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Mathematics, Hacettepe University

Date:



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Onur Oktay

Signature :

iv



ABSTRACT

EXPLORATIONS IN YANG-MILLS MATRIX GAUGE THEORIES WITH
MASSIVE DEFORMATIONS

Oktay, Onur

Ph.D., Department of Physics

Supervisor: Prof. Dr. Seçkin Kürkcüoğlu

December 2019, 149 pages

We focus on two research projects on Yang-Mills (YM) matrix models with massive

deformation terms, where fuzzy four-spheres, as well as fuzzy two-spheres appear as

matrix configurations which are of interest. We first concentrate on an SU(N) YM

gauge theory in 0+1-dimensions with five Hermitian matrices, a YM 5-matrix model,

with a massive deformation term and search for matrix configurations of fuzzy four-

spheres, which are formed by taking tensor products of certain irreducible and re-

ducible representations of the isometry group SO(5) of the fuzzy four-spheres, which

may be understood as new static configurations satisfying the classical equations of

motion of this matrix model. The reducible representation of SO(5) that we em-

ploy is formed by following a Schwinger type construction which utilizes four pairs

of fermionic annihilation-creation operators and their SO(5) irreducible representa-

tion (IRR) content is determined. It is shown that in addition to standard fuzzy

four-spheres, the generalized fuzzy four-spheres, S4
Λ, that recently appeared in the

literature [1], also emerge as solutions to the YM 5–matrix model. We examine the

quantization of the coset space O2 ≡ SU(4)/(SU(2) × U(1) × U(1)) via the coad-
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joint orbit method to provide a perspective on the structure of S4
Λ and employ the

generalized coherent states associated to SO(6) ≈ SU(4) to discuss some aspects of

both the basic and generalized fuzzy four-spheres. In the second part of the thesis, we

examine a YM matrix model that can be contemplated as a massive deformation of

the bosonic part of the Banks-Fischler-Shenker-Susskind (BFSS) model. An ansatz

configuration involving fuzzy two- and four-spheres with collective time dependence

is proposed to arrive at a set of reduced actions whose chaotic dynamics are revealed

by calculating their Lyapunov spectrum, Poincaré sections and in particular largest

Lyapunov exponents by using numerical solutions to their Hamiltonian equations of

motion. We also analyze how the largest Lyapunov exponents change as a function

of the energy.

Keywords: Fuzzy Spheres, Matrix Gauge Theories, Coadjoint Orbits, BFSS Matrix

Model, Chaotic Dynamics, Lyapunov Exponents, Poincaré sections
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ÖZ

KÜTLE DEFORMASYONLU YANG-MİLLS MATRİS AYAR TEORİLERİ
ÜZERİNE ARAŞTIRMALAR

Oktay, Onur

Doktora, Fizik Bölümü

Tez Yöneticisi: Prof. Dr. Seçkin Kürkcüoğlu

Aralık 2019 , 149 sayfa

Bu tezde, kütle deformasyon terimleri taşıyan Yang-Mills (YM) matris modellerine

odaklanılmıştır. Fuzzy 2-küre ve fuzzy 4-küre konfigürasyonları bu modellerin po-

tansiyellerinin ekstremumları olarak ortaya çıkmaktadır. Öncelikle, beş Hermityen

matris içeren, 0 + 1 boyutta bir SU(N) ayar teorisi olan kütle deformasyonlu YM

5-matris modeli ele alınmıştır. Bu bağlamda, fuzzy 4-kürelerin izometri grubu olan

SO(5) grubunun birtakım indirgenebilir ve indirgenemez gösterimlerinin tensör çar-

pımlarını hesaplamak suretiyle, YM 5-matris modelinin klasik hareket denklemlerini

sağlayan yeni fuzzy 4-küre konfigürasyonları araştırılmıştır. Bu araştırma esnasında

kullanılan indirgenebilir SO(5) gösterimleri, dört çift fermiyonik yaratma ve yok

etme operatörü vasıtasıyla tanımlanan Schwinger tipi bir yapıyla oluşturulmuş ve bu

sayede SO(5)’in indirgenemez gösterimleri cinsinden içeriği belirlenmiştir. Standart

fuzzy 4-kürelerin yanında, literatüre kısa bir süre önce girmiş olan [1] genelleştirilmiş

fuzzy 4-kürelerin
(
S4

Λ

)
de YM 5-matris modelinin çözümleri olduğu gösterilmiştir.

S4
Λ yapılarının daha iyi anlaşılması maksadıyla, coadjoint yörünge metodundan yarar-

lanılarakO2 ≡ SU(4)/(SU(2)×U(1)×U(1)) koset uzayının kuantizasyonu incelen-
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miştir. Bunun yanında, SO(6) ≈ SU(4) gruplarının eş uyumlu durumları kullanılarak

hem standart hem de genelleştirilmiş fuzzy 4-kürelerin özellikleri irdelenmiştir. Te-

zin ikinci bölümünde, Banks-Fischler-Shenker-Susskind (BFSS) modelinin bozonik

sektörünün kütleli deformasyonu şeklinde açıklanabilecek yeni bir YM matris mo-

deli incelenmiştir. Eş zamanlı dinamik yapılara sahip fuzzy 2- ve 4-kürelerden oluşan

bir konfigürasyon ansatz olarak alınmış ve bu sayede indirgenmiş bir eylem kümesi

elde edilmiştir. İndirgenmiş eylemlerin kaotik dinamiklerini ortaya koymak amacıyla

Hamilton denklemleri nümerik yöntemlerle çözülerek ilgili Lyapunov spektrumları,

Poincaré kesitleri ve en büyük Lyapunov üstleri hesaplanmıştır. Ayrıca, en büyük

Lyapunov üstlerinin enerjiye bağlı değişimleri analiz edilmiştir.

Anahtar Kelimeler: Fuzzy Küreler, Matris Ayar Teorileri, Coadjoint Yörüngeler, BFSS

Matris Modeli, Kaotik Dinamik, Lyapunov Üsleri, Poincaré Kesitleri
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CHAPTER 1

INTRODUCTION

Over the past few decades, there has been an immense and determined effort in theo-

retical physics community to enhance our understanding of matrix gauge theories [2,

3, 4, 5, 6]. Among these theories, the models proposed by Banks-Fischler-Shenker-

Susskind (BFSS) [2] and Berenstein-Maldacena-Nastase(BMN) [5] have been densely

studied and hold prominent places in the literature. These models appear as super-

symmetric SU(N) gauge theories in 0+1-dimensions and commonly called as matrix

quantum mechanics in the literature. This name may be attributed to the fact that they

are build up from N ×N matrices whose entries only depend on time. For instance,

the bosonic part of these models contain nine N×N Hermitian matrices, has SU(N)

gauge and SO(9) global symmetries and contains a quartic interaction term among

the matrices. BFSS model is associated to the type II-A string theory and appears as

the discrete light-cone quantization (DLCQ) of the M-theory in the flat background

[7, 8]. The BMN model is a deformation of the BFSS, which contains quadratic and

qubic terms in addition to the quartic term and preserves the maximal amount of su-

persymmetry, and can be obtained as the DLCQ of M-theory on pp-wave background

[5, 9]. BFSS theory with SU(N) gauge symmetry may be understood as describing

the dynamics of N-coincident D0-branes, i.e. point-like Dirichlet branes in string

theory, in flat background [10, 11], where the diagonal entries of the nine N × N

matrices give the positions of these D0-branes in 9-dimensions, and the off-diagonal

elements describe the interactions among them. The BMN model aims to describe

the D0-brane dynamics in spherical backgrounds. This is due to the fact that fuzzy

2-spheres are stable vacuum configurations in the BMN model [12]. Thus, the di-

agonal entries of the matrices may now be interpreted in part as the coordinates of

D0-branes on the fuzzy sphere. These models have gravity duals, which are obtained
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in the large N , and strong coupling/low temperature limit [13, 10]. It has been shown

thatD0-branes then form a black brane phase, which is essentially a string theoretical

black hole in 9 + 1-dimensions [7, 8, 14]. Due to large number of degrees of free-

dom interacting through a quartic Yang-Mills (YM) potential, it does not appear quite

possible that general solutions of the BFSS/BMN models can be determined. Even

the smallest Yang-Mills matrix model with two 2× 2 matrices and with SU(2) gauge

symmetry has not been completely solved until this date [15]. Nevertheless, there

are both analytic and recently increasingly more numerical techniques being applied

to these models to explore their structure and dynamics [16, 17, 18]. In this con-

text, there are two major research topics within matrix models to which the findings

presented in this thesis are connected: massive deformations of Yang-Mills matrix

models [5, 19, 20] and chaotic dynamics emerging from the BFSS and related matrix

models [21, 17, 22, 18, 20]. We study two problems in this thesis and in the rest of

this introduction we outline the basic features of these problems and briefly state the

results that we have obtained.

In this thesis, we focus on different of aspects of Yang-Mills matrix gauge theories

with massive deformations. The first problem we examine is finding new static solu-

tions for the Yang-Mills matrix model with five matrices and a massive deformation

term. This model can also be seen as a particular massive deformation of a subsector

of the BFSS model which is distinct from the BMN theory. It is already known that

fuzzy four-spheres constitute static solutions to the equations of motion in this model

[19, 23]. To search for new solutions, we adapt the approach applied in a series of

papers [24, 25] in SU(N) gauge theories coupled to adjoint scalar fields and massive

deformations of N = 4 supersymmetric (SUSY) YM, where fuzzy two-spheres in

various direct sum forms are obtained as new vacuum configurations. This is per-

formed by augmenting an additive new part using a Schwinger type realization of

SU(2) generators with fermionic annihilation-creation operators to matrices which

are already satisfying the equations of motion. For the model we study the situation

is rather more complicated due to the geometrically elaborate structure of fuzzy four

spheres. By using Schwinger type realization of SO(5) generators with "fermionic"

oscillators we find matrix configurations serving as new static solutions to the YM

5-matrix model. These configurations contain not only direct sums of fuzzy four-
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spheres, but also matrices whose structure describe genealized fuzzy four-spheres

recently introduced in [1]. Using the representation theory of SO(5) and SO(6),

we discuss in detail how the new static solutions are obtained and subsequently turn

our attention to discuss essential features of generalized fuzzy four-spheres appearing

in our solutions. As an alternative to the approach given in [1], we use quantiza-

tion of coadjoint orbit methods [26, 27] and handle the quantization of a particular

10-dimensional coadjoint orbit of SO(6), namely O2, to discuss the formulation and

properties of generalized fuzzy four-spheres. Coherent states associated to the Lie

group SO(6) ≈ SU(4) are also used in this context to compare the structure and

properties of the ordinary and generalized fuzzy four-spheres as certain squashed

limits of the fuzzy CP3 and fuzzy O2 = SU(4)
SU(2)×U(1)×U(1)

. Using these techniques we

also solve a related problem, namely the Landau problem on O2 and briefly state its

connection to the fuzzy O2.

In chapter 4, we focus our attention to a YM matrix model with two massive deforma-

tion terms to study the emerging chaotic motions as we shall explain shortly. Recently,

there has been intense interest in exploring, modelling and understanding the emer-

gence of chaos from matrix models of Yang-Mills theories [17, 18, 22]. Attention

has been focused on examining many aspects and features of chaos in the BFSS and

BMN models. A strong motivation in studying possible chaotic dynamics possessed

by these matrix models comes from possibilities in acquiring an in depth perspective

and perhaps even discovering novel physical phenomena relating to the dual black-

brane phases, such as their thermalization, evaporation processes. For this purpose,

authors of [22] considered simple ansätze for the BMN model at the matrix levels

N = 2, 3 satisfying the Gauss law constraint to probe the chaotic dynamics. The

model we study in chapter 4, has the same matrix content as the bosonic part of the

BFSS matrix model, but contains mass deformation terms breaking the global SO(9)

symmetry of the latter to SO(5)× SO(3)× Z2. Introducing an ansatz configuration

involving fuzzy four and two spheres with collective time dependence, we examine

the chaotic dynamics in a family of effective Lagrangians obtained by tracing over the

aforementioned ansatz configurations at the matrix levelsN = 1
6
(n+1)(n+2)(n+3),

for n = 1, 2, · · · 7. Before presenting a full numerical analysis of the chaotic dynam-

ics, we first identify the fixed points of the phase space for the model at each matrix
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level and perform a linear stability analysis of these points. The latter allows us to

identify both the stable and unstable fixed points, and it also suggests that the possible

chaotic motion in these models could start at energies around and above the lowest

unstable fixed point energy within a given model. This expectation is corroborated

through the numerical work we perform, in which we obtain the Lyapunov spectrum

and analyze how the largest Lyapunov exponents change as a function of the energy.

We also give the Poincaré sections of these effective models at selected energies that

best describes the dynamics prior to, at and after, the onset of chaos.

Chapter 2 start out with introducing the first and second Hopf fibrations which are

later employed in the general discussion of the construction of fuzzy spaces. This

introductory part is followed by the construction of the simplest example of the fuzzy

spaces, i.e. the fuzzy two-sphere S2
F [28, 29, 30, 31]. After providing a detailed

description of the construction of S2
F , we move on to the discussion of the fuzzy

four-sphere, S4
F [32, 33, 34]. Although there is an apparent resemblance between

the constructions of S2
F and S4

F , as it is shown from both geometric and algebraic

sides, the fuzzy four-sphere is indeed a quite distinct object. This fact is thoroughly

demonstrated in the extensive review we present regarding the construction of S4
F . In

concluding chapter 2, we give a self-contained review of the bosonic part of the BFSS

matrix model and introduce the Yang-Mills 5-matrix model. Chapter 5 summarizes

the results obtained and states the conclusions we have reached in this thesis.
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CHAPTER 2

FUZZY SPHERES AND YANG-MILLS MATRIX MODELS

This chapter provides an introduction on the general aspects of fuzzy spheres and their

connection to the Yang-Mills matrix models. The approach we take on here is mainly

one of review and aims to explain concepts that relate to the ensuing chapters. In order

to gain familiarity with the problem of construction of fuzzy spaces, it is appropriate

to initiate the developments with a consideration of the well-known example of the

fuzzy two-sphere. In order to do so, we first start with a description of the basic

features of commutative manifolds C2, S2, S3 and show the realization of S2 from S3

via the first Hopf fibration. This is followed by the quantization of these manifolds

using the canonical procedures and leads us to the construction of the fuzzy two-

sphere, S 2
F , which is comprehensively presented in subsection 2.3.1. This discussion

is based on the references [28, 29, 30, 31].

There is also a four-dimensional version of the fuzzy sphere, the basic fuzzy four-

sphere, S 4
F [32, 33, 34]. In order to provide a detailed account of the construction

of S 4
F , the descent chain of manifolds C4 → S7 → S4, i.e. the second Hopf map,

is identified in section 2.2. In subsection 2.3.2, we perform the quantization of this

descent chain and give an extensive review of the construction of S 4
F . In this review,

we explicitly show that S 4
F cannot be obtained in a canonical way by quantizing the

second Hopf map. Rather, it should be thought of as emerging from the quantization

of the fibration S2 → CP3 → S4.

In section 2.4, we give a self-contained review of the bosonic part of the Banks-

Fischler-Shenker-Susskind (BFSS) matrix model including its derivation from the

Yang-Mills theory in 9 + 1 dimensions with N = 1 supersymmetry. In the final sec-

tion of this chapter, we introduce the Yang-Mills 5-matrix model whose new vacuum
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solutions will be explored in chapter 3.

2.1 Geometry of Two-Sphere

For any natural number n, the n-sphere Sn can be defined in terms of its embedding in

the (n+1)-dimensional Euclidean space, Rn+1, as the set of points that are equidistant

from a fixed central point [35]. In particular, the two-sphere, S2, can be defined as the

two-dimensional, real, compact manifold via its embedding in R3 by the constraint

ρ1
2 + ρ2

2 + ρ3
2 = ρ2, (ρ1, ρ2, ρ3) ∈ R3, (2.1.1)

where ρ is the radius of S2. It is sufficient to introduce two parameters to describe S2.

For instance, we may use the spherical angles θ and ϕ where the polar angle ranges

from the values 0 ≤ θ ≤ π and the azimuthal angle is in the range 0 ≤ ϕ ≤ 2π. The

Euclidean coordinates can be expressed in terms of these angles by

ρ1 = ρ sin θ cosϕ, ρ2 = ρ sin θ sinϕ, ρ3 = ρ cos θ. (2.1.2)

The coordinates ρµ(µ = 1, 2, 3) together with (2.1.1) generate an infinite-dimensional

commutative algebra of smooth bounded functions on S2 denoted as C∞(S2). Any

element Ω ∈ C∞(S2) can be expanded in terms of polynomials of ρµ as

Ω(~ρ) =
∑

µ1,...,µm

Ωµ1...µm
ρµ1 ...ρµm . (2.1.3)

An equivalent expansion of Ω can also be provided in terms of the spherical harmonics

Ylm(θ, ϕ) as follows

Ω(θ, ϕ) =
∞∑
l=0

l∑
m=−l

clmYlm(θ, ϕ). (2.1.4)

The spherical harmonics satisfy the normalization and orthogonality conditions given

by [36] ∫ 2π

0

∫ π

0

Ylm(θ, ϕ)Y ∗
l
′
m
′(θ, ϕ) sin θ dθ dϕ = δll′δmm′ . (2.1.5)

Isometry group of S2 is the group of rotations SO(3). We may therefore, use the gen-

erators of SO(3) as the derivations on the algebra of functions C∞(S2). Explicitly,

we have

Lµ = −i(~ρ× ~∇)µ = −iεµνηρν∂η. (2.1.6)
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acting on C∞(S2). They fulfill the SO(3) commutation relations

[Lµ, Lν ] = iεµνηLη . (2.1.7)

A glance at equation (2.1.6) reveals that ~L is perpendicular to the position vector ~ρ

which is parallel to the radial direction on S2. Therefore, we immediately see that

this vector differential operator is tangential to the two-sphere. Indeed Lµ are deriva-

tions on C∞(S2), because they provide a map from C∞(S2) onto itself fulfilling the

Leibniz rule

Lµ(Ω1Ω2) = (LµΩ1)Ω2 + Ω1(LµΩ2). (2.1.8)

The Laplacian operator on S2 can be written as

L2 = LνLν = L1
2 + L2

2 + L3
2. (2.1.9)

As the simultaneous eigenfunctions of L2 and L3 operators, spherical harmonics sat-

isfy the following eigenvalue equations:

L2Ylm(~ρ) = l(l + 1)Ylm(~ρ), (2.1.10)

L3Ylm(~ρ) = mYlm(~ρ), (2.1.11)

where the index l takes the integer values 0, 1, 2, ... and the index m runs through

values −l, ..., l.

Having now presented the basic features of the two-sphere, we move on to discuss its

geometrical properties. To proceed further, it is convenient to review two necessary

group theoretical concepts: cosets of a Lie group and adjoint action of a Lie group on

its Lie algebra and also as a manifold for which it is the group of isometries. Given

a Lie group G with a subgroup H , an equivalence relation can be constructed in G

using H . For any two elements g1, g2 ∈ G, if there exist an element h ∈ H such that

g1 = g2h, (2.1.12)

we shall say that g1 and g2 are in the same equivalence class and express this relation

as g1 ∼ g2. Since equation (2.1.12) constitutes an equivalence relation, G can be

partitioned into a disjoint union of these equivalence classes, each of which is a coset.

The set of cosets, which are denoted by G/H , are called right cosets of G. The right

coset space can be defined as [37]

G/H =
{
g ∼ gh

∣∣g ∈ G, h ∈ H} . (2.1.13)
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If g denotes the Lie algebra of G then we may define the adjoint action of G on g as

Ad(g)Y = gY g−1, g ∈ G , Y ∈ g . (2.1.14)

Let us use these definitions for the isometry group SO(3) ' SU(2) of S2. Since

SU(2) is the group of 2×2 unitary matrices with unit determinant, we may introduce

a generic element in the form

g =

z1 −z2
∗

z2 z1
∗

 , g† = g−1 , z1, z2 ∈ C , (2.1.15)

with |z1|2 + |z2|2 = 1. Then, the adjoint action of SU(2) on σ3 is found to be equal

to

Ad(g)σ3 = gσ3g
† = q̂ · ~σ . (2.1.16)

Explicitly, q̂ · ~σ is

q̂ · ~σ =

|z1|2 − |z2|2 2z1z2
∗

2(z1z2
∗)∗ −|z1|2 + |z2|2

 , (2.1.17)

where ~σ = (σ1, σ2, σ3) is the vector of Pauli matrices and the components of the unit

vector q̂ are given by

q1 = 2Re(z1z2
∗), q2 = −2Im(z1z2

∗), q3 = |z1|2 − |z2|2. (2.1.18)

In order to check that q̂ is actually a unit vector, squaring both sides of equation (2.1.16)

we find

gσ3g
−1gσ3g

−1 = qµσµqνσν ,

gσ3
2g−1 = qµqν(δµν12 + iεµνηση) ,

12 = qµqµ12 ,

thus

q̂ · q̂ = qµqµ = 1 , (2.1.19)

which leads us to realize that qµ correspond to the coordinates of a unit 2-sphere.

Therefore, we may interpret equation (2.1.16) as a projection map from SU(2) to S2

as follows [38, 39]

M1 : SU(2) 7→ S2
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g 7→ Ad(g)(q̂0 · ~σ) = q̂ · ~σ, (2.1.20)

where q̂0 = (0, 0, 1) is the unit vector pointing along the third axis. Now consider two

elements g1, g2 ∈ G in the same equivalence class given by

g1 = g2h, h = e
i
2
θσ3 ∈ U(1) ⊂ SU(2). (2.1.21)

We can verify that g1 and g2 are projected onto the same point q̂ as follows

g1σ3g
−1
1 = q̂ · ~σ (2.1.22a)

g2hσ3(g2h)−1 = g2hσ3h
−1g−1

2

= g2e
(i/2)θσ3σ3e

(−i/2)θσ3g−1
2

= g2σ3g
−1
2

= q̂ · ~σ, (2.1.22b)

which implies that q̂ can be identified with the equivalence class
[
ge(i/2)θσ3

]
∈ SU(2)/U(1).

Therefore, we deduce that unlike S1 and S3, the two-sphere is not a group manifold

but an example of a coset manifold [40], and we may express this as

S2 ≡ SU(2)

U(1)
. (2.1.23)

Another way to see two-sphere as a coset manifold is by considering the linear ac-

tion of SU(2) on C2. Let us take two complex numbers which correspond to the

coordinates of C2 with its origin removed, i.e.

z = (z1, z2), z ∈ C2 \ {(0, 0)} . (2.1.24)

The complex projective line, CP1, is the set of complex lines going through the origin

of C2 that are grouped through an equivalence relation given by

CP1 = {(z1, z2) ∼ λ(z1, z2)|λ ∈ C} . (2.1.25)

SU(2) maps a complex line to another complex line. Hence, its action on CP1 is tran-

sitive. The isotropy group of SU(2), which leaves the complex line of CP1 invariant

is U(1) which is generated by the phase of λ ∈ C in (2.1.25). Therefore, CP1 is also

diffeomorphic to SU(2)/U(1). To summarize, the topological equivalence of S2 and

CP1 to the adjoint orbit of SU(2) can be expressed as

S2 ≡ CP1 ≡ SU(2)

U(1)
. (2.1.26)
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2.2 Hopf Fibration

A Hopf fibration is a many-to-one continuous function from a higher dimensional

sphere to a lower dimensional one. Generally, there are four Hopf fibrations, on S1,

S3, S7, and S15 [41]. In this section, we review the fibrations on the three-sphere and

the seven-sphere.

The first and best known example of a Hopf fibration is a map from the three-sphere

into the two-sphere known as the first Hopf map whose bundle structure is denoted

by S1 ↪→ S3 H1−→ S2 meaning that the total space S3 is a S1 ∼= U(1) bundle over the

base space S2 [42]. In this mapping, the inverse image of a point on S2 is a circle on

S3. Given the unit three-sphere as a submanifold of R4 by

x 2
1 + x 2

2 + x 2
3 + x 2

4 = 1, (x1, x2, x3, x4) ∈ R4, (2.2.1)

and the unit two-sphere by equation (2.1.19), the first Hopf map H1 : S3 → S2 is

defined by

q1 = 2(x1x3 + x2x4), (2.2.2a)

q2 = 2(x2x3 − x1x4), (2.2.2b)

q3 = x 2
1 + x 2

2 − x 2
3 − x 2

4 . (2.2.2c)

An equivalent description of H1 can be formulated by regarding the three-sphere as

embedded in C2 \ {0, 0}. Since the coordinates given by equation (2.1.24) are never

all zero, they can be normalized as

κα :=
zα√

|z1|
2 + |z2|

2
; α = 1, 2 , (2.2.3)

such that they describe a three-sphere embedded in C2 \ {0, 0}

S3 =
{
κ†κ = 1 , κ = (κ1, κ2)T

}
. (2.2.4)

The coordinate functions on S2 can be defined in terms of the complex argument κ as

yµ(κ) := κ†σµκ, (2.2.5)
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where σµ are the Pauli matrices. The Hopf map between κα and yµ is equivalent to

the projection map from S3 to S2 which may be introduced as

M2 : S3 7→ S2 , κα 7→ yµ(κ). (2.2.6)

It is obvious that yµ(κ) are left invariant under the U(1) transformations κ → eiθκ.

Furthermore, a closer inspection of equation (2.2.5) reveals that they are indeed real

functions

yµ
∗ =

(
κ†σµ

†(κ†)†
)∗

= yµ . (2.2.7)

yµ can be written out explicitly as follows

y1 = κ1
∗κ2 + κ2

∗κ1 , (2.2.8a)

y2 = i(κ2
∗κ1 − κ1

∗κ2), (2.2.8b)

y3 = κ1
∗κ1 − κ2

∗κ2 . (2.2.8c)

The Fierz identity for Pauli matrices is given by

(σµ)αβ(σµ)δγ = 2δαγδβδ − δαβδδγ . (2.2.9)

The sum of the squares of yµ can be determined by invoking equation (2.2.9)

yµyµ = (κ†)α(σµ)αβ(κ)β(κ†)δ(σµ)δγ(κ)γ

= (κ†)α(κ)β(κ†)δ(κ)γ(2δαγδβδ − δαβδδγ) (2.2.10)

= 2κ†κκ†κ− κ†κκ†κ

= 1,

which proves that yµ are the Euclidean coordinates on the unit two-sphere.

There also exists a second Hopf bundle S3 ↪→ S7 H2−→ S4, consisting of the four-

sphere as the base space, and the seven-sphere as the bundle space with the fibers

being S3. In order to explain the second Hopf map, H2, we should first note that S7

can be represented in C4 by utilizing the complex coordinates ζτ (τ = 1, 2, 3, 4) as

described below

S7 =

{
ζ†ζ = 1 , ζτ =

Eτ
|E |

, ζ = (ζ1, ζ2, ζ3, ζ4)T |Eτ ∈ C4 \ {0̄}
}
, (2.2.11)

where |E |2 =
∑

τ |Eτ |
2 and 0̄ ≡ (0, 0, 0, 0). The Euclidean coordinates on the four-

sphere base of the fibration is defined by [43, 44]

Ψa(ζ) = ζ†γaζ , a = 1, ..., 5, (2.2.12)
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where γa are the gamma-matrices in five dimensions that are associated to the SO(5)

group. They are 4× 4 matrices satisfying the anticommutation relations

{γa, γb} = 2δab14 . (2.2.13)

A possible representation of these matrices is given in A.1. The map H2 may then be

written out explicitly in this basis as

Ψ1 = ζ1
∗ζ4 + ζ2

∗ζ3 + ζ3
∗ζ2 + ζ4

∗ζ1 , (2.2.14a)

Ψ2 = −i(ζ1
∗ζ4 − ζ2

∗ζ3 + ζ3
∗ζ2 − ζ4

∗ζ1), (2.2.14b)

Ψ3 = −ζ1
∗ζ3 + ζ2

∗ζ4 − ζ1ζ
∗
3 + ζ2ζ

∗
4 , (2.2.14c)

Ψ4 = i(ζ1
∗ζ3 + ζ2

∗ζ4 − ζ3
∗ζ1 − ζ4

∗ζ2), (2.2.14d)

Ψ5 = −ζ1
∗ζ1 − ζ2

∗ζ2 + ζ3
∗ζ3 + ζ4

∗ζ4 . (2.2.14e)

Using (2.2.14) we directly evaluate ΨaΨa

ΨaΨa = 4[(ζ1
∗ζ4 + ζ3

∗ζ2)(ζ2
∗ζ3 + ζ4

∗ζ1)− (ζ1
∗ζ3 − ζ2ζ4

∗)(ζ2
∗ζ4 − ζ1ζ3

∗)]

+ (|ζ1|2 + |ζ2|2 − |ζ3|2 − |ζ4|2)
2

= (|ζ1|2 + |ζ2|2)
2

+ (|ζ3|2 + |ζ4|2)
2

+ 2(|ζ1|2 + |ζ2|2)(|ζ3|2 + |ζ4|2) (2.2.15)

= (ζ†ζ)2

= 1,

hence we have verified that Ψa correspond to the Euclidean coordinates on the unit S4

and completed the constructions of the descent chains of manifolds C2 → S3 → S2

and C4 → S7 → S4.

2.3 Fuzzy Spheres

2.3.1 Construction of Fuzzy 2-Sphere

In section 2.1, we have collected several essential facts about the geometry of the

two-sphere and demonstrated that S2 is an adjoint orbit of SU(2). For compact and

semi-simple groups like SU(2), the adjoint orbits are isomorphic to the coadjoint1

1 Coadjoint action of a Lie group can be defined as its action on the dual vector space underlying the Lie
algebra [45]. We give a detailed discussion of coadjoint orbits for SU(2), SU(3) and SU(4) groups in chapter 3
and in appendix B.
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orbits which are symplectic manifolds. Therefore, they are equipped with a symplec-

tic structure. Thus, the two-sphere can be quantized by employing the quantization

procedure detailed in [31]. We may note that S4 is not a symplectic manifold and can

not be quantized in the same manner.

In order to achieve the quantization of S2, we should explore the descent chain of

manifolds C2 → S3 → S2 and construct a noncommutative version of the first Hopf

map to obtain the fuzzy two-sphere S 2
F . To start with, the Poisson bracket of two

functions Ω1 and Ω2 on C2 is given by [46]

{Ω1,Ω2} =
2∑

α=1

(
∂Ω1

∂zα

∂Ω2

∂z ∗α
− ∂Ω1

∂z ∗α

∂Ω2

∂zα

)
, (2.3.1)

where the complex variables zα and their conjugates z ∗α satisfy

{
zα, z

∗
β

}
= δαβ ,

{
zα, zβ

}
= 0,

{
z ∗α , z

∗
β

}
= 0. (2.3.2)

The next step in the quantization of C2 is to change all of the complex variables into

linear operators acting on a Hilbert space. To achieve this, we can now proceed by

replacing the Poisson bracket algebra of equation (2.3.2) by an analogous quantum

mechanical commutation algebra of the form[
âα, âβ

†
]

= θncδαβ ,
[
âα, âβ

]
= 0,

[
â†α, âβ

†
]

= 0, (2.3.3)

where âα
†(âα) are the harmonic oscillator creation (annihilation) operators that act on

the two-particle Fock space and θnc is the noncommutative parameter with dimension

length squared. It is possible to rewrite the commutation relations of equation (2.3.3)

in the more familiar form of[
âα, âβ

†
]

= δαβ ,
[
âα, âβ

]
= 0,

[
â†α, âβ

†
]

= 0, (2.3.4)

with the scaling âα →
(
âα/
√
θnc
)
.

The quantization of the three-sphere can be performed in a similar fashion by replac-

ing the complex coordinates of equation (2.2.3) with the annihilation and creation

operators:

κ̂α = âα
1√
N̂

=
1√

1 + N̂
âα , (2.3.5a)
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κ̂α
∗ =

1√
N̂
âα
† = âα

† 1√
1 + N̂

, (2.3.5b)

where N̂ is the number operator defined by

N̂ =
∑
α

âα
† âα , N̂ 6= 0. (2.3.6)

Although the presence of N̂ 6= 0 condition might be interpreted as the exclusion of

vacuum state from the Fock space, this conclusion would be misleading as successive

application of the κ̂α operator on any state in Fock space will eventually result in the

creation of the vacuum state. Thus, the construction of noncommutative S3 may be

taken only as an auxilary step toward the construction of fuzzy S2.

Before completing the generalization of the first Hopf map to the noncommutative

spaces, we should inspect another commutation relation which is[
N̂ , a†σµa

]
=
[
â†α âα, â

†
β

(
σµ
)
βγ
âγ

]
= (σµ)βγ

([
â†αâα, â

†
β

]
âγ + â†β

[
â†αâα, â

†
γ

])
= (σµ)βγ

(
δαβ â

†
αâγ + â†β

(
−δγαâα

))
(2.3.7)

= (σµ)βγ

(
â†βâγ − â

†
βâγ

)
= 0,

where a = (â1, â2)T is a column vector consisting of the annihilation operators. In-

tuitively, it should be clear that the commutator in the left hand side of (2.3.7) van-

ishes since, a†σµa term contains equal number of annihilation and creation operators

in each component. As a result of combining (2.3.7) with the quantized version of

equation (2.2.5), we arrive at the set of operators x̂µ that corresponds to the noncom-

mutative coordinates of S 2
F as follows

x̂µ =
1√
N̂
a†σµa

1√
N̂

=
1

N̂
a†σµa , (2.3.8)

where we have used (2.3.7) for the last equality in (2.3.8), as (2.3.7) is valid for any

function of N̂ . We can immediately observe that the number operator commutes with

these coordinates: [
N̂ , x̂µ

]
= 0, (2.3.9)
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which suggests that it is possible to restrict x̂µ to the (N + 1)-dimensional subspace

HN of the Fock space in which the eigenvalue of the number operator is never zero,

i.e., N̂ ≡ N 6= 0 on any of the vectors of HN . The set of orthogonal vectors

|N1, N −N1〉 that are defined by

|N1, N −N1〉 =

(
â1
†
)N1
(
â2
†
)N−N1

(N1! (N −N1)!)1/2
|0, 0〉 , (2.3.10)

constitute a convenient basis for spanning HN . In this basis, x̂µ are (N+1)×(N+1)

Hermitian matrices whose polynomials generate the matrix algebra Mat(N+1). Here,

it is essential to note that, as a consequence of the quantization of the first Hopf map,

the algebra of functions on S2,C∞(S2), is converted into the noncommutative algebra

of matrices Mat(N + 1) on S 2
F .

These foregoing considerations about the noncommutative coordinates of (2.3.8) can

be enriched by focusing on the relationship between the algebraic theory of angu-

lar momentum and quantum oscillators. The Jordan-Schwinger map, which may be

thought of as an operator analogue of the Hopf maps, is a mapping from a set of

matrices into the annihilation (creation) operators of either bosonic or fermionic type

[47, 48]. As a specific example, consider the map M3 given over the bosonic opera-

tors:

M3 :
1

2
σµ 7→ Jµ =

1

2
a†σµa, (2.3.11)

where σµ are the Pauli matrices. The operators Jµ correspond to the generators of

SU(2) group on the Fock space spanned by

|n1, n2〉 =

(
â1
†
)n1
(
â2
†
)n2

(n1!n2!)1/2
|0, 0〉 , (2.3.12)

and Jordan-Schwinger map assures that they satisfy the commutation relations

[Jµ, Jν ] = iεµνηJη . (2.3.13)

The operators Jµ may be expressed in an explicit form as

J1 =
1

2

(
â1
† â2 + â2

† â1

)
, (2.3.14a)

J2 =
i

2

(
â2
† â1 − â1

† â2

)
, (2.3.14b)

J3 =
1

2

(
â1
† â1 − â2

† â2

)
, (2.3.14c)
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from which we easily find that

Jµ |0, 0〉 = 0, (2.3.15)

hence the ground state is an SU(2) singlet. Furthermore, the adjoint action of Jµ on

the annihilation operators is[
Jµ, âα

]
=

1

2

[
âβ
† (σµ)βγ âγ, âα]

=
1

2
(σµ)βγ

(
â†β

[
âγ, âα

]
+
[
â†β, âα

]
âγ

)
(2.3.16)

=
1

2
(σµ)βγ

(
−δαβ âγ

)
= −1

2
(σµ)αγ âγ ,

and similarly we have [
Jµ, âα

†
]

=
1

2
(σµ)γα âγ

† , (2.3.17)

so the operators âα
† and âα both carry the spin

1

2
irreducible representation (IRR) of

SU(2) and transform as spinors under the action of SU(2). An important and useful

implication of this fact is that by taking the N -fold symmetric tensor product of spin-

half IRRs, we may reach the angular momentum j =
N

2
IRR of SU(2) as follows

(
1

2
⊗ 1

2
⊗ ...⊗ 1

2

)
sym

≡ N

2
. (2.3.18)

In fact, we see that
[
N̂ , Jµ

]
= 0 by (2.3.7), so Jµ spans the spin j =

N

2
IRR on the

subset of states |n1, n2〉 with N = n1 + n2. Therefore the full Fock space splits into

an infinite direct sum of subspaces each of which is labeled by an SU(2) IRR j =
N

2

and we may write F ≡
⊕∞

N=0 HN . The Casimir operator of SU(2) in the spin
N

2
IRR is

JµJµ |N1, N −N1〉 = j (j + 1) |N1, N −N1〉 (2.3.19)

=
N

2

(
N

2
+ 1

)
|N1, N −N1〉 .

By exploiting (2.3.9), the connection between the angular momentum operators and

the fuzzy sphere coordinates can be established as

Jµ |N1, N −N1〉 =
1

2
N̂ x̂µ |N1, N −N1〉
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=
1

2
x̂µN̂ |N1, N −N1〉 (2.3.20)

=
N

2
x̂µ |N1, N −N1〉 ,

or

x̂µ |N1, N −N1〉 =
2

N
Jµ |N1, N −N1〉 , (2.3.21)

from which one may observe that S 2
F coordinates satisfy

[x̂µ, x̂ν ] =
2i

N
εµνη x̂η . (2.3.22)

Moreover, it follows from equation (2.3.19) that x̂µ’s fulfill the relation:

x̂µx̂µ =

(
1 +

2

N

)
1N+1 . (2.3.23)

It is clear from equations (2.3.22) and (2.3.23) that in the large-N limit the standard

commutative S2 is recovered. With the scaling

x̂µ →
√

N

N + 2
x̂µ =

1√
j (j + 1)

Jµ , (2.3.24)

the last two equations can be put in better-known forms shown below

x̂µ x̂µ = 1N+1 , (2.3.25)

[x̂µ, x̂ν ] =
i√

j (j + 1)
εµνη x̂η . (2.3.26)

A general matrix m ∈ Mat(2j + 1) is an element of S2
F (j) and can be finitely gener-

ated by x̂µ as detailed below

m =
∑

µ1,...,µl

mµ1...µl
x̂µ1 ...x̂µl . (2.3.27)

We may compare this with equation (2.1.3), we see that, m tends to Ω(~ρ) in the

j →∞ limit. The scalar product on the fuzzy sphere is defined as

(m1,m2) = Tr
(
m1
†m2

)
, (2.3.28)

where m1 ,m2 ∈ Mat(N + 1) and Tr stands for the normalized trace given by

Tr(1N+1) =
1

N + 1
tr(1N+1) = 1. (2.3.29)
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It must be clear that the Tr corresponds to the integral 1
4π

∫
d3~ρ and the inner prod-

uct (2.3.28) converges to
∫

d3~ρ Ω1(~ρ) Ω2(~ρ) in the j → ∞ limit. Besides, we

may also introduce left and right acting linear operators ÔL and ÔR that are defined

through their action on Mat(N + 1):

ÔLm = om, ÔRm = mo, ÔL , ÔR ∈ Mat(N + 1), (2.3.30)

and satisfy the relations[
ÔL, P̂R

]
= 0,

(
ÔP̂

)L
= ÔLP̂L ,

(
ÔP̂

)R
= P̂RÔR . (2.3.31)

A subset of these linear operators, which should be given special emphasis, consist of

the angular momentum operators J L
µ and J R

µ whose Casimir operators are given by

J R
µ J

R
µ 〈N1, N −N1| = 〈N1, N −N1| JµJµ

= j (j + 1) 〈N1, N −N1| , (2.3.32)

J L
µ J

L
µ |N1, N −N1〉 = JµJµ |N1, N −N1〉

= j (j + 1) |N1, N −N1〉 . (2.3.33)

Now that we have introduced the left and right acting operators, it is time to construct

a noncommutative analog of the derivative operator, Lµ, of equation (2.1.6). The

derivatives on the fuzzy sphere are defined by the adjoint action of the group SU(2)

on Mat(N + 1) as follows

Lµm ≡ adJµm =
(
J L
µ − J R

µ

)
m =

[
Jµ,m

]
, (2.3.34)

where Lµ’s satisfy the Leibniz rule

Lµ (m1m2) =
(
Lµm1

)
m2 +m1

(
Lµm2

)
, (2.3.35)

therefore Lµ’s are derivations on Mat(N + 1). As they contain J L
µ and J R

µ , which

both carry the spin-j irreducible representations of SU(2), the Lµ operators carry the

tensor product representation (j × j) that decomposes into the direct sum of IRRs of

SU(2) as

j ⊗ j = 0⊕ 1⊕ ...⊕ 2j =

2j⊕
k=0

k , (2.3.36)
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which means that there is a cut-off value for the spectrum of the Laplacian L 2 =

LµLµ on S 2
F . We see that L 2 can take on the eigenvalues l (l + 1) with l =

0, 1, ..., 2j. In fact, we can choose to diagonalize L3 together with L 2 = LµLµ. The

eigenvectors in this basis are known as the irreducible polarization tensors Tlm(j)

(−l ≤ m ≤ l) that carry the spin-l irreducible representation of SU(2). We have

L 2Tlm(j) = LµLµT lm =
[
Jµ,
[
Jµ, T lm

]]
= l (l + 1)Tlm(j), (2.3.37)

L3Tlm(j) =
[
J3, T lm

]
= mTlm(j), (2.3.38)

where the polarization tensors are (2j + 1) × (2j + 1) matrices. The inner product

rule is given by (
Tlm, Tl′m′

)
= Tr

(
Tlm

†Tl′m′
)

= δll′δmm′ . (2.3.39)

For a given value of l, there are 2l+ 1 possible values of m, hence in total Tlm(j) has

2j∑
l=0

(2l + 1) = 2j (2j + 1) + 2j + 1 = (2j + 1)2 , (2.3.40)

independent degrees of freedom which leads us to realize that Tlm(j) form an or-

thonormal basis of the matrix algebra Mat(2j + 1). As an essential consequence of

these facts, generic matrix M ∈ Mat(2j + 1) on the fuzzy S2 can be decomposed as

M =

2j∑
l=0

l∑
m=−l

C lmTlm(j). (2.3.41)

We see that, this result is the fuzzy analogue of (2.1.4) and Tlm(j) may be thought as

the discrete basis replacing the spherical harmonics Ylm(θ, ϕ) on S2.

2.3.2 Construction of Fuzzy 4-Sphere

In the preceding subsection, we focused on the construction of the fuzzy two-sphere.

In this subsection, we continue our inspection of fuzzy spaces by turning our focus

to the discussion of the fuzzy four-sphere S 4
F . Some aspects of construction of S 4

F

resembles the construction of S 2
F . Nevertheless, there are also important distinctions,

which does not allow us to give a simple generalization of the discussion leading to

the construction of S 2
F .
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To begin the construction of S 4
F , we start with the standard definition of a four-

sphere. The four-dimensional sphere S4 can be embedded in five-dimensional Eu-

clidean space R5 as

x1
2 + x2

2 + x3
2 + x4

2 + x5
2 = R2, (x1, x2, x3, x4, x5) ∈ R5. (2.3.42)

Since the coordinates xa commute by definition, we have

εabcdexaxbxcxd = 0 , (2.3.43)

where εabcde is the 5-dimensional Levi-Civita tensor. The derivations on 4-sphere are

provided by the SO(5) generators that are defined in terms of differential operators

as follows

Lab = xa∂b − xb∂a . (2.3.44)

Allowing Lab to operate on an arbitrary coordinate shows readily that

Lab(xc) ≡ [Lab, xc] = xaδcb − xbδac , (2.3.45)

and the derivations satisfy the usual SO(5) commutation relations given by

[Lab, Lcd] = δbcLad − δbdLac + δadLbc − δacLbd . (2.3.46)

In equation (2.1.26), we provided the description of S2 as a coset space. The four-

sphere can be described as a coset manifold in a similar fashion. To demonstrate

this fact, we should consider the action of certain special orthogonal groups on S4.

It is known that SO(5) acts transitively on the 4-sphere. The infinitesimal action

of SO(5) on S4 is already provided by Lab in (2.3.44) and (2.3.45). Let ~xst =

(x1, x2, x3, x4, x5)T denote the coordinates of the 4-sphere. From (2.3.42) we can

infer that ~xst transforms as a vector under the rotations of SO(5) group. The north

pole of S4 may be given by ~xo = (0, 0, 0, 0, 1)T . The isotropy group of ~xo is clearly

G ≡

H 0

0 1

 = {diag (H, 1) |H ∈ SO(4)} ≈ SO(4), (2.3.47)

since the action of SO(5) is transitive, we have the desired result

S4 ∼=
SO(5)

SO(4)
. (2.3.48)
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Before giving a detailed construction, we may define the fuzzy four-sphere in terms

of noncommutative coordinates χa (a = 1, ..., 5) satisfying the conditions

χaχa = R2 , (2.3.49a)

εabcdeχaχbχcχd = Cχe , (2.3.49b)

which can be realized by N ×N matrices such that N = 1
6
(n+1)(n+2)(n+3) with

n ∈ Z+. The radius R and the constant C are given by

R2 =
1

4
n(n+ 4)r, C = (n+ 2)r3 , (2.3.50)

where r is a constant of dimension length. (2.3.49a) is analogous to (2.3.23) of fuzzy

sphere, while (2.3.49b) is new. We also see that not all N ×N matrices can represent

S 4
F but only those of dimension 4, 10, 20, ... etc. We may now proceed to discuss the

underlying facts.

In order to initiate the formation of a matrix configuration with the symmetry prop-

erties of a four-sphere, we recall the Clifford algebra relation (2.2.13), {γa, γb} =

2δab14 , where γa are the 4 × 4 gamma-matrices in five dimensions. The generators

of the spinor representation (0, 1) (in the Dynkin notation) of SO(5) are given as

Gab = − i
4

[γa, γb], (2.3.51)

and fulfills the SO(5) commutation relations, that is

[Gab, Gcd] = i (δacGbd + δbdGac − δadGbc − δbcGad) . (2.3.52)

Let us note that Lab in contrast carry the vector IRR of SO(5) denoted as (1, 0) in

Dynkin notation. γa act on the four-dimensional spinor space C4 which is the carrier

space of the (0, 1) IRR of SO(5). We define the Hilbert space Hn, which is the

carrier space of the (0, n) IRR of SO(5), as the n-fold completely symmetrized tensor

product space

Hn =
(
C4 ⊗ ...⊗ C4

)
, (2.3.53)

with the dimension N given by

N = dim(0, n) =
1

6
(n+ 1)(n+ 2)(n+ 3) . (2.3.54)

Now, we consider the n-fold symmetric tensor product

X(n)
a =

1

2
(γa ⊗ 14 ⊗ ...⊗ 14 + ...+ 14 ⊗ ...⊗ 14 ⊗ γa)sym , (2.3.55)
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that acts on Hn. The subscript ”sym” indicates that Xa are restricted to the com-

pletely symmetrized tensor product space. By taking the commutators of Xa’s, it is

possible to obtain the generators of SO(5) in the (0, n) IRR

[Xa, Xb] = iMab , (2.3.56)

which satisfy the SO(5) algebra

[Mab,Mcd] = i(δacMbd + δbdMac − δadMbc − δbcMad). (2.3.57)

The commutation relations of Mab with Xc’s show that Xc transform as vectors under

the SO(5) transformations generated by Mab

[Mab, Xc] = i(δacXb − δbcXa). (2.3.58)

The N × N Hermitian matrices Xa satisfy the identities (2.3.49) for the fuzzy four-

sphere

XaXa =
1

4
n(n+ 4)1N , (2.3.59a)

εabcdeXaXbXcXd =
1

4
εabcdeMabMdc = (n+ 2)Xe . (2.3.59b)

We will compute (2.3.59a) explicitly after stating a few further developments, while

we omit the proof of (2.3.59b) and refer the reader to [34]. Note that XaXa is an

SO(5) invariant operator. Since one can easily check that [Mab, XcXc] = 0, it is not

the Casimir operator of SO(5) though. The latter is given asMabMab and in the (0, n)

irreducible representation takes the value

C
SO(5)
2 ((0, n)) = MabMab =

1

2
n(n+ 4)1N . (2.3.60)

The noncommutative coordinates of S 4
F can be related to Xa via a dimensionful con-

stant r introduced in (2.3.49) as shown below

χa = rXa , R2 =
1

4
n(n+ 4)r2 , C = (n+ 2)r3 . (2.3.61)

TheXa’s can also be expressed in terms of quantum oscillators by employing a gener-

alization of the Schwinger’s construction. Let Â
†
α

(
Âα

)
be the creation (annihilation)

operators that correspond to the four bosonic oscillators. They satisfy the bosonic op-

erator algebra[
Âα, Â

†
α
′

]
= δαα′ ,

[
Âα, Âα

′

]
= 0 ,

[
Â
†
α , Â

†
α
′

]
= 0. (2.3.62)
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By allowing the creation operators to act on the vacuum state |0〉 ≡ |0000〉, one

obtains the Fock space equivalent of (2.3.53), i.e. Hn is spanned by the states

Â
†
α1
...Â

†
αn
|0〉. The realization of Xa in this basis is written by

Xa =
1

2
Â
†
γaÂ , (2.3.63)

where the vector Â has components given by Â ≡
(
Â1, Â2, Â3, Â4

)T
. Taking the

commutators of Xa’s yields

[Xa, Xb] =
1

4

[(
Â
†)

α
(γa)αα′

(
Â
)
α
′ ,
(
Â
†)

β
′(γb)β′β′′

(
Â
)
β
′′

]
=

1

4
(γa)αα′(γb)β′β′′

[
Â
†
α Âα

′ , Â
†
β
′Âβ

′′

]
=

1

4
(γa)αα′(γb)β′β′′

(
Â
†
α δα′β′Âβ

′′ − Â
†
β
′δβ′′αÂα

′

)
(2.3.64)

=
1

4

(
Â
†
γaγbÂ − Â

†
γbγaÂ

)
= iÂ

† 1

4i
[γa, γb]Â

= iMab ,

where Mab is

Mab = Â
†
GabÂ . (2.3.65)

Equations (2.3.57) and (2.3.58) can be verified by the same token. From the analysis

of the preceding commutation relations it is found out that the matrix algebra gen-

erated by the S 4
F coordinates, Xa, do not close. Thus, it is not possible to write an

expression analogous to (2.3.41) which enables an expansion of functions on S 4
F in a

complete basis.

2.3.2.1 Symmetric Tensor Product of Matrices

With the algebraic background of the fuzzy four-sphere in hand, we shift our view

to the calculation of S 4
F matrices that are defined by (2.3.55). A convenient way of

determining the elements of these matrices is to express the symmetric tensor product

in terms of an orthonormal basis. To achieve this, we first write the elements of a

matrix W as

Wαβ = 〈α|W |β〉 . (2.3.66)

The tensor product, i.e. Kronecker product, of two matrices may be expressed as [49]

(W ⊗ V )[αβ] = 〈α1, α2|W ⊗ V |β1, β2〉
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= 〈α1| 〈α2| (W ⊗ V ) |β1〉 |β2〉 (2.3.67)

= 〈α1|W |β1〉 〈α2|V |β2〉 ,

where [αβ] is a collective notation for (α1, α2, β1, β2). Now, consider |β1, β2〉sym to

be a symmetrized orthonormal state that is given by

|β1, β2〉sym = |β2, β1〉sym =
1

γnr
(|β1〉 |β2〉+ |β2〉 |β1〉) , (2.3.68)

where γnr is an appropriate constant of normalization. The two-fold symmetric tensor

product could be defined by

(W ⊗S V )[αβ] = sym〈α1, α2|W ⊗ V |β1, β2〉sym . (2.3.69)

As an illustration of the calculation of symmetric product, we may determine a spe-

cific element. For instance, consider the case of [αβ] = (α1, α2, β1, β2) = (1, 2, 1, 1):

(W ⊗S V )[αβ] = sym〈1, 2|W ⊗ V |1, 1〉sym

=
1√
2

[
(〈1| 〈2|+ 〈2| 〈1|) (W ⊗ V ) (|1〉 |1〉)

]
(2.3.70)

=
1√
2

[
〈1|W |1〉 〈2|V |1〉+ 〈2|W |1〉 〈1|V |1〉

]
=

1√
2

(W11V21 +W21V11) .

Besides, an examination of equation (2.3.69) also demonstrates that the symmetric

tensor product is commutative. This property is manifest if one substitute (2.3.68) for

|β1, β2〉sym in (2.3.69)

(W ⊗S V )[αβ] =
1

γ2
nr

[
〈α1|W |β1〉 〈α2|V |β2〉+ 〈α1|W |β2〉 〈α2|V |β1〉

+ 〈α2|W |β1〉 〈α1|V |β2〉+ 〈α2|W |β2〉 〈α1|V |β1〉
]

=
1

γ2
nr

[
〈α2| 〈α1| (V ⊗W ) |β2〉 |β1〉+ 〈α2| 〈α1| (V ⊗W ) |β1〉 |β2〉

+ 〈α1| 〈α2| (V ⊗W ) |β2〉 |β1〉+ 〈α1| 〈α2| (V ⊗W ) |β1〉 |β2〉
]

= sym〈α1, α2|V ⊗W |β1, β2〉sym

= (V ⊗S W )[αβ] . (2.3.71)

Inspecting (2.3.71) we may infer that the minimum number of terms required to eval-

uate X(n)
a can have two values depending on the parity of n, and it is

n

2
for even n
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while it is
n+ 1

2
for odd n. We can exemplify this situation by analyzing the case of

5-fold symmetric tensor product:

X(5)
a =

1

2

[
γa ⊗ (14 ⊗ 14 ⊗ 14 ⊗ 14) + (14 ⊗ γa ⊗ 14)⊗ (14 ⊗ 14)

+ 14 ⊗ 14 ⊗ γa ⊗ 14 ⊗ 14 + (14 ⊗ 14)⊗ (14 ⊗ γa ⊗ 14)

+ (14 ⊗ 14 ⊗ 14 ⊗ 14)⊗ γa
]

sym

=
[
γa ⊗ 14 ⊗ 14 ⊗ 14 ⊗ 14 + 14 ⊗ γa ⊗ 14 ⊗ 14 ⊗ 14

+
1

2
14 ⊗ 14 ⊗ γa ⊗ 14 ⊗ 14

]
sym

.

(2.3.72)

As expected, 3 terms are sufficient to completely evaluate X(5)
a . Before concluding

the discussion of symmetric tensor product we need to point out that, as suited to

the particular needs of the subsequent chapters, X(n)
a matrices for n = 1, ..., 9 were

numerically evaluated in the basis of γ-matrices provided in appendix A.1. The al-

gorithm, which was developed for the task of the calculation of these matrices, was

implemented in the MATLAB code shown in appendix G.

2.3.2.2 Geometry of S 4
F

To conclude this subsection and to further reveal the distinctions between S 2
F and

S 4
F , we move on to a discussion of proper geometric characterization of the fuzzy 4-

sphere. Our initial task to reveal the geometry of S 4
F is to render a reinterpretation of

equation (2.2.12). To achieve this, one should first notice that the overall phase of ζτ
drops out in (2.2.12). Therefore, the second Hopf map is also related to a map from

CP3 ∼=
S7

U(1)
to the four-sphere [10, 19]. As it is central to the understanding of this

new interpretation, let us consider a definition of CP3 in terms of projection operators.

The relevant projection operator can be defined in Dirac notation as follows [50, 51]

Pζ = |ζ〉〈ζ| = ζζ† , (2.3.73)

where ζ = (ζ1, ζ2, ζ3, ζ4)T and |ζ〉 ∈ C4 is a unit vector modulo an overall phase

factor. CP3 is the space of all projection operators of rank one on C4:

CP3 =
{
Pζ
† = Pζ , Pζ

2 = Pζ ,Tr
(
Pζ
)

= 1 |Pζ ∈ Mat (4,C)
}
. (2.3.74)
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In this regard, we may define the map M4 as

M4 : CP3 7→ S4

Pζ 7→ Ψa = 〈ζ| γa |ζ〉 = ζ†γaζ . (2.3.75)

The five-dimensional gamma-matrices in the Weyl basis are given by [52]

γ0 =

 0 −12

−12 0

 , γµ =

 0 σµ

−σµ 0

 , γ5 =

12 0

0 −12

 . (2.3.76)

In this basis, a generic column vector ζ is mapped under M4 to the fifth Euclidean

coordinate written by

Ψ5(ζ) = ζ†γ5ζ = |ζ1|2 + |ζ2|2 − |ζ3|2 − |ζ4|2 . (2.3.77)

To further clarify the mapping between two manifolds, a specific point can be cho-

sen as the point of reference. Let us pick ζrf = (1, 0, 0, 0)T as the reference point.

From (2.3.77), we determine that Ψα

(
ζrf
)

= 0 (α 6= 4) and Ψ5

(
ζrf
)

= 1. There-

fore, ζrf is evidently mapped to the S4 reference point Ψrf = (0, 0, 0, 0, 1) which

corresponds to the north pole of the 4-sphere. The isotropy group of Ψrf is written

by

Hrf =
{

[hrf , γ5] = 0 |hrf ∈ SO(5)
}
≈ SO(4) ≈ SU(2)L × SU(2)R , (2.3.78)

where we have employed the local isomorphism of SO(4) to SU(2) × SU(2). It is

obvious that while SU(2)R acts on the −12 eigenspace of γ5, SU(2)L acts on the

eigenspace 12. The fiber over Ψrf is subject to the condition

1 = 〈ζL| γ5 |ζL〉 = ζL
†γ5ζL , (2.3.79)

where ζL = (ζ1
L, ζ

2
L, 0, 0)T . Inserting (2.3.76) into (2.3.79) , we find the constraint

relation ∣∣ζ1
L

∣∣2 +
∣∣ζ2
L

∣∣2 = 1, (2.3.80)

that defines the three-sphere. In addition, since the overall phase of ζL drops out

in (2.3.75), it turns out that the fiber is indeed S2 ∼=
S3

U(1)
. Thus, we arrive at the

conclusion that CP3 is an S2-bundle over S4.
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In order to construct the fuzzy version of this fibration, we start with introducing the

map M5 that describes an embedding of CP3 to R15 as follows [53]

M5 : CP3 7→ R15

Pζ 7→ Ψgh = 〈ζ|Fgh |ζ〉 = ζ†Fghζ , (2.3.81)

where the Fgh (g, h = 1, .., 6) are the generators of SO(6) in the fundamental spinor

IRR of SO(6) labeled as (1, 0, 0). A useful categorization of fifteen generators is

Fgh = {Fab, Fa6} where a further identification of Fa6 with the γ-matrices is also

possible [19]

γa = 2Fa6 , (2.3.82)

then for Ψa coordinates of S4 in (2.3.75), we have the composition of manifolds:

Ψa : CP3 → R15 Hpr−−→ R5 , (2.3.83)

where Hpr is the projection of Fgh to the subspace spanned by Fa6.

The quantization of (2.3.81) is performed by utilizing Schwinger’s construction as

Fgh = Â
†
FghÂ , (2.3.84)

hence, S 4
F arises from the quantization of the map Ψa : CP3 → S4 defined by

χa = rXa = rFa6 , (2.3.85)

where χa and Xa were already defined in equations (2.3.61) and (2.3.63). Sum-

marizing, as we have stated earlier S4 admits no symplectic structure, so S 4
F can-

not be quantized in the canonical way followed for S2 → S2
F . Rather, the fuzzy

four-sphere should be thought of as emerging from the quantization of the fibration

S2 → CP3 → S4. S 4
F is a squashed fuzzy CP3 with S 2

F fibers.

2.4 BFSS Matrix Model

Now that, we have discussed several geometrical aspects of fuzzy two- and four-

spheres, it is important to see how they appear in physical context. That brings us

to the discussion of matrix gauge theories and the Banks-Fischler-Shenker-Susskind

(BFSS) [2] matrix model and its deformations in particular. We will aim to give a
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self-contained review of the BFSS matrix model and its deformations which will be

referred to throughout the chapter four.

The effective theory describing the dynamics of N coincident D0-branes is the BFSS

matrix model [2]. In this interpretation of the model, the diagonal elements of the

matrices give the positions of these D0-branes in 9-dimensional flat space, while the

off-diagonal elements describe the interaction of these pointlike objects. Further de-

tailed discussion on this subject may be found in [2, 10, 11, 54]. The BFSS action is

a Yang-Mills theory in 0 +1 dimensions which arises from the dimensional reduction

of the Yang-Mills theory in 9 + 1 dimensions with N = 1 supersymmetry. Leaving

apart the fermionic part of the action, we focus on the bosonic part of theory, which

will be sufficient for our purposes. The starting point of our analysis of the dimen-

sional reduction procedure is then the bosonic part of this ten-dimensional Yang-Mills

action and it is given by [11]

SSY = − 1

4g2

∫
dx10 Tr

(
FµνF

µν
)
, µ, ν = 0, .., 9. (2.4.1)

Here the background of the ten-dimensional space-time is flat, has the Minkowski

metric ηµν = diag(−1, 1, ..., 1). The field strength tensor is defined as

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ] , (2.4.2)

where Aµ is the gauge field which transforms as

A ′µ = U †AµU + iU †∂µU , (2.4.3)

under the U(N) gauge transformations. SSY is invariant under this U(N) gauge

symmetry. The field components can be written as Aµ(t,~x) = (A0(t,~x), AI(t,~x))

where I = 1, .., 9.

The dimensional reduction procedure is carried out by assuming that all fields and

gauge transformations are independent of the spatial coordinates I . Thus we may

introduce the notation

U ≡ U(t), Aµ ≡ Aµ(t) = (A0(t), BI(t)). (2.4.4)

Under this assumption (2.4.3) implies

A ′0(t) = U †A0U + iU †∂tU, (2.4.5a)
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B ′I(t) = U †BIU. (2.4.5b)

While equation (2.4.5a) demonstrates the transformation property of gauge fieldA0(t),

(2.4.5b) indicates thatBI transform adjointly underU(N) gauge transformations, that

is, BI’s transform as an adjoint non-abelian scalar field with U(N) gauge symmetry.

To proceed further, it is convenient to list the relationships between covariant and

contravariant components:

A0 = η00A0 = −A0, BI = ηIJBJ = BI , ∂0 = η00∂0 = −∂0 . (2.4.6)

Computing the required derivatives with the help of (2.4.6), the components of the

field tensor are cast into the following forms

F0I = ∂0BI − ∂IA0 − i[A0, BI ]

= ∂tBI − i[A0, BI ] (2.4.7)

= DtBI ,

F 0I = ∂0BI − ∂IA0 − i[A0, BI ]

= −∂tBI + i[A0, BI ] (2.4.8)

= −F0I ,

F IJ = FIJ = ∂IBJ − ∂JBI − i[BI , BJ ]

= −i[BI , BJ ]. (2.4.9)

Then, utilizing the antisymmetry of Fµν , i.e. Fµν = −Fνµ, it is straightforward to

show that

−1

4
FµνF

µν = −1

4

(
F0IF

0I + FI0F
I0 + FIJF

IJ
)

= −1

4
(−2F0IF0I + FIJFIJ) (2.4.10)

=
1

2
(DtBI)

2 +
1

4
[BI , BJ ]2 .

Thus, as a consequence of the dimensional reduction procedure, equation (2.4.1) be-

comes

SB =
1

g2

∫
dtTr

(
1

2
(DtBI)

2 +
1

4
[BI , BJ ]2

)
. (2.4.11)
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It must be clear that SB is invariant underU(N) gauge transformations given by (2.4.5).

Besides this gauge symmetry, the SO(9, 1) Lorentz symmetry of the original Yang-

Mills theory yields to a global SO(9) symmetry of the BFSS model, which is given

as

B ′I = RIJBJ , R ∈ SO(9) . (2.4.12)

Let us note in passing that this SO(9) symmetry may be broken by the addition of

massive deformations to the action preserving the gauge symmetry. The maximally

supersymmetric deformation of the BFSS model is called the Berenstein-Maldacena-

Nastase (BMN) [5] model which breaks SO(9) to SO(6) × SO(3). This leads to a

description of coincident D0-branes on spherical backgrounds. In particular, fuzzy

2-sphere appears as vacuum configurations in the BMN model. In chapter 4, we will

focus on another massive deformation of the BFSS model which breaks SO(9) to

SO(5)× SO(4) and subsequently to SO(5)× SO(3)× Z2.

We see that the gauge field A0 in the BFSS model is not dynamical as its time deriva-

tive does not appear in the action (2.4.11). The variation of SB with respect to A0

leads to a constraint equation. To see this explicitly, consider the variation of A0

given by

A0 → A ′0 = A0 + δA0 , (2.4.13)

whose effect on the covariant derivative term of the BFSS action can be determined

as

Tr
(
(DtBI − i[δA0 , BI ])

2) = Tr
(
(DtBI)

2 − i{DtBI , [δA0 , BI ]}+ O
(
(δA0)2))

= Tr
(
(DtBI)

2)− 2iTr((DtBI) [δA0 , BI ]) (2.4.14)

= Tr
(
(DtBI)

2)− 2iTr([BI , DtBI ] δA0),

so the variation of SB with respect to A0 is

δSB = − i

g2

∫
dtTr([BI , DtBI ] δA0) = 0, (2.4.15)

which leads to the equation

[BI , DtBI ] = 0. (2.4.16)

Substituting the gauge choice of A0 = 0 into (2.4.16), we obtain the Gauss law

constraint written by

[BI , ∂tBI ] = 0. (2.4.17)
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In the A0 = 0 gauge, the action is simply given as

SB

∣∣∣
A0=0

=
1

g2

∫
dtTr

(
1

2
(∂tBI)

2 +
1

4
[BI , BJ ]2

)
. (2.4.18)

The conjugate momenta of BI are

PI =
1

g2 ∂tBI ≡
1

g2 ḂI , (2.4.19)

and the associated Hamiltonian takes the form

HBFSS = g2 Tr

(
PI

2

2
− 1

4g4 [BI , BJ ]2
)
. (2.4.20)

It is easy to see that HBFSS is invariant under the constant shift of the matrices

BI → B ′I = BI + eT1N , (2.4.21)

where eT is a constant. We have

P ′I =
1

g2

(
ḂI + eT0N

)
=
ḂI

g2 = PI , (2.4.22a)[
B ′I , B

′
J

]
= [BI + eT1N , BJ + eT1N ] = [BI , BJ ], (2.4.22b)

which shows that neither the momentum terms nor the commutators are affected

by (2.4.21). Therefore, we deduce that the Hamiltonian has translational symme-

try. This means that, center of mass motion of D0-branes may be separated out, and

we can work with traceless Hermitian matrices, TrBI = 0, and the U(1) part of the

U(N) gauge symmetry separates out, leaving us with the SU(N) gauge symmetry.

The potential part of HBFSS may be written out separately as

VB =
1

4g2 Tr(VIJVIJ), (2.4.23)

where VIJ = i[BI , BJ ]. Due to the hermiticity of BI , VIJ are also Hermitian matrices

that can be diagonalized with the help of a similarity matrix S:

D = SVIJS
−1 , (2.4.24)

which allows us to write

VB =
1

4g2 Tr
(
SVIJS

−1SVIJS
−1
)

=
1

4g2 Tr
(
D2
)
. (2.4.25)

Then, we conclude that since all elements of the diagonal matrix D are real, VB must

be a non-negative potential, i.e. VB ≥ 0.
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2.5 Review of Yang-Mills Matrix Models

After comprehensive introductions to fuzzy spheres and the BFSS matrix model, we

wish to review some elementary aspects of Yang-Mills matrix models. We start this

section with a brief review of 5-matrix model i.e. model with five Hermitian matri-

ces. This can be seen as a subsector of the BFSS model, with first five matrices as

dynamical variables, while the remaining four are frozen and essentially set to zero.

Then, with the addition of an appropriate massive deformation term, an action with a

fuzzy S4 extremum is constructed.

The action of Yang-Mills 5-matrix model in Minkowski signature can be given as

SYM =
1

g2

∫
dtTr

(
1

2
(DtBa)

2 +
1

4
[Ba, Bb]

2

)
, (2.5.1)

where Ba (a = 1, .., 5) are N ×N Hermitian matrices transforming under the adjoint

representation of U(N) as

Ba → U †BaU , U ∈ U(N). (2.5.2)

Tr stands for the normalized trace and the covariant derivatives are given by

DtBa = ∂tBa − i[A,Ba], (2.5.3)

where A is a U(N) gauge field transforming as

A→ U †AU + iU †∂tU. (2.5.4)

Action in (2.5.1) is invariant under the U(N) gauge transformations implemented

by (2.5.2) and (2.5.4). Besides U(N) gauge transformations, SYM is also invariant

under the global SO(5) rotations which are given as

Ba → B ′a = RabBb , R ∈ SO(5), (2.5.5)

where Rab are time-independent, rigid rotations.

The potential part of SYM can be written as

VYM = − 1

4g2 Tr
(
[Ba, Bb]

2
)
. (2.5.6)
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There exists a massive deformation term of the form

Sµ = − 1

g2

∫
dtTr

(
µ2

4
B2
a

)
, (2.5.7)

that preserves both the U(N) gauge and SO(5) global symmetries of SYM . With

the addition of Sµ, the potential part of the combined action S = SYM + Sµ can be

expressed separately as

V =
1

g2

∫
dtTr

(
−1

4
[Ba, Bb]

2 +
µ2

4
B2
a

)
. (2.5.8)

For the gauge choice ofA = 0, the covariant derivativesDtBa vanish. We may look at

the configurations extremizing the potential V in (2.5.8). By letting Ba → Ba + δBa

in equation (2.5.8)

δV = − 1

4g2

∫
dt
[
4 Tr([Bb, [Ba, Bb]] δBa)− 2µ2 Tr(Ba δBa)

]
= − 1

g2

∫
dtTr

((
[Bb, [Ba, Bb]]−

µ2

2
Ba

)
δBa

)
= 0, (2.5.9)

we deduce that V is extremized by the matrices fulfilling

[Bb, [Bb, Ba]] +
1

2
µ2Ba = 0. (2.5.10)

Using (2.3.56) and (2.3.58) it is straightforward to demonstrate that by the fuzzy four-

sphere configurations Ba ≡ Xa, equation (2.5.10) can be put into the form

0 =[Xb, [Xb, Xa]] +
1

2
µ2Xa

=i[Mab, Xb] +
1

2
µ2Xa

=− (δabXb − δbbXa) +
1

2
µ2Xa

=

(
4 +

1

2
µ2

)
Xa . (2.5.11)

(2.5.11) is satisfied for µ2 = −8 which means that fuzzy four-spheres and their direct

sums provide non-trivial solutions of equation (2.5.10). Although such a negative

mass squared term may imply an instability, it was shown in [19] that quantum cor-

rections in the pure (i.e. matrices with no time-dependence), five matrix Yang-Mills

model stabilizes the radius of the fuzzy four-sphere.
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CHAPTER 3

YANG-MILLS 5-MATRIX MODEL AND GENERALIZED FUZZY

FOUR-SPHERE

3.1 Overview

In the preceding chapter, we aimed to provide a comprehensive description of fuzzy

spaces, focusing on the concrete cases of the fuzzy two-sphere and the fuzzy four-

sphere. We have also seen how these fuzzy spaces arise as vacuum solutions to Yang-

Mills (YM) matrix models related to massive deformations of the BFSS model.

In this chapter, our main focus is going to be exploring new vacuum solutions of

the YM 5-matrix model with a massive deformation term whose essential features

were sketched in section 2.5. We look for static matrix configurations i.e. extrema

of the potential which carries tensor product representations of SO(5), which solves

the classical equations of motion. For this purpose, we essentially generalize and

apply an approach followed in [24, 25] which introduces an additive new part to

the matrix configuration, which is already satisfying the equations of motion, us-

ing a Schwinger type realization of the SO(5) generators with "fermionic" annihi-

lation/creation operators. In [24, 25], this approach has been applied to generate

new vacuum configurations in an SU(N) gauge theory coupled to a triplet of adjoint

scalar fields and a massive deformation of the bosonic part of the N = 4 SUSY YM

model. The new vacuum configurations obtained this way are expressed as direct

sums of fuzzy two-spheres or direct sums of products of fuzzy two-spheres. This is

because quite straightforwardly tensor products of SU(2) IRRs and likewise that of

SU(2)L×SU(2)R IRRs can be expressed as direct sum of IRRs of these groups, and

allows one to interpret each block of the matrices carrying an IRR of these groups as

generating a fuzzy sphere S2
F or a product S2

F × S2
F at a matrix level specified by the
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dimension of the respective IRRs.

For the 5-YM model, the situation becomes much more complex since the direct

sum decompositions of the tensor product representations of SO(5) contains not only

those IRRs of SO(5) which are carried by the S4
F matrices but also more general

IRRs of SO(5) which does not appear to be immediately related to S4
F matrices. It

however turns out that some of these new matrix configurations can be understood

as generalized fuzzy four-sphere configurations introduced in [1]. The configurations

are denoted as S4
Λ, where Λ stands for the SO(5) and SO(6) IRR labels carried by

these configurations. After the presentation of these new vacuum configurations and

discussing in detail how they come about, using the representation theory of SO(5)

and SO(6), we will subsequently focus on understanding the connection of our re-

sults with the generalized fuzzy four-spheres of [1]. S4
Λ has a more involved geomer-

ical structure then S4
F and as an alternative to the discussion given in [1], we use

the quantization of coadjoint orbits method and quantize a particular 10-dimensional

coadjoint orbit O2 of SO(6) ≈ SU(4) to see detailed structure of S4
Λ. Generalized

coherent states associated to SO(6) ≈ SU(4) are used to discuss some aspects of

the generalized fuzzy four-spheres. While elaborating on these ideas, we also solve

the Landau problem on the coset space O2 and interpret its connection to the fuzzy

version of O2 as well to S4
F and S4

Λ taking advantage of the general results in the

literature [55, 56] that relates the Hilbert space of the lowest Landau level on CPN ,

Gr(2, 4) etc. to the Hilbert space of the fuzzy spaces CPNF and GrF (2, 4).

The plan of the chapter is as follows. In section 3.2, we consider the 5-YM matrix

model and introduce the new solutions using Schwinger construction of SO(5) IRRs

with fermionic oscillators. A detailed group theoretical analysis is provided in the

subsection 3.2.2. Section 3.3 presents some warm-up material on the techniques fol-

lowed to obtain quantization of coadjoint orbits, while some details are relegated to

the appendix B. In section 3.4, coadjoint orbit technique is applied to the coset space

O2 and its quantization is obtained.
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3.2 New Solutions of the Mass Deformed YM Model

We focus on the mass deformed Yang-Mills 5-matrix model with gauge symmetry

group U(N ). The action is given as

S =
1

g2

∫
dtTr

(
1

2
(DtWa)

2 +
1

4
[Wa,Wb]

2 − µ2

4
Wa

2

)
, (3.2.1)

where Wa are N ×N matrices. The potential part of S is extremized by matrices

fulfilling (2.5.10)

[Wa, [Wa,Wb]] +
1

2
µ2Wb = 0. (3.2.2)

As we have demonstrated in section 2.5 and equation (2.5.11), (3.2.2) has fuzzy 4-

sphere solutions given by the matrices(2.3.55) and for the µ2 = −8 value. In fact,

any direct sum of the S 4
F matrices yield a solution of (3.2.2) in the form

Wa = X(W1)
a ⊕X(W2)

a ⊕ · · · ⊕X(Wk)
a , (3.2.3)

provided that

N = N1 +N2 + ...+Nk , (3.2.4)

where Ni = 1
6
(ni + 1)(ni + 2)(ni + 3) with ith S4

F carrying the (0, ni) IRR of SO(5).

In particular, if all S4
F ’s are at the same matrix level, i.e. all Ni are the same and

N = kN , the solution may be written as

Wa = Xa ⊗ 1k . (3.2.5)

This is a solution of (3.2.2) consisting of k concentric S4
F at the same matrix level.

We may wonder if there are other solutions of (3.2.2) which may be expressed in the

form

Wa = Xa ⊗ 1k + 1N ⊗ Ya. (3.2.6)

with N = kN , dim(Ya) = k, and Ya satisying the same commutation relations as

Xa. Explicitly, we may write the requirements on Ya as

[Ya, Yb] = iZab , (3.2.7)

[Zab, Yc] = i(δacYb − δbcYa), (3.2.8)

and we have

[Zab, Zcd] = i(δacZbd + δbdZac − δadZbc − δbcZad), (3.2.9)
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where Zab generates the group SO(5). In general, it may carry a reducible represen-

tation of SO(5).

Under these assumptions, we may show that (3.2.6) is a solution of equation (3.2.2).

We have

[Wa,Wb] = (Xa ⊗ 1k)(Xb ⊗ 1k)− (Xb ⊗ 1k)(Xa ⊗ 1k)

+ (1N ⊗ Ya)(1N ⊗ Yb)− (1N ⊗ Yb)(1N ⊗ Ya) (3.2.10)

= (XaXb −XbXa)⊗ 1k + 1N ⊗ (YaYb − YbYa)

= i(Mab ⊗ 1k + 1N ⊗ Zab).

Thus

[Wa, [Wa,Wb]] = i([Xa,Mab]⊗ 1k + 1N ⊗ [Ya, Zab])

= (δaaXb − δbaXa)⊗ 1k + 1N ⊗ (δaaYb − δbaYa) (3.2.11)

= (5Xb −Xb)⊗ 1k + 1N ⊗ (5Yb − Yb)

= 4Wb ,

and for µ2 = −8 we find

[Wa, [Wa,Wb]] +
1

2
µ2Wb = 4Wb − 4Wb = 0 . (3.2.12)

We now want to focus on a specific form of Ya, which yields solutions of (3.2.2),

whose geometric structure yields to interesting new aspects and become linked to the

generalized fuzzy four-sphere S4
Λ mentioned in the overview section of this chapter.

3.2.1 Reducible Representation of SO(5) and Schwinger Construction

We launch the discussion by introducing four sets of fermionic annihilation-creation

operators, fulfilling the anti-commutation relations

{
bi, bj

}
= 0,

{
b†i , b

†
j

}
= 0,

{
bi, b

†
j

}
= δij, (3.2.13)

where i, j = 1, 2, 3, 4. These operators span a 16-dimensional Hilbert space with the

basis vectors

|n1, n2, n3, n4〉 = (b†1)n1(b†2)n2(b†3)n3(b†4)n4 |0, 0, 0, 0〉 , (3.2.14)
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where n1, n2, n3, n4 = 0, 1 as a consequnce of the fact that b2
i = 0 =

(
b†i

)2

. Let us

introduce a four-component column matrix as

Ψ =


Ψ1

Ψ2

Ψ3

Ψ4

 :=


b1

b2

b3

b4

 . (3.2.15)

Now by utilizing Schwinger’s construction [48] we may form the operators

Ya :=
1

2
Ψ†γaΨ . (3.2.16)

acting on the Hilbert space spanned by |n1, n2, n3, n4〉. Thus, evaluating the matrix

elements of Ya in this basis, we may express each Ya as an 16× 16 matrix. Similarly,

using the SO(5) generators

Gab = − i
4

[γa, γb] , (3.2.17)

in the 4-dimensional spinor IRR of SO(5) given in equation (2.3.51) we may write

Zab := Ψ†GabΨ . (3.2.18)

The IRR content of Zab will also be determined.

Using the oscillator algebra (3.2.13) and the Clifford algebra relations for γ-matrices,

we may obtain the commutation relations of Ya’s

[Ya, Yb] =
1

4
[b†i (γa)ijbj, b

†
k(γb)klbl] =

1

4
(γa)ij(γb)kl[b

†
i bj, b

†
kbl]

=
1

4
(γa)ij(γb)kl

(
b†i

{
bj, b

†
k

}
bl − b†k

{
b†i , bl

}
bj +

{
b†i , b

†
k

}
blbj

− b†ib
†
k

{
bj, bl

})
(3.2.19)

= iΨ†
1

4i
[γa, γb]Ψ

= iZab.

Similarly, it can be demonstrated that

[Zab, Yc] = i(δacYb − δbcYa), (3.2.20)

[Zab, Zcd] = i(δacZbd + δbdZac − δadZbc − δbcZad). (3.2.21)

We see that Ya transforms as a vector of SO(5) i.e. in the IRR (1, 0) with respect to

its index "a", as observed from (3.2.20). Our primary task at this stage is to determine

the SO(5) IRR content of the matrices Ya as well as the generators Zab.
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3.2.2 SO(5) and SO(6) Irreducible Representation Content of Ya

We start by listing the fermionic number operators and their properties. We have

Ni = b†ibi , NiNi = Ni , NiNj = NjNi , (3.2.22a)

where no summations over the indices i are implied and Ni could take on the eigen-

values 0 and 1. The total number operator is

N :=
∑
i

Ni =
4∑
i=1

bi
†bi . (3.2.23)

We have that

(Ya)
2 :=

5∑
a=1

YaYa = (Y1)2 + (Y2)2 + (Y3)2 + (Y4)2 + (Y5)2, (3.2.24)

is an invariant under the action of SO(5). This is easily seen by writing the expression

Y ′a Y
′
a = (RabYb)(RacYc) = RabRacYbYc = YaYa (3.2.25)

since RT = R. After a long but straightforward calculation, whose details are given

in appendix A.2, (Ya)
2 is found to be equal to

(Ya)
2 =

5

4
N − 3

2
(N1 +N2)(N3 +N4) +

1

2
(N1N2 +N3N4) (3.2.26)

+ 2(b†1b
†
2b3b4 + b1b2b

†
3b
†
4) .

(3.2.26) expresses (Ya)
2 in terms of Ni and bi, b

†
i ’s. In an appropriate basis (see ap-

pendix A.1) adapted from the Fock basis (3.2.14), (3.2.26) is diagonalized as

(Ya)
2 = diag

(
0,

5

4
,
5

4
,
5

4
,
5

4
, 5, 1, 1, 1, 1, 1,

5

4
,
5

4
,
5

4
,
5

4
, 0

)
. (3.2.27)

Next, let us also look at generators Zab of SO(5) induced from the 4-dimensional

spinor IRR of SO(5) given in (3.2.17) and (3.2.18). We have for the Casimir operator∑
a<b65

ZabZab = (Zab)
2 =

5

2
N − 2(b†1b

†
2b3b4 + b1b2b

†
3b
†
4) (3.2.28)

− (N1 +N2)(N3 +N4)− 3(N1N2 +N3N4) .
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The detailed derivation of the right hand side of this expression is provided in A.3.

By calculating the matrix elements for (Zab)
2 operator in the basis given in appendix

A.1 its representation is obtained as

(Zab)
2 = diag

(
0,

5

2
,
5

2
,
5

2
,
5

2
, 0, 4, 4, 4, 4, 4,

5

2
,
5

2
,
5

2
,
5

2
, 0

)
. (3.2.29)

We will shortly state the SO(5) IRR content of this representation. Before doing so let

us go a step forward and introduce the generators of the group SO(6) by employing

the Schwinger’s construction as

Zgh = Ψ†GghΨ , (3.2.30)

where Zgh ≡ (Zab, Za6) and Ggh = (Gab, Ga6) ≡ (Gab,
1
2
γa). The quadratic Casimir

operator of SO(6) obtained from these generators takes the form∑
g<h66

ZghZgh = (Zgh)
2 =

15

4
N − 5

2
(N1N2 +N3N4) (3.2.31)

− 5

2
(N1 +N2)(N3 +N4).

Details of the calculation leading to the expression in (3.2.31) are presented in the

appendix A.4. We can easily see that[
Z 2
gh, Z

2
ab

]
= [YdYd, ZabZab]

= Yd[Yd, Zab]Zab + YdZab[Yd, Zab]

+ [Yd, Zab]ZabYd + Zab[Yd, Zab]Yd (3.2.32)

= i[Yb, Ya]Zab + iZab[Ya, Yb]

= ZabZab − ZabZab

= 0 .

Therefore, we may diagonalize (Zgh)
2 in the same basis as that used for (Zab)

2

in (3.2.29). This gives

(Zgh)
2 = diag

(
0,

15

4
,
15

4
,
15

4
,
15

4
, 5, 5, 5, 5, 5, 5,

15

4
,
15

4
,
15

4
,
15

4
, 0

)
. (3.2.33)

From (3.2.30) we also that (Ya)
2 given in (3.2.24) can be expressed as the difference

of the Casimirs of SO(6) and SO(5)

(Ya)
2 = (Zgh)

2 − (Zab)
2 (3.2.34)
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≡ diag

(
0,

5

4
,
5

4
,
5

4
,
5

4
, 5, 1, 1, 1, 1, 1,

5

4
,
5

4
,
5

4
,
5

4
, 0

)
.

the last line easily follows from using (3.2.29) and (3.2.33) and the result (3.2.34)

matches with what we have found earlier in (3.2.27).

Since we see that the Casimir operators can be put into block diagonal form, their

decompositions in terms of the direct sums of IRRs of SO(5) and SO(6) may be seen

by inspecting the Casimir eigenvalues and dimensions in the fundamental IRRs of

SO(5) and SO(6). An IRR of SO(5) is labelled in the Dynkin indices (n,m), since

it is of rank 2. The dimension of the IRR (n,m) is [19]

dim(n,m) =
1

6
(n+ 1)(m+ 1)(n+m+ 2)(2n+m+ 3) , (3.2.35)

where n and m are positive integers. The trivial representation is (0, 0) which obvi-

ously has the dimension dim(0, 0) = 1. The fundamental spinor and vector represen-

tations have dimensions 4 and 5, respectively

dim(0, 1) = 4, dim(1, 0) = 5, (3.2.36)

while the corresponding eigenvalues of the Casimir operator are

C
SO(5)
2 ((0, 0)) = 0, C

SO(5)
2 ((0, 1)) =

5

2
, C

SO(5)
2 ((1, 0)) = 4. (3.2.37)

Thus, we conclude that the decomposition of (Zab)
2 into direct sum of SO(5) IRR is

given as

3(0, 0)⊕ 2(0, 1)⊕ (1, 0) , (3.2.38)

where the coefficients in bold denote the multiplicities of the respective representa-

tions in the decomposition. Clearly the total dimension is 3× 1 + 2× 4 + 5 = 16.

The IRR of SO(6) ≈ SU(4) are labeled by three positive integers (p, q, r) in the

Dynkin notation and has the dimension [57]

dim(p, q, r) =
1

12
(p+1)(q+1)(r+1)(p+q+2)(q+r+2)(p+q+r+3) . (3.2.39)

The fundamental and anti-fundamental spinors are 4-dimensional and the vector rep-

resentation is 6-dimensional:

dim(1, 0, 0) = 4, dim(0, 1, 0) = 6, dim(0, 0, 1) = 4 . (3.2.40)
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Eigenvalues of the SO(6) Casimir are

C
SO(6)
2 ((0, 0, 0)) = 0 , C

SO(6)
2 ((0, 1, 0)) = 5 , (3.2.41)

C
SO(6)
2 ((1, 0, 0)) = C

SO(6)
2 ((0, 0, 1)) =

15

4
.

Therefore, the IRR decomposition of (Zgh)
2 under SO(6) is given by

2(0, 0, 0)⊕ 2(1, 0, 0)⊕ (0, 1, 0) . (3.2.42)

Let us now look at the tensor product of the (0, n) IRR of SO(5) with the fundamental

vector and spinor representations. These are given as [58]

(0, n)⊗ (1, 0) = (1, n)⊕ (0, n)⊕ (1, n− 2), (3.2.43a)

(0, n)⊗ (0, 1) = (0, n+ 1)⊕ (1, n− 1)⊕ (0, n− 1) . (3.2.43b)

Our first task is to obtain the SO(5) IRRs carried by the Ya’s. To see that, we introduce

the generators Hab of SO(5) related to Mab and Zab as

Hab := Mab ⊗ 116 + 1N ⊗ Zab. (3.2.44)

The SO(5) IRR content of Hab is found using (3.2.43)

(0, n)⊗ [3(0, 0)⊕ 2(0, 1)⊕ (1, 0)] = 4(0, n)⊕ 2(0, n+ 1)⊕ 2(1, n− 1)

⊕ 2(0, n− 1)⊕ (1, n)⊕ (1, n− 2) . (3.2.45)

From the right hand side of (3.2.45) we observe that there are 4 concentric fuzzy S4’s

at the matrix level dim(0, n) = 1
6
(n + 1)(n + 2)(n + 3), and two concentric S4

F at

each matrix level dim(0, n−1) and dim(0, n+1) respectively. The remaining SO(5)

IRR’s in the right hand side of (3.2.45) have higher spin and we cannot interpret them

as fuzzy S4’s. This is the matrix algebra content of our new solutions to the YM-

matrix model equations of motion.

In order to obtain an enhanced geometrical understanding of these developments, it

is useful to consider the SO(6) representation content of these matrix configurations.

Proceeding in a similar manner we introduce the SO(6) generator

Hgh := Mgh ⊗ 116 + 1N ⊗ Zgh. (3.2.46)

where Mgh carries the (n, 0, 0) IRR and Zgh carries the representation given in the

direct sum form in (3.2.42). Using the tensor products [58]

(n, 0, 0)⊗ (1, 0, 0) = (n+ 1, 0, 0)⊕ (n− 1, 1, 0), (3.2.47a)
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(n, 0, 0)⊗ (0, 1, 0) = (n− 1, 0, 1)⊕ (n, 1, 0) . (3.2.47b)

We find that Hgh carries the direct sum representation

(n, 0, 0)⊗ [2(0, 0, 0)⊕ 2(1, 0, 0)⊕ (0, 1, 0)] = 2(n, 0, 0)⊕ 2(n+ 1, 0, 0) (3.2.48)

⊕(n− 1, 0, 1)⊕ 2(n− 1, 1, 0)⊕ (n, 1, 0) .

We may now notice several facts by inspecting this result. We should first recall that

according to branching rules of SO(6) IRRs into SO(5) IRRs, we have that (n, 0, 0)

IRR of SO(6) simply branches to a single IRR of SO(5), which is (0, n) [59]. Thus

the matrix algebras representing fuzzy four-spheres carry the generic form (n, 0, 0).

Consequently, we see that from the SO(6) perspective 2(n, 0, 0) ⊕ 2(n + 1, 0, 0)

part of the right hand side of (3.2.48) is associated to two concentric S4
F at ma-

trix level dimSO(6)(n, 0, 0) = dimSO(5)(0, n) and two concentric S4
F at matrix level

dimSO(6)(n + 1, 0, 0) = dimSO(5)(0, n + 1), respectively. From the recent devel-

opments identifying generalized fuzzy four-spheres as associated to higher dimen-

sional orbits of SO(6) ≈ SU(4), we infer that the (n− 1, 0, 1) IRR appearing in the

right hand side of (3.2.48) can be related to a particular generalized fuzzy four-sphere

which may be denoted as S4
Λ in the notation of [1].

Then, we have the result that part of the new matrix configuration (3.2.3) solving the

YM 5-matrix model, may be interpreted as the generalized fuzzy 4-spheres recently

constructed in [1]. In the next sections, we lay out the structure of these generalized

fuzzy 4-spheres using the coadjoint orbit quantization techniques.

3.3 Coadjoint Orbit Method and Fuzzy Spaces

In the following sections, the construction of the basic and the generalized fuzzy four

spheres will be explored using the coadjoint orbits method [27]. Our main focus

will be on quantum geometries realized as quantized coadjoint orbits embedded in

a Euclidean target space. Since S4 is not a Poisson manifold, it is not realized as

a coadjoint orbit of its isometry group. Therefore, the application of the method of

coadjoint orbits to S4 is not direct. The constructions of the basic and generalized

fuzzy-four spheres are facilitated by studying the quantization of the coadjoint orbits

of SO(6) ≈ SU(4).
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To start with, we present a brief overview of the technique of coadjoint orbit quanti-

zation. The theory of quantization of coadjoint orbits was throughly given by Kirillov

in [60] and several related examples were provided in [61]. The development of this

section will mostly depend on these sources. To begin with, let G be a Lie group and

g be the associated Lie algebra. Now consider g∗, which is the vector space dual to

g , the action of G on g∗ is called the coadjoint action. In this regard, a coadjoint

orbit is simply the orbit of some point in g∗ under the action of G. For compact and

semi-simple groups, the adjoint and coadjoint orbits are equivalent. Since the groups

SU(N) are compact and semi-simple, their adjoint and coadjoint orbits coincide.

From now on we assume that G is compact and semi-simple, hence to determine its

coadjoint orbits it suffices to examine the adjoint orbits of G.

For matrix groups such as SU(N), the associated Lie algebra g is a subspace of the

matrix algebraMat(N). Therefore, the adjoint action of G on g is given by the matrix

conjugation

Ad(g)Y = gY g−1, (3.3.1)

where g ∈ G and Y ∈ g . The coadjoint orbit of G is defined by

OJ =
{
Ad(g)J = gJg−1

∣∣J ∈ g , g ∈ G
} ∼= G

HJ

. (3.3.2)

The coadjoint orbit is then considered as a coset space G/HJ where HJ is a subset of

G called the isotropy subgroup at J or the stabilizer group of OJ :

HJ =
{
h ∈ HJ

∣∣J = Ad(h)J = hJh−1
}
. (3.3.3)

3.3.1 Warmup

To get started, let us quickly look at the coadjoint orbits of SU(2). An arbitrary

element J ∈ su(2) can be written as

J = i~u · ~σ =

 iu3 u2 + iu1

−u2 + iu1 −iu3

 (3.3.4)

where ~σ is the vector of Pauli matrices. To follow the convention of [61], we pick

J to be anti-Hermitian in this section. The eigenvalues of J can be found from the

characteristic equation

λ2 − tr(J)λ+ det(J) = 0, (3.3.5)
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with tr(J) = 0 and det(J) =: r2
e = ~u · ~u as

λ± = ±ire , (3.3.6)

therefore the diagonal matrix is

JD =

ire 0

0 −ire

 , (3.3.7)

which spans the U(1) subalgebra of SU(2). Recall from (2.1.15), a general element

g of SU(2) is given as

g =

s1 −s2
∗

s2 s1
∗

 , (s1, s2) ∈ C2, det(g) = 1 . (3.3.8)

From equations (3.3.8) and (3.3.7) we have

g1JDg1
−1 = g1JDg1

† =

s1 −s2
∗

s2 s1
∗

ire 0

0 −ire

 s1
∗ s2

∗

−s2 s1

 , (3.3.9)

g1JDg1
−1 =

i(|s1|
2 − |s2|

2)re i2res1s2
∗

i2re(s1s2
∗)
∗ −i(|s1|

2 − |s2|
2)re

 . (3.3.10)

Let s1 = a1 + ib1, s2 = a2 + ib2 and rename the parameters as follows

w1 = 2re(a1a2 +b1b2) , w2 = 2re(a1b2−b1a2) , w3 = (|s1|
2−|s2|

2)re , (3.3.11)

then we obtain

g1JDg1
−1 =

 iw3 w2 + iw1

−w2 + iw1 −iw3

 . (3.3.12)

By comparing this equation with equation (3.3.4) , we observe that gJDg
−1 is an

element of su(2). Hence we have

J = g1JDg1
−1, (3.3.13)

for some g1 ∈ G. From (3.3.13) we deduce that every element of su(2) can be

diagonalized by means of an SU(2) matrix.

By using (3.3.13), orbits of SU(2) can be described as

OJ = gJg−1 = g(g1JDg1
−1)g−1 = (gg1)JD(gg1)−1, (3.3.14a)
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OJ = g2JDg2
−1, g2 := gg1. (3.3.14b)

The stabilizer of these orbits should be a subgroup of SU(2) leaving JD invariant

under the adjoint action. That is satisfying

JD = gsJDgs
†, (3.3.15)

Explicitly we have

JD =

s1 −s2
∗

s2 s1
∗

ire 0

0 −ire

 s1
∗ s2

∗

−s2 s1

 , (3.3.16a)

ire 0

0 −ire

 = ire

|s1|
2 − |s2|

2 2s1s2
∗

2s2s1
∗ −|s1|

2 + |s2|
2

 . (3.3.16b)

There are two cases to be considered:

Case 1: re = 0

This is the trivial case. The stabilizer is SU(2). Therefore, the orbit is a just a single

point specified by eiJD
∣∣∣
re=0

= 12. Adjoint actions by all group elements g ∈ SU(2)

leave the point fixed.

Case 2: re 6= 0

Let s1 = r1e
iγ1 , s2 = r2e

iγ2 , 0 = s1s2
∗ = r1r2e

i(γ1−γ2) If we pick r2 = 0 then

s2 = 0. This gives det(gs) = 1 and therefore we have r1 = 1 , hence s1 = eiγ1

gs =

eiγ1 0

0 e−iγ1

 . (3.3.17)

The stabilizer is U(1) ⊂ SU(2) and the orbit is SU(2)/U(1) ∼= CP1 ∼= S2.

Following the same line of developments, coadjoint orbits of SU(3), SU(4) and in

general SU(N) can be constructed. For the examples of coadjoint orbits of SU(3)

we refer the reader to the appendix B. Since we need to know the coadjoint orbits of

SU(4) for the developments in this chapter, we direct our attention to these spaces.

The coadjoint orbits of SU(4) can also be found by using (3.3.15). They are given in

[62] as follows

O1 =
SU(4)

U(1)× U(1)× U(1)
, O2 =

SU(4)

SU(2)× U(1)× U(1)
, (3.3.18a)
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O3 =
SU(4)

S(U(2)× U(2))
, O4 =

SU(4)

SU(3)× U(1)
∼= CP3, (3.3.18b)

with corresponding dimensions

dim(O1) = 12 , dim(O2) = 10 , dim(O3) = 8 , dim(O4) = 6 . (3.3.19)

3.4 Quantization of O2

General technique of the quantization of coadjoint orbits was developed in [26].

Among the four coadjoint orbits of SU(4) given in (3.3.18) we are particularly in-

terested in the quantizations of O2 and O4. The quantization of O4, which is diffeo-

morphic to CP3, was achieved by Bernevig et. al. [27]. The general formalism of

quantization [38] is given in appendix C. Some of the intermediate steps used during

the quantization of O2 = SU(4)
SU(2)×U(1)×U(1)

are provided in appendix D. Here, we em-

ploy the method outlined in [26] and use the Dirac constraint analysis formalism [63]

to perform the quantization of O2.

In the previous chapter, we have seen how CP3 and S4 are related through an S2 fibra-

tion and the corresponding relations between the fuzzy CP3 and fuzzy spheres S4
F and

S2
F . By studying the quantization ofO2, we would like to understand and elaborate on

the relation between this quantized space and the generalized fuzzy four-spheres S4
Λ,

which are introduced in the work [1] and encountered in our search for new solutions

to the YM matrix model, discussed earlier in this chapter. Although, several aspects

of S4
Λ are discussed in detail in [1], we feel that coadjoint orbit quantization technique

allows us to gain a useful and practical perspective to its structure, and at the same

time allows us to exploit the connection between fuzzy spaces and Landau problem

[64, 65, 66] which is discussed later on in this section.

The starting point is the Wess-Zumino term defined by

L = −i tr
(

ΛS−1Ṡ
)
, (3.4.1)

where S ∈ SU(4), Ṡ = dS
dt

and t is a parameter with respect to which group ele-

ments are parametrized. Let us denote by Tk (k = 1, ..., 15) 15 generators of SU(4)

satisfying [67]

[Tk, Tl] = ifklmTm , (3.4.2)
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fklm being the structure constants for SU(4) and Λ be a linear combination of Cartan

generators that will be specified shortly. If the general group element S is parametrized

by the set of real variables ξ(t) ≡ (ξ1, ξ2, ..., ξ15), it can be expressed as

S(ξ) = ei
∑
k Tkξk . (3.4.3)

The momenta conjugate to ξk are

πk =
∂L

∂ξ̇k
= −i ∂

∂ξ̇k
tr

(
ΛS−1 ∂S

∂ξl

dξl
dt

)
= −i tr

(
ΛS−1 ∂S

∂ξl

∂ξ̇l

∂ξ̇k

)

= −i tr

(
ΛS−1 ∂S

∂ξk

)
. (3.4.4)

Local coordinates and conjugate momenta satisfy the following Poisson brackets as

usual

{ξk, πl} = δkl , {ξk, ξl} = {πk, πl} = 0 . (3.4.5)

We may introduce a 15× 15 matrix E whose elements are functions of ξk and write

S−1 ∂S

∂ξk
= iTk′Ek′k . (3.4.6)

Since Ek′k is non-singular [26, 27] we may multiply both sides of (3.4.4) with E−1 to

write

πk′E
−1

k
′
k

= −i tr
(
ΛiTk′′Ek′′k′E

−1

k
′
k

)
. (3.4.7)

Introducing Λk = πk′E
−1

k
′
k
, this gives

Λk = tr(ΛTk) . (3.4.8)

Λk generate SU(4) since we can easily see that

{Λk,Λl} = fklmΛm , (3.4.9)

as a consequence of the commutation relations of Tk’s given above. We also see that

{Λk, S} = −iSTk , (3.4.10)

since Tk acts on the right of S ∈ SU(4). In this expression, it is customary to call Λk

the right acting generators of SU(4).
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The Cartan generators of SU(4) in the 4-dimensional fundamental representation are

usually taken to be

T3 =
1

2
diag(1,−1, 0, 0), (3.4.11a)

T8 =
1

2
√

3
diag(1, 1,−2, 0), (3.4.11b)

T15 =
1

2
√

6
diag(1, 1, 1,−3) . (3.4.11c)

in a notation generalizing the Gell-Mann matrices in SU(3). However, for our pur-

poses it is more convenient to use the Cartan subalgebra basis (h1, h2, h3) which is

given as

h1 =

√
3

2
T8 =

1

4
diag(1, 1,−2, 0), (3.4.12a)

h2 =

√
3

6
T8 +

√
2

3
T15 =

1

4
diag(1, 1, 0,−2), (3.4.12b)

h3 = T3 . (3.4.12c)

We would like to quantize O2 by considering the U(1) × U(1) part of the isotropy

subgroup of SU(4) in the coset space realization of O2. For this purpose we take

Λ = n1h1 + n2h2, (3.4.13)

where n1, n2 ∈ Z are the corresponding U(1) charges. For the choice of Λ given

above, the right acting generators take the form

Λk = n1

√
3

4
δ8,k + n2

{√
3

12
δ8,k +

1√
6
δ15,k

}
. (3.4.14)

Since the Lagrangian is first order in derivatives, equation (3.4.14) actually defines a

set of constraints for the conjugate momenta which is expressed as

Λk −
n1

2

{√
3

2
δ8,k

}
− n2

2

{√
3

6
δ8,k +

√
2

3
δ15,k

}
≈ 0 , (3.4.15)

where ≈ is the weak equality sign indicating that the equality is valid on the con-

straint surface only. The classification of constraints can be performed by calculating

Poisson brackets among Λk. We have

{Λ1,Λ2} = f123Λ3 = Λ3 ≈ 0, (3.4.16)
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{Λ1,Λ4} = f147Λ7 =
1

2
Λ7 ≈ 0, (3.4.17)

{Λ4,Λ5} = f458Λ8 =

√
3

2
Λ8 ≈

3

2

(
n1

4
+
n2

12

)
, (3.4.18)

{Λ9,Λ10} = f(9)(10)(15)Λ15 =

√
2

3
Λ15 ≈

n2

3
. (3.4.19)

If we keep on calculating the Poisson brackets, we observe that the brackets of Λ1,

Λ2, Λ3, Λ8 and Λ15 with all constraints are weakly equal to zero. Therefore, we infer

that while Λ1, Λ2, Λ3, Λ8 and Λ15 are first-class constraints, while all the remaining

constraints are second-class constraints.

The second-class constraints can be rearranged to form a complete set of first-class

constraints by taking the appropriate linear combinations φ±m :

φ±m = Λm ± iΛm+1, (3.4.20)

where m = 4, 6, 9, 11, 13. For instance,

{
Λ8, φ

±
6

}
= {Λ8,Λ6} ± i {Λ8,Λ7}

= f8,6,7Λ7 ± if8,7,6Λ6 (3.4.21)

=

√
3

2
Λ7 ∓ i

√
3

2
Λ6 ≈ 0 .

We may take either φ+
m or φ−m as the first-class constraints. Aside from this fact, their

Poisson brackets with Λ3, Λ8 and Λ15 also provide the following results

{
Λ3, φ

±
4

}
= {Λ3,Λ4} ± i {Λ3,Λ5}

= f345Λ5 ± if354Λ4 (3.4.22)

=
1

2
(Λ5 ∓ iΛ4)

= ∓ i
2
φ±4 ,

{
Λ3, φ

±
6

}
= ± i

2
φ±6 ,

{
Λ3, φ

±
9

}
= ∓ i

2
φ±9 , (3.4.23){

Λ3, φ
±
11

}
= ± i

2
φ±11,

{
Λ3, φ

±
13

}
= 0 , (3.4.24)

51



{
Λ8, φ

±
4

}
= {Λ8,Λ4} ± i {Λ8,Λ5}

= f845Λ5 ± if854Λ4 (3.4.25)

=

√
3

2
(Λ5 ∓ iΛ4)

= ∓i
√

3

2
φ±4 ,

{
Λ8, φ

±
6

}
= ∓i

√
3

2
φ±6 ,

{
Λ8, φ

±
9

}
= ∓ i

2
√

3
φ±9 , (3.4.26){

Λ8, φ
±
11

}
= ∓ i

2
√

3
φ±11,

{
Λ8, φ

±
13

}
= ± i√

3
φ±13 , (3.4.27)

{
Λ15, φ

±
4

}
= 0 ,

{
Λ15, φ

±
6

}
= 0 ,

{
Λ15, φ

±
9

}
= ∓i

√
2

3
φ±9 , (3.4.28)

{
Λ15, φ

±
11

}
= ∓i

√
2

3
φ±11,

{
Λ15, φ

±
13

}
= ∓i

√
2

3
φ±13 . (3.4.29)

From these Poisson brackets we may interpret φ±m (m = 4, 6, 9, 11, 13) as the ladder

operators of SU(4) with respect to the Weyl-Cartan basis.

The usual procedure of quantization can be followed at this stage. Namely, we must

have that first class constraints annihilating the physical states. This means that the

physical states must be SU(2) singlets and carry the U(1) charges n1 and n2, respec-

tively. The SU(4) IRRs carried by the physical states are therefore given as (n1, q, n2)

in the Dynkin notation.

The natural wave-functions on the group manifold of SU(4) are given by the Wigner

D-functionsD(p,q,r)
[L][R] (S), S ∈ SU(4), where [L] and [R] denote collectively the appro-

priate left and right quantum numbers that uniquely label these states. D(p,q,r)
[L][R] (S) are

the matrix elements of the group elements D(p,q,r)(S) of SU(4) in the IRR (p, q, r).

On these wave-functions, the Dirac quantization procedure following the given con-

straint analysis requires that

h1D(S) =
1

2
n1D(S), (3.4.30a)

h2D(S) =
1

2
n2D(S), (3.4.30b)

h3D(S) = 0. (3.4.30c)
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Let us take θ1 and θ2 as two real parameters, then the U(1) rotations generated by the

Cartan generators h1, h2 and h3 may be given as

V1 := eiθ1h1 =


eiθ1/4 0 0 0

0 eiθ1/4 0 0

0 0 e−iθ1/2 0

0 0 0 1

 , (3.4.31a)

V2 := eiθ2h2 =


eiθ2/4 0 0 0

0 eiθ2/4 0 0

0 0 1 0

0 0 0 e−iθ2/2

 , (3.4.31b)

V3 := eiθ3h3 =


eiθ3/2 0 0 0

0 e−iθ3/2 0 0

0 0 1 0

0 0 0 1

 . (3.4.31c)

Since D(S) satisfies the group homomorphism property, we may write D(S1S2) =

D(S1)D(S2). Thus, we may also express (3.4.30) as

D(SV1) = D(S)D(V1) = D(S)e−
i
2
n1θ1 , (3.4.32a)

D(SV2) = D(S)D(V2) = D(S)e−
i
2
n2θ2 , (3.4.32b)

D(SV3) = D(S)D(V3) = D(S). (3.4.32c)

In order to consider the physical states that are annihilated by the first class con-

straints, it is sufficient to consider SU(4) IRRs with q = 0. At this stage, it is most

convenient to use tensor operators in a Cartesian basis rather than the Wigner D-

functions to give a concrete demonstration. Let us denote by Zp
r an irreducible tensor

in the IRR (p, 0, r) of SU(4). We may write

Zp
r = Z

j1...jp
i1...ir

, (3.4.33)

where i, j = 1, 2, 3, 4 and the indices ja, ib take the values a = 1, . . . , p and b =

1, . . . , r. Under the SU(4) rotations S, Zp
r transforms as

(Z ′)
j1...jp
i1...ir

= Sj1...o1....
S
jp
op S̄

i1...
l1....

S̄irlr Z
o1...op
l1...lr

. (3.4.34)
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Applying V1 on Zp
r gives the eigenvalues of V1 acting on the upper index appearing

as p1, p2, p3, p4 respectively so that p = p1 +p2 +p3 +p4 and eigenvalues of V1 acting

on the lower index appearing as r1, r2, r3, r4 respectively so that r = r1 +r2 +r3 +r4.

We have

exp
(
− i

2
n1θ1

)
Zj1...
i1...

= exp
(
i
(p1

4
+
p2

4
− p3

2
− r1

4
− r2

4
+
r3

2

)
θ1

)
Zj1...
i1...

, (3.4.35)

which gives

2n1 = 2p3 − p1 − p2 − 2r3 + r1 + r2 . (3.4.36)

Likewise, for V2 acting on Zp
r we find

exp
(
− i

2
n2θ2

)
Zj1...
i1...

= exp
(
i
(p1

4
+
p2

4
− p4

2
− r1

4
− r2

4
+
r4

2

)
θ2

)
Zj1...
i1...

, (3.4.37)

which requires

2n2 = 2p4 − p1 − p2 − 2r4 + r1 + r2 , (3.4.38)

and V3 acting on Zp
r gives

0 = p1 − p2 − r1 + r2 . (3.4.39)

We have not yet imposed all the constraints on the physical states and it is rather

tedious to explicitly work out the equations for pi and ri coming from these as the

corresponding generators for the constraints are not diagonal. Nevertheless, the rest

of the analysis can be completed by determining the eigenvalues of

H =
1

2m

(
C
SU(4)
2 (p, 0, r)− CSU(2)

2 (0)− T 2
8 − T 2

15

)
, (3.4.40)

which is a linear function of n1 and n2 only when acting on D(p,0,r). Here

C
SU(4)
2 (p, 0, r) =

3

8
(r2 + p2) +

1

4
(pr + 6p+ 6r), (3.4.41)

are the eigenvalues of the Casimir operator in the (p, 0, r) IRR of SU(4) and

C
SU(2)
2 (0) = 0 is the Casimir eigenvalue in the spin-0 IRR of SU(2) and we have(

T 2
8 + T 2

15

)
D(p,0,r) =

(
3

8

(
n 2

1 + n 2
2

)
− 1

4
n1n2

)
D(p,0,r) , (3.4.42)

since h1 =
√

3
2
T8 and h2 =

√
3

6
T8 +

√
2
3
T15 as already noted in (3.4.12).

Equation (3.4.40) may be interpreted as the Hamiltonian of the particles on

O2 = SU(4)
SU(2)×U(1)×U(1)

charged under U(1)×U(1) and subject to non-vanishing U(1)
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fluxes. This is the Landau problem of O2 [27, 68]. From the known correspondences

on the Hilbert space of the Lowest Landau levels (LLL) with fuzzy spaces it is ex-

pected that LLL corresponds to the generalized fuzzy S4 which is to obtained as a

quantization ofO2. The LLL energy is expected to be linear in the U(1) fluxes n1 and

n2. Taking

p1 = p2 = p4 = 0, r1 = r2 = r3 = 0, (3.4.43)

in (3.4.36), (3.4.38) and (3.4.40), we have

E =
1

2m

[
3

8
(r 2

4 + p 2
3 ) +

1

4
(p3r4 + 6p3 + 6r4)− 3

8

(
p 2

3 + r 2
4

)
− 1

4
p3r4

]
, (3.4.44)

n1 = p3 = p, n2 = −r4 = −r, (3.4.45)

and these give

E =
1

2m

[
3

8
(n 2

1 + n 2
2 ) +

1

4
(−n1n2 + 6n1 − 6n2)− 3

8

(
n 2

1 + n 2
2

)
+

1

4
n1n2

]
=

3

4m
(n1 − n2)

=
3

4m
(n1 + |n2|) , (3.4.46)

which is the LLL energy and linear in n1 and n2. The wavefunctions are in the form

D(n1,0,|n2|)(S) carrying the SU(4) IRRs as we wanted to demonstrate.

3.5 Fuzzy Spheres and Coherent States

In this section, the relationships between the coherent states on CP3 and O2 coadjoint

orbits of SU(4) and fuzzy spheres are examined. A review of canonical coherent

states can be found in appendix E.

3.5.1 CP 3 Coherent States and S 4
F

In order to provide a better grasp of the mathematical structure of S 4
F , we should give

an explicit derivation of the continuum limit of coherent state expectation values of

SU(4) generators Tk. In appendix D, we have shown that the quantization procedure

transforms Φ±
n
′(n
′ = 9, 11, 13) constraints into ladder operators. Therefore, CP3

coherent states for the defining representation (p, q, r) = (1, 0, 0) can be given as
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follows [69]

|M〉 = exp
[
i(aT9 + bT10 + cT11 + dT12 + eT13 + fT14)

] ∣∣v(1,0,0)

〉
=: e−iH

∣∣v(1,0,0)

〉
, (3.5.1)

where
∣∣v(1,0,0)

〉
= |v〉 is the highest weight state for the defining representation and

a, b, c, d, e, f are some real parameters. The coherent states |M〉 are in one-to-one cor-

respondence with the points M of CP3 [53]. This is analogous to the fact that canon-

ical coherent states |z〉 are in one-to-one correspondence with the complex plane C.

Let us note also that a point M ∈ CP3 can be described by three complex numbers as

CP3 =
{
z ≡ (z1, z2, z3) ∈ C3 \ {0} |zizi = |z|2 = 1 , z ≡ λz , λ ∈ C , |λ| = 1

}
.

(3.5.2)

CP3 has complex dimensions 3 and real dimensions 6. The three complex coordi-

nates (z1, z2, z3) in (3.5.2) and the six real numbers a, b, c, d, e, f in (3.5.1) are two

equivalent ways to describe CP3. In fact we see that with â =
a

r
, b̂ =

b

r
. . . , we have

â2 + b̂2 + · · · + f̂ 2 = 1, where r2 = â2 + b̂2 + · · · + f̂ 2, which is equivalent to the

condition |z|2 = zizi = 1.

For the coherent states |M〉, we may introduce the rank 1 projection operators as

PM = |M〉〈M | , PM
2 = PM , PM

† = PM . (3.5.3)

Clearly, this is also in one-to-one correspondence with the points on CP3. Our task

is to understand how the manifold CP3 is embedded in the group manifold of SU(4).

To this end, we may start with computing the expectation values of SU(4) generators

with respect to the CP3 coherent states. We have

yk := Tr(PMTk)

= Tr(|M〉〈M |Tk)

= 〈M |Tk |M〉 (3.5.4)

= 〈v| eiH Tk e−iH |v〉

= pk,l 〈v|Tl |v〉 ,

where sum over repeated indices is implied and the last line follows as a conse-

quence of the Baker–Campbell–Hausdorff formula [70], which allows us to express
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eiH Tk e
−iH as a linear combination

∑
pk,lTl of the generators Tk of SU(4) [69]. The

Cartan generator matrices are given in (3.4.12). Since only the eigenvalue of the

fifteenth generator is nonzero, i.e. T15 |v〉 = t15 |v〉, we have

yk = 〈v| pk,15T15 |v〉 = pk,15 〈v| t15 |v〉 = pk,15 t15 . (3.5.5)

The highest weight state for the defining representation is |v〉 =
∣∣1/2, 1/(2√3), 1/(2

√
6)
〉
,

so t15 = 1
2
√

6
and yk are

yk = 〈M |Tk |M〉 =
1

2
√

6
pk,15. (3.5.6)

By applying the lowering operator to |v〉, the rest of the states in the (1, 0, 0) IRR

of SO(6) can be obtained. In (3.5.6), yk (k = 1, .., 15) are called the trigonometric

embedding functions that parametrize the coset space O4
∼= CP3. The technique

used for the derivation of these functions can be found in appendix F. yk are given as

follows

y1 = −1

3
(ac+ bd)

sin2(r)

r2 , y2 = −1

3
(bc− ad)

sin2(r)

r2 ,

y3 = −1

6
(a2 + b2 − c2 − d2)

sin2(r)

r2 ,

(3.5.7)

y4 = −1

3
(ae+ bf)

sin2(r)

r2 , y5 =
1

3
(af − be) sin2(r)

r2 ,

y6 = −1

3
(ce+ df)

sin2(r)

r2 ,

(3.5.8)

y7 =
1

3
(cf − de) sin2(r)

r2 , y8 =
1

6
√

3

[
3(e2 + f 2)− r2

] sin2(r)

r2 ,

y9 = − b
3

sin(2r)

2r
,

(3.5.9)

y10 =
a

3

sin(2r)

2r
, y11 = −d

3

sin(2r)

2r
, y12 =

c

3

sin(2r)

2r
, (3.5.10)

y13 = −f
3

sin(2r)

2r
, y14 =

e

3

sin(2r)

2r
, y15 =

1

2
√

6

[
1− 4

3
sin2(r)

]
, (3.5.11)

where r2 = a2 + b2 + c2 + d2 + e2 + f 2.
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The sum of the squares of yk is

15∑
k=1

y2
k =

8∑
k=1

y2
k +

15∑
k=9

y2
k =

sin4(r)

27
+

[
1

24
− sin4(r)

27

]
=

1

24
. (3.5.12)

There is another identity satisfied by the embedding functions, which may be written

as

dklsyl ys = − 1

12
yk , (3.5.13)

where dkls is the totally symmetric tensor defined through

TkTl =
1

2

[
1

4
δkl14 + (dkls + if kls)Ts

]
. (3.5.14)

In appendix A.1, the generators in the fundamental spinor representation (1, 0, 0) of

SO(6) are given. These generators can be expressed in terms of SU(4) generators as

Fgh =
∑

ηgh
iTi , (3.5.15)

where ηgh
i are the ’t Hooft symbols 1. Fgh’s can be written explicitly as

F12 =
1

2
T3−
√

3

6
T8+

√
6

6
T15 , F13 =

1

2
T2+

1

2
T14 , F14 = −1

2
T1+

1

2
T13 , (3.5.16)

F15 =
1

2
T7 +

1

2
T10 , F16 = −1

2
T6 −

1

2
T9 , F23 = −1

2
T1 −

1

2
T13 , (3.5.17)

F24 = −1

2
T2 +

1

2
T14 , F25 =

1

2
T6 −

1

2
T9 , F26 =

1

2
T7 −

1

2
T10 , (3.5.18)

F34 =
1

2
T3+

√
3

6
T8−
√

6

6
T15 , F35 = −1

2
T5+

1

2
T12 , F36 =

1

2
T4−

1

2
T11 , (3.5.19)

F45 =
1

2
T4 +

1

2
T11 , F46 =

1

2
T5 +

1

2
T12 , F56 =

√
3

3
T8 +

√
6

6
T15 . (3.5.20)

Using the projection operator PM = |M〉〈M | of (3.5.3), we may compute the expec-

tation values of the SO(6) generators as

wgh :=
1

2
Tr
(
PMFgh

)
1 A general basis for the ’t Hooft symbols can be found in [71].
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=
1

2
Tr
(
|M〉〈M |Fgh

)
(3.5.21)

=
1

2
〈M |Fgh |M〉 .

This means that we can write

PM =
∑
g<h

wghFgh =
1

2

∑
wghFgh , (3.5.22)

where wgh are the embedding functions of CP3 to SU(4) group manifold using

the SO(6) generator basis. By combining equations (3.5.16) to (3.5.20) with equa-

tions (3.5.6) to (3.5.11), wgh can be given as

w12 =
1

2
y3−
√

3

6
y8+

√
6

6
y15 , w13 =

1

2
y2+

1

2
y14 , w14 = −1

2
y1+

1

2
y13 , (3.5.23)

w15 =
1

2
y7 +

1

2
y10 , w16 = −1

2
y6 −

1

2
y9 , w23 = −1

2
y1 −

1

2
y13 , (3.5.24)

w24 = −1

2
y2 +

1

2
y14 , w25 =

1

2
y6 −

1

2
y9 , w26 =

1

2
y7 −

1

2
y10 , (3.5.25)

w34 =
1

2
y3+

√
3

6
y8−
√

6

6
y15 , w35 = −1

2
y5+

1

2
y12 , w36 =

1

2
y4−

1

2
y11 , (3.5.26)

w45 =
1

2
y4 +

1

2
y11 , w46 =

1

2
y5 +

1

2
y12 , w56 =

√
3

3
y8 +

√
6

6
y15 . (3.5.27)

Let us consider the embedding functions associated to the five generators Fa6 =

−1

2
γa (a = 1, ..., 5) of SO(6). We have

va := wa6 = 〈M |Fa6 |M〉 = −1

2
〈M | γa |M〉 . (3.5.28)

From the expression of we6 in ((3.5.24)-(3.5.27)) and expression for relevant yk, we

see that the sum of the squares of ve is

5∑
e=1

(ve)
2 =

(
1

12

)2

. (3.5.29)

It is also straightforward but rather tedious to show that

5∑
e=1

wgeve = 0, (3.5.30a)
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εabcdevavbvcvd = 0, (3.5.30b)

εabcdevavbwcd = 0, (3.5.30c)

εabcdewabwcd = − 1

18

[
cos(2r) + 2(e2 + f 2)

sin2(r)

r2

]
. (3.5.30d)

From these considerations it is possible to see how the fuzzy 4-sphere emerges by

comparing these expressions with those given in subsection 2.3.2.

Referring to equation (2.3.51) we recall

[γa, γb] = 4iGab , (3.5.31)

and therefore,

[Fa6, Fb6] =

[
− γa

2
,−γb

2

]
=

[
γa
2
,
γb
2

]
= iGab , (3.5.32)

where Gab generate the (0, 1) IRR of SO(5). Moreover, as it is shown in subsection

2.3.2, Mab generators given in equation (2.3.56) generate the (0, n) IRR ofSO(5).

Now, let us relabel the CP3 coherent states in the defining representation (0, 1) as

|z, 1〉 ≡ |M〉 . (3.5.33)

In this new notation, equation (3.5.28) can be rewritten as

〈z, 1|Fa6 |z, 1〉 = va . (3.5.34)

By taking the n-fold symmetric tensor product of these coherent states, we obtain

|z, n〉 ≡ (|z, 1〉 ⊗ |z, 1〉 ⊗ ...⊗ |z, 1〉)Sym. (3.5.35)

n-fold symmetric tensor product of γa’s, i.e. the Xa generators of equation (2.3.55)

are then mapped to the embedding functions va via (3.5.35) as

〈z, n|Xa |z, n〉 = nva . (3.5.36)

Let us denote X̂a =
1

n
Xa, then the embedding functions into S4 are

va =
1

n
〈z, n|Xa |z, n〉 = 〈z, n| X̂a |z, n〉 , (3.5.37)

and the coherent state maps for the commutators [X̂a, X̂b] are

〈z, n| [X̂a, X̂b] |z, n〉 = 〈z, n| 1

n2 [Xa, Xb] |z, n〉
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= 〈z, n| i
n

Mab

n
|z, n〉 (3.5.38)

= 〈z, n| i
n
M̂ab |z, n〉 ,

which is consistent with

[X̂a, X̂b] =
i

n
M̂ab , (3.5.39)

where M̂ab = 1
n
Mab. Likewise, we have

〈z, n| [M̂ab, M̂cd] |z, n〉 = 〈z, n| i
n

(δacM̂bd + δbdM̂ac − δbcM̂ad − δadM̂bc) |z, n〉

[M̂ab, M̂cd] =
i

n
(δacM̂bd + δbdM̂ac − δbcM̂ad − δadM̂bc), (3.5.40)

〈z, n| [M̂ab, X̂c] |z, n〉 = 〈z, n| i
n

(δacX̂b − δbcX̂a) |z, n〉

[M̂ab, X̂c] =
i

n
(δacX̂b − δbcX̂a). (3.5.41)

3.5.2 O2 Coherent States and S4
Λ

In section 3.4, we have investigated the Dirac quantization of the coadjoint orbitO2 =
SU(4)

SU(2)×U(1)×U(1)
and revealed that as a result of the quantization procedure, φ±m (m =

4, 6, 9, 11, 13) constraint can be interpreted as the ladder operators i.e. generators

associated to the roots in the Cartan-Weyl decomposition of SO(6) ≈ SU(4). Thus,

O2 coherent states for the irreducible representation (p, q, r) = (1, 0, 1) of SO(6) can

be defined as follows

|G〉 = exp
[
i(g1T4 + g2T5 + g3T6 + g4T7 + g5T9 + g6T10 + g7T11 + g8T12

+ g9T13 + g10T14)
] ∣∣w(1,0,1)

〉
=: eigiTi+3

∣∣w(1,0,1)

〉
, (3.5.42)

where
∣∣w(1,0,1)

〉
= |w〉 is the highest weight state for (1, 0, 1) IRR and gr (r =

1, .., 10) are all real parameters.

Now consider the tensor product (n, 0, 0)⊗ (0, 0, 1) which can be decomposed as

(n, 0, 0)⊗ (0, 0, 1) = (n, 0, 1)⊕ (n− 1, 0, 0) . (3.5.43)

For the case of n = 1 we have

(1, 0, 0)⊗ (0, 0, 1) = (1, 0, 1)⊕ (0, 0, 0) . (3.5.44)
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The tensor product given in equation (3.5.44) is carried by Ua which is given by

Ua = γa ⊗ I + I ⊗ (−γ∗a) . (3.5.45)

The coherent state maps for Ua’s are

ua = 〈G|Ua |G〉 = 〈G| γa ⊗ I − I ⊗ γ∗a |G〉 . (3.5.46)

If we denote the generators of SO(6) in the product representation (n, 0, 0)⊗ (0, 0, 1)

as Dgh then the quadratic Casimir operator Cu is

Cu = DghDgh. (3.5.47)

In view of the right hand side of (3.5.46), Cu can be put to block diagonal form

Cu =

Cu(1, 0, 1) 0

0 Cu(0, 0, 0)

 =

[diag(4, . . . , 4)]15×15 0

0 0

 , (3.5.48)

then the projection operators into the (1, 0, 1) and (0, 0, 0) representations are [72]

P1 =
Cu
4
, P2 =

Cu − 4I

−4
. (3.5.49)

ua are the embedding functions that parametrize the coset space O2. An alternative

derivation of ua that depends on CP3 coherent states |z, 1〉 can also be provided:

|z, 1〉 = exp
[
i(aT9 + bT10 + cT11 + dT12 + eT13 + fT14)

] ∣∣v(1,0,0)

〉
, (3.5.50)

|z̄, 1〉 = exp
[
i(a
(
T9

)∗
+ b
(
T10

)∗
+ c
(
T11

)∗
+ d
(
T12

)∗
+ e
(
T13

)∗ (3.5.51)

+ f
(
T14

)∗
)
] ∣∣v(1,0,0)

〉
.

By employing |z, n〉 coherent states given in equation (3.5.35), we may define |G〉 as

(|z, n〉 ⊗ |z̄, 1〉)Sym = P1(|z, n〉 ⊗ |z̄, 1〉) ≡ |G〉 , (3.5.52)

so ua’s are

ua = 〈G|Ua |G〉 = (〈z, n| ⊗ 〈z̄, 1|)P1(γa⊗ I − I ⊗ γ∗a)P1(|z, n〉 ⊗ |z̄, 1〉). (3.5.53)
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CHAPTER 4

BFSS MODEL WITH MASS DEFORMATIONS

This chapter opens with an introduction that provides the necessary background infor-

mation on a Yang-Mills (YM) matrix model with two distinct mass deformation terms

which may be contemplated as a double mass deformation of the bosonic part of the

BFSS model. As the first step, it is demonstrated that due to the presence of quadratic

deformation terms, this newly introduced YM model subsequently breaks the global

SO(9) symmetry of the BFSS action down to SO(5)× SO(4)× Z2. Since our main

objective is to examine the nature of emerging chaotic dynamics from the YM matrix

models, as the next step, we propose an ansatz configuration in section 4.2 involving

fuzzy two- and four-spheres with collective time dependence that can be employed

to obtain reduced models with a few phase space degrees of freedom whose dynam-

ics can be investigated in considerable detail. The chaotic dynamics emerging from

these reduced models are revealed by calculating their Lyapunov spectrum, Poincaré

sections and mean largest Lyapunov exponents by using numerical solutions to their

Hamiltonian equations of motion.

As there is room for the choice of the values of massive deformation parameters,

in subsection 4.2.3 we consider the same ansatz configuration with different masses

and obtain another set of reduced models. In order to investigate the effects of mass

parameters on the emerging chaotic dynamics; the Lyapunov spectrum, Poincaré sec-

tions and mean largest Lyapunov exponents for these new models are also calculated

and comparisons between the two cases are made. Furthermore, in order to discuss

the consequences of changing the fuzzy two-sphere part of the first ansatz, we pro-

pose a second ansatz configuration in section 4.3 and investigate its chaotic dynamics.

Lastly, in section 4.4, we examine the dynamics of the motion when the two real func-
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tions with collective time dependence are taken to be equal to each other. This leads

to quasi-periodic motion.

4.1 Yang-Mills Matrix Models with Double Mass Deformation

As thoroughly discussed in section 2.5, gauge invariant deformations of YM matrix

models are possible. Such a gauge invariant double mass deformation of (2.4.11) may

be specified as

SMD =
1

g2

∫
dt Tr

(
1

2
(DtBI)

2 +
1

4
[BI , BJ ]2 − 1

2
µ2

1B
2
a −

1

2
µ2

2B
2
i

)
, (4.1.1)

where the indices a and i take on the values a = 1, .., 5 and i = 6, 7, 8, respectively.

In (4.1.1) the terms proportional to µ1 and µ2 are the quadratic deformations, which

respect the U(N) gauge symmetry, but altogether break the SO(9) down to SO(5)×
SO(3) × Z2. The discrete Z2 factor is present for B9 → −B9 symmetry. In what

follows, we are going to consider the sector in which B9 is set equal to the zero

matrix, or equally well, taken as the zero matrix as a part of the ansatz configuration

which will be introduced shortly. Since, we are going to be essentially concerned with

the classical dynamics of (4.1.1), we absorb the coupling constant in the definition of

~, as it only determines the overall scale of energy classically.

In the A0 = 0 gauge, the equations of motion for BI take the form

B̈a + [BI , [BI , Ba]] + µ2
1Ba = 0 , (4.1.2a)

B̈i + [BI , [BI , Bi]] + µ2
2Bi = 0 , (4.1.2b)

B̈9 + [BI , [BI , B9]] = 0 , (4.1.2c)

while the Gauss law constraint remains unchanged in the form as given in (2.4.17).

The massive deformation of the BFSS model, which preserves maximal amount of

supersymmetry is already known to be the BMN matrix model [5], which possesses

fuzzy two-spheres and their direct sums as possible vacuum configurations. However,

in this thesis, our focus is directed toward exploring the emerging chaotic dynam-

ics from the Yang-Mills matrix models which could allow for not only fuzzy two-

sphere configurations but also more exotic fuzzy sphere, and in particular a fuzzy

four-sphere1.
1 In this section, we employ scaled versions of S 4

F matrices that are defined as H(n)
a = 2X

(n)
a .
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It is possible to conceive deformations of (2.4.11) including two separate mass terms,

which break the SO(9) symmetry down to several different product subgroups. The

underlying motivation for introducing the specific massive deformation in (4.1.1)

comes from the fact that in two distinct limiting cases the equations of motion can

be solved by either with fuzzy two-sphere our fuzzy four-sphere configurations. To

be more precise, we have for Bi = 0, B9 = 0, (4.1.2b) and (4.1.2c) satisfied identi-

cally, while (4.1.2a) takes the form

B̈a + [Bb, [Bb, Ba]] + µ2
1Ba = 0 , (4.1.3)

which is satisfied by the fuzzy four-sphere configurations Ba ≡ Ha for µ2
1 = −16.

Ha are N ×N matrices carrying the (0, n) UIR of SO(5) so that N = 1
6
(n+ 1)(n+

2)(n+ 3). Whereas, in the other extreme, one may set Ba = 0, B9 = 0, with the only

remaining non-trivial equation of motion

B̈i + [Bj, [Bj, Bi]] + µ2
2Bi = 0 , (4.1.4)

which is solved by fuzzy two-sphere configurations Bi ≡ Zi or their direct sum for

µ2
2 = −2. In this case, Zz are N × N matrices carrying the spin j = N−1

2
UIR of

SO(3) ≈ SU(2).

In view of these observations we consider ansätze configurations involving fuzzy two-

and four- spheres with collective time dependence, which fulfill the Gauss law con-

straint given in (2.4.17). Tracing over the fuzzy two- and four-sphere configurations,

we aim to obtain reduced models with a few phase space degrees of freedom, whose

dynamics can be investigated in considerable detail.

4.2 Ansatz I and the Effective Action

A reasonably simple, yet non-trivial, configuration is constructed by introducing two

separate collective time-dependent functions multiplying the fuzzy four- and two-

sphere matrices. Concretely, we have

Ba = r(t)Ha , Bi = y(t)Zi , B9 = 0 , (4.2.1)

where r(t) and y(t) are real functions of time. In this ansatz, we consider a sin-

gle spin-j = N−1
2

IRR of SU(2) as the fuzzy S2 configuration, while taking direct
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sums of fuzzy two spheres with different IRRs of SU(2), i.e. forming Zi as a block-

diagonal matrix composed of a direct sum of different IRRs of SU(2) with spin less

than j remains an open possibility which will be discussed later in section 4.3. Zi
exist at every matrix level, while this is not so for Ha. Fuzzy four-spheres exist at the

matrix levels 4, 10, 20 · · · as given by the dimension N = 1
6
(n+ 1)(n+ 2)(n+ 3) of

the IRR (0, n) of SO(5). Accordingly the fuzzy two-spheres are taken at the matrix

levels matching these dimensions of the fuzzy-four sphere. In what follows, we ini-

tially keep the mass parameters µ2
1 and µ2

2 as unspecified in some of the key equations,

but will investigate the detailed dynamics for µ2
1 = −16 and µ2

2 = −2, which emerge

as the limiting values for the static solutions of (4.1.3) and (4.1.4) and subsequently

will also briefly investigate the consequences of taking another set of values for the

masses, namely µ2
1 = −8 and µ2

2 = 1 on the chaotic dynamics of the reduced models.

Substituting the (4.2.1) configuration in the action (4.1.1), we perform the trace over

the fuzzy four- and two-sphere matrices at each of the matrix levels N = 1
6
(n +

1)(n + 2)(n + 3) for n = 1, 2, · · · , 7. Using Matlab to evaluate the traces we obtain

the Lagrangian for the reduced in the form

Ln = c1ṙ
2 + c2ẏ

2 − 8c1r
4 − c2y

4 − c1µ1
2r2 − c2µ2

2y2 − c3r
2y2 , (4.2.2)

where the coefficients cµ = cµ(n) (µ = 1, 2, 3) depend on n and their values (given up

to one digit after the decimal point at most) for n = 1, 2, · · · , 7 are listed in the table

4.1 given below. We suppress the label n of the coefficients cµ(n) in (4.2.2) in order

not to clutter the notation. Coefficients given for n = 7 in table (4.1) are evaluated by

obtaining a polynomial function of n approximating2 cµ(n) for n = 1, 2, · · · , 6 and

interpolating this result to n = 7.

2 These polynomial functions are given as

c1(n) =
1

2
n(n+ 4) ,

c2(n) =
1

288
(n

6
+ 12n

5
+ 58n

4
+ 144n

3
+ 193n

2
+ 132n) ,

c3(n) = 0.0093n
7
+ 0.20n

6
+ 1.35n

5
+ 4.22n

4
+ 6.99n

3
+ 5.44n

2
+ 2.43n+ 0.36 .
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Table 4.1: cµ(n) values for Ansatz 1 and n = 1, . . . , 7

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

c1 2.5 6 10.5 16 22.5 30 38.5

c2 1.9 12.4 49.9 153 391.9 881.9 1800

c3 21 207.7 1080 3970 11691 29493 66345

The corresponding Hamiltonian is easily obtained from (4.2.2) and it is given by

Hn(r, y, pr, py) =
p2
r

4c1

+
p2
y

4c2

+ 8c1 r
4 + c2 y

4 + c1 µ
2
1r

2 + c2 µ
2
2y

2 + c3 r
2y2

=:
pr

2

4c1

+
py

2

4c2

+ Vn(r, y) , (4.2.3)

where Vn(r, y) denotes the potential function.

To explore the dynamics of the models governed by Hn, we first evaluate the Hamil-

ton’s equations of motion. These take the form

ṙ − pr
2c1

= 0 , ẏ −
py
2c2

=0 , (4.2.4a)

ṗr + 32c1r
3 + 2c1µ

2
1r + 2c3ry

2 =0 , (4.2.4b)

ṗy + 4c2y
3 + 2c2µ

2
2y + 2c3r

2y =0 . (4.2.4c)

Taking the mass parameter values as µ2
1 = −16 & µ2

2 = −2, (4.2.4) becomes

ṙ − pr
2c1

= 0 , ẏ −
py
2c2

=0 , (4.2.5a)

ṗr + 32c1r
3 − 32c1r + 2c3ry

2 =0 , (4.2.5b)

ṗy + 4c2y
3 − 4c2y + 2c3r

2y =0 . (4.2.5c)

In order to investigate the dynamics of these models governed by (4.2.5) in detail,

it is quite useful to start the analysis by determining the fixed points corresponding

to the equations of motion in (4.2.5) and addressing their stability at the linear order.

The dynamical system reaches equilibrium states at the fixed points. This fact can be

equivalently stated by the set of equations specified as [73, 74]

(ṙ, ẏ, ṗr, ṗy) ≡ (0, 0, 0, 0) . (4.2.6)

67



Using (4.2.6) in (4.2.5) leads to four algebraic equations, two of which are trivially

solved by (pr, py) ≡ (0, 0), which means that all the fixed points are confined to the

(pr, py) ≡ (0, 0) plane in the phase space. The remaining two equations are

−32c1r
3 + 32c1r − 2c3ry

2 = 0 ,

−4c2y
3 + 4c2y − 2c3r

2y = 0 , (4.2.7)

and have the general set of solutions given as

(r, y) ≡ {(0, 0) , (±1, 0) , (0,±1) , (±h1,±h2) , (±h1,∓h2)} , (4.2.8)

where h1 and h2 are given in terms of cµ as

h1 = −
√

2i

√
−c2c3 + 16c1c2√
c2

3 − 32c1c2

, h2 = −4i

√
2c1c2 − c1c3√
c2

3 − 32c1c2

. (4.2.9)

Clearly, only real solutions of (4.2.7) are physically acceptable. From table 4.1 it is

straightforward to compute that both h1 and h2 are real except at n = 1. For n > 1

the set of fixed points are given as

(r, y, pr, py) ≡ {(0, 0, 0, 0), (±1, 0, 0, 0) , (0,±1, 0, 0)) ,

(±h1(n),±h2(n), 0, 0) , (±h1(n),∓h2(n), 0, 0)} , (4.2.10)

where the values of h1 and h2 are presented in the table 4.2 below

Table 4.2: h1 and h2 values for n = 2, . . . , 7

n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

h1 0.26 0.28 0.27 0.26 0.24 0.23

h2 0.6 0.38 0.25 0.17 0.12 0.093

while for the n = 1 model we only have

(r, y, pr, py) ≡ {(0, 0, 0, 0) , (±1, 0, 0, 0) , (0,±1, 0, 0)} , (4.2.11)

as the fixed points.

Let us note that (4.2.8) corresponds to the critical points of the potential Vn, since

(4.2.7) are the equations determining the extrema of the latter. From the eigenvalues
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of the matrix ∂
2
Vn

∂gi∂gj
, (g1, g2) ≡ (r, y), we see that the points (±1, 0) and (0 ,±1) are

local minima, (0, 0) is a local maximum, while (±h1(n),±h2(n)), (±h1(n),∓h2(n))

are all saddle points of Vn. Evaluating Vn at the local minima, we find Vn(±1, 0) =

−8c1 and Vn(0,±1) = −c2. From table 4.1, we easily conclude that (±1, 0) is the

absolute minimum of Vn for n = 1, 2, 3, while (0,±1) is the absolute minima for the

models with n = 4, 5, 6. From now on we add to the Hamiltonian’s, Hn, the constant

term 8c1 for n = 1, 2, 3, and c2 for n = 4, 5, 6, respectively, to shift the minimum

value of the potentials Vn to zero and use the notation

Hn<4 = Hn + 8c1 , Hn≥4 = Hn + c2 . (4.2.12)

Fixed point energies are readily evaluated using (4.2.10), (4.2.11) and the mass squared

values µ2
1 = −16 and µ2

2 = −2 in the Hamiltonian’s Hn<4, Hn≥4 and they are

EF (0, 0, 0, 0) = 8c1 , EF (±1, 0, 0, 0) = 0 ,

EF (0,±1, 0, 0) = 8c1 − c2 , 1 ≤ n ≤ 3 , (4.2.13a)

EF (0, 0, 0, 0) = c2 , EF (±1, 0, 0, 0) = c2 − 8c1 ,

EF (0,±1, 0, 0) = 0 , 4 ≤ n ≤ 6 . (4.2.13b)

Table 4.3: Fixed point energies for n = 2, . . . , 7

n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

EF (±h1(n),±(∓)h2(n), 0, 0) 39.4 70.2 134.6 368.9 854.2 1767.7

4.2.1 Linear Stability Analysis in the Phase Space

It must be clear that the properties of extrema of Vn does not provide sufficient in-

formation to decide on the stability of the fixed points. We now perform a first order

stability analysis around the fixed points of Hn given in (4.2.10) and (4.2.11). To-

gether with the Lyapunov spectrum and the Poincare sections that will be determined

in the next subsection, this analysis, will allow us to comment on the outset and vari-

ation of chaos, that is, the increase and decrease in the amount of chaotic orbits in the

phase spaces of Hn, with respect to energy.
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For the phase space coordinates, it is useful to introduce the notation

(g1, g2, g3, g4) ≡ (r, y, pr, py) . (4.2.14)

From gα and ġα, we may form the Jacobian matrix

Jαβ ≡
∂ġα
∂gβ

, (4.2.15)

whose eigenvalue structure allows us to decide on the stability character of the fixed

points [75]. Written in explicit form, we have

J(r, y) ≡


0 0 1

2c1
0

0 0 0 1
2c2

J31 −2c3ry 0 0

−2c3ry J42 0 0

 , (4.2.16)

where J31 and J42 are

J31 = 32c1 − 96c1r
2 − 2c3y

2 ,

J42 = 4c2 − 12c2y
2 − 2c3r

2 . (4.2.17)

Eigenvalues of J(r, y) at the fixed points (4.2.10) are easily evaluated and listed in

the table 4.4 below.

Table 4.4: Eigenvalues of the fixed points for Ansatz 1

Fixed Points Eigenvalues of J(r, y)

(0, 0, 0, 0) ±4,±
√

2

(±1, 0, 0, 0) (±4i
√

2,±i
√
c3c2c

2
1−2c

2
2c

2
1

c1c2
)

(0,±1, 0, 0) (±2i,±i
√
c3c1c

2
2−16c

2
1c

2
2

c1c2
)

(h1(2), h2(2), 0, 0) (±2.5,±i3.2)

(h1(3), h2(3), 0, 0) (±2.9,±i3.4)

(h1(4), h2(4), 0, 0) (±3.1,±i3.5)

(h1(5), h2(5), 0, 0) (±3.1,±i3.5)

(h1(6), h2(6), 0, 0) (±3.2,±i3.5)

General criterion of the linear stability analysis states that a fixed point is stable if

all the real eigenvalues of the Jacobian are negative, and unstable if the Jacobian has
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at least one real positive eigenvalue [75, 76]. It may that all the eigenvalues of the

Jacobian matrix are imaginary. This is called the borderline case and an analysis

beyond first order is necessary to decide if the system is stable or unstable at such

a point. Accordingly, we see that (0, 0, 0, 0) and (h1(n), h2(n), 0, 0) are all unstable

fixed points as the corresponding Jacobian’s have at least one real positive eigenvalue,

as readily seen from the table 4.4. From the same table and the values of cµ(n) given

in table (4.1), we see that (±1, 0, 0, 0) and (0,±1, 0, 0) are borderline cases. We are

not going to explore the structure of these borderline fixed points any further, as we

expect that their impact on the chaotic dynamics should be rather small compared

to those of the unstable fixed points which we just identified at the linear level. Our

numerical results on the Lyapunov spectrum indeed corroborates with this expectation

as will be discussed shortly.

4.2.2 Chaotic Dynamics

4.2.2.1 Lyapunov Spectrum

In order to probe the presence and analyze the structure of chaotic dynamics of the

models described by the Hamiltonian’s Hn, we will examine their Lyapunov spec-

trum. A detailed description of the technique used to compute the Lyapunov ex-

ponents is included in appendix J. In a dynamical system, presence of at least one

positive Lyapunov exponent is sufficient to conclude the presence of chaotic motion.

In Hamiltonian systems, due to the symplectic structure of the phase space, Lyapunov

exponents appear in λi and −λi pairs, a pair of the Lyapunov exponents vanishes as

there is no exponential growth in perturbations along the direction of the trajectory

specified by the initial condition and sum of all the Lyapunov exponents is zero as a

consequence of the Liouville’s theorem. These facts are well-known and their details

may be found in many of the excellent books on chaos [75, 77].

In order to obtain the Lyapunov spectrum for our models we run a Matlab code,

which numerically solves the Hamilton’s equations of motion in (4.2.5) for all Hn

(1 ≤ n < 7) at several different values of the energy. We run the code 40 times

with randomly selected initial conditions satisfying a given energy and calculate the

mean of the time series for all runs for each of the Lyapunov exponents at each value
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of n. In order to give certain effectiveness to the random initial condition selection

process we developed a simple approach which we briefly explain next. Let us denote

a generic set of initial conditions at t = 0 by (r(0), y(0), pr(0), py(0)). For Hn<4 we

take y(0) = 0 and for Hn≥4, r(0) = 0 as part of the initial condition and subsequently

generate three random numbers ωi (i = 1, 2, 3) and define Ωi = ωi√
ω
2
i

√
E for a given

energy E of the system, so that E = Ω2
i = Ω2

1 + Ω2
2 + Ω2

3. Subsequently, we take

positive roots in the expressions3

pr(0) =

√
4c1Ω2

1 , py(0) =

√
4c2Ω2

2 , (4.2.18)

and the real roots of

8c1r
4(0)− 16c1r

2(0) + 8c1 − Ω2
3 = 0 for Hn<4

c2y
4(0)− 2y2(0) + c2 − Ω2

3 = 0 for Hn≥4 , (4.2.19)

where in the last step of the process our code randomly selects from the available real

roots of the equations (4.2.19). In the computations we use a time step of 0.25 and run

the code for a sufficient amount of computer time to clearly observe the values that

the Lyapunov exponents converge to. We present sample plots for these time series

of Lyapunov exponents at each value of n in the following pages. From the figures

4.2, chaotic dynamics of the models are clearly observed, as in each case (except

in figure 4.2b) a positive Lyapunov exponent is present. We also observe that the

properties of Lyapunov spectrum for Hamiltonian systems summarized at the end of

the first paragraph of this section are readily satisfied. Let us immediately note that

the model at n = 1 have distinct features from the rest. This is already observed from

the first two plots (figures 4.2a and 4.2b); for E = 30 there is a positive Lyapunov

exponent, while at E = 500 all the Lyapunov exponents appear to be converging to

zero indicating that very little chaos remains at this energy. The distinct features of

the n = 1 model will also be seen in the ensuing discussions.

In order to see the dependence of the mean largest Lyapunov exponent (MLLE), (de-

noted as λn in figures and tables) to energy, we obtain the MLLE at several different

values of energy in a range, which appears to be best suited to observe the onset and

progression of chaotic dynamics in these models. As may be expected, the energies
3 We have checked that randomly selecting positive and negative roots in (4.2.18) does not cause any signifi-

cant impact on our results.
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determined for the unstable fixed points in the previous section are of central impor-

tance here. From the figures 4.4, we see that appreciable amount of chaotic dynamics

starts to develop once the energy of the systems exceeds the energy EF of the models

at the fixed points (±h1(n),±(∓)h2(n), 0, 0). The onset of the chaotic dynamics as

observed from progression of the MLLE values with increasing energy is highlighted

by the blow-up figures provided in the insets of the plots in figures 4.4. Error bars at

each data point is found by evaluating mean square error using MLLE and the LLE

values of each of the 40 runs.

Table 4.5: αn and βn values for the fitting curve (4.2.20)

λi(E) αn βn

λ2(E) 1.7 -8.5

λ3(E) 2.4 -18.2

λ4(E) 2.9 -32.0

λ5(E) 3.4 -63.8

λ6(E) 3.69 -101.9

λ7(E) 4.3 -180.4

Several observations can be made from these numerical results. Firstly, we see that in

the n = 1 model the MLLE acquires a peak value of about≈ 0.55 at an energy around

≈ 32 and rapidly decreases toward zero with increasing energy. From the profile of

MLLE with respect to energy in figure 4.4a as well as the time series plot (4.2b) of the

model at E = 500, we conclude that this model is not chaotic for energies E ≥ 500.

These conclusions are also fully supported by the Poincaré sections given in figures

4.3.

In order to elaborate on the data obtained for the MLLE values, it is useful to explore

the dependence of the LLEs at a given level n with respect to the energy. We find that

the function

λn(E) = αn + βn
1√
E
, (4.2.20)

gives not perfect but essentially very good fits to our data as can be seen from the

figures 4.4. For consistency, we consider the fits to the data starting from the energies
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corresponding to an MLLE value4 of ≈ 0.1. The coefficients for the fits are provided

in the table 4.5. Extrapolating these fits, we find that the energies at which the MLLE

vanish are given approximately as 25, 58, 122, 352, 799, 1760 for n = 2, 3, 4, 5, 6, 7,

respectively. We find that these are somewhat less than theEF ’s given in table 4.3. As

previously noted, the latter are marking the onset of chaotic dynamics in our models

and the comparatively lower values of energy found for vanishing MLLE is expected

and consistent with this fact. Results of this extrapolation appear to be also consistent

with the Poincaré sections obtained at nearby energies as can be seen from the figures

4.3. We may use (4.2.20) to compare the relative rate at which the chaotic dynamics

tends to develop once the systems reach their respective fixed point energies in table

4.3. Defining

Rn :=
dλn(E)

dE

∣∣∣∣∣
EF

= −βn
1

2E
3/2
F

, (4.2.21)

as the quantity measuring this relative rate, we find that Rn takes on the values 0.017,

0.015, 0.010, 0.005, 0.002, 0.0012 for n = 2, 3, 4, 5, 6, 7, respectively. Thus, as n

increases, Rn values indicate a slow decrease in the rate at which MLLE increases

with energy. This suggests that the models at low values of n become chaotic some-

what more rapidly. It is also interesting to note that MLLE values show essentially

the same functional relationship with the energy, as that was found in the Yang-Mills

5-matrix models with a mass term, which was studied in [20].

Let us also remark on a feature of the models Hn≥4 which is observed from the plots

in figures 4.4d - 4.4g at energies E ' 2500. We see that for a range of energy values

in these models there is an observable decrease in the value of MLLE and the mean

square errors appear to be considerably larger than those computed for the rest of the

data points. A closer analysis of the Lyapunov time series at these data points reveal

that LLE values of less than a quarter of the 40 initial conditions approach to zero,

leading to the observed decrease in MLLE values and the increase in the mean square

errors. From a physical point of view, approach of some of the LLE values to zero

implies that the systems’ development in time, starting from these initial conditions

are of either periodic or quasi-periodic type and not chaotic. Nevertheless, the overall

MLLE values are still quite large and the sample Poincaré sections taken at one of
4 The numerically determined best fits to the functional form (4.2.20) do not necessary start at MLLE ≈ 0.1.

They actually start somewhat above this MLLE value; In the figures 4.4, the best fits are extrapolated to start at
MLLE ≈ 0.1.
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these energies are densely chaotic, showing no sign of KAM tori signaling the pres-

ence of quasi-periodic orbits. Thefore, we are inclined to think that such periodic

or quasi-periodic orbits occur only at comparatively very small regions of the phase

space and evaluated the MLLE values at these energies by excluding the initial condi-

tions leading to vanishing LLE. The results of MLLE obtained this way are given in

the plots in the figures 4.4d - 4.4g in yellow color for comparison and used to obtain

the fits given in the table 4.5.

4.2.2.2 Poincaré Sections

In order to supplement the results of the previous subsubsection, we have obtained the

Poincaré sections at several different values of the energy. For each model we plot

the Poincaré sections at energies below, around and above the energy of unstable the

fixed points (±h1(n),±(∓)h2(n), 0, 0) to visualize how the phase spaces trajectories

develop and capture the onset of chaotic dynamics. As in the calculation of Lyapunov

spectrum we use 40 randomly selected initial conditions for each model at a given en-

ergy and the same procedure as in the analysis of the Lyapunov spectrum is followed.

For Hn<4, y(0) = 0 is a part of the initial conditions and for Hn≥4, r(0) = 0 is so,

therefore it is convenient to look at the Poincaré sections on the r − pr-plane and the

y − py-plane, respectively in these cases. Our plots for n = 1, . . . , 6 cases are given

in figures 4.3.

4.2.3 Other Mass Values

We now consider assigning different values to the mass parameters and their impact

on the dynamics of our models. Let us first note that µ2
1 = −16 and µ2

2 = −2 is

a suitable and immediate guiding choice for the mass values due to the reasons dis-

cussed around equations (4.1.3) and (4.1.4), but surely not canonical in the sense that

they are not enforced on us by the full set of equations of motion (4.1.2). Considering

Chern-Simons-type terms, i.e. a cubic term in Bi’s as in the BMN model and a fifth

order term in Ba’s [34] alter the equations of motion given in (4.1.3) and (4.1.4) and

lead to solutions with µ2
1 > −16 and µ2

2 > −2. It is not our aim in this subsec-

tion to provide a detailed analysis of such possibilities, but simply confine ourselves

to examining another choice for the mass values and to serve this purpose we take
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µ2
1 = −8 and µ2

2 = 1.

With the Lagrangian and Hamiltonian given in the form (4.2.2) and (4.2.3) and the

corresponding Hamilton’s equations given as in (4.2.4), we find that the fixed points

of the phase space are

(r, y, pr, py) = {(0, 0, 0, 0) , (± 1√
2
, 0, 0, 0)} (4.2.22)

with the corresponding energies

EF (0, 0, 0, 0) = 2c1 = n(n+ 4) , EF (± 1√
2
, 0, 0, 0) = 0 . (4.2.23)

Linear stability analysis shows that (0, 0, 0, 0) is an unstable fixed point while

(± 1√
2
, 0, 0, 0) are of the borderline type that we encountered previously and play no

significant role in the numerical analysis that follows next. For convenience of com-

parison to numerical data for n = 1 , · · · 6, the fixed point energies are given in the

same order as 12, 21, 32, 45, 60, 77.

Following the same steps of the numerical analysis for the Lyapunov spectrum as

outlined previously, we find that, in this case too, the models exhibit chaotic dynamics

for n = 2, 3, 4, 5, 6, while the model at the level n = 1 is essentially not chaotic for

energiesE ' 100, but retain some chaos only in a narrow band of energy from around

E ≈ 12 (i.e. the fixed point energy) to E ' 100 (See the figures 4.7). The transition

to chaos for n = 2, 3, 4, 5, 6 appears to happen around the fixed point energies as can

be clearly seen from the blow-up insets of these figures and the time series plots given

in figures 4.5. This fact is also captured by inspecting the Poincaré sections taken at

energies somewhat below and above those of the fixed points.

In contrast to the previous case, MLLE values fluctuate and the mean square errors

are comparatively larger at a narrow band of energies after EF . Due to this reason,

for each model, we consider fits to the data starting at end of this transient band,

where the change in MLLE with respect to energy starts to settle in a steady pattern

of development and do not attempt to extrapolate them all the way to zero MLLE

value as it would clearly be misleading to do so. We find that a logarithmic fit of the

form

λn(E) = α̃n + β̃n log(E) , (4.2.24)

with
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Table 4.6: α̃n and β̃n values for the fitting curve (4.2.24)

α̃n β̃n

λ2(E) −0.84 0.34

λ3(E) −0.79 0.35

λ4(E) −0.81 0.37

λ5(E) −2.19 0.56

λ6(E) −2.47 0.58

appears to be well-suited to model the dependence of MLLE to energy after transient

band is passed. Let us also note that within the transient band of energies, chaotic and

quasi-periodic motion coexist, this is clearly seen from those of the Poincaré sections

in figure 4.6 that are taken at energies somewhat above the EF . Using (4.2.24) we

have

R̃n =
β̃n
EF

, (4.2.25)

measuring the relative rate of the development of chaos at EF . We find that Rn takes

the values 0.016, 0.011, 0.008, 0.009, 0.007 for n = 2, 3, 4, 5, 6, respectively, which

essentially indicates that there is not any significant difference at the rate in which

chaos develops in these models once the systems have energies around those of the

fixed points.

4.3 Ansatz II

We would like to briefly discuss the consequences of changing the fuzzy two sphere

part of ansatz I. Namely, we consider the configurations

Ba = r(t)Ha , Bi = y(t)Zi , B9 = 0 , (4.3.1)

at the matrix levels N = 1
6
(n + 1)(n + 2)(n + 3) for n = 2, 3, 5. In (4.3.1), Ha are

the same as in ansatz I, while we take Zi = ⊕Knk=1Σi(k), with Σi(k) spanning the spin
1
2

UIR of SU(2), in the kth block of the direct sum and Kn is the number of 2 × 2

blocks, which are 5, 10, 28 for n = 2, 3, 5, respectively. Thus, we have a direct sum

of 2× 2 fuzzy two spheres.5 We call this the ansatz II.
5 For odd values of N , it is not possible to form Zi’s by 2 × 2 blocks only. In this case we can fill the last

block of the matrices simply with the 0-matrix, i.e. the trivial representation of SU(2).
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The Lagrangian and Hamiltonian are given in the same form as in (4.2.2) and (4.2.3),

where now the coefficients cβ are given in the table 4.7

Table 4.7: cµ(n) values for Ansatz 2 and n = 2, 3, 5

n = 2 n = 3 n = 5

c1 6 21/2 45/2

c2 3/8 3/8 3/8

c3 7 11.45 3.44

Corresponding fixed points and their energies are

(r, y, pr, py) ≡ {(0, 0, 0, 0) , (±1, 0, 0, 0) , (0,±1, 0, 0)} , (4.3.2)

EF (0, 0, 0, 0) = 8c1, EF (±1, 0, 0, 0) = 8c1 − c2, EF (0,±1, 0, 0) = 0. (4.3.3)

Linear stability analysis reveals that (0, 0, 0, 0) is the only unstable fixed point in these

models.

We have numerically studied the Lyapunov spectrum at several different values of the

energy in these systems and determined that for an interval starting around the fixed

point energies EF = 48, 84, 180, respectively and going up to ≈ 500 for the first

two cases and ≈ 1000 for n = 5, there is a positive Lyapunov exponent indicating

the presence of chaotic motion. From the times series plots in figure 4.8 and the

Poincaré sections in figure 4.9 taken at energies within these ranges, we see that

chaos is not dense, coexists together with quasi periodic motion and remains local in

the phase space. At higher energies chaos ceases to exist and the phase space becomes

dominated by periodic and/or quasi-periodic orbits.

4.4 Effective Action with Single Time-Dependence

While specifying the fuzzy two- and four-sphere configurations of Ansatz I given

in (4.2.1), we have introduced two real functions with collective time dependence,

namely r(t) and y(t). In this section, we examine the dynamics of motion when r(t)

is taken to be equal to y(t). Let us keep the values of mass parameters as µ2
1 = −8
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(a) T (κ) vs. κ (b) r2(t) vs. time

Figure 4.1: T (κ) vs. κ and r2(t) vs. time

and µ2
2 = 1, i.e. as selected in subsection 4.2.3. In this case, (4.2.2) becomes

L̃n(r, ṙ) = (c1 + c2)ṙ2 − (8c1 + c2 + c3)r4 + (8c1 − c2)r2 − 2 c1 , (4.4.1)

from which the Lagrange’s equations of motion can be determined as follows

r̈(t) = −e1r
3 + e2r , (4.4.2)

where e1 and e2 are explicitly given by

e1 =
2(8c1 + c2 + c3)

c1 + c2

, e2 =
8c1 − c2

c1 + c2

. (4.4.3)

As a concrete example, let us take initial conditions as r(0) = 0 , ṙ(0) = 0.1, the

general solution of (4.4.2) can be written in terms of the Jacobi elliptic function sn of

modulus k, denoted by sn(z|k)

r(t) = (ε− iζ)sn((ε+ iφ)t| − η) , (4.4.4)

where ζ, φ, η are positive real numbers and ε is a real number which is very close

to zero. A review of some properties of Jacobi elliptic functions can be found in

appendix H. For all practical purposes, ε can be considered to be equal to zero.

Moreover, for the sake of simplicity, let us concentrate on the case of unit frequency
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(φ = 1) and redefine the elliptic modulus as κ = −η. Applying these changes to

equation (4.4.4) yields

r(t) = −i ζsn(it|κ). (4.4.5)

The complete elliptic integral of the first kind is defined by [78]

K(k) =

∫ π
2

0

(
1− k2sin2(θ)

)− 1
2
dθ, (4.4.6)

with 0 ≤ k < 1. The complementary elliptic modulus is defined by kc = (1− k2)
1
2 .

For the interval of −2K
(
kc
)
< t < 2K

(
kc
)

, Jacobi’s imaginary transformations

relate the elliptic functions with complex arguments to the elliptic functions with real

arguments. For the case of sn, we have

sn(it|k) =
isn(t|kc)
cn(t|kc)

, (4.4.7)

where cn
(
t|kc
)

is the Jacobi elliptic function cn of modulus kc. As an immediate

consequence of (4.4.7), for the time interval of −2Kc < t < 2Kc , equation (4.4.5)

can be put in the form

r = ζ
sn(t|κc)
cn(t|κc)

, (4.4.8)

with κc =
√

1− κ2 and Kc = K(κc) .

Let us denote with T the period of (4.4.5). The calculations of the T values for the

range of modulus values 0 > κ > −1 were performed utilizing a MATLAB script

and graphed in figure 4.1a. Since the numerical values (given up to two significant

digits after the decimal point at most) of the cµ coefficients for the model at the level

n = 2 are given by

c1 = 6 , c2 = 12.38 , c3 = 207.66 , (4.4.9)

and eα coefficients of (4.4.3) take the values

e1 = 29.17, e2 = 1.94 , (4.4.10)

(4.4.2) takes the form

r̈2 = −29.17 r2
3 + 1.94 r2 , (4.4.11)

whose solution can be written as

r2(t) = −i 0.071 sn(i 1.42 t| − 0.036) . (4.4.12)
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Using Mathematica it can be verified that the maximum value of the imaginary part

of r2(t) is on order of 10−13. Therefore, the imaginary part of r2(t) may be ignored

for practical purposes, and we may write

r2(t) ∼= Re[−i 0.071 sn(i 1.42 t| − 0.036)] . (4.4.13)

A graph of r2(t) versus time is shown in figure 4.1b. By reading the numerical value

of T (κ = −0.036), which corresponds to the period of −i sn(i t| − 0.036), from

figure 4.1a, the period of r2(t) can be computed as

T2 =
T (−0.036)

1.42
=

12.11

1.42
= 8.53 . (4.4.14)

Summarizing the above considerations, choosing collective time dependence in terms

of a single function r(t) results in periodic motion whose variation in time can be

completely described by the Jacobi elliptic function sn.
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(a) n = 1 and E = 30 (b) n = 1 and E = 500

(c) n = 2 and E = 50 (d) n = 3 and E = 100

(e) n = 4 and E = 150 (f) n = 5 and E = 500

Figure 4.2: Lyapunov exponents vs. time for Ansatz 1 at µ2
1 = −16 and µ2

2 = −2
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(g) n = 6 and E = 1500 (h) n = 7 and E = 2000

Figure 4.2: Lyapunov exponents vs. time for Ansatz 1 at µ2
1 = −16 and µ2

2 = −2

(a) n = 1 and E = 5 (b) n = 1 and E = 20

(c) n = 1 and E = 50 (d) n = 1 and E = 1000

Figure 4.3: Poincaré Sections for Ansatz 1 at µ2
1 = −16 and µ2

2 = −2
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(e) n = 2 and E = 34 (f) n = 2 and E = 41

(g) n = 2 and E = 50 (h) n = 3 and E = 50

(i) n = 3 and E = 71 (j) n = 3 and E = 100

Figure 4.3: Poincaré Sections for Ansatz 1 at µ2
1 = −16 and µ2

2 = −2
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(k) n = 4 and E = 100 (l) n = 4 and E = 135

(m) n = 4 and E = 155 (n) n = 5 and E = 300

(o) n = 5 and E = 390 (p) n = 5 and E = 395

Figure 4.3: Poincaré Sections for Ansatz 1 at µ2
1 = −16 and µ2

2 = −2
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(q) n = 6 and E = 800 (r) n = 6 and E = 855

(s) n = 6 and E = 885

Figure 4.3: Poincaré Sections for Ansatz 1 at µ2
1 = −16 and µ2

2 = −2
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(a) λ1 vs. Energy (b) λ2 vs. Energy

(c) λ3 vs. Energy (d) λ4 vs. Energy

(e) λ5 vs. Energy (f) λ6 vs. Energy

Figure 4.4: MLLE vs. Energy for Ansatz 1 at µ2
1 = −16 and µ2

2 = −2
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(g) λ7 vs. Energy

Figure 4.4: MLLE vs. Energy for Ansatz 1 at µ2
1 = −16 and µ2

2 = −2
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(a) n = 1 and E = 5 (b) n = 1 and E = 6

(c) n = 2 and E = 12 (d) n = 2 and E = 15

(e) n = 3 and E = 21 (f) n = 3 and E = 22

Figure 4.5: Lyapunov exponents vs. time for Ansatz 1 at µ2
1 = −8 and µ2

2 = 1
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(g) n = 4 and E = 32 (h) n = 4 and E = 34

(i) n = 5 and E = 45 (j) n = 5 and E = 47

(k) n = 6 and E = 60 (l) n = 6 and E = 63

Figure 4.5: Lyapunov exponents vs. time for Ansatz 1 at µ2
1 = −8 and µ2

2 = 1
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(a) n = 1 and E = 5 (b) n = 1 and E = 6

(c) n = 2 and E = 12 (d) n = 2 and E = 15

(e) n = 3 and E = 21 (f) n = 3 and E = 22

Figure 4.6: Poincaré Sections for Ansatz 1 at µ2
1 = −8 and µ2

2 = 1
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(g) n = 4 and E = 32 (h) n = 4 and E = 34

(i) n = 5 and E = 45 (j) n = 5 and E = 47

(k) n = 6 and E = 60 (l) n = 6 and E = 63

Figure 4.6: Poincaré Sections for Ansatz 1 at µ2
1 = −8 and µ2

2 = 1
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(a) n = 1 (b) n = 2

(c) n = 3 (d) n = 4

(e) n = 5 (f) n = 6

Figure 4.7: MLLE vs. Energy for Ansatz 1 at µ2
1 = −8 and µ2

2 = 1

93



(a) n = 2 and E = 50 (b) n = 2 and E = 500

(c) n = 3 and E = 100 (d) n = 3 and E = 500

(e) n = 5 and E = 180 (f) n = 5 and E = 1000

Figure 4.8: Lyapunov exponents vs. time for Ansatz 2
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(a) n = 2 and E = 30 (b) n = 2 and E = 50

(c) n = 2 and E = 500 (d) n = 3 and E = 50

(e) n = 3 and E = 100 (f) n = 3 and E = 500

Figure 4.9: Poincarè sections for Ansatz 2
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(g) n = 5 and E = 180 (h) n = 5 and E = 500

(i) n = 5 and E = 1000

Figure 4.9: Poincarè sections for Ansatz 2
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CHAPTER 5

CONCLUSIONS

This thesis has focused on two research projects investigating the applications of

fuzzy spaces to Yang-Mills matrix models. In the second chapter, we started out

with reviewing the constructions of fuzzy two- and four-spheres from both geometric

and algebraic viewpoints in order to provide necessary background for the discussion

of YM matrix models presented in the ensuing chapters. This review was followed

by the introduction of the bosonic part of the BFSS matrix model including its deriva-

tion from the Yang-Mills theory in 9 + 1 dimensions by dimensional reduction. In

this chapter, we have also demonstrated how fuzzy spheres arise as vacuum solutions

to YM matrix models related to massive deformations of the BFSS model.

In chapter 3, we have concentrated on the YM 5-matrix model which can be contem-

plated as a sector of the bosonic part of the BFSS with only five Hermitian matrices

and the same type of massive deformation term, which was introduced in section 2.5.

Our primary aim was to obtain new static solutions or vacuum configurations in this

model. For this purpose, we have considered matrix configurations involving bilinears

of a set of fermionic oscillators spanning a reducible representation of SO(5), which

is subsequently decomposed into direct sums of irreducible representations of the lat-

ter. Taking tensor products of these IRRs of SO(5) with the (0, n) IRR of SO(5)

carried by the standard fuzzy four-sphere, new solutions were formed. Since the di-

rect sum decompositions of this tensor product representation of SO(5) also contains

IRRs of SO(5) that does not appear to be related to basic fuzzy four-sphere matri-

ces, it was not possible to express the newly obtained vacuum configurations as the

direct sums of S4
F matrices only. However, we have noticed that some of these new

configurations can be realized as the generalized fuzzy four-sphere configurations,
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which were recently encountered in [1]. In order to understand the connection of our

results with the generalized fuzzy four-spheres, the quantization of coadjoint orbits

method was used. To be more specific, a certain 10-dimensional coadjoint orbit, O2

of SO(6) ≈ SU(4) was quantized to observe the detailed structure of the generalized

fuzzy four-spheres. As a by product of this approach, we have also formulated the

Landau problem on the coset space O2. Determining the ground state energy levels

in the Landau problem is shown to be equivalent to the quantization of the coadjoint

orbit O2. We have demonstrated that as a result of the quantization procedure of O2,

the generalized fuzzy four-sphere IRRs are obtained. In the last two sections of this

chapter, generalized coherent states associated to SO(6) ≈ SU(4) were employed to

discuss some aspects of both the basic and generalized fuzzy four-spheres.

Chapter 4 was devoted to the examination of a YM matrix model with two distinct

mass deformation terms which may be contemplated as a double mass deformation of

the bosonic part of the BFSS model. Using an ansatz configuration involving fuzzy

two- and four-spheres as backgrounds and assuming collective time dependence of

the matrices, we were able to obtain a family of effective models descending from

tracing over the fuzzy spheres at matrix levels N = 1
6
(n + 1)(n + 2)(n + 3), for

n = 1 , · · · , 7. We have performed a detailed numerical analysis and demonstrated

the development of chaotic dynamics in these reduced models by obtaining their Lya-

punov spectrum and Poincaré sections. From our results, we were able to see that the

onset of chaotic motion is at the energies which are at or around the lowest of that of

the unstable fixed points and modeled, by fitting curves to the data, how the largest

Lyapunov exponents change as a function of the energy for two different set of the

mass values. The similarities and differences in these two cases are also discussed.

Let us recapitulate some of the key results that we have obtained from these analyses.

In section 4.2 we have constructed Ansatz I by introducing two separate collective

time-dependent functions, r(t) and y(t), multiplying the fuzzy four- and two-sphere

matrices. For this ansatz, we have considered a single spin-j = N−1
2

IRR of SU(2)

as the fuzzy S2 configuration and investigated the detailed dynamics for the mass pa-

rameters µ2
1 = −16 and µ2

2 = −2. A noteworthy observation was the convergence

of the mean largest Lyapunov exponents to non-zero values with increasing energy.

On that note, we were able to demonstrate through an appropriate fitting function
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that mean largest Lyapunov exponents (MLLE)s approximately vary as 1/
√
E with

increasing energy. From the value of the derivative of the latter at the fixed point en-

ergies, we concluded that the models at low values of n become chaotic more rapidly.

In order to observe the impact of mass parameters on the dynamics of our models, we

considered assigning different values to the mass parameters and took µ2
1 = −8 and

µ2
2 = 1. Upon performing a detailed numerical analysis on the new reduced models

we demonstrated that MLLEs vary logarithmically with the energies of the reduced

actions. In section 4.3, we have focused on another ansatz, whose fuzzy two-sphere

configurations consist of a direct sum of spin-1/2 fuzzy spheres. These configura-

tions lead to chaos only within a narrow interval of energies in each model. Lastly,

in section 4.4 we have examined the dynamics of the quasi-periodic motion induced

when r(t) is taken to be equal to y(t). By using explicit derivations and numerical

calculations, we have shown that choosing the product of a single time-dependent

function, r(t), with S2
F and S4

F matrices as a solution of SMD results in a periodic

motion whose variation in time can be completely described by the Jacobi elliptic

function sn.
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APPENDIX A

IDENTITIES AND DERIVATIONS RELATED TO S 4
F

A.1 Gamma Matrices, SO(6) Spinor Generators and Fermionic Basis

Gamma matrices in five dimensions are 4x4 matrices satisfying the Clifford algebra

{γa, γb} = 2δab14 . A possible representation of these matrices is given by

γ1 = σ1 ⊗ σ1 =

 0 σ1

σ1 0

 , γ2 = σ1 ⊗ σ2 =

 0 σ2

σ2 0

 ,

γ3 = −σ1 ⊗ σ3 = −

 0 σ3

σ3 0

 , γ4 = −σ2 ⊗ 12 = i

 0 12

−12 0

 , (A.1.1)

γ5 = γ1γ2γ3γ4 = −σ3 ⊗ 12 =

−12 0

0 12

 .

In terms of the γ-matrices in five dimensions, 4-dimensional SO(6) spinor represen-

tations (1, 0, 0) and (0, 0, 1) are given as

Fij =
1

4i
[γi, γj] , Fi6 = ∓1

2
γi , i, j = 1, 2, 3, 4, 5 . (A.1.2)

These fifteen Fgh (g, h = 1, .., 6) generators satisfy the usual SO(6) commutation

relations

[Fgh, Fmn] = i(δgmFhn + δhnFgm − δgnFhm − δhmFgn) . (A.1.3)

The representations of the quadratic Casimir operators are found in the basis given

below. There are 16 states here and we label them as follows

|B±〉 =
1√
2

(|0011〉 ± |1100〉), (A.1.4)
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1 =⇒ |0000〉 , 2 =⇒ |1000〉 , 3 =⇒ |0100〉 , (A.1.5)

4 =⇒ |0010〉 , 5 =⇒ |0001〉 , 6 =⇒ |B+〉 , 7 =⇒ |1010〉 ,

8 =⇒ |0110〉 , 9 =⇒ |0101〉 , 10 =⇒ |B−〉 , 11 =⇒ |1001〉 ,

12 =⇒ |1110〉 , 13 =⇒ |0111〉 , 14 =⇒ |1011〉 ,

15 =⇒ |1101〉 , 16 =⇒ |1111〉 .

A.2 Evaluation of (Ya)
2

We use the definitions given in (3.2.13) and (3.2.22) for the operators bi, b
†
i and the

number operators.

Y1 =
1

2
Ψ†γ1Ψ =

1

2

(
b†1 b

†
2 b
†
3 b
†
4

)


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0




b1

b2

b3

b4


=

1

2
(b†1b4 + b†2b3 + b†3b2 + b†4b1) , (A.2.1a)

Y2 = − i
2

(b†1b4 − b†2b3 + b†3b2 − b†4b1) , (A.2.1b)

Y3 = −1

2
(b†1b3 − b†2b4 + b†3b1 − b†4b2) , (A.2.1c)

Y4 =
i

2
(b†1b3 + b†2b4 − b†3b1 − b†4b2) , (A.2.1d)

Y5 = −1

2
(b†1b1 + b†2b2 − b†3b3 − b†4b4) . (A.2.1e)

Squaring these expression we find

(Y1)2 = (1/4)(b†1b4 + b†2b3 + b†3b2 + b†4b1)(b†1b4 + b†2b3 + b†3b2 + b†4b1)

=
1

4
[b†1(I − b†4b4)b1 + b†2(I − b†3b3)b2 + b†3(I − b†2b2)b3 + b†4(I − b†1b1)b4

+ 2(b†1b
†
2b3b4 − b†1b2b

†
3b4 − b1b

†
2b3b

†
4 + b1b2b

†
3b
†
4)]

=
1

4
[(b†1b1 + b†2b2 + b†3b3 + b†4b4)− b†1b

†
4b4b1 − b†2b

†
3b3b2 − b†3b

†
2b2b3 (A.2.2a)

− b†4b
†
1b1b4 + 2(b†1b

†
2b3b4 − b†1b2b

†
3b4 − b1b

†
2b3b

†
4 + b1b2b

†
3b
†
4)]

=
1

4
[N − 2(N1N4 +N2N3) + 2(b†1b

†
2b3b4 − b†1b2b

†
3b4 − b1b

†
2b3b

†
4 + b1b2b

†
3b
†
4)] ,

102



(Y2)2 =
1

4
[N − 2(N1N4 +N2N3) + 2(b†1b

†
2b3b4 + b†1b2b

†
3b4 + b1b

†
2b3b

†
4 (A.2.2b)

+ b1b2b
†
3b
†
4)] ,

(Y3)2 =
1

4
[N − 2(N1N3 +N2N4) + 2(b†1b

†
2b3b4 − b†1b2b3b

†
4 − b1b

†
2b
†
3b4 (A.2.2c)

+ b1b2b
†
3b
†
4)] ,

(Y4)2 =
1

4
[N − 2(N1N3 +N2N4) + 2(b†1b

†
2b3b4 + b†1b2b3b

†
4 + b1b

†
2b
†
3b4 (A.2.2d)

+ b1b2b
†
3b
†
4)] ,

(Y5)2 =
1

4
{N + 2[N1N2 +N3N4 − (N1 +N2)(N3 +N4)]} . (A.2.2e)

Finally, this gives

(Ya)
2 =

5∑
a=1

YaYa

=
1

4
{N − 2(N1N4 +N2N3) + 2(b†1b

†
2b3b4 − b†1b2b

†
3b4 − b1b

†
2b3b

†
4 + b1b2b

†
3b
†
4)

+N − 2(N1N4 +N2N3) + 2(b†1b
†
2b3b4 + b†1b2b

†
3b4 + b1b

†
2b3b

†
4 + b1b2b

†
3b
†
4) +N

− 2(N1N3 +N2N4) + 2(b†1b
†
2b3b4 − b†1b2b3b

†
4 − b1b

†
2b
†
3b4 + b1b2b

†
3b
†
4) +N

− 2(N1N3 +N2N4) + 2(b†1b
†
2b3b4 + b†1b2b3b

†
4 + b1b

†
2b
†
3b4 + b1b2b

†
3b
†
4) +N

+ 2[N1N2 +N3N4 − (N1 +N2)(N3 +N4)]}

=
5

4
N − 3

2
(N1 +N2)(N3 +N4) +

1

2
(N1N2 +N3N4) (A.2.3)

+ 2(b†1b
†
2b3b4 + b1b2b

†
3b
†
4) .

(A.2.3) expresses Y 2
a in terms of the number operators and two terms which cannot

be cast in terms of the number operators.

A.3 Evaluation of (Zab)
2

Using the same technology, we evaluate the Casimir operator of SO(5) using the

generator Zab given in equation (3.2.18)

(Zab)
2 = −1

4
(Ψ†γkγlΨ)2

= −1

4
[(Ψ†γ1γ2Ψ)2 + (Ψ†γ1γ3Ψ)2 + (Ψ†γ1γ4Ψ)2 + (Ψ†γ1γ5Ψ)2

+ (Ψ†γ2γ3Ψ)2 + (Ψ†γ2γ4Ψ)2 + (Ψ†γ2γ5Ψ)2 + (Ψ†γ3γ4Ψ)2 (A.3.1)

+ (Ψ†γ3γ5Ψ)2 + (Ψ†γ4γ5Ψ)2] .

103



In expression (A.3.1), we need to evaluate each term explicitly. We have

Ψ†γ1γ2Ψ =
(
b†1 b

†
2 b
†
3 b
†
4

)

i 0 0 0

0 −i 0 0

0 0 i 0

0 0 0 −i




b1

b2

b3

b4


= i(N1 −N2 +N3 −N4) ,

(Ψ†γ1γ2Ψ)2 = −(N1 −N2 +N3 −N4)(N1 −N2 +N3 −N4)

= −[(N2
1 +N2

2 +N2
3 +N2

4 )− 2N1N2 + 2N1N3 − 2N1N4 (A.3.2)

− 2N2N3 + 2N2N4 − 2N3N4]

= −N + 2(N1N2 −N1N3 +N1N4 +N2N3 −N2N4 +N3N4) .

Similarly, we find

(Ψ†γ1γ3Ψ)2 = −N + 2(N1N2 +N3N4) + 2(b†1b2b
†
3b4 + b†1b2b3b

†
4 (A.3.3)

+ b1b
†
2b
†
3b4 + b1b

†
2b3b

†
4) ,

(Ψ†γ1γ4Ψ)2 = 2(b†1b2b
†
3b4 − b†1b2b3b

†
4 + b1b

†
2b3b

†
4 − b1b

†
2b
†
3b4)−N (A.3.4)

+ 2(N1N2 +N3N4) ,

(Ψ†γ1γ5Ψ)2 = 2(b†1b
†
2b3b4 + b1b

†
2b3b

†
4 + b†1b2b

†
3b4 + b1b2b

†
3b
†
4)−N (A.3.5)

+ 2(N1N4 +N2N3) ,

(Ψ†γ2γ3Ψ)2 = 2(b†1b2b3b
†
4 + b1b

†
2b
†
3b4 − b†1b2b

†
3b4 − b1b

†
2b3b

†
4)−N (A.3.6)

+ 2(N1N2 +N3N4) ,

(Ψ†γ2γ4Ψ)2 = −2(b†1b2b
†
3b4 + b†1b2b3b

†
4 + b1b

†
2b
†
3b4 + b1b

†
2b3b

†
4)−N (A.3.7)

+ 2(N1N2 +N3N4) ,

(Ψ†γ2γ5Ψ)2 = 2(b†1b
†
2b3b4 − b1b

†
2b3b

†
4 + b1b2b

†
3b
†
4 − b

†
1b2b

†
3b4)−N (A.3.8)

+ 2(N1N4 +N2N3) ,
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(Ψ†γ3γ4Ψ)2 = −N + 2(N1N2 +N1N3−N1N4 +N3N4 +N2N4−N2N3) , (A.3.9)

(Ψ†γ3γ5Ψ)2 = 2(b1b
†
2b
†
3b4 + b†1b

†
2b3b4 + b†1b2b3b

†
4 + b1b2b

†
3b
†
4)−N (A.3.10)

+ 2(N2N4 +N1N3) ,

(Ψ†γ4γ5Ψ)2 = 2(b†1b
†
2b3b4 − b†1b2b3b

†
4 − b1b

†
2b
†
3b4 + b1b2b

†
3b
†
4)−N (A.3.11)

+ 2(N1N3 +N2N4) .

Combining (A.3.2)- (A.3.11) in (A.3.1) we find

(Zab)
2 = −1

4
{[2(N1N2 −N1N3 +N1N4 +N2N3 −N2N4 +N3N4)−N ] + [2(N1N2

+N3N4) + 2(b†1b2b
†
3b4 + b†1b2b3b

†
4 + b1b

†
2b
†
3b4 + b1b

†
2b3b

†
4)−N ] + [2(b†1b2b

†
3b4

− b†1b2b3b
†
4 + b1b

†
2b3b

†
4 − b1b

†
2b
†
3b4)−N + 2(N1N2 +N3N4)] + [2(b†1b

†
2b3b4

+ b1b
†
2b3b

†
4 + b†1b2b

†
3b4 + b1b2b

†
3b
†
4)−N + 2(N1N4 +N2N3)] + [2(b†1b2b3b

†
4

+ b1b
†
2b
†
3b4 − b†1b2b

†
3b4 − b1b

†
2b3b

†
4)−N + 2(N1N2 +N3N4)] + [2(N1N2

+N3N4)− 2(b†1b2b
†
3b4 + b†1b2b3b

†
4 + b1b

†
2b
†
3b4 + b1b

†
2b3b

†
4)−N ] + [2(b†1b

†
2b3b4

− b1b
†
2b3b

†
4 + b1b2b

†
3b
†
4 − b

†
1b2b

†
3b4)−N + 2(N1N4 +N2N3)] + [2(N1N2

+N1N3 −N1N4 +N3N4 +N2N4 −N2N3)−N ] + [2(b1b
†
2b
†
3b4 + b†1b

†
2b3b4

+ b†1b2b3b
†
4 + b1b2b

†
3b
†
4)−N + 2(N2N4 +N1N3)] + [2(b†1b

†
2b3b4 − b†1b2b3b

†
4

− b1b
†
2b
†
3b4 + b1b2b

†
3b
†
4)−N + 2(N1N3 +N2N4)]} , (A.3.12)

which upon simplification reduces to

(Zab)
2 =

5

2
N − 2(b†1b

†
2b3b4 + b1b2b

†
3b
†
4)− (N1 +N2)(N3 +N4) (A.3.13)

− 3(N1N2 +N3N4) .

A.4 Evaluation of (Zgh)
2

The completeness relation for the generators Tf (f = 1, .., N2 − 1) of SU(N) in an

IRR is given generically in the form [79]

1

C
(Tf )sv(Tf )wy +

1

N
δsvδwy = δsyδwv . (A.4.1)
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where C is a constant depending on the IRR. Since SU(4) and SO(6) have isomorphic

Lie algebras, for the fundamental spinor representation (1, 0, 0) of SO(6) we may

write the identity with C = 1 and N = 4

(Ggh)sv(Ggh)wy = δsyδwv −
1

4
δsvδwy, (A.4.2)

where Ggh (g,h= 1,..,6) generators generate the SO(6).

We evaluate the Casimir operator of SO(6) generators Zgh given in (3.2.30)

(Zgh)
2 = Ψ†GghΨΨ†GghΨ

= (Ψ†)i(Ggh)ijΨj(Ψ
†)k(Ggh)klΨl

= b†i (Ggh)ijbjb
†
k(Ggh)klbl

= (Ggh)ij(Ggh)klb
†
ibjb

†
kbl (A.4.3)

= (δilδkj −
1

4
δijδkl)b

†
ibjb

†
kbl

= b†ibkb
†
kbi −

1

4
b†ibib

†
kbk.

Since we have

b†ibkb
†
kbi = b†i (4I − b

†
kbk)bi = 4b†ibi − b

†
ib
†
kbkbi = 4N + b†ib

†
kbibk

= 4N + b†i (δkiI − bib
†
k)bk = 4N + b†ibi − b

†
ibib

†
kbk (A.4.4)

= 4N +N − (N)(N)

= 5N −N2 ,

and

N2 = (N1 +N2 +N3 +N4)(N1 +N2 +N3 +N4) = N2
1 +N2

2 +N2
3 +N2

4

+ 2(N1N2 +N1N3 +N2N3 +N1N4 +N3N4 +N2N4) (A.4.5)

= N + 2[N1N2 +N3N4 + (N1 +N2)(N3 +N4)] ,

the calculation yields

(Zgh)
2 = 5N −N2 − N2

4
= 5

(
N − N2

4

)
= 5{N − (1/4){2[N1N2 +N3N4 + (N1 +N2)(N3 +N4)] +N}}. (A.4.6)

106



(Zgh)
2 =

15

4
N − 5

2
(N1N2 +N3N4)− 5

2
(N1 +N2)(N3 +N4) . (A.4.7)

Using (Zgh)
2, (Zab)

2 on the basis (A.1.5) yields the results found in chapter 3 in

equations (3.2.34), (3.2.38) and (3.2.42).
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APPENDIX B

COADJOINT ORBITS OF SU(3)

In order to construct the coadjoint orbits of SU(3), we may start with the group

elements

gs =


m11 m12 m13

m21 m22 m23

m31 m32 m33

 , gs ∈ SU(3). (B.1)

where mij are complex numbers and g†sgs = 1. Consider also the diagonal matrix

Jdg = diag(ic1, ic2, ic3) , c1, c2, c3 ∈ R. (B.2)

For the possible coadjoint orbits the requirement is that

Jdg = gsJdggs
†, (B.3)

written out explicitly this yields

diag(ic1, ic2, ic3) = igsdiag(c1, c2, c3)gs
† = i


M11 M12 M13

M21 M22 M23

M31 M32 M33

 , (B.4)

where Mµν (µ, ν=1,2,3) are given as

M11 = c1|m11|
2 + c2|m12|

2 + c3|m13|
2, (B.5a)

M12 = c1m11m21
∗ + c2m12m22

∗ + c3m13m23
∗, (B.5b)

M13 = c1m11m31
∗ + c2m12m32

∗ + c3m13m33
∗, (B.5c)

M21 = c1m21m11
∗ + c2m22m12

∗ + c3m23m13
∗, (B.5d)

M22 = c1|m21|
2 + c2|m22|

2 + c3|m23|
2, (B.5e)

M23 = c1m21m31
∗ + c2m22m32

∗ + c3m23m33
∗, (B.5f)
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M31 = c1m31m11
∗ + c2m32m12

∗ + c3m33m13
∗, (B.5g)

M32 = c1m31m21
∗ + c2m32m22

∗ + c3m33m23
∗, (B.5h)

M33 = c1|m31|
2 + c2|m32|

2 + c3|m33|
2. (B.5i)

There are three distinct cases of interest.

Case 1: c1 = c2 = c3 = c. This is the trivial case.

gsJdggs
† = gs(ic13)gs

† = icgsgs
−1 = ic13 = Jdg. (B.6)

The stabilizer is SU(3) and the orbit is just a point.

Case 2: c1 6= c2 6= c3. In this case, (B.5a) requires

c1|m11|
2 + c2|m12|

2 + c3|m13|
2 = c1, (B.7)

and it is solved by

m12 = m13 = 0 , |m11| = 1 → m11 = eiθ11 . (B.8)

Similarly, we have

c1|m21|
2 + c2|m22|

2 + c3|m23|
2 = c2, (B.9)

from (B.5e) and the solution is

m21 = m23 = 0 , m22 = eiθ22 . (B.10)

Finally from (B.5i), we have

c1|m31|
2 + c2|m32|

2 + c3|m33|
2 = c3, (B.11)

m31 = m32 = 0 , m33 = eiθ33 . (B.12)

Remaining equations in (B.5) are automatically satisfied by these solutions. We may

write

1 = det(gs) = eiθ11eiθ22eiθ33 → eiθ33 = e−i(θ11+θ22). (B.13)

gs =


eiθ11 0 0

0 eiθ22 0

0 0 e−i(θ11+θ22)

 . (B.14)
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Since there are two independent phases, we see that the orbit is SU(3)/(U(1)×U(1)).

Case 3: c1 = c2 6= c3 From (B.5a) we have

c1|m11|
2 + c1|m12|

2 + c3|m13|
2 = c1 , (B.15)

but this time we have

m13 = 0 , |m11|
2 + |m12|

2 = 1 , (B.16)

contrary to (B.8). Proceeding with (B.5e) and (B.5i) we have

c1|m21|
2 + c1|m22|

2 + c3|m23|
2 = c1, (B.17)

m23 = 0 , |m21|
2 + |m22|

2 = 1. (B.18)

c1|m31|
2 + c1|m32|

2 + c3|m33|
2 = c3, (B.19)

m31 = m32 = 0 , m33 = eiθ33 . (B.20)

Putting these together we have

gs =


m11 m12 0

m21 m22 0

0 0 eiθ33

 ≡
Gm 0

0 eiθ33

 . (B.21)

Since det(gs) = 1 we have det(Gm) = e−iθ33 , therefore the corresponding orbit is

SU(3)/S[U(2)×U(1)]. This is a 4-dimensional manifold and it is isomorphic to the

complex projective space CP2.
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APPENDIX C

THE WESS-ZUMINO TERM AND COADJOINT ORBITS

In order to understand some features of coadjoint orbits of compact Lie groups, we

follow the method given in [80] and discuss the quantization of the Wess-Zumino

Lagrangian. A common property of this kind of systems is that elements S of the

group G are treated as dynamical variables. The action Swz is given by

Swz = −i
∫

tr
(

ΛS−1Ṡ
)

dt, (C.1)

where Ṡ = dS
dt

. The group element S can be parametrized in terms of real variables

(ξ1, ξ2, ..., ξd) and expressed as

S(ξ) = ei
∑
k Tkξk , (C.2)

where d is the dimension of the Lie algebra of G and ξi ≡ ξi(t). Tk’s form a basis for

this Lie algebra and satisfy

[Tk, Tl] = ifklsTs, (C.3)

where fkls are the corresponding structure constants. Now let us define a set of func-

tions

f(E ) ≡ (f1(E ), f2(E ), ..., fd(E )), (C.4)

where E = (E1,E2, ...,Ed) and f(0) = ξ. A change in the local coordinates ξ → f(E )

leads to

S[f(E )] = ei
∑
k TkEkS(ξ), (C.5)

and
∂S

∂El
=
∑
s

∂S

∂fs

∂fs
∂El

= iTkδkle
i
∑
k TkEkS(ξ) . (C.6)

At E = 0, we have

iTlS(ξ) =
∑
s

∂S

∂fs

∣∣∣∣
E =0

∂fs
∂El

∣∣∣∣
E =0

=
∑
s

∂S(ξ)

∂ξs
Nsl , (N(ξ))sl =

∂fs
∂El

∣∣∣∣
E =0

(C.7)
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Note that, for the total variation of S we may write

dS =
∑
l

∂S

∂ξl
dξl , Ṡ =

dS

dt
=
∑
l

∂S

∂ξl
ξ̇l , (C.8)

from which it follows that

∂Ṡ

∂ξ̇k
=
∑
l

∂S

∂ξl
δkl =

∂S

∂ξk
. (C.9)

Using (C.9) conjugate momenta is derived from (C.1)

πk =
∂L

∂ξ̇k

= −i ∂
∂ξ̇k

∑
a1

((Λ)a1b1(S
−1)b1c1(Ṡ)c1a1)

= −i
∑
a1

((Λ)a1b1(S
−1)b1c1

∂

∂ξ̇k
(Ṡ)c1a1)

= −i tr

(
ΛS−1 ∂Ṡ

∂ξ̇k

)

= −i tr

(
ΛS−1 ∂S

∂ξk

)
. (C.10)

Local coordinates and conjugate momenta satisfy the canonical Poisson brackets

{ξk, πl} = δkl , {ξk, ξl} = {πk, πl} = 0 . (C.11)

Since N(ξ) in (C.7) is an invertible matrix, conjugate momenta, ti, associated to

variables ξ can be written as

tk = −
∑
l

πlNlk . (C.12)

They satisfy the following Poisson brackets

{tk, S} = iTkS , (C.13a){
tk, S

−1
}

= −iS−1Tk , (C.13b)

{tk, tl} = fklsts . (C.13c)

These relations make it obvious that ti are the generators of the left action of G.

It is also possible to define a right action of the generators

Λk = tk
R = −

∑
l

tlRlk, (C.14)

114



where Rlk = Rlk(S) denote the adjoint representation of G, which has the property∑
l

RlkTl = S TkS
−1 . (C.15)

The right generators satisfy the following Poisson brackets

{Λk, S} = −iSTk , (C.16a){
Λk, S

−1
}

= iTkS
−1 , (C.16b)

{Λk,Λl} = fklsΛs . (C.16c)

Comparison with (C.7) shows that Λk are indeed the generators of the right action of

G ∑
l

iTlS(N−1)lp =
∑
l

∑
s

∂S

∂ξs
Nsl(N

−1)lp =
∑
s

∂S

∂ξs
δsp =

∂S

∂ξp
, (C.17)

∂S

∂ξp
= i
∑
l

TlS(N−1)lp . (C.18)

By combining equations (C.10),(C.12),(C.14) and (C.18) the right generators can be

rewritten as

Λk = tk
R = −

∑
u

tuRuk =
∑
u,l

πlNluRuk

=
∑
u,l

−i tr

(
ΛS−1 ∂S

∂ξl

)
NluRuk

= −i
∑
u,l,s

tr
(
ΛS−1iTsS(N−1)sl

)
NluRuk

=
∑
u,s

tr
(
ΛS−1TsS

)
δsuRuk

=
∑
s

tr
(
ΛS−1TsS

)
Rsk

=
∑
s

tr
(
ΛS−1(RskTs)S

)
= tr

(
ΛS−1(S TkS

−1)S
)

= tr(ΛTk) . (C.19)
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APPENDIX D

QUANTIZATION OF O4

For the quantization of the coadjoint orbit O4
∼= CP3, we should concentrate on the

Lie algebra of SU(4) and the Lwz in (C.1) written for S ∈ SU(4). The latter has 15

generators, Tk, (k = 1, ..., 15) that satisfy the trace condition

tr(TkTl) =
1

2
δkl . (D.1)

We take Λ =
√

6
2
n0T15 where n0 is the U(1) charge. The right generators are

Λk =

√
6

2
tr(n0T15Tk) =

√
6

4
n0δk,15 . (D.2)

Since we will apply Dirac constraint formalism for quantization, the last equation

should be reexpressed more precisely as

Ck = Λk −
√

6

4
n0δk,15 ≈ 0, (D.3)

where ” ≈ ” denotes a weak equality and Ck is a primary constraint. As it is em-

phasized in [63], the constraint equations Λk =
√

6
4
n0δk,15 must not be used before

working out all the Poisson brackets. To remind us of this rule, constraint equations

are written as Ck ≈ 0 and said to be "weakly equal" to zero.

According to Dirac formalism, constraint equations can be classified as first-class

constraints and second-class constraints. If a constraint has vanishing Poisson brack-

ets with all other constraints, it is called first-class constraint. Otherwise, it is called

a second-class constraint [81].

The non-vanishing structure constants fkls of the Lie algebra of SU(4) can be found

in several sources, for instance in [67] and [82]. Now let us start with the Poisson

brackets of Λ1. For instance, we have

{Λ1,Λ2} = f123Λ3 = Λ3 ≈
√

6

4
n0δ3,15 = 0, (D.4)
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{Λ1,Λ4} = f147Λ7 =
1

2
Λ7 ≈

√
6

8
n0δ7,15 = 0 . (D.5)

The remaining Poisson brackets also vanish. Therefore, we deduce that Λ1 is a first-

class constraint. In fact, we have all Λa
′ with a′ = 1, . . . , 8 are primary first-class

constraints and they constitute an SU(3) subalgebra of SU(4). We have

{Λa
′ ,Λb

′} = fa′b′c′Λc
′ ≈ 0 . (D.6)

Λ15 has also zero Poisson brackets with all other constraints due to (D.3). Thus, we

conclude that Λk (k = 1, 2, . . . , 8, 15) are all first-class constraints.

For Λ9, we have

{Λ9,Λ10} = f9,10,15Λ15 =

√
2

3
Λ15 ≈

√
2

3

(√
6

4
n0

)
=
n0

2
, (D.7)

{Λ9,Λ10} ≈ n0

2
, so Λ9 is a second class constraint. In fact, all of the remaining

six constraints Λl (l = 9, ..., 14) are second-class constraints. However, they can be

rearranged to form a complete set of first-class constraints. Consider the combinations

Φn
′
± = Λn

′ ± iΛn
′
+1, (D.8)

where n′ = 9, 11, 13. If n′ = 9, we have{
Λ10,Φ9

±} = {Λ10,Λ9} (D.9)

= f10,9,3Λ3 (D.10)

= −1

2
Λ3 ≈ 0 . (D.11)

Proceeding similarly, it is easy to see that either the Φn
′
+ or Φn

′
− can be shown to

constitute first-class constraints for n0 > 0 and n0 < 0 respectively. Furthermore,

their Poisson brackets with Λ3 reveal another important identity; for instance we have{
Λ3,Φ9

±} = {Λ3,Λ9} ± i {Λ3,Λ10}

= − i
2

(iΛ10 ± Λ9)

= ∓ i
2

Φ9
± . (D.12)

Similar relations for Φ11
± and Φ13

± are{
Λ3,Φ11

±} = ± i
2

Φ11
± ,

{
Λ3,Φ13

±} = 0, (D.13)
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so Poisson brackets of the form
{

Λ3,Φn
′
±} vanish on the surface defined by equa-

tion (D.3) for n0 > 0 & n0 < 0, respectively. In addition, Λ8 and Λ15 satisfy{
Λ8,Φ9

±} = ∓ i

2
√

3
Φ9
± ,

{
Λ8,Φ11

±} = ∓ i

2
√

3
Φ11

±, (D.14)

{
Λ8,Φ13

±} = ± i√
3

Φ13
± ,

{
Λ15,Φn

′
±} = ∓i

√
2

3
Φn
′
±. (D.15)

Then, Poisson brackets
{

Λ8,Φn
′
±} and

{
Λ15,Φn

′
±} also weakly equal to zero for

n0 > 0 & n0 < 0, corresponding to ± superscripts. We also infer from last four

equations that Φn
′
± have the structure of ladder operators of SU(4).

Summarizing we have

Φk := Λk ≈ 0 , Φ15 := Λ15 −
√

6

4
n0 ≈ 0 , k = 1, 2, . . . , 8 , (D.16)

Φn
′
+ ≈ 0 for n0 > 0 , Φn

′
− ≈ 0 for n0 < 0 . (D.17)

The states satisfying these constraints have the non-vanishing eigenvalue
√

6
4
n0 of Λ15

Λ15 |Λ3,Λ8,Λ15〉 =

√
6

4
n0 |Λ3,Λ8,Λ15〉 . (D.18)

Together with equations (D.16), the set of constraints Φn
′
± map to different irre-

ducible representations of SU(4). For n0 < 0, they select (0, 0, |n0|) irreps and for

n0 > 0 they select (n0, 0, 0) irreps. These irreducible representations are IRR of

SU(4) which may be obtained from the |n0| fold symmetric tensor product of (0, 0, 1)

and (1, 0, 0) respectively. Their dimensions are equal to

1

6
(|n0|+ 1)(|n0|+ 2)(|n0|+ 3) . (D.19)

In this way, we complete the quantization procedure of CP3. In agreement with [51],

representations obtained are totally symmetric representations of SU(4).
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APPENDIX E

CANONICAL COHERENT STATES

Our discussion of canonical coherent states begins with a consideration of the simple

harmonic oscillator Hamiltonian given by [83]

Hsh =
1

2m
p̂2 +

1

2
mω2x̂2 = ~ω

(
â†â+

1

2

)
, (E.1)

where â and â†

â =

√
mω

2~

(
x̂+

i

mω
p̂

)
, â† =

√
mω

2~

(
x̂− i

mω
p̂

)
, (E.2)

are the canonical annihilation and creation operators, respectively. It is obvious that

both â and â† are non-Hermitian, dimensionless and they satisfy the basic commuta-

tion relation [
â, â†

]
= 1. (E.3)

The occupation number operator is defined as

M̂ ≡ â†â , (E.4)

and satisfies [
M̂, â

]
= −â,

[
M̂, â†

]
= â†. (E.5)

Simultaneous eigenkets of Hsh and M̂ are denoted by its eigenvalue m, and span the

infinite dimensional Fock space, spanned by |m〉 . We have

M̂ |m〉 = m |m〉 . (E.6)

The actions of annihilation and creation operators on |m〉 are listed by

â |m〉 =
√
m |m− 1〉 , â† |m〉 =

√
m+ 1 |m+ 1〉 . (E.7)
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The fact that any energy eigenket can be obtained by the successive application of â†

on the ground state is manifestly evident from the relation

|m〉 =
1√
m!

(
â†
)m
|0〉 . (E.8)

It is straightforward to determine the uncertainty product for the eigenstates |m〉:〈(
∆x̂
)2
〉
m

〈(
∆p̂
)2
〉
m

=
(〈
x̂2
〉
m
− 〈x̂〉2m

)(〈
p̂2
〉
m
− 〈p̂〉2m

)
=

~
mω

(
n+

1

2

)
m~ω

(
n+

1

2

)
(E.9)

=
~2

4
(2n+ 1)2.

Therefore, only the ground state |0〉 saturates the Heisenberg’s uncertainty bound.

A coherent state |η〉 is an eigenstate of the non-Hermitian operator â [84]

â |η〉 = η |η〉 , (E.10)

where η is a complex number. From this definition and equation (E.8), we have

|η〉 =
∑
m

|m〉〈m||η〉

=
∑
m

1√
m!
|m〉〈0|âm|η〉 (E.11)

= 〈0|η〉
∑
m

ηm√
m!
|m〉 .

Normalization of |η〉 can be fixed by the condition

1 = 〈η|η〉 = |〈0|η〉|2
∑
k,m

(η∗)kηm√
k!m!

〈k|m〉

= |〈0|η〉|2
∑
k

1

k!

(
|η|2
)k

(E.12)

= |〈0|η〉|2e|η|
2

,

upon choosing 〈0|η〉 to be real and positive yields

|η〉 = e−
1
2
|η|2
∑
m

ηm√
m!
|m〉 . (E.13)

Combining (E.8) and (E.13), one can obtain

|η〉 = e−
1
2
|η|2
∑
m

ηm√
m!

1√
m!

(
â†
)m
|0〉
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= e−
1
2
|η|2
∑
m

(
ηâ†
)m

m!
|0〉

= e−
1
2
|η|2eηâ

†
|0〉

= e−
1
2
|η|2eηâ

†
e−η

∗
â |0〉 . (E.14)

Here to derive the last line, we employed equation (E.10) and the requirements that

the state remains normalized and the corresponding dual element is 〈η|.

Recalling the Baker-Campbell-Hausdorff formula gives [85]

eM1eM2 = eM1+M2+ 1
2

[M1,M2], (E.15)

for [M1, [M1,M2]] = [M2, [M1,M2]] = 0, using (E.15) equation (E.14) assumes the

form

|η〉 = e−
1
2
|η|2eηâ

†−η∗â− |η|
2

2 [â†,â] |0〉

= e−
1
2
|η|2eηâ

†−η∗âe
1
2
|η|2 |0〉

= eηâ
†−η∗â |0〉 . (E.16)

Let us define the displacement operator as

D(η) = eηâ
†−η∗â, (E.17)

then, (E.16) can be simply expressed as

|η〉 = D(η) |0〉 , (E.18)

which offers another way of understanding the notion of coherent state |η〉 as a dis-

placed ground state by the magnitude |η| of η. Alternatively, (E.18) can be taken as

the definition of η and the property (E.10) can be derived from this.

The uncertainty products for coherent states |η〉 are〈(
∆x̂
)2
〉
η

〈(
∆p̂
)2
〉
η

=
( 〈
η
∣∣x̂2
∣∣η〉− 〈η|x̂|η〉2)( 〈η∣∣p̂2

∣∣η〉− 〈η|p̂|η〉2)
=

~
2mω

(
η2 + 1 + 2η∗η + (η∗)2 − (η + η∗)2

)
(E.19)(

−m~ω
2

)(
(η∗)2 − 1− 2η∗η + η2 − (η∗ − η)2

)
=

~2

4
,

123



demonstrating that the canonical coherent states are minimum uncertainty states.

The overlap of two coherent states reads

〈η1|η2〉 =

(
e−

1
2
|η1|

2∑
m

〈m|
(
η1
∗)m
√
m!

)(
e−

1
2
|η2|

2∑
k

η2
k

√
k!
|k〉

)

= e−
1
2

(
|η1|

2
+|η2|

2
)∑

k

(
η1
∗η2

)k
k!

(E.20)

= eη1
∗
η2− 1

2

(
|η1|

2
+|η2|

2
)
.

Therefore, we have

|〈η1|η2〉|
2 = 〈η2|η1〉〈η1|η2〉 = e−|η1−η2|

2

, (E.21)

indicating that the coherent states form an overcomplete basis as |〈η1|η2〉|
2 attains a

nonzero value if η1 is not equal to η2. It can be shown that the closure relation can be

defined as follows [84]
1

π

∫
C

d2η|η〉〈η| = 1. (E.22)

A detailed discussion and further details may be found in [84, 86, 87].
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APPENDIX F

DERIVATION OF CP 3 EMBEDDING FUNCTIONS

In chapter 3, we have written equation (3.5.6) as follows

yk = 〈M |Tk |M〉 (F.1)

= 〈v| eiH Tk e−iH |v〉 =
15∑
l=1

〈v| pk,lTl |v〉

= 〈v| pk,15T15 |v〉 = 〈v| pk,15 t15 |v〉 (F.2)

=
1

2
√

6
〈v| pk,15 |v〉 (F.3)

=
1

2
√

6
pk,15 ,

where, we have used the notation

H = −(aT 9 + bT 10 + cT 11 + dT 12 + eT 13 + fT 14). (F.4)

In order to compute the embedding functions we may make use of the B.C.H. formula,

which is given as [70]

eiH Tk e
−iH = Tk + i[H,Tk] +

i2

2!
[H, [H,Tk]] +

i3

3!
[H, [H, [H,Tk]]] + ... (F.5)

As a concrete example we work out pk,15 for k = 1, the remaining functions yk can

also be determined by the application of the same method. We have,

15∑
l=1

p1,lTl = eiH T1 e
−iH

= T1 + i[H,T1]− 1

2
[H, [H,T1]]− i

6
[H, [H, [H,T1]]] + ...

=

(
a4

24
+
a2b2

12
+

7a2c2

12
+
a2d2

12
+ ...

)
T1 (F.6)
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+

(
db2c

2
+
abc2

2
− ad2b

2
− a2dc

2
+ ...

)
T2

+

(
a3c

4
− ac3

4
− bd3

4
+
b3d

4
+ ...

)
T3

+ . . .

− 2
√

6

(
− a3c

9
− a2bd

9
− ab2c

9
− ac3

9
+ ...

)
T15 .

By rearranging the coefficient of the fifteenth generator, we obtain

p1,15 = −2
√

6
(ac+ bd)

135

(
2a4 + 4a2b2 + 4a2c2 + 4a2d2 + 4a2e2 + 4a2f 2 − 15a2

+ 2b4 + 4b2c2 + 4b2d2 + 4b2e2 + 4b2f 2 − 15b2 + 2c4 + 4c2d2 + 4c2e2 + 4c2f 2

− 15c2 + 2d4 + 4d2e2 + 4d2f 2 − 15d2 + 2e4 + 4e2f 2 − 15e2 + 2f 4 − 15f 2

+ 45 + ...
)

= −2
√

6

135
(ac+ bd)

[
45− 15

(
a2 + b2 + c2 + d2 + e2 + f 2

)
+ 2
(
a2 + b2 + c2 + d2 + e2 + f 2

)2

+ ...
]

(F.7)

= −2
√

6

135
(ac+ bd)

(
45− 15r2 + 2r4 + ...

)
= −2

√
6

135
45(ac+ bd)

(
1− r2

3
+

2

45
r4 + ...

)
= −2

√
6

3
(ac+ bd)

sin2(r)

r2 ,

and this finally gives

y1 =
1

2
√

6
p1,15 = −1

3
(ac+ bd)

sin2(r)

r2 . (F.8)
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APPENDIX G

MATLAB CODES

The MATLAB programming language is a powerful and versatile tool to perform cal-

culations on large collections of data. In this regard, it was chosen as the platform of

implementation for the task of determination of S4
n matrices. In this appendix, the

original MATLAB functions and script developed to calculate X(n)
a of (2.3.55) are

presented.

clc; clear all; close all

N = 2;

mtxNo = 5;

Nstart = N;

Nend = N;

matSr = mtxNo;

matEd = mtxNo;

for NN = Nstart:Nend

for matNo = matSr:matEd

M = genFzzN(NN,matNo);

txtStr = strcat(’N’,num2str(NN),’X’,num2str(matNo),’.mat’);

save(txtStr,’M’)
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end

end

function fzM = genFzzN(fzOrd,mtrNo)

algbScL = 1/2;

sigma0 = eye(2);

sigma1 = [0 1; 1 0];

sigma2 = [0 -i;i 0];

sigma3 = [1 0; 0 -1];

Gamma1 = kron(sigma2,sigma1);

Gamma2 = kron(sigma2,sigma2);

Gamma3 = kron(sigma2,sigma3);

Gamma4 = kron(sigma1,sigma0);

Gamma5 = kron(sigma3,sigma0);

gmmLst = {Gamma1 Gamma2 Gamma3 Gamma4 Gamma5};

mtrxLst = cell(fzOrd,1);

if fzOrd == 1

fzM = gmmLst{mtrNo};

else

mtrxLst{1} = gmmLst{mtrNo};

for f = 2:fzOrd

mtrxLst{f} = eye(4);

end

fzM = fzOrd*symKron(mtrxLst);

end

fzM = algbScL*fzM;
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function symMat = symKron(matLst)

set = [1 2 3 4];

k = length(matLst);

l=length(set);

shp=zeros(l^k,k);

for j = 1:k

shp(:,j)=reshape(reshape(repmat((1:l),1,l^(k-1)),l^j...

,l^(k-j))’,l^k,1);

end

res=set(shp);

res = sort(res,2);

[u1, i1] = unique(res,’rows’,’first’);

iDpRw = setdiff(1:size(res,1), i1);

res(iDpRw,:) = [];

[rN cN] = size(res);

for i = 1:rN

permV = perms(res(i,:));

[u2,i2] = unique(permV,’rows’,’first’);

iDpRw1 = setdiff(1:size(permV,1), i2);

permV(iDpRw1,:) = [];

symLst{i} = permV;

end

symMat = zeros(rN);

for ii = 1:rN

for jj = 1:rN

symMat(ii,jj) = fndMtE(symLst{ii},symLst{jj},matLst);
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end

end

function outE = fndMtE(M1,M2,mtLst)

[r1 cL1] = size(M1);

[r2 cL2] = size(M2);

sum = 0;

for a1 = 1:r1

v1 = M1(a1,:);

for b1 = 1:r2

v2 = M2(b1,:);

prd = 1;

for a2 = 1:cL1

mtNw = mtLst{a2};

prd = prd*mtNw(v1(a2),v2(a2));

end

sum = sum + prd;

end

end

outE = sum/(sqrt(r1)*sqrt(r2));
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APPENDIX H

JACOBI ELLIPTIC FUNCTIONS

The Jacobi elliptic functions are a set of elliptic functions which appear in a variety

of problems in physics such as the motion of a simple pendulum and the motion

of a force-free asymmetric top [78, 88, 89]. For the derivation of Jacobi elliptic

function sn, one may consider the problem of planar pendulum. The planar pendulum

is assumed to consist of a small-diameter bob of mass m attached to one end of a

massless rod of length l. The other end of the rod is attached to a pivot point. The

energy of the system is given by

E =
1

2
ml2ϑ̇

2
+mgl(1− cosϑ), (H.1)

where ϑ is the angular displacement measured from the position of equlibrium. It is

possible to express this energy equation in dimensionless form as

E

mgl
=

1

2ω2
0

ϑ̇
2

+ 1− cosϑ, (H.2)

where ω2
0 =

g

l
. Since the kinetic energy of the pendulum vanishes at the point of

maximum angular displacement, ϑm, (H.1) may also be rewritten as

E = mgl(1− cosϑm), (H.3)

where 0 < ϑm < π. From (H.2) and (H.3) , we have

1− cosϑm =
1

2ω2
0

ϑ̇
2

+ 1− cosϑ

2sin2(ϑm/2) =
1

2ω2
0

ϑ̇
2

+ 2sin2(ϑ/2)(
dϑ

dt

)2

= 4ω2
0

{
sin2(ϑm/2)− sin2(ϑ/2)

}
(

dϑ

dy

)2

= 4
{
sin2(ϑm/2)− sin2(ϑ/2)

}
, (H.4)

131



where the dimensionless variable y is given as

y =

√
g

l
t = ω0t. (H.5)

Let us introduce the variable s as

s = sin

(
ϑm
2

)
, 0 < s < 1. (H.6)

Applying Euler’s substitution [78]

sinϕ =
1

s
sin

(
ϑ

2

)
, (H.7)

on equation (H.4) yields (
dϑ

dy

)2

= 4
(
s2 − s2sin2(ϕ)

)
. (H.8)

Differentiating both sides of (H.7) with respect to ϕ, one can obtain the useful identity

cosϕ =
1

2s
cos

(
ϑ

2

)
dϑ

dϕ
,

dϑ

dϕ
=

2s cosϕ

cos(ϑ/2)
. (H.9)

Combining equations (H.8) and (H.9) gives(
dϑ

dy

)2

=

(
dϑ

dϕ

)2(
dϕ

dy

)2

4s2
(

1− sin2(ϕ)
)

=
4s2cos2(ϕ)

cos2(ϑ/2)

(
dϕ

dy

)2

(
dϕ

dy

)2

= cos2

(
ϑ

2

)
= 1− s2sin2(ϕ), (H.10)

then by taking the positive root, we arrive at the crucial relation

dy

dϕ
=

1√
1− s2sin2(ϕ)

, (H.11)

which may be integrated under the given initial conditions to obtain

y(ϕ, s) =

∫ ϕ

0

(
1− s2sin2(ϕ′)

)− 1
2
dϕ′. (H.12)

Since the pendulum is assumed to be swinging between ϑm and−ϑm, equation (H.12)

should be valid within the rangeK(s) ≥ y ≥ −K(s) whereK is the complete elliptic

integral of the first kind defined as [90]

K(k) =

∫ π
2

0

(
1− k2sin2(ϑ)

)− 1
2
dϑ, (H.13)
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with 0 ≤ k2 < 1.

The Jacobi elliptic function sn(y) is defined by [89]

sn(y) ≡ sn(y|k) = sinϕ, (H.14)

where y can be given in terms of the inverse-functional relationship

y(ϕ, k) = sn−1(sinϕ|k)

=

∫ sinϕ

0

((
1− α2

)(
1− k2α2

))− 1
2
dα (H.15)

=

∫ ϕ

0

(
1− k2sin2(ϕ′)

)− 1
2
dϕ′.

Aside from the elliptic sine, sn, there are two other Jacobi elliptic functions: elliptic

cosine cn and delta amplitude dn. By performing substitutions similar to (H.7), these

functions can be defined as follows

cn(y) ≡ cn(y|k) = cosϕ, (H.16)

dn(y) ≡ dn(y|k) =

√
1− k2sin2(ϕ). (H.17)

When the elliptic modulus is equal to zero i.e. k = 0, the functions satisfy the limiting

definitions

sn(y|0) = siny, cn(y|0) = cosy, dn(y|0) = 1. (H.18)

The Jacobi elliptic functions sn, cn, dn are doubly periodic with periods
(
4K, 2iK ′

)
,(

4K, 4iK ′
)

and
(
2K, 4iK ′

)
respectively:

sn(y + 4K) = sn
(
y + 2iK ′

)
= sn(y), (H.19)

cn(y + 4K) = cn
(
y + 4iK ′

)
= cn(y), (H.20)

dn(y + 2K) = dn
(
y + 4iK ′

)
= dn(y). (H.21)

where K ′ = K(kc) and the complementary elliptic modulus is given by the relation

kc = (1− k2)
1
2 .
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APPENDIX I

POINCARÉ SECTIONS

In dynamical systems theory, a Poincaré section (or surface of section) plot is a way

of representing phase space trajectories by a sequence of points that are obtained from

the reduction of a continuous time flow to a discrete time chart [75, 91, 92, 93]. Con-

sider an M -dimensional phase space. Let Spn be an (M −1)-dimensional hyperplane

which is preferably transverse to the continuous flow. The Poincaré section plot is

generated by recording the points formed by the intersections of the phase path with

Spn. Each time the trajectory comes back around to pierce Spn, it leaves a point on the

Poincaré section. Thus, the Poincaré section plot consists of a pattern of points that

can be utilized to study the dynamics of the system. In periodic motion, depending

on the number of oscillation frequencies, the Poincaré section plot consists of a sin-

gle fixed point or several discrete points whose locations can vary for distinct initial

conditions. Instead of discrete points, a quasi-periodic trajectory would draw a closed

contour in the surface of section and chaotic motion appears in plots as a collection

of randomly scattered points.

As an example to illustrate the usage of Poincaré sections to probe chaotic behavior,

we may consider the Hénon-Heiles model whose Hamiltonian is given by [94, 22]

H =
1

2

(
p2
x + p2

y

)
+

1

2

(
x2 + y2

)
+ x2y − 1

3
y3. (I.1)

The Hamilton’s equations read

ẋ = px , (I.2a)

ẏ = py , (I.2b)

ṗx = −x(2y + 1), (I.2c)

ṗy = y(y − 1)− x2 . (I.2d)
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(a) E =
1

120

(b) E =
1

15

(c) E =
1

8

(d) E =
1

6

Figure I.1: Poincarè sections for E =
1

120
,

1

15
,
1

8
,
1

6

The surface of section graphs of figure I.1 are plotted for the Hénon-Heiles model

with four distinct energy values. The plots depict the variation of ẏ(t) with y(t) at

values where x(t) = 0. It should be noted that to fill out a surface of section a variety

of initial conditions consistent with the same energy value are picked. The Poincarè

section of figure I.1a fall on two ellipses that correspond to periodic or quasi-periodic
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orbits. Although the majority of solutions shown in figure I.1b correspond to quasi-

periodic orbits, it is seen that these orbits coexist with the chaotic ones. The physical

implication of this observation is that while some initial conditions lead to quasi-

periodic trajectories, others lead to chaotic ones. One may easily deduce from an

examination of I.1c that chaotic trajectories occupy a considerably larger region of

phase space if the energy is increased further. Finally, nearly all of the Poincarè

section plot of I.1d is filled with densely distributed scattered dots which suggest that

a chaotic trajectory covers almost the entire phase space.
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APPENDIX J

LYAPUNOV EXPONENTS

The notion of exponential separation of neighboring trajectories can be made formal

and precise with a study of the Lyapunov exponents of a dynamical system [95, 96,

97, 22]. They provide a way to explore what chaotic behavior means quantitatively

by measuring the average exponential rate of divergence of nearby initial conditions.

In order to compute the Lyapunov exponents of a multidimensional chaotic system,

we consider the system of first order differential equations in M−dimensional phase

space described by

ẏ(t) = G(y(t)), (J.1)

where y(t) = (y1(t), ..., yM(t))T . Concentrating only on linear deviations about an

arbitrary element of y(t) yields the equation of motion for the variation as

δẏε(t) = Gε(yε̃(t) + δyε̃(t))−Gε(yε̃(t)) ≈
∂Gε

∂yε̃
δyε̃ . (J.2)

where ε, ε̃ = 1, ...,M . With the help of the time evolution operator, Tt, the deviation

vector can be related to its initial value:

δy(t) = Ttδy(0). (J.3)

Besides, from the linearity of Tt we have

δy(ta + tb) = TtaTtbδy(0). (J.4)

Suppose that the final evaluation time, te, of the system is divided into m steps of size

∆t. Then, employing the linearity property, the Lyapunov exponent for the deviation

vector can be defined by

λ ≡ lim
te→∞

1

te
log

(
|δy(te)|
|δy(0)|

)
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≡ lim
m→∞

1

m∆t
log

(
|δy(m∆t)|
|δy(0)|

)
(J.5)

≡ lim
m→∞

1

m∆t
log

(
|T∆t...T∆tδy(0)|
|δy(0)|

)
.

The procedure detailed above can be generalized to determine all M exponents by

first forming an orthonormal basis set that spans the tangential component of the tra-

jectory vector and then observing its evolution in time. Let
{
b1

0, ..., b
ε̃
0, ..., b

M
0

}
denote

such a set where bε̃0 corresponds to the basis constructed with ε̃th initial condition at

time t = 0. Evolving each basis by T∆t yields the new set{
c1

1, ..., c
ε̃
1, ..., c

M
1

}
=
{
T∆tb

1
0, ..., T∆tb

ε̃
0, ..., T∆tb

M
0

}
, (J.6)

which is not necessarily orthonormal. Let
{
b̄1

1, ..., b̄
M
1

}
denote the orthogonal set

that is produced from
{
c1

1, ..., c
M
1

}
by applying the Gram-Schmidt orthogonalization

process. This set can be normalized in the usual way:

bε̃1 =
b̄ε̃1

eε̃1
, (J.7)

where eε̃1 is the expansion rate defined by

eε̃1 ≡
∣∣b̄ε̃1∣∣∣∣bε̃0∣∣ =

∣∣b̄ε̃1∣∣. (J.8)

As a result of the orthonormalization process, the basis set
{
b1

1, ..., b
M
1

}
, which con-

stitutes the initial conditions for the next cycle, is obtained. Upon completing the

remaining m− 1 cycles, one determines the whole set of Lyapunov exponents whose

εth member can be defined in terms expansion rates as

λε ≡ lim
m→∞

1

m∆t

m∑
j=1

log
(
eεj
)
. (J.9)
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