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Industrial Engineering, Hacettepe University

Date:



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Utku Tarık Bilgiç

Signature :

iv



ABSTRACT

MULTI-PERIOD APPOINTMENT PLANNING AND SCHEDULING IN
HEALTHCARE

Bilgiç, Utku Tarık

M.S., Department of Industrial Engineering

Supervisor: Assist. Prof. Dr. Sakine Batun

December 2019, 97 pages

Appointment planning and scheduling (APS) plays a crucial role in patient service

quality as well as utilization of valuable resources in healthcare. In this study, we

considered the integrated problem of appointment planning and scheduling in an out-

patient procedure center (OPC) over a planning horizon of multiple periods. We for-

mulated the problem as a two-stage stochastic mixed-integer linear program (SMILP)

with uncertainty in surgery durations. The first-stage problem consists of period as-

signment of surgeries, sequencing of surgeries in each period and appointment time

for each surgery. In the second stage, surgery durations are realized and cost of patient

waiting and idle time and overtime of operating room (OR) are calculated accord-

ingly. We used symmetry breaking constraints in order to achieve computational ef-

ficiency and considered solution methods such as L-Shaped method, L-Shaped based

branch-and-cut method and Benders’ decomposition. We also considered several

heuristic methods including simple sequencing rules, hierarchical planning, and ge-

netic algorithm. We tested the performance of the proposed solution methods and es-

timated the value of the stochastic solution, the expected value of perfect information
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and the value of integrated planning by conducting extensive numerical experiments.

Keywords: appointment planning, appointment scheduling, healthcare, stochastic

programming, genetic algorithm
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ÖZ

SAĞLIK ALANINDA ÇOK DÖNEMLİ RANDEVU PLANLAMA VE
ÇİZELGELEME

Bilgiç, Utku Tarık

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Sakine Batun

Aralık 2019 , 97 sayfa

Randevu planlaması ve çizelgelemesi, hastalara verilen hizmetin kalitesinde ve önemli

kaynakların verimli kullanılabilmesinde çok büyük rol oynar. Bu çalışmada, bir ayakta

tedavi polikliniğinde, birden çok dönem için planlama ve çizelgeleme kararlarını

beraber ele alan, iki aşamalı stokastik programlama modeli kullanılmıştır. Model,

ameliyat sürelerindeki belirsizlikleri göz önünde bulundurmaktadır. Birinci aşama

problemi ameliyat randevularının dönemlere atanması, aynı dönemdeki ameliyatla-

rın kendi arasında sıralanması ve her bir ameliyat için ayrılan süre kararlarını içe-

rir. İkinci aşama probleminde ise ameliyat süreleri belli olduktan sonra hastaların

bekleme süreleri, ameliyathanenin atıl kaldığı ve fazla mesaide kullanıldığı süreler

belirlenerek maliyetler hesaplanır. Bu modelde, daha iyi çözüm süreleri elde etmek

amacıyla dönemler arası simetriyi kırmak için çeşitli kısıtlar kullanılmıştır. Problem

çözümünde klasik L-shaped yöntemi, dal ve kesik tabanlı L-shaped yöntemi, Ben-

ders ayrıştırma yöntemi ve bu yöntemlerin varyasyonları kullanılmıştır. Bunların ya-

nında, basit sıralama kuralları, hiyerarşik planlama ve genetik algoritma gibi çeşitli

sezgisel yöntemler kullanılmıştır. Kapsamlı sayısal deneylerle, yukarıda bahsedilen
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çözüm yöntemlerinin performanslarını test edilmiş ve elde edilen sonuçlar ile stokas-

tik çözümün değeri, eksiksiz bilginin beklenen değeri ve birleşik planlamanın değeri

hesaplanmıştır.

Anahtar Kelimeler: randevu planlama, randevu çizelgeleme, sağlık hizmetleri, sto-

kastik programlama, genetik algoritma
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CHAPTER 1

INTRODUCTION

Appointment planning and scheduling problem (APSP) is defined as deciding on date

and order of upcoming tasks for a server over a period. In APSPs, the main purpose is

providing high utilization of the server while completing these tasks on time, consid-

ering properties of each of them. APSP is a significant problem in many operational

contexts such as ports, military airfields, legal services, manufacturing or healthcare

environments. For example, servers can be cranes in a port, airfield operations teams

or doctors; and tasks can be cargo ships, airplanes or patient appointments respec-

tively ([1]).

Healthcare expenses is a major component of countries’ budget. On average, 9%

of gross domestic product of a country is dedicated to health expenditures among

Organization for Economic Co-operation and Development (OECD) members. This

percentage varies between 17.2% (in United States) and 2.8% (in Indonesia) ([2]). In

addition to costs, for improving the quality of life of their people, it is necessary for

a country to improve and effectively manage all its health facilities. For the last few

decades, operations research has been used to develop solutions for many healthcare

challenges. These challenges, which range from locating health facilities, radiation

treatment planning, nurse scheduling to organ donation and transplant problems, are

surveyed in [3].

Due to the developments in medical technology, different types of healthcare facilities

such as outpatient procedure centers (OPCs), also known as ambulatory surgery cen-

ters (ASCs), has become more important. In United States, from 1996 to 2006, rate

of hospital-based surgery centers remained almost the same while in OPCs this rate

increased about 300% with estimated 14.9 million visits ([4]). Type of procedures
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performed at these facilities are mostly from wide range of minimal or non-invasive

procedures, such as endoscopy, tonsillectomy and orthopedic surgeries. Duration of

these elective (deferrable, non-urgent) procedures are shorter and they allow patients

to recover at home. In addition to the costs, infection rates and complication rates are

also lower in these centers, compared to hospital-based centers. Since these centers

have separate resources and personnel and are used for elective procedures mostly,

they have greater flexibility in management compared to similar hospital-based cen-

ters. However, this brings many other challenges for better management ([5]).

Visit of a patient to an OPC for a procedure can be summarized in three stages: (i)

intake, (ii) procedure and (iii) recovery. Intake starts with the patient’s check-in and

preparation for the procedure. For the procedure, patient is taken to the operating

room (OR) and then goes through the procedure. Then, the patient is brought to the

recovery room and discharged ([6], [7]). Planning of surgeries, related staff (i.e.,

surgical teams composed of surgeons, anesthetists, nurses and surgical technicians),

physical resources (operating, intake and recovery rooms) and equipment resources

are critical for better utilization of an OPC and higher service quality.

ORs are among the most costly resources of medical facilities and its planning is

essential for OPC’s services ([8]). For this reason, appointment systems are vital

for OPCs. Number of patients to be accepted for each day, their arrival sequences

and arrival times, OR reserved time for their procedures are few of the questions

to be answered while operating an OPC. After these are decided and schedules are

perpared, patients are called and informed about their procedure and given the date

and time. In the appointment scheduling (AS) literature, the term planning is used

for determining the date and the sequence of the procedure of a patient. Scheduling is

used for deciding on their appointment durations after planning decisions are made.

The main source of uncertainty in appointment systems in OPCs is duration uncer-

tainties in each stage of patient’s visit (intake, procedure and recovery). Even though

procedures are pre-determined for each patient and all related information is available,

durations cannot be known with certainty. However, from past data, distributions of

these durations can be determined. Furthermore, due to the elective nature of these

surgeries, patients may not show up for their surgeries or they may be late. While
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deciding on schedules, OPC management should indeed consider and plan according

to these factors.

In an OR of an OPC, idle time may occur between two consecutive procedures or

after all patients’ surgeries are completed before the end of the session (i.e., the end

of the regular working hours). These idle times are indicators of underutilization.

Also, if all scheduled procedures could not be completed before the end of session,

the surgical team would work overtime, which is costly for the management.

In this thesis, we studied the appointment planning and scheduling problem in an OPC

for multiple periods under uncertain procedure durations of patients. In our model,

main decisions are (i) assigning patients to periods, (ii) deciding their position in

their assigned period (sequencing) and (iii) setting their appointment times (schedul-

ing). We have constructed a two-stage stochastic mixed integer linear programming

(SMILP) model for our problem. Our objective function is composed of multiple

objectives, which are patient waiting times, and idle and overtime of OR. Expected

weighted sum of the related costs are minimized over all scenarios. In the first stage,

period and position assignments and procedure duration decisions are made for all

patients simultaneously. In the second stage, waiting, idle time and overtime costs

are calculated for each scenario. We solved this problem with different exact solution

methods and then we analyzed these optimal solutions through simple sequencing

rules. We developed a hierarchical decision making heuristic where, at the beginning,

period assignment problem is solved by only considering overtime cost and then for

final sequencing and time allocation decisions, problem is solved optimally, consider-

ing overall cost. Also, we developed a genetic algorithm for APSP. Patient-to-period

assignments are represented in the chromosomes and simple sequencing rules are

used for evaluating the quality of the solutions. By these heuristic methods, we are

solving the problem in a drastically shorter amount of time and reach high quality

solutions.

We conducted extensive numerical experiments to develop insights for the following

questions:

1. What is the importance of considering uncertainty in surgery durations in APSP?
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2. What is the benefit of considering period assignment, sequencing, and appoint-

ment scheduling decisions simultaneously (rather than hierarchically)?

3. How do the cost parameters in the objective function affect the structure of the

optimal schedules?

The remainder of this thesis is structured as follows. In Chapter 2, literature review

about APSP in OPCs and our contributions to literature by this research is presented

in addition to the brief information about stochastic programming and genetic algo-

rithm. In Chapter 3, detailed definition of the problem and formulation of the model

are presented. Chapter 4 consists of explanations of the proposed solution methods

in detail. In the Chapter 5, computational results and their analysis are given and

discussed. In Chapter 6, we summarize our findings and briefly discuss the future

research directions.
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CHAPTER 2

LITERATURE REVIEW

2.1 Review of Studies on Appointment Planning and Scheduling

Appointment systems are widely used in both service and manufacturing systems for

better management and higher utilization of significant resources. APSP is an impor-

tant issue in wide variety of fields such as healthcare, production, logistics, project

management and more. For example, in [9], for better traffic management and de-

creasing cargo waiting times, cargo ships are scheduled for a crane in a seaport.

In another application in maritime, [10] suggests an appointment system for trucks

to overcome marine terminal gate congestion, considering truck waiting times. In

project management, [11] decides on earliest start time for each activity in a project,

where durations of activities are uncertain. In a healthcare instance, [12] sets appoint-

ment times for patients of a chemotherapy clinic to minimize expected patient wait

times while minimizing expected length of operations in a day.

In healthcare, appointments can be doctor visits or elective surgeries which can be

planned in advance or non-elective surgeries/visits which are unexpected and should

be taken care in short notice ([13]). Challenging factors of APSP and open research

questions are reviewed in [13] in addition to the analysis of three most common

appointment scheduling environments: (i) primary care, (ii) specialty care and (iii)

elective surgery appointments. When the surgery scheduling is considered, another

classification is based on the facility where patients will have these operations. In out-

patient surgery setting, patients are admitted and discharged from the facility on the

day of appointment surgery. These surgeries can be performed in ASCs in hospitals

or OPCs. On the other hand, in inpatient surgeries, patients are hospitalized before
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surgery and recover in hospital for few more days ([14]). In comparison to inpatient

setting, surgery start times and patient waitings before the procedures are more im-

portant than day of surgery for service quality and patient satisfaction in outpatient

surgeries. Unpunctuality of patients or no-shows/cancellations should be considered

and prepared against by the facilities. Detailed surveys about appointment scheduling

in outpatient setting can be found in [15] and [16]. [15] gathers previous problem for-

mulations and modeling considerations in outpatient setting. [16] presents a updated

review by classifying the studies based on the level of decisions included, environ-

mental factors, modeling approaches and solution methods. For various procedures,

OPCs are preferred rather than hospital settings since they get higher service qual-

ity with lower risk of infection and complication rates. Also, they are less costly

([5]). Due to these cost and health benefits of the centers, starting with work of [17],

appointment scheduling in outpatient setting has been getting extensive amount of

attention.

In addition to scheduling patients, there are other factors in appointment scheduling

in outpatient setting such as scheduling staff (nurses, surgical teams and surgeons),

physical resources (related equipments with operations) and facilities (intake rooms,

procedure rooms and recovery rooms). When the focus is mostly on these, related

problems are referred to as surgery scheduling or operating room scheduling prob-

lems. Extensive surveys([14, 18, 8, 19]) can be reviewed for further details.

[16] is the most recent and an extensive review paper on outpatient appointment sys-

tems in healthcare. In the remaining parts of the chapter, we will use their categoriza-

tion about outpatient appointment scheduling (OAS). In outpatient setting, decisions

can be classified in three hierarchical levels: (i) strategic level, (ii) tactical level and

(iii) operational level. Strategic level decisions are mainly design decisions which

effect long term plans for the facility. These decisions include number of resources,

access policy and walk-ins. In AS problems, strategic level decisions are mostly

taken as input. In the tactical level, appointment intervals, capacity allocated to dif-

ferent surgery groups, priority of patient groups, scheduling window and more are

considered. These decisions can be described as medium term planning decisions. In

the shortest term, day-to-day plans about each individual patient, there are operational

level decisions. Decision of appointment sequencing, deciding on appointment start
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times, days, patient-to-server/resource allocation, acceptance of patients in sequential

(online) scheduling are examples of operational decisions. In the literature, combina-

tions of tactical and operational decisions are studied to represent real life conditions

with given strategic decisions as input. These decisions can be made sequentially or

simultaneously.

For better representation of the scheduling environment, some environmental factors

should be considered. Uncertainty of procedure durations is one of the main sources

of complexity of the problem. In the prior studies, to simplify the problem, all surg-

eries are assumed to be same kind, which means considering all surgery durations

as independent and identically distributed. Another source of uncertainty is no-show

of patients or cancellation of surgeries. For instance, in [20], heterogeneous patients

through different no-show rates are considered. To deal with this issue, overbooking

is a solution however it may decrease the patient satisfaction. [21] presents benefits of

overbooking at different clinic sizes (i.e., number of patients) and different no-show

rates and cost environments in OPCs. In addition to these, patient unpunctuality is

another factor to be considered.

In the literature, due to uncertainties in the nature of OAS problem, stochastic pro-

gramming and stochastic dynamic programming are used extensively to model these

problems. In [12], a two-stage stochastic programming model is used for modeling

appointments in a chemotherapy clinic. They determine appointment times in the first

stage and chair of the patient, waiting times and patients’ discharge times are decided

for each scenario in second stage. [22] uses a multi-stage stochastic linear program

(SLP) for sequential appointment scheduling where appointment requests from cus-

tomers defines the stages. [23] used Markov Decision Process (MDP) appointment

scheduling of chemotherapy patients considering the due dates and time windows.

Approximate Dynamic Programming (ADP) is used to overcome the intractability of

the problem. In [24], they used MDP for dynamic appointment scheduling decisions

for a clinic where patient no-shows and cancellations are considered.

OAS is a complex problem and it is not easy to reach the optimal solution or near-

optimal solutions with deterministic error bounds. For gaining insights, better under-

standing and analyzing the problem for better practice, heuristic methods are highly
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used. For example, [25] used a heuristic appointment policy derived considering the

optimal solution structure for appointment scheduling of patients with pre-determined

sequences. Metaheuristics are also commonly used with simulation as a candidate so-

lution evaluation mechanism. In [7], a discrete event simulation model is constructed

to review implementation of various easy-to-implement heuristics and then used in

bi-criteria genetic algorithm (GA) to find Pareto optimal set of solutions for surgery

planning and scheduling. [26] worked on multi-stage OR scheduling by using three

simulation-based tabu search algorithms.

Our focus on literature will be on the combination of appointment planning and

scheduling decisions, and dealing with uncertainties through stochastic programming

related to our research. The patient list is pre-determined and all patients are sched-

uled simultaneously in an offline manner. Next, we will present the papers most

relevant to our research in detail.

[27] formulated the appointment scheduling problem for a single server as a two-

stage SLP. In the objective function, customer waiting time, server idle time and

server overtime are considered. The sequence of customers to be scheduled are given

and the appointment times (job allowances) are determined under service time uncer-

tainty. For the solution, they designed a L-shaped algorithm with sequential bounding

approach, by exploiting the decomposable structure of the problem to have compu-

tational advantage. They performed computational experiment for exploring insights

through different cost coefficients and different i.i.d. service times.

In [28], effects of simultaneous decisions of both surgery sequencing and scheduling

are investigated. They have extended the SLP model in [27] into a SMILP by in-

cluding sequencing decision. A binary decision variable for immediate precedence of

surgeries are used. By usage of this decision variable, it is possible to assign different

waiting time and idle time cost coefficients for different sequences of patients. Since

the problem is NP-hard, they could not solve the instances with more than three pa-

tients. They tried different heuristics and compared them in different cost parameter

settings. They concluded that sequencing surgeries in an order of increasing variance

works well.

Another model considering simultaneous sequencing and scheduling decisions is [29].
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They constructed a new position-based model instead of modeling through prece-

dence based decision variables in [28]. In this formulation, there is no need for sub-

tour elimination constraints. To strengthen their model, they calculated tighter upper

bounds on waiting time and idle time decision variables. Also, they used sample

average approximation (SAA) as the solution approach and proved that the prob-

lem is NP-complete. As alternative solution methods, they developed three different

Benders’-based algorithms which use a simplified master problem heuristic for solv-

ing the first-stage in iterative steps of Benders’ decomposition.

[30] considered determining optimal number of patients to be scheduled simultane-

ously in addition to sequencing and scheduling decisions by extending [28]. Also,

patient no-shows considered along with surgery duration uncertainty. For strength-

ening the model formulation, they calculated upper bounds on second-stage decision

variables. For exploiting the model more, mean value cuts for upper bound in L-

shaped algorithm are used similar to [31]. In addition to L-shaped method, hybrid

multi-cut L-shaped and branch-and-bound with progressive hedging are used for ex-

act solution. For larger instances, they came up with simple heuristics for sequencing

by considering no-show rate and variance of patients and solving optimal for schedul-

ing for a fixed sequence.

The most recent work about this problem is [32] where they proposed a new two-

stage SMILP formulation and compared their model with [30] and [29] and showed

performance improvements.

In elective surgery planning, block scheduling and open scheduling are two main sys-

tems. In block scheduling, blocks of OR time is assigned to surgeons and surgical

groups for their surgeries. However, in open scheduling, all surgeons submit their

surgeries up until schedule will be generated. Final schedule is decided by OR man-

ager for the whole surgical listing ([13], [33]). In the literature, for the multi-period

problems, mostly block scheduling problems exist however these studies consider

resource allocation more rather than surgery schedules and start times.

In [34], in multiple ORs, surgery sequencing and scheduling is considered in an in-

tegrated manner. In their study, they constructed a three-stage SMILP model, where

binary precedence-based decision variables are used to model the sequencing deci-
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sions. In the first stage of the problem, OR opening decisions and patient to OR

assignments are made. After reveal of case cancellation information, sequence of pa-

tients in each OR and surgery starting times are decided. In the last stage, after real

surgery durations are revealed, actual surgery start times, waiting and idling times,

and costs are calculated. Their model also considers time windows for patients and

soft/hard session length constraints for ORs.

Identical OR case is similar to the case of multi-period single OR planning and

scheduling problem where all periods are identical. In [34], due to having OR opening

decision with a fixed cost, they could use soft/hard session deadlines for the surgeries

to be scheduled since opening a new OR is also possible. Compared to our posi-

tion based model, they constructed their model by using binary decision variables

for precedence of surgeries. To solve their model, they used Benders’ decomposition

method with feasibility cuts because of the structure of their model. In their compu-

tational experiments, uniform distribution for surgery durations are used and a three

different duration-levels are used to represent historical real data from a hospital with

low number of scenarios (largest solved is 400 scenarios). They provide sensitivity

analysis results and managerial insights based on these small instances. Compared

to [34], we are able to solve larger instances with higher number of scenarios and

different types of surgeries, which we believe is a more realistic representation of an

OPC.

In our work, we are planning and scheduling patients from a predetermined list of

patients for multiple periods (i.e. scheduling inside time blocks of OR assigned to

surgeons/surgical groups). In this thesis, we constructed a two-stage stochastic pro-

gramming model for appointment sequencing and scheduling decisions simultane-

ously under uncertain patient surgery durations which can be extended to the case

with no-show probabilities. Through tight upper bounds, symmetry breaking con-

straints and valid inequalities, exact solution can be reached in acceptable time for

small instances. By using simple sequencing rules, we gained insights about each

decision in the model and developed a genetic algorithm which enables us to solve

much larger instances and reach near optimal solutions with less than 1% optimality

gap.
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2.2 Background Information on Stochastic Programming

2.2.1 Stochastic Programming

Stochastic programming is a method for considering uncertainties in mathematical

models. Stochastic parameters are used in the model for representing these uncer-

tainties. Each possible realization of these stochastic parameters are added into the

model explicitly by scenarios with a probability. The purpose of stochastic program-

ming models is to minimize/maximize the expected value of objective function over

these scenarios.

A two-stage stochastic program is the simplest and most commonly used framework

in stochastic programming. This framework is used where a decision should be made

before all the uncertainty is revealed at a point of time. Full information reveal sepa-

rates the problem into two-stages. In the first-stage problem, decisions are made not

knowing the exact information. However, in the second-stage, for fixed decisions of

first-stage for each scenario, new decisions are made in the case of all uncertainties

revealed. The general two-stage stochastic programming model is given in [35] as

follows:

min z =cTx+ Eξ
[
min q(ω)Ty(ω)

]
s.t. Ax = b

T (ω)x+W (ω)y(ω) = h(ω)

x ≥ 0, y(ω) ≥ 0

(2.2.1)

where x denotes the first-stage variables and y(ω) denotes second-stage variables for

each realization ω. The objective function is composed of the first-stage cost cTx

and the expected cost of second-stage, Eξ
[
min q(ω)Ty(ω)

]
, which depends on each

ω, realizations of ξ. ξ represents the uncertainties in the second stage and ω is a

realization of ξ. In the model, first-stage constraint Ax = b has its all parameters

certain. In the second stage, stochasticity is represented by technology matrix T (ω),

recourse matrix W (ω) and right hand side vector h(ω) through realizations of ξ.

It is also possible to represent the stochastic program in its deterministic equivalent
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form. Deterministic equivalent problem (DEP) of (2.2.1) is stated in [35] as follows:

min z =cTx+ Q(x)

s.t. Ax = b

x ≥ 0

(2.2.2)

where

Q(x) = Eξ [Q(x, ξ(ω))] (2.2.3)

and, for a given realization w,

Q(x, ξ(ω)) = min
y

{
q(ω)Ty |W (ω)y = h(ω)− T (ω)x , y ≥ 0

}
(2.2.4)

In the above model, Q(x) represents the expected value of second-stage problem

depending on first-stage decisions, x.

By representing ξ through finite set of scenarios k ∈ K with their probabilities pk,

we can write the extensive form of the problem. Extensive form (EF) formulation is

stated by [35] as follows:

min cTx+
K∑
k=1

pkq
T
k yk

s.t. Ax = b

Tkx+Wky = hk k = 1, . . . , K

x ≥ 0, yk ≥ 0 k = 1, . . . , K

(2.2.5)

2.2.2 Solution Methods

2.2.2.1 L-shaped Method

L-shaped Method (LM) is a decomposition method where the main idea is to approx-

imate the expected objective function value of second-stage problem, Q(x). In this

method, the problem is decomposed into a main problem, restricted master problem

(RMP), and set of subproblems (SPs). First-stage decision variables and constraints

form RMP and for fixed first-stage decisions and for each scenario, second-stage de-

cision variables and constraints form SPs. The method works by solving RMP to
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optimality first, obtaining a feasible solution for all SPs, if not adding feasibility cuts

and resolving. After a feasible solution is found, SPs are solved and optimality cuts

are generated if necessary. This process continues iteratively until no more cuts are

generated and objective function value of RMP converges.

In [35], steps of the algorithm are given as follows:

Step 0 Set r = s = v = 0.

Step 1 Set v = v + 1 and solve

min z =cTx+ θ (2.2.6)

s.t.Ax = b (2.2.7)

Dlx ≥ dl l = 1, . . . , r (2.2.8)

Elx+ θ ≥ el l = 1, . . . , r (2.2.9)

x ≥ 0 θ ∈ < (2.2.10)

In this formulation (2.2.8) denotes feasibility cuts and (2.2.9) denotes optimal-

ity cuts. Let (xv, θv) be an optimal solution. If no optimality cut is present, set

θv equal to −∞ and exclude from calculation of xv

Step 2 Check whether xv is feasible for all second-stage problems. If not, add at least

one feasibility cut by solving the following model and return to Step 1. For

each scenario k:

minw′ = eTv+ + eTv−

s.t. Wky + Iv+ − Iv− = hk − Tkxv

y ≥ 0, v+ ≥ 0, v− ≥ 0

(2.2.11)

where eT = (1, . . . , 1). Let σv is the associated dual variable of the model.

Feasibility cut (2.2.8) is defined by the following:

Dr+1 = (σv)TTk

dr+1 = (σv)Thk
(2.2.12)

Else, go to Step 3
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Step 3 For each scenario k, solve the following problem

minw = qTk y

s.t. Wky = hk − Tkxv

y ≥ 0

(2.2.13)

Let πvk be the values of dual variables of the optimal solution of the above

model. For optimality cut (2.2.9), define

Es+1 =
K∑
k=1

pk · (πvk)TTk

es+1 =
K∑
k=1

pk · (πvk)Thk

(2.2.14)

If θv ≤ es+1 − Es+1x
v, add (2.2.9) and return to Step 1.

Else STOP; current solution xv is optimal.

2.2.2.2 L-shaped Method in a Branch-and-Cut Framework

In the classical LM, RMP is solved optimally at each iteration. This means, a new

branch-and-bound tree is created and explored for solving the mixed integer RMP ev-

ery single time. However, using L-shaped method in a branch-and-cut (B&C) frame-

work changes the cut addition mechanism to the RMP. There is no difference in the

generation of feasibility or optimality cuts in LM or model used. In B&C LM, cuts

are added each time a new integer feasible solution is found in a single branch-and

bound tree. By this way, the information gained from previous steps are conserved in

one big tree instead of creating it every time. This helps to decrease the computational

time when RMP is hard to solve.

2.2.2.3 Benders’ Decomposition Algorithm

Benders’ decomposition algorithm (BDA) is a general algorithm for dealing with

large-scale problems by decomposing the problem into a master problem and (many)

subproblems [36]. LM is a special case of Benders’ decomposition where the sub-

problem is decomposed into further scenario subproblems.
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2.2.3 Expected Value of Perfect Information and the Value of the Stochastic

Solution

In stochastic programming, first-stage decisions should be made before uncertainty is

revealed. Expected value of perfect information (EVPI) is a concept about maximum

amount that a decision maker would pay for gaining this accurate future information

beforehand [37]. Let ξ has only one particular scenario realization and the problem is

as follows:

min z(x, ξ) = cTx+ min
{
qTy |Wy = h− Tx, y ≥ 0

}
s.t. Ax = b

x ≥ 0

(2.2.15)

where x̄(ξ) is optimal solution for (2.2.15), considering a single scenario and z(x̄(ξ), ξ)

is the objective function value of the optimal solution. Since we have many realiza-

tions of ξ represented by many scenarios, we could find the expected value solution

which known as wait-and-see (WS) solution.

WS = Eξz(x̄(ξ), ξ) (2.2.16)

To find the value of information, we compare it with recourse problem (RP) (2.2.1)

which is as follows:

RP = min
x

Eξz(x, ξ) (2.2.17)

and EVPI is defined as

EV PI = RP −WS (2.2.18)

Solving stochastic programs are computationally expensive. Value of the stochastic

solution (VSS) is a measure to determine the worth of solving the stochastic program,

instead of solving a deterministic model where stochastic parameters replaced with

their expected values. Expected value problem (EV) considers a single scenario ξ̄

where ξ̄ = E(ξ) as follows:

EV = min
x
z(x, ξ̄) (2.2.19)
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where the optimal solution of EV will be x̄(ξ̄). The expected result of using EV

solution (EEV) is as follows:

EEV = Eξ(z(x̄(ξ̄), ξ))) (2.2.20)

The difference between using the EV solution and solving our stochastic program-

ming model optimally will give us the VSS.

V SS = EEV −RP (2.2.21)

2.3 Background Information on Genetic Algorithm

Metaheuristics are "higher" level heuristic which can be used for a wide range of

complex problems to obtain promising solutions. All metaheuristics are mostly in-

spired by nature, they include stochastic components and they need some problem

specific parameter tuning. It is important for a metaheuristic to balance between di-

versification (exploration) and intensification (exploitation) while searching through

the solution space ([38]).

Genetic Algorithm (GA) is a metaheuristic algorithm, inspired theory of evolution by

natural selection by Charles Darwin, initially developed in [39]. GA has its roots in

the idea of survival of the fittest among a population. In GA, solutions of the prob-

lem are represented through chromosomes which are encodings of different solutions

in arrays, and each chromosome is constituted of genes. These chromosomes are

individuals of a population. As the algorithm proceeds, some chromosomes are se-

lected from the population and their genes are recombined, which is called crossover.

After crossover, new solutions, offsprings are generated. With some probability, an

offspring can go through mutation, where its genes are changed. Solution quality of

each chromosome is evaluated by a fitness function and fitness values are calculated.

In the population, through crossover, the chromosomes with high fitness values are

spread through next generations and the whole population converges. The pseudo

code for a generic GA is as follows:
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Algorithm 1 Genetic Algorithm
Generate population_size many chromosomes for creating the initial

population

Compute fitness of each chromosome

while stopping criteria is not satisfied do

Choose two parent chromosomes

Apply crossover for reproduction

Generate offsprings

With probability pm, mutation happens

Calculate fitness of offsprings

Form next generation

end
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CHAPTER 3

PROBLEM DEFINITION AND MATHEMATICAL FORMULATION

3.1 Problem Definition

In this thesis, we considered the integrated problem of appointment planning and

scheduling over a multi-period planning horizon. Our particular focus is on the

scheduling of surgeries in an OR in an OPC. Three different levels of decisions, (i)

surgery-to-period assignment, (ii) surgery sequence in a period, and (iii) allocated

duration for each surgery, are determined simultaneously in this problem.

Procedure is a general term which contains surgical or non-surgical operations. How-

ever, we are focusing on planning and scheduling of an OR and focusing on surgical

procedures, surgeries. Throughout this thesis, we use the terms "procedure", "patient"

and "surgery" interchangeably when referring to the job to be processed on the server,

which is the OR.

An OPC can be specific for one surgical department or there can be different depart-

ments, some of whom may use the same OR for their surgeries. Different time periods

are assigned for completing these surgeries in a week and all surgeries should be com-

pleted in these periods. These time periods are typically days or half-days. Aim of

our research is to successfully sequence and schedule a finite and pre-determined set

of elective surgeries into available OR time periods for department(s). After all deci-

sions are made, patients are called and informed for the time of their surgeries. The

setting for the problem is an offline scheduling environment where all arrangements

are made before the first period starts. Urgent patients are assumed to be handled sep-

arately by allocating some ORs or blocks of OR time which is common in practice.

Therefore, in our problem, while making planning and scheduling decisions, urgent
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and walk-in patients are not considered and future adjustments are not allowed in the

schedules, during the planning horizon.

Due to the scope of our work, we assume that ORs are the bottleneck resources and we

do not consider the intake or recovery phases of surgeries and their required resources.

We assume every patient will be ready on-time for their surgeries on their determined

time. Surgical teams and nurses are assumed to be ready for each operation regardless

of their schedules. OR setup times are considered to be included the procedure times,

so a surgery can start immediately after the previous one ends. An OR will stay idle

if the surgery of a patient ends before the appointment time of the next patient and

no surgery can start before their appointment time. In a period, all assigned surgeries

should be completed either during regular time or overtime.

For the planning horizon, patients to be scheduled are pre-determined. Type of their

surgery and other necessary information is known about them. However, the duration

of their surgeries are uncertain and imperfect information is available through proba-

bility distributions. Since the elective surgeries do not involve medical emergencies,

there is no priority between patients. Also, neither starting time, nor period prefer-

ence is allowed among the patients. However, our model can easily be extended for

the case where surgeon or patient preferences are considered.

In this problem, there are two opposing parties to be satisfied. Since OR is scarce

and a valuable resource of an OPC, it should be highly utilized. No idle time be-

tween the surgeries or overtime/undertime of the OR is desired by OPC management.

On the other side, patient satisfaction is an important issue and it is not desired for

them to wait for their surgeries after their planned time. Minimizing idle time of the

OR is a conflicts with minimizing waiting time of the patients. Patient waiting time

minimization requires longer surgery durations which will not lead any surgeries to

exceed its allocated time. On the other hand, this will lead to idle time of OR between

surgeries and overtime to complete all surgeries. Considering the importance of both

objectives, the tradeoff should be balanced.
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3.2 Mathematical Formulation

We have constructed a two-stage SMIP for multi-period appointment planning and

scheduling problem in an OPC. In particular, we assign each surgery to a position in

a period and then by allocating surgery durations, we determine their planned surgery

start times, i.e., appointment times.

Objective function of the problem is composed of three pieces, (i) patient waiting time

cost, (ii) OR idle time cost and (iii) OR overtime cost. If a surgery has to start after its

appointment time (due to unfinished previous surgery), patient has to wait for his/her

surgery and this leads to waiting time cost. If a surgery ends before appointment time

for the next surgery, then the OR will be idle until the arrival of the next patient, which

leads to idle time cost. Last but not least, if all the surgeries cannot be finished within

the regular working hours in the period, they should be finished in overtime, which

results in overtime cost. All these cost cost components are combined into a simple

objective function by using proper cost coefficients (weights).

In the first stage of the problem, all the decisions about period assignment, sequencing

and scheduling are made. In the second-stage problem, after all first-stage decisions

are fixed, waiting time of each patient and, idle time and overtime of OR are cal-

culated for each scenario of surgery durations. The objective function is completely

composed of second stage variables since the first stage does not involve any cost. Our

first-stage problem is a mixed integer program (MIP), whereas second-stage problem

is an easy to solve linear program (LP). The extensive form includes both stages and

is therefore a MIP.

In the remaining part of this section, we introduce our notation used in our model, then

present extensive formulation of our two-stage SMILP and then explain the model.

Indices
i: Index for surgeries

k: Index for positions

t: Index for time periods

s: Index for scenarios
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Sets
S: Set of scenarios

T : Set of time periods

N r: Finite set of surgeries to be scheduled (i.e. i = 1, . . . , N )

Nd: Set of dummy surgeries to be scheduled to mark the end of the period

(i.e. i = N + 1, . . . , N + T )

N : Set of all surgeries N = N r ∪Nd

K: Set of positions ( |K| = N + 1 )

Parameters
cw: Per unit waiting time cost

cs: Per unit idle time cost

co: Per unit overtime cost of OR

cu: Per unit undertime cost of OR

MP s
k : Sufficiently large constants for patient waiting time in position k in scenario s

MS: Sufficiently large constant for OR idle time

dt: Length of available regular time in a period (session length)

dsi : Actual duration of surgery i in scenario s

dmini : Shortest duration of surgery i among all scenarios

dmaxi : Longest duration of surgery i among all scenarios

ps: Probability of scenario s

Decision Variables

First Stage Decision Variables

yikt=

1, if patient i is assigned to position k in period t

0, otherwise

xkt: Allocated surgery duration for kth patient in period t

Second Stage Decision Variables
psikt: Waiting time of patient i in position k in period t in scenario s

ssikt: Idle time of OR before patient i in position k in period t in scenario s

ost : OR overtime in period t in scenario s

ust : OR undertime in period t in scenario s
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Mathematical formulation

Min
∑
s∈S

ps

[∑
t∈T

(∑
k∈Kt

∑
i∈Nr

(cw · psikt + cs · ssikt) + co · ost + cu · ust

)]
(3.2.1)

subject to∑
i∈N

yikt ≤ 1 k ∈ K, t ∈ T (3.2.2)

∑
t∈T

∑
k∈K

yikt = 1 i ∈ N (3.2.3a)

∑
k∈K

y(N+t)kt = 1 t ∈ T (3.2.3b)

∑
k∈K

k · y(N+t)kt ≥
∑
k∈K

k · yikt + 1 i ∈ N r, t ∈ T (3.2.4)

∑
i∈N

yikt ≥
∑
i∈N

yi(k+1)t k ∈ K, t ∈ T (3.2.5)

∑
i∈N

psikt −
∑
i∈N

ssikt =
∑
i∈Nr

psi(k−1)t +
∑
i∈Nr

dsi · yi(k−1)t − x(k−1)t k ∈ K, t ∈ T, s ∈ S

(3.2.6)

ost − gst =
∑
i∈Nr

∑
k∈K

dsi · yikt +
∑
i∈Nr

∑
k∈k

Ssikt − dt t ∈ T, s ∈ S (3.2.7)

psi1t = 0 i ∈ N, t ∈ T, s ∈ S (3.2.8a)

ssi1t = 0 i ∈ N, t ∈ T, s ∈ S (3.2.8b)

psikt ≤MP s
k · yikt i ∈ N, k ∈ K, t ∈ T, s ∈ S (3.2.8c)

ssikt ≤MS · yikt i ∈ N, k ∈ K, t ∈ T, s ∈ S (3.2.8d)

yikt ∈ {0, 1} i ∈ N, k ∈ K, t ∈ T (3.2.9)

xkt ≥ 0 k ∈ K, t ∈ T (3.2.10)

psikt, s
s
ikt ≥ 0 i ∈ N, k ∈ K, t ∈ T, s ∈ S(3.2.11)

ost , u
s
t ≥ 0 t ∈ T, s ∈ S(3.2.12)
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Objective function (3.2.1) is composed of the expected cost of waiting time, idle

time, overtime and undertime of each period for the whole planning horizon over all

scenarios.

Constraint (3.2.2) and (3.2.3a) are for properly assigning each patient to their posi-

tions. They ensure that each patient will be assigned to a single position and at most

one patient can be assigned to any position respectively. Constraint (3.2.5) is respon-

sible for placing all surgeries in period to consecutive positions and assigning earlier

positions first.

In our model, similar to [30], end-of-period dummy surgeries are defined. Actual

length of a period is the sum of all surgery durations and idle times between surgeries

for a period. However, after the last surgery, idle time should be excluded since the

period ends when the last surgery is completed. Dummy surgeries are placed to end

of each period by Constraint (3.2.3b) and Constraint (3.2.4) and they have specific

surgery index |N |+ t for each period t ∈ T .

Constraints which are described above ((3.2.2), (3.2.3), (3.2.4), (3.2.5)) defines the

first-stage problem. Second-stage problem is always feasible for the given assign-

ments from the first stage. In the second stage problem, waiting time, idle time, over-

time and undertime values are calculated for each scenario, for the given first-stage

solution. In Figure 3.1, calculation of second-stage decision variables are illustrated

on a timeline.

If a patient waits for another patient’s surgery to end, patient waiting (P s
ikt) occurs.

Otherwise, if the surgery of previous patient ends earlier than the appointment time of

the next patient, OR idle time (Ssikt) occurs (3.2.6). In any scenario s, for a position k

on a period t, both waiting time and idle time will not take positive values since their

columns are linearly dependent and both variables will lead an increase in objective

function. In another way, we can define waiting and idle time for a position as follows:

psk = max
(
0, P s

k−1 + dsi · yk−1 − xk−1
)
,

ssk = max (0, xk−1 − P s
k − dsi · yk−1) .

The same discussion is valid for overtime and undertime, and both of these variables

will not take positive value at the same time. In a period, if the surgeries cannot be
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(a) (b)

(c)

Figure 3.1: (a) Waiting time, (b) idle time, and (c) overtime, undertime calculations

for a period.

completed within the regular times, then OR overtime is incurred. Conversely, if the

surgeries are completed before the end of available time, the corresponding idle time

of the OR considered as undertime (3.2.7). We can also define these variables as

follows:

ost = max

(
0,

N∑
i=1

N∑
k=1

dis · yikt +
N∑
i=1

N∑
k=1

Sikts − dt

)
,

ust = max

(
0, dt−

N∑
i=1

N∑
k=1

dis · yikt −
N∑
i=1

N∑
k=1

Sikts

)
.

Since the first surgery of a period starts at time zero, there is no waiting and idle time

for surgeries of first position as stated in Constraints (3.2.8a) and (3.2.8b). Constraint

(3.2.8c) assures that, waiting time would be assigned to right patient and position

on the right period and no empty positions would be assigned any waiting time. As

a sufficiently large number for this constraint, we calculate an upper bound, MP s
k ,

considering duration of surgeries in a scenario, minimum surgery duration and the

position of the surgery.

MP s
k =

(
k−1∑
l=1

(
dscsl − dsminl

))
(3.2.13)
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where

dscsk: kth longest surgery duration in scenario s and

dsmink : kth shortest surgery duration after sorting dmini in increasing order.

Proof of this bound can be found in Appendix B. Similarly, as a sufficiently large

number for the Constraint (3.2.8d), we used the bound calculated in [29] where

MS = max
i∈Nr

(
max
s∈S

dsi −min
s∈S

dsi

)
(3.2.14)

Last but not least, Constraints (3.2.9) (3.2.10) (3.2.11) and (3.2.12) are non-negativity

and set constraints.

3.3 Symmetry Breaking Constraints and Valid Inequalities

3.3.1 Bounds on xkt

Let surgery i′ be assigned to the first position on period t. Then, for all scenarios,

allocating more time than dmaxi′ or less than dmini′ for x1t will cause extra idle or wait-

ing time cost. Then, let i′′ be assigned to the second position, after i′. This time,

considering their total time, it is never a good idea to assign more than dmaxi′ + dmaxi′′

or less than dmini′ + dmini′′ for x1t + x2t. Proceeding in this manner, we can come up

with the following valid inequalities for allocated durations:

k∑
l=1

N∑
i=1

dmini · yilt ≤
k∑
l=1

xlt k ∈ K, t ∈ T (3.3.1a)

k∑
l=1

xlt ≤
k∑
l=1

N∑
i=1

dmaxi · yilt k ∈ K, t ∈ T (3.3.1b)

The above equations provide lower and upper bounds on the sum of allocated surgery

durations up to position k on day t. By using Equation (3.3.1b), an upper bound for

each xkt can be obtained as follows:

xkt ≤
∑
i∈Nr

MXik · yikt k ∈ K, t ∈ T (3.3.2)
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where MXkt is defined as:

MXkt =

d
max
i , k = 1, t ∈ T∑k−1
l=1 (ρl + dmaxi ) , k ≥ 2, t ∈ T

(3.3.3)

where ρl denotes the lth value when (dmaxi − dmini ) for each i ∈ N r are sorted in

decreasing order. Equation (3.3.2) has a larger (looser) upper bound than Equation

(3.3.1b) since it is derived from Equation (3.3.1b). However, it is for each xkt variable

for k ∈ K, t ∈ T . By using Constraint (3.2.6) and Equations (3.3.1), a lower bound

for each xkt is derived as follows:

k∑
l=1

N∑
i=1

dmini · yilt ≤ xlt k ∈ K, t ∈ T (3.3.4)

Equation (3.3.4) has the same lower bound compared to Equation (3.3.1a) and it is a

tighter bound since it is for each xkt. Also, both of the bounds ensure that no duration

is assigned to an empty position. Proofs of these upper and lower bounds can be

found in Appendix A in detail.

3.3.2 Symmetry Breaking Constraints

All periods are identical in our problem. Due to its combinatorial nature, it leads

many identical solutions just with different period indexing. In other words, there

is complete symmetry with respect to periods. It is highly critical to eliminate these

equivalent solutions to achieve computational efficiency ([30, 31, 40]).

To overcome this symmetry issue, we consider two different sets of symmetry break-

ing constraints. The main idea in the first set of constraints is restricting the possible

period assignments for some surgeries. We fix the surgery with lowest surgery index

to the first period, then restrict the surgery with second lowest surgery index to be

assigned to first or second periods and so on. These constraints eliminate identical

solutions by bounding the feasible region without eliminating any unique feasible

solution. It is given as follows:

i∑
t=1

∑
k∈K

yikt = 1 i = 1, . . . , T − 1 (3.3.5)
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Second set of symmetry breaking constraints ensures that every period has at least

as many surgeries as the next period. In this idea, the first period will accommodate

the highest number of surgeries, then the second period and so on. Also, there is no

setup cost for assigning surgeries to a period, which leads to no incentive in having

an empty period while overloading another period with many surgeries (|N | > |T |
in a practical instance). So, there should be at least one surgery in a period. The

corresponding constraints are given as follows:∑
k∈K

k · y(N+t)kt ≥
∑
k∈K

k · y(N+t+1)k(t+1) t ∈ T − {T − 1} (3.3.6)

∑
k∈K

∑
i∈Nr

yikt ≥
∑
k∈K

∑
i∈Nr

yik(t+1) t ∈ T − {T − 1} (3.3.7)

Only one of Constraints (3.3.6) and (3.3.7) or both of them can be used together.

However, we cannot use both Equation (3.3.5) and Equations (3.3.6) and/or (3.3.7).

They might be eliminating some part of solution space which are unique, not repeti-

tion of other solutions, and may include the optimal surgery-to-period assignments.

As an example, first surgery does not have to be in the period accommodating highest

number surgeries.

By considering the computational performance of both symmetry breaking constraint

sets, as it is presented in Chapter 5, using only Equation (3.3.7) performs best. By

keeping that symmetry breaking scheme in mind, we derived additional valid inequal-

ities which may improve the computational performance.

3.3.3 Valid Inequalities Derived from Symmetry Breaking Constraints

We defined the available sets of positions for both real surgeries (Kr
t ) and dummy

surgeries (Kd
t ) on each period, whereKt = Kr

t ∪Kd
t by considering Equation (3.3.7).

Also, pft and plt, the smallest and the largest possible total number of surgeries (in-

cluding both real and dummy surgeries) can be assigned to period t are defined re-

spectively. So Kd
t = {pft, . . . , plt}. Since the first period would have the highest

total number of surgeries among all periods. In first period, pf1 is calculated by con-

sidering the case of assigning surgeries to periods evenly. For other periods t ≥ 2,

pft = 2 since there should be at least one real and one dummy surgery in each pe-

riod ((3.3.8)). For calculating the largest possible number of total surgeries, for the
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Table 3.1: Unique combination of number of patients in each period (including end-

of-period dummy variables)

Period 1 Period 2 Period 3

9 2 2

8 3 2

7 4 2

7 3 3

6 5 2

6 4 3

5 5 3

5 4 4

first period, case of assigning only two surgeries (one real, one dummy) to each other

periods and assigning remaining surgeries to the first period is considered. For t ≥ 2

periods, pft is calculated in a similar manner. The case of assigning a two surgeries

(one real, one dummy) to later periods than t and splitting the remaining number of

surgeries equally between t and previous periods. It is defined in (3.3.9).

pft =

d
N
T

+ 1e, t = 1

2, t ≥ 2
(3.3.8)

plt =

|N | − |T |+ 2, t = 1

b (N−T )−(T−t)
t

+ 1c, t ≥ 2
(3.3.9)

To explain this symmetry breaking scheme by an example, let us consider a toy prob-

lem with 3 periods and 10 patients (13 patients including end-of-period dummy vari-

ables). There are actually 8 different combinations for number of surgeries on each

day, as explicitly given in Table 3.1. For these combinations, sets for available posi-

tions of surgeries will be as following:

Kd
1 : {5, 6, 7, 8, 9} Kr

1 = {1, 2, 3, . . . , 7, 8}
Kd

2 : {2, 3, 4, 5} Kr
2 = {1, 2, 3, 4}

Kd
3 : {2, 3, 4} Kr

3 = {1, 2, 3}

29



Regarding the above symmetry breaking idea, following constraints are added to the

model.∑
k∈Kd

t

y(N+t)kt = 1 t ∈ T (3.3.10a)

∑
t∈T

∑
k∈Kr

t

yikt = 1 i ∈ N r(3.3.10b)

∑
k/∈Kd

t

y(N+t)kt = 0 t ∈ T (3.3.11a)

∑
t∈T

∑
i∈Nr

∑
k/∈Kr

t

yikt = 0 (3.3.11b)

∑
k∈Kt

∑
i∈Nr

yikt ≥ pft − 1 t ∈ T (3.3.12a)

∑
k∈Kt

∑
i∈Nr

yikt ≤ plt − 1 t ∈ T (3.3.12b)

∑
t∈T

∑
k∈Kt

k · y(N+t)kt = N + T (3.3.13)

Constraints (3.3.10) defines the possible positions for real surgeries and dummy surg-

eries in each period. Similarly, Constraints (3.3.11) prevents real and dummy surg-

eries to be assigned to positions other than the one, in Kr
t and Kd

t , respectively. Con-

straint (3.3.12), bounds the number of real surgeries in each period. Lastly, in Con-

straint (3.3.13), total number of surgeries in a period should be equal to the position

index of dummy variables in that period.

To find the best combination of these valid inequalities and pick the best perform-

ing model, we performed extensive preliminary computational experiments. These

experiments are explained in detail in Chapter 5.1.1

for computational performance, we did an extensive computational analysis among

the models and chose the one. The preliminary experiments and its results for model

selection are given in Chapter 5 with more explanation.
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CHAPTER 4

SOLUTION METHODS

To find an exact solution to our two-stage SMILP, we solve the Extensive Formula-

tion, use decomposition methods such as L-shaped method (LM) and Benders’ de-

composition algorithm (BDA). To analyze the problem, simple sequencing rules are

tested for different decisions in the model, which provides us further information

about optimal schedules. Considering those results, we solve our integrated problem

of planning and scheduling in a hierarchical manner. Last but not least, we developed

a Genetic Algorithm (GA) to find near-optimal solutions in short amount of time.

4.1 Exact Solution Methods

4.1.1 Solving The Extensive Formulation

Extensive Formulation (EF) which is represented by Constraints (3.2.1) - (3.2.12),

(3.3.2), (3.3.4), (3.3.7), (3.3.10)-(3.3.11) and (3.3.13), is a large MIP model where

all scenario variables are explicitly included in the model. All scenarios are equally

likely to occur and 1
|S| is used for scenario probabilities. For small instances (up to

10 surgeries, 3 periods and up to 300 scenarios), the problem is tractable and solved

by CPLEX 12.7.1. However for larger problem instances (in terms of surgeries, peri-

ods and scenarios), extensive form cannot be solved in a reasonable amount of time.

Therefore, we use L-shaped method and its variants and Benders’ decomposition al-

gorithm, which allows larger problem instances to be solved by exploiting the struc-

ture of the formulation.
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4.1.2 Decomposition Methods

4.1.2.1 L-shaped Method

In the classical L-shaped Method, the problem is decomposed into the first-stage and

second-stage problems, where the second-stage problem is further decomposed into

subproblems (SPs) for each scenario as explained in detail in Chapter 2. In our first

stage problem, surgery-to-period, surgery-to-position and duration-to-surgery deci-

sions are made. After all these assignments are made, waiting time, idle time and

overtime values are calculated in the second-stage problem for each scenario. The

objective function is composed of the costs of waiting time, idle time and overtime.

The initial Master Problem (MP) and SPs are given below:

Initial MP: min z = 0

s.t.

∑
i∈N

yikt ≤ 1 k ∈ K, t ∈ T (Eq.3.2.2)

∑
t∈T

∑
k∈K

yikt = 1 i ∈ N (Eq.3.2.3a)

∑
k∈K

y(N+t)kt = 1 t ∈ T (Eq.3.2.3b)

∑
k∈K

k · y(N+t)kt ≥
∑
k∈K

k · yikt + 1 i ∈ N r, t ∈ T (Eq.3.2.4)

∑
i∈N

yikt ≥
∑
i∈N

yi(k+1)t k ∈ K, t ∈ T (Eq.3.2.5)

xkt ≤
∑
i∈Nr

MXik · yikt k ∈ K, t ∈ T (Eq.3.3.2)

k∑
l=1

N∑
i=1

dmini · yilt ≤ xlt k ∈ K, t ∈ T (Eq.3.3.4)

∑
k∈K

∑
i∈Nr

yikt ≥
∑
k∈K

∑
i∈Nr

yik(t+1) t ∈ T − {T − 1} (Eq.3.3.7)
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∑
k∈Kd

t

y(N+t)kt = 1 t ∈ T (Eq.3.3.10a)

∑
t∈T

∑
k∈Kr

t

yikt = 1 i ∈ N r (Eq.3.3.10b)

∑
k/∈Kd

t

y(N+t)kt = 0 t ∈ T (Eq.3.3.11a)

∑
t∈T

∑
i∈Nr

∑
k/∈Kr

t

yikt = 0 (Eq.3.3.11b)

∑
t∈T

∑
k∈Kt

k · y(N+t)kt = N + T (Eq.3.3.13)

yikt ∈ {0, 1} i ∈ N, k ∈ K, t ∈ T (Eq.3.2.9)

xkt ≥ 0 k ∈ K, t ∈ T (Eq.3.2.10)

For each scenario s:

SP: min ps ·
∑
t∈T

(∑
k∈Kt

∑
i∈Nr

(cw · psikt + cs · ssikt) + co · ost + cu · ust

)
s.t.

∑
i∈N

psikt −
∑
i∈N

ssikt =
∑
i∈Nr

psi(k−1)t +
∑
i∈Nr

dsi · yi(k−1)t − x(k−1)t k ∈ K, t ∈ T

(Eq.3.2.6)

ost − gst =
∑
i∈Nr

∑
k∈K

dsi · yikt +
∑
i∈Nr

∑
k∈k

Ssikt − dt t ∈ T

(Eq.3.2.7)

psi1t = 0 i ∈ N, t ∈ T

(Eq.3.2.8a)

ssi1t = 0 i ∈ N, t ∈ T

(Eq.3.2.8b)

psikt ≤MP s
k · yikt i ∈ N, k ∈ K, t ∈ T

(Eq.3.2.8c)
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ssikt ≤MS · yikt i ∈ N, k ∈ K, t ∈ T

(Eq.3.2.8d)

psikt, s
s
ikt ≥ 0 i ∈ N, k ∈ K, t ∈ T

(Eq.3.2.11)

ost , u
s
t ≥ 0 t ∈ T

(Eq.3.2.12)

In the initial solution of MP, any feasible assignment is acceptable since there is no

contribution to the objective function from first-stage variables. After the first itera-

tion, to consider the cost from SPs, θ variable is introduced as the approximate ex-

pected second-stage cost, and becomes the objective function of the Restricted Master

Problem (RMP) for the next iterations. Through this variable, the information from

SPs will be transferred to RMP through cuts, which will iteratively lead to optimal

solution as defined in Section 2.2.2.1. In each iteration, RMP is resolved after an

optimality cut is generated from dual variables of the second-stage problem.

In Figure 4.1, flowchart of the iterative LM is given for our problem. In this problem,

RMP is a MIP and SPs are linear programs. This enables obtaining optimality cuts

from the dual solutions of SPs. For any feasible solution of first stage, second-stage

subproblems are always feasible in our problem. Thus, our problem has relatively

complete recourse, as defined in [35] and feasibility cuts are not required to be gen-

erated. This brings a computational advantage in the method. SPs are easy to solve

linear models and waiting and idle time and overtime can be calculated without solv-

ing LPs. However, for the optimality cut generation, dual variables are required and

LP should be solved for each SP.

Instead of solving RMP from scratch in every iteration, L-shaped method can be

implemented in a Branch-and-Cut (B&C) framework. In B&C framework, only one

branch-and-bound tree is generated and explored. Cuts are added at every incumbent

solution and stored to be used while exploring the other nodes. Flowchart of the

L-shaped Method in B&C framework (B&C LM) is given in Figure 4.2.
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Figure 4.1: Flowchart representation of the iterative L-shaped algorithm

4.1.2.2 Decomposition Schemes for the Subproblems

In our problem, once the first-stage decisions are made, each period is independent

from each other. After first-stage decisions are fixed, SPs can be decomposed fur-

ther into easier to solve smaller subproblems for each period t. After planning and

scheduling decisions are made, waiting time, idling time and overtime for each pe-

riod can be calculated independently for every scenario. The further decomposed SPs

(SP-TS), considering both scenario and period decomposition are given below. For

each scenario s and each period t:

SP-TS: min
1

|S|
·
∑
k∈Kt

∑
i∈Nr

(cw · psikt + cs · ssikt) + cg · ost + cu · ust

s.t.

∑
i∈N

psikt −
∑
i∈N

ssikt =
∑
i∈Nr

psi(k−1)t +
∑
i∈Nr

dsi · yi(k−1)t − x(k−1)t k ∈ K (Eq.3.2.6)

ost − gst =
∑
i∈Nr

∑
k∈K

dsi · yikt +
∑
i∈Nr

∑
k∈k

Ssikt − dt (Eq.3.2.7)
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Figure 4.2: Flowchart representation of the L-shaped algorithm in the branch-and-cut

framework

psi1t = 0 i ∈ N (Eq.3.2.8a)

ssi1t = 0 i ∈ N (Eq.3.2.8b)

psikt ≤MP s
k · yikt i ∈ N, k ∈ K (Eq.3.2.8c)

ssikt ≤MS · yikt i ∈ N, k ∈ K (Eq.3.2.8d)

psikt, s
s
ikt ≥ 0 i ∈ N, k ∈ K (Eq.3.2.11)

ost , u
s
t ≥ 0 (Eq.3.2.12)

4.1.2.3 Multi-Cut Structure

In LM, after each iteration, a single optimality cut (2.2.9) is generated and added to

the RMP. By this way, the size of RMP increases one constraint at a time. However,

the information transferred through one cut is limited and this leads to high number

of iterations. In the multi-cut approach, more information can be transferred through

multiple cuts (i.e., a cut for each scenario, period, or scenario-period combination)

from SP to RMP. This will decrease the number of iterations in the method. However
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the RMP will be more difficult to solve compared to the single-cut method.

In the multi-cut L-shaped method (MLM), instead of a single cut, a cut is added for

each scenario using θs
(∑

s∈S θs ≥ . . .
)

and the RMP objective function becomes∑
s∈S θs. In multi-cut SP-TS decomposition (MLM-TS), there will be |T | × |S| cuts

generated in each iteration
(∑

s∈S θts ≥ . . . t ∈ T
)
. This time RMP objective func-

tion becomes
∑

t∈T
∑

s∈S θts.

4.1.2.4 Benders’ Decomposition Algorithm

In LM, planning and scheduling decisions are made by yikt and xkt variables for the

whole planning horizon, before actual surgery durations are revealed. However, to

achieve computational efficiency, the problem could be decomposed in a way that

only yikt variables can be kept in the MP and xkt variables can be handled in the sub-

problems. This decomposition structure is used in Automatic Benders’ Decomposi-

tion Algorithm embedded in CPLEX. First-stage problem is a pure integer program

(IP). Since xkt variables are scenario independent, further scenario decomposition is

not possible. Accordingly, Benders’ Decomposition Algorithm (BDA) can be imple-

mented by using period-based SPs as follows:

min
∑
t∈T

qt(p, s, o, u)

s.t.

∑
i∈N

yikt ≤ 1 k ∈ K, t ∈ T (Eq.3.2.2)

∑
t∈T

∑
k∈K

yikt = 1 i ∈ N (Eq.3.2.3a)

∑
k∈K

y(N+t)kt = 1 t ∈ T (Eq.3.2.3b)

∑
k∈K

k · y(N+t)kt ≥
∑
k∈K

k · yikt + 1 i ∈ N r, t ∈ T (Eq.3.2.4)

∑
i∈N

yikt ≥
∑
i∈N

yi(k+1)t k ∈ K, t ∈ T (Eq.3.2.5)

∑
k∈K

∑
i∈Nr

yikt ≥
∑
k∈K

∑
i∈Nr

yik(t+1) t ∈ T − {T − 1} (Eq.3.3.7)
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∑
k∈Kd

t

y(N+t)kt = 1 t ∈ T (Eq.3.3.10a)

∑
t∈T

∑
k∈Kr

t

yikt = 1 i ∈ N r (Eq.3.3.10b)

∑
k/∈Kd

t

y(N+t)kt = 0 t ∈ T (Eq.3.3.11a)

∑
t∈T

∑
i∈Nr

∑
k/∈Kr

t

yikt = 0 (Eq.3.3.11b)

∑
t∈T

∑
k∈Kt

k · y(N+t)kt = N + T (Eq.3.3.13)

yikt ∈ {0, 1} i ∈ N, k ∈ K, t ∈ T (Eq.3.2.9)

where

qt(p, s, o, u) = min
∑
s∈S

ps

(∑
k∈Kt

∑
i∈Nr

(cw · psikt + cs · ssikt) + cg · ost + cu · ust

)
s.t.

xkt ≤
∑
i∈Nr

MXik · yikt k ∈ K, t ∈ T

(Eq.3.3.2)

k∑
l=1

N∑
i=1

dmini · yilt ≤ xlt k ∈ K, t ∈ T

(Eq.3.3.4)

xkt ≥ 0 k ∈ K, t ∈ T

(Eq.3.2.10)∑
i∈N

psikt −
∑
i∈N

ssikt =
∑
i∈Nr

psi(k−1)t +
∑
i∈Nr

dsi · yi(k−1)t − x(k−1)t k ∈ K, t ∈ T

(Eq.3.2.6)
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ost − gst =
∑
i∈Nr

∑
k∈K

dsi · yikt +
∑
i∈Nr

∑
k∈k

Ssikt − dt t ∈ T

(Eq.3.2.7)

psi1t = 0 i ∈ N, t ∈ T

(Eq.3.2.8a)

ssi1t = 0 i ∈ N, t ∈ T

(Eq.3.2.8b)

psikt ≤MP s
k · yikt i ∈ N, k ∈ K, t ∈ T

(Eq.3.2.8c)

ssikt ≤MS · yikt i ∈ N, k ∈ K, t ∈ T

(Eq.3.2.8d)

psikt, s
s
ikt ≥ 0 i ∈ N, k ∈ K, t ∈ T

(Eq.3.2.11)

ost , u
s
t ≥ 0 t ∈ T (Eq.3.2.12)

Similar to LM, for any feasible first-stage decisions, second stage is always feasible

and hence no feasibility cuts are needed in BDA as well. For each surgery-to-period

assignment, all duration allocation decisions are feasible. Here, the first-stage prob-

lem becomes pure IP instead of MIP and the second stage is still LP with extra vari-

ables and constraints. In BDA, SPs are more complex since time allocation decisions

are added. However, RMP has less variables and constraints. Solution time for the

first stage will decrease, whereas SP solution times will increase.

4.1.2.5 Strengthening the Master Problem using Mean Value Cuts

In [31], for speeding up the convergence of LM, valid inequalities based on mean

value scenario ξ̄ are proposed. These inequalities are inspired from Jensen’s In-

equality, which provides a lower bound for expected second-stage cost. For better

computational performance, we added these cuts to our LM and its variants. With the

addition of these cuts, first-stage problem returns better solutions in terms of expected

second-stage performance.
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For the implementation of mean value cuts (MVC), additional decision variables and

parameters are required. These decision variable are mean value scenario specific

versions of second-stage decision variables. Also, lower and upper bound parameters

are modified for ξ̄. All these variables and inequalities, which are presented below,

are added to the RMP.

Parameters:

d̄i: Expected duration of surgery i

M̄P k: Sufficiently large constants for patient waiting time under the mean value

scenario in position k

M̄S: Sufficiently large constant for OR idle time under mean value scenario

Decision Variables:

p̄ikt: Waiting time of patient i in position k in period t under the mean value

scenario

s̄ikt: Idle time of OR before patient i in position k in period t under the

mean value scenario

ōt: OR overtime in period t under the mean value scenario

ḡt: OR undertime in period t under the mean value scenario

Inequalities:

∑
i∈N

p̄ikt −
∑
i∈N

s̄ikt =
∑
i∈Nr

p̄i(k−1)t +
∑
i∈Nr

d̄i · yi(k−1)t − x(k−1)t k ∈ Kt, t ∈ T

ōts − ḡts =
N∑
i=1

N∑
k=1

dis · yikt +
N∑
i=1

N∑
k=1

s̄ikt − dt t ∈ T

p̄i1t = 0 i ∈ N, t ∈ T

s̄i1t = 0 i ∈ N, t ∈ T

p̄ikt ≤ M̄P k · yikt i ∈ N, k ∈ Kt, t ∈ T

s̄ikt ≤ M̄S · yikt i ∈ N, k ∈ Kt, t ∈ T

p̄ikt, s̄ikt ≥ 0 i ∈ N, k ∈ Kt, t ∈ T

ōt, ūt ≥ 0 t ∈ T
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Then,

θ ≥
∑
t∈T

(∑
k∈Kt

∑
i∈Nr

(cw · p̄ikt + cs · s̄ikt) + co · ōt + cu · ūt

)
(4.1.1)

In SP-TS, valid inequality (4.1.1) is modified as follows for each t ∈ T :∑
s∈S

θts ≥
∑
k∈Kt

∑
i∈Nr

(cw · p̄ikt + cs · s̄ikt) + co · ōt + cu · ūt (4.1.2)

4.2 Heuristic Solution Methods

Even though decomposition methods provide a good alternative for dealing with the

problem, computational time and memory requirements of these methods can still be

huge. For finding well performing solutions in a reasonable amount of computational

time, we considered heuristic solution methods.

4.2.1 Simple Sequencing Rules

We tried six different sequencing rules which are also used in [7]. These rules are:

• SPT: Shortest procedure time first

• LPT: Longest procedure time first

• VarA: Ascending variance of procedure times

• VarD: Descending variance of procedure times

• CoefA: Ascending coefficient of variation

• CoefD: Descending coefficient of variation

where coefficient of variation is the ratio of standard deviation to mean (cv = σ
µ

).

These sequencing rules are used for planning (assignment, sequencing) decisions in

the problem.

For surgery duration allocation, similar to [7], we have considered 3 different per-

centiles (25th(p25), 50th(p50) and 75th(p75)) and mean value (µ) of procedure times.
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This is called job hedging and it has been widely used in single server scheduling

literature.

To explain our work clearly, we developed a representation for our first stage deci-

sions in a sequential manner. It includes all planning and scheduling decisions: (i)

Period Assignment (PA), (ii) Sequencing (S) and (iii) Duration Assignment (DA).

Our representation is PA/S/DA. PA decision is similar to bin packing problem in

which each period is a bin and surgeries are items to be placed. When making the

assignments, it is required to determine the weight of each item to determine the bin

with the nearest availability. In S, for each period, patients are sequenced based on

the specified sequencing rule. Last but not least, DA indicates how much time should

be allocated for a surgery.

For better clarification of the representation, we explain it through an example. Let us

consider "VarA-p25/SPT/µ" for planning and scheduling 8 surgeries into 3 periods.

The list of surgeries, together with their mean, standard deviation, and 25th percentile

values, are given in Table 4.1. First, surgeries in the surgery list are sorted in as-

cending order, considering the variance of their durations (VarA) (Table 4.2). Then

starting from the first surgery, one surgery is assigned to the period with nearest avail-

ability. When doing so, the sum of 25th percentile values of the surgery duration in

each period are compared and the decision is made accordingly as it is given in Fig-

ure 4.3. After all surgery-to-period assignments are made, surgeries are sequenced

considering their durations in each period based on the SPT rule. Similar to surgery

durations, 25th percentile is considered here as well. At this level, yikt variables are

assigned in the model. For the duration, the mean procedure duration of each assigned

surgery will be assigned as indicated by µ in the representation. The final solution is

given in Figure 4.4. After all the first-stage decisions are made, it is straightforward

to calculate waiting, idle times and overtime and then their costs.
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Table 4.1: Surgeries to be scheduled

into 3 periods

Surgery µ σ p25

S1 42.13 15.33 31.52

S2 41.01 17.10 28.96

S3 40.05 15.26 30.00

S4 42.75 16.24 30.80

S5 41.55 17.09 29.50

S6 41.50 18.27 27.53

S7 76.71 43.58 45.33

S8 74.00 41.03 45.76

Table 4.2: Sorted surgical list with as-

cending variance (VarA) rule

Surgery µ σ p25

S3 40.05 15.26 30.00

S1 42.13 15.33 31.52

S4 42.75 16.24 30.80

S5 41.55 17.09 29.50

S2 41.01 17.10 28.96

S6 41.50 18.27 27.53

S8 74.00 41.03 45.76

S7 76.71 43.58 45.33

(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

(e) Step 5 (f) Step 6

Figure 4.3: Example of Period Assignment decision
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Figure 4.4: Final sequence of each surgery in each period and allocated surgery dura-

tions

4.2.2 Hierarchical Decision Making

In the APSP, we consider integrated decisions of planning and scheduling. We de-

veloped a heuristic algorithm where we make decisions hierarchically in two phases.

This will also help us understand the effect of integration in APSP. The decisions in

the problem are grouped into two problems. Higher Level Problem (HLP) includes

only the determination of periods of the surgeries with the objective of minimizing

expected overtime cost. In the Lower Level Problem (LLP), with the given period

assignments returned by HLP, sequencing and scheduling decisions are made to min-

imize the expected server idling and patient waiting cost.

For the HLP, we solve the model as given below:

Decision Variables

wit=

1, if patient i is assigned to period t

0, otherwise

otst : Overtime of period t in scenario s

Parameters
co: Per unit overtime cost of OR

dt: Length of available regular time in a period (session length)

dsi : Actual duration of surgery i in scenario s
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Min
∑
s∈S

ps ·
∑
t∈T

co · ost

s.t.
∑
t∈T

wit = 1 i ∈ N r

otst ≥

(∑
i∈Nr

dsi · wit

)
− dt t ∈ T, s ∈ S

wit ∈ {0, 1} i ∈ N r, t ∈ T

otst ≥ 0 t ∈ T, s ∈ S

with symmetry breaking constraints∑
i∈Nr

wit ≥
∑
i∈Nr

wi(t+1) t = 1, . . . , T − 1

After getting the period assignment information (wit) from HLP, we solve LLP, which

is APSP where the period assignment is fixed using the following constraint:∑
k∈K

yikt = wit i ∈ N r, t ∈ T (4.2.1)

Then we solve LLP by using BDA to improve computational efficiency. We also cre-

ate a random sequence from the given period assignments and feed this solution as an

advanced starting point for the optimization of LLP, which accelerates computational

performance.

4.2.3 Genetic Algorithm

In light of analysis regarding simple sequencing rules and hierarchic decision mak-

ing, we developed a Genetic Algorithm (GA) for APSP for solving larger instances

(in the sense of higher number of scenarios and/or higher number of periods and/or

surgeries) in reasonable times and finding near-optimal solutions. Our GA searches

the solution space and try to reach near-optimal surgery-to-period assignments. After

finding a "good" surgery-to-period assignment, sequencing and appointment schedul-

ing decisions are solved optimally for each period separately.
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Representation Scheme

The representation has the idea of a bin packing problem where each period is a bin

and surgeries are the items. There are |N | patients and we are using a 1 × |N | array

where each gene represents the period of each surgery. They can take values between

1 to |T |. An example for 8 surgeries to be assigned to 3 periods are given in Figure

4.5.

Figure 4.5: Example chromosome representation

In this example, surgeries with index 1 and 5 are in the first period, 2, 3 and 7 are in the

second period and 4, 6 and 8 are in the last period. This chromosome representation

does not include any information about the sequence or appointment time of surgeries

in any period.

Fitness Function

To evaluate the solution quality of each solution, we use the same expected weighted

sum of waiting, idling, and overtime costs as the fitness function in Equation (3.2.1).

Higher fitness values correspond to lower quality solutions. In order to calculate

these costs, sequence of the surgeries in each period and their allocated surgery times

are required. It is possible to calculate the optimal objective function value where

surgery-to-period assignments are fixed, however it is computationally expensive.

Solution time for the exact calculation of optimal overall cost for the given period

assignments also gets computationally inefficient as number of surgeries and/or peri-

ods and/or number of scenarios increase. For this reason, we used the most promising

sequencing rule and job hedging level from Section 4.2.1 to replace solving problems

to optimality for finding sequencing and scheduling decisions.

Initial Population Generation

After population size is determined, that many individuals are generated randomly by
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assigning a number between 1 and |T | to each surgery for period assignment.

Parent Selection

For selecting parents for crossover, two different methods are tested. First method

is choosing parents randomly from the population without considering any property

of the parents. In the second method, we assign selection probability to each indi-

vidual in the population considering their fitness values. The selection probability is

calculated as follows:

Selection probability for individual i =
fworst − fi
fworst − fbest

(4.2.2)

where fworst (fbest) is the fitness value of individual with the highest (lowest) cost and

fi is fitness value of ith individual in the population. Then these values are normalized

and used as probabilities for selection. By using these probabilities, an empirical dis-

tribution function is fitted. Then, two random values between 0 and 1 are generated.

The individuals with these cumulative distribution values are selected as parents. As-

signing selection probabilities emphasizes the exploitation (intensification) through

parent selection which concentrates on better individuals and the offsprings they will

produce.

Crossover Operator

In our algorithm, crossover is applied to all pairs of parents selected. Two different

crossover operators are tested, (i) Uniform crossover, (ii) 1-point crossover. In uni-

form crossover, with equal probability, it is decided that which gene will be taken

from which parent by using a crossover mask. In 1-point crossover, a cut point is

chosen randomly among the genes. Until that point, genes are taken from one parent

and rest of the genes are taken from the other parent. Example of both operators are

given in Figure 4.6:

Mutation Operator

Mutation operator is important to promote diversity in the population. It helps to

explore different parts of the solution space where it is hard to obtain through recom-

bination of parents. We tested two different mutation operators. In the first operator,

each gene can be mutated by a predetermined probability pm. If mutation happens,
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(a) Uniform crossover example (b) 1-point crossover example

Figure 4.6: Crossover operators tested in the GA

the day assignment of the surgery is replaced with a randomly chosen period, different

than the initial period. In the other operator, with a probability p′m, the chromosome

will undergo mutation, and which gene to be mutated is randomly selected.

Formation of Next Generation

After forming two new offsprings, we have tested three different methods for chang-

ing the population and forming the next generation. In the first method, the parent

with the worst fitness value is replaced with the best offspring, even though fitness

value of offspring is worse. In the second method, an offspring replaces a parent

if it has a better fitness value. In the last method, both offsprings are added to the

population and worst two individuals among whole population are deleted. When

these methods are compared in the sense of exploration and exploitation, first method

is focusing on exploration more since worse offsprings can replace better parents.

However, the last method emphasizes more on exploitation and faster convergence to

a final solution since it always eliminate worst individuals in the population.

Stopping Criteria and Final Solution

When the best fitness value among the population does not improve for a predeter-

mined number of iterations, the algorithm stops. For the individual with the best

fitness value, surgery-to-period decisions are fixed in the model and it is solved opti-
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mally for determining the final sequences and appointment times.
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CHAPTER 5

COMPUTATIONAL EXPERIMENTS

5.1 Results for Exact Solution Methods

In our preliminary experiments, initially, we solved the Extensive Formulation (EF) of

APSP by including alternative valid inequalities and symmetry breaking constraints,

which are explained in Chapter 3, in order to select the model with best computational

performance. After finalizing our model, we solved it by different solution methods

explained in Chapter 4 by using data collected from an OPC, presented in [7]. As

stated in [7], log-normal distribution fits best for procedure times. For generating

surgery durations, logrnd() function in MATLAB is used. For the cost parameters

(cw, co and cu), values used in [30] are chosen. These values are reported to be

estimated by administrators of an OPC. dt is determined by calculating the sum of

average surgery durations as it is commonly used in literature (e.g. [29, 30, 32]) and

equally distributing this sum to each period by dividing it by |T |.

We used the procedure time distributions of surgeries in "Ophthalmology" surgical

group. Instances are generated for |N | = 8 surgeries considering the surgery mix in

the surgical group. The problem setting is given in Table 5.1.

The models are coded in C++ and IBM ILOG CPLEX 12.7.1 is used as the solver.

For solving the models, Xcode version 10.3 is used in a computer with 3.5 GHz Intel

Core i7 with 16 GB LPDDR3 RAM. As the solution time limit, 7200 CPU seconds is

used in preliminary experiments. For the above setting, we solved 10 instances and

reported their average results (and worst case results for some measures).
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Table 5.1: Preliminary experiment setting

|N | 8

(µType1, σType1), |NType1| (41.63, 16.43), 6

(µType2, σType2), |NType2| (77.66, 44.03), 2

|T | 3

dt 135

cw 1

cs 0.01

co 33

cu 0

5.1.1 Model Selection

APSP is a NP-hard combinatorial optimization problem and we want to find a stronger

model for better computational performance to solve larger instances. With this aim,

we derived different lower and upper bounds on allocated surgery times, symmetry

breaking constraints for eliminating identical solutions and corresponding valid in-

equalities.

First of all, we compared the effects of lower and upper bounds on allocated surgery

time decision variable, xkt. We used the EF given in Section 3.2 as the model and

tested all different combinations of bounds given in Section 3.3.1. The following

models are compared in terms of computational performance in the setting given

above.

xkt ≤
∑
i∈Nr

MXik · yikt k ∈ K, t ∈ T (Eq.(3.3.2))

k∑
l=1

xlt ≤
k∑
l=1

N∑
i=1

dmaxi · yilt k ∈ K, t ∈ T (Eq.(3.3.1b))

k∑
l=1

N∑
i=1

dmaxi · yilt ≤ xlt k ∈ K, t ∈ T (Eq.(3.3.4))
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Model A: Base model + Eq. (3.3.2)

Model B: Base model + Eq. (3.3.1b)

Model C: Base model + Eq. (3.3.4)

Model D: Base model + Eq. (3.3.2) + Eq. (3.3.1b)

Model E: Base model + Eq. (3.3.2) + Eq. (3.3.4)

Model F: Base model + Eq. (3.3.1b) + Eq. (3.3.4)

Model G: Base model + Eq. (3.3.2) + Eq. (3.3.1b) + Eq. (3.3.4)

Comparing the results in Table 5.2, we chose Model E, which is adding a lower and

upper bound on each xkt variable. Computational times (in CPU seconds) of Model

D and E are very close, however, Model E has smaller optimality gaps and it reaches

to the optimal solution for more problem instances. Since Constraint (3.3.1b) is not

improving our computational performance, we can deduce that using a bound on each

variable works better than using a bound on sum of variables in this case.

For the next step, different symmetry breaking constraints from Section 3.3.2 are

tested. We conducted experiments with Constraints (3.3.5) - (3.3.7). To analyze the

effect of these symmetry breaking constraints on solution performance, following

models are solved for different number of scenarios.∑
k∈K

k · y(N+t)kt ≥
∑
k∈K

k · y(N+t+1)k(t+1) t ∈ T − {T − 1} (Eq.(3.3.6))

∑
k∈K

∑
i∈Nr

yikt ≥
∑
k∈K

∑
i∈Nr

yik(t+1) t ∈ T − {T − 1} (Eq.(3.3.7))

i∑
t=1

∑
k∈K

yikt = 1 i = 1, . . . , T − 1 (Eq.(3.3.5))

Model E1: Model E + Eq. (3.3.6)

Model E2: Model E + Eq. (3.3.7)

Model E3: Model E + Eq. (3.3.6) + Eq. (3.3.7)

Model E4: Model E + Eq. (3.3.5)

In the light of the results in Table 5.3, Model E2 performs best, with being almost

10% better than the next best model. In our problem, eliminating identical solutions

by considering the number of surgeries in each period performs better than fixing

the period assignment of some surgeries. Even though adding Constraint (3.3.6) and

Constraint (3.3.7) separately improves the solution time, including them together in
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Table 5.2: Computational performance comparison of combinations of lower and

upper bounds on xkt

|S|=25 |S|=40 |S|=50 |S|=55

Base Model

CPU Time 1212 4272 6872

Opt. Gap
Avg. - - 5.4%

Max. - - 10.1%

# of Unsolved Instances 0 0 7

Model A

CPU Time 1394 4224 6375

Opt. Gap
Avg. - - 4.5%

Max. - - 8.90%

# of Unsolved Instances 0 0 7

Model B

CPU Time 845 4697 7200

Opt. Gap
Avg. - - 5.4%

Max. - - 7.9%

# of Unsolved Instances 0 0 10

Model C

CPU Time 1596 4550 6720

Opt. Gap
Avg. - 0.1% 7.9%

Max. - 1.0% 10.4%

# of Unsolved Instances 0 0 10

Model D

CPU Time 1417 4838 6145 6627

Opt. Gap
Avg. - - 2.2% 8.9%

Max. - - 6.4% 12.6%

# of Unsolved Instances 0 0 4 9

Model E

CPU Time 976 4409 5148 6687

Opt. Gap
Avg. - - 2.6% 7.7%

Max. - - 7.7% 11.5%

# of Unsolved Instances 0 0 4 8

Model F

CPU Time 1062 4697 5486 7200

Opt. Gap
Avg. - 0.5% 4.0% 9.6%

Max. - 4.8% 8.3% 13.6%

# of Unsolved Instances 0 1 6 10

Model G

CPU Time 1283 5155 5968

Opt. Gap
Avg. - 0.7% 2.9%

Max. - 7.4% 6.9%

# of Unsolved Instances 0 1 5

All models are solved for 10 instances
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Table 5.3: Computational performance comparison of symmetry breaking constraints

|S|=55 |S|=75 |S|=100

Model E

CPU Time 6687

Opt. Gap
Avg. 7.7%

Max. 11.46%

# of Unsolved Instances 8

Model E1

CPU Time 1512 3587 5738

Opt. Gap
Avg. - - 1.8%

Max. - - 13.0%

# of Unsolved Instances 0 0 2

Model E2

CPU Time 1550 2798 4072

Opt. Gap
Avg. - - -

Max. - - -

# of Unsolved Instances 0 0 0

Model E3

CPU Time 1994 2628 4423

Opt. Gap
Avg. - - 0.5%

Max. - - 4.8%

# of Unsolved Instances 0 0 1

Model E4

CPU Time 1589 2939 5556

Opt. Gap
Avg. - - 1.7%

Max. - - 14.0%

# of Unsolved Instances 0 0 2

All models are solved for 10 instances

55



the model is not beneficial.

For the final step, we tested some valid inequalities which are derived from the sym-

metry breaking idea in Constraints (3.3.6) and (3.3.7). To understand which valid

inequalities improve our solution times and should be included in our model, follow-

ing models are solved for different number of scenarios and their results are reported

in Table 5.4.

∑
k∈Kd

t

y(N+t)kt = 1 t ∈ T

∑
t∈T

∑
k∈Kr

t

yikt = 1 i ∈ N r (Eq. (3.3.10))

∑
k/∈Kd

t

y(N+t)kt = 0 t ∈ T

∑
t∈T

∑
i∈Nr

∑
k/∈Kr

t

yikt = 0 (Eq. (3.3.11))

∑
k∈Kt

∑
i∈Nr

yikt ≥ pft − 1 t ∈ T

∑
k∈Kt

∑
i∈Nr

yikt ≤ plt − 1 t ∈ T (Eq. (3.3.12))

∑
t∈T

∑
k∈Kt

k · y(N+t)kt = N + T (Eq. (3.3.13)

Model E2-1: Model E2 + Eq. (3.3.10)

Model E2-2: Model E2 + Eq. (3.3.11)

Model E2-3: Model E2 + Eq. (3.3.12)

Model E2-4: Model E2 + Eq. (3.3.13)

Model E2-5: Model E2 + Eq. (3.3.10) + Eq. (3.3.11) + Eq. (3.3.13)

Model E2-6: Model E2 + Eq. (3.3.10) + Eq. (3.3.11) + Eq. (3.3.13) - Eq. (3.2.3a)

Considering the results in Table 5.4, we chose the final model as Model E2-5. It

performs the best among the tested models. Even though adding each valid inequal-

ity separately improves the model, Constraints (3.3.10) and (3.3.11) make the major
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Table 5.4: Computational performance comparison of valid inequalities derived from

symmetry breaking constraints

|S|=115 |S|=150 |S|=200

Model E2

CPU Time 6074

Opt. Gap
Avg. 1.2%

Max. 9.4%

# of Unsolved Instances 2

Model E2-1

CPU Time 916

Opt. Gap
Avg. -

Max. -

# of Unsolved Instances 0

Model E2-2

CPU Time 847

Opt. Gap
Avg. -

Max. -

# of Unsolved Instances 0

Model E2-3

CPU Time 5870

Opt. Gap
Avg. 5.0%

Max. 11.1%

# of Unsolved Instances 3

Model E2-4

CPU Time 1611

Opt. Gap
Avg. -

Max. -

# of Unsolved Instances 0

Model E2-5

CPU Time 574 906 2018

Opt. Gap
Avg. - - -

Max. - - -

# of Unsolved Instances 0 0 0

Model E2-6

CPU Time 559 967 2165

Opt. Gap
Avg. - - -

Max. - - -

# of Unsolved Instances 0 0 0

All models are solved for 10 instances
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difference. Including them to the model together also works better. We also tested

leaving Constraint (3.2.3a) out of the model since Constraint (3.3.10) and (3.3.11)

together can compensate for that constraint, however it makes the computational per-

formance little worse than keeping it.

5.1.2 Solution Method Selection

After deciding on the final model, we solved our problem by different solution meth-

ods. All methods and their abbreviations used in this section are given in Table 5.5.

Initially, we compared the performances of solving EF, using L-shaped Method (LM),

and L-shaped method with mean value cuts (LM-MVC). The solution times are given

in Table 5.6. For the instances, for which the considered method cannot reach to the

optimal solution within the time limit, average and maximum optimality gap values

across 10 instances are reported. We reported two optimality gaps. In the L-shaped

algorithm, in every iteration, RMP calculates a lower bound (LB) for the problem

since it is a minimization problem. Then, by solving the SPs with given first-stage

solutions, an upper bound (UB) is calculated. The algorithm converges to the optimal

solution while LB and UB converges to each other. In % Opt. Gap, we used LB in

last iteration (highest) and lowest UB among all iterations while in % Opt. Gap*, we

used the optimal solution for the problem as UB since we have this value from the

extensive model.

Opt.Gap∗ =
Opt. Soln.− LB

Opt. Soln.

Opt.Gap =
Best UB − LB

Best UB

Solving the extensive formulation works well and finds the optimal solution in the

given time limit for this setting up to |S| = 200 scenarios. It performs best among

three solution methods. However, as number of scenarios increase, solution time

increases exponentially. Therefore, solving the extensive formulation may not be

practical for larger instances with higher number of scenarios. Both LM and LM-

MVC failed to solve any of the instances in the given time limit. On the average, LM

has proceeded 150 more iterations in the same amount of time then LM-MVC. Even

though LM-MVC has to solve larger RMPs, MVC can accelerate the convergence. It
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also provides a better initial solution for θ, approximate value of the expected cost of

second-stage problem. When optimality gaps are compared, there is not a significant

difference between both methods to decide on a superior one. This means, through

the iterations, they reach to very close solutions (UBs).

Table 5.6: Solution time comparison between solving EM, using LM and LM-MVC

for three different values of |S|

EF LM LM-MVC

Soln. Time % Opt. Gap* % Opt. Gap # of % Opt. Gap* % Opt. Gap # of

(CPU sec.) Avg. Max. Avg. Max. iter. Avg. Max. Avg. Max. iter.

|S|=50 84.1 8.30% 11.35% 10.81% 14.65% 863 8.81% 11.98% 11.65% 17.12% 698

|S|=100 351.9 9.53% 11.95% 12.08% 15.90% 835 9.95% 12.87% 12.54% 16.36% 705

|S|=200 2017.7 12.69% 15.61% 15.87% 19.01% 798 12.71% 14.84% 15.93% 19.37% 649

EF managed to solve all five instances while LM and LM-MVC failed to solve any of the instances

In LM, only a single optimality cut is added to RMP in each iteration. When com-

pared with the multi-cut Lshaped Method (MLM), less information could be trans-

ferred to RMP during iterations. There is a trade-off between solving larger problems

for better solutions in each iteration and solving smaller problems to process more it-

erations. We compared single-cut and multi-cut L-shaped algorithms in terms of their

computational performances. Results are given in the "Iterative L-shaped" column of

Table 5.7. Even though effect of MVC is not clear in the iterative L-shaped method, in

the multi-cut version, they improve computational performance of the method clearly.

Its effect also increases with higher number of scenarios.

For our problem, adding more cuts and carrying more information to RMP in each

iteration brings a computational advantage. Solving larger RMPs for fewer iterations

outperforms solving smaller RMPs and making more iterations. While LM-MVC

cannot find the optimal solution in the time limits, MLM-MVC and MLM with sub-

problems which are decomposed based on periods and scenarios with MVC (MLM-

TS-MVC) finds optimal solutions in a reasonable amount of time (Detailed explana-

tions of these methods are given in Chapter 4). Also, MLM-TS-MVC outperforms

MLM-MVC in all three |S| values. Even though MLM-TS-MVC may generate |T |
times more optimality cuts per iteration, when the total number of cuts added to RMP

is compared, MLM-MVC required more optimality cuts. MLM-MVC needs to make
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Table 5.7: Computational results of multi-cut L-shaped methods

Iterative L-shaped B&C based L-shaped

LM-MVC MLM MLM-MVC MLM-TS-MVC LM-MVC MLM-MVC MLM-TS-MVC

|S
|=

50

Soln. Time 7200 (11.65%) 411.9 385.1 104.4 872.8 16.6 7.9

# of Iteration 698 27 23 12 9481 50 31

# of Cuts 698 989 753 669 9481 988 730

|S
|=

10
0

Soln. Time 7200 (12.54%) 1358.6 994.7 290.4 2249 43.2 18.8

# of Iteration 705 28 23 13 12855 53 32

# of Cuts 705 1957 1460 1339 12855 1849 1424

|S
|=

20
0

Soln. Time 7200 (15.93%) 6449.8 5796.1 1422.7 6845.3 174.1 65.6

# of Iteration 649 32 27 16 10451 61 53

# of Cuts 649 4076 3201 2771 10451 3883 2834

Solution times are reported in CPU seconds.

Iterative LM-MVC failed to solve any of the instances in the time limit, optimality gaps are stated in parenthesis.

For 200 scenarios, B&C LM-MVC failed to solve 3 instances out of 10 in the time limit with optimality gap value

less than 10%.

1.5 to 2 times iterations of MLM-TS-MVC to reach optimality.

In the branch-and-cut framework (B&C), different than the iterative LM, only a single

branch-and-bound tree is generated, and optimality cuts are added at each incumbent

solution as lazy constraints. Results of using variants of the L-shaped algorithm in

B&C framework can be found in Table 5.7. Solving the problem in B&C framework

accelerated all the methods drastically.

For implementing BDA, we used the pre-defined Automatic Benders’ decomposition

algorithm (A-BDA) available in CPLEX. This feature is introduced in CPLEX 12.7.

In this method, with default parameter setting (A-BDA-Full), RMP includes period

assignment/sequencing decision variables only (leaving time allocation decision to

SP). As a result, RMP becomes easier to solve whereas SPs got much larger with

considering all scenario based variables at once and additional xkt variables. How-

ever, SPs are still LP and easy to solve. Detailed explanation of BDA is given in

4.1.2.4. BDA outperforms all solution methods in all instances as it is given in Table

5.8. In small number of scenarios (|S| < 200), B&C based MLM-TS-MVC performs

similar to A-BDA-Full, however, in |S| = 200, the computational time difference is

clear.
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CPLEX is a commercial solver and they do not reveal the details of their algorithm.

Results of solution methods using A-BDA are given in Table 5.8. A-BDA uses not

only standard Benders’ cut but also other cuts (e.g. flow cuts, mixed integer rounding

cuts) to accelerate the algorithm as it is reported in the log files of the solutions. Also,

we believe they are implementing the algorithm in a B&C framework since iterative

methods are dominated by B&C used methods. To better understand the dynamics

of the automatic algorithm, we mimicked the decomposition of A-BDA-Full by B&C

framework, through lazy constraint callback structure in CPLEX (which we have used

for prior B&C based L-shaped methods) and moved xkt decision variables to second-

stage problem (B&C BDA). We also tested the effect of MVC in this algorithm, even

though MVC are generated considering the mean value scenario and here the decom-

position is based on periods. Using B&C BDA with MVC also solved instances in

shorter time than without MVC. A-BDA-Full outperforms B&C BDA and this can be

due to additional cuts added in A-BDA and/or due to some unknown pre-processing of

the problem. Then, we compare A-BDA-Full with MLM-T-MVC, to see how having

surgery duration allocation variable in first-stage problem will effect. A-BDA-Full

performs a lot better than MLM-T-MVC and they are incomparable. MLM-T-MVC

also performs the worst among methods using multi-cut L-shaped methods as it can

be seen in "B&C based L-shaped" columns of Table 5.8.

MVC is designed for scenario based decomposition; however, A-BDA-Full has a

different decomposition structure. In A-BDA, MVC leads to larger and more complex

RMP. It has negative effect on the computational performance of the algorithm and

sometimes makes CPLEX give error of "unable to solve MIP" during the algorithm.

Due to these reasons, we excluded MVC from automatic BDA experiments. The

automatic BDA performs better when the RMP is pure IP.

As the second part of our comparison, we mimicked the decomposition of L-shaped

method and its variants in the A-BDA. As defined in Chapter 4, L-shaped method

is a special case of Benders’ algorithm. When results in "CPLEX Automatic Ben-

ders’ Decomposition Algorithm" and "B&C based L-shaped" columns in Table 5.8

are compared, the resulting solution times are closer to B&C framework. However,

except MLM-T-TS, B&C MLM-MVC and MLM-TS-MVC are performing better in

all instances. These results support our opinion about using A-BDA with a pure IP
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RMP works better.

After a detailed computational performance of the solution methods, we decided to

continue with A-BDA-Full for our main experiments since it has the best computa-

tional performance among all other methods.

5.2 Results for Heuristic Solution Methods

5.2.1 Insights from Simple Sequencing Rules

APSP is a complex problem which includes three different decisions: period assign-

ment, sequencing and scheduling. It is important to understand the impact of each of

these decisions in the constructed schedules for gaining better insight about the prob-

lem. For this purpose, we used simple sequencing heuristics explained in Section

4.2 for finding out well performing structures. We used the instances in preliminary

experiments, having the setting given in Table 5.1 with |S| = 200.

Initially, period assignment (PA) decision is considered. By all possible PA decisions,

using simple sequencing rules, surgery-to-period assignments are made. Then, for

each period, surgeries are sequenced and surgery durations are allocated optimally.

This setting is represented by "PA/*/*" and optimal solution is represented by "*/*/*".

In Table 5.9, results are given. Results stated in the table are average and maximum

values of 10 instances.

LPT-p50/*/* performs best and CoefA-µ/*/* and VarD-p50/*/* have close perfor-

mance to that. Also their solution times are under 1.5 seconds. The best solution we

could achieve by these rules is 7.54% on the average. In LPT, surgery time is tried to

be distributed evenly to the periods and in VarD and CoefD, uncertainty and variance

of surgery durations are distributed evenly to the periods. Since overtime cost domi-

nates the waiting time cost in our considered setting, it is more important to complete

surgeries in available regular time. For the next step, we used same six sequencing

rules for sequencing surgeries in each period.

For period assignment, we used promising LPT-p50, CoefD-µ and VarD-p25 for pe-
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Table 5.9: Results of using sequencing rules for PA

Obj. Func. Val Soln. Time (CPU sec.)
% Opt. Gap

Average Max

*/*/* 1644.90 26.34 - -

SPT − µ/ ∗ /∗ 2233.29 1.30 35.92% 42.18%

SPT − p25/ ∗ /∗ 2232.96 1.26 35.87% 41.16%

SPT − p50/ ∗ /∗ 2237.67 1.29 36.17% 42.18%

SPT − p75/ ∗ /∗ 2243.94 1.33 36.55% 43.16%

LPT − µ/ ∗ /∗ 1772.53 1.30 7.87% 11.75%

LPT − p25/ ∗ /∗ 1784.66 1.27 8.55% 11.16%

LPT − p50/ ∗ /∗ 1767.73 1.30 7.54% 11.64%

LPT − p75/ ∗ /∗ 1786.88 1.29 8.69% 12.74%

V arA− µ/ ∗ /∗ 2234.75 1.28 36.03% 43.06%

V arA− p25/ ∗ /∗ 2233.41 1.24 35.95% 42.19%

V arA− p50/ ∗ /∗ 2241.54 1.23 36.41% 43.06%

V arA− p75/ ∗ /∗ 2247.38 1.18 36.74% 42.31%

V arD − µ/ ∗ /∗ 1757.32 1.31 6.96% 11.37%

V arD − p25/ ∗ /∗ 1778.83 1.29 8.24% 12.26%

V arD − p50/ ∗ /∗ 1768.17 1.29 7.62% 11.37%

V arD − p75/ ∗ /∗ 1774.58 1.30 7.94% 14.27%

CoefA− µ/ ∗ /∗ 2231.51 1.23 35.83% 43.38%

CoefA− p25/ ∗ /∗ 2240.25 1.21 36.35% 43.38%

CoefA− p50/ ∗ /∗ 2238.73 1.22 36.25% 43.38%

CoefA− p75/ ∗ /∗ 2253.51 1.20 37.11% 42.73%

CoefD − µ/ ∗ /∗ 1770.12 1.22 7.72% 13.13%

CoefD − p25/ ∗ /∗ 1788.32 1.33 8.79% 15.16%

CoefD − p50/ ∗ /∗ 1776.43 1.25 8.10% 13.13%

CoefD − p75/ ∗ /∗ 1777.39 1.21 8.10% 13.13%
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Table 5.10: Results of using sequencing rules for surgery sequencing while PA deci-

sions are fixed

Obj. Func. Val Soln. Time (CPU sec.)
% Opt. Gap

Average Max

*/*/* 1644.9 26.34 - -

LPT − p50/ ∗ /∗ 1767.73 1.30 7.54% 11.64%

LPT − p50/SPT/∗ 1770.28 0.17 7.69% 11.99%

LPT − p50/LPT/∗ 1815.51 0.16 10.45% 14.48%

LPT − p50/V arA/∗ 1770.89 0.16 7.73% 11.93%

LPT − p50/V arD/∗ 1815.95 0.16 10.48% 14.59%

LPT − p50/CoefA/∗ 1770.31 0.17 7.69% 11.93%

LPT − p50/CoefD/∗ 1815.07 0.16 10.42% 14.59%

V arD − p50/ ∗ /∗ 1768.17 1.29 7.62% 11.37%

V arD − p50/SPT/∗ 1770.75 0.16 7.78% 11.72%

V arD − p50/LPT/∗ 1814.52 0.16 10.45% 15.24%

V arD − p50/V arA/∗ 1771.42 0.17 7.82% 11.80%

V arD − p50/V arD/∗ 1814.12 0.17 10.42% 15.02%

V arD − p50/CoefA/∗ 1770.81 0.16 7.78% 11.80%

V arD − p50/CoefD/∗ 1814.17 0.16 10.43% 15.02%

CoefD − µ/ ∗ /∗ 1770.12 1.22 7.72% 13.13%

CoefD − µ/SPT/∗ 1773.63 0.16 7.93% 13.36%

CoefD − µ/LPT/∗ 1818.39 0.15 10.64% 15.76%

CoefD − µ/V arA/∗ 1774.23 0.16 7.96% 13.28%

CoefD − µ/V arD/∗ 1818.80 0.16 10.67% 16.21%

CoefD − µ/CoefA/∗ 1773.50 0.15 7.92% 13.28%

CoefD − µ/CoefD/∗ 1818.21 0.16 10.63% 16.21%
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riod assignment and SPT, VarA and CoefA for sequencing. Then the problem of

surgery time allocation is solved optimally. The results are given in Table 5.10. For

all of the sequencing rules, totally different than PA decision, SPT, VarA and CoefA

observed to be working well. The rules which place surgeries with lower variance or

shorter surgery times are performing better. For example VarA is a commonly used

rule for sequencing in the literature. The main idea here is to prevent accumulation

of delays for surgeries in later part of the period.

For the last decision, surgery time assignment, we used four different job hedging

levels. Results of these schedules are given in Table 5.11.

From Table 5.11, we see that 25th percentile works best as the job hedging level.

The surgery times are generated from a log-normal distribution and log-normal dis-

tribution is a right-skewed distribution. For this reason, for better estimating the job

hedging level, 25th% percent seems reasonable. However, the effect of cost parame-

ters is also important. Since co
cw

= 33, overtime is more important than waiting time.

This will lead allocation of shorter surgeries times, ignoring some of the variation in

the surgery durations. This can be another reason for 25th percentile working well.

Among all decisions, the biggest source of the optimality gap for co
cw

= 33 case is

the period assignment decision. Better rules for PA decision can bring more benefit

compared to S and DA.

5.2.2 Parameter Selection for Genetic Algorithm

We developed a Genetic Algorithm for the APSP, which is defined in Section 4.2.3.

To determine the algorithm parameters, we have tested different population sizes,

crossover and mutation operators, parent selection rules and ways of generating next

generation. Table of tested experiment settings are given in Table 5.12.

We tested our GA on the preliminary problem setting given in Table 5.1 with |S| =

200. We tested our algorithm on 10 instances and run our algorithm for 10 times for

each instance. Detailed computational results are given in Appendix C. Average of 10

replications for 10 instances are reported. As a stopping criteria, 2000 iterations are

selected to not miss any improvement. As it can be seen from the table, the main part
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Table 5.11: Results of four different job hedging levels for surgery time allocation

when planning decisions are fixed

Obj. Func. Val Soln. Time (CPU sec.)
Opt. Gap

Average Max

*/*/* 1644.9 26.34 - -

LPT − p50/SPT/∗ 1770.28 0.17 7.69% 11.99%

LPT − p50/SPT/µ 2024.58 0.10 23.21% 27.68%

LPT − p50/SPT/p25 1790.95 0.10 8.95% 12.72%

LPT − p50/SPT/p50 1918.83 0.10 16.73% 19.59%

LPT − p50/SPT/p75 2575.19 0.11 61.09% 69.92%

LPT − p50/V arA/∗ 1770.89 0.16 7.73% 11.93%

LPT − p50/V arA/µ 2023.36 0.11 23.14% 26.11%

LPT − p50/V arA/p25 1790.21 0.10 8.91% 12.86%

LPT − p50/V arA/p50 1923.06 0.10 17.00% 20.40%

LPT − p50/V arA/p75 2571.43 0.10 64.03% 73.84%

LPT − p50/CoefA/∗ 1770.31 0.17 7.69% 11.93%

LPT − p50/CoefA/µ 2023.99 0.10 31.70% 38.73%

LPT − p50/CoefA/p25 1790.31 0.11 18.89% 27.58%

LPT − p50/CoefA/p50 1921.64 0.13 30.29% 38.81%

LPT − p50/CoefA/p75 2572.93 0.11 78.19% 89.13%

V arD − p50/SPT/∗ 1770.75 0.16 7.78% 11.72%

V arD − p50/CoefA/µ 2017.77 0.10 31.30% 40.93%

V arD − p50/CoefA/p25 1789.27 0.10 18.82% 28.59%

V arD − p50/CoefA/p50 1929.02 0.11 30.79% 40.49%

V arD − p50/CoefA/p75 2563.26 0.11 77.51% 88.81%

V arD − p50/V arA/∗ 1771.42 0.17 7.82% 11.80%

V arD − p50/SPT/µ 2021.59 0.10 23.03% 26.73%

V arD − p50/SPT/p25 1789.97 0.10 8.94% 12.61%

V arD − p50/SPT/p50 1925.88 0.10 17.18% 20.71%

V arD − p50/SPT/p75 2572.73 0.11 60.93% 70.42%

V arD − p50/CoefA/∗ 1770.81 0.16 7.78% 11.80%

V arD − p50/V arA/µ 2017.03 0.10 22.76% 27.07%

V arD − p50/V arA/p25 1789.38 0.10 8.91% 12.68%

V arD − p50/V arA/p50 1930.07 0.10 17.45% 21.31%

V arD − p50/V arA/p75 2559.81 0.11 63.28% 75.05%

CoefD − µ/SPT/∗ 1773.63 0.16 7.93% 13.36%

CoefD − µ/SPT/µ 2017.75 0.11 22.81% 30.61%

CoefD − µ/SPT/p25 1791.37 0.12 9.01% 14.28%

CoefD − µ/SPT/p50 1928.56 0.10 20.64% 28.81%

CoefD − µ/SPT/p75 2557.45 0.11 69.84% 80.72%

CoefD − µ/V arA/∗ 1774.23 0.16 7.96% 13.28%

CoefD − µ/V arA/µ 2015.38 0.12 22.66% 29.82%

CoefD − µ/V arA/p25 1794.10 0.11 9.18% 14.64%

CoefD − µ/V arA/p50 1929.09 0.11 23.05% 31.57%

CoefD − µ/V arA/p75 2556.04 0.10 73.30% 85.43%

CoefD − µ/CoefA/∗ 1773.50 0.15 7.92% 13.28%

CoefD − µ/CoefA/µ 2014.78 0.11 22.63% 29.82%

CoefD − µ/CoefA/p25 1793.77 0.10 9.16% 14.64%

CoefD − µ/CoefA/p50 1927.41 0.11 25.42% 34.21%

CoefD − µ/CoefA/p75 2554.47 0.10 76.91% 88.82%

68



Table 5.12: Parameters for Genetic Algorithm to be tested

Algorithm Parameters Alternatives to be tested

Popsize
30

100

Crossover
Uniform Crossover

1-point Crossover

Mutation
M1: Each gene can be mutated w/ prob. 0.001

M2: Random gene from a chromosome is mutated

w/ prob 0.005

Parent Selection
Parents are randomly chosen w/ equal prob.

Selection prob. Proportional to fitness values

Forming Next Gen.

wpbo: Worst Parent is exchanged with best off-

spring

2of4: Parents are deleted from population and

best 2 out of 4 (2 parents 2 offsprings) are added

worst2: Both offsprings added to population and 2

worst individuals are deleted from population

of the solution time is finding the final optimal solution for the best period assignment.

Iterations take less than half second. For the solution of the final problem, we used

A-BDA-Full for improving our computational performance. For the fitness function,

we used the best performing sequencing and scheduling rules which are VarA for

sequencing surgeries and p25 for the job hedging.

To choose the best algorithm factors, we conducted and analyzed the full factorial

design of experiment of the parameters. In the analysis average 10 replication for each

instance for each parameter setting is used. We have 2×2×2×2×3 = 48 parameter

settings to test. In Minitab 17, we created Main Effect and Interaction plots of each

factor for the average optimality gap. From the plot in Figure 5.1., we see that using

a bigger population with uniform crossover ends up in smaller average gap values.

For forming the next generation, first deleting the chosen parents from the population

and adding best two individuals after crossover works best. When compared with

the other ways of forming the next generation, its position is in between exploration

and exploitation. It does not allow population to have worse individuals however

still there can be worse individuals than the offsprings or parents chosen which are
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not replaced inthe population. In the main effects plot, mutation operator and parent

selection rule seems indifferent, so we also checked main effects plot of number of

time optimal solution is reached. Figure 5.2 is the main effect plot for the number

of times optimal solution is found and higher values are better this time. It shows

parallel behavior in terms on effects of factors. Still effect of mutation and parent

selection is not critical, we select M1 for the mutation operator and random parent

selection rule.

Figure 5.1: Main effect plot for average gap for all factors

Then we checked the interaction plot for average gap which is given in Figures 5.3.

There is only interaction seen between forming next generation and parent selection

and next generation and mutation. When interaction of these factors are checked by

2-way ANOVA, we see that it is not important.

For the final parameter setting, we chose population size of 100, uniform crossover

operator, mutation operator M1, random parent selection for crossover and 2of4. For

further experiments, we use this setting for GA.
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Figure 5.2: Main effect plot for number of time the optimal solution is found for all

factors

Figure 5.3: Interaction plot for average gap for all factors
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Table 5.13: New experiment setting

|N | 10

(µType1, σType1), |NType1| (20.49, 10.86), 2

(µType2, σType2), |NType2| (20.93, 15.08), 5

(µType3, σType3), |NType3| (34.01, 17.42), 3

|T | 3

dt 82.55

cw 1

cs 0.01

cu 0

5.3 Experiments for Managerial Insights

For the further experiments, we chose our surgery mix from "Pain Medicine" surgical

group of OPC given in [7]. Procedure groups 2, 3 and 5 are used since they include

97% of the total operations for that group. Total number of surgeries is increased to

N = 10. Problem setting is given in Table 5.13.

In our model, surgery durations are random variables with known distributions. We

represent these distributions through scenarios, realizations of these random variables,

to consider uncertainties in our model. To reach the "true optimum" for the "origi-

nal problem", it is significant to choose correct number of scenarios. Using higher

number of scenarios represents distributions better, however, problem should stay

tractable to reach the optimal solution. To determine the minimum number of scenar-

ios for our problem, we solved 10 instances from the setting given in Table 5.13 up to

1500 scenarios. We reached 1500 scenario case by adding 100 new scenarios every

time we increase the number of scenarios. For solving the models, we used the best

performing method, A-BDA-Full, which is determined in the previous section. The

objective function values for 10 instances up to 1500 scenarios is given in Figure 5.4.

We observe that in the small number of scenarios, the variation in the objective func-

tion value is high, however, it decreases as |S| increases. In Table 5.14, average of
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Figure 5.4: Objective function value of 10 instances up to |S| = 1500

percentage difference between objective function values of two consecutive cases (|S|
and |S|+ 100) are given.

When Figure 5.4 and Table 5.14 are considered, we decided to use |S| = 800 for our

main experiments. The change between consecutive scenario cases after |S| = 800

are less than %1 for almost all values. Also in the graph we see more stabilized lines

after 800 scenarios which implies that it starts to converge to "optimal solution" for

the "original problem".

5.3.1 Analysis of the Problem Setting

We solved our problem with three different cost parameter settings, co
cw

= 33, co
cw

= 10

and co
cw

= 1. co
cw

= 33 is the case used in [30], which is closest to the real practice in

the OPC they studied. In this case, OR overtime is significantly more important than

the patient waiting time. In co
cw

= 10 case, OR overtime is still more expensive but

patient waiting times are more important compared to the previous setting. In our last

case, we consider co
cw

= 1, where patient waiting time and OR overtime are equally

important. Case co
cw
≤ 1, where patient waiting time is significantly more important,

is not considered since it is not used in practice. Results of each case for ten different

instances generated from same setting are given in Table 5.15. Solution time of each

scenario is reported with average expected waiting time (E[W ]), idle time (E[I]) and

overtime (E[O]) per period.
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Table 5.14: Average percentage difference between two cases with 100 scenario dif-

ference

# of Scenarios Avg. % Difference

100 6.74%

200 3.88%

300 1.22%

400 0.96%

500 1.91%

600 1.34%

700 1.22%

800 0.90%

900 1.05%

1000 0.76%

1100 0.83%

1200 0.63%

1300 0.55%

1400 0.48%

1500 -

E[W ] =
1

|S| × |T |
·
∑
s∈S

∑
t∈T

∑
k∈Kt

∑
i∈Nr

psikt

E[I] =
1

|S| × |T |
·
∑
s∈S

∑
t∈T

∑
k∈Kt

∑
i∈Nr

ssikt

E[O] =
1

|S| × |T |
·
∑
s∈S

∑
t∈T

ost

For all instances, as co
cw

decreases, E[W ] per period decreases and E[I] per period

and E[O] per period increases since importance of patient waiting increases as it is

given in Table 5.15. However, the main increase is in idle time, even though we do

not change cs. The main reason is, for decreasing the patient waiting times, longer

durations are allocated to surgeries to avoid patient waiting and this causes idle time.

When co
cw

= 33, OR utilization is the highest and the idle time is 1.9% of the session

length. E[W ] per period is almost 3.5 times of E[O] per period in this case. We can

see for the highest overtime cost setting that, on the average, there is extra 12.9%

overtime for each period. When co
cw

= 10, in the case of patient waiting and OR
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overtime are equally important, average patient time decreases drastically however

OR utilization is lowered to 82.3%. When solution times are compared, co
cw

= 33 is

the shortest and co
cw

= 10 is the longest. It is harder to find the optimal solution when

a certain cost is not dominant over the other one.

5.3.2 Comparison of Exact and Heuristic Solution Methods

To compare the performance of the heuristic solution methods with the exact ones,

we solve the problem by both HDM heuristic and GA. The results for 10 instances

are given in Table 5.16

As the importance of overtime decreases, HDM heuristic performs worse. In HDM,

first problem considers only the overtime cost which means as waiting time gets more

important, it ignores more while assigning periods to the surgeries. In the GA, the

performance are similar except co
cw

= 1. It uses VarA/p25 for calculating the fitness

function. These rules perform well in establishing a good solution for sequencing and

scheduling, however as the waiting time cost is equal to overtime cost, it gets weaker

in mimicking the optimal sequence and schedule.

When HDM and GA are compared in terms of the solution quality and the computa-

tional performance, HDM finds a solution with maximum of 1.71% optimality gap,

and almost all solutions has optimality gap lower than 1%. However, it takes around

20% more computational time than GA. GA is faster and the solution quality is still

great. The worst optimality gap for GA is 3% and in the settings except co
cw

= 1, the

results are really similar to HDM.

To observe the performance of exact and heuristic methods in larger instances, we

conducted our experiments on 15 surgeries. Again, we used the surgery mix from

"Pain Medicine" surgical group of OPC given in [7] and the problem setting is given

in Table 5.17. Due to number of variables and constraints increasing exponentially by

increasing the number of surgeries, to obtain solutions in reasonable times, |S| = 100

is chosen. As the solution time limit, 9000 CPU seconds is used.

The results of for different co
cw

ratios are given in Table 5.18. For calculating the op-

timality gap for heuristic methods, best lower bound found in exact solution is used.
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Table 5.16: Comparison of heuristic solution methods with exact solution

A-BDA-Full Hierarchical Decision Making Heu. Genetic Algorithm

Soln. Time % Opt. Gap
Soln. Time % Opt. Gap

Soln. Time
Total HLP LLP Best Average Worst

co
cw

= 33

Ins 1 4229.79 0.00% 94.16 62.05 32.11 0.00% 0.02% 0.08% 78.08

Ins 2 4328.55 0.00% 83.68 52.08 31.60 0.00% 0.00% 0.00% 73.97

Ins 3 3654.75 0.00% 114.05 83.46 30.59 0.26% 0.26% 0.26% 74.85

Ins 4 4253.67 0.00% 84.99 56.43 28.56 0.00% 0.30% 0.99% 75.83

Ins 5 4112.03 0.02% 91.52 54.52 37.00 0.00% 0.00% 0.00% 76.62

Ins 6 3770.25 0.12% 96.12 62.51 33.61 0.00% 0.03% 0.19% 76.30

Ins 7 4173.47 0.00% 93.36 62.16 31.20 0.00% 0.00% 0.00% 66.69

Ins 8 4508.32 0.00% 88.69 54.89 33.80 0.00% 0.07% 0.40% 73.51

Ins 9 4141.48 0.00% 93.17 57.91 35.26 0.00% 0.06% 0.31% 72.42

Ins 10 4067.39 0.00% 85.35 56.80 28.55 0.00% 0.14% 0.78% 71.11

Average 4123.97 0.01% 92.51 60.28 32.23 0.03% 0.09% 0.30% 73.94

co
cw

= 10

Ins 1 11645.00 0.00% 101.88 63.87 38.01 0.00% 0.06% 0.09% 86.88

Ins 2 9934.74 0.00% 90.91 54.46 36.45 0.00% 0.15% 0.66% 79.54

Ins 3 9304.76 0.08% 83.66 48.49 35.17 0.00% 0.31% 0.38% 73.56

Ins 4 12112.10 0.00% 87.75 50.82 36.93 0.00% 0.04% 0.05% 80.74

Ins 5 8978.17 0.33% 103.59 64.34 39.25 0.00% 0.09% 0.51% 82.48

Ins 6 9654.63 0.06% 97.83 62.54 35.29 0.00% 0.01% 0.06% 89.97

Ins 7 11205.10 0.00% 102.64 68.00 34.64 0.00% 0.03% 0.29% 78.75

Ins 8 12320.80 0.18% 95.29 55.21 40.08 0.17% 0.19% 0.24% 82.41

Ins 9 12468.60 0.00% 86.53 54.20 32.33 0.00% 0.02% 0.11% 75.88

Ins 10 13259.20 0.00% 114.17 79.78 34.39 0.00% 0.02% 0.17% 77.67

Average 11088.31 0.06% 96.43 60.17 36.25 0.02% 0.09% 0.26% 80.79

co
cw

= 1

Ins 1 4585.46 0.32% 100.79 58.60 42.19 1.79% 1.93% 2.49% 76.43

Ins 2 4112.12 0.03% 83.86 48.39 35.47 0.00% 0.09% 0.75% 75.30

Ins 3 3644.57 1.71% 86.86 49.26 37.60 2.52% 2.58% 3.08% 70.72

Ins 4 4316.74 0.67% 91.93 51.01 40.92 3.38% 3.39% 3.43% 72.03

Ins 5 4465.80 1.05% 92.73 47.72 45.01 2.58% 2.60% 2.60% 79.47

Ins 6 5293.47 0.22% 94.99 57.77 37.22 0.20% 0.21% 0.22% 80.39

Ins 7 4517.57 0.48% 90.97 59.70 31.27 0.30% 0.45% 1.10% 79.62

Ins 8 4321.70 1.57% 101.47 59.40 42.07 2.69% 2.78% 3.58% 78.75

Ins 9 4481.49 0.69% 89.56 54.19 35.37 2.75% 2.80% 2.81% 77.64

Ins 10 5101.58 0.07% 88.23 47.10 41.13 2.81% 2.81% 2.81% 84.59

Average 4484.05 0.68% 92.14 53.31 38.83 1.90% 1.96% 2.29% 77.49

Solution times are in CPU seconds.
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Table 5.17: Experiment setting of larger instances

|N | 15

(µType1, σType1), |NType1| (20.49, 10.86), 2

(µType2, σType2), |NType2| (20.93, 15.08), 8

(µType3, σType3), |NType3| (34.01, 17.42), 5

|T | 3

dt 126.1

cw 1

cs 0.01

cu 0

For GA, we made 10 replication for each instance. For all instances, A-BDA-Full

failed to find the optimal solution in the time limit. We observe from the optimality

gaps that HDM performs slightly better than GA in terms of solution quality. How-

ever, GA outperforms HDM when solution time is considered. For these instances,

instead of running A-BDA-Full for 9000 CPU seconds, we can reach similar quality

solutions by using HDM or GA in much shorter times.

5.3.3 Expected Value of Perfect Information and Value of Stochastic Solution

By using stochastic programming approach, we try to better represent real-life prac-

tices through considering uncertainties. To understand the significance of uncertain-

ties and the importance of future information, VSS and EVPI are calculated by using

the following equations.

EV PI =
RP −WS

RP

V SS =
EEV −RP

EEV

In some instances, optimal solution may not be reached within the time limit. For

these instances, VSS calculated by the best solution is a lower bound on the accurate

values of VSS. Meanwhile, EVPI calculated by the best solution found is an upper

bound on the accurate values of EVPI. To observe the effect of co
cw

on considering
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Table 5.18: Comparison of exact and heuristic solution methods on larger instances

A-BDA-Full HDM Genetic Algorithm

% Opt. Gap Soln. Time % Opt. Gap Soln. Time Best % Opt. Gap Avg. % Opt. Gap Worst % Opt. Gap Soln. Time

co
cw

= 33

Ins 1 36.33% 9000.00 35.97% 292.05 36.16% 37.06% 37.93% 658.62

Ins 2 42.05% 9000.00 41.83% 640.65 41.83% 43.52% 45.72% 609.76

Ins 3 48.50% 9000.00 47.69% 257.75 48.21% 49.06% 50.33% 357.79

Ins 4 46.71% 9000.00 46.15% 1786.75 46.54% 47.37% 49.04% 424.73

Ins 5 42.30% 9000.00 41.73% 1127.66 42.89% 43.44% 44.17% 725.71

Ins 6 43.89% 9000.00 43.46% 377.95 43.28% 43.91% 44.54% 538.25

Ins 7 42.95% 9000.00 42.26% 993.71 42.26% 43.06% 43.98% 579.26

Ins 8 44.17% 9000.00 43.69% 313.61 43.85% 44.68% 45.74% 350.94

Ins 9 41.52% 9000.00 40.52% 284.39 40.91% 41.83% 43.39% 408.32

Ins 10 46.78% 9000.00 45.73% 1089.31 45.91% 46.76% 47.61% 506.97

Average 43.52% 9000.00 42.90% 716.38 43.18% 44.07% 45.24% 516.04

co
cw

= 10

Ins 1 47.47% 9000.00 46.47% 740.03 46.48% 47.01% 48.01% 893.91

Ins 2 53.52% 9000.00 52.44% 878.73 52.38% 53.51% 55.01% 878.01

Ins 3 58.99% 9000.00 58.34% 702.04 58.59% 58.92% 59.60% 701.51

Ins 4 57.30% 9000.00 56.64% 3156.53 56.10% 56.85% 57.75% 811.99

Ins 5 53.66% 9000.00 53.23% 1323.59 53.18% 53.65% 54.29% 727.42

Ins 6 55.13% 9000.00 54.63% 953.36 54.67% 55.22% 55.82% 1054.46

Ins 7 52.91% 9000.00 52.55% 1185.83 52.73% 53.51% 54.68% 752.15

Ins 8 55.47% 9000.00 54.81% 970.63 54.50% 55.50% 56.17% 747.37

Ins 9 52.88% 9000.00 52.11% 541.79 52.19% 52.92% 53.70% 561.90

Ins 10 56.48% 9000.00 55.79% 1456.78 55.86% 56.32% 56.97% 791.09

Average 54.38% 9000.00 53.70% 1190.93 53.67% 54.34% 55.20% 791.98

co
cw

= 1

Ins 1 64.72% 9000.00 64.87% 265.39 64.30% 64.74% 65.27% 458.89

Ins 2 72.10% 9000.00 71.51% 296.45 72.18% 72.61% 73.15% 686.20

Ins 3 74.22% 9000.00 73.81% 264.34 73.87% 74.37% 74.76% 313.36

Ins 4 71.51% 9000.00 71.64% 908.10 71.38% 71.90% 72.31% 664.79

Ins 5 70.13% 9000.00 70.46% 547.95 70.18% 70.42% 71.21% 394.47

Ins 6 72.95% 9000.00 72.42% 379.55 72.36% 72.64% 72.87% 567.17

Ins 7 69.38% 9000.00 69.89% 599.26 69.72% 70.02% 70.39% 296.32

Ins 8 73.55% 9000.00 73.12% 605.62 72.82% 73.35% 74.05% 547.83

Ins 9 69.62% 9000.00 70.02% 305.53 69.72% 70.19% 70.53% 426.21

Ins 10 73.98% 9000.00 74.68% 854.18 74.07% 74.38% 74.68% 417.44

Average 71.22% 9000.00 71.24% 502.64 71.06% 71.46% 71.92% 477.27

Solution times are in CPU seconds.
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uncertainty and value of information, VSS and EVPI are calculated for each setting

and the results are represented in Table 5.19.

Table 5.19: VSS and EVPI of each instance for three different overtime cost parame-

ter values

co
cw = 1 co

cw = 10 co
cw = 33

EVPI VSS EVPI VSS EVPI VSS

Instance 1 79.5% 12.1% 56.4% 12.1% 48.3% 18.7%

Instance 2 78.2% 16.3% 55.0% 13.4% 46.9% 19.9%

Instance 3 77.7% 16.6% 54.2% 12.1% 46.2% 19.2%

Instance 4 79.7% 15.6% 57.3% 11.7% 49.1% 20.2%

Instance 5 78.6% 10.9% 55.1% 12.9% 47.1% 20.4%

Instance 6 77.0% 7.5% 51.9% 11.7% 43.4% 18.9%

Instance 7 77.8% 10.2% 54.0% 10.8% 45.8% 17.5%

Instance 8 79.1% 13.7% 56.0% 12.3% 47.9% 19.9%

Instance 9 80.6% 11.9% 58.8% 11.2% 50.9% 20.4%

Instance 10 79.0% 9.2% 55.3% 12.1% 47.2% 19.2%

Average 78.7% 12.4% 55.4% 12.0% 47.3% 19.4%

As the co
cw

ratio decreases, EVPI increases and VSS decreases. In the case of higher

overtime cost, it is more important to plan considering uncertainties because wrong

time allocations will cost more. This results in increase of VSS. However, in lower
co
cw

, planning and scheduling decisions get more important since any patient waiting

is equally important as overtime. Knowing more about the uncertainties will bring

more benefit.
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CHAPTER 6

CONCLUSION

In this study, we worked on multi-period appointment planning and scheduling prob-

lem (APSP) under surgery time uncertainty. The problem includes the assignment

of surgeries to a period in the planning horizon, sequencing of the surgeries in each

period and allocating time for each surgery. All these decisions are made simultane-

ously. The problem is modeled as a two-stage stochastic program where the first stage

includes all planning and scheduling decisions. In the second stage, waiting time of

patients, and idle time and overtime of the OR is calculated. The objective function

is composed of expected costs of these waiting time, idle time and overtime values.

APSP is a NP-hard problem and there are many identical solutions since the periods

are identical. For eliminating these identical solutions and enhancing our model for-

mulation, we used symmetry breaking constraints. Main idea of these constraints is

that each period should have less surgery than the previous period.

To solve our two-stage stochastic programming model, we used extensive formulation

and decomposition methods such as the L-shaped method with single and multi-cut

variations, L-shaped method in branch-and-cut framework and Benders’ decomposi-

tion. In our preliminary experiments, we worked on small instances with eight surg-

eries to be scheduled in three periods. We used up to 200 scenarios. We observed that

solving the extensive formulation performs better than the classic single-cut L-shaped

method for small instances. In addition, MVC, cuts based on mean value scenario,

are considered to improve the computational performance of L-shaped algorithm.

In our problem, it is important to carry significant level of information through opti-

mality cuts. All multi-cut L-shaped methods work better than the single-cut L-shaped
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methods; and decomposing subproblems further and generating more cuts even works

better. This is valid for both iterative and branch-and-cut frameworks. Also, working

on the same branch-and-bound tree rather than creating and exploring a new one in

each iteration performs better, and hence B&C framework decreases the solution time

by a great amount.

Besides the L-shaped method, we also used Benders’ decomposition algorithm which

performed best in terms of computational performance. Considering only period as-

signment and sequencing variables in the master problem and moving time allocation

decisions to subproblems performs well. Since subproblems are still LP, they are

solved easily, and cuts generated from these subproblems are tighter. However, this

observation only holds for the automatic Benders’ decomposition algorithm, embed-

ded in CPLEX. When it is coded through only B&C framework, it performs worse

than both mutli-cut L-shaped and multi-cut L-shaped with subproblems decomposed

based on both scenarios and periods. We believe that this is due to the other type of

cuts used by CPLEX in the automatic BDA.

By using simple sequencing rules, we analyzed the dynamics behind each decision in

our problem. When the cost of overtime is significantly higher than patient waiting

time and idle time, LPT, VarD and CoefD work well at assigning surgeries to periods

and SPT, VarA and CoefA work well in sequencing. Since our surgery times are

generated from a log-normal distribution, which is right-skewed, using 25th percentile

as job hedging level performed well.

We developed two heuristic algorithms, hierarchical decision making heuristic and

genetic algorithm. In hierarchical decision making heuristic, as a first step an easy

model is solved just for placing surgeries to periods, considering only overtime costs.

In the second step, period assignments are fixed and the remaining problem is solved

to optimality. Similarly, GA tries to find the best period assignments and evaluate the

quality of solutions through best working simple sequencing and job hedging rules (-

/VarA/p25). To find the final schedule, sequencing and scheduling problem is solved

to optimality, as in the second step of the HDM.

In our main experiments, we analyzed the effect of cost parameters on our solutions.

We solved three different cases of cost parameter ratios in larger instances of ten
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surgeries with 800 scenarios. Idle time and overtime increases as cost of overtime

decreases. Also, it is easier to find the optimal solution when one cost is significantly

higher than the other.

Then, we compared the solutions returned by our heuristics with the optimal solution.

Both heuristics perform well within reasonable computational times. We observe that

solving the problem hierarchically is good enough and computationally much more

efficient than solving the integrated problem in 20 times more time, even in the case

with co
cw

= 1. Genetic algorithm also performs well and find near-optimal solutions;

however, HDM obtains closer solutions to the optimal. Since it is really fast, it is

promising to use GA in much larger instances and it will find "good solutions" in still

reasonable time. In the larger instances, it is not possible to reach optimal solution

by exact methods. We can reach a solution with similar quality by using heuristic

methods instead of running the exact methods for very long times. Also, solution

performances of HDM and GA are close to each other in terms of solution quality.

GA reaches a similar solution with a better computational performance.

Also, when simple sequencing rules are considered for period assignment, they do

not perform well and the best performing rules result in optimality gap of around 8%.

When results of experiments for HDM is considered, solving an easy problem, which

only considers the overtime cost for surgery-to-period assignments, performs much

better rather than using these simple rules.

We also calculated EVPI and VSS for three different ratios of cost of overtime and

waiting time. We observed that VSS increases and EVPI decreases as this ratio in-

creases. When overtime is more important, including uncertainty in the model be-

comes more important.

For the future research directions, lower bounds can be found for the objective func-

tion value to better evaluate the performance of the heuristic methods. In GA, dif-

ferent methods for creating initial population and/or different crossover probabilities

and/or different mutation probabilities can be tested.
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APPENDIX A

UPPER AND LOWER BOUNDS ON xkt

Upper Bound

Let ρl: lth value when (dmaxi − dmini ) for each i ∈ N r are sorted in decreasing order.

For a day t and for k = 1:∑
i∈Nr

dmini · yi1t ≤ x1t ≤
∑
i∈Nr

dmaxi · yi1t

For k = 2:∑
i∈Nr

dmini · yi1t +
∑
i∈Nr

dmini · yi2t ≤ x1t + x2t ≤
∑
i∈Nr

dmaxi · yi1t +
∑
i∈Nr

dmaxi · yi2t

−
∑
i∈Nr

dmaxi · yi1t ≤ −x1t ≤−
∑
i∈Nr

dmini · yi1t

x1t − x1t + x2t ≤
∑
i∈Nr

dmaxi · yi1t −
∑
i∈Nr

dmini · yi1t +
∑
i∈Nr

dmaxi · yi2t

x2t ≤
∑
i∈Nr

(
dmaxi − dmini

)
· yi1t +

∑
i∈Nr

dmaxi · yi2t

x2t ≤max
i

(
dmaxi − dmini

)
· yi1t +

∑
i∈Nr

dmaxi · yi2t

x2t ≤
∑
i∈Nr

(ρ1 + dmaxi ) · yi2t

xk′t ≤
∑
i∈Nr

(
k′−1∑
l=1

(ρl + dmaxi )

)
· yik′t
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Lower Bound

Let j be the 2nd and l be the 3rd surgery on period t

For k = 2;

Pl3ts − Sl3ts = Pj2ts + djs · yj2t − x2t ∀s

djs · yj2t − x2t ≤ Pl3ts − Sl3ts ≤
(
dmaxi − dmini

)
+ djs · yj2t − x2t

Let x2t = dminj

dsj · yj2t − dminj ≤P s
l3t − Ssl3t ≤

(
dmaxi − dmini

)
+ dsj · yj2t − dminj

dminj − dminj ≤ P s
l3t

P s
l3t ≤

(
dmaxi − dmini

)
+ (dmaxj − dminj )

0 ≤ P s
l3t ≤

(
dmaxi − dmini

)
+ (dmaxj − dminj )

LHS1 = 0 and RHS1 = (dmaxi − dmini ) + (dmaxj − dminj )

Let x2t = d
′min
j where d′min

j < dminj

dsj · yj2t − d
′min
j ≤P ′s

l3t − S
′s
l3t ≤

(
dmaxi − dmini

)
+ dsj · yj2t − d

′min
j(

dminj − d′min
j

)
≤ P

′s
l3t

P
′s
l3t ≤

(
dmaxi − dmini

)
+ (dmaxj − d′min

j )(
dminj − d′min

j

)
≤ P

′s
l3t ≤

(
dmaxi − dmini

)
+ (dmaxj − d′min

j )

LHS2 = (dminj − d′min
j ) > 0 and RHS2 = (dmaxi − dmini ) + (dmaxj − d′min

j )

|LHS1| < |LHS2| and |RHS1| < |RHS2| so Pl3ts < P ′l3ts

We can extend and generalize this lower bounds for xkt where k ≥ 2 such as:

N∑
i=1

dmini yikt ≤ xkt k ∈ K, t ∈ T

92



APPENDIX B

UPPER BOUND ON P s
ikt

For k = 1

P s
j2t − Ssj2t = dsi ∗ yi1t − x1t

P s
j2t ≤

(
dsi − dmini

)
yi1t

≤ (max
i
dsi −min

i
dmini )yj2t

For the indices to match, we need the larger upper bound. If no job is assigned to a

position, there cannot be any waiting time.

For k = 2

P s
l3t − Ssl3t = P s

j2t + dsj ∗ yj2t − x2t

P s
l3t ≤ (max

i
dsi −min

i
dmini )yl3t + max

i
dsi ∗ yl3t −min

i
dmini ∗ yl3t

Since we used max and min values for one position, and a patient cannot be assigned

into two positions, we can use the 2nd max and 2nd min values for the upper bound.

P s
l3t ≤ (max

i
dsi −min

i
dmini )yl3t + max

i
dsi ∗ yl3t −min

i
dmini ∗ yl3t

P s
l3t ≤

(
2∑
z=1

(
dscsz − dminsz

))
∗ yl3t

dscsk: kth longest surgery duration in scenario s and

dsmink : kth shortest surgery duration after sorting dmini in increasing order.

We can extend and generalize this bound such as:

P s
ikt ≤

(
k−1∑
l=1

(
dscsl − dminsl

))
∗ yikt
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APPENDIX C

GA RESULTS

95



Ta
bl

e
C

.1
:G

A
re

su
lts

fo
rI

ni
tia

lP
op

ul
at

io
n

Si
ze

=3
0

Po
pS

iz
e

X
O

M
U

T
PS

N
E

X
T

G
E

N
O

pt
G

ap
#

of
Ti

m
es

O
pt

.S
ol

n.
Fo

un
d

B
es

tO
pt

.G
ap

fr
om

In
it.

Po
p.

So
lu

tio
n

Ti
m

e
(C

PU
se

c.
)

#
To

ta
lI

te
r

#
of

B
es

tS
ol

n.
C

ha
ng

es
O

pt
.G

ap
of

So
ln

w
/−
/
V
a
r
A
/
p
2
5

B
es

tO
pt

.G
ap

fr
om

In
it

Po
p.

So
ln

.w
/−
/
V
a
r
A
/
p
2
5

To
ta

l
Fo

r
O

pt
im

iz
at

io
n

Fo
r

It
er

at
io

ns

30

U
ni

fo
rm

C
ro

ss
ov

er

M
1

R
an

do
m

w
Pb

O
0.

46
%

3.
3

5.
44

%
7.

79
7.

63
0.

16
21

30
2.

62
1.

93
%

6.
97

%

2o
f4

0.
06

%
6.

9
6.

74
%

7.
81

7.
61

0.
20

26
07

4.
12

1.
45

%
8.

23
%

w
or

st
2

0.
36

%
4.

5
6.

88
%

7.
65

7.
47

0.
18

23
08

2.
63

1.
86

%
8.

44
%

Fi
tn

es
s

w
Pb

O
0.

62
%

3.
5

5.
65

%
7.

72
7.

55
0.

16
21

18
2.

45
2.

06
%

7.
14

%

2o
f4

0.
06

%
7.

0
6.

01
%

7.
59

7.
39

0.
20

25
74

3.
58

1.
45

%
7.

46
%

w
or

st
2

0.
60

%
4.

4
5.

64
%

7.
76

7.
57

0.
19

23
99

2.
74

2.
06

%
7.

07
%

M
2

R
an

do
m

w
Pb

O
0.

45
%

3.
5

6.
10

%
7.

74
7.

58
0.

16
21

08
2.

53
1.

90
%

7.
59

%

2o
f4

0.
07

%
6.

8
6.

52
%

7.
61

7.
42

0.
19

24
94

3.
87

1.
46

%
8.

03
%

w
or

st
2

0.
53

%
4.

6
6.

40
%

7.
67

7.
49

0.
18

23
36

3.
05

1.
99

%
7.

82
%

Fi
tn

es
s

w
Pb

O
0.

53
%

3.
0

6.
33

%
7.

73
7.

57
0.

16
21

17
2.

56
2.

06
%

7.
83

%

2o
f4

0.
09

%
6.

8
6.

05
%

7.
55

7.
35

0.
20

25
17

3.
79

1.
48

%
7.

50
%

w
or

st
2

0.
45

%
4.

4
7.

17
%

7.
87

7.
69

0.
19

23
40

2.
85

1.
91

%
8.

68
%

1-
Po

in
tC

ro
ss

ov
er

M
1

R
an

do
m

w
Pb

O
1.

39
%

2.
1

6.
37

%
7.

88
7.

72
0.

16
21

29
2.

42
2.

88
%

7.
85

%

2o
f4

1.
29

%
2.

4
6.

81
%

7.
75

7.
57

0.
18

23
50

2.
78

2.
76

%
8.

31
%

w
or

st
2

2.
69

%
1.

1
6.

50
%

7.
63

7.
47

0.
17

21
63

1.
73

4.
24

%
8.

01
%

Fi
tn

es
s

w
Pb

O
1.

37
%

2.
1

6.
21

%
7.

83
7.

67
0.

16
21

05
2.

07
2.

88
%

7.
67

%

2o
f4

1.
24

%
2.

7
6.

16
%

7.
82

7.
64

0.
18

23
00

2.
10

2.
73

%
7.

63
%

w
or

st
2

2.
10

%
1.

8
5.

84
%

7.
80

7.
63

0.
16

21
01

1.
68

3.
60

%
7.

34
%

M
2

R
an

do
m

w
Pb

O
1.

46
%

1.
5

5.
93

%
7.

64
7.

48
0.

16
21

09
2.

18
2.

99
%

7.
39

%

2o
f4

0.
98

%
2.

4
6.

58
%

7.
58

7.
40

0.
18

23
82

2.
82

2.
44

%
8.

06
%

w
or

st
2

2.
51

%
1.

1
6.

12
%

7.
67

7.
50

0.
17

22
48

1.
91

4.
00

%
7.

59
%

Fi
tn

es
s

w
Pb

O
1.

39
%

1.
3

6.
31

%
7.

69
7.

53
0.

16
21

09
2.

18
2.

90
%

7.
81

%

2o
f4

1.
30

%
2.

6
6.

66
%

7.
74

7.
56

0.
18

22
82

2.
19

2.
79

%
8.

17
%

w
or

st
2

2.
16

%
1.

1
6.

45
%

7.
76

7.
60

0.
16

21
13

1.
77

3.
69

%
7.

91
%

96



Ta
bl

e
C

.2
:G

A
re

su
lts

fo
rI

ni
tia

lP
op

ul
at

io
n

Si
ze

=1
00

O
pt

G
ap

#
of

Ti
m

es
O

pt
.S

ol
n.

Fo
un

d
B

es
tO

pt
.G

ap
fr

om
In

it.
Po

p.
So

lu
tio

n
Ti

m
e

(C
PU

se
c.

)
#

To
ta

lI
te

r
#

of
B

es
tS

ol
n.

C
ha

ng
es

O
pt

.G
ap

of
So

ln
w

/−
/
V
a
r
A
/
p
2
5

B
es

tO
pt

.G
ap

fr
om

In
it

Po
p.

So
ln

.w
/−
/
V
a
r
A
/
p
2
5

Po
pS

iz
e

X
O

M
U

T
PS

N
E

X
T

G
E

N
To

ta
l

Fo
r

O
pt

i-

m
iz

at
io

n

Fo
r

It
er

a-

tio
ns

10
0

U
ni

fo
rm

C
ro

ss
ov

er

M
1

R
an

do
m

w
Pb

O
0.

05
%

7.
1

3.
08

%
7.

60
7.

41
0.

19
24

76
2.

63
1.

45
%

4.
58

%

2o
f4

0.
05

%
7.

0
3.

03
%

7.
80

7.
60

0.
20

25
83

2.
77

1.
44

%
4.

48
%

w
or

st
2

0.
06

%
6.

8
3.

09
%

7.
62

7.
41

0.
21

25
82

2.
56

1.
45

%
4.

59
%

Fi
tn

es
s

w
Pb

O
0.

08
%

6.
6

3.
32

%
7.

92
7.

71
0.

21
24

86
2.

69
1.

47
%

4.
81

%

2o
f4

0.
06

%
6.

9
3.

26
%

7.
84

7.
61

0.
23

26
98

2.
82

1.
45

%
4.

74
%

w
or

st
2

0.
06

%
7.

0
2.

98
%

7.
69

7.
47

0.
22

25
13

2.
43

1.
46

%
4.

52
%

M
2

R
an

do
m

w
Pb

O
0.

08
%

6.
5

3.
09

%
7.

66
7.

46
0.

19
24

29
2.

70
1.

47
%

4.
55

%

2o
f4

0.
06

%
6.

9
3.

25
%

7.
57

7.
36

0.
21

26
37

2.
72

1.
45

%
4.

73
%

w
or

st
2

0.
06

%
6.

8
3.

06
%

7.
38

7.
17

0.
21

25
78

2.
53

1.
46

%
4.

57
%

Fi
tn

es
s

w
Pb

O
0.

08
%

6.
5

3.
04

%
7.

57
7.

36
0.

21
24

59
2.

58
1.

47
%

4.
51

%

2o
f4

0.
05

%
7.

0
2.

78
%

7.
73

7.
50

0.
23

27
48

2.
85

1.
44

%
4.

29
%

w
or

st
2

0.
06

%
6.

8
3.

19
%

7.
66

7.
44

0.
22

25
73

2.
57

1.
45

%
4.

63
%

1-
Po

in
tC

ro
ss

ov
er

M
1

R
an

do
m

w
Pb

O
0.

17
%

5.
7

3.
66

%
7.

71
7.

51
0.

20
25

96
2.

58
1.

60
%

5.
17

%

2o
f4

0.
11

%
6.

0
3.

14
%

7.
91

7.
70

0.
21

26
32

2.
49

1.
57

%
4.

70
%

w
or

st
2

0.
70

%
3.

2
2.

03
%

7.
78

7.
60

0.
18

22
13

1.
11

2.
18

%
3.

58
%

Fi
tn

es
s

w
Pb

O
0.

21
%

4.
6

2.
81

%
7.

74
7.

53
0.

21
24

93
2.

09
1.

63
%

4.
31

%

2o
f4

0.
24

%
4.

9
2.

99
%

7.
78

7.
57

0.
21

25
19

2.
09

1.
68

%
4.

48
%

w
or

st
2

0.
66

%
3.

2
2.

66
%

7.
96

7.
77

0.
19

22
00

1.
27

2.
16

%
4.

17
%

M
2

R
an

do
m

w
Pb

O
0.

18
%

5.
0

2.
91

%
7.

66
7.

46
0.

20
25

57
2.

06
1.

61
%

4.
40

%

2o
f4

0.
17

%
5.

3
2.

79
%

7.
69

7.
48

0.
21

27
02

2.
33

1.
57

%
4.

31
%

w
or

st
2

0.
68

%
3.

3
2.

95
%

7.
71

7.
52

0.
19

23
22

1.
50

2.
18

%
4.

44
%

Fi
tn

es
s

w
Pb

O
0.

27
%

4.
4

2.
78

%
7.

83
7.

63
0.

21
24

60
1.

81
1.

71
%

4.
27

%

2o
f4

0.
17

%
5.

5
3.

38
%

7.
77

7.
55

0.
22

27
10

2.
42

1.
63

%
4.

87
%

w
or

st
2

0.
46

%
3.

7
2.

79
%

8.
00

7.
81

0.
19

22
22

1.
52

1.
97

%
4.

33
%

97


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Literature Review
	Review of Studies on Appointment Planning and Scheduling
	Background Information on Stochastic Programming
	Stochastic Programming
	Solution Methods
	L-shaped Method
	L-shaped Method in a Branch-and-Cut Framework
	Benders' Decomposition Algorithm

	Expected Value of Perfect Information and the Value of the Stochastic Solution

	Background Information on Genetic Algorithm

	Problem Definition and Mathematical Formulation
	Problem Definition
	Mathematical Formulation
	Symmetry Breaking Constraints and Valid Inequalities
	Bounds on xkt
	Symmetry Breaking Constraints
	Valid Inequalities Derived from Symmetry Breaking Constraints


	Solution Methods
	Exact Solution Methods
	Solving The Extensive Formulation
	Decomposition Methods
	L-shaped Method
	Decomposition Schemes for the Subproblems
	Multi-Cut Structure
	Benders' Decomposition Algorithm
	Strengthening the Master Problem using Mean Value Cuts


	Heuristic Solution Methods
	Simple Sequencing Rules
	Hierarchical Decision Making
	Genetic Algorithm


	Computational Experiments
	Results for Exact Solution Methods
	Model Selection
	Solution Method Selection

	Results for Heuristic Solution Methods
	Insights from Simple Sequencing Rules
	Parameter Selection for Genetic Algorithm

	Experiments for Managerial Insights
	Analysis of the Problem Setting
	Comparison of Exact and Heuristic Solution Methods
	Expected Value of Perfect Information and Value of Stochastic Solution


	Conclusion
	REFERENCES
	Upper and Lower Bounds on xkt
	Upper bound on Pikts
	GA results

