Hoyles, 1997). Bunun yerine, genel bir kuralin nasil olusturulacagiyla ilgili
prosedrlere yonelik becerilerini pratik etmektedirler. Bu nedenle, érlnti genelleme
ile ilgili kavramsal matematik 6gretiminin bulunmayisi, 6grencilerin naif tiimevarim

stratejisini kullanmalarini etkilemis olabilir.

Bu iki benzerligin yaninda, sinif seviyeleri arasinda goriilen bir farklilik da, sadece
cebirsel genelleme stratejilerinin yalnizca altinci sinif seviyesinde kullanilmis,
yedinci ve sekizinci sinif seviyelerindeyse neredeyse hi¢ kullanilmamis olmasidir. Bu
bulgu, smif seviyesi arttikca 6grencilerin cebirsel genelleme becerilerinin arttigini
gosteren gecmis ¢alismalar ile tutarsizlik gostermektedir (EI Mouhayar, 2018). Bu
bulgunun altinda yatan sebep, Ulusal Ortaokul Matematik Miifredati’'nda oriintii
genelleme ile ilgili kazanimlarin sadece besinci ve altincit smif seviyelerinde

bulunmasi olabilir (MEB, 2013).

Bahsedilen benzerlik ve farkliliklarla beraber, ¢calismanin 6nemli bir bulgusu olarak,
neredeyse biitiin 6grenciler genelleme siirecinin ilk adimi olarak aritmetik genelleme
ile Oriintiinliin yakin terimlerini bulmuslardir. Ardindan, oriintiiyli uzak terimlere
genellemeleri istendiginde, bu terimleri hesaplamak yerine genel terimi bulmaya
yonelmiglerdir. Ve bulduklar1 genel terimle uzak terimleri hesaplamay1 tercih
etmislerdir. Bu sonug, baz1 gecmis calismalar ile tutarlilik gosterirken (Ozdemir vd.,
2015), bazilari ile tutarsizlik gostermistir (Cooper ve Warren, 2011; Miller ve Warren,
2012; Radford, 2003). Bu sonug su iki sebepten kaynaklanmis olabilir. Oncelikle,
Ulusal Ortaokul Matematik Miifredati’nda bulunan oriintii genellemeye yonelik

kazanimlar, yakin veya uzak genelleme siireglerini kapsamamaktadir. Bunun yerine,
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bu kazanimlar oriintiiniin genel kuralimi bulmaya yada genel kurali verilmis bir
oriintiide istenilen terimi hesaplamaya odaklanmustir (MEB, 2013). Ikinci olarak
Ulusal Matematik ders kitaplarindaki oriintii genelleme sorulari miifredatimizdaki
kazanimlara paralel olarak dncelikle 6grencinin genel terimi bulmasini istemektedir.
Buldugu genel terimle yakin ve uzak terimleri hesaplattirmaktadir. Ozetle, mevcut
caligmada, Ulusal Ortaokul Matematik Egitim Miifredati’'nda yakin veya uzak
genellemeden ziyade genel kurali bulmaya oncelik veren kazanimlarin varligi veya
Ulusal Matematik ders kitaplarinda bulunan &riintii genelleme sorularmin da genel
kural bazli sorular igermesi, 6grencilerin 6nceligi yakin yada uzak genellemeye degil

de, genel kurali bulmaya vermesinin sebebi olabilir.
Dogurgalar

Bu ¢aligmanin bulgulari, ortaokul matematik 6gretmenleri ve program gelistiriciler

icin 6nemli bilgiler sunmaktadir.

Cebirsel genellemenin kavramsal olarak anlagilmasini saglamak i¢in, egitim
ortamlari, Oriintliniin genel terimini kural tabanli bir sekilde bulma tekniklerini
uygulamak yerine, Ogrencilerin genellemelerin dogasin1 kesfedebilecekleri ve
gelisimsel olarak yakin ve uzak genellemeler yapabilecekleri sekilde tasarlanabilir.
Bu tiir egitim ortamlarin1 saglamak i¢in, ilk olarak, matematik egitimi miifredatinin
oranti genellemeyi daha kavramsal olarak kapsamasi onerilmektedir. Baska bir
deyisle, ilkogretim matematik dersi 6gretim programinda Oriintii genellenmesi ile
ilgili iki kazanim vardir. Bunlardan ilki, besinci sinif dlizeyindeki “Kural1 verilen say1

ve sekil Oriintiilerinin istenen adimlar1 olusturur.” kazanimi (MEB, 2013, s. 2) ve
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ikincisi, altinc1 sinif diizeyindeki “Aritmetik dizilerin kuralini harfle ifade eder; kurali
harfle ifade edilen dizinin istenilen terimlerini bulur.” (MEB, 2013, s. 18)
kazanimlaridir. Bu amagclarin her ikisinde de, odak, oriintiiniin genel kuralin1 bulmak
ve bulunan genel kurali uygulamak Uzerinedir. Ote yandan, Oruntiilerin cebirsel
yapisini anlamlandirmak i¢in yakin ve uzak genelleme siireglerini yuritmek blyik
Oonem tasimaktadir. Bu nedenle, Oriintiilerin cebirsel altyapisinit anlamlandirmaya ve
yakin ve uzak genelleme siireglerini yiiriitmeye dayanan kazanimlar, oriintliniin genel

kuralin1 vurgulamadan 6nce ortaokul matematik miifredatina eklenebilir.

Ayrica, Ulusal Matematik ders kitaplarinda yetersiz sayida oriintii genelleme sorulari
oldugu ve bu sorularda da 6grencilere yakin ve uzak genellemeden dnce genel kurali
buldurmaya ydnelik alt sorular oldugu bildirilmistir (Ayber, 2017). Dolayisiyla, ders
kitaplarmin icerigi buna gére revize edilebilir. Oriintii genelleme sorularmin sayisi
arttirllabilir ve asamali olarak genel kuraldan once yakin ve uzak genellemeleri

icerebilir.

Bundan bagka, literatiirde, 6gretmenlerin aritmetik ve cebir iliskisi (Demonty, Vlassis
ve Fagnant, 2018) ve orlntl genelleme ile ilgili yeterli bilgiye sahip olmadiklari
belirtilmistir (Girit, 2016). Ogretmenler, oriintiileri 6grencilere kurala dayali bir
sekilde ortaya koymaktadirlar (Lannin vd., 2006). Dolayisiyla, 6gretmenler aritmetik
ve cebirsel genellemeler acisindan kendilerini gelistirebilirler. Ogretmenlerin
aritmetik ve cebirsel genellemeler hakkindaki bilgilerini arttirmak i¢in seminerler

veya hizmet i¢i ¢aligsmalar diizenlenebilir.
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Gelecek Cahsmalar icin Oneriler

Bu c¢alisma, altinci, yedinci ve sekizinci simif 6grencilerinin aritmetik genelleme,
cebirsel genelleme ve naif timevarim kullanarak yiiriittiigii dogrusal Oriintiileri
genelleme siirecine odaklanmustir. Sonuglara gore, bu kisimda ileri ¢caligmalar i¢in

bazi 6nerilerde bulunulmustur.

Bu ¢aligmaya, altinci, yedinci ve sekizinci smif seviyelerinden 6grenciler katilmistir;
dolayistyla ¢alismanin sonuglari, altinci, yedinci ve sekizinci smif 6grencileri ile
sinirhdir. Gelecek c¢alismalarda yas araligi besinci smiftan on ikinci sinifa

genisletilerek, artan smif seviyeleri arasindaki mevcut egilimler incelenebilir.

Bundan bagka, bu calismada ogrenciler Onceden belirlenmis 3 kritere gore
secilmislerdir, bu kriterler 6grencilerin sinif seviyesi, matematik dersine kars1 istekli
olmalar1 ve konuskan olmalaridir. Gelecek ¢alismalarda, 6grencilerin basarisini da
kriterler arasina dahil ederek, yiliksek/diisiik basar1 bazinda 6grencilerin genelleme

yaklagimlar1 incelenebilir.

Ek olarak, bu ¢alismada, tiimii sirali dizi seklinde temsil edilen alt1 6riintii genelleme
sorusu yer almistir. Literatlire gore, siral1 dizi seklinde sunulan oriintiiler, 6grencileri
yinelemeli iliskileri kullanmaya ve cebirsel iliskilerden caydirmaya tesvik edebilir.
Bu nedenle, ilerideki caligsmalarda, oriintii genelleme sorular1 sirali dizi seklinde

sunulma ile sinirli olmayabilir.
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Son olarak, mevcut calismada, Oriintii sorular1 sayisal ve sekilsel Oriintiiler
icermektedir. Ileri calismalarda, sayisal ve sekilsel driintiileri genelleme yaklasimlar

arasindaki farki bulma maksatli bir ¢alisma yiiriitiilebilir.
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