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ABSTRACT 

 

DETECTION OF MINI/MICRO UNMANNED AIR VEHICLE (UAV) 

UNDER CLUTTER PRESENCE AND ENVIRONMENTAL EFFECTS 

 

Dere, İsmail Gökhan 

Master of Science, Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Mustafa Kuzuoğlu 

 

December 2019, 73 pages 

 

Detection, tracking and classification of Unmanned Air Vehicles (UAVs) is an 

emerging and crucial capability of radars in recent years. In the presence of clutter 

such as a crowded city or a foggy weather above sea surface, mini and micro UAVs 

become very difficult for radars to detect, track and classify. Classification 

information of UAV targets can be very useful for the critical infrastructures in order 

to provide security. Examined studies imply that kinematic and characteristic features 

such as Doppler velocity, Radar Cross Section (RCS) fluctuations and Signal-to-Noise 

(SNR) are helpful features for separating drones from other moving targets. However, 

selection of method and extracted features have an impact on success of classification. 

In this study, Support Vector Machine (SVM) classification method is proposed to be 

used as an inclusive, useful and flexible method. Moreover, additional classification 

stage is proposed in this study in order to increase the success rate of separating 

mini/micro UAV targets from the clutter targets which has very similar characteristic 

properties to drones. Experiments conducted in this study for the selection of 

classification method and features also show that additional classification stage has an 

improving impact on success rate. Thus, a method is proposed in this study including 

comparison of classification methods, features and improvement method. 
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ÖZ 

 

KARGAŞA VARLIĞI VE ÇEVRESEL ETKİLER ALTINDA MİNİ/MİKRO 

İNSANSIZ HAVA ARACI (İHA) TESPİTİ 

 

Dere, İsmail Gökhan 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği 

Tez Danışmanı: Prof. Dr. Mustafa Kuzuoğlu 

 

Aralık 2019, 73 sayfa 

 

İnsansız Hava Aracının (İHA) tespit, takip ve sınıflandırması son yıllarda radarlar için 

ortaya çıkan ve önem kazanan bir yetenektir. Kalabalık bir şehir veya deniz yüzeyi 

üstündeki sisli hava gibi bir kargaşa varlığında, mini/mikro İHAlar radarlarca tespiti, 

takibi ve sınıflandırması zor hedefler haline gelir. İHA hedeflerinin sınıflandırma 

bilgisi, kritik tesislerin güvenliğinin sağlanması için oldukça yararlı olabilir. İncelenen 

bazı çalışmalar Doppler imzası, Radar Kesit Alanı (RKA) salınımı ve Sinyal Gürültü 

Oranı (SGO) gibi kinematik ve karakteristik özellikleri dronları hareketli diğer 

hedeflerden ayırmak için yararlı öznitelikler olarak sunmaktadır. Bu çalışmada, 

Destek Vektör Makineleri (DVM) sınıflandırma yöntemi kapsayıcı, yararlı ve esnek 

bir yöntem olarak önerilmektedir. Ayrıca, bu çalışmada mini/mikro İHA hedefleri 

dronlara çok benzer karakteristik özelliklere sahip olan kargaşa hedeflerinden ayırma 

başarı oranını arttırmak için ilave bir eğitim aşaması önerilmektedir. Bu çalışmada 

sınıflandırma yöntemi ve özniteliklerin seçimi için gerçekleştirilen denemeler, ilave 

bir sınıflandırma aşamasının başarı oranını arttıran bir geliştirici etkiye de sahip 

olduğunu göstermiştir. Böylece, sınıflandırma yöntemlerinin, özniteliklerin 

karşılaştırmalarını ve performans arttırma yöntemini içeren bir çalışma sunulmuştur. 
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CHAPTER 1  

 

1. INTRODUCTION 

 

1.1. Statement Of The Problem 

Worldwide-used ground surveillance radars which are designed for military and 

civilian uses aim to detect targets of interest according to the radar type. UAV 

(Unmanned Air Vehicle) is an emerging target to be detected by ground surveillance 

radars for military missions as well as pedestrians, cars, tanks and convoys. With the 

increasing technology of UAVs, ground surveillance radars needed to specialize in 

detection, tracking and classification algorithms. 

Radar systems aim to detect UAVs using signal processing techniques and use 

detections consecutively for tracking and classification stages. Detection of the targets 

is carried out by transmitting electromagnetic wave toward a region of interest and 

processing the reflections. Signal processing techniques such as CFAR (Constant 

False Alarm Rate) applications are used in the generation stages of detections and 

tracks consequently. Tracking is the next step which is applied by radars within 

models, user-defined rules and filters and generates information about targets in a 

report structure. Track reports contain information of tracks that are generated by radar 

tracking algorithms. 

Seperation of UAVs from non-UAV targets is carried out by using either track reports 

or detection reports depending on the data processing capability of radar processing 

unit. Appropriate method is selected for this usage in the presence of clutter. Features 

extracted from track reports are determined to classify and selected classification 

method is applied in classification stage. Selection of convenient discriminative 

features and usage of consecutive stages make drones discrimination from not drone 

targets more successful. 
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1.2. Scope Of The Thesis 

This thesis presents the problem of UAV discrimination from the clutter environment 

with a radar system and proposes a solution that is composed of data-driven SVM 

classification method using track information. The motivation of choosing this method 

is that SVM classification method is a supervised learning tool which can be useful 

for small data space using the selected features from track reports of UAV and non-

UAV targets. SVM is used in this thesis as a data-driven method that captures 

kinematic and electromagnetic discriminative properties of UAV. Training section of 

SVM is crucial to classify UAV in the clutter existence since it brings design 

flexibility by choosing desired discriminative features for classification purpose. 

Tracking algorithms provide tracks from the moving and consistent detections with 

gating functions. Moreover, track reports are more useful for classification than 

detection reports since tracking model brings more features about targets. For this 

reason, classification is carried out based on track reports in this thesis. By establishing 

the UAV data gathering setup with the Pulse Doppler radar, in the varying scenarios 

track reports are established by the period of rotating radar. Thus, for determined 

several scenarios, features are extracted from track reports within this rotation period.  

However, for less complexity and less work load at the processor, it is important to 

have smaller feature space. Discriminative and uncorrelated features make 

classification algorithms work more efficiently and training of system easier.   

The first step of this thesis study is to determine an optimal classification method 

based on track data obtained by a Pulse Doppler radar. This selection is data dependent 

since classification success depends on data properties such as data variety, amount, 

resolution along with the discriminativity of features gathered by radar which may 

change from radar to radar. Therefore, the optimal method for gathered data is aimed 

to be reached by the analysis. 

The second step of this study is building the structure of the selected classification 

model which has the best performance in the first step. SVM model is selected because 
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of its high performance of separating UAV from targets in the field of interest based 

on gathered track data as well as its flexibility and usage efficiency in the radar 

processor. In order to form the SVM structure, convenient Kernel functions is selected 

by comparing the performance from a variety of Kernel equations. 

After the decision of Kernel function, track reports are used to extract the features and 

select the best features for SVM method depending on the track data. In order to 

generate a reliable finite training data set with the smallest dimension, the features are 

selected as uncorrelated as possible. In addition, selecting uncorrelated features also 

provides unrepeated training functions. Therefore, finding an appropriate feature set 

increases the efficiency of classification. 

At the next step training feature set and test set is determined to complete SVM 

classification. Defining the classification model parameters the method is applied and 

the classification performance is analyzed. This study aims to reach the best 

classification performance by selecting the optimal method, optimal kernel functions 

and best separating feature set. The observed performance shows that the defined 

classes give similar reactions to some features. Therefore, discrimination performance 

of UAV from clutter is tried to be increased with an extra SVM stage.  

Finally, the performance increasing second stage of SVM is applied and the results 

are analyzed. 

1.3. Organization Of The Thesis 

In the context of this thesis, there are six chapters for composition of UAV 

classification problem and solution. In the first chapter, introduction to thesis 

structure, problem to be focused and the scope of the study are stated. 

The second chapter presents background information about radars, brief radar 

operation principles, operational steps and definition of UAVs. A theoretical radar 

introduction to radar systems with radar equation calculation is presented and then 

basic principles of mini/micro UAVs are examined in this chapter. 
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In the third chapter, background of classification methods is presented for the selection 

to be used in this thesis. Learning algorithms with definition of supervised and 

unsupervised learning are examined. Clustering and component analysis as widely 

used unsupervised learning methods and supervised learning methods such as 

regression and classification are inspected.  

The fourth chapter presents the data collection from a pulse doppler radar system for 

the usage in the thesis. Radar installation for collecting UAV data in the presence of 

different types of clutter is mentioned with the important points and brief information 

of UAV flight scenarios. 

In the fifth chapter, selection of appropriate classification method is examined through 

the data collected with the radar. Several classification methods are compared and 

discussed by using the collected data and the motivation of selecting the classification 

methods is included in this chapter. Feature extraction and selection of features that 

are used in SVM method are presented using the results of conducted experiments. 

Then, kernel is selected by comparing some kernel equations through the collected 

radar track reports. Once the classification methods and kernels are analyzed and 

chosen, UAV and non-UAV discrimination with the training and test stages is applied. 

This classification success is examined and analyzed by using the results. At the next 

part, a method for increasing the classification success is proposed and applied. The 

increase of success of the applied method for the gathered radar track data is presented. 

This chapter contains the explanation of the reached results of the UAV classification 

in the clutter representation.  

The sixth chapter is composed of conclusive remarks about the thesis and discussions 

of future considerations. The results of the experiment and classification study which 

is examined in the fifth chapter are discussed with future research suggestions in 

Chapter 6.   
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CHAPTER 2  

 

2. UAV DETECTION AND TRACKING WITH RADAR 

 

2.1. Radar Background 

In this chapter, background information about radar, detection and tracking processes 

of pulse doppler radar in clutter presence, feature extraction and feature set gathered 

with radar are given. At the beginning of the chapter, basic information about radars 

is given. Following the background information, UAV concept, detection and tracking 

UAVs in clutter presence with radars are examined. The second chapter includes 

topics covering the features which are extracted from Pulse Doppler radar. 

Radar (Acronym which stands for Radio Detection and Ranging) is the name of the 

electrical system which includes sophisticated transducer/computer components to 

detect, locate, identify, image and classify the targets [2]. It works by transmitting 

radiofrequency electromagnetic waves toward a region of interest in space and 

collecting the reflected signal from objects in that region. The reflected signal from 

the objects in the region of interest includes the information to determine the presence 

of target as well as its range, velocity and other features. The electronical components 

of radars may change according to the purpose of the system. However, as illustrated 

in Figure 2.1, radar system is generally combined by antenna, transmitter, receiver and 

signal processor at least [1]. Antenna is the mechanical passive device for transmitting 

electromagnetic (EM) waves into the medium after the signal is generated by the 

transmitter. As well as transmission use, antenna is a receiver subsystem which takes 

EM waves from the medium and introduce to the receiver. Antenna is connected to 

the transmitter and receiver through a transmitter/receiver (T/R) device (i.e. circulator 

or switch) which provides isolation and simultaneous selection of circuits. The 

reflected signal from the object in the medium radar radiated is applied to the receiver 
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circuits. In this section, radio frequency (RF) signal is amplified, converted into 

intermediate frequency (IF), applied to analog digital converter (ADC) and then 

introduced to signal processor by using a detector to remove the carrier from the 

modulated return signal. Depending on radar needs, receiver part usually contains 

amplifiers, mixers, matched filters, local oscillators and ADCs. Received signal from 

the target is processed by the radar receiver in the signal processor to determine the 

properties of target and carry out detection and tracking steps. As well as waveform 

and features selected to use in radar applications, range, reliability, cost, size and 

maintainance are also important parameters to influence radar design, transmitter and 

receiver selection [2]. Together with the issues above, in the radar design, target 

parameters and operation conditions such as climate, atmospheric attenuation, 

atmospheric refraction, reflection and clutter property are taken into consideration for 

the best detection performance. In order to reach the best performance, selection of 

radar operation frequency, antenna type, waveform parameters are important factors 

for design process. 
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Figure 2.1 Radar Basic Principles and Components 

Radars are electronical devices built to radiate EM waves at several frequency ranges 

at their best performances. For varying missions, radar operation frequency is 
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determined taking performance parameters such as range, resolution, antenna size and 

production parameters such as cost, reliability and maintainability into consideration.  

Widely used specific radar frequency bands have been assigned by International 

Telecommunication Union (ITU)[3]. These frequency band ranges and covering radar 

frequency bands can be seen in Table 2.1. 

Table 2.1 Radar frequency bands 

Radar Band Frequency Range Bands Assigned 

HF 3-30 MHz  

VHF 30-300 MHz 
138-144 MHz 

216-225 MHz 

UHF 300-1000 MHz 
420-450 MHz 

890-942 MHz 

L Band 1-2 GHz 1.215-1.4 GHz 

S Band 2-4 GHz 
2.3-2.5 GHz 

2.7-3.7 GHz 

C Band 4-8 GHz 5.250-5.925 GHz 

X Band 8-12 GHz 8.50-10.68 GHz 

Ku Band 12-18 GHz 
13.4-14 GHz 

15.7-17.7 GHz 

K Band 18-27 GHz 24.05-24.25 GHz 

Ka Band 27-40 GHz 33.4-36 GHz 

V Band 40-75 GHz 59-64 GHz 

W Band 75-110 GHz 
76-81 GHz 

92-100 GHz 

Milimeter Waves 110-300 GHz 

126-142 GHz 

144-149 GHz 

231-235 GHz 

238-248 GHz 
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Curry calls common radar center frequencies in several bands UHF, L-band, S-band, 

C-band and X-band with their advantages and disadvantages for varying applications 

[4]. As Curry presents in his publications, HF, VHF, UHF and L-band radars have 

relatively larger antennas for radar applications than the radars using upper frequency 

bands such as S-band, C-band, X-band, Ku-band, K-band, KA-band, V-band, W-band 

and millimeter wave [4]. Additionally, by providing narrow beams with relatively 

small antennas, target precision measurement is better in the upper band radars such 

as X-band, Ku-band, K-bands than the lower band radars while radars are generally 

not suggested to operate in the atmospheric conditions because of severe atmospheric 

and rain losses at the upper frequencies above KA-bands [4]. Operation frequency 

selection in radars directs the designer to the next step which is considering the 

optimum antenna type selection for reliable and considerable performance. 

Table 2.2 Radar band characteristics and applications  

Frequency Band Band Characteristics Applications 

HF Very large antennas OTH radar 

VHF Large antennas Search radar 

UHF, L Large antennas Search radar 

S, C 

Medium size antennas 

Moderate measurement 

precision 

Multifunction radar 

X, Ku, K 
Small antennas 

Precision measurement 

Tracking radar 

Airborne radar 

Ku, K, Ka 

Very small antennas 

Good measurement precision 

Atmospheric and rain loss 

Short-range radar 

Precision-guidance radar 

V, W and millimeter Severe atmospheric and rain loss Space-to-space radar 

 

The antenna which transmits EM energy into the region of interest and receives 

reflected energy from a target, is one of the most important elements of radar [1]. As 

can be seen in Table 2.2, radar antenna selection depends partially on frequency band 

that radar operates. In order to reach proper antenna operation performance, the radar 
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antenna is electrically matched with transmitter, receiver and free space having the 

capability of radiation type selectivity [1]. As illustrated in Figure 2.2, radiation type 

selectivity means that radar antenna transmits into space when transmitter generates 

EM wave and receives EM waves from the space and introduces to the receiver while 

in reception. 

 

TX

RX

TX

A
nt

en
n

a

 

Figure 2.2 Radar antenna TX-RX matching 

Depending on the radar design, waveform is chosen to fulfill the requirements of radar 

system. Radar waveforms are generally divided into four classes; which are CW, chirp 

pulses, phase coded waveforms and pulse bursts. CW waveforms usually do not 

require much effort to transmit and to process signal [4]. Chirp pulses waveform is a 

generally used pulse-compression technique that is capable of providing good range 

resolution while using relatively high energy containing long pulses [4]. Phase coded 

waveforms provide proper range resolution similarly to chirp pulses by including a 

combination of subpulses which are transmitted with relative phases [4].  Pulse-burst 

waveform is a summation of a train of pulses, separated in time, processed coherently 

in the receiver matched filter [4]. In this thesis, K-band Pulse Doppler radar which 

uses Doppler effect phenomena usually in signal processing algorithms is used to 

detect and track UAV targets in the presence of clutter. Pulse Doppler radars extract 

and use Doppler frequency shift related with its pulse repetition interval and duty 

cycle.  A frequency shift occurs in the received signal from the target if it has a velocity 
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resulting with a movement. This phenomena is called “Doppler effect” which is a 

widely used term for radar applications. 

 θ

Velocity, v

Moving target

Radar

 

Figure 2.3 Geometry of radar and target in deriving the Doppler frequency shift 

Assuming that 𝑅 is the range from the radar to the target and wavelength of the 

electromagnetic wave is 𝜆, 𝑣𝑟 is the velocity of moving target towards to the radar, as 

it is illustrated in Figure 2.3, then the Doppler frequency shift can simply be obtained 

as; 

𝑓𝑑 =
2𝑣𝑟

𝜆
=

2𝑣𝑟𝑓0

𝑐
 

(1) 

where f0 is the frequency of radar transmission and c is the velocity of electromagnetic 

wave propagation, which is approximately 3 x 108 m/sec. 

Pulse Doppler radars uses the information Doppler frequency shift which is generated 

in pulsed waveforms. 

2.2. Radar Detection and Tracking Under Clutter Presence 

As explained in Section 2.1, radar design includes several important steps such as 

selection of frequency band, antenna and waveform to develop a system fulfilling the 

requirements. After completing the system design of a radar, radar equation is an 
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important milestone for designer to measure the radar capability of detecting the 

targets. The radar equation expresses the relationship between range of a radar and 

system hardware characteristics, target parameters and region of interest [2]. For an 

isotropic antenna which radiates transmitter power PT in all directions uniformly, the 

power density at a distance R is calculated as in equation (2) where surface area is 

4πR2 with an imaginary sphere of radius R. 

𝑃𝑜𝑤𝑒𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑎𝑡 𝑎 𝑟𝑎𝑛𝑔𝑒 𝑅 𝑓𝑟𝑜𝑚 𝑎𝑛 𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑖𝑐 𝑎𝑛𝑡𝑒𝑛𝑛𝑎 =
𝑃𝑡

4π𝑅2
 

(2) 

If radar has a directive antenna, maximum gain G of antenna is defined as in equation 

(4). 

𝐺 =
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑤𝑒𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑟𝑎𝑑𝑖𝑎𝑡𝑒𝑑 𝑏𝑦 𝑎 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑣𝑒 𝑎𝑛𝑡𝑒𝑛𝑛𝑎

𝑃𝑜𝑤𝑒𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑟𝑎𝑑𝑖𝑎𝑡𝑒𝑑 𝑏𝑦 𝑎𝑛 𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑖𝑐 𝑎𝑛𝑡𝑒𝑛𝑛𝑎 
              

(3) 

Using equations (2) and (3) together, the power density at the target from a directive 

antenna with a transmitting gain G is in (4). 

𝑃𝑜𝑤𝑒𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑎𝑡 𝑟𝑎𝑛𝑔𝑒 𝑅 𝑓𝑟𝑜𝑚 𝑎 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑣𝑒 𝑎𝑛𝑡𝑒𝑛𝑛𝑎 =
𝑃𝑡𝐺

4π𝑅2
 

(4) 

For radar receiver, the echo signal is usable in the equations. Power density returned 

to the radar from a target is determined by RCS of the target that is denoted by σ. 

𝑅𝑒𝑟𝑎𝑑𝑖𝑎𝑡𝑒𝑑 𝑝𝑜𝑤𝑒𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦  𝑏𝑎𝑐𝑘 𝑎𝑡 𝑡ℎ𝑒 𝑟𝑎𝑑𝑎𝑟 =
𝑃𝑡𝐺

4π𝑅2
 

σ

4π𝑅2
 

(5) 

Received signal power is calculated in equation (6) as effective area 𝐴𝑒 times 

reradiated power density back at the radar where 𝐴𝑒 is physical area times antenna 

aperture efficiency: 

𝑃𝑟 =
𝑃𝑡𝐺

4π𝑅2
 

σ

4π𝑅2
 𝐴𝑒  =

𝑃𝑡𝐺𝐴𝑒σ

(4π)2𝑅4
 

(6) 

In the case the same antenna is used for both transmission and reception, from the 

antenna theory, transmit gain is calculated as in equation (7) where 𝜌𝑎 is antenna 

aperture efficiency and 𝜆 is wavelength: 
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𝐺 =
4π𝐴𝑒

𝜆2
=

4π𝜌𝑎A

𝜆2
 

(7) 

Maximum range of radar Rmax is the maximum distance to detect the target and can be 

calculated when received signal power Pr equals to minimum detectable signal power 

Smin. 

𝑅𝑚𝑎𝑥 = [
𝑃𝑡𝐺𝐴𝑒σ

(4π)2𝑆𝑚𝑖𝑛
]

1/4

=  [
𝑃𝑡𝐺2𝜆2σ

(4π)3𝑆𝑚𝑖𝑛

]

1/4

=  [
𝑃𝑡𝐴𝑒

2σ

4π𝜆2𝑆𝑚𝑖𝑛

]

1/4

 

 

(8) 

The available thermal noise power generated at the input of a receiver of bandwidth 

𝐵𝑛 at a temperature T, where k is Boltzmann constant, is calculated as 

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑛𝑜𝑖𝑠𝑒 𝑝𝑜𝑤𝑒𝑟 =  𝑘𝑇𝐵𝑛          (9) 

In order to extract Smin from equation (8), noise figure is written as: 

𝐹𝑛 =
𝑁𝑜𝑖𝑠𝑒 𝑜𝑢𝑡 𝑜𝑓 𝑝𝑟𝑎𝑐𝑡𝑖𝑐𝑎𝑙 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟

𝑁𝑜𝑖𝑠𝑒 𝑜𝑢𝑡 𝑜𝑓 𝑖𝑑𝑒𝑎𝑙 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝑎𝑡 𝑇0 
=  

𝑁𝑜𝑢𝑡

𝑘𝑇0𝐵𝐺𝑎
 =  

𝑆𝑖𝑛/𝑁𝑖𝑛

𝑆𝑜𝑢𝑡/𝑁𝑜𝑢𝑡
         

(10) 

𝑆𝑖𝑛 =
𝑘𝑇0𝐵𝐹𝑛𝑆𝑜𝑢𝑡

𝑁𝑜𝑢𝑡
 

(11) 

If the minimum detectable signal Smin is that value of Sin which corresponds to the 

minimum detectable signal-to-nose ratio at the output of IF,  (𝑆𝑜𝑢𝑡/𝑁𝑜𝑢𝑡)𝑚𝑖𝑛 , then 

𝑆𝑚𝑖𝑛 = 𝑘𝑇0𝐵𝐹𝑛 (
𝑆𝑜𝑢𝑡

𝑁𝑜𝑢𝑡
)

𝑚𝑖𝑛

 
(12) 

Exchanging equation (12) in equation (8), we reached to 𝑅𝑚𝑎𝑥 as shown in equation 

(13)  

𝑅𝑚𝑎𝑥 =  [
𝑃𝑡𝐺𝐴𝑒σ

(4π)2𝑘𝑇0𝐵𝐹𝑛(
𝑆
𝑁)𝑚𝑖𝑛

]

1/4

 

  
 

 

(13) 
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If 𝑃𝑎𝑣 is desired to use in the equation in the case that transmitter waveform is a train 

of rectangular pulses of width 𝜏 and constant pulse repetition period 𝑇𝑝 =
1

𝑓𝑝 
 : 

𝑃𝑎𝑣 =
𝑃𝑡𝜏

𝑇𝑝
=  𝑃𝑡𝜏𝑓𝑝 

(14) 

Assuming integration of pulses is carried out, for n-pulse integration integration 

efficiency for post detection integration is defined as: 

𝐸𝑖 (𝑛) =  
(

𝑆
𝑁)1

𝑛(
𝑆
𝑁)𝑛

 

(15) 

By taking system losses such as antenna losses, beamshape loses, propagation effects 

and signal processing losses into account, where 𝐿𝑠 is system loss, 𝐿𝑓 is fluctuation 

loss, radar equation becomes as in equation (16) 

𝑅𝑚𝑎𝑥
4 =

𝑃𝑎𝑣𝐺𝐴𝜎𝑛𝐸𝑖(𝑛)𝜌𝑎𝐹4𝑒−2𝑎𝑅𝑚𝑎𝑥

(4π)2𝑘𝑇0𝐹𝑛(𝐵𝜏)𝑓𝑝(
𝑆
𝑁)1𝐿𝑓𝐿𝑠

 
(16) 

Regarding the radar equation as in equation (16), one of the most important missions 

of radar systems is detection of interested targets. Information from targets of interest 

is contained in the radar pulses which may also include undesired clutter signals, 

receiver noise or unintentional jamming. Threshold detection technique is usually 

used for optimal performance of target detection in the presence of unintentional 

clutter [5]. Detections are obtained after applying a precomputed and structured 

threshold to the signals with complex valued magnitudes received by receiver. The 

signals received by radar receiver become detections if their magnitude is above 

threshold level while signals with lower magnitudes are not tagged as detections as 

seen in Figure 2.4. Since the detection stage is a statistical process, decisions made by 

threshold include a finite probability of error which occurs as false alarms [5]. Unless 

false alarm detections are directed in a complex algorithm, these may cause false alarm 

tracks that decrease radar reliability. The aim of this thesis is to propose a way to 
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decrease false alarm rate of UAV tracks which are generated in detection and tracking 

stages of radar. 
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Figure 2.4 Detection of targets and clutter using threshold 

Radar detection performance is calculated depending on probability of detection PD, 

probability of false alarm PFA, threshold level, S/N value, statistical characteristics of 

target and noise echoes where detection threshold level is determined taking signal to 

noise ratio to obtain desired PFA [4]. Threshold level is monitored and controlled in 

some radar applications, while some radar systems have specialized circuits of 

adjusting threshold level automatically to reach desired PFA. This specialized constant 

false alarm (CFAR) signal processing technique which may cause a loss which is often 

a couple of dBs have derivations such as CA-CFAR, SOCA-CFAR, GOCA-CFAR 

and Adaptive CFAR [5].  In this thesis context, track information which are obtained 

from detections by applying CFAR detection technique, are examined. 

Table 2.3 False Alarm examples depending on radar parameters  

 Radar-1 Radar-2 Radar-3 Radar-4 Radar-5 

PFA 10-6 10-6 10-6 10-6 10-8 

B 1 MHz 1 MHz 100 MHz 100 MHz 100 MHz 

RW Continuous 150 km Continuous 1.5 km Continuous 

PRF  500 Hz  500 Hz  

ΤFA 1/second 0.5/second 100/second 0.5/second 1/second 

tFA 1 sec 2 sec 0.01 sec 2 sec 1 sec 
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As seen in Table 2.3, depending on the system parameters false alarms occur because 

of noise or clutter. Clutter is all of undesired radar returns or signals received from 

objects such as earth surface, sea, atmosphere, chaff, rain, snow and other than the 

target which radar intends to detect [6]. Although SNR or SIR exists in the radar 

equation as in (16), SCR is also usable as the ratio of the target RCS to clutter RCS in 

the equation in case interference is taken as surface or atmospheric clutter [5]. 

2.3. UAV Definition and Detection With Radar 

UAV (acronym for Unmanned Air Vehicle) is simply defined as a vehicle that flies 

with no pilot on board. UAVs can be classified by mission, weight, payload capacity, 

operational altitude, velocity, rotor number or RCS. In a study, Korchenko suggests a 

generalized classification of UAVs using 16 fundamental features which are aircraft 

applications, type of control system, flight rules, airspace classification, aircraft types, 

wing types, take-off/landing, aircraft engine types, fuel system, fuel tank types, 

number of exploitations, category (according to the weight and maximum range of 

flight UAV), flight radius, flight altitude and aircraft functions [7]. 

 

Figure 2.5 UAV Classification Pyramid [11] 
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Sayler groups UAVs into hobbyist drones, Midsize Military and Commercial drones, 

Large Military-Specific drones and Stealth Combat drones as Figure 2.5 illustrates a 

classification pyramid which was introduced by Sayler to classify UAVs according to 

their usage and technological complexities [11]. Hobbyist type has the least 

complexity and cheapest drones while midsize military and commercial type has more 

complexity and cost. Large military-specific drones are less available in the market 

and stealth combat drones are at the top of pyramid with least availability and the most 

complexity. This thesis focuses on mini and micro UAVs which are two classes 

defined by NATO’s UAV classification as shown in Table 2.4 [8]. 

Table 2.4 UAV Classification [8] 

Class Category 

 

Operational 

Altitude 

Mission 

Radius 

(km) 

Payload 

Capacity (kg) 

UAV Class-1 

(<150 kg) 

Micro (< 2 kg) < 90 m (300 ft) 5 0.2 – 0.5 

Mini (2-20 kg) < 900m (3000 ft) 25 0.5 – 10 

Small (<150 

kg) 

< 1500 m (5000 ft) 50-100 5 -50 

UAV Class-2 

(150-600 kg) 

Tactical < 3000 m (10000 

ft) 

200 25 – 200 

 

Lee et al. examines a drone detection and identification system which captures images 

of the unknown drones by a camera and identifies the drone model type by matching 

the image to the samples in the database [35]. Having a camera instead of radar in his 

system, Lee uses Deep Convolutional Neural Network technique to match the 

unknown drone image to the ones in the database [35].  

Choi et al. proposes a study to classify drones by using deep learning algorithms of 

which inputs are images based on simulated micro-Doppler signatures [36]. For this 
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aim, micro-Doppler signatures are simulated by changing the number of rotors, rotor 

speed and orientation and transformed into images to be used in a convolutional neural 

network. Choi simulates micro-Doppler signatures from several drones with varying 

number of rotors as given in Figure 2.6 [36].  

 

Figure 2.6 Simulated Micro-Doppler signatures of drones with a)1 rotor, b)2 rotors, c)3 rotors, d)4 

rotors[35] 

De Quevedo examines a DJI Phantom 4 commercial micro drone that is used for both 

privately and professionally for its detection and RCS measurement with a FMCW X-

Band radar [9]. In his experiments, he uses outdoor-recorded data, collected with DJI 

Phantom 4 and calculated RCS in X-band of the micro UAV as in Figure 2.7 [9].  In 

this thesis, the same model drone is used for detection, tracking and classification 

purposes. 

 

Figure 2.7 RCS Measurement of DJI Phantom 4 with X-band FMCW Radar [9] 
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In another study, Ritchie uses a Vector Network Analyser with a wideband Satimo 

quad ridge reference horn antenna in an anechoic chamber to analyze RCS 

measurements of DJI Phantom drone in several frequency bands such as L-band, S-

band and C-band [10]. He continues his research with outdoor experiments to produce 

micro-doppler spectrograms of DJI phantom drone using a pulsed Doppler radar 

system [10]. 

In another study, Hofele presents an algorithm which uses the preprocessed time 

signals as inputs for automatic radar targets classification by using the recorded 

spectrum and cepstrum data of the radar SPEXER 2000 to classify pedestrians, 

vehicles, drones and helicopters [37]. 

2.4. Track Information Obtained By Radars 

Track information context that acquired by a Pulsed Doppler radar which is used in 

this thesis is given in Table 2.5. With the more track properties obtained by a radar, it 

is more possible to separate the real UAV target from the non-UAV targets.  

Table 2.5 Track information acquired by radars 

Kinematic Property Track Info Characteristic Features 

Range Timestamp SNR 

Azimuth Track ID RCS 

Velocity Beam ID Microdoppler signature 

Acceleration Status  

Elevation Angle Class  

Height Update Status  
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CHAPTER 3  

 

3. CLASSIFICATION METHODS BACKGROUND 

 

3.1. Introduction 

Chapter 2 gives a description of detection and tracking of mini/micro UAVs with Pulse 

Doppler radars. Tracking stage of radar extracts information of drone to the 

classification stage in order to separate UAV from non-UAV targets. In classification 

stage, specialized algorithms are applied to classify radar track information as given 

in Table 2.5. In Chapter 3, target classification in radars is defined and discussed in 

detail. Briefly, classification means that a decision is carried out for a sample in which 

class it belongs by using previous samples and their classes. Variety of applications 

such as visual recognition, speech recognition or fingerprint identification 

mechanisms get benefits of pattern recognition and classification algorithms. In 

addition to various applications, many electronical warfare systems classify detected 

objects using different methods. As a branch of electronical warfare systems, some 

radar applications apply target classification software. Radar target classification 

methods are based on data which previously obtained from environment in order to 

use the classes of targets in radar missions.  

Duda et al. summarizes sub-problems of pattern classification as extracting features, 

noise, overfitting, mereology, difficulties on model selection, prior knowledge of 

classes, missing features, segmentation, context, invariances, evidence pooling, costs 

and risks of classification and computational complexity [12]. Artificial neural 

networks which provides solution models for problems like pattern, recognition and 

forecasting are generally divided into three groups as supervised methods, 

unsupervised methods and reinforcement learning [13]. Classification and regression 
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are two examples to supervised learning methods while clustering and principal 

component analysis are unsupervised learning methods.   

Main motivation of machine learning is investigating how computers can improve 

their performance based on data [17]. Machine learning which has common 

applications with statistics, game theory and optimization is needed when tasks are 

too complex to program and beyond human capabilities [23]. Supervised and 

unsupervised learning algorithms are combined with semi-supervised learning and 

active learning algorithms to construct machine learning discipline. In this chapter, 

supervised and unsupervised learning algorithms, pattern recognition techniques, 

advantages and disadvantages of these methods are proposed. 

3.2. Unsupervised Learning 

Unsupervised learning methods are purely based on the observation of raw input data 

without information or errors from previous data set and useful for unlabeled data 

processing before supervised learning [14]. Unsupervised learning model includes 

unsupervised word since the model is able to learn and shape information with no 

error signal to compute the potential solution [13]. Unsupervised learning techniques 

are widely used in variety of fields such as patients grouping, online shoppers 

grouping and online viewers of web sites.  

As explained in reference [13], application of unsupervised learning algorithm is 

based on three phases. These are competition, cooperative and adaptive phases. In 

competition phase, the input pattern x, also called neuron, which has the minimum 

inner product of synaptic weight w is selected from all input patterns. Cooperative 

phase is the layer that the selected neuron is centered and cooperative neurons are 

gathered in a neighborhood topology. In adaptive phase, selected neuron group’s 

individual values of discriminant function are increased by adjusting synaptic weight 

functions. Repeating these phases synaptic weight vectors get their final and stable 

state to be coherent with input patterns in the means of unsupervised learning [13]. 
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3.2.1. Clustering 

Clustering is a learning algorithm that finds a proper and valid organization of data. 

By collecting and grouping similar objects in a data set, a cluster aims to set of similar 

entities to be separated from the other clusters. Everitt et al. explains that clusters are 

combination of high density related data while the other clusters are low density data 

regions and distance from one point to another in cluster is less than distance between 

the point in that cluster and a point in another cluster [15]. 

c c

c

 

Figure 3.1 Clusters in two dimensions 

Figure 3.1 illustrates an example of clustering set of points in two dimensions. Usually 

points in a high dimensional space are examined in this method to find the similarities, 

regularities and properties which are useful to group input data. A distance measure is 

determined and used to define the similarity of the input data points. Several 
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applications such as image compression, bioinformatics and online trade websites use 

clustering algorithms. 

3.2.1.1. Partitional Clustering Methods 

Partitional clustering methods also referred as partitioning methods or nonhierarchical 

methods which are often used in engineering applications aim to generate a single 

partition of the data to group. The input data is required to be in the form of a pattern 

matrix in the context of these methods with the advantage of being appropriate for 

large-scaled data applications [16]. Given a data set, 𝑋 = [𝑥1, 𝑥2 , … , 𝑥𝑛] and the 

number of clusters to form, 𝑘, partitioning algorithm divides data set into k partitions 

(𝑘 ≤ 𝑛). Each partition represents a cluster which is formed to optimize a criterion in 

order to generate similarity with points in cluster and dissimilarity with other clusters 

[17]. K-Means algorithm is one of the most common partitional clustering algorithms. 

Supposing that the data set 𝑋 = [𝑥1, 𝑥2 , … , 𝑥𝑛] contains 𝑛 objects in Euclidean space 

and partitioning algorithm distributes data set into 𝑘 clusters 𝐶1, 𝐶2 , … , 𝐶𝑘  with the 

assumptions of 𝐶𝑖 ⊂ 𝐷 and 𝐶𝑖 ∩ 𝐶𝑗 =  ∅ for (1 ≤ 𝑖 ,  𝑗 ≤ 𝑘). In K-means clustering 

algorithm, each cluster’s center is represented by the mean value of the objects in the 

cluster. This is initiated by arbitrarily choosing 𝑘 objects from 𝑋 𝑎𝑠 the initial cluster 

centers, then each object is reassigned to the most similar-behavior cluster, based on 

the mean value of the points in the cluster. At the next step, calculating the mean value 

of the points for each cluster, the clusters are updated [17]. The cluster quality is 

measured by the sum of squared error, 𝐸, between all points in 𝐶𝑖 and the center points 

𝑐𝑖 defined in (22) where 𝑝 is the point in space representing a given object: 

𝐸 = ∑ ∑ 𝑑𝑖𝑠𝑡(𝑝, 𝑐𝑖)2

𝑘

𝑝∈𝐶𝑖

𝑘

𝑖=1

 

 
(17) 
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(a) Initial clustering (b) Iterate (a) Final clustering  

Figure 3.2 K-means clustering steps 

As illustrated in Figure 3.2, the algorithm tries to minimize the error function in (17) 

and iteration continues until the final clustering. Burney et al. states that K-means 

clustering method is an algorithm that quickly group data based on predefined feature 

vectors and initial centroids although estimating centroids from data is sometimes 

expensive to compute and not guaranteed to give the best result [18]. 

3.2.1.2. Hierarchical Clustering Methods 

Hierarchical clustering methods create hierarchical groups from input data objects. 

These methods may be divided into three categories as algorithmic methods, 

probabilistic methods and Bayesian methods. Algorithmic methods define clusters by 

treating objects as deterministic structures and using deterministic distances between 

these objects while probabilistic methods use probabilistic models to determine 

clusters and fit them to the models. On the other hand, Bayesian models aims to find 

a distribution of possible clustering structures according to given data set [17]. 

Algorithmic methods are agglomerative, divisive and multiphase methods. As 

illustrated in Figure 3.3, agglomerative method uses a bottom-up strategy by taking 

each object as a cluster firstly then merges it into larger clusters in contrast to divisive 

methods that have a top-down strategy and splits objects from initial root cluster [17]. 

Both methods are iterative and user may limit iteration specifying a desired number 

of cluster. Multiphase methods are carried out by using clustering features such as 

trees or dynamic modeling which bring the advantage of scalability and improve the 

previous clustering steps. However, sometimes algorithmic methods are difficult to 
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apply. This occurs when distance measure may be difficult to select in some cases or 

data may be observed partially causing computation not conductable. Since 

algorithmic methods use heuristic steps, for some cases decision of good merging or 

splitting and optimization goal of resulting cluster hierarchy may be challenging [17]. 
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Figure 3.3 Agglomerative and Decisive Hierarchical Clusters 

In order to decide which objects involve in the next steps of cluster, four distance 

measurement criteria are listed below: 

Minimum distance :  𝑑𝑖𝑠𝑡𝑚𝑖𝑛(𝐶𝑖 , 𝐶𝐽) = min{|𝑝 − 𝑝′|}     ,   𝑝 ∈ 𝐶𝑖   ,  𝑝′ ∈  𝐶𝑗 (18) 

Maximum distance : 𝑑𝑖𝑠𝑡𝑚𝑎𝑥(𝐶𝑖 , 𝐶𝐽) = max{|𝑝 − 𝑝′|}    ,   𝑝 ∈ 𝐶𝑖  ,  𝑝′ ∈  𝐶𝑗 (19) 

Mean distance         : 𝑑𝑖𝑠𝑡𝑚𝑒𝑎𝑛(𝐶𝑖, 𝐶𝐽) =  |𝑚𝑖 − 𝑚𝑗|        ,   𝑝 ∈ 𝐶𝑖  ,  𝑝′ ∈  𝐶𝑗 (20) 

Average distance    : 𝑑𝑖𝑠𝑡𝑎𝑣𝑔(𝐶𝑖, 𝐶𝐽) =
1

𝑛𝑖𝑛𝑗
∑ |𝑚𝑖 − 𝑚𝑗|

∞

−∞
, 𝑝 ∈ 𝐶𝑖 ,  𝑝′ ∈ 𝐶𝑗 

(21) 

 

In equations (18), (19), (20) and (21) distance criteria are given where |𝑝 − 𝑝′| is the 

distance between two objects 𝑝 𝑎𝑛𝑑 𝑝′, 𝑚𝑖 is the mean for cluster, 𝐶𝑖, 𝑛𝑖 is the number 

of objects in 𝐶𝑖. For variety of algorithmic hierarchical clustering problems, 

convenient one from distance criteria in (18-21) is selected and used in an easy and 

efficient way [17]. 

Probabilistic hierarchical clustering methods aim to estimate the generative model 

which is assumed to adopt common distribution functions, such as Gaussian 
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distribution or Bernoulli distribution as accurately as possible using the observed data 

objects to be clustered. By finding the parameters of distribution functions for which 

the model best fits the observed data set, task of learning for generative model is 

achieved [17]. Let 𝑋 = [𝑥1, 𝑥2 , … , 𝑥𝑛] is 1-D point data set and generated by a 

Gaussian distribution which is defined in equation (22) where 𝜇 is mean and 𝜎 is 

variance: 

𝒩(𝜇, 𝜎2) =
1 

√2πσ2
 𝑒

−
(𝑥−𝜇)2 

2σ2  
(22) 

The probability that a point 𝑥𝑖 ∈  𝑋 is then generated by the model is 

𝑃(𝑥𝑖|𝜇, 𝜎2) =
1 

√2πσ2
 𝑒

−
(𝑥−𝜇)2 

2σ2    
(23) 

Consequently, the likelihood that 𝑋 is generated by the model is 

𝐿(𝒩(𝜇, 𝜎2): 𝑋 ) = 𝑃(𝑋|𝜇, 𝜎2) = ∏
1 

√2πσ2
 𝑒

−
(𝑥𝑖−𝜇)2 

2σ2

𝑛

𝑖=1

  . 
(24) 

To find mean and variance parameters, the likelihood is maximized where 

𝑚𝑎𝑥 {𝐿(𝒩(𝜇, 𝜎2): 𝑋 )} is called the maximum likelihood: 

𝒩(𝜇0, 𝜎0
2) = 𝑎𝑟𝑔𝑚𝑎𝑥 {𝐿(𝒩(𝜇, 𝜎2): 𝑋 )} (25) 

For a data set partitioned into 𝑚 clusters 𝐶1 , 𝐶2 , … , 𝐶𝑚 , where 𝑃() is the maximum 

likelihood, clustering quality Q is: 

Q({𝐶1 , 𝐶2 , … , 𝐶𝑚}) = ∏ 𝑃(𝐶1 )

𝑚

𝑖=1

  . 
(26) 

For two merged clusters in hierarchical clustering, ∏ 𝑃(𝐶𝑖 )
𝑚
𝑖=1   is constant for any pair 

of clusters. Thus, for given clusters 𝐶1 and 𝐶2 , the distance between them is  
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dist(𝐶𝑖 , 𝐶𝑗 ) =  − log
𝑃(𝐶1 ∪  𝐶2)

𝑃(𝐶1)𝑃(𝐶2)
   

(27) 

In the concept of hierarchical clustering algorithms, graphs, dendrograms and 

proximity matrices are used for visualization and problem explanations. 

3.2.1.3. Density Based Methods 

Density based clustering methods are methods that model clusters as dense regions in 

data set, aim to find core points with dense neighborhoods to identify convex regions 

accurately. An example for these methods is density-based clustering based on 

connected regions with high density. Using a fixed neighborhood size parameter ԑ and 

a neighborhood density threshold 𝑏, it is decided whether a neighborhood is dense or 

not. If the ԑ-neighborhood of a point has at least 𝑏 points, a new cluster 𝐶 is created 

and the point is added to 𝐶. The whole data set is visited by applying these steps 

iteratively and final clustering structure is reached [17]. Another example for density-

based methods is the method of ordering points to identify the clustering structure. 

This method uses a hierarchical technique which creates a graph showing the clusters 

of different densities and outputs a cluster ordering [19]. The last example for density-

based clustering methods is the method of clustering based on density distribution 

functions. This method is considered as a generalization of several clustering methods 

and uses kernel density estimation to effectively reduce the influence of noise [17]. 

3.2.1.4. Grid Based Methods 

Similarly to the density based clustering techniques, grid-based clustering methods are 

useful for large multidimensional data sets using a grid data structure which is 

independent of input data points. Bandyopadhyay summarizes the grid-based 

clustering method application as 5 steps in [19]: 

- Forming the grid architecture by mapping the data space into grids. 

- Calculating the grid density of each cell by using all points within a grid. 

- Separating the grids according to their densities. 
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- Finding the position of cluster centers by using separated grids. 

- Traversing the neighbor grids. 

As an example, statistical information grid-based clustering (STING) method 

seperates data space into layers and cells in a hierarchical and recursive way and aims 

to find statistical parameters of these layers. Mean, maximum and minimum values of 

each cell is calculated and stored by partitioning each cell at a high level in order to 

construct the cells at the next level [17]. Another method is an Apriori-like subspace 

clustering method which focuses on finding density-based clusters in pre-formed 

subspaces. This method aims to identify search spaces using monotonicity of dense 

cells regarding the dimensionality and form convenient clusters [17]. 

First layer

(i-1)th layer

i-th layer

 

Figure 3.4 Structure of grid-based clustering 

3.2.2. Component Analysis Methods 

Principal component analysis (PCA) is a method of data decorrelation computing 

orthogonal basis vectors for input data which is also assessed as a correlation-based 

clustering method in some sources. PCA is a beneficial method for signal processing 

applications that has a data-driven approach. The main motivation of this method is to 
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reduce the dimension of a data set consisting of many interrelated variables to a 

smaller number of dimensions. Principle components are introduced as a new 

uncorrelated set of variables for this task in order to present the data in all input 

variables with decreased set of variables [20]. As Smith explains in [21], PCA is used 

with statistical background information in many fields such as image compression and 

computer vision. For that reason, to carry out an analysis using this method requires 

following steps:  

- Having a proper data set, 

- Calculating the mean and subtracting it from each of the data dimensions, 

- Calculating the covariance matrix, 

- Calculating the eigenvectors and eigenvalues of the covariance matrix, 

- Choosing components and forming a feature vector, 

- Deriving the new data set [21]. 

 

Figure 3.5 An example of PCA using Y1 and Y2 vectors 

PCA is usually achieved with three possible methods such as eigenvalue 

decomposition, singular value decomposition and expectation minimization 

algorithm. Eigenvalue decomposition and singular value decompo sition methods 

require matrix calculations which may bring some difficulties for large scale data sets 

[21]. Roweis states in [22] that since eigenvectors of covariance matrix brings 

computational costs, expectation-minimization algorithm is useful to obtain principle 

components of the data without calculating covariance matrix.  
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3.3. Supervised Learning Methods 

Supervised learning which is a branch of machine learning algorithms aims to discover 

the relationship model between input and output. The supervision term of this method 

is a result of training structure with the labeled points or occasions. In a supervised 

learning method, there is a set of variables referred as inputs or predictors that have 

influence on one or more outputs that also are called responses or dependent variables 

and the goal is to predict the output values by using the inputs [23]. Supervised 

learning techniques are often used in variety of disciplines such as data mining, 

information technology, plant control, forecasting and robotics.  

Osisanwo et al. examines a real-world problem applying supervised machine learning 

as illustrated in Figure 3.6 and proposes a standard formulation of the supervised 

learning task as learning the mapping function and creating a classifier [25]. As 

Osisanwo explains, function to learn maps a vector into classes and classifier uses 

examples in training set to classify new instances. 

 

Figure 3.6 Process summary of supervised machine learning [25] 
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3.3.1. Regression 

Regression learning models map input data set into a real-value domain providing 

usually quantitative continuous responses. Haykin explains in his book that regression 

model includes the scenario below [27]: 

- There is a dependent variable in the set of random variables, referred as response 

- The remaining random variables, referred as regressor, which explain the statistical 

behavior of the response 

- An additive error term, referred as expectational error, is included by the dependence 

formula of the response on the to present the uncertainties 

  0    10       20         30          40        0                          10        20        30         40

1 degree 2 degree

 

Figure 3.7 Examples of a) linear regression, b) polynomial regression 

As some regression examples given in Figure 3.7, regression learning techniques are 

used in some prediction problems for stock market prices, age of a viewer watching a 

video, amount of an element in the body or temperature at a building [26]. 

3.3.1.1. Linear Regression Methods 

To define, linear regression is a statistical method that models the relationship between 

input data and real valued output. For the input data set 𝑋 = [𝑥1 , … , 𝑥𝑛]  , the goal of 

this method is to find a linear function that best approximates the relationship between 

variables [24]. Linear regression model aims to model the relationship between 

regressor and response as given in Figure 3.8. 
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Regressor

Desired response

Expectational error
 

Figure 3.8 An environment modelling with linear regression 

Shalev-Shwarts states that in linear regression, hypothesis class of predictors is simply 

the set of linear functions which is given in Eq.(28). 

𝐿𝑑 = { 𝑥 ↦ 〈𝑤, 𝑥〉 + ԑ } ∶ 𝑤 ∈ ℝ𝑑  , ԑ ∈ ℝ (28) 

Supposing that 𝑋 = [𝑥1 , … , 𝑥𝑛]𝑇  is the regressor and 𝑑 is the corresponding response, 

the regression model can be proposed as 

𝑑 =  ∑ 𝑤𝑗𝑥𝑗

𝑀

𝑗=1

+ ԑ =  𝑤𝑇𝑥 +  ԑ 
 

(29) 

where 𝑤1 , … , 𝑤𝑚 denote the set of unknown parameters and ԑ is the expectational 

error.  In Equation (29), 𝑀 is called as model order and the parameter vector is defined 

as 𝑤 = [𝑤1 , … , 𝑤𝑚]𝑇  of which dimensionality is the same as 𝑥. Now, regression 

problem can be stated as estimating the unknown parameter vector 𝑤 with the given 

correlation matrix of the regressor 𝑋 and variance of the corresponding desired 

response 𝐷 while assuming that means of both 𝑋 and 𝐷 are zero [27]. Bayesian 

methods as explained by Hastie, Maximum Likelihood Estimation method as 
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explained by Murphy and Maximum-A-Posteriori method as explained by Haykin can 

be used for the solution of this regression problem [23,26,27]. 

3.3.1.2. Logistic Regression Methods 

In linear regression models explained in previous chapter, a fitting problem may occur 

when a straight line is fit to a binary response [28]. To solve this problem, regression 

model can be changed to logistic model by using hypothesis class associated with the 

logistic function which is also called sigmoid function and given in Eq. (30) [24]. 

𝐻𝑠𝑖𝑔 = ∅𝑠𝑖𝑔 ∘ 𝐿𝑑 = { 𝑥 ↦ ∅𝑠𝑖𝑔(〈𝑤, 𝑥〉)} ∶ 𝑤 ∈ ℝ𝑑 

 

∅𝑠𝑖𝑔(𝑧) =  
1 

1 + exp (−𝑧)
 

 

 

(30) 

Starting with defining the logistic function, logistic regression methods use the 

following steps as stated by James in [28]: 

- Fitting logistic regression models using one of the various techniques,  

- Estimating the regression coefficients, 

- Making predictions multiple times iteratively if needed. 

Murphy examines that after model specification step, to estimate the coefficients some 

algorithms such as MLE, steepest descent, Newton’s method, iteratively reweighted 

least squares or variable metric methods can be used. 

3.3.1.3. Regression Trees 

Decision trees are efficient hierarchical data structures using nonparametric model 

parameters which bring the cost of calculating the distances from the given input to 

all training instances. Regression trees are constructed from a given labeled training 

set like classification trees. Alpaydın examines that regression trees differ from 

classification trees with impurity measurement [29]. 

Defining number of nodes is m, subset of 𝑋 reaching node m is 𝑋𝑚 ,  
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𝑑𝑚(𝑥) = {
1, 𝑥 ∈ 𝑋𝑚  : 𝑥 reaches node m

  0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                
 

 

(31) 

Using mean square error from the estimated value where 𝑔𝑚(𝑥) is the estimated value 

of node m and 𝑁𝑚 = 𝑋𝑚 = ∑ 𝑑𝑚(
∞

𝑡
𝑥𝑡) 

𝐸𝑚 =
1 

𝑁𝑚
∑(𝑟𝑡 − 𝑔𝑚)2𝑑𝑚(

∞

𝑡

𝑥𝑡) 

 

(32) 

In a node, mean of the required outputs of instances reaching the node 𝑔𝑚 is 

∑ 𝑑𝑚(
∞

𝑡
𝑥𝑡)𝑟𝑡 

∑ 𝑑𝑚(
∞

𝑡
𝑥𝑡)

 
 

(33) 

Then, 𝐸𝑚 corresponds to the variance at 𝑚. If at a node, the error is acceptable, then 

a leaf node is created and it stores the 𝑔𝑚value. If the error is not acceptable, data 

reaching node 𝑚 is split further such that the sum of the errors in the branches is 

minimum. At each node, the attribute that minimizes the error is desired, and recursion 

is continued. 

As James explains that regression tree is built following the steps below [28]: 

- Recursive binary splitting is used to grow a large tree on the training data, stopping 

only when each terminal node has fewer than some minimum number of observations. 

- Apply cost complexity pruning to the large tree in order to obtain a sequence of best 

subtrees, as a function of α. 

- Use K-fold cross validation to choose α. That is, divide the training observations into 

K folds. For each k=1,….,K: 

- Repeat Steps 1 and 2 on all but the kth fold of the training data and evaluate the mean 

squared prediction error on the data in the left-out kth fold, as a function of α. 

- Average the results for each value of α, and pick α to minimize the average error. 

- Return the subtree from Step 2 that corresponds to the chosen value of α.  
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Figure 3.9 An example of regression tree 

3.3.2. Classification 

For the cases that the response variable is quantitative, regression methods are used as 

stated in 3.3.1. On the other hand, in order to predict a qualitative response which is 

referred as categorical for an observation classification process is more convenient to 

use [28]. In varying sources, logistic regression method is stated as a classification 

method for this property of response type. 

The classification methods aim to learn a mapping from inputs 𝑥 to outputs 𝑦, where 

𝑦 ∈ {1, … , 𝐶} and 𝐶 is the number of classes. In the case 𝐶 = 2, classification is named 

as binary classification. If 𝐶 > 2, classification is called as multiclass classification. 

Classification tasks can be called as generalization task since they may include 

predictions of the first-seen inputs. Thus, training set which is an important part of 

generalization process provides the criteria to define classes. In addition, classification 

methods generally use probability concepts to define the problem and present the best 

guess. Denoting the probability distribution over possible labels for a training set 𝐷 

by 𝑝(𝑦|𝑥, 𝐷), length vector of 𝐶 is represented by this probability. In binary 

classification, 𝑝(𝑦 = 1|𝑥, 𝐷) +  𝑝(𝑦 = 0|𝑥, 𝐷) = 1. Alpaydın states that the 
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empirical error is the proportion of training instances where predictions of hypothesis 

class, ℎ not matching the required values given in training set 𝐷 is in Eq.(34)[29]: 

ℎ(𝑥) = {
1, 𝑖𝑓 ℎ 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑠 𝑥 𝑎𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑒𝑥𝑎𝑚𝑝𝑙𝑒

     0, 𝑖𝑓 ℎ 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑠 𝑥 𝑎𝑠 𝑎 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑒𝑥𝑎𝑚𝑝𝑙𝑒   
  

(34) 

where 𝐷 contains 𝑁 such examples and 𝑡 indexes different examples in the set and 

𝑥 = [𝑥1𝑥2] , 𝑟 = {
1, 𝑖𝑓 𝑥 𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑒𝑥𝑎𝑚𝑝𝑙𝑒

  0, 𝑖𝑓 𝑥 𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑒𝑥𝑎𝑚𝑝𝑙𝑒   
,  𝐷 = {𝑥𝑡, 𝑅𝑡}  

 

𝐸(ℎ| 𝐷) = ∑ 1(ℎ(

𝑁

𝑡=1

𝑥𝑡)  ≠ 𝑟𝑡 )  

(35) 

Classification methods are used in many applications such as email spam filtering, 

speech recognition, image classification, face recognition, optical character 

recognition and medical diagnosis. 

3.3.2.1. Simple Classifiers 

In classification methods, predicting discrete classes or posterior probabilities which 

are between zero and one is desired. One simple approach to classify is that 

constructing a discriminant function that directly assigns each input vector to a 

specific class while another approach is modeling a conditional probability 

distribution and using it for optimal decision [30].  Bayes classifiers, Linear 

discriminant analysis (LDA) and Quadratic Discriminant Analysis (QDA) are simple 

methods used for dimensionality reduction in classification. 

3.3.2.1.1. Bayes Classifier 

For the case that number of classes is two, Bayes decision theory is useful to define a 

simple classifier and to minimize the error function given in Eq. 35 [26]. Bayes rule 

is applied to a classifier to classify a feature vector: 

𝑝(𝑋 = 𝑥|𝑌 = 𝑦) =
𝑝(𝑋 = 𝑥, 𝑌 = 𝑦) 

𝑝(𝑌 = 𝑦)
=

𝑝(𝑋 = 𝑥)𝑝(𝑌 = 𝑦|𝑋 = 𝑥) 

 ∑ 𝑝(𝑋 =
𝑁

𝑥′
𝑥′)𝑝(𝑌 = 𝑦|𝑋 = 𝑥′)

    
 
 (36) 
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Bayes classifier assigns each test point to the most possible class if predictor values 

are given. A test observation is assigned with 𝑥0 to the class 𝑗 for which 𝑓𝑗(𝑥) =

 Pr (𝑌 = 𝑗|𝑋 = 𝑥0) is largest. If there only two possible classes, Bayes classifier 

results class one if Pr (𝑌 = 1|𝑋 = 𝑥0) > 0.5, and class two otherwise. Since Bayes 

classifier chooses the class 𝑗 for which Pr (𝑌 = 𝑗|𝑋 = 𝑥0) is maximum, the lowest 

possible test error rate at 𝑋 = 𝑥0 is 1 − 𝑚𝑎𝑥𝑗 Pr (𝑌 = 𝑗|𝑋 = 𝑥0) where the 

expectation averages the probability over all possible values of 𝑋 [28]. For a given 

training sample 𝑥, assuming there are 𝐾 mutually exclusive classes, 𝐶𝑖, where 𝑖 =

1, … , 𝐾 , 𝑝(𝑥|𝐶𝑖) is the probability of seeing 𝑥 as the input when it is known to belong 

class 𝐶𝑖. The posterior probability of class 𝐶𝑖, multiplication of prior probability and 

likelihood divided by evidence is 

𝑃(𝐶𝑖|𝑥) =
𝑝(𝑥|𝐶𝑖)𝑃(𝐶𝑖) 

𝑝(𝑥)
=  

𝑝(𝑋 = 𝑥)𝑝(𝑌 = 𝑦|𝑋 = 𝑥) 

 ∑ 𝑝(𝑋 =
𝑁

𝑥′
𝑥′)𝑝(𝑌 = 𝑦|𝑋 = 𝑥′)

 

 
(37) 

C

x

P(C)

p(x\C)

 

Figure 3.10 A simple variation of Bayesian network for classification 

For minimum error, Bayes classifier chooses the class with the highest posterior 

probability [29]. 



 

 

 

37 

 

3.3.2.1.2. Linear Discriminant Analysis 

LDA is a popular and stable classification method if number of response classes is 

more than two and classes are well-separated. The simplest representation of a linear 

discriminant function is obtained by taking a linear function of the input vector so that 

𝑦(𝑥) =  𝑤𝑇𝑥 + 𝑤0 where 𝑤 is called a weight vector and 𝑤0 is bias. An input vector 

𝑋 is assigned to class 𝐶1 if 𝑦(𝑥) ≥ 0 and to class 𝐶2 otherwise. The relation 𝑦(𝑥) = 0 

defines the decision boundary which is a (𝐷 − 1)-dimensional hyperplane within the 

D-dimensional input space [30].  Assuming that 𝑓𝑗(𝑥) is Gaussian distributed and each 

class density is modeled as multivariate Gaussian 

𝑓𝑗(𝑥) =
1

(2𝜋)
𝑝
2  |∑𝑘|

1
2 

 𝑒
−1
2

(𝑥−𝜇𝑘)𝑇∑𝑘−1(𝑥−𝜇𝑘)   
 

(38) 

Hastie states that LDA arises in the special case when assuming the classes have a 

common covariant matrix ∑𝑘 =  ∑∀𝑘. In comparing two classes 𝑘 and 𝑙, the log-ratio 

of those is an equation linear in x [23]. 

 log
Pr(𝐺 = 𝑘|𝑋 = 𝑥)

Pr(𝐺 = 𝑙|𝑋 = 𝑥)
= 𝑙𝑜𝑔

𝑓𝑘(x)

𝑓𝑙(x)
+ 𝑙𝑜𝑔

𝜋𝑘

𝜋𝑗
 

=  𝑙𝑜𝑔
𝜋𝑘

𝜋𝑗
− 

1

2
(𝜇𝑘 + 𝜇𝑙)𝑇∑−1(𝜇𝑘 − 𝜇𝑙) + 𝑥𝑇∑−1(𝜇𝑘 − 𝜇𝑙) 

 

(39) 

The equal covariance matrices provides the normalization factors and quadratic part 

in the exponents to cancel. This linear log-odds function implies that the decision 

boundary between 𝑘 and 𝑙- the set where Pr(𝐺 = 𝑘|𝑋 = 𝑥) = Pr(𝐺 = 𝑙|𝑋 = 𝑥)-is 

linear in 𝑥; in p dimensions a hyperplane. If the space is divided into regions that are 

classified as class 1, class 2, etc. these regions will be separated by hyperplanes [23]. 

James states that training data is used to estimate the parameters of the Gaussian 

distributions since they are not known in practice. 𝜋𝑘 =
𝑁𝑘

𝑁
, 𝑤ℎ𝑒𝑟𝑒 𝑁𝑘 is the number 

of class-k observations :  
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𝜇𝑘 =  ∑
𝑥𝑖

𝑁𝑘

𝑁

𝑔𝑖=𝑘

   

             ∑ = ∑ ∑ (𝑥𝑖 − 𝜇𝑘

𝐾

𝑔𝑖=𝑘    

)(

𝐾

𝑘=1 

𝑥𝑖 − 𝜇𝑘)𝑇/(𝑁 − 𝐾)                              

 

(40) 

 

 

 

 

 

(41) 

Quadratic Discriminant Analysis (QDA) is used if ∑ 𝑘 are not equal and cancellations 

do not occur; in particular the pieces quadratic in 𝑥 remain. The estimates for QDA 

are similar to LDA, except that separate covariance matrices must be estimated for 

each class [26]. 

3.3.2.2. Nearest Neighborhood 

 A non-parametric classification model is the model in which the parameters space 

does not grow with the amount of training data. Nearest neighborhood classification 

method is an example for usage of non-parametric classifiers. Hastie examines that 

nearest neighbor prediction rule is a powerful prediction method like linear model fit 

by least squares [26]. One of the most popular examples for nearest neighborhood 

methods is K-Nearest neighbor (KNN) classifier. In this method, 𝐾 points in the 

training set are selected which are nearest to the test input 𝑥0 and represented by Ɲ0. 

The members of each class in the K-points set are counted and the empirical fraction 

is returned as estimate [26]. The conditional probability for class represented by 𝑗 as 

the fraction points in Ɲ0 whose response values are equal to  : 

𝑃𝑟(𝑌 = 𝑗|𝑋 = 𝑥0) =
1

 K
∑ 𝐼(y𝑖 = 𝑗)

∞

𝑖∈Ɲ0

    

 

 

(42) 

Indicator function in Eq.42 is defined as follows: 

𝐼(y𝑖 = 𝑗) = {
1, 𝑖𝑓 y𝑖 = 𝑗 𝑖𝑠 𝑡𝑟𝑢𝑒

     0, 𝑖𝑓 y𝑖 = 𝑗 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒   
  

 

 

(43) 
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As the next step, KNN applies Bayes rule and classifies test inputs 𝑥0 to the class with 

largest probability. According to the book by James, KNN can often provides 

classifiers that are close to the optimal Bayes classifier with the fact that the impact of 

choosing number 𝐾 on KNN classifier is drastic [28]. The comparison of two KNN 

classifiers with 𝐾 = 1 and 𝐾 = 100 is illustrated in Figure 3.11. 

 

Figure 3.11 Comparison of K-NN classifiers with K=1 and K=100 [28] 

KNN method is an example of instance-based learning which uses usually Euclidean 

distance as distance metric, while other metrics can also be used [26]. 

3.3.2.3. Naïve Bayes 

Naïve Bayes is a simple, useful classification method in the case that feature space 

dimension is high and density estimation is not necessary [28]. For a given class,     

𝐺 = 𝑗, features 𝑋𝑘  are assumed to be independent in Naïve Bayes model as illustrated 

in Eq.(44) 

𝑓𝑗(𝑋) = ∏ 𝑓𝑗𝑘(𝑋𝑘)𝑑
𝑘=1         𝑃[𝑋 = 𝑋𝑘|𝑌 = 𝑦] = ∏ 𝑃[𝑋𝑖 = 𝑥𝑖|𝑌 = 𝑦]𝑑

𝑖=1  (44) 

With the assumption given in Eq.(44) and using the Bayes rule, the Bayes optimal 

classifier can simply be written as in Eq.(45) [24] 
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ℎ𝐵𝑎𝑦𝑒𝑠(𝑋𝑘) = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑃[𝑌 = 𝑦|𝑋 = 𝑋𝑘]

= 𝑎𝑟𝑔𝑚𝑎𝑥 𝑃[𝑌 = 𝑦]𝑃[𝑋 = 𝑋𝑘|𝑌 = 𝑦]

=  𝑎𝑟𝑔𝑚𝑎𝑥 𝑃[𝑌 = 𝑦] ∏ 𝑃[𝑋𝑖 = 𝑥𝑖|𝑌 = 𝑦]

𝑑

𝑘=1

 

 

(45) 

Using Eq.(45), the number of parameters to estimate is reduced to 2d+1 and this 

estimation can be made by using the maximum likelihood principle. The resulting 

classifier is referred as Native Bayes classifier, in which the number of parameters to 

learn is significantly decreased with the assumption in Eq.(44). [24]  

The reason for this method to be called as naïve, is that independency of the features 

is very unlikely while they do not have to be necessarily conditional on the class label 

[26].  

In addition, James states that the individual class-conditional marginal densities 𝑓𝑗𝑘  in 

Eq.(44) can each be estimated separately using 1D-kernel density estimators while an 

appropriate histogram estimate can be used in the case 𝑋𝑗of 𝑋 is discrete [28]. 

3.3.2.4. Deep Learning 

Deep learning is a specific powerful method of machine learning techniques. For 

millions of data involving data sets that are difficult to solve by simple methods 

require complicated operations. Bengio examines that for the deep architectures which 

represents high level abstractions involving multiple levels of non-linear operations 

are the subjects of deeper models and more complicated learning algorithms [31]. 

Deep learning methods may use several algorithms and data structures depending on 

the need following some applications of unsupervised learning methods. Duda states 

that before classification using labeled data, unsupervised methods are useful to obtain 

features and build the structure [12]. Although variety of supervised unsupervised 

algorithms supply efficient results for learning problems, deep architectures mean 

more efficiency and compact solutions for highly-varying functions. Compact term 

for a function means that having few computational elements as possible. For a deep 

network, depth of architecture refers to the longest path from an input node to an 
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output node or number of layers while the set of computational elements is the set of 

computations artificial neurons can make [31]. 

Deep learning methods can be separated into two branches to cover the applications 

using deep architectures as deep generative methods and deep neural networks.  

3.3.2.4.1. Deep Generative Methods 

Deep generative methods are simply divided into three categories as direct, undirect 

and mixed models. Three examples for each models are illustrated in Figure 3.12. 

(a) (b) (c)  

Figure 3.12 Deep generative models examples: (a) Direct, (b)Undirect, (c)Mixed. 

Deep directed models also referred as deep directed networks use bottom layers that 

contains observed data points and hidden layers as illustrated in Figure 3.12(a). Model 

structure can be constructed by choosing the number and size of layers manually or 

using non-parametric Bayesian methods or boosting tree structures [26]. 

Deep undirected models have some advantages over the directed models such that 

performing efficient calculations since all the nodes in each layer are conditionally 

independent of each other while these models have a more difficult training section 

because of partition function [26]. An example of undirected models is Deep 

Boltzmann machine which is considered as a particular energy-based model and has 

a couple of hidden layers.  

Deep mixed models are considered as partially directed and partially undirected. 

Supposing that a deep belief network with three hidden layer is used, it may have top 

two layers acting as an associative memory and the other layers generate the output 

[26]. Deep belief networks which are graphical models learning to extract a deep 

hierarchical representation of the training data model the joint distribution between 
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observed vector 𝑥 and the 𝑙 hidden layers ℎ𝑘 where 𝑥 = ℎ0and 𝑃(ℎ𝑙−1, ℎ𝑙) is the 

visible-hidden joint distribution [32]: 

P(𝑥, ℎ1, … , ℎ𝑙) = (∏ 𝑃(ℎ𝑘|ℎ𝑘+1)) 𝑃(ℎ𝑙−1, ℎ𝑙)

𝑙−2

𝑘=0

 

 
(46) 

 

3.3.2.4.2. Deep Neural Networks 

Deep neural networks are generally considered in two separated classes as deep multi-

layer perceptrons and deep auto-encoders also referred as auto-associators. Deep 

neural networks contain convolutional layers and sampling layers and each layer 

includes topographic structure.  

Deep multi-layer perceptrons are used in neural networks with usually back-

propagation along with the optimization algorithms and unsupervised learning 

methods [26].  

Deep auto-encoders consisting input layer, output layer and hidden layers have 

encoders and decoders. The input is encoded by a trained by auto-encoder in order to 

reconstruct input data from output data [31].  

3.3.2.5. Support Vector Machines (SVM) 

Support vector machine (SVM) is basically a learning machine which constructs a 

hyperplane as the decision surface that maximizes the margin of separation between 

positive and negative examples [27]. Regression and classification methods use SVMs 

in a variety of models. One of the simplest versions of support vector classifiers is a 

maximal margin classifier which is intuitive and simple although it is not applicable 

for most data sets [28]. Support vector machines are usually used for accommodating 

linear and nonlinear decision boundaries in presence of multiple classes.  

A hyperplane is a (𝑝 − 1)-dimensional flat subspace in a p-dimensional space which 

is defined as equation where 𝑋 = (𝑋1, 𝑋2, … 𝑋𝑝)𝑇 is a point on the hyperplane: 



 

 

 

43 

 

𝑓(𝑥) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑝𝑋𝑝 =  0 
(47) 

Supposing that a 𝑛 𝘹 𝑝 data matrix 𝑋 consisting of 𝑛 training observations in 

𝑝 −dimensional space and 𝑦𝑖 represent classes 

𝑥1 = (

𝑥11

.
𝑥1𝑝

) , … , 𝑥𝑛 = (

𝑥𝑛1

.
𝑥𝑛𝑝

) 
(48) 

A separating hyperplane separates the training observations according to their class 

labels and has the property for all 𝑖 = 1, … , 𝑛 that 

𝑦𝑖(𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 >  0 
(49) 

In the case a separating hyperplane exists, a test observation can be assigned a class 

depending on which side of the hyperplane it is located [28]. The maximal margin 

classifier uses the maximal margin hyperplane that is used for separating and located 

farthest from the training observations. The training observations which are 

equidistant from the maximal margin hyperplane lying along in the width of margin 

are referred as support vectors. Support vectors are vectors in p-dimensional space and 

support directly the maximal margin hyperplane if separating hyperplane exists. 

However, in many cases a hyperplane that almost separates the classes is used if it is 

not possible to separate classes using a hyperplane [28]. 

A support vector machine is also referred as a kernel method since inner-product 

kernel between a support vector 𝑥𝑖 and a vector 𝑥 from the input data space is used 

while the support vectors consists of a small subset of data points extracted from the 

training sample [27]. Murphy states in his book that SVMs are combination of kernels 

and loss functions with the property of being appropriate for binary classification and 

unnatural from a probabilistic point of view [26]. 
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Figure 3.13 An example of optimum hyperplane with maximum margins 

The soft margin hyperplanes are used for the support vector classifiers in order to be 

more robust to individual data points and to classify the most of the training input 

points [28]. For the nonlinear decision boundaries Kernel functions are derived to the 

optimal hyperplanes. Linear support vector classifiers are represented as below in Eqn. 

50 where 𝛼𝑖 , … , 𝛼𝑛 and 𝛽0 are parameters to estimate in the linear classifier function 

and 𝑆 is the collection of indices : 

𝑓(𝑥) = 𝛽0 + ∑ 𝛼𝑖〈x, x𝑖〉

𝑛

𝑖=1

=  𝛽0 + ∑ 𝛼𝑖〈x, x𝑖〉

∞

𝑖∈𝑆

  

 
(50) 

In the nonlinear classifier calculation, kernel function 𝐾(x, x𝑖
′) which quantifies the 

similarity of two observations is used [23] and kernel functions are in the various 

forms as given below: 
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𝐾(x, x𝑖
′) = ∑ x𝑖𝑗x𝑖′𝑗

𝑝

𝑗=1

  

 

(51) 

𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑘𝑒𝑟𝑛𝑒𝑙 𝑤𝑖𝑡ℎ 𝑑𝑒𝑔𝑟𝑒𝑒 𝑑: 𝐾(x, x𝑖
′) = (1 + ∑ x𝑖𝑗x𝑖′𝑗

𝑝

𝑗=1

)

𝑑

 

 

(52) 

𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑓(𝑥) = 𝛽0 + ∑ 𝛼𝑖𝐾(x, x𝑖)

∞

𝑖∈𝑆

 

 

(53) 

𝑅𝑎𝑑𝑖𝑎𝑙 𝑘𝑒𝑟𝑛𝑒𝑙: 𝐾(x, x𝑖
′) = exp(−𝜁 ∑(x𝑖𝑗x𝑖′𝑗)2)

𝑝

𝑗=1

 

 

(54) 

𝑁𝑒𝑢𝑟𝑎𝑙 𝑛𝑒𝑡𝑤𝑜𝑟𝑘: 𝐾(x, x𝑖
′) = tanh(𝜅1〈x, x′〉 + 𝜅2) 

(55) 

An example of using radial kernel is illustrated in Figure 3.14. 

 

Figure 3.14 Radial kernel example [28] 

Kernel function 𝐾(x, x𝑖) is symmetric about the center point x𝑖 attaining its maximum 

value at x = x𝑖 while total volume under the surface of the function 𝐾(x, x𝑖) is a 

constant [27]. The optimal decision hyperplane in the output space is expressed as  
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∑ 𝛼𝑖𝑑𝑖𝐾(x, x𝑖) = 0

𝑁𝑠

𝑖=1

 

 

(56) 

Kernel selection for the most accurate SVM can change according to the input data 

with the fact that Kernel usually makes a small difference in resulting accuracy in 

practice [17]. However, SVM has a benefit such that being independent of the 

dimensionality of the transformed space and the complexity of the resulting classifier 

is characterized by the number of support vectors [12]. Assuming that 𝑁𝑠 is the total 

number of support vectors for 𝑛 training patterns, the expected value of the 

generalization error rate is bounded as 

Є𝑛[error rate] ≤   
Є𝑛[𝑁𝑠]

𝑛
 

(57) 

For 𝐾 > 2 classes, two approaches for applying SVMs are one-versus-one and one-

versus-all procedures. One-versus-one approach uses K x (K − 1)/2 SVMs. Each of 

SVMs compares a pair of classes. Classifying a test observation using each of 

classifiers, the number of times that the test observation is assigned to each of the K 

classes. Assigning the test observation to the most frequently assigned class in (2-out-

of- 𝐾) pairwise classifications is the final classification in this procedure [28]. 

Comparing one of the K classes to the remaining 𝐾 − 1 classes each time K SVMs 

are fitted in one-versus-all approach. Assuming 𝛽0𝑘
, 𝛽1𝑘

, … , 𝛽p𝑘
 denotes the 

parameters that result from fitting an SVM comparing to the kth class to the remaining 

classes, and 𝑥∗ denotes a test observation, the observation is assigned to the class for 

which 𝛽0𝑘
+ 𝛽1𝑘

x1
∗ + 𝛽2𝑘

x2
∗ + ⋯ + 𝛽p𝑘

x𝑝
∗ is largest. This amounts to a high level 

of confidence that the test observation is in kth class [28]. 
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CHAPTER 4  

 

4. DATA COLLECTION 

 

4.1. Data Collection For Classification 

Based on the background information that is given in Chapter 2, in the context of this 

thesis, a pulsed Doppler radar tracking data is used for classification and UAV is 

aimed to be separated from clutter data by using proper classification technique. This 

radar data is initially modified to be in the form such that track information includes 

the necessary information for using in classification stage. Radar tracks should be 

labeled with the associated classes.  

As given in Chapter 2, Pulse Doppler radar tracking process follows reception of target 

signals, digitalization and processing of signal and forming the detection.  Blind range 

of radar is taken into consideration along with the line of sight for usable detection 

reports including drone information. Following detection, tracking of target is 

accomplished in the design rules and restrictions depending to the radar mission and 

designer decisions. Targets can be classified using the detection information or 

tracking information. In this thesis, Pulsed Doppler radar tracking data is used for 

classification and this radar data is initially modified to be in the form such that track 

report includes the necessary information for classification purposes. Radar track 

reports are obtained in a period of radar rotation and they should be labeled with the 

associated classes such as UAV and Not UAV. Track reports with the selected 

information from the track data structure given in Table 2.5 are saved in the suitable 

form for classification training.  

As well as UAV track data, non-UAV tracks are obtained with the data collection 

setup. To increase the variation of clutter data, setup is established in three different 

clutter environments. These clutter environments are city environment, a suburban 
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environment with wide line of sight and an environment at a tower near to highway. 

The experiment setup including Pulsed Doppler radar and DJI Phantom 4 drone are 

established in these environments to collect the varying data for efficient training and 

test sets. 

4.2. Experiment Setup 

Based on the background information that is given in Chapter 2, in the context of this 

thesis, UAV is aimed to be separated from non-UAV target in the field of interest by 

using proper classification technique which is selected from given methods in Chapter 

3. For the purpose of classification, radar is operated in tracking mode to gather track 

data. For this purpose, radar should operate in tracking mode and the setup including 

radar and UAV should be established appropriately. Supplying the proper setup, flight 

scenarios of UAV are defined with the only condition that it flies in the radar line of 

sight both horizontally and vertically to gather track data.  

Radar 
system  

Figure 4.1 UAV flight scenarios in the radar field of view 

As illustrated in Figure 4.1 drone moves in the radar line of sight with a velocity 

component radial to the radar. Radial velocity makes a doppler shift for radar which 

uses this shift in signal processing stage. Circular flight or hanging in the air of drone 

is not a source of Doppler shift for Pulsed Doppler radar. For this reason, the flight 

scenarios include incoming and outgoing motions of drone. In order to use both in 

training and test data sets, flight scenarios contain drone motions in varying velocity, 
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acceleration and height. Maneuvering movements are also useful to train drone in 

varying aspects of RCS. 

In the data collection section of this thesis, the track information gathered by the radar 

contains the parameters according to the radar located at the origin. Therefore, drone 

was taken off at the nearest point to the radar in order to compare the track data with 

the data gathered by GPS module of drone. Besides, drone samples were gathered for 

every single specified run with its track ID in order to reach a realistic classification 

with the aim of specification of drone motion. 

4.3. UAV Preparation 

DJI Phantom drone used in the experiments which is subject to classification purpose 

is able to move in horizontal and vertical directions in the air. As one of the most 

popular hobbyist drones, this drone gives a good chance to model UAV behaviors.  

 

Figure 4.2 DJI Phantom 4 as a hobbyist drone [11] 

With the plastic propellers on the body, it has the capability of reaching a maximum 

height level and the maximum speed in the battery life. As given in Table 2.5, DJI 

Phantom 4 drone characteristic features that give the opportunity for complicated 

maneuvers are important for classifying purposes. 

Table 4.1 DJI Phantom 4 Specifications [9] 

Weight (propellers and battery included) 1380 g 

Diagonal length (propellers not included) 350 mm 

Maximum speed 20 m/s (72 km/h) 

Maximum flying height (above sea level) 6000 m 

Positioning system GPS / GLONASS 

Maximum flying time (battery life) 28 minutes 
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CHAPTER 5  

 

5. CLASSIFICATION OF UAV AND NON-UAV TARGETS 

 

In this chapter, classification is carried out using the most appropriate and efficient 

method which is selected by comparing the best success rates of classification methods 

with chosen features. In order to reach the best performance with the minimum 

number of features from a wider feature set, confusion matrix is helpful for assessment 

of model success.  

Obtaining the drone and non-drone track data in the clutter from the setup explained 

in Chapter 4, data is prepared for classification. Non-drone data obtained from several 

environments and drone track data gained from DJI Phantom 4 UAV are combined 

and subjected to the classification. The first step of the classification is determining 

the model to be used in this study by taking the processor capability and data set width 

into account. In this study, features are initially determined for the determination of 

appropriate classification methods. Thus, performance analysis of these methods is 

done with the determined features for the best success rate. Murphy et al. explains that 

model selection approaches such as computing misclassification rate, calculating 

generalization error and generating validation sets can be used [26].  

In this study, data obtained from the radar is separated into two groups as training set 

and validation set for the aim of picking the best model. Cross validation used in this 

thesis includes five folds. One of these folds is used for test, and the rest of data is 

used for training data. Then, this procedure is repeated for all of the folds and the 

success of the model is calculated by the average of all these five runs of which a 

schematic is given in . Confusion matrix which consists number of samples located in 

each class gives the amount of samples predicted as drone for real drone data and the 
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samples labeled as not-drone for real not-drone data. The success rates are calculated 

by the ratio of numbers in the rows of confusion matrix. 

Test Set Training Set Training SetTraining SetTraining Set

Test SetTraining Set Training SetTraining SetTraining Set

Test SetTraining Set Training SetTraining SetTraining Set

Test SetTraining Set Training SetTraining Set Training Set

Test SetTraining Set Training SetTraining SetTraining Set

Run-1

Run-2

Run-3

Run-4

Run-5

 

Figure 5.1 Five folds-cross validation used in performance analysis 

5.1. Feature Extraction 

Features are determined from a larger feature set for the aim of obtaining the best 

performance with the minimum number of features. Feature set consists the 

information which is taken from drone and not-drone tracks of a Pulsed Doppler radar. 

In his book, Jain explains that feature selection methods include several approaches 

such as exhaustive search, branch-and-bound search, best individual feature, 

sequential forward selection, sequential backward selection, plus l-take away-r 

selection and sequential forward floating selection [33]. In this thesis, sequential 

forward floating approach is used for feature selection similarly to the way explained 

in [34]. 

For the selected methods such as complex tree, linear discriminant analysis, logistic 

regression, linear SVM, quadratic SVM, cubic SVM, fine Gaussian SVM and fine K-

NN feature selection using sequential forward floating approach is given below. 

Features with the number are given with F and its number shortly in the tables. 
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nD/nD is the short notation of prediction of not-drone for not-drone data, D/D is short 

notation of prediction of drone for real drone data and average is the mean value of 

nD/nD and D/D since the amount of data for these classes is almost equal.  

The explanations of the tables from 6 to 14 are given as: 

- Light green: Single feature that is decided to be used since it increases the success 

rate when combined with the previous combination of features.  

- Red: Combination of features that is decided to be used in the method since it has 

the highest success rate in the combinations for the method. 

- Dark green: Combination of features that has better success rate than the combination 

in the one step before. (The first combination is compared with the single feature 

having the highest success rate.)    

- Yellow dashed line: Unused single features that decreases the success rate of the 

combination in the one step before. 
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 Complex Tree: 6 features (nD/nD: 97.68%, D/D: 99.52%, Average: 98.6%) 

Table 5.1 Complex Tree method feature selection 

Features nD/Nd nD/D D/D D/nD Average Usage 

Mean Velocity 

(F1) 
67.58% 32.42% 96.54% 3.46% 82.06%   

Standard deviation 

of velocity (F2) 
75.86% 24.14% 92.29% 7.71% 84.07%   

Mean Acceleration 

(F3) 
76.56% 23.44% 94.43% 5.57% 85.49%   

Standard deviation 

of acceleration 

(F4) 

72.23% 27.77% 98.62% 1.38% 85.42%   

Mean RCS (F5) 58.05% 41.95% 96.62% 3.38% 77.33%   

Standard deviation 

of RCS (F6) 
22.08% 77.92% 95.34% 4.66% 58.71%   - 

Mean Height (F7) 74.01% 25.99% 88.11% 11.89% 81.06%   

Standard deviation 

of height (F8) 
14.25% 85.75% 99.27% 0.73% 56.76%   - 

F3+F4 76.02% 23.98% 98.40% 1.60% 87.46%  

F3+F4+F2 78.43% 21.57% 8.36% 1.64% 88.39%  

F3+F4+F2+F1 96.85% 3.15% 99.2% 0.8% 98.02%  

F3+F4+F2+F1+F7 97.68% 2.32% 99.44% 0.56% 98.56%  

F3+F4+F2+F1+F7

+F5 
97.68% 2.32% 99.52% 0.48% 98.6%  

F3+F4+F2+F1+F7

+F5+F6 
97.68% 2.32% 99.52% 0.48% 98.6%   - 

F3+F4+F2+F1+F7

+F5+F8 
97.62% 2.38% 99.52% 0.48% 98.57%   - 

 

Best success rate for complex tree method is reached using Feature-1, Feature-2, 

Feature-3, Feature-4, Feature-5 and Feature-7.  
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 Linear Discriminant Analysis: 7 features (nD/nD: 67.84%, D/D: 99.15%, 

Average: 83.49%) 

Table 5.2 Linear Discriminant Analysis feature selection 

Features nD/Nd nD/D D/D D/nD Average Usage 

Mean Velocity 

(F1) 
37.39% 62.61% 92.35% 7.65% 64.87%   

Standard deviation 

of velocity (F2) 
44.76% 55.24% 96.88% 3.12% 70.82%   - 

Mean Acceleration 

(F3) 
52.93% 47.07% 98.44% 1.56% 75.68%   

Standard deviation 

of acceleration 

(F4) 

52.33% 47.67% 99.8% 0.2% 76.06%   

Mean RCS (F5) 55.63% 44.37% 91.52% 8.48% 73.57%   

Standard deviation 

of RCS (F6) 
0.08% 99.92% 100% 0% 50.04%   

Mean Height (F7) 32.32% 67.68% 83.84% 16.16% 58.08%   

Standard deviation 

of height (F8) 
0.05% 99.95% 100% 0% 50.02%   

F4+F3 59.09% 40.91% 98.9% 1.1% 78.99%  

F4+F3+F5 65.03% 34.97% 98.9% 1.1% 81.96%  

F4+F3+F5+F2 63.21% 36.79% 97.47% 2.53% 80.34%   - 

F4+F3+F5+F1 67% 3% 97.56% 2.44% 82.28%  

F4+F3+F5+F1+F7 67.26% 32.74% 99.15% 0.85% 83.20%  

F4+F3+F5+F1+F7

+F6 
67.84% 32.16% 99.13% 0.87% 83.48%  

F4+F3+F5+F1+F7

+F6+F8 
67.84% 32.16% 99.15% 0.85% 83.49%  

 

Best success rate for linear discriminant analysis method is reached using Feature-1, 

Feature-3, Feature-4, Feature-5, Feature-6, Feature-7 and Feature-8. 
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 Logistic Regression Method: 8 features (nD/nD: 90.09%,  D/D: 98.03%, 

Average: 94.06%) 

Table 5.3 Logistic Regression method feature selection 

Features nD/nD nD/D D/D D/nD Average Usage 

Mean Velocity 

(F1) 
44.54% 55.46% 77.84% 22.16% 61.19%   

Standard deviation 

of velocity (F2) 
59.88% 40.12% 94.60% 5.40% 77.24%   

Mean Acceleration 

(F3) 
70.66% 29.34% 94.72% 5.28% 82.69%   

Standard deviation 

of acceleration 

(F4) 

71.32% 28.68% 96% 4% 83.66%   

Mean RCS (F5) 55.72% 44.28% 91.77% 8.23% 73.74%   

Standard deviation 

of RCS (F6) 
0.06% 99.94% 99.95% 0.05% 50.01%   

Mean Height (F7) 49.55% 50.45% 83.76% 16.24% 66.65%   

Standard deviation 

of height (F8) 
0.03% 99.97% 99.92% 0.08% 49.97%   

F4+F3 74.22% 25.78% 95.65% 4.35% 84.93%  

F4+F3+F2 75.74% 24.26% 94.89% 5.11% 85.31%  

F4+F3+F2+F5 79.32% 20.68% 96.14% 3.86% 87.73%  

F4+F3+F2+F5+F7 80.52% 19.48% 97.37% 2.63% 88.94%  

F4+F3+F2+F5+F7

+F1 
89.57% 10.43% 97.45% 2.55% 93.51%  

F4+F3+F2+F5+F7

+F1+F6 
90% 10% 97.9% 2.1% 93.95%  

F4+F3+F2+F5+F7

+F1+F6+F8 
90.09% 9.91% 98.03% 1.97% 94.06%  

 

Best success rate for logistic regression method is reached using Feature-1, Feature-2, 

Feature-3, Feature-4, Feature-5, Feature-6, Feature-7 and Feature-8.  
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 Linear SVM Method:  6 features (nD/nD: 75.94% , D/D: 99.8%,  Average: 

87.87%) 

Table 5.4 Linear SVM method feature selection 

Features nD/nD nD/D D/D D/nD Average Usage 

Mean Velocity 

(F1) 
43.6% 56.4% 49.68% 50.32% 46.64%   

Standard deviation 

of velocity (F2) 
80.11% 19.89% 19.44% 80.56% 49.62%  - 

Mean Acceleration 

(F3) 
58.39% 29.34% 54.31% 45.61% 56.35%   

Standard deviation 

of acceleration 

(F4) 

77.26% 22.74% 20.68% 79.32% 48.97%   

Mean RCS (F5) 32.18% 67.82% 53.42% 46.58% 42.8%   

Standard deviation 

of RCS (F6) 
60.15% 39.85% 45.6% 54.4% 52.87%   

Mean Height (F7) 45.19% 54.81% 83.29% 16.71% 64.24%   

Standard deviation 

of height (F8) 
21.47% 78.53% 91.81% 8.19% 56.64%   - 

F7+F8 42.23% 25.78% 84.57% 15.43% 63.4%   - 

F7+F3 61.75% 38.25% 98.9% 1.1% 80.32%  

F7+F3+F6 61.78% 38.22% 98.9% 1.1% 80.34%  

F7+F3+F6+F2 62.52% 37.48% 98.09% 1.91% 80.3%   - 

F7+F3+F6+F4 64.46% 35.54% 99.79% 0.21% 82.12%  

F7+F3+F6+F4+F1 67.37% 32.63% 99.75% 0.25% 83.56%  

F7+F3+F6+F4+F1

+F5 
75.94% 24.06% 99.8% 0.2% 87.87%  

 

Best success rate for linear SVM method is reached using Feature-1, Feature-3, 

Feature-4, Feature-5, Feature-6 and Feature-7. 
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 Quadratic SVM Method:  5 features (nD/nD: 81.24%, D/D: 97.12%, 

Average: 89.18%) 

Table 5.5 Quadratic SVM method feature selection 

Features nD/nD nD/D D/D D/nD Average Usage 

Mean Velocity 

(F1) 
21.48% 78.52% 99.88% 0.12% 60.68%   

Standard deviation 

of velocity (F2) 
60% 40% 95.28% 4.72% 77.64%   - 

Mean Acceleration 

(F3) 
69.04% 30.96% 96.12% 3.88% 82.58%   

Standard deviation 

of acceleration 

(F4) 

68.25% 31.75% 97.36% 2.64% 82.8%   

Mean RCS (F5) 68.69% 31.31% 93.22% 6.78% 80.95%   

Standard deviation 

of RCS (F6) 
5.23% 94.77% 98.33% 1.67% 51.78%   - 

Mean Height (F7) 51.17% 48.83% 81.64% 18.36% 66.4%   

Standard deviation 

of height (F8) 
2.22% 97.78% 91.69% 8.31% 46.95%   - 

F4+F3 72.56% 27.44% 95.94% 4.06% 84.25%  

F4+F3+F5 78.71% 21.29% 96.68% 3.32% 87.69%  

F4+F3+F5+F2 75.61% 24.39% 95.50% 4.50% 85.55%   - 

F4+F3+F5+F7 79.09% 20.91% 96.88% 3.12% 87.98%  

F4+F3+F5+F7+F1 81.24% 18.76% 97.12% 2.88% 89.18%  

F4+F3+F5+F7+F1

+F6 
81.03% 18.97% 96.86% 3.14% 88.94%   - 

F4+F3+F5+F7+F1

+F8 
80.42% 19.58% 97.14% 2.86% 88.78%   - 

 

Best success rate for quadratic SVM method is reached using Feature-1, Feature-3, 

Feature-4, Feature-5 and Feature-7.  
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 Cubic SVM Method:  8 features (nD/nD: 96.36%, D/D: 99.86%, Average: 

98.11%) 

Table 5.6 Cubic SVM method feature selection 

Features nD/nD nD/D D/D D/nD Average Usage 

Mean Velocity 

(F1) 
49.17% 50.83% 56.29% 43.71% 52.73%   

Standard deviation 

of velocity (F2) 
19.38% 80.62% 80.04% 19.96% 49.71%   

Mean Acceleration 

(F3) 
14% 86% 80.06% 19.94% 47.03%   

Standard deviation 

of acceleration 

(F4) 

18.54% 81.46% 76.9% 23.1% 44.72%   

Mean RCS (F5) 31.71% 68.29% 53.42% 46.58% 42.57%   

Standard deviation 

of RCS (F6) 
50% 50% 49.4% 50.6% 49.7%   

Mean Height (F7) 59.33% 40.67% 54.86% 45.14% 57.1%   

Standard deviation 

of height (F8) 
35.07% 64.93% 61.34% 38.66% 48.21%   

F7+F1 85.78% 8.22% 32.19% 67.81% 58.99%  

F7+F1+F2 86.27% 29.73% 34.13% 65.87% 60.2%  

F7+F1+F2+F6 91.29% 8.71% 52.87% 47.13% 72.08%  

F7+F1+F2+F6+F8 91.44% 8.56% 74.79% 25.21% 83.11%  

F7+F1+F2+F6+F8

+F3 
97.12% 2.88% 96.3% 3.7% 96.71%  

F7+F1+F2+F6+F8

+F3+F4 
95.93% 4.07% 99.79% 0.21% 97.86%  

F7+F1+F2+F6+F8

+F3+F4+F5 
96.36% 3.64% 99.86% 0.14% 98.11%  

 

Best success rate for cubic SVM method is reached using Feature-1, Feature-2, 

Feature-3, Feature-4, Feature-5, Feature-6, Feature-7 and Feature-8.  
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 Fine Gaussian SVM Method:  8 features (nD/nD: 97.39%, D/D: 100%, 

Average: 98.69%) 

Table 5.7 Fine Gaussian SVM method feature selection 

Features nD/nD nD/D D/D D/nD Average Usage 

Mean Velocity 

(F1) 
60.92% 30.18% 92.64% 7.36% 76.78%   

Standard deviation 

of velocity (F2) 
73.38% 26.62% 85.37% 14.63% 79.38%   

Mean Acceleration 

(F3) 
74.41% 25.59% 86.59% 13.41% 80.5%   

Standard deviation 

of acceleration 

(F4) 

69.85% 30.15% 92.83% 7.17% 81.84%   

Mean RCS (F5) 60.82% 39.18% 93.55% 6.45% 77.19%   

Standard deviation 

of RCS (F6) 
0.07% 99.93% 97.9% 2.1% 48.99%   

Mean Height (F7) 72.33% 27.67% 84.02% 15.98% 78.17%   

Standard deviation 

of height (F8) 
17.65% 82.35% 94.22% 5.78% 55.93%   

F4+F3 73.28% 26.72% 96.76% 3.24% 85.02%  

F4+F3+F2 74.80% 25.20% 96.95% 3.05% 85.87%  

F4+F3+F2+F7 88.97% 11.03% 97.83% 2.17% 93.4%  

F4+F3+F2+F7+F5 94.34% 5.66% 99.84% 0.16% 97.09%  

F4+F3+F2+F7+F5

+F1 
97.23% 2.77% 99.93% 0.07% 98.58%  

F4+F3+F2+F7+F5

+F1+F8 
97.29% 2.71% 99.95% 0.05% 98.62%  

F4+F3+F2+F7+F5

+F1+F8+F6 
97.39% 2.61% 100% 0% 98.69%  

 

Best success rate for fine Gaussian SVM method is reached using Feature-1, Feature-

2, Feature-3, Feature-4, Feature-5, Feature-6, Feature-7 and Feature-8. 
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 Fine K-NN Method:  6 features (nD/nD: 95.49%, D/D:99.97%, Average: 

97.71%) 

Table 5.8 Fine K-NN method feature selection 

Features nD/nD nD/D D/D D/nD Average Usage 

Mean Velocity 

(F1) 
36.47% 63.53% 94.13% 5.87% 65.3%   

Standard deviation 

of velocity (F2) 
71.5% 28.5% 91.68% 8.32% 81.59%   

Mean Acceleration 

(F3) 
74.16% 25.84% 93.37% 6.63% 83.76%   

Standard deviation 

of acceleration 

(F4) 

70.76% 29.24% 96.31% 3.69% 83.53%   

Mean RCS (F5) 57.11% 42.89% 93.76% 6.24% 75.43%   

Standard deviation 

of RCS (F6) 
29.27% 70.73% 89.15% 10.85% 59.21%   - 

Mean Height (F7) 67.1% 32.9% 90.05% 9.95% 78.57%   

Standard deviation 

of height (F8) 
29.72% 70.28% 88.50% 11.50% 59.11%   - 

F3+F4 74.4% 25.6% 95.88% 4.12% 85.14%  

F3+F4+F2 76.03% 23.97% 96.77% 3.23% 86.4%  

F3+F4+F2+F7 83.28% 16.72% 98.51% 1.49% 90.89%  

F3+F4+F2+F7+F5 87.69% 12.31% 99.9% 0.1% 93.79%  

F3+F4+F2+F7+F5

+F1 
95.49% 4.51% 99.94% 0.06% 97.71%  

F3+F4+F2+F7+F5

+F1+F6 
95% 5% 99.97% 0.03% 97.48%   - 

F3+F4+F2+F7+F5

+F1+F8 
94.78% 5.32% 99.97% 0.03% 97.37%   - 

 

Best success rate for Fine K-NN method is reached using Feature-1, Feature-2, 

Feature-3, Feature-4, Feature-5 and Feature-7. 
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5.2. Performance Of UAV vs Non-UAV Classification 

Success rates of appropriate classification methods is given in Table 5.9 while detailed 

procedure of selecting features is included in the previous chapter. Given in Equation 

50, varying forms of Kernel function are included in the formulation of some methods 

in Table 5.9. 

Table 5.9 Classification methods success rates with selected features 

 Method Name  Number of Features Overall Success Rate 

Complex Tree 6 98.60% 

Linear Discriminant Analysis 7 83.49% 

Logistic regression 8 94.06% 

Linear SVM 6 87.87% 

Quadratic Kernel SVM 5 89.18% 

Cubic Kernel SVM 8 98.11% 

Fine Gaussian Kernel SVM 8 98.69% 

Fine K-NN 6 97.71% 

 

Fine Gaussian SVM is selected for further usage with the selected eight features. 

Gaussian SVM is relatively more appropriate for limited processor capability than 

cubic kernel SVM classifier. In the Gaussian SVM method, Gaussian Kernel is used 

which is given below: 

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑘𝑒𝑟𝑛𝑒𝑙: 𝐾(x, x𝑖
′) = exp(−

1

2
(x − x𝑖

′)𝑇∑−1(x − x𝑖
′)) (57) 

If ∑ is diagonal, Equation 57 can be written as [26]:  

𝐾(x, x𝑖
′) = exp(−

1

2
∑

1

𝜎𝑗
2

𝐷

𝑗=1

(x𝑗 − x𝑗
′)

2
 

 

(58) 

In the feature selection of Gaussian SVM, as seen in Table 5.7, the best two individual 

success rates are 81.84% and 80.50% while performance using 8 features is 98.69%. 
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Fine Gaussian SVM is preferred since its advantages of being applied more easily in 

radar processors than cubic SVM although Gaussian SVM uses more features than 

Cubic SVM. Cubic SVM requires some computational load since it includes cubic 

terms in the formulation. 

In this section, classification of performance kinematic features and RF characteristic 

features is observed. Classification success rate of mean and standard deviation of 

selected kinematic features is calculated. With a slight difference in varying 

environments, velocity, acceleration and height can be considered appropriate as 

kinematic features for the selected classification methods in this thesis.  

5.3. Performance Improvement Method 

Following the trials for the features and method selection of classification, success 

rate is aimed to be increased. Combination of various methods, using the same 

classification method multiple times and reduction of samples are some possible ways 

to improve the performance. 

Liu suggests an algorithm that includes four SVM classifiers in series while each SVM 

classifier represents a level for the system [38]. As given in Figure, Liu designs a 

system with multiple classifiers in series and trains the data for SVM classifier in each 

level [38]. 

 

Figure 5.2 Usage of multiple SVM classifiers in series  [38] 
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In another study, Liu et al. proposes an algorithm by nesting the methods for Multi-

Class-SVM and cancelling all unclassifiable regions in the data set [39]. By comparing 

the success and complexity of the suggested algorithm with the One-Against-One and 

Fuzzy Least Squares Support Vector Machines approaches, Liu summarizes the 

algorithm in 4 steps [39]: 

 Constructing hyperplanes in the feature space based on One-against-One 

approach, 

 Choosing the samples in the unclassifiable region, 

 Using these samples in the unclassifiable region to form hyperplanes with the 

same parameters, 

 Repeating the previous two steps until the region is cancelled or no sample 

exists in that region.  

Another approach for improving the performance of SVM is suggested by Lu as a 

sample reduction method which reduces the training samples through the Support 

Vector Domain Description algorithm and removes the edge points based on 

Euclidean Distance [40].   

In the article by Yan et al., a strategy of combining Multiple SVM classifiers by using 

fuzzy integrals is presented.  In this article, dividing the original training data set into 

n training sets by Bagging algorithm, SVM is applied to these training sets and outputs 

are combined by fuzzy integral as given in Figure 5.3 [41]. 

 

Figure 5.3 Combination of SVMs by fuzzy integral 
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After the trials of several classification methods with the selected features for the data 

obtained from the prepared setup, success rates in Table 5.9 are reached. Despite the 

fact that success rates are relatively high for the data used in Table 5.9, it is not 

guaranteed to have the same performance for varying clutter environments and drone 

models. In order to increase the performance which is given in Table 5.7 for the 

method of Gaussian SVM with eight selected features, not-drone prediction success 

rate is aimed to be improved since drone prediction performance is 100%.  

The determined steps to increase the performance for Gaussian SVM classification 

method can be summarized as: 

 Training the data obtained for not-drone and drone by Gaussian SVM method 

with eight features, 

 Exporting the model of classification method used in training, 

 Testing the same data by using the exported model, 

 Determining the false predictions of not-drone tracks in the test results, 

 Forming a new data vector by combining these samples with the drone data 

which is used in the training, 

 Training the new data vector including the false predicted not-drone and drone 

samples for the second time, 

 Exporting the model of classification method used in the second training. 

 Testing the data with the first and second models which are obtained from the 

training models in order to reach the success rate. 

In order to assess success rates for the both drone and non-drone classes, the 

false predictions in the first stage are determined and examined for the second 

test stage. 

The reached performance improvement ratio with the second stage is 39.47%. 

This resulted ratio shows that the data classified in the first stage is better 

separated in the second stage with the improvement of 39.47% as given in 

Table 5.10. 
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Table 5.10 Second stage Fine Gaussian SVM success rates 

 

Method 

 

Number of 

Features 

Non-

Drone 

Success 

Rate 

Non-

Drone 

Error 

Rate 

Improvement 

in Non-Drone 

Success Rate 

UAV 

Success 

Rate 

Gaussian 

Kernel 

SVM 

8 98.69% 1.31%  

 

%39.4 

100% 

2nd Stage 

Gaussian 

SVM 

8 99.21% 0.79% 100% 
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CHAPTER 6  

 

6. CONCLUSION 

 

This thesis study shows that UAVs can be classified by SVM classification approach 

having the user-defined features. The conclusions obtained are given below. 

 Classification methods are useful for separating UAVs from non-UAV targets 

using the distinctive characteristic and kinematic features.  

 The selection of features from the wide feature set is dependent on the 

mechanical and electromagnetic properties of radar which presents target and 

not-drone information. 

 Classification can possibly be based on track data or detection data of radar. 

Classifying upon track data is based on outputs of the radar tracking 

algorithm. 

 After reviewing the literature, it is observed that many classification studies 

are based on analyzing kinematic features obtained from CW or Pulsed radars. 

 It is observed that use of micro-Doppler signature is a very popular approach 

for classification problems provided that radar system is capable of using 

micro-Doppler signature. 

 It is also observed from the experiments that classification success rate 

increases if data is trained and tested with more samples. 

 Another observation from the experiments is that kinematic features and RF 

characteristic features which are used in this thesis result a significant success 

rate in the environment of experiments. Although features such as velocity, 

acceleration and height succeed separating drones from non-drones, success 

of these features may have a correlation with clutter of environment which is 

used in training.  
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 Experiments with classification methods that are used in this thesis showed 

that UAV and non-UAV tracks can be classified efficiently with the 

appropriate features. Experiments show that training with a target which is 

aimed to be classified is very effective on success rate (i.e. classification 

accuracy of UAV may reach 100% for UAV dependent case such that training 

and test set contains data from same drone). However, it may not be possible 

to train with all of the drone models in the market. According to the results of 

the experiments, training with varying types of kinematic motions increases 

the possibility of classifying the prospective data. It is also observed that 

classification of a drone with a satisfying success rate may be reached out by 

using training data obtained from some various types of drones. 

Future Research Directions:  

According to the results and observations from this thesis new future research 

directions are defined. The proposed future directions reported below would bring 

significant value to the UAV detection research if applied in the future. 

 Extension of study with addition of some other clutter environments data and 

data from different kinds of UAVs can be examined in order to increase 

success rate for radar operations. 

 The success rate for the selected method in this study can be examined for 

various types of moving targets. 

 Inclusiveness of the features selected in this study can be investigated for 

different detection and tracking algorithms. 

 The success of Gaussian SVM classifier with the determined features in this 

study can be investigated further for varying types of targets such as 

helicopters, land vehicles etc. 

 Classification can be investigated for various feature selection methods. 

 Effects of more varying and larger training sets can be investigated for the 

purpose of classification of mini/micro UAVs in the clutter presence. 
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