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ABSTRACT 

 

PREDICTION OF DOG-LEG SEVERITY BY USING ARTIFICIAL NEURAL 
NETWORK 

 

Kaymak, Sinem 
Master of Science, Petroleum and Natural Gas Engineering 

Supervisor: Prof. Dr. Mahmut Parlaktuna 
 

December 2019, 51 pages 

 

As technology growth, complexity of the drilling wells has been increasing. 

Directional wells have been drilling in order to deviate the well through planned 

targets which are at distant location from wellhead. One of the most important 

preliminary studies before drilling of any directional well is the prediction of Dog-leg 

severity. High and inconsistent Dog-leg severities can lead to high tortuosity, which 

may bring in high bottom torque, downhole tool failures, stuck pipe, target miss, 

inabilities to run casings, casing stuck and even side-track operations. Therefore, 

estimation of Dog-leg severity is vital for any directional wells. There are many 

variables affecting to DLS severity, which increases the complexity of estimation.  

Artificial Neural Networks (ANN) has become useful application for drilling industry 

since it is able to simulate highly non-linear relationships with large data sets. It is a 

statistical learning model inspired by biological neurons that connected and sending 

signals to each other. There are many Artificial Neural Network structures available. 

The most common one is “Feed-Forward Back Propagation Artificial Neural 

Network” known as; most accurate network due to generation of low error. 

This thesis is about estimation of Dog-leg severity of directional wells by Feed-

Forward Back Propagation Artificial Neural Network. The study consists of two 
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separate field drilling data, first one is an oil field located at Southeast of Turkey in 

Diyarbakir that has carbonates formation. Second one is a geothermal field located at 

the West of the Turkey in Manisa which has sandstone and claystone formation 

originated from metamorphic rocks. Two different ANN models have been created by 

considering 4290 individual drilling data of 12 wells for their 8 ½” hole sections in 

Diyarbakir Field and 1100 individual drilling data of 7 wells for their 12 ¼” hole 

sections in Manisa Field. Data sets have been prepared by dividing into 30m depth 

intervals. Parameters that affects Dog-leg severity are taken into account as input 

variables which are Sleeve Stabilizer Outer Diameter, String Stabilizer Outer 

Diameter, Downhole Motor Bent Angle, Rate of Penetration for bit wear effect, Depth, 

Inclination of the Wellbore, Tool Face Orientation, Weight on Bit, Bottom Revolution 

per Minute and Sliding Percentage. There are total 10 input variables drives 1 output 

variable which is Dog-leg Severity. Several sensitivity analyses have been made to 

decide network structure to obtain accurate, low error driven ANN model. It has been 

found that ANN Model is a proven tool for the estimation of DLS. Satisfactory results 

have been obtained with low Mean Squared Errors (MSE). MSE of Diyarbakir Field 

is 0.056 and, it is 0.057 for Manisa Field. 

 

 

Keywords: Directional Drilling, ANN, DLS, Petroleum Engineering, Oil Field, 

Geothermal Field   
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ÖZ 

 

YAPAY SİNİR AĞLARI KULLANARAK YÖNLÜ KUYULARDA DOGLEG 
SEVERITY TAHMİNİ 

 

Kaymak, Sinem 
Yüksek Lisans, Petrol ve Doğal Gaz Mühendisliği 

Tez Danışmanı: Prof. Dr. Mahmut Parlaktuna 
 
 

Aralık 2019, 51 sayfa 

 

Teknoloji geliştikçe, günümüzde kazılan yönlü kuyu sayısında artış 

gözlemlenmektedir. Yönlü sondaj kuyuları, yüzey lokasyonundan uzakta belirtilen 

hedefe varmak için kazılmaktadır. Herhangi bir yönlü kuyu kazılmadan önce 

yapılacak en önemli çalışmalardan biri Dog-leg severity tahminidir. Değişken ve 

yüksek Dog-leg severity değerleri kuyuda tortuosite neden olup, beraberinde yüksek 

torka, dizi ekipmanının zarar görmesine, takım sıkışmasına, hedefi kaçırmaya, casing 

sıkışmalarına, casing indirememeye ve hatta side track operasyonlarına neden 

olabilmektedir. Bu yüzden, Dog-leg severity (DLS) tahmini, yönlü sondaj kuyuları 

için hayati önem taşımaktadır.  DLS`e etki eden bir çok değişken olması, tahmin 

calışmalarinin kompleksliğini arttırmaktadır. 

Yapay Sinir Ağları komplike lineer olmayan korelasyonları çözümleyebildiği için, 

sondaj alanında yararlı bir uygulama haline gelmiştir. Biyolojik nöronlardan ilham 

alınarak keşfedilen yapay sinir ağları, birbirine bağlı ve aralarinda sinyal gönderen 

nöronlardan oluşmaktadır.  Günümüzde birçok yapay sinir ağları konfigürasyonu 

bulunmaktadır. En çok kullanılan “Feed-Forward Back Propogation Yapay Sinir Ağı” 

günümüzde en az hata modeli oluşturabilen bir yapay sinir ağ çeşididir 
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Bu tez, yönlü sondaj kuyularında Dog-leg severity tahmini için “Feed- Forward Back 

Propagation Yapay Sinir Ağını” kullanılması üzerinedir. Çalışmada iki ayrı sondaj 

sahasından elde edilen veriler kullanılmıştır. İlk saha; karbonat formasyona sahip 

olup, Turkiye`nin Güneydoğusunda bulunan Diyabakır ilindeki bir petrol sahasıdır. 

İkinci saha ise metamorfik kayaçlardan türemiş kil taşı ve kum taşı formasyonuna 

sahip, Turkiye`nin Batısında bulunan Manisa ilindeki bir jeotermal sahasıdır. 

Çalışmada iki ayrı Yapay Sinir Ağı modeli oluşturmak için Diyarbakır sahasındaki 12 

kuyunun 8 ½” kuyu kesitinden elde edilen 4290 sondaj verisi ve Manisa sahasındaki 

7 kuyunun 12 ¼” kuyu kesitinden elde edilen 1100 sondaj verisi kullanılmıştır.  Sondaj 

verileri 30 metre aralıklara bölünerek hazırlanmıştır. Dog-leg Severity tahminini 

etkileyen değişkenler dikkate alınmış olup bunlar Sleeve Stabilizer Dış Çapı, String 

Stabilizer Dış Çapı, Kuyu içi Motor Bent açısı, matkap aşınma etkisi için Ilerleme 

Hızı, Derinlik, Kuyu Açısı, Tool Face Orientation, Matkaba Verilen Ağırlık, Kuyu 

Dibi Döndürme Hızı ve Sliding Yüzdesidir. Toplamda 10 girdi degişkeni bir sonuç 

değişkeni yani DLS severity`i oluşturmaktadır. Az hata payı ile doğru yapay sinir ağı 

modelleri oluşturabilmek ve modellerin dizayn parametrelerine karar verebilmek için 

bir çok duyarlılık analizi yapılmıştır. Yapay sinir ağı modelleri Dog-leg severity 

tahmininde düşük ortalama karesel hata ile birlikte ikna edici sonuçlar vermiştir. 

Ortalama karesel hata Diyarbakır sahası için 0.056 iken Manisa sahası için 0.057dir. 

Anahtar Kelimeler: Yönlü Sondaj, Yapay Sinir Ağları, DLS, Petrol Mühendisliği, 

Petrol Sahası, Jeothermal Sahası 
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CHAPTER 1  

 

1. INTRODUCTION 

 

1.1. Directional Wells 

One of the reason for drilling a well directionally is to reach planned targets which 

cannot be obtain by drilling vertically due to improper surface locations like city, 

mountain, lake, river, road, agriculture area etc. 

Another main reason is to increase the production coverage of a reservoir by landing 

the well with some angle or drilling multi-lateral wells. Side-tracking operation of a 

current well bore to avoid from fish in hole, intervention of a blow out well, keeping 

the well at boundary license, and collision avoidance for pad drilling are also the other 

reasons for drilling a directional well. 

Well types are categorized into four groups shown in Figure 1.1 (Ma, Chen, & Zhao, 

2016).  Directional wells are also subcategorized into as S-type well consisting of 

build, hold, drop sections and J-type wells consisting of build and hold sections. 
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Figure 1.1 Well Types 

 

Most important critical parameter of directional wells is called Dog-leg severity. It can 

be expressed as inclination change of a well in 30m depth interval (deg/30m). 

Unpredicted local DLS can increase tortuosity as shown in Figure 1.2 (“2015 

SPE/IADC Drilling Conference Special - Drilling Contractor,” n.d.) that leads high 

bottom torque which brings in downhole tool failures, mechanical stuck, target miss, 

inability to run casings, casing stuck and even side-tracks. These all unplanned events 

can bring in high drilling cost or even abandoning the well. (Cheatham  Jr. & Ho, 

1981) 

 

Figure 1.2 Tortuosity 
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In order to avoid high tortuosity, preliminary studies about Dog-leg estimation is a 

must. 

DLS at certain depth interval can be calculated by using Radius of Curvature Method 

(Eq. 1.1) (Skillingstad, 2000). 

𝐷𝐿𝑆 = {cos−1[(cos 𝐼1 𝑥 cos 𝐼2) + (sin 𝐼1 𝑥 sin 𝐼2) 𝑥 cos( 𝐴𝑧2 −  𝐴𝑧1)]} 𝑥 (
100

𝑀𝐷
)  (1.1)                

I value refers as inclination and Az is Azimuth which is the direction according to 

North between two survey points. 
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CHAPTER 2  

 

2. LITERATURE REVIEW 

 

2.1. Parameters Affecting Dog-Leg Severity 

Many studies have been done to determine all factors affecting the DLS.  Main 

parameters are bit & rock interaction, geology, wellbore inclination, Bottom-Hole-

Assembly (BHA), drilling parameters and hole size.  

The most difficult parameters to determine are the bit & rock interaction and geology 

due to existence of many controlling variables which are rock hardness, rock 

threshold, formation dip angle, formation anisotropy index, side force generated via 

bit by formation, bit specifications (Millheim, 2013). The bit specifications are mainly 

bit friction coefficients, back rake angle, side rake angle, cutting structures, cutting 

diameters, gage length and bit type. (Boualleg, Sellami, Menand, & Simon, 2006) 

Current wellbore inclination is also important parameter due to hole geometry and 

corresponding position of bit interface angle with the formation. Natural tendencies of 

BHA are affected by a curved borehole and can lead to build and drop. (Rafie, Ho, & 

Chandra, 1986) 

BHA design also plays a vital role to deviate the well and to generate DLS.  Main 

controlling components in BHA are drill collars, position of the stabilizers, stabilizer 

outer diameters and other tools which can create any bending effect or creating contact 

points between wellbore wall and drill string (Lesso & Chau, 1999). Positive 

Displacement motor (PDM) is among of these tools which have a bent angle allowing 

well to build, drop and hold. Measurement While Drilling (MWD) tool is also part of 

the BHA which is hanged into a collar and acting as drill collar in the BHA. Purpose 

of the MWD Tool is to measure inclination and azimuth at certain depth which allows 



 

 
 
6 

 

the engineers to evaluate the current situation in terms of inclination and azimuth to 

follow planned well path or to reach planned targets. 

Drilling parameters which are Weight on Bit (WOB), Bottom RPM are also affecting 

the BHA dynamics and corresponding build and walk tendencies (Millheim, 2013). 

Azimuthal change of the wellbore with different Tool Face Orientation (TFO) is 

generating turn rate which also becomes important for DLS estimations (Lesso & 

Chau, 1999). TFO is arranged by MWD Tool in order to turn the well at desired target 

direction by steering the BHA with PDM. PDM has a bent house which can be set 

from 0-3 degree that enables to well to deviate through its target. Deviation of well is 

done by different drilling modes which are called as sliding and rotating, Sliding can 

be explained as no surface rotation but only bit rotation created by PDM by converting 

hydraulic energy to mechanical energy. Dropping or increasing the wellbore 

inclination in desired azimuth, tool face orientation requires tool face set up by using 

MWD and two drilling modes are applied consecutively to achieve the desired 

inclination and azimuth. More sliding is leading to more build up rate (BUR); 

therefore, sliding and rotating percentages are the one of the major factors for DLS 

prediction. 

Additional studies also investigated the other drilling parameters like torque on bit 

(TOB), but it was concluded that almost no effect on BHA build and drop tendencies 

(Rafie et al., 1986) 

A common preliminary study at drilling industry is to estimate the DLS by considering 

stabilizer placements, stabilizer dimensions and motor specifications. It is called as 

theoretical build up rate of the motor based on the specific stabilizer configuration. 

This preliminary study only includes Sleeve OD, Stabilizer OD, Sleeve distance from 

the bit, Stabilizer distance from the bit, Bit to bent distance, Motor Bent Angle and 

Sliding Percentage as inputs and generates a range for expected DLS. 

 



 

 
 
7 

 

Since there are many factors affecting the DLS, modelling or simulation of DLS 

prediction is quite complex.  Many studies are about 3D Finite Element Models 

together with BHA dynamic simulations. An easy tool or estimation method is vital 

to predict the DLS and optimize the well programs accordingly. 

2.2. Artificial Neural Networks 

As a common practice, drilling can be optimized by using existing well data but as 

DLS prediction has many controlling factors, it is not easy to evaluate offset wells and 

draw a conclusion. A model required to simulate DLS by using previous experiences 

which can be used in future wells is a challenge.  

Artificial Neural Network (ANN) is like human brain neurons which can create a 

network between input and output by connecting all neurons to each other. It tries to 

establish a relationship between input and output as “understand and learn”. It is the 

data driven model that learns from the data set to determine, categorize, and generalize 

the relationship between input and output. Network has two outputs which are the 

calculated output and actual output. Aim is to converging of calculated output to 

desired output with iterations. (Gidh, Purwanto, Ibrahim, & Bits, 2012) 

There are different network types available for ANN model, but most accurate and 

commonly used one in all studies due to its accuracy and fast convergent to desired 

output with less error is called “Feedforward Neural Network” (Bataee & Mohseni, 

2011). Basic structure is shown in Figure 2.1. (Song, Zhao, Liao, & Wang, 2013) 

 

Figure 2.1 Feed Forward Neural Network Structure 
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The most common and accurate learning rule for ANN models is the “Back 

Propagation” which is performed under supervision. Back Propagation alters the 

weights and biases to decrease the error between calculated output and desired output 

by continuously feedbacking to network until error is at the acceptable range that 

enables network to learn from training process. (Lau, Sun, & Yang, 2019) 

Structure of Back Propagation Learning Rule is shown in Figure 2.2. (Gidh, Purwanto, 

Ibrahim, & Bits, 2012) 

 

Figure 2.2 Artificial Neural Network Structure “Understand and Learn” 

 

ANNs consists of many mathematical and statistical techniques which can be utilized 

at many tasks as pattern recognition, data classification, dynamic time series such as 

forecasting, and input-output relations with curve fitting and process modelling. 

(Islam, Kabir, & Kabir, 2013) 

A common neural network has three layers: Input, Hidden and Output. Among the 

neurons, there are connection weights determines the role of each neuron in the 

relationship between inputs and outputs. Weighted neurons lead to a value called as 

bias. Weights and biases are set at the beginning of training process as randomly and 

subject to change during training by a learning function. Purpose is to next iteration 

has less error value and much more close to desired output. (Gidh et al., 2012) 

Single layer network has only one hidden layer, more than one hidden layer is called 

as multi-layer network. In order to decrease local minima and make less training, 

single hidden layer is preferred for ANN Structure (Yιlmaz, Demircioglu, & Akin, 

2002). Increasing hidden layers in network leads to more computation time and creates 



 

 
 
9 

 

the risk of overfitting. It can be a powerful network for the current training data set 

but when new data set is imported, high error appears since more than one hidden 

layer network generally memorizes the data but does not have the capability of 

generalizing and understand the new situations.  (Wang & Salehi, 2015) 

In order to obtain an accurate network, data sets are required to be divided into three 

groups during the process which are training, validation and testing (Bataee & 

Mohseni, 2011) 

Design parameters of ANN are below.  

1. Number of hidden layers 

2. Number of neurons in hidden layers 

3. Training Function 

4. Learning Function 

5. Performance Function 

6. Transfer Function 

Training Function: 

To determine the input-output relation with curve fitting, there are three training 

functions exist. 

Levenberg-Marquardt: It can be classified as hybrid technique which consists of Gauss 

Newton approach and gradient descent that can be applied for non-linearly related 

equations due to fast converging to desired target with less error and less iterations. 

(Lau, Sun, & Yang, 2019) 

The LM is the most common training algorithm since it is considering both Newton 

method and descent method and solves the non-linear problems with fast convergence 

together with high stability by using medium data set. (“Levenberg-Marquardt 

Algorithm - an overview | ScienceDirect Topics,” n.d.) 

Scaled Conjugate Gradient: It is conjugate gradient method proceeding to a specific 

direction. The algorithm consists of a conjugate to the directions of previous steps and 
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it does not conduct a line search for each iteration. SCG utilizes a mechanism to 

determine the step size to avoid high iterations and corresponding high time 

consumption. It is advantageous to be used for medium to large data sets. (Møller, 

1993) 

Bayesian Regularization: BR is statistical method which alters the non-linear 

regressions into “well-posed” problem.  Aim is to obtain a network which has good 

generalization quantities by estimating the importance of each input on the result and 

eliminating some of them accordingly. It is advantageous to be used in very complex 

model with high number of inputs. (Burden & Winkler, 2008)  

Learning Function: Two learning functions exist. GDM is the Gradient Descent with 

Momentum weight and bias learning function. On the other hand, GD is defined as 

Gradient descent weight and bias learning function. They are the optimization 

functions to change the weight and bias to make the network best fit with the training 

data.  (“Gradient Descent with Momentum | KRAJ Education,” n.d.) 

Performance Function: It is used for error calculation between calculated output and 

desired output. MSE (Mean Squared Error), MSEREG (Mean squared error with 

regularization performance function, SSE (Sum squared error performance function). 

Most used one is the MSE which is the average of all squared errors, equation 2.1 is 

given below. 

  

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑌𝑖 − 𝑋𝑖)

2𝑛
𝑖=1                                               (2.1) 

Where n is the number of data, Y is the actual value and X is the predicted value. 

Transfer Function: Transfer function calculates output of a layer by using net inputs. 

There are two types of transfer functions exist: TANSIG (Hyperbolic tangent sigmoid 

transfer function) and LOGSIG (Log-sigmoid transfer function). 

TANSIG: It considers one input and returns it between -1 and 1 as show in Figure 2.3. 

(Vogly et al, 1988) 
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Figure 2.3 Tan-Sigmoid Transfer Function 

LOGSIG: It takes one input and returns as between 0 and 1 as show in Figure 2.4. 

(Vogly et al, 1988) 

 

Figure 2.4 Log-Sigmoid Transfer Function 

 

ANNs have been used at various estimations and modelling in literature. 

Abdulmalek Ahmed, Elkatatny, Ali, Abdulraheem, & Mahmoud (2019) used ANN 

model to estimate the fracture pressure by considering WOB, RPM, Torque, ROP, 

MW and Pore Pressure as inputs. Studies have been conducted for 8 3/8” and 5 7/8” 

bit sizes. Data belongs to an onshore well which has 6 lithologies. To estimate the 



 

 
 

12 
 

fracture pressure, 3925 data point are prepared. 80% of the data is used for training 

and 20% of them are for testing and validation.  After several trainings, Feedforward 

Back Propagation Neural network with Bayesian Regularization training function and 

TANSIG transfer function with 13 neurons in 1 hidden layer gives to best fit and less 

error for the estimation of fracture pressure.  

Wang & Salehi (2015) have estimated the pump pressure by considering ROP, depth, 

RPM, Torque, Differential pressure between hydrostatic mud column and pore 

pressure, Hook Load, SPM and mud properties as inputs. Three wells have been 

considered for 12 input parameters. 75 % of the data set has been used for training 

process, 15% of them are for validation and the rest 10% is used for testing.  Feed 

Forward Back Propagation Artificial Network was used with Levenberg- Marquardt 

training function with MSE Performance function.    

Bataee & Mohseni (2011) used ANN to predict ROP which is highly related to drilling 

cost of a well by using 15 offset wells and 1810 data points. Their study show 

Levenberg Marquardt training function with Back propagation learning rule gives the 

less error. 60% of data set is used for training, 20% is for validation and 20% is for 

testing. Bit size, Depth, WOB, RPM and MW considered as inputs to estimate ROP.  

Jamshidi & Mostafavi (2013) created two ANN Models for the bit selection and for 

optimizing drilling parameters. First model is about the bit selection based on the 

desired ROP by applying specific drilling parameters. Second model is considering 

optimum drilling parameters to achieve maximum ROP with a specific drilling bit. 

The correlation coefficients are 0.95 and 0.90 respectively with Feed Forward 

Artificial Neural Network with the input variables as WOB, ROM, Flow Rate, Total 

Flow area of the bit, Standpipe pressure, Unconfined Compressive Strength, Drilling 

Interval, Bit Size and corresponding ROPs. 2000 data set has been used from 9 

different offset wells. 60% are used for training, 20% is for validation and the rest 

20% is for testing purposes. 
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Yilmaz, Demircioglu and Akin (2002), used ANN model to select the best bit which 

gives less cost per foot value. They used Feed Forward Back propagation ANN Model 

with input variables as sonic log, gamma ray log, depth, location, and IADC codes of 

the bits. They used single hidden layer network in their study for fast convergence and 

low local minima. 
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CHAPTER 3  

 

3. STATEMENT OF THE PROBLEM 

 

 DLS estimation for directional wells are depends on many controlling factors which 

make any model or computer simulation complicated. Purpose of this study is to use 

ANN application at directional wells to predict DLS. For this purpose, two fields have 

been selected in Turkey. First field is an oil field at Diyarbakir, southeast of Turkey; 

second field is a geothermal field at Manisa, west of the Turkey.  

Diyarbakir Field has southeast carbonates formation and 12 wells have been drilled so 

far. 8 ½” Hole sections of this field have same formation through all wells, and all are 

drilled with PDC bits. Depth range of the 8 ½” section is 541m to 1757m. Data set has 

been prepared by dividing depth range as 30m interval and 11x 390 data points are 

selected. 

Manisa Field has metamorphic originated rock with sandstone and clay stone 

formation and 7 wells have been drilled. 12 ¼” hole section of the all wells have same 

formation and all wells are drilled by TCI bits. Depth range of 12 ¼” hole is starting 

at 460m and ending at 1985m. Data set has been prepared by dividing 30m depth 

interval and 11x 100 data points are selected. 

Several sensitivity analyses have been conducted to decide network structure of ANN 

Model. 300 ANN models have been created and trained with 1000 iterations 

individually for Diyarbakir Field to decide on design parameters of network and 

continue further training accordingly. Same process has been followed also for Manisa 

Field: 300 ANN models have been created and each model has been trained with 1000 

iterations. The results have been evaluated by considering various combinations of 

Training function, numbers of neurons in hidden layer, learning function and transfer 

functions according their Regression fit coefficient (R). After decision on the model 
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structure, further training has been done until R coefficient becomes stable. 60% of 

the data set was used for training, 20% was used for validation and 20% was utilized 

for testing. For each field, one well data is kept as untrained to test the accuracy of the 

network. Untrained data set are 10x10 data points for Manisa Field and 10x 39 data 

points for Diyarbakir Field. Results of the calculated DLS have been compared with 

actual ones by MSE performance function. 
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CHAPTER 4  

 

4. METHODOLOGY 

 

Aim of this chapter is to explain the data set preparation of both Diyarbakir and Manisa 

Fields. Data classification and preparation has been made based on the literature 

surveys which enable to determine all controlling parameters for DLS prediction. Well 

information has been taken from actual drilling reports and divided as 30m depth range 

as all corresponding inputs and together with outputs. Feed-Forward Back 

Propagation ANN have been developed by deciding of number of hidden layers, 

training Function, learning Function, Performance Function and Transfer Function. 

ANN models have been created for each field as separately due to decreasing the 

number of input variables such as hole size, rock & bit interaction, geology and bit 

specifications. 

“Matlab nntool” has been used to create 600 ANN models. Selection of the best two 

network structure has been done by considering correlation fit coefficient and further 

training has been conducted under supervision.  

Detail information is given as below for data preparation and ANN Model 

Development. 

4.1. Input Data 

Inputs have been determined as per literature review which are bit & rock interaction, 

geology, wellbore geometry, Bottom-Hole-Assembly (BHA), drilling parameters and 

hole size. 

Bit & Rock Interaction and Geology: Side forces are created by bit and rock 

interaction depends on many bit and rock properties which cannot be easily 

determined from the actual drilling records (Maidla & Sampaio, 1989). Geologic 
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features of the formation are also affecting prediction of Dog-leg severity, which are 

rock hardness, rock threshold, formation dip angle and formation anisotropy index. 

Bit & Rock Interaction and geological features of the formation are affecting the BHA 

build & drop tendency which is called generally as formation tendency. The BHA and 

formation tendencies are affected also by azimuthal changes that create additional turn 

rates and bit walks. Daily drilling records do not consist of such information. 

However, when the well is drilled by only rotating drilling mode through the certain 

depth interval, DLS is generated due to formation& BHA reaction. It explains 

although sliding percentage is 0%; there is a change on the wellbore inclination and 

azimuth which are generating DLS. Drilling data set consist of Tool face orientations 

which affects the azimuthal changes together with sliding percentages and 

corresponding actual DLS values vs depth, which means formation tendencies are also 

included in the data set.  8 ½” hole wells in Diyarbakir Field and 12 ¼” wells in Manisa 

Field have been drilled in same formation with same PDC bits and same TCI bits. Bit 

features are eliminated as input variables due to utilization of same brand and same 

type of bits. Bit Dull conditions or bit wear affects can be included as input by 

considering instantaneous ROP vs Depth values. Therefore, ROP and depth are 

considered as inputs.  

Wellbore Geometry: Hole geometry is playing also important role to predict BHA 

tendencies. Initial inclination of the wells at beginning of the 30m interval has been 

considered as input.  

BHA (Bottom-Hole-Assembly): BHA tendency is affected by drill collars, position 

of the stabilizers, stabilizer outer diameters and PDM specifications. 

For Diyarbakir Field, same rig with same drill collars have been used for all wells. 

Likewise, in Manisa Field. Drill collars are eliminated from the inputs. 

Position of the Stabilizers: Location of the stabilizers is vital to design BHA as 

pendulum (drop assembly), build assembly or hold assembly. Both Manisa and 

Diyarbakir Fields have same assembly with two stabilizers. First stabilizer is on 
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Positive Displacement Motor act as near bit stabilizer. Second stabilizer is called as 

Integral Blade Stabilizer located at above of Positive Displacement Motor. Therefore, 

position of the stabilizers is not considered for input. 

Stabilizer Outer Diameters (OD): There are 2 stabilizers are available in BHAs. 

Different ODs exist for each well. Stabilizer Diameter is taken as input as Sleeve 

(Near-Bit Stabilizer) OD and String Stabilizer OD.  

PDM Specification: There are various bent angles available at data sets. Downhole 

Motor Bent is considered as input. 

Drilling Parameters: Controlling parameters are WOB, Bottom RPM, TFO and 

sliding percentage (%). Sliding percentage is defined as sliding footage divided by 

total footage. For each 30m depth interval, WOB, Bottom RPM, Sliding Percentage 

and TFO are considered as inputs.  

Hole Size: Diyarbakir wells has same hole section as 8 ½” and Manisa wells has 12 

¼”. For each field, different ANN model has been created. Therefore, hole size is not 

considered as input. 

Below tables from 4.1 to 4.5 shows the units of all parameters and descriptive statistics 

of data sets.  
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Table 4.1 Inputs with Units 

Inputs Units 

Sleeve OD Inch 

String OD Inch 

Downhole Motor Bent 
Angle  (BH) 

Degree 

ROP m/h 

Depth m 

First Inclination Degree 

Tool Face Degree 

WOB Klb 

Bottom RPM Revolution per Minute 

Sliding Percentage % 

 

Table 4.2 Diyarbakir Field Descriptive Statistics (Part1) 

 

Sleeve 
OD 

String 
OD BH ROP Depth 

First 
Inclination 

Mean 8.34 8.19 1.06 14.01 1115.55 22.66 
Standard Error 0.00 0.01 0.01 0.24 13.95 0.60 

Standard 
Deviation 0.07 0.12 0.12 4.75 275.57 11.87 
Minimum 8.125 7.875 0.78 3.22 541 0.38 
Maximum 8.375 8.375 1.27 33.66 1757 50.95 

Count 390 390 390 390 390 390 
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Table 4.3 Diyarbakir Field Descriptive Statistics (Part2) 

 

Tool 
Face WOB 

Bottom 
RPM 

Sliding 
(%) DLS 

Mean 7.47 11.94 215.86 13.79 1.06 

Standard Error 5.01 0.24 1.01 0.83 0.05 

Standard Deviation 98.90 4.74 19.91 16.34 1.01 

Minimum -179.8 3.4 148 0 0 

Maximum 180 25.71 275 86.67 5.64 

Count 390 390 390 390 390 

 

 

 

Table 4.4 Manisa Field Descriptive Statistics (Part1) 

  
Sleeve 
OD 

 String 
OD BH ROP Depth 

First 
Inclination 

Mean 12.12  12.02 1.14 8.97 968.52 13.78 

Standard Error 0.00  0.01 0.01 0.55 35.93 0.46 

Standard 
Deviation 0.02 

 
0.13 0.12 5.50 359.27 4.61 

Minimum 12.091  11.75 1.03 1.9625 460 1.26 

Maximum 12.138  12.13 1.27 25.3 1985 22.53 

Count 100  100 100 100 100 100 
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Table 4.5 Manisa Field Descriptive Statistics (Part2) 

  Tool Face WOB Bottom RPM Sliding % DLS 

Mean 8.04 15.88 150.18 24.43 1.12 

Standard Error 11.84 0.48 0.96 2.29 0.08 

Standard 
Deviation 118.44 4.75 9.56 22.88 0.81 

Minimum -178.5 9.25 118.5 0 0.03 

Maximum 179.2 29.67 169 100 3.5 

Count 100 100 100 100 100 

 

4.2. ANN Model Development 

In order to design an ANN model, there are 6 design parameters requires to be 

considered: Number of hidden layers, Number of neurons in hidden layers, Training 

Function, Learning Function, Performance Function, and Transfer Function. 

Number of Hidden Layers: 1 hidden layer is enough to establish relationship 

between input and output for small to medium data sets which will require training 

conducted in less time and will provide less error. 1 hidden layer is considered as 

design parameter. 

Number of Neurons in Hidden Layers:  Sensitivity analysis has been conducted to 

decide on the number of neurons in hidden layer. Starting from 1 neuron to 25 neurons, 

Correlation fit (R) have been compared and evaluated. 

Training Function: Scaled Conjugate Gradient, Levenberg-Marquardt and Bayesian 

Regularizations are used for input- output relationship and curve fitting. Sensitivity 

analysis has been made to select best fit training function. 

Learning Function:  Both GDM and GD learning functions are taken into account 

for sensitivity analysis. 
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Performance Function: As a standard, MSE is considered as performance function. 

Transfer Function:  Both LOGSIG and TANSIG transfer functions are the part of 

the sensitivity analysis. 
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CHAPTER 5  

 

5. RESULTS AND DISCUSSIONS 

 

5.1. ANN Design 

As stated by Wang and Salehi (2015), there is no rule to decide design parameters of 

a neural network in order to find best model.  

Many sensitivity analyses have been conducted to select best training function, 

learning function, and transfer function for each field. 600 ANN models have been 

created and each model has been trained with 1000 iterations starting from 1 neuron 

in hidden layer up to 25 neurons. Total 600000 iterations have been done to decide 

network structure. 12 different possible combinations of the network functions are 

summarized at below Table 5.1 which is considered for two fields separately. Below 

figures from Figure 5.1 to 5.3 shows the regression fit charts of training function 

together with different learning and transfer function combinations with 1000 

iterations for Diyarbakir Field. Result tables are available at Appendices A. Figure 5.4 

to 5.6 shows the regression fit charts of training functions together with different 

learning and transfer function combinations with 1000 iterations for Manisa Field. 

Result tables are available at Appendices B. 
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Table 5.1 Network Functions for Sensitivity Analysis 

Training 
Function 

Learning 
Function 

Transfer Function Number of Neurons in Hidden Layer 

LM GDM TANSIG 1-25 
GDM LOGSIG 1-25 
GD TANSIG 1-25 
GD LOGSIG 1-25 

SCG GDM TANSIG 1-25 
GDM LOGSIG 1-25 
GD TANSIG 1-25 
GD LOGSIG 1-25 

BR GDM TANSIG 1-25 
GDM LOGSIG 1-25 
GD TANSIG 1-25 
GD LOGSIG 1-25 

 

 

Figure 5.1 Sensitivity Analysis of LM Training Function for Diyarbakir Field 
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Figure 5.2 Sensitivity Analysis of SCG Training Function for Diyarbakir Field 

 

 

Figure 5.3 Sensitivity Analysis of BR Training Function for Diyarbakir Field 
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Below figures from  

 

Figure 5.4 Sensitivity Analysis of LM Training Function for Manisa Field 

 

Figure 5.5 Sensitivity Analysis of SCG Training Function for Manisa Field 
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Figure 5.6 Sensitivity Analysis of BR Training Function for Manisa Field 

 

As seen above figures, changing the number of neurons, learning function or transfer 

functions seems not changing R value hysterically for BR Training Function. 

Although BR training function gives less deviation on correlation fit coefficient, R 

value cannot be improved since it is eliminating some inputs variables to make model 

simpler as “well posed” and converging to desired target with less iterations.  

SCG and LM training functions are more sensitive at different network structures. 

Changing any function or number of neurons leads to remarkable change on 

correlation fit coefficient. 

According to results based on 1000 iterations, LM train function gives best R with 22 

neurons in hidden layer, GDM Learning function and TANSIG Transfer function for 
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GDM Learning function and TANSIG Transfer function. Corresponding R 

coefficients are 0.90781 for Diyarbakir Field and 0.8974 for Manisa Field. 

Network architectures of Diyarbakir Field and Manisa Field are given at Figures 5.7 

and 5.8. 

 

Figure 5.7 Diyarbakir Field ANN Structure (Matlab) 

 

Figure 5.8 Manisa Field ANN Structure (Matlab) 

5.2. Training  

After the decision of the network structures, further training has been done under 

supervision. “Matlab nntool” randomly set connection weights and biases and alters 

them by iterations to get the output as much as close to target value. Training has been 

conducted for both models separately and it has been terminated once R value 

becomes stable. Below 5.9 and 5.10 are the results of Diyarbakir Field and Manisa 

Field trainings. 
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Figure 5.9 Diyarbakir Field ANN Training Regression Charts 
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Figure 5.10 Manisa Field ANN Training Regression Charts 

 

 

5.3. Testing with Untrained Data Set 

From each field, a one well has not been included to training data set to test the model 

accuracy. Untrained data set dimensions are 10x10 for Manisa Field and 10x 39 for 

the Diyarbakir Field, which is equal to 10% of the total data set. Input variables of 

these new wells are imported to trained networks and results are driven. Below 5.11 
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and 5.12 shows estimated DLS values with untrained data set vs depth. Red lines 

represent the maximum and minimum expected DLS as per theoretical Build up rates 

of 8” and 6 ¾” Positive Displacement Motors according to 2 stabilizers BHA model. 

It is the common practice in the industry as a preliminary study before drilling any 

well. Predicting the DLS severity by using 2-stabilized BHA model together with 

theoretical build up rates of the motors produces a range for expected DLS. This model 

only considers motor bent, sleeve stabilizer OD, string stabilizer OD, hole size, bit to 

bent length, sliding percentage and distance of stabilizers according to bit.  

 

Figure 5.11 Diyarbakir Field ANN Estimated DLS vs Actual DLS 
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Figure 5.12 Manisa Field ANN Estimated DLS vs Actual DLS 
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specifications of motor and sliding percentage. In addition, expected DLS range is 

quite wide to estimate the DLS. Furthermore, it is not an accurate method since these 

ranges are not always covering the actual DLS achieved during drilling a well since 

due to  incapable of considering the drilling parameters such as WOB, Bottom RPM, 

ROP and neither the geometry of the well like; tool face orientation and wellbore 

inclination, nor the formation and bit & rock interaction effects. 

5.4. Assumptions 

Since no caliper logs available, hole size cannot be accurately determined but only 

assumed as drilled with the same bit size. All drilling reports are recorded by field 

engineers correctly. All rig components generating the data accurately such as WOB, 

Surface RPM, and Flow Rate. There is no downhole tool to record downhole 

parameters; therefore, all data have been measured from the surface. 

5.5. Limitations 

Two separately ANN model has been developed for separate geothermal and oil fields. 

Same field with same drilling bit has been selected for ANN model in order to 

eliminate Bit & Rock interaction and geology effect. Hole size is not an affecting 

parameter for each model, but the models can be used in future wells separately for 8 

½” sections in Diyarbakir Field and 12 ¼” sections in Manisa Field. BHA is limited 

with the 2-stabilizers design placed at same positions with respect to bit. 
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CHAPTER 6  

 

6. CONCLUSION 

 

 

In order to decrease drilling cost of a directional well and avoid unplanned incidents 

due to high tortuosity, Dog-leg severity (DLS) estimation is one the critical 

preliminary study. Therefore, predicting and optimizing DLS before any drilling 

operation is vital by changing the Bottom Hole Assembly Design (BHA) or optimizing 

drilling parameters according to specific Bit & Rock Interaction model along with the 

current wellbore geometry, In this study, same bits are used for 8 ½” hole sections in 

Diyarbakir wells and 12 ¼” hole sections in Manisa wells; therefore, bit features are 

not included except for bit wear effects. Bit & Rock interaction and formation effect 

have been introduced to model as rotating tendencies. BHA components which are 

controlling DLS are Sleeve Stabilizer OD, String Stabilizer OD, and Downhole Motor 

Bent angle since other BHA components are same in all wells that are drilled by same 

rigs. Drilling parameters are also included into the model as WOB, Bottom RPM, 

Sliding Percentage and Tool Face Orientations. 

A single hidden layer Feed Forward Back Propagation Artificial Neural Network with 

Levenberg Marquardt Training Function (LM), Gradient Descent with Momentum 

weight and bias (GDM) Learning function and Tan Sigmoid Hyperbolic transfer 

function has been created to predict Dog-leg severities of directional wells drilled in 

Diyarbakir and Manisa Field. Networks have 10 inputs variables with 1 output 

variable for 12 Diyarbakir wells and 7 Manisa wells. Result shows the network 

accuracy of Diyarbakir Field as R2 0.923 with 5.6% MSE and accuracy of Manisa 

Field as R2 0.968 with 5.7 % MSE.   



 

 
 

38 
 

It is also concluded that that common preliminary studies before drilling any well in 

the industry is inadequate, which gives a wide range of predicted DLS and not always 

covers the actual DLS obtained in the field. 

Study is under the limit with same hole section and drilled by identical drilling bits 

and same stabilizer positions in the BHA. It is recommended also train the network 

with normalized data set and evaluate the accuracy with different performance 

functions. 

This study shows an ANN model can be developed and can be used in the future wells 

to avoid from high and unpredicted DLS and gives a practical approach to Drilling 

Engineers and Directional Drillers to predict or optimize the DLS. 
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APPENDICES 

 

A. SENSITIVITY ANALYIS OF DIYARBAKIR FIELD 

 

LM TRAINING FUNCTION 
  GDM, TANSIG GDM, LOGSIG GD, TANSIG GD, LOGSIG 
1 0.7479 0.75 0.7708 0.76464 
2 0.79828 0.76261 0.83486 0.063158 
3 0.82151 0.12716 0.77799 0.79827 
4 0.81299 0.83817 0.81102 0.20375 
5 0.81743 0.82409 0.83342 0.89097 
6 0.73701 0.84622 0.81759 0.80898 
7 0.85242 0.82921 0.8551 0.87865 
8 0.8701 0.83 0.87484 0.75512 
9 0.87459 0.88 0.86114 0.84259 
10 0.87412 0.87594 0.86271 0.8596 
11 0.83305 0.84658 0.85867 0.86043 
12 0.845518 0.8274 0.88517 0.86176 
13 0.74281 0.90009 0.89219 0.89067 
14 0.83423 0.881 0.84863 0.88171 
15 0.85356 0.74803 0.88859 0.87937 
16 0.87544 0.027338 0.87264 0.87309 
17 0.89053 0.84416 0.82946 0.86785 
18 0.88321 0.73792 0.80062 0.87739 
19 0.87074 0.90311 0.86889 0.83105 
20 0.89951 0.86319 0.82535 0.85322 
21 0.88467 0.88095 0.73387 0.8803 
22 0.90781 0.10576 0.77185 0.84857 
23 0.84447 0.87783 0.85963 0.85911 
24 0.87724 0.85263 0.86691 0.86108 
25 0.85309 0.84322 0.86577 0.86397 
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SCG TRAINING FUNCTION 
  GDM, TANSIG GDM, LOGSIG GD, TANSIG GD, LOGSIG 
1 0.75894 0.77701 0.76749 0.7373 
2 0.81798 0.83002 0.81584 0.82273 
3 0.84289 0.83637 0.83725 0.81774 
4 0.79987 0.83012 0.821 0.84006 
5 0.79796 0.84579 0.14382 0.84298 
6 0.88357 0.788 0.767781 0.85844 
7 0.84392 0.8849 0.80191 0.87211 
8 0.81996 0.7862 0.026098 0 
9 0.83861 0.86313 0.82216 0.82444 
10 0.29327 0.82165 0.84665 0.079969 
11 0.83583 0.86423 0.83914 0.80443 
12 0.88816 0.87697 0.83813 0.87956 
13 0.84258 0.85592 0.80357 0.79197 
14 0.73375 0.84471 0.85149 0.83033 
15 0.86925 0.85861 0.86893 0.13498 
16 0.83492 0.87245 0.84246 0.86007 
17 0.82035 0.82249 0.85638 0.86575 
18 0.89149 0.80093 0.88615 0.85948 
19 0.87477 0.86424 0.7899 0.81473 
20 0.82455 0.78813 0.87833 0.87918 
21 0.85037 0.84326 0.89682 0.86927 
22 0.85032 0.84669 0.88277 0.81219 
23 0.91079 0.85022 0.89386 0.85106 
24 0.72658 0.3393 0.85445 0.85846 
25 0.86368 0.84532 0.78499 0.78975 
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BR TRANING FUNCTION 

  GDM, TANSIG GDM, LOGSIG GD, TANSIG GD, LOGSIG 
1 0.76886 0.76848 0.773 0.77026 
2 0.80022 0.77164 0.82298 0.81763 
3 0.84414 0.84996 0.85662 0.85914 
4 0.87129 0.86029 0.86965 0.87981 
5 0.80903 0.86056 0.83812 0.85742 
6 0.84577 0.81019 0.87973 0.85219 
7 0.88858 0.85122 0.88545 0.83276 
8 0.87004 0.84078 0.86244 0.84171 
9 0.83941 0.83249 0.88974 0.86748 
10 0.84445 0.86698 0.8862 0.85198 
11 0.85666 0.82472 0.87673 0.8753 
12 0.86512 0.87284 0.78945 0.88283 
13 0.86297 0.85694 0.85396 0.8954 
14 0.86763 0.86102 0.84431 0.85257 
15 0.8577 0.8576 0.80191 0.86816 
16 0.87227 0.74104 0.84048 0.87346 
17 0.86494 0.82325 0.8726 0.88133 
18 0.82883 0.85798 0.8124 0.89947 
19 0.81815 0.88152 0.883 0.81249 
20 0.82732 0.86341 0.81602 0.81524 
21 0.86315 0.79676 0.84902 0.84509 
22 0.85878 0.89848 0.90175 0.79641 
23 0.87458 0.82566 0.78885 0.90208 
24 0.88954 0.82117 0.81072 0.86641 
25 0.85084 0.88146 0.86377 0.82591 
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B. SENSITIVITY ANALYIS OF MANISA FIELD 

 

 
LM TRAINING FUNCTION 

  GDM, TANSIG GDM, LOGSIG GD, TANSIG GD, LOGSIG 
1 0.72082 0.77544 0.034522 0.74742 
2 0.80003 0.84195 0.78136 0.70281 
3 0.71736 0.77726 0.88197 0.84911 
4 0.82978 0.79012 0.78689 0.70084 
5 0.75294 0.74025 0.36068 0.73386 
6 0.15753 0.26268 0.77318 0.8232 
7 0.8507 0.80833 0.81566 0.78652 
8 0.83561 0.69607 0.80961 0.76729 
9 0.78499 0.78727 0.81698 0.69355 
10 0.81977 0.86573 0.76549 0.50974 
11 0.76052 0.8078 0.80422 0.47261 
12 0.84924 0.5056 0.65613 0.87104 
13 0.80107 0.78177 0.75003 0.80897 
14 0.6766 0.76397 0.70633 0.68073 
15 0.69727 0.79644 0.85422 0.85588 
16 0.81852 0.68712 0.86323 0.69107 
17 0.68525 0.82313 0.80193 0.80062 
18 0.69965 0.56692 0.84221 0.74629 
19 0.71089 0.77002 0.60421 0.79805 
20 0.87113 0.88485 0.89312 0.65566 
21 0.89739 0.7804 0.38937 0.76625 
22 0.87065 0.80719 0.87553 0.72615 
23 0.60569 0.6475 0.76694 0.81507 
24 0.39926 0.60308 0.84971 0.78692 
25 0.66257 0.77044 0.62092 0.85696 

 

 

SCG TRAINING FUNCTION 
  GDM, TANSIG GDM, LOGSIG GD, TANSIG GD, LOGSIG 
1 0.75317 0.74392 0.7522 0.67625 
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2 0.77118 0.80868 0.86864 0.77666 
3 0.80912 0.66881 0.85163 0.82357 
4 0.84773 0.6587 0.51531 0.86699 
5 0.81067 0.83267 0.7535 0.69635 
6 0.88384 0.74259 0.7985 0.79444 
7 0.84961 0.69948 0.69514 0.87987 
8 0.80328 0.7453 0.70617 0.76186 
9 0.73404 0.63161 0.85459 0.31397 
10 0.54545 0.85896 0.71725 0.69902 
11 0.70361 0.71885 0.71277 0.82914 
12 0.76806 0.84028 0.77788 0.64183 
13 0.80018 0.89357 0.66928 0.47776 
14 0.69757 0.87055 0.73709 0.88354 
15 0.7419 0.75214 0.79741 0.80305 
16 0.83188 0.75227 0.7822 0.71661 
17 0.18637 0.7752 0.76268 0.53203 
18 0.81586 0.79872 0.80679 0.83092 
19 0.84778 0.84556 0.7754 0.76541 
20 0.84279 0.71804 0.72002 0.85999 
21 0.80164 0.60051 0.74256 0.76299 
22 0.8076 0.7817 0.77363 0.84891 
23 0.65804 0.67393 0.70385 0.83908 
24 0.29529 0.36171 0.81279 0.74127 
25 0.81537 0.81577 0.78757 0.78011 
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BR TRAINING FUNCTION 
  GDM, TANSIG GDM, LOGSIG GD, TANSIG GD, LOGSIG 
1 0.77951 0.75412 0.77544 0.76379 
2 0.8214 0.82114 0.82436 0.78403 
3 0.85214 0.81047 0.83146 0.78037 
4 0.78076 0.72572 0.76798 0.66522 
5 0.7179 0.76411 0.77414 0.76212 
6 0.78534 0.77957 0.78578 0.6645 
7 0.81301 0.84964 0.80998 0.7605 
8 0.84812 0.7581 0.84122 0.81443 
9 0.75353 0.78335 0.78525 0.8044 

10 0.74923 0.7714 0.83449 0.7301 
11 0.76481 0.79208 0.83289 0.7973 
12 0.74002 0.49835 0.7706 0.77775 
13 0.7224 0.71622 0.85978 0.86349 
14 0.78505 0.81721 0.71488 0.77241 
15 0.7474 0.78053 0.75339 0.72631 
16 0.77793 0.76803 0.81525 0.8331 
17 0.78193 0.77708 0.77459 0.82057 
18 0.76673 0.77577 0.73008 0.80317 
19 0.78304 0.77899 0.7818 0.74728 
20 0.75569 0.77118 0.88193 0.58282 
21 0.77415 0.7727 0.77125 0.82938 
22 0.80314 0.77805 0.77679 0.76278 
23 0.76987 0.72105 0.82304 0.77506 
24 0.74657 0.77715 0.7437 0.76085 
25 0.75417 0.75208 0.77425 0.73158 
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C. PREDICTED DLS AND ACTUAL DLS COMPARISON FOR 

DIYARBAKIR FIELD 

 

Depth (m) DLS (deg/30m) Predicted DLS (deg/30m) 
699.000 3.35 3.14 
710.000 2.59 2.65 
729.000 2.93 3.02 
740.000 1.52 1.50 
759.000 4.21 4.40 
770.000 1.02 1.24 
789.000 3.95 3.79 
800.000 1.61 1.03 
819.000 2.08 2.11 
830.000 0.40 0.85 
849.000 2.11 2.34 
879.000 2.47 2.34 
909.000 1.42 1.51 
939.000 0.68 0.44 
969.000 0.84 0.30 
999.000 0.06 0.18 
1029.000 0.12 0.24 
1059.000 0.56 0.56 
1089.000 0.24 0.35 
1119.000 0.32 0.38 
1149.000 0.17 0.71 
1179.000 0.43 0.43 
1209.000 0.18 0.15 
1239.000 0.65 0.45 
1269.000 0.00 0.50 
1300.000 0.90 0.84 
1330.000 0.78 0.64 
1360.000 0.06 0.31 
1390.000 1.32 1.21 
1420.000 1.33 1.36 
1450.000 0.95 1.39 
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1480.000 0.22 0.35 
1510.000 0.41 0.51 
1540.000 1.86 1.73 
1570.000 0.76 0.98 
1600.000 0.74 0.65 
1630.000 0.53 0.44 
1660.000 0.16 0.32 
1690.000 0.89 0.90 
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D. PREDICTED DLS AND ACTUAL DLS COMPARISON FOR MANISA 

FIELD 

 

Depth 
(m) 

DLS 
(deg/30m) 

Predicted DLS 
(deg/30m) 

760.000 0.28 0.21 
790.000 0.18 0.20 
820.000 1.09 0.79 
850.000 0.88 1.13 
880.000 0.98 1.26 
910.000 1.48 1.05 
940.000 1.13 1.07 
978.000 2.02 1.97 
1008.000 1.19 1.41 
1038.000 1.28 1.58 
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