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ABSTRACT

MALICIOUS USER INPUT DETECTION ON WEB-BASED ATTACKS
WITH THE NEGATIVE SELECTION ALGORITHM

Karatag, Mustafa Mert
M.S., Department of Cyber Security
Supervisor: Assist. Prof. Dr. Aybar Can Acar

December 2019, [54] pages

In the cyber security domain, detection and prevention of intrusions is a crucial task.
Intrusion attempts exploiting vulnerabilities in an organization’s servers or applica-
tions may lead to devastating consequences. The malicious actor may obtain sensitive
information from the application, seize database records or take over the servers com-
pletely. While protecting web applications/services, discrimination of legitimate user
inputs from malicious payloads must be done.

Taking inspiration from the Human Immune System (HIS), numerous research stud-
ies have been conducted, where the HIS’ behavior while protecting the body from
the malicious pathogens is applied to the problem of intrusion detection. The T-cell
is one of the lymphocytes that form the human immune system. The study of Ar-
tificial Immune Systems (AIS), applies the self/non-self discrimination of T-cells to
computational discrimination problems. The ability to discriminate self (safe) from
non-self (malicious) is used for the detection of any malicious activity in a computer,
or a computer network. The AIS model of interest in this thesis is Negative Selec-
tion. Negative Selection Algorithm is applied to detect malicious user input that is
submitted in HTTP GET parameters. Detection is done through detector strings with
varying lengths. Detectors are constructed with randomly chosen n-grams generated
from the training dataset. The number of n-grams required to form a detector is sam-
pled from the Poisson distribution. Detection rates, number of attempts needed for
generating a single detector, average detection rates for each detector, the lengths of
the detectors and the number of detectors that can be generated over a course of time
are calculated and presented.
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WEB TABANLI SALDIRILARDA ZARARLI KULLANICI GIRDILERININ
NEGATIF SECILIM ALGORITMASI ILE TESPITI

Karatag, Mustafa Mert

Yiiksek Lisans, Siber Giivenlik Boliimii

Tez Yoneticisi: Dr. Ogr. Uyesi. Aybar Can Acar

Aralik 2019 , [54]sayfa

Siber giivenlik alani igerisinde saldirilar: tespit etme ve onleme i¢in bir ¢ok ¢alisma
yapilmaktadir. Bir kurumun sunucularinda veya uygulamalarinda var olan bir agik-
li§1n istismar edilmesi yikici sonuglar dogurabilmektedir. Saldirgan bir uygulamanin
kullanicilarinin kisisel verilerine erisim saglayabilir, veri tabani kayitlarini galabilir
veya sunucular1 tamamen ele gecirebilir. Web uygulamalarinin basarili olarak korun-
masi icin gelen kullanici girdilerinin gegerli veya zararli olarak ayiriminin yapilmasi
gerekmektedir. Insan Bagigiklik Sisteminden(IBS) ilham aliarak bir ¢cok aristirma
yapilmig ve IBS’nin patojenlerden korunmak i¢in gosterdigi davranis saldiri tespit
sistemlerine uyarlanmistir.

T-Hiicreleri bagisiklik sistemindeki lenfosit tiirlerinden biridir. Viicut icerisinde T-
Hiicreleri olusturulurken kullanilan Negatif Secilim siireci Yapay Bagisiklik Sistemi
(YBS) igerisinde tanimlanmustir. T-Hiicrelerinin yeteneklerinden olan kendi/yabanci
ayrimi, bilgisayar ortaminda veya bir bilgisayar aginda bulunan anormal durumlarin
tespit edilmesi i¢in yararli goriilmiis ve bu alan iizerinde calismalar yiiriitilmiistiir.
Bu tez, HTTP GET trafigi lizerinde tagman ve kullanicinin istemci tarafindan gonder-
digi parametrelerdeki zararli aktivitelerin tespit edilmesi icin Negatif Sec¢ilim Algo-
ritmas1’n1 kullanmaktadir. Tespit islemi ¢esitli uzunluklardaki dizge degerleri kulla-
nilarak yapilmaktadir. Bu dizgeler olusturulurken egitim veri setinden olusturulmusg
n-gram dizgeleri kullanilmaktadir. Ka¢ n-gram dizgesinin ayn1 anda kullanilacagi-
nin belirlenmesi icin Poisson Dagilimi kullanilmigtir. Tespit oranlari, her bir tespit
edici dizgenin olusturulabilmesi icin gerekli deneme sayilari, olusturulan dizgelerin
uzunluklari, dizgilerin bireysel tespit basarimlar1 ve belirli bir zaman igerisinde kag
dizgenin olusturulabilecegi calisma icerisinde gézlemlenmis ve sunulmustur.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Artificial Immune Systems (AIS) [1 2] are modeled from the structure and behavior
of the human immune system. Protection from pathogens that trespass to the body is
done by the immune system [3]. The immune system consists of two sub-systems;
the innate and adaptive immune Systems. These two sub-systems complement each
other for the protection of the human body. The innate immune system contains
general protections. Physical barriers such as the skin are part of the innate immune
system. It is gained at birth and is common to every human. Lymphocytes are part
of the adaptive immune system. They detect and eliminate intruding pathogens. The
generation and training of lymphocytes is the responsibility of the adaptive system.
The success of a lymphocyte is based on its ability to distinguish self from non-self. A
lymphocyte’s success is tested during its generation phase and if it fails it is eliminated
by the immune system.

As the human immune system protects the body from any malevolent outsiders, an
Artificial Immune System (AIS) is constructed to protect a digital system or a net-
work. To successfully protect a digital asset, the segregation of normal behavior from
anomalies must be performed. This problem is analogous to the self/non-self discrim-
ination of the lymphocytes.

A T-cell is a type of lymphocyte embodied in the adaptive immune system. They are
generated in the thymus located between the lungs. T-cells undergo two processes
while being created, positive selection [4]] and negative selection [5]. Positive selec-
tion is the process where the ability of the generated T-cell’s receptors to bind to an
MHC (Major Histocompatibility Complex) is developed. MHC is a form that presents
antigens to the T-cells. If a T-cell can not bind any MHC, it will not be able to bind
to any antigens, it is recognized as unfit and eliminated directly. T-cells that pass the
positive selection phase are subjected to negative selection.

Negative selection gives T-cells the ability to distinguish self from non-self. Self
are the elements of the body that are benign and non-self stands for pathogens that
are foreign. In negative selection, if a T-cell reacts to a self sample, it is eliminated
directly. The Negative Selection Algorithm (NSA) is based on this behavior of the
human immune system.

NSA is useful for classifying target data as normal (self) and anomalous (non-self).
The algorithm generates objects with desired attributes called “detectors” which are
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the equivalent of T-cells. Later, these are tested against the data samples that do not
contain any anomalies. If the detectors do not match any, they are considered fit and
is marked to be used for detection. If they match any of these ‘self” samples, they are
eliminated.

Matching done in the testing phase of the NSA calculates the affinity between the
randomly generated candidate detectors and normal (self) data. An affinity higher
than a predetermined threshold is not desired, and will eliminate the detector.

Different distance algorithms can be used for the affinity calculation. The choice of
the distance algorithm depends on the problem that is trying to be solved. Since the
representation of the detectors may vary ( bit, string or real-valued) the distance algo-
rithm varies as well. Examples are Euclidean, r-chunk, r-contiguous, rcb, Hamming
and Levenshtein distance [6] [7] algorithms.

Generation method of a candidate detector, the length of the generated detector and
the distance algorithm chosen play an important role in detection success. It is de-
sirable that the generated detector set covers the non-self space as much as possible.
Representation of self and non-self spaces can be seen in Figure [I.1]

Non-Self
Space

Figure 1.1: Representation of Self Space.

In the detection phase;
o [f the data to be tested falls in the non-self space, it is true positive. (Area
colored in red)

o [f the data to be tested falls in the self space, it is true negative. (Area colored
in green)



o [f the data to be tested falls into an area that is not covered by the detector set,
it is a false negative. (Area colored in grey)

o [f the detector’s distance to the self space is not far enough, meaning that the
detectors coverage area intersects self space, then it is a false positive. (Area
colored in blue)

In this study, an anomaly detection algorithm is proposed for user-supplied input that
is obtained from HTTP GET parameters [8]. The proposed algorithm is based on
the negative selection idea. The dataset used for training and testing the generated
detector set contains real-world examples of a benign web application traffic. Mali-
cious traffic in the dataset is formed with the output traffic of the popular penetration
testing tools that create SQL Injection [9], XSS (Cross-Site Scripting)[10][11], Com-
mand Injection [12][11] and Path Traversal[12][11] attack payloads.

The generation of candidate detectors are done by dividing the harmless dataset into
n-gram strings and choosing a number of elements from this set. The number of
n-grams used to create the detector is determined by the Poisson Probability Distri-
bution [[13]]. The output of the Poisson Probability and the n-gram length gives the
length of the detector string. To calculate the affinity between self data and the de-
tector, the Levenshtein Distance [[6]] is used. Detection success tables for different
affinity thresholds, n-gram lengths, and detector lengths are presented accompanied
by the graphs of the mean numbers of candidate detector trials to successfully gener-
ate a single detector, execution times of the detectors and hit rates per detector with
changes in the mentioned parameters. The goal of the study is to find the n-gram
length, affinity threshold and detector length triple that results in the best detection
rates.

1.2 Contributions

This study applies the Negative Selection Algorithm to detect attack inputs that are
constructed to exploit web applications or services. Since web attacks we intend to
detect use string-based payloads, the detectors that are generated by the algorithm are
strings as well. Generating these detectors by combining n-grams which are sampled
using the Poisson Distribution and comparing them with the HTTP traffic for the
stated problem is a novel experiment as far as we know.

The study provides generation metrics and detection results to determine the optimal
n-gram length, the total detector length and affinity threshold values that give the
highest true positive and true negative rates. Furthermore, iterations needed in order
to create a useful detector, time consumption when applying a detector to new data
and estimated real-time behavior are presented and debated.
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1.3 Assumptions

The method used in this study detects attacks at the user input fields of a web appli-
cations or services. In the detector generation phase, like the human immune system
while creating the T-cell lymphocytes, must run with a dataset that contains only nor-
mal data. Any anomaly in the dataset may lead the algorithm to generate detectors that
will cause false positives or false negatives since the detectors will learn the anomaly
as normal behavior. Any appliances that will use this study shall have a dataset of the
application or service to be protected or may use real-time traffic to generate detectors
if the current network flow guarantees it has only legitimate traffic.

The asset that is to be protected by the proposed method is assumed to not have any
other vulnerabilities that makes it liable to other attack types. Since the detectors are
generated from, and guard, the HTTP parameters, it is not possible to detect other
network activities.

1.4 Limitations

The proposed method in this study works only with HTTP parameters. In the real
world examples of an application, an HTTP parameter may contain nearly static val-
ues as well as highly varying ones. User id, page id, the filename (image, pdf, CSS
document, etc.) are the examples for nearly static parameters. User-supplied text (e.g.
comments for a social media entry, feedback for the website owner, etc.), session-id
or encrypted cookie values are examples for parameters with high variety. Generating
detectors from nearly static values is easier compared to generating from parameters
with many different character combinations. It will take more time for negative se-
lection to generate a detector successfully. Furthermore, if a special character is used
frequently in the values of a parameter, negative selection will omit that character
since the use of that character inside a detector will cause the affinity threshold to be
exceeded. This may cause lower true positive rates if an attack uses that character in
its payloads.

The limitation stated above can be mitigated to a certain extent by generating dif-
ferent detector sets for different parameters. This will cause the algorithm to find a
combination that will not exceed the affinity threshold and catch attack payloads that
utilize that combination. In this study, separation of parameters for different detector
sets was kept out of scope.

Another limitation of the proposed method is that it will fail to detect attacks that are
conducted by legitimate application parameters. To give an example, authorization
flows can not be detected by this algorithm. In an attempt to exploit an authorization
flow vulnerability, the attacker will send a parameter value to the server that another
authorized user uses in his requests. Since the authorized users use that parameter
value, it is recognized as a normal value, not an anomaly. In order to detect this kind
of attack, user behavior and action history must be known and tracked, which the
proposed method is not capable of.



1.5 The Outline of the Thesis

In this thesis, there will be four chapters except for this chapter. The second chap-
ter will present background information about the attacks that are conducted through
HTTP parameters, an overview of the human immune System and of artificial im-
mune Systems; as well as an examination of related work. The third chapter will
describe the proposed method in detail. The fourth chapter contains the results of
testing this algorithm on real data. The fifth chapter will evaluate these results. Fi-
nally, the sixth chapter will present the conclusions.






CHAPTER 2

BACKGROUND

There are four parts in this chapter.

The first part gives information about the HTTP protocol [8] and type of attacks con-
ducted by the malicious actors. Although there are numerous web based attacks,
the chapter will only give detailed information for those that can be detected by the
proposed method in this thesis.

The second part gives a general insight on the human immune system. The mentioned
properties of the immune system in this part have inspired researchers to build the
models and algorithms used in Artificial Inmune Systems.

The third part presents information about Artificial Immune Systems. The Negative
Selection Algorithm which forms basis for this thesis is explained in this part.

The fourth part states the work and studies carried out by the researchers in the Arti-
ficial Immune Systems domain.

2.1 Attacks on Web Servers and Applications

Web applications, web services and majority of the mobile applications require a web
server in order to operate. Web servers are responsible for distributing and storing
objects and documents with the guidance of the business logic that is implemented in
the backend code they run internally.

Web applications and services generally get user input to accomplish their desired
operations. These inputs are treated as parameters in the server side functions and
are transferred in HTTP requests. There are several HTTP methods but the mostly
used methods are GET and POST. In HTTP GET, parameters are sent as an extension
of the request URL. These parameters can be observed in the URL bar of the web
browser and can be altered by the user easily. HTTP POST parameters are located
as headers in HTTP requests. To make changes on the parameters found in POST
requests requires alteration of the client-side code or a non-transparent proxy server
that the traffic will pass over. Although it demands additional labor to alter a POST
request, it is relatively easy for an attacker to modify the parameters in both HTTP
methods.

Unless there are filtering and validation mechanisms applied to the input received
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from the client-side, a web application as well as its clients face several threats. A
vulnerability in the server-side code may cause the web server to be breached or
sensitive information that is stored to be seized by the attackers. The most convenient
way to exploit a vulnerability in the server-side application or service is to alter the
HTTP parameters in a way that is not normally expected by the system.

Absence of proper precautions taken in the server-side code may lead to the conduc-
tion of many attacks. Examples of these attacks are;

e SQL Injection Attack
e XSS

Path Traversal

Command Injection

Local/Remote File Inclusion

e Authorization Flows

Proposed algorithm aims to detect examples of the first four attack types.

2.1.1 SQL Injection Attack

Web applications and services form a bridge between the client-side application and
-if not contacted directly- the database server. The database server may hold sensitive
information about the users and application specific data. Although there exists sev-
eral Data Base Management System (DBMS) implementations, the Structured Query
Language (SQL) [14] is used common to most of them and is commonly used to
query the data that is stored.

Services that run on the server-side obtain a parameter from the client-side and per-
form queries on the database by constructing SQL statements. Later, the database
server responds with a result that will be used by the same service. These SQL state-
ments may be constructed to insert new data or to view, modify, delete existing data.

SQL Injection is a vulnerability that arises when the user-supplied or any client-side
parameter is directly added to the SQL statement without proper filtering causing
changes in the original statement. [?] Changed statement will cause actions on the
database that are normally not intended by the program.

2.1.2 XSS

Several web technologies are used on the client-side of a web application. These
technologies are developed to enhance client-side user experience and in some cases
reduce the work load of the server-side. They are mainly derived from HTML (Hyper
Text Markup Language) [15], CSS (Cascading Style Sheets) [16] and JavaScript [?].
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HTML is used to create the semantic outline of a web page for the user to interact
with. CSS consists of the styling statements for the visual presentation of the elements
on the page. It handles the properties of an element on the page which can be size
measures, colors, rotations etc. JavaScript is the programming language for the client-
side environment. It has control over both the HTML elements and the CSS attributes.
It has networking capabilities for sending HTTP requests.

Cross-Site Scripting is a vulnerability that arises from the lack of filtering and encod-
ing operations applied to the user supplied data. Since JavaScript is not a compiled
language and is interpreted on page load, if the attacker finds a parameter that can
be directly inserted into the HTML document without proper handling, he can exe-
cute arbitrary code on the client. This may lead to the hijacking of the user session,
obtaining sensitive information of the affected users and unauthorized access to the
resources that the attacker can not access with his own privileges.

2.1.3 Path Traversal

Web applications need different resources in order to execute properly. HTML, CSS,
Javascript, image and text files are examples of these resources.

A web application requests these resources upon page load. The web server responds
by presenting the requested resource. The obtained resource is later used inside the
web page either for viewing or expanding the functionality of the page.

The file can be requested with its absolute path, relative path or an object identifier
that is assigned to it. Absolute path is the file’s location on the server with full direc-
tory path. Relative path stands for the file’s location beginning from the directory of
the web application’s root folder. Object identifiers are predetermined identification
codes that map to an absolute or relative path. They are generally stored in a database
on the server.

A Path Traversal vulnerability is when arbitrary files on the system, including op-
erating system files, can be obtained by altering the parameter used for stating the
absolute/relative path of the normally expected files. An attacker may exploit this
vulnerability to gain access to operating system, or configuration and storage files
that reside on the web server. The obtained information from these files can lead to
the malicious actor gaining complete control over the system, even at the operating
system level.

The vulnerability is caused by improper validation of the input data as well as server
misconfiguration.

2.14 Command Injection

Web servers are run on the operating system of the server machine. Both the web
server and web applications may need to interact with operating system functions
while running. For web applications, while there is a chance to use the server-side
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programming language’s capabilities, it may be required to directly call off-the-shelf
programs that are installed or commands of the operating system.

A command injection vulnerability arises when the web application fails to filter and
validate the user input and adds it directly to the command that will be executed on
the operating system. Exploitation of the vulnerability grants partial if not complete
control over the system by the attacker. All of the explained and targeted web based
attacks by this study are the product of improper handling of the user supplied text
input. Lack of protection mechanisms can arise from the carelessness of the developer
and server administrator.

2.2 Human Immune System

The Human Immune System (HIS) [3]] has to protect itself from the pathogens that
enter the body. Pathogens are microorganisms that are harmful to the host. Viruses
and bacteria are two examples. They can reproduce, harm body cells or consume the
resources that are normally for the nutrition of the body cells. The pathogens can
affect a part of the body in nonfatal manner or can be lethal. The immune systems
aims to eradicate these pathogens.

For eradication, the immune system must detect and identify the encountered organ-
isms. Identification must lead to classification because different pathogens may need
different measures. Detection and elimination of the recognised pathogen is done
through complex yet effective processes.

The immune system can be divided into two subsystems: the innate and adaptive
immune systems. These system differ from each other by their methods and elements.

2.2.1 Innate Immune System

The innate immune system forms the first layer of defense against the invading pathogens.
It does not have the ability to adapt itself during the human life span. Since the cells

of the innate immune system are not subjected to acclimation, they can not learn from
the previous encounters.

The skin is the initial layer protection for the body. The pathogens need to pass this
layer to have contact with the inner cells of the body. The cells in the innate system
are capable of recognizing the pathogens. Their responses are general, rather than
specific to the pathogen that is infecting the body. These responses are to create an
environment that is not suitable for the foreigners’ survival and/or for their repro-
duction. Increasing the body temperature (i.e. fever) is one of the acts of the innate
system when a pathogen is identified.
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2.2.2 Adaptive Imnmune System

When the innate immune system’s countermeasures against the invading pathogens
are insufficient, adaptive immune system takes the responsibility. Some pathogens do
have the ability to endure unsuitable surviving conditions. This makes the immune
system take responses that are specific for the microbe. The cells in the adaptive
immune system are able to react to distinct pathogens. Unlike the innate immune
system, the adaptive immune system has memory. When a pathogen is recognized
and successfully eliminated, the immune system keeps the pathogen’s markers in its
memory. Whenever the same pathogen is detected in the body, response to it is almost
immediate compared to the first encounter.

B- and T-cells are the lymphocytes of the adaptive immune system. Actions taken by
these cells are different when they encounter and detect a foreign organism. B-cells
work together with the phagocyte cells which devour and eliminate the pathogens.
Upon identification of a pathogen, B-cells excrete antibodies. An antibody is a type
of protein that binds to the surface of a pathogen. This makes the reproduction of
the organism difficult and consumption by the phagocyte cells easier or possible. T-
cells, on the other hand, kill the contacted the pathogen directly if it is detected as an
outsider.

Both B- and T-cells patrol the human body. Whenever they detect a pathogen, they
act in the way they are designed to. These lymphocytes do not require a population
to exist near in order to fight the invaders. Additionally, they are not controlled by a
central mechanism.

2.2.3 Self/Non-Self Discrimination

Self/Non-Self Discrimination (SND) is one of the most important aspects of the im-
mune system. The ability to segregate the body cells from the pathogens is crucial for
success in protecting the human body. The recognition is done through receptors on
the cellular level.

Every immune cell in the body has receptors over its cell surface. These receptors
create a chemical bond between the cell and the encountering pathogen’s epitopes.
The structure of the receptor is three-dimensional. It is expected for certain epitopes
to have a structure complementary to that of the immune cell’s receptor. The sim-
ilarity is refered as affinity. The higher the affinity between receptors and epitopes,
higher the probability of binding.

The immune cell will react only if bound. The reaction of the cell depends on the type
of the cell. If the cell is a B-Cell it reacts with Somatic Hypermutation in which the
cell will divide continously leading more B-Cells with similar, if not identical, recep-
tors. B-Cells that bind to the pathogen also release antibodies against the foreigner.
T-Cells, destroy the pathogen directly.

The immune system expects the immune cells to not react to or and not to bind to self
cells. Especially T-cells need to undergo the negative selection process when they are
being created in the thymus.
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2.2.4 Negative Selection of T-Cells

The thymus, which is an organ of the human body is located between the lungs. It
is responsible for the creation and maturation of the T-Cells. Generating a T-Cell
consists of two phases; Positive Selection [4]] and Negative Selection [5]. Only the
cells that pass both selection processes are allowed to leave the thymus.

Positive Selection is the process where the thymus controls a freshly created T-Cell’s
ability to bind to MHC (Major Histocompatibility Complex). MHC is responsible
for presenting the antigen by peptide fragments that will bind to the receptors on the
surface of the cell. If a T-Cell can not bind with MHC, it has not have the ability to
bind to a epitope of a pathogen. Therefore, the incapable T-Cell is eliminated by the
thymus to be replaced by another generation.

T-Cells that successfully pass the Positive Selection are exposed to the Negative Se-
lection process. Thymus includes most of the bodies self proteins. They are subjected
to non-mature T-Cells. If a T-Cell’s receptor forms a bond with the self sample, T-Cell
is activated and upon detection it is not allowed to exist and eliminated.

The receptors on the T-Cells that passes the Negative Selection have low affinity with
the self samples of the body meaning that it will not react to any body cells. This also
means that if the T-Cell react to a peptide or epitope, it is a non-self sample because
the cell would have been eliminated in the thymus otherwise.

2.2.5 Properties of The Human Immune System

Mentioned attributes above makes it possible to list and clarify the below properties.

e Self/Non-Self Discrimination: Lymphocytes in the immune system are able to
differentiate the body cells from the foreign pathogens. They do not react to the
self cells and harm the body.

e Memorization: After the first encounter and elimination of a pathogen, infor-
mation about it is remembered by the immune system. This makes it possible
to react immediately when the same pathogen tries to invade the body.

e Distributed Structure: There is no central control over the immune system or
the lymphocytes in it.

e Diversity: The adaptive immune system is able to react to different pathogens
due to its mutation capabilities.

e Specificity: Receptors on the lymphocytes and other detector cells does not
exactly bind to a specific antigen. They look for a rate of similarity. This
makes the detectors to cover a wider range of pathogens.
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2.3 Artificial Inmune Systems

HIS (Human Immune System) and its properties forms the base inspiration for AIS
(Artificial Immune Systems). Generation, detection and memory functions of HIS as
well as its distributed structure attracted many researchers over the years. Analysis
of HIS processes made it possible to model and develop algorithms for this subject.
While HIS protects human body from the pathogens that are harmful for health, it is
thought that AIS can protect a computer environment from the anomalies and mali-
cious activities conducted by the cyber criminals. Appliance of HIS in this manner is
covered by the (IDS) Intrusion Detection Systems. It can be inferred that the subject
of AIS does exist for creating IDS’ with the inspiration of the nature’s attitude within
the field of immunology.

HIS inspired algorithms are used to solve below problems in cyber security.

Malicious Process Detection

Anomaly Detection

Intrusion Detection

Flood Attack Detection

Fraud Detection

In AIS, the lymphocytes of the biological immune system are named as detectors. The
detectors in the AIS can be represented several ways that are specific for the problem
that is trying to be solved. Detectors are often binary arrays, strings or real-valued
representations. Real-valued representations stand for geometrical shapes that tries to
cover non-self space.

Chosen representation must be applicable to the application data or the representation
of the detectors must be compatible with the data. This requirement is senseful since
the detector and the data will be compared and expected to match using a comparison
algorithm. These algorithms are to calculate the affinity between the detector, self
and non-self samples. Numerous distance and matching algorithms are used for men-
tioned purpose. Below are some algorithms that are used in the previous researches
in the field;

e FEuclidean Distance
e r-chunk
e r-contiguous

o Levenshtein Distance

Matching ratio between the detector and a sample is called the affinity. In HIS, affin-
ity stands for the surface similarity of the immune cell receptor and the epitopes or
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peptides. Affinity is used to mark the traffic or the data to be tested to be an anomaly
or normality.

Below are the main algorithms and models used by the AIS applications. Negative
Selection Algorithm is described in detail later in this part of the chapter.

e Negative Selection Algorithm
e Clonal Selection Algorithm
e Immune Network Theory

e Danger Theory

2.3.1 Negative Selection Algorithm

T-Cells that are produced in the thymus are subjected to the negative selection process.
In the process it is expected by the immune system that the candidate T-Cell to not
react to a self sample of the body. T-Cells that are produced by the end of the process
are released into the veins and lymph for detection of the pathogens.

In the Negative Selection Algorithm the same process is carried in the digital environ-
ment. The algorithm can be divided into two procedures; generation of the detectors
and the detection of non-self samples.

To simulate the process in the thymus with the self proteins and peptides, a dataset
containing only benign data is needed. The detectors that are randomly generated
are subjected to every element of the training dataset. If a match occurs between the
detector and the data item, the detector is discarded and a new detector is generated
that is anticipated to pass the exact same test. The matching is the analogy of the
chemical bond established between the cell receptors and the epitopes.

After the generation of desired amount of detectors, they are subjected to real-time
data. It is expected from the detectors to match anomalous traffic. If a detector suc-
ceeds to detect a malicious activity that can be classified as true positive, it is marked
as a memory detector. The memory detectors last long in the system and any detec-
tion by these detectors are treated as anomalies that needs prevention, immediately.
Likewise, if a detector fails to detect any anomaly in a given period of time, two in-
ferences can be made; the detector represents an anomaly that rarely occurs or the
detector represents a non-self sample that can not be observed by the system which
can be out of scope or is not meaningful. Consequence of the failure of any detection,
the detector ought to be eliminated from the system to be replaced by a recent one.

2.4 Related Works

Forrest and Perelson [3]] laid the foundation of the Negative Selection Algorithm.
The work is the first study to observe and implement the algorithm. They used the
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algorithm to detect computer viruses. They also studied the computational cost and
detection probability later in the paper.

Gabrielli and Rigodanzo [17]] proposed a system where they assigned states to the
detectors. Different states of the detectors have different weights over the decision of
marking the incoming traffic as normal or malicious. To identify a traffic as anomaly,
the proposed system expects for several detectors to be stimulated. If the threshold
can not be exceeded, then the traffic is treated as normal. The study has been carried
out for web server attacks. The researches further deepened their study by examining
the HTTP response packets of the suspected requests.

Danforth [[18]] have used the Negative Selection Algorithm to classify the incoming
attack type in the HTTP traffic. The method proposed expands the algorithm by a
polling system. Detectors are generated using the Negative Selection Algorithm and
subjected to abnormal traffic. Detectors have the capability to classify the attack
type(SQL Injection, XSS, Buffer Overflow, Information Gathering, Path Traversal).
If the traffic detected as malicious, then the system counts each classification. Classi-
fication with the highest count names incoming attack type.

Fuyong Zhang and Ying Ma [19] proposed a method to detect malware in a system
with the help of Negative Selection Algorithm and Positive Selection Algorithm. In
the proposal, elements in the training dataset are divided into n-grams(3-gram and
4-gram). Permutations of the resulting set are the candidate detectors for the system.
The detectors are respectively subjected to Positive and Negative Selection Algo-
rithms.

Saleh [20] et al. have proposed a method to detect spam e-mails with the use of the
Negative Selection Algorithm. E-mails in the dataset are labeled as spam(non-self)
and ham(self). Each word in the e-mails is added to a database to form a token set by
their occurrence frequency. The words and frequencies are later used in the detection
phase to mark a sample e-mail as spam or ham. In their work, they have divided the
e-mail dataset that is being used to create six different subsets. Each of the datasets
is fed to the algorithm one after other and the success rates are calculated with each
addition. It is concluded that with each new dataset the success rates increased -up to
98.5%- and they have also claimed that their model has higher rates than the similar
models [20].

Hooks [21] et al. have compared two popular Artificial Immune System algorithms,
which are the Negative Selection and the Clonal Selection. In their work, they have
used the NSL-KDD dataset and divided network packets’ features into three different
groups that have 13, 22 and 39 distinct features. They have presented the detection ac-
curacy rates and execution time for each experiment with the formed feature groups.
Each experiment has been conducted with 25, 100 and 250 detectors. For the exper-
iments that use Negative Selection, the best accuracy results are accomplished with
250 detectors and 39 features. However, this experiment has taken 2654 seconds to
complete. Worst accuracy results for 250 detectors were when 13 features are used,
resulting in 29.9% but with 890 seconds of execution time.

Below thesis studies are examined and background chapters are studied for better
understanding of the Human and Artificial Immune Systems concepts and terminolo-
gies.
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Igbe [22] has implemented the Negative Selection Algorithm and the Dendritic Cell
Algorithm for intrusion detection in smart grids, detection of distributed denial of
service attacks and insider threat detection.

Ataser [23] proposed a method to expand the non-self area coverage in his study. The
thesis of the researcher expresses self samples with an additional calculated radii and
determines self space with k-Nearest Neighbours [24]] and Local Outlier Factor [25]]
algorithms. The detectors generated have real-valued representations.
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CHAPTER 3

PROPOSED METHOD

The study applies an algorithm that detects abnormal user-supplied input in a web
application or service which is not similar to the normal traffic. Segregation of the
normal data from the malicious resembles the immune system’s efforts to discriminate
a pathogen from the body cells. The resemblance concludes to the analogy between
the HIS [3] and the anomaly detection process in this thesis as stated in Table [3.1]

Table 3.1: The analogy between HIS and the anomaly detection process

Human Immune System | Anomaly Detection in HTTP Data
T-Cells Detector strings

Pathogens Attack payloads

Body cells Normal data strings

Receptors Matching algorithm

Affinity Output of the matching algorithm
Epitopes and peptides Divided attack payloads

Thymus Detector generation algorithm

Veins and lymps Application/network traffic

The study focuses on the creation of the first generation of the detectors and their
generation and detection metrics. It is intended to create a detector set that has the
ability to discriminate self samples from the non-self with considerable success rates
from the first generation. The data gathered from the generation phase includes the
attempts needed to create a detector that can successfully pass the Negative Selection,
the length of the detector and the number of detectors that can be generated in a
specified time window.

The generation algorithm is based on the Negative Selection Algorithm [5]. The effort
of the detectors to gain the ability to discriminate normal data from the abnormal is
found to be similar to the Negative Selection process that the T-Cells undergo in the
thymus. Generation algorithm uses a training dataset consisted of only normal traffic
to resemble the self proteins that the thymus presents to the candidate T-cells.
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Detectors that successfully pass the Negative Selection are stored in a file. At the
end of the generation phase, the detector set is applied to two different datasets for
detection results. The first dataset consists of only normal application traffic. The
traffic is similar but not identical to the training dataset. The second one contains
only attack payloads.

Affinity measure in the generation and detection phases is calculated by the Leven-
shtein distance algorithm [6, [7]. The output of the Levenshtein distance, which is
the number of the alterations needed for a given text to convert to another one, can
have the maximum value of the longest parameter and minimum value of zero which
means two strings are completely different. A percentage is calculated from the algo-
rithm’s output considering this behavior. This percentage gives the similarity between
two strings. In the generation and detection phases, the similarity is expected to pass
or fail a certain threshold.

3.1 Dataset

There are three datasets used in the detector generation phase and the detection phase.
These datasets are the training and the test datasets. The generation phase uses one
and the detection phase uses two datasets.

The training dataset has only normal application traffic that does not include any
malicious activity. To resemble the behavior of the immune system, the training set is
limited to the traffic with benign parameters. The dataset is used to generate detectors
to be used in the detection phase.

For the detection phase, two test datasets are used. The first dataset only consists
of normal traffic like the training dataset. The second dataset has attack payloads
and does not include any normal traffic. The attack payloads had been generated
by the penetration testing tools. The payloads are the ones of the SQL Injection
Attack, XSS, Command Injection Attack and Path Traversal Attack. These attack
types were mentioned in the Background Chapter. The first dataset is used to test
the detectors’ behavior against a benign data sample which is examined to calculate
false positive and true negative rates. Likewise, the second dataset which contains the
attack payloads is used to calculate the true positive and false negative rates.

3.2 Detector Generation Phase

Detector generation is the phase where candidate strings that are named as detectors
are created and tested based on the Negative Selection Algorithm [S]]. The program
that is developed has three arguments as input and detector strings as output upon ex-
ecution. The input parameters are n-gram length, Poisson lambda value, and affinity
threshold.

The program begins execution by reading the training dataset from a file stored on the
system. The dataset contains parameters extracted from the HTTP GET requests and
has only normal/expected values. The program eliminates convergent values from the
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dataset and stores it into the program memory. The variable it is stored in is used to
generate the n-gram string set.

Later in the execution, the dataset is divided into n-gram substrings. The usage of the
n-gram method is the attempt to cover the non-self space as much as possible. It was
mentioned in the earlier chapters that a detector may have a value that will not match
any non-self samples. This can occur when the detectors identify strings as malicious
while they are not suitable for an attack. N-gram strings are used to create a similarity
between the samples and the detector to a certain level of extent.

The n-gram substrings of the original dataset are stored in a separate variable. This
variable will be used by the algorithm to form a candidate detector by selecting a
number of items from the list. The number of times a selection will be made from
the set is determined by the Poisson Probability function that will take an integer as a
parameter and outputs the selection count.

Detector length varies depending on the output of the Poisson probability function.
This method is used to observe the possible detector lengths that can reach the affinity
threshold that is given as a parameter to the program.

After forming a candidate detector by selecting and concatenating a number of ele-
ments from the n-gram string set, the detector is ready to be tested by the Negative
Selection process. Every detector that is created is subjected to the process one by
one.

In the Negative Selection process, a detector’s affinity is calculated with every pa-
rameter in the benign dataset. The detector’s affinity with every distinct element of
the dataset is expected to be equal or less than the affinity threshold parameter given
to the program. If it has a higher affinity with any element than the threshold, the
detector is eliminated and the creation process for a new detector starts over.

An HTTP parameter can be shorter or longer in length compared to the detector string
that is created by the given program parameters. If the affinity is calculated directly
without any further operation, then the chances of obtaining an unfit detector rise.
If the length difference between the detector string and the parameter that is being
compared is high, the affinity ratio results low. If the difference is high enough, even
if the detector string is a substring of the parameter, the affinity results low since there
will be many additions to make to convert the detector string to the parameter [6]. It
is concluded that the parameter must be divided into substrings with the same length
as the detector string. After the split operation, the comparison is done between the
substrings and the detector. If any of the substrings exceeds the affinity threshold,
then the whole parameter is marked as self, therefore the detector is eliminated in
order to be replaced by a new one.

Candidate detectors that pass the Negative Selection process are stored into a file and
are used in the detection phase. The creation process is repeated until the desired
amount of detectors is obtained.
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Algorithm 1 Main frame of the generation algorithm

Input: n-gram length, ng

Input: Poisson lambda, plambda

Input: Affinity Threshold, af f

Output: Set of detector strings, Ds
sel f_dataset = read self dataset from file
ngram_dataset = split dataset as n-grams(sel f_dataset, ng)
eliminate recurring strings (ngram_dataset)
Ds = generate_detectors(ngram_dataset, plambda, af f)
save detectors to file(Ds)

Algorithm 2 Detector generation with the Negative Selection Algorithm

Input: Self dataset that the ngram_dataset is formed, sel f_dataset
Input: Dataset formed of ngram, ngram_dataset
Input: Poisson lambda, plambda
Input: Affinity Threshold, af f
Input: Desired number of detectors, max_detectors
Output: Set of detector strings, detector_list
detector_list = create an empty list()
while length(detector_list) < max_detectors do
number_of_selections = calculate detector length with Poisson(plambda)
candidate_detector = select a number of random n-
grams(number_of_selections, ngram_dataset)
candidate_detector = negative_selection(candidate_detector, sel f _dataset, af f)

if candidate detector survives NS then
add candidate detector to detector_list
end if
end while
return detector_list
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Algorithm 3 Implementation of the Negative Selection Algorithm

Input: Self dataset, sel f_dataset
Input: Detector to be tested, candidate_detector
Input: Affinity Threshold, af f
Output: candidate_detector or NULL
detector_length = length(candidate_detector)
for each set in sel f_dataset do
sel fsubstrings = split self into ngrams with length of detector_length
for each substring in sel f_substrings do
af finity = calculate affinity with levenshtein_distance(detector, substring)
if af finity > af f then
eliminate detector
return null
end if
end for
end for
return candidate_detector

Algorithm 4 Affinity calculation with Levenshtein Distance

Input: Detector, det
Input: Self sample, sel f
Output: Similarity percentage of det and sel f
distance = levenshtein distance of det and sel f
if len(det) > len(sel f) then
longer_string = det
else
longer_string = sel f
end if
percentage = 100 - (distance * 100 / len(longergtring))
return percentage

3.3 Detection Phase

The detection phase is the phase that applies the detectors that are generated in the
generation phase to the test datasets to obtain the detection results. To calculate the
success measurements, a detection program is developed. The program takes two
parameters which are the affinity threshold and the test dataset’s file name. The test
dataset is divided into two datasets. One of them contains only normal and the other
one contains only abnormal traffic. This is done to decrease the completion of the pro-
gram’s execution time and to calculate True Positive, False Positive, True Negative,
and False Negative ratios more precisely.

The program reads the detectors from the storage file and the dataset given as the
parameter. The variable that stores the HTTP request parameters is copied to another
variable. When a parameter is detected as malicious, it is excluded from the second
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variable. This is done for the purpose of revealing the undetected parameter strings.

Every detector is applied to the dataset. The same problem mentioned in the genera-
tion phase with the difference of length between the detector string and the parameter
applies with the detection phase as well. Based on the detector string’s length, the
parameter that is being compared with is divided into substrings with the same length
as the detector. The affinity calculation is done with each substring. If the calculated
value exceeds the threshold, unlike the generation phase, it is considered as a non-
self sample. When the detection occurs in a substring of a parameter, then the whole
string is treated as malicious/abnormal.

At the end of the execution, the program outputs hit counts for every detector, hit
rates per detector which is the percentage of hit count over the total dataset’s size,
execution time consumed for each detector and the HTTP GET parameters that are
not detected as malicious.

Algorithm 5 Detection algorithm

Input: Test dataset, test_set
Input: Affinity Threshold, af f
Input: Detector set, Ds
Output: Hit count for each detectors in Ds and undetected samples in test_set
undetected_samples = copy(test_set)
for each sample in test_set do
for each detector in Ds do
substrings = csplit sample into n-grams with length of detector
for each substring in substrings do
af finity = calculate affinity with levenshtein_distance(detector, substring)

if af finity >aff then
increase hit count of detector
undetected_samples.remove(sample)
Break
end if
end for
end for
end for
return hit count for each detector, undetected_samples
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CHAPTER 4

EXPERIMENTS

In this study, the Negative Selection Algorithm [5] is implemented and metrics for
both generation and detection phases are gathered. The information extracted from
these metrics is presented in this section. The algorithm in this study uses n-gram
strings for detector generation. The n-gram strings are obtained from the training
dataset that contains only HTTP [8]] GET parameters that are not malicious or abnor-
mal. The number of n-gram strings to be concatenated is calculated with the Poisson
Distribution Probability with several lambda values. The program developed is run
with different n-gram string lengths, Poisson lambda values, and affinity thresholds.

The purpose of this study is to generate detector strings with n-gram substrings and
to find which n-gram length gives the best result in both generation and detection
phases. While the success of a detector is based on its detection rates, it is also sought
that a detector must be generated within a reasonable amount of time, with minimum
attempts in the Negative Selection Algorithm and has the least possible string length.

Several experiments have been performed with n-gram lengths of 2, 3, 4, 5 and Pois-
son lambda parameters of 3, 4, 5. The output of the Poisson Probability function gives
the number of n-grams to be joined. The detector’s size is the product of the n-gram’s
length and the output of the Poisson. If the longest n-gram is chosen and the Poisson
Probability gives 5 for the number of n-gram selections, then the resulting string will
have 25 characters in total. For different n-gram lengths, the generation algorithm
will output detectors that differ in length. This feature that is added with Poisson is
thought to increase detection rates by adding detectors with different lengths to the
detector set.

In the earlier steps of this study, the minimum affinity threshold that allows detector
generation in a reasonable amount of time has experimented. The experiment is done
by slightly modifying the code for the detector generation phase. The modification
made was to limit the number of attempts needed to successfully create a single de-
tector. The number was defined as 100.000. It is observed that the program fails to
generate a detector in the stated number of attempts if the threshold value is below
20 percent. This observation leads the study for using 20%, 21% and 22% as affinity
threshold parameters.

To gather the metrics of the detector generation phase in the proposed algorithm, the
generator program is executed for 24 hours. The execution is done in separate pro-
cesses for different input parameters within a machine that runs with Intel Xeon CPU
E5-2680 at 2.40GHz. The program generated as many detectors as possible in this
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time frame. For every detector following metrics are logged during the generation.

e The max affinity calculated in the negative selection process which can be for
some detectors lower than the affinity threshold that the program is executed
with.

e Number of attempts to finally procure the detector.

e Output of the Poisson Probability function which determines the number of
n-gram selections to form the detector string.

e Detector’s length in string size.

e N-gram, affinity threshold and Poisson lambda parameters that the program is
executed with.

After the generation phase, the detectors that are created are stored in separate files
based on their execution parameters. The stored detectors are applied to the test
dataset in the detection phase. The phase uses a dataset that contains both normal and
abnormal/malicious samples. The detectors are expected to detect only the malicious
strings. Like the generation phase, several metrics are gathered in the detection phase
as well. These metrics are logged for every distinct detector.

e Total time passed while the detector exercise over the whole dataset.

e Number of samples in the dataset that are recognized as malicious by the de-
tector.

e Percentage of the remaining items in the dataset that are undetected by any
detectors.

Information gathered in the detection phase is used to calculate the success rates of
the detectors. These rates are;

e True Positive(TP): Percentage of the number of the detected malicious strings
in the dataset over the number of the total number of malicious samples exist.

e True Negative(TN): Percentage of the number of undetected samples which are
normal samples indeed over the total number of normal strings.

o False Negative(FN): Percentage of undetected malicious strings in the dataset
over the number of total malicious samples.

e False Positive(FP): Percentage of normal samples that are marked as malicious
over the total number of normal strings in the dataset.

With the information gathered in both phases, several tables and graphs are gener-
ated. The following table presents the number of attempts needed to generate a single
detector that is formed with 2-grams.
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Table 4.1: Number of generation attempts needed for detectors formed of 2-grams

Affinity Threshold | \=3 A=4 | \=5
20% 27736 | 5803 | 1876
21% 21821 | 5051 | 1334
22% 5612 | 1230 | 490

As Table depicts, while the lambda and affinity threshold values increase, the
number of attempts to generate a detector decreases. Higher lambda values cause
longer detector strings. As the detector string length increases, the Levenshtein Dis-
tance Algorithm generates higher distance results because the samples in the dataset
can be relatively shorter than the candidate detector. Higher distance results relieve
the generation process and the detectors pass the Negative Selection easier. The same
behavior occurs as the affinity threshold value increases. As the threshold of similar-
ity between detector strings and the dataset samples increase a candidate detector’s
probability to overcome the Negative Selection process increases as well.

The same behavior can be observed by examining Table [A.T] Table [A.2] Table [A.3]
which can be found in the Appendix section of this document.

Figure Figure and Figure introduce the distribution of the generated
detectors’ lengths based on the affinity threshold and the Poisson lambda value which
determines the number of n-grams selection from the dataset to form a detector.
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Figure 4.1: Detector length distribution (20% Affinity Threshold)

The string length variance that is achieved by the Poisson Distribution can be seen
from the Figure[.T] Figure[A.T|and Figure[A.2] When the results are analyzed further,
it can be observed that there are only a few detectors that could be generated with the
expected length which is determined by the Poisson lambda value. This situation
occurred because of the Poisson lambda value, Levenshtein Distance Algorithm’s
behavior and the affinity threshold and it will be further analyzed in the Discussion
section.

The following table presents the detection success rates of the detector sets generated
with Poisson lambda 5 and 20% affinity threshold. This detector set is chosen over
the others since the generation phase when run with lambda values of 5 resulted more
detectors than the other executions. The Negative Selection Algorithm results better at
the detection phase with lower affinity thresholds. Therefore, 20% affinity threshold
value is chosen.
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Table 4.2: Detection success rates of the detectors generated with affinity threshold =

20% and Poisson lambda = 5

N-gram | Detector Count | True Positive | True Negative
2 243 35,25 97,24
3 33 2,57 99,39
4 36 0,96 99,36
5 196 8,26 98,38

By examining the results that use different parameters presented at the Table [4.2]
it can be observed that the success of the detector sets decreases as the number of
detectors in a set decreases and the n-gram length increases.

If it is desired, the rest of the generation and detection results are presented in the
Appendix section. Table and presents the detection results for each
affinity thresholds, n-gram lengths and Poisson lambda values. The tables also show
the number of detectors that could be generated in 24 hours of execution. This exper-
iment is carried out to see the potential of the detectors in detecting anomalies when
the program is freed to generate as many detectors as possible without any attempt
limit in contrary to the experiment done to determine the minimum affinity thresholds
achievable.

When the detection success results of the experiment shown in the Table [A.4] [A.5]
and [A.6|are analyzed, it is seen that the detection rates are not sufficient for anomaly
detection. While the detector sets failed to approach the desired rates in True Posi-
tive metrics, the ability to discriminate self reflects on the True Negative rates. The
reasons for this observation are further explained in the Discussions Chapter.

The tables are analyzed to conclude that the detector sets that are formed by 2-grams
are better than the rest of the detector sets. The number of attempts to create a detector
with 2-grams and the mean string length of those detectors are lower. When the
Poisson lambda is treated constant, the higher the n-gram length, the lower the True
Positive rates become. From observing this behavior, it is concluded that the n-gram
strings must be chosen short. Therefore another experiment is carried out.

In the next experiment, 1-grams are tested against the problem. Detectors with 2-gram
substrings are generated as well to compare the success rates of the 1-gram detectors.
To make the experiment ideal, 300 detectors are generated for each Poisson lambda
and affinity threshold combination. It was possible to create 300 detectors with 3-
gram substrings by the Poisson lambda 5 and 21% affinity for further comparison.
Other combinations could not be generated because of time limitations.

It is witnessed in the experiment that 1-gram detectors outperformed other detectors
at both generation and detection phases in every affinity threshold. Furthermore, they
are tested against lower affinity thresholds and 12% affinity is achieved. 2-gram and
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3-gram detectors showed similar results to the former experiments.

At the following table, generation attempt count and length information of the detec-
tors formed by 1-grams are depicted. Minimum, maximum, average and mode length
of the detectors are presented to point to the correlation between the length of a de-
tector and the Poisson lambda value which will be further discussed in the following
section.

Table 4.3: Generation phase specifications of the detectors generated by 1-grams

Min. Len | Max. Len | Avg. Len | Mode Len. | Avg. Attempts
Affinity =12 | 9 18 9.4 9 117618
Affinity =15 | 7 14 7,36 7 7684
Affinity =17 | 6 13 6,82 6 1753
Affinity =20 | 5 11 55 5 661

It can be observed from the Table[4.3]that it is easier to create a detector with 1-gram
substrings than generating a detector formed by any other n-gram lengths. As the
affinity threshold decreases, it becomes difficult for the generation phase to generate
detectors.

At the following table detection rates for the generated detectors in the final experi-
ment are shown. Each detector set contains 300 detectors. To compare 1-gram de-
tectors with 2-gram detectors, detector sets that are generated with Poisson lambda
3 and affinity threshold 20% are chosen. Likewise, to add 3-gram detectors to the
comparison, Poisson lambda 5 and affinity threshold 21% are chosen.

Table 4.4: Detection results for 300 detectors

Affinity | N-gram | P. Lambda | True Positive | True Negative | Accuracy
12 1 9 96,67 98,33 0,975
15 1 7 98,44 98,03 0,982
17 1 6 97,21 98,28 0,977
20 1 3 97,42 98,95 0,982
20 2 3 66,76 95,59 0,812
21 1 5 97,60 98,24 0,979
21 2 5 34,77 96,48 0,656
21 3 5 16,22 95,47 0,558
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It can be observed from the Table[d.4]that 1-gram detector sets resulted better than the
other detector sets that contain the same number of detectors. Complete data of the
experiment with additional detector sets and success metrics can be examined from
the Table[A.7]and Table [A.§]in the Appendix section of the document.

At the detection phase, every detector in the detector set examines the whole test
dataset. The process takes a certain amount of time for every detector which is highly
affected by the number of samples in the test dataset and the Levenshtein Distance
Algorithm. Moreover, a detector can match with several samples from the test dataset.
A match means that the detector recognized the sample as a malicious payload. The
percentage of the detected sample count over the whole dataset is named Hit Rate.
The following table depicts the average execution time per detector over the dataset
and the average hit rate.

Table 4.5: Detection phase specifications of the detectors generated by 1-grams

Avg. Hit Rate Per Detector | Avg. Exec. Time Per Detector
Affinity =12 | 19,48 14423
Affinity = 15 | 14,85 12504
Affinity =17 | 11,47 11516
Affinity =20 | 9,00 8912
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CHAPTER 5

DISCUSSION

In the experiments and results presented in the previous chapter, it is shown that
detectors that are created using 1-grams perform better in anomaly detection using
the Negative Selection Algorithm. If the n-gram length is increased, it results in
lower detection rates as well as challenges in generating a single detector.

I-gram strings mean that the generation must be done with the character set of the
training dataset. Generated detectors have the same character set with the dataset.
If the generation is done with all the possible characters, regardless of the dataset’s
characters, it can result in False Positives. In the Negative Selection process of the
Human Immune System, the T-Cells are only subjected to the self samples. If a char-
acter that is not in the dataset is added to the generation phase, the distance results of
the Levenshtein algorithm will increase in the detection phase and the generated de-
tector will result in farther distances with the strings that contain any anomalies. This
calculation will lead to marking the normal string to be malicious. Thus it will in-
crease the False Positive rates. For these considerations, the generation and detection
phases are only done with the dataset’s character set.

There are numerous self samples in the training dataset and malicious attack payloads
in the training dataset. The strings in these datasets vary in length. Both in the gen-
eration and detection phases, these length differences are handled by the algorithm
since it splits the dataset string to the substrings with the length of the detector. This
operation is done for every detector. Thus, a detector is only compared with strings
that have the same or shorter lengths. This approach avoids possible False Positives
and False Negatives. The shorter the detector’s length than the dataset’s string, the
farther they become in the Levenshtein Distance Algorithm. This deceives the detec-
tion algorithm to calculate proper results. A dataset string can be marked incorrectly,
even if the detector string is its substring if the length difference is high enough. This
is not an outlier case when the attack payloads are examined. While some payloads in
the SQLi, XSS and Path Traversal attacks can be too long, it is known that increasing
the attack payload’s length is a technique used by the malicious actors to deceive the
security mechanisms.

The situation explained in the paragraphs above with the lengths of the detectors
and dataset strings also applies to the number of attempts to create a single detector.
Poisson probability gives the number of n-gram string selection with the input value
provided to the generation program. Resulting output and the product of the n-gram
length gives the length of the detector to be formed. Later the detector will be tested
against the training dataset and required to have a lower affinity than the determined
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threshold. If it exceeds the threshold value, then the whole process is repeated. This
counts as the mentioned attempt. If the detector’s length is too long for the strings in
the training dataset, then the affinity decreases. This is seen as proper for the Nega-
tive Selection Algorithm and the detector passes the test successfully. The resulting
detector fails to detect malicious activity since it is generated incorrectly. This con-
dition decreases the number of attempts needed because it relieves the limitation of
affinity in the Negative Selection. Moreover, the generation program can output more
detectors in a given time period. The explained behavior can be observed from Table

[A.T} [A.2]and [A.3]

By analyzing the Figure [4.1] [A.T]and [A.2] it can be seen that the generated detector’s
n-gram selection count exceeds the Poisson lambda value and the detectors’ lengths
are longer than expected. Detector generation is made possible by the Poisson Dis-
tribution’s outputs that are higher than the given input value. To take as an example,
when the output of the n-gram = 2, Poisson lambda = 3 at the 20% affinity threshold
is examined, the minimum length of the generated detector set is 10. This means 5
selections are done with 2-gram strings(Poisson Probability output is 5). If a detector
could be generated by the input value of 3, as it is given to the program as a param-
eter, the resulting detector’s length is expected to be 6. This is seen to be impossible
by the algorithm. When the lengths of the detectors generated by 1-grams are ob-
served, it is seen that the detector with the minimum length is 5 (Table . With
the observations on the other detectors with different affinity thresholds, it is con-
cluded that because of the Levenshtein Distance and the Negative Selection process,
the expected detector’s n-gram count can be found by dividing 100 with the affinity
threshold. For the same example mentioned, the equation results 5 with the affinity
threshold of 20%. This result holds the data displayed in the tables and the figures,
2-gram detectors had minimum lengths of 5 times 2 and 1-gram detectors resulted
with 5 times 1. The reason behind the longer minimum lengths of the other detectors
is that the detectors fail the Negative Selection process when they are formed with the
number of the n-grams that the equation explained results.

It is also concluded from the study that longer detector lengths result in longer exe-
cution times. This obvious condition can be eluded by some detectors. The detection
algorithm splits the dataset string to be compared with the detector into substrings that
can have the maximum length of the detector’s. If the affinity threshold is exceeded
in the initial comparisons with the substrings, the algorithm marks the dataset string
to be malicious and continues with the next one, leaving other substrings. Another
detector may need to end all the substrings in every dataset strings, especially when
the success of the detector is low. The time taken for the execution on the dataset for
a single detector can be seen in Figure [5.1]
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Execution Time over Anomaly Dataset for Single Detector
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Figure 5.1: Execution time for a single detector over the dataset

From the experiments conducted with the 300 detectors formed with 1-grams, 2-
grams and 3-grams for 21% affinity threshold and with the same amount of detectors
with 1-grams and 2-grams for 20% affinity threshold, it can be seen from the Figure
[5.2]and [5.3]that detectors generated from 1-gram strings cover the anomaly set more
than the other detectors formed with 2-grams and 3-grams by using fewer amount
of detectors. The line for 1-gram detectors has higher growth rates in both affinity
thresholds. There is a need for a higher number of detectors for 2-gram and 3-gram
detector sets to cover the same area. The growth rates in the line graphs also show
the hit rates for the detectors. Each detector marks several strings on the dataset as
malicious. The figures show the growth in the True Positive percentage created by
these detectors.
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Figure [5.4] shows the hit rates of the detectors tested for 21% affinity threshold. De-

tectors generated by the 1-gram strings have ranging hit rates that are close to 70%
for some detectors. This means that there is at least one detector that can detect 70%
of the anomalies in the dataset only by itself. Hit rates for the detectors with 2-grams
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and 3-grams are much lower.

Detector Hit Rates for N-grams (21% Affinity Threshold)
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Figure 5.4: Detector hit rates for different n-grams (21% affinity threshold)

Figure [A.3] Figure [A.4] and Figure [A.5] can be observed from the Appendix section.
The figures presents hit rates for each n-gram length at 21% affinity threshold.

It is stated in the Results and Experiments Chapter that the affinity thresholds for
detectors with 1-gram strings could be decreased to 12%. Figure [5.5]shows the line
graph of True Positive rate growth for each detector set that is generated for distinct
affinity thresholds. It can be seen from the figure that the initial 20 detectors for each
set covers the same percentage and the difference from the affinity thresholds takes
effect between 20. and 180. detectors. After the 200th detector of each set is applied
to the dataset, the results become close to each other.
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Figure 5.5: Detection rate growth for 1-gram

The experiments are conducted by Python [26] scripts that present the proof-of-
concept. Each of the attack types targeted to be detected is conducted from the user
input values. A malicious string-based payload that is submitted can harm other users
or corrupt the server. To prevent a predicament, every parameter in every distinct
HTTP request must be examined.

In real-world usage, the generation and the detection phases of the proposed method
must be implemented distinctly. These two phases arise some challenges. Detectors
generated from the request history must be validated periodically to support param-
eters with highly dynamic values. There may be new parameter values that have not
been submitted before to the application/service. To give an example, this situation
can occur if the parameter holds a new patient’s data in a hospital information man-
agement system. To cover the fresh data that is just added to the system’s database,
a new detector must be generated and replaced with an old detector in the detector
dataset. The detector that is being replaced must not have been activated by a suspi-
cious request before which means that the detector covers a non-self space that has a
low probability of occurrence. This concludes that the activation count for the detec-
tors must be stored as well and detectors must be regenerated despite the data is static
if they have not been activated for a given time frame.

Protecting parameters with dynamic data also leads to difficulties while generating
detectors since parameters with diverse values may include most of the combinations
of the overall character set. This restrains the generation phase to generate only a few
distinct detectors and the attempts needed -generation time- highly increases. The
affinity threshold value must be relieved to overcome the stated challenge. But by
increasing the threshold value the false positive and false negative rates shall increase
while the attempts needed to generate a single detector may decrease. Disability to
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generate the desired amount of detectors in an acceptable amount of time or having
high false negative/positive rates when the affinity threshold is increased makes the
proposed method unsuitable for attack detection.

The biggest challenge for the detection phase is that the parameters to be examined
must be exposed to the previously generated detectors. Since affinity calculation with
the Levenshtein distance algorithm requires several steps, every parameter-detector
comparison takes an amount of time. The computing time may lead to latencies in
the response time of the server to the requests if the real-world application of the
proposed method is being used in-line. In the experiments section to this study, it is
shown that to examine a dataset with 3920 parameter values with an average length
of 89 took 8912 milliseconds for 300 detectors with an average length of 5. It can
be calculated from the stated data that each parameter-detector comparison causes 2
milliseconds of latency. The latency value may drop if the parameter to be examined
has values with shorter lengths and increase otherwise.
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CHAPTER 6

CONCLUSION

The biological immune system is responsible to protect the body from the pathogens.
A pathogen is a hazardous organism that can cause disease. The Human Immune
System consists of two subsystems. Innate Immune System forms the first layer of
protection. It reacts generally to the invaders by changing the environmental condi-
tions in the body or in a specific part of the body to prevent the survival and repro-
duction of the microbe. The skin is one of the parts of the Innate Immune System. It
has also have the capability to devour the detected pathogens. Adaptive Immune Sys-
tem is where special kinds of lymphocytes reside, B- and T-cells. These lymphocytes
are created continuously in the human life span. Adaptive immunity has the ability
to learn new types of pathogens as they are eliminated from the body. If the same
pathogen tries to invade the body in the future, the reaction of the body is immediate.

Negative Selection of T-cells, in which the T-cells gain the capability to discriminate
self from non-self, forms the basis structure of this study. In Negative Selection, the T-
cells that react to self proteins are eliminated directly before they are sent to the veins
and lymph. Only those who do not react to self is left after the process. When this
process is applied to the computer security domain, every detector that does not match
self and survives the Negative Selection can be thought to demonstrate an anomaly
case. If a detector matches by a certain threshold any data in the web application
traffic, it can be concluded that the traffic contains an abnormal data.

In this thesis, a Negative Selection Algorithm based method is proposed. The pro-
posed method generates detectors to detect anomalies in web application traffic by
examining the HTTP GET requests. The parameters in the HTTP GET requests are
used by malicious actors to attack and exploit the vulnerabilities on a web application
or service. These attacks commonly arise from the lack of input validation that must
be done on the server-side of a software. Data about the generation phase of the de-
tectors and detection phase are gathered during the execution of the implementation
of the method. The data presented in the Experiments chapter.

This study focuses on the metrics of the first generation of the detector set that is
created by the proposed method. Success results of the detectors in the forms of True
Positive, False Positive, True Negative and False Negative are shared. Besides these
results, the number of detector generation attempts needed to successfully create a
single detector, the length distribution of the generated detectors, detection rates for
each detector and the count of the generated detectors in a time window are also
presented in this paper.
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The generation of the detectors is done by combining n-gram strings with different
lengths. Detection results when the n-gram length and affinity threshold changes are
examined. The success of a detector is based on its individual detection rate, the ease
to create a similar detector, its execution time over a given dataset and the string length
of detectors. The study concludes that using 1-grams to create a detector is beneficial,
rather than using 2-grams, 3-grams, 4-grams, and 5-grams. Detectors generated using
1-grams outperformed every other detector in every distinct affinity threshold. The
criteria of success of a detector mentioned formerly best suits those detectors.

By the end of this thesis, it is deduced that, if Levenshtein distance is used for affinity
calculation, 15% affinity threshold is required and average of 7 1-grams are used to
form a detector, over 98% True Positive and True Negative rates can be achieved by
using the Negative Selection Algorithm for detecting web-based attacks.

40



REFERENCES

[1] S. A. Hofmeyr and S. Forrest, “Architecture for an artificial immune system,”

Evolutionary computation, vol. 8, no. 4, pp. 443473, 2000.

[2] J. Timmis, M. Neal, and J. Hunt, “An artificial immune system for data analysis,”

Biosystems, vol. 55, no. 1-3, pp. 143150, 2000.

[3] C. A. Janeway, P. Travers, M. Walport, M. Shlomchik, et al., Immunobiology:

the immune system in health and disease, vol. 7. Current Biology London, 1996.

[4] K. A. Hogquist, S. C. Jameson, W. R. Heath, J. L. Howard, M. J. Bevan, and
F. R. Carbone, “T cell receptor antagonist peptides induce positive selection,”

Cell, vol. 76, no. 1, pp. 17-27, 1994.

[5] S. Forrest, A. S. Perelson, L. Allen, and R. Cherukuri, “Self-nonself discrimina-
tion in a computer,” in Proceedings of 1994 IEEE computer society symposium

on research in security and privacy, pp. 202-212, leee, 1994.

[6] V.I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and

reversals,” in Soviet physics doklady, vol. 10, pp. 707-710, 1966.

[7] J. B. Kruskal, “An overview of sequence comparison: Time warps, string edits,

and macromolecules,” SIAM review, vol. 25, no. 2, pp. 201-237, 1983.

[8] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee, “Hypertext transfer protocol-http/1.1,” 1999.

[9]1 SQLMap: Automatic SQL Injection and Database Takeover Tool. http://
sglmap.org/k

[10] Cross Site Scripting Scanner  Vulnerability Confirmation. https://
github.com/yehia—-mamdouh/XSSYA.

41


http://sqlmap.org/
http://sqlmap.org/
https://github.com/yehia-mamdouh/XSSYA
https://github.com/yehia-mamdouh/XSSYA

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

FuzzDB: Dictionary of attack patterns and primitives for black-box appli-
cation fault injection and resource discovery. https://github.com/

fuzzdb-project/fuzzdbl

Vega Scanner. https://github.com/subgraph/Vega/wiki/

Vega—-Scannerl

J. G. Skellam, “A probability distribution derived from the binomial distribu-
tion by regarding the probability of success as variable between the sets of tri-
als,” Journal of the Royal Statistical Society. Series B (Methodological), vol. 10,
no. 2, pp. 257-261, 1948.

D. D. Chamberlin and R. F. Boyce, “Sequel: A structured english query lan-
guage,” in Proceedings of the 1974 ACM SIGFIDET (now SIGMOD) workshop
on Data description, access and control, pp. 249-264, ACM, 1974.

D. Raggett, “Html+ (hypertext markup language),” 1993.
H. W. Lie and B. Bos, “Cascading style sheets, level 1,” 1996.

N. Gabrielli and M. Rigodanzo, “An artificial immune system for network intru-
sion. detection on a web server: First results,” in Proceedings of the 2nd Italian

Workshop on Evolutionary Computation (GSICE 2006), 2006.

M. Danforth, “Towards a classifying artificial immune system for web server
attacks,” in 2009 International Conference on Machine Learning and Applica-

tions, pp. 523-527, IEEE, 2009.

F. Zhang and Y. Ma, “Integrated negative selection algorithm and positive se-
lection algorithm for malware detection,” in 2016 International Conference on

Progress in Informatics and Computing (PIC), pp. 605-609, IEEE, 2016.

A.J. Saleh, A. Karim, B. Shanmugam, S. Azam, K. Kannoorpatti, M. Jonkman,
and F. D. Boer, “An intelligent spam detection model based on artificial immune

system,” Information, vol. 10, no. 6, p. 209, 2019.

D. Hooks, X. Yuan, K. Roy, A. Esterline, and J. Hernandez, “Applying artifi-

cial immune system for intrusion detection,” in 2018 IEEE Fourth International

42


https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb
https://github.com/subgraph/Vega/wiki/Vega-Scanner
https://github.com/subgraph/Vega/wiki/Vega-Scanner

Conference on Big Data Computing Service and Applications (BigDataService),
pp- 287-292, IEEE, 2018.

[22] O. Igbe, Artificial Immune System Based Approach to Cyber Attack Detection.
PhD thesis, The City College of New York, 2019.

[23] Z. Ataser, Variable Shaped Detector: A Negative Selection Algorithm. PhD
thesis, Citeseer, 2013.

[24] T. M. Cover, P. Hart, et al., “Nearest neighbor pattern classification,” /IEEE

transactions on information theory, vol. 13, no. 1, pp. 21-27, 1967.

[25] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: identifying density-
based local outliers,” in ACM sigmod record, vol. 29, pp. 93—104, ACM, 2000.

[26] Python. https://www.python.org/.

43


https://www.python.org/

44



APPENDIX A

TABLES AND FIGURES OF THE GENERATION AND THE DETECTION
PHASES

Table A.1: Average number of generation attempts (20% affinity threshold)

20% (Affinity Threshold) | \=3 =4 A=5
n-gram=2 27736 5803 | 1876
n-gram=3 285783 | 78302 | 20023
n-gram=4 1315057 | 57604 | 11076
n-gram=>5 42719 5671 | 1236

Table A.2: Average number of generation attempts (21% affinity threshold)

21% (Affinity Threshold) | \=3 =4 A=5
n-gram=2 21821 | 5051 | 1334
n-gram=3 79878 | 13478 | 6562
n-gram=4 177771 | 12622 | 2760
n-gram=5 48085 | 3309 | 861

Table A.3: Average number of generation attempts (22% affinity threshold)

22% (Affinity Threshold) | \=3 =4 A=5
n-gram=2 5612 | 1230 | 490
n-gram=3 76174 | 12108 | 2130
n-gram=4 11210 | 1956 | 718
n-gram=>5 21987 | 1299 | 234
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Table A.4: Detection results for the detectors generated in 24 hours (20% affinity
threshold)

Parameters TP TN Detector Count
n-gram=2, Poisson Lambda=3 | 27,42 | 99,28 | 48
n-gram=2, Poisson Lambda=4 | 23,18 | 99,04 | 84
n-gram=2, Poisson Lambda=5 | 35,25 | 97,24 | 243
n-gram=3, Poisson Lambda=3 | 0,71 | 99,90 | 5
n-gram=3, Poisson Lambda=4 | 0,56 | 99,85 | 9
n-gram=3, Poisson Lambda=5 | 2,57 | 99,39 | 33
n-gram=4, Poisson Lambda=3 | 0,02 | 99,96 | 1
n-gram=4, Poisson Lambda=4 | 2,09 | 99,65 | 17
n-gram=4, Poisson Lambda=5 | 0,96 | 99,36 | 36
n-gram=5, Poisson Lambda=3 | 0,86 | 99,79 | 11
n-gram=5, Poisson Lambda=4 | 11,35 | 98,50 | 102
n-gram=5, Poisson Lambda=5 | 8,26 | 98,38 | 196
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Table A.5: Detection results for the detectors generated in 24 hours (21% affinity
threshold)

Parameters TP TN Detector Count
n-gram=2, Poisson Lambda=3 | 50,40 | 98,6 104
n-gram=2, Poisson Lambda=4 | 41,45 | 97,35 | 178
n-gram=2, Poisson Lambda=5 | 13,64 | 98,95 | 121
n-gram=3, Poisson Lambda=3 | 2,21 99,42 | 30
n-gram=3, Poisson Lambda=4 | 1,96 | 99,37 | 29
n-gram=3, Poisson Lambda=5 | 2,21 99,65 | 29
n-gram=4, Poisson Lambda=3 | 6,93 | 99,87 | 8
n-gram=4, Poisson Lambda=4 | 0,81 99,67 | 21
n-gram=4, Poisson Lambda=5 | 1,30 | 99,34 | 61
n-gram=5, Poisson Lambda=3 | 1,58 | 99,71 | 24
n-gram=>5, Poisson Lambda=4 | 7,14 | 99,39 | 62
n-gram=5, Poisson Lambda=5 | 19,13 | 96,94 | 389
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Table A.6: Detection results for the detectors generated in 24 hours (22% affinity
threshold)

Parameters TP TN Detector Count
n-gram=2, Poisson Lambda=3 | 45,43 | 96,46 | 271
n-gram=2, Poisson Lambda=4 | 57,34 | 94,95 | 435
n-gram=2, Poisson Lambda=5 | 26,02 | 97,88 | 176
n-gram=3, Poisson Lambda=3 | 7,29 | 99,51 | 31
n-gram=3, Poisson Lambda=4 | 0,07 | 99,70 | 24
n-gram=3, Poisson Lambda=5 | 15,10 | 96,77 | 250
n-gram=4, Poisson Lambda=3 | 5,22 | 99,39 | 44
n-gram=4, Poisson Lambda=4 | 32,44 | 96,80 | 289
n-gram=4, Poisson Lambda=5 | 29,97 | 95,34 | 408
n-gram=5, Poisson Lambda=3 | 0,81 99,82 | 16
n-gram=5, Poisson Lambda=4 | 3,72 | 99,12 | 141
n-gram=5, Poisson Lambda=5 | 10,66 | 97,75 | 363
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Figure A.1: Detector length distribution (21% affinity threshold)
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Table A.7: Detection results for 300 detectors (complete)

Parameters Affinity | TP TN FP | FN
n-gram=1, Poisson Lambda=9 | 12 96,67 | 98,33 | 1,67 | 3,33
n-gram=1, Poisson Lambda=7 | 15 98,44 | 98,03 | 1,97 | 1,56
n-gram=1, Poisson Lambda=6 | 17 97,21 | 98,28 | 1,72 | 2,79
n-gram=1, Poisson Lambda=3 | 20 97,42 | 98,95 | 1,05 | 2,58
n-gram=1, Poisson Lambda=4 | 20 96,32 | 98,80 | 1,20 | 3,68
n-gram=1, Poisson Lambda=5 | 20 96,47 | 98,70 | 1,30 | 3,53
n-gram=2, Poisson Lambda=3 | 20 66,76 | 95,59 | 4,41 | 33,24
n-gram=2, Poisson Lambda=4 | 20 64,28 | 95,82 | 4,18 | 35,72
n-gram=2, Poisson Lambda=5 | 20 33,87 | 96.68 | 3.31 | 66,13
n-gram=1, Poisson Lambda=3 | 21 97,01 | 98,72 | 1,28 | 2,98
n-gram=1, Poisson Lambda=4 | 21 96,55 | 98,92 | 1,08 | 3,45
n-gram=1, Poisson Lambda=5 | 21 97,60 | 98,24 | 1,76 | 2,40
n-gram=2, Poisson Lambda=3 | 21 64,38 | 96,01 | 3,98 | 35,62
n-gram=2, Poisson Lambda=4 | 21 48,82 | 96,20 | 3,80 | 51,18
n-gram=2, Poisson Lambda=5 | 21 34,77 | 96,48 | 3,52 | 65,23
n-gram=3, Poisson Lambda=5 | 21 16,22 | 95,47 | 4,53 | 83,78
n-gram=1, Poisson Lambda=3 | 22 97,11 | 98,89 | 1,11 | 2,89
n-gram=1, Poisson Lambda=4 | 22 97,44 | 98,72 | 1,28 | 2,56
n-gram=1, Poisson Lambda=5 | 22 96,55 | 98,49 | 1,51 | 3,45
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Table A.8: Detection results evaluation for 300 detectors (complete)

Parameters Affinity | Accuracy | Precision | Recall | F-Score
n-gram=1, Poisson Lambda=9 | 12 0,975 0,983 0,967 | 0,975
n-gram=1, Poisson Lambda=7 | 15 0,982 0,980 0,984 | 0,982
n-gram=1, Poisson Lambda=6 | 17 0,977 0,983 0,972 | 0,977
n-gram=1, Poisson Lambda=3 | 20 0,982 0,989 0,974 | 0,982
n-gram=1, Poisson Lambda=4 | 20 0,976 0,988 0,963 | 0,975
n-gram=1, Poisson Lambda=5 | 20 0,976 0,987 0,965 | 0,976
n-gram=2, Poisson Lambda=3 | 20 0,812 0,938 0,668 | 0,780
n-gram=2, Poisson Lambda=4 | 20 0,801 0,939 0,643 | 0,763
n-gram=2, Poisson Lambda=5 | 20 0,966 0,911 0,339 | 0,494
n-gram=1, Poisson Lambda=3 | 21 0,979 0,987 0,970 | 0,978
n-gram=1, Poisson Lambda=4 | 21 0,977 0,989 0,966 | 0,977
n-gram=1, Poisson Lambda=5 | 21 0,979 0,982 0,976 | 0,979
n-gram=2, Poisson Lambda=3 | 21 0,802 0,942 0,644 | 0,765
n-gram=2, Poisson Lambda=4 | 21 0,725 0,928 0,488 | 0,640
n-gram=2, Poisson Lambda=5 | 21 0,656 0,908 0,348 | 0,503
n-gram=3, Poisson Lambda=5 | 21 0,558 0,782 0,162 | 0,269
n-gram=1, Poisson Lambda=3 | 22 0,980 0,989 0,971 | 0,980
n-gram=1, Poisson Lambda=4 | 22 0,981 0,987 0,974 | 0,981
n-gram=1, Poisson Lambda=5 | 22 0,975 0,985 0,966 | 0,975
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Detector Hit Rates for N-grams (21% Affinity Threshold)
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Figure A.3: Detector hit rates for 1-gram (21% affinity threshold)
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Figure A.4: Detector hit rates for 2-gram (21% affinity threshold)
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Detector Hit Rates for N-grams (21% Affinity Threshold)
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Figure A.5: Detector hit rates for 3-gram (21% affinity threshold)
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