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ABSTRACT 

 

 

   AN ENTROPY BASED DDOS DETECTION METHOD AND IMPLEMENTATION 

 

 

YÜCEBAŞ, SÜLEYMAN FÜRKAN 

MSc., Department of Cyber Security 

Supervisor: Assoc. Prof. Dr. Aysu Betin Can 

 

December 2019, 56 pages 

 

Distributed Denial of Service (DDoS) is a cyber attack type involving multiple computer 

sources which aims to temporarily or permanently deactivate the service provided by a 

device. This attack type has been listed multiple times as the most used attack types and has 

a great portion in all types of cyber attacks. Also, these attacks are increasing day by day 

and poses a threat for cyber security ecosystem. In today's world, these attacks target world-

wide organizations and cause them to suffer. DDoS attacks are easy to employ but hard to 

prevent. There are various methods to decrease the impact of attacks but none of them are 

exact solutions. With further research about DDoS detection approaches, it is observed that, 

methods using statistical approaches have better performance than other approaches.  

 

In this thesis, we describe an entropy based detection method and implement our method 

on software defined networks (SDN). The performance of the method is evaluated for 

various attack types. We propose the use of multiple entropy values and a novel alarm 

determination based on these entropy values. We conducted a series of experiments with 

real datasets for four different attack types to evaluate our method. We compare the 

effectiveness of our entropy parameter selection (5 single attributes and 10 pair of 

attributes) to entropy calculation with all 3 elements and 4 elements subsets. The results 

show that our method detects most common attack types at very early stages. 

 

Keywords: DoS, DDoS, SDN, entropy, detection methods 
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ÖZ 

 

ENTROPİ TABANLI DDOS TESPİT YÖNTEMİ VE UYGULAMASI 

 

 

Yücebaş, Süleyman Fürkan 

Yüksek Lisans, Siber Güvenlik Bölümü 

Tez Yöneticisi: Doç. Dr. Aysu Betin Can 

 

Aralık 2019, 56 sayfa 

 

Dağıtılmış hizmet reddi saldırıları (DDoS), bilgisayar ağlarında bulunan bir cihazın 

sağladığı hizmetin birden fazla farklı kaynaklar kullanılarak geçici veya kalıcı olarak servis 

dışı bırakılıp ulaşımının engellendiği bir saldırı tipidir. DDoS saldırıları, mevcut siber 

saldırıların başında gelmektedir ve geçtiğimiz her gün bu saldırı tipinin kullanımı artarak 

siber dünya için büyük bir tehdit oluşturmaktadır. Günümüzde DDoS saldırıları büyük 

organizasyonları hedef alıp çok geniş zararlara neden olmaktadır. Bu saldırıları uygulamak 

kolay fakat tespit edip engellemek zordur. Bu alanda birden fazla yaklaşım üzerinde 

çalışmalar yapılmaktadır fakat henüz kesin bir çözüm sunulmamıştır. Yapılan araştırmalar, 

istatistiksel bazlı tespit yöntemlerinin DDoS saldırı tespitinde başarılı sonuçlar verdiğini 

göstermektedir. Bu tezde, entropi bazlı saldırı tespiti yapan bir yöntem sunulup farklı atak 

tipleri için yazılım tanımlı ağ üzerinde performansı değerlendirilmiştir. Sunulan yöntem, 

saldırı tespiti için çoklu entropi değerlerinin kullanılmasını ve bu entropi değerlerine 

dayanan yeni bir alarm sistemi önermektedir. Sunduğumuz yöntemi değerlendirmek üzere, 

dört farklı atağa karşı gerçek trafik setleri kullanılarak bir dizi deney gerçekleştirildi. 

Yaptığımız çalışmada entropi hesaplanmasında önerilen 5 farklı paket parametresi ve 

bunların ikili kombinasyonlarının, 3’lü ve 4’lü kombinasyonlarına karşı verimliliği 

karşılaştırılmıştır. Sonuçlar, metodumuzun yaygın olan atak tipleri için saldırıyı erken 

aşamalarda tespit ettiğini göstermektedir. 

  

Anahtar Sözcükler: DoS, DDoS, SDN, entropi, tespit yöntemi 
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CHAPTER 1 

 

1. INTRODUCTION 

 

Cyber attack is an attempt to gain illegal access to a computer or computer system for the 

purpose of causing damage or harm. One type of these attacks is Distributed Denial of 

Service (DDoS) attacks. DDoS is a cyber attack which targets a specific online service and 

aims to disable the service by overwhelming it with traffic from multiple sources. Attackers 

target a wide range of assets, from banks to government websites. They build “botnets” 

which are networks of computers infected by attackers via spreading malicious software 

through various methods such as e-mails or fake software. Once a system is infected, these 

machines are controlled from outside the system, without the system owners' knowledge, 

and used like an army to launch an attack against any target. 

According to Kaspersky Lab report, the number of a distributed denial of service (DDoS) 

attacks have been increased more than 2.5 times over the last 3 years before 2018. In 2018, 

however, the number of DDoS attacks reduced 13% compared to the previous year. Despite 

the decrease in the attack numbers, total damage caused because of DDoS attack has been 

increasing. The average length of an attack climbed from 95 minutes in the first quarter to 

218 minutes in the fourth quarter [1]. If the attacks cannot be detected and mitigated within 

a short period of time, financial and reputational losses of the firms increase accordingly. 

These changes show the growing danger of DDoS attacks; hence, necessary precautions 

should be taken for this threat. 

With the advancements in technology, traditional networks have also changed. In 2004, 

research on new management paradigms was started. Research has yielded successful 

results and first software defined networking (SDN) is implemented in 2008 [3]. With this 

development, modern network paradigm has begun with software defined networking. 

However, DDoS attacks are also a serious threat to SDNs as well as traditional networks. 

Software-defined networking (SDN) is a new network technology that decouples the 

control plane and forwarding plane in order to make networks programmable, agile and 

flexible. These features bring many advantages for users. As it brings favorable advantages 

for network management, SDN usage has been increased and will possibly replace with 
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traditional networking. Leading network companies [4] have been involved in this 

technological development and have started to work in this field. However, SDN 

technology has some disadvantages in terms of security. Because of SDN's nature, this type 

of systems is highly vulnerable to DDoS attacks. The connection between the controller and 

other devices can be deprecated, consuming resources with flooding malicious packets by 

attackers. As a result, the controller may be compromised, and the entire network structure 

may be corrupted or become out of service. There are several studies on DDoS detection 

and mitigation methods on SDN such as [13], [14], [15], [18]. However, there is still room 

for improvement. In [23], the authors show that entropy based DDoS detection methods 

performs better than other approaches.  

In this thesis, we describe an entropy based detection method and propose to use it on 

software defined networks. Our entropy based detection method propose the use of multiple 

entropy values and a novel alarm determination based on these entropy values. We 

implemented a python software that runs on SDN network to collect all incoming packets 

from Openswitch using POX controller. Different packet field parameters are examined in 

entropy calculation to evaluate the performance of our method.  

We conducted a series of experiments to evaluate our implementation on SDN using an 

instant virtual network called Mininet with 235 hosts. We replayed previously captured 4 

different pcap files consisting of attack packets on real network traffic dataset [50] that is 

used as benign traffic. We evaluate our implementation with respect to different victim 

hosts that have different traffic rates, under two different protocol attacks (TCP and UDP) 

and under single source address and distributed source address of the same attack. In 

addition, we compare the effectiveness of our entropy parameter selection (5 single 

attributes and 10 pair of attributes) to entropy calculation with all 3 elements and 4 elements 

subsets. Finally, we show the effectiveness of proposed alarm mechanism to detect any 

anomaly detection in the entropy values. According to evaluation results, the proposed 

method can detect various DDoS attacks at a very early stage. 

The following sections are organized as follows: In Chapter 2, background information on 

DDoS, attack types and detection methods are given. In Chapter 3, our proposed detection 

method and implementation is explained in detail.  Chapter 4 presents a series of 

experiments conducted to evaluate our implementation on SDN using an instant virtual 

network called Mininet1. In Chapter 4, experiments results are given. Finally, Chapter 5 

concludes our work and discusses future work. 

 

 

 

 

                                                 
1 http://mininet.org/ 
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   CHAPTER 2 

 

2. BACKGROUND AND RELATED WORK 

 

2.1. DDoS Overview  

The main objective of DoS attacks is preventing legitimate use of a service, which is 

achieved by overloading server, network or service resources. As an attempt to make the 

attack more effective, DoS attacks can be executed in a coordinated way, using a large 

number of clients. This attack type is called DDoS, as it uses distributed sources to target a 

service. These distributed sources are often geographically separated; thus, it is hard to 

detect the source of the attack and block malicious traffic. Since DDoS attacks require 

coordination of the clients, they are mostly executed by using botnets. A botnet is a sheer 

number of zombie computers (bots), all controlled by a command and control server. 

Considering the enormous number of devices that are connected to the internet, and recent 

development of internet infrastructure, DDoS attacks can reach extreme level of network 

power. In February 2018, GitHub was the target of a DDoS attack which reached 1.35 Tbps. 

This was an amplification attack that abused Memcached instances, which originated from 

more than a thousand different autonomous systems across tens of thousands of unique 

endpoints [24]. A DDoS attack using the Mirai [25] botnet is another major instance, which 

peaked to 1.1 Tbps volume, and affected a significant part of the internet services in October 

2016. Mirai IoT botnet commanded almost 100,000 bots, which are various devices such 

as cameras, home routers, DVRs, and printers, all exploited due to their poor security 

configurations [22]. 

2.2. DDoS Attack Types  

There are different types of DDoS attacks, so it is essential to classify these attacks in order 

to understand these attacks better. Classifications of DDoS attacks are proposed in several 

studies such as Mirkovic et al. [26] and Lee [27]. A combined classification of DDoS 

attacks which is consisted of two levels. The first level classifies the attacks according to 

their degree of automation, exploited vulnerability, attack rate dynamics, and their impact. 

The second level recognizes the specific characteristics of each first level categories. We 

classify DDoS attacks in terms of exploited vulnerability. In the next sections this 

classification is explained in detail. 



 

4 

 

2.2.1. Flood Attack 

 

A flood attack is often performed by using large number of bots of a botnet to send huge 

amount of traffic to a victim system. The aim is to saturate the targeted system’s network 

bandwidth with this high volume of IP traffic, thus slowdown or crash the victim host so 

that it cannot respond to legitimate requests [28]. Flood attacks can be executed using UDP 

and ICMP packets. 

 

UDP Flood 

 

UDP Flood attacks are executed by targeting large number of UDP packets to a victim 

system. Consequently, it exhausts the network resources and consume all the available 

bandwidth, thus preventing the victim server to answer legitimate service requests. 

Although the UDP packets can be sent to random or specified ports of the targeted system, 

typically the DDOS UDP Flood attacks are designed to target random ports. When a 

targeted system receives a UDP packet, the service accepting connections on the specified 

port is identified by the system, however, if there is no service running on the system for 

that particular port, the server generates an ICMP packet of “destination unreachable” [29] 

and sends it to the source address, which is typically forged. As the resources of the targeted 

system is limited, by sending sufficient number of packets, the victim system will not be 

able to respond to any legitimate request, or even fail to operate at all. Typically, attacker 

spoofs the source IP addresses of the attacking packets, so that the real attackers are kept 

hidden and the zombies, which are often weak clients, would not receive response that 

would hinder their network resources. [23] 

 

TCP Flood / SYN Flood 

 

TCP Flood attacks exploits TCP connection sequence by sending TCP traffic using 

different flags. TCP connections originated from a client to a server are established with 

three-way handshake technique by sending packets with SYN, SYN-ACK, ACK flags 

between the client and the server. When a TCP SYN Flood attack is performed, the victim 

server receives numerous SYN packets, and replies these requests with SYN-ACK packets. 

After this, the victim server waits for an ACK packet from the clients, and in order to do so 

it reserves system resources to manage a table to keep connection status for each request. 

Since the source address is typically spoofed, the victim system will not receive the ACK 

packets. When the number of open connections is large enough, the system will run out of 

resources to accept new connections, so that the denial of service occurs. [28] 

 

ICMP Flood 

 

In ICMP Flood attacks, the attacker sends an enormous number of ICMP_ECHO_REPLY 

(ping) packets to the victim host. The objective is to fill the incoming bandwidth of the 

victim, or outgoing bandwidth of the system by making it try to respond to all the ping 

requests, and even exhaust the system so that it will not be able to respond to legitimate 

requests. 
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2.2.2. Amplification Attack 

 

In amplification attacks, an attacker, who typically controls a botnet, uses means to multiply 

the attack power of the agents (bots) to target a victim host. This means is an application 

factor that magnifies the bandwidth amount of the attack, so that the effect of the attack 

becomes even more severe. These attacks use spoofed source addresses so they can be also 

considered as reflection attacks. To be able to set the message with a spoofed source IP 

address, protocols such as UDP and ICMP are used as they do not require a 3-way 

handshake. Amplification attacks can be conducted by exploiting vulnerable network 

amplifiers (Smurf and Fraggle attacks) or application servers (DNS and NTP amplification 

attacks). 

 

In amplification attacks that use network amplifiers, the attacker or attack agents exploit 

the broadcast IP address feature in vulnerable routers. In essence, the attack agents send 

messages to broadcast IP (i.e., x.x.x.255) with messages, of which the source IP addresses 

is spoofed by forging the IP address of the target machine, so that the router service these 

packets across the network. As a result of this, the malicious traffic triggered by the attacker 

and produced by the router hinders the network bandwidth [23]. Also, when the source 

address is spoofed, the broadcasted message makes all the hosts in the network to send a 

message to a specific target host. With this attack, the amplification factor is proportional 

to the number of alive hosts in the network. Note that, this attack occurred in old routers, 

and current routers do not have these vulnerabilities. Amplification attacks that use 

application servers are application layer attacks, which triggers the application with a 

request and make the server to reply with a much larger packet. This amplification factor is 

dependent on the protocol and the request, and when the request is spoofed, the server itself 

sends this magnified traffic to the target host instead of the attacker agents. Together with 

the bandwidth power of botnets, amplification attacks can reach very high throughputs. 

 

Smurf Attack  

 

This attack is executed by the Smurf malware, which generates spoofed ICMP packets set 

to IP address of the target as the source IP address, and send these ping packets to IP 

broadcast address of an intermediate network. In this way, all the connected hosts in the 

network replies with ICMP_ECHO_REPLY packets to victim host. Since the attack factor 

is multiplied by the number of alive hosts in the network, and with the large number of the 

attacking agents, the target host’s bandwidth is saturated, and the host can be overwhelmed 

so that it cannot respond to legitimate requests. [22] [23] [30] 

 

Fraggle Attack 

 

Similar to Smurf attacks, this attack uses network amplifiers and spoofed IP addresses, 

however, instead of ICMP, Fraggle attacks use UDP echo packets. Fraggle attacks causes 

larger attack traffics and more severe effects on the victim host compared to a Smurf attack 

[23]. 
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DNS Amplification Attack 

 

In this attack the attacker exploits the open DNS resolvers, which do not enforce access 

control on public requests and supports open recursive relay [22]. Considering the 

thousands of open recursive DNS resolvers and rouge DNS servers in the world, this attack 

type is still a significant threat to the internet.  Typically, the attacker spoofs the source IP 

addresses of the DNS requests coming from the attacking agents as the IP address of the 

targeted host, so that the replies to the DNS queries are reflected to the victim system. The 

amplification factor differs on the query type, for example when the DNS server is queried 

for any resource record the query size is 64 byte and the response size is more than 3 KB, 

which means the bandwidth size of the attacker is multiplied with more than 50 

amplification factors [31]. As a result, the botnet bandwidth power combined with the 

amplification factor of the DNS attack can result severe attacks that can deplete the 

bandwidth of the victim system and cause a denial of service. For example, in March 2013, 

a DNS amplification type DDoS attack was executed that targeted Spamhaus project [22]. 

According to Nexusguard’s 2019 quarter 2 threat report [32], DNS amplification attacks 

have risen 1000% since 2018, and ironically, the main reason behind this is the adaptation 

of DNSSEC which generates larger responses and grater amplification factors. 

 

 

NTP Amplification Attack 

In this attack, the attacker exploits open NTP servers to amplify their attacks. Similar to 

DNS amplification attacks, NTP amplification attacks use amplified UDP traffic which are 

reflected to victim host. Publicly accessible vulnerable NTP servers can respond to queries 

such as “monlist”, “version”, and “showpeers” with a large size of packets. For example, 

monlist command returns the last 600 clients connected to the server in a very large file 

compared to the query size which yields the amplification factor of 4x to 15x for the attack 

[33]. With the bandwidth power of the attacker’s botnet and amplification factor which is 

reflected to the victim host thanks to spoofed UDP queries, the power of the attack can 

escalate quickly and result denial of service of the target. 

 

2.2.3. Protocol Exploit Attack  

This attack exploits a particular characteristic of the design or implementation of a protocol 

running on the target system, aiming to make the victim exhausts its own resources [23]. 

TCP SYN attack and PUSH + ACK attack are two examples of protocol exploit attacks. 

 

 

PUSH + ACK ATTACK  

In this attack, attacker targets the victim system by sending TCP packets, of which the 

PUSH and ACK bits are set to one. This TCP packet header causes the victim host to unload 

all data in the TCP buffer and respond with an acknowledgement [28]. When this attack is 

performed with very large number of agents, such as bots, the target host would not be able 

to process all this traffic with its limited resources and stop responding to legitimate requests 

or crash eventually.  
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2.2.4. Malformed Packet Attack 

 

In this attack, attacker agents send malformed packets to the victim in an attempt to crash 

the target system [27]. Malformed packet attacks can be performed in two ways: IP address 

attack and IP packet options attack. In the IP address attack, the attacker sends a packet of 

which the source IP address is spoofed, so that both source IP address and destination IP 

address of the packet made the same. By doing so, the attacker expects the target system 

get confused by these packets and crash.  In the IP packet options attack, the attacker sends 

the IP packet so that its optional fields are randomly filled, and its quality of service bits are 

set to one. As a result of this, in order to analyze the traffic, victim system would require 

extra processing resources. For IP packet options attack to be effective, an attacker often 

utilizes a botnet so that enormous number of bots perform this attack, which causes the 

exhaustion of the victim system’s resources, thus crash the target [23]. 

2.3. DDoS Detection Methods 

In previous sections we have discussed how DDoS is one of the most significant threats to 

the internet services. In order to mitigate this threat, it is necessary to detect the attack in 

the first place. Thus, DDoS detection methods is a well-studied area. To be an effective 

mitigation tool, detection methods should have characteristics such as short detection time, 

low false-positive rate (FPR), and low false-negative rate (FNR). Moreover, DDoS 

detection methods can be classified into four approaches: statistical methods, knowledge-

based methods, soft computing-based methods, and data mining and machine learning 

methods. 

 

2.3.1. Statistical Methods  

 

The characteristics of IP packets and traffic generated by a DDoS attack often makes it 

possible to distinguish attack traffic from normal traffic. Statistical properties of certain 

fields in IP packet headers, such as the entropy of the source IP addresses, or statistical 

properties of normal and attack traffic patterns can be used to detect DDoS traffic. In this 

approach, a statistical model for a normal traffic is generated, and new traffic is statistically 

evaluated according to this model to decide if it suits the model or marked as anomaly if 

does not. 

In [36], the authors developed a distributed change point detection mechanism to detect 

DDoS flooding attacks at an early stage by using a technique called Change Aggregation 

Tree (CAT). The network traffic pre-change and post-change were defined via a 

nonparametric approach to Cumulative Sum (CUSUM) sequential analysis technique. 

Typically, the cumulative deviation of the router-level traffic flows during a DDoS attack 

is higher than normal traffic flow. Accordingly, CAT system is designed to detect sudden 

changes in the router-level traffic flows. The CATs that represent the attack flow patterns 

are created by the domain server where the traffic change patterns are detected. Proposed 

scheme achieved a 98% detection rate with less than 1% false positive rate in a DETER 

testbed. 
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In [37], authors monitored the increase of new source IP addresses in incoming traffic to 

detect bandwidth depletion attacks. This way they provided a more effective approach to 

detect highly distributed DoS attacks compared to approaches where traffic volume is 

monitored. Their technique utilizes a sequential nonparametric change detection method, 

CUSUM, to provide demonstrably high accurate detection without the need of detailed 

normal and attack traffic models. 

In [38], authors utilized specific characteristics of DDoS attacks like abrupt traffic change, 

flow dissymmetry, distributed source IP addresses, and concentrated target IP addresses for 

the IP Flow Feature Value (FFV) algorithm they proposed. In their work, Cheng et al. used 

a linear prediction technique to construct an efficient ARMA prediction model for normal 

traffic flow. Consequently, with the linear prediction model and anomaly detection 

techniques a DDoS detection method is designed with demonstrably accurate results with 

low false positive rate. 

In [39], authors present LOT, which is a practical lightweight secure tunneling protocol that 

is deployed at network level communication gateways, for the purpose of mitigating DDoS 

attacks by preventing IP spoofing and flood attacks from specific networks. Thanks to the 

plug and play feature of the protocol, two gateways that run LOT can automatically detect 

each other and set up a tunnel between each other for secure communication. Accordingly, 

the tunnel enables the gateways to discard spoofed IP packets whose source IP address is 

in tunneled in the other gateway and detect congesting traffic. 

In [40], the authors proposed a detection technique for DDoS attacks with an approach 

based on game theory. In their proposed model of the DDoS attack, they explored several 

characteristics with regard to malicious traffic distribution and the number of attackers. 

They proved that a particular optimal strategy of defense against DDoS attacks is viable, 

where attacker payoff for rational or irrational attack agents are set as the upper boundaries. 

In [17], the authors proposed joint entropy based DDoS defense mechanism scheme in 

SDN. In their proposed defense scheme, entropy value is calculated for all possible k-

element subsets of P where P= {IPsrc, IPdst, Psrc, Pdst, Prot, PKTsize, TTL, TCPflag} for 

1 ≤ k ≤ P. They use score-based packet marking system for filtering the suspicious packets. 

The method uses packet-based sliding window with 1000 packets. The method marks the 

packets as suspicious traffic whenever any current entropy value falls below the threshold 

value. They use runtime threshold and it is calculated by dividing the sum of current entropy 

and previous entropy by 2. 

 

2.3.2. Knowledge Based Methods  

 

Knowledge based methods utilize predefined rules or predetermined attack patterns from 

available datasets or information about relevant attacks to evaluate traffic for DDoS 

detection. In this approach, signatures of existent DDoS attack traffic are used to construct 

a detection knowledge. If the traffic characteristic matches the rules or signatures, it means 

an anomaly is detected and an alarm is produced. 

In [41], the authors proposed a DDoS mitigation mechanism called NetBouncer, which 

accepts requests according to a whitelist of recognized and legitimate clients. In this 
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approach if a client is not in the predefined list of accepted users, its request is not allowed. 

When this happens, the client is asked for an authorization as a legitimacy test, and if the 

client is authorized it is whitelisted, and after this the traffic originated from this client is 

considered legitimate. 

In [42], the authors proposed a technique to differentiate normal and abnormal traffic in 

which DDoS attack signatures are discovered by analyzing the TCP/IP packet headers 

against predefined rules and conditions. By doing so, unusual high traffic caused by an 

attack is distinguished from the high traffic caused by a flash crowd from legitimate users. 

ICMP, TCP and UDP flooding attacks were observed as the main focus of DDoS attack 

types. 

In [43], the authors proposed a framework which exploits spatial and temporal correlation 

of DDoS attack traffic to recognize attack packets and detect DDoS attacks. For this 

purpose, a perimeter-based DDoS defense system is defined which analyzes the traffic at 

the edge routers of an ISP network. This framework presents two techniques: (i) temporal-

correlation based feature extraction, and (ii) spatial-correlation based detection. By using 

these two techniques, DDoS detection is made possible without the need of editing existing 

IP forwarding mechanisms in routers. 

 

2.3.3. Soft Computing Based Methods  

 

Unlike traditional (hard) computing techniques which deals with precision and exactness, 

soft computing scheme deals with optimization and approximate models in order to solve 

problems. Soft computing techniques can be used to design intelligent systems tolerant to 

imprecision, uncertainty, partial truth, and approximation [44]. Soft computing methods are 

capable of classifying intelligently and automatically with optimization and processing 

techniques, thus learning paradigms such as neural networks, radial basis functions, genetic 

algorithms and fuzzy logic are used in DDoS detection [45]. 

In [46], authors presented SPUNNID, a DDoS attack detection system which uses statistical 

preprocessor to extract features from the network traffic, and unsupervised artificial neural 

network (ANN) to analyze and categorize traffic patterns as either attack or normal traffic. 

In [47], the authors presented an anomaly-based DDoS detection technique in which Radial 

Basis Function (RBF) neural networks are used for analyzing features of attack patterns. 

The proposed method runs on victim side edge routers and applied to classify network data 

in to normal and attack categories in real time. If the network data is categorized as attack 

traffic, the source IP addresses of the attack packets are extracted and sent to the Filtering 

Module and Attack Alarm Module where necessary actions are taken. On the other hand, if 

the network data is categorized as normal traffic it is sent to the destination IP addresses.    

In [48], the authors proposed a method for DDoS attack detection based on fuzzy estimators 

with mean packet inter-arrival times. The method first detects the DDoS attack and then 

identify IP addresses of the attack agents. The presented method is competent to identify 

malicious IPs before the victim system actually suffer from resource exhaustion with 80% 

success rate and 20% false negative rate. 
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2.3.4. Data Mining and Machine learning Methods 

 

Signature-based DDoS detection mechanisms cannot detect new attack types. Although 

anomaly-based mechanisms can detect new attacks, they are generally limited to 

application design and environment capabilities. Data mining and machine learning 

techniques use traffic and packet features such as average packet size, inter arrival time, 

packet size, packet rate, bit rate, etc. to decide if the traffic patterns are attack or normal 

traffic [49].   

In [50], authors presented DDoS Container which is a comprehensive network-based DDoS 

attack detection framework. The framework works in inline mode in order to inspect and 

manipulate ongoing traffic in real time. Moreover, by keeping track of all traffic, DDoS 

container executes stateful inspection on data streams and correlates events among sessions. 

Traffic pattern analysis and data correlation mechanisms of the framework increases its 

detection rate for evasive patterns such as encrypted packets. When a DDoS attack is 

detected, the framework takes appropriate actions such as alerting, blocking, and proactive 

session termination. 

In [51], the authors proposed a model to automatically detect DDoS traffic, based on the 

discovery that normal traffic pattern does not change much with time, however abrupt 

changes occur when an attack exists. This network anomaly detection approach is based on 

discrete wavelet transformation (DWT) and probability theory in order to reduce the false 

error rate for attack identification. 

In [52], authors introduced a DDoS attack detection model based on data mining algorithms, 

i.e., FCM cluster algorithm and Apriori association algorithm. These algorithms are used 

to extract a network traffic model and a network packet protocol status model with a 

threshold is set for detection model. The model captures network traffic value based on k-

means clustering algorithm in the data mining module to build threshold values of the 

network traffic. When a network traffic segment is over a threshold value then the network 

packet protocol status is checked to detect abnormal packets. Depending on the abnormal 

network packet protocol status, an attack alarm is triggered. 

In [53], the authors proposed a new DDoS detection model that uses a multiclass Support 

Vector Machine (SVM) to reduce false positive rate. Characteristics of the DDoS attack 

network traffic are analyzed via implementation of Traffic Rate Analysis (TRA) method. 

By using multiple SVM model instead of single SVM model, authors achieved more 

accurate attack detection with lower false positives. 
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    CHAPTER 3 

 

 

 

3. METHODOLOGY 

 

In this chapter, we present an entropy based DDoS attack detection method and 

implementation on software defined networks. 

 

Entropy is a statistical measure that shows the randomness in a data set. In our case, the 

data set is the field values of the packets received in a network. Since an attacker sends 

similar packets consistently, randomness in packet properties eventually decreases. 

Inversely, attacker can also perform flooding attacks using spoofed packet parameters such 

as source IP. In this case, randomness in packet properties increases more than expected 

point. Therefore, entropy calculation is a helpful measurement method to track these 

unexpected changes in randomness. Each different type of attacks causes changes in the 

randomness of different fields of IP packets such as destination port. We consider the most 

affected IP packet fields for entropy calculation. Randomness, i.e. entropy, can be 

calculated for more than one fields of IP packets at the same time. By means of this 

characteristic, we can detect different types of attacks by using entropy calculation. Even if 

the number of malicious packets is less than the number of legitimate packets, this method 

works because the randomness will change sharply as inspected attribute data is intensified 

at certain points. 

There are many advantages of entropy based statistical approach to detect DDOS attacks. 

Since this approach only examines incoming packets, it does not cause increased network 

traffic. Memory and CPU overhead are also negligible  

For this study, we use Shannon Entropy [5]. Shannon entropy adapted for DDoS Detection 

in the literature is defined as; 

𝐻 =  − ∑ 𝑃(𝑋𝑛) 𝑙𝑜𝑔 (𝑃(𝑋𝑛))

𝑀−1

𝑛=0
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Here P means probability of occurrence of the X, where X is the attribute value, and M is 

the number of different attribute values. Here attribute means the network packet fields 

inspected.  

3.1 Method 

Our entropy based detection method propose the use of multiple entropy values and a novel 

alarm determination based on these entropy values. 

 

3.1.1. Entropy Attributes 

 

In order to observe randomness in a data set of given network traffic, network packet fields 

can be selected to observe changes. Unlike many other studies [13], [14], [18], we do not 

only focus on one attribute like destination IP only. We also focus on other combinations. 

For different attack types, we consider different packet fields for entropy calculation. In 

general, we consider destination IP, source IP, destination port, source port and packet size 

fields of network packet for entropy calculation. 

Table 1 shows the packet fields that we consider valuable to observe changes of randomness 

to detect an attack.  

 

Table 1 List of the fields in the packet header that we focus in entropy calculation 

Packet Type Field Name in packet 

header 

IP destination IP dst 

IP source IP src 

TCP/UDP destination port dst_port 

TCP/UDP source port src_port 

TCP/UDP packet size total_length 

 

In this method, the entropy values are calculated not only for single field but also for 

two element combinations of the fields in the IP packet. Let p be the set of fields 
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𝑝 = {𝑑𝑠𝑡, 𝑠𝑟𝑐, 𝑑𝑠𝑡_𝑝𝑜𝑟𝑡, 𝑠𝑟𝑐_𝑝𝑜𝑟𝑡, 𝑡𝑜𝑡𝑎𝑙_𝑙𝑒𝑛𝑔𝑡ℎ} 

 

We consider all 2 element subsets of the parameter set p and all single elements of p. In 

total, we have 15 different attribute sets to calculate the entropy for inspection. Table 2 

shows the list of 15 different attribute sets that are used in entropy calculations.  

 

Table 2 List of attribute sets 

Attribute set number(i) Packet fields used in entropy calculation 

1 Dst 

2 Src 

3 dst_port 

4 src_port 

5 total_length 

6 {dst , src} 

7 {dst , dst_port} 

8 {dst , src_port} 

9 {dst , total_length} 

10 {src , dst_port} 

11 {src , src_port} 

12 {src , total_length} 

13 {dst_port , src_port} 
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14 {dst_port , total_length} 

15 {src_port , total_length} 

 

The number of packets with corresponding attributes for each attribute set are represented 

with; 

 

      

                                                                     𝐴𝑆𝑖
𝑛 

 

where i is the attribute set number and n is the size of the domain of the attribute set i.  

For example, suppose there are 3 hosts in a network and only 2 ports are in use at each host. 

While listening to network traffic, we will have a number of packets for 15 attribute sets. 

Consider, for example, the attribute set 7. The domain of this attribute set is 3x2 since there 

are 3 hosts (3 different destination IPs) and 2 ports at each host.  Therefore, we will have 6 

different number of packets for attribute set 7 which will be denoted as 𝐴𝑆7
1, 𝐴𝑆7

2, 𝐴𝑆7
3... 

𝐴𝑆7
6 

 

Table 3 Sample matrix for attribute set 1  

Attribute: 

DestinationIP(dst) 

The number of packets that 

matched with the attribute value 

𝐴𝑆𝑖
𝑛 

10.0.0.14 330 

10.0.0.9 221 

10.0.0.53 174 

10.0.0.44 119 

... ... 

10.0.0.99 28 

 

 

In our implementation, we create one matrix for each of the attributes set listed in Table 2. 

For attribute lists 1 to 5, the corresponding tables have two columns. First column represents 
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the attribute value (e.g. 10.0.0.14 as destination IP) and the second column shows the 

number of packets received with this attribute value 𝐴𝑆𝑖
𝑛 where 1< i < 5 For example, table 

3 shows a sample matrix for attribute set 1 which consists of destination IP only. 

For attribute lists 6 to 15, the corresponding tables have three columns. First and second 

columns represent the attribute value (e.g. 22 as source port and 10.0.0.1 as destination IP) 

and the third column shows the number of packets received with these attributes value 𝐴𝑆𝑖
𝑛 

where 1 ≤ i ≤5. Table 4 shows a sample matrix for attribute set 8 which consists of 

destination IP and source port only. 

 

Table 4 Sample matrix for attribute set 8  

Attribute Set  

The number of packets that 

matched with the attribute 

value 𝐴𝑆𝑖
𝑛 

SourcePort (src_port) DestinationIP(dst) 

22 10.0.0.14 110 

30 10.0.0.9 101 

80 10.0.0.53 88 

8088 10.0.0.44 35 

… ... ... 

53 10.0.0.99 25 

 

 

Here we describe how we calculate the entropy. Let W denote the window size, which is 

1000 in our implementation. We use packet-based window sliding by the interval of 250 

packets. Let 𝑃(𝐴𝑆𝑖
𝑛) be the probability of each element in the window and calculated as; 

 

 

    𝑃(𝐴𝑆𝑖
𝑛) =     𝐴𝑆𝑖

𝑛/ 𝑊 
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Entropy(E) is calculated as;  

 

𝐸𝑖 =  − ∑ 𝑃(𝐴𝑆𝑖
𝑛) 𝑙𝑜𝑔 (𝑃(𝐴𝑆𝑖

𝑛))

𝑀−1

𝑛=0

 

 

Here i is the attribute set number and n is the size of the domain of the attribute set i. M is 

the number of different attribute values. Here attribute means the network packet fields 

inspected. We calculate 15 different entropy value for each attribute set. 

 

Table 5 List of notations 

𝐸𝑖(𝑁)𝑐𝑢𝑟𝑟𝑒𝑛𝑡 Current entropy value in pre-experiment 

session for each parameter set (i) 

𝐸𝑖(𝑁)
𝑝𝑟𝑒𝑣

 Previous entropy value in pre-experiment 

session for each set (i) 

𝐸𝑖(𝑁)𝑠𝑡𝑑𝑒𝑣 Standard deviation value of entropies in 

pre-experiment session for each set (i)  

𝐸𝑖(𝑁)𝑚𝑒𝑎𝑛 Mean value of entropies in pre-experiment 

session for each set (i) 

𝐸𝑖(𝑁)𝑚𝑖𝑛 The minimum entropy value of normal 

traffic captured in pre-experiment session 

for each set (i) 

𝐸𝑖(𝑁)𝑚𝑎𝑥 The maximum entropy value of normal 

traffic captured in pre-experiment session 

for each set(i) 

𝐷𝑖𝑗[𝐶𝑊] Difference list of entropy value for each 

consecutive windows (j) in pre-experiment 

session for each set(i) 

𝐷𝑖[𝐶𝑊]𝑚𝑎𝑥 Max value in difference list of entropy 

value for each consecutive window in pre-

experiment session for each set(i) 

𝐷𝑖[𝐶𝑊]𝑠𝑡𝑑𝑒𝑣 Standard deviation value of difference list  

𝐷𝑖[𝐶𝑊] 
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𝐷𝑖[𝐶𝑊]𝑚𝑒𝑎𝑛 Mean value of difference list  𝐷𝑖[𝐶𝑊] 

𝐸𝑖(𝑝𝑟𝑒𝑣) Previous entropy value in each set  

𝐸𝑖(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) Current entropy value in each set  

𝐸𝑖[𝑊] Entropy list for each set (i) 

𝑊 Windows size 

𝐴𝑆𝑖
𝑛 The number of packets that match with the 

attribute value in each set  

 

 

3.1.2. Attack Determination 

In the literature, a common attack determining method is to compare current entropy with 

a constant threshold value directly such as [13][17]. 

In our method, we focus on more than one condition to determine the attack. We have three 

different condition statement and each of them evaluates the entropy in different aspects. 

Note that we calculate 15 entropy values. Let 𝐸𝑖(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) denote the entropy value 

calculated for the current window using the ith attribute value in Table 2. To determine if 

there is an attack, we calculate current entropy value 𝐸𝑖(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) and previous entropy 

value 𝐸𝑖(𝑝𝑟𝑒𝑣) at each window W. Then our method gives a decision using the following 

three conditions:   

 

C1) In this condition, we observe consecutive windows difference  𝐸𝑖(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) - 𝐸𝑖(𝑝𝑟𝑒𝑣) 

against the mean and standard deviation value of difference list 𝐷𝑖𝑗[𝐶𝑊] of consecutive 

windows in the normal traffic. If the current consecutive windows difference greater 

than our expected deviation from mean value, we give an alert with “Alert1” sign. This 

condition is used for early detection. 

 

 if  𝐸𝑖(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) - 𝐸𝑖(𝑝𝑟𝑒𝑣) > (2*𝐷𝑖[𝐶𝑊]𝑠𝑡𝑑𝑒𝑣+𝐷𝑖[𝐶𝑊]𝑚𝑒𝑎𝑛) 

 

C2)  In this condition, we observe both consecutive windows differences  𝐸𝑖(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) - 

𝐸𝑖(𝑝𝑟𝑒𝑣) and current entropy value 𝐸𝑖(𝑐𝑢𝑟𝑟𝑒𝑛𝑡)against the upper and lower limit of our 

trained traffic. If the current consecutive windows difference greater than the max 
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consecutive window difference 𝐷𝑖[𝐶𝑊]𝑚𝑎𝑥  or  current entropy value falls outside the 

maximum 𝐸𝑖(𝑁)𝑚𝑎𝑥 and minimum 𝐸𝑖(𝑁)𝑚𝑖𝑛 entropy value, we give an alert with 

“Alert2” sign .       

 

if  𝐸𝑖(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) - 𝐸𝑖(𝑝𝑟𝑒𝑣) > 𝐷𝑖[𝐶𝑊]𝑚𝑎𝑥  OR 𝐸𝑖(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) >  𝐸𝑖(𝑁)𝑚𝑎𝑥 OR 𝐸𝑖(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) < 𝐸𝑖(𝑁)𝑚𝑖𝑛 

 

C3) In this condition, we observe current entropy value 𝐸𝑖(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) against the mean and 

standard deviation value of entropy list 𝐸𝑖[𝑊]. If the current entropy value falls outside 

the expected deviation from mean value, we give an alert with “Alert3” sign. 

 

if  𝐸𝑖(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) <  𝐸𝑖(𝑁)𝑚𝑒𝑎𝑛- 𝐸𝑖(𝑁)𝑠𝑡𝑑𝑒𝑣OR 𝐸𝑖(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) > 𝐸𝑖(𝑁)𝑚𝑒𝑎𝑛+ 𝐸𝑖(𝑁)𝑠𝑡𝑑𝑒𝑣 

 

At each window we calculate all 15 entropy values, i.e.   𝐸𝑖(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) for 0<=i<=15. If at least 

one of the entropy values satisfy C1 OR C2 OR C3, then we give an alert that there may 

be a DDoS attack on the system.  

3.2. Proposed Implementation 

 

In this section, we present our attack detection implementation. In order to implement such 

a system, the following components must be determined during the design phase:  

 

● Incoming packet inspect: Where to collect the incoming packets to inspect. They 

can be collected on controller or switches. 

● Window size: When to calculate entropy value of the collected packets. It can be 

packet volume based, or time based.  

● Expected value of entropy for normal traffic, i.e. threshold entropy: How to measure 

and decide the expected value of entropy. This value will be used as a threshold in 

attack determination.  

 

 

In the following sections, we explain our method in terms of these components respectively. 

For each component, we first discuss the approaches used in the literature and then present 

our design approach. 

 

3.2.1. Incoming packet inspection 

In SDN, whenever a new incoming packet arrives to switch, forwarding table is checked 

for a match. If an incoming packet has a match in the forwarding table, the packet is sent 

directly to the corresponding switch. Otherwise, it is sent to controller to determine the 

destination. The most powerful attack can be placed here is to deplete controller resources 

and make the entire network out of service. A typical DDoS attack works as follows. All 
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incoming packets are spoofed and have different source addresses so that these packets may 

never have a match in the forwarding table, and they will be directly forwarded to the 

controller. If there are more packets than a controller can handle, the controller will be 

unable to respond to these requests.  

There are two different methods for incoming packet inspection: one method is for 

inspecting all incoming packets, and the other is for inspecting only packets that are not 

matched in flow tables of switches. In order to inspect all incoming packets, collection 

process should be placed on switches. On the other hand, if data collection is on controller 

then only unknown unique packets will be inspected. Mousavi et al. [13] gathers packet 

information from controller whereas Wang et al [14] and Giotis et al [15] and Kalkan et al 

[17] gathers from switches in their studies.  

Our aim is to detect such a DDoS attack before they disrupt the availability of any device 

on the SDN network. In this regard, our method inspects every network packet passing 

through open flow switches and looks at the distribution of specific attributes of the packets 

to calculate entropy value. When randomness changed unexpectedly in a given data set, the 

entropy value falls outside the expected entropy range and alert is given. For instance, when 

an attacker sends hundreds of spoofed packets per second to a server within the network, 

the number of packets normally begins to increase targeted to a single machine while the 

number of packets is scattered across all the machines on the network. In this case, as the 

randomness decreases, measured data of attribute is intensified at a single point and the 

entropy value decreases. 

 

3.2.2. Window size 

Entropy value is calculated for more than one packet; this calculation is repeated at certain 

periods. Each period called a window and the size of the window can be packet volume 

based, or time based. In [13], [17] and [18] packet size-based method is used and in [14] 

and [15] time domain-based method is preferred. The authors in [19] made a comparison 

between packet volume based and time-based approaches and the results suggest that packet 

volume-based intervals are more effective than time-based intervals 

There are two types of packet-based window: fixed-size window and sliding window. In 

order to calculate entropy for given attribute in specific interval, packet size-based sliding 

window approach is more effective than fixed-size window. In sliding window technique, 

window starts from the first element and keeps shifting right by one element in a frame of 

fixed size. In fixed window technique, interval is set as fixed frame and after frame is 

completed new frame starts for completely new packets. This characteristic can cause sharp 

changes in entropy value and increases the false positive rate. Kalkan et al [17] examine 

this situation for TCP attack and their results show that usage of sliding window is more 

effective than fixed-size window to reduce the FPR rate. 

Another study [18] made a test for different size of windows to find the best size for packet-

based intervals. Their study suggests that for optimal entropy measurement, size of 50 is 
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the lowest size that effectively detected attacks. Beside this study, the authors in [17] use 

window size as 1000 packets in their method. Optimal lowest size for window depends on 

the used network and its characteristics. Accurate size should be found by training the 

network traffic.       

When we trained the traffic dataset we use, we decided to use windows size as 1000 packets 

sliding by the interval of 250 packets. Our sliding mechanism does not shift one by one, we 

shift the windows by 250 packets as soon as the new 250 packets arrive. In other words, for 

each new 250 packets there is a new window and entropy calculation is made for 1000 

packets in total together with the previous 750 packets for each new 250 packets 

 

3.2.3. Finding Entropy threshold    

In order to detect the changes in an entropy value, a reference value is needed. The current 

value is compared with this reference value (i.e. threshold) to decide whether there is an 

attack.  

Some studies [14], [17], [18] calculate this value during runtime dynamically, while others 

such as [13] observe it in pre-experiment before runtime. To decide this value, authors in 

[14] calculate expected normal entropy with the normal network traffic initially. They 

assume that when the previous entropy value is not marked as attack traffic then it is 

regarded as normal entropy value. Then, they calculate standard deviation of this value 

multiplied by threshold multiplicative factor. Kalkan et al [17] calculate average of current 

and previous entropy value during runtime and regard as threshold value. Another study 

[18] calculate standard deviation between average normal traffic and average attack traffic. 

Other than these, authors in [13] observe this value before runtime by running a 25% rate 

attack for 25 times to find a suitable threshold. They calculate both the highest value during 

attack traffic and lowest value during normal traffic then take differences of these values 

and use it as the threshold value.   

In order to find expected value of normal and attack traffic, we made a set of pre-experiment 

in a similar way to [13]. 

 

Dataset 

 

We use real network traffic dataset from Canadian Institute for Cybersecurity research 

group [54] to train our method for determining expected values of some parameters. 

CICIDS2017 [55] dataset consists of capturing 1 week of network traffic and it contains 

benign traffic on Monday. We use this traffic dataset that captured on Monday for both 

training and experiment session separately. Training and experiments were conducted with 

different parts of the traffic dataset. We conducted a training session with the first half of 

this traffic and conducted experiment session with the other half. Our method was run in 

training mode, the parameters, shown in table 6, and their corresponding values were 

collected from this part of the dataset. We use these 7 parameters as threshold values for 

attack determination.  
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Table 6 List of parameters that captured in pre-experiment session 

Notation Explanation  

𝐸𝑖(𝑁)𝑠𝑡𝑑𝑒𝑣 Standard deviation value of entropies in pre-
experiment session for each attribute set (i)  

𝐸𝑖(𝑁)𝑚𝑒𝑎𝑛 Mean value of entropies in pre-experiment 
session for each attribute set (i) 

𝐸𝑖(𝑁)𝑚𝑖𝑛 The minimum entropy value of normal traffic 
captured in pre-experiment session for each 
attribute set (i) 

𝐸𝑖(𝑁)𝑚𝑎𝑥 The maximum entropy value of normal traffic 
captured in pre-experiment session for each 
attribute set(i) 

𝐷𝑖[𝐶𝑊]𝑚𝑎𝑥 Max value in difference list of entropy value 
for each consecutive window in pre-
experiment session for each attribute set(i) 

𝐷𝑖[𝐶𝑊]𝑠𝑡𝑑𝑒𝑣 Standard deviation value of difference list  
𝐷𝑖[𝐶𝑊]  

𝐷𝑖[𝐶𝑊]𝑚𝑒𝑎𝑛 Mean value of difference list  𝐷𝑖[𝐶𝑊] 

 

 

We have 3 different attack determination conditions (see Section 3.1.2) and these 

parameters are used for threshold value in our conditions. Recall that these parameters are 

calculated for each 15 different attribute sets. Since each of the attribute set has a different 

value interval, different thresholds are obtained. The expected value for entropy is an 

experimental data previously determined for this system. These threshold values should be 

adjusted according to the institution benign traffic with a training session. 

 

3.2.4. Covered attack types  

Entropy based detection methods on software defined networks are designed to detect 

various attack types. [13], [14] and [16] are designed to detect common flooding attack 

types such as UDP flood, ICMP floods and TCP SYN flood whereas [15] focuses on DDoS 

flooding attacks, Worm propagation and Portscan attacks. 

According to Kaspersky report [2], the most common type of attack by a wide margin is 

UDP flooding in 2018. In that regard, our implementation is designed based on detect to 

UDP and TCP protocol-based attacks such as TCP flood and UDP flood. However, our 

method can adapt to any flooding attacks. For future work, we aim to make this study large-

scale attack detection module covered all types of attacks. 
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3.3. Comparison with Entropy based implementations in the literature 

  

We investigate the applicability and performance of our proposed mechanism pertaining 

to other known anomaly detection algorithms reported in the literature. With table 7 we 

compare our method with others according to specific features. 
 

Table 7  Comparison of literature work  

Paper 

Name  

Windo

ws 

size  

Entropy 

Attributes 

Finding 

expected 

value for 

Entropy 

Attack determine Covered 

Attack 

Types  

Incomi

ng 

packet 

inspecti

on 

 

Early 

detection 

of DDoS 

attacks 

against 

SDN 

controller

s [13] 

Fixed 

packet 

size 

windo

w = 50 

packet

s  

dstIP Pre- 

Experime

ntal 

Threshold

: 

Differenc

e of 

highest 

value 

during 

attack 

traffic 

and 

lowest 

value 

during 

normal 

traffic  

if Entropy < threshold  TCP flood 

- UDP 

flood 

on 

controll

er (only 

unmatc

hed 

packets

) 

An 

entropy-

based 

distribute

d DDoS 

detection 

mechanis

m in 

software-

defined 

networki

ng [14] 

time 

domai

n 

windo

ws = 

betwee

n 3s 

and 7s  

 

dstIP Runtime 

threshold:  

δ= The 

standard 

deviation 

of normal 

entropy 

values * 

Threshold 

multiplica

tive factor 

(this one 

constraint 

and not 

specified) 

if E (𝑆𝑗) − H (𝑆𝑗) > δ  UDP flood 

 

on 

OpenFl

ow 

switch 

(all 

incomi

ng 

packets

) 

Combinin

g 

OpenFlo

Time 

domai

n 

srcIP, N. S N. S Distribute

d Denial 

of Service 

on 

sFlow 

switch 
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w and 

sFlow for 

an 

effective 

and 

scalable 

anomaly 

detection 

and 

mitigatio

n 

mechanis

m on 

SDN 

environm

ents [15] 

windo

ws = 

30s 

dstIP, srcPort 

dstPort 

(DDoS), 

Worm 

Propagatio

n, 

Portscan 

(all 

incomi

ng 

packets

) 

JESS: 

Joint 

Entropy 

Based 

DDoS 

Defense 

Scheme 

in SDN 

[17] 

Packet 

size-

based 

sliding 

windo

w = 

1000 

All 2 elements 

subset of P = 

{srcIP, 

dstIP, srcPort 

dstPort,ProType,p

ktSize, TTL, 

TCPflag} (28 

pairs) 

Runtime 

threshold:  

 

Threshold 

= 

(Current 

Entropy + 

previous 

entropy)/

2 

If current entropy <= 

Threshold 

 

NTP 

Attack, 

DNS 

Amplificat

ion SYN 

flood, 

generic 

and mixed 

attacks. 

on 

OpenFl

ow 

switch 

(all 

incomi

ng 

packets

) 

Early 

DoS/DDo

S 

Detection 

Method 

using 

Short-

term 

Statistics 

[18] 

Packet 

size 

based 

sliding 

windo

w = 50 

& 500 

srcIP  Runtime 

threshold:  

 

Standard 

deviation 

between 

average 

normal 

traffic 

and 

average 

attack 

traffic 

N. S DDoS and 

the slow 

DoS 

(DNS-

Amplificat

ion) 

N. S 

Proposed 

Method  

Packet 

size-

based 

sliding 

windo

w = 

1000 

sliding 

interva

l = 250 

Single and two 

element 

combinations of 

the fields (dstIP, 

srcIP, dstPort, 

srcPort, 

total_length) 

 

15 different 

attribute sets in 

total  

Pre- 

Experime

ntal 

Threshold

: Each 

attribute 

set has 

more than 

one 

threshold 

value (7 

different 

If there is an 

𝐸𝑖(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) -that 

satisfies C1 or C2 or C3  

C1) if  𝐸𝑖(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) - 

𝐸𝑖(𝑝𝑟𝑒𝑣) > 

(2*𝐷𝑖𝑗[𝐶𝑊]𝑠𝑡𝑑𝑒𝑣+

𝐷𝑖𝑗[𝐶𝑊]𝑚𝑒𝑎𝑛) 

C2) if  𝐸𝑖(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) - 

𝐸𝑖(𝑝𝑟𝑒𝑣) > 

UDP 

flood, 

TCP flood 

 

on 

OpenFl

ow 

switch 

(all 

incomi

ng 

packets

) 
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parameter

s are 

used) 

𝐷𝑖𝑗[𝐶𝑊]𝑚𝑎𝑥 OR 

𝐸𝑖(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) >  

𝐸𝑖(𝑁)𝑚𝑎𝑥 OR 

𝐸𝑖(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) < 

𝐸𝑖(𝑁)𝑚𝑖𝑛 

 

C3) if  𝐸𝑖(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) <  

𝐸𝑖(𝑁)𝑚𝑒𝑎𝑛- 

𝐸𝑖(𝑁)𝑠𝑡𝑑𝑒𝑣OR 

𝐸𝑖(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) > 

𝐸𝑖(𝑁)𝑚𝑒𝑎𝑛+ 𝐸𝑖(𝑁)𝑠𝑡𝑑𝑒𝑣  

 

 

 

 

The studies given in the table were evaluated using different traffic datasets. The success 

rates given by these studies depend on the used benign and attack traffic and given rates 

may change by the usage of different traffic sets. Therefore, these rates are not shown in 

the table as there will be no fair comparison. A performance evaluation using only the 

same benign and attack traffic would be fair. 
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  CHAPTER 4 

 

 

4. EXPERIMENTS 

1.  

We conducted a series of experiments to investigate the effectiveness of our proposed 

multiple entropy calculations and our attack determination mechanism. Experiment setup 

is explained in Section 4.1. Experiment results and comparisons are discussed in Section 

4.4 

4.1 Setup  

In order to evaluate our entropy-based detection method, we conducted a series of 

experiments. We use Mininet2 virtual network simulator for these experiments. Mininet is 

a realistic virtual network with a running kernel, switch and application code on a single 

machine. This machine can be VM or cloud. Moreover, Mininet supports entire SDN 

capabilities for this reason it is a great way to experiment with SDN systems. Mininet does 

not require physical switches, controller, hosts or another network device. To create a 

complete virtual network including hosts, switches, links and controllers, it is enough to run 

a single line of code. This simulator comes with default OpenFlow controller which turns 

switches into learning switches. We use python based open source remote controller to 

analyze network packets for our detection system. In accordance with this purpose, POX3 

controller is incorporated with Mininet. 

Our simulation is run on a Kali GNU/Linux 2018.4 machine with Intel Core i5-4200H 

2.80GHz CPU and 8 GB Ram. All simulation software is written using Python language.  

 

Traffic Dataset 

We used real network traffic dataset [50] to verify our method in experiment sessions. As 

explained in Section 3.2.3. we used only the second half of the “Monday” traffic dataset for 

                                                 
2 http://mininet.org/ 

3 https://noxrepo.github.io/pox-doc/html/ 

http://mininet.org/
https://noxrepo.github.io/pox-doc/html/
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experiment sessions. This part of dataset consists of benign traffic and used as benign 

activity in our experiments. In the traffic dataset, there are 235 different hosts as destination. 

All destination addresses directly mapped to hosts addresses running on Mininet network 

with tcpdump tool. 

 

Attack Datasets 

We used previously captured real attack datasets for our experiments. These datasets consist 

of only filtered attack packets. We performed the experiments with 4 different dataset we 

obtained. 

Performed attack types:    

● UDP Flood DoS Attack  

● UDP Flood DDoS Attack 

● TCP Flood DoS Attack 

● TCP Flood DDoS Attack 

 

We examined our benign traffic to select victim hosts for attack. In benign traffic dataset, 

the received packet rates of the hosts are different from each other, some hosts are used 

more intensively. In this context, we selected 3 different victim hosts to measure the 

performance of our detection method on victim hosts that have different traffic rates. 

Therefore, we repeated each attack datasets for 3 different hosts. First victim is host14 with 

the highest traffic, second is host9 with medium traffic and third victim is host104 with 

least traffic rate on the network. Recall that, as in the benign traffic dataset, all destination 

addresses directly mapped to hosts addresses running on Mininet network with tcpdump 

tool.   

In total, we have 12 experiments set up as shown in Table 8. There were three victims 

host14, host9, and host 104 with high, medium, and low traffic rate in the training data set, 

respectively. For each victim, we experiment with one of four attack traffic discussed above. 

 

Table 8 List of experiments 

Experiment 

Id  
Attack type 

 

Victim 

host 

1 DDoS/UDP Flood  14 

2 DDoS/UDP Flood 9 

3 DDoS/UDP Flood 104 

4 DoS/UDP Flood 14 
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5 
DoS/UDP Flood 

9 

6 
DoS/UDP Flood 

104 

7 
DDoS/TCP Flood 

14 

8 
DDoS/TCP Flood 

9 

9 
DDoS/TCP Flood 

104 

10 
DoS/TCP Flood 

14 

11 
DoS/TCP Flood 

9 

12 DoS/TCP Flood 104 

 

Attack datasets was replayed 130 seconds after benign traffic started and they continued to 

work through the whole experiment. The detailed explanation about the running steps of 

experiments is given in section 4.3. 

4.2. Software Defined Networking (SDN)  

Software-Defined Networking (SDN) is a new network technology that lets the network to 

be dynamic, manageable, cost-effective, and adaptable using software applications. This 

characteristic helps operators manage the entire network consistently and holistically, 

regardless of the underlying network technology. This approach is based on the physical 

separation of the network control and forwarding functions. The features of SDN 

technology are as follows : 

 

 

● Agile: Separating control mechanisms apart from forwarding allows admins to 

adjust traffic flow dynamically. 

● Centrally managed: Network intelligence is centralized in software-based SDN 

controllers in order to keep a global view of the network, which appears to 

applications and policy engines as a single, logical switch. 

● Programmatically Configured: SDN allows admins to configure, manage, secure, 

and optimize network resources very quickly thanks to dynamic, automated SDN 

programs. This program can run themselves because the programs do not depend 

on proprietary software. 

● Open Standards-Based and Vendor-Neutral: SDN is implemented through open 

standards, and this simplifies network design and operations. Also, instructions are 

provided by SDN controllers instead of multiple, vendor-specific devices and 

protocols. 

 

An SDN architecture has three layers: application, control and infrastructure. The 

application layer contains the network applications or functions. SDN is differed from 

traditional networks by including application that uses the controller to manage data plane 

behavior where traditional networks would use a specialized appliance. 
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The control layer represents the SDN controller software which is centralized and acts as a 

brain of the software-defined network. This controller resides on a server and manages 

policies and the flow of traffic throughout the network. The infrastructure layer is made up 

of the physical switches in the network. 

4.3. Simulation Environment  

 

 

Figure 1 Network Topology 

 

The network topology we created for simulation is shown in Figure 1. Switch 1 (S1) is the 

switch which is managed by the controller and connected to eight switches S2 to S7. The 

switches (S2, S3…S6) is connected to 43 hosts and the last switch S7 is connected to 41 

hosts. Host h2 was used to replay benign traffic pcap file. Host h3 is used to replay attack 

traffic pcap file to the victim hosts. Although this is not a large-scale topology, an attacker 

is able to generate spoofed packet streams with a single machine using packet manipulation 

tools. These streams seem like they are coming from different IP addresses thus this 

environment emulates a much larger topology in practice.  

In order to perform controlled experiments, a python script was written that automates the 

experiments. This script first creates the network topology that is shown in Figure 1, then 

runs the POX controller. Our detection software runs on POX controller, as soon as POX 

is started our detection software starts to run and continue until controller closes. The script 

replays benign traffic datasets using “tcpreplay” tool as next step. Training and experiments 

were conducted with different parts of the Monday traffic dataset [54]. The part of the traffic 
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dataset used for experiments is called benign traffic. Benign traffic dataset was used to 

simulate real network traffic between hosts on our network topology. Attack dataset is 

replayed 130 seconds after benign traffic started and they both continue to run for 176 

seconds. These steps were repeated for each experiment and running time for each one was 

306 seconds. In this way, we can make a healthy comparison for 12 different experiment 

setups. We used four different attack datasets to verify our method on different types of 

attacks. For each experiment that run for different attack types, the selected attack traffic 

was replayed by selecting the corresponding victim hosts.  

 

4.3.1. Experiment Results 

 

In our experiments we evaluate our implementation with respect to the following aspects 

1) Evaluate our implementation with respect to different victims of benign traffic: 

Attacker usually gets information about the devices on the network before initiating 

the attack. Each device on the network has a different role and accordingly has 

different traffic rate. Our aim is to measure the performance of our detection method 

on victim hosts that have high, medium, and low traffic rates. 

2) Evaluate our implementation under two different protocol attacks (TCP and UDP): 

We aim to investigate which attributes in the entropy calculation are more effective 

under different protocol attacks 

3) Evaluate our implementation under single source address and distributed source 

address of the same attack: Distributed attacks have spoofed source addresses and 

our goal is to observe the performance differences between these two types. In 

spoofed DDoS attacks, randomness in packet properties increases more than 

expected. Therefore, we do not only observe the randomness in packet properties 

for decreases, we observe unexpected changes in randomness for both decrease and 

increase. 

4) Compare the effectiveness of our entropy parameter selection (5 single attributes 

and 10 pair of attributes) to entropy calculation with all 3 element and 4 elements 

subsets 

We performed a series of controlled experiments that evaluates the combination of these 

aspects. 

 

4.3.1.1. Evaluation on DDoS attacks on different protocol types 

 

In this experiment we evaluated our methodology with respect to TCP flood and UDP flood 

attacks with distributed source addresses on high, medium, and low traffic victims. The 

evaluation is performed using number of windows the attack detected and the number of 

attack packets missed. Recall that our methodology gives alert when at least of the 15 

entropy attribute set satisfies at least one of the detection conditions (C1 or C2 or C3). To 

give a detailed evaluation, we present the number of window attack detected and missed 

for each of the entropy values for each of the detection condition. Table 9 presents the 

results on DDoS TCP flood and DDoS UDP flood on the victim with the high traffic rate 
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in the benign traffic (i.e. the victim is host14). During the attack traffic there were 262 

windows in total. The last two rows show the results for our methodology and detection 

rate. The detection rate of the methodology is calculated when at least one entropy attribute 

set detected. 

 

Table 9 DDoS TCP flood versus DDoS UDP flood on the victim with the high traffic rate (victim is host 14) 

 DDOS TCP DDOS UDP 

Attribute sets: C1 C2 C3  C1 C2 C3  

 Number 
of 
windows 
captured 

Number of 
windows 
captured 

Number 
of 
windows 
captured 

Number 
of passed 
packets to 
detect  

Number 
of 
windows 
captured 

Number 
of 
windows 
captured 

Number 
of 
windows 
captured 

Number 
of passed 
packets to 
detect  

[DSTIP] 0 0 246 750 0   0 246 750 

[DSTPORT] 0 249 240 750 4   261 261 250 

[SRCIP] 4 261 262 250 4   261 262 250 

[SRCPORT] 4 261 261 250 4   261 261 250 

[PCKTLEN] 0 259 243 500 0   155 0 1000 

[DSTIP_SRCIP]  4 261 261 250 4   261 261 250 

[DSTIP_DSTPORT] 0 0 0 N/A 4   261 261 250 

[DSTIP_SRCPORT] 4 261 261 250 4   261 261 250 

[DSTIP_PCKTLEN]  0 175 0 1000 0   173 0 1000 

[DSTPORT_SRCIP] 4 261 261 250 4   261 261 250 

[SRCIP_SRCPORT] 4 261 261 250 4   261 261 250 

[SRCIP_PCKTLEN] 4 14 261 250 4   261 261 250 

[DSTPORT_SRCPOR
T] 4 14 261 250 4   

15 261 250 

[DSTPORT_PCKTLE
N] 0 252 210 500 4   

260 261 250 

[SRCPORT_PCKTLE
N] 4 259 261 250 4   

259 261 250 

Total number of 
windows the given 
entropy sets gives 
alarm: 

36 2788 3289 

 

48 3211 3379  

Total number of 
windows the 
attack detected: 4 261 262  

4 261 262  

Rate: 1,52% 99,61% 100%  1,52% 99,61% 100%  

 

Table 10 presents the results on DDoS TCP flood and DDoS UDP flood on the victim with 

the medium traffic rate in the benign traffic (i.e. the victim is host9). 
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Table 10 DDoS TCP flood versus DDoS UDP flood on the victim with the medium traffic rate (victim is host 9) 

 DDOS TCP DDOS UDP 

Attribute sets: C1 C2 C3  C1 C2 C3  

 Number 
of 
windows 
captured 

Number of 
windows 
captured 

Number 
of 
windows 
captured 

Number 
of passed 
packets to 
detect  

Numb
er of 
windo
ws 
captur
ed 

Number 
of 
window
s 
capture
d 

Numb
er of 
windo
ws 
captur
ed 

Number of passed 
packets to detect  

[DSTIP] 0 0 0 N/A 0 0 0 N/A 

[DSTPORT] 0 249 241 750 4 261 261 250 

[SRCIP] 4 261 262 250 4 261 262 250 

[SRCPORT] 4 261 261 250 4 261 261 250 

[PCKTLEN] 0 259 241 500 0 156 0 1000 

[DSTIP_SRCIP]  4 261 261 250 4 261 261 250 

[DSTIP_DSTPORT] 0 0 0 N/A 4 261 261 250 

[DSTIP_SRCPORT] 4 261 261 250 4 261 261 250 

[DSTIP_PCKTLEN]  0 174 0 1000 0 173 0 1000 

[DSTPORT_SRCIP] 4 261 261 250 4 261 261 250 

[SRCIP_SRCPORT] 4 261 261 250 4 261 261 250 

[SRCIP_PCKTLEN] 4 261 261 250 4 261 261 250 

[DSTPORT_SRCPO
RT] 4 

12 261 250 
4 

15 261 250 

[DSTPORT_PCKTLE
N] 0 

252 207 500 
4 

260 261 250 

[SRCPORT_PCKTLE
N] 4 

259 261 250 
4 

259 261 250 

Total number of 
windows the 
given entropy sets 
gives alarm: 

36 3032 3039  48 3212 3133  

Total number of 
windows the 
attack detected: 

4 261 262  4 261 262  

Rate: 1,52% 99,61% 100%  1,52% 99,61% 100%  

 

Table 11 presents the results on DDoS TCP flood and DDoS UDP flood on the victim with 

the low traffic rate in the benign traffic (i.e. the victim is host104). 

 

Table 11 DDoS TCP flood versus DDoS UDP flood on the victim with the low traffic rate (victim is host 104) 

 DDOS TCP DDOS UDP 

Attribute sets: C1 C2 C3  C1 C2 C3  

 Number 
of 
windows 
captured 

Number 
of 
windows 
captured 

Number 
of 
windows 
captured 

Number 
of 
passed 
packets 
to detect  

Number 
of 
windows 
captured 

Number 
of 
windows 
captured 

Number 
of 
windows 
captured 

Number 
of 
passed 
packets 
to detect  

[DSTIP] 0 0 0 N/A 0 0 0 N/A 

[DSTPORT] 0 250 241 750 4 261 261 250 

[SRCIP] 4 261 262 250 4 261 262 250 

[SRCPORT] 4 261 261 250 4 261 261 250 

[PCKTLEN] 0 259 241 500 0 155 0 1000 

[DSTIP_SRCIP]  4 261 261 250 4 261 261 250 
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[DSTIP_DSTPORT] 0 0 0 N/A 4 261 261 250 

[DSTIP_SRCPORT] 4 261 261 250 4 261 261 250 

[DSTIP_PCKTLEN]  0 176 0 1000 0 172 0 750 

[DSTPORT_SRCIP] 4 261 261 N/A 4 261 261 250 

[SRCIP_SRCPORT] 4 261 261 250 4 261 261 250 

[SRCIP_PCKTLEN] 4 261 261 250 4 261 261 250 

[DSTPORT_SRCPO
RT] 4 

13 261 250 
4 

15 261 250 

[DSTPORT_PCKTLE
N] 0 

252 210 500 
4 

260 261 250 

[SRCPORT_PCKTLE
N] 4 

259 261 250 
4 

259 261 250 

Total number of 
windows the given 
entropy sets gives 
alarm: 

36 3036 3042  48 3210 3133  

Total number of 
windows the 
attack detected: 

4 261 262  4 261 262  

Rate: 1,52% 99,61% 100%  1,52% 99,61% 100%  

 

According to results, selecting different victim hosts for the attacks does not affect 

respectable amount on detection rate of performed experiments. Overall detection rate is 

the same for all victim hosts in both DDoS UDP Flood and DDoS TCP Flood. The only 

difference is on the total number of alarms that is given by entropy attribute sets 

individually. When we analyze DDoS UDP Flood attack, C3 gives more alarms than C2. 

The difference is approximately 4% and this rate continues to decrease between high traffic 

rate victim 14 and low traffic rate victim 104. On the other hand, in DDoS TCP Flood the 

difference is approximately 4% and this rate continues to decrease between victim 14 and 

victim 104. 

 

4.3.1.2 Evaluate our implementation under single source address (DoS) and 

distributed source address (DDoS) of the same attack 

 

In this experiment we evaluated our methodology with respect to single source address 

(DoS) and distributed source address (DDoS) for both TCP flood and UDP flood attacks on 

high, medium, and low traffic victims. Table 12 presents the results on DoS TCP flood and 

DDoS TCP flood on the victim with the high traffic rate in the benign traffic (i.e. the victim 

is host14). 

 

Table 12 DoS TCP flood versus DDoS TCP flood on the victim with the high traffic rate (victim is host 14) 

 DOS TCP DDOS TCP 

Attribute sets: C1 C2 C3  C1 C2 C3  

 Number 
of 
windows 
captured 

Number 
of 
windows 
captured 

Number 
of 
windows 
captured 

Number 
of passed 
packets to 
detect  

Number 
of 
windows 
captured 

Number 
of 
windows 
captured 

Number 
of 
windows 
captured 

Number 
of passed 
packets to 
detect  

[DSTIP] 0 0 245 750 0 0 246 750 

[DSTPORT] 0 249 240 750 0 249 240 750 

[SRCIP] 0 0 1 12000 4 261 262 250 
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[SRCPORT] 4 261 261 250 4 261 261 250 

[PCKTLEN] 0 259 243 500 0 259 243 500 

[DSTIP_SRCIP]  0 0 0 N/A 4 261 261 250 

[DSTIP_DSTPORT] 0 0 0 N/A 0 0 0 N/A 

[DSTIP_SRCPORT] 4 261 261 250 4 261 261 250 

[DSTIP_PCKTLEN]  0 174 0 1000 0 175 0 1000 

[DSTPORT_SRCIP] 0 0 0 N/A 4 261 261 250 

[SRCIP_SRCPORT] 4 261 261 250 4 261 261 250 

[SRCIP_PCKTLEN] 0 175 0 1000 4 14 261 250 

[DSTPORT_SRCPOR
T] 

4 12 261 250 
4 14 261 250 

[DSTPORT_PCKTLE
N] 

0 252 210 500 
0 252 210 500 

[SRCPORT_PCKTLE
N] 

4 259 261 250 
4 259 261 250 

Total number of 
windows the given 
entropy sets gives 
alarm: 

20 2163 2244  36 2788 3289 

 

Total number of 
windows the 
attack detected: 

4 261 261  

4 261 262  

Rate: 1,52% 99,61% 99,61%  1,52% 99,61% 100%  

 

Table 13 presents the results on DoS TCP flood and DDoS TCP flood on the victim with 

the medium traffic rate in the benign traffic (i.e. the victim is host9).  

 

Table 13 DoS TCP flood versus DDoS TCP flood on the victim with the medium traffic rate (victim is host 9) 

 DOS TCP DDOS TCP 

Attribute sets: C1 C2 C3  C1 C2 C3  

 Number 
of 
windows 
captured 

Number 
of 
windows 
captured 

Number 
of 
windows 
captured 

Number 
of passed 
packets to 
detect  

Number 
of 
windows 
captured 

Number 
of 
windows 
captured 

Number 
of 
windows 
captured 

Number 
of passed 
packets to 
detect  

[DSTIP] 0 0 0 N/A 0 0 0 N/A 

[DSTPORT] 0 249 241 750 0 249 241 750 

[SRCIP] 0 0 1 12000 4 261 262 250 

[SRCPORT] 4 261 261 250 4 261 261 250 

[PCKTLEN] 0 259 242 500 0 259 241 500 

[DSTIP_SRCIP]  0 0 0 N/A 4 261 261 250 

[DSTIP_DSTPORT] 0 0 0 N/A 0 0 0 N/A 

[DSTIP_SRCPORT] 4 261 261 250 4 261 261 250 

[DSTIP_PCKTLEN]  0 174 0 1000 0 174 0 1000 

[DSTPORT_SRCIP] 0 0 0 N/A 4 261 261 250 

[SRCIP_SRCPORT] 4 261 261 250 4 261 261 250 

[SRCIP_PCKTLEN] 0 173 0 1000 4 261 261 250 

[DSTPORT_SRCPOR
T] 

4 11 261 250 
4 

12 261 250 

[DSTPORT_PCKTLE
N] 

0 252 210 500 
0 

252 207 500 

[SRCPORT_PCKTLE
N] 

4 259 261 250 
4 

259 261 250 

Total number of 
windows the given 

20 2160 1999  36 3032 3039  
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entropy sets gives 
alarm: 

Total number of 
windows the 
attack detected: 

4 261 261  4 261 262  

Rate: 1,52% 99,61% 99,61%  1,52% 99,61% 100%  

 

Table 14 presents the results on DoS TCP flood and DDoS TCP flood on the victim with 

the low traffic rate in the benign traffic (i.e. the victim is host104).  

 

Table 14 DoS TCP flood versus DDoS TCP flood on the victim with the low traffic rate (victim is host 104) 

 DOS TCP DDOS TCP 

Attribute sets: C1 C2 C3  C1 C2 C3  

 Number 
of 
windows 
captured 

Number 
of 
windows 
captured 

Number 
of 
windows 
captured 

Number 
of passed 
packets to 
detect  

Number 
of 
windows 
captured 

Number 
of 
windows 
captured 

Number 
of 
windows 
captured 

Number 
of passed 
packets to 
detect  

[DSTIP] 0 0 0 N/A 0 0 0 N/A 

[DSTPORT] 0 249 241 750 0 250 241 750 

[SRCIP] 0 0 1 12000 4 261 262 250 

[SRCPORT] 4 261 261 250 4 261 261 250 

[PCKTLEN] 0 259 242 500 0 259 241 500 

[DSTIP_SRCIP]  0 0 0 N/A 4 261 261 250 

[DSTIP_DSTPORT] 0 0 0 N/A 0 0 0 N/A 

[DSTIP_SRCPORT] 4 261 261 250 4 261 261 250 

[DSTIP_PCKTLEN]  0 174 0 1000 0 176 0 1000 

[DSTPORT_SRCIP] 0 0 0 N/A 4 261 261 250 

[SRCIP_SRCPORT] 4 261 261 250 4 261 261 250 

[SRCIP_PCKTLEN] 0 173 0 1000 4 261 261 250 

[DSTPORT_SRCPOR
T] 

4 11 261 250 
4 

13 261 250 

[DSTPORT_PCKTLE
N] 

0 252 210 500 
0 

252 210 500 

[SRCPORT_PCKTLE
N] 

4 259 261 250 
4 

259 261 250 

Total number of 
windows the given 
entropy sets gives 
alarm: 

20 2160 1999  36 3036 3042  

Total number of 
windows the 
attack detected: 

4 261 261  4 261 262  

Rate: 1,52% 99,61% 99,61%  1,52% 99,61% 100%  

 

Table 15 presents the results on DoS UDP flood and DDoS UDP flood on the victim with 

the high traffic rate in the benign traffic (i.e. the victim is host14).  
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Table 15 DoS UDP flood versus DDoS UDP flood on the victim with the high traffic rate (victim is host 14) 

 DOS UDP DDOS UDP 

Attribute sets: C1 C2 C3  C1 C2 C3  

 Number 
of 
windows 
captured 

Number 
of 
windows 
captured 

Number 
of 
windows 
captured 

Number 
of passed 
packets to 
detect  

Number 
of 
windows 
captured 

Number 
of 
windows 
captured 

Number 
of 
windows 
captured 

Number 
of passed 
packets to 
detect  

[DSTIP] 0 0 246 750 0   0 246 750 

[DSTPORT] 0 0 0 N/A 4   261 261 250 

[SRCIP] 0 0 0 N/A 4   261 262 250 

[SRCPORT] 4 261 261 250 4   261 261 250 

[PCKTLEN] 0 156 0 1000 0   155 0 1000 

[DSTIP_SRCIP]  0 0 0 N/A 4   261 261 250 

[DSTIP_DSTPORT] 0 0 0 N/A 4   261 261 250 

[DSTIP_SRCPORT] 4 261 261 250 4   261 261 250 

[DSTIP_PCKTLEN]  0 176 0 1000 0   173 0 1000 

[DSTPORT_SRCIP] 0 0 0 N/A 4   261 261 250 

[SRCIP_SRCPORT] 4 261 261 250 4   261 261 250 

[SRCIP_PCKTLEN] 0 177 0 1000 4   261 261 250 

[DSTPORT_SRCPOR
T] 

4 13 261 250 
4   

15 261 250 

[DSTPORT_PCKTLE
N] 

0 175 0 1000 
4   

260 261 250 

[SRCPORT_PCKTLE
N] 

4 259 261 250 
4   

259 261 250 

Total number of 
windows the given 
entropy sets gives 
alarm: 

20 1739 1551  48 3211 3379  

Total number of 
windows the 
attack detected: 

4 261 261  4 261 262  

Rate: 1,52% 99,61% 99,61%  1,52% 99,61% 100%  

 

Table 16 presents the results on DoS UDP flood and DDoS UDP flood on the victim with 

the medium traffic rate in the benign traffic (i.e. the victim is host9).  

 

Table 16 DoS UDP flood versus DDoS UDP flood on the victim with the medium traffic rate (victim is host 9) 

 DOS UDP DDOS UDP 

Attribute sets: C1 C2 C3  C1 C2 C3  

 Number 
of 
windows 
captured 

Number 
of 
windows 
captured 

Number 
of 
windows 
captured 

Number 
of passed 
packets to 
detect  

Number 
of 
windows 
captured 

Number 
of 
windows 
captured 

Number 
of 
windows 
captured 

Number 
of passed 
packets to 
detect  

[DSTIP] 0 0 0 N/A 0 0 0 N. A 

[DSTPORT] 0 0 0 N/A 4 261 261 250 

[SRCIP] 0 0 1 12000 4 261 262 250 

[SRCPORT] 4 261 261 250 4 261 261 250 

[PCKTLEN] 0 155 0 1000 0 156 0 1000 

[DSTIP_SRCIP]  0 0 0 N/A 4 261 261 250 

[DSTIP_DSTPORT] 0 0 0 N/A 4 261 261 250 

[DSTIP_SRCPORT] 4 261 261 250 4 261 261 250 

[DSTIP_PCKTLEN]  0 174 0 1000 0 173 0 1000 



 

36 

 

[DSTPORT_SRCIP] 0 0 0 N/A 4 261 261 250 

[SRCIP_SRCPORT] 4 261 261 250 4 261 261 250 

[SRCIP_PCKTLEN] 0 171 0 1000 4 261 261 250 

[DSTPORT_SRCPOR
T] 

4 13 261 250 
4 

15 261 250 

[DSTPORT_PCKTLE
N] 

0 171 0 1000 
4 

260 261 250 

[SRCPORT_PCKTLE
N] 

4 259 261 250 
4 

259 261 250 

Total number of 
windows the given 
entropy sets gives 
alarm: 

20 1726 1306  48 3212 3133  

Total number of 
windows the 
attack detected: 

4 261 261  4 261 262  

Rate: 
1,52% 

99,61% 99,61%  1,52% 99,61% 100%  

 

Table 17 presents the results on DoS UDP flood and DDoS UDP flood on the victim with 

the low traffic rate in the benign traffic (i.e. the victim is host104).  

 

Table 17 DoS UDP flood versus DDoS UDP flood on the victim with the low traffic rate (victim is host 104) 

 DOS UDP DDOS UDP 

Attribute sets: C1 C2 C3  C1 C2 C3  

 Number 
of 
windows 
captured 

Number 
of 
windows 
captured 

Number 
of 
windows 
captured 

Number 
of passed 
packets to 
detect  

Number 
of 
windows 
captured 

Number 
of 
windows 
captured 

Number 
of 
windows 
captured 

Number 
of passed 
packets to 
detect  

[DSTIP] 0 0 0 N/A 0 0 0 N/A 

[DSTPORT] 0 0 0 N/A 4 261 261 250 

[SRCIP] 1 0 0 1000 4 261 262 250 

[SRCPORT] 4 261 261 250 4 261 261 250 

[PCKTLEN] 0 156 0 1000 0 155 0 1000 

[DSTIP_SRCIP]  0 0 0 N/A 4 261 261 250 

[DSTIP_DSTPORT] 0 0 0 N/A 4 261 261 250 

[DSTIP_SRCPORT] 4 261 261 250 4 261 261 250 

[DSTIP_PCKTLEN]  0 176 0 1000 0 172 0 750 

[DSTPORT_SRCIP] 0 0 0 N/A 4 261 261 250 

[SRCIP_SRCPORT] 4 261 261 250 4 261 261 250 

[SRCIP_PCKTLEN] 0 176 0 1000 4 261 261 250 

[DSTPORT_SRCPOR
T] 

4 13 261 250 
4 

15 261 250 

[DSTPORT_PCKTLE
N] 

0 175 0 1000 
4 

260 261 250 

[SRCPORT_PCKTLE
N] 

4 259 261 250 
4 

259 261 250 

Total number of 
windows the given 
entropy sets gives 
alarm: 

21 1738 1305  48 3210 3133  

Total number of 
windows the 
attack detected: 

4 261 261  4 261 262  

Rate: 1,52% 99,61% 99,61%  1,52% 99,61% 100%  
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When we compare the results in terms of the performance difference between two different 

protocols, it is seen that overall detection performance is the same for two different protocol 

UDP Flood and TCP Flood. However, there is a difference on the total number of alarms 

that is given by entropy attribute sets individually. When we analyze DoS UDP Flood 

attack, C3 gives more alarms than C2. The difference is approximately 5% and this rate 

continues to increase between the high traffic rate victim 14 and the low traffic rate victim 

104. On the other hand, in DoS TCP Flood the difference is approximately 4% and this rate 

continues to decrease between victim 14 and victim 104. 

Another aspect of this experiment is to evaluate our implementation under single source 

address and distributed source address of the same attack. In DoS UDP Flood, detection 

rate of C1 is 1.52%, C2 and C3 are 99.61% for all victim hosts whereas, in DDoS UDP 

Flood, detection rate of C1 is 1.52%, C2 is 99.61% and C3 is 100% for all victim hosts. 

According to result we can say that our method is more successful in detecting distributed 

attacks than single source attacks. 

 

4.3.1.3. Effectiveness of our entropy parameter selection   

 

In this experiment we evaluated our methodology with respect to entropy parameter 

selection. We suggest that entropy calculation should be performed for 5 single attributes 

and two element combination of these attributes. In this section we compare the 

effectiveness of our entropy parameter selection (5 single attributes and 10 pair of 

attributes) to entropy calculation with all 3 element and 4 elements subsets. The evaluation 

is performed with respect to single source address (DoS) and distributed source address 

(DDoS) for both TCP flood and UDP flood attacks on high, medium, and low traffic 

victims. 

Table 18 presents the results on DDoS TCP flood and DDoS UDP flood on the victim with 

the high traffic rate in the benign traffic (i.e. the victim is host14).  

 

Table 18 DDoS TCP flood versus DDoS UDP flood on the victim with the high traffic rate (victim is host 14) 

 DDOS TCP DDOS UDP 

Attribute sets: C1 C2 C3  C1 C2 C3  

 Number 
of 
window
s 
capture
d 

Number 
of 
window
s 
capture
d 

Number 
of 
window
s 
capture
d 

Numbe
r of 
passed 
packets 
to 
detect  

Number 
of 
window
s 
capture
d 

Number 
of 
window
s 
capture
d 

Number 
of 
window
s 
capture
d 

Numbe
r of 
passed 
packets 
to 
detect  

[DSTIP_SRCIP_SRCPORT] 4 253 261 250 4   252 261 250 

[DSTIP_DSTPORT_SRCIP] 4 260 261 250 4   260 261 250 

[DSTIP_SRCIP_PCKTLEN] 4 258 261 250 4   258 261 250 

[DSTIP_DSTPORT_SRCPORT] 4 3 261 250 4   3 261 250 

[DSTIP_DSTPORT_PCKTLEN] 0 171 0 1000 4   58 261 250 

[DSTIP_SRCPORT_PCKTLEN] 4 258 261 250 4   257 261 250 

[DSTPORT_SRCIP_SRCPORT] 4 4 261 250 4   3 261 250 

[DSTPORT_SRCIP_PCKTLEN] 4 260 261 250 4   260 261 250 
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[SRCIP_SRCPORT_PCKTLEN] 4 15 261 250 4   15 261 250 

[DSTPORT_SRCPORT_PCKTLEN] 4 2 261 250 4   2 261 250 

Total number of windows the 
given entropy sets gives alarm: 

36 1484 2349  40 1368 2610  

Total number of windows the 
attack detected: 

4 260 261  4   260 261  

Rate: 1,52% 99,23% 99,61%  1.52% 99,23% 99,61%  

[DSTIP_DSTPORT_SRCIP_SRCPOR
T] 

4 2 261 250 4   1 261 250 

[DSTIP_DSTPORT_SRCIP_PCKTLEN
] 

4 24 261 250 4   23 261 250 

[DSTPORT_SRCIP_SRCPORT_PCKT
LEN] 

4 13 261 250 4   1 261 250 

[DSTIP_SRCIP_SRCPORT_PCKTLEN
] 

4 13 261 250 4   13 261 250 

[DSTIP_DSTPORT_SRCPORT_PCKT
LEN] 

4 1 260 250 4   1 260 250 

Total number of windows the 
given entropy sets gives alarm: 

20 53 1304  20 39 1304  

Total number of windows the 
attack detected: 

4 24 261  4   23 261  

Rate: 1,52% 9,16% 99,61%  1.52% 8,77% 99,61%  

Proposed Attribute sets 
Result     

    

Total number of windows the 
attack detected: 4 261 262  

4 261 262  

Rate: 
1,52% 99,61% 100%  

1,52% 99,61% 100%  

 

Table 19 presents the results on DDoS TCP flood and DDoS UDP flood on the victim with 

the medium traffic rate in the benign traffic (i.e. the victim is host9).  

 

Table 19 DDoS TCP flood versus DDoS UDP flood on the victim with the medium traffic rate (victim is host 9) 

 DDOS TCP DDOS UDP 

Attribute sets: C1 C2 C3  C1 C2 C3  

 Number 
of 
window
s 
capture
d 

Number 
of 
window
s 
capture
d 

Number 
of 
window
s 
capture
d 

Numbe
r of 
passed 
packets 
to 
detect  

Number 
of 
window
s 
capture
d 

Number 
of 
window
s 
capture
d 

Number 
of 
window
s 
capture
d 

Numbe
r of 
passed 
packets 
to 
detect  

[DSTIP_SRCIP_SRCPORT] 4 252 261 250 4 252 261 250 

[DSTIP_DSTPORT_SRCIP] 4 259 261 250 4 260 261 250 

[DSTIP_SRCIP_PCKTLEN] 4 257 261 250 4 258 261 250 

[DSTIP_DSTPORT_SRCPORT] 4 3 261 250 4 4 261 250 

[DSTIP_DSTPORT_PCKTLEN] 0 172 0 1000 4 57 261 250 

[DSTIP_SRCPORT_PCKTLEN] 4 257 261 250 4 258 261 250 

[DSTPORT_SRCIP_SRCPORT] 4 3 261 250 4 4 261 250 

[DSTPORT_SRCIP_PCKTLEN] 4 260 261 250 4 260 261 250 

[SRCIP_SRCPORT_PCKTLEN] 4 15 261 250 4 15 261 250 
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[DSTPORT_SRCPORT_PCKTLEN] 4 3 261 250 4 2 261 250 

Total number of windows the 
given entropy sets gives alarm: 

36 1481 2349  40 1370 2610  

Total number of windows the 
attack detected: 

4 260 261  4 260 261  

Rate: 1,52% 99,23% 99,61%  1.52% 99,23% 99,61%  

[DSTIP_DSTPORT_SRCIP_SRCPOR
T] 

4 1 261 250 4 2 261 250 

[DSTIP_DSTPORT_SRCIP_PCKTLEN
] 

4 24 261 250 4 24 261 250 

[DSTPORT_SRCIP_SRCPORT_PCKT
LEN] 

4 1 261 250 4 1 261 250 

[DSTIP_SRCIP_SRCPORT_PCKTLEN
] 

4 13 261 250 4 13 261 250 

[DSTIP_DSTPORT_SRCPORT_PCKT
LEN] 

4 1 261 250 4 1 261 250 

Total number of windows the 
given entropy sets gives alarm: 

20 40 1305  20 41 1305  

Total number of windows the 
attack detected: 

4 24 261  4 24 261  

Rate: 1,52% 9,16% 99,61%  1.52% 9,16% 99,61%  

Proposed Attribute sets 
Result     

    

Total number of windows the 
attack detected: 

4 261 262  4 261 262  

Rate: 1,52% 99,61% 100%  1,52% 99,61% 100%  

 

Table 20 presents the results on DDoS TCP flood and DDoS UDP flood on the victim with 

the low traffic rate in the benign traffic (i.e. the victim is host104).  

 

Table 20 DDoS TCP flood versus DDoS UDP flood on the victim with the low traffic rate (victim is host 104) 

 DDOS TCP DDOS UDP 

Attribute sets: C1 C2 C3  C1 C2 C3  

 Number 
of 
window
s 
capture
d 

Number 
of 
window
s 
capture
d 

Number 
of 
window
s 
capture
d 

Numbe
r of 
passed 
packets 
to 
detect  

Number 
of 
window
s 
capture
d 

Number 
of 
window
s 
capture
d 

Number 
of 
window
s 
capture
d 

Numbe
r of 
passed 
packets 
to 
detect  

[DSTIP_SRCIP_SRCPORT] 4 253 261 250 4 253 261 250 

[DSTIP_DSTPORT_SRCIP] 4 259 261 250 4 259 261 250 

[DSTIP_SRCIP_PCKTLEN] 4 258 261 250 4 258 261 250 

[DSTIP_DSTPORT_SRCPORT] 4 3 261 250 4 3 261 250 

[DSTIP_DSTPORT_PCKTLEN] 0 174 0 1000 4 58 261 250 

[DSTIP_SRCPORT_PCKTLEN] 4 257 261 250 4 256 261 250 

[DSTPORT_SRCIP_SRCPORT] 4 3 261 250 4 3 261 250 

[DSTPORT_SRCIP_PCKTLEN] 4 260 261 250 4 260 261 250 

[SRCIP_SRCPORT_PCKTLEN] 4 15 261 250 4 16 261 250 
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[DSTPORT_SRCPORT_PCKTLEN] 4 3 261 250 4 2 261 250 

Total number of windows the 
given entropy sets gives alarm: 

36 1485 2349  40 1368 2610  

Total number of windows the 
attack detected: 

4 260 261  4 259 261  

Rate: 1,52% 99,23% 99,61%  1.52% 98,85% 99,61%  

[DSTIP_DSTPORT_SRCIP_SRCPOR
T] 

4 2 261 250 4 2 261 250 

[DSTIP_DSTPORT_SRCIP_PCKTLEN
] 

4 26 261 250 4 27 261 250 

[DSTPORT_SRCIP_SRCPORT_PCKT
LEN] 

4 1 261 250 4 1 261 250 

[DSTIP_SRCIP_SRCPORT_PCKTLEN
] 

4 13 261 250 4 15 261 250 

[DSTIP_DSTPORT_SRCPORT_PCKT
LEN] 

4 1 261 250 4 1 261 250 

Total number of windows the 
given entropy sets gives alarm: 

20 43 1305  20 46 1305  

Total number of windows the 
attack detected: 

4 26 261  4 24 261  

Rate: 1,52% 9,92% 99,61%  1.52% 9,16% 99,61%  

Proposed Attribute sets 
Result     

    

Total number of windows the 
attack detected: 

4 261 262  4 261 262  

Rate: 1,52% 99,61% 100%  1,52% 99,61% 100%  

 

Table 21 presents the results on DoS TCP flood and DoS UDP flood on the victim with the 

high traffic rate in the benign traffic (i.e. the victim is host14).  

 

Table 21 DoS TCP flood versus DoS UDP flood on the victim with the high traffic rate (victim is host 14) 

 DOS TCP DOS UDP 

Attribute sets: C1 C2 C3  C1 C2 C3  

 Number 
of 
window
s 
capture
d 

Number 
of 
window
s 
capture
d 

Number 
of 
window
s 
capture
d 

Numbe
r of 
passed 
packets 
to 
detect  

Number 
of 
window
s 
capture
d 

Number 
of 
window
s 
capture
d 

Number 
of 
window
s 
capture
d 

Numbe
r of 
passed 
packets 
to 
detect  

[DSTIP_SRCIP_SRCPORT] 4 244 261 250 4 245 261 250 

[DSTIP_DSTPORT_SRCIP] 0 0 0 N/A 0 0 0 N/A 

[DSTIP_SRCIP_PCKTLEN] 0 172 0 1000 0 174 0 1000 

[DSTIP_DSTPORT_SRCPORT] 4 3 261 250 4 2 261 250 

[DSTIP_DSTPORT_PCKTLEN] 0 170 0 1000 0 0 0 N/A 

[DSTIP_SRCPORT_PCKTLEN] 4 256 261 250 0 173 0 250 

[DSTPORT_SRCIP_SRCPORT] 4 3 261 250 4 2 261 250 

[DSTPORT_SRCIP_PCKTLEN] 0 172 0 1000 0 175 0 1000 

[SRCIP_SRCPORT_PCKTLEN] 4 15 261 250 4 14 261 250 

[DSTPORT_SRCPORT_PCKTLEN] 4 2 261 250 4 2 261 250 
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Total number of windows the 
given entropy sets gives alarm: 

24 1037 1566  20 787 1305  

Total number of windows the 
attack detected: 

4 261 261  4 261 261  

Rate: 1,52% 99,61% 99,61%  1,52% 99,61% 99,61%  

[DSTIP_DSTPORT_SRCIP_SRCPOR
T] 

4 2 261 250 4 1 261 250 

[DSTIP_DSTPORT_SRCIP_PCKTLEN
] 

0 169 0 1000 0 173 0 1000 

[DSTPORT_SRCIP_SRCPORT_PCKT
LEN] 

4 1 261 250 4 1 261 250 

[DSTIP_SRCIP_SRCPORT_PCKTLEN
] 

4 11 261 250 4 12 261 250 

[DSTIP_DSTPORT_SRCPORT_PCKT
LEN] 

4 1 261 250 4 1 261 250 

Total number of windows the 
given entropy sets gives alarm: 

16 184 1044  16 188 1044  

Total number of windows the 
attack detected: 

4 169 261  4 173 261  

Rate: 1,52% 64,50% 99,61%  1,52% 66,03% 99,61%  

Proposed Attribute sets 
Result     

    

Total number of windows the 
attack detected: 

4 261 261 
 

4 261 261  

Rate: 
1,52% 

99,61% 99,61% 
 1,52% 

99,61% 99,61%  

 

 

Table 22 presents the results on DoS TCP flood and DoS UDP flood on the victim with the 

medium traffic rate in the benign traffic (i.e. the victim is host9). 

 

Table 22 DoS TCP flood versus DoS UDP flood on the victim with the medium traffic rate (victim is host 9) 

 DOS TCP DOS UDP 

Attribute sets: C1 C2 C3  C1 C2 C3  

 Number 
of 
window
s 
capture
d 

Number 
of 
window
s 
capture
d 

Number 
of 
window
s 
capture
d 

Numbe
r of 
passed 
packets 
to 
detect  

Number 
of 
window
s 
capture
d 

Number 
of 
window
s 
capture
d 

Number 
of 
window
s 
capture
d 

Numbe
r of 
passed 
packets 
to 
detect  

[DSTIP_SRCIP_SRCPORT] 4 246 261 250 4 244 261 250 

[DSTIP_DSTPORT_SRCIP] 0 0 0 N/A 0 0 0 N/A 

[DSTIP_SRCIP_PCKTLEN] 0 73 0 1000 0 171 0 1000 

[DSTIP_DSTPORT_SRCPORT] 4 3 261 250 4 3 261 250 

[DSTIP_DSTPORT_PCKTLEN] 0 173 0 1000 0 171 0 1000 

[DSTIP_SRCPORT_PCKTLEN] 4 257 261 250 4 257 261 250 

[DSTPORT_SRCIP_SRCPORT] 4 3 261 250 4 3 261 250 

[DSTPORT_SRCIP_PCKTLEN] 0 173 0 1000 0 171 0 1000 

[SRCIP_SRCPORT_PCKTLEN] 4 15 261 250 4 13 261 250 

[DSTPORT_SRCPORT_PCKTLEN] 4 2 261 250 4 2 261 250 
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Total number of windows the 
given entropy sets gives alarm: 

24 945 1566  24 1035 1566  

Total number of windows the 
attack detected: 

4 260 261  4 259 261  

Rate: 1,52% 99,23% 99,61%  1,52% 98,85% 99,61%  

[DSTIP_DSTPORT_SRCIP_SRCPOR
T] 

4 1 261 250 4 1 261 250 

[DSTIP_DSTPORT_SRCIP_PCKTLEN
] 

0 173 0 1000 0 171 0 1000 

[DSTPORT_SRCIP_SRCPORT_PCKT
LEN] 

4 1 261 250 4 1 261 250 

[DSTIP_SRCIP_SRCPORT_PCKTLEN
] 

4 11 261 250 4 12 261 250 

[DSTIP_DSTPORT_SRCPORT_PCKT
LEN] 

4 1 261 250 4 1 261 250 

Total number of windows the 
given entropy sets gives alarm: 

16 187 1044  16 186 1044  

Total number of windows the 
attack detected: 

4 173 261  4 171 261  

Rate: 1,52% 66,03% 99,61%  1,52% 65,26% 99,61%  

Proposed Attribute sets 
Result     

    

Total number of windows the 
attack detected: 

4 261 261 
 

4 261 261  

Rate: 
1,52% 

99,61% 99,61% 
 1,52% 

99,61% 99,61%  

 

 

Table 23 presents the results on DoS TCP flood and DoS UDP flood on the victim with the 

low traffic rate in the benign traffic (i.e. the victim is host104).  

 

Table 23 DoS TCP flood versus DoS UDP flood on the victim with the low traffic rate (victim is host 104) 

 DOS TCP DOS UDP 

Attribute sets: C1 C2 C3  C1 C2 C3  

 Number 
of 
window
s 
capture
d 

Number 
of 
window
s 
capture
d 

Number 
of 
window
s 
capture
d 

Numbe
r of 
passed 
packets 
to 
detect  

Number 
of 
window
s 
capture
d 

Number 
of 
window
s 
capture
d 

Number 
of 
window
s 
capture
d 

Numbe
r of 
passed 
packets 
to 
detect  

[DSTIP_SRCIP_SRCPORT] 4 246 261 250 4 244 261 250 

[DSTIP_DSTPORT_SRCIP] 0 0 0 N/A 0 0 0 N/A 

[DSTIP_SRCIP_PCKTLEN] 0 173 0 1000 0 174 0 1000 

[DSTIP_DSTPORT_SRCPORT] 4 3 261 250 4 3 261 250 

[DSTIP_DSTPORT_PCKTLEN] 0 173 0 1000 0 172 0 1000 

[DSTIP_SRCPORT_PCKTLEN] 4 257 261 250 4 257 261 250 

[DSTPORT_SRCIP_SRCPORT] 4 3 261 250 4 3 261 250 

[DSTPORT_SRCIP_PCKTLEN] 0 173 0 1000 0 174 0 1000 

[SRCIP_SRCPORT_PCKTLEN] 4 15 261 250 4 14 261 250 

[DSTPORT_SRCPORT_PCKTLEN] 4 2 261 250 4 2 261 250 

Total number of windows the 
given entropy sets gives alarm: 

24 1045 1566  24 1043 1566  
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Total number of windows the 
attack detected: 

4 260 261  4 261 261  

Rate: 1,52% 99,23% 99,61%  1,52% 99,61% 99,61%  

[DSTIP_DSTPORT_SRCIP_SRCPOR
T] 

4 1 261 250 4 1 261 250 

[DSTIP_DSTPORT_SRCIP_PCKTLEN
] 

0 173 0 1000 0 172 0 1000 

[DSTPORT_SRCIP_SRCPORT_PCKT
LEN] 

4 1 261 250 4 1 260 250 

[DSTIP_SRCIP_SRCPORT_PCKTLEN
] 

4 11 261 250 4 12 260 1000 

[DSTIP_DSTPORT_SRCPORT_PCKT
LEN] 

4 1 261 250 4 1 260 1000 

Total number of windows the 
given entropy sets gives alarm: 

16 187 1044  16 187 1041  

Total number of windows the 
attack detected: 

4 173 261  4 172 261  

Rate: 1,52% 66,03% 99,61%  1,52% 65,64% 99,61%  

Proposed Attribute sets 
Result     

    

Total number of windows the 
attack detected: 

4 261 261 
 

4 261 261  

Rate: 
1,52% 

99,61% 99,61% 
 1,52% 

99,61% 99,61%  

 

According to results, the detection rate decreases as the number of element combinations 

increases in all experiments.  

 

UDP DOS:  

Our Method: Detection rate of C1 is 1.52%, C2 and C3 are 99.61% for all victim hosts. 

When we compare the total number of alarms that is given by entropy attribute sets 

individually, it is seen that C2 gives more alarms than C3. The difference is approximately 

5% and this rate continues to increase between high traffic rate victim 14 and low traffic 

rate victim 104. 

For 3 element combinations of 5 single attributes: Detection rate of C1 is 1.52% for all 

victims. Detection rate of C2 is 98.85% for victim 14 and 99.61% for the victim with 

medium traffic rate (victim 9) and low traffic rate victim 104. Detection rate of C3 is 

99.61% for all victim hosts. When we compare the total number of alarms that is given by 

entropy attribute sets individually, it is seen that C3 gives more alarms than C2. The 

difference is approximately 20% and this rate continues to increase between victim 14 and 

victim 104. 

For 4 element combinations of 5 single attributes: Detection rate of C1 is 1.52% for all 

victims. Detection rate of C2 is 66.03% for victim 14 and 65.26% for victim 9 and 65.64% 

for victim 104. Detection rate of C3 is 99.61% for all victim hosts. When we compare the 

total number of alarms that is given by entropy attribute sets individually, it is seen that C3 

gives more alarms than C2. The difference is approximately 65% and this rate continues to 

decrease between victim 14 and victim 104. 
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UDP DDOS:  

Our Method: Detection rate of C1 is 1.52%, C2 is 99.61% and C3 is 100% for all victim 

hosts. When we compare the total number of alarms that is given by entropy attribute sets 

individually, it is seen that C3 gives more alarms than C2. The difference is approximately 

4% and this rate continues to decrease between high traffic rate victim 14 and low traffic 

rate victim 104. 

For 3 element combinations of 5 single attributes: Detection rate of C1 is 1.52% for all 

victims. Detection rate of C2 is 99.23% for victim 14, victim 9 and 98.85% victim 104. 

Detection rate of C3 is 99.61% for all victim hosts. When we compare the total number of 

alarms that is given by entropy attribute sets individually, it is seen that C3 gives more 

alarms than C2. The difference is approximately 47% and this rate continues to increase 

between high traffic rate victim 14 and low traffic rate victim 104. 

For 4 element combinations of 5 single attributes: Detection rate of C1 is 1.52% for all 

victims. Detection rate of C2 is 8.77 % for victim 14 and 9.16% for victim 9, victim 104. 

Detection rate of C3 is 99.61% for all victim hosts. When we compare the total number of 

alarms that is given by entropy attribute sets individually, it is seen that C3 gives more 

alarms than C2. The difference is approximately 97% and this rate continues to decrease 

between victim 14 and victim 104. 

TCP DDOS:  

Our Method: Detection rate of C1 is 1.52%, C2 is 99.61% and C3 is 100% for all victim 

hosts. When we compare the total number of alarms that is given by entropy attribute sets 

individually, it is seen that C3 gives more alarms than C2. The difference is approximately 

13% and this rate continues to decrease sharply between high traffic rate victim 14 and low 

traffic rate victim 104. 

For 3 element combinations of 5 single attributes: Detection rate of C1 is 1.52% for all 

victims. Detection rate of C2 is 99.23% for all victim hosts. Detection rate of C3 is 99.61% 

for all victim hosts. When we compare the total number of alarms that is given by entropy 

attribute sets individually, it is seen that C3 gives more alarms than C2. The difference is 

approximately 33% and this rate continues to increase between victim 14 and victim 104. 

For 4 element combinations of 5 single attributes: Detection rate of C1 is 1.52% for all 

victims. Detection rate of C2 is 9.16 % for victim 14 and victim 9, 9.92% for victim 104. 

Detection rate of C3 is 99.61% for all victim hosts. When we compare the total number of 

alarms that is given by entropy attribute sets individually, it is seen that C3 gives more 

alarms than C2. The difference is approximately 95% and this rate continues to increase 

between victim 14 and victim 104. 

TCP DOS:  

Our method: Detection rate of C1 is 1.52%, C2 and C3 are 99.61% for all victim hosts. 

When we compare the total number of alarms that is given by entropy attribute sets 

individually, it is seen that C3 gives more alarms than C2 with the difference of %2 for high 
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traffic rate victim 14. However, C2 gives more alarms than C3 for medium traffic rate 

victim 9 and low traffic rate victim 104 with the rate of 4%. 

For 3 element combinations of 5 single attributes: Detection rate of C1 is 1.52% for all 

victims. Detection rate of C2 is 99.61% for victim 14, 99.23% for victim 9 and victim 104. 

Detection rate of C3 is 99.61% for all victim hosts. When we compare the total number of 

alarms that is given by entropy attribute sets individually, it is seen that C3 gives more 

alarms than C2. The difference is approximately 20% and this rate continues to increase 

between victim 14 and victim 104. 

For 4 element combinations of 5 single attributes: Detection rate of C1 is 1.52% for all 

victims. Detection rate of C2 is 64.50% for victim 14, 66.03% for victim 9 and victim 104. 

Detection rate of C3 is 99.61% for all victim hosts. When we compare the total number of 

alarms that is given by entropy attribute sets individually, it is seen that C3 gives more 

alarms than C2. The difference is approximately 65% and this rate continues to decrease 

between victim 14 and victim 104. 

 

4.3.1.4. Success rates   

 

In this section, we present success rates of given method in terms of true positive (TP), true 

negative (TN), false positive (FP) and false negative (FN) rates. We also give these rates 

for both three and four element combinations of 5 single attribute sets and compare them 

with our method. Table 24 shows the definition of predicted outcomes. 

 

Table 24 Definitions of predicted outcomes  

Predicted outcomes Meaning 

True positive (TP) Attack exists and method gives alarm 

True negative (TN) Attack does not exist, and method does not 

give alarm 

False positive (FP) Attack does not exist, but method gives 

alarm 

False negative (FN) Attack exists but method does not give 

alarm 

 

The experiments given in the previous sections show our detection rates when an attack 

traffic appears on benign traffic. As a result of these experiments we obtained false negative 

and detection rates (positive rates) of our method. However, observed detection rates can 

be consisting of both false positive (FP) and true positive (TP) alarms. We made an 

additional experiment to determine that whether the generated alarms were really generated 

by malicious attack traffic or not. Through this experiment we can distinguish true positive 

(TP) alarms from false positive (FP) alarms and we also show true negative rates of the 

proposed method. 

We also measure these values for both three and four element combinations of 5 single 

attribute sets. We used the ‘Monday’ traffic of the benign traffic dataset [50]. We run our 
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benign traffic dataset that used in experiments for the same period (306 seconds) as the 

experiments. This experiment was performed for 46000 packets and these packets are 

exactly the same as those used in the experiments. We did not send attack traffic in this 

experiment, therefore all the alarms produced by our method are false positives.  

Table 25 shows the success rates of given method in terms of true positive (TP), true 

negative (TN), false positive (FP) and false negative (FN) rates for selected attack type 

“DDoS UDP flood on the victim 14”. 

 

Table 25 Confusion matrices 

Included parameters in entropy 
calculation  

FP FN TN TP 

5 single attributes and two element 
combinations 

2.71% 0% 10.17% 87.11% 

Three element combinations of 5 single 
attributes 

2.37% 0.33% 10.50% 86.78% 

Four element combinations of 5 single 
attributes 

2.03% 0.33% 10.84% 86.78% 

 

 

CPU and Memory Overhead  

Since our detection technique relies on statistical calculation, it does not impose an 

overhead on the system unlike other detection techniques such as machine learning 

approaches. Our detection method has two different processes; incoming packet collection 

and entropy calculation. These two processes have 𝑂(𝑁) complexity where N is the number 

of different packets in every attribute set.  Memory and CPU overhead were measured 

during the experiments. Memory overhead is approximately 48 MB and CPU usage 

increased by %4 during attack stage shown in Appendix A. 

 

4.4. Limitations 

We performed a series of experiments to evaluate the performance of our method. These 

experiments were tested in the simulation environment and this causes some limitations. 

There are very few datasets published for academic usage and since these datasets are 

recorded for a specific time of a specific network, results obtaining from it cannot be 

generalized for other network traffic. Different results may be obtained in the usage of 

different experimental environment, benign traffic and attack traffic. However, these 

differences do not mean that the method does not work and fails. 
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4.5. Discussion  

The following inference can be drawn from the results of the experiments:  

- There is no case where the 3 and 4 element combinations of attributes found the 

attack, that our proposed method could not. Therefore, we concluded that the 

proposed single field and two element combination is enough in detection.  

 

- In all the experiments, our method detected the attack at the 250th which is the first 

window packet which corresponds to approximately 400 milliseconds with the 

condition C1 after the attack starts. 

 

- There is no single entropy that detects the attacks in all cases. Therefore, we suggest 

to use all 15 entropy attribute sets together. 

 

- Our method detected all simulated DDOS attacks with 97.28% accuracy by 

condition 3 for every victim hosts. If we look at the detection rate of all entropies 

separately, we can say that our method has more success rate in TCP protocol for 

DOS attacks, and UDP protocol for DDOS attacks (those data are all related with 

attacks traffic). Between these protocols, there is no parameter that an entropy based 

detection method can recognize the difference. The changes in the fields that we 

calculated for entropy can be protocol independent. 

 

- The condition C1 gave alert in the first 4 windows during all experiments. This is 

because this condition generates an alarm by looking at the difference between 

consecutive windows. Once the attack has started, the difference between the 

entropy continues to increase and at the end of window 4, the window to be 

calculated will be received from completely new packages (because the sliding 

interval is 250 and the window size is 250x4 = 1000), which results in uncaught 

attacks by the C1 condition. The entropy after 4 windows results in minimum or 

maximum values and stabilizes at that values, which does not cause alarms.  

Therefore, the C1 condition is ideal for the early detection systems. However, it 

should be used in combination with C2 and C3 to detect the continuation of the 

attacks. 

- Because of this characteristic that condition C1 has, cascade warning system can be 

deployed in implementation stage. Condition C2 and condition C3 can be activated 

after condition C1 is triggered. This change will prevent false positive alarms that 

can be generated by C2 and C3 when there is no attack. 
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                                                           CHAPTER 5 

    

5. CONCLUSION 

 

In this thesis, we describe entropy based detection method and implement our method on   

software defined networks (SDN). We implemented a python software that collects all 

incoming packets from Openswitch using POX controller. Different packet field parameters 

are examined in entropy calculation to evaluate the performance of our method. According 

to evaluation results, given method can detect the attacks at a very early stage. Our method 

can detect various attacks in average of 250 packets with 96.95% accuracy and 2.71% false 

positive rate. This result shows the success rate of the proposed method.  

We conducted a series of experiments with real datasets for four different attack types to 

evaluate our method. We compare the effectiveness of our entropy parameter selection (5 

single attributes and 10 pair of attributes) to entropy calculation with all 3 elements and 4 

elements subsets According to our results, it is insufficient to calculate entropy for only one 

field, we suggest that entropy calculation should be performed 5 single attributes and 10 

pair of attributes that are shown in table 2. 

The following ideas can be considered as future work. Other detection methods proposed 

in the literature can be evaluated using same traffic and attack datasets to compare their 

performance accurately. IPv6 packets should be included in entropy calculation. Moreover, 

different attack types should be tested for performance evaluation. Expanded experiment 

can be conducted to evaluate our method more precisely. 

Our implementation is published at https://github.com/users/frknycbs/projects/1 

  

https://github.com/users/frknycbs/projects/1
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