
A NOVEL ONLINE APPROACH TO DETECT DDOS ATTACKS USING
MAHALANOBIS DISTANCE AND KERNEL-BASED LEARNING

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

SALVA DANESHGADEH ÇAKMAKÇI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

NOVEMBER 2019

A NOVEL ONLINE APPROACH TO DETECT DDOS ATTACKS USING

MAHALANOBIS DISTANCE AND KERNEL-BASED LEARNING

Submitted by SALVA DANESHGADEH ÇAKMAKÇI in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in Information Systems Department, Middle East Technical

University by,

Prof. Dr. Deniz Zeyrek Bozşahin
Dean, Graduate School of Informatics

Prof. Dr. Sevgi Özkan Yıldırım
Head of Department, Information Systems

Prof. Dr. Nazife Baykal
Supervisor, Information Systems Dept., METU

Assoc. Prof. Thomas Kemmerich
Co-Supervisor, Information Security and

Communication Technology Dept., NTNU

Examining Committee Members:

Prof. Dr. Sevgi Özkan Yıldırım
Information Systems Dept., METU

Prof. Dr. Nazife Baykal
Information Systems Dept., METU

Prof. Dr. Kemal Bıçakcı
Computer Engineering Dept., TOBB ETÜ

Assoc. Prof. Pekin Erhan Eren
Information Systems Dept., METU

Prof. Dr. Ali Aydın Selçuk
Computer Engineering Dept., TOBB ETÜ

Date: ______22.11.2019________

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

 Name, Last name: Salva DANESHGADEH ÇAKMAKÇI

 Signature :

iv

ABSTRACT

A NOVEL ONLINE APPROACH TO DETECT DDOS ATTACKS USING
MAHALANOBIS DISTANCE AND KERNEL-BASED LEARNING

Daneshgadeh Çakmakçı, Salva

Ph.D., Department of Information Systems

Supervisor: Prof. Dr. Nazife Baykal

Co-Supervisor: Assoc. Prof. Thomas Kemmerich

November 2019, 90 pages

Distributed denial-of-service (DDoS) attacks are continually evolving as the computer and
networking technologies and attackers’ motivations are changing. In recent years, several
supervised DDoS detection algorithms have been proposed. However, these algorithms
require a priori knowledge of the classes and cannot automatically adapt to the frequently
changing network traffic trends. This emphasizes the need for the development of new
DDoS detection mechanisms that target zero-day and sophisticated DDoS attacks. To
fulfill this need, an online sequential DDoS detection scheme that is suitable for use with
multivariate data was proposed. The proposed algorithm utilizes a kernel-based learning
algorithm, the Mahalanobis distance, and a Chi-square test. The algorithm is fully
automated and does not require a pre-defined setting of any thresholds or baseline normal
network traffic for training. Initially, four entropy-based and four statistical-based features
were extracted from network flows as detection metrics per minute. Then, the Enhanced
Kernel based Online Anomaly Detection Algorithm (E-KOAD) was employed to detect
entropy-based input feature vectors that were suspected to be DDoS. This algorithm
assumes no model for network traffic or DDoS in advance; then, it constructs and adapts
a Dictionary of features that approximately span the subspace of normal behavior. Every
T minutes, the Mahalanobis distance between suspicious vectors and the distribution of
Dictionary members is measured. Subsequently, the Chi-square test is used to evaluate
the Mahalanobis distance. The proposed DDoS detection scheme was applied to the
CICIDS2017 dataset and the performance of the algorithm was measured using different
performance metrics including accuracy, recall, precision and ROC-Curve. Finally, the
results were compared with those by existing algorithms.

Keywords: DDoS, Machine algorithm, KOAD, Mahalanobis distance, Chi-square test

v

ÖZ

MAHALANOBIS UZAKLIĞI VE KERNEL TABANLI ÖĞRENME
KULLANILARAK DDOS SALDIRILARINI TESPİT ETMEK İÇİN ÖZGÜN VE

ÇEVRİMİÇİ BİR YAKLAŞIM

Daneshgadeh Çakmakçı, Salva

Ph.D., Bilişim Sistemleri Bölümü

Danışman: Prof. Dr. Nazife Baykal

Eş Danışman: Doç. Prof. Thomas Kemmerich

Kasım 2019, 90 sayfa

Bilgisayar, ağ teknolojileri ve saldırganların motivasyonları değiştikçe DDoS saldırıları
sürekli olarak dönüşüm geçirmektedir.DDoS saldırılarını tespit etmek için geçtiğimiz
yıllarda, birçok denetimli makine öğrenmesi algoritması önerilmiştir. Fakat bu
algoritmalar sınıflarla ilgili ön bilgiye ihtiyaç duymakta ve sürekli değişen ağ trafiği
trendlerine otomatik olarak uyum sağlayamamaktadırlar.Bu durum, sıfır günlük ve
gelişmiş DDoS saldırılarını hedef alan yeni DDoS tespit etme mekanizmalarının
geliştirilmesine olan ihtiyacı öne çıkmaktadır.Bu ihtiyacı karşılamak için bu çalışmada,
çok değişkenli verilerle çalışmaya uygun olan çevrimiçi ve sıralı bir DDoS tespit etme
şeması önerilmiştir.Önerdiğimiz algoritma; kernel tabanlı bir öğrenme algoritması,
Mahalanobis uzaklığı ve Chi-square testinden yararlanmaktadır.Algoritma tamamen
otomatiktir ve önceden tanımlanmış herhangi bir eşik değere veya normal ağ trafiğine
ihtiyacı yoktur.Yapılan çalışmada öncelikle, ağ akışlarından, dakika başına dört adet
entropi tabanlı ve dört adet de istatistiksel tabanlı özellik elde edilmiştir. Sonrasında,
DDoS saldırısı olarak şüphelenilen, entropi tabanlı girdi özellik vektörlerini tespit etmek
için kernel tabanlı öğrenme algoritması çalıştırılmıştır.Bu algoritma, ağ trafiği veya DDoS
için herhangi bir modeli temel olarak varsaymamaktadır. Bunun yerine, normal davranışın
çerçevesini yaklaşık olarak tanımlayan bir özellik kütüphanesi oluşturmakta ve bu
kütüphaneyi kullanmaktadır. Şüpheli vektörler ve kütüphane üyelerinin dağılımı
arasındaki Mahalanobis uzaklığı belirli bir periyotta ölçülmektedir. Sonrasında, bu
mesafenin değerlendirilmesi için Chi-square testi kullanılmaktadır. Önerilen DDoS
algılama yapısı CICIDS2017 veri setine uygulanmış ve doğruluk, anımsama, duyarlılık
ve ROC eğrisini de içeren birçok parametre kullanılarak algoritmanın performansı
ölçülmüştür. Son olarak, elde edilen sonuçlar mevcut algoritmaların performanslarıyla
karşılaştırılmıştır.

Anahtar kelimeler: DDoS, Makine algoritması, KOAD, Mahalanobis uzaklığı, Chi-square

vi

To My Love Şendoğan Çakmakçı

vii

ACKNOWLEDGMENTS

First of all, I would like to express my sincere gratitude to my supervisors Prof. Dr. Nazife
Baykal and Assoc. Prof. Thomas Kemmerich for their support, encouragement, feedback
and guidance throughout this study.

I would wish to thank Assoc. Prof. Tarem Ahmed for his professional mentoring and his
endless support, co-operation and patience. He generously shared his professional
experiences in all steps of my Ph.D. research.

I would also like to express my gratitude to the examination committee members; Prof.
Dr. Sevgi Özkan Yıldırım, Prof. Dr. Kemal Bıçakcı, Assoc. Prof. Pekin Erhan Eren, and
Prof. Dr. Ali Aydın Selçuk, for their engagement and invaluable recommendations.

A very special appreciation to my husband, Şendoğan Çakmakçı for all his support. I could
not accomplish my goal without your help, understanding, encouragement and patience
throughout my Ph.D. study.

I am also wholeheartedly thankful to my parents, Hossein Daneshgadeh and Parvin
Ghalichebaf, for their unconditional love and care throughout. I am so lucky for having
parents like you.

Many thanks to my lovely sister, Samira Daneshkadeh, for her emotional support and
being my best companion and closest confidant.

I would like to thank my grandmother, Mehranghiz Khabaze Azari, for her love and
prayers throughout my studies.

viii

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ ... v

ACKNOWLEDGMENTS ... vii
TABLE OF CONTENTS ... viii
LIST OF TABLES ... xi
LIST OF FIGURES ... xii
LIST OF ABBREVIATIONS .. xiii
1. INTRODUCTION .. 1

1.1. Motivation ... 2

1.2. Problem Statement ... 3

1.3. Gaps in the Existing Literature and Original Contributions 3

1.4. Scope and Limitations ... 4

1.5. Outline of Dissertation.. 5

2. Literature review .. 7

2.1. DDoS attack Overview .. 7

2.2. Taxonomy of DDoS attack .. 8

2.3. DDoS Attack Defence Mechanisms .. 10

2.4. Review of DDoS Detection Studies .. 11

2.4.1 Works based on Statistical Algorithms .. 11

2.4.2 Works based on Unsupervised Machine Learning algorithms 13

2.4.3 Works based on Supervised Machine Learning Algorithms 14

2.4.4 Works based on Information Theory Metrics .. 17

2.4.5 Works based on hyprid approches ... 18

3. RESEARCH METHODOLOGY ... 23

3.1. Dataset ... 23

3.2. Feature Extraction .. 25

ix

3.3. Reseach Design ... 27

3.4. Proposed Architecture ... 28

4. ALGORITHMIC FONDATION ... 33

4.1. Kernal Function ... 33

4.2.1. Threshold Setting ... 37

4.2.2. Parameter Setting (l, ε, L, d, γ) ... 38

4.2.3. Initialization Phase ... 39

4.2.4. Projection Error .. 41

4.2.5. Kernel Matrix Calculation.. 41

4.2.6. Compute Sparsification Vector .. 42

4.2.7. Update Λ Matrix .. 42

4.2.8. Raise “Red1” Alarm ... 42

4.2.9. Raise “Orange” Alarm ... 42

4.2.10. Lower Orange Alarm to Green ... 44

4.2.11. Remove Absolute Elements ... 45

4.2.12. Drop Element (pth) from Dictionary ... 46

4.2. K-means Algorithm ... 47

4.3.1 How K-means Algorithm Works ... 48

4.3.1 How Elbow Method Works ... 48

4.3. Mahalanobis Distance ... 49

4.4. Chi-square Test .. 50

4.5. Chi-square Test .. 51

5. Experimental Analyses and results .. 53

5.1. Threshold setting ... 53

5.2. Sigma (𝝈) setting ... 55

5.3. Tracing of the proposed algorithm .. 56

5.4. Complexity analysis ... 61

5.5. Performance evaluation ... 62

5.6. Comparison with literature .. 67

5.7. Comparison with benchmark unsupervised algorithms 68

5.8. Indirect comparison with state-of-the-art .. 68

x

6. Concolusion and future directions.. 71

6.1. Concolusion ... 71

6.2. Future directions .. 72

REFERENCES ... 73

APPENDICES .. 83

CURRICULUM VITAE .. 88

xi

LIST OF TABLES

Table I Summary of DDoS attacks Statistics in 2016 .. 8
Table II List of abbreviations for features.. 26
Table III Cluster assumption of δ values for calibration. ... 55

Table IV Memory complexity of proposed algorithm ... 62
Table V Confusion matrix in machine learning ... 63

Table VI Performance metrics for the proposed algorithm. .. 65
Table VII Comparison of the proposed hybrid algorithm with others. 67

Table VIII Comparison of the proposed hybrid algorithm with benchmark unsupervised
algorithms. .. 68

Table IX Indirect comparison of the proposed algorithm with recent unsupervised DDoS
Detection algorithms. ... 69

xii

LIST OF FIGURES

Figure 1 Testbed architecture of CICIDS2017 ... 23
Figure 2 Initialization of proposed algorithm .. 30
Figure 3 Proposed architecture of E-KOAD ... 31

Figure 4 Decision boundries of SVM classification on 2-dimensional data. 34
Figure 5 Outline of KOAD algorithm ... 38

Figure 6 example of k-means clustering (k=2)... 47
Figure 7 Elbow curve ... 49

Figure 8 Chi-square distribution with critical and non-critical areas 51
Figure 9 k-elbow visualizer for selecting the optimal number of clusters for k-means . . 54

Figure 10 Decision boundries of SVM classifier with different gamma values 57
Figure 11 Dictionary size (m) ... 58
Figure 12 Detection statistic delta ………………………………………………………59

Figure 13 Mahalanobis distance 60
Figure 14 ROC curve for different threshold settings. ... 65

Figure 15 ROC curve for different lag-time settings. .. 66
Figure 16 ROC curve for different significance level (α) settings. 66

Figure 17 Detection of DDoS attacks using k-means algorithm 69

xiii

LIST OF ABBREVIATIONS

BIRCH Balanced Iterative Reducing and Clustering Hierarchies
CharGEN Character Generator
CID Generalized Information Distance
CLDAO Connection-less Lightweight Directory Access
DBSCAN Density-Based Spatial Clustering of Applications with Noise
DDoS Distributed Denial of service
DGSOT Dynamically Growing Self-Organizing Tree
DNS Domain Name System
DoS Denial of Service
DT Decision Tree
EAC Evidence Accumulation Clustering
ELM Extended Learning Machine
FE Flash Event
FPR False Positive Rate
GE Generalize entropy
HR-DDoS High Rate-DDoS
IDS Intrusion Detection System
IP Internet Protocol
IPS Intrusion Prevention System
ISP Internet Service Provider
KOAD Kernel Online Anomaly Detection
E-KOAD Extended Kernel Online Anomaly Detection

KPCA Kernel Principal Component Analysis
LAN Local Area Network
LR-DDoS Low Rate-DDoS
NTP Network Time Protocol
PCA Principal component analysis
PLS Partial Least Square
R2U Remote to User
RF Random Forest
ROC Curve Receiver Operating Characteristic Curve
ROC Receiver Operating Characteristics

xiv

RST Rough Set Theory
SDN Software Defined Network
SIEM Security Information and Event Management
SSC Sub-Space Clustering
SSDP Simple Service Discovery Protocol
SVM Support Vector Machine
TCP Transmission Control Protocol
TPR True Positive Rate
U2R User to Root
UDP User Datagram Protocol
UPnP Universal Plug and Play

1

CHAPTER 1

1. INTRODUCTION

The evolution of intelligent computer networks, distributed processing facilities, range
of communication protocols, and arrays of smart devices has significantly
revolutionized all modern critical infrastructures and business models. Today’s
technologies are firmly relying on network and communication facilities, which in turn
makes them dependent on network security. The growing number of internet-based
services and applications along with increasing adoption rate of connected wired and
wireless devices present opportunities as well as technical challenges and threads.
Therefore, security concerns increase exponentially for both individuals and service
providers.

A cyber-attack is a malicious and deliberate activity by an individual or organization
toward the computer and network system of another induvial or organization to
compromise the secure operation of their information systems. Attackers peruse some
gains by devastating the victim’s network. Therefore, cybersecurity has become one
of the primary concerns of the organizations to prevent or reduce the potentially severe
consequences of the cyber-attacks. The terms cybersecurity and information security
are often used interchangeably in the literature. In general, information security
concentrates on protecting information assets, while cybersecurity encompasses more
dimensions, including human resources and ethics (Reid and Van Niekerk, 2014).
Information security aims to protect the triad of confidentiality, integrity, and
availability (CIA) of data (ISO/IEC 27002:2013, 2013). Availability means that
information should be available whenever authorized people need it. Integrity means
that only authorized people can alter information or otherwise, would be the same as
was produced or sent by a sender. Confidentiality means that information should only
be accessible by authorized people. Cybersecurity also supports the authenticity and
non-repudiation of data. Authenticity ensures the identity of the source. Non-
repudiation means that the party of the communication cannot deny the authenticity of
her/his signature. Moreover, cybersecurity can protect the privacy of the users.

Ahmed et al. (2016) defined network security as a subset of cybersecurity which deals
with planning and implementing network security mechanisms. It protects the
confidentiality and integrity of data while also ensure the availability of the resources.
They categorized network attack types in four groups, including DoS/DDoS, probe,

2

User to Root (U2R), and Remote to User (R2U). Many organizations today implement
a variety of intrusion detection and prevention systems and employ cybersecurity
experts to protect their network against different types of mentioned attacks. Not
surprisingly, as the complexities and sophistication of attack vectors increase, the need
for more robust and sophisticated detection methods also increase simultaneously.

This chapter begins with elaborating the problem and the importance of the subject
within the global research community. The problem statement is defined, the gaps in
the existing literature are presented, and the original contributions of this dissertation
are highlighted.

1.1. Motivation

Many organizations today implement a variety of intrusion detection and prevention
systems and employ cybersecurity experts to protect their Internet-enabled interests.
Preventing revenue loss and data breach are the dominant motivations of the
organizations to employ security solutions.

Gartner reported the approximate amount of $114 billion for the worldwide
expenditure on information security in 2018. Gartner also predicted the 8.7 percent of
growth to $124 billion for the market in 2019.

According to the recent report by Akamai [aka, 2019] money is the main concentration
of all cyber-attacks. Subsequently, the financial services industry is fascinating for
attackers. Distributed Denial of Service (DDoS) attack can cause millions of dollars
lost for each minute of downtime for commercial organizations. Nevertheless, the
financial services industry was the target for 40% of all the unique DDoS attacks. The
report mentions to TCP SYN-ACK as the most common DDoS attack type against
financial organizations in 2019.

The report by Verizon (2019) demonstrates the volume of DDoS attacks in different
industries and indicates that the median of DDoS attack bandwidth does not change
dramatically among various sectors. The report discusses DDoS protection as an
essential control for information entities by considering the massive number of DDoS
attacks in different industries.

According to the Arbor report (2016) The DDoS attack was the second most
commonly experienced attacks in 2016 after Ransomware. The DDoS attack was
reported as the top observed threat by service providers in 2017. Additionally, over
two-thirds of the respondents cited the DDoS attack as a high threat to IPv6 networks.
The vast majority of service providers who participated in the Arbor’s survey
represented the DDoS attack as the dominant threat. Firewall logs, Intrusion Detection
System (IDS) and Security Information and Event Management (SIEM) were
addressed as the top three most utilized tools to detect threats. However, half of the

3

enterprise, government, and education respondents stated that their firewalls and IDS
failed to detect DDoS attacks, or the event contributed to an outage during DDoS
attack. Respondents also see online DDoS detection/mitigation systems as the most
effective ways to detect threats. Additionally, there is an increasing demand toward
best-practice hybrid and online automatic DDoS detection/mitigation systems in the
market.

1.2. Problem Statement

There are hundreds of studies regarding DDoS detection in the literature. Many
frameworks have been presented in academia and industry to predict, detect, and
defend against DDoS attacks. Machine learning, knowledge-based, soft computing
and statistical methods are examples of techniques which have been adopted to detect
DDoS attacks. However, the nature of DDoS attack makes it very difficult to propose
a method to cover the detection of all different types of DDoS attack. Modern firewalls
and IDSs have some examples of flooding protection that enable them to mitigate some
DoS/DDoS attacks such as volumetric DDoS. On the other hand, today’s high-speed
networks not only empower attackers to bombard their victims with high rate and
volume of packets but also to configure themselves in a manner which can escape
traditional firewall and IDS.

It is thus essential to develop a new DDoS detection mechanism which incorporates
the best feature of existing practices while automating the detection process the most.
This is the objective of this dissertation.

1.3. Gaps in the Existing Literature and Original Contributions

Despite the abundance of DDoS attack detection approaches available in the literature,
the following significant gaps have revealed in existing knowledge. Based on the
literature survey, several critical issues remain unresolved.

• The lack of new benchmark datasets for the validation of detection schemes,
which leaded almost all authors used either old datasets or simulation data in
a strictly controlled environment (Behal and Kumar, 2017).

• The lack of real-time DDoS attack detection systems (Behal and Kumar,
2017).

• The fixed threshold setting for statistical and entropy-based DDoS detection
approaches.

• The limited number of unsupervised DDoS attack detection schemes that
satisfy all the requirements of a real-world online DDoS detection algorithm
(Ahmed et al., 2016).

4

This thesis makes the following original contributions:

• A novel algorithm is proposed for performing automated detection of DDoS
attacks in the network of the organizations. The time complexity and memory
requirements of the proposed algorithm is independent of time, which makes
it naturally suitable for real-time use.

• Validation of the proposed algorithm with the recent benchmark dataset from
the Canadian Institute for Cybersecurity (CICID2017) (Sharafaldin et al.,
2018).

• Improving the well-known kernel online anomaly detection algorithm (Ahmed
et al., 2007a, Ahmed et al., 2007b, Ahmed, 2009), which is cited in more than
150 studies, by automating threshold selection.

• Construction of the original feature vector by combining a small subset of
traffic features based on the recommendations for both statistical and entropy-
based features in the DDoS detection literature.

1.4. Scope and Limitations

The primary concentration of this dissertation is to propose an online and fully
automated DDoS detection algorithm. The proposed algorithm can detect protocol-
based (TCP, UDP, DNS, ICMP) flooding attacks at the victim’s network. The network
administrator can determine the time required to alarm a DDoS attack after suspicious
traffic enters the network of the organization. The time can be defined based on the
severity level of the system and the network bandwidth to tolerate large traffic
volumes.
It is hypothesized that this algorithm can detect flooding DDoS attacks in any
environment where the victim is located, such as LAN, WAN, ISP, cloud, and SDN
networks. However, it requires future investigation, which is preserved for future
work.
The algorithm is not able to differentiate different types of DDoS attacks, including
High Rate-DDoS (HR-DDoS) and Low Rate-DDoS (LR-DDoS) from Flash Event
(FE) traffic. The algorithm cannot be employed to detect reflection DDoS attacks.
However, it is expected that the update of second feature vector (Please refer to section
4.2 for more details) will be enough to make algorithm applicable for detection of
different reflection DDoS attacks such as DNS-based reflection DDoS.

5

1.5. Outline of Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 describes the
recent related work and surveys the literature on the topic. Chapter 3 presents the
mathematical background of the proposed DDoS detection system. Chapter 4 presents
the research design and presents the experimental setup. Chapter 5 presents the
experimental results and empirical comparisons of the proposed scheme with existing
methods. Chapter 6 concludes with directions for future work.

6

7

CHAPTER 2

2. LITERATURE REVIEW

This chapter begins with presenting an overview of the DDoS attack, taxonomy of
DDoS attacks, and DDoS protection mechanisms. Subsequently, this chapter
discusses the methods that have been recently proposed by various researchers to
detect DDoS attacks. These works are organized based on different behavioral
approaches to detect DDoS attacks, including statistical methods, information theory,
supervised machine learning, unsupervised machine learning, and hybrid methods.

2.1. DDoS attack Overview

Denial-of-service (DoS) attack is a classic method of bringing down a victim network
by preventing legitimate users (clients) of a service from accessing that service.
Distributed DoS (DDoS) attacks are sophisticated, many-to-one version of DoS
attacks, where the attacker overwhelms victim’s resources by sending streams of
packets to the victim. DDoS attackers not only aim to render a service inaccessible but
also may pursue to gain unlimited access to the victim machine and thus cause more
damage. According to Shameli-Sendi et al. (2015), the taxonomy of DDoS attacks
involves six categories: the degree of automation (manual, semi-automatic, and
automatic); the degree of attack rate (continuous, fluctuating, and increasing); the
network scanning strategy (random, hit-list, topological, permutation, and local
subset); the adopted strategy (protocol and brute-force attacks); the propagation
mechanism (central, back-chaining, and autonomous); and finally the degree of impact
(disruptive and degrading).
Currently, bot networks are usually utilized to increase the impact of the attacks. These
bot networks consist of handler (master) and agent (bot/slave/zombie) machines. The
attackers scan the network and compromise vulnerable machines by using them as
bots. These bots are then commanded to bombard the victims with packets by
specifying the attack type and the victim’s address (Mirkovic and Reiher, 2004).
Akamai Technologies (2019) recorded 7,822 DDoS attacks between November 1,
2017 and April 30, 2018, indicating the prevalence of such attacks despite the presence
of multilevel Internet security measures. During the last six months of this period,
companies confronted with DDoS attacks 41 times on average. The United States was
identified as the source of 30% of the recorded DDoS attacks, that is, 46,137 source IP

8

addresses (Akamai Technologies, 2019). Table I displays the summary of DDoS
attacks statistics in 2016 based on the ATLAS data and the Arbor report (2016).

Table I Summary of DDoS attacks Statistics in 2016

DDoS attack
2016

First-Place Second-Place
Peak Attack Size 500 Gbps 400 Gbps
DDoS Attack Types Volumetric State-Exhaustion
Attack duration 1% of attacks took more than 1

day
86% less than 30
minutes

DDoS Attack Motivations Criminals demonstrating DDoS
attack capabilities

Online gaming-
related

Ports Targeted by DDoS
Attacks

80 53

Protocols Used for
Reflection/Amplification

DNS NTP

Flash Event (FE) is another type of network traffic which deliberately causes a denial
of service problem for legitimate users of an internet-based service or an application.
FE resembles High-Rate DDoS (HR-DDoS) attacks, and it is difficult for network
administrators to distinguish DDoS attack from FE traffic. This increase in the volume
of legitimate traffic might be unpredicted, like spreading a piece of breaking news
around the world. It also could be predicted like a pre-scheduled introducing of a new
product by Apple company (Behal and Kumar, 2017).

2.2. Taxonomy of DDoS attack

DDoS attack vectors can be categorized in three groups:

• Volumetric Attacks: The fundamental goal of these types of attacks is to
consume bandwidth of the network and causing congestion in the network.
Bhuyan et al. (2015a) classified volumetric DDoS attacks into HR-DDoS
which are similar to FE and Low Rate DDoS (LR-DDoS) which are similar to
legitimate network traffic. According to Moor et al. (2006) if the rate of DDoS
attack is more than 1000 packets per second, it will be considered as High Rate
DDoS (HR-DDoS) attack.

• TCP State-Exhaustion Attacks: The ultimate aim of these attacks is to consume
the whole connection state tables of network infrastructure components such
as load balancers, firewalls, IDS, IPS, and the application.

9

• Application-Layer Attacks: In these types of attacks target the critical aspect
of an application or service. They are a relatively effective attack because it
consumes not only server resources but also network resources. In general, it
is difficult to detect them with traditional flow-based monitoring methods.

DDoS attacks based on exploited vulnerability:

• SYN Flood: An attacker sends a massive number of spoofed SYN packets to a
victim to establish a connection. The attacker never completes the three-way
TCP communication process. The victim waits for the packet, but it never
receives the SYN-ACK packet until the connection request becomes timeout.
It results in an increasingly large number of half-open connections in the
network. SYN packets are often used aa a powerful attack means because they
are least likely to be rejected by a simple firewall rule.

• UDP Flood: An attacker floods the massive number of spoofed UDP packets
to random servers or a specific server (with a particular IP address and port
number). Finally, the attacker consumes all available bandwidth in a victim’s
network.

• UDP Fragment Attack: It encompasses fragmentation of different UDP packets
in protocols like DNS and NTP.

• DNS Amplification Attack: It is a type of reflection attack which an attacker
sends many DNS requests to several DNS servers with a spoofed IP address
(IP address of victim). As a result, DNS servers simultaneously send DNS
response packets to the victim. Finally, the victim’s network is exhausted by
the sheer number of DNS responses.

• Connection-less Lightweight Directory Access Protocol (CLDAP) Attack:
CLDAP is an attack on port 389 which is used to retrieve server information
by clients. In CLDAP attack, a malicious party sends LDAP/CLDAP requests
to several servers with a spoofed sender IP address (victim’s IP). Servers
respond with their data inside a large response packet. As a result, the victim’s
network is overwhelmed with a significant number of LDAP response packets.

• NTP Attack: NTP is a simple UDP protocol which is used by connected
machines to set their clocks automatically. It can be misused to start a reflected
DDoS attack against a computer because the small request can result in a
tremendous response.

• Character Generator (CharGEN) Flood: It is an old-fashioned protocol either
TCP or UDP on port 19. When a TCP connection is started, the server initiates
sending arbitrary characters to the connecting host until the connection is
closed. In UDP based communication, when a host sends a datagram to the

10

server, the server sends back a UDP datagram containing a random number of
characters (0-512). This protocol can be misused to perform a CharGEN
amplification DDoS attack. The attack is started by sending small packets
carrying a spoofed sender IP address (victim’s IP) to the connected devices
running CharGEN. Then the connected devices which receives the packets start
to send large UDP packets to the victim on port 19. Therefore, the victim is
overwhelmed with a massive amount of response packets (between 0- 512
bytes depending on request).

• SSDP Attack: The Simple Service Discovery Protocol (SSDP) which is a part
of the Universal Plug and Play (UPnP) Protocol has started to be miss-used as
a new reflection DDoS attack. SSDP is enabled by default on most of
home/office devices such as PCs, wireless access points, modems, routers, web
cameras, smart TVs, scanners, and printers. The protocol is used to enable
machines to seamlessly discover each other for communication and data
transferring on the network.

• DNS Attack: It is an application layer attack towards DNS server using UDP
floods. An attacker sends a large amount of spoofed DNS request packets from
a massive set of source IP addresses. It is difficult for DNS server to
differentiate a fake DNS request from the real one, so fraudulent requests
drown the DNS server and make it out of service.

2.3. DDoS Attack Defence Mechanisms

A DDoS attack can adversely influence an organization at various levels, ranging from
financial, prestige, and customer loss to data exfiltration. Therefore, an effective DDoS
protection system is critical for preserving revenue, productivity, reputation, and user
loyalty. Shameli-Sendi et al. (2015) defined four DDoS defense phases: prevention,
monitoring, detection, and mitigation. Prevention includes the ideal protection
mechanisms against all security concerns including DDoS attacks. However, DDoS
prevention has become even more challenging as DDoS attacks are becoming
increasingly scaled and sophisticated. They are designed so that they can bypass
traditional prevention tools such as anti-viruses, firewalls, and intrusion prevention
systems. Consequently, it is impossible to prevent every potential DDoS attack. DDoS
detection is another protection mechanism for distinguishing attack traffic from
normal network traffic. Shameli-Sendi et al. (2015) categorized DDoS attack detection
algorithms into two main groups:

• Signature-based: where the characteristics of the captured traffic are compared
with well-defined characteristics of previous and precisely modeled DDoS
attacks. Signature-based attack detection systems are perfect in detecting
known-attacks while they cannot prevent the novel attacks.

11

• Anomaly-based (Behavioral-based): Anomaly is defined as any deviation from
the known or expected behavior of the systems. Anomaly-based attack
detection systems require the usual profile of the undertaken system to compare
with observed events in order to recognize significant attacks. This profile is
developed based on many attributes such as network connections, hosts, users
and so on. This profile should be updated whenever there is a change in any
of the mentioned attributes. Anomaly-based detections systems are effective to
detect unforeseen and nocel DDoS attacks. On the other hand, these systems
are usually difficult to operate in a real-time manner (Liao et al., 2013).
Jyothsna et al. (2011) summarized different anomaly detection algorithms
including: “Statistical based, Operational or threshold metric model, Markov
Process or Marker Model, Statistical Moments or Mean and Standard
Deviation Model, Univariate Model, Multivariate Model, Time Series Model,
Cognition based, Finite State Machine Model, Description Script Model,
Adept System Model, Machine Learning based, Baysian Model, Genetic
Algorithm Model, Neural Network Model, Fuzzy Logic Model, Outlier
Detection Model, Computer Immunology based, User Intention based “

2.4. Review of DDoS Detection Studies

This section provides a brief review of DDoS detection studies based on behavioral
approaches. These studies use either statistical methods, information theory,
supervised machine learning, unsupervised machine learning, or hybrid methods, and
they may be classified accordingly.

2.4.1 Works based on Statistical Algorithms

Bhuyan et al. (2015b) proposed the partial rank correlation scheme to detect both
low-rate and high-rate DDoS attacks. The detection was based on two
heuristically estimated thresholds for partial rank correlation (r). The detection
accuracy of their algorithm is highly dependent on threshold selection. Normal
and DDoS-attack traffic was selected from the DARPA-2000 (MIT Lincoln
Laboratory, 2000) and CAIDA-2007 datasets (CAIDA, 2007) respectively.
However, the integration of network traffic samples with different underlying
network characteristics and typologies can influence the results.

Hoque et al. (2016) developed a Feature Feature Source (FFSc) to measure the
degree of similarity in terms of standard deviation and mean value between input
feature vectors. Each vector was composed of three network features. They
computed a similarity value using FFSc for each vector of network traffic, and
when the score passed a threshold, the attack alarm was generated. They
evaluated their method using CAIDA DDoS 2007 and MIT DARPA datasets.
Their proposed algorithm was able to classify normal, LR-DDoS, and HR-DDoS

12

attacks. The empirical threshold setting and requiring normal background
network traffic are shortcomings of their algorithm.

Nezhad et al. (2016) extracted two features, namely, the number of packets and
the number of source IP addresses, from network traffic per minute to construct
the detection feature vector. Subsequently, the Box-Cox transformation
(Montgomery et al, 2015) was used to fix the variance of the time series
representing the number of packets and thereby increase the prediction power of
the Auto-Regressive Integrated Moving Average (ARIMA) model. In the next
step, the local Lyapunov exponent was used to classify chaotic and non-chaotic
errors. A detection rate of 99.5% was reported for their algorithm. This approach
investigates only two well-known traffic features to detect DDoS attacks.
Sophisticated attackers can mimic legitimate traffic and evade the detection tools
by reducing the number of bots or the number of the sent packets per each bot.
Additionally, time-series forecasting models such as ARIMA are supervised
learning algorithms and are not suitable for online attack detection.

Behal et al. (2017) classified the different characteristics of FE and DDoS attacks
based on the distribution of requests among source IPs, change in the rate of new
IPs, change in the rate of traffic, number of different source IPs, number of
different geographical distribution of source, duration and so. They utilized
arithmetic mean, geometric mean and standard deviation to model the average
decrease in growth pattern of new IPs for FE and DDoS traffic. They also
measured different statistics for the average request per source IP. They validated
their model using simulated data, FIFA’98, ACM SIGCOMM, DARPA and
CAIDA datasets.

Zhou et al. (2017) used the expectation of packet size (EPS) to distinguish LR-
DDoS-attack traffic from legitimate traffic. Their mechanism was based on the
assumption that the volume of the sent/received bytes in LR-DDoS traffic is
considerably lower than that in normal traffic. Considering the size of
sent/received packets as the only detection feature is the limitation of this method,
which also requires obtaining and storing the normal EPS in advance using a
normal background traffic without any attack data.

David and Thomas (2019) used the number of packets, unique source IP
addresses, unique destination IP addresses, and unique protocols (which were
aggregated every T seconds) to construct the feature vector. Moreover, a slicing
time window was used to calculate the mean and variance of these attributes.
Subsequently, the threshold values were adaptively filtered for each feature based
on its mean and variance. Their algorithm issues a DDoS attack alarm if and only
if all four attributes exceed their thresholds. The limitation of this algorithm is
that an attacker can slightly increase the traffic in the victim's network so that the
threshold means, and variance may be smoothly increased over time, thus
deceiving the detection scheme.

13

2.4.2 Works based on Unsupervised Machine Learning algorithms

Lee et al. (2008) constructed a feature vector of 9 traffic characteristics including
entropy of source IP address and port number, entropy of destination IP address
and port number, entropy of packet type, occurrence rate of packet type (ICMP,
UDP, TCP SYN) and number of packets. Then they applied a clustering analysis
based on Euclidean distance. Their algorithm aimed to group network traffic into
normal, phase 1, phase 2, attack and post-attack classes. They used DARPA-2000
dataset to validate their algorithm. This algorithm is not suitable for online
detection as the construction of the clusters is incremental, so any change in the
trend of network traffic requires re-clustering of data from the beginning.

Casas et al. (2012a, 2012b) proposed an unsupervised network intrusion detection
system that can detect different network attacks without requiring any type of
signature, labeled traffic, normal traffic profile, or training to construct the normal
profile of the network traffic. Initially, captured packets in consecutive time slots
of fixed length T were aggregated in IP flows. Flow aggregation was performed
at nine different resolution levels using different aggregation keys based on the
network prefix in either the source or destination IP addresses of the flows. An
algorithm running in three consecutive steps was developed. In the first step,
anomalous time slots were detected using three simple and traditional volume
metrics and the corresponding dynamic threshold values. In the second step,
subspace clustering, density clustering, and evidence accumulation clustering
were used to construct an outlier ranking mechanism. Finally, in the third step, a
simple threshold detection approach was used to select anomalies among top-
ranked outlying flows. It appears that this algorithm is not suitable for real-time
detection because clustering algorithms must re-partition the entire space when
points were added to or deleted from the system. Thus, it is difficult to satisfy
real-time detection requirements. This method is not a dedicated DDoS-attack
detecting algorithm.

Papalexakis et al. (2014) applied a co-clustering algorithm to isolate specific
parameters which are indicators of abnormal connections. They validated their
algorithm using KDD CUP’99. They mentioned that their algorithm was too slow
to run over the full dataset.

Ahmed and Mahmood (2014) proposed a variation of the k-means algorithm,
which was called x-mean algorithm. The algorithm did not require to set the
number of the clusters (k) in advance. They used DoS data from DARBA dataset
to train and test their algorithm. Their algorithm is not suitable for online
detection as the construction of the clusters is sequential.

Ahmed and Mahmood (2015) proposed a collective anomaly detection method
using a partitioned clustering technique. Initially, they used x-means algorithm to
cluster the dataset and sort the clusters based on their size. Then, they summed

14

the traffic features of the clusters to make a single new traffic feature and re-
cluster the newly constructed feature vectors. They considered the cluster with
the minimum variance as a collective anomaly. They used the KDD CUP’99,
DARPA, and Kyoto datasets to train and test their method.

Dromard et al. (2016) proposed an Online and Real-time Unsupervised Network
Anomaly Detection Algorithm (ORUNADA) based on the incremental grid
clustering algorithm and a discrete time sliding window. The application of
incremental grid clustering is the novel part of their approach, as incremental
clustering algorithms require updating only the previous feature space partition
instead of re-clustering the entire space whenever a point is added or removed.
Subsequently, these updated partitions are merged to recognize the most
dissimilar outliers. Incremental grid clustering makes the proposed algorithm
more suitable for real-time detection. ORUNADA is not designed to detect only
DDoS-attack traffic. However, its high computational power requirements limit
its applicability (Roudiere and Owezarski, 2017).

Roudiere and Owezarski (2017) proposed an unsupervised DDoS detector called
autonomous algorithm for traffic anomaly detection. This approach aimed at
reducing the use of computational resources required to process the traffic. The
algorithm has two steps: online and offline processing. In online processing, the
continuous part quickly handles flow-based feature extraction and uses
histograms to model the flow feature distribution for source/destination IP/port.
Additionally, traffic-wide densities are calculated for the number of SYN, UDP,
and ICMP packets. In offline processing, snapshots of the traffic are taken every
T seconds, and the traffic is modeled accordingly. Finally, the k-NN algorithm is
used to compare a snapshot with the last N snapshots to detect significant
deviations from the usual traffic profile. The algorithm exhibited promising
performance on a simulated dataset, but the approach was not validated using a
benchmark dataset. Additionally, the algorithm requires the experimental setting
of certain parameters, that is, the number of nearest neighbors (k), the total
number of snapshots (N) for the k-NN analysis, and the density factor (λ).
Moreover, network traffic sampling (snapshots) may affect the detection
accuracy.

2.4.3 Works based on Supervised Machine Learning Algorithms

Seo et al. (2005) computed the TRA (Traffic Rate Analysis) to analyze the
characteristics of network traffic for DDoS attacks and then they employed
a multi-class SVM classification to detect different types of DDoS attacks.
TRA examines the occurrence rate of a specific kind of packet within the
stream network traffic based on a TCP flag rate and a protocol rate. This
approach is not applicable as online learning detection as it requires prior

15

knowledge of the normal network traffic and labeled data to train SVM
classifier in offline mode.

Xu et al. (2007) proposed a group of relative values features (RLT features)
based on characteristics of DDoS attack to increase the precision of
distinguishing normal streams from DDoS attack streams. RLT feature
vector was composed of six features including one-way connection density,
average length of IP flow, incoming and outgoing ratio of IP packets,
entropy of length in IP flow, entropy of protocols, and ratio of protocols.
They used multi-class SVM to detect various DDoS attacks. Their work
suffers two limitations. First, they only used emulated network traffic data
to validate their method. Second, SVM is an offline learning algorithm, so
it is not suitable for online DDoS detection.

Yu et al. (2008) proposed a lightweight and fast attack detection
mechanism using the SVM-based hierarchical structure. The proposed
method had two-levels: A one-class SVM was used at first level to detect
attack traffic from normal traffic. Then at the second level, the attack traffic
was classified into several attack types. They validated their method using
simulated attack data. They utilized the features of Simple Network
Management Protocol- Management Information Base (SNMP-MIB) data
instead of raw data to detect DDoS traffic.

Yang et al. (2008) developed a support vector machine using a wavelet
kernel (WSVM). They demonstrated that WSVM outperformed original
SVM by about 4% less false positive rate while increasing the detection
accuracy. It seems that the time complexity of WSVM is higher than SVM
because WSWM tries different wavelet kernel functions and then compare
and select the best kernel function. WSVM also suffers the similar
shortcomings of the original SVM algorithm.

Cheng et al. (2009) proposed the concept of IAFV (IP Address Feature
Value) to reflect the four features of DDoS attack flows including the
abrupt traffic change, flow dis-symmetry, distributed source IP addresses,
and concentrated target IP addresses. They used IAFV time series to
describe the state change features of network flow. Finally, they employed
the SVM classifier to detect DDoS attacks. Both time-series algorithm and
SVM are not suitable for online detection.

Wagner et al. (2011) developed a new kernel function for calculating the
similarities between NetFlow windows. The kernel function calculates the
similarity between two windows (W1, W2) by summing up the similarity
values between five features in two windows including (prefix, suffix-
length of source/destination IP addresses and volume of the traffic. Then
they used one-Class SVM with this new kernel function to detect different

16

attacks in the real ISP traffic data. The one-class SVM classifier also has
to be retrained when the network environment changes however its
computation time is less than original SVM as it has a smaller number of
support vectors.

Chitrakar and Huang (2014) proposed a DDoS detection algorithm named
the candidate support vector-based incremental SVM. The incremental
SVM is cost and time effective than original SVM because only support
vectors are transferred to the next re-training process of SVM classifier
while all other data samples are removed. They used Kyoto 2006+ dataset
to validate their algorithm. Incremental SVM still have some shortcomings
of original SVM such as requiring labeled data. Therefore, it is not entirely
meet the requirements of online learning algorithm by Ahmed et al. (2016).

Sahi et al. (2017) proposed a classification mechanism for the prevention
of TCP ping flood attacks in a cloud environment by detecting DDoS-
attack traffic before sending incoming packets to the cloud service
provider. Ostensibly, this is unrelated to the present research. However, if
we consider only the detection of DDoS traffic in the internal network
before the traffic is sent to the cloud, the aim of that study will be similar
to our research question. Their feature vectors were the number of total
transmitted packets and the number of packets from the same source to the
same destination every 60 seconds. Four classification algorithms were
employed, namely, Least Square-SVM (LS-SVM), k-nearest
neighborhood, Naive-Bayes (NB), and multilayer perception, to
distinguish DDoS and normal traffic. This system achieved the highest
detection rate when LS-SVM was adopted. The proposed mechanism is an
example of an old-fashioned offline attack detection scheme in a cloud
environment.

Daneshgadeh et al. (2017) proposed a DDoS detection approach using the
sequential minimal optimization (SMO) algorithm with the polynomial
kernel function. Real network traffic and simulated DDoS traffic were used
for validation. The synthetic minority over-sampling technique was
employed for synthetically increasing the number of DDoS attacks in their
dataset. Therefore, the perfect accuracy rate of 100% may have been
achieved owing to over-fitting or a bias in the training and validation
datasets.

Chen et al. (2018) developed a model based on the Random Forest (RF)
algorithm to classify the traffic on top-level domain servers. The aim was
to detect DDoS attacks on major recursive DNS servers. The authors
applied a simple supervised learning algorithm that is not suitable for
online attack detection.

17

2.4.4 Works based on Information Theory Metrics

Nychis et al. (2008) investigated the detection power of entropy-based
analysis using flow-header features (IP addresses, ports, and flow-sizes)
and behavioral features (e.g; the number of distinct destination/source IPs
that each host communicates with). They demonstrated that precise
detection of DDoS attacks needs more further investigation in addition to
analyzing port and IP address distributions. Additionally, they suggested
bi-directional analyses of the flows when it comes for computing traffic
distribution in order to prevent bias.

Li et al. (2009) They used probability metrics such as source IP distribution
to characterize DDoS and FE traffic. They mentioned that DDoS attacks
are originated from a limited geographical area where bots are located, so
the geographic diversity of source IPs follow Gaussian distribution. They
also added that the source IP distribution of FEs is more disperse that
follows a Poisson distribution. They also discussed the different trend of
increase and decrease in the number of requests per second for DDoS and
FE. During a DDoS attack a server encounters sudden increase/ decrease
in the number of requests. Whereas, this change is smoother in FE. They
used some information distance such as Jeffrey, Sibson, and Helinger
distances to calculate the level of similarity among various DDoS and FE
flows. They showed that Sibson distance is the best metric to separate
DDoS from FE flows. Their experiment was performed on simulated data
for both FE and DDoS traffic. The empirical threshold setting and requiring
normal background network traffic are shortcomings of their algorithm.

Jun et al. (2014) proposed a detection mechanism using packet sampling
and flow features. Two entropy-based and two statistical features were
extracted, along with the corresponding thresholds. The algorithm initially
compares the volume of the sample packet with a predefined threshold
value and marks the traffic as suspicious if and only if the volume exceeds
the threshold value. Then, other features are checked against their
corresponding thresholds. If all features exceed the threshold values, a
DDoS attack is detected. The reliance on a constant threshold is a drawback
of this algorithm.

David and Thomas (2015) utilized fast entropy to detect DDoS-attack
traffic. The authors claimed that the flow count entropy severely decreases
in the case of attack flows, and it is stable otherwise. To detect DDoS
attacks, a pre-defined threshold was compared with the difference between
the flow count entropy and the mean entropy at each instant in the same
time interval. The threshold was updated according to the packet traffic
condition. If the fast entropy was 1.5 times as high as the mean flow count,
then the threshold was increased by one. If the fast entropy was one half of

18

the mean flow count, then the threshold was decreased by one. However,
this detection method can be bypassed if the attacker knows the fixed
update rule for the threshold value.

Bhuyan et al. (2015a) used several Generalized Entropy (GE) and
Generalized Information Distance (GID) metrics with different α-order to
distinguish DDoS attacks with different rates, where α refers to the value
of α in Renyi's α-entropy (Rényi, 1965). Experiments demonstrated that
using GID and GE with higher α values increases the dissimilarity between
normal and both LR-DDoS and HR-DDoS traffic. The low computing
overhead of these metrics facilitates real-time application. However,
threshold setting is empirical and could be biased.

Behal and Kumar (2017) reported the significant increase in the entropy
values of source IP addresses and source ports during a DDoS attack. They
also reported a substantial decrease in the entropy values of destination IP
addresses and destination ports for a DDoS attack. Generalized information
distance metrics such as Reny, Sibson, Jeffery, Kullaback-leibler,
Bhattacharyya Hellinger have been used to discriminate DDoS attacks
from FE traffic. They also demonstrated that the Generalized Entropy (GE)
and Generalized Information Distance (GID) metrics with higher order of
alpha could discriminate legitimate, DDoS and FE traffic in significant
manner than Shannon entropy and KullbackLeibler distance.

Behal et al. (2018) proposed a detection method called D-FACE to
differentiate legitimate, LR-DDoS, HR-DDoS, and FE traffic. This
algorithm compares the source IP entropy of normal traffic flow and
current incoming traffic in each time window. The entropy difference is
called Information Distance (ID) and is used as the detection metric. Two
thresholds were defined according to the baseline behavior of a network
without attacks. The major issue with this algorithm is defining normal
network traffic in a continually changing environment.

2.4.5 Works based on hyprid approches

SVM is one of the powerful and well-known non-linear (using kernel
function), non-parametric classification technique, which already showed
good results in the cyber-attack detection. SVM were employed in
combination with other methods by many researchers to detect anomalies
and DDoS attacks in the network traffic data. All studies reported
promising results to detect DDoS attacks. However, none of these hybrid
algorithms are suitable for online DDoS detection because the original
SVM classifier need to be re-trained sequentially and from scratch using
labeled data when the network traffic changes.

19

Gan et al. (2013), Chen et al. (2009), Horng et al. (2011), Kuang et al.
(2014) investigated the effect of SVM with Partial Least Square (PLS),
Extended Learning Machine (ELM), Rough Set Theory (RST), Balanced
Iterative Reducing and Clustering Hierarchies (BIRCH), Kernel Principal
Component Analysis (KPCA) to classify DoS attacks in the KDD CUP’99
dataset. Agarwal and Mittal (2012) and Khan et al. (2007) have utilized
SVM with Dynamically Growing Self-Organizing Tree (DGSOT)
clustering algorithm and Shannon entropy respectively to detect DoS
attacks in the DARPA dataset.

Gogoi et al. (2013) proposed a multi-level hybrid intrusion detection
method based on supervised, unsupervised and outlier-detection algorithms
to classify different types of attacks such as DoS/DDoS, Probe, R2L, U2R,
and normal traffic. The classifier in the first level of this algorithm is
responsible for detecting DDoS attacks. The classifier builds a set of
representative clusters (DoS/DDoS, Probe, and rest) from the available
labeled training data. Subsequently, the algorithm measures the similarity
between each unlabeled test data and the predefined clusters and insert
unlabeled data in the corresponding cluster. Finally, unlabeled data get the
label of the clusters in which they are added. The performance of the
algorithm is highly dependent on the availability and significant of initially
labeled clusters.

Qin et al. (2015) defined a feature vector based on entropies of five
different features of traffic flows and one TCP flag feature. Then they used
the common k-means clustering algorithm to model normal patterns of the
network and determine the detection threshold. The cluster number setting,
and construction of the normal flow profile are challenging aspects of their
approach.

Fernandes Jr et al. (2016) proposed a network anomaly detection algorithm
based on Principal Component Analysis (PCA), ant colony optimization,
and Dynamic Time Warping (DTW) to detect DoS, DDoS, port scan, and
FE attacks. Three quantitative and four qualitative IP flow attributes were
analyzed. The results demonstrated that the algorithm is successful in
detecting different types of anomalies in the network traffic without attack
type classification. However, the algorithm requires prior knowledge of the
normal network traffic behavior for at least one day.

Hoque et al. (2017) defined a new correlation measure referred to as NaHiD
for the distance between two feature vectors. These vectors were defined
using three features: the entropy of source IP addresses, variation index of
source IP addresses, and packet rate per second. The network monitor
initially calculates the normal profile and threshold value for the detection
algorithm. An attack is detected when the computed correlation value is

20

smaller than a user-defined threshold. The NaHiD metric can be
implemented in software as well as in hardware using field programmable
gate arrays. Initially, a network monitor calculates the normal profile of the
training dataset and determines the optimal threshold value that provides
the highest classification accuracy for the attack and the normal instances
in the training set. These values are stored in the profile log dataset. The
normal profile and threshold value are updated incrementally and
dynamically based on the previously stored values. The algorithm can
operate in online mode and adapt to a changing traffic pattern; however, it
requires the normal traffic profile in advance.

Idhammad et al. (2018) proposed a semi-supervised DDoS detection
approach based on entropy estimation, co-clustering, information gain
ratio, and extra-trees. The entropy of the header features was measured and
analyzed using different time-based sliding windows. Then, a co-clustering
algorithm was used to split network traffic into three clusters (normal
traffic, DDoS traffic, and normal as well as DDoS traffic) based on the
entropy features. Subsequently, the information gain ratio was measured
for each cluster and computed with the average entropy of the network
header features in the current time window. Finally, clusters with high
information gain ratio were considered suspicious and the extra-trees
algorithm was used to separate DDoS attack traffic from other abnormal or
normal traffic. This algorithm is not suitable for online detection, as it
requires labeled data and handling several thresholds and parameters for
extra-trees. Moreover, it relies on a supervised classification tree, which is
not suitable for online learning.

Daneshgadeh et al. (2018) proposed a hybrid method using the Kernel
based Online Anomaly Detection (KOAD) algorithm with pre-defined
threshold settings and the Mahalanobis distance metric to detect DDoS
attacks. Normal and abnormal datasets were generated based on the KOAD
algorithm. Subsequently, the Mahalanobis distance between abnormal data
points and the normal traffic distribution was measured. This distance was
statistically evaluated by means of the Chi-square test. Simulated data were
used for validation.

Gu et al. (2019) proposed a semi-supervised k-means algorithm using
hybrid feature selection to detect DDoS attacks. Initially, a set of nine
candidate features was defined, where eight of them were entropy-based.
Then, a hybrid feature selection method was applied to rank the candidate
features and select the most effective one. A semi-supervised k-means
algorithm was employed for model training and testing, and a small subset
of labeled data was used to facilitate the selection of the initial center points
for the k-means algorithm and resolve the outlier and local optimum issues.
Subsequently, the classical k-means algorithm was applied to determine

21

the similarity between unlabeled data and initial clusters. This algorithm
requires labeled data for initialization, which limits the applicability of the
algorithm in an unknown real-time environment. Additionally, a set of best
features was selected for each dataset separately based on performance
analysis (recall and false positive rate). However, calculating these
performance metrics is not practical if there are no labeled data for
unknown network traffic.

Daneshgadeh et al. (2019a) used Shannon entropy with the KOAD
algorithm for online detection of DDoS and FE traffic. Subsequently, the
Mahalanobis distance was used to differentiate between various types of
DDoS attacks from FE traffic. This study did not use a benchmark
validation dataset and provided neither a systematic method for obtaining
the Mahalanobis distance nor a guideline for selecting thresholds for the
KOAD algorithm.

Daneshgadeh et al. (2019b) proposed a hybrid algorithm to distinguish
DDoS attacks from FE traffic. The algorithm detected abnormal network
data points using the KOAD algorithm (Ahmed et al., 2007a, Ahmed et al.,
2007b), and then used an SVM classifier to separate DDoS attacks from
FE traffic. Simulated DDoS attack, real FE, and normal data were used to
evaluate the accuracy of the algorithm. The predefined threshold setting of
the KOAD algorithm, offline training of the SVM classifier, and
application of simulated validation instrument are the drawbacks of this
framework.

22

23

CHAPTER 3

3. RESEARCH METHODOLOGY

This chapter presents descriptions of the data used in this thesis. Subsequently, the
research design and proposed scheme are given.

3.1. Dataset

In the experiments, the publicly available CICIDS2017 dataset, which contains normal
and the most up-to-date common attacks was used. CICIDS2017 is a realistic IDS
dataset because it is based on B-Profile and M-Profile components. The B-Profile is
responsible for profiling the abstract behavior of human interactions and generating
realistic benign background traffic (Sharafaldin et al., 2018a). The M-Profile is used
to describe the details of attack scenarios. The dataset includes the abstract behavior
of 25 users based on the HTTP, HTTPS, FTP, SSH, and e-mail protocols.

Sharafaldin et al. (2018a) created a comprehensive testbed which included two
separated networks: Attack-Network and Victim-Network.

Figure 1 demonstrates the underlying network infrastructure of the CICIDS2017
dataset.

Figure 1 Testbed architecture of CICIDS2017 dataset (Sharafaldin et al. (2018b))

24

Sharafaldin et al. (2018a) defined 11 criteria for building a reliable benchmark dataset
as following:

• Complete Network Configuration: The Victim-Network is a highly secure
infrastructure and includes different networking tools such as firewalls,
switches, and routers. Victim-Network composites of various operating
systems such as Windows, Ubuntu and Mac OS X. The Attack-Network is
wholly separated from the Victim-Network and consists of one router, one
switch and four PCs with public IP addresses. The Kali and Windows 8.1 are
available operating systems on mentioned four PCs.

• Complete Traffic: The testbed includes one user profiling agent,12 different
machines in Victim-Network and all attacks are real.

• Labelled Dataset: All flows in the dataset are labeled as benign or the name
of the attack.

• Complete Interaction: The dataset includes all communication between
Victim-Network and Attack-Network as well as Internet communications.

• Complete Capture: The dataset covers all traffic in the testbed using a mirror
port such as a tapping system.

• Available Protocols: The dataset has all standard protocols such as HTTP,
HTTPS, FTP, SSH and email protocols.

• Attack Diversity: The dataset includes the most common attacks, including
brute force, DoS, DDoS, data infiltration, Heart-bleed, Bot, port scan and web-
based attacks.

• Anonymity: The payloads of the packets were removed because of privacy
concerns.

• Heterogeneity: The dataset is heterogeneous because, all the network traffic
is captured from the main switch, memory dump and system alarms of all
victim machines during the attacks.

• Feature Set: The dataset includes 83 network traffic features, which were
extracted using the CICFlowMeter software package (CICFLOWMETER)

• Meta-Data: Information related to time, attacks, flows and labels are entirely
explained.

Sharafaldin et al. (2018a) defined the equation (3.1) to measure the reliability of their
CICIDS2017 dataset.

25

 ∑wi (∑vj

m

j=1

× Fj)

n

i=1

 (3.1)

Where W is a weight of each feature (11 criteria), V is the coefficient of each sub-
factor, F is a binary value which demonstrates the appearance/absence of a specific
factor and sub-factor in the dataset, n is the number of features and m is the number of
coefficients for each factor. The CICIDS2017 dataset achieved a score of 1, whereas
KDD CUP’99 (KDD, 1999) achieved only 0.56. Therefore, using this dataset in the
present is justifiable.

3.2. Feature Extraction

The entire CICIDS2017 dataset was divided into eight .csv files. For the experiments
in this thesis, files that included DDoS and normal traffic flows (July 03 and 07, 2017)
were used. Subsequently, the feature vectors were generated by aggregating network
flows per minute.

Yu et al. (2012) analyzed DDoS attack network traffic and revealed that DDoS flows
are more similar than normal flows. Attackers usually prefer to send general
commands to bots instead of sending a specialized command to each bot. Therefore,
the randomness degree of the attributes (such as number of source IPs, number of
sent/received bytes, duration, etc.) in DDoS flows is less than FE flows. Therefore, the
information theory-based detection metrics have gained popularity in the DDoS attack
detection literature. This research incorporates the advantages of using entropy to the
proposed framework by measuring the randomness degree of flows using Shannon
entropy. A feature vector was constructed based on the Shannon entropy of
Source/Destination IP addresses/Ports.

The Shannon entropy of a discrete distribution is a measure of uncertainty or
randomness of a single random sample in a separate distribution based on the
Boltzmann entropy of classical statistical mechanics (Rao et al., 2004). The entropy of
random sample x is defined as:

𝐻(𝑋) = −∑𝑝(𝑥𝑡)

𝑁

𝑡=1

⋅ 𝑙𝑜𝑔2 𝑝(𝑥𝑡) (3.2)

Where 𝑋 = {𝑥1, 𝑥2, 𝑥3, ⋯ , 𝑥𝑁} and the probability distribution 𝑃 =
{𝑝1, 𝑝2, 𝑝3, ⋯ , 𝑝𝑁}.

26

The value of Shannon entropy is always positive and equal to zero if and only if it is
an individual event. Additionally, an increase in the number of independent
components results in increasing the value of entropy and vice versa. As a result, the
entropy values of Source IP addresses/Ports increase dramatically during DDoS
attacks as the number of independent source IP addresses increases and the entropy
values of Source IP addresses/Ports increase sharply. The entropy-based feature vector
was constructed as the following:

F1
⃗⃗⃗⃗ = (

 𝑇𝑖𝑚𝑒_𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙, 𝑆𝑜𝑢𝑟𝑐𝑒_𝐼𝑃_𝐸𝑛𝑡𝑟𝑜𝑝𝑦,𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝐼𝑃_𝐸𝑛𝑡𝑟𝑜𝑝𝑦,
𝑆𝑜𝑢𝑟𝑐𝑒_𝑃𝑜𝑟𝑡_𝐸𝑛𝑡𝑟𝑜𝑝𝑦,𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑃𝑜𝑟𝑡_𝐸𝑛𝑡𝑟𝑜𝑝𝑦

)

Time_Interval represents the time stamp of the flow in minutes of the day. For
example, Time_Interval=400 implies that the flow is related to the time 6:4 AM.
Finally, 448 input vectors were obtained from 480,745 flows, where 21 of those
vectors were related to DDoS attacks. Additionally, another feature vector was
constructed and named statistical-based feature vector. It utilized the best candidate
features to detect DDoS attacks by Sharafaldin et al. (2018b).

F2
⃗⃗⃗⃗ = (

 𝑇𝑖𝑚𝑒_𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙, 𝐹𝑙𝑜𝑤𝑠_𝐼𝐴𝑇_𝑆𝑡𝑑, 𝑇𝑜𝑡𝑎𝑙_𝐵𝑃𝑎𝑐𝑘𝑒𝑡_𝐿𝑒𝑛_𝑆𝑡𝑑,
𝐹𝑙𝑜𝑤𝑠_𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝑇𝑜𝑡𝑎𝑙_𝐴𝑣𝑔_𝑃𝑎𝑐𝑘𝑒𝑡_𝑆𝑖𝑧𝑒

)

Table II shows the list of abbreviations for the features.

Table II List of abbreviations for features.

Feature Names Feature Abbreviations

Flows_IAT_Std FsIAT_Std
Total_BPacket_Len_Std TBP_Len_Std
Flows_Duration FsD
Flow_Duration FD
Total_Avg_Packet_Size TAvg_PS
Avg_Packet_Size Avg_PS
Flow_IAT_Std FIAT_Std
Flow_IAT_Mean FIAT_Mean
BPacket_Len_Std BP_Len_Std
BPacket_Len_Mean BP_Len_Mean

The feature vector (F2
⃗⃗⃗⃗) has four attributes as follows:

• Flows_IAT_Std denotes the standard deviation of the time between packets
that are sent in either direction in 1 minute.

27

• Total_BPacket_Len_Std denotes the standard deviation of packet length in the
backward direction in 1 minute.

• Flows_Duration denotes the flow duration.

• Total_Avg_Packet_Size denotes the average packet size in 1 minutes.

The CICID2017 dataset provides the statistical attributes of traffic per flow. The flow-
based features were converted into time-based feature as shown in equations (3.3) to
(3.6).

𝐹𝑠𝐷 = ∑𝐹𝐷𝑖

𝑁

𝑖=1

, (3.3)

where N is the number of flows in the corresponding 𝑇𝑖𝑚𝑒_𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙.

𝑇𝐴𝑣𝑔_𝑃𝑆 =
∑ (𝑛𝑖 × 𝐴𝑣𝑔_𝑃𝑆𝑖)

𝑛
𝑖=1

 ∑ 𝑛𝑖
𝑛
𝑖=1

, (3.4)

where n is the total number of packets in the corresponding 𝑇𝑖𝑚𝑒_𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 and 𝑛𝑖 is
the number of packets in each flow.

𝐹𝑠𝐼𝐴𝑇_𝑆𝑡𝑑

=
∑ (𝑛𝑖 × 𝐹𝐼𝐴𝑇_𝑆𝑡𝑑𝑖

2)𝑛
𝑖=1 + ∑ 𝑛𝑖

𝑛
𝑖=1 × (𝐹𝐼𝐴𝑇_𝑀𝑒𝑎𝑛𝑖 − 𝐹𝐼𝐴𝑇_𝑀𝑒𝑎𝑛)2

 ∑ 𝑛𝑖
𝑛
𝑖=1

, (3.5)

where 𝐹𝐼𝐴𝑇_𝑀𝑒𝑎𝑛𝐼 is the mean of the inter-arrival time for each flow and
𝐹𝐼𝐴𝑇_𝑀𝑒𝑎𝑛 is the grand mean of all inter-arrival times for the corresponding
𝑇𝑖𝑚𝑒_𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙.

𝑇𝐵𝑃_𝐿𝑒𝑛𝑆𝑡𝑑

=
∑ (𝑛𝑖 × 𝐵𝑃_𝐿𝑒𝑛_𝑆𝑡𝑑𝑖

2)𝑛
𝑖=1 + ∑ 𝑛𝑖

𝑛
𝑖=1 × (𝐵𝑃_𝐿𝑒𝑛_𝑀𝑒𝑎𝑛𝑖 − 𝐵𝑃_𝐿𝑒𝑛_𝑀𝑒𝑎𝑛)2

 ∑ 𝑛𝑖
𝑛
𝑖=1

, (3.6)

where 𝐵𝑃_𝐿𝑒𝑛_𝑀𝑒𝑎𝑛𝑖 is the mean of the backward packet length and 𝐵𝑃_𝐿𝑒𝑛_𝑀𝑒𝑎𝑛
is the grand mean of all backward packet lengths for the corresponding
𝑇𝑖𝑚𝑒_𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙.

3.3. Reseach Design

Nesselroade and Cattell (2013) defined experimental research design as “a recording
of observations, quantitative or qualitative, made by defined and recorded operations

28

and in defined conditions, followed by examination of the data, by appropriate
statistical and mathematical rules, for the existence of significant relations.”

This research completely follows the definition by Nesselroade and Cattell (2013).
Therefore, it can be seen as entirely experimental research. According to Asadullah
(2011), empirical research is commonly accepted research design in different areas of
knowledge.

3.4. Proposed Architecture

The proposed framework combines the capabilities of Shannon entropy, k-means,
KOAD, the Mahalanobis distance, and the Chi-square test for the online detection of
DDoS attacks. According to Xiang et al. (2011), the entropy values are relatively
uniform when the network traffic is normal, but the entropy values of one or more
features would increase/drop significantly during the DDoS attacks. Therefore,
Shannon entropy is utilized for feature construction. DDoS attack is regarded as a
collective anomaly in the literature. Consequently, the online anomaly detection
algorithm is suitable for spotting cumulative anomalies. The KOAD algorithm is
selected because, in addition to network anomaly detection, it has already exhibited
promising performance in diverse anomaly detection areas, such as medical
monitoring (Ahmed et al., 2016b), surveillance systems (Anika et al., 2017, Ahmed et
al., 2010) and image processing (Ahmed et al., 2013, Ahmed et al., 2017, Ahmed et
al., 2014). Moreover, the KOAD algorithm is useful for modeling of normal network
traffic behavior. However, the updated version of the original KOAD algorithm named
E-KOAD is employed in this thesis in order to overcome some shortcomings of the
original KOAD. The E-KOAD depreciate from KOAD in three aspects, including
automated threshold settings, automated standard deviation setting for RBF kernel,
and replacement of the “Usefulness Test” with “Utility Test”.

The number of fully online anomaly detection algorithms are limited in the literature.
Some researchers have used the terms “online” and “real-time” interchangeably in the
literature, but there is a significant difference between them. An ideal online machine
learning algorithm should be able to update itself and adapt to a frequently changing
environment, in addition to operating immediately while ingesting one observation at
a time.

Online algorithms have the ability to learn from a newly arriving data instance, without
re-training the whole data obtained to-date from initiation. As online algorithms
involve real-time operations, the computational and storage complexities of the
algorithms (both in terms of time and memory) is required to not grow with time as
the size of the whole (to-date) dataset grows, and preferably be small.

The KOAD algorithm meets all the requirements of real-world anomaly detection set
forth by Ahmed et al. (2016a) as following:

29

• The KOAD algorithm instantly decides about an incoming datapoint by issuing
an “Orange”/”Red” alarm. Moreover, it saves “Orange” alarms for further
investigation to ensure that they correspond to anomalies and not to alterations
in the trend of the traffic.

• The algorithm learns continuously and does not require storing the entire
stream of data. All updates are performed recursively when a data point is
added to or deleted from the Dictionary. Therefore, there is no need to store
the entire stream.

• The algorithm runs in a completely unsupervised manner without requiring
labeled data. The original KOAD algorithm requires the experimental setting
of thresholds. However, the proposed algorithm overcomes this limitation.

• The algorithm can adapt to dynamic environments by using a Dictionary and
a “Usefulness Test”.

• The algorithm has a "Red2" alarm to detect anomalies as early as possible.
When the deviation from the normal traffic of the network is not significant to
ensure that the incoming point is abnormal, the algorithm provides a calculated
prediction by considering subsequent data. Nevertheless, the algorithm can be
forced to make decisions as soon as it receives the traffic flow by setting the
lag-time (l) to zero.

• The algorithm attempts to minimize false positives and false negatives by
postponing the decision on less suspicious traffic flows.

The Mahalanobis distance is utilized for separating DDoS attacks from other abnormal
traffic data points, which were initially detected by E-KOAD. Mahalanobis distance
is used for different purposes in the literature, including similarity measurement,
outlier detection, calibration samples selection and examination of representativity
between two data sets (De Maesschalck et al., 2000). It is also used for detecting
anomalies in network traffic (Santiago-Paz et al., 2012; Bayarjargal and Cho, 2014).

 Semerci et al. (2018) obtained promising DDoS detection results in SIP networks by
using a novel adaptive real-time change-point model that tracks the changes in the
Mahalanobis distance. It was assumed that employing the Mahalanobis distance metric
is most likely to be useful in detecting DDoS attacks in data networks as well.

Mahalanobis distance fits the data into uncorrelated and unit-variance Gaussian
variables. If it is assumed that Mahalanobis distance measures the difference between
each incoming feature vector and the mean vector of normal feature vectors, then the
Mahalanobis distance values follow the Chi-squared distribution with d-degrees of
freedom (Semerci et al., 2018). Therefore, the Chi-square test can be employed for
evaluating the Mahalanobis distance values.

30

The proposed algorithm initially uses the entropy-based feature vectors to calculate
the δ values of the KOAD for one hour. After one hour, the k-means algorithm is
utilized to find the optimal threshold values for the kernel-based anomaly detection
algorithm. Then the system continues its operation using new thresholds. Whenever
the E-KOAD issues a “Red” or “Red2” alarm, the corresponding input data will be
added to the suspicious dataset. Similarly, the input data related to Dictionary.

Figure 2 Initialization of proposed algorithm

31

Figure 3 Proposed architecture of E-KOAD

32

33

CHAPTER 4

4. ALGORITHMIC FONDATION

This chapter presents the detailed mathematical background of the proposed scheme
including KOAD, k-means, Mahalanobis distance and Chi-square test.

4.1. Kernal Function

Algorithms based on the so-called “kernel trick” involve using a kernel function that maps
the input data onto a feature space of a much higher dimension (Scholkopf and Smola,
2001). This counterintuitive operation is performed owing to the expectation that points
depicting similar behavior should form more pronounced clusters in the richer feature
space. A suitable kernel function, when applied to a pair of input vectors, may be
interpreted as an inner product in the feature space (Scholkopf and Smola, 2001). This
subsequently allows inner products in the feature space (inner products of the feature
vectors) to be computed without explicit knowledge of the feature vectors themselves, by
only evaluating the kernel function:

𝑘(𝑥𝑖 , 𝑥𝑗) = < 𝜙(𝑥𝑖), 𝜙(𝑥𝑗) >, (4.1)

Where 𝑥𝑖 , 𝑥𝑗 denote the input vectors and Ф represents the mapping onto the feature

space. Using kernel functions thus allows a simple comparison of higher-order statistics

between the input vectors.

Subsequently, a kernel matrix is defined as K := (k(xi ,xj))i=j=1
n , where 𝑥𝑖 is a set of

observation 𝑥𝑖 ∈ 𝑋 𝑎𝑛𝑑 𝑖 = {1,2,⋯ , 𝑛} . The following are some popular kernels

(Haasdonk and Burkhardt, 2007):

34

• Linear Kernel: 𝑘(𝑥, 𝑦)𝐿𝑖𝑛𝑒𝑎𝑟 = 𝑥𝑇𝑦 + 𝑐 (4.2)

• Polynomial Kernel of degree p: 𝑘(𝑥, 𝑦)𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 = (𝑎𝑥𝑇𝑦 + 𝑐)𝑑 (4.3)

• Gaussian/Radial Kernel: 𝑘(𝑥, 𝑦)𝑅𝐵𝐹 = 𝑒𝑥𝑝 (
− ‖𝑥−𝑦‖2

2 𝜎2) (4.4)

• Negative Kernel: 𝑘(𝑥, 𝑦)𝑛𝑒 = − ‖𝑥 − 𝑦‖𝛽 , β ∈ [0, 2] (4.5)

Figure 4 demonstrate the classification of circular-separable data based on different kernel
functions.

(a) (b)

(c) (d)

Figure 4 Decision boundries of SVM classification on 2-dimensional data using (a) linear
kernel, (b) 2-polynomial kernel, (c) sigmioid kernel and (d) RBF kernel.

35

SVM, Kernel Principal Component Analysis (KPCA) and kernel regression are examples
of offline algorithms that use kernel functions. Linear and non-linear classifiers employ
different kernel methods. The Radial Basis Function (RBF) kernel method is suitable for
data samples which are dependent non-linearly because it maps samples onto higher-
dimensional space (d > 2) in a non-linear fashion.

RBF is the most widely used type of kernel function because it has a localized and finite
response along the entire x-axis. Therefore, it is a general-purpose kernel and can be used
when there is no prior knowledge about the relationships among data points (DataFlair
Team, 2018).

A non-linear, kernel-based least squares algorithm was initially introduced in 2004 by
Engel et al., (2004). Their algorithm took advantage of the kernel trick to perform linear
regression in high dimensional feature space to recursively calculate minimum mean-
squared- error solution to non-linear least-squares problems.

The Kernel Recursive Least Square (KRLS) algorithm tries to solve the problem of
regularization and computational cost using online constructive sparsification. This
sparsification method only selects data samples that cannot be represented as an
appropriate linear combination of selected samples. The KRLS algorithm incrementally
builds a Dictionary (basis) of approximate linearly independent samples.

Ahmed et al., (2007a), proposed a prolonged variant of the kernel-based least square
algorithm, which they named the Kernel-based Online Anomaly Detection (KOAD)
algorithm. The KOAD algorithm incorporates two thresholds of approximate linear
independence, includes exponential forgetting to reduce the importance of past
observations gradually, and allows the deletion of previous Dictionary members to enable
the basis set to remain current dynamically. These features were absent in the foundation
KRLS algorithm of Engel et al. (2004).

The postulate of Ahmed et al. is that if the multivariate data points {𝑥𝑡}𝑡=1
𝑇 show normal

behavior in the input space, then it is expected that the corresponding feature vectors
{Ф(𝑥𝑡)}𝑡=1

𝑇 will construct a cluster. Consequently, the explanation of normality region
should be possible using an almost small Dictionary of approximately linearly
independent elements ({Ф(𝑥̃𝑗)}𝑗=1

𝑚
) in the feature space. If the projection error

𝛿𝑡 conciliates the equation (4.6), feature vector 𝜑(𝑥𝑡) is issued to be linearly dependent
on {Ф(𝑥̃𝑗)}𝑗=1

𝑚
, with approximation threshold ν.

36

𝛿𝑡 = 𝑚𝑖𝑛
𝑎

‖∑𝑎𝑗

𝑚

𝑗=1

× Ф(𝑥̃𝑗)– Ф(𝑥𝑡)‖

2

 < 𝜈, (4.6)

where 𝑎 = {𝑎𝑗}𝑗=1

𝑚
is the optimal coefficient vector. Here {Ф(𝑥̃𝑗)}𝑗=1

𝑚
 represents those

{𝑥𝑡}𝑡=1
𝑇 that are entered the Dictionary. It is expected that the size of the Dictionary (m)

will be considerably less than total time steps (T), which results in CPU usage and memory
savings.
The equation (4.7) involves an L2 norm (the distance of the vector from the origin of the
hyper-space vector), which could be demonstrated exclusively in the form of the inner
products of Ф(𝑥̃𝑗) and Ф(𝑥𝑡). As a result, the kernel function could be used to evaluate it
without requiring an exact knowledge of the feature vectors. Therefore, equation can be
presented as:

δ𝑡   = 𝑚𝑖𝑛
𝑎

‖𝑎𝑡
𝑇𝐾̃𝑡−1𝑎𝑡 − 2𝑎̃𝑡𝑘̃𝑡−1 (𝑥𝑡) + 𝑘(𝑥𝑡, 𝑥𝑡)‖

2
< 𝜈, (4.7)

where [𝐾̃𝑡−1]𝑖,𝑗 = 𝑘(𝑥̃𝑖 , 𝑥̃𝑗) and [𝐾̃𝑡−1(𝑥𝑡)]𝑗 = 𝑘(𝑥̃𝑡, 𝑥𝑡) for 𝑖, 𝑗 = 1,2,⋅⋅⋅, 𝑚𝑡−1.

The 𝑎𝑡 in equation (4.8) is said to be the optimum sparsification coefficient vector and is
used to minimize 𝛿𝑡.

𝑎𝑡 = 𝐾̃𝑡−1
−1 𝑘̃𝑡−1(𝑥𝑡) (4.8)

Therefore, the error (𝛿𝑡) is simplified into:
𝛿𝑡 = 𝑘𝑡𝑡 − 𝐾̃𝑡−1(𝑥𝑡)

𝑇 𝑎̃𝑡 (4.9)

The KOAD algorithm operates at each time step t on a measurement vector 𝑥𝑡. It begins
by evaluating the error 𝛿𝑡 in projecting the arriving observation 𝑥𝑡 onto the current
Dictionary (in the feature domain). This error measure 𝛿𝑡 is then compared with two
thresholds 𝜈1 and 𝜈2, where 𝜈1 < 𝜈2 .
If 𝛿𝑡 < 𝜈1 , KOAD speculates that 𝑥𝑡 is significantly dependent on the Dictionary

members in linearly manner, and thus represents normal behavior.
If 𝛿𝑡 > 𝜈2, KOAD speculates that 𝑥𝑡 is far away from the normal behavior of the system
and immediately raises a “Red1” alarm to flag an anomaly.
If 𝜈1 < 𝛿𝑡 < 𝜈2, KOAD speculates that 𝑥𝑡 is not sufficiently linearly dependent on the
Dictionary to be considered as a normal event. It might be caused by an anomaly, or it
might be resulted because of a change in the normal behavior of the system (expansion or
migration of the space of normality). In this situation, KOAD immediately signals the

37

existence of the abnormal input vector by raising an “Orange” alarm, then it keeps track
of subsequent arrival inputs for the next l time steps and it investigates the contribution of
the abnormal input vector 𝑥𝑡 in explaining of the mentioned subsequent arrival inputs.
If the Dictionary element

t lx −
 is able to explain a noticeable number of input vectors

between time steps t − l to t, it should be kept in the Dictionary.
KOAD algorithm uses “Usefulness Test” to resolve the orange alarm. The usefulness of
𝑥𝑡−𝑙 is measured by equation (4.10).

[∑ 𝕀(𝑘(𝑥𝑡, 𝑥𝑖)) > 𝑑

𝑡+𝑙

𝑖=𝑡+1

] > 𝜖𝐿 (4.10)

Particularly, at timestep t+ l, the KOAD performs a “Usefulness Test” and checks if a
noticeable number of kernel values between 𝑥𝑡−𝑙 and l subsequent input vectors are more
than threshold d. Finally, at time t+l, KOAD lowers “Orange” alarm into “Green” if the
“Usefulness Test” is passed meaning normal behavior of 𝑥𝑡−𝑙 otherwise it elevates the
“Orange” alarm to “Red2” alarm indicating anomalous observation and it removes the
from the Dictionary.𝑥𝑡−𝑙 otherwise it elevates the “Orange” alarm to “Red2” alarm
indicating anomalous observation and it removes the 𝑥𝑡−𝑙 from the Dictionary.

Finally, at time t- l, KOAD lowers “Orange” alarm into “Green” meaning normal behavior
of 𝑥𝑡 or elevates the “Orange” alarm to “Red2” alarm indicating anomalous observation.
Figure 5 presents the pseudocode for the KOAD algorithm.
Following sub-sections presents the parameters and attributes of the algorithm and the
ways that they are set. Some numeric examples also are provided to visualize the
formation of the various attributes in the algorithm.

4.2.1. Threshold Setting

The original KOAD algorithm does not provide automatic setting of the thresholds
(𝜈1, 𝜈2). Ahmed et al. (2007a) investigated different pairs of 𝜈1and 𝜈2, and they
demonstrated that the optimal setting varies for different metrics. They
recommend that researchers can run the algorithm over a training dataset in a
supervised fashion with pre-known anomalies and then, set the threshold values
that result in a tolerable trade-off between True Positive Rate (TPR) and False
Positive Rate (FPR). However, the original KOAD algorithm was improved by
proposing a systematic and automated way to select optimal threshold values
(Please refer to chapter 5, section 5.1 for detailed information).

38

Figure 5 Outline of KOAD algorithm (Ahmed et al., 2007a)

4.2.2. Parameter Setting (l, ε, L, d, γ)

• l is a lag-time parameter for resolving the “Orange” alarm. When
𝜈1 < 𝛿𝑡 < 𝜈2 the algorithm waits for l time steps and then decides whether
to elevate the existing “Orange” alarm to “Red”, or to add the
corresponding input vector to the Dictionary. Adding the vector to the
Dictionary indicates a change in the basis for the sphere of normality. l

39

should be selected in a manner that balances the waiting time for detecting
the anomaly and the false positive rate. If it is too large, it will violate the
principle of online detection. If it is too small, there will not be enough
time to make an intelligent decision for suspicious cases.

• ε is also a parameter for resolving the “Orange” alarm. 𝜀 is a real number
between zero and one (𝜀 ∈ (0,1)). It determines what fraction of input
vectors should lie within the region of usefulness. The effect of epsilon on
algorithm should be run with different values of ε, and the impact of ε on
performance should be investigated. It should be selected based on the
user’s sensitivity tolerance.

• L is a parameter for dropping obsolete elements. It determines the time
when obsolete (useless) elements should be removed from the Dictionary.
L should be set based on the long-term stationarity of the application data
sphere.

• d is also a parameter for dropping obsolete elements. It determines the
amount of closeness between a Dictionary element and an input vector to
consider a Dictionary element as useful. In other words, it defines the
region of usefulness. The value of d should be selected based on the kernel
type and value because the kernel implicitly defines a distance measure.

• γ is the forgetting factor. The algorithm gradually and exponentially
disregards past data. Parameter γ is a time-based weight which is
systematically applied to past observations. A value of γ = 1 means that the
most recent and previous input vectors have equal importance. The
forgetting factor is set (0 < γ < n , n = 1, 2, 3,⋅⋅⋅) for the nth most-recent
observation, meaning that recent events are gradually more important than
past events.

4.2.3. Initialization Phase

• D = {x1} : the first input vector is added to the Dictionary at t = 1 .
• m1 = 1: the number of elements in Dictionary (in correspondence with

preceding step) is one.

40

• K̃1 = [k11] : the kernel matrix is set to the kernel value of the (as of now)
sole element of the Dictionary with itself. In general, 𝐾̃𝑡 keeps track of
kernel values among the members of the Dictionary at time t.

✓ Example: assume that t = 5 and 𝐷 = {𝑥1, 𝑥3, 𝑥5}, 𝑥1 = 𝑑𝑖𝑐1, 𝑥3 =

𝑑𝑖𝑐2 𝑎𝑛𝑑 𝑥5 = 𝑑𝑖𝑐3 . That is, the 1st, 3rd and 5th arriving samples
have been entered into the Dictionary, with a total of five time steps
having elapsed since the algorithm began running, and thereby
constitute the Dictionary composition at time t = 5. Then K̃5 =

















=

=

=

1),(),(),(
),(1),(),(
),(),(1),(

332313

322212

312111

dicdickdicdickdicdick

dicdickdicdickdicdick

dicdickdicdickdicdick

• K̃1

-1 = [
1

k11
]: the inverse of kernel matrix.

• 𝛼̃1 =
𝑦1

𝑘11
: the coefficient least square vector α at t = 1.

• 𝑃1 = [1]: P is the covariance matrix and equal to [ATA]-1.

• 𝐴𝑡 = []t×m : is a matrix of least square coefficients 𝑎 = (𝑎1, 𝑎2,…, 𝑎𝑚).

✓ Example 1: assume that t = 7 and D = {x1,x3,x5}. Then 𝐴 =





























=

=

=

757371

656361

555351

454341

353331

252321

151311

1

1

1

aaa

aaa

aaa

aaa

aaa

aaa

aaa

✓ Example 2: x4 and x7 can be shown as below:

𝑥4 = 𝑎41𝑥1 + 𝑎43𝑥3
𝑥7 = 𝑎71𝑥1 + 𝑎73𝑥3 + 𝑎75𝑥5

41

In order to obtain a recursive formula for Pt , the Matrix Inversion Lemma is

used. Matrix inversion lemma assumes that [A B
𝑪 D] is an investable matrix

and made of invertible blocks such as A, B, C, D. Subsequently, prove that

[
A B
𝑪 D]

−1

= (𝐴 − 𝐵 . 𝐷−1. 𝐶)−1

= 𝐴−1 + 𝐴−1. 𝐵. (𝐷 − 𝐶 . 𝐴−1. 𝐵)−1. 𝐶 . 𝐴−1

A and BCD have the same dimensions. It is linear algebra trick which is
applicable in kernel theory (Strang et al., 1993). For finding the inverse of non-
square matrix, the pseudo-inverse matrix is used. If the columns of a matrix A
are linearly independent, so we should calculate the pseudo inverse with 𝐴+ =
(𝐴𝑇 . 𝐴)−1. 𝐴𝑇. However, if the rows of the matrix are linearly independent, the
pseudo inverse should be calculated with 𝐴+ = 𝐴𝑇 . (𝐴. 𝐴𝑇)−1.

• Λ: it is a binary matrix. It concatenates two sub-matrices of sizes 𝐿 × 𝑚𝑡−1
(# columns is equal to the number of Dictionary members in time t - 1) and
𝐿 × 𝐺 (#columns is equal to the number of unsolved orange alarms). It
keeps track of whether kernel values of 𝑥𝑡 with each Dictionary member
and kernel values of 𝑥𝑡 with each of unsolved orange alarm, exceed the
value of d for the previous L time steps or not.

4.2.4. Projection Error

For each arriving input vector (x) at time (t), the projection error 𝛿𝑡 should be

evaluated like 𝛿𝑡 = 𝑘𝑡𝑡 − 𝐾̃𝑡−1(𝑥𝑡)
𝑇𝑎̃𝑡, where 𝑘𝑡𝑡 = 𝑘(𝑥𝑡, 𝑥𝑡).

4.2.5. Kernel Matrix Calculation

The first step to evaluating 𝛿𝑡 is the computation of the kernel matrix.
The vector k̃t-1(𝑥𝑡) includes the kernel value of the current input vector with each
Dictionary element.

✓ Example: assume that t = 5 and 𝐷 = {𝑥1, 𝑥3, 𝑥5} then k̃4(𝑥5) =

















),3(
),(
),(

5

52

51

xdick

xdick

xdick

.

42

4.2.6. Compute Sparsification Vector at

𝑎𝑡 = 𝐾̃𝑡−1
−1 𝑘̃𝑡−1(𝑥𝑡)

4.2.7. Update Λ Matrix

• If 𝑡 > 𝐿 : Remove first row of matrix Λ and append Λ with 1 or 0
• If 𝑡 < 𝐿: Append Λ with one or zero.

✓ 1: when kernel values of xt with each of Dictionary members exceed
value of d.

✓ 0: when kernel values of xt with each of Dictionary members does not
exceed value of d.

4.2.8. Raise “Red1” Alarm

• When ẟt > 𝜈2
• Only matrix Λ changes between time steps and K̃t remains unchanged (K̃t =

K̃t-1).
• Update qt =

Pt-1αt

γ+ 𝑎𝑡
𝑇Pt-1αt

• Update Pt =
1

γ
(Pt-1-qt𝑎𝑡

𝑇Pt-1)

• Update 𝛼̃𝑡 = α̃t-1 + 𝐾̃𝑡−1
−1 𝑞𝑡 + (𝑦𝑡 − 𝑘̃𝑡−1(𝑥𝑡)

𝑇 𝛼̃𝑡−1)

4.2.9. Raise “Orange” Alarm

• When 𝜈1 < 𝛿𝑡 < 𝜈2
• Set Θ = [Θ ∪ 𝑥𝑡], 𝐷 = [𝐷 ∪ 𝑥𝑡] , where Θ is the set of unsolved Orange

alarms.
• Ãt = 𝑎𝑡
• Compute K̃1

-1and K̃t

• Compute 𝐾̃𝑡
−1 = [

ẟtK̃t-1
-1 +ãtãt

𝑇 -ãt

-ãt
𝑇 1

]

• Compute 𝐾̃𝑡 = [
K̃t-1 k̃t-1(xt)

k̃t-1(xt)
T ktt

]

• Updated 𝑎𝑡 = (0,⋅⋅⋅ ,1)𝑇

43

✓ Example: assume that 𝑡 = 5 , 𝐷 = {𝑥1, 𝑥3} , x1=dic1, x3=dic2 , and
ẟ5 < 𝜈2 . Then x5 causes the Orange alarm. x5 is not linearly
dependent on the Dictionary elements. Therefore, x5 cannot be
expressed in the form of: a1×dic1 + a2×dic2. Observation x5 can then
be stated as: 0×dic1 + 0×dic2 + 1×x5. The corresponding coefficient
vector a5 when x5 is added to the Dictionary is thus:

a5=
















1
0
0

.

• Compute Pt =
1

γ
(
Pt-1 0

0T γ
)

✓ Example: assume 𝑡 = 5, 𝑚 = 2, 𝐷 = {𝑥1, 𝑥3}, and ẟ5 < 𝜈2. Then P5

will be equal to [
𝑷𝑡−1 0

0
0 0 1

] ⋅

• Append Λ with (0, ⋅⋅⋅, 1)T.

✓ Example 1: assume 𝑡 = 5, 𝐷 = {𝑥1, 𝑥5} and Θ = {𝑥5} Then Λ =























10
01
01
01
01

.

The second column is the result of (0 1)T at time 𝑡 = 5, when the “Orange”
alarm is raised.

✓ Example 2: assume 𝑡 = 10, 𝐷 = {𝑥1, 𝑥5, 𝑥10}, 𝑡 = 20 and Θ = {x5,x10}.

44

Then Λ =







































100
001
001
001
001
010
001
001
001
001

. Both x5, x10 are unsolved orange alarms.

• Update αt =



















−

−−

−−

−−−

)~)(~(1

)~)(~(
~~

11
2
1-

11
2
-1

1
2
-1

t

T

ttt

t

t

T

ttt

t

t
t

xky

xky










.

✓ Example: assume 𝑡 = 4 , 𝑚 = 1 , 𝐷 = {𝑥1} , ẟ4 < 𝜈2 , 𝑎4 = 1 , 𝑎3 =

[1.0199], and x4 causes orange alarm. Then 𝑃4 = [
0.333 0

0 1
] which

results in 𝑎4 = [
−1.149
2.48

].

As the current input vector is added to the Dictionary, the size of
Dictionary is increased by 1.

4.2.10. Lower Orange Alarm to Green

• If there is an unsolved “Orange” alarm at time step 𝑡 − 𝑙, the secondary
usefulness test should be applied to resolve the “Orange” alarm. A
Dictionary element 𝑥𝑡−1 is regarded as useful if it was used to explain a
significant number of input vectors between time steps 𝑡 − 𝑙 to t. In other
words, if a noticeable amount of kernel values between xt-l and
(𝑥𝑡−𝑙+1, 𝑥𝑡−𝑙+2,⋅⋅⋅, 𝑥𝑡) is high, then 𝑥𝑡−1 should be added to the Dictionary,

45

and subsequently xt-l should not be considered as anomaly. It demonstrates
the migration or expansion of normal traffic in the feature space.

• Λ matrix also should be updated. The (𝑚𝑡−1)
𝑡ℎ column of matrix Λ keeps

track of kernel values of the 𝑥𝑡−1 (“Orange” alarm) with (𝑥𝑡−𝑙+1, 𝑥𝑡−𝑙+2,⋅⋅

⋅, 𝑥𝑡).
• KOAD evaluates the sum of the all kernel values between 𝑥𝑡−1 and

(𝑥𝑡−𝑙+1, 𝑥𝑡−𝑙+2,⋅⋅⋅, 𝑥𝑡) and compares whether it is less than a specific value
or not. If it is less than (𝜀 × 𝑙) it will be considered anomalous and the
“Orange” alarm will be elevated to a “Red2” alarm.

✓ Example 1: assume t = 11, 𝐷 = {𝑥1, 𝑥4, 𝑥10} , l = 7 and Θ =
{𝑥4, 𝑥7 }, ε = 0.2 and

Λ =









































100
101
101
001
101
001
001
010
001
001
001

.

For resolving “Orange” alarm, S= SUM (Λ (5:11,2)) is calculated.
S is equal to zero (0 < 0.2 × 7). Therefore, the “Orange” alarm should be
elevated to “Red2” alarm.

4.2.11. Remove Absolute Elements

When the kernel value of 𝑥𝑡−𝐿 and all incoming input vectors up to 𝑥𝑡 become
zero, it causes the relevant column of Λ to contain all zeros. As a result, the
(𝑥𝑡−𝐿)

𝑡ℎ member of the Dictionary will be marked obsolete and should be
removed.

46

4.2.12. Drop Element (pth) from Dictionary

• This needs to be done either when a previous “Orange” alarm is upgraded

to “Red2” alarm, or when a Dictionary element becomes obsolete.

• Initially, the pth row and columns of K̃t and K̃t
-1 are moved to the end of the

matrix. As a result, the kernel values of every other element with pth

element will be transferred to the last row and column of K̃t and K̃t
-1.

• Update ẟ𝑝 =
1

[K̃t
-1]mt,mt

 .

• Update 𝑎̃𝑝 = − ẟ𝑝 × [K̃t
-1]1:mt-1,mt

.

• Update K̃t
-1 = [K̃t

-1]1:mt-1, 1:mt-1 −
 𝑎̃𝑝𝑎̃𝑝

𝑇

ẟ𝑝
 .

• Update α̃t = α̃t −
1

ẟ𝑝
 (

𝑎̃𝑝𝑎̃𝑝
𝑇 -𝑎̃𝑝

-𝑎̃𝑝
𝑇 1

) K̃tα̃t.

• Update 𝑎𝑡 = 𝑎𝑡(1:𝑚 − 1).

• Update K̃t = [𝐾𝑡]1:𝑚𝑡−1,1:𝑚𝑡−1.

• Remove pth element from D.

• Remove pth column from Λ,

• Update 𝑚𝑡 = 𝑚𝑡−1 − 1.

• Update 𝑃 = 𝐶 × 𝐼𝑚𝑡.

✓ The recalculation of the covariance matrix P requires full access to
historical data. In order to simplify the calculation, the matrix P is
reset to a large constant (C) times the identity matrix with size equal
to 𝑚𝑡 (Dictionary size at time t).

✓ Example, if C = 10000 and mt = 3 , then 𝑝 =

















100
010
001

.

47

• Update K̃t-1.

✓ This matrix contains the kernel values of all xt-1 Dictionary

members between themselves.

✓ Example: Assume m = 6 and 𝐷 = {𝑑𝑖𝑐1, 𝑑𝑖𝑐2,⋅⋅⋅, 𝑑𝑖𝑐6} , then

K̃t-1 =

[

𝑘(dic1 and xt-1)
𝑘(dic2 and xt-1)
𝑘(dic3 and xt-1)
𝑘(dic4 and xt-1)
𝑘(dic5 and xt-1)

𝑘(dic6 and xt-1)]

.

4.2. K-means Algorithm

k-means clustering is one of the iterative benchmark unsupervised algorithms that has
been used in many clustering applications. Assume that the X is the dataset of N samples
with d-dimension, where 𝐷 = {𝑥1, 𝑥2,⋅⋅⋅, 𝑥𝑁}, 𝑥𝑁 ∈ 𝑅𝑑 . The k-means algorithm tries to
divide the dataset into k disjoint clusters 𝐶𝑖 , where 𝐶𝑖 ∈ {𝑐1, 𝑐2,⋅⋅⋅, 𝐶𝑘}. Each cluster is
represented with its centroid 𝑚𝑖 , where 𝑖 = {1,2, ,⋅⋅⋅, 𝑘} . Euclidean, Mahalanobis,
Manhattan and Chebyshev are examples of distance metrics which can be used by k-means
algorithm to measure the similarity between each datapoints 𝑥𝑁 and cluster centroids.
Figure 6 presents a separation of 2-dimentional data using k-means algorithm with cluster
number equal to two.

Figure 6 example of k-means clustering (k=2)

48

4.3.1 How K-means Algorithm Works

• Initially, the algorithm selects k points randomly as the centroids of clusters.

• The algorithm measures the distance between every 𝑥𝑁 data point and the
centroids 𝑚𝑖.

• The algorithm assigns each point to the nearest cluster.

• The algorithm calculates the mean of the points in each cluster and the centroid
is replaced by the mean value.

• The algorithm repeats from step 2 until the centroid locations remain
unchanged.

The k-means algorithm aims to minimize the squared error objective function in the
equation (4.11) to find the local minimum.

𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 = 𝑒𝑟𝑟𝑜𝑟(𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠) = ∑ ∑(‖𝑥𝑖 − 𝑚𝑘‖)2

𝐶

𝑘=1

𝑁

𝑖=1

 (4.11)

K-means algorithm performs ideally when datapoints are distinct and linearly- separated
from each other.

K-means algorithm suffers 2 major problems:

• It finds local minimum.

• It requires to define the number of clusters in advance.

4.3.1 How Elbow Method Works

• The number of clusters K can be selected based on the elbow visual-method.

• It starts with K=2 and increases by 1 in each step (Kodinariya and Makwana,
2013)

• It calculates the distortion value in each step and plots the distortion value
against the number of clusters (K).

49

• The location of the knee in the plot (as seen in Figure 7Figure 7) is considered
as the most appropriate number of clusters (K), where the distortion value stops
decreasing dramatically.

Figure 7 Elbow curve

4.3. Mahalanobis Distance

The Mahalanobis distance is a metric for measuring the distance between a
multidimensional point P and a distribution D. It is computed by equation (4.12)

 DM = √(xi − μ)TS−1(xi − μ), (4.12)

where xi is a row vector representing the multivariate measurement for an observation, S
is the covariance matrix of the sample, μ is the mean of the sample and T is the transpose
of matrix. The mean is calculated by equation(4.13).

𝜇 =
∑ 𝑥𝑖

𝑁
𝑖=0

𝑁
, (4.13)

where N is the number of samples.

The covariance matrix of 2-dimentional point P is calculated by equation (4.14).

𝑆 = [
𝛿1

2 𝛿2𝛿1

𝛿1𝛿2 𝛿2
2], (4.14)

50

where 𝛿1
2, 𝛿2

2 are the variance of first and second variables respectively and 𝛿2𝛿1 is the
variance between first and second variables (De Maesschalck et al., 2000).

According to Prykhodko et al. (2018), the squared Mahalanobis distance of the samples
from multivariate normal distribution flows a Chi-square distribution 𝑋𝑑,𝛼

2 , where d is the
degree of freedom and α is significance level. Additionally, empirical results reveal that
the squared Mahalanobis distance is Chi-square distributed (Thill, 2017). The
Mahalanobis larger than the critical Chi-square value is related to
abnormal/suspicious/outlier datapoints.

Outlier detection is the most common use of the Mahalanobis distance. Additionally, it is
used to evaluate the similarity of a set of conditions to a known (predefined) set. For
example, in anonymous network traffic detection, the Mahalanobis distance can be used
to measure the similarity between unknown traffic and normal behavior (Bayarjargal and
Cho, 2014, Santiago-Paz et al., 2012).

4.4. Chi-square Test

The Chi-square test is a non-parametric (distribution-free) statistic test and assumes that
data is derived from the random samples. The Chi-square test is used to determine whether
a sample data matches a population or not. The Chi-square statistic is used to measure the
difference between observed and expected values of the distribution. It also demonstrates
the goodness-of-fit between observed and expected values. The Chi-square value is
calculated using equation (4.15). To investigate the similarity of the observed and
expected values, the value of the Chi-square should be compared against the critical value
from a Chi-square table. A Chi-square value higher than the critical value indicates that
there is a significant difference between expected/calculated (E) and observed/actual (O)
values [Norušis, 2006].

 𝑋𝑐
2 =

∑(𝑂𝑖 − 𝐸𝑖)
2

𝐸𝑖
 (4.15)

Figure 8 shows the Chi-square distribution with the degree of freedom equal to 3 at
significance level 0.05.

51

Figure 8 Chi-square distribution with critical and non-critical areas (d=3, α=0.05).

4.5. Chi-square Test

The updated KOAD algorithm is called Enhanced KOAD (E-KOAD), which runs based
on the automatic setting of threshold values and the sigma parameter. Additionally, it
performs the “Utility Test” before the final decision about inclusion and exclusion of the
suspicious input vector in the Dictionary.

The "Utility Test" is the combination of "Usefulness Test" of KOAD algorithm,
Mahalanobis distance metric and Chi-square test. Therefore, if the significant amount of
the subsequent input vectors is dependent on a suspicious data point in the Dictionary

(“Orange” alarm at 𝑥𝑡−𝑙), but the Chi-square test for the corresponding Mahalanobis
distance value of that point is true, it should be removed from the Dictionary as well. In
other words, if the Mahalanobis distance value of a suspicious input vector passed the
Chi-square test, it signals the existence of a DDoS attack. As a result, the E-KOAD

increases the “Orange” Alarm to the “Red2” alarm and removes the corresponding input
vector (𝑥𝑡−1) from the Dictionary. Algorithm 1 provides a high-level overview of the E-
KOAD algorithm.

52

Algorithm 1: Pseudocode of the E-KOAD algorithm.

1. Run the initialization phase

2. Compute the ν1, nu2 and σ
3. Run the E-KOAD
4. For t = 1, 2, . . . do

a. Compute projection error 𝛿𝑡for 𝑥𝑡using 𝐷𝑡

b. if 𝛿𝑡 > 𝜈2then

i. Raise Red1 Alarm
c. Endif

d. if 𝛿𝑡 > 𝜈1 then

i. Raise Orange Alarm
ii. Store 𝑥𝑡 in Θ

e. Endif

/* Process previous orange alarm */
f. if Orange Alarm (𝑥𝑡−𝑙) then

i. Re-evaluate projection error δ for 𝑥𝑡−𝑙 using Dt

ii. if δ > ν1 then

1. Perform the Utility Test for 𝑥𝑡−𝑙

2. if NOT relevant then

Raise Red2 Alarm (𝑥𝑡−𝑙)
3. Else

Add 𝑥𝑡−𝑙 dictionary D

 Lower Orange Alarm (𝑥𝑡−𝑙)
4. Endif

iii. Else

1. Lower Orange Alarm (𝑥𝑡−𝑙)
iv. Endif

1. Remove Θ{1}
g. Endif

/* Remove obsolete elements */
5. Evaluate usefulness of each dictionary element over previous L

measurements

6. Remove any useless element from dictionary D

7. EndFor

53

CHAPTER 5

5. EXPERIMENTAL ANALYSES AND RESULTS

Features were extracted from the CICIDS2017 dataset in the manner described in Chapter
3. Then, the dataset was represented by a row feature vector, with respect to each timestep.
The detection algorithm, which was presented in Chapter 4, was then utilized to analyze
the constructed row vectors using MATLABTM.

This chapter presents the main findings of this research. It proceeds as follows. The
detection algorithm parameters were set. The algorithm sensitivity is also analyzed
regarding different parameter settings. This pursues two fundamental purposes: first, to
demonstrate that the results are not immensely sensitive to precise parameter settings by
means of Receiver Operating Characteristics (ROC) curves; second, to provide a
systematic way to set the parameters to achieve high detection accuracy while reducing
false alarms. The performance of the algorithm is then measured using different
performance metrics. Subsequently, the performances of the proposed algorithms are
quantitatively compared with the performances of other works that utilized the
CICIDS2017 dataset to validate their algorithms. Finally, the computational complexity
of the proposed algorithm was calculated to verify the claim that the proposed algorithm
is suitable for online DDoS detection with complexity values that are independent of time.

5.1. Threshold setting

The original KOAD algorithm incorporates two thresholds. These thresholds were set by
trial and error in all previous systems (Ahmed et al., 2007a, Ahmed, 2009, Ahmed et al.,
2010, Ahmed et al., 2016b, Ahmed et al., 2017, Sahi et al., 2017, Anika et al., 2017, Islam
an Ahmed, 2018).

When the KOAD algorithm commences, there is no definition of normality because the
Dictionary is empty. Accordingly, 𝜈2 should be set to the maximum possible value to

54

prevent a “Red1” alarm and the inclusion of all input vectors in the Dictionary. During
this initial calibration period (60 samples in the experiments), 𝜈2 is set to 1 (Ahmed et al.,
2017). Additionally, 𝜈1 was set to 0.1 (it could be any value less than 1). The algorithm
measures and records δ for 1 hour.

Subsequently, the k-means algorithm is used to cluster the δ values. The number of
clusters (K) is selected based on the elbow method using the distortion metric, which
computes the sum of squared distances from each point to its assigned center. As can be
seen in Figure 9, the distortion score reduces slightly when the number of clusters is higher
than five. Consequently, five can be considered as the number of clusters.

Figure 9 k-elbow visualizer for selecting the optimal number of clusters for k-means algorithm.

Table III shows the number of δ values that belong to each cluster. Cluster3 has the largest
size; this demonstrates that the δ values are more likely to belong to Cluster3. Finally, the
algorithm updates the threshold values as follows: 𝜈1 is the minimum value of δ in cluster3
(0.027), and 𝜈2 is the maximum value of δ in Cluster3 (0.059) at the end of the calibration
period (1 hour).

55

5.2. Sigma (𝝈) setting

The proposed algorithm can use various types of kernels, such as linear, polynomial, and
radial basis function (RBF). As there was not any prior knowledge about the relationships
among data points, the general-purpose RBF kernel was employed.

Standard deviation (𝜎) plays a substantial role in the performance of the RBF kernel. An
overly large δ results in losing the discrimination power of the kernel function, as a nearly
flat hypersurface is obtained. Accordingly, two points may be considered similar even if

Table III Cluster assumption of δ values for
calibration.
Cluster Size of cluster Size

percentage
Clster1 12 20%
Clster2 13 22%
Clster3 20 33%
Clster4 7 11.66%
Clster5 8 13.33%

they are far from each other, whereas an overly small 𝜎 may cause overfitting.
Unfortunately, there is no standard method for defining 𝜎 for the RBF kernel. In this work,
the algorithm by Liu et al. (2015) was used to detect the optimum 𝜎 for the RBF kernel of
the E-KOAD algorithm. The algorithm is based on the principle of maximizing between-
class separability and minimizing within-class separability. Their algorithm does not
require any optimization search process. Therefore, the sigma selection algorithm by Liu
et al. (2015) is computationally effective and is less complicated.

The built-in MATLAB sigma selection function for RBF kernel (MATLAB, 2018) was
used to select optimal sigma and it resulted in 𝜎 = 2.63

Figure 10 demonstrates the effect of different sigma values on decision boundaries of the
SVM algorithm with RBF kernel for the 2-dimensional dataset.

56

5.3. Tracing of the proposed algorithm

The proposed algorithm is an online algorithm, as was described in Chapter 4. It takes the
normalized input feature vector of corresponding network traffic at time step t and
investigates the presence of any DDoS attack. The algorithm automatically finds the
optimal standard deviation of RBF kernel as 𝜎 = 2.63 and the optimal thresholds as ν1 =
 0.027 and ν2 = 0.059. The other parameters of the algorithm were derived from the
recommended default settings for KOAD (Ahmed et al., 2007a): d = 0.9 and l=20 for
resolving orange alarm, ε=0.2 and L = 100 for usefulness testing, and no-forgetting
parameter. The algorithm was calibrated in 1 hour using 60 input vectors. This time period
is important for the construction of the Dictionary. Therefore, all abnormal input data
should be treated as “Orange” alarm. Accordingly, the 𝜈2 threshold was set to 1 for an
hour and then declined to 0.059.

(a) (b)

57

(c) (d)

Figure 10 Decision boundries of the SVM classifier on 2-dimensional data when gamma (1
𝛿
) is

equal to (a) one, (b) ten, (c) fifty and (d) hundred.

Figure 11 shows the number of current Dictionary members every 20 time steps. It can be
seen that the algorithm monitored normal system behavior for approximately 7.5 hours by
using a maximum number of 18 Dictionary members. The size of the Dictionary (m) will
be significantly smaller than that of the input vectors (T), thus reducing computational and
storage costs. The algorithm was required to store only these Dictionary members to
measure the Mahalanobis distance of each abnormal data point from normal system
activity and detect a DDoS attack.

Figure 12 shows a plot of the detection statistic 𝛿 between 8:55 and 17:02 (535 ≤
Time_Interval ≤ 1022). As 𝛿 is small for normal network traffic, green stems are so
small that they cannot be discerned in the figure 11.

58

Figure 11 Dictionary size (m) corresponding to time intervals in which abnormal data points were evaluated.

n the next step, the algorithm measures the distance between suspicious and normal feature
vectors (𝐹2

⃗⃗ ⃗) using the Mahalanobis distance. Figure 13 shows the Mahalanobis distance
for each abnormal data point. the Mahalanobis distance was measured from the
distribution of the current Dictionary every 20 minutes. The proposed algorithm can detect
the DDoS attack traffic from other abnormal data points with a maximum delay of 20
minutes. This delay can be adjusted based on the severity level of the system so that DDoS
attacks may be detected as soon as possible. The algorithm can be forced to decide about
all incoming input vectors instantly by setting (l=0). Of course, this may result in
increasing the false positive alarms (Please refer to Table VI for more information).

In the final step, a Chi-square test with 3 degrees of freedom at different significance level
of 𝛼 (0.05, 0.01 and 0.001) was performed using equation (4.15) to evaluate the
Mahalanobis distance against the critical value, where 𝑂𝑖 was the calculated Mahalanobis
distance and 𝐸𝑖 was the estimated Mahalanobis distance from the Chi-square table. If the
traffic is normal, then with probability less than (α), the score of the moving average of
the distance exceeds the corresponding critical value in the Chi-square table. Thus, the
score of the moving average of the distance the exceeds that critical value can be regarded
as DDoS with probability (1-α).

59

Fi
gu

re
 1

2
D

et
ec

tio
n

st
at

is
tic

 o
ve

r t
he

 d
at

as
et

. R
ed

 st
em

s r
ep

re
se

nt
 a

bn
or

m
al

 in
pu

t d
at

a,
 a

nd
 g

re
en

 st
em

s r
ep

re
se

nt
 n

or
m

al
 in

pu
t d

at
a.

 T
w

o
ve

rti
ca

l b
lu

e
lin

es

re
pr

es
en

t
𝜈 1

an
d

𝜈 2
 th

re
sh

ol
ds

. T
he

re
 a

re
 n

o
da

ta
 b

et
w

ee
n

Ti
m

e_
In

te
rv

al
s 9

89
 a

nd
 9

29
.

60

Fi
gu

re
 1

3
M

ah
al

an
ob

is
 d

is
ta

nc
e

fo
r a

bn
or

m
al

 d
at

a
po

in
ts

 e
va

lu
at

ed
 u

si
ng

 C
hi

-s
qu

ar
e

te
st

 a
t t

he
 si

gn
ifi

ca
nc

e
le

ve
l o

f α
=0

.0
01

. R
ed

 d
at

a
po

in
ts

 a
re

 re
la

te
d

to

D
D

oS
 a

tta
ck

s a
nd

 b
lu

e
da

ta
 p

oi
nt

s a
re

 re
la

te
d

to
 o

th
er

 ty
pe

s
of

 a
no

m
al

ie
s i

n
th

e
sy

st
em

. T
he

 g
re

en
 d

at
a

po
in

t i
s t

he
 o

nl
y

D
D

oS
 a

tta
ck

 v
ec

to
r t

ha
t r

em
ai

ne
d

un
de

te
ct

ed
 b

y
th

e
al

go
rit

hm
.

61

The algorithm failed to detect only one DDoS attack at Time_Interval=976. As seen in
Figure 13, the DDoS attack started to diminish at Time_Interval = 974 and stopped at 976.
It is suspected that this vector was labeled as DDoS in the CICIDS2017 dataset because
the DDoS attack simulation tool was actually active at the corresponding time. However,
the severity of the simulated DDoS attack was reduced to approximately that of normal
network traffic level.

5.4. Complexity analysis

Memory and complexity issues are prominent factors in online detection algorithms. The
algorithm's memory requirements are as follows:

• (𝑚 × 𝑚) matrix for storing the kernel matrix of Dictionary elements (Ahmed
et al., 2007a).

• (𝑙 × 𝑑1) matrix for storing input vectors that result in orange alarm, where 𝑑1 is
the dimension of the feature vector (𝐹1

⃗⃗ ⃗) (Ahmed et al., 2007a).

• Binary (𝐿 × 𝑚) matrix for performing usefulness test (Ahmed et al., 2007a).

• (𝑆𝑠 × 𝑑2) matrix for storing the suspicious dataset, where 𝑆𝑠 is the size of the
suspicious dataset at time t, and 𝑑2 is the dimension of the feature vector (𝐹2

⃗⃗ ⃗).

• (𝑚 × 𝑑2) matrix for storing the Dictionary dataset, where 𝑑2 is the dimension of
the feature vector (𝐹2

⃗⃗ ⃗).

Table IV shows the maximum memory requirements for the proposed algorithm.

The time complexity of the KOAD algorithm is O(m2) for every usual time interval, and
O(m3) for time intervals when an element is removed from the dictionary. According to
Zhang and Zhong (2009), the time complexity of the Mahalanobis metric is
O(d2

2 + m2 × d2). Additionally, the algorithm has a cost of O(Ss) for performing the
Chi-square test. The complexity of the proposed algorithm is thus independent of time;
accordingly, the algorithm is suitable for online use (Ahmed et al., 2007a).

62

Table IV Memory complexity of proposed algorithm

Memory complexity Maximum memory usage
(𝑚×𝑚) (18×18)
(𝑒𝑙 ×𝑑1) (20×4)
(𝐿×𝑚) (100×18)
(𝑆𝑠 ×𝑑2) (20×4)
(𝑚×𝑑2) (18×4)

5.5. Performance evaluation

As no label information is provided in unsupervised algorithms, there is no specific
technique for evaluating the performance of most unsupervised learning methods.
According to Jain and Dubes (1998), validating the cluster structure of cluster analyses is
a very frustrating task, and it requires deep experience and knowledge in the field. There
are internal and external measures of cluster validity as following.

• Cluster Cohesion: Measures the closeness of the objects within a cluster based on
the Sum of the Squared Errors (SSE) within clusters.

• Cluster Separation: Measure how well a cluster is far from other clusters based on
SSE between clusters.

• Silhouette Coefficient: measures average distance of a point in a cluster from other
points in the same cluster and points in different clusters. It combines the ideas
behind both cluster cohesion and cluster separation.

• Entropy: measures the amount of disorder in a point using Shannon entropy.

• Purity: measures the cleanness of a cluster based on the definition of entropy. The
purity of a cluster is the maximum probability that a member of a cluster belongs
to a specific class.

However, it is difficult to find an appropriate metric for the validity of clustering
algorithms (Kovács et al., 2005).

63

On the other hand, if label information is provided the performance of the algorithm can
be measured precisely.

Table V depicts the confusion matrix to describe the performance of a classification
algorithm.

 Table V Confusion matrix in machine learning

 Predictive
 Positive Negative

A
ct

ua
l

Positive

TP FN

 Negative FP TN

Four possible outcomes of the confusion matrix for the classification of a dataset in this
thesis are given as:

• True Positive (TP) is the number of DDoS attack traffic vectors that are classified
correctly.

• True Negative (TN) is the number of normal network traffic vectors that are
classified correctly.

• False Positive (FP) is the number of normal network traffic vectors that are
incorrectly classified as DDoS attack.

• False Negative (FN) is the number of DDoS attack traffic vectors that are
incorrectly classified as normal traffic.

The class label information of the CICIDS2017 dataset were only used as a reference to
assess the proposed unsupervised approach. To evaluate the algorithm, the following
metrics are utilized:

• Accuracy: is the number of all correct predictions divided by the total number of
the dataset and is calculated using equation (5.1) :

Accuracy =
TN + TP

TN + TP + FN + FP
 (5.1)

64

• Recall: also known as sensitivity or True Positive Rate (TPR), is a measure that
tells us what proportion of network traffic that was actually DDoS attacks was
detected by the algorithm as DDoS using equation (5.2):

Recall =
TP

TP + FN
 (5.2)

• Precision: is a measure that tells us what proportion of network traffic was detected
as DDoS, actually was DDoS attack using the equation (5.3):

Precision =
TP

TP + FP
 (5.3)

• False Positive Rate (FPR): is a measure that tells us what proportion of network
traffic detected as normal (non-DDoS) was detected by the algorithm as DDoS
using equation (5.4).

FPR =
FP

TN + FP
 (5.4)

• Receiver Operating Characteristic (ROC) curve. It plots FPR against TPR for
different threshold settings.Figure 14 shows the trade-off between FPR and TPR
using four threshold settings.

Table VI presents the performance metrics for the proposed algorithm based on various
values of the time that is required to resolve the orange alarm (l). It can be seen that
reducing l from 20 to 2 minutes did not affect the detection power of the algorithm, and
the algorithm is not sensitive to this parameter. However, the number of false alarms
issued by the algorithm increased sharply when l dropped below 5 minutes.

65

Table VI Performance metrics of the proposed algorithm for different values of l.

Dataset size # DDoS attacks l FN FP ACC TPR FPR
448 21 20 1 1 99.55% 95.23% 0.23%
448 21 10 1 6 99.55% 95.23% 1.4%
448 21 5 1 4 99.55% 95.23% 0.9%
448 21 2 1 71 99.55% 95.23% 17%

The area under the ROC curve is a more robust performance metric than accuracy. In the
experiments, the ROC curve analysis was utilized to demonstrate the effect of selecting
different thresholds, l (lag-time for resolving orange alarm) and alpha (significance level
in Chi-square test) by trial and error on the performance of the proposed algorithm. The
point closest to the upper-left corner of the ROC curve indicates better performance, as it
has lower FPR and higher TPR.

The red point in Figure 14 indicates the best performance for the algorithm when the
thresholds are selected automatically. Ahmet et al. (2007a) pointed out that optimal
threshold setting is quite challenging and depends on various traffic metrics. The
proposed algorithm is able to adjust both the 𝜈1 and 𝜈2 thresholds automatically using an
unsupervised method, so that performance is optimized, as seen in Figure 14.

Figure 14 ROC curve shows the trade-off between FPR and TPR with different threshold settings.

66

The results in Table VI shows that the algorithm requires at least 5 minutes to detect 95%
of DDoS attacks with false positive alarm rate below 1%. The algorithm requires some
time to establish a normal traffic baseline. Experiments were repeated when lag-time for
"Orange" alarm was altered between 20 and 2 minutes. As can be seen in Figure 15, the
detection rate remains identical while the FPR is increasing for the small values of l.

Figure 15 ROC curve shows the trade-off between FPR and TPR with different lag-time settings.

Experiments were also repeated at the different significance levels (α) of the Chi-square
test. The results of the Chi-squre analyses are presented in Appendix A. As can be seen in
figure 14, the detection rate is 100% when α=0.01 but 95% when α=0.001. On the other
hand, the increase in the detection rate causes an increase of 2% in FPR as well. Therefore,
there is a trade-off between detection rate and FPR regarding the selecting of the
significance level (α).

Figure 16 ROC curve shows the trade-off between FPR and TPR with the different significance level (α)
settings.

67

5.6. Comparison with literature

Table VII compares the proposed algorithm with those by other studies that used the
CICIDS2017 dataset. Of course, as this is a recent dataset, the number of these studies is
still limited. It can be seen that the proposed algorithm is comparable with the others. Its
performance is slightly lower than that of the Autoencode algorithm (Attak et al., 2018).
However, the proposed algorithm has several advantages: it does not require labeled data,
it is completely unsupervised, its memory and time complexity is independent of time and
it can operate online as well as adapt to changing network traffic.

Table VII Comparison of the proposed hybrid algorithm with others.
Author Algorithms Online Best Accuracy Recall Precision
Aamir and Zaidi
(2019)

k-NN, RF, SVM No 96.66% (RF) 91.7% 88%

Aksu et al. (2018) k-NN, DT, SVM No 99.8% (k-NN) 95.8% 95.6%

Attak et al. (2018) One-calss SVM,
Auto-encoder No 98% (Auto-

encoder) 97% 99%

Boukhamla and
Gaviro

k-NN, DT (c4.5),
Naïve-bayes No 96.65% (k-NN) 90.6% 91.27%

Ahmim et al. (2018) JRip algorithm,
Random Forest No NA NA NA

Azwar et al. (2018)
Gradient Boosted
DT
(XGBoost)

No NA 81.8% 84.4%

Proposed algorithm Hybrid Yes 99.55% 95.24% 95.24%

Moreover, the performance of the proposed algorithm was compared with the work by Gu
et al. (2019). This comparison was not placed on Table VII because Gu et al. (2019) used
a different performance measurement metric named TOPSIS. They set TOPSIS to (1 −
 Recall + FPR) to represent the fitness function of their proposed algorithm. The TOPSIS
metric was also computed for the proposed algorithm. The values equal to 0.05 and 0.0218
were obtained for the best and worst performance of the proposed algorithm based on the
different lag-times (l) required to resolve the orange alarm. However, Gu et al. (2019)
reported the TOPSIS value of 0.298 for their semi-supervised algorithm.

68

5.7. Comparison with benchmark unsupervised algorithms

The performance of the proposed algorithm also was compared with the performance of
the benchmark offline unsupervised algorithms. The built-in unsupervised machine
learning algorithms in the Sklearn library of PythonTM were utilized.

It is clearly shown in Table VIII that TPR of the proposed algorithm exceeds the Density-
Based Clustering (DBSCAN) and Agglomerative clustering algorithms. Additionally, the
proposed online algorithm reaches the same TPR of the offline k-means algorithm.
However, k-means achieved a slightly lower FPR. The results confirm that the novel
proposed algorithm has comparable performances with unsupervised benchmark
algorithms. The advantageous of the proposed detection algorithm is its ability to operate
in an online manner. Offline algorithms require iterative re-clustering to adapt to the
changing trends in network traffic. Therefore, their time and memory complexity are
dependent of time.

Table VIII Comparison of the proposed hybrid algorithm with benchmark unsupervised algorithms.

Algorithms Online Parameter settings FPR TPR
k-means No Number of clusters 0 95.23%
Agglomerative No Number of clusters 0 85.71%
DBSCAN No Minimum samples in each cluster 0 90.4%
Proposed algorithm Yes L, l, ε 0.23% 95.23%

Figure 17 demonstrates the results of the k-means clustering analysis. The 8-dimensional
data was converted to 2-dimensional data using PCA and then multi-dimension clusters
were depicted in 2-dimensional plot. As it is seen in the Figure 17, clusters are separated
perfectly.

5.8. Indirect comparison with state-of-the-art

This section includes the indirect performance comparison of the proposed algorithm with
6 recent unsupervised approaches for DDoS attack detection. The proper comparison of
machine learning-based attack detection studies is possible only when they use the same
validation dataset or the same algorithm. As replication of all detection algorithms is a
frustrating task, here, only an indirect comparison of the algorithms was made. It can be
inferred from Table IX that the proposed algorithm is superior to other existing methods
except for the algorithm by Idhammad et al. (2018) from both perspectives of TPR and

69

FPR. Furthermore, the proposed algorithm is the only DDoS detection algorithm that
meets all requirements of an online learning algorithm.

Figure 17 Detection of DDoS attacks using k-means algorithm

Table IX Indirect comparison of the proposed algorithm with recent unsupervised DDoS Detection
algorithms.

Author Algorithm Online TPR FPR
Casas et al. (2012 a,b) DBSCAN, SSC, EAC No 90% 1-3.5%
Dromard et al. (2016) Incremental Clustering Yes 94% 0
Roudiere and Owezarski
(2017)

k-NN, Histogram Semi 83% 0.01%

Fernandes Jr et al. (2016) PCA, Anti Colony Optimization Semi 92% 21%
Idhammad et al. (2018) Co-clustering, Entropy, Extra

Tree
No 98% 0.33%

Proposed algorithm E-KOAD, Entropy, Mahalanobis
Distance, Chi-square

Yes 95% 0.23%

70

71

CHAPTER 6

6. CONCOLUSION AND FUTURE DIRECTIONS

This thesis has addressed the detection of DDoS attacks in the Local Area Network (LAN)
with an emphasis on automating the adaption of the detection algorithm on frequently
changing network traffic. Researchers have advocated a variety of different DDoS
detection schemes since the 2000s. However, a literature survey reveals that the
techniques available today leave some significant gaps. First, most existing algorithms
require batch-processing, which causes time-delay. Second, most online-processing
algorithms require pre-defined settings of algorithm parameters and thresholds. Third,
most online-processing algorithms require high memory and storage resources and have
significant time complexities. Forth, outdated DDoS datasets or limited simulation
approaches were used to validate the proposed detection algorithms by most researchers.

6.1. Concolusion

In this thesis, a novel algorithm has been proposed for the detection of DDoS attacks by
utilizing a kernel-based anomaly detection method, the Mahalanobis distance metric and
Chi-square test where there is no need to train detection algorithm using labeled data.
Discriminating DDoS attacks from normal traffic using an unsupervised algorithm that
can adapt itself to a continually changing environment without requiring a predefined
normal behavior of the network traffic and re-training the detection model is a
considerably new attempt for DDoS detection, and the proposed algorithm has shown
promising results. The KOAD algorithm was used as a backbone of the proposed detection
scheme while it was improved by defining an automatic procedure for setting the
thresholds

72

The proposed algorithm was validated on the CICIDS2017 dataset. The performance of
the proposed algorithm was also evaluated based on different time settings for resolving
suspicious network traffic and significant-level (α) for the Chi-square test through
Receiver Operating Characteristics (ROC) curves. Additionally, the analysis of the
sensitivities of the threshold settings of the proposed algorithm has shown that the
algorithm produces the highest performances when thresholds are set automatically.

The proposed algorithm has been compared with the three most well-known benchmark
unsupervised algorithms which are currently being used in DDoS detection literature: k-
means, Agglomerative and DBSCAN. Moreover, the performance of the proposed
algorithm was directly compared with the works of six researchers who utilized the
CICIDS2017 dataset as their validation instrument. It has been shown that the proposed
algorithm achieved a higher detection accuracy rate compared to the other six algorithms,
in addition to meeting all constraints of an online detection algorithm. The performance
of the proposed algorithm also was indirectly compared with five new unsupervised DDoS
detection algorithms in the literature. The results revealed that the proposed algorithm
outperformed the other four algorithms while only achieved 3% less TPR than offline
unsupervised DDoS detection algorithm by Idhammad et al. (2018).

The proposed algorithm is based on the kernel online anomaly detection algorithm and
intrinsically suitable for an online application as its computational and memory
complexities are independent of time. As might be expected, the proposed algorithm is
superior to the original KOAD algorithm due to the automatic selection of thresholds.

6.2. Future directions

The scope of this thesis has been limited to DDoS detection in a LAN environment. The
future researches might convey the proposed algorithm into cloud networks, ISP-level
networks or Software Defined Networks (SDN). A weakness of the proposed algorithm
at this point is to classify different kinds of DDoS attacks and ideally distinguish them
from similar-looking FE traffic. The algorithm also suffers to find DDoS attacks, which
are very similar to normal underlying network traffic from the perspective of volume,
traffic rate, traffic duration and randomness of source/destination IP addresses/ports. It is
hypothesized that geolocation analysis of IP addresses, historical analysis of IP addresses,
and black-listing/white-listing techniques could be added as extra components to the
proposed detection scheme. These analyses can be applied to all suspicious traffic vectors
in addition to the Mahalanobis distance measurement. Besides, rule-based correlation
algorithms could be added to the machine learning-based DDoS detection scheme to
establish patterns to control events, which might be indicators of a DDoS attack.

73

REFERENCES

Aamir, M., & Zaidi, S. M. A. (2019). Clustering based semi-supervised machine
learning for DDoS attack classification. Journal of King Saud University-Computer and

Information Sciences.

Agarwal, B. and Mittal, N. (2012). Hybrid approach for detection of anomaly network
traffic using data mining techniques. Procedia Technology, 6:996–1003.

Ahmed, M. and Mahmood, A. N. (2014). Network traffic analysis based on collective
anomaly detection. In 2014 9th IEEE Conference on Industrial Electronics and

Applications, pages 1141–1146. IEEE.

Ahmed, M. and Mahmood, A. N. (2015). Novel approach for network traffic pattern
analysis using clustering-based collective anomaly detection. Annals of Data Science,
2(1):111–130.

Ahmed, M., Mahmood, A. N., and Hu, J. (2016a). A survey of network anomaly
detection techniques. Journal of Network and Computer Applications, 60:19–31.

Ahmed, T. (2009). Online anomaly detection using KDE. In GLOBECOM, pages 1–8.

Ahmed, T., Ahmed, S., Ahmed, S., and Motiwala, M. (2010). Real-time intruder
detection in surveillance networks using adaptive kernel methods. In Proc. IEEE

International Conference on Communications, pages 1–5, Cape Town, South Africa.

Ahmed, T., Ahmed, S., and Chowdhury, F. E. (2016b). Taking meredith out of grey’s
anatomy: Automating hospital ICU emergency signaling. In Proc. Acoustics, Speech and

Signal Processing (ICASSP), 2016 IEEE International Conference on, pages 1886–
1890, Shanghai, China.

Ahmed, T., Coates, M., and Lakhina, A. (2007a). Multivariate online anomaly detection
using kernel recursive least squares. In Proc. 26th IEEE International Conference on

Computer Communications (INFOCOM), pages 625–633, Anchorage, AK, USA.

74

Ahmed, T., Oreshkin, B., and Coates, M. (2007b). Machine learning approaches to
network anomaly detection. In Proceedings of the 2nd USENIX workshop on Tackling

computer systems problems with machine learning techniques, pages 1–6, Cambridge,
MA, USA. USENIX Association.

Ahmed, T., Pathan, A.-S. K., and Ahmed, S. (2014). Adaptive algorithms for automated
intruder detection in surveillance networks. In 2014 International Conference on

Advances in Computing, Communications and Informatics (ICACCI), pages 2775–2780.
IEEE.

Ahmed, T., Pathan, A.-S. K., and Ahmed, S. S. (2017). Learning algorithms for anomaly
detection from images. In Biometrics: Concepts, Methodologies, Tools, and

Applications, pages 281–308. IGI Global.

Ahmed, T., Wei, X., Ahmed, S., and Pathan, A.-S. K. (2013). Efficient and effective
automated surveillance agents using kernel tricks. Simulation, 89(5):562–577.

Ahmim, A., Maglaras, L., Ferrag, M. A., Derdour, M., & Janicke, H. (2019, May). A
novel hierarchical intrusion detection system based on decision tree and rules-based
models. In 2019 15th International Conference on Distributed Computing in Sensor

Systems (DCOSS) (pp. 228-233). IEEE.

Akamai (2019). Financial services attack economy.
https://www.akamai.com/us/en/campaign/assets/soti/security-financial-services-attack-
economy.jsp. [Online; accessed 30-July-2018].

Akamai Technologies (2019). State of the internet security. Technical report. [Online].
Available: https://content.akamai.com/PG11811-soti-2018-a-year-in-review-
report.html?lang=us-en.Aksu, D., Üstebay, S., Aydin, M. A., & Atmaca, T. (2018,
September). Intrusion detection with comparative analysis of supervised learning
techniques and fisher score feature selection algorithm. In International Symposium on

Computer and Information Sciences (pp. 141-149). Springer, Cham.

Anika, A., Karim, K. L., Muntaha, R., Shahrear, F., Ahmed, S., and Ahmed, T. (2017).
Multi image retrieval for kernel-based automated intruder detection. In IEEE Region 10

Symposium (TENSYMP), 2017, pages 1–5. IEEE.

Arbor (2016). Arbor Networks Spectrum: The Network-Based Advanced Threat
Solution. https://www.netscout.com/report/. [Online; accessed 15-July-2018].

https://content.akamai.com/PG11811-soti-2018-a-year-in-review-report.html?lang=us-en
https://content.akamai.com/PG11811-soti-2018-a-year-in-review-report.html?lang=us-en

75

Attak, H., Combalia, M., Gardikis, G., Gastón, B., Jacquin, L., Katsianis, D., Litke, A.,
Papadakis, N., Papadopoulos, D., Pastor, A., et al. (2018). Application of distributed
computing and machine learning technologies to cybersecurity. In Computer &

Electronics Security Applications Rendez-vous (C&ESAR).

Azwar, H., Murtaz, M., Siddique, M., & Rehman, S. (2018, November). Intrusion
Detection in secure network for Cybersecurity systems using Machine Learning and
Data Mining. In 2018 IEEE 5th International Conference on Engineering Technologies

and Applied Sciences (ICETAS) (pp. 1-9). IEEE.

Bayarjargal, D. and Cho, G. (2014). Detecting an anomalous traffic attack area based on
entropy distribution and Mahalanobis distance. International Journal of Security and Its

Applications, 8(2):87–94.

Behal, S. and Kumar, K. (2017). Detection of DDoS attacks and flash events using
information theory metrics–an empirical investigation. Computer Communications,
103:18–28.

Behal, S., Kumar, K., and Sachdeva, M. (2017). Characterizing DDoS attacks and flash
events: Review, research gaps and future directions. Computer Science Review, 25:101–
114.

Behal, S., Kumar, K., and Sachdeva, M. (2018). D-face: An anomaly based distributed
approach for early detection of DDoS attacks and flash events. Journal of Network and

Computer Applications, 111:49–63.

Bhuyan, M. H., Bhattacharyya, D., and Kalita, J. K. (2015a). An empirical evaluation of
information metrics for low-rate and high-rate DDoS attack detection. Pattern

Recognition Letters, 51:1–7.

Bhuyan, M. H., Kalwar, A., Goswami, A., Bhattacharyya, D., and Kalita, J. (2015b).
Low-rate and high-rate distributed dos attack detection using partial rank correlation. In
Communication Systems and Network Technologies (CSNT), 2015 Fifth International

Conference on, pages 706–710, Gwalior, India. IEEE.

Boukhamla, A., & Gaviro, J. C (2018). CICIDS2017 dataset: performance
improvements and validation as a robust intrusion detection system testbed.
International Journal of Information and Computer Security.

76

CAIDA Dataset (2007). The CAIDA DDoS attack dataset. Massachusetts Institute of
Technology. [Online]. Available: http://www.caida.org/data/passive/ddos-
20070804dataset.xml.

Casas, P., Mazel, J., and Owezarski, P. (2012a). Knowledge-independent traffic
monitoring: Unsupervised detection of network attacks. IEEE Network, 26(1):13–21.

Casas, P., Mazel, J., and Owezarski, P. (2012b). Unsupervised network intrusion
detection systems: Detecting the unknown without knowledge. Computer

Communications, 35(7):772–783.

Chen, L., Zhang, Y., Zhao, Q., Geng, G., and Yan, Z. (2018). Detection of DNS DDoS
attacks with random forest algorithm on spark. Procedia computer science, 134:310–
315.

Chen, R.-C., Cheng, K.-F., Chen, Y.-H., and Hsieh, C.-F. (2009). Using rough set and
support vector machine for network intrusion detection system. In Proc. Intelligent

Information and Database Systems, 2009. ACIIDS 2009. First Asian Conference on,
pages 465–470, Dong Hoi, Vietnam.

Cheng, J., Yin, J., Liu, Y., Cai, Z., and Li, M. (2009). DDoS attack detection algorithm
using IP address features. In International Workshop on Frontiers in Algorithmics, pages
207–215. Springer.

Chitrakar, R. and Huang, C. (2014). Selection of candidate support vectors in
incremental SVM for network intrusion detection. computers & security, 45:231–241.

CICFLOWMETER. A network traffic biflow generator and analyzer. Available at
http://netflowmeter.ca/ (2019/01/18).

Daneshgadeh, S., Ahmed, T., Kemmerich, T., and Baykal, N. (2019a). Detection of
DDoS attacks and flash events using Shannon entropy, KOAD and Mahalanobis
distance. In 2019 22nd Conference on Innovation in Clouds, Internet and Networks and

Workshops (ICIN), pages 222–229. IEEE.

Daneshgadeh, S., Baykal, N., et al. (2017). DDoS attack modeling and detection using
SMO. In Machine Learning and Applications (ICMLA), 2017 16th IEEE International

Conference on, pages 432–436, Cancun, Mexico. IEEE.

Daneshgadeh, S., Kemmerich, T., Ahmed, T., and Baykal, N. (2018). A hybrid approach
to detect DDoS attacks using KOAD and the Mahalanobis distance. In 2018 IEEE 17th

77

International Symposium on Network Computing and Applications (NCA), Cambridge,
MA USA. IEEE.

Daneshgadeh, S., Kemmerich, T., Ahmed, T., and Baykal, N. (2019b). An empirical
investigation of DDoS and flash event detection using Shannon entropy, KOAD and
SVM combined. In 2019 International Conference on Computing, Networking and

Communications (ICNC), pages 658–662. IEEE.

DataFlair Team (2018). Kernel functions-introduction to SVM kernel & examples.
[Online]. Available: https://data-flair.training/blogs/svm-kernel-functions/.

David, J. and Thomas, C. (2015). DDoS attack detection using fast entropy approach on
flow-based network traffic. Procedia Computer Science, 50:30–36.

David, J. and Thomas, C. (2019). Efficient DDoS flood attack detection using dynamic
thresholding on flow-based network traffic. Computers & Security.

De Maesschalck, R., Jouan-Rimbaud, D., and Massart, D. L. (2000). The Mahalanobis
distance. Chemometrics and intelligent laboratory systems, 50(1):1–18.

Dromard, J., Roudière, G., and Owezarski, P. (2016). Online and scalable unsupervised
network anomaly detection method. IEEE Transactions on Network and Service

Management, 14(1):34–47.

Engel, Y., Mannor, S., and Meir, R. (2004). The kernel recursive least-squares
algorithm. IEEE Transactions on signal processing, 52(8):2275–2285.

Fernandes Jr, G., Carvalho, L. F., Rodrigues, J. J., and Proença Jr, M. L. (2016).
Network anomaly detection using IP flows with principal component analysis and ant
colony optimization. Journal of Network and Computer Applications, 64:1–11.

Gan, X.-s., Duanmu, J.-s., Wang, J.-f., and Cong, W. (2013). Anomaly intrusion
detection based on pls feature extraction and core vector machine. Knowledge-Based

Systems, 40:1–6.

Gogoi, P., Bhattacharyya, D., Borah, B., and Kalita, J. K. (2013). Mlh-IDS: a multi-level
hybrid intrusion detection method. The Computer Journal, 57(4):602–623.

Gu, Y., Li, K., Guo, Z., and Wang, Y. (2019). Semi-supervised k-means DDoS detection
method using hybrid feature selection algorithm. IEEE Access, 7:64351–64365.

78

Haasdonk, B. and Burkhardt, H. (2007). Invariant kernel functions for pattern analysis
and machine learning. Machine learning, 68(1):35–61.

Hoque, N., Bhattacharyya, D. K., and Kalita, J. K. (2016). Ffsc: a novel measure for
low-rate and high-rate DDoS attack detection using multivariate data analysis. Security

and Communication Networks, 9(13):2032–2041.

Hoque, N., Kashyap, H., and Bhattacharyya, D. (2017). Real-time DDoS attack
detection using FPGA. Computer Communications, 110:48–58.

Horng, S.-J., Su, M.-Y., Chen, Y.-H., Kao, T.-W., Chen, R.-J., Lai, J.-L., and Perkasa,
C. D. (2011). A novel intrusion detection system based on hierarchical clustering and
support vector machines. Expert systems with Applications, 38(1):306–313.

Idhammad, M., Afdel, K., and Belouch, M. (2018). Semi-supervised machine learning
approach for DDoS detection. Applied Intelligence, 48(10):3193–3208.

Islam, H. and Ahmed, T. (2018). Anomaly clustering based on correspondence analysis.
In 2018 IEEE 32nd International Conference on Advanced Information Networking and

Applications (AINA), pages 1019–1025. IEEE.

ISO/IEC 27002:2013 (2013). Information technology - Security techniques - Code of
practice for information security management. Standard, International Organization for
Standardization, Geneva, CH.

Jain, A. K. and Dubes, R. C. (1988). Algorithms for clustering data. Englewood Cliffs:

Prentice Hall, 1988.

Jain, A. K. and Dubes, R. C. (1988). Algorithms for clustering data. Englewood Cliffs:

Prentice Hall, 1988.

Jun, J.-H., Ahn, C.-W., and Kim, S.-H. (2014). DDoS attack detection by using packet
sampling and flow features. In proceedings of the 29th annual ACM symposium on

applied computing, pages 711–712, Gyeongju, Korea. ACM.

Jyothsna, V., Prasad, V. R., and Prasad, K. M. (2011). A review of anomaly-based
intrusion detection systems. International Journal of Computer Applications, 28(7):26–
35.

79

Khan, L., Awad, M., and Thuraisingham, B. (2007). A new intrusion detection system
using support vector machines and hierarchical clustering. The VLDB journal,
16(4):507–521.

Kodinariya, T. M. and Makwana, P. R. (2013). Review on determining number of
cluster in k-means clustering. International Journal, 1(6):90–95.

Kovács, F., Legány, C., and Babos, A. (2005). Cluster validity measurement techniques.
In 6th International symposium of hungarian researchers on computational intelligence,
page 35. Citeseer.

Kuang, F., Xu, W., and Zhang, S. (2014). A novel hybrid KPCA and SVM with GA
model for intrusion detection. Applied Soft Computing, 18:178–184.

Lee, K., Kim, J., Kwon, K. H., Han, Y., and Kim, S. (2008). DDoS attack detection
method using cluster analysis. Expert systems with applications, 34(3):1659–1665.

Li, K., Zhou, W., Li, P., Hai, J., and Liu, J. (2009). Distinguishing DDoS attacks from
flash crowds using probability metrics. In Network and System Security, 2009. NSS’09.

Third International Conference on, pages 9–17. IEEE.

Liao, H.-J., Lin, C.-H. R., Lin, Y.-C., and Tung, K.-Y. (2013). Intrusion detection
system: A comprehensive review. Journal of Network and Computer Applications,
36(1):16–24.

Liu, Z., Zuo, M. J., Zhao, X., and Xu, H. (2015). An analytical approach to fast
parameter selection of gaussian RBF kernel for support vector machine. J. Inf. Sci. Eng.,
31(2):691–710.

MATLAB (2018). Sigma selection of gaussian RBF kernel for classification.

Mirkovic, J. and Reiher, P. (2004). A taxonomy of DDoS attack and DDoS defense
mechanisms. ACM SIGCOMM Computer Communication Review, 34(2):39–53.

MIT Lincoln Laboratory (2000). MIT LLS_DDOS Dataset. Massachusetts Institute of
Technology. [Online]. Available: http://www.ll.mit.edu/mission/communications/cyber/
CSTcorpora/idel/data/2000data.html.

Montgomery, D. C., Jennings, C. L., and Kulahci, M. (2015). Introduction to time series

analysis and forecasting. John Wiley & Sons, Hoboken, NJ, USA.

80

Moore, D., Shannon, C., Brown, D. J., Voelker, G. M., and Savage, S. (2006). Inferring
internet denial-of-service activity. ACM Transactions on Computer Systems (TOCS),
24(2):115–139.

Nesselroade, J. R. and Cattell, R. B. (2013). Handbook of multivariate experimental

psychology. Springer Science & Business Media.

Nezhad, S. M. T., Nazari, M., and Gharavol, E. A. (2016). A novel DoS and DDoS
attacks detection algorithm using ARIMA time series model and chaotic system in
computer networks. IEEE Communications Letters, 20(4):700–703.

Norušis, M. J. (2006). SPSS 14.0 guide to data analysis. Prentice Hall Upper Saddle
River, NJ.

Nychis, G., Sekar, V., Andersen, D. G., Kim, H., and Zhang, H. (2008). An empirical
evaluation of entropy-based traffic anomaly detection. In Proceedings of the 8th ACM

SIGCOMM conference on Internet measurement, pages 151–156. ACM.

Papalexakis, E. E., Beutel, A., and Steenkiste, P. (2014). Network anomaly detection
using co-clustering. Encyclopedia of Social Network Analysis and Mining, pages 1054–
1068.

Prykhodko, S., Prykhodko, N., Makarova, L., and Pukhalevych, A. (2018). Application
of the squared Mahalanobis distance for detecting outliers in multivariate non-gaussian
data. In 2018 14th International Conference on Advanced Trends in Radioelecrtronics,

Telecommunications and Computer Engineering (TCSET), pages 962–965. IEEE.

Qin, X., Xu, T., and Wang, C. (2015). DDoS attack detection using flow entropy and
clustering technique. In Computational Intelligence and Security (CIS), 2015 11th

International Conference on, pages 412–415, Shenzhen, China. IEEE.

Rao, M., Chen, Y., Vemuri, B. C., and Wang, F. (2004). Cumulative residual entropy: a
new measure of information. IEEE transactions on Information Theory, 50(6):1220–
1228.

Reid, R. and Van Niekerk, J. (2014). From information security to cyber security
cultures. In 2014 Information Security for South Africa, pages 1–7. IEEE.

Rényi, A. (1965). On the foundations of information theory. Revue de l’Institut

International de Statistique, pages 1–14.

81

Roudiere, G. and Owezarski, P. (2017). A lightweight snapshot-based DDoS detector. In
2017 13th International Conference on Network and Service Management (CNSM),
pages 1–7. IEEE.

Sahi, A., Lai, D., Li, Y., and Diykh, M. (2017). An efficient DDoS TCP flood attack
detection and prevention system in a cloud environment. IEEE Access, 5:6036–6048.

Santiago-Paz, J., Torres-Roman, D., and Velarde-Alvarado, P. (2012). Detecting
anomalies in network traffic using entropy and Mahalanobis distance. In
CONIELECOMP 2012, 22nd International Conference on Electrical Communications

and Computers, pages 86–91. IEEE.

Scholkopf, B. and Smola, A. J. (2001). Learning with kernels: support vector machines,

regularization, optimization, and beyond. MIT press.

Semerci, M., Cemgil, A. T., and Sankur, B. (2018). An intelligent cyber security system
against DDoS attacks in sip networks. Computer Networks, 136:137–154.

Seo, J., Lee, C., Shon, T., Cho, K.-H., and Moon, J. (2005). A new DDoS detection
model using multiple SVMs and TRA. In International Conference on Embedded and

Ubiquitous Computing, pages 976–985. Springer.

Shameli-Sendi, A., Pourzandi, M., Fekih-Ahmed, M., and Cheriet, M. (2015).
Taxonomy of distributed denial of service mitigation approaches for cloud computing.
Journal of Network and Computer Applications, 58:165–179.

Sharafaldin, I., Gharib, A., Lashkari, A. H., and Ghorbani, A. A. (2018a). Towards a
reliable intrusion detection benchmark dataset. Software Networking, 2018(1):177–200.

Sharafaldin, I., Lashkari, A. H., and Ghorbani, A. A. (2018b). Toward generating a new
intrusion detection dataset and intrusion traffic characterization. In Prog. of the 4th Int.

Conf. on Information Systems Security and Privacy (ICISSP), Funchal, Portugal.

Thill, M. (2017). The relationship between the Mahalanobis distance and the Chi-
squared distribution.

Verizon (2019). Data Breach Investigations Report.
https://enterprise.verizon.com/resources/reports/dbir/. [Online; accessed 30-July-2018].

82

Wagner, C., François, J., Engel, T., et al. (2011). Machine learning approach for IP-flow
record anomaly detection. In International Conference on Research in Networking,
pages 28–39. Springer.

Xiang, Y., Li, K., and Zhou, W. (2011). Low-rate DDoS attacks detection and traceback
by using new information metrics. IEEE transactions on information forensics and

security, 6(2):426–437.

Xu, T., He, D., and Luo, Y. (2007). DDoS attack detection based on RLT features. In
cis, pages 697–701. IEEE.

YANG, M.-h. and WANG, R.-c. (2008). DDoS detection based on wavelet kernel
support vector machine. The Journal of China Universities of Posts and

Telecommunications, 15(3):59–94.

Yu, J., Lee, H., Kim, M.-S., and Park, D. (2008). Traffic flooding attack detection with
snmp mib using svm. Computer Communications, 31(17):4212–4219.

Yu, S., Zhou, W., Jia, W., Guo, S., Xiang, Y., and Tang, F. (2012). Discriminating
DDoS attacks from flash crowds using flow correlation coefficient. IEEE Transactions

on Parallel and Distributed Systems, 23(6):1073–1080.

Zhang, X. and Zhong, S. (2009). An improved path-based transductive support vector
machines algorithm for blind steganalysis classification. In International Conference on

Artificial Intelligence and Computational Intelligence, pages 453–462. Springer.

Zhou, L., Liao, M., Yuan, C., and Zhang, H. (2017). Low-rate DDoS attack detection
using expectation of packet size. Security and Communication Networks, 2017.

83

APPENDICES

APPENDIX A

Mahalanobis distance values and Chi-square test results

Mahalanobis distance Time alpha=0.05 alpha=0.01 alpha=0.001

3.788507 536 0 0 0

3.144352 537 0 0 0

2.119748 538 0 0 0

2.573952 539 0 0 0

2.787513 540 0 0 0

2.770793 541 0 0 0

1.545647 542 0 0 0

2.582686 543 0 0 0

3.798436 544 0 0 0

2.006835 546 0 0 0

2.386099 547 0 0 0

2.40586 548 0 0 0

2.151711 550 0 0 0

1.545746 552 0 0 0

2.46843 555 0 0 0

2.797316 563 0 0 0

1.183986 565 0 0 0

2.584387 568 0 0 0

6.179406 570 0 0 0

2.521087 573 0 0 0

1.885014 574 0 0 0

11.80373 575 1 1 0

2.867908 576 0 0 0

9.920155 585 1 0 0

10.9671 596 1 0 0

5.688897 597 0 0 0

1.490073 598 0 0 0

2.994716 603 0 0 0

5.532619 604 0 0 0

2.599124 605 0 0 0

84

Mahalanobis distance Time alpha=0.05 alpha=0.01 alpha=0.001

5.287621 607 0 0 0

11.75426 609 1 1 0

1.09476 611 0 0 0

1.769663 612 0 0 0

1.675633 613 0 0 0

1.95016 615 0 0 0

3.559468 616 0 0 0

2.348398 626 0 0 0

3.600126 629 0 0 0

12.72213 632 1 1 0

8.478768 634 1 0 0

9.938449 637 1 0 0

5.568832 638 0 0 0

5.846324 648 0 0 0

7.182955 651 0 0 0

5.54912 652 0 0 0

6.534555 653 0 0 0

21.00665 654 1 1 1

10.37103 655 1 0 0

13.0389 656 1 1 0

11.74201 661 1 1 0

3.047871 662 0 0 0

5.481711 666 0 0 0

3.249266 671 0 0 0

2.096866 674 0 0 0

3.840073 677 0 0 0

9.794947 678 1 0 0

2.666256 679 0 0 0

3.296364 684 0 0 0

11.6906 685 1 1 0

2.754891 686 0 0 0

2.391558 697 0 0 0

2.665245 701 0 0 0

2.522156 725 0 0 0

3.631692 732 0 0 0

1.999664 753 0 0 0

85

Mahalanobis distance Time alpha=0.05 alpha=0.01 alpha=0.001

1.595494 766 0 0 0

4.176344 767 0 0 0

12.2557 784 1 1 0

3.325645 790 0 0 0

7.69481 798 0 0 0

2.860762 800 0 0 0

1.343874 822 0 0 0

5.045717 824 0 0 0

1.664093 828 0 0 0

5.447875 829 0 0 0

11.64197 832 1 1 0

5.001577 843 0 0 0

3.058539 846 0 0 0

1.259557 867 0 0 0

2.15972 870 0 0 0

4.324535 875 0 0 0

3.055996 879 0 0 0

1.789773 881 0 0 0

5.645057 882 0 0 0

9.119706 889 1 0 0

4.239411 930 0 0 0

3.515205 932 0 0 0

3.397901 933 0 0 0

10.28204 944 1 0 0

4.108383 945 0 0 0

5.470661 946 0 0 0

8.495946 953 1 0 0

4.140344 954 0 0 0

7.642688 955 0 0 0

37.39175 956 1 1 1

42.6255 957 1 1 1

37.33347 958 1 1 1

37.78027 959 1 1 1

39.82963 960 1 1 1

39.45025 961 1 1 1

41.7446 962 1 1 1

86

Mahalanobis distance Time alpha=0.05 alpha=0.01 alpha=0.001

40.32104 963 1 1 1

41.72865 964 1 1 1

40.75256 965 1 1 1

43.35497 966 1 1 1

41.47939 967 1 1 1

43.14325 968 1 1 1

41.9959 969 1 1 1

45.1576 970 1 1 1

44.44451 971 1 1 1

45.84193 972 1 1 1

46.76683 973 1 1 1

34.67277 974 1 1 1

30.04073 975 1 1 1

16.03983 976 1 1 0

3.300738 977 0 0 0

4.378893 978 0 0 0

4.847064 980 0 0 0

2.132391 983 0 0 0

8.171737 984 1 0 0

1.601019 987 0 0 0

2.588164 989 0 0 0

0.941538 994 0 0 0

6.029054 997 0 0 0

4.229866 998 0 0 0

6.402328 999 0 0 0

5.743155 1000 0 0 0

2.662727 1004 0 0 0

8.836709 1021 1 0 0

10.98077 1022 1 0 0

87

APPENDIX B

Clustering analysis results for detection statistic δ

Instance No. Delta Cluster No. Instance No. Delta Cluster No.
 0 0.1 0 30 0.043222 3
1 0.995462 2 31 0.013961 4
2 0.473523 2 32 0.007063 3
3 0.274606 1 33 0.090156 3
4 0.055556 4 34 0.029335 0
5 0.663468 2 35 0.646831 4
6 0.214114 1 36 0.048058 2
7 0.121457 0 37 0.016298 4
8 0.077021 0 38 0.075897 3
9 0.15028 1 39 0.088888 0
10 0.01547 3 40 0.433326 0
11 0.669492 2 41 0.120443 2
12 0.19781 1 42 0.031193 0
13 0.209048 1 43 0.03301 4
14 0.0298 4 44 0.49221 4
15 0.034377 4 45 0.064641 2
16 0.008998 3 46 0.057751 0
17 0.055273 4 47 0.032283 4
18 0.02471 3 48 0.086644 4
19 0.033168 4 49 0.145402 0
20 0.068633 0 50 0.15085 1
21 0.030485 4 51 0.059733 1
22 0.008019 3 52 0.027684 4
23 0.102214 0 53 0.039611 3
24 0.035379 4 54 0.026134 4
25 0.001991 3 55 0.029957 3
26 0.020307 3 56 0.035059 4
27 0.018169 3 57 0.065238 4
28 0.195285 1 58 0.02384 0
29 0.019824 0 59 0.04667 3

88

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Daneshgadeh Çakmakçı, Salva

Nationality: Turk

Date and Place of Birth: 19.09.1984, Tabriz

Marital Status: Married

Phone: +90 554 911 1120

E-mail: salva.daneshgadeh@gmail.com

Linkedin: https://www.linkedin.com/in/salva-daneshgadeh-415840169/

Google Scholar: Salva Daneshgadeh Çakmakçı
https://scholar.google.com/citations?user=hNvX5LQAAAAJ&hl=en

Research

Interest

Network Security, Information security, Intrusion Detection,
Machine Learning, Deep learning

Academic

Background

Middle East Technical University, Turkey

Information Systems, Ph.D.

(Qualification Exam: MAY 2015)

2013 - 2019

Middle East Technical University, Turkey

Information Systems, MSc
2009 – 2012

Azad University of Tabriz, Iran

Computer Engineering, BSc

2003 – 2007

mailto:salva.daneshgadeh@gmail.com
https://www.linkedin.com/in/salva-daneshgadeh-415840169/
https://scholar.google.com/citations?user=hNvX5LQAAAAJ&hl=en

89

Professional

Experience

MAY Cyber Technologies, Turkey

Security Data Scientist

o Network Security

o Statistic and Machine learning

(MATLAB)

o Computer Programming (Python)

o Database (SQL, Elasticsearch)

2016 – Current

Publications

Daneshgadeh, S., Baykal, N., and Karabey, B. (2016). Security

issues of smartphones regarding m-commerce. In Encyclopedia

of E-Commerce Development, Implementation, and

Management, pages 1461–1472. IGI Global.

Daneshgadeh, S., Baykal, N., et al. (2017). DDoS attack

modeling and detection using SMO. In Machine Learning and

Applications (ICMLA), 2017 16th IEEE International

Conference on, pages 432–436, Cancun, Mexico. IEEE.

Daneshgadeh, S., Kemmerich, T., Ahmed, T., and Baykal, N.

(2018). A hybrid approach to detect DDoS attacks using KOAD

and the Mahalanobis distance. In 2018 IEEE 17th International

Symposium on Network Computing and Applications (NCA),

Cambridge, MA USA. IEEE.

Daneshgadeh, S., Ahmed, T., Kemmerich, T., and Baykal, N.

(2019). Detection of DDoS attacks and flash events using

shannon entropy, KOAD and Mahalanobis distance. In 2019

22nd Conference on Innovation in Clouds, Internet and Networks

and Workshops (ICIN), pages 222–229. IEEE.

Daneshgadeh, S., Kemmerich, T., Ahmed, T., and Baykal, N.

(2019). An empirical investigation of DDoS and flash event

detection using Shannon entropy, KOAD and SVM combined. In

2019 International Conference on Computing, Networking and

Communications (ICNC), pages 658–662. IEEE.

90

Daneshgadeh, S., Oney, M., Kemmerich, T., and Baykal, N.

(2019). A simulation environment for cyber-security attack

analysis based on network traffic logs. Modeling and Simulation

of Complex Networks.

Projects

Network Anomaly Detection

1501 – TÜBİTAK Industrial R&D Projects

Grant Programme, No.3150972

Researcher

2016-2019

