
 

 

  

 

SOCIAL NETWORK ANALYSIS OF MALICIOUS WEBSITES FOR 

DETECTION AND CHARACTERIZATION 

 

 

A THESIS SUBMITTED TO 

THE GRADUATE SCHOOL OF INFORMATICS OF 

THE MIDDLE EAST TECHNICAL UNIVERSITY 

BY 

 

 

MUHSİN ALDEMİR 
 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE 

OF MASTER OF SCIENCE 

IN 

THE DEPARTMENT OF INFORMATION SYSTEMS 
 

 
 
 
 
 
 
 
 
 

DECEMBER 2019 
  



 
  



 
 
 

 
 

 
SOCIAL NETWORK ANALYSIS OF MALICIOUS WEBSITES FOR 

DETECTION AND CHARACTERIZATION 
 
Submitted by Muhsin Aldemir in partial fulfillment of the requirements for the degree of 
Master of Science in Information Systems, Middle East Technical University by, 
 
 
Prof. Dr. Deniz Zeyrek Bozşahin 
Dean, Graduate School of Informatics 
 
Prof. Dr. Sevgi Özkan Yıldırım 
Head of Department, Information Systems 
 
Assoc. Prof. Dr. Banu Günel Kılıç 
Supervisor, Information Systems, METU 
 
 
Examining Committee Members: 
 
Assoc. Prof. Dr. Aysu Betin Can 
Information Systems, METU 
 
Assoc. Prof. Dr. Banu Günel Kılıç 
Information Systems, METU 
 
Assoc. Prof. Dr. Altan Koçyiğit  
Information Systems, METU 
 
Prof. Dr. Şeref Sağıroğlu  
Computer Engineering Dept., Gazi University 
 
Assoc. Prof. Dr. Tuğba Taşkaya Temizel 
Information Systems, METU 
 
 

Date:                    02/12/2019 

 
 

 
 





iii 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

I hereby declare that all information in this document has been obtained 
and presented in accordance with academic rules and ethical conduct. I 
also declare that, as required by these rules and conduct, I have fully 
cited and referenced all material and results that are not original to this 
work. 

 

 
 
 
 
 

Name, Last name :   Muhsin Aldemir 
 
 
 

Signature              :         
  



iv 
 

 

ABSTRACT 

 
SOCIAL NETWORK ANALYSIS OF MALICIOUS WEBSITES FOR 

DETECTION AND CHARACTERIZATION 
 

 
Aldemir, Muhsin 

MSc., Department of Information Systems 
Supervisor: Assoc. Prof. Dr. Banu Günel Kılıç 

 
December 2019, 66 pages 

 
Malicious websites pose major risks to users and businesses including economic 
damages, privacy breaches and loss of valuable data. Malicious actors use websites 
as a spreading medium for their motives. Analyzing the relationships between 
malicious websites and comparing them to benign ones can help understand the 
problem better, and enable detection and prevention of these websites more 
accurately.  
 
This thesis focuses on detection and characterization of malicious websites using 
Social Network Analysis (SNA). SNA provides powerful methodologies for 
discovering and visualizing the relationships between actors.  By utilizing the links 
in between and among malicious and benign websites, graphs were constituted, 
whose nodes were websites and ties were hyperlinks between them. For this purpose, 
the data which included the snapshot of the pairwise links amongst hundreds of 
thousands of websites, the list of malicious websites and their types were obtained 
from the web. First, networks of malicious websites were formed. Then, using these 
networks new analyses were carried out to efficiently find malicious websites and 
their types based on their network structures and link similarities. Results were 
presented showing the detection accuracies of applied methods. 
 
Keywords: Malicious Websites, Social Network Analysis, Webgraphs, Crawler, 
Malware 
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ÖZ 

 
ZARARLI WEBSİTELERİNİN TESPİTİ VE KARAKTERİZASYONU İÇİN 

SOSYAL AĞ ANALİZİ 
 

 
Aldemir, Muhsin 

Yüksek Lisans, Bilişim Sistemleri Bölümü 
Tez Yöneticisi: Doç. Dr. Banu Günel KILIÇ 

 
Aralık 2019, 66 sayfa 

Zararlı web siteleri kullanıcılar ve şirketler için ekonomik zararlar, mahremiyet 
ihlalleri ve değerli veri kayıpları gibi büyük riskler oluştururlar. Kötü niyetli aktörler 
web sitelerini amaçları için bir yayılma aracı olarak kullanırlar. Zararlı web siteleri 
arasındaki ilişkiyi analiz etmek ve bunları zararsız web siteleri ile karşılaştırmak 
sorunu daha iyi anlamaya yardımcı olabilir ve böylece bu websitelerini daha doğru 
bir şekilde tespit edip önlemeye imkan sağlayabilir. 
 
Bu tez, Sosyal Ağ Analizi (SAA) kullanarak kötü amaçlı web sitelerinin tespitine ve 
karakterizasyonuna odaklanmaktadır. SAA, aktörler arasındaki ilişkileri keşfetmeye 
ve görselleştirmeye yardımcı olan güçlü metodolojiler sunar. Zararlı ve zararsız web 
sayfalarının kendi aralarında ve birbirleriyle olan bağlantılarını kullanarak düğümleri 
web siteleri, bağları da aralarındaki linkler olan çizgeler oluşturuldu. Bu amaçla, yüz 
binlerce web sayfası arasındaki karşılıklı bağlantıların anlık durum görüntüsünü, 
zararlı web sitelerinin listesini ve onların tiplerini içeren veri webden elde edildi. 
Öncelikle zararlı web siteleri ağları oluşturuldu. Daha sonra, bu ağları kullanarak 
zararlı web sitelerini ve onların tiplerini verimli biçimde bulmak için ağ yapılarına ve 
bağlantı benzerliklerine dayanan yeni analizler yapıldı. Uygulanan metodların tespit 
doğruluğunu gösteren sonuçlar sunuldu. 
 
Anahtar Sözcükler: Zararlı Web siteleri, Sosyal Ağ Analizi, Web Çizgeleri, Web 
Tarayıcı Robotları, Zararlı Yazılımlar 
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CHAPTER 1 
CHAPTER 

1- INTRODUCTION 

Computer and network security have always been a big concern for users. Malicious 
software, often called as malwares, are specifically designed programs to cause 
harmful or unwanted actions on computer users and computer systems. These effects 
could be stealing information, disrupting and damaging the computer systems, 
breaching user’s privacy and economic losses. Malware is a broad term to generalize 
many types of malicious programs like adwares, bots, rootkits, ransomwares, 
spywares, trojan horses, viruses, and worms. Effects and motives of these programs 
differ from each other based on their categories. On their infected systems, some 
show advertisements, some steal information, some make the system unusable and 
some others make the system a member of a botnet, etc. 
 
A malware can infect a system in many ways. Most common infection vectors are 
spam emails, infected removable drives, malicious executables and websites. They 
are called malware distribution channels. Malicious websites might be set up with 
evil motives initially or they can be legitimate websites, which are compromised 
later on to serve malicious content. World Wide Web (WWW) as a malware 
distribution channel is not a new phenomenon. Since its commercialization and 
opening to the masses, malware has been a huge problem for WWW. Today, the 
number of Internet connected devices are enormous and with the advancement in the 
technology and Internet of Things (IOT), malware problem is expected to grow even 
larger [1].  

Malware detection and prevention are vast research areas. Today, both the solutions 
offered by the security industry and techniques to evade detection employed by 
malicious actors are sophisticated. Computer security industry with different cyber 
security solutions tries to protect users and computer systems.  

Detecting malware and preventing its infection are difficult processes. Malware 
research is often done by analyzing the malware itself and its interactions on the host 
computer. However, the analysis of malware distribution channels and their 
mechanism is as important as the malware analysis itself.  

To study malicious websites and malware distribution problem on the Web, we need 
a good research approach. Modeling the relationships among websites will help us to 
illustrate the structure of the group, so that several analyses can be carried out on 
them later on. Due to its well-established grounds Social Network Analysis (SNA) is 
a good choice to study the relationship between malicious websites. Social Network 
Analysis is a set of methods to define and understand a network structure. There are 
many problems that can be answered by utilizing the SNA approach. Applying social 
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network analysis on security will widen the possibilities of findings and will help us 
to illustrate the relationships better. 

A social network consists of entities and relationships between them. These entities 
might be websites, people, organizations, individual states, group of companies, etc. 
In SNA terminology these entities are often called as nodes or vertices. Relationships 
between them could be one of many types such as friendship, collaboration, business 
ties, trust, information exchange, etc. Many objects we have in the real world and 
relationships between them can be classified and analyzed as a social network. 
Friendships among people, collaboration between academics on a conference paper, 
electrical power grids of a city are all social networks. 

In SNA, observed attributes between actors are understood with regards to patterns 
or structures of ties among them. Relational ties between actors such as friendship 
status between them have primary status whereas the attributes of actors like their 
ages have secondary status [2]. Therefore an attribute would lack its exact meaning if 
it is taken solely without a relationship accompanying it. So, a pattern or a structure 
of ties and relationships are necessary to interpret the attributes correctly. 

Networks and network analysis have been the subject of many academic disciplines 
such as mathematics, sociology, computer sciences, biology and economics. Those 
disciplines have some differences in terms of explaining and analyzing networks 
related to their respective fields. Network analysis is an interdisciplinary subject and 
this thesis benefits from the interdisciplinary status of the research area. Computer 
science constitutes the data collection and analysis efforts of the thesis. Mathematics 
with its graph theory paves the way for forming and understanding network 
structures. Also, the propagation of malware on malicious websites can be modeled 
similar to the propagation of an infectious disease in biological sciences.  

1.1. Research Questions 
 
This thesis tries to answer mainly two research questions. 

R.Q. 1) Linked nature of the Web lets us analyze interactions between websites. 
Since Web is a very large domain consisting of millions of websites and our analysis 
capacity is not unlimited, we need to make a priority in selection of websites to 
analyze. How this selection can be done effectively with link analysis? By effective 
we mean analyzing smaller number of websites but running into more malicious ones 
in them.  

R.Q. 2) Malicious websites have threat types in terms of malicious content they 
present like malware and phishing. Can we make successful predictions for their 
threat types by utilizing their links? 
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1.2. Thesis Importance and Impacts 
 
Malicious websites pose great risks to computer users. These risks include economic 
damages, privacy breaches and loss of valuable data. In recent years many high scale 
security breaches have occurred which caused many damages [1][3]. 

As much as being an indispensable part of people’s lives today, Web is also an 
important distribution medium for malicious programs. Google operates a Safe 
Browsing initiative which finds malicious websites on the Web. It indicates that 
there are currently 30,557 malware websites and 1,637,637 phishing websites on the 
Internet, which are deemed dangerous [4]. Also they detect thousands of new 
malware and phishing websites everyday [5].  

By understanding the relationship between malicious websites on the Web and 
mapping out their interactions, we can understand the problem better. Thus, we can 
identify and prevent them more accurately. 

1.3. Thesis Scope 
 
Malware research is a vast and popular academic research area. There are various 
detection methods offered by researchers for malware detection or analysis on a 
website to determine whether it has any malicious content or not. This study does not 
aim proposing an alternative method, but a method to accompany them.  

This thesis takes a social network approach and tries to understand the relationships 
in the network of malicious websites. Some research techniques developed in the 
domains of social network analysis and graph theoretic models will help us to form 
the networks and illustrate the relationships. As a result, we aim to provide an 
efficient selection method for websites that are going to be analyzed since malicious 
website detection is an expensive process. For each different malicious type, 
detection methods differ. Therefore, to find which detection techniques should be 
applied primarily to a suspected website we try to predict its threat type by utilizing 
its links. 

1.4. Thesis Overview 
 
Chapter 2 provides the related works on the subject. Chapter 3 presents the 
methodology we employed. In order to use SNA metrics, one needs some 
fundamental knowledge of the topics it covers. Therefore, this chapter begins with an 
introduction to SNA topics and its specific terms. Afterwards, data collection 
methods are presented and efforts about transitioning data to network are 
mentioned. In Chapter 4, finding malicious websites, we explain the prioritization 
process in selection of seed websites that will let us run into more malicious websites 
afterwards. Chapter 5, threat type identification, explains how threat type 
identification of a malicious website can be done with different methods based on 
link analysis and presents the results. Chapter 6 is the conclusions part where results 
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obtained in the study are summarized and contributions and future work are 
mentioned. 
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CHAPTER 2 

 

2- RELATED WORKS 

As detection of malicious websites is a popular research topic there are many studies 
in the literature. The important ones that are related to the scope of this thesis are 
mentioned in this chapter. Some related studies that are based on social network 
analysis are also summarized. 

2.1    Malicious Website Detection 
 
Studies in this section shows how traditional malicious website detection works.  
 
Malware detection is often done by analyzing the malware itself and its interactions. 
These efforts include steps like static analysis, dynamic analysis, reverse engineering 
of malware and code analysis [6]. Static analysis tries to detect malware without 
running it whereas in dynamic analysis malware files are run within a secure 
environment. 
 
Two notable studies made on malware detection on the web that use virtual machines 
were done by [7] and [8]. Virtual machine-based approaches run suspicious files in a 
secure, isolated environment and detect malware with a high accuracy, but they are 
computationally expensive. 
 
The study [7] analyzed malicious attacks on the Web using a crawler. They limited 
their analysis on a specific type of malware named spyware. Their aim was to find 
spyware’s prevalence on the Internet and a user’s likelihood of encountering it. They 
tried to answer the questions: Which spyware is the most common on the Web and 
are spyware executables distributed evenly on the Web or are they concentrated in 
specific areas? Which websites and the site category distribute the most spyware? 
They initially crawled over 2500 websites and iteratively added links in them up to 
depth three. To identify malicious software, they downloaded the executables to 
Virtual Machine (VM), installed or executed it and used a commercial anti-spyware 
tool to identify if it was flagged as malicious or not. To identify drive-by download 
attacks, they visited a webpage with an unmodified browser in a VM and applied a 
heuristic method by using triggers in the Operating System (OS) such as observing a 
new library installation or creation of a new suspicious process after visiting the web 
page. They crawled around 18 million URLs and found spyware in 13.4% out of the 
21.200 executables they come across. Also, they found drive-by download attacks in 
5.9% of the web pages they visited. The most common type of spyware they found 
was adware or browser hijackers while others like dialers, keyloggers and trojan 
downloaders had relatively small prevalence. They found that spywares are not 
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evenly distributed and the domains which serve the most spyware programs were in 
the games category while news category websites had the least malicious content. 

The study [8] developed an automated web patrol system to find malicious web sites 
that exploit browser vulnerabilities to install malware. They used a computer 
program called honey monkey which is similar to honey pots, but takes a more active 
approach in detecting threats by imitating a human’s web usage. Honey monkeys 
running on OSes with different patch levels launch a browser instance to visit input 
URLs. To understand if an exploit happens, they try to find unauthorized/suspicious 
file creations and configuration changes. After each visit to the webpage their 
program generated a report containing creation or changes of files outside of the 
browser sandbox, OS process creation, and changes in OS registry entries, exploited 
vulnerability which was found based on a signature of the exploit, and visitation 
records based on redirection. All these operations were done in a virtual machine 
environment. One of the important aspects of their study was that after they found 
exploit sites they constructed topology graphs based on traffic redirections on them. 
Thus, they were able to find important actors who are responsible for these exploit 
webpages. Their aim was to determine both the real source of malware and other 
web pages that are involved in the distribution chain. They found that many exploit 
URLs found in the first stage did not distribute exploits themselves, but acted as a 
storefront, attracting large traffic and then redirecting this traffic to actual exploit 
distributors. They showed that redirections are big culprits in exploit distribution. 
 
As mentioned before, Google Safe Browsing also operates scanners to find malware 
and phishing websites. Google Safe Browsing does not disclose its efforts in detail, 
but there are two publications that explain its methodology. In their study that shows 
how web based malware operates [9] found a large number of websites that 
compromise users’ browsers. The study [10] also showed that how drive-by 
download attacks occur and how they detected them. In their study, they found over 
3 million malicious URLs that trigger drive-by downloads.  

2.2    Efficiency in Malicious Website Detection 
 
Searching for malicious websites is usually a three-step process. First step is finding 
the URLs to analyze, which is usually done by a crawler. In the second step, these 
URLs are quickly inspected using fast analysis filters to dismiss possibly benign 
ones. These filters usually examine different features of a page such as HTML 
content and JavaScript functions. This step may result in imprecise decisions, but it 
is necessary since there are more websites than the available analysis resources. In 
the last step, in depth analysis of a web page is done by specialized analyzers like 
honey clients.  
 
The work [11] argued that even though this three-step process is an applicable 
method, it is not efficient, since it requires considerable time and computing 
resources. In order to do it more efficiently they proposed employing a focused 
crawler named Malcrawler that seeks more malicious websites than the benign ones 
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compared to a generic crawler and as a result, increasing the toxicity of the crawled 
URLs. Their method focused on JavaScript based malwares. They began their 
crawling with a seed set of malicious URLs. For each URL they encountered they 
visited the webpage and extracted 10 different features such as redirections, number 
of dynamic code executions, bytes allocated in memory space etc. Then using 
already known malicious websites as a training set, they made classifications, but 
they also used Google Safe Browsing to cross-check the validity of their findings. As 
a result of classifications, links which looked like malicious were followed and 
others which did not look like malicious were removed and not followed. To test the 
effectiveness of their crawler, they made two crawls. In the first one they made a 
generic crawl where they followed every link, and in the second one they made a 
crawl with their proposed method, i.e. not crawling links which did not seem to be 
malicious. In both of these crawls they visited around 0.57 million URLs. In the first 
crawl they encountered 702 (0.123%) URLs and in the second crawl they 
encountered 1978 (0.348%) URLs. By applying their method, they were able to 
increase the number of malicious URLs they gathered from 702 to 1978. 
 
With the similar aim, to improve efficiency at finding URLs to analyze, the work 
[12] proposed a method called Evilseed. They extracted the characterizing 
similarities between known malicious web pages and using them generated specific 
search engine queries to detect other malicious pages that are similar or related to 
known malicious ones instead of randomly looking for malicious websites on the 
Web. The idea is that a feature shared by many known malicious web pages is an 
indication of malicious activity and other pages that have this feature are more 
probably to be malicious. However, different than Malcrawler, they utilized the 
search engines to find these websites instead of crawling themselves. They had five 
different feature sets as links, content, search engine optimization (SEO), domain 
registration and DNS queries. They regarded a web page malicious if it executed a 
drive-by download attack or tried to trick a user to install a fake anti-virus program. 
Using their features, they formed a candidate malicious URLs lists and checked 
whether they were malicious or not by using Google Safe Browsing, a client 
honeypot and a custom fake anti-virus detector. For link feature they first found web 
pages that link to known malicious web pages and then extracted other URLs they 
contained and added them as candidate malicious URLs. For content feature they 
extracted common terms that occur in known malicious web pages and found other 
pages that included the same terms and added them as candidate malicious URLs. 
For SEO feature they found SEO campaigns that tried to boost a malicious page’s 
position in the search results and gathered all other pages in the same domain and 
added them and all the links they contained to the candidate malicious URLs. For 
domain registration feature they found the registration times for malicious websites 
and added other websites that has been registered moments before or after that 
website to the candidate malicious URLs. For DNS feature, they monitored the DNS 
queries made by a large user base and when a DNS query for a malicious web page 
is made, they added the other URLs whose DNS queries made in the preceding four 
seconds to the candidate malicious URLs. They compared their findings first with a 
random web search and then with a crawler. Evilseed gathered 226,140 URLs of 
which 3036 (1.34%) were found to be malicious whereas crawler gathered 431,428 
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URLs of which 604 (0.14%) were found to be malicious and random web search 
made on a search engine included 219 (0.34%) malicious URLs out of 64,411 URLs. 
Their method was able to find more malicious URLs than both random search and 
crawler.  

2.3    Link Analysis-Based Methods 
 
Link analysis methods can be used to select websites for potential detection. Link 
analysis methods on the WWW are mainly used for website classification, or also 
known as website categorization, which is the method of assigning one or more 
categories to a website. This classification could be done based on several different 
purposes like finding the category of a webpage such as entertainment, gaming, news 
etc, or to find a website’s function, i.e. the role it plays like personal page or 
corporate page, search engine etc. For these type of classification tasks several 
different methods are proposed like using textual and visual features. However, since 
we are interested in application of link analysis, we will analyze the methods 
involving it. Link based classification methods on WWW are used mainly on topical 
categorization of websites. The work [13] used machine learning methods to classify 
a web page and showed that utilizing the classes of hyperlinked neighbors of the 
page to be classified greatly helps the classification accuracy. The work [14] showed 
how class categories from the neighboring web pages, pages that have link 
relationship with the page being analyzed, can be used for classification tasks. They 
used four categories of neighbors: parent, child, sibling and spouse and found out 
that sibling neighbors help the classification tasks a lot. By adding neighboring 
pages’ classes into their analysis, they improved accuracy over common text 
classification approaches. In their study to find related web pages in WWW, the 
study [15] used HITS algorithm [16] to find similar web pages to a provided web 
page using only the link analysis. These studies show that link analysis helps in 
terms of classification of websites. 

Link analysis has some applications in classifying websites in terms of their security 
status, i.e. whether they are malicious or not and detection of their attack type. Many 
studies that apply link analysis to security domain are done for classifying web spam 
websites [17][18][19][20]. Web spam websites try to increase their rankings and get 
higher placement in search results by deceiving search engines. As link based 
ranking algorithms like PageRank [21], or HITS [16] establishes ranking by utilizing 
a website’s links and high indegree helps to get higher rank, web spam websites 
exploit this feature by forming links between themselves to boost their positions. 
Therefore, link analysis is one of the most important features for the classification of 
web spam. 
 
The work [22] showed how the link structure between web pages can be used to 
detect spam pages. They computed statistics for a variety of features of a website, 
like incoming and outgoing link numbers, links per pages and number of hostnames 
mapping to single IP address etc. and discovered that in some of these distributions, 
outlier values were detected to be web spam. Their findings show statistical analysis 
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on link features is a decent method to find web spam. The work [23] also used link 
analysis to find web spam pages. They found that distribution of indegrees usually 
follows the power law, but 40% of spam hosts they analyzed have indegrees in a 
very narrow interval which led to their detection. The work [18] says that web spam 
pages tend to be linked by other web spam pages and by using this notion on link 
analysis they identified web spam. 
 
So, can link analysis also help us to classify other malicious categories other than 
spam like malware and phishing? The work [24] used machine learning models for 
detection and attack type identification of malicious websites. They tried to detect 
and identify attack types of malware, phishing and spam websites. Their feature sets 
include lexical, link popularity, webpage content, DNS, DNS fluxiness and network 
communication features. For each type of malicious websites, different features 
provided different results. For example, lexical features were effective at detecting 
phishing but not as effective at detecting malware and spam. Among their other 
feature sets link popularity was the most related one for us, since we did not employ 
others. Their link popularity feature set includes 15 features such as indegrees and 
ratios of spam, phishing and malware links for a website. Using all six of their 
feature sets together they achieved 93% accuracy at detection of attack types. 
However, by using single feature sets alone achieved accuracies were between 63% 
and 85%.  
 
The work [25] called WebCop proposed a method that includes web graphs to find 
malicious web pages. They defined two types of websites that were active in 
malicious scene, one is malware distribution sites where actual malware reside and 
the second one is malware landing sites which provide links to the distribution sites.  
First, they found malware distribution sites with author’s access to a commercial 
telemetry service and then they created the web graphs of these websites using a 
crawler. Going to the reverse direction from malware distribution sites they were 
able to discover landing sites and additional malware executables. 
 
One other technique that uses web graphs to find malicious websites are trust and 
distrust propagation methods [26][27][28]. These methods begin with forming a 
reliable set of malicious or clean websites first and then using them they propagate 
their maliciousness or cleanliness to other websites that they have link exchange. 
And usually websites that have scores below or above certain thresholds are 
predicted to be malicious or clean.    

2.4    Other Related Works on Social Network Analysis 
 
Social network analysis is a broad research topic and since we use its methods in this 
study some related works are presented below.  
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2.4.1 Web as a Small World 
 
The notion of small world means nodes in a network are closer to each other than we 
thought of them and is studied by many researchers. One of the most prominent 
studies are Stanley Milgram’s Small World experiments in the 1960s [29]. His 
hypothesis was that the world is small when it’s seen as a network of acquaintances 
between people. He asked some hundreds of people who were selected randomly in 
the USA to send a letter to a specific person by using other people they know 
personally (in first name basis) as relays. When the letters that arrived at destination 
were analyzed, it was shown that the average path length was around 6. It showed 
that people live in a small world with six degrees of separation. Although there are 
some criticisms for Milgram’s experiments [30], this study made great contributions 
to lay the ground for modern social network analysis by showing that the direct and 
indirect relationships between people are more intense than one may think.  

With respect to studies showing the small world phenomenon, the study [31] says 
that many biological and man-made systems are also small world networks. These 
networks are highly clustered, but the minimum distance between any two randomly 
chosen vertices is short; therefore reaching from one node to any other is shorter than 
one may think. She argues that the World Wide Web (WWW) which is a man-made 
network is also a small world network. Websites are clustered between themselves 
according to their categories and other factors but the distance that separates one 
another is only a few links away. She found that for an undirected WWW network 
there are 3.1 and for a directed network there are 4.2 hops on average between any 
two connected websites. 

2.4.2 Finding Hierarchy and Important Nodes 
 
Hierarchy shows authority relationship between nodes. Finding hierarchy and 
important nodes help us to unfold the structure of the network. The methods applied 
in two studies, which are summarized below, can be applied to identify a ranking 
between malicious websites. 

The study [32] propose a model to find the most important nodes in a graph. Their 
entropy model uses text mining and natural language processing to form an 
information theoretic model to find the most important nodes and hidden 
organizational structures in a graph. They tested their model on Enron email dataset 
as it provides a large dataset of human interaction and shows information flow in an 
organization. They argue that when there is a hierarchy between nodes, to disrupt a 
network structure one should find important nodes or leaders whose removal will 
have the maximum effect on the information flow. To do so they first calculated the 
whole graph’s entropy and then they removed nodes one by one and recalculated the 
graph entropy for the remaining graph. When removing nodes, they also removed 
their adjacent edges at length=1 (directly connected nodes) and at length=2 (not 
directly in contact but there is an information flow through third nodes). They 
applied this entropy model on Enron email dataset and argued that the node whose 
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absence causes most change in the graph entropy was the most important one in the 
graph. Their results found 2 presidents, 1 manager, 1 CEO and 1 Regular Employee 
as the most important nodes. 
 
The study [33] used twelve different SNA metrics along with some machine learning 
models to identify the hierarchy and important people in an organization. To do this 
they also used Enron email dataset and an email exchange dataset of a university 
research group. Their model successfully found managers and important people in 
the network. They found that five metrics out of twelve SNA metrics they gathered 
from literature review were more effective in identifying influential nodes. Those 
successful metrics were Weighted Clique Score, HITS Authority Score, Average 
Distance, Markov Centrality Score, and Degree Centrality Score. Despite the title of 
their study, they did not apply their methodology and results on subjects related with 
security, but focused on finding important nodes and hierarchy in a network. They 
concluded that their findings can be applied as a future work in many types of 
communication networks including Social Network Sites, Dark Net Forums and 
phone records.  

2.4.3  Identification of Communities on the Web and Web Graphs 
 
In a paper that presents WebGraph Framework 1, a popular tool to study the very 
large web graphs [34], hypertextual form of the Web was mentioned, as well as how 
we could utilize it to help us to design effective crawlers and detecting online 
communities. Web graphs are graphs whose structure consists of elements in WWW. 
websites are nodes and hyperlinks in them are directed edges from website A to 
website B if a web page in A includes a hyperlink to a web page in B. Therefore, 
creating web graphs to study and apply social network analysis methods on the web 
are helpful. 

The study [35] developed a method to find Web communities. Web is decentralized 
and unorganized by design which makes content analysis difficult. They argued that 
there are millions of web pages out there with different contents and no central 
authority to govern their hyperlinks, but it is found that Web self organizes itself and 
the link structure of it helps to identify communities effectively. They described web 
communities as a collection of webpages where each member has more hyperlinks to 
other web pages within the community than outside of the community. Their 
algorithm begins with a seed of input web sites and crawls them up to a certain 
depth, aggregate links in them and determine their community membership by 
calculating hyperlinks inside the community and gives them a score. Then, they add 
highest ranked not crawled yet web sites to the seed set and iterate their procedure. 
They achieved to find related communities on the web by using only the hyperlink 
information. 
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CHAPTER 3 

 

3- METHODOLOGY 

This chapter presents how we constructed our methodology to study our research 
questions. It begins with difficulties regarding detecting malicious websites, how 
they impose a limitation and why we need a suitable research approach. Then we 
give a quick introduction to SNA topics in order to understand the specific terms and 
applications in the following chapters. Data collection methods are mentioned in 
detail and the steps taken for transitioning data to form networks are also given.  

In this study we primarily analyze two types of malicious websites as malware and 
phishing. There are various detection methods offered by researchers for malicious 
website detection. Phishing websites target users’ inability to distinguish authentic 
websites from counterfeit ones via social engineering. Various methods are presented 
for their detection like using fuzzy data mining [36], machine learning methods [37] 
and visual similarity based methods [38][39]. Malware detection methods are also 
numerous. Signature based, anomaly based and specification based techniques are 
presented [40]. 
 
This study does not aim proposing an alternative method, but a method to 
accompany them. This thesis takes a social network approach and tries to understand 
the relationships in the network of malicious websites. As a result, we aim to provide 
an efficient selection method for websites that are going to be analyzed. For each 
different malicious type, detection methods differ. Therefore, in order to find which 
detection techniques should be applied primarily to a suspected website we try to 
predict its threat type. 

There are some reasons that make analysis of malicious websites difficult. Firstly, 
there are difficulties in obtaining data. The World Wide Web (WWW) is a very large 
research area. There are millions of websites and billions of pages operating and new 
ones appear every day. Registering a domain and launching a website are easy; with 
automation they just require seconds. Also, closing down the website when a 
malware campaign ends or changing the content is easy. All of these factors make 
analyzing malicious websites a fast-paced and complex environment. When a 
researcher wants to study malicious websites what he/she gets as data is simply a 
glimpse or a snapshot in time as the environment changes very fast. Links between 
websites may disappear or new links may appear during the research timespan. This 
dynamic nature may lead to inconsistencies in the data collection. 

Web-based malware has some differences than the other types of malware. They are 
environment specific, targeting a specific configuration of operating system, browser 
and installed plugins etc. where a vulnerability is present. They show themselves 
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only when right conditions occur. Therefore analyses may fail if right conditions are 
not achieved [41].  
 
All of these difficulties require a suitable research approach. This study takes the 
approach of using the linked nature of WWW. Websites have hyperlinks, or simply 
called links, in their content which may lead a user from a page to another page on 
the same website or on a different website.  

Social Network Analysis (SNA) methods will be applied to understand the 
relationship between malicious websites. Therefore, we need a fundamental 
knowledge of it. It has some specific terms that denote particular phenomenon. The 
section below will address some important SNA topics and its vocabulary which will 
be helpful to present the thesis. 

    Introduction To Social Network Analysis 
 
Mathematical models are important foundational blocks of Social Network Analysis. 
Quantitative analytical approaches are used to illustrate and understand relations 
between actors in a network. Graph theory, statistical theory, and algebraic models 
are the biggest mathematical basis for network structures. Graph theory gives a 
proper representation of a social network as well as set of properties that are very 
useful when analyzing the network [2]. 

Graphs and graph distribution are an important section of network analysis. Graphs 
are popular and convenient ways to understand and visualize social networks.  

Modeled as G (V,E): 

- V is the set of vertices (nodes) in the network.  

- E is the set of edges (links) between them. Edges may be directed if they have a 
direction and in that case, they are named as arcs. 

In a network which shows hyperlink exchanges between websites: 

-Websites are vertices (nodes) V={Website A, Website B, Website C, Website D} 

-Edges, in this case directed edges or arcs, show which website has a hyperlink to 
another website. E={(Website A, Website B), (Website A, Website D), (Website B, 
Website C), (Website B, Website D), (Website C, Website B), (Website C, Website 
D)} 
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Figure 1: A four size network of hyperlinks between websites 

Relationships could be symmetric if edges between two vertices simply connect 
them with each other and do not have a direction. Friendship networks are an 
example of this symmetric relationships, two people are either friends or not. Person 
A is a friend of Person B means that Person B is also a friend of Person A.  

 

 
Figure 2: A symmetric network of size seven that shows friendship among a group 

Asymmetric relationships occur when a node has ties to another node, but not vice 
versa. A relationship which shows hyperlinks from a website to others is asymmetric, 
because a website with a hyperlink to another website does not have to receive a 
hyperlink from that website as shown in Figure 1. 

Each edge in a graph may have a weight which is a numerical value and shows the 
relevant information about the relationship. These graphs are called weighted graphs. 

The term mode which is an important property of a network is related to the actor set 
of a network. Two types of networks exist in many real world situations [2]. 

One Mode Networks: 

Relationships between one set of actors constitutes one mode networks. For example, 
the network of hyperlinks from a website to other websites is a one mode network 
because all actors belong to one set. 
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Two Mode (aka Affiliation) Networks: 

Relationships between two sets of actors constitute two mode networks. For 
example, hyperlink from a malicious website to another website which is not 
malicious is a two mode network because actors do not belong to one set.  

There are three main properties of a social network that define its characteristic: 

1- Network Size:  

Network size shows the number of nodes in a network. It is an important 
characteristic of a network and affects the data collection and its analysis greatly. 
Small networks let researchers collect and analyze data easily which can be done 
manually without automation. When the network size grows it is harder to collect 
and analyze data and an automation is required. Size also affects how relationships 
occur and how they are distributed in the network. 

2-Community Structure: 

Communities in a network are groupings which share more similar traits between 
themselves than others. Communities in the friendship networks show grouping of 
people by interest or communities on the web shows websites on a certain topic etc. 
Different networks have different community structures and their structure helps us 
to categorize and understand the dynamics in the network better.  

3- Degree Distribution: 

Degree of a node is the number of adjacent links to that node. Some nodes have high 
degrees, some have a few while others may even have zero and therefore be an 
isolate. Degree distribution shows how links are distributed between nodes of the 
network and indicate the ways relationships occur. Also, in some cases it is an 
important metric to find out the importance of a node or its hierarchy in an 
organization.  

3.2     Data Collection Method 
 
With the advancements in the Internet technology, social networks became more 
visible and the amount of social network data available to researchers skyrocketed. 
In the past, if a researcher had wanted to analyze someone’s friend list, it required a 
great amount of effort, but now with Facebook and other social media sites it is 
easier to reach that information (with respect to privacy). Network sizes of SNA 
studies where data gathering was done by traditional methods were small, usually 
hundreds and maybe a few thousands [42] [43]. However, today online data 
collection methods allow researchers to access large sets of data. People’s interaction 
with each other is more visible and easily observable by researchers than ever before 
thanks to the Internet. These new advancements brought new opportunities:  
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• Data collection efforts are easier especially with social media and online 
surveys.  

• With bigger data it is possible to understand the network structure and 
relationships within it better. 

• With the advancement in computational power and tools, it is easier to 
calculate metrics which needed to be done manually before. 

Deciding which information will be gathered in the data collection is an important 
decision. Finding and modeling the relationships between actors are the most 
important steps that contribute to the success of an analysis. For a sound analysis, a 
boundary on data collection must be declared and then be adhered to clearly.  

Different types of networks require different types of data collection efforts. For 
example, a friendship network among a student group is best formed by 
questionnaires. Also, co-authorship network among university academics are best 
formed by taking archival data from publishers. Therefore, data collection technique 
must comply with the type of the network that is targeted. To study malware 
distribution problem on the web, a crawler that visits web pages and collects 
information about its hyperlink structure would be an appropriate choice. 

3.3     Collecting Hyperlinks From Websites 
 
Websites, in order to function, send some files and codes to their visitor’s web 
browsers. These files are then rendered and presented to the user by web browsers. 
These files also include hyperlinks in them, therefore when a crawler visits a 
webpage it can get its content and links in it. A web crawler is a computer program 
that automatically visits web pages, indexes them and follows hyperlinks in them to 
process more web pages. When a crawler visits a webpage, it is able to download the 
content from it. This content is mainly the source code of the website that is shown 
to the browsers/visitors. The main functionality of a crawler is that it begins with a 
seed page (usually top-level page in a website like www.example.com) and then 
finds hyperlinks in that page. It indexes those hyperlinks and visits them, finds new 
hyperlinks in them and does this process repeatedly until there’s no new content left 
to be reached. 

In HTML “<a>” element is used to define a hyperlink and shows where the linked 
content resides. A link found in a website looks like this where “href” part shows the 
address of the linked content: 

<a href="http://www.example.com/download/">Click to download our e-book</a> 

At the beginning of this study, we developed a custom crawler to find links in 
websites. However, after some time, we realized that this method would not provide 
a suitable data for our analyses. The main reason was that when a website is crawled, 
only outgoing links, i.e., links that originates from that website, are obtained. 
However, if you want to get incoming links to that website you need to crawl a large 
portion of the Web since a link may occur anywhere. This was not possible to be 
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done effectively, due to performance and resource limitations. The second problem 
was that crawling a website took a long time if all hyperlinks were to be obtained. 
Some websites have lots of pages or some of them create hyperlinks and pages 
dynamically and a crawler may end up in an infinite number of links to crawl. A 
solution we employed was only processing links up to depth=5 from main page or 
terminating the process after two minutes, which one happens first. The third 
problem was that some websites block crawlers and would not let you get their 
content. 
 
Therefore, finding another solution was necessary. There are some already crawled 
web graph datasets online [44] [45]. However, most of them are on a specific area, 
outdated or small. The biggest and most trustworthy web crawl data is provided by 
Common Crawl. Common Crawl is an organization that maintains an online web 
crawl data repository since 2008. Their data is the biggest, open and free web crawl 
data available to researchers. They identify themselves as “non-profit organization 
dedicated to providing a copy of the Internet to Internet researchers, companies and 
individuals at no cost for the purpose of research and analysis.” [46]. Common 
Crawl bots crawl websites on a monthly basis and take snapshots of the content and 
store links in them. The raw crawl data that includes everything related to a web page 
are stored in WARC archive format. They also provide metadata and plaintext 
extracts for different kinds of analysis [47]. 

Common Crawl also publishes host and domain level web graphs based on their 
crawls. These web graphs show which webpage has a link that points to another 
webpage. They are published once every three months since 2017. The most 
appropriate data we could use from Common Crawl is their domain level Web 
graphs. Web graphs consisting of February/March/April 2019 crawls are used in this 
thesis. 

Table 1: Common Crawl data for Feb/Mar/Apr 2019 in numbers 

Nodes Arcs Dangling Nodes 

90,757,643 1,888,693,874 46,373,014 

 
One important thing about this dataset is its dangling nodes: Dangling nodes are 
terminal nodes that are pointed by a crawled website, but they are not crawled yet. 
The domain-level Web graph has over 90 million nodes and 1.88 billion arcs where 
51% of nodes are dangling nodes as shown in Table 1. 

Trustability of Common Crawl Data In Terms of Representing Web: 
 
Due to the gigantic size of the Web, it’s not possible to collect every data out there 
for reasons of performance and lack of resources. Therefore, a sampling is necessary 
for analysis purposes. The exact details of data collection algorithm employed by 
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Common Crawl varies between crawls. Generally, websites that are visited are 
chosen by: 
 

• A random sample of links from previous crawls 
• A breadth-first crawl within a maximum of 4 or 6 links away from the 

homepages of the top hosts and domains based on traffic 
• URLs extracted from sitemaps, RSS and Atom feeds 
• URLs from less-represented languages in crawls so far [48] [49] 

 
The study made by [50] analyzed the representativeness of using open source crawl 
data, Common Crawl, for online forums’ topic modeling. Their study was on a 
particular car owner’s forum where they made a custom crawler that collected 2.16 
TB data and compared their results with those obtained from Common Crawl which 
is 280 GB of raw data files. They showed that although there are discrepancies 
between data obtained from crawls, they are similar in terms of topic proportions and 
word rankings and concluded that they are not statistically different from each other. 
They argue that in terms of data quality and completeness, Common Crawl data 
could be used instead of custom crawl data for topic modeling. Even though, their 
subject is different than ours, their findings indicate that the data from Common 
Crawl is representative of specifically crawled data.  

3.4     Generating a List of Malicious Websites For Analysis 
 
This subsection deals with steps taken to collect a list of malicious websites for our 
analyses. 
 
3.4.1 Finding Malicious Websites  

Security companies and some other initiatives publish blacklists of websites they 
regard malicious. We collected websites flagged as malicious from different sources. 
These sources are:  

• abuse.ch [51] 
• malwaredomains.com [52] 
• SANS Internet Storm Center [53] 
• phishtank.com [54] 
• some other blacklists found on security forums [55] 

One can argue the trustworthiness of these kind of blacklists. However, our aim here 
is to find as many websites as possible to further analyze, since they are going to be 
cross-checked with Virustotal. This checking process is explained below. 

As a result of data collection efforts, we found 66,659 malicious websites using 
previously mentioned lists indexed by Common Crawl in February/March/April 
2019 dataset. 
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3.4.2 Gathering Information About a Website’s Security Status 
 
Determining whether a website has malicious content is a difficult and 
computationally expensive process. Malicious content on the Web is an environment 
of a cat and mouse game between computer security industry and criminals. Due to 
its fast-paced nature there are some inconsistencies between identifications of 
malicious behavior. Malicious actors apply sophisticated concealment techniques to 
evade detection. By using proxies, redirection chains and other mechanisms, 
malicious websites can cloak their activities. Detection is hard and requires lots of 
efforts. As the environment changes rapidly, false positives and false negatives are 
important problems and as a result the identification of many different companies 
and organizations differ from each other.  

There are differences between security products’ evaluation on a website. A website 
may be classified as malicious by some vendors and clean by others. Different 
capabilities and detection techniques of the security products may be a reason for 
this. Also, the inspected site may not be analyzed yet by that product or at the time of 
analysis there may have no malicious content/action. In order to establish a trust to 
the malicious website list we gathered from different sources, Virustotal online 
security community is used.  
 
Virustotal, which is run by Google’s parent company Alphabet Inc. is an online 
collaborative security initiative. It aggregates over 70 antivirus and other security 
products’ capabilities to check for malicious files and websites [56]. We used 
Virustotal Public API v2.0 [57] and inspected our initial 66,659 websites first. After 
the network creation step described below and in the analyses afterwards we totally 
inspected 2,136,836 websites on Virustotal. Virustotal API tells us how many 
products flagged the searched URL as malicious. In the creation of our network, for 
each domain we analyzed we searched its homepage on Virustotal and flagged it 
malicious if its homepage is flagged by at least two products. This procedure reduced 
our network size but made the seed set of malicious websites more trustworthy. 
 

Table 2: Number of entries in our malicious websites dataset after Virustotal  

Number of malicious websites indexed 
by Common Crawl in Feb/Mar/Apr 2019 

Crawl 

Number of Websites Left After Virustotal 
Evaluation (flagged by at least 2 products) 

66,659 34,785 
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3.5    Transforming Data Into Network 
 
After getting the data, we need to convert it into a network in order to apply Social 
Network Analysis methods. We created our network around the set of previously 
gathered 34,785 malicious websites. For each website in this list we find their 
incoming and outgoing links from Common Crawl Feb/Mar/Apr 2019 Crawl. 
Malicious websites and other websites which are these malicious websites’ incoming 
and outgoing neighbors become nodes and links between them become arcs in our 
network.  

Consider a scenario where we have 3 malicious websites: X, Y and Z. In order to 
create their network, we first find out all of their incoming and outgoing neighbors 
separately as shown in Figure 3. For website X, websites C and E are its incoming 
neighbors and websites A, D and G are outgoing neighbors. We do this process for 
websites Y and Z also. Beware that malicious website Y has malicious website X as 
outgoing and Z as incoming neighbors. Also website F is linked by both websites Y 
and Z and website C links both of websites X and Z.  

 

 

Figure 3: Separate neighbors of malicious websites X, Y and Z 

After we find out every incoming and outgoing neighbors of our malicious websites 
we combine them together as shown in Figure 4. When we combined websites, links 
such as from websites Y to F and Z to F can be represented with only one F that has 
links from both of Y and Z. 

 

 

Figure 4: Network after we combine neighbors of malicious websites X, Y and Z 



 
 

22 

Beware that we built our network around the malicious websites. Website A may 
have a link to website D but we did not include it in our network. 

To analyze the network, we used open source Pajek software developed for 
analyzing and visualizing networks [58]. To convert the raw data into a network, we 
used txt2pajek program [59]. 

3.6    Network Properties & Characterization 
 
Nodes and their frequencies in our network are given in Table 3 below. We have a 
total of 776,230 websites in our network created from the 34,785 malicious websites 
and their incoming and outgoing neighbors. Out of these 34,785 malicious websites 
14,543 are malware, 10,455 are phishing and 9,787 are uncategorized. These threat 
types are also provided by the blacklists we got these malicious websites from.  

Table 3: Frequency and percentages of the threat types of websites in our network 

Type Frequency Percentage 
Malware 14,543 1.87% 
Phishing 10,455 1.35% 
Uncategorized 9,787 1.26% 
Others 741,445 95.52% 
Total 776,230 100% 
 
Incoming and outgoing degree distributions of 34,785 malicious websites are given 
in Figure 5. One thing to note here is that many of malicious websites do not have 
any outgoing links. These websites may not have any links or for some of them this 
may be due to the dangling node problem in Common Crawl dataset mentioned in 
Chapter 3.3. Number of indegrees and outdegrees in the X axis is given in common 
log scale to plot the data more clearly. 
 

 
Figure 5: Indegree and outdegree distributions for 34,785 malicious websites 
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Analyzing the degree distributions, we see that majority of the websites have small 
degrees, but a little amount has orders of magnitude higher degrees. Therefore, if we 
plot the indegrees and outdegrees in common log-log scale we can observe power 
law distributions since two quantities show near linear relationships with some 
outliers as shown in Figure 6 below. Due to the limitations of the common log-log 
scale 0 values are discarded. Other studies [60][61] that uses web graphs also found 
power law distribution for indegrees and outdegrees.  

 

Figure 6: Indegree and outdegree distributions for 34,785 malicious websites in common log-log scale 

3.7    Limitations 
 
Common Crawl analyzes the content in the source code of the website’s that is sent 
to the visitors. However, if hyperlinks are created dynamically in client side and not 
placed in source code, Common Crawl is not able to crawl them. Dynamic content 
can be implemented by using technologies like client side Javascript and AJAX calls. 
Also, links can be obfuscated in source files, but then be converted into normal links 
dynamically. In that scenario, again the crawler is not able to detect them correctly. 

Sometimes websites publish robots.txt file usually in their top-level directory. It is a 
mechanism to let crawlers know that this site does not want to be crawled and 
indexed all of its content or some portion of it. Actually, this mechanism does not 
enforce a ban on crawlers. Therefore, it is just a polite request and is at the mercy of 
the crawlers. Common crawl states that they obey the robots.txt file limitations [46]. 
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However, this mechanism can be abused by malicious websites in order to cloak 
their activities and prevent getting analyzed. 

3.8   Summary 
 
This chapter gave a detailed explanation of how data collection was held. The steps 
we take to construct the network are also mentioned. Degree distributions for our 
malicious websites are given. Lastly, the limitations regarding data collection 
processes were presented. 
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CHAPTER 4 
 

4- FINDING MALICIOUS WEBSITES  

This section explains the analyses carried out to find malicious websites based on 
their link structures. Malicious actors want people to reach their websites in order to 
infect them or to phish them. Therefore, they need to provide links that lead users to 
their websites from different sources like other websites. Malicious actors are using 
links since they are the medium of communication and flow on WWW.  

Malicious website detection techniques are numerous. We are not proposing a new 
detection technique but an accompanying one that shows where should we look at to 
find more malicious websites. Malicious website detection is an expensive process. 
There are millions of websites on the WWW, even the Common Crawl dataset we 
use consists of 90,757,643 distinct websites and thousands are created every day. 
Due to the enormous number of websites a prioritization is necessary since our 
analysis resources are not unlimited. In this chapter we investigate which websites 
should be analyzed primarily to run into more malicious websites. This will let us do 
analysis more efficiently. By efficient we mean analyzing a smaller number of 
websites but running into relatively more malicious websites in them. 

4.1.   Core Groups 

To carry out the analyses, network created in Chapter 3 is used. This network 
includes three types of malicious websites: malware, phishing and uncategorized. 
However, for the analyses in this chapter we will not make separate evaluation for 
each malicious type, we will group them under malicious category. 

The network’s total size is 776,230. It has 34,785 malicious websites and 741,445 
other websites which are malicious websites’ incoming and outgoing link neighbors. 
We do not know maliciousness status of these 741,445 websites beforehand since 
they are not included in our malicious websites lists. They will be analyzed from 
Virustotal and we define a website as malicious if it is flagged malicious by at least 
one product from Virustotal for the analyses in this chapter. 

Let’s assume that we want to detect more malicious websites and the only thing we 
have is 34,785 malicious websites and their incoming and outgoing links. Our aim is 
to find which kinds of websites we should focus our analysis on to run into more 
malicious websites. 

Core groups in a network are special subgroups that are essential to that network or 
they are the ones that carry important features in a network. These features would be 
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based on the group members’ centrality, degrees or special roles that they take in the 
network. In the network we will define some core groups that we consider important 
for malicious website detection. Then we will analyze them and show whether we 
could use them for an efficient analysis. 

There might be many different types of core groups in a network and the definition 
of a core group changes according to the type of the network. For example, in a 
friendship network, people who are close to many members of the group might form 
a core group. For networks that consist of malicious websites and their links we 
could define the core groups as the ones that are part of the malicious activity more 
actively or the ones whose absence would affect the flow relatively more than the 
others.  

We will use cohesive subgroups and betweenness centrality measures for our core 
group analysis. The reason for their selections as core groups are as follows: 

1. Cohesive subgroups show dense pockets of nodes that stick together. They 
have relatively strong relationship between themselves than from the rest of 
the network. In the case of malicious websites, cohesive subgroups may 
indicate websites that are operated by the same malicious actors since 
cohesiveness occurs due to the connections in the network. Also, since the 
connectedness is formed via links, concentration of these links in some parts 
of the network could indicate the same attacker behind them. In order to find 
cohesive subgroups in a network, we can use components and k-cores. 

2. There are several centrality measures defined in the networks such as degree, 
betweenness and closeness centralities. Each centrality measure takes a 
different node characteristic that let them to be ranked in order of importance.  
The reason we chose betweenness centrality among other types of centrality 
measures resides in its ability to show a node’s influence over the flow of 
information in the network. Flow of information in this context is spreading 
of malicious content. Malicious actors use WWW as a distribution medium 
for their activities. In order to establish a good distribution mechanism, they 
need to employ links between nodes that takes a user to malicious content. By 
using betweenness centrality we measure a node’s importance in this 
distribution channel.  

4.1.1 Components 

Components are the connected parts of the network. There are two types of 
components in a network: strongly connected and weak components. Strongly 
connected components are a subgroup where we can reach any other node from a 
node if we obey the direction of arcs. Similarly, in weak components we can reach 
any other node from a node if we disregard the direction of arcs. 
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Figure 7: A sample network that shows strongly connected components inside contours 

In Figure 7 above, there are two strongly connected components of size greater than 
one. One consists of nodes A, B, D, H and the other consists of nodes C and G. 
Inside these components we could reach any other node from any node following the 
directions. Here the largest strongly connected component is the one composed of 
nodes A, B, D and H since it has more members than the other component. The 
network in Figure 7 also has many weak components. The network as a whole for 
example is a weak component since we can reach any other node from a node 
without needing to obey the direction of arcs. 

Strongly connected components are more strict than weakly connected components 
therefore they are usually smaller than the weak components. In order to limit the 
number of nodes we select and to establish a stricter criterion we will use the 
strongly connected components. In order to find strongly connected components, we 
will focus only on malicious nodes and the links between them since we are 
interested in the cohesive subgroups of malicious nodes. Therefore, we removed 
non-malicious nodes and their adjacent arcs from the network and found the largest 
strongly connected component between malicious websites, shown in Figure 8. 
These malicious websites have a relationship between themselves made by 
hyperlinks. 
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Figure 8: Largest strongly connected component with 15 members of malicious websites from the 
network 

4.1.2 K-cores 

The second type of cohesive subgroup we have is k-cores. A k-core is a maximal 
subnetwork where each node has at least degree k within the subnetwork. Therefore, 
nodes in a k-core have at least k neighbors within the group. For example, a 3-core 
subnetwork consists of all nodes that are connected to at least three other nodes in 
the subnetwork. To find the k-cores we symmetrized the network between malicious 
websites, i.e. transformed arcs into edges, since the application of k-cores is more 
suitable in the symmetrized networks.  

In order to find k-cores, we will focus only on malicious nodes and the links between 
them since we are interested in the cohesive subgroups of malicious nodes. 
Therefore, we removed non-malicious nodes and their adjacent edges from the 
network and found three cohesive subgroups of malicious websites, 8 nodes in a 4-
core and 142 nodes in a 3-core as shown in Figures 9 and 10. Beware that k-cores are 
nested so nodes that belong to a higher core also belong to a lower core, therefore 3-
core also includes 8 members of 4-core. We dismissed the other cores below 3-core 
since they may not be cohesive enough. 
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Figure 9: 8 malicious nodes in a 4-core and their network between themselves 

 

Figure 10: 142 malicious nodes in a 3-core and their network between themselves 
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4.1.3 Betweenness centrality 

Betweenness centrality shows a node’s influence over the flow of information in the 
network. We can say that a node is more central if it is needed to connect other nodes 
and whose absence would result in the total disruption of communication or would 
require the other nodes to take longer paths. The betweenness centrality for a node is 
the proportion of all shortest paths between pairs of other nodes that include this 
node. 

Malicious nodes with higher betweenness centrality are important since they connect 
other malicious nodes together. Similar to components and k-cores, we removed 
non-malicious nodes and their adjacent edges, then we symmetrized the network 
between malicious websites and calculated betweenness centrality scores of 
malicious nodes in our network. We then selected the first 100 and 500 nodes with 
the largest betweenness centrality scores. 

4.2.    Results 
 
After determining three different core groups in our network, we look at their link 
neighbors. We located their incoming and outgoing link neighbors which are not 
defined as malicious in our dataset before. Table 4 shows the three types of core 
groups in our network. We presented the size of the core group, total incoming link 
neighbors to the members of the core group and total outgoing link neighbors from 
the members of the core group. For example, in the Table 4 below, the largest 
strongly connected component (SCC) has 15 members. These 15 members have 
8696 total incoming link neighbors where 1213 of them were found to be malicious 
which equates to 13.9%. Note that these link neighbors and malicious ones found in 
them are not included in the original malicious websites we used. They were found 
malicious by inspecting each of them on Virustotal. 
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Table 4: Core groups and analysis results of their neighbors 

 
Largest strongly connected component’s (SCC) and k-cores’ outgoing link neighbors 
set are discovered to include more malicious websites than their incoming link 
neighbors set in terms of percentage. On the other hand, for betweenness centrality 
core group, their incoming link neighbors provide higher percentages. The largest 
malicious percentage comes from the largest SC’s outgoing neighbors. 15 members 
of the largest strongly connected component has 2241 outgoing links and 724 of 
them are found to be malicious after analyzing them on Virustotal. 

In order to evaluate the results we gathered from core groups, we calculated two sets 
of websites for comparison. For the first one, we investigated what happens if we 
blindly select random websites from the web. Out of 90,757,643 websites present in 
Common Crawl dataset, we randomly selected 40,000 websites. When we inspected 
them on Virustotal 1,308 of them were flagged as malicious which equates to 3.27%. 
The reasons we selected 40,000 websites but not more and also not reiterating the 

Core Group 
Selection SCC K-Cores Betweenness Centrality 

 Largest 
#1 4-Core 3-Core TOP 100 TOP 500 

Core Group Node 
Size: 15 8 142 100 500 

Malicious Incoming 
Link Neighbors: 1213 58 1543 5006 9370 

Total Incoming 
Link Neighbors: 8696 431 11259 17683 51577 

Malicious 
Percentage 13.9% 13.4% 13.7% 28.3% 18.2% 

      

Malicious Outgoing 
Link Neighbors: 724 542 4597 4904 10362 

Total Outgoing Link 
Neighbors 2241 2705 18557 29403 75612 

Malicious 
Percentage 32.3% 20.0% 24.7% 16.7% 13.7% 
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analysis many times are due to the limitations of Virustotal API which lets you to 
call it once in 15 seconds for each website you want to analyze. Also as it can be 
seen from Table 4 above, the minimum number of websites we analyzed from the 
core groups is 431 in 4-core incoming links and maximum number is 75,612 in 
betweenness centrality Top-500 therefore 40,000 is an intermediate value between 
them.    

Since we formed a network using malicious websites as seeds, for the second 
comparison, we investigated what happens if we select random nodes from the 
network instead of blindly choosing from the Web. For this reason, we randomly 
selected 400, 1000, 2500, 5000, 7500, 10000, 15000, 20000, 25000, 30000, 40000, 
50000, 75000, 80000 websites from the set of 741,445 nodes (34,785 malicious 
nodes were not included) in our network. We chose the numbers around the range of 
431 to 75,612 to also compare this method with selections made from core group’s 
link neighbors. As it can be seen from Table 4 above, these numbers are close to the 
sizes of core groups’ incoming and outgoing link neighbors. Since we are selecting 
nodes randomly, we reiterated the processes 10 times for an impartial analysis and 
results are given in Table 5.  
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Figure 11 below shows the ratio between the number of analyzed websites and the 
number of malicious ones detected in them for three types of selection. First one is 
40.000 website selected randomly out of 90,757,643 websites and shown as 
Random40000. The second one shows the results of randomly selecting websites 
from the network and shown as the line whose values are from Table 5 above. As we 
iterated the analysis 10 times you can see the error bars around the line. The last one 
is selections based on core groups and each of them are displayed with a different 
shape as shown on the legend. 

 

 
Figure 11: Number of malicious websites in number of analyzed websites for different core groups 

and random selections 

 
As can be seen from the Figure 11, selection of random websites from WWW has the 
worst performance in terms of running into malicious websites. As shown by the 
line, selection of random nodes from the network, which is formed by using 
malicious websites as seeds and adding their incoming and outgoing neighbors with 
a link has better performance. This means that the chance to run into a new malicious 
website by inspecting link neighbors of already known malicious websites are higher 
than randomly choosing websites from the Web. Here we presented how we can 
even increase this ratio by inspecting link neighbors of core groups in the network. 
Selections made from core groups outperforms both of these first two methods. In 
the core groups, outgoing links from the largest strongly connected component and 
incoming links to Top-100 betweenness centrality nodes provided the best results. 



 
 

35 

First one let us find 32.3% and the second one let us find 28.3% of their links 
neighbors as malicious.  
 
These findings show that analyzing the link neighbors of core groups in a network 
would let us find greater number of malicious websites more quickly. Since there are 
millions of websites and we do not have unlimited resources, we need to make a 
priority between the websites to be analyzed. This will let us save computational 
costs and find more malicious websites in a shorter amount of time. 
 
The findings in this chapter could be used by security community as well as by 
academic researchers. Many studies in the web security domain require gathering a 
list of malicious websites. This is usually done by collecting them from published 
security blacklists as we did in the beginning of this study. But if one needs to find 
more malicious websites for a quick sampling, searching them in the neighborhood 
of core groups in a network like we created would provide faster results.  

4.3.    Comparision With Other Works 

The results of our study and the other studies mentioned in the related works which 
try to efficiently find malicious websites are presented here. Each study applies 
different technique with different datasets. Therefore, it would not be reasonable to 
compare them exactly in terms of their performance, however presenting the results 
of similar studies would be beneficial to have a general grasp on the different types 
of methods on the topic.  

Malcrawler [11] employed a crawler-based approach to find malicious web pages. 
Before they followed any link, they visited the web page first and extracted 10 
different features. Only if the web page looked like malicious according to these 
features then they followed this link. They made two crawls to test their method, one 
with a generic crawler where every link is followed and another with their proposed 
method. In both of these crawls they visited around 0.57 million URLs. In the first 
crawl they encountered 702 (0.123%) URLs and in the second crawl they 
encountered 1978 (0.348%) URLs. By applying their method, they were able to 
increase the number of malicious URLs they encountered from 702 to 1978. 

Evilseed [12] extracted the characterizing similarities between known malicious web 
pages and using them, they tried to find other malicious pages that are similar or 
related to known malicious ones. The idea is that a feature shared by many known 
malicious web pages is an indication of malicious activity and other pages that have 
this feature are more probably to be malicious. They compared their method against 
a random web search based and a crawler-based approach. Evilseed gathered 
226,140 URLs of which 3036 (1.34%) were found to be malicious whereas the 
crawler gathered 431,428 URLs of which 604 (0.14%) were found to be malicious 
and random web search made on a search engine had 219 (0.34%) malicious URLs 
out of 64,411 URLs. 
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We compared our proposed method against a random selection of websites from the 
Web and random selection of websites from our created network. One of the core 
groups we defined let us find 724 (32.3%) malicious websites out of analyzed 2241 
websites whereas selecting 40,000 websites randomly from the Web had 1308 
(3.27%) malicious websites and selecting 40.000 websites randomly from our 
network had 4356 (10.9%) malicious websites. 

We used Virustotal to check whether a website is malicious or not but Malcrawler 
and Evilseed used Google Safe Browsing and some custom tools. The gap between 
the detection numbers and percentages of our study and theirs are mainly due to this 
reason.   

Both Malcrawler and Evilseed include a step of feature extraction. Malcrawler’s 
method requires this for every link that it comes across whereas Evilseed requires it 
for its initial malicious set only. We should note that feature extraction brings 
computational costs and our proposed method works without any feature extraction 
which will let us save computational costs. Also, Evilseed uses search engine queries 
to find malicious web pages but search engines have a tendency to remove malicious 
web pages from their results to protect their users which may affect Evilseed’s 
results profoundly. 
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CHAPTER 5 
 

5- THREAT TYPE IDENTIFICATION 

In this chapter we try to predict a malicious website’s threat type for two classes, 
malware and phishing. As explained before, analyzing malicious websites is an 
expensive process. If we could predict threat type of a website, we could tailor our 
analysis accordingly. If it is predicted to be phishing, phishing detection techniques 
and if it is predicted to be malware, malware detection techniques could be used 
primarily which will let us save computational costs. For threat type prediction we 
present two methods. First one is malicious link neighbors method where we analyze 
the neighbors of a node to predict its threat type. The second method is link 
similarity method where we predict the threat type of a website based on its link 
similarity with other nodes. 
 
For analyses purposes a network is created similar to the one in Chapter 3 using 
randomly chosen 10,000 malware and 10,000 phishing websites. Formation of this 
network follows the technique mentioned in Chapter 3.5. There are two reasons why 
we did not use the network created in Chapter 3. First reason is that the previous 
network includes uncategorized nodes. Since we want to make predictions between 
malware and phishing websites they would not be useful for our purposes. The 
second reason is that there were more malware nodes than the phishing nodes. For a 
better analysis environment here we randomly selected 10,000 malware nodes from 
14,543 malware nodes and 10,000 phishing nodes from 10,455 phishing nodes. 
Frequencies and the size of the created network are given below.  
 

Table 6: Frequencies and percentages of the threat types of websites in our network 

Type Frequency Percentage 
Malware 10,000 1.87% 
Phishing 10,000 1.87% 
Others 514,443 96.26% 
Total 534,443 100% 
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5.1.    Evaluation Metrics 
 
In order to test the effectiveness of methods, we will use some evaluation metrics.  
 
Coverage: Whereas other metrics provided below are generally known and have 
agreed upon definitions we need to use another metric in our analysis named 
coverage. Because of the link-based approach we take, not all measures are 
applicable to classify every node. For example, incoming link neighbors can only be 
applied to those nodes who have at least one malware or phishing incoming 
neighbor. Therefore, coverage of a measure is the number of nodes we could predict 
a type using this measure, whether it’s true or not, divided by all nodes. For example, 
if we could make predictions for 3000 websites out of 4000 websites we analyzed, 
coverage is 75%. 
 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒	𝑜𝑓	𝑎	𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = ./0123	45	64728	92	:4/;7	<327=:>	?	>@<2				
A4>?;	6/0123	45	/6B6496	0?;=:=4/8	64728

   (Eq. 1) 
 
 
A confusion matrix is provided in Table 7 that shows actual and predicted values for 
our threat type assignments. Threat type prediction we employ is actually a two-class 
problem and for confusion matrix we are using the two malicious types, malware and 
phishing, instead of generally used concept of positive and negative. The sum of the 
values, a+b+c+d, is equal to the number of predictions we make. Therefore, if we 
make 3000 predictions for 4000 websites that we analyze a+b+c+d is equal to 3000 
and to show the discrepancy we give the coverage in the result tables.  
 
 

Table 7: Confusion Matrix for Label Classification 

 Predicted 
Malware Phishing 

Actual Malware a b 
Phishing c d 

 
Accuracy: Accuracy shows the general correctness of the model. It is calculated as 
the sum of the correct classifications divided by the total number of classifications. 
Accuracy may not be a good metric for datasets where sample sets have different 
sizes, but since we have the same size for both classes, accuracy will be provided 
[62][63]. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ./0123	45	:4332:>	<327=:>=468				
A4>?;	6/0123	45	<327=:>=468

 = 		?F7				
?F1F:F7

   (Eq. 2) 
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Precision: Precision is a measure of accuracy provided that a specific class has been 
predicted [62][63]. 
 
Precision for malware class gives us what proportion of predicted malware classes 
are truly malware and is calculated as = ?		

?F:
          

 
Precision for phishing class gives us what proportion of predicted phishing classes 
are truly phishing and is calculated as = 7		

GFH
   

 
Recall: Recall is a measure of the ability of a prediction model to select instances of 
a certain class from the dataset [62][63]. 
 
Recall for malware class gives us what proportion of actual malware classes are 
predicted as malware and is calculated as =  ?		

?F1
  

 
Recall for phishing class gives us what proportion of actual phishing classes are 
predicted as phishing and calculated as = 7	

:F7
          

 
For evaluation purposes, we randomly selected 20% of malware nodes and 20% of 
phishing nodes in the network and made their types unknown. Rest of the 80% of 
both classes kept their types. For each different measure, we reiterated the 
calculations 10 times with different randomly chosen nodes made unknown each 
time. Then we calculated the averages of these 10 results by arithmetic mean and 
presented evaluation metrics: average accuracy, average recall, average precision and 
average coverage. As experiments were run for 10 times with different random data, 
standard deviations for each evaluation metric were provided in the tables. Our 
general aim was to improve accuracy and coverage at the same time as much as it is 
possible. 

5.2.    Malicious Link Neighbors Method 
 
In malicious link neighbors method, we analyze whether links between websites 
could help us to classify them in terms of their threat types. A website in the network 
has two kinds of neighbors, direct and indirect. For a given website X, its direct 
neighbors are those websites that either link to X or linked by X or both. Its indirect 
neighbors are those that do not have a direct link relationship with website X, but are 
related via a third website.  
 
In malicious link neighbors method, we build our model upon the assumption that 
malicious websites tend to link other malicious websites in the same class, i.e. 
malware websites link other malware websites, phishing websites link other phishing 
websites. First, we need to verify this assumption preemptively in our network, and 
then show how can we utilize this for attack type identification.  
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We define two types of neighbors as direct and indirect for a node. Afterwards we 
will use them in our experiments and show each of their results.  
 
5.2.1. Direct Neighbors 
 
Direct neighbors of a node X are the nodes that either link to X or linked by X or 
both. Therefore, direct neighbors are at length=1 distance away from the node X in 
the graph.  
 
Let V be a set of nodes V = {X1, X2,… Xn} in the graph and E = {L1®2, L1®3,…} be a 
set of edges between nodes where Li®j indicates a link from node Xi to Xj in the 
directed graph G =(V,E) [64] 
 
If Sin(Xi) is the set of incoming neighbors of node Xi : 

 
Sin(Xi) = {Xj÷ Lj®i Î E}   (Eq. 3) 

 
If Sout(Xi) is the set of outgoing neighbors of node Xi : 
 

Sout(Xi) ={Xj ÷ Li®j Î E}   (Eq. 4) 
 

If Sin+out(Xi) is the set that holds the union of incoming and outgoing neighbors of 
node Xi : 
 

Sin+out(Xi) ={Xj ÷ Li®j Î E or Lj®i Î E }   (Eq. 5)  
 

 

 
Figure 12: Links between malicious nodes in our network 
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In order to verify the assumption that malicious websites tend to link other malicious 
websites based on their threat types, we analyzed the links that occur between 
malicious nodes in the network we created. In Figure 12 horizontal line at the bottom 
shows which type of nodes the links originate from and vertical bars show where 
these links end in. 86.3% of all malicious links from malware nodes end in other 
malware nodes and 74.6% of all malicious links from phishing nodes end in other 
phishing nodes. These results indicate that malicious websites tend to link other 
malicious websites in the same class, but it also reveals something concerning about 
the direct neighbors. Out of 20.000 websites, i.e. the size of malware and phishing 
websites in our network, only 625 distinct nodes have direct link relationship with 
other malicious websites. Therefore, analyzing the direct neighbors would let us 
predict a threat type for very low number of nodes. In order to increase the number, 
we need another kind of neighborship. 
 
5.2.2. Indirect Neighbors 
 
In contrast to the direct neighbors, indirect neighbors of node X do not have any 
direct link relationship with it. Indirect neighborship occurs via a third node. 
Therefore, indirect neighbors are at length=2 distance away from node X. As shown 
in Figure 13, if nodes A and B are linked by the same node, they are co-cited and if 
they both link to a third node they are bibliographically coupled. 
 
 

 
Figure 13: Co-citation and bibliographic coupling relationship 

Co-citation and bibliographic coupling use citation analysis to establish a likeness 
between nodes. Co-citation based [65] and bibliographic coupling-based [66]  
techniques originated from bibliographic research community to find related 
scientific papers in 1960s and were shown to be useful. Although they have 
applications mainly in bibliographic studies they were used for many other areas 
where link relationships occur such as web graphs. Two different studies	 [15]	 and	
[67]	successfully	applied	co-citation	to	find	thematically	similar	pages	and	hosts	
on	the	Web	graph.	 
 
For a directed graph G = (V,E) let V be a set of nodes V = {X1, X2,… Xn} and E = 
{L1®2, L1®3,…} be a set of edges between nodes where Li®j indicates a link from 
node Xi to Xj [64]. 
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If Scocit(Xi) is the set of co-cited neighbors of node Xi : 
 
Scocit(Xi) = {Xj,÷ Lk®iÎE, Lk®jÎE and Xi¹Xj and where Xk is a third node that links 
to both Xi  and Xj}   (Eq. 6) 
 
If Sbibco(Xi) is the set of bibliographic coupling neighbors of node Xi : 

 
Sbibco(Xi) = {Xj,÷ Li®kÎE, Lj®kÎE and Xi¹Xj and where Xk is a third node that both 
Xi  and Xj links}   (Eq. 7) 
 
5.2.3. Usage of Direct and Indirect Neighbors for Threat Type Detection 
 
Proposed threat type detection algorithm exploits the threat types of neighbors. 
Before we begin the calculations, we make 20% of malware and 20% of phishing 
nodes unknown for evaluation purposes. The rest of the 80% of each class keep their 
types as explained in Chapter 5.1. Set U = {u1, u2 … uN } holds the N nodes whose 
types are unknown and set K = {k1, k2,… kM }holds the M nodes whose types are 
known.  
 
We assign a maliciousness probability scores Rx(m) and Rx(p) for each node X in the 
graph. Rx(m) is the probability of node X to be malware and Rx(p) is to be phishing. 
In the initial assignments step, we assign maliciousness probability scores Rx(m) and 
Rx(p) for each node X in the graph based on their threat types as given in Table 8 
below. Since we know their threat types a priori, for malware nodes Rx(m)=1 and 
Rx(p)=0 and for phishing nodes Rx(m)=0 and Rx(p)=1. Since for type assignment 
purposes we are only interested in malicious nodes, Rx(m) and Rx(p) probabilities of 
other nodes in the graph are set to 0. We also set Rx(m)=0 and Rx(p)=0 to type 
unknown nodes in the beginning but these values are expected to change during the 
following steps. 
 

Table 8: Types of nodes and their initial maliciousness probabilities 

Node Type R 
Known malware Rx(m) = 1, Rx(p) = 0 
Known phishing Rx(m) = 0, Rx(p) = 1 
Unknown type Rx(m) = 0, Rx(p) = 0 

Others Rx(m) = 0, Rx(p) = 0 
 
Rx(m) and Rx(p) scores for unknown type nodes are calculated as follows:  

 
Rx(m) =  I/0	45	0?;9?32	<341?1=;=>=28	45	=>8	62=JK1438		

LMNOP	QRSGTU	MV	SOPWXWMRY	OQH	RQZQM[Q	QTW\]GMUY
    (Eq. 8) 

 
Rx(p) =  I/0	45	<K=8K=6J	<341?1=;=>=28	45	=>8	62=JK1438		

LMNOP	QRSGTU	MV	SOPWXWMRY	OQH	RQZQM[Q	QTW\]GMUY
    (Eq. 9) 
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The neighbors mentioned in Equations 8 and 9 could be a kind of direct neighbor or 
indirect neighbor depending on which set we decided to use.  
 
For the rest of this method, firstly the simple explanation of the proposed algorithm 
is given. Then we mention the steps taken in detail and lastly the pseudocode is 
presented. 
 
The proposed algorithm simply tries to calculate above mentioned maliciousness 
probability scores Rx(m) and Rx(p) for unknown type nodes in the network using 
different set of neighbors. First it calculates these values for unknown nodes in 
random order. But since the order affects the results, we get into an iterative process 
that make nodes trigger other nodes to recalculate their maliciousness probabilities 
when theirs change. After the algorithm converges or we reach the maximum 
number of iterations for each node, we finish the iterative process and we make 
predictions for nodes based on their latest Rx(m) and Rx(p) values. We assign the 
threat type between malware and phishing based on whichever’s probability is 
higher.  
 
The detailed explanation of the algorithm and steps we take to make algorithm 
converge and limit the number of iterations in reasonable amounts are mentioned 
below.   
 
After we assign maliciousness probability scores for already known malware and 
phishing nodes, we begin to calculate Rx(m) and Rx(p) scores for every unknown 
node in our graph. This process can be modeled similar to a graph labeling problem 
and two examples are shown in Figures 14 and 15 below.  
 
 
 

 
 
Figure 14: Type assignment simulated as graph labeling with steps a to c and beginning with node U1 
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Figure 15: Type assignment simulated as graph labeling with steps a to c and beginning with node U2 

 
In Figures 14 and 15, rectangular objects show malware, diamond objects show 
phishing and circle objects show unknown class nodes. Beginning from steps a to c, 
Rx(m) and Rx(p) scores for unknown nodes are calculated as given in Equations 8 
and 9 before. Here we use the incoming link neighbors measure as an example. 
Therefore, we calculate maliciousness probability scores based on the node’s 
incoming neighbors. Probabilities can be calculated based on other direct and 
indirect neighbors as well. In Figure 14 we started the calculations with node U1. 
Since U1 has three incoming link neighbors it gets Ru1(m) = (1+0+0) / 3 = 1/3 and 
Ru1(p) = (0+1+1) / 3 = 2/3 in step b. In step c we do calculations for U2 which has 
two incoming link neighbors and it gets Ru2(m) = (1/3+0) / 2 = 1/6 and Ru2(p) = 
(2/3+1) / 2 = 5/6.  
 
In Figure 15 which is the same network as in Figure 14, we started the application 
with node U2, did the similar calculations but get a different probability for it than in 
Figure 14. This shows that the order we start calculating the maliciousness 
probabilities of unknown nodes actually affects the results. There are some options to 
tackle this problem. First one is changing the ordering of the nodes that are being 
processed with some metric and reporting results accordingly for different orderings. 
The second one would be iteratively calculating maliciousness probabilities for 
nodes. We adopted the second option and implemented an iterative process to the 
algorithm.  
 
In the iterative process, we let changes in one node’s maliciousness probabilities 
trigger other nodes to recalculate their maliciousness probabilities. This only occurs 
when changed node is in a neighborhood of other nodes for the chosen neighbor set. 
 

 
Figure 16: An example network 
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If we assume to use incoming neighbors set in Figure 16 above, when nodes A, B, C 
and D’s maliciousness probabilities are changed no other node will be triggered 
because they are not any other nodes’ incoming neighbor. Therefore, they do not 
contribute to any other nodes’ probability calculations. However, when node G’s 
probabilities are changed node F will be triggered, since node G contributes to node 
F’s probabilities as an incoming neighbor. When node F’s probability changes it 
triggers nodes C and D. But their change will not affect any other node as explained 
before. Also if a change in node E’s probabilities occur, it triggers nodes A, B and C, 
but they also will not trigger any other nodes. 
 
If we assume to use co-citation neighbors measure in Figure 16, when node E, F or 
G’s maliciousness probabilities are changed, no other node is triggered since they are 
not co-citation neighbor of any other node. However, when node A’s maliciousness 
probabilities are changed, this will trigger nodes B and C to recalculate their 
maliciousness probabilities, since they are co-citation neighbors of node A and node 
A contributes to the calculations of node B and C’s maliciousness probabilities. Then 
when node B’s probabilities are changed, this triggers node A and C to recalculate 
their probabilities etc. These kinds of situations may end in endless loops if certain 
precautions are not taken. So we will mention them shortly. 
 
As seen above, when a change occurs in one node’s probabilities this may require 
changes in lots of other nodes. In order to keep the nodes we are going to process, we 
defined a last-in-first-out (LIFO) stack that keeps unknown nodes that are waiting for 
their maliciousness probabilities to be recalculated. When a node’s probabilities are 
changed, we push the other nodes it triggered to the stack, if there is no affected node 
nothing is pushed.  
 
When we finish the calculations on a node and find the other nodes it triggered and 
pushed them to the stack, our job is done for that node for the time being. Then we 
pop the top node from the stack and do the same operations on it continuously until 
there is no node left to be analyzed in the stack. When the stack is empty, we check 
our set U if there are any remaining unanalyzed unknown node left. If yes, we push it 
to the stack and if no, we stop the iterative step and continue to the type prediction. 
In this step we make predictions for nodes based on their latest Rx(m) and Rx(p) 
values. We assign the threat type between malware and phishing based on 
whichever’s probability is higher. In the case of evenness we let the type remain 
unknown since we have a metric called coverage that shows the rate of a measure’s 
applicability to classify nodes for these kinds of incidents.  
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We had to take some measures for the algorithm to converge and limit the number of 
iterations in reasonable amounts.  

1) We defined a metric called confidence for each node which is the number of 
unknown link neighbors that needs to be recalculated if this node’s 
probabilities are changed. The lesser the value the more confidence a node 
has. When we need to select a node from a set of nodes, we select the ones 
with the largest confidence. By doing this we make the algorithm to reach 
higher number of analyzed unknown nodes faster by not spending time in 
iterations.   

2) We defined a scalar delta (Δ) value. If absolute value of the difference 
between malware and phishing probabilities of a node is greater than the 
delta, |Rx(m) - Rx(p)| > Δ, we say that these ratios could be trusted to predict a 
type. Whichever is higher among Rx(m) and Rx(p) is set to 1 and the other is 
set to 0. We also make these nodes’ status fixed, and their probabilities will 
not be recalculated and changed in iterations anymore. This will limit the 
number of operations we need to make. We do this calculation before we 
begin iterative process and in every iteration afterwards. Δ = 0.15, 0.30, 0.40, 
0.50 and 0.70 are tested.  

3) In the iterative process, changes in one node’s maliciousness probabilities 
may trigger others to recalculate their maliciousness probabilities. Especially 
for indirect neighbors this may result in endless loops. If node A is co-citation 
neighbor of node B, the other way around is also true. Therefore, for co-
citation neighborhood when node A’s maliciousness probabilities change it 
triggers node B to recalculate its maliciousness probabilities which triggers 
node A in return and it continues like that. To prevent endless loops, we let 
one specific node to trigger other specific node only one time. 

4) To limit the total number of iterations in reasonable amounts there are some 
options. One is employing a global iteration count and when it is reached 
stopping the algorithm. Here we employed a total number of 30 changes per 
node. Afterwards, that node’s status is fixed and its probabilities will not be 
recalculated and changed in iterations afterwards. 
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The pseudocode of the algorithm is as follows: 
 
Algorithm 1 Iterative threat type predictor 
Given: 
K = {k1, k2,… kN}         //Set of known type nodes 
U = {u1, u2,… uM}        //Set of unknown type nodes 
V = K U U   //Set V is the union of sets K and U 
E = {L1®2, L1®3,…}  //Set of links in the network   
G (V,E)   
Value Delta (Δ)  
Step1.1 Initial Assignments 
For i=1 to N  
 If (T(ki) = malware)   //If node’s type is malware 

Rki(m) = 1, Rki(p) = 0  
 Else if (T(ki) = phishing)  

Rki(m) = 0, Rki(p) = 1 
 Else if (T(ki) = others or T(ki) = unknown) 

Rki(m) = 0, Rki(p) = 0 
 

For i=1 to M   
Calculate Rui(m) and Rui(p) 
 

Step1.2. Preparations 
For i=1 to M   
 If (|Rui(m) – Rui(p)| > Δ and Rui(m) > Rui(p))  
  Rui(m) = 1 Rui(p) = 0 
  Make ui fixed 
 Else if (|Rui(m) – Rui(p)| > Δ and Rui(m) < Rui(p)) 
  Rui(m) = 0 Rui(p) = 1 
  Make ui fixed 
 Else  
  Continue 
Define stack S 
Select the unknown node ui from the set U having the largest confidence 
Push ui to the stack S 
 
Step 2. Iterative Step 
While(S is not empty) 
{ 
x = Popped element from the S 
Calculate Rx(m) and Rx(p) 
If (Rx(m) and Rx(p) are changed) 
 Rx(m) , Rx(p)  = new Rx(m) , new Rx(p)   // Update  Rx(m) and Rx(p)   

LN = set of neighbors of x whose probabilities need to be recalculated due to 
changes in node x if rules allow 
Sort LN according to the confidence ratios ascending 
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Push LN to the stack beginning with the node having the lowest confidence 
If (S is empty)  

Select the not analyzed unknown node u having the largest confidence from 
the set U 
If (no unanalyzed node left in set U)  

Break 
Else  

Push u to the S 
} 
 
Step 3. Type Prediction 
For i = 1 to M             // Assign types to nodes in Set U 
 If (Rui(m) > Rui(p)) 
  T(ui) = malware 
 Else if (Rui(m) < Rui(p)) 
  T(ui) = phishing 
 Else 
  T(ui) = unknown 

5.3.    Link Similarity Method 
 
In this method we predict the threat type of a node by finding the similarity scores 
between the nodes based on their link neighbors. If node A and node B have the 
same link neighbors, we could say that they are somewhat related. Here the question 
is could we use this relatedness to predict their threat type? 
 
We use the same network and analysis techniques created in the beginning of this 
chapter. We make 20% of malware and 20% of phishing nodes unknown and 80% of 
malware and 80% of phishing nodes keep their types. Let there be two sets of 
malicious nodes U = {u1, u2 … uM} and K = {k1, k2,… kN} where U holds the nodes 
whose types are unknown and K holds the nodes whose types are known and M and 
N are the sizes of their respective sets.  
 
If we want to calculate the similarity between nodes ui and kj considering their link 
neighbors, we should count the number of separate and common link neighbors for 
both nodes. There are different kinds of proximity and similarity metrics used in the 
literature such as Euclidian distance, Minkowski distance, dot product and Jaccard 
index [68].  For the data we have which are link neighbors of websites, best choice 
would be using Jaccard index since it can calculate the degree of overlap between 
two sets. It compares members of sets to find which members are shared and which 
members are distinct [69]. The mathematical representation of Jaccard index where 
sim(ui,kj) is the similarity score between nodes ui and kj could be written like in 
Equation 10 where LN shows the link neighbor set of ui and kj [69]. 
 
 



 
 

49 

sim(ui, kj) =  |	`.ui	∩	`.kj|
|	`.ui	∪	`.kj	|

 , 0	≤ sim(ui,kj)	≤ 1   (Eq. 10) 
 
Equation 10 calculates the size of the intersection divided by the size of the union of 
sets. The similarity values range from 0 to 1 and two sets with totally different 
members will have 0 similarity whereas two sets where they share all the members 
will have the similarity score of 1. 
 
We calculate the similarity score for each node in set U with every node in set K 
using the Equation 10 and construct a size MxN matrix. The values at every 
intersection of rows and columns show the similarity score between the nodes in that 
row and column. 
 

Table 9: Size MxN matrix showing similarity scores between nodes 

  k1 k2 … kN 

u1 sim(u1,k1) sim(u1,k2)  sim(u1,kN) 
u2 sim(u2,k1) sim(u2,k2)  sim(u2,kN) 

…
 

…
 

…
  …
 

uM sim(uM,k1) sim(uM,k2) … sim(uM,kN) 
 
Similar to the application in Section 5.2, for threat type prediction we assign 
maliciousness probability scores Rx(m) and Rx(p) to each node X in the graph. Rx(m) 
is the probability of node X to be malware and Rx(p) is to be phishing. For each 
known malware nodes, we set their maliciousness probabilities Rx(m) = 1, Rx(p) = 0 
and for known phishing nodes Rx(m) = 0, Rx(p) = 1 as shown in Table 10. 
 

Table 10: Types of nodes and their initial assigned maliciousness probabilities 

Node Type R 
Known malware Rx(m) = 1, Rx(p) = 0 
Known phishing Rx(m) = 0, Rx(p) = 1 

 
Then for each node in set U we calculate its Rui(m) and Rui(p) probabilities with 
Equations 11 and 12 given below. These equations takes a weighted approach for 
calculation of R values. With this weighted method we take the similarity score 
between nodes ui and kj into effect when calculating the node ui’s maliciousness 
probabilities. Node kj’s contribution to the total maliciousness probability of node 
ui’s is directly proportional to its similarity to node ui. If the similarity is higher, its 
effect will be higher. Likewise if similarity score is zero ,meaning they do not share 
any number of links, kj will not affect ui at all. 
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Rui(m) = ∑ 𝑠𝑖𝑚k𝑢W, 𝑘no𝑅Zq(𝑚)
t
nuv    (Eq. 11) 

 
Rui(p) = ∑ 𝑠𝑖𝑚k𝑢W, 𝑘no𝑅Zq(𝑝)

t
nuv    (Eq. 12) 

 
After we calculate the probability values, we assign a type to node ui. If its malware 
probability is higher, we assign malware, if its phishing probability is higher, we 
assign phishing and if there is a tie between probabilities, its type remains unknown. 
In the case of equality some kind of heuristic approach could be used such as 
assigning the type of kj that has the largest sim(ui,kj) value. However, since we have 
a metric called coverage that shows the rate of a measure’s applicability to classify 
nodes for these kinds of incidents, we let the type remain unknown in this case. 

5.4.    Results 
 
In this section results are presented for two methods mentioned in Chapters 5.2 and 
5.3. For each different neighbor sets experiments were run for 10 times with different 
random data and standard deviations for each evaluation metric are provided in the 
tables. Our general aim is to improve accuracy and coverage at the same time as 
much as it is possible, but it is shown that sometimes we need to make concessions 
from accuracy in order to increase coverage. 
  
5.4.1. Malicious Link Neighbors Method’s Results 
 
Linked nature of the Web made it possible to form our network as a directed graph. 
Because of the links, a node has other nodes that it is in relationship with. We 
illustrated this relationship in five different neighborhoods around a node. Therefore, 
a node has 5 different link neighbors: incoming, outgoing, incoming + outgoing, co-
citation and bibliographic coupling neighbors. Here we showed which neighbors 
provide the greatest value for threat type predictions. Each delta value had different 
results for accuracy and coverage. A smaller delta value let more nodes reach fixed 
status earlier and minimize the number of iterations. As we want to limit the number 
of iterations a delta value equals to 0.30 is used for the results presented in this 
chapter. Algorithm 1 – Iterative threat type predictor is run with different neighbor 
sets and results are presented below. 
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Table 11: Malicious link neighbors method results for using direct neighbors set 

 
Incoming Neighbors Outgoing Neighbors 

Incoming + 
Outgoing 
Neighbors 

Avg. 
Accuracy 84.82 (𝜎=3.44) 88.87 (𝜎=3.01) 84.31 (𝜎=1.63) 

Avg. Recall 
Malware              
Phishing 

90.14 (𝜎=4.14) 
73.85 (𝜎=2.96) 

88.62 (𝜎=4.99) 
88.34 (𝜎=4.71) 

89.00 (𝜎=1.70) 
74.49 (𝜎=4.84) 

Avg. 
Precision 
Malware 
Phishing 

86.99 (𝜎=14.37) 
79.39 (𝜎=29.35) 

91.41 (𝜎=3.06) 
85.15 (𝜎=4.30) 

87.92 (𝜎=2.70) 
76.15 (𝜎=4.97) 

Avg. 
Coverage 2.57 (𝜎=0.35) 1.51 (𝜎=0.33) 3.46 (𝜎=0.33) 

 
 

Table 12: Confusion matrix for direct neighbors sets 

        Used  Set 
         
 
 
 (N=4000)        

Incoming Neighbors Outgoing Neighbors Incoming + Outgoing 
Neighbors 

Predicted Predicted Predicted 
Malware Phishing Malware Phishing Malware Phishing 

Actual 
Malware 62 

(𝜎=7.15) 
6	

(𝜎=1.15) 
30 

(𝜎=1.41) 
4	

(𝜎=1.00) 
84	

(𝜎=5.25) 
10	

(𝜎=1.18) 

Phishing 8	
(𝜎=0.91) 

26	
(𝜎=2.48) 

2 
(𝜎=0.91) 

24	
(𝜎=5.55) 

12	
(𝜎=1.27) 

34	
(𝜎=2.90) 

 
As seen from the Table 11, incoming and outgoing neighbors sets have high 
accuracy. However, their coverage is very low. At most they can classify up to 
3.46% of nodes in the case we merge these two neighbors in incoming + outgoing 
links neighbors. However, since their accuracies are very high, they should be used 
whenever possible. Their low coverages are due to the fact that most nodes do not 
have any malware or phishing direct neighbor.  
 
In order to improve the coverage we presented another type of neighbors called 
indirect neighbors. Incoming and outgoing neighbors only consider direct edges, but 
co-citation and bibliographic coupling neighbors utilize the graph structure that 
extend link relationships from only direct neighbors to new kind of neighbors formed 
via third nodes. 
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Table 13: Malicious link neighbors method results for using indirect neighbors set 

 Co-citation Neighbors Bibliographic Coupling 
Neighbors 

Avg. Accuracy 69.64 (𝜎=0.77) 60.24 (𝜎=3.23) 
Avg. Recall 

Malware              
Phishing 

56.17 (𝜎=1.49) 
84.69 (𝜎=0.78) 

54.34 (𝜎=5.60) 
66.31 (𝜎=4.11) 

Avg. Precision 
Malware             
Phishing 

80.40 (𝜎=0.64) 
63.37 (𝜎=1.18) 

62.24 (𝜎=3.41) 
58.77 (𝜎=3.41) 

Avg. Coverage 68.41 (𝜎=1.03) 52.11 (𝜎=0.56) 
 
 

Table 14: Confusion Matrix for Indirect Neighbors Sets 

             Used Set 
 
 
 (N=4000) 

Co-citation Neighbors Bibliographic Coupling 
Neighbors 

Predicted Predicted 
Malware Phishing Malware Phishing 

Actual 
Malware 810 

(𝜎=7.93) 
634 

(𝜎=15.4) 
572	

(𝜎=26.71) 
482 

(𝜎=32.7) 

Phishing 198 
(𝜎=5.20) 

1094 
(𝜎=13.54) 

348 
(𝜎=20.87) 

684 
(𝜎=22.29) 

 
Co-citation is shown to be a better measure to predict threat types than bibliographic 
coupling. It surpassed bibliographic coupling both in terms of accuracy and 
coverage. By using co-citation we are able to predict threat type with 69.64% 
accuracy.  
 
Indirect neighbors, co-citation and bibliographic coupling, have increased coverage 
than direct neighbors. Therefore, by using them we could make predictions for more 
nodes. However, their accuracies are not as high as direct neighbors. In this case a 
hybrid method could be used. If direct neighbors can be applied to a node, we can 
use them and if it is not possible, we can use indirect neighbors methods. 
  
Results for bibliographic coupling has higher standard deviations. This is due to the 
fact that many malicious websites in our network have zero outdegree as mentioned 
in Chapter 3.3 and since bibliographic coupling relationships are formed via 
outgoing links from malicious websites results vary for the randomly selected nodes 
in each experiment.  
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5.4.2. Link Similarity Method’s Results 
 
As mentioned earlier, similarity score sim(ui, kj) between two nodes is calculated 
based on their links. We apply the similarity score for its incoming links, outgoing 
links and incoming + outgoing links. 
 

Table 15: Results for Link Similarity Methods 

 Used Link Set for Similarity Calculation 
Incoming Links  Outgoing Links Incoming + 

Outgoing Links 
Avg. 

Accuracy 68.92 (𝜎= 0.68) 58.97 (𝜎= 0.98) 64.84 (𝜎= 0.65) 

Avg. Recall 
Malware              
Phishing 

61.23 (𝜎= 1.06) 
77.53 (𝜎= 0.90) 

67.29 (𝜎= 3.30) 
50.22 (𝜎= 4.11) 

66.68 (𝜎= 1.34) 
62.89 (𝜎= 1.08) 

Avg. 
Precision 
Malware             
Phishing 

75.37 (𝜎= 0.53) 
64.06 (𝜎= 0.83) 

58.89 (𝜎= 1.43) 
59.24 (𝜎= 1.60) 

65.57 (𝜎= 0.69) 
64.05 (𝜎= 0.83) 

Avg. 
Coverage 69.74 (𝜎= 0.69) 52.03 (𝜎= 0.65) 85.59 (𝜎= 0.27) 

 
 

Table 16: Confusion matrix for direct neighbors sets 

            Used  Set 
               
 
(N=4000)        

Incoming Neighbors Outgoing Neighbors Incoming + Outgoing 
Neighbors 

Predicted Predicted Predicted 
Malware Phishing Malware Phishing Malware Phishing 

Actual Malware 904 
(𝜎=23.62) 

572 
(𝜎=10.91) 

719 
(𝜎=22.67) 

351 
(𝜎= 42.02) 

1175 
(𝜎=22.63) 

587 
(𝜎= 24.59) 

Phishing 295 
(𝜎= 9.75) 

1019 
(𝜎=24.35) 

503 
(𝜎=42.25) 

508 
(𝜎=42.11) 

617 
(𝜎=19.24) 

1045 
(𝜎= 16.77) 

 
With link similarity method we can predict a threat type with 68.92% of accuracy in 
incoming link set. Also by combining incoming and outgoing link set we can make 
predictions for 85.59% of analyzed nodes with an accuracy of 64.84%.  
 
When analyzing the data in the initial trials we realized that some of the nodes have 
high indegrees and outdegrees. For example, search engines like Google, Yahoo, 
Bing and social media sites like Twitter and Facebook have both high indegrees and 
outdegrees. For search engines other websites tend to link them for custom searches 
and search engines should provide link towards them as a result of users’ search 
queries. Similarly including a Facebook Like button or Twitter Share button to a 
website creates a link towards them. Many websites also use analytics tools such as 
Google Analytics, or use Googleapis service for importing JavaScript libraries which 
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adds a link to these services. Consider a scenario where a websites u and k have a 
Facebook Like button in their sources but no other incoming and outgoing links. In 
this case their Jaccard similarity will be 1, the maximum possible value. These links 
are neither placed for related content nor for endorsement. Therefore, they may 
possibly skew the results. We detected 100 of these websites where edges that 
includes them happen because of their functionality and added to a whitelist that can 
be seen in Appendix-1 and removed their edges from our graph and reiterated our 
analysis again. 
 

Table 17: Results for Link Similarity Methods after removing 100 functional links 

 
 

Used Link Neighbor Set for Similarity Calculation 

Incoming Links Outgoing Links Incoming + Outgoing 
Links 

Avg. Accuracy 70.04 (𝜎= 1.40) 60.78 (𝜎= 0.74) 67.18 (𝜎=0.64) 
Avg. Recall 

Malware              
Phishing 

67.75 (𝜎= 2.58) 
72.63 (𝜎= 1.11) 

71.59 (𝜎= 0.84) 
49.19 (𝜎= 2.23) 

71.35 (𝜎=1.10) 
62.68 (𝜎=1.25) 

Avg. Precision 
Malware             
Phishing 

73.66 (𝜎= 1.29) 
66.61 (𝜎= 1.80) 

60.19 (𝜎= 1.04) 
61.73 (𝜎= 0.82) 

67.35 (𝜎=0.71) 
66.99 (𝜎=0.86) 

Avg. Coverage 66.82 (𝜎= 0.57) 42.24 (𝜎= 0.76) 81.19 (𝜎= 0.76) 
 
 

Table 18: Confusion matrix for direct neighbors sets after removing 100 functional links 

        Used  Set 
             

 
(N=4000)        

Incoming Links Outgoing Links Incoming + Outgoing 
Links 

Predicted Predicted Predicted 
Malware Phishing Malware Phishing Malware Phishing 

Actual 
Malware 945 

(𝜎=36.38) 
450 

(𝜎=38.82) 
615 

(𝜎= 9.64) 
244 

(𝜎= 9.15) 
1182 

(𝜎=21.81) 
475 

(𝜎=19.11) 

Phishing 338 
(𝜎=14.81) 

896 
(𝜎=11.11) 

407 
(𝜎=20.94) 

394 
(𝜎=21.56) 

573 
(𝜎=21.29) 

963 
(𝜎=20.86) 

 
By removing websites where the links around them occur due to their functionalities, 
we were able to increase accuracies for each neighbor sets. We also passed 70% 
accuracy in incoming links neighbors. Coverages however were decreased. Since we 
deleted some edges that prevented possible formation of neighbors, this was an 
expected outcome. 
 
For threat type identification, we managed to achieve at most 88.87% of accuracy 
but with limited coverages in link neighbors method. In link similarity method we 
achieved at most 70.04% of accuracy with relatively larger coverage. Results in the 
threat type identification are above the possible random assignment accuracy result 
of 50% but may not seem significantly high on their own. However, the methods 
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here only include link analysis. If they could be combined with other methods when 
analyzing malicious websites such as text mining, visual similarity etc. they proved 
to have the potential to provide contribution. Therefore, results obtained in this 
chapter shows us that link analysis is promising for threat type identification. 
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CHAPTER 6 
 

6- CONCLUSIONS 

This chapter discusses the results regarding the analysis made in the previous 
chapters. Results for malicious website and threat type identification is presented in 
their respective chapters.  
 
Detecting malicious websites is a popular subject of study in the literature. What we 
presented is pairing it with social network analysis and investigating methods for 
finding malicious websites and threat type identification more effectively using the 
linked nature of WWW. 

Social network analysis methods were used throughout this study. We created the 
networks of malicious websites and our analyses were built upon them. Using 
techniques mentioned in finding malicious websites chapter, we could form a priority 
list of suspicious websites whose analyses would let us run into more malicious 
websites in them. Combining these techniques mentioned in threat type identification 
chapter we could predict these suspicious websites’ threat types and tailor our 
analysis accordingly. If a website is predicted to be phishing, we can apply phishing 
detection techniques first, or if it is predicted as malware, we can apply malware 
detection techniques. This is due to the fact that malicious website detection is an 
expensive process. There are lots of different detection techniques for both malware 
and phishing. As an example, dynamic analysis methods for malware, runs the 
executables in a sandboxed environment and analyze the behavior of them. Consider 
websites with lots of executables in them. In order to truly classify them as 
malicious, one needs to download and analyze every file in them which has high 
computational costs. However, with a pre filtering mechanism, both the selection of 
the websites to be analyzed and their possible threat types could be predicted 
beforehand in order to save computational costs. This will also help us to minimize 
the opportunity cost, the loss of other options when one option is chosen, since with 
limited resources when you analyze some websites, you do not analyze others 
therefore they may evade the detection. 
 
We revealed that malicious websites tend to link other malicious websites in the 
same maliciousness category as them, i.e. malware websites tend to link other 
malware websites, phishing websites tend to link other phishing websites than other 
categories.  This notion is studied and proven correct mainly for web spam websites 
in the literature. For malware and phishing types this is the second study that 
investigate this notion.  

We showed that focusing our analysis on the core groups in a network of malicious 
websites would help us to find other malicious websites more efficiently. By 
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efficient we mean analyzing a smaller number of websites but running into relatively 
more malicious websites in them. 

The most prominent difference from the previous research and hence our 
contribution lies in our usage of co-citation and bibliographic coupling for attack 
type identification of malicious websites. Co-citation and bibliographic coupling are 
applied to many areas from bibliographic studies to topic similarity. We applied 
them for the first time to attack type prediction of malicious websites. 
 
We showed that link analysis is a promising area for effective malicious website 
detection and threat type identification. However, the experiments we carried uses 
only the link analysis. For better results they can be used alongside with other 
methods since a hybrid method that includes link analysis would provide better 
results. For example, to detect phishing websites link analysis methods could be used 
with textual features and visual similarity methods. The findings here could also be 
used as one of the features to train a machine learning model.    
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APPENDICES 

Appendix A: 100 websites whose links occur due to their functionalities: 
 
Website Name Functionality Website Name Functionality 
addthis.com Bookmarking histats.com Website statistic 
amazon.co.jp Shopping hotmail.com Web Portal 
amazon.co.uk Shopping hstatic.net Content Delivery 
amazon.com Shopping imageshack.com Photo Sharing 
amazonaws.com Cloud imgur.com Photo Sharing 
amzn.to Link Shortening instagram.com Social Media 
aol.com Web Portal joomla.org Website Creator 
apple.com Business jquery.com Programming 
archive.org Web Archive jqueryui.com Programming 
azurewebsites.net Cloud linkedin.com Social Media 
baidu.com Search Engine medium.com Blogging 
bit.ly Link Shortening microsoft.com Business 
blogspot.com Blogging msn.com Web Portal 
bootstrapcdn.com Content Delivery opendns.com Network 

cdninstagram.com 
Content Delivery 

paypal.com 
Payment 
Processor 

cloudflare.com Web Protection people.com.cn Web Portal 
cpanel.com Web Hosting pinterest.com Photo Sharing 
dailymotion.com Video Hosting rawgit.com Programming 

disqus.com 
Website 
Comment reddit.com 

Social Media 

dropbox.com Cloud sharethis.com Bookmarking 
duckduckgo.com Search Engine shopify.com Shopping 

ebay.com 
Shopping ssl-images-

amazon.com 
Content Delivery 

facebook.com Social Media statcounter.com Website statistic 

facebook.net 
Social Media 

stripe.com 
Payment 
Processor 

fb.me Link Shortening stumbleupon.com Bookmarking 
flickr.com Photo Sharing t.co Link Shortening 

fontawesome.com 
Web 
Programming t.me 

Link Shortening 

github.com Programming taobao.com Shopping 
godaddy.com Cloud tinypic.com Photo Sharing 
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goo.gl Link Shortening tinyurl.com Link Shortening 
google-analytics.com Analytics tumblr.com Social Media 
google.at Search Engine twitter.com Social Media 
google.co.in Search Engine vimeo.com Video Hosting 
google.co.jp Search Engine vk.com Social Media 
google.com Search Engine w.org Blogging 
google.com.br Search Engine weebly.com Programming 
google.com.hk Search Engine whatsapp.com Social Media 
google.com.tr Search Engine wikimedia.org Website Creator 
google.de Search Engine wikipedia.org Website Creator 
google.es Search Engine wordpress.com Website Creator 
google.hu Search Engine wordpress.org Website Creator 
googleapis.com Programming wp.com Website Creator 
googlecode.com Programming yahoo.com Search Engine 
googledrive.com Cloud yandex.com Search Engine 
googlegroups.com Social Media yandex.net Search Engine 
googlesyndication.com Programming yandex.ru Search Engine 

googletagmanager.com 
Programming yelp.com Business 

Directory 
googleusercontent.com Programming youtu.be Link Shortening 
gravatar.com Photo Sharing youtube.com Social Media 
gstatic.com Content Delivery ytimg.com Content Delivery 
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