

SOCIAL NETWORK ANALYSIS OF MALICIOUS WEBSITES FOR

DETECTION AND CHARACTERIZATION

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

MUHSİN ALDEMİR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

OF MASTER OF SCIENCE

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

DECEMBER 2019

SOCIAL NETWORK ANALYSIS OF MALICIOUS WEBSITES FOR

DETECTION AND CHARACTERIZATION

Submitted by Muhsin Aldemir in partial fulfillment of the requirements for the degree of
Master of Science in Information Systems, Middle East Technical University by,

Prof. Dr. Deniz Zeyrek Bozşahin
Dean, Graduate School of Informatics

Prof. Dr. Sevgi Özkan Yıldırım
Head of Department, Information Systems

Assoc. Prof. Dr. Banu Günel Kılıç
Supervisor, Information Systems, METU

Examining Committee Members:

Assoc. Prof. Dr. Aysu Betin Can
Information Systems, METU

Assoc. Prof. Dr. Banu Günel Kılıç
Information Systems, METU

Assoc. Prof. Dr. Altan Koçyiğit
Information Systems, METU

Prof. Dr. Şeref Sağıroğlu
Computer Engineering Dept., Gazi University

Assoc. Prof. Dr. Tuğba Taşkaya Temizel
Information Systems, METU

Date: 02/12/2019

iii

I hereby declare that all information in this document has been obtained
and presented in accordance with academic rules and ethical conduct. I
also declare that, as required by these rules and conduct, I have fully
cited and referenced all material and results that are not original to this
work.

Name, Last name : Muhsin Aldemir

Signature :

iv

ABSTRACT

SOCIAL NETWORK ANALYSIS OF MALICIOUS WEBSITES FOR

DETECTION AND CHARACTERIZATION

Aldemir, Muhsin

MSc., Department of Information Systems
Supervisor: Assoc. Prof. Dr. Banu Günel Kılıç

December 2019, 66 pages

Malicious websites pose major risks to users and businesses including economic
damages, privacy breaches and loss of valuable data. Malicious actors use websites
as a spreading medium for their motives. Analyzing the relationships between
malicious websites and comparing them to benign ones can help understand the
problem better, and enable detection and prevention of these websites more
accurately.

This thesis focuses on detection and characterization of malicious websites using
Social Network Analysis (SNA). SNA provides powerful methodologies for
discovering and visualizing the relationships between actors. By utilizing the links
in between and among malicious and benign websites, graphs were constituted,
whose nodes were websites and ties were hyperlinks between them. For this purpose,
the data which included the snapshot of the pairwise links amongst hundreds of
thousands of websites, the list of malicious websites and their types were obtained
from the web. First, networks of malicious websites were formed. Then, using these
networks new analyses were carried out to efficiently find malicious websites and
their types based on their network structures and link similarities. Results were
presented showing the detection accuracies of applied methods.

Keywords: Malicious Websites, Social Network Analysis, Webgraphs, Crawler,
Malware

v

ÖZ

ZARARLI WEBSİTELERİNİN TESPİTİ VE KARAKTERİZASYONU İÇİN

SOSYAL AĞ ANALİZİ

Aldemir, Muhsin

Yüksek Lisans, Bilişim Sistemleri Bölümü
Tez Yöneticisi: Doç. Dr. Banu Günel KILIÇ

Aralık 2019, 66 sayfa

Zararlı web siteleri kullanıcılar ve şirketler için ekonomik zararlar, mahremiyet
ihlalleri ve değerli veri kayıpları gibi büyük riskler oluştururlar. Kötü niyetli aktörler
web sitelerini amaçları için bir yayılma aracı olarak kullanırlar. Zararlı web siteleri
arasındaki ilişkiyi analiz etmek ve bunları zararsız web siteleri ile karşılaştırmak
sorunu daha iyi anlamaya yardımcı olabilir ve böylece bu websitelerini daha doğru
bir şekilde tespit edip önlemeye imkan sağlayabilir.

Bu tez, Sosyal Ağ Analizi (SAA) kullanarak kötü amaçlı web sitelerinin tespitine ve
karakterizasyonuna odaklanmaktadır. SAA, aktörler arasındaki ilişkileri keşfetmeye
ve görselleştirmeye yardımcı olan güçlü metodolojiler sunar. Zararlı ve zararsız web
sayfalarının kendi aralarında ve birbirleriyle olan bağlantılarını kullanarak düğümleri
web siteleri, bağları da aralarındaki linkler olan çizgeler oluşturuldu. Bu amaçla, yüz
binlerce web sayfası arasındaki karşılıklı bağlantıların anlık durum görüntüsünü,
zararlı web sitelerinin listesini ve onların tiplerini içeren veri webden elde edildi.
Öncelikle zararlı web siteleri ağları oluşturuldu. Daha sonra, bu ağları kullanarak
zararlı web sitelerini ve onların tiplerini verimli biçimde bulmak için ağ yapılarına ve
bağlantı benzerliklerine dayanan yeni analizler yapıldı. Uygulanan metodların tespit
doğruluğunu gösteren sonuçlar sunuldu.

Anahtar Sözcükler: Zararlı Web siteleri, Sosyal Ağ Analizi, Web Çizgeleri, Web
Tarayıcı Robotları, Zararlı Yazılımlar

vi

DEDICATION

To My Family

vii

ACKNOWLEDGMENTS

Firstly, I would like to express my deepest appreciation to my advisor, Assoc. Prof.
Dr. Banu Günel Kılıç for her constant support, advice, and mentoring during my
graduate studies and writing of this thesis.

I would like to extend my sincere thanks to my examining committee members
Assoc. Prof. Dr. Aysu Betin Can, Assoc. Prof. Dr. Altan Koçyiğit, Prof. Dr. Şeref
Sağıroğlu and Assoc. Prof. Dr. Tuğba Taşkaya Temizel for their valuable feedbacks
and participation in my thesis defense.

I am forever grateful to my family, my mom, dad and brother for their unconditional
support throughout all my life.

viii

TABLE OF CONTENTS

ABSTRACT .. iv
ÖZ ... v

DEDICATION .. vi
ACKNOWLEDGMENTS .. vii

TABLE OF CONTENTS ... viii
LIST OF TABLES ... x

LIST OF FIGURES ... xi
LIST OF ABBREVIATIONS .. xii

CHAPTERS
1- INTRODUCTION ... 1

1.1. Research Questions .. 2
1.2. Thesis Importance and Impacts .. 3

1.3. Thesis Scope ... 3
1.4. Thesis Overview ... 3

2- RELATED WORKS .. 5
2.1 Malicious Website Detection ... 5

2.2 Efficiency in Malicious Website Detection ... 6
2.3 Link Analysis-Based Methods ... 8
2.4 Other Related Works on Social Network Analysis 9

 2.4.1 Web as a Small World .. 10
 2.4.2 Finding Hierarchy and Important Nodes .. 10

 2.4.3 Identification of Communities on the Web and Web Graphs 11
3- METHODOLOGY .. 13

 Introduction To Social Network Analysis .. 14
3.2 Data Collection Method ... 16

3.3 Collecting Hyperlinks From Websites ... 17
3.4 Generating a List of Malicious Websites For Analysis 19

ix

3.4.1 Finding Malicious Websites …………………………………………..19
3.4.2 Gathering Information About a Website’s Security Status……………20

3.5 Transforming Data Into Network ... 21
3.6 Network Properties & Characterization ... 22

3.7 Limitations ... 23
3.8 Summary .. 24

4- FINDING MALICIOUS WEBSITES ... 25
4.1. Core Groups ... 25

4.1.1 Components …………………………………………………………...26
4.1.2 K-cores…………………………………………………………………28
4.1.3 Betweenness centrality………………………………………………...30

4.2. Results .. 30
4.3. Comparision With Other Works .. 35

5- THREAT TYPE IDENTIFICATION .. 37
5.1. Evaluation Metrics ... 38

5.2. Malicious Link Neighbors Method .. 39
5.2.1. Direct Neighbors……………………………………………………… 40
5.2.2. Indirect Neighbors……………………………………………………..41
5.2.3. Usage of Direct and Indirect Neighbors for Threat Type Detection…..42

5.3. Link Similarity Method .. 48

5.4. Results .. 50
5.4.1. Malicious Link Neighbors Method’s Results………………………….50
5.4.2. Link Similarity Method’s Results……………………………………...53

6- CONCLUSIONS ... 57

REFERENCES ... 59
APPENDICES .. 65

x

LIST OF TABLES

Table 1: Common Crawl data for Feb/Mar/Apr 2019 in numbers 18
Table 2: Number of entries in our malicious websites dataset after Virustotal 20
Table 3: Frequency and percentages of the threat types of websites in our network . 22
Table 4: Core groups and analysis results of their neighbors 31
Table 5: Malicious websites in randomly selected websites from the network
averaged for 10 experiments .. 33
Table 6: Frequencies and percentages of the threat types of websites in our network
 .. 37
Table 7: Confusion Matrix for Label Classification .. 38
Table 8: Types of nodes and their initial maliciousness probabilities 42
Table 9: Size MxN matrix showing similarity scores between nodes 49
Table 10: Types of nodes and their initial assigned maliciousness probabilities 49
Table 11: Malicious link neighbors method results for using direct neighbors set 51
Table 12: Confusion matrix for direct neighbors sets .. 51
Table 13: Malicious link neighbors method results for using indirect neighbors set 52
Table 14: Confusion Matrix for Indirect Neighbors Sets ... 52
Table 15: Results for Link Similarity Methods .. 53
Table 16: Confusion matrix for direct neighbors sets .. 53
Table 17: Results for Link Similarity Methods after removing 100 functional links 54
Table 18: Confusion matrix for direct neighbors sets after removing 100 functional
links .. 54

xi

LIST OF FIGURES

Figure 1: A four size network of hyperlinks between websites 15
Figure 2: A symmetric network of size seven that shows friendship among a group 15
Figure 3: Separate neighbors of malicious websites X, Y and Z 21
Figure 4: Network after we combine neighbors of malicious websites X, Y and Z 21
Figure 5: Indegree and outdegree distributions for 34,785 malicious websites 22
Figure 6: Indegree and outdegree distributions for 34,785 malicious websites in
common log-log scale .. 23
Figure 7: A sample network that shows strongly connected components inside
contours .. 27
Figure 8: Largest strongly connected component with 15 members of malicious
websites from the network ... 28
Figure 9: 8 malicious nodes in a 4-core and their network between themselves 29
Figure 10: 142 malicious nodes in a 3-core and their network between themselves 29
Figure 11: Number of malicious websites in number of analyzed websites for
different core groups and random selections ... 34
Figure 12: Links between malicious nodes in our network ... 40
Figure 13: Co-citation and bibliographic coupling relationship 41
Figure 14: Type assignment simulated as graph labeling with steps a to c and
beginning with node U1 .. 43
Figure 15: Type assignment simulated as graph labeling with steps a to c and
beginning with node U2 .. 44
Figure 16: An example network ... 44

xii

LIST OF ABBREVIATIONS

AJAX

Asynchronous JavaScript and XML

API
DNS
EQ

Application Programming Interface
Domain Name System
Equation

GB
HTML

Gigabyte
Hyper Text Markup Language

IOT Internet Of Things
LIFO
OS
RQ
SEO

Last In First Out
Operating System
Research Question
Search Engine Optimization

SNA Social Network Analysis
TB
URL
VM

Terabyte
Uniform Resource Locator
Virtual Machine

WARC Web Archive
WWW World Wide Web

1

CHAPTER 1
CHAPTER

1- INTRODUCTION

Computer and network security have always been a big concern for users. Malicious
software, often called as malwares, are specifically designed programs to cause
harmful or unwanted actions on computer users and computer systems. These effects
could be stealing information, disrupting and damaging the computer systems,
breaching user’s privacy and economic losses. Malware is a broad term to generalize
many types of malicious programs like adwares, bots, rootkits, ransomwares,
spywares, trojan horses, viruses, and worms. Effects and motives of these programs
differ from each other based on their categories. On their infected systems, some
show advertisements, some steal information, some make the system unusable and
some others make the system a member of a botnet, etc.

A malware can infect a system in many ways. Most common infection vectors are
spam emails, infected removable drives, malicious executables and websites. They
are called malware distribution channels. Malicious websites might be set up with
evil motives initially or they can be legitimate websites, which are compromised
later on to serve malicious content. World Wide Web (WWW) as a malware
distribution channel is not a new phenomenon. Since its commercialization and
opening to the masses, malware has been a huge problem for WWW. Today, the
number of Internet connected devices are enormous and with the advancement in the
technology and Internet of Things (IOT), malware problem is expected to grow even
larger [1].

Malware detection and prevention are vast research areas. Today, both the solutions
offered by the security industry and techniques to evade detection employed by
malicious actors are sophisticated. Computer security industry with different cyber
security solutions tries to protect users and computer systems.

Detecting malware and preventing its infection are difficult processes. Malware
research is often done by analyzing the malware itself and its interactions on the host
computer. However, the analysis of malware distribution channels and their
mechanism is as important as the malware analysis itself.

To study malicious websites and malware distribution problem on the Web, we need
a good research approach. Modeling the relationships among websites will help us to
illustrate the structure of the group, so that several analyses can be carried out on
them later on. Due to its well-established grounds Social Network Analysis (SNA) is
a good choice to study the relationship between malicious websites. Social Network
Analysis is a set of methods to define and understand a network structure. There are
many problems that can be answered by utilizing the SNA approach. Applying social

2

network analysis on security will widen the possibilities of findings and will help us
to illustrate the relationships better.

A social network consists of entities and relationships between them. These entities
might be websites, people, organizations, individual states, group of companies, etc.
In SNA terminology these entities are often called as nodes or vertices. Relationships
between them could be one of many types such as friendship, collaboration, business
ties, trust, information exchange, etc. Many objects we have in the real world and
relationships between them can be classified and analyzed as a social network.
Friendships among people, collaboration between academics on a conference paper,
electrical power grids of a city are all social networks.

In SNA, observed attributes between actors are understood with regards to patterns
or structures of ties among them. Relational ties between actors such as friendship
status between them have primary status whereas the attributes of actors like their
ages have secondary status [2]. Therefore an attribute would lack its exact meaning if
it is taken solely without a relationship accompanying it. So, a pattern or a structure
of ties and relationships are necessary to interpret the attributes correctly.

Networks and network analysis have been the subject of many academic disciplines
such as mathematics, sociology, computer sciences, biology and economics. Those
disciplines have some differences in terms of explaining and analyzing networks
related to their respective fields. Network analysis is an interdisciplinary subject and
this thesis benefits from the interdisciplinary status of the research area. Computer
science constitutes the data collection and analysis efforts of the thesis. Mathematics
with its graph theory paves the way for forming and understanding network
structures. Also, the propagation of malware on malicious websites can be modeled
similar to the propagation of an infectious disease in biological sciences.

1.1. Research Questions

This thesis tries to answer mainly two research questions.

R.Q. 1) Linked nature of the Web lets us analyze interactions between websites.
Since Web is a very large domain consisting of millions of websites and our analysis
capacity is not unlimited, we need to make a priority in selection of websites to
analyze. How this selection can be done effectively with link analysis? By effective
we mean analyzing smaller number of websites but running into more malicious ones
in them.

R.Q. 2) Malicious websites have threat types in terms of malicious content they
present like malware and phishing. Can we make successful predictions for their
threat types by utilizing their links?

3

1.2. Thesis Importance and Impacts

Malicious websites pose great risks to computer users. These risks include economic
damages, privacy breaches and loss of valuable data. In recent years many high scale
security breaches have occurred which caused many damages [1][3].

As much as being an indispensable part of people’s lives today, Web is also an
important distribution medium for malicious programs. Google operates a Safe
Browsing initiative which finds malicious websites on the Web. It indicates that
there are currently 30,557 malware websites and 1,637,637 phishing websites on the
Internet, which are deemed dangerous [4]. Also they detect thousands of new
malware and phishing websites everyday [5].

By understanding the relationship between malicious websites on the Web and
mapping out their interactions, we can understand the problem better. Thus, we can
identify and prevent them more accurately.

1.3. Thesis Scope

Malware research is a vast and popular academic research area. There are various
detection methods offered by researchers for malware detection or analysis on a
website to determine whether it has any malicious content or not. This study does not
aim proposing an alternative method, but a method to accompany them.

This thesis takes a social network approach and tries to understand the relationships
in the network of malicious websites. Some research techniques developed in the
domains of social network analysis and graph theoretic models will help us to form
the networks and illustrate the relationships. As a result, we aim to provide an
efficient selection method for websites that are going to be analyzed since malicious
website detection is an expensive process. For each different malicious type,
detection methods differ. Therefore, to find which detection techniques should be
applied primarily to a suspected website we try to predict its threat type by utilizing
its links.

1.4. Thesis Overview

Chapter 2 provides the related works on the subject. Chapter 3 presents the
methodology we employed. In order to use SNA metrics, one needs some
fundamental knowledge of the topics it covers. Therefore, this chapter begins with an
introduction to SNA topics and its specific terms. Afterwards, data collection
methods are presented and efforts about transitioning data to network are
mentioned. In Chapter 4, finding malicious websites, we explain the prioritization
process in selection of seed websites that will let us run into more malicious websites
afterwards. Chapter 5, threat type identification, explains how threat type
identification of a malicious website can be done with different methods based on
link analysis and presents the results. Chapter 6 is the conclusions part where results

4

obtained in the study are summarized and contributions and future work are
mentioned.

5

CHAPTER 2

2- RELATED WORKS

As detection of malicious websites is a popular research topic there are many studies
in the literature. The important ones that are related to the scope of this thesis are
mentioned in this chapter. Some related studies that are based on social network
analysis are also summarized.

2.1 Malicious Website Detection

Studies in this section shows how traditional malicious website detection works.

Malware detection is often done by analyzing the malware itself and its interactions.
These efforts include steps like static analysis, dynamic analysis, reverse engineering
of malware and code analysis [6]. Static analysis tries to detect malware without
running it whereas in dynamic analysis malware files are run within a secure
environment.

Two notable studies made on malware detection on the web that use virtual machines
were done by [7] and [8]. Virtual machine-based approaches run suspicious files in a
secure, isolated environment and detect malware with a high accuracy, but they are
computationally expensive.

The study [7] analyzed malicious attacks on the Web using a crawler. They limited
their analysis on a specific type of malware named spyware. Their aim was to find
spyware’s prevalence on the Internet and a user’s likelihood of encountering it. They
tried to answer the questions: Which spyware is the most common on the Web and
are spyware executables distributed evenly on the Web or are they concentrated in
specific areas? Which websites and the site category distribute the most spyware?
They initially crawled over 2500 websites and iteratively added links in them up to
depth three. To identify malicious software, they downloaded the executables to
Virtual Machine (VM), installed or executed it and used a commercial anti-spyware
tool to identify if it was flagged as malicious or not. To identify drive-by download
attacks, they visited a webpage with an unmodified browser in a VM and applied a
heuristic method by using triggers in the Operating System (OS) such as observing a
new library installation or creation of a new suspicious process after visiting the web
page. They crawled around 18 million URLs and found spyware in 13.4% out of the
21.200 executables they come across. Also, they found drive-by download attacks in
5.9% of the web pages they visited. The most common type of spyware they found
was adware or browser hijackers while others like dialers, keyloggers and trojan
downloaders had relatively small prevalence. They found that spywares are not

6

evenly distributed and the domains which serve the most spyware programs were in
the games category while news category websites had the least malicious content.

The study [8] developed an automated web patrol system to find malicious web sites
that exploit browser vulnerabilities to install malware. They used a computer
program called honey monkey which is similar to honey pots, but takes a more active
approach in detecting threats by imitating a human’s web usage. Honey monkeys
running on OSes with different patch levels launch a browser instance to visit input
URLs. To understand if an exploit happens, they try to find unauthorized/suspicious
file creations and configuration changes. After each visit to the webpage their
program generated a report containing creation or changes of files outside of the
browser sandbox, OS process creation, and changes in OS registry entries, exploited
vulnerability which was found based on a signature of the exploit, and visitation
records based on redirection. All these operations were done in a virtual machine
environment. One of the important aspects of their study was that after they found
exploit sites they constructed topology graphs based on traffic redirections on them.
Thus, they were able to find important actors who are responsible for these exploit
webpages. Their aim was to determine both the real source of malware and other
web pages that are involved in the distribution chain. They found that many exploit
URLs found in the first stage did not distribute exploits themselves, but acted as a
storefront, attracting large traffic and then redirecting this traffic to actual exploit
distributors. They showed that redirections are big culprits in exploit distribution.

As mentioned before, Google Safe Browsing also operates scanners to find malware
and phishing websites. Google Safe Browsing does not disclose its efforts in detail,
but there are two publications that explain its methodology. In their study that shows
how web based malware operates [9] found a large number of websites that
compromise users’ browsers. The study [10] also showed that how drive-by
download attacks occur and how they detected them. In their study, they found over
3 million malicious URLs that trigger drive-by downloads.

2.2 Efficiency in Malicious Website Detection

Searching for malicious websites is usually a three-step process. First step is finding
the URLs to analyze, which is usually done by a crawler. In the second step, these
URLs are quickly inspected using fast analysis filters to dismiss possibly benign
ones. These filters usually examine different features of a page such as HTML
content and JavaScript functions. This step may result in imprecise decisions, but it
is necessary since there are more websites than the available analysis resources. In
the last step, in depth analysis of a web page is done by specialized analyzers like
honey clients.

The work [11] argued that even though this three-step process is an applicable
method, it is not efficient, since it requires considerable time and computing
resources. In order to do it more efficiently they proposed employing a focused
crawler named Malcrawler that seeks more malicious websites than the benign ones

7

compared to a generic crawler and as a result, increasing the toxicity of the crawled
URLs. Their method focused on JavaScript based malwares. They began their
crawling with a seed set of malicious URLs. For each URL they encountered they
visited the webpage and extracted 10 different features such as redirections, number
of dynamic code executions, bytes allocated in memory space etc. Then using
already known malicious websites as a training set, they made classifications, but
they also used Google Safe Browsing to cross-check the validity of their findings. As
a result of classifications, links which looked like malicious were followed and
others which did not look like malicious were removed and not followed. To test the
effectiveness of their crawler, they made two crawls. In the first one they made a
generic crawl where they followed every link, and in the second one they made a
crawl with their proposed method, i.e. not crawling links which did not seem to be
malicious. In both of these crawls they visited around 0.57 million URLs. In the first
crawl they encountered 702 (0.123%) URLs and in the second crawl they
encountered 1978 (0.348%) URLs. By applying their method, they were able to
increase the number of malicious URLs they gathered from 702 to 1978.

With the similar aim, to improve efficiency at finding URLs to analyze, the work
[12] proposed a method called Evilseed. They extracted the characterizing
similarities between known malicious web pages and using them generated specific
search engine queries to detect other malicious pages that are similar or related to
known malicious ones instead of randomly looking for malicious websites on the
Web. The idea is that a feature shared by many known malicious web pages is an
indication of malicious activity and other pages that have this feature are more
probably to be malicious. However, different than Malcrawler, they utilized the
search engines to find these websites instead of crawling themselves. They had five
different feature sets as links, content, search engine optimization (SEO), domain
registration and DNS queries. They regarded a web page malicious if it executed a
drive-by download attack or tried to trick a user to install a fake anti-virus program.
Using their features, they formed a candidate malicious URLs lists and checked
whether they were malicious or not by using Google Safe Browsing, a client
honeypot and a custom fake anti-virus detector. For link feature they first found web
pages that link to known malicious web pages and then extracted other URLs they
contained and added them as candidate malicious URLs. For content feature they
extracted common terms that occur in known malicious web pages and found other
pages that included the same terms and added them as candidate malicious URLs.
For SEO feature they found SEO campaigns that tried to boost a malicious page’s
position in the search results and gathered all other pages in the same domain and
added them and all the links they contained to the candidate malicious URLs. For
domain registration feature they found the registration times for malicious websites
and added other websites that has been registered moments before or after that
website to the candidate malicious URLs. For DNS feature, they monitored the DNS
queries made by a large user base and when a DNS query for a malicious web page
is made, they added the other URLs whose DNS queries made in the preceding four
seconds to the candidate malicious URLs. They compared their findings first with a
random web search and then with a crawler. Evilseed gathered 226,140 URLs of
which 3036 (1.34%) were found to be malicious whereas crawler gathered 431,428

8

URLs of which 604 (0.14%) were found to be malicious and random web search
made on a search engine included 219 (0.34%) malicious URLs out of 64,411 URLs.
Their method was able to find more malicious URLs than both random search and
crawler.

2.3 Link Analysis-Based Methods

Link analysis methods can be used to select websites for potential detection. Link
analysis methods on the WWW are mainly used for website classification, or also
known as website categorization, which is the method of assigning one or more
categories to a website. This classification could be done based on several different
purposes like finding the category of a webpage such as entertainment, gaming, news
etc, or to find a website’s function, i.e. the role it plays like personal page or
corporate page, search engine etc. For these type of classification tasks several
different methods are proposed like using textual and visual features. However, since
we are interested in application of link analysis, we will analyze the methods
involving it. Link based classification methods on WWW are used mainly on topical
categorization of websites. The work [13] used machine learning methods to classify
a web page and showed that utilizing the classes of hyperlinked neighbors of the
page to be classified greatly helps the classification accuracy. The work [14] showed
how class categories from the neighboring web pages, pages that have link
relationship with the page being analyzed, can be used for classification tasks. They
used four categories of neighbors: parent, child, sibling and spouse and found out
that sibling neighbors help the classification tasks a lot. By adding neighboring
pages’ classes into their analysis, they improved accuracy over common text
classification approaches. In their study to find related web pages in WWW, the
study [15] used HITS algorithm [16] to find similar web pages to a provided web
page using only the link analysis. These studies show that link analysis helps in
terms of classification of websites.

Link analysis has some applications in classifying websites in terms of their security
status, i.e. whether they are malicious or not and detection of their attack type. Many
studies that apply link analysis to security domain are done for classifying web spam
websites [17][18][19][20]. Web spam websites try to increase their rankings and get
higher placement in search results by deceiving search engines. As link based
ranking algorithms like PageRank [21], or HITS [16] establishes ranking by utilizing
a website’s links and high indegree helps to get higher rank, web spam websites
exploit this feature by forming links between themselves to boost their positions.
Therefore, link analysis is one of the most important features for the classification of
web spam.

The work [22] showed how the link structure between web pages can be used to
detect spam pages. They computed statistics for a variety of features of a website,
like incoming and outgoing link numbers, links per pages and number of hostnames
mapping to single IP address etc. and discovered that in some of these distributions,
outlier values were detected to be web spam. Their findings show statistical analysis

9

on link features is a decent method to find web spam. The work [23] also used link
analysis to find web spam pages. They found that distribution of indegrees usually
follows the power law, but 40% of spam hosts they analyzed have indegrees in a
very narrow interval which led to their detection. The work [18] says that web spam
pages tend to be linked by other web spam pages and by using this notion on link
analysis they identified web spam.

So, can link analysis also help us to classify other malicious categories other than
spam like malware and phishing? The work [24] used machine learning models for
detection and attack type identification of malicious websites. They tried to detect
and identify attack types of malware, phishing and spam websites. Their feature sets
include lexical, link popularity, webpage content, DNS, DNS fluxiness and network
communication features. For each type of malicious websites, different features
provided different results. For example, lexical features were effective at detecting
phishing but not as effective at detecting malware and spam. Among their other
feature sets link popularity was the most related one for us, since we did not employ
others. Their link popularity feature set includes 15 features such as indegrees and
ratios of spam, phishing and malware links for a website. Using all six of their
feature sets together they achieved 93% accuracy at detection of attack types.
However, by using single feature sets alone achieved accuracies were between 63%
and 85%.

The work [25] called WebCop proposed a method that includes web graphs to find
malicious web pages. They defined two types of websites that were active in
malicious scene, one is malware distribution sites where actual malware reside and
the second one is malware landing sites which provide links to the distribution sites.
First, they found malware distribution sites with author’s access to a commercial
telemetry service and then they created the web graphs of these websites using a
crawler. Going to the reverse direction from malware distribution sites they were
able to discover landing sites and additional malware executables.

One other technique that uses web graphs to find malicious websites are trust and
distrust propagation methods [26][27][28]. These methods begin with forming a
reliable set of malicious or clean websites first and then using them they propagate
their maliciousness or cleanliness to other websites that they have link exchange.
And usually websites that have scores below or above certain thresholds are
predicted to be malicious or clean.

2.4 Other Related Works on Social Network Analysis

Social network analysis is a broad research topic and since we use its methods in this
study some related works are presented below.

10

2.4.1 Web as a Small World

The notion of small world means nodes in a network are closer to each other than we
thought of them and is studied by many researchers. One of the most prominent
studies are Stanley Milgram’s Small World experiments in the 1960s [29]. His
hypothesis was that the world is small when it’s seen as a network of acquaintances
between people. He asked some hundreds of people who were selected randomly in
the USA to send a letter to a specific person by using other people they know
personally (in first name basis) as relays. When the letters that arrived at destination
were analyzed, it was shown that the average path length was around 6. It showed
that people live in a small world with six degrees of separation. Although there are
some criticisms for Milgram’s experiments [30], this study made great contributions
to lay the ground for modern social network analysis by showing that the direct and
indirect relationships between people are more intense than one may think.

With respect to studies showing the small world phenomenon, the study [31] says
that many biological and man-made systems are also small world networks. These
networks are highly clustered, but the minimum distance between any two randomly
chosen vertices is short; therefore reaching from one node to any other is shorter than
one may think. She argues that the World Wide Web (WWW) which is a man-made
network is also a small world network. Websites are clustered between themselves
according to their categories and other factors but the distance that separates one
another is only a few links away. She found that for an undirected WWW network
there are 3.1 and for a directed network there are 4.2 hops on average between any
two connected websites.

2.4.2 Finding Hierarchy and Important Nodes

Hierarchy shows authority relationship between nodes. Finding hierarchy and
important nodes help us to unfold the structure of the network. The methods applied
in two studies, which are summarized below, can be applied to identify a ranking
between malicious websites.

The study [32] propose a model to find the most important nodes in a graph. Their
entropy model uses text mining and natural language processing to form an
information theoretic model to find the most important nodes and hidden
organizational structures in a graph. They tested their model on Enron email dataset
as it provides a large dataset of human interaction and shows information flow in an
organization. They argue that when there is a hierarchy between nodes, to disrupt a
network structure one should find important nodes or leaders whose removal will
have the maximum effect on the information flow. To do so they first calculated the
whole graph’s entropy and then they removed nodes one by one and recalculated the
graph entropy for the remaining graph. When removing nodes, they also removed
their adjacent edges at length=1 (directly connected nodes) and at length=2 (not
directly in contact but there is an information flow through third nodes). They
applied this entropy model on Enron email dataset and argued that the node whose

11

absence causes most change in the graph entropy was the most important one in the
graph. Their results found 2 presidents, 1 manager, 1 CEO and 1 Regular Employee
as the most important nodes.

The study [33] used twelve different SNA metrics along with some machine learning
models to identify the hierarchy and important people in an organization. To do this
they also used Enron email dataset and an email exchange dataset of a university
research group. Their model successfully found managers and important people in
the network. They found that five metrics out of twelve SNA metrics they gathered
from literature review were more effective in identifying influential nodes. Those
successful metrics were Weighted Clique Score, HITS Authority Score, Average
Distance, Markov Centrality Score, and Degree Centrality Score. Despite the title of
their study, they did not apply their methodology and results on subjects related with
security, but focused on finding important nodes and hierarchy in a network. They
concluded that their findings can be applied as a future work in many types of
communication networks including Social Network Sites, Dark Net Forums and
phone records.

2.4.3 Identification of Communities on the Web and Web Graphs

In a paper that presents WebGraph Framework 1, a popular tool to study the very
large web graphs [34], hypertextual form of the Web was mentioned, as well as how
we could utilize it to help us to design effective crawlers and detecting online
communities. Web graphs are graphs whose structure consists of elements in WWW.
websites are nodes and hyperlinks in them are directed edges from website A to
website B if a web page in A includes a hyperlink to a web page in B. Therefore,
creating web graphs to study and apply social network analysis methods on the web
are helpful.

The study [35] developed a method to find Web communities. Web is decentralized
and unorganized by design which makes content analysis difficult. They argued that
there are millions of web pages out there with different contents and no central
authority to govern their hyperlinks, but it is found that Web self organizes itself and
the link structure of it helps to identify communities effectively. They described web
communities as a collection of webpages where each member has more hyperlinks to
other web pages within the community than outside of the community. Their
algorithm begins with a seed of input web sites and crawls them up to a certain
depth, aggregate links in them and determine their community membership by
calculating hyperlinks inside the community and gives them a score. Then, they add
highest ranked not crawled yet web sites to the seed set and iterate their procedure.
They achieved to find related communities on the web by using only the hyperlink
information.

12

13

CHAPTER 3

3- METHODOLOGY

This chapter presents how we constructed our methodology to study our research
questions. It begins with difficulties regarding detecting malicious websites, how
they impose a limitation and why we need a suitable research approach. Then we
give a quick introduction to SNA topics in order to understand the specific terms and
applications in the following chapters. Data collection methods are mentioned in
detail and the steps taken for transitioning data to form networks are also given.

In this study we primarily analyze two types of malicious websites as malware and
phishing. There are various detection methods offered by researchers for malicious
website detection. Phishing websites target users’ inability to distinguish authentic
websites from counterfeit ones via social engineering. Various methods are presented
for their detection like using fuzzy data mining [36], machine learning methods [37]
and visual similarity based methods [38][39]. Malware detection methods are also
numerous. Signature based, anomaly based and specification based techniques are
presented [40].

This study does not aim proposing an alternative method, but a method to
accompany them. This thesis takes a social network approach and tries to understand
the relationships in the network of malicious websites. As a result, we aim to provide
an efficient selection method for websites that are going to be analyzed. For each
different malicious type, detection methods differ. Therefore, in order to find which
detection techniques should be applied primarily to a suspected website we try to
predict its threat type.

There are some reasons that make analysis of malicious websites difficult. Firstly,
there are difficulties in obtaining data. The World Wide Web (WWW) is a very large
research area. There are millions of websites and billions of pages operating and new
ones appear every day. Registering a domain and launching a website are easy; with
automation they just require seconds. Also, closing down the website when a
malware campaign ends or changing the content is easy. All of these factors make
analyzing malicious websites a fast-paced and complex environment. When a
researcher wants to study malicious websites what he/she gets as data is simply a
glimpse or a snapshot in time as the environment changes very fast. Links between
websites may disappear or new links may appear during the research timespan. This
dynamic nature may lead to inconsistencies in the data collection.

Web-based malware has some differences than the other types of malware. They are
environment specific, targeting a specific configuration of operating system, browser
and installed plugins etc. where a vulnerability is present. They show themselves

14

only when right conditions occur. Therefore analyses may fail if right conditions are
not achieved [41].

All of these difficulties require a suitable research approach. This study takes the
approach of using the linked nature of WWW. Websites have hyperlinks, or simply
called links, in their content which may lead a user from a page to another page on
the same website or on a different website.

Social Network Analysis (SNA) methods will be applied to understand the
relationship between malicious websites. Therefore, we need a fundamental
knowledge of it. It has some specific terms that denote particular phenomenon. The
section below will address some important SNA topics and its vocabulary which will
be helpful to present the thesis.

 Introduction To Social Network Analysis

Mathematical models are important foundational blocks of Social Network Analysis.
Quantitative analytical approaches are used to illustrate and understand relations
between actors in a network. Graph theory, statistical theory, and algebraic models
are the biggest mathematical basis for network structures. Graph theory gives a
proper representation of a social network as well as set of properties that are very
useful when analyzing the network [2].

Graphs and graph distribution are an important section of network analysis. Graphs
are popular and convenient ways to understand and visualize social networks.

Modeled as G (V,E):

- V is the set of vertices (nodes) in the network.

- E is the set of edges (links) between them. Edges may be directed if they have a
direction and in that case, they are named as arcs.

In a network which shows hyperlink exchanges between websites:

-Websites are vertices (nodes) V={Website A, Website B, Website C, Website D}

-Edges, in this case directed edges or arcs, show which website has a hyperlink to
another website. E={(Website A, Website B), (Website A, Website D), (Website B,
Website C), (Website B, Website D), (Website C, Website B), (Website C, Website
D)}

15

Figure 1: A four size network of hyperlinks between websites

Relationships could be symmetric if edges between two vertices simply connect
them with each other and do not have a direction. Friendship networks are an
example of this symmetric relationships, two people are either friends or not. Person
A is a friend of Person B means that Person B is also a friend of Person A.

Figure 2: A symmetric network of size seven that shows friendship among a group

Asymmetric relationships occur when a node has ties to another node, but not vice
versa. A relationship which shows hyperlinks from a website to others is asymmetric,
because a website with a hyperlink to another website does not have to receive a
hyperlink from that website as shown in Figure 1.

Each edge in a graph may have a weight which is a numerical value and shows the
relevant information about the relationship. These graphs are called weighted graphs.

The term mode which is an important property of a network is related to the actor set
of a network. Two types of networks exist in many real world situations [2].

One Mode Networks:

Relationships between one set of actors constitutes one mode networks. For example,
the network of hyperlinks from a website to other websites is a one mode network
because all actors belong to one set.

16

Two Mode (aka Affiliation) Networks:

Relationships between two sets of actors constitute two mode networks. For
example, hyperlink from a malicious website to another website which is not
malicious is a two mode network because actors do not belong to one set.

There are three main properties of a social network that define its characteristic:

1- Network Size:

Network size shows the number of nodes in a network. It is an important
characteristic of a network and affects the data collection and its analysis greatly.
Small networks let researchers collect and analyze data easily which can be done
manually without automation. When the network size grows it is harder to collect
and analyze data and an automation is required. Size also affects how relationships
occur and how they are distributed in the network.

2-Community Structure:

Communities in a network are groupings which share more similar traits between
themselves than others. Communities in the friendship networks show grouping of
people by interest or communities on the web shows websites on a certain topic etc.
Different networks have different community structures and their structure helps us
to categorize and understand the dynamics in the network better.

3- Degree Distribution:

Degree of a node is the number of adjacent links to that node. Some nodes have high
degrees, some have a few while others may even have zero and therefore be an
isolate. Degree distribution shows how links are distributed between nodes of the
network and indicate the ways relationships occur. Also, in some cases it is an
important metric to find out the importance of a node or its hierarchy in an
organization.

3.2 Data Collection Method

With the advancements in the Internet technology, social networks became more
visible and the amount of social network data available to researchers skyrocketed.
In the past, if a researcher had wanted to analyze someone’s friend list, it required a
great amount of effort, but now with Facebook and other social media sites it is
easier to reach that information (with respect to privacy). Network sizes of SNA
studies where data gathering was done by traditional methods were small, usually
hundreds and maybe a few thousands [42] [43]. However, today online data
collection methods allow researchers to access large sets of data. People’s interaction
with each other is more visible and easily observable by researchers than ever before
thanks to the Internet. These new advancements brought new opportunities:

17

• Data collection efforts are easier especially with social media and online
surveys.

• With bigger data it is possible to understand the network structure and
relationships within it better.

• With the advancement in computational power and tools, it is easier to
calculate metrics which needed to be done manually before.

Deciding which information will be gathered in the data collection is an important
decision. Finding and modeling the relationships between actors are the most
important steps that contribute to the success of an analysis. For a sound analysis, a
boundary on data collection must be declared and then be adhered to clearly.

Different types of networks require different types of data collection efforts. For
example, a friendship network among a student group is best formed by
questionnaires. Also, co-authorship network among university academics are best
formed by taking archival data from publishers. Therefore, data collection technique
must comply with the type of the network that is targeted. To study malware
distribution problem on the web, a crawler that visits web pages and collects
information about its hyperlink structure would be an appropriate choice.

3.3 Collecting Hyperlinks From Websites

Websites, in order to function, send some files and codes to their visitor’s web
browsers. These files are then rendered and presented to the user by web browsers.
These files also include hyperlinks in them, therefore when a crawler visits a
webpage it can get its content and links in it. A web crawler is a computer program
that automatically visits web pages, indexes them and follows hyperlinks in them to
process more web pages. When a crawler visits a webpage, it is able to download the
content from it. This content is mainly the source code of the website that is shown
to the browsers/visitors. The main functionality of a crawler is that it begins with a
seed page (usually top-level page in a website like www.example.com) and then
finds hyperlinks in that page. It indexes those hyperlinks and visits them, finds new
hyperlinks in them and does this process repeatedly until there’s no new content left
to be reached.

In HTML “<a>” element is used to define a hyperlink and shows where the linked
content resides. A link found in a website looks like this where “href” part shows the
address of the linked content:

Click to download our e-book

At the beginning of this study, we developed a custom crawler to find links in
websites. However, after some time, we realized that this method would not provide
a suitable data for our analyses. The main reason was that when a website is crawled,
only outgoing links, i.e., links that originates from that website, are obtained.
However, if you want to get incoming links to that website you need to crawl a large
portion of the Web since a link may occur anywhere. This was not possible to be

18

done effectively, due to performance and resource limitations. The second problem
was that crawling a website took a long time if all hyperlinks were to be obtained.
Some websites have lots of pages or some of them create hyperlinks and pages
dynamically and a crawler may end up in an infinite number of links to crawl. A
solution we employed was only processing links up to depth=5 from main page or
terminating the process after two minutes, which one happens first. The third
problem was that some websites block crawlers and would not let you get their
content.

Therefore, finding another solution was necessary. There are some already crawled
web graph datasets online [44] [45]. However, most of them are on a specific area,
outdated or small. The biggest and most trustworthy web crawl data is provided by
Common Crawl. Common Crawl is an organization that maintains an online web
crawl data repository since 2008. Their data is the biggest, open and free web crawl
data available to researchers. They identify themselves as “non-profit organization
dedicated to providing a copy of the Internet to Internet researchers, companies and
individuals at no cost for the purpose of research and analysis.” [46]. Common
Crawl bots crawl websites on a monthly basis and take snapshots of the content and
store links in them. The raw crawl data that includes everything related to a web page
are stored in WARC archive format. They also provide metadata and plaintext
extracts for different kinds of analysis [47].

Common Crawl also publishes host and domain level web graphs based on their
crawls. These web graphs show which webpage has a link that points to another
webpage. They are published once every three months since 2017. The most
appropriate data we could use from Common Crawl is their domain level Web
graphs. Web graphs consisting of February/March/April 2019 crawls are used in this
thesis.

Table 1: Common Crawl data for Feb/Mar/Apr 2019 in numbers

Nodes Arcs Dangling Nodes

90,757,643 1,888,693,874 46,373,014

One important thing about this dataset is its dangling nodes: Dangling nodes are
terminal nodes that are pointed by a crawled website, but they are not crawled yet.
The domain-level Web graph has over 90 million nodes and 1.88 billion arcs where
51% of nodes are dangling nodes as shown in Table 1.

Trustability of Common Crawl Data In Terms of Representing Web:

Due to the gigantic size of the Web, it’s not possible to collect every data out there
for reasons of performance and lack of resources. Therefore, a sampling is necessary
for analysis purposes. The exact details of data collection algorithm employed by

19

Common Crawl varies between crawls. Generally, websites that are visited are
chosen by:

• A random sample of links from previous crawls
• A breadth-first crawl within a maximum of 4 or 6 links away from the

homepages of the top hosts and domains based on traffic
• URLs extracted from sitemaps, RSS and Atom feeds
• URLs from less-represented languages in crawls so far [48] [49]

The study made by [50] analyzed the representativeness of using open source crawl
data, Common Crawl, for online forums’ topic modeling. Their study was on a
particular car owner’s forum where they made a custom crawler that collected 2.16
TB data and compared their results with those obtained from Common Crawl which
is 280 GB of raw data files. They showed that although there are discrepancies
between data obtained from crawls, they are similar in terms of topic proportions and
word rankings and concluded that they are not statistically different from each other.
They argue that in terms of data quality and completeness, Common Crawl data
could be used instead of custom crawl data for topic modeling. Even though, their
subject is different than ours, their findings indicate that the data from Common
Crawl is representative of specifically crawled data.

3.4 Generating a List of Malicious Websites For Analysis

This subsection deals with steps taken to collect a list of malicious websites for our
analyses.

3.4.1 Finding Malicious Websites

Security companies and some other initiatives publish blacklists of websites they
regard malicious. We collected websites flagged as malicious from different sources.
These sources are:

• abuse.ch [51]
• malwaredomains.com [52]
• SANS Internet Storm Center [53]
• phishtank.com [54]
• some other blacklists found on security forums [55]

One can argue the trustworthiness of these kind of blacklists. However, our aim here
is to find as many websites as possible to further analyze, since they are going to be
cross-checked with Virustotal. This checking process is explained below.

As a result of data collection efforts, we found 66,659 malicious websites using
previously mentioned lists indexed by Common Crawl in February/March/April
2019 dataset.

20

3.4.2 Gathering Information About a Website’s Security Status

Determining whether a website has malicious content is a difficult and
computationally expensive process. Malicious content on the Web is an environment
of a cat and mouse game between computer security industry and criminals. Due to
its fast-paced nature there are some inconsistencies between identifications of
malicious behavior. Malicious actors apply sophisticated concealment techniques to
evade detection. By using proxies, redirection chains and other mechanisms,
malicious websites can cloak their activities. Detection is hard and requires lots of
efforts. As the environment changes rapidly, false positives and false negatives are
important problems and as a result the identification of many different companies
and organizations differ from each other.

There are differences between security products’ evaluation on a website. A website
may be classified as malicious by some vendors and clean by others. Different
capabilities and detection techniques of the security products may be a reason for
this. Also, the inspected site may not be analyzed yet by that product or at the time of
analysis there may have no malicious content/action. In order to establish a trust to
the malicious website list we gathered from different sources, Virustotal online
security community is used.

Virustotal, which is run by Google’s parent company Alphabet Inc. is an online
collaborative security initiative. It aggregates over 70 antivirus and other security
products’ capabilities to check for malicious files and websites [56]. We used
Virustotal Public API v2.0 [57] and inspected our initial 66,659 websites first. After
the network creation step described below and in the analyses afterwards we totally
inspected 2,136,836 websites on Virustotal. Virustotal API tells us how many
products flagged the searched URL as malicious. In the creation of our network, for
each domain we analyzed we searched its homepage on Virustotal and flagged it
malicious if its homepage is flagged by at least two products. This procedure reduced
our network size but made the seed set of malicious websites more trustworthy.

Table 2: Number of entries in our malicious websites dataset after Virustotal

Number of malicious websites indexed
by Common Crawl in Feb/Mar/Apr 2019

Crawl

Number of Websites Left After Virustotal
Evaluation (flagged by at least 2 products)

66,659 34,785

21

3.5 Transforming Data Into Network

After getting the data, we need to convert it into a network in order to apply Social
Network Analysis methods. We created our network around the set of previously
gathered 34,785 malicious websites. For each website in this list we find their
incoming and outgoing links from Common Crawl Feb/Mar/Apr 2019 Crawl.
Malicious websites and other websites which are these malicious websites’ incoming
and outgoing neighbors become nodes and links between them become arcs in our
network.

Consider a scenario where we have 3 malicious websites: X, Y and Z. In order to
create their network, we first find out all of their incoming and outgoing neighbors
separately as shown in Figure 3. For website X, websites C and E are its incoming
neighbors and websites A, D and G are outgoing neighbors. We do this process for
websites Y and Z also. Beware that malicious website Y has malicious website X as
outgoing and Z as incoming neighbors. Also website F is linked by both websites Y
and Z and website C links both of websites X and Z.

Figure 3: Separate neighbors of malicious websites X, Y and Z

After we find out every incoming and outgoing neighbors of our malicious websites
we combine them together as shown in Figure 4. When we combined websites, links
such as from websites Y to F and Z to F can be represented with only one F that has
links from both of Y and Z.

Figure 4: Network after we combine neighbors of malicious websites X, Y and Z

22

Beware that we built our network around the malicious websites. Website A may
have a link to website D but we did not include it in our network.

To analyze the network, we used open source Pajek software developed for
analyzing and visualizing networks [58]. To convert the raw data into a network, we
used txt2pajek program [59].

3.6 Network Properties & Characterization

Nodes and their frequencies in our network are given in Table 3 below. We have a
total of 776,230 websites in our network created from the 34,785 malicious websites
and their incoming and outgoing neighbors. Out of these 34,785 malicious websites
14,543 are malware, 10,455 are phishing and 9,787 are uncategorized. These threat
types are also provided by the blacklists we got these malicious websites from.

Table 3: Frequency and percentages of the threat types of websites in our network

Type Frequency Percentage
Malware 14,543 1.87%
Phishing 10,455 1.35%
Uncategorized 9,787 1.26%
Others 741,445 95.52%
Total 776,230 100%

Incoming and outgoing degree distributions of 34,785 malicious websites are given
in Figure 5. One thing to note here is that many of malicious websites do not have
any outgoing links. These websites may not have any links or for some of them this
may be due to the dangling node problem in Common Crawl dataset mentioned in
Chapter 3.3. Number of indegrees and outdegrees in the X axis is given in common
log scale to plot the data more clearly.

Figure 5: Indegree and outdegree distributions for 34,785 malicious websites

23

Analyzing the degree distributions, we see that majority of the websites have small
degrees, but a little amount has orders of magnitude higher degrees. Therefore, if we
plot the indegrees and outdegrees in common log-log scale we can observe power
law distributions since two quantities show near linear relationships with some
outliers as shown in Figure 6 below. Due to the limitations of the common log-log
scale 0 values are discarded. Other studies [60][61] that uses web graphs also found
power law distribution for indegrees and outdegrees.

Figure 6: Indegree and outdegree distributions for 34,785 malicious websites in common log-log scale

3.7 Limitations

Common Crawl analyzes the content in the source code of the website’s that is sent
to the visitors. However, if hyperlinks are created dynamically in client side and not
placed in source code, Common Crawl is not able to crawl them. Dynamic content
can be implemented by using technologies like client side Javascript and AJAX calls.
Also, links can be obfuscated in source files, but then be converted into normal links
dynamically. In that scenario, again the crawler is not able to detect them correctly.

Sometimes websites publish robots.txt file usually in their top-level directory. It is a
mechanism to let crawlers know that this site does not want to be crawled and
indexed all of its content or some portion of it. Actually, this mechanism does not
enforce a ban on crawlers. Therefore, it is just a polite request and is at the mercy of
the crawlers. Common crawl states that they obey the robots.txt file limitations [46].

24

However, this mechanism can be abused by malicious websites in order to cloak
their activities and prevent getting analyzed.

3.8 Summary

This chapter gave a detailed explanation of how data collection was held. The steps
we take to construct the network are also mentioned. Degree distributions for our
malicious websites are given. Lastly, the limitations regarding data collection
processes were presented.

25

CHAPTER 4

4- FINDING MALICIOUS WEBSITES

This section explains the analyses carried out to find malicious websites based on
their link structures. Malicious actors want people to reach their websites in order to
infect them or to phish them. Therefore, they need to provide links that lead users to
their websites from different sources like other websites. Malicious actors are using
links since they are the medium of communication and flow on WWW.

Malicious website detection techniques are numerous. We are not proposing a new
detection technique but an accompanying one that shows where should we look at to
find more malicious websites. Malicious website detection is an expensive process.
There are millions of websites on the WWW, even the Common Crawl dataset we
use consists of 90,757,643 distinct websites and thousands are created every day.
Due to the enormous number of websites a prioritization is necessary since our
analysis resources are not unlimited. In this chapter we investigate which websites
should be analyzed primarily to run into more malicious websites. This will let us do
analysis more efficiently. By efficient we mean analyzing a smaller number of
websites but running into relatively more malicious websites in them.

4.1. Core Groups

To carry out the analyses, network created in Chapter 3 is used. This network
includes three types of malicious websites: malware, phishing and uncategorized.
However, for the analyses in this chapter we will not make separate evaluation for
each malicious type, we will group them under malicious category.

The network’s total size is 776,230. It has 34,785 malicious websites and 741,445
other websites which are malicious websites’ incoming and outgoing link neighbors.
We do not know maliciousness status of these 741,445 websites beforehand since
they are not included in our malicious websites lists. They will be analyzed from
Virustotal and we define a website as malicious if it is flagged malicious by at least
one product from Virustotal for the analyses in this chapter.

Let’s assume that we want to detect more malicious websites and the only thing we
have is 34,785 malicious websites and their incoming and outgoing links. Our aim is
to find which kinds of websites we should focus our analysis on to run into more
malicious websites.

Core groups in a network are special subgroups that are essential to that network or
they are the ones that carry important features in a network. These features would be

26

based on the group members’ centrality, degrees or special roles that they take in the
network. In the network we will define some core groups that we consider important
for malicious website detection. Then we will analyze them and show whether we
could use them for an efficient analysis.

There might be many different types of core groups in a network and the definition
of a core group changes according to the type of the network. For example, in a
friendship network, people who are close to many members of the group might form
a core group. For networks that consist of malicious websites and their links we
could define the core groups as the ones that are part of the malicious activity more
actively or the ones whose absence would affect the flow relatively more than the
others.

We will use cohesive subgroups and betweenness centrality measures for our core
group analysis. The reason for their selections as core groups are as follows:

1. Cohesive subgroups show dense pockets of nodes that stick together. They
have relatively strong relationship between themselves than from the rest of
the network. In the case of malicious websites, cohesive subgroups may
indicate websites that are operated by the same malicious actors since
cohesiveness occurs due to the connections in the network. Also, since the
connectedness is formed via links, concentration of these links in some parts
of the network could indicate the same attacker behind them. In order to find
cohesive subgroups in a network, we can use components and k-cores.

2. There are several centrality measures defined in the networks such as degree,
betweenness and closeness centralities. Each centrality measure takes a
different node characteristic that let them to be ranked in order of importance.
The reason we chose betweenness centrality among other types of centrality
measures resides in its ability to show a node’s influence over the flow of
information in the network. Flow of information in this context is spreading
of malicious content. Malicious actors use WWW as a distribution medium
for their activities. In order to establish a good distribution mechanism, they
need to employ links between nodes that takes a user to malicious content. By
using betweenness centrality we measure a node’s importance in this
distribution channel.

4.1.1 Components

Components are the connected parts of the network. There are two types of
components in a network: strongly connected and weak components. Strongly
connected components are a subgroup where we can reach any other node from a
node if we obey the direction of arcs. Similarly, in weak components we can reach
any other node from a node if we disregard the direction of arcs.

27

Figure 7: A sample network that shows strongly connected components inside contours

In Figure 7 above, there are two strongly connected components of size greater than
one. One consists of nodes A, B, D, H and the other consists of nodes C and G.
Inside these components we could reach any other node from any node following the
directions. Here the largest strongly connected component is the one composed of
nodes A, B, D and H since it has more members than the other component. The
network in Figure 7 also has many weak components. The network as a whole for
example is a weak component since we can reach any other node from a node
without needing to obey the direction of arcs.

Strongly connected components are more strict than weakly connected components
therefore they are usually smaller than the weak components. In order to limit the
number of nodes we select and to establish a stricter criterion we will use the
strongly connected components. In order to find strongly connected components, we
will focus only on malicious nodes and the links between them since we are
interested in the cohesive subgroups of malicious nodes. Therefore, we removed
non-malicious nodes and their adjacent arcs from the network and found the largest
strongly connected component between malicious websites, shown in Figure 8.
These malicious websites have a relationship between themselves made by
hyperlinks.

28

Figure 8: Largest strongly connected component with 15 members of malicious websites from the
network

4.1.2 K-cores

The second type of cohesive subgroup we have is k-cores. A k-core is a maximal
subnetwork where each node has at least degree k within the subnetwork. Therefore,
nodes in a k-core have at least k neighbors within the group. For example, a 3-core
subnetwork consists of all nodes that are connected to at least three other nodes in
the subnetwork. To find the k-cores we symmetrized the network between malicious
websites, i.e. transformed arcs into edges, since the application of k-cores is more
suitable in the symmetrized networks.

In order to find k-cores, we will focus only on malicious nodes and the links between
them since we are interested in the cohesive subgroups of malicious nodes.
Therefore, we removed non-malicious nodes and their adjacent edges from the
network and found three cohesive subgroups of malicious websites, 8 nodes in a 4-
core and 142 nodes in a 3-core as shown in Figures 9 and 10. Beware that k-cores are
nested so nodes that belong to a higher core also belong to a lower core, therefore 3-
core also includes 8 members of 4-core. We dismissed the other cores below 3-core
since they may not be cohesive enough.

29

Figure 9: 8 malicious nodes in a 4-core and their network between themselves

Figure 10: 142 malicious nodes in a 3-core and their network between themselves

30

4.1.3 Betweenness centrality

Betweenness centrality shows a node’s influence over the flow of information in the
network. We can say that a node is more central if it is needed to connect other nodes
and whose absence would result in the total disruption of communication or would
require the other nodes to take longer paths. The betweenness centrality for a node is
the proportion of all shortest paths between pairs of other nodes that include this
node.

Malicious nodes with higher betweenness centrality are important since they connect
other malicious nodes together. Similar to components and k-cores, we removed
non-malicious nodes and their adjacent edges, then we symmetrized the network
between malicious websites and calculated betweenness centrality scores of
malicious nodes in our network. We then selected the first 100 and 500 nodes with
the largest betweenness centrality scores.

4.2. Results

After determining three different core groups in our network, we look at their link
neighbors. We located their incoming and outgoing link neighbors which are not
defined as malicious in our dataset before. Table 4 shows the three types of core
groups in our network. We presented the size of the core group, total incoming link
neighbors to the members of the core group and total outgoing link neighbors from
the members of the core group. For example, in the Table 4 below, the largest
strongly connected component (SCC) has 15 members. These 15 members have
8696 total incoming link neighbors where 1213 of them were found to be malicious
which equates to 13.9%. Note that these link neighbors and malicious ones found in
them are not included in the original malicious websites we used. They were found
malicious by inspecting each of them on Virustotal.

31

Table 4: Core groups and analysis results of their neighbors

Largest strongly connected component’s (SCC) and k-cores’ outgoing link neighbors
set are discovered to include more malicious websites than their incoming link
neighbors set in terms of percentage. On the other hand, for betweenness centrality
core group, their incoming link neighbors provide higher percentages. The largest
malicious percentage comes from the largest SC’s outgoing neighbors. 15 members
of the largest strongly connected component has 2241 outgoing links and 724 of
them are found to be malicious after analyzing them on Virustotal.

In order to evaluate the results we gathered from core groups, we calculated two sets
of websites for comparison. For the first one, we investigated what happens if we
blindly select random websites from the web. Out of 90,757,643 websites present in
Common Crawl dataset, we randomly selected 40,000 websites. When we inspected
them on Virustotal 1,308 of them were flagged as malicious which equates to 3.27%.
The reasons we selected 40,000 websites but not more and also not reiterating the

Core Group
Selection SCC K-Cores Betweenness Centrality

 Largest
#1 4-Core 3-Core TOP 100 TOP 500

Core Group Node
Size: 15 8 142 100 500

Malicious Incoming
Link Neighbors: 1213 58 1543 5006 9370

Total Incoming
Link Neighbors: 8696 431 11259 17683 51577

Malicious
Percentage 13.9% 13.4% 13.7% 28.3% 18.2%

Malicious Outgoing
Link Neighbors: 724 542 4597 4904 10362

Total Outgoing Link
Neighbors 2241 2705 18557 29403 75612

Malicious
Percentage 32.3% 20.0% 24.7% 16.7% 13.7%

32

analysis many times are due to the limitations of Virustotal API which lets you to
call it once in 15 seconds for each website you want to analyze. Also as it can be
seen from Table 4 above, the minimum number of websites we analyzed from the
core groups is 431 in 4-core incoming links and maximum number is 75,612 in
betweenness centrality Top-500 therefore 40,000 is an intermediate value between
them.

Since we formed a network using malicious websites as seeds, for the second
comparison, we investigated what happens if we select random nodes from the
network instead of blindly choosing from the Web. For this reason, we randomly
selected 400, 1000, 2500, 5000, 7500, 10000, 15000, 20000, 25000, 30000, 40000,
50000, 75000, 80000 websites from the set of 741,445 nodes (34,785 malicious
nodes were not included) in our network. We chose the numbers around the range of
431 to 75,612 to also compare this method with selections made from core group’s
link neighbors. As it can be seen from Table 4 above, these numbers are close to the
sizes of core groups’ incoming and outgoing link neighbors. Since we are selecting
nodes randomly, we reiterated the processes 10 times for an impartial analysis and
results are given in Table 5.

33

 Ta
bl

e
5:

 M
al

ic
io

us
 w

eb
sit

es
 in

 ra
nd

om
ly

 se
le

ct
ed

 w
eb

sit
es

 fr
om

 th
e

ne
tw

or
k

av
er

ag
ed

 fo
r 1

0
ex

pe
rim

en
ts

34

Figure 11 below shows the ratio between the number of analyzed websites and the
number of malicious ones detected in them for three types of selection. First one is
40.000 website selected randomly out of 90,757,643 websites and shown as
Random40000. The second one shows the results of randomly selecting websites
from the network and shown as the line whose values are from Table 5 above. As we
iterated the analysis 10 times you can see the error bars around the line. The last one
is selections based on core groups and each of them are displayed with a different
shape as shown on the legend.

Figure 11: Number of malicious websites in number of analyzed websites for different core groups

and random selections

As can be seen from the Figure 11, selection of random websites from WWW has the
worst performance in terms of running into malicious websites. As shown by the
line, selection of random nodes from the network, which is formed by using
malicious websites as seeds and adding their incoming and outgoing neighbors with
a link has better performance. This means that the chance to run into a new malicious
website by inspecting link neighbors of already known malicious websites are higher
than randomly choosing websites from the Web. Here we presented how we can
even increase this ratio by inspecting link neighbors of core groups in the network.
Selections made from core groups outperforms both of these first two methods. In
the core groups, outgoing links from the largest strongly connected component and
incoming links to Top-100 betweenness centrality nodes provided the best results.

35

First one let us find 32.3% and the second one let us find 28.3% of their links
neighbors as malicious.

These findings show that analyzing the link neighbors of core groups in a network
would let us find greater number of malicious websites more quickly. Since there are
millions of websites and we do not have unlimited resources, we need to make a
priority between the websites to be analyzed. This will let us save computational
costs and find more malicious websites in a shorter amount of time.

The findings in this chapter could be used by security community as well as by
academic researchers. Many studies in the web security domain require gathering a
list of malicious websites. This is usually done by collecting them from published
security blacklists as we did in the beginning of this study. But if one needs to find
more malicious websites for a quick sampling, searching them in the neighborhood
of core groups in a network like we created would provide faster results.

4.3. Comparision With Other Works

The results of our study and the other studies mentioned in the related works which
try to efficiently find malicious websites are presented here. Each study applies
different technique with different datasets. Therefore, it would not be reasonable to
compare them exactly in terms of their performance, however presenting the results
of similar studies would be beneficial to have a general grasp on the different types
of methods on the topic.

Malcrawler [11] employed a crawler-based approach to find malicious web pages.
Before they followed any link, they visited the web page first and extracted 10
different features. Only if the web page looked like malicious according to these
features then they followed this link. They made two crawls to test their method, one
with a generic crawler where every link is followed and another with their proposed
method. In both of these crawls they visited around 0.57 million URLs. In the first
crawl they encountered 702 (0.123%) URLs and in the second crawl they
encountered 1978 (0.348%) URLs. By applying their method, they were able to
increase the number of malicious URLs they encountered from 702 to 1978.

Evilseed [12] extracted the characterizing similarities between known malicious web
pages and using them, they tried to find other malicious pages that are similar or
related to known malicious ones. The idea is that a feature shared by many known
malicious web pages is an indication of malicious activity and other pages that have
this feature are more probably to be malicious. They compared their method against
a random web search based and a crawler-based approach. Evilseed gathered
226,140 URLs of which 3036 (1.34%) were found to be malicious whereas the
crawler gathered 431,428 URLs of which 604 (0.14%) were found to be malicious
and random web search made on a search engine had 219 (0.34%) malicious URLs
out of 64,411 URLs.

36

We compared our proposed method against a random selection of websites from the
Web and random selection of websites from our created network. One of the core
groups we defined let us find 724 (32.3%) malicious websites out of analyzed 2241
websites whereas selecting 40,000 websites randomly from the Web had 1308
(3.27%) malicious websites and selecting 40.000 websites randomly from our
network had 4356 (10.9%) malicious websites.

We used Virustotal to check whether a website is malicious or not but Malcrawler
and Evilseed used Google Safe Browsing and some custom tools. The gap between
the detection numbers and percentages of our study and theirs are mainly due to this
reason.

Both Malcrawler and Evilseed include a step of feature extraction. Malcrawler’s
method requires this for every link that it comes across whereas Evilseed requires it
for its initial malicious set only. We should note that feature extraction brings
computational costs and our proposed method works without any feature extraction
which will let us save computational costs. Also, Evilseed uses search engine queries
to find malicious web pages but search engines have a tendency to remove malicious
web pages from their results to protect their users which may affect Evilseed’s
results profoundly.

37

CHAPTER 5

5- THREAT TYPE IDENTIFICATION

In this chapter we try to predict a malicious website’s threat type for two classes,
malware and phishing. As explained before, analyzing malicious websites is an
expensive process. If we could predict threat type of a website, we could tailor our
analysis accordingly. If it is predicted to be phishing, phishing detection techniques
and if it is predicted to be malware, malware detection techniques could be used
primarily which will let us save computational costs. For threat type prediction we
present two methods. First one is malicious link neighbors method where we analyze
the neighbors of a node to predict its threat type. The second method is link
similarity method where we predict the threat type of a website based on its link
similarity with other nodes.

For analyses purposes a network is created similar to the one in Chapter 3 using
randomly chosen 10,000 malware and 10,000 phishing websites. Formation of this
network follows the technique mentioned in Chapter 3.5. There are two reasons why
we did not use the network created in Chapter 3. First reason is that the previous
network includes uncategorized nodes. Since we want to make predictions between
malware and phishing websites they would not be useful for our purposes. The
second reason is that there were more malware nodes than the phishing nodes. For a
better analysis environment here we randomly selected 10,000 malware nodes from
14,543 malware nodes and 10,000 phishing nodes from 10,455 phishing nodes.
Frequencies and the size of the created network are given below.

Table 6: Frequencies and percentages of the threat types of websites in our network

Type Frequency Percentage
Malware 10,000 1.87%
Phishing 10,000 1.87%
Others 514,443 96.26%
Total 534,443 100%

38

5.1. Evaluation Metrics

In order to test the effectiveness of methods, we will use some evaluation metrics.

Coverage: Whereas other metrics provided below are generally known and have
agreed upon definitions we need to use another metric in our analysis named
coverage. Because of the link-based approach we take, not all measures are
applicable to classify every node. For example, incoming link neighbors can only be
applied to those nodes who have at least one malware or phishing incoming
neighbor. Therefore, coverage of a measure is the number of nodes we could predict
a type using this measure, whether it’s true or not, divided by all nodes. For example,
if we could make predictions for 3000 websites out of 4000 websites we analyzed,
coverage is 75%.

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒	𝑜𝑓	𝑎	𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = ./0123	45	64728	92	:4/;7	<327=:>	?	>@<2				
A4>?;	6/0123	45	/6B6496	0?;=:=4/8	64728

 (Eq. 1)

A confusion matrix is provided in Table 7 that shows actual and predicted values for
our threat type assignments. Threat type prediction we employ is actually a two-class
problem and for confusion matrix we are using the two malicious types, malware and
phishing, instead of generally used concept of positive and negative. The sum of the
values, a+b+c+d, is equal to the number of predictions we make. Therefore, if we
make 3000 predictions for 4000 websites that we analyze a+b+c+d is equal to 3000
and to show the discrepancy we give the coverage in the result tables.

Table 7: Confusion Matrix for Label Classification

 Predicted
Malware Phishing

Actual Malware a b
Phishing c d

Accuracy: Accuracy shows the general correctness of the model. It is calculated as
the sum of the correct classifications divided by the total number of classifications.
Accuracy may not be a good metric for datasets where sample sets have different
sizes, but since we have the same size for both classes, accuracy will be provided
[62][63].

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ./0123	45	:4332:>	<327=:>=468				
A4>?;	6/0123	45	<327=:>=468

 = 		?F7				
?F1F:F7

 (Eq. 2)

39

Precision: Precision is a measure of accuracy provided that a specific class has been
predicted [62][63].

Precision for malware class gives us what proportion of predicted malware classes
are truly malware and is calculated as = ?		

?F:

Precision for phishing class gives us what proportion of predicted phishing classes
are truly phishing and is calculated as = 7		

GFH

Recall: Recall is a measure of the ability of a prediction model to select instances of
a certain class from the dataset [62][63].

Recall for malware class gives us what proportion of actual malware classes are
predicted as malware and is calculated as = ?		

?F1

Recall for phishing class gives us what proportion of actual phishing classes are
predicted as phishing and calculated as = 7	

:F7

For evaluation purposes, we randomly selected 20% of malware nodes and 20% of
phishing nodes in the network and made their types unknown. Rest of the 80% of
both classes kept their types. For each different measure, we reiterated the
calculations 10 times with different randomly chosen nodes made unknown each
time. Then we calculated the averages of these 10 results by arithmetic mean and
presented evaluation metrics: average accuracy, average recall, average precision and
average coverage. As experiments were run for 10 times with different random data,
standard deviations for each evaluation metric were provided in the tables. Our
general aim was to improve accuracy and coverage at the same time as much as it is
possible.

5.2. Malicious Link Neighbors Method

In malicious link neighbors method, we analyze whether links between websites
could help us to classify them in terms of their threat types. A website in the network
has two kinds of neighbors, direct and indirect. For a given website X, its direct
neighbors are those websites that either link to X or linked by X or both. Its indirect
neighbors are those that do not have a direct link relationship with website X, but are
related via a third website.

In malicious link neighbors method, we build our model upon the assumption that
malicious websites tend to link other malicious websites in the same class, i.e.
malware websites link other malware websites, phishing websites link other phishing
websites. First, we need to verify this assumption preemptively in our network, and
then show how can we utilize this for attack type identification.

40

We define two types of neighbors as direct and indirect for a node. Afterwards we
will use them in our experiments and show each of their results.

5.2.1. Direct Neighbors

Direct neighbors of a node X are the nodes that either link to X or linked by X or
both. Therefore, direct neighbors are at length=1 distance away from the node X in
the graph.

Let V be a set of nodes V = {X1, X2,… Xn} in the graph and E = {L1®2, L1®3,…} be a
set of edges between nodes where Li®j indicates a link from node Xi to Xj in the
directed graph G =(V,E) [64]

If Sin(Xi) is the set of incoming neighbors of node Xi :

Sin(Xi) = {Xj÷ Lj®i Î E} (Eq. 3)

If Sout(Xi) is the set of outgoing neighbors of node Xi :

Sout(Xi) ={Xj ÷ Li®j Î E} (Eq. 4)

If Sin+out(Xi) is the set that holds the union of incoming and outgoing neighbors of
node Xi :

Sin+out(Xi) ={Xj ÷ Li®j Î E or Lj®i Î E } (Eq. 5)

Figure 12: Links between malicious nodes in our network

To Malware
86.3%

To Malware
25.4%

To Phishing
13.7%

To Phishing
74.6%

0

50

100

150

200

250

300

350

400

From Malware From Phishing

41

In order to verify the assumption that malicious websites tend to link other malicious
websites based on their threat types, we analyzed the links that occur between
malicious nodes in the network we created. In Figure 12 horizontal line at the bottom
shows which type of nodes the links originate from and vertical bars show where
these links end in. 86.3% of all malicious links from malware nodes end in other
malware nodes and 74.6% of all malicious links from phishing nodes end in other
phishing nodes. These results indicate that malicious websites tend to link other
malicious websites in the same class, but it also reveals something concerning about
the direct neighbors. Out of 20.000 websites, i.e. the size of malware and phishing
websites in our network, only 625 distinct nodes have direct link relationship with
other malicious websites. Therefore, analyzing the direct neighbors would let us
predict a threat type for very low number of nodes. In order to increase the number,
we need another kind of neighborship.

5.2.2. Indirect Neighbors

In contrast to the direct neighbors, indirect neighbors of node X do not have any
direct link relationship with it. Indirect neighborship occurs via a third node.
Therefore, indirect neighbors are at length=2 distance away from node X. As shown
in Figure 13, if nodes A and B are linked by the same node, they are co-cited and if
they both link to a third node they are bibliographically coupled.

Figure 13: Co-citation and bibliographic coupling relationship

Co-citation and bibliographic coupling use citation analysis to establish a likeness
between nodes. Co-citation based [65] and bibliographic coupling-based [66]
techniques originated from bibliographic research community to find related
scientific papers in 1960s and were shown to be useful. Although they have
applications mainly in bibliographic studies they were used for many other areas
where link relationships occur such as web graphs. Two different studies	 [15]	 and	
[67]	successfully	applied	co-citation	to	find	thematically	similar	pages	and	hosts	
on	the	Web	graph.	

For a directed graph G = (V,E) let V be a set of nodes V = {X1, X2,… Xn} and E =
{L1®2, L1®3,…} be a set of edges between nodes where Li®j indicates a link from
node Xi to Xj [64].

42

If Scocit(Xi) is the set of co-cited neighbors of node Xi :

Scocit(Xi) = {Xj,÷ Lk®iÎE, Lk®jÎE and Xi¹Xj and where Xk is a third node that links
to both Xi and Xj} (Eq. 6)

If Sbibco(Xi) is the set of bibliographic coupling neighbors of node Xi :

Sbibco(Xi) = {Xj,÷ Li®kÎE, Lj®kÎE and Xi¹Xj and where Xk is a third node that both
Xi and Xj links} (Eq. 7)

5.2.3. Usage of Direct and Indirect Neighbors for Threat Type Detection

Proposed threat type detection algorithm exploits the threat types of neighbors.
Before we begin the calculations, we make 20% of malware and 20% of phishing
nodes unknown for evaluation purposes. The rest of the 80% of each class keep their
types as explained in Chapter 5.1. Set U = {u1, u2 … uN } holds the N nodes whose
types are unknown and set K = {k1, k2,… kM }holds the M nodes whose types are
known.

We assign a maliciousness probability scores Rx(m) and Rx(p) for each node X in the
graph. Rx(m) is the probability of node X to be malware and Rx(p) is to be phishing.
In the initial assignments step, we assign maliciousness probability scores Rx(m) and
Rx(p) for each node X in the graph based on their threat types as given in Table 8
below. Since we know their threat types a priori, for malware nodes Rx(m)=1 and
Rx(p)=0 and for phishing nodes Rx(m)=0 and Rx(p)=1. Since for type assignment
purposes we are only interested in malicious nodes, Rx(m) and Rx(p) probabilities of
other nodes in the graph are set to 0. We also set Rx(m)=0 and Rx(p)=0 to type
unknown nodes in the beginning but these values are expected to change during the
following steps.

Table 8: Types of nodes and their initial maliciousness probabilities

Node Type R
Known malware Rx(m) = 1, Rx(p) = 0
Known phishing Rx(m) = 0, Rx(p) = 1
Unknown type Rx(m) = 0, Rx(p) = 0

Others Rx(m) = 0, Rx(p) = 0

Rx(m) and Rx(p) scores for unknown type nodes are calculated as follows:

Rx(m) = I/0	45	0?;9?32	<341?1=;=>=28	45	=>8	62=JK1438		

LMNOP	QRSGTU	MV	SOPWXWMRY	OQH	RQZQM[Q	QTW\]GMUY
 (Eq. 8)

Rx(p) = I/0	45	<K=8K=6J	<341?1=;=>=28	45	=>8	62=JK1438		

LMNOP	QRSGTU	MV	SOPWXWMRY	OQH	RQZQM[Q	QTW\]GMUY
 (Eq. 9)

43

The neighbors mentioned in Equations 8 and 9 could be a kind of direct neighbor or
indirect neighbor depending on which set we decided to use.

For the rest of this method, firstly the simple explanation of the proposed algorithm
is given. Then we mention the steps taken in detail and lastly the pseudocode is
presented.

The proposed algorithm simply tries to calculate above mentioned maliciousness
probability scores Rx(m) and Rx(p) for unknown type nodes in the network using
different set of neighbors. First it calculates these values for unknown nodes in
random order. But since the order affects the results, we get into an iterative process
that make nodes trigger other nodes to recalculate their maliciousness probabilities
when theirs change. After the algorithm converges or we reach the maximum
number of iterations for each node, we finish the iterative process and we make
predictions for nodes based on their latest Rx(m) and Rx(p) values. We assign the
threat type between malware and phishing based on whichever’s probability is
higher.

The detailed explanation of the algorithm and steps we take to make algorithm
converge and limit the number of iterations in reasonable amounts are mentioned
below.

After we assign maliciousness probability scores for already known malware and
phishing nodes, we begin to calculate Rx(m) and Rx(p) scores for every unknown
node in our graph. This process can be modeled similar to a graph labeling problem
and two examples are shown in Figures 14 and 15 below.

Figure 14: Type assignment simulated as graph labeling with steps a to c and beginning with node U1

44

Figure 15: Type assignment simulated as graph labeling with steps a to c and beginning with node U2

In Figures 14 and 15, rectangular objects show malware, diamond objects show
phishing and circle objects show unknown class nodes. Beginning from steps a to c,
Rx(m) and Rx(p) scores for unknown nodes are calculated as given in Equations 8
and 9 before. Here we use the incoming link neighbors measure as an example.
Therefore, we calculate maliciousness probability scores based on the node’s
incoming neighbors. Probabilities can be calculated based on other direct and
indirect neighbors as well. In Figure 14 we started the calculations with node U1.
Since U1 has three incoming link neighbors it gets Ru1(m) = (1+0+0) / 3 = 1/3 and
Ru1(p) = (0+1+1) / 3 = 2/3 in step b. In step c we do calculations for U2 which has
two incoming link neighbors and it gets Ru2(m) = (1/3+0) / 2 = 1/6 and Ru2(p) =
(2/3+1) / 2 = 5/6.

In Figure 15 which is the same network as in Figure 14, we started the application
with node U2, did the similar calculations but get a different probability for it than in
Figure 14. This shows that the order we start calculating the maliciousness
probabilities of unknown nodes actually affects the results. There are some options to
tackle this problem. First one is changing the ordering of the nodes that are being
processed with some metric and reporting results accordingly for different orderings.
The second one would be iteratively calculating maliciousness probabilities for
nodes. We adopted the second option and implemented an iterative process to the
algorithm.

In the iterative process, we let changes in one node’s maliciousness probabilities
trigger other nodes to recalculate their maliciousness probabilities. This only occurs
when changed node is in a neighborhood of other nodes for the chosen neighbor set.

Figure 16: An example network

45

If we assume to use incoming neighbors set in Figure 16 above, when nodes A, B, C
and D’s maliciousness probabilities are changed no other node will be triggered
because they are not any other nodes’ incoming neighbor. Therefore, they do not
contribute to any other nodes’ probability calculations. However, when node G’s
probabilities are changed node F will be triggered, since node G contributes to node
F’s probabilities as an incoming neighbor. When node F’s probability changes it
triggers nodes C and D. But their change will not affect any other node as explained
before. Also if a change in node E’s probabilities occur, it triggers nodes A, B and C,
but they also will not trigger any other nodes.

If we assume to use co-citation neighbors measure in Figure 16, when node E, F or
G’s maliciousness probabilities are changed, no other node is triggered since they are
not co-citation neighbor of any other node. However, when node A’s maliciousness
probabilities are changed, this will trigger nodes B and C to recalculate their
maliciousness probabilities, since they are co-citation neighbors of node A and node
A contributes to the calculations of node B and C’s maliciousness probabilities. Then
when node B’s probabilities are changed, this triggers node A and C to recalculate
their probabilities etc. These kinds of situations may end in endless loops if certain
precautions are not taken. So we will mention them shortly.

As seen above, when a change occurs in one node’s probabilities this may require
changes in lots of other nodes. In order to keep the nodes we are going to process, we
defined a last-in-first-out (LIFO) stack that keeps unknown nodes that are waiting for
their maliciousness probabilities to be recalculated. When a node’s probabilities are
changed, we push the other nodes it triggered to the stack, if there is no affected node
nothing is pushed.

When we finish the calculations on a node and find the other nodes it triggered and
pushed them to the stack, our job is done for that node for the time being. Then we
pop the top node from the stack and do the same operations on it continuously until
there is no node left to be analyzed in the stack. When the stack is empty, we check
our set U if there are any remaining unanalyzed unknown node left. If yes, we push it
to the stack and if no, we stop the iterative step and continue to the type prediction.
In this step we make predictions for nodes based on their latest Rx(m) and Rx(p)
values. We assign the threat type between malware and phishing based on
whichever’s probability is higher. In the case of evenness we let the type remain
unknown since we have a metric called coverage that shows the rate of a measure’s
applicability to classify nodes for these kinds of incidents.

46

We had to take some measures for the algorithm to converge and limit the number of
iterations in reasonable amounts.

1) We defined a metric called confidence for each node which is the number of
unknown link neighbors that needs to be recalculated if this node’s
probabilities are changed. The lesser the value the more confidence a node
has. When we need to select a node from a set of nodes, we select the ones
with the largest confidence. By doing this we make the algorithm to reach
higher number of analyzed unknown nodes faster by not spending time in
iterations.

2) We defined a scalar delta (Δ) value. If absolute value of the difference
between malware and phishing probabilities of a node is greater than the
delta, |Rx(m) - Rx(p)| > Δ, we say that these ratios could be trusted to predict a
type. Whichever is higher among Rx(m) and Rx(p) is set to 1 and the other is
set to 0. We also make these nodes’ status fixed, and their probabilities will
not be recalculated and changed in iterations anymore. This will limit the
number of operations we need to make. We do this calculation before we
begin iterative process and in every iteration afterwards. Δ = 0.15, 0.30, 0.40,
0.50 and 0.70 are tested.

3) In the iterative process, changes in one node’s maliciousness probabilities
may trigger others to recalculate their maliciousness probabilities. Especially
for indirect neighbors this may result in endless loops. If node A is co-citation
neighbor of node B, the other way around is also true. Therefore, for co-
citation neighborhood when node A’s maliciousness probabilities change it
triggers node B to recalculate its maliciousness probabilities which triggers
node A in return and it continues like that. To prevent endless loops, we let
one specific node to trigger other specific node only one time.

4) To limit the total number of iterations in reasonable amounts there are some
options. One is employing a global iteration count and when it is reached
stopping the algorithm. Here we employed a total number of 30 changes per
node. Afterwards, that node’s status is fixed and its probabilities will not be
recalculated and changed in iterations afterwards.

47

The pseudocode of the algorithm is as follows:

Algorithm 1 Iterative threat type predictor
Given:
K = {k1, k2,… kN} //Set of known type nodes
U = {u1, u2,… uM} //Set of unknown type nodes
V = K U U //Set V is the union of sets K and U
E = {L1®2, L1®3,…} //Set of links in the network
G (V,E)
Value Delta (Δ)
Step1.1 Initial Assignments
For i=1 to N
 If (T(ki) = malware) //If node’s type is malware

Rki(m) = 1, Rki(p) = 0
 Else if (T(ki) = phishing)

Rki(m) = 0, Rki(p) = 1
 Else if (T(ki) = others or T(ki) = unknown)

Rki(m) = 0, Rki(p) = 0

For i=1 to M
Calculate Rui(m) and Rui(p)

Step1.2. Preparations
For i=1 to M
 If (|Rui(m) – Rui(p)| > Δ and Rui(m) > Rui(p))
 Rui(m) = 1 Rui(p) = 0
 Make ui fixed
 Else if (|Rui(m) – Rui(p)| > Δ and Rui(m) < Rui(p))
 Rui(m) = 0 Rui(p) = 1
 Make ui fixed
 Else
 Continue
Define stack S
Select the unknown node ui from the set U having the largest confidence
Push ui to the stack S

Step 2. Iterative Step
While(S is not empty)
{
x = Popped element from the S
Calculate Rx(m) and Rx(p)
If (Rx(m) and Rx(p) are changed)
 Rx(m) , Rx(p) = new Rx(m) , new Rx(p) // Update Rx(m) and Rx(p)

LN = set of neighbors of x whose probabilities need to be recalculated due to
changes in node x if rules allow
Sort LN according to the confidence ratios ascending

48

Push LN to the stack beginning with the node having the lowest confidence
If (S is empty)

Select the not analyzed unknown node u having the largest confidence from
the set U
If (no unanalyzed node left in set U)

Break
Else

Push u to the S
}

Step 3. Type Prediction
For i = 1 to M // Assign types to nodes in Set U
 If (Rui(m) > Rui(p))
 T(ui) = malware
 Else if (Rui(m) < Rui(p))
 T(ui) = phishing
 Else
 T(ui) = unknown

5.3. Link Similarity Method

In this method we predict the threat type of a node by finding the similarity scores
between the nodes based on their link neighbors. If node A and node B have the
same link neighbors, we could say that they are somewhat related. Here the question
is could we use this relatedness to predict their threat type?

We use the same network and analysis techniques created in the beginning of this
chapter. We make 20% of malware and 20% of phishing nodes unknown and 80% of
malware and 80% of phishing nodes keep their types. Let there be two sets of
malicious nodes U = {u1, u2 … uM} and K = {k1, k2,… kN} where U holds the nodes
whose types are unknown and K holds the nodes whose types are known and M and
N are the sizes of their respective sets.

If we want to calculate the similarity between nodes ui and kj considering their link
neighbors, we should count the number of separate and common link neighbors for
both nodes. There are different kinds of proximity and similarity metrics used in the
literature such as Euclidian distance, Minkowski distance, dot product and Jaccard
index [68]. For the data we have which are link neighbors of websites, best choice
would be using Jaccard index since it can calculate the degree of overlap between
two sets. It compares members of sets to find which members are shared and which
members are distinct [69]. The mathematical representation of Jaccard index where
sim(ui,kj) is the similarity score between nodes ui and kj could be written like in
Equation 10 where LN shows the link neighbor set of ui and kj [69].

49

sim(ui, kj) = |	`.ui	∩	`.kj|
|	`.ui	∪	`.kj	|

 , 0	≤ sim(ui,kj)	≤ 1 (Eq. 10)

Equation 10 calculates the size of the intersection divided by the size of the union of
sets. The similarity values range from 0 to 1 and two sets with totally different
members will have 0 similarity whereas two sets where they share all the members
will have the similarity score of 1.

We calculate the similarity score for each node in set U with every node in set K
using the Equation 10 and construct a size MxN matrix. The values at every
intersection of rows and columns show the similarity score between the nodes in that
row and column.

Table 9: Size MxN matrix showing similarity scores between nodes

 k1 k2 … kN

u1 sim(u1,k1) sim(u1,k2) sim(u1,kN)
u2 sim(u2,k1) sim(u2,k2) sim(u2,kN)

…

…

…
 …

uM sim(uM,k1) sim(uM,k2) … sim(uM,kN)

Similar to the application in Section 5.2, for threat type prediction we assign
maliciousness probability scores Rx(m) and Rx(p) to each node X in the graph. Rx(m)
is the probability of node X to be malware and Rx(p) is to be phishing. For each
known malware nodes, we set their maliciousness probabilities Rx(m) = 1, Rx(p) = 0
and for known phishing nodes Rx(m) = 0, Rx(p) = 1 as shown in Table 10.

Table 10: Types of nodes and their initial assigned maliciousness probabilities

Node Type R
Known malware Rx(m) = 1, Rx(p) = 0
Known phishing Rx(m) = 0, Rx(p) = 1

Then for each node in set U we calculate its Rui(m) and Rui(p) probabilities with
Equations 11 and 12 given below. These equations takes a weighted approach for
calculation of R values. With this weighted method we take the similarity score
between nodes ui and kj into effect when calculating the node ui’s maliciousness
probabilities. Node kj’s contribution to the total maliciousness probability of node
ui’s is directly proportional to its similarity to node ui. If the similarity is higher, its
effect will be higher. Likewise if similarity score is zero ,meaning they do not share
any number of links, kj will not affect ui at all.

50

Rui(m) = ∑ 𝑠𝑖𝑚k𝑢W, 𝑘no𝑅Zq(𝑚)
t
nuv (Eq. 11)

Rui(p) = ∑ 𝑠𝑖𝑚k𝑢W, 𝑘no𝑅Zq(𝑝)

t
nuv (Eq. 12)

After we calculate the probability values, we assign a type to node ui. If its malware
probability is higher, we assign malware, if its phishing probability is higher, we
assign phishing and if there is a tie between probabilities, its type remains unknown.
In the case of equality some kind of heuristic approach could be used such as
assigning the type of kj that has the largest sim(ui,kj) value. However, since we have
a metric called coverage that shows the rate of a measure’s applicability to classify
nodes for these kinds of incidents, we let the type remain unknown in this case.

5.4. Results

In this section results are presented for two methods mentioned in Chapters 5.2 and
5.3. For each different neighbor sets experiments were run for 10 times with different
random data and standard deviations for each evaluation metric are provided in the
tables. Our general aim is to improve accuracy and coverage at the same time as
much as it is possible, but it is shown that sometimes we need to make concessions
from accuracy in order to increase coverage.

5.4.1. Malicious Link Neighbors Method’s Results

Linked nature of the Web made it possible to form our network as a directed graph.
Because of the links, a node has other nodes that it is in relationship with. We
illustrated this relationship in five different neighborhoods around a node. Therefore,
a node has 5 different link neighbors: incoming, outgoing, incoming + outgoing, co-
citation and bibliographic coupling neighbors. Here we showed which neighbors
provide the greatest value for threat type predictions. Each delta value had different
results for accuracy and coverage. A smaller delta value let more nodes reach fixed
status earlier and minimize the number of iterations. As we want to limit the number
of iterations a delta value equals to 0.30 is used for the results presented in this
chapter. Algorithm 1 – Iterative threat type predictor is run with different neighbor
sets and results are presented below.

51

Table 11: Malicious link neighbors method results for using direct neighbors set

Incoming Neighbors Outgoing Neighbors

Incoming +
Outgoing
Neighbors

Avg.
Accuracy 84.82 (𝜎=3.44) 88.87 (𝜎=3.01) 84.31 (𝜎=1.63)

Avg. Recall
Malware
Phishing

90.14 (𝜎=4.14)
73.85 (𝜎=2.96)

88.62 (𝜎=4.99)
88.34 (𝜎=4.71)

89.00 (𝜎=1.70)
74.49 (𝜎=4.84)

Avg.
Precision
Malware
Phishing

86.99 (𝜎=14.37)
79.39 (𝜎=29.35)

91.41 (𝜎=3.06)
85.15 (𝜎=4.30)

87.92 (𝜎=2.70)
76.15 (𝜎=4.97)

Avg.
Coverage 2.57 (𝜎=0.35) 1.51 (𝜎=0.33) 3.46 (𝜎=0.33)

Table 12: Confusion matrix for direct neighbors sets

 Used Set

 (N=4000)

Incoming Neighbors Outgoing Neighbors Incoming + Outgoing
Neighbors

Predicted Predicted Predicted
Malware Phishing Malware Phishing Malware Phishing

Actual
Malware 62

(𝜎=7.15)
6	

(𝜎=1.15)
30

(𝜎=1.41)
4	

(𝜎=1.00)
84	

(𝜎=5.25)
10	

(𝜎=1.18)

Phishing 8	
(𝜎=0.91)

26	
(𝜎=2.48)

2
(𝜎=0.91)

24	
(𝜎=5.55)

12	
(𝜎=1.27)

34	
(𝜎=2.90)

As seen from the Table 11, incoming and outgoing neighbors sets have high
accuracy. However, their coverage is very low. At most they can classify up to
3.46% of nodes in the case we merge these two neighbors in incoming + outgoing
links neighbors. However, since their accuracies are very high, they should be used
whenever possible. Their low coverages are due to the fact that most nodes do not
have any malware or phishing direct neighbor.

In order to improve the coverage we presented another type of neighbors called
indirect neighbors. Incoming and outgoing neighbors only consider direct edges, but
co-citation and bibliographic coupling neighbors utilize the graph structure that
extend link relationships from only direct neighbors to new kind of neighbors formed
via third nodes.

52

Table 13: Malicious link neighbors method results for using indirect neighbors set

 Co-citation Neighbors Bibliographic Coupling
Neighbors

Avg. Accuracy 69.64 (𝜎=0.77) 60.24 (𝜎=3.23)
Avg. Recall

Malware
Phishing

56.17 (𝜎=1.49)
84.69 (𝜎=0.78)

54.34 (𝜎=5.60)
66.31 (𝜎=4.11)

Avg. Precision
Malware
Phishing

80.40 (𝜎=0.64)
63.37 (𝜎=1.18)

62.24 (𝜎=3.41)
58.77 (𝜎=3.41)

Avg. Coverage 68.41 (𝜎=1.03) 52.11 (𝜎=0.56)

Table 14: Confusion Matrix for Indirect Neighbors Sets

 Used Set

 (N=4000)

Co-citation Neighbors Bibliographic Coupling
Neighbors

Predicted Predicted
Malware Phishing Malware Phishing

Actual
Malware 810

(𝜎=7.93)
634

(𝜎=15.4)
572	

(𝜎=26.71)
482

(𝜎=32.7)

Phishing 198
(𝜎=5.20)

1094
(𝜎=13.54)

348
(𝜎=20.87)

684
(𝜎=22.29)

Co-citation is shown to be a better measure to predict threat types than bibliographic
coupling. It surpassed bibliographic coupling both in terms of accuracy and
coverage. By using co-citation we are able to predict threat type with 69.64%
accuracy.

Indirect neighbors, co-citation and bibliographic coupling, have increased coverage
than direct neighbors. Therefore, by using them we could make predictions for more
nodes. However, their accuracies are not as high as direct neighbors. In this case a
hybrid method could be used. If direct neighbors can be applied to a node, we can
use them and if it is not possible, we can use indirect neighbors methods.

Results for bibliographic coupling has higher standard deviations. This is due to the
fact that many malicious websites in our network have zero outdegree as mentioned
in Chapter 3.3 and since bibliographic coupling relationships are formed via
outgoing links from malicious websites results vary for the randomly selected nodes
in each experiment.

53

5.4.2. Link Similarity Method’s Results

As mentioned earlier, similarity score sim(ui, kj) between two nodes is calculated
based on their links. We apply the similarity score for its incoming links, outgoing
links and incoming + outgoing links.

Table 15: Results for Link Similarity Methods

 Used Link Set for Similarity Calculation
Incoming Links Outgoing Links Incoming +

Outgoing Links
Avg.

Accuracy 68.92 (𝜎= 0.68) 58.97 (𝜎= 0.98) 64.84 (𝜎= 0.65)

Avg. Recall
Malware
Phishing

61.23 (𝜎= 1.06)
77.53 (𝜎= 0.90)

67.29 (𝜎= 3.30)
50.22 (𝜎= 4.11)

66.68 (𝜎= 1.34)
62.89 (𝜎= 1.08)

Avg.
Precision
Malware
Phishing

75.37 (𝜎= 0.53)
64.06 (𝜎= 0.83)

58.89 (𝜎= 1.43)
59.24 (𝜎= 1.60)

65.57 (𝜎= 0.69)
64.05 (𝜎= 0.83)

Avg.
Coverage 69.74 (𝜎= 0.69) 52.03 (𝜎= 0.65) 85.59 (𝜎= 0.27)

Table 16: Confusion matrix for direct neighbors sets

 Used Set

(N=4000)

Incoming Neighbors Outgoing Neighbors Incoming + Outgoing
Neighbors

Predicted Predicted Predicted
Malware Phishing Malware Phishing Malware Phishing

Actual Malware 904
(𝜎=23.62)

572
(𝜎=10.91)

719
(𝜎=22.67)

351
(𝜎= 42.02)

1175
(𝜎=22.63)

587
(𝜎= 24.59)

Phishing 295
(𝜎= 9.75)

1019
(𝜎=24.35)

503
(𝜎=42.25)

508
(𝜎=42.11)

617
(𝜎=19.24)

1045
(𝜎= 16.77)

With link similarity method we can predict a threat type with 68.92% of accuracy in
incoming link set. Also by combining incoming and outgoing link set we can make
predictions for 85.59% of analyzed nodes with an accuracy of 64.84%.

When analyzing the data in the initial trials we realized that some of the nodes have
high indegrees and outdegrees. For example, search engines like Google, Yahoo,
Bing and social media sites like Twitter and Facebook have both high indegrees and
outdegrees. For search engines other websites tend to link them for custom searches
and search engines should provide link towards them as a result of users’ search
queries. Similarly including a Facebook Like button or Twitter Share button to a
website creates a link towards them. Many websites also use analytics tools such as
Google Analytics, or use Googleapis service for importing JavaScript libraries which

54

adds a link to these services. Consider a scenario where a websites u and k have a
Facebook Like button in their sources but no other incoming and outgoing links. In
this case their Jaccard similarity will be 1, the maximum possible value. These links
are neither placed for related content nor for endorsement. Therefore, they may
possibly skew the results. We detected 100 of these websites where edges that
includes them happen because of their functionality and added to a whitelist that can
be seen in Appendix-1 and removed their edges from our graph and reiterated our
analysis again.

Table 17: Results for Link Similarity Methods after removing 100 functional links

Used Link Neighbor Set for Similarity Calculation

Incoming Links Outgoing Links Incoming + Outgoing
Links

Avg. Accuracy 70.04 (𝜎= 1.40) 60.78 (𝜎= 0.74) 67.18 (𝜎=0.64)
Avg. Recall

Malware
Phishing

67.75 (𝜎= 2.58)
72.63 (𝜎= 1.11)

71.59 (𝜎= 0.84)
49.19 (𝜎= 2.23)

71.35 (𝜎=1.10)
62.68 (𝜎=1.25)

Avg. Precision
Malware
Phishing

73.66 (𝜎= 1.29)
66.61 (𝜎= 1.80)

60.19 (𝜎= 1.04)
61.73 (𝜎= 0.82)

67.35 (𝜎=0.71)
66.99 (𝜎=0.86)

Avg. Coverage 66.82 (𝜎= 0.57) 42.24 (𝜎= 0.76) 81.19 (𝜎= 0.76)

Table 18: Confusion matrix for direct neighbors sets after removing 100 functional links

 Used Set

(N=4000)

Incoming Links Outgoing Links Incoming + Outgoing
Links

Predicted Predicted Predicted
Malware Phishing Malware Phishing Malware Phishing

Actual
Malware 945

(𝜎=36.38)
450

(𝜎=38.82)
615

(𝜎= 9.64)
244

(𝜎= 9.15)
1182

(𝜎=21.81)
475

(𝜎=19.11)

Phishing 338
(𝜎=14.81)

896
(𝜎=11.11)

407
(𝜎=20.94)

394
(𝜎=21.56)

573
(𝜎=21.29)

963
(𝜎=20.86)

By removing websites where the links around them occur due to their functionalities,
we were able to increase accuracies for each neighbor sets. We also passed 70%
accuracy in incoming links neighbors. Coverages however were decreased. Since we
deleted some edges that prevented possible formation of neighbors, this was an
expected outcome.

For threat type identification, we managed to achieve at most 88.87% of accuracy
but with limited coverages in link neighbors method. In link similarity method we
achieved at most 70.04% of accuracy with relatively larger coverage. Results in the
threat type identification are above the possible random assignment accuracy result
of 50% but may not seem significantly high on their own. However, the methods

55

here only include link analysis. If they could be combined with other methods when
analyzing malicious websites such as text mining, visual similarity etc. they proved
to have the potential to provide contribution. Therefore, results obtained in this
chapter shows us that link analysis is promising for threat type identification.

56

57

CHAPTER 6

6- CONCLUSIONS

This chapter discusses the results regarding the analysis made in the previous
chapters. Results for malicious website and threat type identification is presented in
their respective chapters.

Detecting malicious websites is a popular subject of study in the literature. What we
presented is pairing it with social network analysis and investigating methods for
finding malicious websites and threat type identification more effectively using the
linked nature of WWW.

Social network analysis methods were used throughout this study. We created the
networks of malicious websites and our analyses were built upon them. Using
techniques mentioned in finding malicious websites chapter, we could form a priority
list of suspicious websites whose analyses would let us run into more malicious
websites in them. Combining these techniques mentioned in threat type identification
chapter we could predict these suspicious websites’ threat types and tailor our
analysis accordingly. If a website is predicted to be phishing, we can apply phishing
detection techniques first, or if it is predicted as malware, we can apply malware
detection techniques. This is due to the fact that malicious website detection is an
expensive process. There are lots of different detection techniques for both malware
and phishing. As an example, dynamic analysis methods for malware, runs the
executables in a sandboxed environment and analyze the behavior of them. Consider
websites with lots of executables in them. In order to truly classify them as
malicious, one needs to download and analyze every file in them which has high
computational costs. However, with a pre filtering mechanism, both the selection of
the websites to be analyzed and their possible threat types could be predicted
beforehand in order to save computational costs. This will also help us to minimize
the opportunity cost, the loss of other options when one option is chosen, since with
limited resources when you analyze some websites, you do not analyze others
therefore they may evade the detection.

We revealed that malicious websites tend to link other malicious websites in the
same maliciousness category as them, i.e. malware websites tend to link other
malware websites, phishing websites tend to link other phishing websites than other
categories. This notion is studied and proven correct mainly for web spam websites
in the literature. For malware and phishing types this is the second study that
investigate this notion.

We showed that focusing our analysis on the core groups in a network of malicious
websites would help us to find other malicious websites more efficiently. By

58

efficient we mean analyzing a smaller number of websites but running into relatively
more malicious websites in them.

The most prominent difference from the previous research and hence our
contribution lies in our usage of co-citation and bibliographic coupling for attack
type identification of malicious websites. Co-citation and bibliographic coupling are
applied to many areas from bibliographic studies to topic similarity. We applied
them for the first time to attack type prediction of malicious websites.

We showed that link analysis is a promising area for effective malicious website
detection and threat type identification. However, the experiments we carried uses
only the link analysis. For better results they can be used alongside with other
methods since a hybrid method that includes link analysis would provide better
results. For example, to detect phishing websites link analysis methods could be used
with textual features and visual similarity methods. The findings here could also be
used as one of the features to train a machine learning model.

59

REFERENCES

[1] Accenture. Ninth Annual Cost of Cybercrime Study [Internet]. 2017.
Available from: https://www.accenture.com/t20170926t072837z__w__/us-
en/_acnmedia/pdf-61/accenture-2017-costcybercrimestudy.pdf

[2] Wasserman S, Faust Katherine. Social Networks Analysis: Methods and

Applications. Cambridge: Cambridge University Press; 1994.

[3] Accenture. Cost of Cybercrime Study 2017 [Internet]. 2017. Available from:

https://www.accenture.com/t20170926t072837z__w__/us-en/_acnmedia/pdf-
61/accenture-2017-costcybercrimestudy.pdf

[4] Transparency Report G. Safe Browsing: malware and phishing – Google

Transparency Report [Internet]. 2019 [cited 2019 Nov 28]. Available from:
https://transparencyreport.google.com/safe-
browsing/overview?unsafe=dataset:1;series:malwareDetected,phishingDetect
ed;start:1543881600000;end:1573516799999&lu=unsafe

[5] Transparency Report G. Safe Browsing: malware and phishing – Google

Transparency Report [Internet]. 2019 [cited 2019 Nov 28]. Available from:
https://transparencyreport.google.com/safe-
browsing/overview?unsafe=dataset:0;series:malware,phishing;start:11481948
00000;end:1573977600000&lu=unsafe

[6] Sikorski M, Honig A. Practical malware analysis: the hands-on guide to

dissecting malicious software. No starch Press. 2012.

[7] Moshchuk A, Bragin T, Gribble SD, Levy HM. A Crawler-based Study of

Spyware on the Web. Proc 2006 Netw Distrib Syst Secur Symp. 2006;

[8] Wang Y-M, Beck D, Jiang X, Roussev R. Automated Web Patrol with Strider

HoneyMonkeys : Finding Web Sites That Exploit Browser Vulnerabilities.
Proc Symp Netw Distrib Syst Secur. 2005;0–11

[9] Provos N, McNamee D, Mavrommatis P, Wang K, Modadugu N. The Ghost

in the Browser Analysis of Web-based Malware. Proc First Conf First Work
Hot Top Underst Botnets [Internet]. Berkeley, CA, USA: USENIX
Association; 2007. p. 4. Available from:
http://dl.acm.org/citation.cfm?id=1323128.1323132

60

[10] Provos N, Mavrommatis P, Rajab MA, Monrose F. All Your iFRAMEs Point
to Us. Proc 17th Conf Secur Symp [Internet]. Berkeley, CA, USA: USENIX
Association; 2008. p. 1–15. Available from:
http://dl.acm.org/citation.cfm?id=1496711.1496712

[11] Singh AK, Goyal N. Malcrawler: A crawler for seeking and crawling

malicious websites. Lect Notes Comput Sci (including Subser Lect Notes
Artif Intell Lect Notes Bioinformatics). 2017

[12] Invernizzi L, Comparetti PM, Benvenuti S, Kruegel C, Cova M, Vigna G.

EvilSeed: A guided approach to finding malicious web pages. Proc - IEEE
Symp Secur Priv. 2012

[13] Chakrabarti S, Dom B, Indyk P. Enhanced hypertext categorization using

hyperlinks. SIGMOD Rec. 1998

[14] Qi X, Davison BD. Knowing a web page by the company it keeps. Int Conf

Inf Knowl. Manag Proc. 2006

[15] Dean J, Henzinger MR. Finding related pages in the World Wide Web.

Comput Networks. 1999

[16] Kleinberg JM. Authoritative sources in a hyperlinked environment. J ACM.

1999

[17] Wu B, Davison BD. Identifying link farm spam pages. 14th Int World Wide

Web Conf WWW2005. 2005

[18] Castillo C, Donato D, Gionis A, Murdock V, Silvestri F. Know your

neighbors: Web spam detection using the web topology. Proc 30th Annu Int
ACM SIGIR Conf Res Dev Inf Retrieval, SIGIR’07. 2007

[19] Gibson D, Kumar R, Tomkins A. Discovering large dense subgraphs in

massive graphs. VLDB 2005 - Proc 31st Int Conf Very Large Data Bases.
2005

[20] Gyöngyi Z, Garcia-Molina H. Link spam alliances. VLDB 2005 - Proc 31st

Int Conf Very Large Data Bases. 2005

[21] Page L, Brin S, Motwani R, Winograd T. The PageRank Citation Ranking:

Bringing Order to the Web. World Wide Web Internet Web Inf Syst. 1998

[22] Fetterly D, Manasse M, Najork M. Spam, damn spam, and statistics: Using

statistical analysis to locate spam web pages. ACM Int Conf Proceeding Ser.
2004

61

[23] Becchetti L, Castillo C, Donato D, Baeza-Yates R, Leonardi S. Link analysis
for Web spam detection. ACM Trans Web. 2008

[24] Choi H, Zhu BB, Lee H. Detecting malicious web links and identifying their

attack types. WebApps. 2011

[25] Stokes JW, Andersen R, Seifert C, Chellapilla K. WebCop: Locating

neighborhoods of malware on the web. LEET 2010 - 3rd USENIX Work
Large-Scale Exploit Emergent Threat Botnets, Spyware, Worms, More. 2010

[26] Wu B, Goel V, Davison BD. Propagating trust and distrust to demote web

spam. CEUR Workshop Proc. 2006

[27] Gyongyi Z, Garciamolina H, Pedersen J. Combating Web Spam with

TrustRank. Proc 2004 VLDB Conf. 2004

[28] Guha R, Raghavan P, Kumar R, Tomkins A. Propagation of trust and distrust.

Thirteen Int World Wide Web Conf Proceedings, WWW2004. 2004

[29] Travers J, Milgram S. An Experimental Study of the Small World Problem.

Sociometry [Internet]. [American Sociological Association, Sage
Publications, Inc.]; 1969;32:425–43. Available from:
http://www.jstor.org/stable/2786545

[30] Kleinfeld JS. The small world problem. Society. 2002

[31] Adamic LA. The small world web. Lect Notes Comput Sci (including Subser

Lect Notes Artif Intell Lect Notes Bioinformatics). 1999

[32] Shetty J, Adibi J. Discovering important nodes through graph entropy the

case of enron email database. 3rd Int Work Link Discov LinkKDD 2005 -
conjunction with 10th ACM SIGKDD Int Conf Knowl Discov Data Min.
2005

[33] Phillips E, Nurse JRC, Goldsmith M, Creese S. Applying Social Network

Analysis to Security. 2015 [cited 2019 Aug 26]. Available from:
http://www.ferc.gov/

[34] Boldi P, Vigna S. The Webgraph Framework I: Compression Techniques.

Proc 13th Int Conf World Wide Web [Internet]. New York, NY, USA: ACM;
2004. p. 595–602. Available from:
http://doi.acm.org/10.1145/988672.988752

[35] Flake GW, Lawrence S, Lee Giles C, Coetzee FM. Self-organization and

identification of web communities. Computer (Long Beach Calif). 2002

62

[36] Aburrous M, Hossain MA, Dahal K, Thabtah F. Intelligent phishing detection
system for e-banking using fuzzy data mining. Expert Syst Appl. 2010

[37] Abu-Nimeh S, Nappa D, Wang X, Nair S. A comparison of machine learning

techniques for phishing detection. ACM Int Conf Proceeding Ser. 2007

[38] Medvet E, Kirda E, Kruegel C. Visual-similarity-based phishing detection.

Proc 4th Int Conf Secur Priv Commun Networks, Secur. 2008

[39] Chen TC, Dick S, Miller J. Detecting visually similar web pages: Application

to phishing detection. ACM Trans Internet Technol. 2010

[40] Idika N, Mathur AP. A Survey of Malware Detection Techniques. SERC

Tech Reports. 2007

[41] Kolbitsch C, Livshits B, Zorn B, Seifert C. Rozzle: De-cloaking Internet

malware. Proc - IEEE Symp Secur Priv. 2012. p. 443–57

[42] Zachary WW. An Information Flow Model for Conflict and Fission in Small

Groups. J Anthropol Res. 1977

[43] Girvan M, Newman MEJ. Community structure in social and biological

networks. Proc Natl Acad Sci U S A. 2002

[44] Stanford Large Network Dataset Collection [Internet]. [cited 2019 Aug 26].

Available from: https://snap.stanford.edu/data/#web

[45] Laboratory for Web Algorithmics [Internet]. [cited 2019 Aug 26]. Available

from: http://law.di.unimi.it/datasets.php

[46] Frequently Asked Questions – Common Crawl [Internet]. [cited 2019 Aug

26]. Available from: https://commoncrawl.org/big-picture/frequently-asked-
questions/

[47] Get started – Common Crawl [Internet]. [cited 2019 Aug 26]. Available

from: https://commoncrawl.org/the-data/get-started/

[48] May 2019 crawl archive – Common Crawl [Internet]. [cited 2019 Aug 26].

Available from: https://commoncrawl.org/2019/05/may-2019-crawl-archive-
now-available/

[49] July 2019 crawl archive – Common Crawl [Internet]. [cited 2019 Aug 26].

Available from: https://commoncrawl.org/2019/07/july-2019-crawl-archive-
now-available/

[50] Du Y, Herzog A, Luckow A, Nerella R, Gropp C, Apon A.

Representativeness of latent dirichlet allocation topics estimated from data

63

samples with application to common crawl. Proc - 2017 IEEE Int Conf Big
Data, Big Data 2017. 2018

[51] URLhaus | Malware URL exchange [Internet]. [cited 2019 Aug 26].

Available from: https://urlhaus.abuse.ch/

[52] DNS-BH – Malware Domain Blocklist by RiskAnalytics [Internet]. [cited

2019 Aug 26]. Available from: http://www.malwaredomains.com/

[53] Suspicious Domains - SANS Internet Storm Center [Internet]. [cited 2019

Aug 26]. Available from: https://isc.sans.edu/suspicious_domains.html

[54] PhishTank | Join the fight against phishing [Internet]. [cited 2019 Aug 26].

Available from: https://www.phishtank.com/

[55] Github. GitHub - HorusTeknoloji/TR-PhishingList: Türkiye’ye Yönelik

Zararlı Bağlantı Erişim Engelleme Listesi [Internet]. [cited 2019 Dec 20].
Available from: https://github.com/HorusTeknoloji/TR-PhishingList

[56] How it works – VirusTotal [Internet]. [cited 2019 Aug 26]. Available from:

https://support.virustotal.com/hc/en-us/articles/115002126889-How-it-works

[57] Developers - VirusTotal [Internet]. [cited 2019 Aug 26]. Available from:

https://developers.virustotal.com/

[58] Pajek / PajekXXL / Pajek3XL [Internet]. [cited 2019 Nov 28]. Available

from: http://mrvar.fdv.uni-lj.si/pajek/

[59] Pfeffer J, Mrvar A, Batagelj V. txt2pajek: Creating Pajek Files from Text

Files. 2013

[60] Kumar R, Raghavan P, Rajagopalan S, Sivakumar D, Tomkins A, Upfal E.

Stochastic models for the web graph. Annu Symp Found Comput Sci - Proc.
2000

[61] Barabási AL, Albert R. Emergence of scaling in random networks. Science

(80-). 1999

[62] Davis J, Goadrich M. The relationship between precision-recall and ROC

curves. ACM Int Conf Proceeding Ser. 2006

[63] Wikipedia. Confusion matrix - Wikipedia [Internet]. [cited 2019 Dec 20].

Available from: https://en.wikipedia.org/wiki/Confusion_matrix

[64] Lu Q, Getoor L. Link-based Classification. Proceedings, Twent Int Conf

Mach Learn. 2003

64

[65] Small H. Co‐citation in the scientific literature: A new measure of the
relationship between two documents. J Am Soc Inf Sci. 1973

[66] Kessler MM. Bibliographic coupling between scientific papers. Am Doc.
1963

[67] Bharat K, Chang BW, Henzinger M, Ruhl M. Who links to whom: Mining

linkage between web sites. Proc - IEEE Int Conf Data Mining, ICDM. 2001

[68] Han J, Kamber M, Pei J. Data Mining: Concepts and Techniques. Data Min.

Concepts Tech. 2012

[69] Niwattanakul S, Singthongchai J, Naenudorn E, Wanapu S. Using of jaccard

coefficient for keywords similarity. Lect Notes Eng Comput Sci. 2013

65

APPENDICES

Appendix A: 100 websites whose links occur due to their functionalities:

Website Name Functionality Website Name Functionality
addthis.com Bookmarking histats.com Website statistic
amazon.co.jp Shopping hotmail.com Web Portal
amazon.co.uk Shopping hstatic.net Content Delivery
amazon.com Shopping imageshack.com Photo Sharing
amazonaws.com Cloud imgur.com Photo Sharing
amzn.to Link Shortening instagram.com Social Media
aol.com Web Portal joomla.org Website Creator
apple.com Business jquery.com Programming
archive.org Web Archive jqueryui.com Programming
azurewebsites.net Cloud linkedin.com Social Media
baidu.com Search Engine medium.com Blogging
bit.ly Link Shortening microsoft.com Business
blogspot.com Blogging msn.com Web Portal
bootstrapcdn.com Content Delivery opendns.com Network

cdninstagram.com
Content Delivery

paypal.com
Payment
Processor

cloudflare.com Web Protection people.com.cn Web Portal
cpanel.com Web Hosting pinterest.com Photo Sharing
dailymotion.com Video Hosting rawgit.com Programming

disqus.com
Website
Comment reddit.com

Social Media

dropbox.com Cloud sharethis.com Bookmarking
duckduckgo.com Search Engine shopify.com Shopping

ebay.com
Shopping ssl-images-

amazon.com
Content Delivery

facebook.com Social Media statcounter.com Website statistic

facebook.net
Social Media

stripe.com
Payment
Processor

fb.me Link Shortening stumbleupon.com Bookmarking
flickr.com Photo Sharing t.co Link Shortening

fontawesome.com
Web
Programming t.me

Link Shortening

github.com Programming taobao.com Shopping
godaddy.com Cloud tinypic.com Photo Sharing

66

goo.gl Link Shortening tinyurl.com Link Shortening
google-analytics.com Analytics tumblr.com Social Media
google.at Search Engine twitter.com Social Media
google.co.in Search Engine vimeo.com Video Hosting
google.co.jp Search Engine vk.com Social Media
google.com Search Engine w.org Blogging
google.com.br Search Engine weebly.com Programming
google.com.hk Search Engine whatsapp.com Social Media
google.com.tr Search Engine wikimedia.org Website Creator
google.de Search Engine wikipedia.org Website Creator
google.es Search Engine wordpress.com Website Creator
google.hu Search Engine wordpress.org Website Creator
googleapis.com Programming wp.com Website Creator
googlecode.com Programming yahoo.com Search Engine
googledrive.com Cloud yandex.com Search Engine
googlegroups.com Social Media yandex.net Search Engine
googlesyndication.com Programming yandex.ru Search Engine

googletagmanager.com
Programming yelp.com Business

Directory
googleusercontent.com Programming youtu.be Link Shortening
gravatar.com Photo Sharing youtube.com Social Media
gstatic.com Content Delivery ytimg.com Content Delivery

TEZ İZİN FORMU / THESIS PERMISSION FORM

ENSTİTÜ / INSTITUTE

Fen Bilimleri Enstitüsü / Graduate School of Natural and Applied Sciences

Sosyal Bilimler Enstitüsü / Graduate School of Social Sciences

Uygulamalı Matematik Enstitüsü / Graduate School of Applied
Mathematics
Enformatik Enstitüsü / Graduate School of Informatics

Deniz Bilimleri Enstitüsü / Graduate School of Marine Sciences

YAZARIN / AUTHOR

Soyadı / Surname : ALDEMİR
Adı / Name : MUHSİN
Bölümü / Department : BİLİŞİM SİSTEMLERİ / INFORMATION
SYSTEMS

TEZİN ADI / TITLE OF THE THESIS (İngilizce / English) : SOCIAL
NETWORK ANALYSIS OF MALICIOUS WEBSITES FOR DETECTION
AND CHARACTERIZATION

TEZİN TÜRÜ / DEGREE: Yüksek Lisans / Master Doktora / PhD

1. Tezin tamamı dünya çapında erişime açılacaktır. / Release the entire work

immediately for access worldwide.

2. Tez iki yıl süreyle erişime kapalı olacaktır. / Secure the entire work for
patent and/or proprietary purposes for a period of two year. *

3. Tez altı ay süreyle erişime kapalı olacaktır. / Secure the entire work for

period of six months. *

* Enstitü Yönetim Kurulu Kararının basılı kopyası tezle birlikte kütüphaneye
teslim edilecektir.
 A copy of the Decision of the Institute Administrative Committee will be
delivered to the library together with the printed thesis.

Yazarın imzası / Signature Tarih / Date /12/2019

X

X

X

