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ABSTRACT

IMPROVED LINK PREDICTION FOR LOCATION BASED SOCIAL
NETWORKS WITH NOVEL FEATURES AND CONTEXTUAL FEATURE

REDUCTION

Bayrak, Ahmet Engin

Ph.D., Department of Computer Engineering

Supervisor: Prof. Dr. Faruk Polat

December 2019, 106 pages

High penetration of broadband Internet access has made a revolution on the web us-

age, where users have become content generators rather than just consuming. People

started to communicate, interact, maintain relationship and share data (image, video,

note, location, etc.) with their acquaintances through varying online social network

sites which are the key factors of that internet usage revolution. Online social net-

works with location sharing and interaction between people are called Location Based

Social Networks (LBSNs). To use and benefit more from social networks, real life

social links (friendship, acquaintanceship) should be represented well on them. Link

Prediction problem has a motivation of studying social network evolution and try-

ing to predict future possible links for representing the real-life relations better. In

this work, we studied a comprehensive feature set which combines topological fea-

tures with features calculated from temporal interaction data on LBSNs. We proposed

novel features which are calculated by using time, category and common friend de-

tails of candidates and their social interaction in LBSNs. In addition, we proposed an

effective feature reduction mechanism which helps to determine best feature subset in
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two steps. Contextual feature clustering is applied to remove redundant features and

then a non-monotonic selection of relevant features from the calculated clusters are

done by a custom designed genetic algorithm. Results depict that both new features

and the proposed feature reduction method improved link prediction performance for

LBSNs.

Keywords: link prediction, social networks, location based social networks, feature

extraction, feature reduction

vi



ÖZ

ORJİNAL ÖZNİTELİKLER VE BAĞLAMSAL ÖZNİTELİK AZALTMA
YÖNTEMİ İLE KONUM TABANLI SOSYAL AĞLAR İÇİN

GELİŞTİRİLMİŞ BAĞLANTI TAHMİNİ

Bayrak, Ahmet Engin

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Faruk Polat

Aralık 2019 , 106 sayfa

Geniş bant internet erişiminin yayılışı, kullanıcıların sadece tüketen olmak yerine

içerik üretici olduğu bir internet kullanım devrimi yaptı. Bu devrimin önemli fak-

törlerinden olan çeşitli çevrimiçi sosyal ağ siteleri aracılığıyla; insanlar tanıdıkları ile

iletişim kurmakta, etkileşmekte, kurdukları ilişkileri idame ettirmekte ve bilgi (re-

sim, video, not, konum, vb.) paylaşmaktadır. Kişiler arasında konum paylaşımı ve

etkileşimi yapılan sosyal ağlara Konum Tabanlı Sosyal Ağlar (KTSA) denir. Sosyal

ağların daha fazla kullanılması ve yararlanılması için; gerçek hayat sosyal bağlantı-

larının (arkadaşlık, tanıdıklık) iyi temsil edilmesi ile mümkündür. Bağlantı tahmini

probleminin, sosyal ağ evrimini inceleme ve gerçek yaşam ilişkilerini daha iyi tem-

sil edebilmek için gelecekteki olası bağlantıları tahmin etme hedefi vardır. Araştır-

mamızda, KTSA’lardaki zamansal etkileşim verilerinden hesaplanan öznitelikler ile

topolojik öznitelikleri birleştiren kapsamlı bir öznitelik kümesi çalışıldı. Biz bağlantı

adayları için zaman, mekan kategorisi ve ortak arkadaşların detaylı bilgilerini kulla-

narak hesaplanan orjinal öznitelikler önerdik. Ayrıca, en iyi performanslı öznitelik alt
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kümesini belirlemek için iki aşamalı bir öznitelik azaltma mekanizması geliştirdik.

Önce gereksiz özniteliklerden kurtulmak için benzer öznitelikleri kümeledik. Daha

sonra, hesaplanmış kümelerden ilişkili öznitelikleri özel olarak tasarlanmış bir gene-

tik algoritma yardımı ile monoton olmayan bir şekilde seçtik. Bizim önerdiğimiz bu

yeni özniteliklerin ve öznitelik azaltma yönteminin, KTSA’lar için bağlantı tahmini

performansını geliştirdiği gözlemlenmiştir.

Anahtar Kelimeler: bağlantı tahmini, sosyal ağlar, konum tabanlı sosyal ağlar, özni-

telik çıkarma, öznitelik azaltma
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CHAPTER 1

INTRODUCTION

Social network is a form of network which describes a social structure between actors

using relations and interactions. Mostly, actors (nodes) are humans or organizations

and interactions between actors (edges) vary according to services provided. Social

networks were used by social scientists for analyzing the transmission of information

between actors like individuals, groups and organizations.

Researchers from various disciplines have researched on social networks since 1930s.

Main motivation of such researches was extracting information of the social structure

using some analysis methods. Related research that combines graph theory, algebra,

statistics, sociometry and psychometry is called Social Network Analysis (SNA).

SNA mainly focuses on analyzing the relationship between people on a society mod-

eled as a network. Analyzing human behavior by location and time is another aspect

of SNA for social science researchers [1].

Online Social Networks (OSNs) are internet platforms that such network data is for-

mulated digitally by the help of web technologies. In recent years, smart phones

and broader web accessibility technologically boosted content sharing and reaching

through evolving OSNs which are believed to be reflection of physical social network.

OSNs have grown rapidly with varying platforms that empowered users to upload

miscellaneous digital social content. Users adopted the idea of easily sharing and

easily reaching personal digital content (photo, video, location, etc.) with closed

network of acquaintance [2].

Human social life is expanding by new people and new actions/interactions everyday.

Therefore, new nodes and edges emerge on their corresponding social networks. Such
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dynamic structure of social networks makes it harder to represent them for the online

ones. OSNs are trying to formulate that graph evolution to keep their graphs up-

to-date. Success of an OSN platform is correlated with number of users who are

sharing information with the friends through them. Growth in the number of users

and growth in the friendship link between users are two key factors for such success

[3]. To help on those growth, OSNs generally comes with recommendations about

possible friendship links such as:

• people you may know in Facebook,

• who to follow in Twitter and

• friend suggestions of Foursquare

Considering the scale of OSNs and the importance of their growth, smart friend-

ship recommendations should be performed through data-driven analysis and algo-

rithms. SNA researchers studied the defined problem as Link Prediction (LP) prob-

lem. Main motivation of LP is to formulate evolution of society in fast evolving

network with continuously added new users and new relationships. LP problem in a

social network can be defined as:

"Given a social network at a time t, predict new edges to be added to

the network at some future time t’" [4].

Existing studies on link prediction make use of statistical and topological features in

addition to domain related custom ones. There are various applications that benefit

from such prediction approaches like citation analysis [5] and online marketing [6].

Smartphones and mobile devices embedded with geographical sensors triggered de-

velopment of OSNs capable of sharing locations with others. Location Based Social

Networks (LBSNs) are platforms where users share location information with friends,

named check-in. Check-in is performed as a user’s location data sharing in places like

"SFO Airport" or “Stanford University" with a timestamp. LBSNs such as Facebook,

Foursquare, Gowalla and etc. collect temporal location information attached with

user social profiles and friendship data between user profiles [7].
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LBSNs use two different structural subgraphs [8] which make data richer and encour-

age SNA researchers to study separate LP solutions for LBSNs:

• Friendship subgraph, where friendship edges formed between two user profile

vertices

• Check-In subgraph, where check-in edges formed between place and user pro-

file vertices

In our research, we focused on improving LP performance to predict new friendships

in LBSNs with feature-based approaches. LP solutions for OSNs are mainly based

on features calculated from friend topologies (users and friendship) like Common

Friend Count (CFC) of link candidates. CPC is total number of unique users who

are friends with both link candidates.

Link prediction for LBSNs is a similar research problem with some data richness

provided by exclusive check-in and place information. In addition to topological fea-

tures, exclusive information can be used for calculating semantically rich interaction

features like Common Place Count (CPC) of link candidates. CPC is the total num-

ber of places where both link candidates checked-in. Features extracted from check-in

information play vital role for predictor performances.

After making a comprehensive literature survey, we collected a core feature set for the

problem. In addition to those features, we analyzed LBSN data to design and propose

new contextual features based on time, common friend details and place category

information in check-in data [9]. Our primary aim was to make use of available in-

formation in LBSN data that cannot be utilized by the existing features. Experiments

showed that using our proposed features improve the link prediction performance.

During experiments with whole set of combined existing and proposed features, we

also observed the requirement of feature reduction to determine optimized feature

subset. Feature reduction has a motivation to eliminate features that deteriorates link

prediction performance because of the overlapping information.

We proposed two reduction methods:
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• A greedy feature reduction method for efficient link prediction using feature

extraction time costs and performance ranking [10].

• A clustering based feature reduction methodology for effective link prediction

using features’ interaction with each others [11].

Clustering based feature reduction method helped to improve LP performance and

greedy feature reduction method reduced the time cost of LP solution.

With the motivation of finding features with exclusive information gain, we also per-

formed feature mining focused on place category information. Two proposed groups

of features were calculated separately for each category in dataset for a link can-

didate pair. Our results depict that some place categories are more correlated with

new friendship and we could enhance prediction performance by usage of category

semantic through features from those categories [12].

This thesis is structured as follows. Chapter 2 gives a general introduction to the

LP problem, LBSNs and extensive combination of related work in SNA literature. In

Chapter 3, research fundamentals like data, solution formulation and framework are

discussed. In the following chapter, Chapter 4, a presentation of contextual feature

analysis is given, both for the literature existing features and proposed contextual

features. In Chapter 5, we covered feature reduction studies performed. Chapter 6

is meant to share details of feature mining efforts and findings. The closing chapter,

Chapter 7, contains a summary of the study and suggestions for future work.
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CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter aims to present an overview of researched problem domain; Location

Based Social Networks and Link Prediction Problem. It also includes the combined

summaries for related studies in literature together with their approaches for similar

problems in similar domain.

2.1 Location Based Social Networks

Graphs are used to represent relationship among entities. Generally, nodes represent

entities and edges are for relationships among them. Edges are:

• directed when relationship is unidirectional (one-way) like file transfer, or

• undirected when relationship is bidirectional (two-way) like handshaking.

Social networks are for representing relationships between individuals and organiza-

tions. They have edges and nodes, but there is additional social information stored

on the graph items in order to represent social structure. Nodes and edges contain

various types of content which is specific to the domain of the social network.

At early days, social science researchers use the social networking concept to investi-

gate the underlying rules and mechanism at societies. Moreover, artificial and natural

theories for other scientific areas like economy, politics, history and etc. are studied

by the help of social networks [13].

Computer technology and its products have become the key determiner of the way

people live especially after 2000s. Enormous penetration of broadband internet made
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us online and internet connected. Then, wide usage of internet connected mobile

phones changed the way people behave and communicate with each other. At the

early days of internet, users were mostly consumers of the content generated by oth-

ers. By the help of ’Web 2.0’ concept, users are enabled to produce content for web.

Size of user generated mobile content exceeded others; especially after high owner-

ship rates for a smart phone connected to internet. Online social networks are the

computer technology products which have leaded such revolution.

Online social networks are growing dramatically with mobile and web software tools

for almost all information technology environments [2]. These tools provide a very

suitable environment to share multimedia information with other people on the net-

work. People tend to be interactive with each other through such social networks for

any step of their lives by shared photo, video, status, message, location information.

In online social networks, neighbor nodes are mostly called friends; such interactivity

is established with the edges called friendship between that neighbor friend nodes.

For example, we can define:

• Facebook as an online social network of friendship with undirected relationship

between users, with various content types are supported for sharing,

• Instagram as an online social network of photo and video sharing of people,

with directed relationship (following) between users,

• Twitter as an online social network of message (status) sharing of people, with

directed relationship (following) between users.

In addition to well-known global social networks like Facebook, Twitter, Instagram

with hundreds of millions of users (nodes), there are many smaller ones which are

very popular within their own geographical scope like city, country, etc. Moreover,

there are social networks for specific vertical communities based on shared interests

and goals. Some networks are only for professionals or for organizations. This va-

riety is based on the social content type stored and shared at nodes and edges of the

network.

Location Based Social Networks (LBSNs), is one of the emerged online social net-
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working concepts after wide usage of smart phones and location based services. One

of the key contributions of smart phones to daily life is the available GPS. When

combined with the internet access, GPS on mobile phones have made our life easier

at many aspects through location-based services like LBSNs.

Some of the utilities that LBSNs enabled for people are as follows:

• Share their location with friends (usually called check-in),

• Find out local places of their interest,

• Get directions to specific location,

• Discover places with discounts or with special offers,

• Read and write comments, recommendations and ratings about places,

• Connect with their friends and

• Find nearby friends.

Foursquare, Gowalla and Facebook Places are some of fast growing LBSNs. Most of

the LBSNs are designed based on following concepts:

1. User Node: Main nodes of the network which resembles a person using the

LBSN. These nodes can contain various social content according to the LBSN.

2. Friendship Edge: Edge between user nodes of the network that resembles a

social link between two friends. Generally, time information is stored on these

edges.

3. Place Node: Secondary nodes of the network which resembles a place which

can be visited by users. Descriptive information, multimedia content, user com-

ments and ratings are some of mostly stored together with the spatial informa-

tion for the place (latitude, longitude).

4. Check-in Edge: Edge between user and place nodes of the network that re-

sembles the visit of the user to that specific place. It is generally created with

user action and these edges include time information.
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Check-in activity is the most important user generated content for LBSNs as it en-

riches the social interaction over the network by removing the gap with real physical

world and online world. By that activity, when and where information of users’ mo-

bile trajectory is stored and shared with friends. Moreover, check-in is a way to

generate recommendation/rating/multimedia content for places. That content is an-

other useful service of LBSNs while user trying to discover a place of his/her interest.

Moreover, services like place ranking, mobile marketing, traffic forecasting and path

planning benefit from the check-in related content [14].

Rapid growth of those social networks also created a tremendous amount of user

social data with friendships, geographical trajectories. That data is full of challenges

and opportunities for researchers that analysis social networks to investigate social,

temporal and spatial points of mobile behavior for humans.

2.2 Link Prediction Problem for Location Based Social Networks

In this research, we studied link prediction problem for online location based social

networks. As explained on previous sections, LBSNs contains social links between its

users (nodes) which is generally called friendship. Those links resemble the friend-

ship between two people in real world.

Social communities are known to be very dynamic in real world by addition and

removal of friendship between people. SNA researchers have been trying to formulate

a model to predict that additions and removals of the social links with the social

network information and historical data. That SNA problem of finding future social

link (edge) possibility between two graph node is called "Link Prediction (LP)".

LP problem in a social network can be defined as follows:

Given a social network at a time t, predict new edges to be added to

the network at some future time t’ [4].

Link prediction is an important challenge for online social networks considering the

dynamic social link evolution of real world and the motivation of keeping their net-

work edges up-to-date. Amount and quality of user generated content is directly
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dependent to the existence of correct social links (friendships) between the users.

Therefore, social networking sites are providing link recommendation tools by pre-

dicting the possible link as follows:

• people you may know in Facebook,

• who to follow in Twitter and

• friend suggestions of Foursquare.

Existing studies on link prediction defines the problem as two-class classification

problem. If there is not any existing friendship edge between two user nodes, those

users can be chosen as social link candidates for the classifiers. Classifiers are trained

with the features calculated from the social network data. They usually make use of

statistical and topological features as measurement parameters, together with domain

related custom ones. Recommendation tools designed for OSNs have size limitations

as a result of the big data and time cost concerns; therefore, high precision is targeted

for the classifiers. There are various applications that benefit from such prediction

approach like anti-terrorism and marketing [15].

Link prediction for LBSNs are very similar to pure link prediction problem, only dif-

ference is the available usage of Place nodes and Check-in edges. Those additional

data enabled some new interaction features which are calculated from time, location

and frequency information retrieved from users’ check-ins. Temporal and spatial in-

formation of check-in define candidate user’s mobile behavior [16]. Geographical

distance, mobile behavior similarity and common place information are important for

SNA researchers and they can be used as features to train classifier for LP for LBSNs.

2.3 Related Work

2.3.1 Link Prediction Researches

One of the main researches on link prediction problem on social networks was made

by Liben-Nowell and Kleinberg. They summarized comprehensive subset of features

which were calculated using graph topology [4].

9



Generally accepted approach is solving the link prediction problem as 2-class classi-

fication where you can define 2 classes as: existence of link (friendship), or not. Most

of the good performing results in the field were due to supervised learning techniques

on this classification problem [17] [18].

Hasan et al. made a comprehensive research for analyzing supervised machine learn-

ing algorithm performances on a link prediction problem. In 2 different networks,

SVM, Decision Tree and Bagging (multi classifier fusion) algorithms had good per-

formances where SVM overperformed all others. Moreover, they analyzed features

to make ranking and elimination. Their results depicted that network distance was

most critical feature [18]. Such a feature analysis will be very beneficial especially in

decreasing the prediction time without losing much from prediction rate.

Davis et al. studied link prediction in heterogeneous networks and their results de-

picted how supervised approach over-performed comparing with unsupervised ap-

proach. [19]

Fire et al. studied computationally efficient topological features to perform link pre-

diction in social networks. They showed the time cost difference at the LP problem

based on the selected configurations. [20]

Lee et al. studied efficiency in link predicted. They used computationally less expen-

sive features but still got high performance by predictor. [21]

As described before, there are lots of usage types for social networks. There is a

research on biological gene networks [22]; which also studied link prediction. They

used main classification algorithms like naïve bayes classifier and decision trees with

a problem specific feature selection. Rather than predicting future links that will be

created, they also predicted the existing links that will be deleted in a network.

Alan E. Mislove studied [23] SNA methods from different perspectives to design in-

formation systems for special purposes. One of the main contributions of his study

is about the growth of OSNs. He used empirical features rather than using only the-

oretical models like popularity and network distance. He analyzed Flickr, YouTube

and Wikipedia data to make better predictions using specific proximity features (like

destination indegree) and results overperformed classical methods.
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Zhu et al. [24] also studied link prediction problem on different kinds of social net-

works like SBLP, Wikipedia and IMDB. In order to use related success on specific

sub-problem, they proposed a hybrid solution framework for social networks:

• In time based model, they used historical network data with a factor of passed

time (bigger factor for sooner),

• In probabilistic relational model, they used Relational Markov Networks to

make dynamical prediction model from specific feature data (time or sub-network).

Bliss et al. proposed an evolutionary algorithm approach on the same problem. They

used Twitter reply data to predict feature links between users. In their research, 16

well known topological measurements are used to represent a solution [25]. By giv-

ing random multiplier to each feature a solution instance is created in that study.

By using 100 initial seed instances in a Covariance Matrix Adaptation Evolutionary

Strategy algorithm, they determined best solution instance by evolutionary popula-

tion generation and fitness function. Their approach seems to be a generic solution

for most of the social networks. However, it lacks lots of problem specific feature and

measurement methods because of strict generic 16 features and simple algorithm.

Shin et al. proposed a hierarchical (multi-scale) solution for link prediction, that

work with low time requirements in social networks with huge data. In their research

[26], data is hierarchically clustered top-down and then their algorithm makes an

approximate calculation based on measurements at each level of hierarchy. Prediction

time for large scale data could be decreased by that approach.

Temporal information existing in social network as history was used by Soares et al.

[27] to propose a solution for predicting future links. As temporal data defines the

network evolution model, it would be also a good feature for future links that is also an

evolution. They used rewards for temporal events according to their effect on future

link association and got a stable prediction model. Rather than using actions of users

in future link, they accounted dynamics of common neighborhood when applicable.

Usage of higher multiplier for recent activity also performed well.

Usage of timestamps in social network’s historical data is crucial for getting better

prediction rates. One of the researches emphasizing this is done by Tylenda et al.
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from Saarbrücken [28]. Latest and frequent social interactions of an actor in the

social networks are used for defining neighborhoods and similarity. When those edges

weighted higher, their prediction rates over performed as expected. The main reason

of such improvements comes from the dynamic model of societies that is also time

aware.

A group from The University of Notre Dame Computer Science Department studied

link prediction problem with some new approaches to solve sub problems like vari-

ance reduction and sampling issues. That problem is mostly faced when dealing with

large social networks where possible feature links (not existing now) are much more

than realized ones. They applied oversampling but did not perform well. Then, usage

of under sampling by selecting a special group for training (sub-network or neigh-

borhood) performed better. In addition, they advised usage of Hellinger Trees (skew

insensitive classifier) within an ensemble [29].

Domain independent strategy for selecting features is modeled by Bao et al. [30]

using “Principal Component Analysis”. Their research also performs better on sparse

datasets where positive and negative links have a strong imbalance where most of the

supervised learning algorithms flunk.

2.3.2 Link Prediction Researches for Location Based Social Networks

A group from Cambridge University Computer Laboratory focused on analysis of lo-

cation based social networks [31]. They used a data set that contains temporal infor-

mation about created social ties and made place visits (check-ins). That dataset, which

includes longitudinal data for 4 months, was collected from Gowalla. Growth of net-

work is modeled by combining social and spatial factors. Their research on defining

main factors of social tie creation and social interaction initiation showed that only

social relationships like friend-of-friends, common friend count, indegree/outdegree

ratio were not enough for modeling the growth of social networks. They propose that

place friends (people that has common interest and related check-in on same places)

are also good candidate for new social tie even if they do not share any social feature

(friend, etc.). In addition, their results depicted that speed of network growth for a

node is directly dependent to the time spent on that social network.
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Zhiyuan Cheng et al. studied geospatial footprint analysis for LBSNs. For data col-

lection, they performed an analysis on public Twitter data to filter only LBSN created

tweets. They calculated a home location for each person from the coordinates of

check-ins, using recursive grid search [32]. They also performed an analysis of user

behavior during day and during week according to temporal information. Human mo-

bility pattern is researched by making spatial calculations like “radius of gyration”,

“user displacement” and “returning probability”. Their results depicted followings:

• People with higher social influence (follower/following rate) has higher radius

of gyration.

• People from denser cities (like metropolitan) have much more often displace-

ment (travel).

• People are more prone to make negative comments on location based social

networks.

A group from Arizona State University Computer Science and Engineering Depart-

ment also made researches on analysis of LBSNs [33]. Their motivation was to model

the location sharing action of a person using social and historical ties. Any historical

data would be good estimation parameter for future as such social interactions in his-

tory are the roots of future social interaction model. They used Twitter public status

updates to collect location based network data of Foursquare. They proposed a social

historical model for predicting check-ins by the help of two foundlings:

• There is a power-law distribution on location sharing of users. (less places with

frequent check-in and more places with few check-ins)

• People tend to share location on places after another sharing another place as

combo; like having lunch and going to coffee shop. (short-term effect)

One of the link prediction approaches using location data effectively is proposed by

Scellato et al. [34]. They used the Gowalla dataset with 4 months data in their re-

search. Their contribution is on the selection of possible link candidates on social

networks. Only 2 people with a common friend or 2 people with a common check-in

13



place (same location shared by both) are selected as link candidates. Such an effort

makes data 15 times smaller while losing only 1/3 of new links. Additionally, they

used location based social activity to generate new features for their supervised ma-

chine learning algorithms like location entropy, common places and place distances.

Their study can be increased by more systematic usage of such user social actions

especially with a time-based hierarchy.

Zheng et al. from Microsoft Research Asia studied LBSNs to recommend place and

friend [35]. Their study used a hierarchical similarity measurement based on users’

longitudinal data history. Some regions are defined dynamically from the historical

data and users’ movements and users are described by that regions and sequences of

those regions. They also consider the importance of a location for creating a friend-

ship by analyzing the historical data for popularity, etc. They proposed a similarity

measurement approach from that specifications and calculations.

Sun et al. studied social networks with multi typed relations [36] where some of re-

lationship types can be inferred from others. To handle such variance in types they

proposed a meta-path based approach for defining features. Their main contribution

on the research is extending the linear prediction problem definition with a new con-

sideration, creation time prediction of that future link.

A group from Carnegie Mellon NASA Ames Research Park studied the link predic-

tion problem for LBSNs. They emphasized on data analysis like feature selection

using location information of social interactions and threshold usage on the selec-

tion of possible future links. Their results depicted the impact of using such data

pre-processing and interaction thresholding (timestamp and frequency based) [37].

Hristova et al. composed a multilayer social network using Twitter and Foursquare

to solve link prediction in LBSNs [16]. They used cross network data and made

cross network predictions using social and geographic features to enhance individual

network prediction scope.

Ye et al. tried to calculate a category distribution for each user to predict his next

check-in [38]. Their results depict that category of places helped them to understand

user-preference for predicting his next action.
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2.3.3 Optimal Feature Subset Selection Research

Optimal feature subset selection is shown to be NP hard problem [39]. Thousands

of researches have been conducted to help on that problem by leveraging statistics,

math and information theory. Feature selection and feature reduction are two different

sub-problems on this area.

Dash and Liu prepared one of first comprehensive survey for feature selection mech-

anisms. They presented an overview of studies since 1970s and proposed a generic

model of feature selection methods with four main steps:

• Generation: This step is for producing and determining subset candidates.

That production can be performed as a complete, heuristic or random search.

• Evaluation Function: This step is for creating a score for subsets based on

goals. Distance, information, dependence or consistency metrics can be used as

evaluator. Moreover, real classification error rate can be used for high accuracy

requirements with huge time usage.

• Stopping Criterion: This is the criterion to halt the subset generation and

evaluation loop,

• Validation: This step is for checking the validness of the selected subset.

They identified all different possible four step combinations from literature and an-

alyzed their probabilities and potential usages. Guidelines and checklists were de-

scribed for domain specific feature selection method designers [40].

Yu and Liu from Arizona State University analyzed features to create a selection

mechanism based on relevance and redundancy [41]. They proposed a framework

that uses relevance and redundancy of features in the evaluation function. Firstly,

features are divided into three relevance groups (strongly relevant, weakly relevant,

and irrelevant) based on the correlation metric relevance. Fast Correlation-Based

Filter (FCBF) algorithm is presented that selects pre-dominant features by removing

redundant features from relevance groups.

Battiti’s research is one of earliest studies that benefit from mutual information of two
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features. Information gain based calculations are performed for features. A greedy

algorithm selects features one at a time by considering the new feature’s mutual in-

formation with already selected ones. Most informative new feature is added to the

subset [42].

A faster feature selection based on mutual information is offered by Fleuret [43]. This

research proposed a iterative feature selection very similar to the Battiti’s work. How-

ever, a conditional elimination is applied for the new features added based on their

similarities with any of previously selected features. Similar features are determined

based on the minimal mutual information of that pair.

Wang et al. also used conditional mutual information for text categorization where

they benefit from detection of non-informative (redundant) features’ removal [44].

Peng et al. also used mutual information estimation as a core of feature selection.

[45] Maximizing relevance and minimizing the redundancy, which is called mRMR,

is used for the ranking the features. One by one addition of features to subset with

mRMR is proven to be equal to select maximum dependent subset. Their first step of

feature selection is making a ranked list of features by the help of mRMR and cross

validation classification error as evaluation metric. Second step is for deciding the

number of features to use from the ranked list to optimize the goal. A wrapper feature

selector is defined in two schemes:

• Backward Wrappers removes one redundant feature from subset to lower error

rate in each step.

• Forward Wrappers incrementally adds a feature to subset in each step which

lowers error rate.

Genetic algorithm has been one of the mostly used methods in feature reduction.

Prakash and Murty leveraged genetic algorithm in feature reduction and got good so-

lutions by fast and robust genetic algorithm [46]. They used nearest neighbor classi-

fier accuracy as the fitness function criterion of evolutionary search where each binary

gene of a solution resembles a feature. Gene with value 1 is usage of that feature in

subset and 0 is the opposite. Single point crossover and random mutation is used on

this research.
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A hybrid solution for feature selection is proposed by Gheyas and Smiths [47]. They

proposed an algorithm SAGA that combines Simulated Annealing (SA), Genetic Al-

gorithm (GA), a generalized regression neural network and a greedy search algorithm.

SA is used to guide the search for global solution space. Then, an initial population

for GA is created from best solutions find by SA. A greedy algorithm, hill-climbing

feature selection, is applied to perform a local search on k-best solutions given by SA

and GA. Best neighbor is selected according to the euclidean distance. Much smaller

number of features are selected by SAGA in less time.

Research of Xu and Rockmore is very similar to our research as they try to optimize

feature subset for link prediction as we do. They proposed an algorithm that ranks the

features and then applies weight to them. Information gain is used as a discriminative

ability metric is calculated for each feature. Mutual information of any two features

are used as the redundancy metric. Then two different approaches are researched for

link prediction:

• Feature Ranking Method: An iterative greedy search is used to choose fea-

tures for the optimization problem that maximizes the discriminative power and

minimizes the redundancy of feature subset.

• Feature Weighting Method: An active set method of Dantzig and Wolfe is

used to solve the same optimization problem by assigning weights to the fea-

tures.

Their methods over-performed and feature ranking method reaches higher classifica-

tion accuracy for their experiments on Link Prediction [48].

Most of the related researches applied iterative algorithms that select features one

by one. A study of Xu et al. proposed a non-monotonic feature selection to avoid

possible lacks in iterative ones [49]. A Multiple Kernel Learning (MKL) is used

for proposed non-monotonic feature selection’s combinatorial optimization. Original

problem is relaxed into a convex optimization problem. As it can be solved efficiently

by expressing it as a Quadratically Constrained Quadratic Programming, a solution

is proposed for feature selection. Their performance is much better than incremental

ones for some datasets.
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Mitra et al. studied feature similarity based selection. A new metric called Maximal

Information Compression Index is presented. They calculate this metric from covari-

ance matrix and helps the feature selection on not inserting a new feature which is

very similar to any of previously selected features [50].

One of few studies that try to cluster features for feature reduction is performed by

Butterworth and et al. [51]. They worked on hierarchical clustering of features by

a defined metric. A cluster tree, dendrogram, is generated after the clustering and

feature subset is selected from the clusters of that dendrogram. Features which are

located at the cluster centers are chosen.

Song et al. proposed a two step algorithm to make subset selection faster. First,

features are clustered into clusters. Then, feature with the highest information gain

is chosen from each cluster to determine feature subset. A graph is constructed from

features where nodes are features and edges between them are correlation value of

related node pair. A minimum spanning tree (MST) of that graph is determined using

Prim’s algorithm. MST is divided into sub-trees using the relevance values. Each sub-

tree becomes a cluster of features. Finally, a feature from each sub-tree is selected for

the subset by choosing the greatest relevance valued feature [52].

A study of Appice et al. focused on the feature reduction by pairwise analysis of fea-

ture pairs and their logical redundancy. Determining useless features and optimizing

the classification coverage are two successful approaches they have evaluated [53].
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CHAPTER 3

OUR RESEARCH FUNDAMENTALS

This section presents fundamental details of our research about link prediction prob-

lem for LBSNs. Problem and solution formulation, research data and developed link

prediction framework are described in detail.

3.1 Problem and Solution Formulation

In this study, link prediction problem is solved as classification of the future link status

for potential link candidates. Two-class classification is modeled for the research as

there are two cases:

• 1 (positive) corresponds to the existence of future link between candidates and

• 0 (negative) corresponds to no future link between them.

Supervised machine learning algorithms are used for solving this classification prob-

lem by using features extracted from the LBSN. Features and their formulas were

defined by social network data analysis literature.

In order to use temporal LBSN data in binary classification solution for link predic-

tion problem, we determined a Prediction Period Beginning Date (PPBD from the

timestamps covered in the research data. Potential link candidates for classification

are decided based on the LBSN data status in the PPBD, pairs with existing social

link (friends) are ignored and not considered as a link candidate pair. LBSN data

(friendship, check-in) that were created before that date are used to calculate features

of potential link candidates. LBSN data that were created later is used as ground truth
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of class label which was decided based on whether a link will be created between

potential link candidates or not.

As we know that positively classified pairs are used for recommendation tools by

LBSNs, we focused on correctness of the positive link prediction in our research.

Therefore, we searched for contributions that will improve link prediction perfor-

mance especially the classification correctness of positive future links.

3.2 Data

In this thesis, we use a dataset provided by Cambridge University Computer Labora-

tory [34]. It was collected from a well-known LBSN, Gowalla. Existing data contains

the following schema:

• Friendships (1508860 unique)

– Edge or social link between 2 user nodes of the network.

– Timestamp of creation and ids of users are provided.

• Places (1542003 unique)

– It includes address as spatial data (lat, lon).

– It includes category of the place. Category is one of available 283 cate-

gories.

• Check-ins (10062916 unique)

– It is an edge / interaction between a user node and a place node of network.

– Timestamp of creation and ids of user and place are provided.

In the original dataset, users were not directly given as a separate table for nodes.

By mining the friendship table, we constructed one table for 163487 unique users.

Moreover, we analyzed the edge direction for friendships. As we see that, over 99

percent of the social links (friendships) have the counterpart link with opposite direc-

tion. Therefore, we decided to study the link prediction in LBSNs as an undirected

link prediction between any two nodes in any order.
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Researched LBSN data was collected from daily snapshots between May, 4th and

August, 19th 2010. We decided to use August 1st 2010 as the ’prediction period

beginning date’. Considering all unique users, there were billions of possible link

candidate pairs. To be able to be agile and be able to try new things faster, we required

to have a reasonable sized data. We decided to have a sampled subset of pairs to use

throughout our research.

• After analyzing the ratio of newly established links; realized that near 88 per-

centage of them was between two candidates who are either friend of friends

or between two candidates who have a common place that both made check-in

before (called place-friends).

• Decided to consider only candidates which are friend-of-friends or place-friends

or both. This also helped for reducing data imbalance effectively.

• We randomly selected a subset (200K) of link candidate pairs from the ones

which satisfy this constraint. as training data set to achieve results faster.

3.2.1 Data Enhancement

During literature survey, we observed the importance of place related attributes in the

feature set. We enhanced place information with a new property called “entropy”.

This was used earlier [34] to make use of check-in information for predicting the

possibility of two candidates becoming friends after being at the same place.

To evaluate the value of entropy for researched problem, lets consider 2 places: a

small coffee shop and an airport. Since an airport is a public place with huge number

of visitors, we expect that there would be much more check-in’s at the airport than

the coffee shop. However, when we analyze individual visitor data we can see that

the ratio of that visitor’s check-in count to his/her all check-in count is much higher

at places like coffee shops.

For each place in the network, we calculate and store the entropy value using equa-

tion 31:

Ek = −
∑
ui∈Vk

qik ∗ log qik (31)
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Where Ek is the entropy for place k, Vk is the set of all visitors of place k, ui is a

visitor of that place and qik given in equation 32:

qik =
cik
CP
k

(32)

Where qik is a user-place metric, cik is total number of check-ins of user i at place k

and CP
k is the total number of check-ins at place k.

3.2.2 Data Groups

For better analysis of contextual information, we distributed the candidates into groups

according candidates’ latest condition before prediction period beginning date:

• Friend-of-Friends Group (FOF): This sub-group includes all pairs that have

at least one common friend.

• Place-Friends Group (PF): This sub-group includes all pairs that have at least

one common place that both made check-in previously.

• Both-Friends Group (BF): This sub-group is the intersection of “FOF” and

“PF” groups.

• Whole Group (WG): All candidate pairs are included in this group

Those groups are not fully disjoint between each other. Table 3.1 includes the data

details for each group.

Candidate count is the total number of user pairs that we will use through training and

test phases of our supervised learners.

Candidate count percentage is the ratio of candidate count for related data group to

the candidate count for whole group (all candidates).

Positive link percentage is the ratio of the count for pairs that became friends to the

count for all pairs in related data group.
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Table 3.1: Data Groups’ Statistics

Data Group
Candidate

Count

Candidate

Count Percent-

age (%)

Positive Link

Percentage (%)

Friend-of-Friends

Group (FOF)
78506 39.25 0.40

Place-Friends

Group (PF)
128861 64.43 0.19

Both-Friends

Group (BF)
7367 3.68 2.51

Whole Group

(WG)
200000 100 0.19

3.3 Link Prediction Framework

A Link Prediction Framework is developed for this research to handle complete pro-

cess of link prediction using Java programming language. We used our framework

from initial input level of LBSN research data to the final prediction outputs and eval-

uation. All features, learning algorithms, feature selection mechanisms to improve

link prediction performance are also implemented and analyzed on top of this frame-

work.

Our link prediction process can be presented through following units of the frame-

work:

3.3.1 Feature Extraction

This step is for preparing the required data format for the supervised learning algo-

rithms (classifiers). Using the features formulas from proposed and literature, feature

scores/values are calculated for every candidate pairs.

Our dataset is quite large and calculating all features requires a lot of time. To over-
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come that problem; we developed a distributed feature extractor that maximizes the

parallelization, caching and sharing of the calculated values of features. For example;

feature formulas are dependent to metrics of user interactions in LBNS. Those metrics

could be used by more than one feature without recalculation in the framework.

In each experiment, different subset of features is needed and framework handles to

form the correct feature set for machine learning training and testing.

3.3.2 Supervised Machine Learning

Most of the successful link prediction results were obtained by using supervised learn-

ing algorithms. In our framework, core algorithms are used from the WEKA [54].

Training of supervised learners are performed by using the calculated feature scores

for labeled candidate pairs. Trained learning models are used as predictor through the

classification of test candidates.

Throughout this research, one or more of below classifiers are trained to create link

predictors:

1. Naïve Bayes Classifier (NBC) [55],

2. Bayesian Network (BN) [56] and

3. Random Forest (RF) [57].

NBC and BN are methods assumes an underlying probabilistic model for diagnostic

and predictive problems. They are named after Thomas Bayes (1702-1761), who

proposed the Bayes Theorem. Those learners are robust to noise in data.

Bayesian classification provides practical learning algorithms and prior knowledge

and observed data can be combined. Bayesian Classification provides a useful per-

spective for understanding and evaluating many learning algorithms.

Moreover, we applied RF (with 40 trees, 4 features each) to evaluate learner perfor-

mances. NBC, BN and RF are known to be fast and good performing predictors.
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3.3.3 Predictions and Performance Evaluation

Using the trained classifiers, unlabeled link status for candidate pairs are predicted.

As given previous sections, LBSNs focus on correctness of positively predicted so-

cial links as their goal is to optimize recommendation of friendships. For each data

group; different prediction results are experimented and analyzed. Performance im-

provements with new propositions are also evaluated according to results obtained at

this unit of the framework.

We applied a 4 fold cross validation in our prediction evaluations and presented the

averaged results for comparison.

To decide on the evaluation metric for LP performance, following domain-specific

requirements are considered:

• Highly imbalanced dataset, with much more negative instances for classifica-

tion

• Similar studies [58] use area under curve (AUC) of receiver operating charac-

teristic (ROC) curve as performance metric (ROC-AUC)

• Candidate pairs with higher potential of being friends are used for recommen-

dation tools by LBSNs. Therefore, we focused on correctness of the positive

link prediction (true positive) in our study, and we searched for contributions

that improve link prediction performance from that perspective.

We chose ROC-AUC as the performance evaluation metric throughout the whole

study. ROC-AUC met all requirements and goals.

ROC is drawn using the true positive rate together with the false positive rate at

all classification thresholds [58]. Its AUC is equivalent to the probability of a ran-

domly selected positive instance appearing above a randomly selected negative in-

stance [29].
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CHAPTER 4

CONTEXTUAL FEATURE ANALYSIS

This chapter provides the details of collected feature set from comprehensive litera-

ture search together with our proposed contextual features.

4.1 Features from Literature

We reviewed most of the related studies in literature and identified successful and

commonly used features for link prediction in social networks. Some studies focus

on the network structure based topological features while others attempt to make use

of location based social networks’ check-in data.

This section describes the contextual definition and detailed mathematical formula-

tion of all reviewed and used features from literature in linked prediction problem for

LBSNs.

Feature information is divided into two subsections that contain the topological fea-

tures and the interaction features, respectively. we utilized both topological features

and interaction features to make use of all available information in data to better esti-

mate links.

4.1.1 Topological Features

Features calculated from social networks by using graph theory concepts are com-

bined as topological features. Below list covers mainly used topological feaures in

link prediction problem:
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1. Common Friend Count (CFC)

• Description: It is total number of people who are friends for both 2 link

candidate nodes.

• Formula: CFC(x, y) = |αx
⋂
αy|

where αi is the friend list of user i.

2. Common Friend Ratio (CFR)

• Description: It is the Jaccard ratio [59] of common friends’ count to total

friends’ count for 2 link candidate nodes.

• Formula: CFR(x, y) = CFC(x,y)
|αx

⋃
αy |

3. Preferential Attachment Friends (PAF)

• Description: It is the product of total friend counts for 2 link candidate

nodes [60].

• Formula: PAF (x, y) = |αx| ∗ |αy|

4. Adamic Adar Common Friends (AACF)

• Description: It is the Adamic Adar score [61], calculated from common

friends of candidates; based on the number of friends of that common

friend.

• Formula: AACF (x, y) =
∑

z∈(αx
⋃
αy)

1

log |αz|

5. Shortest Path Distance (SPD)

• Description: It is the inverse (1/n) value of the shortest distance between

2 link candidate nodes.

• Formula: SPD(x, y) = 1
∀pmin(distance(p))

where p ∈ pathsBetween(x, y)

6. Total Shortest Paths (TSP)

• Description: It is the total sum of inverse values of path distances between

2 link candidate nodes [62]. Only paths with length 2 or 3 are considered.

• Formula:
∑

p∈pathsBetween(x,y)

1

distance(p)

where 2 ≤ distance(p) ≤ 3
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4.1.2 Interaction Features

Interaction features, which are calculated from the check-in interaction of LBSN users

to predict links, can be listed as follows:

1. Common Place Count (CPC)

• Description: It is total number of places which both 2 link candidates

have check-in.

• Formula: CPC(x, y) = |βx
⋂
βy|

where βi is the place list of user i where he/she made check-in.

2. Common Place Ratio (CPR)

• Description: It is the Jaccard ratio [59] of common places count to total

check-in places count for 2 link candidates.

• Formula: CPR(x, y) = CPC(x,y)
|βx

⋃
βy |

3. Preferential Attachment Places (PAP)

• Description: It is the product of total different places count for 2 link

candidate nodes [60].

• Formula: PAP (x, y) = |βx| ∗ |βy|

4. Adamic Adar Common Places (AACP)

• Description: It is the Adamic Adar score [61], calculated from common

places of link candidates; based on the number of total check-ins (all

users) at that common place.

• Formula: AACP (x, y) =
∑

t∈(βx
⋃
βy)

1

log |βCt |
where Ci is the check-in list of all users at place i.

5. Minimum Check-ins Count of Common Places (MCC)

• Description: It is the minimum value of check-in count for common

places of link candidates.

• Formula: MCC(x, y) = ∀t∈(βx⋃βy)min(|Ct|)
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6. Adamic Adar Common Places Entropy (AACPE)

• Description: It is the Adamic Adar score [61], calculated from common

places of link candidates; based on the entropy value of that common

place.

• Formula: AACPE(x, y) =
∑

t∈(βx
⋃
βy)

1

Entropy(t)

where Entropy(i) is calculated score of place i from all check-ins at that

location Ci.

7. Minimum Entropy Value of Common Places (MEV)

• Description: It is the minimum value of calculated entropy values for

common places for 2 link candidate users.

• Formula: MEV (x, y) = ∀t∈(βx⋃βy)min(Entropy(t))

8. Preferential Attachment Check-ins (PAC)

• Description: It is the product of total check-in counts for 2 link candidate

nodes [60].

• Formula: PAC(x, y) = |γx| ∗ |γy|
where γi is the check-in list of user i.

9. Common Place Check-in Counts Product (CPCP)

• Description: It is the summation of products (dot product) where each

product is calculated with check-in count for 2 link candidate users at

specific location.

• Formula: CPCP (x, y) =
∑

t∈(βx
⋃
βy)

|γx,t| ∗ |γy,t|

where γi,m is the check-in list of user i at place m.

10. Common Place Check-in Counts Product Ratio (CPCPR)

• Description: It is the ratio of common place check-in count product [34]

to the product of all check-in counts of users (cosine similarity of two

users’ common place check-in count vectors).

• Formula: CPCPR(x,y) = CPCP (x,y)√∑
t∈βx |γx,t|

2∗
∑
t∈βy |γy,t|

2
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11. Distance Of Most Visited Homes (DMVH)

• Description: A home location is determined from most visited place for

each candidate and distance between those home values is calculated for

that link candidate pair.

• Formula: DMVH(x, y) = distanceBetween(MVHx,MV Hy) where

MVHx is the home location of user I where he has max check-in.

12. Distance Of Most Visited Homes Ratio (DMVHR)

• Description: A ratio of ’Distance Of Most Visited Homes’ to the product

of check-in counts at that value.

• Formula: DMVHR(x, y) = DMVH(x,y)

|γx,MVHx|∗|γy,MVHy |

13. Distance Of Lat-Lon Homes (DLH)

• Description: A home location is calculated (average) from lat-lon infor-

mation of each check-in for each candidate and distance is calculated for

that lat-lon coordinates (homes).

• Formula: DLH(x, y) = distanceBetween(LLHx, LLHy)

where LLH i is a lat-lon position average home location by LLHi =∑
m∈γi

(mlat,mlon)

|γi|

14. Sum of Radius Length from Lat-Lon Homes (SRLH)

• Description: A radius is calculated from each candidates’ each check-ins’

distance to the determined lat-lon home. (average of all distances) Then a

feature is defined by summing the radius of both candidates.

• Formula: SRLH(x, y) = rlhx + rlhy

where rlhi is the radius of user i calculated by

rlhi =

∑
m∈γi

distanceBetween(m,LLH i)

|γi|
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4.1.3 Performance Evaluation

To analyze features in an isolated way, we decided to start from using single features

for training link predictors. Classifications for each data group are made separately.

4.1.3.1 Friend-of-Friends Group (FOF) Performances

Table 4.1 shows the performance (ROC-AUC value) of existing literature features

with all 3 classification algorithms:

4.1.3.2 Place-Friends Group (PF) Performances

Table 4.2 shows the performance (ROC-AUC value) of existing literature features

with all 3 classification algorithms:

4.1.3.3 Both-Friends Group (BF) Performances

Table 4.3 shows the performance (ROC-AUC value) of existing literature features

with all 3 classification algorithms:

4.1.3.4 Whole Group (WG) Performances

Table 4.4 shows the performance (ROC-AUC value) of existing literature features

with all 3 classification algorithms:

Table 4.5 includes link prediction performances (ROC-AUC) when all topological

features from literature are used on each data group.

Table 4.6 includes link prediction performances (ROC-AUC) when all interaction

features from literature are used on each data group.

Table 4.7 includes link prediction performances (ROC-AUC) when all features from

literature (20) are used on each data group.
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Table 4.1: FOF - Literature Features’ Single Performances

Feature NBC BN RF

CFC 0.737 0.818 0.788

CFR 0.519 0.512 0.546

PAF 0.625 0.718 0.503

AACF 0.930 0.925 0.455

SPD 0.500 0.500 0.500

TSP 0.698 0.816 0.712

CPC 0.617 0.750 0.734

CPR 0.734 0.748 0.443

PAP 0.599 0.689 0.406

AACP 0.759 0.742 0.450

MCC 0.476 0.759 0.567

AACPE 0.760 0.738 0.468

MEV 0.728 0.759 0.505

PAC 0.605 0.686 0.399

CPCP 0.700 0.751 0.713

CPCPR 0.720 0.746 0.365

DMVH 0.684 0.729 0.521

DMVHR 0.695 0.718 0.513

DLH 0.674 0.749 0.511

SRLH 0.626 0.609 0.472
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Table 4.2: PF - Literature Features’ Single Performances

Feature NBC BN RF

CFC 0.791 0.853 0.836

CFR 0.846 0.840 0.470

PAF 0.733 0.766 0.456

AACF 0.856 0.838 0.508

SPD 0.875 0.841 0.875

TSP 0.826 0.867 0.770

CPC 0.704 0.725 0.707

CPR 0.439 0.521 0.509

PAP 0.584 0.633 0.510

AACP 0.737 0.862 0.526

MCC 0.907 0.878 0.720

AACPE 0.762 0.880 0.468

MEV 0.918 0.898 0.571

PAC 0.600 0.654 0.520

CPCP 0.751 0.756 0.707

CPCPR 0.533 0.500 0.516

DMVH 0.812 0.780 0.537

DMVHR 0.671 0.783 0.530

DLH 0.765 0.716 0.514

SRLH 0.687 0.652 0.519
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Table 4.3: BF - Literature Features’ Single Performances

Feature NBC BN RF

CFC 0.790 0.790 0.777

CFR 0.643 0.572 0.614

PAF 0.596 0.566 0.546

AACF 0.864 0.841 0.567

SPD 0.500 0.500 0.500

TSP 0.648 0.651 0.610

CPC 0.618 0.588 0.579

CPR 0.633 0.571 0.553

PAP 0.569 0.515 0.524

AACP 0.563 0.746 0.588

MCC 0.804 0.783 0.663

AACPE 0.591 0.732 0.568

MEV 0.825 0.788 0.645

PAC 0.573 0.530 0.551

CPCP 0.607 0.619 0.618

CPCPR 0.600 0.554 0.535

DMVH 0.753 0.686 0.547

DMVHR 0.543 0.707 0.529

DLH 0.737 0.672 0.561

SRLH 0.699 0.636 0.537
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Table 4.4: WG - Literature Features’ Single Performances

Feature NBC BN RF

CFC 0.795 0.777 0.798

CFR 0.703 0.723 0.529

PAF 0.667 0.767 0.465

AACF 0.862 0.865 0.469

SPD 0.733 0.718 0.733

TSP 0.828 0.811 0.733

CPC 0.621 0.646 0.675

CPR 0.478 0.500 0.509

PAP 0.573 0.575 0.523

AACP 0.793 0.805 0.551

MCC 0.725 0.824 0.700

AACPE 0.803 0.810 0.518

MEV 0.727 0.827 0.578

PAC 0.588 0.584 0.502

CPCP 0.655 0.688 0.682

CPCPR 0.515 0.500 0.506

DMVH 0.670 0.684 0.536

DMVHR 0.677 0.702 0.526

DLH 0.641 0.648 0.517

SRLH 0.628 0.593 0.514

Table 4.5: Classification with Topological Features

Classifier FOF PF BF WG

Naive Bayes Classifier 0.918 0.896 0.822 0.875

Bayesian Network 0.929 0.900 0.841 0.880

Random Forest 0.796 0.759 0.826 0.737
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Table 4.6: Classification with Interaction Features

Classifier FOF PF BF WG

Naive Bayes Classifier 0.770 0.901 0.810 0.822

Bayesian Network 0.784 0.919 0.827 0.847

Random Forest 0.722 0.751 0.753 0.700

Table 4.7: Classification with All Features

Classifier FOF PF BF WG

Naive Bayes Classifier 0.881 0.948 0.860 0.915

Bayesian Network 0.926 0.966 0.886 0.950

Random Forest 0.878 0.854 0.865 0.856

Results with the existing features from literature depicts that Bayesian Networks are

best supervised learner for all data groups. Best classifier performances for all data

groups are achieved when all features are used except the FOF group. For FOF

data group, best classifier performance is achieved when only topological features

are used.

4.2 Proposed Features

After collecting an extensive feature list from literature; we analyzed LBSN data and

designed new features based on time, common friend detail and place category infor-

mation of check-in data. Our primary aim was to make use of available information in

LBSN data that cannot be utilized by the existing features. Experiments showed that

using our proposed features improve the link prediction performance. We compared

our results with best results in the literature on the same dataset [9].

We combined our proposed features with the well-known topological features and

location specific interaction features to have a qualified full set of features to improve

link prediction performance. This section covers the proposed contextual features and

their impact within the full feature set.
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4.2.1 Proposed Contextual Features

Time (temporal) and place (spatial) information of check-in data is combined to cal-

culate ’Common Check-in Count (CCC)’ feature that tries to distinguish the cases

that candidates see each other.

CCC is the total number of occurrences that both of the link candidates’ check-in at

the same place at around same time (within 1 hour) calculated using equation 41:

CCC(x, y) =
∑

t∈(βx
⋃
βy)

∣∣∣γx,t⋂ γy,t

∣∣∣ (41)

Where γi,n is the check-in list of user i at place n, βi is the place list of user i (where

check-in made) and intersection is based on the timestamp closeness (max 1 hour

difference).

We also observed that existing features measuring the common friends of link can-

didates were not deep enough. Therefore, we also mined the network link data to

calculate two new features for digging the level of friendship with candidates for the

common friends; ’Total Common Friend Closeness (TCFC)’ and ’Total Common

Friend Common Check-in (TCFCC)’.

Main idea for such calculation is If common friends are closer for the candidates, its

effect on making new friendship is higher.

TCFC is the summation of products where each product is calculated for a common

friend of candidates. It is an advanced topological feature which uses the multiplica-

tion of the common friends’ count of that common friend with each candidate. We

can formulate as equation 42:

TCFC(x, y) =
∑

z∈(αx
⋃
αy)

CFC(x, z) ∗ CFC(y, z) (42)

Where CFC(a,b) is the common friend count of users a with b and αi is the set of

friends of user i.

TCFCC is the summation of products where each product is the number of common

check-ins of that common friend with each candidate (the same place, at around the
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same time). Time (temporal) and place (spatial) information is used effectively for

this feature. We can formulate it as equation 43:

TCFCC(x, y) =
∑

z∈(αx
⋃
αy)

CCC(x, z) ∗ CCC(y, z) (43)

Using the check-in place and category data, we calculated ’Common Category Check-

in Counts Product (CCCP)’ and ’Common Category Check-in Counts Product

Ratio (CCCPR)’ features that mainly represent similarity of candidates according to

their check-in habits (category of places). They are novel features in literature that

benefit from the spatial information together with category type. Main idea for such

calculation is If two people have similar life-styles (similarity), the possibility for

them to meet and become friends is higher.

CCCP is the summation of products, where each product is calculated with check-in

count of each user at specific categorized places (dot product) and CCCPR is the

ratio of common category check-in count to the all check-in counts of users (cosine

similarity). Below equations are the mathematical formulations of CCCP 44 and

CCCPR 45, where ωi is the set of categories checked-in previously by user i and φi,n

is the check-in list of user i at places with category n:

CCCP (x, y) =
∑

m∈(ωx
⋃
ωy)

|φx,m| ∗ |φy,m| (44)

CCCPR(x, y) =
CCCP (x, y)√∑

m∈ωx

|φx,m|2 ∗
∑
m∈ωy

|φy,m|2
(45)

4.2.2 Performance Evaluation

To analyze features in isolated way, we decided to start from using single features for

training link predictors. Evaluations for each data group are made separately.
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Table 4.8: FOF - Our Proposed Features’ Single Performances

Feature NBC BN RF

TCFC 0.705 0.775 0.518

CCC 0.640 0.640 0.515

TCFCC 0.692 0.700 0.515

CCCP 0.649 0.695 0.504

CCCPR 0.637 0.704 0.447

Table 4.9: PF - Our Proposed Features’ Single Performances

Feature NBC BN RF

TCFC 0.671 0.795 0.509

CCC 0.668 0.666 0.496

TCFCC 0.718 0.729 0.513

CCCP 0.628 0.696 0.499

CCCPR 0.669 0.582 0.521

4.2.2.1 Friend-of-Friends (FOF) Group Performances

Table 4.8 shows the FOF group performance (ROC-AUC value) of our proposed

features with all 3 classification algorithms:

4.2.2.2 Place-Friends (PF) Group Performances

Table 4.9 shows the PF group performance (ROC-AUC value) of our proposed fea-

tures with all 3 classification algorithms:

4.2.2.3 Both-Friends (BF) Group Performances

Table 4.10 shows the BF group performance (ROC-AUC value) of our proposed

features with all 3 classification algorithms:
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Table 4.10: BF - Our Proposed Features’ Single Performances

Feature NBC BN RF

TCFC 0.656 0.673 0.495

CCC 0.659 0.658 0.509

TCFCC 0.721 0.759 0.568

CCCP 0.592 0.539 0.499

CCCPR 0.616 0.539 0.528

Table 4.11: WG - Our Proposed Features’ Single Performances

Feature NBC BN RF

TCFC 0.693 0.785 0.502

CCC 0.645 0.644 0.512

TCFCC 0.673 0.677 0.498

CCCP 0.689 0.604 0.506

CCCPR 0.622 0.649 0.504

4.2.2.4 Whole Group (WG) Performances

Table 4.11 shows the WG performance (ROC-AUC value) of our proposed features

with all 3 classification algorithms:

4.2.3 Using Proposed Contextual Features with Existing Ones

To see the basic information provided by newly proposed features, we used them

together with all existing (20) features together.

First, a predictor is trained with only existing literature features. Then, adding only

one of the proposed new features to existing ones 5 classifiers are trained with 21 fea-

tures. Finally, all features (25) are used to train and test the prediction performance.

Classifications for each data group are made separately.

We also compared our best (all features using proposed contextual features) AUC val-
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Table 4.12: FOF - Proposed Features’ Performances with Existing Features

Features NBC BN RF

Only ELF 0.881 0.926 0.878

ELF + TCFC 0.896 0.925 0.889

ELF + CCC 0.897 0.928 0.884

ELF + TCFCC 0.898 0.930 0.887

ELF + CCCP 0.897 0.923 0.881

ELF + CCCPR 0.882 0.924 0.880

ALL 0.908 0.930 0.891

Table 4.13: FOF - Prediction Performances Comparison with Other Research

Features NBC BN RF

OTHER RESEARCH 0.882 0.918 0.880

OUR RESEARCH - ALL 0.908 0.930 0.891

ues with the AUC values calculated using the features from most successful research[34]

in same problem, same data and same algorithm. Compared research is called as

OTHER RESEARCH in related tables.

4.2.3.1 Friend-of-Friends (FOF) Group Performances

Table 4.12 shows the FOF group performance (ROC-AUC value) of our predictors

when our proposed new features are used with Existing Literature Features (ELF):

Table 4.13 compares the FOF group performance for our research’s all feature set

with performance for features from best performing research in same field.

4.2.3.2 Place-Friends (PF) Group Performances

Table 4.14 shows the PF group performance (ROC-AUC value) of our predictors

when our proposed new features are used with Existing Literature Features (ELF):
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Table 4.14: PF - Proposed Features’ Performances with Existing Features

Features NBC BN RF

Only ELF 0.948 0.966 0.854

ELF + TCFC 0.952 0.967 0.873

ELF + CCC 0.951 0.967 0.873

ELF + TCFCC 0.955 0.968 0.875

ELF + CCCP 0.947 0.965 0.872

ELF + CCCPR 0.948 0.966 0.872

ALL 0.959 0.970 0.878

Table 4.15: PF - Prediction Performances Comparison with Other Research

Features NBC BN RF

OTHER RESEARCH 0.948 0.955 0.866

OUR RESEARCH - ALL 0.959 0.970 0.872

Table 4.15 compares the PF group performance for our research’s all feature set with

performance for features from best performing research in same field.

4.2.3.3 Both-Friends (BF) Group Performances

Table 4.16 shows the BF group performance (ROC-AUC value) of our predictors

when our proposed new features are used with Existing Literature Features (ELF):

Table 4.17 compares the BF group performance for our research’s all feature set with

performance for features from best performing research in same field.

4.2.3.4 Whole Group (WG) Performances

Table 4.18 shows the WG performance (ROC-AUC value) of our predictors when

our proposed new features are used with Existing Literature Features (ELF):

Table 4.19 compares the WG performance for our research’s all feature set with
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Table 4.16: BF - Proposed Features’ Performances with Existing Features

Features NBC BN RF

Only ELF 0.860 0.886 0.865

ELF + TCFC 0.862 0.890 0.871

ELF + CCC 0.863 0.887 0.878

ELF + TCFCC 0.879 0.896 0.870

ELF + CCCP 0.862 0.886 0.867

ELF + CCCPR 0.862 0.886 0.869

ALL 0.881 0.898 0.880

Table 4.17: BF - Prediction Performances Comparison with Other Research

Features NBC BN RF

OTHER RESEARCH 0.862 0.879 0.853

OUR RESEARCH - ALL 0.881 0.898 0.880

Table 4.18: WG - Proposed Features’ Performances with Existing Features

Features NBC BN RF

Only ELF 0.915 0.950 0.856

ELF + TCFC 0.917 0.950 0.858

ELF + CCC 0.917 0.951 0.859

ELF + TCFCC 0.922 0.954 0.866

ELF + CCCP 0.916 0.950 0.860

ELF + CCCPR 0.916 0.951 0.855

ALL 0.925 0.955 0.872
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Table 4.19: WG - Prediction Performances Comparison with Other Research

Features NBC BN RF

OTHER RESEARCH 0.927 0.941 0.839

OUR RESEARCH - ALL 0.925 0.955 0.872

performance for features from best performing research in same field.

4.2.4 Evaluation

Proposed features improve the link prediction especially when they contextually aug-

ment the link information required to make prediction. Common Check-In Count

(CCC) and Total Common Friend Closeness (TCFC) are the most effective ones as

social network information utilized by them is highly required and cannot be replaced

with any existing/available features in literature. We can see that using a relevant and

effective subset of features will improve link prediction performance of the classifier.

Comparison with the prediction performances calculated from features of most suc-

cessful research also showed the information gain additional features. Even compared

research features already have very high ROC-AUC performance, our features were

better in 11 experiments of performed 12 experiments (4 dataset X 3 algorithm). At

this band of AUC-ROC values, those constant performance improvements clear the

value of proposed features and shows that they would be very helpful for the online

location based social networks.
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CHAPTER 5

FEATURE REDUCTION RESEARCH

In our research, we focus on improving LP performance to predict new friendships

in LBSNs with feature-based approaches. We had proposed new features leveraging

Friendship and Check-In subgraphs [9] and their different structure and characteris-

tics to utilize the available information with new features [10]. After an extensive

literature survey and evaluation of existing features [31, 34], we ended up with a

combined core set of 25 features which are beneficial for LP performance.

Each of the feature in full feature set was relevant and non-redundant witch the clas-

sification individually by helping with information gain from friendship subgraph

topology or from the check-in subgraph. However, they don’t form the optimal fea-

ture set from both effectivity and efficiency manner when all used together.

Picking the optimal feature subset became another challenge for us which had a po-

tential to improve the LP prediction performance with improved accuracy and de-

creased time cost [53]. Feature reduction research has the motivation to help this

problem by eliminating the logically redundant features in multiple dataset.

This chapter covers the feature reduction efforts to find optimal feature subset. It

presents details of proposed greedy method to enhance the efficiency and proposed

clustering based method to enhance the effectivity of link predictors. Performance

evaluations for both methods are shown in corresponding sections.
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5.1 Greedy Feature Reduction Method for Link Prediction Efficiency

Throughout feature analysis, we had observed that higher number of features means

higher time cost for both feature extraction and classification stages. In this section,

we will show how we improved the speed of LP solution by optimizing the time

cost on those stages by the help of a proposed greedy feature reduction method. We

started with analyzing those costs and performances for individual features deeply

with detailed measurements to give data driven decisions for speed.

5.1.1 Cost of Feature Extractions

We measured the cost of extracting each feature for 200000 candidate pairs (Whole

Group (WG)) and come with metrics (in milliseconds) shown in the Table 5.1.

• Average: Average time cost for extracting feature.

• 50th Percentile: Time cost value which is the middle point of all cost calcula-

tions (median).

• 90th Percentile: Time cost value which is greater than the 90 percentage of all

cost values.

5.1.2 Individual Link Prediction Performance of Features

Our goal is to keep accuracy high while improving the speed. To determine the fea-

ture value from accuracy perspective, we re-used the individual link prediction per-

formances of each feature in full feature set for Whole Group (WG) candidate pairs

for different algorithms.

Individual performances were given in previous section through Table 4.4 and Table

4.11.
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Table 5.1: Feature Extraction Costs for WG in Milliseconds

Feature Average 50th Percentile 90th Percentile

CFC 101.18 93.30 107.48

CFR 59.71 52.90 72.56

PAF 57.17 47.93 78.33

AACF 654.44 104.93 1421.59

TCFC 1548.46 130.60 2425.29

SPD 13651.23 2049.48 43907.09

TSP 39452.34 19581.30 60809.31

CPC 151.39 56.10 306.26

CPR 46.54 9.68 88.99

PAP 30.82 6.60 80.36

AACP 369.33 174.23 793.43

MCC 396.58 176.60 892.85

AACPE 80.40 11.48 219.72

MEV 25.95 6.18 61.07

CCC 29.45 6.43 77.83

TCFCC 937.96 593.78 1403.09

PAC 87.50 12.05 185.20

CPCP 50.60 9.20 115.28

CPCPR 27.77 7.10 55.00

CCCP 8230.80 5169.58 14018.36

CCPR 97.96 30.80 206.16

DMVH 41.11 8.00 99.09

DMVHR 32.94 7.83 79.41

DLH 22.88 6.88 60.63

SRLH 15.41 6.35 41.47
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5.1.3 Selecting an Efficient Feature Subset

Considering the individual feature costs together with the individual prediction per-

formances, we decided to select a feature subset that will help us keep effectivity but

will enhance the overall speed for the predictor. This will be achieved by reducing the

extraction time cost of the unselected features together with reduced training and clas-

sification time costs. Below steps are used for such selection which was performed

separately for each classification algorithm:

• First, apply a threshold for the features and pick the features with individual

performance higher than median value, to a picked subset.

• Then, filter the highest costly (extraction time) features from the picked subset,

top three expensive feature and related features are eliminated by this way.

This is a greedy method for selecting a feature subset with the goal of making faster

classifiers for link prediction problem in LBSNs, with keeping the effectivity as high

as possible. This reduction can be extended to complex algorithms with optimal

performance. However, we picked the simple approach to show how we could use

individual feature extraction costs and their performance to reduce the total time cost.

5.1.4 Performance Evaluation

Using the selected subsets, both prediction performance (ROC-AUC) and time cost

are measured for all algorithms. Evaluations for each algorithm are made separately.

To show the efficiency enhancements, we will measure the prediction performance

and time cost with following picked feature subsets for all algorithms:

• All Features (ALL): Results are measured when all 25 features are extracted,

trained and used for classification.

• Only Successful Features (OSF) Subset: Results are measured when only

successful features are extracted, trained and used for classification. Those

features are determined by comparing the individual prediction performance of

each feature with the median of all feature performances.
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Table 5.2: Measurements with NBC

Subset

Total

Feature

Extraction

Time (min)

Total Train-

ing Time

(sec)

One Candidate

Pair Feature

Extraction Time

(sec)

Prediction

Performance

(ROC-AUC)

AF 220666.7 30.3 66.2 0.927

OSF 191000.0 22.4 57.3 0.923

OSLCF 11000.0 15.6 3.3 0.922

• Only Successful Low Cost Features (OSLCF) Subset: OSF subset is filtered

and features which require high extraction cost (time) are eliminated from that

subset.

5.1.4.1 Naive Bayes Classifier (NBC) Performances

Table 5.2 presents the Naive Bayes Classifier (NBC) performances and measurements

for each subset.

Table 5.3 lists the picked feature list of each subset for the Naive Bayes Classifier

(NBC).

5.1.4.2 Bayesian Network (BN) Performances

Table 5.4 presents the Bayesian Network (BN) performances and measurements for

each subset.

Table 5.5 lists the picked feature list of each subset for the Bayesian Network (BN).
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Table 5.3: Picked Feature Subsets for NBC

Feature NBC-OSF NBC-OSFLC

CFC X X

CFR X X

PAF

AACF X X

TCFC X X

SPD X

TSP X

CPC

CPR

PAP

AACP X X

MCC X X

AACPE X X

MEV X X

CCC

TCFCC X

PAC

CPCP

CPCPR

CCCP

CCCPR

DMVH

DMVHR X X

DLH

SRLH
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Table 5.4: Measurements with BN

Subset

Total

Feature

Extraction

Time (min)

Total Train-

ing Time

(sec)

One Candidate

Pair Feature

Extraction Time

(sec)

Prediction

Performance

(ROC-AUC)

AF 220666.7 35.2 66.2 0.955

OSF 188333.3 23.0 56.5 0.949

OSLCF 11333.3 18.3 3.4 0.951

5.1.4.3 Random Forest (RF) Performances

Table 5.6 presents the Random Forest performances and measurements for each sub-

set.

Table 5.7 lists the picked feature list of each subset for the Random Forest (RF).

5.1.5 Evaluation

Performance results from feature subsets depict that we could keep high effectivity by

eliminating the computationally costly and low performing features. That elimination

paid back by the greatly reduced time cost for the link predictor while not losing much

from the accuracy.

NBC and BN classifiers responded better to feature reduction as their performance

degrade is below 1 percentage. However, for RF predictor there is up to 5 percentage

decrease in the performance. Elimination of high performing features like SPD and

TSP not caused as high performance degrade. It shows us that there are other features

which are giving the similar information gain like them and their elimination became

a redundancy removal.

From the time consumption point, total cost of feature extraction for our dataset

(200000 potential link pairs) reduced significantly (20 times) from 153 days (assum-

ing non-parallel computation) to around 7 days with our proposed greedy method.
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Table 5.5: Picked Feature Subsets for BN

Feature BN-OSF BN-OSFLC

CFC X X

CFR X X

PAF X X

AACF X X

TCFC X X

SPD X

TSP X

CPC

CPR

PAP

AACP X X

MCC X X

AACPE X X

MEV X X

CCC

TCFCC

PAC

CPCP X X

CPCPR

CCCP

CCCPR

DMVH

DMVHR X X

DLH

SRLH
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Table 5.6: Measurements with RF

Subset

Total

Feature

Extraction

Time (min)

Total Train-

ing Time

(sec)

One Candidate

Pair Feature

Extraction Time

(sec)

Prediction

Performance

(ROC-AUC)

AF 220666.7 418.2 66.2 0.863

OSF 181666.7 310.2 54.5 0.791

OSLCF 4666.7 197.1 1.4 0.799

5.2 Clustering Based Feature Reduction for Link Prediction Effectivity

Considering the performance issues caused by redundancy and relevance interactions

between features, we proposed a custom two-step feature reduction method [11]. Pro-

posed method starts with clustering features based on the interaction related similar-

ity measurement and ends with non-monotonically selecting optimal feature subset

from those clusters by the help of a custom formulated genetic algorithm as shown in

(Figure 5.1).

This section covers extended details of our proposed feature reduction method to-

gether with performed empirical analysis to evaluate novelty and verify the contri-

butions for LP problem in LBSNs. Results from multiple data groups depict the ef-

fectivity improvements of proposed method by comparing with 3 well-known feature

reduction algorithms from literature [42, 43, 45].

5.2.1 Clustering Similar Features

Similarity of features have been studied heavily before [50, 63]. Most of the existing

studies kept analyzing only two features and their statistics to come-up with a simi-

larity measurement. There were few studies that considered feature interaction while

selecting feature subsets [64]. Towards the goal of eliminating the logically redundant

features, we decided to keep focus on the impact of a feature when used with others

in a subset. Therefore, we proposed a custom similarity measurement to contribute
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Table 5.7: Picked Feature Subsets for RF

Feature RF-OSF RF-OSFLC

CFC X X

CFR X X

PAF

AACF

TCFC

SPD X

TSP X

CPC X X

CPR

PAP X X

AACP X X

MCC X X

AACPE X X

MEV X X

CCC

TCFCC

PAC

CPCP X X

CPCPR

CCCP

CCCPR X

DMVH X X

DMVHR X X

DLH

SRLH
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Figure 5.1: Feature Selection Process
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with impact of features’ interaction.

We proposed an impact-based similarity metric from feature interactions and used

that measurement as a basic tool for clustering features. Below formulas are the

fundamentals for that metric:

• Single Feature Performance (FP i): LP performance (accuracy) for each fea-

ture, which is calculated when a learning algorithm is trained and tested using

only that feature i. This metric evaluates the correlation of classification with

information gain from that feature.

• Mutual Feature Performance (MP i,j): Impact of a feature to another feature

is calculated through performance gain of using two features (i and j) together

rather than using one of them individually. Such calculation is performed for all

possible feature pairs (300 pairs are possible for 25 features) in our data. Main

idea is to determine the value added by a second feature when they interacted:

– FP i,j: LP performance for two features i and j when only those two fea-

tures are used by the learning algorithm.

– To analyze the impact of two features interaction, contribution (when both

used together) is calculated by a delta from the maximum individual per-

formance using equation 51:

MP i,j = FP i,j −max(FP i, FP j) (51)

– MP i,j is expected to be low (even negative) for logically redundant fea-

tures because of overlapping information, etc.

To be able to represent the overall impact of an individual feature when interacting

with others in the set, an impact vector for that feature is formed through the Mu-

tual Feature Performance values of that feature with all other features in set. That

constructed vector is called Mutual Performance Vector (MPV), equation 52:

MPV i = [MP i,1,MP i,2,MP i,3, · · · ,MP i,25] (52)

MPV i is constructed for defining characteristics of feature i and used as similarity

measurement for clustering. Similar features are expected to have similar impact

characteristics when interacted with other features.
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For clustering step, we used K-means and Agglomerative hierarchical clustering al-

gorithms and analyzed their contributions.

5.2.1.1 K-means Clustering

Following the trend with good performance from similar studies, we used k-means

clustering algorithm for the clustering step. That simple but effective algorithm dis-

tributes N object to K clusters by leveraging vector quantization with distance calcula-

tions. MPV for each feature in our study is a perfect fit for k-means as it characterize

individual features as vectors.

Details of the applied k-means feature clustering are as follows:

• A predefined count for clusters, k, is required and that number is determined

by the required feature subset size.

• For the changing numbers of k, algorithm determines k centroids and perform

distribution of features to those k clusters.

– Each feature is associated with nearest centroid by a distance metric

– Locations of centroids are updated step by step until targeted barycentre

is achieved.

– Centroids are placed as much as far away from each other

• K-means clustering help us to be non-monotonic in feature selection because

the cluster contents are not fully maintained in changed numbers of k:

– A feature selected in a subset of size m is not guaranteed to be selected

again for a subset of size m+1. We experimented with cluster sizes from

1 to 25 to find best feature subset.

• Euclidean distance (ED) is one of the mostly used distance metrics, which

suits well to our k-means clustering task as well.

– Each feature is resembled by a vector of size 25 in previous section, ED

between two vectors is used as a distance function for k-means clustering,
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as given in equation 53:

ED(MPV i,MPV j) =

√√√√ 25∑
n=1

(MP i,n −MP j,n)
2 (53)

Note that similarity metric we used (i.e. ED of w vectors) is based on two features’

relation with the remaining features. As impact of feature i and j among other feature

n become similar, (MP i,n −MP j,n) value decreases in the ED calculation. By that

way, distance of two feature vectors decreases, and they are high-probably placed into

the same cluster. Moreover, using two features i and j from the same cluster would

not improve the relevance value with their small MP i,j value. Otherwise, they would

not be placed in the same cluster. IfMP i,j value was higher, ED would be also higher

and they had been placed into the different cluster high-probably.

5.2.1.2 Agglomerative Clustering

Agglomerative clustering is a bottom-up hierarchical clustering method where ini-

tially each object is considered as a separate cluster. Then, pairs of clusters are

merged based on the similarity until one big cluster is formed to contain all objects

[65]. Generally, whole hierarchical process in this method is represented by an object

tree called dendrogram.

At any step of clustering, two clusters are merged based on the distance between

those clusters using different linkage approaches like single, average and complete.

We used single, average and complete linkage approaches which are leveraging the

distance matrix between all elements in two clusters while considering merging them:

• Single linkage, distance is defined as the minimum value in distance matrix.

• Average linkage, median value of values in distance matrix is used as cluster

distance.

• Complete linkage, maximum value of distance matrix is used as distance be-

tween related clusters.
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We experimented with agglomerative clustering outputs from cluster counts hierar-

chically changing from 25 to 1 and evaluated different cluster count impact on LP

performance.

5.2.2 Optimal Subset from Clustered Features

Dividing features into clusters prepared the environment for formulating an optimal

subset for LP problem. Next challenge was picking correct features from those clus-

ters to form a high relevant feature subset. That challenge was also comprised from

two sup problems: finding the feature to pick from the cluster and finding the or-

der of clusters to pick. Those subproblems itself require exhaustive search and most

of greedy approaches have high risk of trending local maxima and missing the final

optimality.

Most commonly used approach for both problems are ranking similar features based

on their correlation with the classification while choosing from a cluster [42, 43, 45].

This has the risk of missing a secondary similar feature which may contribute more

when interacted with other features in other clusters. To avoid that problem, we

decided to not prefer any greedy approach and keep all similar features in a cluster

“pickable” while formulating the subset. We would still pick one of those similar

features in a cluster, but we also keep chance for other features within that cluster.

Another bottleneck for greedy approaches was monotonically choosing the features

to form incremental selection of features. This method reduces the search space, and

this may undermine the feature interaction impact [49].

To keep features in same cluster pickable and perform a non-monotonic subset for-

mulation we proposed a customized Genetic Algorithm (GA). GA is suited well for

a non-monotonic feature selection because the selected features are determined in one

step (as bulk, not one by one). Also our gene formulation made it possible for each

feature in a cluster pickable for each genome.
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5.2.3 GA Formulation

Starting point while formulating a problem for GA, first step is to pick a genome

representation which helps to do optimal search in solution space. Our GA solution

has the genome representation G1G2 · · ·Gk, where

• k is the total number of clusters,

• Gi is an integer gene specifying a label for a feature in related cluster i

• Features are labeled with integers from 1 to n in a cluster. where n is the

number of features in that cluster. if Gi is j (1 ≤ j ≤ n) then feature with label

j is picked from cluster i.

GA starts with a random valid population of genomes. Each gene in a genome stores

the index of a selected feature from the corresponding cluster. Therefore, we used uni-

form crossover so that information from each cluster is transferred to child genomes

properly. Furthermore, random single gene mutation is used for mutation step.

5.2.4 Proposed Fitness Function

One of the hardest tasks in designing an effective GA for the problem is determining

the fitness function. We applied a Heuristic-Based Fitness Function in our work by

using the Mutual Feature Performance (MP) gain values calculated for clustering:

• A total sum is used as fitness value for each genome. That summation is based

on:

– Best performing feature (gene) within the genome and

– Gain values for all gene pairs in the genome. Number of selected features

(pairs) are fixed for each GA run, averaging is not required.

• Formulation of fitness function is given below in equation 54:

FF (G) = maxi∈G(FP i) +
∑
j∈G

∑
k∈G

MP j,k (54)

where G is the evaluated chromosome; i, j and k are genes in G.
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The GA is applied on the clusters, and a feature subset is determined. Link prediction

performance of that feature subset is the main evaluation criteria for our performance

improvements in link prediction problem.

5.2.5 Performance Evaluation

To analyze proposed clustering based feature reduction performance, we used its out-

put feature subset to train Naive Bayes Classifier (NBC) and Bayesian Network (BN)

classifiers for link prediction.

Proposed feature selection method aims to pick a smaller subset of features to have

more effective and efficient LP solution. A good evaluation of its performance is to

compare with performance when all features used. However, to see the contribution

and novelty of our proposed solution comparison should be done with performances

when other feature reduction and feature selection studies used. To achieve so, we

used 3 other algorithms from WEKA [54]:

• CMIM: Fleuret’s Conditional Mutual Information Maximization [43]

• MIFS: Battiti’s Mutual Information-Based Feature Selection [42]

• MRMR: Peng’s Max-Relevance and Min-Redundancy [45]

Evaluations show the LP performance (ROC-AUC values) when selected feature sub-

sets are used for link prediction. Evaluations for each data group are made separately.

Initially feature clustering analysis is performed to decide on the clustering algorithm

to use at our proposal. Then, proposed feature reduction method together with 3 well-

known methods, are used to create 4 different subsets for each data group and for each

classification algorithm. Prediction performances with all 25 features are also given

for better comparison for effectivity improvements.

We also compared our best (optimal feature subset used) AUC values with the AUC

values calculated using the features from most successful research[34] in same prob-

lem, same data and same algorithm. Compared research is called as OTHER RE-

SEARCH in related tables.
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Table 5.8: WG - Comparison of Clustering Algorithms

Algorithm
NBC Perf.

(ROC-AUC)

NBC

Subset

Size

BN Perf.

(ROC-AUC)

BN

Subset

Size

Agglomerative with

Single linkage
0.940 5 0.956 3

Agglomerative with

Average linkage
0.946 5 0.957 6

Agglomerative with

Complete linkage
0.953 5 0.958 7

K-means 0.956 7 0.965 12

5.2.5.1 Comparison of Clustering Algorithms

We started with comparing the clustering algorithms in our proposed method accord-

ing to overall LP performances when each used for whole dataset with both classi-

fiers. Table 5.8 shows the WG performances (ROC-AUC value) and selected feature

subset size of predictors when different clustering methods used for feature reduction.

Best results for agglomerative hierarchical clustering were achieved by complete link-

age. Dendrograms for each linkage type with both algorithms are shown in Figure

5.2, 5.3, 5.4, 5.5, 5.6 and 5.7.

Performances from k-means were better than all them in all experiments therefore

we decided to use k-means as core clustering algorithm in our evaluations. This was

expected as k-means restart whole clustering from scratch for varying cluster count

however hierarchical clustering approaches are monotonically merging the clusters

and reduces the search space as it is greedily eliminating other possible distributions.

5.2.5.2 Friend-of-Friends Group (FOF) Performances

Table 5.9 shows the FOF group performances (ROC-AUC value) of predictors when

all feature set and multiple subsets selected from different feature reduction methods.
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Figure 5.2: NBC - Agglomerative Hierarchical Clustering Dendrogram with Single

Linkage

Figure 5.3: NBC - Agglomerative Hierarchical Clustering with Average Linkage

Dendrogram
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Figure 5.4: NBC - Agglomerative Hierarchical Clustering with Complete Linkage

Dendrogram

Figure 5.5: BN - Agglomerative Hierarchical Clustering with Single Linkage Den-

drogram

66



Figure 5.6: BN - Agglomerative Hierarchical Clustering with Average Linkage Den-

drogram

Figure 5.7: BN - Agglomerative Hierarchical Clustering with Complete Linkage Den-

drogram
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Table 5.9: FOF - Compared Feature Subset Performances (ROC-AUC)

Features NBC BN

All Features 0.908 0.930

Subset Selected by Our Method 0.957 0.960

Subset Selected by CMIM 0.946 0.960

Subset Selected by MIFS 0.948 0.955

Subset Selected by MRMR 0.957 0.956

Table 5.10 lists the picked features of FOF group for each learning algorithm by our

feature reduction method.

Table 5.11 compares best link prediction performance for FOF Group from our re-

search (with applied reduction) with best performing research from literature.

5.2.5.3 Place-Friends Group (PF) Performances

Table 5.12 shows the PF group performances (ROC-AUC value) of predictors when

all feature set and multiple subsets selected from different feature reduction methods.

Table 5.13 lists the picked features of PF group for each learning algorithm by our

feature reduction method.

Table 5.14 compares best link prediction performance for PF Group from our re-

search (with applied reduction) with best performing research from literature.

5.2.5.4 Both-Friends Group (BF) Performances

Table 5.15 shows the BF group performances (ROC-AUC value) of predictors when

all feature set and multiple subsets selected from different feature reduction methods.
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Table 5.10: FOF - Picked Feature Subsets

Feature NBC BN

CFC

CFR X

PAF

AACF X X

TCFC X

SPD

TSP X

CPC

CPR

PAP

AACP

MCC X

AACPE X

MEV

CCC X X

TCFCC X X

PAC

CPCP

CPCPR

CCCP X

CCCPR

DMVH

DMVHR

DLH

SRLH
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Table 5.11: FOF - Prediction Performances Comparison with Other Research

Features NBC BN

OTHER RESEARCH 0.882 0.918

OUR OPTIMAL SUBSET 0.957 0.960

Table 5.12: PF - Compared Feature Subset Performances (ROC-AUC)

Features NBC BN

All Features 0.959 0.970

Subset Selected by Our Method 0.972 0.976

Subset Selected by CMIM 0.969 0.976

Subset Selected by MIFS 0.961 0.970

Subset Selected by MRMR 0.964 0.970

Table 5.16 lists the picked features of BF group for each learning algorithm by our

feature reduction method.

Table 5.17 compares best link prediction performance for BF Group from our re-

search (with applied reduction) with best performing research from literature.

5.2.5.5 Whole Group (WG) Performances

Table 5.18 shows the WG performances (ROC-AUC value) of predictors when all

feature set and multiple subsets selected from different feature reduction methods.

Table 5.19 lists the picked features of WG for each learning algorithm by our feature

reduction method.

Table 5.20 compares best link prediction performance for WG from our research

(with applied reduction) with best performing research from literature. ROC curves

for both algorithms are drawn in Figure 5.8, 5.9 5.10 and 5.11 where y-axis is True-

Positive-Rates and x-axis is False-Positive-Rates.
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Table 5.13: PF - Picked Feature Subsets

Feature NBC BN

CFC X X

CFR

PAF

AACF X X

TCFC X X

SPD X

TSP X

CPC

CPR X

PAP

AACP

MCC X

AACPE X

MEV X X

CCC X X

TCFCC X X

PAC

CPCP X

CPCPR

CCCP

CCCPR

DMVH

DMVHR

DLH

SRLH X X
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Table 5.14: PF - Prediction Performances Comparison with Other Research

Features NBC BN

OTHER RESEARCH 0.948 0.955

OUR OPTIMAL SUBSET 0.972 0.976

Table 5.15: BF - Compared Feature Subset Performances (ROC-AUC)

Features NBC BN

All Features 0.881 0.898

Subset Selected by Our Method 0.899 0.912

Subset Selected by CMIM 0.899 0.912

Subset Selected by MIFS 0.891 0.911

Subset Selected by MRMR 0.882 0.908

Figure 5.8: WG - ROC Curve of Other Research with NBC Algorithm
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Table 5.16: BF - Picked Feature Subsets

Feature NBC BN

CFC X X

CFR X

PAF X

AACF X X

TCFC X X

SPD

TSP

CPC

CPR X

PAP

AACP

MCC X

AACPE X

MEV X X

CCC X X

TCFCC X X

PAC X

CPCP X X

CPCPR

CCCP

CCCPR

DMVH

DMVHR

DLH

SRLH X X
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Table 5.17: BF - Prediction Performances Comparison with Other Research

Features NBC BN

OTHER RESEARCH 0.862 0.879

OUR OPTIMAL SUBSET 0.899 0.912

Table 5.18: WG - Compared Feature Subset Performances (ROC-AUC)

Features NBC BN

All Features 0.925 0.955

Subset Selected by Our Method 0.956 0.965

Subset Selected by CMIM 0.954 0.961

Subset Selected by MIFS 0.950 0.961

Subset Selected by MRMR 0.943 0.962

Figure 5.9: WG - ROC Curve of OUR OPTIMAL SUBSET with NBC Algorithm
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Table 5.19: WG - Picked Feature Subsets

Feature NBC BN

CFC X

CFR

PAF X

AACF X X

TCFC X

SPD

TSP X

CPC

CPR

PAP

AACP

MCC X

AACPE X X

MEV X

CCC X X

TCFCC X X

PAC X

CPCP

CPCPR X

CCCP X

CCCPR X

DMVH

DMVHR

DLH

SRLH X
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Table 5.20: WG - Prediction Performances Comparison with Other Research

Features NBC BN

OTHER RESEARCH 0.927 0.941

OUR OPTIMAL SUBSET 0.956 0.965

Figure 5.10: WG - ROC Curve of Other Research with BN Algorithm

Figure 5.11: WG - ROC Curve of Our Optimal Subset with BN Algorithm
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Table 5.21: WG - True Positive Rates for Two Proximity Groups

Features NBC BN

Proximity Group 1 0.679 0.714

Proximity Group 2 0.673 0.764

All Predictions 0.676 0.739

5.2.5.6 Temporal Proximity Analysis for Positive Link Predictions

Our motivation is to improve the LP performance from positive links’ prediction ac-

curacy perspective as positively predicted outputs would be used by a recommenda-

tion system. Each predictor’s performance may also depend on temporal proximity

of prediction time to the actual link creation time.

In our research, predictions are done for links that may be created after PPBD with

the LBSN data collected before PPBD which can be rephrased as prediction time.

Therefore, we performed temporal proximity analysis for positive link predictions

by including the link creation times and PPBD into the evaluation. Using BN and

NBC algorithms with WG dataset, true positive link prediction rates are compared for

varying temporal proximity groups. In such experiment, we couldn’t keep calculating

ROC-AUC as false positive rates are not independent for the proximity.

Proximity group with lower number covers links which are created earlier than the

links in the other proximity group with higher number. Table 5.21 compares true

positive rates when links after PPBD are divided into 2 groups based on proximity

and Table 5.22 compares true positive rates when links after PPBD are divided into

3 groups based on proximity.

Results from temporal proximity analysis depict that:

• There is not much performance difference for algorithms whether proximity

based groups are used or not.

• Our total prediction time is less than 3 weeks, so most of the LBSN data is still

fresh at the prediction time and most of the link creation time is not far away.
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Table 5.22: WG - True Positive Rates for Three Proximity Groups

Features NBC BN

Proximity Group 1 0.703 0.730

Proximity Group 2 0.649 0.730

Proximity Group 3 0.676 0.757

All Predictions 0.676 0.739

• BN predicts slightly better for links created later.

5.2.6 Evaluation

Based on the experiment results, we can easily see that an effective LP solution in

LBSN requires an additional feature reduction to optimize predictor performance with

an optimal feature subset. All 4 subsets had better results for 4 different data groups

on both classification algorithms. Improvements are not huge numerically however at

the given rates of prediction performance, those improvements are valuable for OSNs

targeting millions of people. Also, most of the selected subsets are having less than

10 features which would also contribute from efficiency perspective.

From the perspective of comparing overall LP performance with best performing re-

search from literature, our optimal feature subset which leverages both proposed fea-

tures and feature reduction is overperforming in all data groups in all algorithms.

If we analyze our proposed feature reduction by comparing with other similar meth-

ods, performance results are mostly greater than or equal to the best of them. There

is not an obvious differentiation between those 3 methods’ results but results depict a

slighter improvement from our method for all data groups.

Novelty of our method was formulating an algorithm that combines two critical re-

quirements from our feature set:

• Removal of logical redundant features among others

– Wanted to minimize the negative performance impact of feature interac-
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tions

– Defined a custom similarity metric and clustered features according to

their interaction with others

• Picking the optimal subset

– Non-monotonic picking from clusters to avoid possible local maxima risk

for greedy selection approaches.

– Enhanced search space by the help of fully customized genetic algorithm

applied for feature clusters
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CHAPTER 6

FEATURE MINING

Our focus on feature mining was to leverage more from the check-in data to improve

link prediction, because that semantically rich information is exclusive for LBSNs.

There are some studies that used the common places of two users and basic details

(total check-in count) of those places. We wanted to deep dive on the semantics of

these places where we can enrich the information gain from check-in data. Category

of a place is one of main property of a place and that information is provided by

nearly all LBSNs. This chapter covers the feature mining efforts to propose category

based features [12] and evaluate their performances.

6.1 Proposed Place Category Based Features

We proposed two new groups of features to understand impact of the place category

on link prediction for LBSN users. We calculated Common Place Check-in Count

Product Sum and Common Category Check-in Count Sum Product for each cat-

egory, while using two users’ historical data to see the prediction performance.

Previous features like common place or common category count were combining all

places (ignoring category) to extract one feature from all. However, this unification

phase may cause an informative data loss as we converted some vectored data to scalar

data. For example, there are 283 different categories for the places in our dataset. All

of them are not as effective as others in new friendship. Some places/categories are

more encouraging for making new friends than others. Therefore, we decided to

propose some new features which are calculated for each category while evaluating

any link candidate user pair.
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Common Place Check-in Count Product Sum (CPCPS) is a feature which will be

calculated in each category for a given two candidate users. It is a sum of products

where each product is a multiplication of check-in counts for two candidates at one

shared place of related category. Each feature will be a good resemblance of how

often they went to shared places for related category.

In order to emphasize on the commonness of the place, we multiply check-in count

of each candidate at shared place. Check-in count of a candidate (X) at a place (Y) is

formulated as CC(X,Y) function in related feature’s Equation 61 for category α.

CPCPS(A,B, ctα) =
∑

z∈(ctα)

(CC(A, z) ∗ CC(B, z)) (61)

For example;

• A and B are link candidates

• A and B has common places X, Y, Z

• X and Y are category1 places and Z is a category2 place

– CPCPS(A, B, category1) = [CC(A, X) * CC(B, X)] + [CC(A, Y) * CC(B,

Y)] and

– CPCPS(A, B, category2) = [CC(A, Z) * CC(B, Z)]

Common Category Check-in Count Sum Product (CCCSP) is a feature which will

be calculated in each category for a given two candidate users. It is a product of sums

where each sum is the total check-in count for a candidate at given category. Each

feature will be a good resemblance of how often they went to some place for related

category.

In order to emphasize on the commonness of the category, we multiply total check-in

count of each candidate. Related feature formula is given at Equation 62.

CCCSP (A,B, ctα) =
∑
∀z∈(ctα)

CC(A, z) ∗
∑
∀z∈(ctα)

CC(B, z) (62)
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For example;

• A and B are link candidates

• A visited places K, L and M; B visited X, Y and Z

• K, X and Y are category1 places and L, M and Z are category2 places

– CCCSP(A, B, category1) = [CC(A, K)] * [CC(B, X) + CC(B, Y)] and

– CCCSP(A, B, category2) = [CC(A, L) + CC(A, M)] * [CC(B, Z)]

By the definitions above; we have 566 new feature values from f0 to f565 (2 feature

for each 283 categories) that we calculate for each link candidate pairs.

We will use reference keys to identify each feature; for any category with id i:

• CCCSP feature will be referenced by F(2∗i)−2 value.

• CPCPS feature will be referenced by F(2∗i)−1 value.

We combined new features with best performing topological and interaction features

from literature that we collected and developed in our previous study [9]. Related

reference keys are given in Table (6.1) where numbers after proposed features are

selected intentionally.

6.1.1 Performance Evaluation

Here are the steps applied to analyze the proposed feature performances for every

data group:

1. Use Best Performing Feature Set (BPFS) specific for related dataset from

previous studies.

2. Use each new feature together with BPFS to train a Bayesian Network to ob-

serve link prediction performance change compared to the case just using the

BPFS.
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Table 6.1: Existing Features

Reference Key Feature

F566 Common Friends Count

F567 Common Friends Ratio

F569 Adamic Adar of Common Friends

F570 Total Common Friend Closeness

F572 Total Shortest Paths

F573 Common Place Count

F574 Common Place Ratio

F577 Min Check-in Count of Common Places

F579 Min Entropy of Common Places

F580 Common Check-in Count

F581 Adamic Adar of Common Friend Common Check-in

F582 Preferential Attachment Check-in Counts

F583 Common Place Check-in Counts Product

F584 Common Place Check-in Counts Product Ratio

F585 Common Category Check in Counts Product

F586 Common Category Check in Counts Product Ratio

F589 Distance Of LatLon Homes

F590 Sum of Radius Length from Lat-Lon Homes

84



3. By selecting features which improved the performance; we define a Filtered

New Feature Set (FNFS) and calculated the performance by using all FNFS

and BPFS.

4. Apply feature selection to the newly proposed features; obtain best performing

features: BPFS + subset(FNFS).

After applying the steps given above, we could get best performance improver cate-

gory feature subset for every data group.

6.1.1.1 Friend-of-Friends Group (FOF) Performances

Table 6.2 shows the FOF group performances (ROC-AUC value) of predictors with

mined category features.

6.1.1.2 Place-Friends Group (PF) Performances

Table 6.3 shows the PF group performances (ROC-AUC value) of predictors with

mined category features.

6.1.1.3 Both-Friends Group (BF) Performances

Table 6.4 shows the BF group performances (ROC-AUC value) of predictors with

mined category features.

6.1.1.4 Whole Group (WG) Performances

Table 6.5 shows the WG performances (ROC-AUC value) of predictors with mined

category features.
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Table 6.2: FOF Group Results with Mined Category Features

NO DETAILS
AUC

of

ROC

1

From our previous studies we have BPFS (reference keys):

F567, F569, F572, F577, F580, F581.

Prediction performance for BFS is given.

0.960

2

Calculated each feature’s performance together with BPFS.

Find best performing feature is F192.

Prediction perf. for BFS + best new feature is given.

0.962

3

Following 14 new category features (FNFS) had increased

the prediction performance when used each one together

with BPFS: F32, F54, F94, F108, F114, F120, F192,

F196, F222, F258, F304, F308, F364, F412.

Prediction performance for BFS + FNFS is given.

0.957

4

Following FNFS subset is selected after performing a

feature selection: F114, F192, F308.

Prediction performance for BFS + subset(FNFS) is given.

0.963
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Table 6.3: PF Group Results with Mined Category Features

NO DETAILS
AUC

of

ROC

1

From our previous studies we have BPFS (reference keys):

F566, F569, F572, F574, F577, F579, F580, F581, F585.

Prediction performance for BFS is given.

0.976

2

Calculated each feature’s performance together with BPFS.

Find best performing feature is F45.

Prediction perf. for BFS + best new feature is given.

0.976

3

Following 27 new category features (FNFS) had increased

the prediction performance when used each one together

with BPFS: F1, F3, F9, F16, F34, F39, F45, F49, F53,

F61, F97, F103, F107, F109, F130,

F153, F168, F180, F189, F200, F214, F256, F257,

F362, F374, F415, F454.

Prediction performance for BFS + FNFS is given.

0.977

4

Following FNFS subset is selected after performing a

feature selection: F3, F9, F16, F39, F45, F49, F97,

F153, F180, F200, F362, F415, F454.

Prediction performance for BFS + subset(FNFS) is given.

0.978
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Table 6.4: BF Group Results with Mined Category Features

NO DETAILS
AUC

of

ROC

1

From our previous studies we have BPFS (keys):

F566, F567, F569, F570, F577, F579, F580, F581, F582,

F583, F590.

Prediction performance for BFS is given.

0.913

2

Calculated each feature’s performance together

with BPFS. Find best performing feature is F26

Prediction perf. for BFS + best new feature is given.

0.915

3

Following 14 new category features (FNFS) had increased

the prediction performance when used each one together

with BPFS: F26, F36, F38, F45, F92, F95, F100, F107,

F138, F139, F150, F175, F252, F259.

Prediction performance for BFS + FNFS is given.

0.917

4

Following FNFS subset is selected after performing a

feature selection: F26, F45, F95, F100, F138,

F139, F150.

Prediction performance for BFS + subset(FNFS) is given.

0.919
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Table 6.5: WG Results with Mined Category Features

NO DETAILS
AUC

of

ROC

1

From our previous studies we have BPFS (reference keys):

F569, F572, F573, F577, F579, F580, F581, F582, F584,

F586, F589.

Prediction performance for BFS is given.

0.965

2

Calculated each feature’s performance together with BPFS.

Find best performing feature is F200

Prediction perf. for BFS + best new feature is given.

0.965

3

Following 24 new category features (FNFS) had increased

the prediction performance when used each one together

with BPFS: F3, F16, F36, F49, F52, F109, F130, F150,

F153, F158, F159, F170, F180, F192, F198, F200, F202,

F230, F242, F257, F362, F374, F415, F504.

Prediction performance for BFS + FNFS is given.

0.966

4

Following FNFS subset is selected after performing a

feature selection: F3, F16, F36, F49, F109, F130, F153,

F170, F198, F200, F242, F257, F362, F415.

Prediction performance for BFS + subset(FNFS) is given.

0.967
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6.1.2 Evaluation

Proposed features using categories improved the link prediction performance. Inter-

esting observation from the results is the difference of improvement maker features

and selected best feature subsets between datasets. Some categories seem to be help-

ing for the link candidates when they have shared friend. However, some other cate-

gories seem to be helping more for the link candidates when they have shared place.

That behavior is expected as both category information and data subsets have their

semantic data organically. Here are some findings:

• CPCPS features not improved the performance for FOF dataset as expected

(no shared place). In general, more CCCSP features have improvements than

CPCPS ones.

• FOF and WG datasets share improver F192, CCSP of "Gas & Automotive" cat-

egory

• FOF and BF datasets share "Church" category as improver with different fea-

ture group

• For BF dataset both CCSP and CPCPS features for "Dive Bar" category has

improvements on prediction.

• BF and WG datasets share improvers F36 and F150, CCSP of "Cineplex" and

"Convention Center" categories.

• BF and PF datasets share improvers F45 and F107, CPCPS of "Italian" and

"Dessert" categories. In addition, they share "Other - Shopping" category as

improver with different feature group

• PF and WG datasets share improvers on "Craftsman", "Chipotle", "Bookstore",

"Apple Store", "Other - Entertainment", "Terminal", "Ultra-Lounge", "Antique

Hotel", "Plaza / Square", "Arcade", "Other-Airport", "Accessories" and "Other-

Services" categories.

Motivation was to evaluate impact of check-in place categories based on the perfor-

mance of related features. Such an evaluation enabled us to create link predictor
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models with higher performance by enriched information gain from new category

based features. Our results depict that some place categories are more correlated with

new friendship and some are not. By this way, we could enhance our prediction per-

formance by usage of category semantic while calculating check-in related features.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusions

In this thesis, we researched the link prediction problem for Location Based Social

Networks. First, we formulated problem as a binary classification problem to de-

cide existence of future friendship between two users looking at their topological and

interaction features extracted from the social network.

Contextual feature analysis, feature reduction and feature mining approaches are ap-

plied for the problem to improve effectivity and/or efficiency of the formulated classi-

fiers. Naive Bayes Classifier, Bayesian Networks and Random Forest algorithms are

used as supervised learners to train mentioned classifiers.

Used a public dataset from a location based social network [31]. To enrich the mea-

surements and evaluations data is grouped into 4 based on the link candidates state at

prediction time: having common friend, having common place, etc.

A end-to-end framework is developed for the whole research which takes the dataset

as input, calculates extracted features, applies various algorithms to determine feature

subset, trains link prediction learners, collects performances and evaluate outputs.

After a comprehensive research, 20 features from literature are collected and im-

plemented in the framework. Observed that LBSN specific contextual information

(check-in) was not leveraged enough at those features. We proposed novel features

which are calculated by using check-in time, check-in category and common friend

details of candidates. We can conclude that; proposed features improve the link pre-

diction performance at all data groups as they make use of available information in
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LBSN data that cannot be utilized by the existing features.

Adding features are not always the best approach for a classification problem from

both effectivity and efficiency perspectives. Picking optimal feature subsets based on

the optimization goal was another research are we studied:

• For efficiency goal, we worked on a greedy method that focuses on individual

feature’s extraction time cost and considers its prediction accuracy. From the

results, we can summarize that great time cost reduction could be achieved

without losing much from prediction with that proposed method.

• For effectively goal, we observed accuracy improvements for all data groups

and all algorithms after applying proposed two step feature reduction:

– Removal of logical redundant features among others by clustering features

with custom similarity metrics and

– Formulating optimal feature subset by picking a feature from each cluster

by leveraging non-monotonic genetic algorithm with a high coverage of

search space.

With the motivation of finding features with exclusive information gain, we also per-

formed feature mining focused on place category information. Two proposed groups

of features were calculated separately for each category in dataset for a link can-

didate pair. Our results depict that some place categories are more correlated with

new friendship and we could enhance prediction performance by usage of category

semantic through features from those categories.

To summarize, we could help LP problem literature for LBSNs with 3 feature based

approaches. Some of the proposed features and proposed feature reduction approaches

can be also leveraged in other research areas with similar problem constraints. Even

working on a problem with very high performing existence studies, we could move

the literature one step forward with propositions and their outputs.
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7.2 Future Work

Current research is based on using single location social network data for feature ex-

traction to predict friendship links between users. As mentioned users are real people,

multiple external data sources should also be available online; websites, archives and

other social networks. Towards the link prediction goal, leveraging other social net-

works to make use of the information gain seems highly promising especially from

social networks with different type of social interaction. One of the future work area

would be this hybrid data consumption.

Throughout this thesis, features are calculated from LBSN interactions which are as-

sumed to be isolated and identical. However, check-ins can be dependent to each

other (as a sequence) and identical check-in of a user in a place impact the new links

differently as a result of human behavior. Statistical analysis of such dependency be-

tween check-ins may help on finding finer grained features which is another possible

future area of research.
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