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ABSTRACT 

 

A LOWER-BOUND LIMIT ANALYSIS SOLUTION FOR LATERAL LOAD 

CAPACITY OF MASONRY WALLS 

 

KARADENİZ, DERYA 

Master of Scıence, Earthquake Studıes 

Supervisor: Prof. Dr. Murat Altuğ Erberik 

Co-Supervisor: Assoc. Prof. Dr. Mustafa Tolga Yılmaz 

 

December 2019, 121 pages 

 

Masonry exists from very past centuries around the world which is used not only for 

sheltering, most of historical architectural masterpieces are masonry structures. 

Masonry offers advantages in many areas such as easy supply of materials, easy to 

construct and thermal durability of materials. However, the analysis of masonry 

buildings is not a easy task. Various reasons such as the diversity of materials used 

and the lack of characteristic properties of these materials, lack of design regulations 

and the fact that the analysis methods used for today's reinforced concrete and steel 

structures are not suitable for masonry buildings complicate the analysis of masonry 

buildings. Because these structures are non-engineered structures, it is difficult and 

time-consuming to apply complex analysis methods for masonry buildings. Limit 

analysis is a very useful and fast method for non-engineered buildings such as masonry 

buildings. In this study, it is provided to obtain lateral load capacity by using lower-

bound limit analysis method. Starting from a wall with no opening with the lower 

bound theorem based on the provision of static equilibrium and yield conditions, the 

walls with various openings were calculated and the maximum lateral load they were 

able to take was found. In this way, the openings had an effect on the lateral load 

capacity of the wall and a comparison was made. In addition, various properties of the 
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wall have been changed to support the assumptions about the masonry wall. 

Matlab2017b program was applied for the application of the lower-bound theorem. 

 

 

Keywords: Unreinforced masonry buildings, limit analysis, lower bound theorem, 

lateral load capacity, Mohr Coulomb failure criteria  
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ÖZ 

 

YIĞMA DUVARLARIN YATAY YÜK KAPASİTESİ İÇİN BİR ALT-SINIR 

LİMİT ANALİZ ÇÖZÜMÜ 

 

KARADENİZ, DERYA 

Yüksek Lisans, Deprem Çalışmaları 

Tez Danışmanı: Prof. Dr. Murat Altuğ Erberik 

Ortak Tez Danışmanı: Doç. Dr. Mustafa Tolga Yılmaz 

 

Aralık 2019, 121 sayfa 

 

Yığma yapılar dünya üzerinde ilk barınma yerleri olarak inşa edildiklerinden beri 

gerek kırsal bölgelerde gerekse şehirlerde hala yaygın olarak kullanılan bir yapı 

çeşididir. Tarihi eserlerden barınmaya kadar birçok alanda kullanılan yığma yapılar,  

kullanılan malzemelerin kolay tedarik edilmesi, kolay şekilde inşa edilmesi ve 

malzemelerin termal dayanıklılığı gibi birçok konuda avantaj sunmaktadır. Ancak 

yığma yapıların analizi pek de kolay olmamaktadır. Kullanılan malzemelerin 

çeşitliliği ve bu malzemelerin karakteristik özelliklerinin eksik olabilmesi, tasarım 

kurallarının eksik olabilmesi ve günümüz betonarme ve çelik yapılar için kullanılan 

analizlerin yığma yapılar için uygun olamaması gibi çeşitli nedenler yığma binaların 

analizini güçleştirmektedir. Bu yapılar çoğunlukla mühendislik yaklaşımı olmadan 

inşa edilen yapılar olduğu için, karmaşık analiz yöntemlerini yığma yapılar için 

uygulamak güç ve zaman alıcıdır. Çoğu karmaşık analiz yönteminin yanında, limit 

analiz yöntemi ise yığma yapılar için oldukça kullanışlı ve hızlı bir yöntemdir. Bu 

çalışmada yığma duvarları alt-sınır limit analiz yöntemiyle yanal yük kapasitesinin 

elde edilmesi sağlanmıştır. Statik dengenin ve akma koşullarının sağlanmasını temel 

alan alt-sınır teoremi ile düz bir duvardan başlanarak çeşitli açıklıklara sahip 

duvarların hesaplamaları yapılmış ve alabilecekleri maksimum yanal yük 
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bulunmuştur. Bu sayede açıklıkların duvarın yanal yük kapasitesine etkisi bulunmuş 

ve karşılaştırma yapılabilmiştir. Bunun yanı sıra duvarın çeşitli özelikleri 

değiştirilerek yapılan hesaplamalar sonucu yığma duvar hakkındaki varsayımların 

desteklenmesi sağlanmıştır. Alt-sınır teoreminin uygulanması için Matlab2017b 

programından yardım alınmış ve buradan alınan sonuçlar ile değerlendirme 

yapılmıştır. 

 

Anahtar Kelimeler: Donatısız yığma bina, limit analiz yöntemi, alt-sınır teoremi, yanal 

yük kapasitesi, Mohr Coulomb yenilme kriteri 
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CHAPTER 1  

 

1. INTRODUCTION 

 

1.1. General 

Masonry exists from very past centuries around the world. Humankind used masonry 

structures not only for sheltering. Lots of historical architectural masterpieces are 

masonry structures. These structures remain standing over the centuries as cultural 

and historical monuments of human nature. People used mud and stone to create living 

space in early centuries. This is the beginning of masonry construction and also civil 

engineering. Major part of building stock around the world; especially in Europe, Asia 

and South America consist of masonry construction, that means major part of the 

population still live and probably will continue to live in the future in masonry 

dwellings. One of the oldest known masonry structure is the Pyramids in Egypt, that 

were made of stone. Taj Mahal, Roman Colesseum are also examples of stone 

masonry construction. Figure 1 shows examples of historical masonry structures. It is 

a fact that majority of the historical buildings that we encounter today are made with 

the greatest possible knowledge at that times and are accepted as cultural heritage 

(Mourad and El-Hakim, 1996) 

 

 

Figure 1.1. Examples of historical masonry structures (a) the Pyramids, (b) Tac Mahal, (c) Roman 

Colosseum 
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Recent research in structural engineering have focused on the design and analysis of 

modern and tall buildings. The results of these studies show how to build a more 

durable structure. The structural damage can be minimized if engineering knowledge, 

material properties and analysis methods are enhanced and used correctly. However, 

in rural areas, there are still buildings that have not been constructed with engineering 

knowledge. These structures are often masonry buildings that people have constructed 

only with tradition and experience from previous generations. These types of buildings 

have been built without making necessary design, calculations and analysis. As a 

result, they become vulnerable to seismic loads and damage is inevitable for these 

structures. Since masonry is very common in rural regions, it is of great importance to 

conduct their analysis (Bhattacharya et al, 2014). However, detailed and complex 

analysis methods become irrelevant since these structures do not even have a 

consistent structural system and in most of the cases, it is not possible to estimate their 

material properties to be used in structural analysis. Therefore, simple and practical 

analysis tools should be used in order to obtain seismic response of non-engineered 

masonry structures. 

1.1.1. Characteristics of Masonry Units 

Masonry generally consists of units such as clay, brick, stone, concrete block, etc and 

mortar joints that bind these units together to form structural walls. Mortar joints 

generally possess low strength as opposed to masonry units. Masonry can be classified 

as unreinforced, confined and reinforced. Existence of reinforcement in masonry 

provides more tensile strength to the structure. On the other hand, strength of 

unreinforced masonry depends on the strength of brick and brick-mortar interface. 

There are many factors affecting the strength of masonry structures. The walls 

constructed with brick and mortar create a non-homogeneous and non-isotropic 

continuum. Particularly, in masonry walls formed with natural stones, joints are 

completely in a random composition. Thus, the analysis methods developed for the 

walls formed with artificial stones may not be valid for the walls created with natural 

stones. In addition to that, there are many factors that affect the masonry strength like 
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layout of the bricks, size of the bricks, thickness of the joint, freshness of the mortar 

used, dimensions of the wall, water absorption capacity of masonry and workmanship. 

Considering all these factors, the difficulties in design, analysis and response 

calculation of masonry structures are noteworthy (Sutcliffe et al, 2001). Since masonry 

structures are strong in resisting vertical and gravity loads, their behavior under lateral 

loads such as earthquake and wind is more critical and worth to be investigated. 

1.1.2. Behavior of Masonry Structures under Earthquake Loading 

Determining the seismic behavior of masonry structures is more difficult and complex 

than that of frame structures made of reinforced concrete and steel materials. As 

mentioned before, strength of masonry depends on many factors. Similarly, seismic 

behavior of masonry structures depends on many different properties other than the 

strength of masonry. Some of these are the material characteristics, geometry of the 

structure, wall-to-wall, wall-to-roof and wall-to-slab connections, strength of mortar 

and its bond with the units (Mendes and Lourenço, 2014). Masonry structures cannot 

behave properly in the nonlinear range, because of the absence of ductility of structure 

and they cannot dissipate enough energy during deformation, which causes a narrow 

margin of safety.  

Although strength of masonry in tension and shear is low, it can exhibit sufficient 

resistance due to earthquake loads, if design and construction are properly managed. 

Up to recent times, people have been building their own structures without proper 

earthquake resistance. Since in the past, current technology and engineering education 

level were not available, masonry buildings were designed and constructed by 

approximate and crude methods rather than engineering basis. Those, who managed 

to keep their buildings stood still, transferred the knowledge they used to the next 

generations, and in this way, people were able to construct structures to accommodate 

themselves for centuries. Without using mathematical and engineering background, 

people created magnificent structures. The new ones with the use of engineering 
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information were added to these structures, which were built with traditional methods 

in the first place.  

However, masonry structures, that have increased in number exponentially from past 

to present, are generally considered to be vulnerable against seismic action. The 

reasons for this prejudice can be stated as follows. First, there is not much information 

in the literature about the construction of these structures since they had been 

constructed in traditional manner. Second, there is a lack of consistency of relevant 

standardized rules in order to observe the behavior of these structures, and because of 

this, difficulties arise in the analysis of these structures notwithstanding the anisotropy 

and non-homogeneity of the material and insufficient information about the behavior 

of units and mortar (Lourenço, 1996). That makes masonry structures difficult to 

understand from structural engineering point of view. 

1.1.3. Failure Mechanisms of Masonry Structures 

In unreinforced masonry construction, slabs and floors distribute lateral forces to the 

in plane walls and the connection between the orthogonal walls leads to box action 

under these forces. Masonry structures exhibit two local failure modes named as in-

plane and out-of-plane failure according to the direction of loading as it is seen from 

Figure 1.2. In addition to that, walls can be exposed to combination of these actions. 

In-plane elastic stiffness of masonry walls is generally more than out-of-plane elastic 

stiffness.  

 

Figure 1.2. Behavior of unreinforced masonry walls under earthquake excitation (Yi,2004) 



 

 

 

5 

 

Piers and spandrels are two main components that are influenced by in plane loading 

and they show cracking, damage and failure accordingly. There are four types of in 

plane failure modes for masonry walls which are rocking, sliding, diagonal tension 

and toe crushing. The flexural cracks, usually occur as a result of flexural moment. 

Such damage occurs in the form of large horizontal cracks in the upper and lower parts 

of the piers.  Accordingly, rigid body rotation at the corners of the piers can be seen 

as a result of flexural moment (Figure 1.3.a). If the shear stress applied to the system 

is more than the bond strength at the interface between the units and the mortar, shear 

sliding occurs in the pier, which is illustrated in Figure 1.3.b.  Another case is the 

diagonal tension crack, which occurs if the principal tensile stress applied to the 

system exceeds the tensile strength of the wall. The mechanism of progress of this 

crack is to propagate from the weakest path. In a wall with weak mortar and strong 

unit combination, the progression of cracks is followed by the mortar head and bed 

joints. If the mortar and unit strength are close to each other, cracks pass through both 

unit and mortar which is presented in Figure 1.3.c. The last type of in-plane failure 

mode is toe crashing in which the principal compressive stress applied at the toe is 

greater than the compressive strength of the wall (Figure 1.3.d).  

 

 

Figure 1.3. In-plane failure types of unreinforced masonry walls (a) rocking, (b) sliding, (c) diagonal 

tension, (d) toe crushing (Yi,2004) 

 

Out-of-plane failure of masonry structures generally occurs as local failure or collapse 

because out-of-plane stiffness of walls is not as high as the in-plane stiffness. However 
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out-of-plane failure can be prevented by improving the connection between the walls 

and the floors in order to ensure box-like action of the structure. Figure 1.4 shows both 

out-of-plane behavior and in part in plane behavior of a typical masonry structure.  

 

 

Figure 1.4. Failure types of masonry structures, (a) out-of-plane failure, (b) in-plane failure (Oyguc, 

2017) 

 

Seismic behavior of masonry structures is a critical issue that needs to be discussed 

and examined. As already mentioned before, accurate modeling, reliable input 

parameters and suitable analysis tools are essential for estimating the lateral strength 

of masonry structures in a correct manner. It can be possible to control which of the 

in-plane and out-of-plane actions on the masonry wall have priority. For example, if 

wall-to-wall and wall-to-diaphragm connections in a masonry structure are provided 

appropriately, local brittle failures, in other words out-of-plane failures, that are 

expected to occur as a result of seismic action, are avoided. Moreover, due to shear 

dominated behavior of masonry structures, in-plane mode is more pronounced in the 

structure if good connection details are ensured. Therefore, in analysis of a masonry 

structure, in-plane behavior generally dominates. In the in-plane direction, the walls 

are generally considered as piers and spandrels considering the door and window 

openings. 
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1.1.4. Effects of Openings in Seismic Behavior of Masonry Walls 

If there are openings in masonry walls, such as doors and windows, these should be 

taken into account in the calculation of in-plane shear capacity of the wall. Spandrels 

are known to have a significant effect on the seismic behavior of masonry wall 

(Salmanpour et al, 2013). However, when the strength capacity of masonry walls is 

under concern, strength capacity of piers should be considered first rather than strength 

capacity of the spandrels.  

If there is no opening in masonry walls, the in-plane stiffness of walls can be 

accurately calculated by simple mechanical formulations. On the contrary, if there are 

opening on walls, it becomes more complex to calculate. As the total area of openings 

increases, the in-plane stiffness and strength of the wall eventually decrease. 

Depending on the size and position of the openings, stress concentrations may occur 

at the corners of these openings. The aforementioned in-plane failure modes are too 

much influenced by the size and position of the openings as it is seen in Figure 1.5. 

 

 

Figure 1.5. Different damage examples of masonry wall with openings, (a) diagonal shear crack, (b) 

X shaped crack, (c, d) Out-of-plane collapse (Nayak and Dutta, 2015) 
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1.2. Challenges in Analysis and Design of Masonry Structures 

In today's world, design and analysis of reinforced concrete and steel structures have 

been made easier by developing programs and engineering knowledge. Lots of 

analysis methods and software programs are on the market for these types of 

structures. On the other hand, there are still difficulties in design, analysis, evaluation 

and prediction of the seismic behavior of masonry structures. First of all, since the 

behavior and characteristics of these structural types are very different from each 

other, analysis methods should also differ, as summarized in Table 1.1. While most of 

the analysis methods are used for reinforced concrete and steel structures, they cannot 

be used for masonry structures or these analysis methods yield too much 

computational time in the analysis of masonry. (Giordano et al, 2017). 

 

Table 1.1. Analysis strategies and differences of general structures and masonry structures 

(Giordano et al, 2017) 

 General Structures Masonry Structures 

Material/ structural 

components behavior in 

Service Limit State (SLS) 

 

Linear elastic 

Linear elastic response in 

compression. Very low 

resistance in tension (no-

tension material assumption) 

Material/ structural 

components behavior in 

Ultimate Limit State (ULS) 

In general, it is possible to 

adopt elastic-plastic 

constitutive models in tension/ 

compression. 

Material behavior in 

compression is characterized 

by softening branch. 

 

Modelling 

The structure (usually 3D 

frame) is represented by a 

beam finite element model 

The structure is considered as 

a masonry continuum which, 

in some cases, cannot be 

discretized as a simple frame 

member 

 

Type of analysis 

Response Spectrum Analysis 

(RSA) is recommended by the 

codes and guidelines 

Since elastic analysis cannot 

estimate the redistribution of 

stresses due to cracking, 

nonlinear methods are 

required. 

 

Behavior under seismic 

action 

Global behavior is guaranteed 

by proper node connections 

between structural elements 

In case of poor wall-to-wall 

and wall-to-floor connections, 

extensive cracks and damage 

can lead to the collapse of the 

entire building 
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As the structural properties, construction stages and behavior under seismic action are 

different from each other, the design rules and analysis of masonry structures are not 

as standardized as reinforced concrete and steel structures. The uncertainty in the 

seismic behavior of masonry walls and the reasons for difficulties in design and 

analysis can be summarized as follows.  

First, masonry walls are composite structures. Bearing elements are units (such as 

brick, blocks, etc) and mortar, in which the complexity is formed by the combination 

of unit and mortar. The main reason for the difficulties in the analysis of the masonry 

structures comes from this heterogeneity. Different characteristics of masonry units 

and mortar play crucial roles in the complexity regarding the analysis of the structure. 

These factors can be classified as the dimensions of the units, the quality of the mortar 

and unit, and the combination of these, the mechanical and material properties of the 

units and mortars, and the bond between unit and mortar. In addition, experimental 

measures of the material properties used for the analysis need to be accurate and 

reliable. However, the material properties for masonry units can show large variations 

even from sample to sample in the same batch. Another reason for the issues in 

structural modeling and analysis is that there is not enough material data about most 

of the existing masonry structures. 

As mentioned earlier, most of the masonry buildings appear as residential dwellings 

in rural areas or as historical structures constructed in the past centuries. Lack of 

structural drawings, design specifications, technical reports and lack of knowledge 

about the materials used in construction make structural analysis of these masonry 

structures extremely difficult. In addition to that, another factor that causes difficulty 

in modeling and analysis is the load bearing system. Since these buildings were not 

designed and constructed by using engineering knowledge, the structural system is 

generally not definite and also adequate for the transfer of loads to the foundation 

safely. Hence modeling of the connection of the structural elements and components 

causes complexities and difficulties in the analysis. Although it is relatively easy to 

construct the model in a single wall, considering the whole structural system, the 
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connections of piers, spandrels, lintels and slabs with each other increase the 

difficulties in the analysis (Roca et al, 2005).  

Generally traditional calculation methods are used for the analysis of masonry 

structures that are either numerical or empirical. Analysis methods and modeling 

strategies are mainly different from reinforced concrete and steel structures that cannot 

approached with the same criteria. The fact that the methods of analysis on masonry 

structures is limited compared to the other structures also cause a challenge for the 

engineers. This leads to another drawback, which is the education of engineers in the 

field of structural masonry. Due to the lack of new masonry structures in modern world 

and their usage in modern urbanization, lectures on masonry structures in engineering 

education are less than that of reinforced concrete and steel structures and engineers 

do not have much knowledge about this structural type. Therefore, it is very difficult 

to transfer this knowledge to the field and engineers need to train themselves when 

they have to deal with masonry structures (Lourenço, 1996). 

1.3. Computer Programs for Masonry Structures 

The challenges in analysis and modeling of masonry structures are discussed in 

Section 1.2. Because of these difficulties, analysis and modeling of masonry structures 

are not conducted by conventional strategies and methods like in the case of reinforced 

concrete and steel structures. Although there are lots of software programs that gives 

accurate and reliable results for the analysis reinforced concrete and steel structures, 

software programs are rare in the market to analyze masonry structures. Taking 

economical and reliable solutions results from modeling and analyzing of masonry 

structures, obtaining strength and behavior against to external forces and seismic 

actions and maintaining structural safety at the highest level are based on the 

engineering knowledge and experience rather than the software programs 

(Salmanpour et al, 2013).  

Another reason why masonry structures cannot be analyzed with software programs 

easily is that material and mechanical properties of all components are not precisely 
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known. As mentioned before, since masonry structures consist of complex material 

domain which shows different properties due to heterogeneity, engineers should get 

the required information through laboratory tests or predict the values of these 

parameters. The former requires too much effort and time whereas the latter causes 

misleading results compared to the actual behavior. 

In addition to that design, the rules and regulations of the structure and the system for 

example, the lintels, spandrels, the floor and their connections should be known by the 

engineer for using computers. The lack of this information has pushed engineers to 

obtain results by hand calculations instead of using software programs. It is easy and 

quick way to calculate the strength and seismic behavior of a masonry structure with 

the methods available in the literature. Lack of data, entering inputs to the programs 

and modeling of available information make that the computer programs is a waste of 

time for analysis of masonry structures and is not preferred so much. Of course, these 

methods are not useful for very complex masonry structures, but they provide 

sufficient results for single buildings and having relatively regular construction. 

Therefore, it is both economical, faster and more reliable to use methods provided to 

engineers instead of software programs. As a whole, using computer programs for 

analyzing and modeling of masonry structure is not an easy task so that another 

computational technique should be used. 

1.4. Objectives and Scope 

As mentioned in the previous chapters, it is unnecessary and time consuming to use 

complex programs for masonry structures. Since non-engineering unreinforced 

masonry structures do not have a specific design specification or a structural plan to 

use computer programs, it is not possible to analyze such structures using such 

programs. Instead, it is more appropriate to analyze by selecting simpler methods. The 

aim of this study is to obtain a practical method for estimating the lateral capacity of 

simple non-engineering masonry structures under a certain axial load. This allows the 

lateral capacity of the masonry walls to be easily achieved without having to deal with 
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detailed analysis methods. Load capacity, failure mechanism and behavior of 

unreinforced masonry under stress condition by using limit analysis method is 

presented in this study. By calculating the maximum capacity at the determined points 

of the wall without exceeding the yield criteria at any point of the wall during the 

collapse of the masonry walls, the maximum load on the side of the wall is calculated. 

Main principle that is used is the lower bound theory to calculate ultimate load 

capacity of unreinforced masonry wall. The in-plane failure mode of the masonry wall 

is taken into consideration for the study and calculations are carried out against 

possible damages during this failure mode. For modeling strategy, macro modeling is 

chosen. Wall is considered as a single macro element. Mortar, unit and mortar-unit 

interface are assumed to be homogenized. The reason of assuming the wall as a single 

macro element is that ultimate load capacity of unreinforced masonry wall under stress 

condition can be calculated easier and faster by hand calculation. In addition to that, 

the global behavior of the building is more critical when compared to the local 

behavior of each component. For this reason, material properties of mortar, unit and 

mortar unit interface are not taken into account separately.  

In order to obtain maximum lateral load, only the failure state of masonry wall is 

examined, and Mohr Coulomb failure criteria is obtained from the interface regions to 

obtain the condition of the wall just before the collapse. Lower bound limit analysis 

method is used in this study. Equilibrium equations of stresses are used to ensure the 

system to be in equilibrium state and any point in the system should not exceed the 

yield criteria. The boundary conditions are also taken into account and the lateral 

capacity of the wall is calculated. 

This study is organized in 6 Chapters. In Chapter 2, analysis methods that are used to 

calculate masonry structures are mentioned and their use in literature is given. In 

Chapter 3, the limit analysis method and its application areas are explained. Three 

methods of limit analysis technique are explained and calculation methods are 

presented. Lower bound theory to be used in this study is given in detail in this chapter. 
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In Chapter 4, the calculation method which is developed by using the lower bound 

theory and the detailed procedure of the study are presented. In Chapter 5, sample 

walls that are calculated using the lower bound theory are examined and 

characteristics of these wall types are determined. The results of the experiments for 

the considered walls are compared with the results obtained with the calculation 

method in this study. In Chapter 6, summary of the study and conclusions are 

presented. 
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CHAPTER 2  

 

2. LITERATURE SURVEY ON ANALYSIS TECHNIQUES FOR                   

MASONRY STRUCTURES  

 

2.1. Current State of Practice in Analysis Techniques 

As mentioned in Section 1.3, modeling and analysis techniques of masonry structures 

are not handled by traditional computer programs and calculation methods as in the 

case of reinforced concrete and steel structures. For structural assessment purposes, 

the engineer needs to elaborate models of the mechanical behavior of materials. These 

models can vary widely from very accurate to very simplified ones. Accurate 

mechanical models enable to predict very closely the behavior of the analyzed 

structure when the loads and model parameters are known with good accuracy. These 

models can predict all the essential features and also many features that can be 

unessential in practice. At the other extreme, very simplified models produce limited 

and approximated information about the structural behavior. Nevertheless, this 

information can be enough in quantity and accuracy for engineering assessment 

purposes when the available data about the material properties, boundary conditions 

and loads is also roughly approximated. In order to analyze the masonry structures 

and to obtain proper results, it is necessary to choose the appropriate modeling 

approach and the analysis method. If all necessary data about the analysis of the 

system are known and the appropriate analysis method is chosen, it is easy to obtain 

the expected results for the masonry structure under concern. 

Analysis methods can be categorized as follows: if structures such as historical 

buildings which is unpredictable in behavior against forces, has a complex geometry 

and possess material characteristics in wide variety, an accurate model can be used. 

This analysis model provides almost all the features of the building. If ordinary and 
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simple masonry structures are to be analyzed for which only global response 

parameters are required, it will be more convenient and practical to use simplified 

analyses (Orduna, 2003). Complexity of the unreinforced masonry structure makes 

the analysis more sophisticated.  

First, the structural engineer needs to gather necessary information about the structure 

such as design report, plan layout, geometrical and material properties of the 

components. Next step is to decide the type of analysis to be used in accordance with 

the available structural input parameters and the required level of sophistication for 

the response parameters. The choices are static or dynamic analysis due to the nature 

of loading, and linear or nonlinear analysis due to the expected behavior of the 

structural model. 

2.1.1. Modeling Strategies of Masonry Walls 

In structural modeling phase, masonry structure should be divided into components in 

both macro and micro modeling approaches. Masonry wall, as mentioned earlier, is a 

heterogeneous medium that consist of masonry units and mortar and for the analysis 

of this structure, first of all, it is necessary to decide which modeling strategy should 

be chosen. In micro modeling approach, unit, mortar and unit-mortar interface are 

considered separately and the properties of each ingredient should be known. If more 

accurate results are required for the wall and it is expected to obtain the strength and 

strain states of each of these parts, it would be appropriate to select this detailed 

approach. However, as it can be realized, it would not be feasible to choose this 

modeling strategy if large structures are to be solved, as the calculations for each unit, 

mortar and unit-mortar interface will take too much time. Considering the large 

structures, micro modeling should be replaced with macro modeling because the 

global response of the building is more important than the local behavior of the 

components. In macro modeling, the heterogeneous wall is considered as a composite 

structure and the average strength and stresses are calculated. Therefore, when 

modeling complex and large structures, it would be more accurate to choose macro 
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modeling as the modeling method (Lourenço, 1996) In addition to micro and macro 

modeling techniques, a simplified micro modeling technique can be used in analysis 

of masonry structures. In simplified micro modeling technique, unlike other models, 

units are considered as continuum elements, while unit-mortar interface and mortar 

are considered to act together called as interface elements. On the contrary, in macro 

modeling technique, masonry is represented as continuum as a homogenized material. 

In the homogenization technique, representative element volume (REV) is used to 

evaluate unit, mortar and unit-mortar interface as a whole. This model combines all 

the elements under continuum with a fictitious orthotropic equivalent material and 

help to determine the behavior and limit values of the structure (Milani, 2011). 

Because micro-modeling is more detailed and consumes more time, it is used to 

analysis small structures or detailed components. This technique requires more data 

about the structure, however, relevant data about unit, mortar and unit-mortar interface 

cannot be provided all the time. In Figure 2.1, macro, micro and simplified micro 

modeling can be seen in detail. 

 

 

Figure 2.1. Modeling techniques of masonry, (a) detailed micro modeling, (b) simplified micro 

modeling, (c) macro modeling (Kamal et al, 2014) 

 

2.1.2. Analysis Methods of Masonry Structures 

After modeling the structure by choosing the right strategies, next step is analysis of 

the masonry structure. As mentioned before, it is not easy to analysis the structure 

with software programs as in reinforced concrete or steel structure. However, there 
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are other techniques to make analysis of masonry structure easier in literature. These 

analysis techniques can be classified as; 

• Rigid block analysis 

• Load path method 

• Strut and tie method 

• Equivalent frame method 

• Discrete element method (DEM) 

• Finite element method (FEM) 

• Limit analysis method 

Rigid block analysis method depends mostly on macro - micro element modeling. 

Rigid block analysis for masonry structure is regarded as the most practical analysis 

technique. Although rigid block analysis is the fastest and most practical way to 

analysis masonry structures and understand their behavior, there are some limitations 

of the method. In rigid block analysis, all failure modes cannot be demonstrated. More 

specifically, toe crushing and diagonal tension failure modes cannot be simulated in 

this method for masonry structures. The reason is that, toe crushing and diagonal 

tension failures are caused on masonry wall by high compressive stresses. Because 

wall types under high compressive stress values are not suitable for rigid body 

analysis, these failure types cannot be studied with rigid block analysis method. 

Hence, it is proper to apply this method for wall types exposed to low compressive 

stresses which cause rocking and sliding failure modes (Yi et al, 2006). 

Second analysis method for masonry structures is the load path method. This method 

is very fast and easy to apply in the analysis of masonry structures, which is based on 

equilibrium and compatibility of the structure (Palmisano et al, 2003). 
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Third analysis method in the literature for masonry structures is the strut and tie 

method. This method was developed at the end of nineteenth century for reinforced 

concrete structures as an equivalent truss modeling technique. Load path method can 

be regarded as the extended version of the strut and tie method. Although the strut and 

tie method is very easy to use, there are some disadvantages. One of these is the 

selection of the appropriate model for the calculations. There is debate about the 

validity of the models. Another disadvantage is whether the engineer has full 

knowledge about the application or not. If it is decided to apply the strut and tie method 

is decided to be applied according to the chosen model, the knowledge and experience 

of the engineer in this method is important. If the engineer is not familiar with the 

approach, the technique can be a waste of time (Palmisano, 2016). 

The fourth analysis method is the equivalent frame method. When using this method, 

walls and lintel beams are considered as discrete frame elements. The walls and beams 

are interconnected by rigid arms to make allowance for the real finite dimension of 

the wall (Roca et al, 2005). Complexities of the equivalent frame method comes 

mostly from the irregularities in geometry of structure, which make it hard to idealize 

the structure. In addition to that, limited information about the actual structure and 

lack of experimental tests results cause difficulties in technical aspects.  

The fifth method for analysis of masonry is the discrete element method (DEM) which 

works by analyzing the collection of blocks in boundary states by modeling materials. 

The basic idea is to model the material as a discontinuum element on surfaces between 

different blocks. The DEM is used to model various states of non-linear behavior also 

containing very large displacements. In addition to that, this method is applicable to 

analyze the failures in static and dynamic ranges (Roca et al, 2010). The drawback of 

this technique is that it needs high computational effort. In addition to that, this method 

deals with nonlinearity and engineers should know previous failure conditions of 

masonry before the analysis and this information cannot be always accessible.  
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The last and probably the most commonly used analysis method for both masonry and 

other structures is the finite element method (FEM). In this method, there are three 

modeling strategies for masonry structures as micro modeling (brick, mortar and 

brick-mortar interface separately), simplified micro modeling (bricks and interface 

separately) and macro modeling. In finite element method, the structure is divided into 

meshes. Thus, the relationship between nodal forces and displacements can be 

established for each mesh. Equilibrium equations are written using external loads. 

Boundary conditions are defined. Then the system of equations is created using 

equilibrium equations and boundary conditions. The system is then resolved using 

nodal displacements. By using these displacements, strain and stress values at the 

nodes are obtained (Lourenço, 1996). In finite element analysis, masonry structure is 

subjected to incrementally increasing in-plane loading up to the ultimate state. Figure 

2.2 shows the typical finite element mesh that Page and Ali (1988) stated in their study. 

For saving the computing time with negligible loss of accuracy, four noded 

quadrilateral elements are used where finer mesh has been employed near the loading 

point rather than more complex higher order elements. 

 

 

Figure 2.2. Finite element mesh (Ali and Page, 1988) 
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In finite element analysis, under low levels of loading, the elements are supposed to 

show elastic behavior and stresses are obtained according to this situation. As the load 

is increased, elements are accepted to show elastic-brittle behavior on condition that 

stresses are in tension direction, else elements are regarded as in nonlinear behavior. 

Two kinds of iterations are utilized to proceed from low levels to high levels of 

loading. One of them allows nonlinearity of the material. The other one allows the 

cracking to progress. Under specified loading, iterations continue as long as forces at 

the nodes are below the given value of tolerance. If the failure occurs, it will disperse 

to the entire width of the structure. The stiffness coefficient value is reduced in 

accordance with the failure type used. The stresses at the time the fracture occurs are 

distributed to other regions immediately or step by step. This dispersion depends on 

the type of failure the structure undergoes and the postcracking situation of the 

material. Repeated correction cycles for nonlinearity of material and control for failure 

continue until converging to a solution. These applications are repeated at each load 

increase mentioned above. The final failure occurs due to huge residual forces or 

absence of convergence when the deformations are calculated [Ali and Page, 1988]. 

Although finite element method is mostly used for masonry structure analysis, there 

are also disadvantages of this technique. First one is related to the identification of 

material properties of masonry structure, which is composed of brick and mortar with 

different material properties and different behavior under loading. Mortar joint 

between the units create anisotropic behavior and this makes it hard to get the actual 

material properties of the elements of masonry structures. The more data required, the 

more difficult is the method to be used for masonry structures. Because the required 

data may not be available or it may cause too much effort and time to obtain, method 

that require too much data such as finite element analysis is not always suitable for 

masonry structures (Mojsilovic, 2011). Another disadvantage is that finite element 

analysis is very time consuming and needs high computational effort. Because the 

analysis is conducted with step by step solution with incremental loading condition 

and iteration, it is not easy task to use it for large structures and it is time consuming 
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for practicing engineers. In addition to that, the selected parameters must be handled 

appropriately and carefully for these calculations. As a consequence, this method is 

suitable for special and important structures, but not for ordinary structures that should 

be analyzed frequently (Yi et al, 2006). 

2.1.3. Limit Analysis Theory and Applications 

Limit analysis method is successful, easy to apply to determine the ultimate capacity 

of masonry structures under given loading and stress state. Because masonry 

structures show complex behavior, limit analysis method make the analysis easier for 

engineers and give appropriate results about failure with minimum information about 

structure. Plasticity provides one of the most useful tool to calculate the approximate 

maximum load that structure can take. Plasticity has revealed two methods for 

calculating maximum approximate value. These are lower bound theorem and upper 

bound theorem. Although these methods will be explained in detail in the next 

chapters, they can be summarized as follows: Lower bound theory states that if the 

stresses that provide the internal equilibrium and boundary conditions of the system 

are lower than the yield stress value throughout the system, then collapse will not 

occur. The regions that meet this criterion in the lower bound theorem are called 

statically admissible stress fields. In upper bound theory, if the internal energy 

dissipation of the body is less than the work performed by the external forces, the 

collapse occurs. The regions that meet this criterion in the upper bound are called 

kinematically admissible stress fields (Davis and Selvadurai, 2009). 

Limit analysis method is a simple tool and has many advantages to calculate maximum 

load under applied loading for masonry. Collapse mechanisms and stress distributions 

and ultimate strength of masonry can be determined by using limit analysis. It requires 

less material parameters, which hard to obtain for masonry structures, when compared 

to other types of analysis method. In addition, it also requires less computational time 

when compared to other methods, especially the finite element method. There are 

various types of analysis methods to be used by engineers. These methods vary 
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according to the type of structure and behavior made of the building analyzed. These 

types of analysis can be divided into two categories. First one is linear and nonlinear 

static analysis whereas second one is linear and nonlinear dynamic analysis. In this 

study, unreinforced masonry is chosen as the case study structural model. Since 

unreinforced masonry has a very low tensile strength and it exhibits inelastic action 

even under low levels of lateral load, linear analysis is not as considered a very suitable 

method. In addition to that, applying nonlinear analysis to unreinforced masonry 

structures is a very complex and time-consuming task as mentioned before. It requires 

intensive calculations and complex modeling techniques. Therefore, the most suitable 

method for calculating the maximum load that unreinforced masonry can take seems 

to be the limit analysis with macro block (Mendes, 2014). 

2.2. Literature Survey 

Analysis methods of masonry structures, such as rigid block analysis, load path 

method, strut and tie method, equivalent frame method, discrete element method, 

finite element method and limit analysis method, are studied in the literature by many 

authors. 

Orduña (2017) studied non-linear static analysis which is performed by rigid block 

approach. He concluded that, some failure types cannot be studied by rigid block 

analysis and the method is suitable for wall types that are subjected to low stresses, 

which cause mainly shear failure. Yi et al (2006), obtained the maximum strength of 

masonry by using this method as an of upper-bound value. 

Roca (2006) calculated the ultimate load capacity of masonry structures with simple 

equilibrium model under load path method. He also studied strut and tie method. The 

behavior of walls under vertical and horizontal forces was studied with this analysis 

method. Palmisano et al (2003) also chose load path method to assess the behavior of 

masonry structures under principal stresses.  

Siano et al (2017) studied equivalent frame method in their study as a simplified 

procedure for structural modeling of masonry constructions with huge achievement 
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for the great harmony between the integrity of geometric identification and the 

convenience of mechanical calibration. Besides this, Quagliarini et al (2017) Roca et 

al (2005) also employed this method to analyze masonry structures. 

Discrete element method and finite element method were also used by many 

researches. Roca et al (2010) studied discrete element method in order to analyze 

structural failures during static and dynamic loading. Sutcliffe et al (2001) studied 

finite element and lower bound theorem to calculate collapse load of masonry 

structure under in-plane loading by the help of Mohr-Coulomb approximation with 

three-node triangular elements. Mihai and Ainsworth (2009) used finite element 

procedure to obtain limit loads of linear-elastic blocks. Mohammed (2010) used a 

Fortran code for finite element analysis of walls and he observed the behavior of the 

masonry walls under monotonic loading. Senthivel and Lourenço (2009) investigated 

failure modes of stone masonry walls under combined axial compression and lateral 

shear load by using finite element analysis with micro modelling strategy. Ali and 

Page (1988) also studied failure condition of a brick masonry structure with finite 

element analysis under in-plane loading. In addition to these authors, finite element 

method was employed for masonry structures by Abdulla et al (2017) and Milani 

(2008). 

In the literature, limit analysis method has also been studied by many authors. Milani 

et al (2007) studied limit analysis for unreinforced masonry structure under in-plane 

and out-of-plane loading and obtained collapse loads for the structure. In addition to 

that, Milani et al (2006.b) combined finite element analysis and limit analysis to obtain 

failure surfaces by both lower and upper bound limit analysis approach. Orduna and 

Lourenco (2005) studied limit analysis by modeling a three dimensional rigid block 

system. In this study, the formulation that was used provide compressive and torsion 

failures. Portioli et al (2015) also investigated this method in an efficient solution 

procedure for the crushing failure in 3D limit analysis of masonry block structures 

with non-associative frictional joints. Beside these studies, Li and Yu (2005) used 

upper bound limit analysis method to search for an answer to a nonlinear programming 
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problems. Serviceability of the upper bound theorem was shown in various numerical 

examples in that study. Kawa et al (2008), studied brick masonry structures by using 

lower bound analysis. They constructed plastically admissible stress field in 

accordance with equilibrium and boundary conditions. This method is also 

investigated by Milani (2015), Jiang (1994), Milani (2011), Livesley (1978), Gilbert 

et al (2006), Biolzi (1988), Li et al (2017). Limit analysis can also be used in soil 

stability problems by plasticity theory. Sloan (1988) is one of the authors that used 

this method for soil mechanics. In addition to that, Drucker and Prager (1951), 

Michalowski (2000), Chen and Scawthorn (1968) and Lia and Cheng (2012) invoked 

limit analysis by studying on soil mechanics. 
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CHAPTER 3  

 

3. LIMIT ANALYSIS 

 

3.1. Introduction 

Theory of elasticity and plasticity are two branches of mechanics to understand the 

behavior of solid states. Elasticity theory focuses on linear elastic response without 

irrecoverable changes in strain, which means reforming to its original shape after 

loading is removed. Basic structural analysis is based on the elastic theory (Chen, 

2000). On the contrary, in theory of plasticity, permanent deformations exist, after 

elastic stage has been exceeded and stresses cause deformation even though loading 

is removed. Limit analysis is the simplest and most useful method for performing 

plastic analysis compared to other methods. This theory was first developed in 1952 

by Drucker and Prager in Brown University. 

The use of limit analysis method for reinforced concrete structures began with 

Johansen (1930), who was developer of Yield-Line Theory for slab design and used 

upper bound theory of limit analysis. In the following research, Gvozdev (1960) 

studied limit analysis for reinforced concrete structure in an innovative manner for the 

first time. Lower bound theory of limit analysis, then, was investigated by Drucker for 

reinforced concrete beam design by using stress fields in 1961. Muttoni et al, improved 

this technique in later years by more practical ways for concrete structures in 1997. 

Limit analysis is also used and provide benefit for soil mechanics in stability problems. 

Limit equilibrium method proposed by Terzaghi (1943) is the most powerful and 

common technique for the analysis of soil stability in favor of Mohr Coulomb failure 

criterion. Developments and studies related to soil plasticity was concentrated in 

1960s at the University of Cambridge. Critical State Soil Mechanics, published by 
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Professor Roscoe and his team in 1968, has shed light on soil stability analysis in the 

coming years. (Schofield and Wroth, 1968). 

Although masonry is the oldest construction type and has been existing from the very 

first centuries to the present time, developments of analysis methods for masonry are 

not so developed. Limit analysis in masonry structure was investigated first by Galileo 

and Hooke in 17th century. It is not modern limit analysis method but they used the 

basics of the theory.  Robert Hook stated that “Ut pendet continuum flexile, sic stabit 

contiguum rigidum inversum” – “As hangs the flexible line, so but inverted will stand 

the rigid arch” in 1675. This statement was later developed by Poleni. It was used to 

analyze the cracking in the dome of St. Peter's Church (Orduna, 2003). After Poleni, 

bearing capacity of masonry arches were calculated with limit analysis method by 

Coulomb in 1776 which is close to the modern limit analysis theory. Gvozdev and 

Drucker and Prager are also the developers of limit analysis method for masonry 

structures. In addition, Heyman (1966) is the most well-known researchers which used 

and developed limit analysis method based on plasticity theory and limit analysis rules 

for masonry arches. Limit analysis is the simplest and the most useful method for 

performing plastic analysis compared to other methods. Limit analysis provides 

convenience and time saving in the analysis of masonry buildings. 

3.2. Basics of Limit Analysis 

Elastic analysis does not answer questions about reserve strength after the elastic limit. 

In other words, if stress exceeds the yield limit, the actual stress cannot be achieved 

by elastic analysis. Therefore, elastic analysis does not help to learn the total strength 

of the structure. 

As it can be seen in Figure 3.1, when the material exhibits plastic behavior after the 

elastic limit or in other words the yield point, the analysis should be performed 

according to the plastic properties of the material. After this point, the reserve strength 

of the structure after the elastic limit is revealed. Plastic analysis ensures that the 
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remaining strength is obtained. Thus, the maximum strength of the structure is reached 

(Karnovsky and Lebed, 2010). 

 

 

Figure 3.1. Stress-strain curve of ductile material 

 

Since the plastic analysis is used to calculate the maximum load that the structure can 

take, the classical limit analysis method is defined based on the rigid perfectly plastic 

model, which is illustrated in Figure 3.2. Thus, the maximum load the structure can 

take can be calculated and failure mechanism can be determined by using the limit 

analysis method. 

 

 

Figure 3.2. Stress-strain curve of rigid - plastic material 
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If the load applied to the system is less than the elastic limit, i.e. yield point, there will 

be no deformation and the system will return to its original state. From this point of 

view, no stress field can be defined for materials with stress values less than the yield 

stress. If the stress is increased above the yield point to the structure, unlimited 

deformation is possible even if there is no change in the loading after yielding. The 

state in which this event occurs is called "collapse by yielding". The last point where 

the load reaches its ultimate limit is called the "collapse load". It is also defined as the 

failure load. Since the load corresponds to the maximum load to be carried by the 

structure, the load carrying capacity of the building is also defined. The term limit 

analysis comes from this collapse by yielding state (Nielsen and Hoang, 2010). 

If the structure is not very complex and/or very large and if the maximum load that 

the structure can carry is required without detailed calculations, it is best to use the 

limit analysis method. The limit analysis is based on rigid perfectly plastic behavior 

and the way to move to the plastic phase is through the yield point. Therefore, yield 

function φ is used as the basis for the limit analysis method. There are 3 cases in which 

the yield function can be found; 

1) φ < 0 case, in which the stress value to the system has not yet reached the yield 

point and the structure is not damaged. 

2) φ = 0 case, in which the load to the system has reached the yield point and the 

structure is on the verge of plastic deformation. 

3) φ > 0 case, in which the load to the system has exceeded the yield point and the 

stress condition is not acceptable. 

Limit analysis method is composed of three theorems. These are the lower bound or 

static theorem, the upper bound or kinematic theorem and the uniqueness theorem. In 

following paragraphs, these theorems are briefly explained. 

Assume that, when maximum load level is reached in failure state, the load factor is 

δF. In case the structure remains on the safe side, that is, no collapse occurs, the internal 
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loads of the system must be in equilibrium with external loads. In addition to that, 

yield conditions must be provided. Yield condition is the case where the stress level 

applied to the structure is less than or equal to the strength of the material as described 

previously. This condition where the equilibrium state and yield condition are 

provided is called the lower bound or the static theorem. It is also known as the safe 

theorem. The largest statically admissible load factor is chosen within all the statically 

admissible load factors of the system and that is the safety factor δL. In other words, 

if the load safety factor δL of the system is less than or equal failure load factor δF, the 

system does not collapse as long as equilibrium of the system and yield conditions are 

maintained.  In the lower bound theorem, maximum load factor is sought within the 

load factors. 

In the case the upper bound theorem is applied, the structure becomes a mechanism. 

For each kinematically admissible mechanism, the load factor δU is assumed to be 

equal to or greater than the safety factor in the upper bound theorem while smallest of 

the load factor is chosen as safety factor in the lower bound theorem. In other words, 

if the load safety factor of the system δU is equal to or greater than failure load factor 

δF, the system collapses if the external work applied to the system is less than the 

internal work of the system. In the upper bound theorem, minimum load factor is 

sought within the load factors (Mendes, 2014). 

The third limit analysis approach is the uniqueness theorem. The safety factor for the 

lower bound theorem can be equal to or less than the failure load factor δF. On the 

other hand, in the upper bound theorem the safety factor can be equal to or greater 

than the failure load factor. If the load factor of the system δL obtained from the lower 

bound theorem and the load factor δU obtained from the upper bound theorem are 

equal, the system is both in statically admissible stress condition and not on the safe 

side. In other words, the uniqueness theorem occurs when both mechanisms from the 

upper bound and the equilibrium equation and yield condition from the lower bound 

theorem are provided, and the safety factors of the two states are equal to each other 

and hence equal to the failure load factor δF. Failure load factor δF in the uniqueness 
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theorem is obtained by the safety factors obtained from two approaches. In Figure 3.3 

three cases of limit analysis and their load factors can be seen. 

 

 

Figure 3.3. Limit analysis methods and load factors (Mendes,2014) 

 

Lower bound and upper bound theorems are powerful methods that have been used 

for many years. Limit analysis method used in various analyses has provided 

simplicity and speed of calculation. Limit analysis method employs stress fields or 

velocity fields in the body, depending on the selected theorem. These fields help to 

obtain the maximum load that the structure can take or to obtain an approximate result 

of limit loads (Jiang, 1994). 

3.2.1. Yield Surface and the Related Criteria 

As mentioned above, if the system is loaded up to the yield level, the system exceeds 

elastic range and starts to exhibit plastic behavior. In this case, even if the load is 

completely lifted, the system cannot be completely restored and a permanent 

deformation is obtained. Any system that exceeds the yield level gets closer to 

collapse. There are many theorems that explain the concept of yielding. The most well-

known of these are the Tresca theorem and the Von-Mises theorem. 
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According to Trescas’s yield theorem, if maximum shear stress that occurs due to 

external loads acting on a mechanical system reaches to an ultimate value (τyield), 

yielding begins and the system shows plastic deformation. Hence all admissible stress 

fields should satisfy the inequality  

𝜏 ≤ 𝜏𝑦𝑖𝑒𝑙𝑑 (3.1) 

On all points of this system, where τ stands for shear stress and calculates as 

In the Von Mises theorem, again shear stress is used to provide the yield criteria. 

However, strain energy of shear deformation is considered instead of maximum shear 

stress. Accordingly, yielding starts when the strain of energy resulting from the loads 

applied to the system is equal or greater to the energy at the moment of yield of the 

system. 

where σ1, σ2 and σ3 are the principal stresses when σyield is the yield stress. Figure 3.4 

shows a comparison of the Tresca and the Von mises yield surfaces. 

 

 

Figure 3.4. Tresca and Von Mises yield criteria (Bocko et al,2017) 

𝜏 =
𝜎1 − 𝜎3

2
 (3.2) 

1

2
((𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2) = 𝜎𝑦𝑖𝑒𝑙𝑑 

(3.3) 
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3.3. Heyman's Assumptions on Masonry Structures 

As mentioned previously, masonry structures are more complex and difficult to 

analyze than reinforced concrete and steel structures, and certain difficulties may be 

encountered when applying the limit analysis method to masonry structures. Heyman 

(1966) has identified three assumptions to be considered when analyzing masonry 

structures. These assumptions are not absolutely correct for the structure being 

analyzed, but are based on his previous experience, which should be considered before 

or during the application to obtain a better result. These three assumptions can be 

stated as follows; 

1) Masonry has no tensile strength: Materials that constitute a masonry wall (i.e. units 

and mortar) have low tensile strength, which is generally the main cause of failure. 

Therefore, ignoring the tensile strength is a conservative and reasonable assumption. 

2) Masonry has unlimited compressive strength: If the average stress is taken into 

account, it can be assumed that masonry has unlimited compressive strength. In 

masonry structure under high compressive forces, damage due to compressive stresses 

can be formed as splitting or crushing. These types of damage are not as crucial as the 

damage caused by tension cracks. 

3) Sliding failure does not occur in masonry: This statement is not always valid in 

masonry structures. It has been observed that sliding failures occurs especially in 

masonry structures constructed using stone units. However, it has been seen that 

providing a slight prestressing is sufficient to prevent these sliding failures in masonry 

structures. 

3.4. The Lower Bound Theory 

In lower bound theorem, some conditions need to be satisfied to ensure that the 

structure is on the safe side. These conditions can be sorted as; 

1) Satisfying equilibrium equations (the internal loads of the system must be in 

equilibrium with external loads) 
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2) Satisfying the boundary conditions 

3) Any point in the body does not violate the yield condition (yield condition is the 

case where the stress level applied to the structure is less than or equal to the strength 

of the material) 

As long as these three conditions are provided, the load condition at any point in the 

system cannot be greater than the actual collapse load. The conditions provided by 

these conditions are called statically admissible stress field. As it can be realized, the 

lower bound theory takes into account only the equilibrium and yield. The kinematic 

state of the system is not the subject of the lower bound theorem. The load on the 

structure is multiplied with load factor δ which is increased from zero to its final value. 

Limit load factor is failure load factor δF. The largest statically admissible load factor 

is chosen within the all statically admissible load factors of the system and that is the 

safety factor is δL. In other words, if the load safety factor δL of the system is less than 

or equal failure load factor δF, the system does not collapse while equilibrium of the 

system and yield conditions are provided. If the appropriate statically admissible stress 

field is provided for the structure, the system is safe (Orduna, 2003). 

One of the most important advantages of the lower bound theorem is that complex 

loads and structures with different geometries can be analyzed easily. Although 

analysis of such structures normally takes a lot of time with complex methods and 

programs, lower bound theorem ensures computational time saving. Briefly, lower 

bound theorem is not only a very simple method in terms of reaching the maximum 

loads that structures can take, it is also easy and convenient method that minimizes 

the computational effort. 

3.5. The Upper Bound Theory 

In the upper bound theorem, some other conditions should be provided to ensure that 

the structure is on the unsafe side. These conditions can be defined as; 

1) Satisfying the velocity conditions 
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2) Satisfying the strain velocity compatibility conditions which should not be less than 

the actual collapse value. 

As long as these two conditions are provided, the load condition at any point in the 

system cannot be less than the actual collapse load. In other words, if the work 

resulting from external loads in the system is equal to or greater than the rate of 

dissipation in the internal energy, then the collapse occurs. The conditions provided 

by these conditions are called kinematically admissible deformation field. The 

theorem takes into account the calculation of velocity and energy dissipation. That 

means, unlike lower bound theorem, it is not necessary to provide stress dissipation in 

equilibrium. 

The load on the structure is multiplied with load factor δ. Limit load factor is the failure 

load factor δF. The smallest load factor is chosen within all the admissible load factors 

of the system and that is the safety factor is δU. In other words, if the load safety factor 

of the system δU is equal to or greater than failure load factor δF, the system collapse 

if the external work applied to the system is less than the internal work of the system. 

If the appropriate kinematically admissible stress field is provided for the structure, 

the maximum load that the system can take is obtained. 

3.6. The Uniqueness Theorem 

In the uniqueness theorem, if both statically admissible stress field and kinematically 

admissible velocity field are satisfied at the same time, then the uniqueness theorem 

takes place.  

The load condition necessary for statically admissible stress field must be less than or 

equal to the collapse load. On the other hand, the load condition necessary for 

kinematically admissible velocity field must be equal to or greater than the collapse 

load. In the uniqueness theorem where these two conditions are supplied together, the 

load is unique and is equal to the collapse load. 



 

 

 

37 

 

In the collapse state, all parts of the system are not deformed and stresses in the non-

deformed parts cannot be found using this theorem. With this method, only stresses 

within or on the yield surface are obtained. It is possible to have different geometric 

areas of the same load carrying capacity within the system, because both conditions 

must occur simultaneously for uniqueness theorem to occur. When studying these 

different geometric fields, there may be situations in which stresses are equal at 

different places in the body, in which strains are different than zero. So, with this 

theorem, the load that the system can carry is calculated. However, it is not a suitable 

theorem to uniquely identify failure mechanism or stress fields (Nielsen and Hoang, 

2010). 
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CHAPTER 4  

 

4. METHODOLOGY 

 

4.1. Introduction 

Limit analysis theorem is a common method used to determine the strength of 

structures and provides time savings. There are two options for the solution of a 

problem which are the upper bound method and the lower bound method. The lower 

bound method is used in this study for analysis of ultimate load on masonry walls. 

Lower bound theory states that if the stresses that provide the internal equilibrium and 

boundary conditions of the system do not violate the yield criterion throughout the 

system, then collapse will not occur as discussed in Chapter 3. An application of lower 

bound method for analysis of masonry wall is explained in this Chapter. 

4.2. Method of Analysis 

It is assumed that a masonry wall is exposed to in-plane stresses. So a wall to be 

analyzed is first divided into an appropriate number of rectangular panels. 3 in-plane 

stress components σX, σY and τ are accepted as internal stresses for each node. The 

out-of-plane stresses are all taken as zero. After obtaining equilibrium equations for 

each rectangular panels, boundary conditions are determined. Mohr Coulomb failure 

theory is implemented in lower bound method. The equations obtained using Mohr 

Coulomb failure theory are used for each node of the wall in order to obtain ultimate 

stress conditions of these nodes. A computer program in the language of Matlab2017b 

(Mathworks, 2017) is developed. Thus the ultimate load that can be applied on a wall 

before collapse is found. 
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4.3. Procedure of The Study 

For each wall type, the wall was first divided into rectangular panels. The unknowns 

are stresses on each node located on corners of these panels. It is assumed that any 

stress component is changing linearly between nodes. Calculations are performed 

before the analysis of sample wall types into the software environment in order to 

calculate maximum lateral load which wall sample can carry. The equations to be 

determined are obtained from the principles of lower bound method described in 

Chapter 3. These are;  

1) satisfying equilibrium equations for each rectangular panels for static equilibrium, 

2) satisfying the boundary conditions, 

3) satisfying yield condition by applying Mohr Coulomb failure criteria to each nodes. 

So the number of equations should be consistent with the number of unknown stresses. 

4.3.1. Stresses on Nodes of Rectangular Panels 

To analyze masonry walls, each wall should be divided into rectangular panels. Stress 

condition is assumed at each node of a panel which consists of normal stresses σX and 

σY and shear stress τ, considering only the in-plane stresses of the body. Figure 4.1 

presents a sample wall with 4 rectangular panels and an illustration of stresses on node 

i. Each node on the wall is indicated by a black dot.   
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Figure 4.1. Determination of stresses (a) a wall with 2x2 rectangular panels, (b) an illustration of 

stresses on node i 

 

In a system with three unknown stresses for each node, the total number of unknowns 

is three times the total number of nodes. These are unknown internal stresses of the 

wall. In addition, the ultimate lateral load which is indicated by H is considered 

unknown. The total vertical load on a wall which is shown by V is supposed to be 

known. In order to find unknowns of the system, a system of equations should be built. 

In case of linear equations, these equations yield to 

 

[𝐴] ∙ {𝜎} = {𝐵} (4.1) 

 

Here, {σ} is a vector consisting of all unknowns. [A] is the coefficient matrix 

consisting of multipliers for stresses in equations and {B} is the vector consisting of 

the constant terms in these equations. All available equations will be written on the 

matrices one by one for each unknown. These equations are explained in the following 

sections. 
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4.3.2. Equations for Static Equilibrium 

First rule of the lower bound method is satisfying equilibrium equations which is 

mentioned in Section 3.4. The equilibrium in the x direction and in the y direction 

must be maintained for each rectangular panel. Positive stress conditions are accepted 

for each node for the stress distributions. Figure 4.2 shows the stress distribution on 

the periphery of a rectangular panel which has four nodes, i, j, l and m. The dimension 

in x direction of the block is shown as 'a' and the dimension in y direction is shown as 

'b'. The thickness of the wall in out-of-plane direction is equal to 't'. 

 

 

Figure 4.2. General stress distribution for a rectangular panel 

 

The stress change between the two nodes was assumed to be linear. The total force 

acting on each side was found from the area of the trapezoid. Figure 4.3 presents the 

resultant forces acting on each side. Formulas for the resultant normal forces and 

resultant shear forces obtained from normal stresses and shear stress acting on each 

edge of a panel are as follows;  
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𝐹𝑋𝑖𝑙
= (𝜎𝑋𝑖 + 𝜎𝑋𝑙) ∙ (

𝑏

2
) ∙ 𝑡 

(4.2) 

 

 

where FXil is resultant normal force and, FSil resultant shear force acting on the side 

between nodes i and l. 

𝐹𝑌𝑖𝑗
= (𝜎𝑌𝑖 + 𝜎𝑌𝑗) ∙ (

𝑎

2
) ∙ 𝑡 (4.4) 

 

 

where FYij is resultant normal force and, FSij resultant shear force acting on the side 

between nodes i and j. 

𝐹𝑋𝑗𝑚
= (𝜎𝑋𝑗 + 𝜎𝑋𝑚) ∙ (

𝑏

2
) ∙ 𝑡 

(4.6) 

 

 

where FXjm is resultant normal force and, FSjm resultant shear force acting on the side 

between nodes j and m. 

𝐹𝑌𝑙𝑚
= (𝜎𝑌𝑙 + 𝜎𝑌𝑚) ∙ (

𝑎

2
) ∙ 𝑡 (4.8) 

 

 

𝐹𝑆𝑖𝑙
= (𝜏𝑖 + 𝜏𝑙) ∙ (

𝑏

2
) ∙ 𝑡 

(4.3) 

𝐹𝑆𝑖𝑗
= (𝜏𝑖 + 𝜏𝑗) ∙ (

𝑎

2
) ∙ 𝑡 (4.5) 

𝐹𝑆𝑗𝑚
= (𝜏𝑗 + 𝜏𝑚) ∙ (

𝑏

2
) ∙ 𝑡 

(4.7) 

𝐹𝑆𝑙𝑚
= (𝜏𝑙 + 𝜏𝑚) ∙ (

𝑎

2
) ∙ 𝑡 (4.9) 
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where FYlm is resultant normal force and, FSlm resultant shear force acting on the side 

between nodes l and m. 

 

Figure 4.3. The resultant forces acting on each side of a rectangular panel 

 

In order to satisfy equilibrium, the total forces acting in x and y direction must be 

equal to zero.   

 

−𝐹𝑋𝑖𝑙
+ 𝐹𝑋𝑗𝑚

+ 𝐹𝑆𝑖𝑗
− 𝐹𝑆𝑙𝑚

= 0 (4.10) 

 

        𝐹𝑌𝑖𝑗
− 𝐹𝑌𝑙𝑚

− 𝐹𝑆𝑖𝑙
+ 𝐹𝑆𝑗𝑚

= 0 (4.11) 

 

In addition to equilibrium equations of each panels, in order to satisfy equilibrium, 

total moment created by the forces acting on the wall ∑M should be equal to zero. 

Figure 4.4 shows the reaction forces at bottom nodes and their moment arms. It is 
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assumed that the sum of external forces acting on right and left sides of a wall is equal 

to zero. 

 

 

Figure 4.4. Reaction forces and center of gravity of trapezoidal distributed forces 

 

Sum of moments around the node located on the right down corner (r) is calculated. 

In Figure 4.4 moment arms of forces Fyop which is acting between nodes o and p and 

Fypr which is acting between nodes p and r, are lop and lpr respectively. These moment 

arms are formulated as 

 

𝑙𝑜𝑝 = 𝑎 + (
𝑎

3
) ∙ (

𝜎𝑦𝑝 + 2 ∙ 𝜎𝑦𝑜

𝜎𝑦𝑝 + 𝜎𝑦𝑜
) 

 

(4.12) 

𝑙𝑝𝑟 = (
𝑎

3
) ∙ (

𝜎𝑦𝑟 + 2 ∙ 𝜎𝑦𝑝

𝜎𝑦𝑟 + 𝜎𝑦𝑝
) 

(4.13) 
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Total moment around node r on Figure 4.4 is; 

 

𝐹𝑌𝑜𝑝
· 𝑙𝑜𝑝 + 𝐹𝑌𝑝𝑟

· 𝑙𝑝𝑟  +  𝐻 ∙ (2 ∙ 𝑏) + 𝑉 ∙ 𝑎 = 0 (4.14) 

 

The ultimate lateral load H is calculated by using nodal stresses on top of a wall as 

explained in Section 4.3.5. This formula is extended for wall models with more 

rectangular panels. The equations of equilibrium (4.10) and (4.11) are applied to each 

rectangular panels. Equation (4.14) is also written in terms of stresses so that all 

equations of equilibrium can be substituted in Equation (4.1). 

4.3.3. Equations for Boundary Conditions 

The boundary conditions should be satisfied according to the second rule of lower 

bound method (Section 3.4). Boundary conditions can be divided into three. These are 

boundary conditions on top of the wall, sides of the wall and around openings. The 

equations for boundary conditions are applied on each node at sides of a wall. 

4.3.3.1. Boundary Conditions on Sides of the Wall 

Boundary condition for the sides is based on the forces coming to the right and left 

sides of the wall. In Figure 4.5 a wall with 2 by 2 rectangular panels is illustrated as 

an example. The resultant forces due to internal stress distribution between nodes i 

and l are given at the edges of the wall. The width in x direction of the block is shown 

as ‘a’ and the dimension of y direction is shown as ‘b’ in the figure. The resultant 

normal forces are calculated as shown by the Equations (4.2) and (4.6) whereas the 

resultant shear forces are calculated as shown by Equation (4.3) and (4.7). 
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Figure 4.5. Illustration of sample 2x2 meshed wall with internal forces at sides of the wall 

 

In the situation where only lateral load H and vertical load V coming from top of the 

wall, there is no external axial force in the x direction and external shear force acting 

on the left and right sides of the wall. Therefore, the resultant forces on right and left 

side of a wall should be all equal to zero. Total forces equations between every node 

located at the right and left sides of the wall can be written as; 

 

(𝜎𝑥𝑖 + 𝜎𝑥𝑙) ∙ (
𝑏

2
) ∙ 𝑡 = 0 

(4.15) 

 

These equations are generic for all rectangular panels located at the right and left 

boundary of a wall. 

4.3.3.2. Boundary Conditions of Top of the Wall 

After providing the right and left boundary conditions, the boundary conditions at the 

top edge of the wall should be considered. Vertical forces acting on top of the wall are 

(𝜏𝑖 + 𝜏𝑙) ∙ (
𝑏

2
) ∙ 𝑡 = 0 

(4.16) 
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calculated from normal forces acting on the top of the wall between nodes i, j and k. 

Vertical forces acting on a wall with four rectangular panels are shown in Figure 4.6. 

 

 

Figure 4.6. Calculation for the external force acting on top of the wall 

 

In order to satisfy equilibrium on top of the wall, total force acting in vertical direction 

should be equal to vertical load V applied on a wall. Equation of total forces on the 

top of the wall can be written as; 

 

((
𝑎

2
) ∙ 𝑡) ∙ (𝜎𝑌𝑖

+ 𝜎𝑌𝑗
) + ((

𝑎

2
) ∙ 𝑡) ∙ (𝜎𝑌𝑗

+ 𝜎𝑌𝑘
) = 𝑉 

(4.17) 

 

4.3.3.3. Boundary Conditions around Openings 

If there are openings on a wall such as windows and doors, the boundary conditions 

around these openings should be defined. In Figure 4.7, there is an opening between 
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nodes i, j, k and l. Axial forces on the lines connecting these nodes are calculated by 

Equation (4.2) and (4.6). 

 

Figure 4.7. Total forces acting on sides of the opening 

 

It is assumed that there is no external normal force on the sides of the window in the 

x direction. Therefore, the total force between right and left sides of windows should 

be equal to zero as shown in Equation (4.18a) and (4.18b). Since shear force from the 

top edge of the window is supposed to be transmitted through the window edges, then 

shear force acting on left and right side of a window are supposed to be different from 

zero.  

(𝜎𝑋𝑖 + 𝜎𝑋𝐾) ∙
𝑏

2
∙ 𝑡 = 0 

(4.18a) 

 

(𝜎𝑋𝐽 + 𝜎𝑋𝑙) ∙
𝑏

2
∙ 𝑡 = 0 

(4.18b) 

 

4.3.4. Application of Mohr Coulomb Failure Criterion 

The Mohr Coulomb failure criterion is related to maximum principal stresses σ1 and 

minimum principal stress σ3. By ignoring the intermediate principal stress σ2, it 
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explains the ultimate stress condition of an isotropic material in a three-dimensional 

stress space. From Mohr's stress circle principal stresses are obtained as; 

 

𝜎1 =
𝜎𝑥 + 𝜎𝑦

2
+ √(

𝜎𝑥 − 𝜎𝑦

2
)

2

+ 𝜏𝑥𝑦
2  

(4.19) 

 

𝜎3 =
𝜎𝑥 + 𝜎𝑦

2
− √(

𝜎𝑥 − 𝜎𝑦

2
)

2

+ 𝜏𝑥𝑦
2  

 

(4.20) 

Mohr Coulomb failure criterion can be explained by using Mohr stress circle. In case 

diameter of Mohr’s circle is tangent to the failure envelope, the stresses on that point 

in a material has reached to an ultimate condition. A larger stress circle is not 

admissible. This is illustrated in Figure 4.8. 

 

 

Figure 4.8. Mohr envelope for the soil (Yuen, 2003) 
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The use of a linear failure envelope simplifies the Mohr-Coulomb equations as shown 

in Figure 4.9. In that case only two material parameters, the compressive strength (Sc) 

and the tensile strength (St), are sufficient to define ultimate stress state on a brittle 

material. 

 

Figure 4.9. Mohr envelope for brittle materials (eFunda, 2019) 

 

Consequently, there are 3 cases that describe the ultimate stress states during failure 

of a brittle materials on Mohr's circle envelope. 

1) Case 1 

If principal stresses σ1 and σ3 are both in tension state (σ1 > 0 and σ3 > 0), then failure 

will occur when principal stress σ1 becomes equal to the tensile strength of material 

(St).  

𝜎1

𝑆𝑇
 =  1 

(4.21) 

 

After substitution of Equation (4.19), the ultimate state for this case is expressed as; 

 

𝜎𝑥 + 𝜎𝑦

2 + √(
𝜎𝑥 − 𝜎𝑦

2 )
2

+ 𝜏𝑥𝑦
2

𝑆𝑇
= 1 

(4.22) 
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2) Case 2 

If σ1 is in tension state and σ3 is in compression state (σ1 > 0 and σ3 < 0), then failure 

will occur when principal stresses satisfy  

 

𝜎1

𝑆𝑡
−

𝜎3

𝑆𝑐
= 1 (4.23) 

 

After substitution of Equations (4.19) and (4.20), the ultimate state for this case is 

expressed as; 

 

𝜎𝑥 + 𝜎𝑦

2 + √(
𝜎𝑥 − 𝜎𝑦

2 )
2

+ 𝜏𝑥𝑦
2

𝑆𝑇
−

𝜎𝑥 + 𝜎𝑦

2 − √(
𝜎𝑥 − 𝜎𝑦

2 )
2

+ 𝜏𝑥𝑦
2

𝑆𝐶
= 1 

(4.24) 

3) Case 3  

If principal stresses σ1 and σ3 are both in compression state (σ1 < 0 and σ3 < 0), then 

failure will occur when principal stress σ3 equals to the negative of compressive 

strength of material (-Sc).  

 

𝜎3

𝑆𝐶
 =  −1 

 

(4.25) 

After substitution of Equation (4.20), the ultimate state for this case is expressed as; 

 



 

 

 

53 

 

𝜎𝑥 + 𝜎𝑦

2 − √(
𝜎𝑥 − 𝜎𝑦

2 )
2

+ 𝜏𝑥𝑦
2

𝑆𝐶
= −1 

(4.26) 

 

Figure 4.10 shows the allowable range of principal stresses according to Mohr 

Coulomb failure equations (4.22), (4.24) and (4.26). 

 

Figure 4.10. Envelopes for stresses according to Mohr-Coulomb failure criterion 

 

Third rule of the lower bound theory is that any point on a wall does not violate yield 

condition. In order to satisfy this rule, Mohr coulomb failure criterion is applied to 

stresses conditions on each node of a wall in order to obtain ultimate stress state on 

these nodes. This assumption is similar to the Rankine’s solution (1857) in soil 

mechanics. According to Rankine’s solution for active earth pressure on a retaining 

wall, the stresses on soil retained is assumed to be completely in failure state. This 

assumption yields a simple yet reliable formula for estimation on ultimate load on a 

retaining wall.  

The equations obtained from Mohr Coulomb function should be linearized in order to 

be used in system of Equation (4.1) for a numerical solution. Thereafter Taylor series 
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expansion was used for converting these nonlinear equations to approximate linear 

equations. The solution for the system of nonlinear (Mohr-Coulomb) equations were 

determined iteratively by using a Newton-Raphson algorithm. While σx, σy and τ are 

the newest approximation for the stresses on a node, σx0, σy0 and τ0 are the initial 

approximation for them. The first order approximation by Taylor Series expansion 

yields; 

          𝑓(𝜎𝑥, 𝜎𝑦 , 𝜏) = 𝑓(𝜎𝑥0, 𝜎𝑦0, 𝜏0) +
𝑑𝑓

𝑑𝜎𝑥
(𝜎𝑥0, 𝜎𝑦0, 𝜏0) ∙ (𝜎𝑥 − 𝜎𝑥0) +

𝑑𝑓

𝑑𝜎𝑦
(𝜎𝑥0, 𝜎𝑦0, 𝜏0)

∙ (𝜎𝑦 − 𝜎𝑦0) +
𝑑𝑓

𝑑𝜏
(𝜎𝑥0, 𝜎𝑦0, 𝜏0) ∙ (𝜏 − 𝜏0) 

 

or, 

 

𝑑𝑓

𝑑𝜎𝑥
(𝜎𝑥0, 𝜎𝑦0, 𝜏0) ∙ (𝜎𝑥) +

𝑑𝑓

𝑑𝜎𝑦
(𝜎𝑥0, 𝜎𝑦0, 𝜏0) ∙ (𝜎𝑦) +

𝑑𝑓

𝑑𝜏
(𝜎𝑥0, 𝜎𝑦0, 𝜏0) ∙ (𝜏)

= 𝑓(𝜎𝑥 , 𝜎𝑦 , 𝜏) − 𝑓(𝜎𝑥0, 𝜎𝑦0, 𝜏0) +
𝑑𝑓

𝑑𝜎𝑥
(𝜎𝑥0, 𝜎𝑦0, 𝜏0) ∙ (𝜎𝑥0)

+
𝑑𝑓

𝑑𝜎𝑦
(𝜎𝑥0, 𝜎𝑦0, 𝜏0) ∙ (𝜎𝑦0) +

𝑑𝑓

𝑑𝜏
(𝜎𝑥0, 𝜎𝑦0, 𝜏0) ∙ (𝜏0)  (4.27) 

 

The terms in Equation (4.27) for Case 1 are given as follows; 

𝑓(𝜎𝑥, 𝜎𝑦 , 𝜏) =

𝜎𝑥 + 𝜎𝑦

2
+ √(

𝜎𝑥 − 𝜎𝑦

2
)

2

+ 𝜏𝑥𝑦
2

𝑆𝑇

 

(4.28a) 

 

𝑓(𝜎𝑥0, 𝜎𝑦0, 𝜏0) =

𝜎𝑥0 + 𝜎𝑦0

2
+ √(

𝜎𝑥0 − 𝜎𝑦0

2
)

2

+ 𝜏0
2

𝑆𝑇

 

(4.28b) 
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𝑑𝑓

𝑑𝜎𝑥

(𝜎𝑥0, 𝜎𝑦0, 𝜏0) =

1
2

+  
𝜎𝑥0 − 𝜎𝑦0

4 ∙ √(
𝜎𝑥0 − 𝜎𝑦0

2
)

2

+ 𝜏0
2

𝑆𝑇

 

 

  (4.28c) 

𝑑𝑓

𝑑𝜎𝑦

(𝜎𝑥0, 𝜎𝑦0, 𝜏0) =

1
2

− 
𝜎𝑥0 − 𝜎𝑦0

4 ∙ √(
𝜎𝑥0 − 𝜎𝑦0

2
)

2

+ 𝜏0
2

𝑆𝑇

 

(4.28d) 

 

 

It should be noted that Equation (4.28a) is equal to 1 from Equation (4.22). Equation 

(4.28c-e) are elements of the coefficient matrix [A] as given in Equation (4.1). The 

right side of the Equation (4.27) is the element of vector {B}. 

The terms in Equation (4.27) for Case 2 are given as follows; 

 

 

𝑑𝑓

𝑑𝜏
(𝜎𝑥0, 𝜎𝑦0, 𝜏0) =

𝜏0

√(
𝜎𝑥0 − 𝜎𝑦0

2
)

2

+ 𝜏0
2

𝑆𝑇

 

(4.28e) 

𝑓(𝜎𝑥, 𝜎𝑦 , 𝜏) =  

𝜎𝑥 + 𝜎𝑦

2
+ √(

𝜎𝑥 − 𝜎𝑦

2
)

2

+ 𝜏𝑥𝑦
2

𝑆𝑇

−

𝜎𝑥 + 𝜎𝑦

2
− √(

𝜎𝑥 − 𝜎𝑦

2
)

2

+ 𝜏𝑥𝑦
2

𝑆𝐶

 

 

(4.29a) 

𝑓(𝜎𝑥0, 𝜎𝑦0, 𝜏0) =  

𝜎𝑥0 + 𝜎𝑦0

2
+ √(

𝜎𝑥0 − 𝜎𝑦0

2
)

2

+ 𝜏0
2

𝑆𝑇

−

𝜎𝑥0 + 𝜎𝑦0

2
− √(

𝜎𝑥0 − 𝜎𝑦0

2
)

2

+ 𝜏0
2

𝑆𝐶

 

(4.29b) 
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𝑑𝑓

𝑑𝜎𝑥

(𝜎𝑥0, 𝜎𝑦0, 𝜏0)

=
1

2 ∙ 𝑆𝑇

+  
𝜎𝑥0 − 𝜎𝑦0

4 ∙ 𝑆𝑇 ∙ (√(
𝜎𝑥0 − 𝜎𝑦0

2
)

2

+ 𝜏0
2) 

−  
1

2 ∙ 𝑆𝐶

+  
𝜎𝑥0 − 𝜎𝑦0

4 ∙ 𝑆𝐶 ∙ (√(
𝜎𝑥0 − 𝜎𝑦0

2
)

2

+ 𝜏0
2)

 

(4.29c) 

 

                                 
𝑑𝑓

𝑑𝜎𝑦

(𝜎𝑥0, 𝜎𝑦0, 𝜏0)

=
1

2 ∙ 𝑆𝑇

− 
𝜎𝑥0 − 𝜎𝑦0

4 ∙ 𝑆𝑇 ∙ (√(
𝜎𝑥0 − 𝜎𝑦0

2
)

2

+ 𝜏0
2)

− 
1

2 ∙ 𝑆𝐶

− 
𝜎𝑥0 − 𝜎𝑦0

4 ∙ 𝑆𝐶 ∙ (√(
𝜎𝑥0 − 𝜎𝑦0

2
)

2

+ 𝜏0
2

 

(4.29d) 

 

 

Equation (4.29a) is equal to 1 from Equation (4.24). Equation (4.29c-e) are elements 

of the coefficient matrix [A] as given in Equation (4.1). The right side of the Equation 

(4.27) is the element of vector {B}. 

Finally, the terms in Equation (4.27) for Case 3 are given as follows; 

 

                  𝑓(𝜎𝑥 , 𝜎𝑦 , 𝜏) =

𝜎𝑥 + 𝜎𝑦

2
− √(

𝜎𝑥 − 𝜎𝑦

2
)

2

+ 𝜏𝑥𝑦
2

𝑆𝑐

                    

(4.30a) 

 

𝑑𝑓

𝑑𝜏
(𝜎𝑥0, 𝜎𝑦0, 𝜏0) =  

𝜏0

𝑆𝑇 ∙ √(
𝜎𝑥0 − 𝜎𝑦0

2
)

2

+ 𝜏0
2

−  
𝜏0

𝑆𝐶 ∙ √(
𝜎𝑥0 − 𝜎𝑦0

2
)

2

+ 𝜏0
2

 (4.29e) 
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           𝑓(𝜎𝑥0, 𝜎𝑦0, 𝜏0) =

𝜎𝑥0 + 𝜎𝑦0

2
− √(

𝜎𝑥0 − 𝜎𝑦0

2
)

2

+ 𝜏0
2

𝑆𝑐

     

(4.30b) 

 

                    
𝑑𝑓

𝑑𝜎𝑥

(𝜎𝑥0, 𝜎𝑦0, 𝜏0) =

1
2

−  
𝜎𝑥0 − 𝜎𝑦0

4 ∙ √(
𝜎𝑥0 − 𝜎𝑦0

2
)

2

+ 𝜏0
2

𝑆𝐶

               

(4.30c) 

 

𝑑𝑓

𝑑𝜎𝑌

(𝜎𝑥0, 𝜎𝑦0, 𝜏0) =

1
2

+  
𝜎𝑥0 − 𝜎𝑦0

4 ∙ √(
𝜎𝑥0 − 𝜎𝑦0

2
)

2

+ 𝜏0
2

𝑆𝐶

 

(4.30d) 

 

 

Equation (4.30a) is equal to -1 from Equation (4.26). Equation (4.30c-e) are elements 

of the coefficient matrix [A] as given in Equation (4.1). The right side of the Equation 

(4.27) is the element of vector {B}. The stresses should be solved recursively as 

explained in next section. 

4.3.5. Solution for Nodal Stresses 

The equilibrium equations obtained from Equations (4.10), (4.11) and (4.14) and 

boundary conditions equations obtained from Equations (4.15) to (4.18b) are 

substituted in linear system of equations shown as equation (4.1). 

The equations for Mohr Coulomb failure criterion are substituted for each node. Since 

Mohr Coulomb equations are nonlinear, the approximations due to equation (4.27) are 

used. The solution for stresses are found by recursive calculation such that 

𝑑𝑓

𝑑𝜏
(𝜎𝑥0, 𝜎𝑦0, 𝜏0) = −

 
𝜏0

√(
𝜎𝑥0 − 𝜎𝑦0

2
)

2

+ 𝜏0
2

𝑆𝐶

         

(4.30e) 
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where subscript 0 denotes function evaluations due to previous approximations for 

nodal stresses, and {σ} denotes new approximations for nodal stresses. The initial 

estimations for stresses are all set to 1. Then the principal stresses for each node σ1 

and σ3 are calculated. This is followed by recalculation of [A] and {B} before the next 

approximate solution. 

The approximate relative error εσ for any approximate stress {σ} is calculated by 

 

A computer program employing the algorithm shown in Figure 4.11 is developed by 

using the language of Matlab (Mathworks, 2017). The recursive solution for {σ} is 

stopped when εσ for each unknown stress becomes less than εs for all nodal stresses. 

εs is the tolerable (satisfactory) level of relative error, εσ, and it is chosen as 10-5 in this 

study. 

Then ultimate lateral load H acting on top of a wall can be calculated by using the sum 

of shear stresses on the top of the wall as shown in Figure (4.12) for a wall with 2 x 2 

rectangular panels. Hence, for this wall the ultimate lateral load is computed by 

  

((
𝑎

2
) · 𝑡) · (𝜏𝑖 + 𝜏𝑗) + ((

𝑎

2
) · 𝑡) · (𝜏𝑗 + 𝜏𝑘) = 𝐻 

(4.33) 

 

This equation is generic for all types of walls used in this study. 

[𝐴(𝜎0)] · {𝜎} = {𝐵(𝜎0)} (4.31) 

  

 𝜀𝜎 =
[𝜎] − [𝜎0]

[𝜎]
 

(4.32) 
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Figure 4.11. Algorithm for calculations 
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Figure 4.12. Calculation for the ultimate horizontal load on top of the wall 
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CHAPTER 5  

 

5. VERIFICATION OF THE PROPOSED ANALYSIS METHOD 

 

5.1. General Information About the Verification Study 

Verification of the analysis method proposed by using the lower bound theorem is 

performed in two stages. First, the method is verified by comparing the results with 

the experimental findings from the literature. In order to prove the accuracy and 

reliability of the analysis method, the results obtained by modeling the experimental 

specimens in the literature using the analysis method are compared with the 

experimental results. Second, parametric studies are performed for verification of the 

known physical effects of different parameters on the lateral load capacity of masonry 

walls. The analysis method is applied to a reference masonry wall and then the 

maximum lateral load that the wall can take is estimated. While selecting the wall 

types, the answers of the following questions are sought and results are assessed 

accordingly. These questions are; 

• Do different types of walls with different dimensions behave differently under 

the same stress conditions?  How does the collapse load vary by wall 

dimensions? 

• If the total vertical stress applied to the wall changes, how is the lateral load 

capacity of the wall affected? 

• If a material with different tensile strength is used, how does the lateral load 

capacity of the wall change? 

• How does the size of the openings contribute to the load bearing capacity of 

the wall? 
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For the following case study walls, maximum lateral load indicated by H is calculated 

under a given value of vertical compressive load indicated by V. The proposed macro-

modeling approach is employed for specific values of material strength by dividing 

the walls into macro panels. The main assumption is that all ingredients of the wall, 

i.e. masonry units, mortar and unit-mortar interface, are homogenized into a macro 

wall panel characterized by its compressive and tensile strength. 

5.2. Application of the Macro-Model Approach to Masonry Walls 

The proposed method was explained in detail in the previous Chapter. In this section 

some different wall types have been used for verification analysis (i.e solid wall, wall 

with window opening, wall with door opening and wall with window and door 

opening). The analysis procedure for these wall types can be explained as follows: 

First the wall is divided into a number of rectangular panels. The mesh size does not 

have to be fine, i.e for a solid wall, a 3x3 mesh can be sufficient to estimate the lateral 

load capacity of the wall. In the case of walls with openings, the mesh size and location 

should be arranged in accordance with this specific geometry. As explained in Section 

4.3.1, there are three unknowns in terms of normal and shear stresses at each corner 

of the wall panels, from which the total number of unknowns is determined. In order 

to solve for these unknowns, equilibrium conditions in the panels (with the exception 

of areas of window and door openings) and the overturning moment equation for the 

wall should be written as stated in Section 4.3.2. The next step is to identify the 

boundary conditions. These include the side boundary conditions and the top boundary 

conditions of the wall as explained in Sections 4.3.3.1 and 4.3.3.2. In the case of 

window and door openings, boundary conditions are obtained for the left and right 

sides of the openings, which is presented in Section 4.3.3.3. After establishing all the 

equilibrium and boundary conditions for the selected wall, Mohr-Coulomb failure 

criterion is defined at each node of the wall panels in order to solve the set of equations 

for the ultimate condition of failure (see Section 4.3.4). Matlab codes have been 

written separately for solid wall, wall with window opening, wall with door opening, 

wall with window and door openings and they are presented in Appendices A, B, C 
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and D, respectively. After the set of equations are solved by the help of computer 

codes in terms of internal stresses, these values are used in order to find the horizontal 

load H. For this purpose, the lateral equilibrium in the wall panels is taken into 

account. 

5.3. Comparison of Analysis Results with Experimental Studies 

The analysis method proposed in this study is compared with various experimental 

results in the literature for verification purposes. The experiments used include solid 

wall, unreinforced masonry wall with a single window opening and unreinforced 

masonry wall with a single door opening. 

5.3.1. Masonry Wall with No Opening (Solid Wall) 

Lourenço et al (2005), studied structural behavior of dry joint masonry walls and the 

analysis of in-plane capacity under compressive and shear loading. During the 

experimental campaign, seven dry joint masonry walls are tested to obtain their lateral 

load capacities under different level of compressive loading with 30, 100, 200 and 250 

kN. In this study, one of the square-shaped masonry wall specimens with no openings 

has been selected. Its dimensions are 100x100 cm with a thickness of 20 cm (Figure 

5.1). The compressive and tensile strengths of the wall specimen were reported as 82.7 

MPa and 3.7 MPa, respectively. The considered level of vertical load is 100 kN. After 

the specimen was tested, the maximum lateral load is obtained for the wall was 49 kN 

(Lourenço et al, 2005). 
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Figure 5.1. Masonry wall specimen with no opening (Lourenço, 2005) 

 

In order to analyze the specimen with proposed approach, first 3x3 mesh size is used 

for the wall. Totally 48 stresses are identified at 16 nodes. This means, there are 48 

stress unknowns at the nodes as opposed to the known value of vertical load (100 kN). 

In order to satisfy equilibrium for 9 rectangular panels, 18 equilibrium equations are 

obtained by using Equation (4.10) and (4.11) and 1 moment equation is obtained from 

Equation (4.14). For ensuring the boundary conditions, 6 normal force equations are 

obtained by using Equation (4.15) and whereas 6 shear force equations are obtained 

by using Equation (4.16). In addition to that, 1 boundary condition for vertical external 

force is provided through Equation (4.17). For 16 nodes, 16 Mohr-Coulomb points are 

placed and 16 equations are procured. At the end, for the 48 unknowns, 48 equations 

are obtained and solved by the written Matlab code. 

At the end of the analysis, maximum lateral load H is obtained as 55.2 kN from the 

obtained internal stresses by using Equation (4.33). The maximum lateral load 

obtained from the experiment is 49 kN, while the maximum lateral load obtained from 

the analysis is 55.2 kN. The error percentage of 11% indicates that the analysis results 

is consistent with the physical behavior obtained through testing. 
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5.3.2. Masonry Wall with Window Opening 

Kalali and Kabir (2012) studied the behavior of six masonry wall specimens with 

window openings before and after retrofit in order to investigate their capacity under 

in-plane loading. In the experimental campaign, one unreinforced masonry wall was 

tested in addition to 5 masonry walls strengthened with glass fiber reinforced 

polymers. The wall specimen which is investigated in this study has dimensions with 

194x143 cm with 16 cm thickness and a window opening at its center, which has a 

dimension of 52x47 cm. For unreinforced masonry wall, compressive masonry wall 

strength of 11.7 MPa is reported while tensile strength of material is 5% of 

compressive strength, which is 0.585 MPa. When 41.2 kN was applied to unreinforced 

masonry wall specimen, maximum horizontal load was obtained as 26.1 kN. Wall 

specimen investigated is illustrated in Figure 5.2. 

 

 

Figure 5.2. Unreinforced masonry wall specimen with window opening (Kalali and Kabir, 2012) 

 

In order to analyze this wall with the proposed method, first it is divided into macro 

panels. After applying a 3x3 mesh size, a total of 48 stress parameters are introduced 

at 16 nodes. This means, there are 48 stress at the nodes as opposed to the known value 

of vertical load (41.2 kN). In order to satisfy equilibrium for 8 rectangular panels, 16 

equilibrium equations are obtained by using Equation (4.10) and (4.11) and 1 moment 
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equation is obtained from Equation (4.14). For ensuring the boundary conditions, 6 

normal force equations are obtained by using Equation (4.15) and whereas 6 shear 

force equations are obtained by using Equation (4.16). In addition to that, 1 boundary 

condition for vertical external force is provided through Equation (4.17). Since one of 

the panels is replaced with a window opening, 2 boundary conditions are obtained by 

using Equation (4.18a) and (4.18b) for this opening. For 16 nodes, 16 Mohr-Coulomb 

points are placed and 16 equations are procured. At the end, for the 48 unknowns, 48 

equations are obtained and solved by the written Matlab code.  

Maximum lateral load H is obtained as 28.13 kN as a result of analysis from obtained 

internal stresses by using Equation (4.33). The maximum lateral load obtained from 

the experiment was 26.1 kN, while the maximum lateral load obtained from the 

analysis is 28.13 kN. It can be seen that results are very close to each other. The error 

percentage of 8% indicates that the analysis result is consistent with the physical 

behavior obtained through testing. 

5.3.3. Masonry Wall with Door Opening 

Allen et al (2016), conducted the experiment of three different unreinforced masonry 

walls with door opening. These wall types were investigated in order to obtain force 

displacement relationships. In this study, one of the wall specimens has been used with 

dimensions 36x24 cm and 11 cm thickness. The door opening is in the middle of the 

wall with dimensions 12x18 cm (Figure 5.3). The compressive and tensile strength of 

the specimen were reported as 9.6 MPa and 1.85 MPa, respectively. The considered 

value of vertical load is 79.2 kN. After specimen was tested, the maximum lateral load 

obtained for the wall was 39 kN (Allen et al, 2016).   
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Figure 5.3. Unreinforced masonry wall specimen with door opening (Allen et al, 2016) 

 

In order to analyze the specimen with the proposed approach, first 3x3 mesh size is 

used for the wall. Totally 48 stresses are identified at 16 nodes. This means, there are 

48 stress at the nodes as opposed to the known value of vertical load (41.2 kN). In 

order to satisfy equilibrium for 7 rectangular panels, 14 equilibrium equations are 

obtained by using Equation (4.10) and (4.11) and 1 moment equation is obtained from 

Equation (4.14). For ensuring the boundary conditions, 6 normal force equations are 

obtained by using Equation (4.15) and whereas 6 shear force equations are obtained 

by using Equation (4.16). In addition to that, 1 boundary condition for vertical external 

force is provided through Equation (4.17). Since one of the panels is replaced with a 

door opening, 4 boundary conditions are obtained by using Equation (4.18a) and 

(4.18b) for this opening. For 16 nodes, 16 Mohr-Coulomb points are placed and 16 

equations are procured. At the end, for the 48 unknowns, 48 equations are obtained 

and solved by the written Matlab code. 

Maximum lateral load H is obtained as 45.7 kN as a result of analysis from the 

obtained internal stresses by using Equation (4.33). The maximum lateral load 

obtained from the experiment was 39 kN, while the maximum lateral load obtained 

from the analysis is 45.7 kN. The error percentage of 17% indicates that the analysis 

result is still valid after considering all the gross assumptions and simplifications of 

the method. 
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5.4. Parametric Studies for the Verification of the Method 

In the last phase of the study, parametric studies have also been conducted to evaluate 

the influence of different parameters for masonry wall types for the purpose of 

verification. First, the effect of change in wall dimensions on horizontal capacity for 

a masonry wall without opening under a certain vertical load is investigated. Second, 

the effect of change in the vertical load applied to the wall on the horizontal capacity 

is investigated using the masonry wall with and without window opening case study. 

Then, masonry wall with and without door opening case studies are assessed and the 

effect of the change in tensile strength of the material on the lateral capacity of the 

wall is evaluated. Finally, starting from a masonry wall without opening, various 

opening sizes are used on this wall and the effect of the change in opening size on the 

lateral capacity of the wall is observed. 

5.4.1. Effect of Change in Dimension on Lateral Capacity of the Wall 

In order to examine the effect of the change of wall dimensions on the lateral strength 

of the wall, a masonry wall without opening is studied. The dimensions of this wall, 

which can be varied arbitrarily, are 500x300 cm as the reference values in study and 

thickness of the wall is chosen as 30 cm. This wall type is meshed into 3x3 and 

therefore 9 rectangular panels are obtained as illustrated in Figure 5.4. Compressive 

and tensile strength values are used as 11 MPa and 0.55 MPa, respectively according 

to the study of Kalali and Kabir (2012). As the wall is subjected to a vertical 

compressive load of 300 kN, the aim is to calculate how much lateral horizontal load 

the wall can withstand.  
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Figure 5.4. Masonry wall with no opening under vertical stress (500x300 cm)  

 

The case study wall, which is divided into rectangular panels, is solved as described 

in Section 5.2. The corresponding stress values at the nodes are obtained by using the 

Matlab code. As a result, the maximum horizontal load is calculated as 66.7 kN / m. 

Then, the dimension of the wall is varied by increasing the horizontal dimension with 

increment of 30 cm while the vertical load of 300 kN remains constant. The maximum 

lateral load values obtained as a result of analyses by changing dimensions of the wall 

are shown in Figure 5.5. 
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Figure 5.5. Masonry wall without opening with changing dimension 

 

The maximum lateral load of the wall has been found as 66.7 kN/m under 300 kN 

vertical load before changing the horizontal dimension. Subsequently, the increase in 

dimension results in a 6% increase in the area ratio at each increment. It is expected 

that this increase contributes to the maximum horizontal load change in the same rate. 

As a result of the analysis, 6% increase in total area resulted in 7% increase in the 

horizontal load capacity, which is consistent with the expected behavior. 

5.4.2. Effect of Change in Vertical Load on Lateral Capacity of the Wall 

In order to see the effect of the change in vertical load on the horizontal capacity of 

the wall, first masonry wall without opening and then masonry wall with window 

opening are studied.  

The case study solid wall is divided into rectangular panels and it is solved as 

described in Section 5.2. The corresponding stress values at the nodes are obtained by 

using the Matlab code. As a result, the maximum horizontal load is obtained as 66.7 
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kN / m under 300 kN vertical load. Sample internal stress values and distribution plots 

are presented in Appendix E for the ultimate condition of the considered wall. 

After examining the solid wall, masonry wall with window opening is studied. The 

wall dimensions for this example have been kept constant (i.e 500x300 cm) and 

thickness of the wall is chosen as 30 cm. A window opening is located at the middle 

of the wall with a dimension of 100x100 cm and the wall is divided into 9 rectangular 

panels as illustrated in Figure 5.6. While the wall is subjected to a vertical compressive 

load of 300 kN, the aim is to calculate the maximum lateral load.   

 

Figure 5.6. Masonry wall with window opening 

 

The case study wall, which is divided into panels, is solved as described in Section 

5.2. The corresponding stress values at the nodes are obtained by using the Matlab 

code. As a result, the maximum horizontal load is calculated as 58.4 kN / m. 

Then, the vertical load value is changed by keeping the wall dimensions and strength 

values constant for solid wall and wall with window opening case studies. The 

maximum lateral load values obtained as a result of analyses by changing in vertical 
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load are shown in Figure 5.7 where σ/fm is the ratio of axial stress to compressive 

strength of masonry. 

 

 

Figure 5.7. Masonry wall with and without window opening under changing vertical load 

 

It has been predicted that the maximum lateral load value decreases if the vertical 

compressive load on the masonry wall is decreased.  Decrease in vertical load cause 

reduction in lateral capacity because of the decrease in friction between mortar and 

unit. When vertical load increases then the friction also increases, so the wall can resist 

more lateral load. As shown in the graph, decrease in the vertical load causes a 

decrease in the maximum lateral load capacity of the wall. In masonry wall without 

opening, the effect of the change in vertical load on horizontal capacity is more linear, 

whereas in masonry wall with window opening, the change is more scattered. This is 

caused by the non-uniform stress distribution around the opening so that the increase 

in horizontal capacity may not be linearly proportional to an increase in vertical load. 

Overall, the trends seem to be reasonable in terms of physical behavior. 
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5.4.3. Effect of Change in Tensile Strength on Lateral Capacity of the Wall 

In order to see the effect of the change in tensile strength on the horizontal capacity of 

the wall, first masonry wall without opening and then masonry wall with door opening 

are studied.  

For both cases, the same dimensions (500x300 cm), thickness (30 cm), compressive 

strength (11 MPa) and vertical load (300 kN) are used as illustrated in Figure 5.8. In 

the case with door opening, the door is located in the middle of the wall with 

dimensions 210x100 cm. In both cases the wall is divided into 9 rectangular panels 

for analysis. 

 

 

Figure 5.8. Masonry wall with door opening 

 

Then, the wall dimensions and vertical load are kept constant and tensile strength 

value is varied between 0.20 MPa to 1 MPa. The maximum lateral load values 

obtained as a result of the analyses by varying the in tensile strength values for two 

types of wall are shown in Figure 5.9. 
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Figure 5.9. Masonry wall with and without door opening with changing tensile strength 

 

Maximum lateral load of masonry wall without opening by a tensile strength value of 

0.20 MPa is 63.3 kN/m while it is obtained as 77.5 kN/m for a tensile strength value 

of 1 MPa. On the other hand, there is no solution for the wall with opening when 

tensile strength values are 0.2-0.4 MPa. This means that the wall with door opening 

cannot withstand 300 kN vertical load with these values of tensile strength. It is also 

observed that, the effect of the increase in tensile strength on the horizontal capacity 

of the wall is higher in the masonry wall with door opening, while it does not cause a 

significant increase in the masonry wall without opening. The reason is that the nodes 

on the wall without opening are more likely to fail in shear (tension-compression 

state). The increase in tensile strength does not cause a significant increase in wall 

which fails in shear. However, as the number of failing nodes in tension is greater in 

the wall with door opening than the wall without opening, the increase in tensile 

strength has a greater effect on the lateral capacity of the wall. As a result, since the 

tension capacity of the masonry wall is known to be less than the compression capacity 

and the cause of failure is due to tension and/or shear, the compression strength value 
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is kept constant and the tension strength value is increased. It has been predicted that 

the maximum lateral load value would change with tensile strength and results confirm 

this prediction. 

5.4.4. Effect of Change in Opening Size on Lateral Capacity of the Wall 

A window or door opening on a masonry wall has a significant effect on the lateral 

capacity of the wall. In order to observe this, various openings are located on the wall 

by considering the solid masonry wall as reference and analyses are performed. Wall 

dimensions are kept constant as 500x300 cm with thickness of 30 cm. The vertical 

stress value is 300 kN and the compressive and tensile strength values are 11 and 0.55 

MPa respectively. First, masonry wall without opening is analyzed as described in 

Section 5.2. Then, masonry wall with window opening is considered and the opening 

dimensions are taken as 100x100 cm, 100x125 cm, 120x125 cm and 125x125 cm 

respectively. After the wall with window opening, the opening size has been further 

enlarged and the next step is to examine the single-door wall example with door 

dimensions accepted as 95x210 cm and 100x210 cm. After examining the case studies 

with single-window and single-door opening, the last step is to examine the behavior 

of wall with a door and window openings together. For this type of wall, a window 

opening of 100x100 cm and a door opening of 100x210 cm have been assumed on the 

wall as illustrated in Figure 5.10. Maximum lateral load is obtained by using the 

proposed analysis method. Then dimensions of window and door openings in this 

example have also been increased as 105x100 cm and 105x210 cm respectively.  
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Figure 5.10. Masonry wall with one window and one door openings 

 

The maximum lateral load values obtained as a result of the analysis of the wall by 

changing the opening sizes are given in Table 5.1. The change in the lateral load 

capacity of the wall as a result of increase of openings size in percentage is also shown 

in the plot given in Figure 5.11. 
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Table 5.1. Analysis results of walls with changing opening area 

Wall 

Type 

Window Opening 

(cm)  

Door Opening 

(cm)  

Maximum Lateral 

Load (kN/m) 

Without 

opening 
_ _ 66.7 

 

With 

window 

opening 

100x100  _ 58.4 

100x125  _ 35.9 

120x125  _ 34.9 

125x125  _ 30.4 

With door 

opening 

_ 95x210 23.2 

_ 100x210 19.6 

With 

single 

window 

and single 

door 

opening 

100x100  100x210  17.7 

105x100 105x210 8.9 

 

 

Figure 5.11. Relationship between maximum lateral load and change in opening size for the case 

study wall 
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These examples and the obtained values show the effect of the gradual increase in 

opening sizes for the same wall type on the maximum lateral load. The opening size 

are gradually increased and it has been observed that the maximum lateral load 

decreases. The lateral load capacity of the wall is minimized when the opening size 

has its maximum value. This trend verifies that the openings in unreinforced masonry 

structures cause serious reductions in lateral load capacity of the wall. For 

unreinforced masonry structures, it is not possible to quantify the effect of openings 

explicitly. Although decrease and increase in percentage are not the same as shown in 

the graph, it is obvious that as the dimensions of the openings increase, the strength 

capacity of the masonry wall decreases noticeably.  
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CHAPTER 6  

 

6. SUMMARY AND CONCLUSIONS 

 

Masonry structures are still used as dwellings in rural areas. There are several 

challenges for the analysis of these buildings. First, masonry walls are composite 

structures. Bearing elements are units (such as brick, blocks, etc) and mortar, in which 

the complexity is formed by the combination of these two ingredients. The main 

reason for the difficulties in the analysis of masonry structures comes from this 

heterogeneity. In addition to that, lack of structural drawings, design specifications, 

technical reports and lack of knowledge about the materials used in construction make 

structural analysis of these masonry structures extremely difficult. Analysis methods 

and modeling strategies are mainly different from reinforced concrete and steel 

structures that cannot be approached with the same criteria. Moreover, using a 

computer program for the analysis of masonry buildings is often difficult and 

irrelevant. Because there is a need for structural and mechanical parameters to be used 

as input in software programs that are developed for the analysis of such structures, 

which is often not available and/or missing. In addition, the lack of the mentioned 

design regulations also makes it difficult to model these deficient structures as regular 

systems with well-defined load paths.  

Although there are many methods of analysis for masonry buildings, the majority of 

these methods are complex and time consuming. However, detailed and complex 

analysis methods become irrelevant since these structures do not even have a 

consistent structural system and in most of the cases, it is not possible to estimate 

material properties to be used in complex analysis. Therefore, simple and practical 

analysis should be used in order to obtain seismic response of especially non-

engineered masonry structures. 
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Limit analysis is a simple and useful method for performing plastic analysis compared 

to other methods. Limit analysis which provides convenience and time saving in the 

analysis of masonry buildings, is composed of three approaches which are the lower 

bound theorem, the upper bound theorem and the uniqueness theorem. The lower 

bound theorem is a static theorem based on the equilibrium of the system, while the 

upper bound theorem is a kinematic theorem based on the energy of the system. The 

uniqueness theorem occurs when both the mechanism from the upper bound and the 

equilibrium equation plus the yield condition from the lower bound theorem are 

provided.   

In this study, masonry walls are analyzed by using the lower bound theorem. The aim 

is to estimate how much lateral load the masonry walls can withstand under a certain 

vertical load. The rules of the lower bound theorem are applied for these calculations. 

First, the internal equilibrium and moment equilibrium of the wall are provided, then 

the assumptions are taken into account to provide boundary conditions. Finally, yield 

conditions are implemented. For this, Mohr Coulomb failure criterion has been used 

which assists in presuming the failure state of brittle materials and it is applied on the 

2D stress conditions. There are 3 cases that describe the allowable stress states without 

failure on Mohr's circle envelope, which are tension state, tension-compression state 

and compression state. At each node of the rectangular panels, when these stress 

conditions are not exceeded, the third rule of the lower bound theorem is activated 

which states that any point in the body does not violate yield condition. After obtaining 

the statically admissible stress field for all conditions of the lower bound theorem, 

Matlab codes are used to solve the linear system of equations. 

First of all, the results of the experiments with different masonry wall types in the 

literature are compared with the results from the proposed method for the same wall 

types. The close match in the results reveals the reliability of the analysis method in 

comparison with the physical behavior. Afterwards, a parametric study is conducted, 

in which various wall types are employed to estimate the maximum lateral load of 

case study walls. These types of masonry walls are wall without opening (solid wall), 
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wall with window opening, wall with door opening and wall with both window and 

door opening. These wall types are also arranged according to various assumptions 

and the results are obtained.  

Consequently, the most important product of this study is the use of lower bound 

theorem for simple failure analyses of masonry walls. The proposed lower-bound limit 

analysis method is simple and easy to apply. It does not require too many input 

parameters or fine meshes like the Finite Element Method. Although it has many 

simplifications and gross assumptions, the obtained results seem to be consistent with 

the physical behavior from the experimental findings. In addition, the variation of 

some major parameters have been observed to give consistent results with the 

expected behavior of a typical masonry wall. Overall, these results encourage the use 

of the proposed method especially for non-engineered masonry structures for which 

the use of detailed analysis tools is not feasible. 

Other conclusions obtained according to the analyses employing the proposed method 

are: 

• Changing the dimensions of the wall causes a change in the maximum lateral 

load of the wall. The lateral load capacity of the wall is parallel to the change 

in wall dimensions.  

• As the vertical load applied to the wall increases, the maximum lateral load 

also increases because of the friction between mortar and unit. The lateral 

capacity of the wall varies directly proportional with the value of the vertical 

load applied. This facilitates the comparison between the lower and upper 

floors in a multi-story building. Since the vertical loads at the lower floors of 

the building are higher, the in-plane wall resistance of the lower floors to the 

lateral load is more than the upper floors. This is verified after parametric 

analysis by using the proposed approach. 

• Since the stress concentration in the wall with window opening is not uniform 

on the window edges, the increase in the horizontal capacity with vertical load 
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is not proportional as in the wall without opening. The openings formed on the 

wall adversely affect the lateral capacity of the wall. 

• Since the compression strength of masonry walls is higher than the tension 

strength, the in-plane failures of masonry walls are usually caused by tension 

and/or tension-compression states. This means the change in the tension 

strength value of the wall affects the capacity of the wall. Increasing the 

tension strength value of the wall causes the lateral load capacity of the wall 

to increase. 

• Increase in tension strength does not affect horizontal capacity significantly 

because nodes on the wall without opening showed mostly shear failure. On 

the other hand, as nodes showing tension failure on the wall with door opening 

is greater, the increase in horizontal capacity is more significant and higher 

than the wall without opening by increase in tensile strength. 

• As the openings on the wall increase in number and size, the maximum lateral 

load that the wall can carry decreases. This has been verified during parametric 

analyses. However, the method should be used with caution in cases where 

there are too many openings on the wall. In such cases, stress concentrations 

and non-uniform stresses are the main issues that may cause deviations in the 

results of the proposed method. 

Some recommendations can be presented for future studies. In this study, the lower 

bound limit analysis method was performed for single walls instead of entire building 

exposed to in-plane stress. By combining these walls, an entire building can be 

analyzed with this method for low-rise buildings. In addition, since lower bound 

theorem is used in this study, if the upper bound theorem is calculated for the same 

wall types in the future studies, the most appropriate result for the lateral load capacity 

of the wall can be reached in accordance with the results of these two studies. 
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APPENDICES 

 

A. MATLAB Code for Masonry Wall without Opening 

%unknowns 

Sigmax_A=1;Sigmay_A=1;Tao_A=1;      %Node A 

Sigmax_B=1;Sigmay_B=1;Tao_B=1;      %Node B 

Sigmax_C=1;Sigmay_C=1;Tao_C=1;      %Node C 

Sigmax_D=1;Sigmay_D=1;Tao_D=1;      %Node D 

Sigmax_E=1;Sigmay_E=1;Tao_E=1;      %Node E 

Sigmax_F=1;Sigmay_F=1;Tao_F=1;      %Node F 

Sigmax_G=1;Sigmay_G=1;Tao_G=1;      %Node G 

Sigmax_H=1;Sigmay_H=1;Tao_H=1;      %Node H 

Sigmax_I=1;Sigmay_I=1;Tao_I=1;      %Node I 

Sigmax_J=1;Sigmay_J=1;Tao_J=1;      %Node J 

Sigmax_K=1;Sigmay_K=1;Tao_K=1;      %Node K 

Sigmax_L=1;Sigmay_L=1;Tao_L=1;      %Node L 

Sigmax_M=1;Sigmay_M=1;Tao_M=1;      %Node M 

Sigmax_N=1;Sigmay_N=1;Tao_N=1;      %Node N 

Sigmax_O=1;Sigmay_O=1;Tao_O=1;      %Node O 

Sigmax_P=1;Sigmay_P=1;Tao_P=1;      %Node P 

H=1; 

  

%number indices of nodes for each block 

B1=[1,2,3,4,5,6,13,14,15,16,17,18]; 

B2=[4,5,6,7,8,9,16,17,18,19,20,21]; 

B3=[7,8,9,10,11,12,19,20,21,22,23,24]; 

B4=[13,14,15,16,17,18,25,26,27,28,29,30]; 

B5=[16,17,18,19,20,21,28,29,30,31,32,33]; 

B6=[19,20,21,22,23,24,31,32,33,34,35,36]; 

B7=[25,26,27,28,29,30,37,38,39,40,41,42]; 

B8=[28,29,30,31,32,33,40,41,42,43,44,45]; 

B9=[31,32,33,34,35,36,43,44,45,46,47,48]; 

BLOCK=[B1;B2;B3;B4;B5;B6;B7;B8;B9]; 

  

A=zeros(49,49); 

for X=1:9, BLOCK(X,:); 

    %equilibrium equation in x direction 

     A((3*X-2),BLOCK(X,1))=-b/2; 

     A((3*X-2),BLOCK(X,4))=b/2; 

     A((3*X-2),BLOCK(X,7))=-b/2; 

     A((3*X-2),BLOCK(X,10))=b/2; 

     A((3*X-2),BLOCK(X,3))=a/2; 

     A((3*X-2),BLOCK(X,6))=a/2; 

     A((3*X-2),BLOCK(X,9))=-a/2; 

     A((3*X-2),BLOCK(X,12))=-a/2; 

     %equilibrium equation in y direction   

     A((3*X-1),BLOCK(X,2))=a/2; 

     A((3*X-1),BLOCK(X,5))=a/2; 

     A((3*X-1),BLOCK(X,8))=-a/2; 

     A((3*X-1),BLOCK(X,11))=-a/2; 

     A((3*X-1),BLOCK(X,3))=-b/2; 

     A((3*X-1),BLOCK(X,6))=b/2; 

     A((3*X-1),BLOCK(X,9))=-b/2; 

     A((3*X-1),BLOCK(X,12))=b/2; 

End 
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%Boundary conditions Sigma_x 

A(28,1)=b/2; 

A(28,13)=b/2; 

A(29,13)=b/2; 

A(29,25)=b/2; 

 

A(31,25)=b/2; 

A(31,37)=b/2; 

A(32,10)=b/2; 

A(32,22)=b/2; 

  

A(34,22)=b/2; 

A(34,34)=b/2; 

A(35,34)=b/2; 

A(35,46)=b/2; 

  

%Boundary conditions Tao 

A(37,3)=b/2; 

A(37,15)=b/2; 

A(38,15)=b/2; 

A(38,27)=b/2; 

  

A(40,27)=b/2; 

A(40,39)=b/2; 

A(41,12)=b/2; 

A(41,24)=b/2; 

  

A(43,24)=b/2; 

A(43,36)=b/2; 

A(44,36)=b/2; 

A(44,48)=b/2; 

  

%External forces equilibrium H 

A(46,3)=(a*t)/2; 

A(46,6)=a*t; 

A(46,9)=a*t; 

A(46,12)=(a*t)/2; 

A(46,49)=-1*(3*a); 

  

%Boundary condition external forces equilibrium V 

A(47,2)=(a/2); 

A(47,5)=a; 

A(47,8)=a; 

A(47,11)=(a/2); 

  

%Total moment 

A(49,38)=((4*(a^2)*t)/3); 

A(49,41)=(2*(a^2)*t); 

A(49,44)=((a^2)*t); 

A(49,47)=(((a^2)*t)/6); 

A(49,49)=9*a*b; 

  

  

B=zeros(49,1); 

B(47,1)=(V)*(3*a); 

B(49,1)=(-1)*(V)*t*((9*(a^2))/2); 

  

Errmax=1; 

Xnew=zeros(49,1); 

%Initial values of principal stresses 
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SigmaA1=0;SigmaA3=0; 

SigmaB1=0;SigmaB3=0; 

SigmaC1=0;SigmaC3=0; 

SigmaD1=0;SigmaD3=0; 

SigmaE1=0;SigmaE3=0; 

SigmaF1=0;SigmaF3=0; 

SigmaG1=0;SigmaG3=0; 

SigmaH1=0;SigmaH3=0; 

SigmaI1=0;SigmaI3=0; 

SigmaJ1=0;SigmaJ3=0; 

SigmaK1=0;SigmaK3=0; 

SigmaL1=0;SigmaL3=0; 

SigmaM1=0;SigmaM3=0; 

SigmaN1=0;SigmaN3=0; 

SigmaO1=0;SigmaO3=0; 

SigmaP1=0;SigmaP3=0; 

  

  

while Errmax>0.00001 

  

    

[A(3,1),A(3,2),A(3,3),B(3,1)]=mohr(SigmaA1,SigmaA3,Sigmax_A,Sigmay_A,Tao_A,

Sc,St); 

    

[A(6,4),A(6,5),A(6,6),B(6,1)]=mohr(SigmaB1,SigmaB3,Sigmax_B,Sigmay_B,Tao_B,

Sc,St); 

    

[A(9,7),A(9,8),A(9,9),B(9,1)]=mohr(SigmaC1,SigmaC3,Sigmax_C,Sigmay_C,Tao_C,

Sc,St); 

    

[A(12,10),A(12,11),A(12,12),B(12,1)]=mohr(SigmaD1,SigmaD3,Sigmax_D,Sigmay_D

,Tao_D,Sc,St); 

    

[A(15,13),A(15,14),A(15,15),B(15,1)]=mohr(SigmaE1,SigmaE3,Sigmax_E,Sigmay_E

,Tao_E,Sc,St);   

    

[A(18,16),A(18,17),A(18,18),B(18,1)]=mohr(SigmaF1,SigmaF3,Sigmax_F,Sigmay_F

,Tao_F,Sc,St); 

    

[A(21,19),A(21,20),A(21,21),B(21,1)]=mohr(SigmaG1,SigmaG3,Sigmax_G,Sigmay_G

,Tao_G,Sc,St); 

    

[A(24,22),A(24,23),A(24,24),B(24,1)]=mohr(SigmaH1,SigmaH3,Sigmax_H,Sigmay_H

,Tao_H,Sc,St); 

    

[A(27,25),A(27,26),A(27,27),B(27,1)]=mohr(SigmaI1,SigmaI3,Sigmax_I,Sigmay_I

,Tao_I,Sc,St); 

    

[A(30,28),A(30,29),A(30,30),B(30,1)]=mohr(SigmaJ1,SigmaJ3,Sigmax_J,Sigmay_J

,Tao_J,Sc,St); 

    

[A(33,31),A(33,32),A(33,33),B(33,1)]=mohr(SigmaK1,SigmaK3,Sigmax_K,Sigmay_K

,Tao_K,Sc,St); 

    

[A(36,34),A(36,35),A(36,36),B(36,1)]=mohr(SigmaL1,SigmaL3,Sigmax_L,Sigmay_L

,Tao_L,Sc,St); 

    

[A(39,37),A(39,38),A(39,39),B(39,1)]=mohr(SigmaM1,SigmaM3,Sigmax_M,Sigmay_M

,Tao_M,Sc,St);             
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[A(42,40),A(42,41),A(42,42),B(42,1)]=mohr(SigmaN1,SigmaN3,Sigmax_N,Sigmay_N

,Tao_N,Sc,St); 

    

[A(45,43),A(45,44),A(45,45),B(45,1)]=mohr(SigmaO1,SigmaO3,Sigmax_O,Sigmay_O

,Tao_O,Sc,St); 

    

[A(48,46),A(48,47),A(48,48),B(48,1)]=mohr(SigmaP1,SigmaP3,Sigmax_P,Sigmay_P

,Tao_P,Sc,St); 

         

                  

       

Xold=[Sigmax_A;Sigmay_A;Tao_A;Sigmax_B;Sigmay_B;Tao_B;Sigmax_C;Sigmay_C;Tao

_C;Sigmax_D;Sigmay_D;Tao_D;Sigmax_E;Sigmay_E;Tao_E;Sigmax_F;Sigmay_F;Tao_F;

Sigmax_G;Sigmay_G;Tao_G;Sigmax_H;Sigmay_H;Tao_H;Sigmax_I;Sigmay_I;Tao_I;Sig

max_J;Sigmay_J;Tao_J;Sigmax_K;Sigmay_K;Tao_K;Sigmax_L;Sigmay_L;Tao_L;Sigmax

_M;Sigmay_M;Tao_M;Sigmax_N;Sigmay_N;Tao_N;Sigmax_O;Sigmay_O;Tao_O;Sigmax_P;

Sigmay_P;Tao_P;H]; 

 

       Xnew=A\B; 

            Delta=Xnew-Xold; 

            Err=Delta./Xnew; 

            Errmax=max(abs(Err)); 

            Sigmax_A=Xnew(1,1); 

            Sigmay_A=Xnew(2,1); 

            Tao_A=Xnew(3,1); 

            Sigmax_B=Xnew(4,1); 

            Sigmay_B=Xnew(5,1); 

            Tao_B=Xnew(6,1); 

            Sigmax_C=Xnew(7,1); 

            Sigmay_C=Xnew(8,1); 

            Tao_C=Xnew(9,1); 

            Sigmax_D=Xnew(10,1); 

            Sigmay_D=Xnew(11,1); 

            Tao_D=Xnew(12,1); 

            Sigmax_E=Xnew(13,1); 

            Sigmay_E=Xnew(14,1); 

            Tao_E=Xnew(15,1); 

            Sigmax_F=Xnew(16,1); 

            Sigmay_F=Xnew(17,1); 

            Tao_F=Xnew(18,1); 

            Sigmax_G=Xnew(19,1); 

            Sigmay_G=Xnew(20,1); 

            Tao_G=Xnew(21,1); 

            Sigmax_H=Xnew(22,1); 

            Sigmay_H=Xnew(23,1); 

            Tao_H=Xnew(24,1); 

            Sigmax_I=Xnew(25,1); 

            Sigmay_I=Xnew(26,1); 

            Tao_I=Xnew(27,1); 

            Sigmax_J=Xnew(28,1); 

            Sigmay_J=Xnew(29,1); 

            Tao_J=Xnew(30,1); 

            Sigmax_K=Xnew(31,1); 

            Sigmay_K=Xnew(32,1); 

            Tao_K=Xnew(33,1); 

            Sigmax_L=Xnew(34,1); 

            Sigmay_L=Xnew(35,1); 

            Tao_L=Xnew(36,1); 

            Sigmax_M=Xnew(37,1); 
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            Sigmay_M=Xnew(38,1); 

            Tao_M=Xnew(39,1); 

            Sigmax_N=Xnew(40,1); 

            Sigmay_N=Xnew(41,1); 

            Tao_N=Xnew(42,1); 

            Sigmax_O=Xnew(43,1); 

            Sigmay_O=Xnew(44,1); 

            Tao_O=Xnew(45,1); 

            Sigmax_P=Xnew(46,1); 

            Sigmay_P=Xnew(47,1); 

            Tao_P=Xnew(48,1); 

            H=Xnew(49,1); 

end  
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B. MATLAB Code for Masonry Wall with Window Opening 

%unknowns 

Sigmax_A=1;Sigmay_A=1;Tao_A=1;      %Node A 

Sigmax_B=1;Sigmay_B=1;Tao_B=1;      %Node B 

Sigmax_C=1;Sigmay_C=1;Tao_C=1;      %Node C 

Sigmax_D=1;Sigmay_D=1;Tao_D=1;      %Node D 

Sigmax_E=1;Sigmay_E=1;Tao_E=1;      %Node E 

Sigmax_F=1;Sigmay_F=1;Tao_F=1;      %Node F 

Sigmax_G=1;Sigmay_G=1;Tao_G=1;      %Node G 

Sigmax_H=1;Sigmay_H=1;Tao_H=1;      %Node H 

Sigmax_I=1;Sigmay_I=1;Tao_I=1;      %Node I 

Sigmax_J=1;Sigmay_J=1;Tao_J=1;      %Node J 

Sigmax_K=1;Sigmay_K=1;Tao_K=1;      %Node K 

Sigmax_L=1;Sigmay_L=1;Tao_L=1;      %Node L 

Sigmax_M=1;Sigmay_M=1;Tao_M=1;      %Node M 

Sigmax_N=1;Sigmay_N=1;Tao_N=1;      %Node N 

Sigmax_O=1;Sigmay_O=1;Tao_O=1;      %Node O 

Sigmax_P=1;Sigmay_P=1;Tao_P=1;      %Node P 

H=1; 

  

%number indices of nodes for each block 

B1=[1,2,3,4,5,6,13,14,15,16,17,18]; 

B2=[4,5,6,7,8,9,16,17,18,19,20,21]; 

B3=[7,8,9,10,11,12,19,20,21,22,23,24]; 

B4=[13,14,15,16,17,18,25,26,27,28,29,30]; 

B5=[16,17,18,19,20,21,28,29,30,31,32,33]; 

B6=[19,20,21,22,23,24,31,32,33,34,35,36]; 

B7=[25,26,27,28,29,30,37,38,39,40,41,42]; 

B8=[28,29,30,31,32,33,40,41,42,43,44,45]; 

B9=[31,32,33,34,35,36,43,44,45,46,47,48]; 

BLOCK=[B1;B2;B3;B4;B5;B6;B7;B8;B9]; 

  

A=zeros(49,49); 

for X=1:9, BLOCK(X,:); 

    if X==5; 

        continue 

    end 

    if X==1 || X==3 || X==7 || X==9; 

        x=a; 

        y=b; 

    end 

    if X==2 || X==8; 

        x=c; 

        y=b; 

    end 

    if X==4 || X==6; 

        x=a; 

        y=d; 

    end 

         

    %equilibrium equation in x direction 

     A((3*X-2),BLOCK(X,1))=-y/2; 

     A((3*X-2),BLOCK(X,4))=y/2; 

     A((3*X-2),BLOCK(X,7))=-y/2; 

     A((3*X-2),BLOCK(X,10))=y/2; 

     A((3*X-2),BLOCK(X,3))=x/2; 

     A((3*X-2),BLOCK(X,6))=x/2; 

     A((3*X-2),BLOCK(X,9))=-x/2; 
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     A((3*X-2),BLOCK(X,12))=-x/2; 

     %equilibrium equation in y direction   

     A((3*X-1),BLOCK(X,2))=x/2; 

     A((3*X-1),BLOCK(X,5))=x/2; 

     A((3*X-1),BLOCK(X,8))=-x/2; 

     A((3*X-1),BLOCK(X,11))=-x/2; 

     A((3*X-1),BLOCK(X,3))=-y/2; 

     A((3*X-1),BLOCK(X,6))=y/2; 

     A((3*X-1),BLOCK(X,9))=-y/2; 

     A((3*X-1),BLOCK(X,12))=y/2; 

end 

  

  

%Boundary conditions around opening 

A(13,16)=d/2; 

A(13,28)=d/2; 

A(14,19)=d/2; 

A(14,31)=d/2; 

  

%Boundary conditions Sigma_x 

A(28,1)=b/2; 

A(28,13)=b/2; 

A(29,13)=d/2; 

A(29,25)=d/2; 

  

A(31,25)=b/2; 

A(31,37)=b/2; 

A(32,10)=b/2; 

A(32,22)=b/2; 

  

A(34,22)=d/2; 

A(34,34)=d/2; 

A(35,34)=b/2; 

A(35,46)=b/2; 

  

  

%Boundary conditions Tao 

A(37,3)=b/2; 

A(37,15)=b/2; 

A(38,15)=d/2; 

A(38,27)=d/2; 

  

A(40,27)=b/2; 

A(40,39)=b/2; 

A(41,12)=b/2; 

A(41,24)=b/2; 

  

A(43,24)=d/2; 

A(43,36)=d/2; 

A(44,36)=b/2; 

A(44,48)=b/2; 

  

%External forces equilibrium H 

A(46,3)=(a*t)/2; 

A(46,6)=((a*t)/2)+((c*t)/2); 

A(46,9)=((a*t)/2)+((c*t)/2); 

A(46,12)=(a*t)/2; 

A(46,49)=-1*((2*a)+c); 

  

%Boundary condition external forces equilibrium V 
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A(47,2)=a/2; 

A(47,5)=(a/2)+(c/2); 

A(47,8)=(a/2)+(c/2); 

A(47,11)=a/2; 

  

%Total moment 

A(49,38)=((5*t*(a^2))/6)+((a*c*t)/2); 

A(49,41)=((2*(a^2)*t)/3)+(a*c*t)+((t*(c^2))/3); 

A(49,44)=((a*c*t)/2)+((t*(c^2))/6)+((t*(a^2))/3); 

A(49,47)=(t*(a^2))/6; 

A(49,49)=(2*a+c)*(2*b+d); 

  

B=zeros(49,1); 

B(47,1)=V*(2*a+c);  

B(49,1)=-V*t*(((2*a+c)^2)/2); 

 

  

Errmax=1; 

Xnew=zeros(49,1); 

%Initial values of principal stresses 

SigmaA1=0;SigmaA3=0; 

SigmaB1=0;SigmaB3=0; 

SigmaC1=0;SigmaC3=0; 

SigmaD1=0;SigmaD3=0; 

SigmaE1=0;SigmaE3=0; 

SigmaF1=0;SigmaF3=0; 

SigmaG1=0;SigmaG3=0; 

SigmaH1=0;SigmaH3=0; 

SigmaI1=0;SigmaI3=0; 

SigmaJ1=0;SigmaJ3=0; 

SigmaK1=0;SigmaK3=0; 

SigmaL1=0;SigmaL3=0; 

SigmaM1=0;SigmaM3=0; 

SigmaN1=0;SigmaN3=0; 

SigmaO1=0;SigmaO3=0; 

SigmaP1=0;SigmaP3=0; 

  

  

while Errmax>0.00001 

  

    

[A(3,1),A(3,2),A(3,3),B(3,1)]=mohr(SigmaA1,SigmaA3,Sigmax_A,Sigmay_A,Tao_A,

Sc,St); 

    

[A(6,4),A(6,5),A(6,6),B(6,1)]=mohr(SigmaB1,SigmaB3,Sigmax_B,Sigmay_B,Tao_B,

Sc,St); 

    

[A(9,7),A(9,8),A(9,9),B(9,1)]=mohr(SigmaC1,SigmaC3,Sigmax_C,Sigmay_C,Tao_C,

Sc,St); 

    

[A(12,10),A(12,11),A(12,12),B(12,1)]=mohr(SigmaD1,SigmaD3,Sigmax_D,Sigmay_D

,Tao_D,Sc,St); 

    

[A(15,13),A(15,14),A(15,15),B(15,1)]=mohr(SigmaE1,SigmaE3,Sigmax_E,Sigmay_E

,Tao_E,Sc,St);   

    

[A(21,19),A(21,20),A(21,21),B(21,1)]=mohr(SigmaG1,SigmaG3,Sigmax_G,Sigmay_G

,Tao_G,Sc,St); 
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[A(24,22),A(24,23),A(24,24),B(24,1)]=mohr(SigmaH1,SigmaH3,Sigmax_H,Sigmay_H

,Tao_H,Sc,St); 

    

[A(18,16),A(18,17),A(18,18),B(18,1)]=mohr(SigmaF1,SigmaF3,Sigmax_F,Sigmay_F

,Tao_F,Sc,St); 

    

[A(27,25),A(27,26),A(27,27),B(27,1)]=mohr(SigmaI1,SigmaI3,Sigmax_I,Sigmay_I

,Tao_I,Sc,St); 

    

[A(30,28),A(30,29),A(30,30),B(30,1)]=mohr(SigmaJ1,SigmaJ3,Sigmax_J,Sigmay_J

,Tao_J,Sc,St); 

    

[A(33,31),A(33,32),A(33,33),B(33,1)]=mohr(SigmaK1,SigmaK3,Sigmax_K,Sigmay_K

,Tao_K,Sc,St); 

    

[A(36,34),A(36,35),A(36,36),B(36,1)]=mohr(SigmaL1,SigmaL3,Sigmax_L,Sigmay_L

,Tao_L,Sc,St); 

    

[A(39,37),A(39,38),A(39,39),B(39,1)]=mohr(SigmaM1,SigmaM3,Sigmax_M,Sigmay_M

,Tao_M,Sc,St);             

    

[A(42,40),A(42,41),A(42,42),B(42,1)]=mohr(SigmaN1,SigmaN3,Sigmax_N,Sigmay_N

,Tao_N,Sc,St); 

    

[A(45,43),A(45,44),A(45,45),B(45,1)]=mohr(SigmaO1,SigmaO3,Sigmax_O,Sigmay_O

,Tao_O,Sc,St); 

    

[A(48,46),A(48,47),A(48,48),B(48,1)]=mohr(SigmaP1,SigmaP3,Sigmax_P,Sigmay_P

,Tao_P,Sc,St); 

         

                  

       

Xold=[Sigmax_A;Sigmay_A;Tao_A;Sigmax_B;Sigmay_B;Tao_B;Sigmax_C;Sigmay_C;Tao

_C;Sigmax_D;Sigmay_D;Tao_D;Sigmax_E;Sigmay_E;Tao_E;Sigmax_F;Sigmay_F;Tao_F;

Sigmax_G;Sigmay_G;Tao_G;Sigmax_H;Sigmay_H;Tao_H;Sigmax_I;Sigmay_I;Tao_I;Sig

max_J;Sigmay_J;Tao_J;Sigmax_K;Sigmay_K;Tao_K;Sigmax_L;Sigmay_L;Tao_L;Sigmax

_M;Sigmay_M;Tao_M;Sigmax_N;Sigmay_N;Tao_N;Sigmax_O;Sigmay_O;Tao_O;Sigmax_P;

Sigmay_P;Tao_P;H]; 

 

       Xnew=A\B; 

            Delta=Xnew-Xold; 

            Err=Delta./Xnew; 

            Errmax=max(abs(Err)); 

            Sigmax_A=Xnew(1,1); 

            Sigmay_A=Xnew(2,1); 

            Tao_A=Xnew(3,1); 

            Sigmax_B=Xnew(4,1); 

            Sigmay_B=Xnew(5,1); 

            Tao_B=Xnew(6,1); 

            Sigmax_C=Xnew(7,1); 

            Sigmay_C=Xnew(8,1); 

            Tao_C=Xnew(9,1); 

            Sigmax_D=Xnew(10,1); 

            Sigmay_D=Xnew(11,1); 

            Tao_D=Xnew(12,1); 

            Sigmax_E=Xnew(13,1); 

            Sigmay_E=Xnew(14,1); 

            Tao_E=Xnew(15,1); 

            Sigmax_F=Xnew(16,1); 
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            Sigmay_F=Xnew(17,1); 

            Tao_F=Xnew(18,1); 

            Sigmax_G=Xnew(19,1); 

            Sigmay_G=Xnew(20,1); 

            Tao_G=Xnew(21,1); 

            Sigmax_H=Xnew(22,1); 

            Sigmay_H=Xnew(23,1); 

            Tao_H=Xnew(24,1); 

            Sigmax_I=Xnew(25,1); 

            Sigmay_I=Xnew(26,1); 

            Tao_I=Xnew(27,1); 

            Sigmax_J=Xnew(28,1); 

            Sigmay_J=Xnew(29,1); 

            Tao_J=Xnew(30,1); 

            Sigmax_K=Xnew(31,1); 

            Sigmay_K=Xnew(32,1); 

            Tao_K=Xnew(33,1); 

            Sigmax_L=Xnew(34,1); 

            Sigmay_L=Xnew(35,1); 

            Tao_L=Xnew(36,1); 

            Sigmax_M=Xnew(37,1); 

            Sigmay_M=Xnew(38,1); 

            Tao_M=Xnew(39,1); 

            Sigmax_N=Xnew(40,1); 

            Sigmay_N=Xnew(41,1); 

            Tao_N=Xnew(42,1); 

            Sigmax_O=Xnew(43,1); 

            Sigmay_O=Xnew(44,1); 

            Tao_O=Xnew(45,1); 

            Sigmax_P=Xnew(46,1); 

            Sigmay_P=Xnew(47,1); 

            Tao_P=Xnew(48,1); 

            H=Xnew(49,1); 

end  
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C. MATLAB Code for Masonry Wall with Door Opening 

%unknowns 

Sigmax_A=1;Sigmay_A=1;Tao_A=1;      %Node A 

Sigmax_B=1;Sigmay_B=1;Tao_B=1;      %Node B 

Sigmax_C=1;Sigmay_C=1;Tao_C=1;      %Node C 

Sigmax_D=1;Sigmay_D=1;Tao_D=1;      %Node D 

Sigmax_E=1;Sigmay_E=1;Tao_E=1;      %Node E 

Sigmax_F=1;Sigmay_F=1;Tao_F=1;      %Node F 

Sigmax_G=1;Sigmay_G=1;Tao_G=1;      %Node G 

Sigmax_H=1;Sigmay_H=1;Tao_H=1;      %Node H 

Sigmax_I=1;Sigmay_I=1;Tao_I=1;      %Node I 

Sigmax_J=1;Sigmay_J=1;Tao_J=1;      %Node J 

Sigmax_K=1;Sigmay_K=1;Tao_K=1;      %Node K 

Sigmax_L=1;Sigmay_L=1;Tao_L=1;      %Node L 

Sigmax_M=1;Sigmay_M=1;Tao_M=1;      %Node M 

Sigmax_N=1;Sigmay_N=1;Tao_N=1;      %Node N 

Sigmax_O=1;Sigmay_O=1;Tao_O=1;      %Node O 

Sigmax_P=1;Sigmay_P=1;Tao_P=1;      %Node P 

H=1; 

  

%number indices of nodes for each block 

B1=[1,2,3,4,5,6,13,14,15,16,17,18]; 

B2=[4,5,6,7,8,9,16,17,18,19,20,21]; 

B3=[7,8,9,10,11,12,19,20,21,22,23,24]; 

B4=[13,14,15,16,17,18,25,26,27,28,29,30]; 

B5=[16,17,18,19,20,21,28,29,30,31,32,33]; 

B6=[19,20,21,22,23,24,31,32,33,34,35,36]; 

B7=[25,26,27,28,29,30,37,38,39,40,41,42]; 

B8=[28,29,30,31,32,33,40,41,42,43,44,45]; 

B9=[31,32,33,34,35,36,43,44,45,46,47,48]; 

BLOCK=[B1;B2;B3;B4;B5;B6;B7;B8;B9]; 

  

A=zeros(49,49); 

for X=1:9, BLOCK(X,:); 

    if X==5 || X==8; 

        continue 

    end 

    if X==1 || X==3; 

        x=a; 

        y=b; 

    end 

    if X==2; 

        x=c; 

        y=b; 

    end 

    if X==4 || X==6 || X==7 || X==9; 

        x=a; 

        y=d; 

    end 

         

    %equilibrium equation in x direction 

     A((3*X-2),BLOCK(X,1))=-y/2; 

     A((3*X-2),BLOCK(X,4))=y/2; 

     A((3*X-2),BLOCK(X,7))=-y/2; 

     A((3*X-2),BLOCK(X,10))=y/2; 

     A((3*X-2),BLOCK(X,3))=x/2; 

     A((3*X-2),BLOCK(X,6))=x/2; 

     A((3*X-2),BLOCK(X,9))=-x/2; 
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     A((3*X-2),BLOCK(X,12))=-x/2; 

     %equilibrium equation in y direction   

     A((3*X-1),BLOCK(X,2))=x/2; 

     A((3*X-1),BLOCK(X,5))=x/2; 

     A((3*X-1),BLOCK(X,8))=-x/2; 

     A((3*X-1),BLOCK(X,11))=-x/2; 

     A((3*X-1),BLOCK(X,3))=-y/2; 

     A((3*X-1),BLOCK(X,6))=y/2; 

     A((3*X-1),BLOCK(X,9))=-y/2; 

     A((3*X-1),BLOCK(X,12))=y/2; 

end 

  

  

%Boundary conditions around opening 

A(13,16)=d/2; 

A(13,28)=d/2; 

A(14,19)=d/2; 

A(14,31)=d/2; 

  

A(22,28)=d/2; 

A(22,40)=d/2; 

A(23,31)=d/2; 

A(23,43)=d/2; 

  

%Boundary conditions Sigma_x 

A(28,1)=b/2; 

A(28,13)=b/2; 

A(29,13)=d/2; 

A(29,25)=d/2; 

  

A(31,25)=d/2; 

A(31,37)=d/2; 

A(32,10)=b/2; 

A(32,22)=b/2; 

  

A(34,22)=d/2; 

A(34,34)=d/2; 

A(35,34)=d/2; 

A(35,46)=d/2; 

  

%Boundary conditions Tao 

A(37,3)=b/2; 

A(37,15)=b/2; 

A(38,15)=d/2; 

A(38,27)=d/2; 

  

A(40,27)=d/2; 

A(40,39)=d/2; 

A(41,12)=b/2; 

A(41,24)=b/2; 

  

A(43,24)=d/2; 

A(43,36)=d/2; 

A(44,36)=d/2; 

A(44,48)=d/2; 

  

%External forces equilibrium H 

A(46,3)=(a*t)/2; 

A(46,6)=((a*t)/2)+((c*t)/2); 

A(46,9)=((a*t)/2)+((c*t)/2); 
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A(46,12)=(a*t)/2; 

A(46,49)=-1*((2*a)+c); 

  

%Boundary condition external forces equilibrium V 

A(47,2)=a/2; 

A(47,5)=(a/2)+(c/2); 

A(47,8)=(a/2)+(c/2); 

A(47,11)=a/2; 

  

%Total moment 

A(49,38)=((5*(a^2*t))/6)+((a*c*t)/2); 

A(49,41)=((2*(a^2*t))/3)+((a*c*t)/2); 

A(49,44)=((a^2*t)/3); 

A(49,47)=(a^2*t)/6; 

A(49,49)=(2*a+c)*(2*d+b); 

  

  

B=zeros(49,1); 

B(47,1)=V*(2*a+c); 

B(49,1)=-V*(((2*a+c)^2)/2)*t; 

  

Errmax=1; 

Xnew=zeros(49,1); 

%Initial values of principal stresses 

SigmaA1=0;SigmaA3=0; 

SigmaB1=0;SigmaB3=0; 

SigmaC1=0;SigmaC3=0; 

SigmaD1=0;SigmaD3=0; 

SigmaE1=0;SigmaE3=0; 

SigmaF1=0;SigmaF3=0; 

SigmaG1=0;SigmaG3=0; 

SigmaH1=0;SigmaH3=0; 

SigmaI1=0;SigmaI3=0; 

SigmaJ1=0;SigmaJ3=0; 

SigmaK1=0;SigmaK3=0; 

SigmaL1=0;SigmaL3=0; 

SigmaM1=0;SigmaM3=0; 

SigmaN1=0;SigmaN3=0; 

SigmaO1=0;SigmaO3=0; 

SigmaP1=0;SigmaP3=0; 

  

while Errmax>0.00001 

  

    

[A(3,1),A(3,2),A(3,3),B(3,1)]=mohr(SigmaA1,SigmaA3,Sigmax_A,Sigmay_A,Tao_A,

Sc,St); 

    

[A(6,4),A(6,5),A(6,6),B(6,1)]=mohr(SigmaB1,SigmaB3,Sigmax_B,Sigmay_B,Tao_B,

Sc,St); 

    

[A(9,7),A(9,8),A(9,9),B(9,1)]=mohr(SigmaC1,SigmaC3,Sigmax_C,Sigmay_C,Tao_C,

Sc,St); 

    

[A(12,10),A(12,11),A(12,12),B(12,1)]=mohr(SigmaD1,SigmaD3,Sigmax_D,Sigmay_D

,Tao_D,Sc,St); 

    

[A(15,13),A(15,14),A(15,15),B(15,1)]=mohr(SigmaE1,SigmaE3,Sigmax_E,Sigmay_E

,Tao_E,Sc,St);   
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[A(18,16),A(18,17),A(18,18),B(18,1)]=mohr(SigmaF1,SigmaF3,Sigmax_F,Sigmay_F

,Tao_F,Sc,St); 

    

[A(21,19),A(21,20),A(21,21),B(21,1)]=mohr(SigmaG1,SigmaG3,Sigmax_G,Sigmay_G

,Tao_G,Sc,St); 

    

[A(24,22),A(24,23),A(24,24),B(24,1)]=mohr(SigmaH1,SigmaH3,Sigmax_H,Sigmay_H

,Tao_H,Sc,St); 

    

[A(27,25),A(27,26),A(27,27),B(27,1)]=mohr(SigmaI1,SigmaI3,Sigmax_I,Sigmay_I

,Tao_I,Sc,St); 

    

[A(30,28),A(30,29),A(30,30),B(30,1)]=mohr(SigmaJ1,SigmaJ3,Sigmax_J,Sigmay_J

,Tao_J,Sc,St); 

    

[A(33,31),A(33,32),A(33,33),B(33,1)]=mohr(SigmaK1,SigmaK3,Sigmax_K,Sigmay_K

,Tao_K,Sc,St); 

    

[A(36,34),A(36,35),A(36,36),B(36,1)]=mohr(SigmaL1,SigmaL3,Sigmax_L,Sigmay_L

,Tao_L,Sc,St); 

    

[A(39,37),A(39,38),A(39,39),B(39,1)]=mohr(SigmaM1,SigmaM3,Sigmax_M,Sigmay_M

,Tao_M,Sc,St);             

    

[A(42,40),A(42,41),A(42,42),B(42,1)]=mohr(SigmaN1,SigmaN3,Sigmax_N,Sigmay_N

,Tao_N,Sc,St); 

    

[A(45,43),A(45,44),A(45,45),B(45,1)]=mohr(SigmaO1,SigmaO3,Sigmax_O,Sigmay_O

,Tao_O,Sc,St); 

    

[A(48,46),A(48,47),A(48,48),B(48,1)]=mohr(SigmaP1,SigmaP3,Sigmax_P,Sigmay_P

,Tao_P,Sc,St); 

         

                  

       

Xold=[Sigmax_A;Sigmay_A;Tao_A;Sigmax_B;Sigmay_B;Tao_B;Sigmax_C;Sigmay_C;Tao

_C;Sigmax_D;Sigmay_D;Tao_D;Sigmax_E;Sigmay_E;Tao_E;Sigmax_F;Sigmay_F;Tao_F;

Sigmax_G;Sigmay_G;Tao_G;Sigmax_H;Sigmay_H;Tao_H;Sigmax_I;Sigmay_I;Tao_I;Sig

max_J;Sigmay_J;Tao_J;Sigmax_K;Sigmay_K;Tao_K;Sigmax_L;Sigmay_L;Tao_L;Sigmax

_M;Sigmay_M;Tao_M;Sigmax_N;Sigmay_N;Tao_N;Sigmax_O;Sigmay_O;Tao_O;Sigmax_P;

Sigmay_P;Tao_P;H]; 

 

       Xnew=A\B; 

            Delta=Xnew-Xold; 

            Err=Delta./Xnew; 

            Errmax=max(abs(Err)); 

            Sigmax_A=Xnew(1,1); 

            Sigmay_A=Xnew(2,1); 

            Tao_A=Xnew(3,1); 

            Sigmax_B=Xnew(4,1); 

            Sigmay_B=Xnew(5,1); 

            Tao_B=Xnew(6,1); 

            Sigmax_C=Xnew(7,1); 

            Sigmay_C=Xnew(8,1); 

            Tao_C=Xnew(9,1); 

            Sigmax_D=Xnew(10,1); 

            Sigmay_D=Xnew(11,1); 

            Tao_D=Xnew(12,1); 

            Sigmax_E=Xnew(13,1); 
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            Sigmay_E=Xnew(14,1); 

            Tao_E=Xnew(15,1); 

            Sigmax_F=Xnew(16,1); 

            Sigmay_F=Xnew(17,1); 

            Tao_F=Xnew(18,1); 

            Sigmax_G=Xnew(19,1); 

            Sigmay_G=Xnew(20,1); 

            Tao_G=Xnew(21,1); 

            Sigmax_H=Xnew(22,1); 

            Sigmay_H=Xnew(23,1); 

            Tao_H=Xnew(24,1); 

            Sigmax_I=Xnew(25,1); 

            Sigmay_I=Xnew(26,1); 

            Tao_I=Xnew(27,1); 

            Sigmax_J=Xnew(28,1); 

            Sigmay_J=Xnew(29,1); 

            Tao_J=Xnew(30,1); 

            Sigmax_K=Xnew(31,1); 

            Sigmay_K=Xnew(32,1); 

            Tao_K=Xnew(33,1); 

            Sigmax_L=Xnew(34,1); 

            Sigmay_L=Xnew(35,1); 

            Tao_L=Xnew(36,1); 

            Sigmax_M=Xnew(37,1); 

            Sigmay_M=Xnew(38,1); 

            Tao_M=Xnew(39,1); 

            Sigmax_N=Xnew(40,1); 

            Sigmay_N=Xnew(41,1); 

            Tao_N=Xnew(42,1); 

            Sigmax_O=Xnew(43,1); 

            Sigmay_O=Xnew(44,1); 

            Tao_O=Xnew(45,1); 

            Sigmax_P=Xnew(46,1); 

            Sigmay_P=Xnew(47,1); 

            Tao_P=Xnew(48,1); 

            H=Xnew(49,1); 

end  
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D. MATLAB Code for Masonry Wall with Single Window and Single Door 

Opening 

%Unknowns 

Sigmax_A=1;Sigmay_A=1;Tao_A=1;      %Node A 

Sigmax_B=1;Sigmay_B=1;Tao_B=1;      %Node B 

Sigmax_C=1;Sigmay_C=1;Tao_C=1;      %Node C 

Sigmax_D=1;Sigmay_D=1;Tao_D=1;      %Node D 

Sigmax_E=1;Sigmay_E=1;Tao_E=1;      %Node E 

Sigmax_F=1;Sigmay_F=1;Tao_F=1;      %Node F 

Sigmax_G=1;Sigmay_G=1;Tao_G=1;      %Node G 

Sigmax_H=1;Sigmay_H=1;Tao_H=1;      %Node H 

Sigmax_I=1;Sigmay_I=1;Tao_I=1;      %Node I 

Sigmax_J=1;Sigmay_J=1;Tao_J=1;      %Node J 

Sigmax_K=1;Sigmay_K=1;Tao_K=1;      %Node K 

Sigmax_L=1;Sigmay_L=1;Tao_L=1;      %Node L 

Sigmax_M=1;Sigmay_M=1;Tao_M=1;      %Node M 

Sigmax_N=1;Sigmay_N=1;Tao_N=1;      %Node N 

Sigmax_O=1;Sigmay_O=1;Tao_O=1;      %Node O 

Sigmax_P=1;Sigmay_P=1;Tao_P=1;      %Node P 

Sigmax_R=1;Sigmay_R=1;Tao_R=1;      %Node R 

Sigmax_S=1;Sigmay_S=1;Tao_S=1;      %Node S 

Sigmax_T=1;Sigmay_T=1;Tao_T=1;      %Node T 

Sigmax_U=1;Sigmay_U=1;Tao_U=1;      %Node U 

Sigmax_V=1;Sigmay_V=1;Tao_V=1;      %Node V 

Sigmax_W=1;Sigmay_W=1;Tao_W=1;      %Node W 

Sigmax_Y=1;Sigmay_Y=1;Tao_Y=1;      %Node Y 

Sigmax_Z=1;Sigmay_Z=1;Tao_Z=1;      %Node Z 

Sigmax_AA=1;Sigmay_AA=1;Tao_AA=1;   %Node AA 

Sigmax_BB=1;Sigmay_BB=1;Tao_BB=1;   %Node BB 

Sigmax_CC=1;Sigmay_CC=1;Tao_CC=1;   %Node CC 

Sigmax_DD=1;Sigmay_DD=1;Tao_DD=1;   %Node DD 

Sigmax_EE=1;Sigmay_EE=1;Tao_EE=1;   %Node EE 

Sigmax_FF=1;Sigmay_FF=1;Tao_FF=1;   %Node FF 

Sigmax_GG=1;Sigmay_GG=1;Tao_GG=1;   %Node GG 

Sigmax_HH=1;Sigmay_HH=1;Tao_HH=1;   %Node HH 

Sigmax_II=1;Sigmay_II=1;Tao_II=1;   %Node II 

Sigmax_JJ=1;Sigmay_JJ=1;Tao_JJ=1;   %Node JJ 

Sigmax_KK=1;Sigmay_KK=1;Tao_KK=1;   %Node KK 

Sigmax_LL=1;Sigmay_LL=1;Tao_LL=1;   %Node LL 

H=1; 

  

%number indices of nodes for each block 

B1=[1,2,3,4,5,6,19,20,21,22,23,24]; 

B2=[4,5,6,7,8,9,22,23,24,25,26,27]; 

B3=[7,8,9,10,11,12,25,26,27,28,29,30]; 

B4=[10,11,12,13,14,15,28,29,30,31,32,33]; 

B5=[13,14,15,16,17,18,31,32,33,34,35,36]; 

B6=[19,20,21,22,23,24,37,38,39,40,41,42]; 

B7=[22,23,24,25,26,27,40,41,42,43,44,45]; 

B8=[25,26,27,28,29,30,43,44,45,46,47,48]; 

B9=[28,29,30,31,32,33,46,47,48,49,50,51]; 

B10=[31,32,33,34,35,36,49,50,51,52,53,54]; 

B11=[37,38,39,40,41,42,55,56,57,58,59,60]; 

B12=[40,41,42,43,44,45,58,59,60,61,62,63]; 

B13=[43,44,45,46,47,48,61,62,63,64,65,66]; 

B14=[46,47,48,49,50,51,64,65,66,67,68,69]; 

B15=[49,50,51,52,53,54,67,68,69,70,71,72]; 
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B16=[55,56,57,58,59,60,73,74,75,76,77,78]; 

B17=[58,59,60,61,62,63,76,77,78,79,80,81]; 

B18=[61,62,63,64,65,66,79,80,81,82,83,84]; 

B19=[64,65,66,67,68,69,82,83,84,85,86,87]; 

B20=[67,68,69,70,71,72,85,86,87,88,89,90]; 

B21=[73,74,75,76,77,78,91,92,93,94,95,96]; 

B22=[76,77,78,79,80,81,94,95,96,97,98,99]; 

B23=[79,80,81,82,83,84,97,98,99,100,101,102]; 

B24=[82,83,84,85,86,87,100,101,102,103,104,105]; 

B25=[85,86,87,88,89,90,103,104,105,106,107,108]; 

BLOCK=[B1;B2;B3;B4;B5;B6;B7;B8;B9;B10;B11;B12;B13;B14;B15;B16;B17;B18;B19;B

20;B21;B22;B23;B24;B25]; 

  

A=zeros(109,109); 

for X=1:25, BLOCK(X,:); 

    if X==12 || X==14 || X==19 || X==24; 

        continue 

    end 

    if X==1 || X==5 || X==6 || X==10; 

        x=a; 

        y=b; 

    end 

    if X==2 || X==4 || X==7 || X==9; 

        x=c; 

        y=b; 

    end 

    if X==3 || X==8; 

        x=e; 

        y=b; 

    end 

    if X==11 || X==15; 

        x=a; 

        y=f; 

    end 

    if X==13; 

        x=e; 

        y=f; 

    end 

    if X==16 || X==20 || X==21 || X==25; 

        x=a; 

        y=d; 

    end 

    if X==17 || X==22; 

        x=c; 

        y=d; 

    end 

    if X==18 || X==23; 

        x=e; 

        y=d; 

    end 

         

    %equilibrium equation in x direction 

     A((3*X-2),BLOCK(X,1))=-y/2; 

     A((3*X-2),BLOCK(X,4))=y/2; 

     A((3*X-2),BLOCK(X,7))=-y/2; 

     A((3*X-2),BLOCK(X,10))=y/2; 

     A((3*X-2),BLOCK(X,3))=x/2; 

     A((3*X-2),BLOCK(X,6))=x/2; 

     A((3*X-2),BLOCK(X,9))=-x/2; 

     A((3*X-2),BLOCK(X,12))=-x/2; 
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     %equilibrium equation in y direction   

     A((3*X-1),BLOCK(X,2))=x/2; 

     A((3*X-1),BLOCK(X,5))=x/2; 

     A((3*X-1),BLOCK(X,8))=-x/2; 

     A((3*X-1),BLOCK(X,11))=-x/2; 

     A((3*X-1),BLOCK(X,3))=-y/2; 

     A((3*X-1),BLOCK(X,6))=y/2; 

     A((3*X-1),BLOCK(X,9))=-y/2; 

     A((3*X-1),BLOCK(X,12))=y/2; 

end 

  

%Boundary conditions around opening 

A(34,40)=f/2; 

A(34,58)=f/2; 

A(35,43)=f/2; 

A(35,61)=f/2; 

  

A(40,46)=f/2; 

A(40,64)=f/2; 

A(41,49)=f/2; 

A(41,67)=f/2; 

  

A(55,64)=d/2; 

A(55,82)=d/2; 

A(56,67)=d/2; 

A(56,85)=d/2; 

  

A(70,82)=d/2; 

A(70,100)=d/2; 

A(71,85)=d/2; 

A(71,103)=d/2; 

  

%Boundary conditions Sigma_x 

A(76,1)=b/2; 

A(76,19)=b/2; 

A(77,19)=b/2; 

A(77,37)=b/2; 

  

A(79,37)=d/2; 

A(79,55)=d/2; 

A(80,55)=d/2; 

A(80,73)=d/2; 

  

A(82,73)=d/2; 

A(82,91)=d/2; 

A(83,16)=b/2; 

A(83,34)=b/2; 

  

A(85,34)=b/2; 

A(85,52)=b/2; 

A(86,52)=d/2; 

A(86,70)=d/2; 

  

A(88,70)=d/2; 

A(88,88)=d/2; 

A(89,80)=d/2; 

A(89,106)=d/2; 

  

%Boundary conditions Tao 

A(91,3)=b/2; 
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A(91,21)=b/2; 

A(92,21)=b/2; 

A(92,39)=b/2; 

  

A(94,39)=d/2; 

A(94,57)=d/2; 

A(95,57)=d/2; 

A(95,75)=d/2; 

  

A(97,75)=d/2; 

A(97,93)=d/2; 

A(98,18)=b/2; 

A(98,36)=b/2; 

  

A(100,36)=b/2; 

A(100,54)=b/2; 

A(101,54)=d/2; 

A(101,72)=d/2; 

  

A(103,72)=d/2; 

A(103,90)=d/2; 

A(104,90)=d/2; 

A(104,108)=d/2; 

  

%External forces equilibrium H 

A(106,3)=(a/2)*t; 

A(106,6)=((a+c)*t)/2; 

A(106,9)=((c+e)*t)/2; 

A(106,12)=((c+e)*t)/2; 

A(106,15)=((a+c)*t)/2; 

A(106,18)=(a*t)/2; 

A(106,109)=-((2*a)+(2*c)+e); 

  

%Boundary condition external forces equilibrium V 

A(107,2)=a/2; 

A(107,5)=(a+c)/2; 

A(107,8)=(c+e)/2; 

A(107,11)=(c+e)/2; 

A(107,14)=(a+c)/2; 

A(107,17)=a/2; 

  

%Total moment 

A(109,92)=(((a*(a+2*c+e))/2)+((a^2)/3))*t; 

A(109,95)=(((a*(a+2*c+e))/2)+((c^2)/6)+((e*(a+c))/2)+((e^2)/3))*t; 

A(109,98)=(((c*(a+c+e))/2)+((c^2)/6)+((e*(a+c))/2)+((e^2)/3))*t; 

A(109,101)=(((e*(a+c))/2)+((e^2)/6))*t; 

A(109,104)=((a^2)/3)*t; 

A(109,107)=((a^2)/6)*t; 

A(109,109)=(2*a+2*c+e)*(3*d+2*b); 

  

  

B=zeros(109,1); 

B(107,1)=V*(2*a+2*c+e); 

B(109,1)=-V*t*(((2*a+2*c+e)^2)/2); 

  

Errmax=1; 

Xnew=zeros(109,1); 

%Initial values of principal stresses 

SigmaA1=0;SigmaA3=0; 

SigmaB1=0;SigmaB3=0; 
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SigmaC1=0;SigmaC3=0; 

SigmaD1=0;SigmaD3=0; 

SigmaE1=0;SigmaE3=0; 

SigmaF1=0;SigmaF3=0; 

SigmaG1=0;SigmaG3=0; 

SigmaH1=0;SigmaH3=0; 

SigmaI1=0;SigmaI3=0; 

SigmaJ1=0;SigmaJ3=0; 

SigmaK1=0;SigmaK3=0; 

SigmaL1=0;SigmaL3=0; 

SigmaM1=0;SigmaM3=0; 

SigmaN1=0;SigmaN3=0; 

SigmaO1=0;SigmaO3=0; 

SigmaP1=0;SigmaP3=0; 

SigmaR1=0;SigmaR3=0; 

SigmaS1=0;SigmaS3=0; 

SigmaT1=0;SigmaT3=0; 

SigmaU1=0;SigmaU3=0; 

SigmaV1=0;SigmaV3=0; 

SigmaW1=0;SigmaW3=0; 

SigmaY1=0;SigmaY3=0; 

SigmaZ1=0;SigmaZ3=0; 

SigmaAA1=0;SigmaAA3=0; 

SigmaBB1=0;SigmaBB3=0; 

SigmaCC1=0;SigmaCC3=0; 

SigmaDD1=0;SigmaDD3=0; 

SigmaEE1=0;SigmaEE3=0; 

SigmaFF1=0;SigmaFF3=0; 

SigmaGG1=0;SigmaGG3=0; 

SigmaHH1=0;SigmaHH3=0; 

SigmaII1=0;SigmaII3=0; 

SigmaJJ1=0;SigmaJJ3=0; 

SigmaKK1=0;SigmaKK3=0; 

SigmaLL1=0;SigmaLL3=0; 

  

while Errmax>0.00001 

     

    

[A(3,1),A(3,2),A(3,3),B(3,1)]=mohr(SigmaA1,SigmaA3,Sigmax_A,Sigmay_A,Tao_A,

Sc,St); 

    

[A(6,4),A(6,5),A(6,6),B(6,1)]=mohr(SigmaB1,SigmaB3,Sigmax_B,Sigmay_B,Tao_B,

Sc,St); 

    

[A(9,7),A(9,8),A(9,9),B(9,1)]=mohr(SigmaC1,SigmaC3,Sigmax_C,Sigmay_C,Tao_C,

Sc,St); 

    

[A(12,10),A(12,11),A(12,12),B(12,1)]=mohr(SigmaD1,SigmaD3,Sigmax_D,Sigmay_D

,Tao_D,Sc,St); 

    

[A(15,13),A(15,14),A(15,15),B(15,1)]=mohr(SigmaE1,SigmaE3,Sigmax_E,Sigmay_E

,Tao_E,Sc,St);   

    

[A(18,16),A(18,17),A(18,18),B(18,1)]=mohr(SigmaF1,SigmaF3,Sigmax_F,Sigmay_F

,Tao_F,Sc,St); 

    

[A(21,19),A(21,20),A(21,21),B(21,1)]=mohr(SigmaG1,SigmaG3,Sigmax_G,Sigmay_G

,Tao_G,Sc,St); 
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[A(24,22),A(24,23),A(24,24),B(24,1)]=mohr(SigmaH1,SigmaH3,Sigmax_H,Sigmay_H

,Tao_H,Sc,St); 

    

[A(27,25),A(27,26),A(27,27),B(27,1)]=mohr(SigmaI1,SigmaI3,Sigmax_I,Sigmay_I

,Tao_I,Sc,St); 

    

[A(30,28),A(30,29),A(30,30),B(30,1)]=mohr(SigmaJ1,SigmaJ3,Sigmax_J,Sigmay_J

,Tao_J,Sc,St); 

    

[A(33,31),A(33,32),A(33,33),B(33,1)]=mohr(SigmaK1,SigmaK3,Sigmax_K,Sigmay_K

,Tao_K,Sc,St); 

    

[A(36,34),A(36,35),A(36,36),B(36,1)]=mohr(SigmaL1,SigmaL3,Sigmax_L,Sigmay_L

,Tao_L,Sc,St); 

    

[A(39,37),A(39,38),A(39,39),B(39,1)]=mohr(SigmaM1,SigmaM3,Sigmax_M,Sigmay_M

,Tao_M,Sc,St);             

    

[A(42,40),A(42,41),A(42,42),B(42,1)]=mohr(SigmaN1,SigmaN3,Sigmax_N,Sigmay_N

,Tao_N,Sc,St); 

    

[A(45,43),A(45,44),A(45,45),B(45,1)]=mohr(SigmaO1,SigmaO3,Sigmax_O,Sigmay_O

,Tao_O,Sc,St); 

    

[A(48,46),A(48,47),A(48,48),B(48,1)]=mohr(SigmaP1,SigmaP3,Sigmax_P,Sigmay_P

,Tao_P,Sc,St); 

    

[A(51,49),A(51,50),A(51,51),B(51,1)]=mohr(SigmaR1,SigmaR3,Sigmax_R,Sigmay_R

,Tao_R,Sc,St); 

    

[A(54,52),A(54,53),A(54,54),B(54,1)]=mohr(SigmaS1,SigmaS3,Sigmax_S,Sigmay_S

,Tao_S,Sc,St); 

    

[A(57,55),A(57,56),A(57,57),B(57,1)]=mohr(SigmaT1,SigmaT3,Sigmax_T,Sigmay_T

,Tao_T,Sc,St); 

    

[A(60,58),A(60,59),A(60,60),B(60,1)]=mohr(SigmaU1,SigmaU3,Sigmax_U,Sigmay_U

,Tao_U,Sc,St);             

    

[A(63,61),A(63,62),A(63,63),B(63,1)]=mohr(SigmaV1,SigmaV3,Sigmax_V,Sigmay_V

,Tao_V,Sc,St); 

    

[A(66,64),A(66,65),A(66,66),B(66,1)]=mohr(SigmaW1,SigmaW3,Sigmax_W,Sigmay_W

,Tao_W,Sc,St); 

    

[A(69,67),A(69,68),A(69,69),B(69,1)]=mohr(SigmaY1,SigmaY3,Sigmax_Y,Sigmay_Y

,Tao_Y,Sc,St);     

    

[A(72,70),A(72,71),A(72,72),B(72,1)]=mohr(SigmaZ1,SigmaZ3,Sigmax_Z,Sigmay_Z

,Tao_Z,Sc,St);        

    

[A(75,73),A(75,74),A(75,75),B(75,1)]=mohr(SigmaAA1,SigmaAA3,Sigmax_AA,Sigma

y_AA,Tao_AA,Sc,St); 

    

[A(78,76),A(78,77),A(78,78),B(78,1)]=mohr(SigmaBB1,SigmaBB3,Sigmax_BB,Sigma

y_BB,Tao_BB,Sc,St); 

    

[A(81,79),A(81,80),A(81,81),B(81,1)]=mohr(SigmaCC1,SigmaCC3,Sigmax_CC,Sigma

y_CC,Tao_CC,Sc,St); 
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[A(84,82),A(84,83),A(84,84),B(84,1)]=mohr(SigmaDD1,SigmaDD3,Sigmax_DD,Sigma

y_DD,Tao_DD,Sc,St);   

    

[A(87,85),A(87,86),A(87,87),B(87,1)]=mohr(SigmaEE1,SigmaEE3,Sigmax_EE,Sigma

y_EE,Tao_EE,Sc,St); 

    

[A(90,88),A(90,89),A(90,90),B(90,1)]=mohr(SigmaFF1,SigmaFF3,Sigmax_FF,Sigma

y_FF,Tao_FF,Sc,St); 

    

[A(93,91),A(93,92),A(93,93),B(93,1)]=mohr(SigmaGG1,SigmaGG3,Sigmax_GG,Sigma

y_GG,Tao_GG,Sc,St); 

    

[A(96,94),A(96,95),A(96,96),B(96,1)]=mohr(SigmaHH1,SigmaHH3,Sigmax_HH,Sigma

y_HH,Tao_HH,Sc,St); 

    

[A(99,97),A(99,98),A(99,99),B(99,1)]=mohr(SigmaII1,SigmaII3,Sigmax_II,Sigma

y_II,Tao_II,Sc,St); 

    

[A(102,100),A(102,101),A(102,102),B(102,1)]=mohr(SigmaJJ1,SigmaJJ3,Sigmax_J

J,Sigmay_JJ,Tao_JJ,Sc,St); 

    

[A(105,103),A(105,104),A(105,105),B(105,1)]=mohr(SigmaKK1,SigmaKK3,Sigmax_K

K,Sigmay_KK,Tao_KK,Sc,St); 

    

[A(108,106),A(108,107),A(108,108),B(108,1)]=mohr(SigmaLL1,SigmaLL3,Sigmax_L

L,Sigmay_LL,Tao_LL,Sc,St);             

  

  

         

Xold=[Sigmax_A;Sigmay_A;Tao_A;Sigmax_B;Sigmay_B;Tao_B;Sigmax_C;Sigmay_C;Tao

_C;Sigmax_D;Sigmay_D;Tao_D;Sigmax_E;Sigmay_E;Tao_E;Sigmax_F;Sigmay_F;Tao_F;

Sigmax_G;Sigmay_G;Tao_G;Sigmax_H;Sigmay_H;Tao_H;Sigmax_I;Sigmay_I;Tao_I;Sig

max_J;Sigmay_J;Tao_J;Sigmax_K;Sigmay_K;Tao_K;Sigmax_L;Sigmay_L;Tao_L;Sigmax

_M;Sigmay_M;Tao_M;Sigmax_N;Sigmay_N;Tao_N;Sigmax_O;Sigmay_O;Tao_O;Sigmax_P;

Sigmay_P;Tao_P;Sigmax_R;Sigmay_R;Tao_R;Sigmax_S;Sigmay_S;Tao_S;Sigmax_T;Sig

may_T;Tao_T;Sigmax_U;Sigmay_U;Tao_U;Sigmax_V;Sigmay_V;Tao_V;Sigmax_W;Sigmay

_W;Tao_W;Sigmax_Y;Sigmay_Y;Tao_Y;Sigmax_Z;Sigmay_Z;Tao_Z;Sigmax_AA;Sigmay_A

A;Tao_AA;Sigmax_BB;Sigmay_BB;Tao_BB;Sigmax_CC;Sigmay_CC;Tao_CC;Sigmax_DD;Si

gmay_DD;Tao_DD;Sigmax_EE;Sigmay_EE;Tao_EE;Sigmax_FF;Sigmay_FF;Tao_FF;Sigmax

_GG;Sigmay_GG;Tao_GG;Sigmax_HH;Sigmay_HH;Tao_HH;Sigmax_II;Sigmay_II;Tao_II;

Sigmax_JJ;Sigmay_JJ;Tao_JJ;Sigmax_KK;Sigmay_KK;Tao_KK;Sigmax_LL;Sigmay_LL;T

ao_LL;H]; 

  

          Xnew=A\B; 

            Delta=Xnew-Xold; 

            Err=Delta./Xnew; 

            Errmax=max(abs(Err)); 

            Sigmax_A=Xnew(1,1); 

            Sigmay_A=Xnew(2,1); 

            Tao_A=Xnew(3,1); 

            Sigmax_B=Xnew(4,1); 

            Sigmay_B=Xnew(5,1); 

            Tao_B=Xnew(6,1); 

            Sigmax_C=Xnew(7,1); 

            Sigmay_C=Xnew(8,1); 

            Tao_C=Xnew(9,1); 

            Sigmax_D=Xnew(10,1); 

            Sigmay_D=Xnew(11,1); 

            Tao_D=Xnew(12,1); 
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            Sigmax_E=Xnew(13,1); 

            Sigmay_E=Xnew(14,1); 

            Tao_E=Xnew(15,1); 

            Sigmax_F=Xnew(16,1); 

            Sigmay_F=Xnew(17,1); 

            Tao_F=Xnew(18,1); 

            Sigmax_G=Xnew(19,1); 

            Sigmay_G=Xnew(20,1); 

            Tao_G=Xnew(21,1); 

            Sigmax_H=Xnew(22,1); 

            Sigmay_H=Xnew(23,1); 

            Tao_H=Xnew(24,1); 

            Sigmax_I=Xnew(25,1); 

            Sigmay_I=Xnew(26,1); 

            Tao_I=Xnew(27,1); 

            Sigmax_J=Xnew(28,1); 

            Sigmay_J=Xnew(29,1); 

            Tao_J=Xnew(30,1); 

            Sigmax_K=Xnew(31,1); 

            Sigmay_K=Xnew(32,1); 

            Tao_K=Xnew(33,1); 

            Sigmax_L=Xnew(34,1); 

            Sigmay_L=Xnew(35,1); 

            Tao_L=Xnew(36,1); 

            Sigmax_M=Xnew(37,1); 

            Sigmay_M=Xnew(38,1); 

            Tao_M=Xnew(39,1); 

            Sigmax_N=Xnew(40,1); 

            Sigmay_N=Xnew(41,1); 

            Tao_N=Xnew(42,1); 

            Sigmax_O=Xnew(43,1); 

            Sigmay_O=Xnew(44,1); 

            Tao_O=Xnew(45,1); 

            Sigmax_P=Xnew(46,1); 

            Sigmay_P=Xnew(47,1); 

            Tao_P=Xnew(48,1); 

            Sigmax_R=Xnew(49,1); 

            Sigmay_R=Xnew(50,1); 

            Tao_R=Xnew(51,1); 

            Sigmax_S=Xnew(52,1); 

            Sigmay_S=Xnew(53,1); 

            Tao_S=Xnew(54,1); 

            Sigmax_T=Xnew(55,1); 

            Sigmay_T=Xnew(56,1); 

            Tao_T=Xnew(57,1); 

            Sigmax_U=Xnew(58,1); 

            Sigmay_U=Xnew(59,1); 

            Tao_U=Xnew(60,1); 

            Sigmax_V=Xnew(61,1); 

            Sigmay_V=Xnew(62,1); 

            Tao_V=Xnew(63,1); 

            Sigmax_W=Xnew(64,1); 

            Sigmay_W=Xnew(65,1); 

            Tao_W=Xnew(66,1); 

            Sigmax_Y=Xnew(67,1); 

            Sigmay_Y=Xnew(68,1); 

            Tao_Y=Xnew(69,1); 

            Sigmax_Z=Xnew(70,1); 

            Sigmay_Z=Xnew(71,1); 

            Tao_Z=Xnew(72,1); 
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            Sigmax_AA=Xnew(73,1); 

            Sigmay_AA=Xnew(74,1); 

            Tao_AA=Xnew(75,1); 

            Sigmax_BB=Xnew(76,1); 

            Sigmay_BB=Xnew(77,1); 

            Tao_BB=Xnew(78,1); 

            Sigmax_CC=Xnew(79,1); 

            Sigmay_CC=Xnew(80,1); 

            Tao_CC=Xnew(81,1); 

            Sigmax_DD=Xnew(82,1); 

            Sigmay_DD=Xnew(83,1); 

            Tao_DD=Xnew(84,1); 

            Sigmax_EE=Xnew(85,1); 

            Sigmay_EE=Xnew(86,1); 

            Tao_EE=Xnew(87,1); 

            Sigmax_FF=Xnew(88,1); 

            Sigmay_FF=Xnew(89,1); 

            Tao_FF=Xnew(90,1); 

            Sigmax_GG=Xnew(91,1); 

            Sigmay_GG=Xnew(92,1); 

            Tao_GG=Xnew(93,1); 

            Sigmax_HH=Xnew(94,1); 

            Sigmay_HH=Xnew(95,1); 

            Tao_HH=Xnew(96,1); 

            Sigmax_II=Xnew(97,1); 

            Sigmay_II=Xnew(98,1); 

            Tao_II=Xnew(99,1); 

            Sigmax_JJ=Xnew(100,1); 

            Sigmay_JJ=Xnew(101,1); 

            Tao_JJ=Xnew(102,1); 

            Sigmax_KK=Xnew(103,1); 

            Sigmay_KK=Xnew(104,1); 

            Tao_KK=Xnew(105,1); 

            Sigmax_LL=Xnew(106,1); 

            Sigmay_LL=Xnew(107,1); 

            Tao_LL=Xnew(108,1); 

            H=Xnew(109,1); 

            Xnew;     

end 
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E. Internal Stresses and Stress Distribution of Masonry Wall without Opening 

Solid masonry wall case study is analyzed for the ultimate condition which is 897 kN 

vertical load as presented in Figure 0.1 with dimension 500x300 cm and thickness as 

30 cm. Compressive and tensile strength values are 11 MPa and 0.55 MPa 

respectively. As a result, sample internal stress values are given in Table 0.1 and 

distribution plots for normal and shear stresses are illustrated in Figure 0.2, Figure 0.3 

and Figure 0.4, respectively.  

 

Figure 0.1. Solid masonry wall under ultimate condition 
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Table 0.1. Results of internal stresses of masonry wall without opening under maximum vertical load 

according to Matlab2017b 

NODE σX (MPa) σY (MPa) τ (MPa) 

A 0.48047 -1.16594 0.13316 

B -0.45814 -1.64320 1.35012 

C -0.58265 0.17844 0.59545 

D -0.48047 0.50746 -0.13316 

E -0.48047 0.50746 -0.13316 

F -0.22832 -1.78636 1.20539 

G -0.10381 -0.40886 0.74018 

H 0.48047 0.29498 0.13316 

I 0.48047 0.29498 0.13316 

J -0.10381 -0.40886 0.74018 

K -0.22832 -1.78636 1.20539 

L -0.48047 0.50746 -0.13316 

M -0.48047 0.50746 -0.13316 

N -0.58265 0.17844 0.59545 

O -0.45814 -1.64320 1.35012 

P 0.48047 -1.16594 0.13316 

 

 

Figure 0.2. Distribution of σx on nodes of the wall 
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Figure 0.3. Distribution of σy on nodes of the wall 

 

 

 

Figure 0.4. Distribution of τ on nodes of the wall 

 


