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ABSTRACT

UTADIS BASED MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS
FOR MEDICAL DIAGNOSIS PROBLEMS

Mahmutogullar1, Halenur Sahin
Ph.D., Department of Industrial Engineering
Supervisor: Prof. Dr. Serhan Duran

Co-Supervisor: Assoc. Prof. Dr. Ertan Yakici

December 2019, 26§] pages

We develop hybrid methods that integrate multi-criteria decision making, evolution-
ary algorithms and machine learning to be used in medical diagnosis problems. The
proposed models classify patients into two categories according to their disease status
with the aim of obtaining high classification performances both classes under consid-

eration.

First, we develop a Mixed-Integer Linear Programming approach, Parametrized Clas-
sification Model (PCM), which is based on UTADIS. By solving PCM multiple times
with various values of a specific parameter, we obtain a set of solutions spread over the
Pareto-optimal front in the space of true positive and true negative responses. Then,
to combine strong aspects of these solutions, we integrate PCM with evolutionary
algorithms, NSGA-II and RECGA, to tune the classification parameters acquired by
PCM. NSGA-II favors non-dominated solutions in terms of sensitivity and specificity
and RECGA aims to perform well particularly in situations where the incidence of
the disease may be relatively low, such as general screening. We call the developed

integrated models as PCM+NSGA-II and PCM+RECGA, respectively.



In order to observe the model performances, we try them with three different datasets
which are about coronary stent patients and breast cancer. Furthermore, we apply
several well-known machine learning algorithms to these datasets and compare the
results with the results of PCM+NSGA-II and PCM+RECGA. Additionally, for the
coronary stent dataset, the model performances are compared with those of cardiolo-

gists.

The results indicate that PCM+NSGA-II and PCM+RECGA are promising classifica-

tion algorithms that can be used in medical decision support tools by medical experts.

Keywords: multi-criteria decision making, evolutionary algorithms, machine learn-

ing, medical diagnosis, rare event classification
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0z

TIBBI TESHIS PROBLEMLERI iCIN UTADIS TEMELLI COK AMACLI
EVRIMSEL ALGORITMALAR

Mahmutogullar1, Halenur Sahin
Doktora, Endiistri Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Serhan Duran

Ortak Tez Yoneticisi: Dog. Dr. Ertan Yakici

Aralik 2019, sayfa

Bu calismada, tibbi tan1 problemleri alaninda kullanilmak {iizere, cok kriterli karar
verme, evrimsel algoritmalar ve makine 6grenmesi yontemlerini birlestiren hibrit
yontemler gelistiriyoruz. Onerilen modeller, incelenen her iki smifta da yiiksek si-
niflandirma performanslari elde etmeyi amaglayarak, hastalar1 durumlarina goére iki

kategoride siniflandirtyor.

Ik olarak, PCM olarak adlandirdigimiz, UTADIS temelli bir karma tamsayili prog-
ramlama modeli gelistiriyoruz. PCM’1 spesifik bir parametrenin ¢esitli degerleri i¢in
bircok kez ¢ozerek, dogru pozitif ve dogru negatif yanitlarin alaninda Pareto-optimal
cepheye yayilmis bir dizi ¢6ziim elde ediyoruz. Bu ¢oziimlerin gii¢lii yonlerini birles-
tirmek icin PCM ve evrimsel algoritmalari beraber kullaniyoruz. Bu amagla, PCM’den
elde edilen siniflandirma parametrelerinin degerlerini, NSGA-II ve RECGA adli ev-
rimsel algoritmalar kullanarak ayarliyoruz. NSGA-II, dogru pozitif ve dogru negatif
siiflandirma performanslari1 acisindan bir ¢oziimiin Pareto-optimalitesini yansitan,
baskilanamayan ¢oziimleri 6ncelemektedir. RECGA ise, genel tarama gibi hastaligin

goriilme oraninin goreceli olarak diisiik olabilecegi durumlarda 6zellikle iyi perfor-
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mans gostermesini hedefledigimiz bir bagka evrimsel algoritmadir. PCM ile evrimsel
algoritmalarin entegrasyonu sonucu elde ettigimiz modelleri, sirastyla, PCM+NSGA-

IT ve PCM+RECGA olarak adlandirtyoruz.

Onerdigimiz modellerin deneysel analizini ii¢ farkli veri seti iizerinde yapiyoruz. Bu
veri setlerinden ilki koroner stent implantasyonu yapilmis hastalar ile ilgili iken diger
iki veri seti ise meme kanseri ile ilgilidir. Buna ek olarak, bu veri setlerine bazi makine
0grenmesi yontemlerini uyguluyoruz ve performanslarini 6nerilen modellerin perfor-
manslari ile kiyashiyoruz. Ayrica, koroner stent veri seti icin model performanslarini

kardiyologlarin performansi ile karsilastirtyoruz.

Elde ettigimiz sonuclar1 inceledigimizde, PCM+NSGA-II ve PCM+RECGA’nin tibbi
karar destek araci olarak kullanilabilecek, giivenilir ve etkin siniflandirma yontemleri

oldugunu gézlemliyoruz.

Anahtar Kelimeler: cok kriterli karar verme, evrimsel algoritmalar, makine 6gren-

mesi, tibbi teshis, nadir olay siniflandirma
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CHAPTER 1

INTRODUCTION AND MOTIVATION

Predicting the existence or absence of a disease has a crucial importance in health-
care. There are various medical methods of diagnosis such as biopsy, ultrasound,
MRI etc. However, most of these methods are expensive and/or carry risks for the
patients. Moreover, some cases may have no apparent symptoms or clinical findings.
Instead of using expensive methods or medical tests, operations research techniques
and machine learning methods can be employed in medical decision support tools.
These applications may help doctors to make predictions without creating additional
risk and cost for patients. Moreover, for the cases where a general screening test is
conducted among a population, the number of people carrying the disease is expected
to be rare. For such cases, identifying the existence of the disease is harder and has

greater importance.

For this purpose, in this thesis, we develop hybrid methods which integrate multi-
criteria decision analysis, evolutionary algorithms and machine learning to be used in
medical diagnosis problems and also perform good when incidence of the disease is

relatively low in the population.

In Chapter [2] we give a literature review which covers studies on machine learning,
prediction models in health-care, multi-criteria decision analysis, rare event classifi-
cation and role of evolutionary algorithms in machine learning and multi-objective

decision analysis.

In Chapter [3| we propose predictive classification methods where the patients are
classified into two sets according to their disease status. The objective is to obtain

high classification performances on both classes under consideration.



First, we propose the Parametrized Classification Model (PCM). It is a Mixed-Integer
Programming (MIP) model and a variant of multi-criteria decision analysis method,
UTADIS (UTilités Additives DIScriminantes)[3]. The objective of the model is to
assign the best possible values to the decision variables with respect to the classifica-
tions given in the training set, in order to develop a set of additive utility functions.
These additive utility functions are then used to classify patients into the predefined

classes.

Unlike a classical UTADIS model, PCM has a parametric nature and it aims to min-
imize the number of false negative classification while keeping the number of false
positive classification under a specified level of a parameter. Since, there is a trade-off
between obtaining highest true positive and true negative responses from the model,
changing this level and solving the linear programming model to optimality favors
one objective while deteriorating the other. Thus, different levels for true positive and
true negative responses are obtained each time. Therefore, the linear model creates
a set of solutions spread over the Pareto-optimal front in the two dimensional space
of true positive and true negative responses. In other words, PCM is used to obtain a
set of solutions, some of which have high true positive and some have high true neg-
ative classification performances. Then, to combine the strong aspects of these solu-
tions, we utilize evolutionary algorithms to tune the model parameters. By integrating
multi-criteria decision analysis model, PCM, with evolutionary algorithms, we aim to
develop models that have high classification performances in complex problems. To
do so, first, the evolutionary algorithms derive new solutions through genetic oper-
ations, using the set of solutions obtained from PCM. Then, for each generation of
solutions, they test the classification performances of the solutions with a validation
set. Next, the evolutionary algorithms update the existing solutions by selecting the
ones that can achieve good classification results in some aspects, where the goodness
of a solution can be represented in many different ways (eg. high accuracy, high true
positive rate, high positive predictive rate etc.). By this way, we aim to obtain novel
combinations of model parameters such that their resulting classification have high

true positive and true negative responses, simultaneously.

The first evolutionary algorithm developed to integrate with PCM is a multi-objective

evolutionary algorithm, based on NSGA-II (Non-dominated Sorting Genetic Algo-



rithm II) [4]. It favors non-dominated solutions in terms of true positive and true neg-
ative classification performances. The purpose of the algorithm is to obtain solutions
which can minimize false positive and false negative classification errors, simultane-

ously. The proposed algorithm is called as PCM+NSGA-II.

We also develop another solution method which is suitable for the problems with class
imbalance. For such problems, when one class of observations is significantly less
than the other, achieving high accuracy is possible by assigning all the observations to
the class that constitutes the majority. In this case, a model would be totally inefficient
to classify the rare observation. To overcome this drawback, we again consider using
an evolutionary algorithm, called Rare Event Classifier Genetic Algorithm, (RECGA)
together with the Mixed-Integer Linear Programming model PCM, and we call it as
PCM+RECGA. It aims to achieve high true positive and true negative classification

rates, even in the cases where one class of observations is significantly rare.

We apply PCM+NSGA-IT and PCM+RECGA to three medical datasets and give the
results of this experimental analysis. Additionally, to see the effect of integrating
evolutionary algorithms with PCM, we compare the performances of PCM+NSGA-
IT and PCM+RECGA with the algorithms whose initial solutions are not obtained
with PCM but random (Random+NSGA-II and Random+RECGA). Finally, we com-
pare the performances of PCM+NSGA-II and PCM+RECGA with several machine

learning algorithms.

In Chapter ] we provide the results of the experimental analyses conducted in patient
classification in terms of risk of restenosis after coronary stent implantation. In this
context, we first determine the predictors by investigating the relevant literature and
consulting with the experts. Then, we apply feature selection to find the most related
set of coronary in-stent-restenosis predictors to build the simplest model and improve
the prediction ability. We gather the data based on existing records of patients with
coronary stents, from Ondokuz Mayis University Hospital, Cardiology Department.
We scan the records of 10,435 patients between the years 2005 and 2016 to find a
set of patients who are eligible to be included in this study. The final dataset includes
303 observations. We test the performances of the models on this dataset, and also we

compare them with the predictions of 15 cardiologists. We observe that the suggested



methods are effective and reliable decision support tools to classify patients in terms

of in-stent-restenosis.

In Chapter [5] we report the results of the experimental analyses on two well-studied
datasets about breast cancer (Wisconsin Breast Cancer Original Dataset [S] and Wis-
consin Breast Cancer Diagnostic Dataset [6]). For both datasets, it is assumed that,
the independent and dependent variables are the breast cancer predictors and the type
of tumor (malignant or benign), respectively. By adjusting the rareness of malignant
observations in the population from 35%-37% to 1%, we test the model performances
in case of rare events. We observed that, our algorithms are promising classification

algorithms and they are stronger alternatives when one class of observations is rare.

In Chapter[6], we propose concluding remarks as well as the possible future extensions

of the existing study.

Part of the study reported in Chapters [3] and [4] is published in a relevant respected
scientific journal [[7], indexed by SCI.



CHAPTER 2

LITERATURE REVIEW

Since the proposed algorithms in this study are based on a multi-criteria decision
analysis method, evolutionary algorithms and machine learning, our literature review

focuses on these fields.

In the following subsections, first we review the machine learning literature in general
and continue with prediction models in health-care, multi-criteria decision analysis
literature, rare event classification models and the role of evolutionary algorithms in

machine learning and multi-objective decision analysis, respectively.

2.1 Machine Learning

Machine learning has a vast area of application. Finance, manufacturing, medicine,
medical diagnosis, telecommunication, chemistry, cognitive modeling, image recog-

nition and speech recognition are some examples of these areas [8, 9].

A machine learning model is about experience, task and performance measure. Au-
thor Tom Mitchell states that “a computer program is said to learn from experience £
with respect to some class of tasks 7" and performance measure P, if its performance

at task in 7', as measured by P, improved with experience £ ”[10].

Machine learning algorithms are categorized into groups of supervised, unsupervised
and reinforcement learning methods. In the supervised learning, both input and out-
put values are given where the latter are provided by a supervisor. The aim of the
supervised learning algorithm is learning a mapping from the input to the output. In

unsupervised algorithms, we only have input data and the aim is to discover some pat-
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terns in it. In the reinforcement learning, the objective of the algorithm is to generate a
policy, which is comprised of sequences of actions, by learning from past good action
sequences. Some examples to reinforcement learning algorithms are game playing

and robot navigating [8].

The models proposed in this study can be considered to be in the class of supervised
learning algorithms. In the supervised learning, the given data set contains infor-
mation about how a correct output should look like [10]. Therefore, the algorithm
utilizes a training set to fit the parameters of the model. After the model parameters
are obtained, a test set is used to measure the performance of the model. In some

cases, a validation set is also used in order to tune the parameters [[11].

Depending on the type of the output, supervised learning algorithms are classified as
regression and classification. In regression problems, the algorithm provides continu-
ous outcomes, whereas the outcomes are discrete in classification problems. The main
supervised classification techniques are logic-based algorithms [12], perceptron-based
techniques [12]], statistical learning algorithms [12], kernel-based algorithms [[12} 8],

linear discrimination [8], and instance-based (non-parametric) learning [[12].

In this study, the input is represented by a training set, which makes the proposed
algorithms instance-based. They are used to classify the observations in two classes,

thus they can be categorized also as classification algorithms.

2.2 Prediction Models In Health-care

In this section, we review the prediction models used in the field of health-care with a
special emphasis on disease diagnosis. We find that the studies mainly focus on data

driven, intelligent methodologies.

Statistical methods were commonly used on disease diagnosis in previous studies.
However, due to their limitations on nonlinear and dependent data, data mining tech-
niques and artificial intelligence become prominent [[13,14]. Data mining is defined
as “the extraction of implicit, previously unknown, and potentially useful informa-

tion from data [[15]” and the process of discovering attractive patterns among the data
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which makes sense in the decision making [[16]. Data mining is utilized in some
studies related with cardiac SPECT (single photon emission computed tomography)
diagnosis, quality assessment of hemodialysis services and survival time prediction
for kidney dialysis patients [16]. Machine learning is referred as the provider of the
technical basis of data mining and it is used to extract information from the raw data
[15]. It is also stated that, besides association, clustering, sequential patterns and
similar time sequences, data mining can also be practiced through classification and
prediction [[17]. For classification purposes, statistics, decision trees, fuzzy sets, rough

sets, neural networks and linear programming are widely used techniques [[18, [19].

Tom Mitchell states that “although machine learning algorithms are central to the
data mining process, it is important to note that the data mining process also includes
other important steps such as building and maintaining the database, data formatting
and cleansing, data visualization and summarization, the use of human expert knowl-
edge to formulate the inputs to the learning algorithm and to evaluate the empirical
regularities it discovers, and the eventual deployment of results. Thus data mining
bridges many technical areas including databases, human-computer interaction, sta-

tistical analysis and machine learning algorithms™ [20]].

Appropriate computer-based information and decision support systems can help mak-
ing clinical medical diagnosis at a reduced cost and they are valuable aids in achieving
accurate results in medical diagnosis [21} 22]]. The aim of these systems is enhancing

rather than replacing the medical diagnosis decision of the physician [22].

One of the suggested approaches for this purpose is the K -nearest neighbors, which
is a non-parametric pattern recognition method [16, 22]]. The K -nearest neighbor ap-
proach is used in the diagnosis of lower back disorders, 30-day mortality and survival
following acute myocardial infarction, and separating cancerous and non-cancerous

breast cancer tumor masses [22]].

Other pattern recognition methods that are used in the medical diagnosis are discrim-
inant analysis [[16] and Bayesian classifiers [16, [14]], where naive Bayes classifier is

mentioned as a linear classifier in [23} 21} 24].

Meta-heuristic algorithms are also considered in medical diagnosis. Genetic algo-



rithm is referred as a data mining technique in some studies [16, [13] 25]. Neshat et
al. propose a combination of particle swarm optimization and case-base reasoning for

diagnosis of hepatitis disease [25]].

Huang et al., Lin and Uzoka et al. consider case-base reasoning, which is defined as
using old experiences to suggest solutions for the new cases [16, 13} 114]]. These stud-
ies are about diagnosis and analysis of dysmorphic syndromes, assistance in making
diagnosis and selection of a course of therapy. In their study, Huang et al. introduce
a model which is developed for diagnosis and prognosis of chronic diseases. The

proposed model integrates data mining and case-base reasoning [16].

Decision trees are referred as non-parametric supervised learning methods used for
classification. They are also defined as inductive learning of symbolic rules, data
mining tools and multi-stage decision making approaches [[16,21,[25]. A decision tree
classifies the observations in the training set by construction and pruning operations.
By this way, a decision tree classifier is able to find meaningful relations between
the class labels and the set of observations which are used for training. Then, the
acquired information is used to classify subsequent observations [26, 27]. Some of
the areas where decision trees are used in medical literature are diagnosis of breast
tumor in medical ultrasonic images [28]], heart disease prediction [29] and diagnosis
of type-II diabetes [30]. A study suggests a model for the liver disease diagnosis [13]].
The proposed model is comprised of classification and regression tree (CART) and
case-base reasoning. By the CART model, it is determined whether the patient suffers
from the liver disease and by the case-base reasoning, the type of the liver disease is

identified.

A collection of decision trees is called as random forest, which is an ensemble ap-
proach to build predictive models. Mangiameli et al. indicate that the predictive
success of ensemble models is more accurate than single models [22]]. The reason
behind this idea is based upon the instable nature of single models due to changes
in the learning set. The authors claim that ensemble of models are more robust. By
combining a series of decision trees, random forest aims to increase prediction accu-
racy [31]. Lee et al. deal with the use of random forest for a lung nodule classification

problem [32]].



Another study that introduces ensemble strategies for medical diagnosis focuses on
early detection and diagnosis of breast cancer. The authors analyze selection strate-
gies of classification models to form ensembles and they compare the performances

of a single model and ensemble of models [33]].

Another method that can be used as a medical diagnosis aid is decision rules, which is
an inductive learning of symbolic rules [16]. Moreover, Uzoka et al. [[14] and Malmir
et al. [34] consider rule-based programming and fuzzy rule-based decision support

system, respectively.

It is claimed that, among the computer intelligence based methods used in med-
ical diagnosis, neural networks are the most widely used [25]. Artificial neural
network (ANN) is a non-parametric data mining technique and it is addressed in
[16L 13,22, 23] and [25] as a medical diagnosis tool. ANN has powerful pattern clas-
sification and pattern recognition capabilities, developed with the inspiration from the
human brain neurological system as a data-driven self adaptive method and referred
as a multivariate, non-linear, non-parametric statistical method [35]. Breast cancer,
acute myocardial infarction, colorectal cancer, lower back disorders, drug/plasma
concentration levels, hepatic cancer, sepsis, cytomegalovirus retinopathy, ovarian
cancer, acute pulmonary embolism, micro calcification classification in digital mam-
mograms and control of blood transfusion costs for surgery are some of the areas that
neural networks are utilized [22]]. Wu et al. suggest a three layer feedforward neural
network with a back-propagation algorithm as a decision making tool for the analysis
of mammographic data [36]]. Malmir et al. discuss an adaptive neural-fuzzy inference

system [34].

Another data mining technique, fuzzy sets, is addressed in [16] and [13]. Malmir et
al. [34] propose online diagnostic application that uses fuzzy expert systems, fuzzy
C-mean clustering method along with pattern recognition and adaptive neuro-fuzzy
inference system along with the ANNSs. The experiments of the models are conducted

for diagnosis of kidney stone and kidney infection.

Huang et al. [16] and Lin [13] refer the inductive logic programming as another
data mining technique and inductive learning of symbolic rules. Carrault et al. [37]]

address the use of inductive logic programming in arrhythmia recognition from elec-



trocardiograms.

Conforti and Guido propose a kernel-based support vector machine for medical diag-
nostic decision making problems. They propose an optimization based approach to
learn the kernel function of support vector machine that performs best. They test the
performance of their suggested model on breast cancer, heart disease, thyroid, ovarian

cancer, leukemia and colon tumor datasets [38]].

Some other studies consider rough sets [13], hypertext based systems, knowledge
based technology, discriminant analysis and utility theory in the field of medical di-

agnosis [[14].

Mangiameli et al. propose logistic regression to predict or diagnose acute myocardial
infarction, coronary artery disease, liver metastases, gallstones, ulcers, mortality risk
for reactive airway disease and breast cancer [22]. Logistic regression is a mathemat-
ical modeling approach which is used to identify relationship of several independent
variables to a dichotomous dependent variable. In this way, it accomplishes predic-
tive analysis [39]]. A variant of it, the penalized logistic regression, is a combination
of the logistic regression with a penalization of the L, norm of the coefficients. Due
to quadratic penalization, it is expected to achieve a more robust fit when there is
collinearity among variables, levels of discrete factors are sparse or high-order inter-
action terms exist [40]. It is also a promising tool when class imbalance is present
(see [411142]).

Other medical diagnosis methods are Fisher linear discriminant analysis and kernel
density. Fisher linear discriminant analysis is employed in diagnosis of coronary
artery disease, acute myocardial infarction and breast cancer. Kernel density is uti-
lized to differentiate malignant and benign cells taken from fine needle aspirates of

breast tumors [22] .

Mangasarian et al. [43] proposed a breast cancer diagnosis tool based on image pro-
cessing. The proposed classification procedure is a linear programming approach
which separates malignant and benign samples. It is named as MSM-Tree since it is

a variant of multi-surface method (MSM).

Zhang et al. introduce a rough set-based multi-criteria linear programming approach
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for medical diagnosis. They are motivated by the shortcoming of multi-criteria linear
programming model in reducing the dimension of input information space. Therefore,
they integrate the rough set approach to the multi-criteria linear programming model
to discover the hidden patterns among data and to eliminate the redundant dimensions
of the information. The proposed approach is employed in diagnosis of breast cancer,

heart disease and lung cancer [19].

The Analytic Hierarchy Process (AHP) is introduced by Saaty as a multi-criteria de-
cision making approach, where the factors are arranged in a hierarchical manner [44].
Liberatore and Nydick deal with the usage of AHP in the field of medical diagno-
sis. They address its application to the sequential selection of diagnostic tests for the
analysis of upper abdominal path and determining the overuse of endoscopy for low
risk patients with acute upper gastrointestinal bleeding [45]. Uzoka et al. focus on

the effectiveness of fuzzy and the AHP methods in diagnosis of malaria [14].

Pinheiro et al. and Brasil Filho et al. provide multi-criteria models as an aid to
diagnose the Alzheimer’s disease [46}47]. Pinheiro et al. use the MACHBETH multi-
criteria decision analysis method [46] and Brasil Filho et al. utilize two multi-criteria
decision analysis classification approaches, PROAFTN and ELECTRE IV [47]. In
the latter study, a genetic algorithm is applied for parameter optimization and its
authors indicate that, in the multi-criteria decision analysis field, genetic algorithms

are primarily used to control parameter optimization.

Feature extraction and hidden Markov models are other tools that are utilized to im-
prove diagnostic systems [23]], whereas discretization method and genetic search are

available to eliminate redundant factors [24]].

2.3 Multi-Criteria Decision Analysis

Our problem can also be investigated under multi-criteria classification/sorting prob-
lems. A classification/sorting problem aims to assign a set of alternatives into prede-

fined groups. In the case of sorting, there is a preference relation among classes.

The main application areas of classification/sorting problems are medicine, pattern
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recognition, human resources management, production systems management and tech-
nical diagnosis, marketing, environmental and energy management, ecology, financial
management and economics. A detailed discussion on these application areas can be

found in [48]].

Criteria aggregation models and model development techniques are the two main
issues that should be considered in the construction of a classification/sorting model.
Outranking relation and utility function are referred as the main criteria aggregation

models.

Uy = > 7%, wi(95),wi(g;) € [0,1], represents the simplest form of additive utility
function where u;(g;) is the marginal utility function of criterion g; representing the
“worth” of corresponding criterion in terms of utility term. In order to measure the
performance of an alternative when all criteria are considered, the global utility U (a;)
of an alternative a; is calculated. Global utility values of alternatives are the measures
which are used in classification/sorting of the alternatives into predefined groups.
There are also utility thresholds representing a lower bound for belonging a specific
class. The classification of an alternative is done by comparing the global utilities of
an alternative with the utility threshold of each class under consideration [48]. This

approach is called as UTADIS [49].

The other issue, model development technique, has two alternatives: direct and in-
direct model estimations. Model development includes specifications of weights of
the evaluation criteria, preference-indifferences and veto thresholds. The preferences
among the alternatives can be specified directly by the decision maker. These tech-
niques are called as direct procedures. Whereas, in indirect procedures, the aim is
to find preferential parameters which are as consistent as the decision maker’s pref-
erences with respect to previous decisions. In a similar manner, a training sample,
which consists of previous decisions can be used. This approach is called as prefer-
ence disaggregation analysis (PDA) and it uses regression-based techniques [50, 48]].
In their study, Zopounidis and Doumpos stated that, within the multi-criteria deci-
sion analysis (MCDA) context, mathematical programming is a way to determine the
optimal model parameters. The optimality measures for these mathematical models

could be classification/sorting error rate of the alternatives and magnitude of viola-
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tion/satisfaction of classification/sorting rules [48].

UTADIS is a supervised machine learning algorithm, which is also used in this thesis.
More specifically, it is one of the instance based (non-parametric) MCDA approach

developed to solve classification problems [3].

In the literature, variants of UTADIS are proposed for several problems such as, min-
imization of classification errors, maximizing the distances of correctly classified al-
ternatives from the thresholds between classes, minimizing the number of misclassi-
fied alternatives. A variation of UTADIS is Multi-group Hierarchical Discrimination
(M.H.DIS) method. M.H.DIS adapts the UTADIS model for more complex prob-
lems that have multiple groups and utilizes three mathematical models consecutively.
The first model minimizes the magnitude of classification errors, the second model
minimizes the number of misclassifications and the last one sharpens the acquired

classification [49].

M.H.DIS is developed for sorting purposes and unlike the general form of a UTADIS
model, instead of a single additive utility function for an alternative, there are 2(q— 1)
additive utility functions, in the existence of ¢ classes[48]. M.H.DIS method deter-
mines the class of alternatives in a hierarchical manner by calculating utilities of the
decision to classify an alternative into a specific class and a class lower than it. Then,
by comparing these utility pairs, M.H.DIS determines the class which the alterna-
tives under consideration must belong to. The procedure proceeds ¢ — 1 times until
all groups are considered [S1]]. Note that, since the decision is based upon the com-
parison of utility pairs, unlike a classical UTADIS model, there is no threshold in

M.H.DIS.

In a UTADIS model, which uses additive utility functions as the criteria aggregation
method and PDA as the model development technique, the optimal values of the
decision variables must be consistent with respect to the decision maker’s preferences
which are expressed in terms of previous decisions or a training sample [48]]. Once the
optimal values of the decision variables are found, they could be used to classify/sort
new alternatives. Linear interpolation can be used to calculate the marginal utilities of
new alternatives in test set by utilizing marginal utilities of alternatives in the training

set [51]].
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2.4 Rare Event Classification

The success of a classification algorithm can be evaluated by the number of correctly
classified alternatives, number of misclassified alternatives, classification errors and
overall prediction accuracy. If there are only two classes (positive and negative) under
consideration, the possible results of a classification should be one of these four cases:
true positive, true negative, false positive, false negative. Then, the performance of
a classification model under this setting can be measured with the true positive rate
(sensitivity), true negative rate (specificity) as well as overall prediction ability (accu-
racy). However, in case of rare events, if the success of a prediction model depends
on just the accuracy without consideration of sensitivity and specificity together, it is
possible to obtain high accuracy rates by making correct predictions for the class of
which members are frequently encountered in the population. Therefore, this situa-
tion may cause low prediction accuracy for the observations that belong to the class
of rarely observed members. There are several studies in the literature which aim to
overcome this problem caused by the class imbalance. Among them, many studies

employ weighted support vector machine algorithms.

Support vector machine (SVM) is developed by Cortes and Vapnik, for two-group
classification problems. The main objective is finding a linear hyperplane that dis-
tinctly classifies given data points [S2]. Huang and Du propose a weighted SVM with
different penalties of misclassifications for each class in the training sample. The au-
thors claim that, “the equal penalty of misclassification for each training sample is
one of reasons why the uneven training class sizes will result in classification biases”.
To overcome this drawback, they define penalties such that the ratio of penalties for
different classes are equal to the inverse ratio of the training class sizes. They conduct
experiments on Wisconsin Breast Cancer Diagnostic dataset [6], where the number
of total observations is 569 with 357 benign and 212 malignant samples. 200 benign
and 20 malignant samples are used to train the proposed algorithm, i.e. malignant
observations are rare compared to benign observations where rareness level is 9%
(malignant:benign = 20:200 = 1:10), and the rest of the observations are used in the

test set [1]].

Du and Chen [2] extend the work of Huang and Du [1] and they propose another
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weighted SVM, v-SVM, where the misclassification penalties are different for each
class in training sample as in [[1]]. The authors conduct experiments on the Wisconsin
Breast Cancer Diagnostic dataset [6], with the same training and test configuration of

[LL1].

Liu et al. state that when the class sizes in training sets are uneven, with SVM, un-
desirably biased classification errors found for the class with fewer observations in
training set. To overcome this bias problem, a weighted SVM with genetic algorithm
based parameter selection is proposed. The genetic algorithm determines the parame-
ters related to regularization and the kernel function. Proposed algorithm is based on
the idea of assigning larger weight factor corresponding to the class with fewer obser-
vations. The experimental analysis is conducted with IRIS dataset of UCI Repository
[53]]. The class sizes are 1000, 2000 and 3000 for class 1, class 2 and class 3; and the
classification accuracies are 89.46%, 92.34% and 96.57%, respectively [54]].

Yang et al. also propose a weighted SVM where the weights of the algorithm are
generated by a robust fuzzy clustering technique, namely kernel-based probabilistic
c-means algorithm. The problem is addressed as the outlier sensitivity problem. The
experiments are conducted with an artificial data set and a benchmark dataset called
“Twonorm”, from the IDA benchmark repository [55)]. The proposed algorithm is
compared with SVM in terms of test error, for different number of mislabeled data
points. It is observed that, as the mislabeled data points increase, the rate of increase

in test error of proposed algorithm is slower than that of SVM [56].

There are methods in the literature used in the case of class imbalance other than
weighted SVM. Li et al. propose particle swarm optimization, bat algorithm, and
adaptive swarm balancing algorithm for imbalanced datasets. To reduce the imbal-
ance in data, they introduce an algorithm called as SMOTE (Synthetic Minority Over-
Sampling Technique). Experiments are conducted on ten datasets from UCI machine
learning repository [S7]. The imbalance ratios between majority class and minority
class of these datasets range from 2.05:1 to 955.62:1. Rather than handling the im-
balance in the original data set, they mainly focus on removing the imbalance in data

to obtain high prediction accuracies for both classes [38] .

Wankhade et al. propose a hybrid of classification and clustering-based method for
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problems with imbalanced classes. They use k-means, boosting and divide and merge
methods. Suggested approaches are tested on KDDCup’99 [59], Car Evaluation
[60], Cardiac Arrhythmia [61], Yeast [62], Adult [63], Shuttle [64] and Abalone [65]
datasets from UCI machine learning repository. The proposed algorithm is able to
deal with problems that have more than two classes. The majority class contains
about more than 90% of the samples compared to the minority class. Average detec-

tion rate of the algorithm is 95% and its average false alarm rate is 0.4% [66]].

2.5 Role of Evolutionary Algorithms in Machine Learning and Multi-Objective

Decision Analysis

There is a wide application area of evolutionary algorithms, such as combinatorial
optimization, expert systems, engineering applications, wired and wireless communi-
cation systems, medicine [67], design optimization, machine learning and parameter
estimation problems [68]. Zhang et al. refer evolutionary computation as an opti-
mization methodology inspired by the evolutionary mechanisms in the nature. The
authors claim that, in the literature, while there are studies that consider evolutionary
computing algorithms as a form of machine learning techniques, there are also studies
that use machine learning techniques to enhance evolutionary computing algorithms

[69].

Genetic algorithms, a subgroup of evolutionary algorithms, are mostly used to im-
prove the prediction performances of machine learning methodologies either by fea-
ture elimination or parameter estimation. On the other hand, there are also many
works that consider genetic algorithms as machine learning techniques rather than as

an approach to enhance them.

As a parameter optimization tool, genetic algorithms can be employed by encoding
a set of parameter values as a form of chromosome. The system optimizes the set
of parameters which are represented by these chromosomes [/0l]. Goletsis et al. and
Guvenir et al. use genetic algorithms in multi-criteria classification [68, [70]. Goletsis
et al. discuss a multi-criteria sorting method to classify the cardiac beats as ischemic

or not. In this work, genetic algorithm is applied in the training phase to determine
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the model parameters, namely the thresholds and weight values [68]. In another study
that uses genetic algorithm for parameter estimation, Guvenir et al. employ a multi-
criteria inventory model and they determine the weights of criteria by a genetic al-
gorithm [[/0]. De Jong also discusses the use of genetic algorithms as a parameter
optimization/estimation tool [71]. The study of Kim et al. and the references therein
propose genetic algorithm as a parameter estimation tool for ANN approach. Deter-
mining parameters of back-propagation network and training the weights of neural

network are introduced as the genetic algorithm’s two potential areas of usage [72]].

Some works in the literature employ genetic algorithms as a feature elimination tool.
Huang and Wang propose a SVM algorithm and they discuss the utilization of genetic
algorithm as a feature selection tool and parameter optimization methodology. The
proposed algorithm optimizes kernel and SVM regularization parameters and designs
the fitness function by considering classification accuracy, the number of selected fea-
tures and the feature cost such that a chromosome with high classification accuracy,
a small number of features and low total feature cost reach a high fitness value [[73]].
Deekshatulu et al. propose a classification algorithm based on the K '-nearest neigh-
bor and genetic algorithm for heart disease. In this study, genetic algorithm is used
as a feature elimination method and as a tool to rank the features which are used in

classification [67]].

Genetic algorithms are usually used to improve the performances of artificial intel-
ligence techniques and to determine the architectural factors such as feature subset,
number of hidden layers, activation functions and the connection weights between
layers. For example, genetic algorithm can be used to feature discretization and de-

termination of connection weights for ANN [[74]].

Chen refers evolutionary-based genetic algorithms as a machine learning and an ar-
tificial intelligence-based inductive learning technique [75)]. Smith et al. propose an
evolutionary algorithm as a classification method for the Parkinson’s patients. The
evolutionary algorithm employed in this study is referred as an implicit context rep-

resentation of a Cartesian genetic programming [76]].

Padgorolec and Kokol provide a self-adapting evolutionary algorithm for the induc-

tion of decision trees. The suggested model is used for diagnostic process optimiza-
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tion. The model intends to minimize the number of examinations, select the most
appropriate examination for a specific patient, optimize examination schedule and
maximize the equipment reliability. Diversity of genetic preservation is considered as
one of the most significant features of a successful evolutionary algorithm [77]. An-
other study that deals with the use of genetic algorithm for a decision tree induction
algorithm is conducted by Turney [[78]. In this study, each individual in the population
represents one set of biases and genetic algorithm is used to evolve a population of
biases for a decision tree induction algorithm. Corcoran and Sen propose a supervised
classification problem. It is an optimization problem whose aim is to develop a rule
set that maximizes the number of correct classifications of training set instances. The
authors use genetic algorithm to evolve structures representing sets of classification

rules [79].

In multi objective programming, genetic algorithms are used to identify non-dominated
(Pareto-optimal) solutions [68]]. In the existence of multiple objectives, the concepts
of dominance and Pareto-optimality take the place of the conventional optimality
theories. A solution x said to dominate solution y if and only if x is as good as y
in terms of all objectives and better in at least one objective. Pareto-optimal set is
the non-dominated subset of all feasible solutions [80]. Convergence to the Pareto-
optimal front and maintaining a diverse set of solutions are the two main goals of
multi-objective optimization algorithms. Evolutionary approaches suit well to the
multi-objective problem characteristics [81]. Multi-objective evolutionary algorithms
(MOEAs) work with a population of solutions and while preserving the diversity of

solutions, they find multiple non-dominated solutions in a single run [4].

There are various types of MOEAs such as penalty based approaches, non-elitist and
elitist MOEAs. Their application areas are also various. In their book, Coello et al.
categorize these application areas as engineering, scientific, industrial and miscella-
neous. Medicine is identified as a sub-category of scientific applications where clas-
sification and prediction is considered under miscellaneous applications [82]. Among
MOEAs, elitist approaches have certain advantages. As a part of elitism, the solutions
of current generation are compared with previously found best non-dominated solu-
tions. By this way, it helps to obtain better convergence by ensuring the preservation

of good solutions once they have been found. Additionally, elitism results in positive
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contribution to the speed of genetic algorithm [4]. NSGA-II [4], strength Pareto evo-
lutionary algorithm (SPEA)[83]], Pareto archived evolution strategy (PAES) [84] and
multi-objective messy genetic algorithm (MOMGA) [85] are the main elitist MOEAs.

NSGA-II is an elitist non-dominated sorting based multi-objective evolutionary algo-
rithm in which solutions are ranked according to their non-domination and assigned to
the fronts. The aim of the algorithm is to converge near the true Pareto-optimal set in
the presence of multiple objectives in the problem. Together with non-domination, the
algorithm also promotes diversity preservation using crowding comparison. If two so-
lutions have different non-domination ranks (i.e. belongs to different non-dominated
fronts), the solution with the lower (better) rank is given priority to be selected for the
next generation. If two solutions have the same non-domination ranks (i.e. belong
to the same front), the solution which is located in a less crowded region is favored
in order to preserve diversity. Due to the elitist approach, the solutions of current
generation are compared with previously found best non-dominated solutions. The
algorithm aims to terminate with a set of solutions that converge to the true Pareto-

optimal front [4]].

After the literature review presented above, we can now state the position of our study
in the literature. In this study, we develop methods for binary classification that inte-
grates multi-criteria decision analysis and evolutionary algorithms. When the position
of PCM utilized in this thesis is investigated in the context of MCDA in detail, it can
be said that, type of the problem it addresses is classification/sorting and as the criteria
aggregation model it uses additive utility functions. To specify the model parameters,
PCM uses Mixed-Integer Linear Programming as the mathematical programming for-
mulation. In order to measure the classification/sorting optimality with respect to the
given classifications of alternatives, it evaluates the number of false positive and false
negative classifications. In particular, while it minimizes the number of false neg-
ative classifications in the objective function, via a constraint, it forces to keep the
number of false positive classifications under a certain level. However, as it is indi-
cated by Conway et al. the linear models’ classification performances are promising
only if the alternatives are perfectly separable [86]. Thus, to develop classification
algorithms which also perform good in the existence of more complex problems, we

introduce a novel approach that integrates MCDA with evolutionary algorithms.
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In this context, we develop PCM as a parametric model. In this way, PCM returns a set
of solutions (instead of a single solution) spread over the Pareto-optimal front in the
space of true positive and true negative responses. Thus, while some of these solutions
have high sensitivity, some have high specificity. Then, the evolutionary algorithms

are used to diversify the solutions and improve the classification performances.

Throughout this study, we look for answers to the following research questions:

e Does the integration of evolutionary algorithms with the Mixed-Integer Linear
Programming model PCM provide better results than just randomly generating

the initial solution set of evolutionary algorithms?

e Can the proposed classification algorithms compete with the well-known method-

ologies in the literature, in terms of prediction performance?

e What are the pros and cons of using the proposed classification methods? Are
they promising for the cases where one class of observations is rare compared

to other, such as general screening?
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CHAPTER 3

MODEL DEVELOPMENT

We begin this chapter with definitions and descriptions of performance measures used
to evaluate a classification algorithm. Then, we outline the prediction procedure of
the classification algorithms developed in this study. Next, we explain the PCM in
detail. After that, we discuss the basic characteristics of the proposed evolutionary
algorithms and we explain PCM+NSGA-II and PCM+RECGA as classification algo-
rithms, in a comprehensive manner. At the end of the chapter, the hyper-parameter

optimization process conducted for the proposed model is explained, as well.

Throughout this chapter, the existence and absence of a disease is numerically repre-
sented by 1 and O as the values of the binary response variable for each of the patients
(observations), whereas the words “positive” or “negative” define the same status,

respectively. Possible results of classification are presented in Table [3.1]

Table 3.1: Possible Results of Classification (Contingency Matrix)

Actual Class
1 0

1 | True Positive (TP) | False Positive (FP)

Predicted Class

0 | False Negative (FN) | True Negative (TN)

We define sensitivity (true positive rate), specificity (true negative rate), accuracy,
Positive Predictive Value (PPV), Negative Predictive Value (NPV), False Positive Ra-
tio (FPR) and False Negative Ratio (FNR) which will be used to evaluate the success
of the classification algorithms. These values are calculated as indicated in Equations

-[3.7]below, where TP (True Positive) and TN (True Negative) are the sets of pa-
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tients that are classified accurately, and FP (False Positive) and FN (False Negative)

are the sets of patients that are classified incorrectly.

| TP|

Sensztzmty = m .

(3.1)

Sensitivity is defined as the proportion of true positives that are correctly identified
by a model and it represents the success of the model in detecting the existence of a

disease [87]].

[TN|

_ 32
TN| + [FP) (3-2)

Speci ficity =
Specificity is the proportion of the true negatives that are correctly identified by a
classifier and it estimates the success of the model to identify negative observations

[871].

A good classifier is the one that has both high sensitivity and specificity. As the
classifier’s ability to differentiate the classes correctly increases, its sensitivity and
specificity increases, too. [[88]]. Sensitivity and specificity are inversely proportional

[89].

TP + TN
Accuracy = | | ) (3.3)
TP + TN + FP + FN|
Accuracy represents the rate of correct classifications [87]].
| TP|
PPV = ) 34
TP| + |FP] 34)

Positive predictive value of a classifier is the likelihood that an observation classified

as positive actually has the disease [88]], [89].

[TN|

NPV = ——___
|TN| + |FN|

(3.5)

Negative predictive value of a classifier is the likelihood that an observation classified
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as negative actually does not have the disease [88]], [89].

FPR =1 — Specificity. (3.6)

FNR =1 — Sensitivity. (3.7)

To incorporate sensitivity and specificity values in a single measure, we define a com-

bined performance measure, Fscore:

2 x Sensitivity x Speci ficity

F'score =
Sensitivity + Speci ficity

B 2 x |TP| x |TN]|
2% |TP| x |TN| + |TP| x |FP| + |TN| x [FN|’

Fscore is the harmonic mean of sensitivity and specificity. Fscore = 0, whenever
sensitivity or specificity is zero, and Fscore = 1, when sensitivity and specificity
are one. Thus, it takes a value in the interval of [0, 1]. It takes lower values as the

difference between sensitivity and specificity grows.

In the literature, another combined performance measure, Fmeasure is commonly

used. It is defined as

2 x Precision x Recall

Fmeasure =
Precision + Recall

where Precision = PPV and Recall = Sensitivity, according to the given termi-

nology. Thus,

2 x |TP|
2 x |TP| + |FP| + [EN|’

Fmeasure =

However, there are some shortcomings of the Fmeasure. It does not take into account
the true negatives. It focuses on one class only and it is biased by the class that

constitutes majority [90]].

Let us clarify these shortcomings with the following examples.
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Example 1: Assume that, there are 100 positive and 100 negative observations in
Case #1. In Case #2, the number of positive observations is equal to the previous
case, but there are one million additional negative observations. Assume that, Table

[3.2] presents the contingency matrices after classification of the observations for both

cases:

Table 3.2: Contingency Matrices of Example 1

Actual Class Actual Class
Case #1 1 0 Case #2 1 0
T 2 1100 500 [B ¢ 1100 50
2 & 2 &
=] ) =} )
S © ol o 50 |8 9 o 01000050
=W (=W

Some performance indicators for Case #1 are as follows:

Sensitivity = Recall =1,
Speci ficity = 0.50,
Accuracy = 0.75,
Precision = 0.67,
Fmeasure = 0.80,

F'score = 0.67.

However, the same performance indicators for Case #2 are:

Sensitivity = Recall =1,
Speci ficity = 1,
Accuracy = 1,

Precision = 0.67,
Fmeasure = 0.80,

Fscore = 1.

Note that, in Case #2, even the model correctly classifies one million additional obser-

vations, Fmeasure does not change. This is because its formulation does not consider

24



true negatives. However, Fscore properly reflects the models’ capability of classifying

negative observations, for both cases.

Example 2: Assume there are 100 positive and 10 negative observations and a model

classifies all of them as positive. Table [3.3|presents the contingency matrix.

Table 3.3: Contingency Matrix of Example 2

Actual Class
1 0
1| 100 10
Predicted Class
0 0 0

According to the given classifications, the relevant performance indicators are as fol-

lows:

Sensitivity = Recall = 1,
Speci ficity =0
Accuracy = 0.91,
Precision = 0.91,
Fmeasure = 0.95,

F'score = 0.

As itis observed, even when none of the negative observations are classified properly,
Fmeasure is quite high. However, Fscore takes value of zero which indicates this

absolute misclassification.

Example 3: Assume in Case #1 and Case #2, there are one million negative and
10 positive observations. In both cases, the models’ performances on positives are
perfect. In Case #1 and Case #2, two and 10 negative observations are classified

incorrectly, respectively.

The contingency matrices for this example are given in Table [3.4]
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Table 3.4: Contingency Matrices of Example 3

Actual Class Actual Class
Case #1 1 0 Case #2 1 0
= =
§ % 1110 2 § % 0110 10
T O T O
E 0| O] 999998 ;;3 0| 0] 999990

According to the given classifications, the performance indicators for Case #1 are as

follows:

Sensitivity = Recall =1,
Specificity = 1,
Accuracy = 1,

Precision = 0.83,
Fmeasure = 0.91,

F'score = 1.

However, same performance indicators for Case #2 are:

Sensitivity = Recall = 1,
Speci ficity = 1,
Accuracy = 1,

Precision = 0.50,
Fmeasure = 0.67,

F'score = 1.
Even though there is no significant amount of difference in the models’ successes for
these two cases, Fmeasure performances of the models are significantly different.
Example 4: There are one positive and 150 negative observations. Assume that, the
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model classifies the only positive observation correctly, and it misclassifies only three

of the 150 negative observations.

The contingency matrix of the given classification is presented in Table[3.5]

Table 3.5: Contingency Matrix of Example 4

Actual Class
1 0
1 1 3
Predicted Class
0 0 147

The performance indicators are:

Sensitivity = Recall = 1,
Speci ficity = 0.98,
Accuracy = 0.98,
Precision = 0.25,
Fmeasure = 0.40,

F'score = 0.99.

Since precision is low, Fmeasure also takes a low value. The precision of 0.25 indi-
cates that, the probability that a patient classified as positive by the model actually has
the disease is 25%. Even this rate is quite low, there is no false negative observation.
Thus, there is no risk in terms of human health but only financial burden occurs. This
indicates that, for three patients who actually do not have the disease, since the model

indicates them as positive they have to go under further investigation.

Our priority in this study is human health rather than the financial burden. Thus,
Fscore is selected to be used in this thesis. Also, Fscore is more successful to evaluate
the models’ capability of distinguishing between classes, as seen clearly in Examples

1-4.

There are some other studies in the literature that evaluate the model performances

using the harmonic mean of sensitivity and specificity (Fscore) [91], [92], [93], [94].
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The measures which consider sensitivity and specificity together are generally used
to evaluate performance of a model in separating positive and negative observations.
In one of these studies, the author specifies that the harmonic mean of sensitivity
and specificity is a ROC (receiver operating curve) based measure where it reflects
the trade-off between true positive and false positive rate (i.e. sensitivity and 1-
specificity) and it is desirable to deal with imbalanced data [92]]. In another study,
the authors refer harmonic mean of sensitivity and specificity as one of the operating
point selection strategies to seek the point that maximizes the harmonic mean on the
ROC curve [91].

In the following paragraphs, we give an overview of the algorithms proposed in this
study. Recall that, PCM tries to fit its model parameters consistent as much as possible
with the given classifications in the training set. By solving PCM, we obtain a set of
solutions which consists of factor weights to be used in the utility functions to classify
the patients. We run the model with different L values, where L stands for the number
of false positive classifications that the model allows. Thus, for different values of L,
the solutions have different sensitivity and specificity values. For small values of
L, PCM allows less false positive classifications and thus the solutions have higher
sensitivity. However, since there is a trade-off between sensitivity and specificity,
specificity values of these solutions are relatively low. For the cases where L takes
larger values, the model finds solutions with high specificity and low sensitivity. Since
some of these solutions are characterized with their high sensitivity and the others
with their high specificity, we utilize evolutionary algorithms NSGA-II and RECGA
after PCM to achieve good solutions with both high sensitivity and high specificity,
simultaneously. Thus, note that, PCM is not developed for prediction purposes, but
only to generate the initial solution set which is then improved by the evolutionary

algorithms.

Once the integrated algorithms, PCM+NSGA-II and PCM+RECGA provide a set of
solutions, these solutions are used to classify a set of patients that the models have
never seen before. For this purpose, the factor weights for the patients in test set
are calculated by linear interpolation. Then, their additive utilities of having and not
having the disease are found (U and U, respectively). The additive utility values

of a patient are associated with the values that he/she has in terms of each disease
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predictor. Final class prediction of a patient p is made by comparing these additive
utility pairs for each solution. If the number of solutions where U(p) > U(p) is
greater than U(p) < U(p), the final prediction for the patient p becomes positive. In
other words, the final class prediction of an observation is made by majority voting.
Since the final decision is not based on a single solution, it can be said that, majority

voting can contribute to have a more robust decision making process.

All of the notations used in the introduced models are listed in Table[3.6] The pseudo-
code given in Algorithms |I{and [2{ summarize the general prediction procedure of the
classification algorithms developed in this study and the Figure [3.1] illustrates the
procedure followed in Algorithm I}
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Table 3.6: Table of Notations for PCM, NSGA-II and RECGA

F set of factors, F = {1,2,..., F'}

S training set

St set of positive observations in training set
S set of negative observations in training set
1% validation set

1% set of positive observations in validation set
1 2 set of negative observations in validation set
S test set

Oy set of all values of factor f that appear in S,

Of = {Ofl,OfQ, ...,Ofdf} stoy, <op, <...<O0p,

of;: it" value of factor f, when factor values are in ascending order

xf(p) | value of factor f for observation p

x(p) | vector of factors of observation p

z(p) = (z1(p), v2(p)..., v (p))

us(.) | utility function of factor f for positive classification
Uf(Ofl) =0Vf e F, Uf(Ofi) = uf(ofz:—1) + Wri-1) Vie 2, ..,df
ug(.) | utility function of factor f for negative classification

af(Ofdf) =0VfeF, af(Ofi) = af(Ole) +my) Vi € df —1,...,1

U(p) | utility function of observation p for positive classification,

that is U (p) = 37 uys(.)

U(p) | utility function of observation p for negative classification,

that is U (p) = ij:l ug(.)

Wy weight increase in utility u; due to the i*” interval of factor f
wyi 2 tand wy; = up(og,,,) —ug(oy,)
my; weight increase in utility s () due to the i*” interval of factor f

myp; > tand my; = uyg(oy,) —us(oy,,,)

W set of weight vectors: W = {w; : f € {1, ..., F}}
where wy = (wf1, Ws2, ..., Wir—1)
M set of weight vectors: M = {m;: f € {1,...,F}}

where my = (mygi, myga, ..., Mar—1)
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Table 3.6: Table of Notations for PCM, NSGA-II and RECGA

Ind(p) false classification indicator for observation p
Ind(p) = 1if classification is false; 0 0.w.
e(p) error term for observation p, e(p) € RT
s,t small positive constants
L false positive classification allowance
PCM(L) PC M model with false positive classification allowance of L
(W*(L)M*(L)) Optimal solution of PCM (L)
y(p) actual value for the response variable of observation p, y(p) € {0,1}
y(p) predicted value for the response variable of observation p, y(p) € {0,1}
Dre probability of real crossover
Dic probability of linear crossover
Dm probability of mutation
P, set of parent solutions at generation ¢
Q¢ set of offspring that derived from P;, at generation ¢
R combined set of parent and offspring population at generation ¢
Fr set of all fronts
Fry k™ front
PopulationSize size of a generation of NSGA-II
GenerationSize size of solutions selected to be carried to next generation
NumberOfGenerations | generation number of NSGA-II until termination
threshold threshold for fitness function (Fscore) to be carried to next generation
minFinalSetSize lower limit of number of final set of solutions of RECGA
PopulationSize size of a generation of RECGA
X a set of solutions
CP(p) counter for positive predictions
CN(p) counter for negative predictions
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Algorithm 1 General Prediction Procedure of a Classification Algorithm

1:

2:

13:

14:

15:

16:

17:

18:

19:

20:

21

22:

23:

24:

25:

26:

27

for each p € S do
Initialize the counter for positive and negative predictions C'P(p) = 0 and
CN(p) = 0, respectively.
end for
Solve the classification algorithm, and let (W' M?) 7 € {0,1,...n} be the final
set of solutions generated by the classification algorithm.
for each (W', M*) do
Calculate utility functions u¢(-) and w¢(-) for each factor using the procedure
GenerateUtilityFunctions
for p € S do
Set total utility value U (p) = 0 and total disutility value U(p) = 0
for each f € F do
Calculate utility functions u¢(z¢(p)) and us(zs(p)) for each factor
using the procedure GenerateUtilityFunctions
U(p) < U(p) +ug(zs(p))

U(p) < U(p) + s (zy(p))
end for

if U(p) > U(p) then
CP(p) < CP(p)+1
else
CN(p) < CN(p)+1
end if
end for
end for
. forp € S do
if CP(p) > C'N(p) then
Prediction for observation p is positive, that is, y(p) = 1
else
Prediction for observation p is negative, that is, y(p) = 0
end if

. end for
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Algorithm 2 GenerateUtilityFunctions
1. foreach f € F do

2: uf(ofl) =0

3 ﬁf(ofdf) =0

4: for eachi € {2,...,df} do

5 uf(Ofi) = U’f<0f1:—1> + We(i—1)
6: end for

7: foreachi € {df —1,...,1} do

8: us(og,) = us(og,,) +my
9: end for
10: end for

11: foreachi € {1,2,...,df —1} do

12: For any a € R, with o, < a < oy, ,, calculate v € (0,1) that satisfies
@ =of + (1= 1)og.,

13: up(a) = yur(or) + (1 —y)ur(og,,)

4 ug(a) = yug(or) + (L= 7)ug(os,,,)

15: end for

16: For any real number a ¢ [oy,0y,], calculate us(a) and u by lin-
ear regression using points (o, ug(0y,)), (05, us(0y,)), - - -, (05, us(os,)) and

(Ofl ] a/f(Ofl))ﬁ <0f27 af<0f2)>7 ) <0fdf7 ﬂf(ofdf))’ respectively.
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The Figure [3.2] illustrates GenerateUtilityFunctions algorithm for an example. Sup-
pose the only factor to consider is body mass index (BMI) and there are three observa-
tions in the training set. Assume a classification algorithm gives a solution (WW*, M*)
due to the classifications of observations given in the training set. The resulting solu-
tion (W*, M*):[

* * * * 1
Wha 1 wBMLQ] , [mBMI,l mBMI,Q] represents the incremental

weights correspond to each factor value.

Due to the monotonicity assumption (which will be explained later) higher factor
values are more likely to have the disease. Then, the thinnest patients’ utility for pos-
itive classification and the fattest patients’ utility for negative classification are zero
(i.e. uppr(16) = 0, upp(40) = 0). Once the GenerateUtilityFunctions algorithm
assigns these values, it calculates the utilities of each factor value for negative and
positive classification, by summing up the incremental weights. Since the BMI of
the patient in the test sample is different than the BMIs of patients in training sam-
ple, his corresponding utilities are calculated by linear interpolation that is part of the

GenerateUtilityFunctions algorithm.

Now, let us explain the Parametrized Classification Model (PCM), which is solved
to bring a set of solutions. Note that, a solution is represented with (W, M) and it is

comprised of weights wy; and m;, which are the decision variables of the PCM.

3.1 Parametrized Classification Model (PCM)

PCM is a UTADIS based MCDA classification model, where UTADIS is a method
which aims to determine the thresholds of groups in a way to minimize the classifi-
cation error. However, since PCM identifies the class of an alternative by comparing
utility pairs, there is no threshold to be determined. According to this characteris-
tic, the model can also be considered as a variant of M.H.DIS method. Recall that,
M.H.DIS creates 2(¢ — 1) additive utility functions to classify alternatives into ¢
classes. In our problem, since there are two classes under consideration (existence
of the disease and absence of the disease), two utility functions, U and U, which rep-
resent the utility function that characterizes the category of patients with and without

disease, respectively, are defined. Since the model determines the class of an alter-
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native by comparing the corresponding global utility pairs in a hierarchical manner,
the classification problem we are dealing is addressed as a sorting problem with two

classes.

This approach aims to find preferential parameters consistent with the decision maker’s
preferences in terms of previous decisions, as much as possible. Thus, a training sam-

ple is used as a model of decision maker’s preferences as in [S0], [48]].

Using the notations defined at Table PCM is formulated as follows:

min  zpeary = » . Indfp) (3.8)
peST
F -1 F df-1
s.t ZZwﬁ—Zmel+e(p) >s Vpe8t,j:xs(p) =04 €0y
f=1 i=1 f=1 i=j
(3.9)
F df-1 F j-1
ZZmﬁ—ZZwﬂ+e(p) >s VpeS ,j:ap(p) =05 €0y
f=1 i=j f=1 i=1
(3.10)
e(p) —M-Indlp] <0 VpeS, (3.11)
> Indp) <L (3.12)
peES—
e(p) =0 (3.13)
W g > t, my; >t (314)
F df-1 F odf-1
S>> wp=1, > > mpu=1 (3.15)
F=1 i=1 f=1 i=1

where M is a large positive number.

The observations are described with F factors, and each factor is assumed to have
df different levels. The number of levels for a specific factor is defined with respect
to the values observed in the training set. Note that, for an observation, as the value
of a factor takes higher values, it is assumed that, it has a greater potential to be
classified as positive. Therefore, the relation between the factor values and the given
classification of an observation in training set is represented with a monotonically
increasing function. We also call these factor values (wy; and my;) as incremental

variables.
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The model aims to develop a set of additive utility functions, such that, the values of
the decision variables (wy; and my;) are consistent with the objective of the model.
In Constraint sets -[3.10), an error term e is used and when e(p) takes a positive
value, then the observation p is noted as misclassified. The error term e(p) is equal
to zero, if the observation p is classified correctly. These constraint sets can also be

given as follows:

U(p) — ﬁ(p) +elp)>s VpeS8St,j:xpp) =o€ 0y (3.16)
(p)+elp)>s Vpe8S,j:xs(p) =op €0y (3.17)

<

S
|

<

where U(p) and U (p) are utility functions of observation p for positive and negative

classifications, respectively.

For a misclassified observation p € ST, when U(p) < U(p), the error term is equal
to U(p) — U(p) + s. Similarly, when U(p) < U(p), for this misclassified observation
p € 8™, the error term is equal to U (p) — U (p)+s. Note that, a small positive constant

s ensures strict inequality.

For a misclassified observation with a positive error term (e(p)), corresponding indi-
cator variable Ind[p] is equal to 1. Constraint forces that at most L number of
observations in set S~ can be misclassified. In other words, it ensures to keep false
positive classification error below a certain level, while objective function minimizes

the number of false negative classification error.

The non-negativity and monotonicity requirements of the model are ensured in Con-

straints (3.13) and (3.14)), respectively. The Constraint (3.15]) normalizes the global

utilities in the interval [0,1].

It is important to note that, the proposed model is able to deal with categorical, dis-

crete and continuous predictor (independent) variables.

In short, with respect to the given classifications of patients in the training sample,
PCM(L) finds the optimal values for the incremental variables (w¢; and my;). Its
objective is minimizing number of false negative classification while keeping the

number of false positive classification below the specified level L. Solving PCM
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for different values of parameter L results in solutions with different number of false
positive and false negative classifications. For bigger values of the parameter L, PCM
allows greater amount of false positive misclassification and achieves smaller false
negative classification. Thus, for each L value, PCM finds different optimal values of
decision variables, wy; and m; and the initial populations of evolutionary algorithms

are obtained by these different L levels.

The Figure [3.3] describes the sensitivity and specificity values of the solutions ob-
tained by solving PCM with different values of L. Assume the training set consists
of 10 patients with and 10 patients without the disease. Since the objective function
minimizes the number of false negative classifications and by means of a constraint,
it is intended to keep the number of false negative classification under the given value
of L, solving PCM with L € {0, 1,...,10} brings different number of false positive
and false negative classifications. In the figure, these are represented with | F'P| and
| FN|. The graph at the bottom of Figure [3.3|illustrates the two dimensional space of
true positive and true negative responses that the solution set spread over the Pareto-

optimal front.
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3.2 Basic Characteristics of the Proposed Evolutionary Algorithms NSGA-II
and RECGA

Each individual (W, M) pair in the initial population acquired by PCM, is a candi-
date parent to produce an offspring. Except the first generation, population size is
set to the PopulationSize for each generation. Therefore, the number of solutions
is increased up to the PopulationSize by crossover and mutation mechanisms. The
crossover probability is 100% since both offspring and parent populations are carried
to the next generation and the selection is made from all of these solutions. Real and

linear crossover operations are used randomly.

We have designed genetic operators RealCrossover (Algorithm [3)), LinearCrossover
(Algorithm {) and Mutation (Algorithm [S)) in specific to our problem characteristics.
Now, let us explain these operators with a small example. Consider a small instance
having four factors (F = {1,2,3,4}), where they have two, four, three and five
distinct values, respectively. Hence, the sizes of weight vectors (w1, my), (wq, m2),
(w3, m3), and (wy, my) are one, three, two and four, respectively. Let (WP AMP!)

and (TW7?, M*??) be two parent solutions and are given as follows:

wi; = 0.20 m1 = 0.01
wel — w2 = 0.05 0.18 0.02 Pt — mo = 0.02 0.12 0.05
w3z = 0.09 0.03 m3z = 0.19 0.08
wg = 0.10 0.17 0.14 0.2 mg4 = 013 0.10 0.23 0.07
wp; = 0.03 mip = 0.12
Wr? — wy = 0.08 0.17 0.04 P2 — mo = 0.15 0.17 0.11
w3z = 0.09 0.14 m3 = 0.04 0.04

wg = 0.07 012 0.15 0.11 my = 0.07 0.05 0.17 0.08

Assuming the crossover point is between 3"¢ and 4" rows, the real crossover takes
wy, we and ws from one parent and w, from the other parent for both of the weight

vector sets W and M. The resulting offspring (1, M°') is as follows:

wy; = 0.20 mp = 0.01
wel — wz = 0.05 0.18 0.02 Mol — mg = 0.02 0.12 0.05
w3z = 0.09 0.03 m3z = 0.19 0.08
wyg = 0.07 0.12 0.15 0.11 my = 0.07 0.05 0.17 0.08
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The linear crossover mechanism produces a convex combination of parents using a

randomly chosen multiplier, v € (0,1). If we employ the same parents (W?! MP!)

and (TWP2, MP?), the vectors of the child are given as follows:

wez = |27
w3 =

wq =

mi1 =

mez = |™

m3

myg =

70.20 + (1 — 7)0.03
70.05 + (1 — )0.08
70.09 + (1 — )0.09
40.10 + (1 — 7)0.07
~0.01 + (1 —7)

70.02 + (1 —7)0.15
70.19 + (1 — 7)0.04
70.13 + (1 — 7)0.07

v)0.12

70.18 4 (1 — 7)0.17
70.03 4 (1 — 7)0.14
70.17 4 (1 — 4)0.12

70.12 + (1 — 7)0.17
70.08 + (1 — 7)0.04
~70.10 + (1 — ~)0.05

70.02 + (1 — 7)0.04

70.14 + (1 — 7)0.15

40.05 + (1 — 4)0.11

70.23 4 (1 — 4)0.17

70.2 4 (1 —~)0.11

70.07 + (1 — 7)0.08

The mutation operator randomly chooses a factor and changes its weights by adding

arandomly chosen value ¢ from a given continuous interval. Note that, since wy; and

my; are allowed to take only positive values, if any of them is changed to a negative

value, it is reset to the small positive constant, ¢. Assume that the second factor is

chosen (k = 2) and let 0 chosen from the range [—0.5,0.5] be equal to —0.4. If we

apply the mutation operator on (WW°!, M°'), then it will be changed to the following

mutated individual.

wy = 0.20

w2 = 0.01 0.14
w3 = 0.09 0.03
wyg = 0.07 0.12

0.15 0.11

MOS —

my = 0.01

mo = t 0.08
m3 = 0.19 0.08
mg = 0.07 0.05

0.01

0.17 0.08

Either it is mutated or not, a new offspring should be normalized before it is added to

the population. In other words, the equalities EJJ;I Zfi L wp; = 1and
Zle Zfi , my; = 1 must hold. Algorithms (3| - @ illustrate real crossover, linear

crossover, mutation and normalization procedures, respectively.
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Algorithm 3 RealCrossover

1: for f € F do
2: foric {1,2,...,df —1} do

3: wp; =0,mp =0

4: end for

s: end for

6: Randomly choose a crossover point cp from the set {1,2,..., F'}

~

cfor f € {1,2,...,F}do
8: if f < cp then

9: fori e {1,2,...,df —1} do
10: Wy = W, My = My

11: end for

12: else

13: fori € {1,2,...,df —1} do
14: Wy = wh;, Mg =My

15: end for

16: end if

17: end for

18: Normalize the weights of (W, M)
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Algorithm 4 LinearCrossover

1. for f € Fdo

2: fori € {1,2,...,df —1} do
3 wg =0,mp =0

4: end for

5. end for

6: Randomly choose a multiplier v € [0, 1]
7. for f € {1,2,...,F} do
8: fori e {1,2,...,df — 1} do

9: wp; = ywy; + (1 —7)wy
10: myp; = ymy; + (1 —y)m3
11: end for
12: end for

13: Normalize the weights of (W, M)

Algorithm 5 Mutation

1: Randomly choose a mutation point &k from the set {1,2,..., F'},
2. fori € {1,2,...,df —1} do
3: Randomly choose a number y € [—0.5,0.5],

4: wg; = max{wy; + 7,1},
5: my; = max{myg; + 7,1},
6: end for

7. Normalize the weights of (W, M)
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Algorithm 6 Normalize
1: Input: A solution (W, M),

2: Let sumw = 0 and summ = 0,
3. for f € Fdo
4: fori e {1,2,...,df — 1} do

5: SUMW 4— SUMw + wg;
6: summ <— summ + myg;
7: end for

8: end for

9: for f € Fdo

10: fori e {1,2,...,df — 1} do
11: Wy 4= W/ sumuw

12: Mmyi <— Mg/ summ

13: end for

14: end for

15: Output: Normalized solution (W, M).

In the following section we describe the use of genetic operators in the evolutionary

algorithm NSGA-II and we also explain PCM+NSGA-II as a classification algorithm.

3.3 PCM+NSGA-II

NSGA-II algorithm starts with a random initial parent population and by performing
crossover and mutation operations on randomly chosen two parents from this set, an
offspring is created. We refer this procedure as GenerateOffspring (Algorithm [7).
The offspring generation procedure iterates until the union of existing and new solu-
tions, R;, reaches to a predetermined size. Through non-dominated sorting approach
(referred as fast-non-dominated-sort in [4]]) each solution in set R; is assigned to a
front. Solutions belonging to the first front F'ry, are the non-dominated solutions of
the set R;. Once these solutions are found, they are set apart. Non-dominated solu-
tions of the remaining set assigned to second front, F'r,. This procedure continues

until all front members are found. To compose the set of solutions to be carried to the
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next generation, individuals are selected starting with the first front, where the solu-
tions with lower (better) rank are preferred. This procedure is followed until there is
no more front whose all members can be carried to the next generation without ex-
ceeding predetermined population size. At this point, if the selected solutions did not
reach the population size, the solutions of the next front is sorted by their crowding
distances which are based on crowding-distance-assignment in [4]. Then the solu-
tions are selected based on crowding comparison approach which favors the solutions
located in less crowded regions. The solutions are selected according to this method

as members of next generation, to preserve diversity of solutions.

Once a population is formed, selection, crossover and mutation mechanisms are per-
formed to create the new population and the procedure iterates in a similar manner

until a termination criterion is satisfied.

As previously mentioned, the initial population of NSGA-II algorithm is obtained by
solving PCM for different values of parameter L. The aim of employing NSGA-II is

to achieve a better population (solutions) in terms of both sensitivity and specificity.

To measure the quality of new solutions, (w,m) values are utilized to identify the
classes of the patients in a sample, V, which has no common members with the train-
ing set, S. Performance of a solution is evaluated through its sensitivity and speci-
ficity values. Namely, we validate the solutions in a generation by using a dataset of
new members that are not used in the training set that we have utilized before, in order
to avoid overfitting. Then, a selected subset of solutions (of a size that is at most equal
to GenerationSize) is carried to the next generation. Selection of solutions is made by

utilizing fast-non-dominated- sort and crowding-distance-assignment operations.

In non-domination ranking, the criteria are sensitivity and specificity. Assume that,
(W, M) is a solution and sensitivityw,ary and speci ficityw, i are true positive and
true negative rates obtained by this solution, respectively. Then, (W, M) dominates
(W2, M?)if

sensitz’vity(wl M) > SGTLSZ't?;U?;ty(WQ ,M?)
and

speci ficitywn ary > speci ficityyz a2y
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or

sensitivitym ) > SENSIIVItY w2 ar2)
and
speci ficitywn ay = speci ficitymy2 p2).

In this case, (W, M) is called as non-dominated if no other solution dominates it.

Figure [3.4]illustrates the flow chart of PCM+NSGA-IL
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Figure 3.4: Flow Chart of PCM+NSGA-II
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In our problem setting, there are finitely many different values of sensitivity and speci-
ficity pairs. Therefore, there may exist many solutions which have the same sensitiv-
ity and specificity values. Thus, as the number of generations increases, the diversity
of solutions decreases. To preserve diversity, we keep one solution from the set of
solutions which have the same sensitivity and specificity values. Otherwise, as the
generation number increases the diversity is lost. Besides that, the crowding distance
operator is another diversity preservation mechanism of the algorithm. We encourage
the preservation of diversity in each iteration to have a greater chance of finding better

solutions at the end of the algorithm.

When the algorithm terminates, we obtain a set of solutions which is comprised of
the variables (w, m). Then, the classification of a new patient from the test sample is
determined with the same methodology that is used before (see Algorithm[I]), where
the incremental values for the patients in test sample, S, are found by linear interpo-
lation. Their global utilities, U and U are calculated. Each solution makes a decision
by comparing these global utilities. The counters that counts number of votes for
positive and negative prediction for a patient are kept and the final classification of
a new patient is determined by comparing these counter values, based upon majority

voting.

In a nutshell, first, PCM provides the initial parameters and then the evolutionary
algorithm NSGA-II tunes these parameter values using a separate set. Finally, the
resulting solutions are tested with a test set to measure the performance of the model.
Prediction procedure with PCM +NSGA-II is given in Algorithm [§] The computer
code of PCM+NSGA-II is available in [95]].

Like PCM, PCM+NSGA-II is also able to deal with categorical, discrete and contin-

uous predictor (independent) variables.

Algorithm 7 GenerateO f fspring(P;)
1: Randomly choose two parents (W', M) € P, and (W? M?) € P,

2: Perform either a RealCrossover or LinearCrossover with probabilities p,.. and
Pie, Tespectively to obtain a new offspring (17?3, M3)
3: Perform mutation on (W3, M3) with probability p,,
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Algorithm 8 Prediction with PCM+NSGA-II

1: for eachp € Sdo

Initialize the counter for positive and negative predictions CP(p) = 0 and C'N (p) = 0, respectively.

2

3: end for

4: Tnitialize ¢ = 0 and P; = (wset, mset) = ()

5: foreach L € {0,1,...,|S7|} do

6 Solve PCM (L) and let (W™ (L), M™*(L)) be an optimal s
7 P+ P,U{(W*(L),M*(L))}

8: end for

9

: while t < NumberO fGenerations do

10: Qi+ 0

11: while | P;| + |Q:| < PopulationSize do

12: (W', M") < GenerateOf fspring(P: U Q:)

13: if All weights (wy; and m;) of offspring (W', M') >
14: Qr + Qe U{(W', M)}

15: end if

16: end while

17: Ry =P, UQ:

18: for each (W, M*) € R; do

19: Initialize sensitivity(i) = speci ficity(i) = 0

20: Calculate utility functions wuys(-) and wy(-)

GenerateUtilityFunctions,

olution,

0 then

for each factor

21: for p € V do

22: Set total utility value U (p) = 0 and total disutility value U (p) = 0,
23: for each f € F do

24 U(p) < Ul(p) + us(zs(p)).

25: U(p) « U(p) + iy (xs(p)),

26: end for

27: if U(p) > U(p) then

28: ip) = 1

29: else

30: y(p) =0

31: end if

32: end for

33 Let sensitivity(i) = number of obervalior‘fjrn‘ v with §(p)=1 i
34 speci ficity(i) = mmber ()f()bervali()‘n » inlv* with §(p) =0

35: F'r = fast-non-dominated-sort (Ry)

36: Eliminate duplicate solutions in the same front in F'r
37: Piyi=0andk =1

using

the

procedure
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Algorithm [§] continues

38: if |Pi41| + | Fri| < GenerationSize then

39: Piy1 = Py U Fry,

40: k=k+1

41: end if

42: Apply crowding-distance-assignment(Fry,)

43: Sort solutions in F'ry in a descending order of crowding distances
44 Piy1 = Piy1 U Fri[l : GenerationSize — | Pi41])]

45: Qi+1 = GenerateOf fspring(Piy1)

46: t=t+1

47: end for

48: end while

49: for each (W, M) € Pnumber0OfGenerations d0

50: Apply GenerateUtilityFunctions to calculate w(-) and @y (-)
51: for p € Sdo

52: U(p) :=0and ﬁ(p) =0

53: for each f € F do

54: U(p) < Ulp) + us(zs(p))
55 U(p)  U(p) + tig (s (p))
56: end for

57: if U(p) > U(p) then

58: CP(p)«+ CP(p)+1

59: else

60: CN(p) «+ CN(p)+1

61: end if

62: end for

63: end for

64: forp € Sdo
65: if CP(p) > CN(p) then

66: y(p) =1
67: else

68: y(p) =
69: end if

70: end for
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34 PCM+RECGA

Since a model can easily achieve high overall prediction rates just by assigning all the
observations to the class of the majority, for problems where the number of positive
observations is significantly smaller than the number of negative observations, achiev-
ing high true positive and true negative predictions simultaneously is more important.
To detect the presence or absence of a disease and develop a robust rare event clas-
sification algorithm for medical usage, we combine PCM with another evolutionary

algorithm, Rare Event Classifier Genetic Algorithm (RECGA).

The RECGA starts with an initial solution set X'. The algorithm starts with ran-
domly choosing two parents from X" and it performs either a real crossover or linear
crossover according to their probabilities of selection p,.. and p;., respectively. Then,
the offspring is subject to mutation with a given mutation probability p,,. This pro-
cess is repeated until the number of solutions in the current generation reaches to the
PopulationSize. The solutions are evaluated by the fitness function, Fscore. Fitness
function of a solution is calculated due to its classification performance in set V. The
set V' has no members from S, which is utilized by PCM as the training sample. Un-
til the number of solutions, whose fitness value is greater than a specific threshold
value, become greater than or equal to minFinalSetSize, the algorithm continues to

produce solutions via genetic operations.

Note that, the fitness value (Fscore) of a solution is calculated as a combination of
its classification ability in both classes under consideration. Thus, fitness function
ensures that, the classification of rare events is as important as the classification of

frequent events.

The RECGA is expressed in Algorithm [9] which utilizes the RealCrossover, Lin-

earCrossover, and Mutation genetic operations given in Section [3.3]
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Algorithm 9 RareEventClassifierGeneticAlgorithm (RECGA)

1: Let X be an initial solution set.

2: continue < true

3: while continue=true do

4: while | X| < PopulationSize do

5 (W', M") + GenerateOf fspring(X)

6 if All weights (wy; and my;) of offspring (W', M') > 0 then
7: X xu{(Ww3 M?)}

8 end if

9 end while

10: for each (W*, M*) € X do

11: Initialize sensitivity(i) = specificity(i) = Fscore(i) = 0

12: Calculate utility functions u(.) and w¢(.) for each factor using the procedure GenerateUtilityFunc-
tions

13: forp € V do

14: Set U(p) :=0,U(p) :=0

15: for each f € F do

16: Up)  U(p) +us (w5 (p))

17: U(p) < U(p) + s (x5 (p))

18: end for

19: if U(p) > U(p) then

20: i) =1

21: else

22: y(p) =0

23: end if

24: end for

75. Let sensitivity(i) = number ofobervauo‘n‘ﬁn‘ vV with §(p)=1 .

26: speci ficity(i) — mmber ()fobervalio‘n b in|V* with §(p)=0

27 Fscoreli) = Zstneitivi(@ xepee iy ()

28: newSet < (), threshold < 1
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Algorithm 9| continues

29: while newSet = () and threshold > 0 do
30: for each (W', M%) € X do

31: if F'score(i) > threshold then
32: newSet < newSet U{(W*, M*)}
33: end if

34: end for

35: threshold < threshold - 0.1

36: end while

37: X<+ 0

38: X < newSet

39: if | X| > minFinalSetSize then

40: continue < false

41: end if

42: end for

43: end while

Like PCM+NSGA-II, we propose PCM+RECGA as a two-phase algorithm. In the
first phase, PCM provides diverse initial solutions by changing the levels of param-
eter L. In the second phase, RECGA utilizes this diverse set of initial solutions to
create offspring solutions via genetic operations until the number of solutions equal
to the PopulationSize. Each solution on hand are used to classify the observations in
a validation set, } that has no common members with S, to avoid overfitting. Each
solution has a sensitivity and specificity rate. The fitness function, Fscore, of each
solution is calculated through these measures as previously explained. Only the solu-
tions whose fitness value exceeds a threshold value are carried to the next generation.
If there is no such solution, threshold value is decreased by a certain amount until
a number of solutions are found that satisfy the criteria. Until the number of solu-
tions reaches the predetermined minFinalSetSize, the algorithm continues to create
new offspring. By this way, the algorithm is able to create solutions that have high
fitness values. Thus, the selected solutions are likely to achieve high sensitivity and

specificity, simultaneously.

PCM+RECGA is able to deal with categorical, discrete and continuous predictor (in-
dependent) variables. Figure|3.5|illustrates the flow chart of PCM+RECGA.
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1
Calculate fitness function, Fscore, for each
solution (W, M) i € 1,..K
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l
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End

solution and make final decision
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Figure 3.5: Flow Chart of PCM+RECGA
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Algorithm 10 Prediction with PCM+RECGA

1: for eachp € S do

2: CP(p) :=0;CN(p) :=0

3: end for

4 X' =10

5: foreach L € {0,1,...,|S7|} do

6: Solve PCM (L)

7: X' X U{(W*(L), M*(L))}

8. end for

9: Apply RareEventClassifierGeneticAlgorithm (RECGA) to X’ to obtain X
10: for each (W, M) € X do

11: Apply GenerateUtilityFunctions to calculate us(-) and @z (-)
12: for p € S do

13: U(p) :==0and U(p) :=0

14: for each f € F do

15: U(p) < U(p) + us(zs(p)),
16: U(p) < U(p) + s (z5(p))
17: end for

18: if U(p) > U(p) then

19: CP(p) + CP(p)+1

20: else

21: CN(p) < CN(p)+1

22: end if

23: end for

24: end for

25: for p € S do
26: if CP(p) > CN(p) then

27. ylp) =1
28: else

29: y(p) =
30: end if

31: end for
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Once PCM+RECGA terminates with a final set of solutions, they are used to clas-
sify patients in the test set, S. Note that, g, S and V are mutually exclusive sets.
Algorithm [I0] gives the outline of PCM+RECGA and how PCM+RECGA works is
explained with a simple example in the Appendix (Section [A)).

3.5 Hyper-parameter Optimization for PCM+NSGA-II and PCM+RECGA

For the suggested models, there are some hyper-parameters whose values must be
specified externally by the user. The hyper-parameters of each model/algorithm are

listed in Table 3.7l

Table 3.7: Hyper-parameters of the Models/Algorithms

PCM NSGA-II RECGA
t =107 | PopulationSize PopulationSize
s = 0.0001 | GenerationSize minFinalSetSize

NumberO fGenerations | pre, Pic

Pres Pic Pm

Pm

Among the given hyper-parameters, ¢ is related with the monotonically increasing
assumption of PCM. Besides it ensures that incremental variables should take values
greater than zero, it also provides a lower bound for the difference between the incre-
mental variables of the consecutive factor levels. Since finding contributions of each
factor level to the utility functions is the main concern of the model, we choose a very
small value of ¢ in our computational experiments, to minimize its effect on the val-
ues of incremental variables. Hyper-parameter s is used in the first two constraints of
PCM and it ensures strict inequality between global utility pairs. We use a relatively
higher value of s compared to ¢, to avoid an erroneous classification decision when
the difference between U and U is small. The values of these two hyper-parameters

are chosen as indicated in Table [3.7]

To find the optimal values of the remaining hyper-parameters, we applied hyper-

parameter optimization. In this process, we run the model with different combina-
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tions of the values of hyper-parameters, and select the best combination according to
models’ classification performances. It is important to note that, hyper-parameter val-
ues should be determined by an unbiased estimate of the generalization performance
of the model [96]. In accordance with this purpose, we apply nested cross validation,
where it is referred as a common approach for hyper-parameter optimization [97],
(98], [99].

Nested cross validation is defined as two nested loops of cross validation. Due to
the inner cross validation performance, the hyper-parameter values are set and the
outer loop evaluates the generalization ability of the model with the selected val-
ues of hyper-parameters on an independent set of observations [96], [97]]. By this
way, nested cross validation ensures that, the model do not use the observations re-
served for outer loop to tune the hyper-parameters. The detailed explanation of hyper-
parameter tuning process can be found in the Appendix (Section [B). Note that, the

hyper-parameter optimization process is repeated for each model and for each dataset.

In the following chapter, we discuss the application of PCM+NSGA-II and
PCM+RECGA 1n the problem of classification of patients due to the risk of restenosis

after coronary stent implantation.
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CHAPTER 4

PATIENT CLASSIFICATION CONSIDERING THE RISK OF RESTENOSIS
AFTER CORONARY STENT IMPLANTATION

4.1 Coronary In-Stent-Restenosis

As a result of aging and due to some life style habits, plaque accumulates in the
blood vessels of the heart. This accumulation causes narrowing of these vessels and
impedes the flow of the blood through them. This narrowing of the arteries is called
as atherosclerosis [100]. For patients who suffer from the narrowing of coronary
arteries, namely coronary heart disease patients; stents are used as one of the main
therapeutic procedures [101]. By a balloon catheter, the stent is inserted into the
clogged artery, and with the inflation of the balloon, the stent, which is a “tiny wire
mesh tube”, expands to open the artery. Stent stays in this artery permanently to keep

it open in order to ensure the flow of blood and reduce the risk of heart attack [102].

There is re-narrowing risk of arteries after the balloon angioplasty and other proce-
dures that use catheters. Although the acute operation success of stents is very high
and usage of stents reduces this risk [102], the possibility of re-narrowing (in-stent-

restenosis) in the following period is still an issue.

“Restenosis is defined as a section of blocked artery that was opened up with an
angioplasty or a stent narrowed again” [103]]. From a more medical point of view, it
is defined as “either a luminal narrowing of at least 50% of the vessel diameter with
associated evidence of functional significance by symptoms of ischemia or abnormal
fractional flow reserve, or luminal narrowing of at least 70% or greater in the absence

of ischemic symptoms” [[104]].
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It is important to note that, narrowing of arteries in the case of restenosis is not caused
by plaques, differently from the case of atherosclerosis. Restenosis is a recovery
response of the stented artery, where the stent implantation traumatized the surface of

the relevant vessel [[105]].

Our focus in this chapter is in-stent-restenosis, where re-narrowing of the artery oc-
curs after the stent implantation. In-stent-restenosis usually occurs within the first six
months after the initial procedure and “symptoms are very similar to the symptoms
that initially brought the patients to the interventional cardiologist”. It is detected
via the follow-ups conducted by the medical expert [106]. When it is detected, the
main objective is to open the relevant artery before the patient has heart attack and
gets irreversible myocardial tissue damage. Therefore, it has an utmost importance
to foresee the restenosis risk of the patient. After investigating the relevant literature
and making interviews with experts, potential predictors of in-stent-restenosis are
identified as given in Table [4.I] The main determinants of the process leading to in-
stent-restenosis can be categorized as factors related to the patient, disease, procedure
and lesion. Time passed after the stent implantation is not included in the predictors
given in Table 4.1 since it is known that the risk of observing in-stent-restenosis does

not change with time.

The objective of this chapter is to classify patients according to their in-stent-restenosis
risk without performing selective coronary angiography, which is an accurate, but
also an expensive and risky procedure. For this purpose, we utilize patient, disease,

procedure and lesion related predictors listed in Table 4.1]
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The other tools that doctors can use in diagnosis of in-stent-restenosis are clinical
evaluation, exercise stress test, computerized tomography angiography, myocardial
perfusion scintigraphy and stress echocardiography. Clinically, one or more of these
methods are used to detect the status of a patient. Andersen et al. claim that sensitivity
and specificity of clinical evaluation are 26% and 84 %, respectively [110]. Dori et al.,
Andersen et al. and Garzon and Eisenberg analyze the ability of exercise stress test
in detection of in-stent-restenosis. Sensitivity of the method ranges from 26% to 54%
and its specificity is between 70% and 77% [111, 110, [112]. Késa et al. consider the
exercise stress test and clinical evaluation together, which has a sensitivity between
21% and 26% a specificity between 68% and 86% [113]. Yang et al., Carrabba et
al. and Gaspar et al. discuss the success of computerized tomography in detection
of in-stent-restenosis. Sensitivity and specificity range from 86% to 89% and from
81% to 93%, respectively [114, (115, [116]. Elhendy et al., Dori et al., Kosa et al.
and Garzon and Eisenberg give sensitivity and specificity of myocardial perfusion
scintigraphy. These rates take values between 79% and 87% and between 78% and
83%, respectively [117,111,113,[112]]. Finally, Dori et al. and Garzon and Eisenberg
analyze the performance of stress echocardiography [111}112]. Its sensitivity ranges

from 63% to 82% where its specificity is about 87%.

These methodologies can be utilized only if the patient developed symptoms of the
disease. However, some patients may not show any apparent symptoms or clinical
findings of the restenosis. Therefore, a methodology that can classify the patients
before the symptoms of the disease is developed helps to protect these patients from
experiencing an emergency case, using more medication than necessary and losing

the benefit of the treatment in the long run.

4.2 Data

After investigating the relevant literature and making interviews with the experts,
among the 37 potential in-stent restenosis predictors listed in Table 4.1 we have de-
cided to focus on 22 predictors given in Table[d.2] As claimed by Koller and Sahami
[118] and as expected, reducing the number of irrelevant features reduces the running

time of the algorithm. Blumer et al. indicate that, "given two explanations of the
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data, all other things being equal, the simpler explanation is preferable." This prin-
ciple is called as Occam’s Razor and implies building the simplest model is better
[119]. In this regard, random forest, stepwise regression, Boruta feature selection and
LASSO (least absolute shrinkage and selection) feature selection methods are applied
to increase the prediction ability by selecting the most relevant predictors of in-stent-
restenosis. For this purpose, we create five different instances which are comprised of
various subsets of all observations. Then we apply the given feature selection meth-
ods to these instances in order not to overfit to a specific instance. These methods are
applied by the statistical software, R. Predictors that are found significant by each of
these methods are marked in Table

Table 4.2: Significant Predictors Due to Various Feature Selection Methodologies

Clinical Presentation With MI

2
g ] g
2 g g
a e £ 2 B
T, £ . eI CH -
2 2 = o=
£ 2 2 3 ¢ 2 5 8 . ¢ 2 7 ¢ £ % 8
S 2 g B o (%} = 5 =1 = s S 5 = 3 ) ) <
E % 3 3 = 5 S 0t § % % T 2 & z £ g ¢
s 3 £ £ &2 B : 5 £ E E = £ ¢ s 2 = £ 3 3 &
< 4 A O £ ¥ 4 B #$ & © & & & s & £ & O =z &
v vV v v v v v N
Random v v v v v v v v v v v v v
N S Y VAV N N S v
VS N Y N S v v
Forest N N Y SV VS N S v v
v v v v v v
Stepwise v v v v v v v
v v v v v v v o v v v o vV
v v v o v v oV v v v
Regression v v v v v v v VS
v v v
v v v
Boruta v v v v v v
v v v v v v v
v v v v v v
v v
v v
LASSO v o v
v v v v
v v v

After this preliminary analysis, we have determined that following 8 factors (shown
bold in Table {.2)) are the most relevant predictors: stent type, existence of calcific
lesion, existence of prior percutaneous transluminal coronary angioplasty (PTCA),
existence of prior myocardial infarction (MI), stent size, existence of chronic renal

disease, hyperlipidemia and target vessel.
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The relevance of these factors with the disease can be explained from a medical point
of view. Restenosis rate in drug-eluting stents compared to bare metal stents is 70-
80% lower (25%-40% vs. 5%-10%). Therefore, the majority of stents used today
are drug-eluting stents. The high calcification rate of the lesion adversely affects the
stent placement in the vein and the development of restenosis. Patients who have ex-
perienced percutaneous transluminal coronary angiography and developed coronary
restenosis have a higher rate of in-stent-restenosis due to neointimal proliferation in
the same lesions, while patients with previous myocardial infarction have a weak
relationship with in-stent-restenosis. Restenosis rate in patients with chronic renal
disease is significantly higher than that of the patients without kidney disease and
there is a negative correlation between stent diameter and restenosis. As the diameter
increases, the chance of restenosis is reduced. The link between hyperlipidemia and
in-stent-restenosis is relatively weak. Hyperlipidemia may accelerate atherosclerosis
rather than restenosis, leading to the development of new lesions and restenosis is

more likely to occur in saphenous vein grafts than in native veins [[109].

Note that, the features selected by the feature selection methodologies may not ex-
actly match the features found most relevant by medical professionals. For exam-
ple, while the link between hyperlipidemia and stent-restenosis is found weak by
experts, feature selection methods place hyperlipidemia among the most relevant fac-
tors. In this study, while we pay attention to the medical professionals’ suggestions,
we mainly rely on the statistical and mathematical methods in feature selection pro-

CESS.

The final set of predictors included in the models are given in Table #.3] The second
column of Table 4.3|indicates type of variables (categorical, integer, continuous) and
the last column gives potential values. The response (dependent variable) is a binary
variable which indicates whether a restenosis is expected to exist (1) or not (0) within

the period of 36-month beginning with a coronary stent implantation.
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Table 4.3: Set of Selected Factors: Cardiac In-Stent-Restenosis Predictors

Name ‘ Type ‘ Values

F1 Stent Type Categorical Bare Metal Stent (BMS)=1  Drug Eluting Stent (DES)=0
F2  Calcific Lesion 0/1 Categorical Existence=1 Absence=0
F3  Prior PTCA 0/1 Categorical Existence=1 Absence=0
F4  Prior MI 0/1 Categorical Existence=1 Absence=0
F5  Stent Size Continuous [2mm, 4mm]

F6  Chronic Renal Disease | 0/1 Categorical Existence=1 Absence=0
F7  Hyperlipidemia 0/1 Categorical Existence=1 Absence=0
F8  Target Vessel Categorical Saphenous Vein Graft (SVG)=1 Native=0

The data used in this study is obtained from Ondokuz Mayis University Hospital,
Cardiology Department, based on the records of coronary stented cardiac patients of
Prof. Dr. Mahmut Sahin, MD. A total of 10,435 records of cardiac patients between
the years of 2005 and 2016 are scanned. Only the patients that are diagnosed with
coronary heart disease, had coronary angiography operation, have at least one stented
lesion and have at least six months of (mostly one year, maximum of three years)
clinical and/or angiographical follow up period are eligible to be included in this
study. The observations that satisfy all these conditions simultaneously in our dataset
is 420. There are cases where a patient has more than one lesion that satisfy these
conditions, however we use only one lesion from each patient to have independent
observations. Therefore, number of observations decreases to 303. Among them, 63

lesions have in-stent-restenosis.

Before we apply our method, if a factor under consideration is continuous, observed
patient value with respect to this factor is scaled to the interval [0,1] as follows in

order to normalize its effect in the model:

X — X,
X = T 4.1
scaled )(mam — Xmm ( )

Since the categorical factors take values in interval [0,1], no action is needed. Ad-
ditionally, to satisfy the monotonicity assumption of the model, the factor values are

adjusted in such a way that higher values are more likely to have in-stent-restenosis.
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4.3 Computational Analysis

In this section, we discuss the performances of the proposed algorithms on the in-
stent-restenosis data mentioned in Section 4.2 To see the effect of integrating evolu-
tionary algorithms with PCM, we begin by comparing the performances of
PCM+NSGA-II and PCM+RECGA with Random+NSGA-II and Random+RECGA,
respectively. The computational experiments of these models are conducted with Net-
Beans IDE 7.3 and CPLEX 12.6 on an Intel(R) Core(TM) i15-2410M 2.3GHz PC with
4 GB RAM, running under the Windows operating system.

Next, we compare the performances of PCM+NSGA-II and PCM+RECGA with
some widely known machine learning methods: Logistic Regression (LR), Penal-
ized Logistic Regression (pen-LR), Support Vector Machine (SVM), Artificial Neu-
ral Network (ANN), Decision Tree (DT) and Random Forest (RF). We conduct the
experiments of LR and pen-LR on R and the other machine learning methods on

MATLAB.

The classification threshold is determined as 0.5 in LR and pen-LR (i.e. they clas-
sify an observation as positive if the resulting probability of the algorithm is greater
than 0.5). In SVM, the model trains itself using the radial basis kernel and utilizes
an automatic hyper-parameter optimization, which selects the hyper-parameters that

minimize 5-fold CV loss. There are two hidden layers in ANN.

Henceforth, these models are referred as competitor models, because we compare

their performances with PCM+NSGA-II and PCM+RECGA.

We test the model performances by randomly splitting the data into mutually exclu-
sive training set (S), validation set ())) and test set (§), and we repeat this procedure
100 times, where each instance is generated by a different random seed. Then, we
report the average performances of these 100 instances and their standard deviations.
For comparability, the experimental analysis of each model is conducted with the

same 100 instances.

Note that, PCM+NSGA-II and PCM+RECGA first utilize S to generate initial set of

solutions using PCM, and then they tune these solutions with V via evolutionary algo-
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rithms. On the other hand, since Random+NSGA-II and Random+RECGA generate
the initial solutions randomly, they just use V for training. Competitor models utilize

S UV as the training set. All the models’ performances are tested in S.

Sensitivity, specificity and accuracy are identified as performance indicators and Fs-
core is reported as an indicator of balance between sensitivity and specificity. Besides

them, Fmeasure is also reported.

We created two different settings, which are differentiated by the ratio of the number
of patients with and without restenosis in training, validation and test samples. The

details of the settings are given in Table [4.4]

Table 4.4: In-Stent-Restenosis Dataset, Settings

Setting 1 Setting 2

S v s|S§S v S

# of patients with restenosis 24 24 12|24 24 12
# of patients without restenosis 96 96 48 | 24 24 12

Total # of patients 120 120 60 | 48 48 24

L for PCM {0,...,96} | {0,...,24}

For the instances for which Setting 1 is applied, there are 24 positive and 96 negative
observations in training (S) and validation (') samples, where the number of positive
and negative observations in test sample (S) are 12 and 48, respectively. On the other
hand, for each instance created as in Setting 2, there are 24 positive and 24 negative
observations in training (S) and validation (V) sets, and the test set (§) is comprised

of 12 positive and 12 negative observations.

Recall that, PCM is trained with S and it is solved for different values of parameter L.
Since L represents the number of false positive observations that the model allows,
it takes values between 0 and number of negative observations in sample S. The last
row of Table 4.4|indicates the values that the parameter L of PCM takes for the given

settings.
Model hyper-parameters are set according to previously explained hyper-parameter
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optimization process and they are given in Table .5 A detailed explanation of hyper-
parameter tuning process, conducted with in-stent-restenosis dataset, can be found in

the Appendix (Section [C).

Table 4.5: Optimal Values of Hyper-parameters with Respect to In-Stent-Restenosis

Dataset
Setting 1 | Setting 2
PopulationSize 1000 1000
= GenerationSize 50 100
é NumberOfGenerations | 5 100
)
Z Drc, Pie 0.5,0.5 0.5,0.5
Dm 0.01 0.01
PopulationSize 250 150
<
8 minFinalSetSize 100 50
2 Dres Dic 1.0,0.0 |0.5,0.5
Dm 0.5 0.01
4.4 Results

4.4.1 Role of PCM to Generate Initial Solutions to the Evolutionary Algorithms

In order to evaluate the effect of generating initial solutions of the evolutionary algo-
rithms via PCM or random, Tables[4.6|and [4.7| give the training and test performances
of PCM+NSGA-II, Random+NSGA-II, PCM+RECGA and Random+RECGA.

The tables indicate that the performances of Random+NSGA-II and

Random+RECGA are biased towards one of the classes and they have highly unbal-
anced classification results. High specificity and poor sensitivity rates of these models
imply that, Random+NSGA-II and Random+RECGA tend to classify most of the pa-
tients as negative, for this dataset. Similar results are observed for training and test

performances for both settings.
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Table 4.6: Training Performances: PCM+NSGA-II vs.
PCM+RECGA vs. Random+RECGA

PCM+NSGA-II

Random+NSGA-II

Random+NSGA-II and

PCM+RECGA | Random+RECGA

AVERAGE PERFORMANCE RESULTS

Setting1
Sensitivity 0.64 0.26 0.75 0.46
Specificity 0.81 0.92 0.71 0.84
Accuracy 0.78 0.79 0.71 0.76
Fscore 0.71 0.40 0.72 0.58
Fmeasure 0.55 0.33 0.51 0.43
Setting?2
Sensitivity 0.66 0.46 0.77 0.37
Specificity 0.70 0.79 0.69 0.87
Accuracy 0.68 0.62 0.73 0.62
Fscore 0.67 0.57 0.72 0.48
Fmeasure 0.67 0.54 0.74 0.47

STANDARD DEVIATIONS OF PERFORMANCE INDICATORS

Setting1
Sensitivity 0.10 0.12 0.08 0.12
Specificity 0.10 0.10 0.07 0.08
Accuracy 0.09 0.08 0.05 0.05
Fscore 0.08 0.15 0.04 0.10
Fmeasure 0.08 0.13 0.05 0.08
Setting?2
Sensitivity 0.16 0.15 0.09 0.20
Specificity 0.17 0.18 0.09 0.11
Accuracy 0.15 0.14 0.06 0.08
Fscore 0.15 0.15 0.06 0.19
Fmeasure 0.15 0.15 0.06 0.19
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Table 4.7:

Test Performances:

PCM+RECGA vs. Random+RECGA

PCM+NSGA-II vs.

Random+NSGA-II and

PCM+NSGA-II | Random+NSGA-II | PCM+RECGA | Random+RECGA
AVERAGE PERFORMANCE RESULTS
Setting1
Sensitivity 0.58 0.24 0.71 0.45
Specificity 0.79 0.91 0.68 0.82
Accuracy 0.75 0.78 0.69 0.74
Fscore 0.65 0.36 0.68 0.55
Fmeasure 0.48 0.29 0.47 0.40
Setting2
Sensitivity 0.63 0.44 0.72 0.39
Specificity 0.66 0.76 0.61 0.85
Accuracy 0.65 0.60 0.66 0.62
Fscore 0.62 0.53 0.64 0.49
Fmeasure 0.63 0.51 0.68 0.47

STANDARD DEVIATIONS OF PERFORMANCE INDICATORS

Settingl
Sensitivity 0.17 0.15 0.15 0.18
Specificity 0.11 0.10 0.09 0.10
Accuracy 0.09 0.09 0.07 0.07
Fscore 0.13 0.18 0.08 0.16
Fmeasure 0.11 0.14 0.09 0.13
Setting?2
Sensitivity 0.20 0.19 0.15 0.21
Specificity 0.20 0.21 0.16 0.14
Accuracy 0.16 0.15 0.10 0.08
Fscore 0.16 0.18 0.11 0.20
Fmeasure 0.17 0.18 0.10 0.20
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Table@ gives solution times of PCM+NSGA-II, Random+NSGA-II, PCM+RECGA
and Random+RECGA.

Table 4.8: Solution Times (in sec.)

‘ PCM+NSGA-II | Random+NSGA-II ‘ PCM+RECGA ‘ Random+RECGA

‘ Setting 1
AVG. 14.3 6.75 8.25 0.83
STD.DEV. 1.79 0.16 1.86 0.31
‘ Setting 2
AVG. 103.65 104.3 0.86 0.23
STD.DEV. 3.02 3.71 0.35 0.06

4.4.2 Comparison of PCM+NSGA-II, PCM+RECGA and Competitor Models

In this subsection, we compare the performances of PCM+NSGA-II and

PCM+RECGA with those of competitor models. Their training and test performances
are given in Tables 4.9 and 4.10] respectively. The training performance of a model
evaluates its fit to the dataset given to tune the model parameters. Then, to see the
performance of a model on a dataset which is comprised of previously unseen ob-
servations, we test it on a test set. The models’ performance to react to new data
represents is generalization ability. Note that, a high training and low test perfor-
mance indicate that the model overfits to the training set and its generalization ability

is poor.

The model performances are investigated under two different settings, as explained
previously. The ratio of positive observations to all observations are 20% and 50%,
in Setting 1 and Setting 2, respectively. The number of positive observations do not
change and number of negative observations used in Setting 1 is higher than that of

Setting 2.

71



PCM+NSGA-II

Table 4.9: Training Performances

PCM+RECGA ‘ LR ‘ pen-LR ‘ SVM ‘ ANN ‘ DT ‘ RF

AVERAGE PERFORMANCE RESULTS

Setting 1
Sensitivity 0.64 0.75 0.31 031 | 0.16 | 035 | 043 | 0.56
Specificity 0.81 0.71 0.98 098 | 0.99 | 098 | 097 | 0.97
Accuracy 0.78 0.71 0.85 0.85 | 0.83 | 0.86 | 0.86 | 0.88
Fscore 0.71 0.72 0.47 047 | 023 | 051 | 059 | 0.71
Fmeasure 0.55 0.51 0.45 045 | 0.23 | 049 | 0.54 | 0.66
Setting 2
Sensitivity 0.66 0.77 0.75 075 | 0.85 | 0.83 | 0.82 | 0.90
Specificity 0.70 0.69 0.73 074 | 0.73 | 0.75 | 0.80 | 0.84
Accuracy 0.68 0.73 0.74 0.74 | 0.79 | 0.79 | 0.81 | 0.87
Fscore 0.67 0.72 0.74 074 | 0.78 | 0.78 | 0.81 | 0.86
Fmeasure 0.67 0.74 0.74 0.75 | 0.80 | 0.79 | 0.81 | 0.87
STANDARD DEVIATIONS OF PERFORMANCE INDICATORS
Setting 1
Sensitivity 0.10 0.08 0.04 0.04 | 0.17 | 0.10 | 0.07 | 0.07
Specificity 0.10 0.07 0.01 0.01 | 0.01 | 0.02 | 0.01 | 0.01
Accuracy 0.09 0.05 0.01 0.01 | 0.03 | 0.01 | 0.01 | 0.01
Fscore 0.08 0.04 0.05 0.05 | 0.25 | 0.09 | 0.07 | 0.05
Fmeasure 0.08 0.05 0.04 0.04 | 0.24 | 0.07 | 0.05 | 0.04
Setting 2
Sensitivity 0.16 0.09 0.05 0.05 | 0.06 | 0.11 | 0.05 | 0.05
Specificity 0.17 0.09 0.06 0.06 | 0.11 | 0.10 | 0.05 | 0.05
Accuracy 0.15 0.06 0.04 0.04 | 0.07 | 0.04 | 0.02 | 0.03
Fscore 0.15 0.06 0.04 0.04 | 0.08 | 0.06 | 0.03 | 0.03
Fmeasure 0.15 0.06 0.04 0.03 | 0.06 | 0.06 | 0.03 | 0.02
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PCM+NSGA-II

Table 4.10: Test Performances

PCM+RECGA ‘ LR ‘ pen-LR ‘ SVM ‘ ANN ‘ DT ‘ RF

AVERAGE PERFORMANCE RESULTS

Setting 1
Sensitivity 0.58 0.71 0.32 0.31 0.11 0.27 | 0.32 | 0.34
Specificity 0.79 0.68 0.97 097 | 098 | 095|093 | 091
Accuracy 0.75 0.69 0.84 0.84 | 0.81 0.82 | 0.81 | 0.80
Fscore 0.65 0.68 0.46 0.45 0.16 | 0.40 | 045 | 047
Fmeasure 0.48 0.47 0.43 042 | 0.15 0.36 | 0.39 | 0.38
Setting 2
Sensitivity 0.63 0.72 0.73 0.73 0.78 | 0.71 | 0.67 | 0.73
Specificity 0.66 0.61 0.66 0.67 | 059 | 0.65 | 0.68 | 0.66
Accuracy 0.65 0.66 0.69 0.70 | 0.68 | 0.68 | 0.68 | 0.69
Fscore 0.62 0.64 0.67 0.68 | 0.65 0.65 | 0.65 | 0.67
Fmeasure 0.63 0.68 0.70 0.70 0.71 0.68 | 0.67 | 0.70
STANDARD DEVIATIONS OF PERFORMANCE INDICATORS
Setting 1
Sensitivity 0.17 0.15 0.13 0.13 0.14 | 0.14 | 0.14 | 0.15
Specificity 0.11 0.09 0.03 0.03 0.03 0.05 | 0.04 | 0.04
Accuracy 0.09 0.07 0.03 0.03 0.02 | 0.04 | 0.04 | 0.04
Fscore 0.13 0.08 0.15 0.15 0.20 | 0.16 | 0.16 | 0.17
Fmeasure 0.11 0.09 0.14 0.14 | 0.19 | 0.14 | 0.14 | 0.14
Setting 2
Sensitivity 0.20 0.15 0.14 0.14 | 0.13 0.17 | 0.16 | 0.15
Specificity 0.20 0.16 0.15 0.15 0.16 | 0.18 | 0.15 | 0.16
Accuracy 0.16 0.10 0.09 0.09 | 0.09 | 0.10 | 0.10 | 0.09
Fscore 0.16 0.11 0.11 0.10 | 0.11 0.13 | 0.11 | 0.11
Fmeasure 0.17 0.10 0.10 0.10 | 0.09 | 0.12 | 0.11 | 0.10
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According to the performances given in Tablesd.9)and .10} Figure [d.1|illustrates the

training and test performances of the models together.

It is observed that, for Setting 1, the competitor models’ sensitivity values are con-
siderably low and specificity values are extremely high, in both training and test.
This implies that, the classification ability of these models, under Setting 1, is poor.
In terms of Fscore, training performances of PCM+NSGA-II (0.71), PCM+RECGA
(0.72) and RF (0.71) are the highest. For the test performances, the best Fscore of
Setting 1 belongs to PCM+RECGA (0.68), followed by PCM+NSGA-II (0.65). How-

ever, despite its high training performance, RF’s Fscore in test is weak (0.47).

In Setting 2, the performances of the competitor models are more promising than Set-
ting 1, yet, the performances of PCM+NSGA-II and PCM+RECGA do not change
significantly. Thus, we can say that, our models are more robust than the competi-
tor models, in spite of the changes in number of positive and negative observations
in training sample. In terms of Fscore, highest training performances of Setting 2
belong to RF, DT, SVM, ANN, LR, pen-LR, PCM+RECGA and PCM+NSGA-II, re-
spectively. For test performances, it is observed that, the Fscore values of all models

are close to each other and ranging between 0.62 to 0.68.

As previously mentioned, in Setting 1, where the ratio of positive observations is 20%,
the sensitivity values of competitor models in training are extremely low while they
have high specificity values. This may indicate that, their training phase terminates
when a certain level of training accuracy is satisfied. Since negative observations
constitutes the majority class in the training sample, classifying most of the observa-
tions as negative yields high accuracy values even the sensitivity is low. In Setting
2, despite the number of observations in training set is fewer than Setting 1, there
are equal number of positive and negative observations. Thus, to keep the training
accuracy high, the competitor models have to obtain high classification results for
both classes. This may be the reason why the competitor models have high Fscore

performances in Setting 2.

It 1s also observed that, for Setting 1, for both of training and test, the specificity
performance of each model is higher than Setting 2. In a similar manner, for Setting 2,

the sensitivity performances are higher than that of Setting 1. In a medical diagnosis
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problem, the ideal case is to have extremely high values of sensitivity and specificity,
simultaneously. If this is not possible, lower specificity for the sake of high sensitivity
is the second best option. This is because, while a false negative classification may
result in serious health problems, a false positive classification causes just financial

burden.

Considering all these arguments, it can be said that, if it is possible, having a training
sample as large as possible which contains balanced amount of observations from
each class may result in high classification performances. However, if the number
of positive observations is few but there are many negative observations, by keeping
the number of positive and negative observations equal in training sets, a model can

provide higher sensitivity rates.

Note that, since Fmeasure is not one of our performance indicators, we do not give
a detailed analysis about it. Yet still it can be said that, our model performances can

compete with those of the competitor models.
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Figure {4.2] illustrates the gaps between the models’ training and test performances.
The yellow line in the graphics indicates the average gap of the models. Note that, the
gap refers to how much the training performance is greater than the test performance

and if the training performance lags behind the test, the gap is expressed as zero.

It is observed that, for both settings, the models whose training and test gaps are al-
ways below the average gap are PCM+NSGA-II, PCM+RECGA, LR and pen-LR.
High gaps between training and test indicate that, even if a model has a good perfor-
mance in training, its test performance is low. Thus, the model overfits to the training
set and the generalization ability (which refers the ability of the model in adapting to
new observations represented by the test set) of such a model is poor because it does
not perform well to predict the classes of unseen observations. Although the compati-
bility of training and test performances of a model reflects its level of generalizability,
having high performances in training and test is a must for good generalization. How-

ever, the performances of LR and pen-LR, in Setting 1, are quite poor.

We can say that, PCM+NSGA-II and PCM+RECGA are reliable and successful mod-
els both because of their robustness against the configuration of samples and their gen-
eralization ability. All competitor models solve an instance within a minute, mostly

in seconds. Thus, we do not give their specific solution times.

When the performances of PCM+NSGA-II and PCM+RECGA are compared, it can
be observed that, even though the Fscore values of PCM+NSGA-II and PCM+RECGA
are similar, PCM+RECGA has higher sensitivity and lower specificity compared
to PCM+NSGA-II. Additionally, PCM+RECGA has lower standard deviations, and
more robust against the changes in number of observations in training, validation and

test samples.

Detailed tables that give the performances of the models, PCM+NSGA-II and

PCM+RECGA in S, V and S ; and Random+NSGA-II and Random+RECGA in S, V
and S, separately, can be found in the Appendix (Section . Besides the ratios of cor-
rect classifications, number of true positive, true negative and total true classifications

are also given in these tables.

77



0.25

0.20

0.15

0.10

0.05

0.00

NNY

NIAS

H1-uad

H1
¥9234+AIDd

II-YOSN+ADd

44

NNY

NAS

yi-uad

H1
Y9234+NDd

1I-¥OSN+ADd

Setting2

Settingl

AVG Gap (Sensitivity)

m Sensitivity (| TRAIN-TEST])

0.25

0.20

0.15

0.10

0.05

e

1a

NNY

NIAS

H1-uad

H1
¥9234+AIDd

II-YOSN+ADd

NNY

NAS

yi-uad

H1
Y9234+NDd

1I-YOSN+ADd

Setting2

Settingl

AVG Gap (Specificity)

mmm Specificty(| TRAIN-TEST|)

0.25

0.20

0.15

1
0.05
0.00

1a

NNY

NIAS

H1-uad

H1
¥9234+AIDd

II-YOSN+ADd

44

1a

NNY

NAS

yi-uad

H1
Y9234+NDd

11-¥OSN+ADd

Setting2

Settingl

AVG Gap (Fscore)

mmmm Fscore(| TRAIN-TEST])

Figure 4.2: Gap Between Training and Test Performances

78



4.5 Prediction Performances of Cardiologists vs. PCM+NSGA-II and
PCM+RECGA

In this section, to evaluate the efficiency of PCM+NSGA-II and PCM+RECGA, we
report the experimental analysis where we compare the classification performance
of these models and a group of doctors who are specialized in the area of coronary

in-stent-restenosis.

It is crucial to have high sensitivity in the case where the diagnosis test is used to
detect a serious but treatable disease. In the cases where the sensitivity of the test is
high but specificity is low, there will be patients who do not actually have the disease

but undergone further investigation, due to false positive results [120].

In this classification problem, our model prioritizes correct classification of the pa-
tients who has restenosis in reality. It also gives particular importance to having a

true negative rate as high as possible.

As it is discussed in Section having a training set as large as possible which
contains balanced amount of positive and negative observations may result in high
classification performances. Therefore, the training sample of this study is created as

the most crowded training set in which the observations in the two classes are equal.

Recall that, the dataset is comprised of 63 patients with in-stent restenosis, and 240
patients without in-stent-restenosis. Therefore, 124 patients are randomly selected
in order to construct the samples S and V), such that each sample has equal number
of patients from each side and equal number of observations are included in both

samples.

In this setting, we run PCM+NSGA-II and PCM+RECGA to classify a single patient
in the test set and we repeat this procedure for 100 times. In half of the experiments,
test set, S, comprised of a positive observation. Therefore, models make predictions
for 50 patients with restenosis and 50 patients without restenosis. At each run, models
randomly construct mutually exclusive S, V and S. Thus, the training (S), validation

(V) and test (§ ) samples of this study are created as it is shown in Table m
Since, the sample configurations of the experiment resembles Setting 2, the hyper-

79



parameter values of the models are set, accordingly.

Table 4.11: Sample Configurations of the Experiment

Dataset | S |V S
Total 303 | 62 | 62 1
# patients with restenosis 63 |31 |31 1 0
OR
# patients without restenosis 240 |31 ({31 |0 1

15 cardiologists have participated in this study. They are employed in cardiology de-
partments of universities, public or private hospitals. We assume that their experience
in the field of medicine is proportional to the years since their graduation from med-
ical school. Similarly, their experience in the field of cardiology is defined with the
years since they get their graduate degree in cardiology. In this context, the experi-
ence of the doctors who have joined our study ranges between 9 to 35 years, with an
average of 17.8 years, while their experience in the field of cardiology ranges between

3 to 27 years, with an average of 11.47 years.

Note that, medical experiences of the cardiologists serve like a training set. Consid-
ering the given years of experiences, it is expected that each medical doctor joined in
this study have seen more patients with and without restenosis compared to number
of observations used to train the models (which consists of 124 patients, 62 with and

62 without in-stent-restenosis, i.e. IS U VI).

We have provided the data of the 100 test patients to the 15 cardiologists and asked
them to make predictions about their restenosis status by using the given values of
predictors as given in Table 4.3] The predictor values and actual situations of these

100 patients can be found in Table[J.I]in the Appendix (Section[J)).

Table[d.12]summarizes the prediction performances of medical doctors, PCM+NSGA-
IT and PCM+RECGA.
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Table 4.12: Prediction Performances of Medical Doctors, PCM+NSGA-II and
PCM+RECGA

Sensitivity  Specificity Accuracy PPV NPV FPR FNR Fscore Fmeasure

MD1 0.42 0.86 0.64 075 060 0.14 058 0.56 0.54

MD2 0.32 0.92 0.62 080 058 0.08 0.68 0.47 0.46

MD3 0.22 0.94 0.58 079 055 0.06 0.78 0.36 0.34

MD4 0.22 0.96 0.59 085 055 004 078 0.36 0.35

MD5 0.08 1.00 0.54 1.00 052 0.00 092 0.15 0.15

MD6 0.34 0.98 0.66 094 060 0.02 0.66 0.50 0.50

MD7 0.72 0.44 0.58 056 0.61 056  0.28 0.55 0.63

MDS8 0.40 0.96 0.68 0.91 062 0.04 0.60 0.56 0.56

MD9 0.48 0.70 0.59 062 057 030 052 0.57 0.54

MD10 0.44 0.96 0.70 092 063 0.04 056 0.60 0.59

MD11 0.30 1.00 0.65 1.00 059 0.00 0.70 0.46 0.46

MD12 0.64 0.82 0.73 078 0.69 0.18 0.36 0.72 0.70

MD13 0.48 0.70 0.59 062 057 030 052 0.57 0.54

MD14 0.44 0.88 0.66 079  0.61 0.12  0.56 0.59 0.56

MD15 0.64 0.80 0.72 076 069 020 036 0.71 0.70

AVG. of MD 0.41 0.86 0.64 080 060 0.14 0.59 0.52 0.51
STD.DEYV. of MD 0.17 0.15 0.05 0.13 005 0.15 0.17 0.14 0.14
PCM+NSGA-II 0.64 0.78 0.71 074 068 022 0.36 0.70 0.69
PCM+RECGA 0.70 0.68 0.69 069 069 032 0.30 0.69 0.69
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Figure [4.3] graphs the sensitivity, specificity, accuracy and Fscore values for each

medical doctor, PCM+NSGA-II and PCM+RECGA. It clearly shows the robustness
1.00

of PCM+NSGA-II and PCM+RECGA i1n classification of patients.
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Figure 4.3: Prediction Performances - Medical Doctors vs. PCM+NSGA-II and
PCM+RECGA

Results (Table d.12]and Figure [4.3)) indicate that sensitivity of medical doctors ranges
between 0.08 and 0.72 with an average value of 0.41. Specificity of medical doctors
ranges between 0.44 and 1.00 with the average of 0.86. Sensitivity and specificity of
PCM+NSGA-IT and PCM+RECGA are 0.64, 0.78, 0.70 and 0.68, respectively.

Overall prediction accuracy of medical doctors takes values between 0.54 and 0.73
with an average of 0.64. Prediction accuracy of PCM+NSGA-II and PCM+RECGA
are 0.71 and 0.69, respectively. The performance of PCM+NSGA-II is greater than
13 out of 15 medical doctors’ prediction accuracy. The accuracy results of the other
two cardiologists are 0.72 and 0.73. The accuracy performance of PCM+RECGA is
greater than 12 out of 15 medical doctors’ prediction accuracy, where the accuracy

results of the other three cardiologists are 0.70, 0.72 and 0.73.

It is important to note that since we need high values of sensitivity and specificity si-
multaneously, the performance indicator Fscore, combining the sensitivity and speci-
ficity into a single measure, is important for us. In terms of Fscore values, the score of
medical doctors ranges between 0.15 and 0.72 with an average of 0.52. On the other

hand, Fscore of PCM+NSGA-II and PCM+RECGA are 0.70 and 0.69, respectively.
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Models’ performances are better than 13 out of 15 medical doctors’ scores.

It is observed that, medical doctors have high specificity values in general. However,
for the ones whose specificity values are high, the maximum value of sensitivity is
0.64. Highest sensitivity achieved by a medical doctor is 0.72, but in this case, the
specificity value is only 0.44. Also, note that, for only two doctors (MD12 and MD15)

both sensitivity and specificity are above 0.5 (i.e. better than a random classifier).

When we evaluate the performance of PCM+NSGA-II in terms of the same perfor-
mance indicators, we observe that, compared to most of the medical doctors, model
achieves relatively balanced sensitivity and specificity rates. Its Fscore value is higher

than 13 out of all the medical doctors’.

PCM+RECGA achieves high sensitivity and specificity rates, too. The performances
of PCM+RECGA is much more balanced compared to the performances of

PCM+NSGA-II. Its Fscore value is also higher than 13 out of all of the medical
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Figure 4.4: False Prediction Performances - Medical Doctors vs. PCM+NSGA-II and
PCM+RECGA

Figure[4.4] gives the false positive and false negative ratios together with their average.
False positive ratio of medical doctors ranges between 0 and 0.56 with an average of
0.14. False negative ratio of medical doctors takes values between 0.28 and 0.92

with an average of 0.59. It is worth to note that, low FPR and high FNR of medical
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doctors are indications of their small number of positive and large number of negative
classifications. FPR and FNR of PCM+NSGA-II are 0.22 and 0.36, respectively. For
PCM+RECGA, FPR is 0.32 and FNR is 0.30.

We combine the FPR and FNR into a single measure by taking average of these two
values. It is desired to have simultaneously low values of FPR and FNR. Combined
measure of medical doctors takes values between 0.27 and 0.46, with the average
value of 0.36, while the same measure of PCM+NSGA-II and PCM+RECGA are
0.29 and 0.31, respectively. The performance of PCM+NSGA-II is better than 13
out of the 15 medical doctors’ values. The value of this measure for the remaining
doctors are 0.27 and 0.28. For PCM+RECGA, the same performance indicator is
better than 12 out of the 15 medical doctors’ values. For the remaining three doctors,

this measure takes values of 0.27, 0.28 and 0.30.
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Figure 4.5: Positive and Negative Predictive Values - Medical Doctors vs.

PCM+NSGA-II and PCM+RECGA

Figure [4.3] gives the graphs of the positive and negative predictive values. PPV of
medical doctors takes values between 0.56 and 1 with an average value of 0.80. NPV
of medical doctors ranges between 0.52 and 0.69 with an average of 0.60. PPV
and NPV of PCM+NSGA-II are 0.74 and 0.68, respectively. This indicates that,
among the patients whom PCM+NSGA-II classified as positive, 74% correctly have
the restenosis, and among the patients whom PCM+NSGA-II classified as negative,

68% correctly do not have the disease. For PCM+RECGA, PPV and NPV are both
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Figure 4.6: Classification Numbers: PCM+NSGA-II vs. Medical Doctors - Patients

Without Restenosis

0.69.

Figures [4.6) and {.7] (Figures {.8] and [4.9) illustrate the prediction performances of
medical doctors and PCM+NSGA-II (PCM+RECGA), respectively. We can divide
the predictions into four groups based on the decisions of the doctors and the model.
First and second group of Figures 4.6 [4.7] 4.8 and £.9] represent the number of pa-
tients that are classified correctly and incorrectly both by the medical doctors and the
model, respectively. Third group represents the number of patients that are classified
correctly by the medical doctors but incorrectly by the model, and fourth group stands
for the number of patients that are classified correctly by the model but incorrectly by
the medical doctors. Each indicator under a group corresponds to a medical doctor.
For example, the data represented by the leftmost sign of first group of Figure 4.6|rep-
resent that there are 36 patients classified correctly both by MD1 and PCM+NSGA-IL.

For the patients whose real restenosis status are negative, number of patients who
are incorrectly classified by PCM+NSGA-II but correctly classified by the medical

doctors takes values between 4 and 11 with an average of 7.9, and number of pa-
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Figure 4.7: Classification Numbers: PCM+NSGA-II vs. Medical Doctors - Patients

with Restenosis

tients who are incorrectly classified by the medical doctors but correctly classified by

PCM+NSGA-II ranges between 0 and 21 with an average of 3.87.

For the patients with a positive restenosis status in reality, number of patients who
are incorrectly classified by PCM+NSGA-II but correctly classified by the medical
doctors takes values between 0 and 7 with an average of 1.87, and number of pa-
tients who are incorrectly classified by the medical doctors but correctly classified by

PCM+NSGA-II takes values between 3 and 28 with an average of 13.4.

For the patients whose real restenosis status are negative, number of patients who are
incorrectly classified by PCM+RECGA but correctly classified by the medical doctors
takes values between 5 and 16 with an average of 12, and number of patients who are
incorrectly classified by the medical doctors but correctly classified by PCM+RECGA

ranges between 0 and 17 with an average of 3.

For the patients with a positive restenosis status in reality, number of patients who are
incorrectly classified by PCM+RECGA but correctly classified by the medical doctors
takes values between 0 and 7 with an average of 2.33, and number of patients who are

incorrectly classified by the medical doctors but correctly classified by PCM+RECGA
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takes values between 3 and 32 with an average of 16.87.

This indicates that, the number of patients who carries the disease and disregarded
by the models, but correctly identified by the doctors, is very low. However, the
number of patients in the opposite situation is quite high. This shows the strength
of PCM+NSGA-II and PCM+RECGA against the medical specialists in detecting

patients with the disease.

When PCM+NSGA-II and PCM+RECGA are compared, it is observed that,
PCM+NSGA-II has higher specificity but lower sensitivity.

Note that, even though it can achieve better performances than most of the medical
doctors, PCM+NSGA-II is dominated by MD12 and MD15. However, none of the

medical doctors can dominate the performances of PCM+RECGA.

4.6 Conclusion

Since PCM+NSGA-II and PCM+RECGA are suggested as medical diagnostic mod-
els, our aim is to demonstrate that they are effective and reliable decision support
tools for classification of patients. The experimental results indicate that, sensitivity,
specificity and accuracy rates achieved by PCM+NSGA-II and PCM+RECGA are
quite promising compared to the clinical detection methodologies, when their perfor-
mance measures, risks and costs are considered together. Also they provide a great
advantage by foreseeing the risk of restenosis at the time of stent implantation. In
clinical situations, cardiologists recommend a course of action to a patient to con-
firm or deny the existence of the disease. Therefore, we can position our models as
medical decision aids which assist experts in recommending the course of action by

classifying patients according to their risk of the disease.

We have also compared the model performances with the classifications made by
experts who utilized only the given values of in-stent-restenosis predictors and their
personal experiences. As it is indicated before, the main objective of this problem
is predicting the correct class of restenosis of patients in test set and it is impor-

tant to achieve this with both high and balanced prediction results for the patients
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with and without the disease. In this context, the comparison results of cardiologists,
PCM+NSGA-II and PCM+RECGA indicate that, the proposed models achieve the
above mentioned objectives and surpass the prediction abilities of majority of the
medical doctors. The analysis of the performance indicators as a whole suggests that,
even when half of the patients in test set have restenosis, the medical doctors have
classified relatively low number of patients as positive and they have classified most
of them as negative. This leads to an imbalanced performance in terms of true posi-
tive and true negative classifications. Thus, it is observed that, in general the medical
doctors achieve higher prediction performances in specificity, however their sensitiv-
ity rates are quite low. The strongest feature of PCM+NSGA-II and PCM+RECGA
is their balanced and simultaneously high classification performances of positive and
negative observations. It is observed that, considering Fscore, PCM+NSGA-II and
PCM+RECGA outperform almost all the cardiologists participated in this study. Just

two cardiologists perform slightly better performances than the proposed models.

The comparison results of PCM+NSGA-II, PCM+RECGA and the competitor mod-
els suggest that, the proposed models are robust against the variations in samples used
for training. Additionally, since their training and test performances are compatible
with each other and promising, they are reliable and also their generalization ability

(performance in test sample) is higher.

Thus, by evaluating all these findings together, we can say that, PCM+NSGA-II and
PCM+RECGA are reliable and effective tools that are used for classification pur-
poses. Specific to this problem, it can be concluded that, the given algorithms are
promising decision support tools for cardiologists in the process of determining po-

tential restenosis status of a patient and recommending a course of action.

Note that, the study in Chapter ] was conducted in accordance with the Declearation
of Helsinki, and the protocol was approved by the Ethics Committee of Ondokuz
Mayis University at date 07/27/2017 with project identification code of OMU-KAEK
2017/272.
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CHAPTER 5

RARE EVENT CLASSIFICATION MODELS FOR MEDICAL DIAGNOSIS
PROBLEM APPLIED TO BREAST CANCER

Breast cancer is the most common cancer in women, worldwide [121]]. It can be
seen in both women and men, but its frequency in women is much more higher.
Even though it is identified that hormonal, lifestyle and environmental factors may
affect the risk of developing breast cancer, its cause may be a complex interaction
of genetic and environmental factors [122]]. Mammograms, breast ultrasound, breast
MRI scans or some other recently developed imaging tests can be utilized as the
diagnosis methodologies of breast cancer. However, the gold standard is biopsy to

diagnose or reject the existence of the disease [[123].

In the literature, there are well studied, structured, proper and large size datasets about
breast cancer. Two of them are Wisconsin Breast Cancer Original dataset (WBCO)
[5] and Wisconsin Breast Cancer Diagnostic dataset (WBCD) [6]] which are available
in UCI Machine Learning Repository. The datasets are comprised of dichotomous

dependent variables, that identifies the status of a tumor (malignant or benign).

In this part of our study, we test the performances of the developed models on these
datasets. For the cases where the incidence of a disease among the population is
low, it is harder to identify the existence of the disease. In this context, to evaluate
the model performances when one class of observations are rare compared to other,
we create class imbalance between the class of malignant and benign tumors and we
test our models to see their performances in classifying observations that belong to
class of rarely found members. We prefer to perform this analysis on WBCO and
WBCD datasets based on the fact that these datasets are well structured and contains

substantial amount of observations.
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Following two sections give a brief literature review about the machine learning ap-

plications which employs WBCO and WBCD datasets, respectively.

5.1 Machine Learning Applications with the Wisconsin Breast Cancer Original

Dataset

In the literature, there are many studies that work with the WBCO dataset that can
be obtained from the Original Wisconsin Breast Cancer Database maintained by Dr.
William H. Wolberg from University of Wisconsin. It is a well structured data includ-
ing the breast cancer predictors and the class of the tumors (malignant or benign).
There exists 699 instances (458 benign, 241 malignant) and 9 predictors in the dataset.
The predictors are defined as the cytological characteristics of breast fine-needle as-
pirates, and are valued on an integer scale between 1 and 10, where a higher value is

closer to malignancy. Table 5.1 shows the predictors of the dataset [3].

Table 5.1: Predictors of the WBCO Dataset

Clump thickness
Uniformity of cell size
Uniformity of cell shape
Marginal adhesion
Single epithelial cell
Bare nuclei

Bland chromatin

Normal nuclei

A N A o e

Mitoses

Table summarizes the studies that work with this dataset. None of these studies
consider the case where positive observations are rare in the population. The rarity
of positive observations in the original dataset is 35% (malign:benign = 241:458 =
1.0:1.9), and the rarity of positive observations in training set is above 30% for most

of the studies.

Rareness level of positive observations to all observations in the training and test sets
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are given in fifth and sixth columns of Table [5.2] respectively, for the studies that
report this information. Rest of the studies in Table [5.2]use samples disregarding this
ratio. They create training and test samples by randomly choosing observations from

all observations due to the predetermined training-test partition.

It is observed that, many of the studies conducted experiments with various training-
test partitions (e.g. 80-20%, 70-30%, 50-50%), feature selection is conducted in some
studies and most of the studies use cross-validation in the experiments. Since the
classification performance of a model can be effected by these factors, we only state
the maximum accuracy that a classifier achieved, in Table [5.2] Although most of
the studies interested in the classification accuracy, Table @ includes sensitivity and

specificity for the studies which report these values.

Setiano conduct one of the earliest studies and propose an algorithm to prune a stan-
dard three-layer feed forward neural network (NN). The experiments are conducted
on a single configuration where training set consists of 229 benign and 121 malignant

observations. The rest of the data is used as test sample [124].

Another study of Setiano also utilizes neural networks. First, the author propose a
neural network with one hidden unit for attribute selection. Then, experiments for
breast cancer diagnosis are conducted with hundred neural networks each with three
hidden units and hundred neural networks each with five hidden units. The training
set includes 119 malignant and 222 benign observations, and the rest of the data is

reserved for the test sample [[125]].

Pena-Reyes and Sipper propose a binary diagnosis algorithm and provides a numeric
value that represents the confidence level of the system about the response variable.
The experiments are conducted with three different configurations. Training set in
the first configuration contains all cases and test set is empty, second configuration
contains 75% of the cases and test set has 25% and third configuration contains 50%

of the cases and the test set has 50% [[126].
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Table 5.2: Various Machine Learning Applications to the WBCO Dataset

Source  Method Classification  Training-Test Malignant Ratio  Malignant Ratio ~ Sensitivity — Specifictiy
Accuracy (%)  Partition(%) in Training Set in Test Set (%) (%)
[124] Pruned-NN 96.56 50-50 0.35 0.34 96.67 96.51
[127] C4.5 94.74 10-fold CV
1128 RIAC 94.99 Leave one out CV
[129 Fisher LDA 96.8 10-fold CV
[130] SVM 97.2 5-fold CV
[131] NEFCLASS 95.06 10-fold CV
[126] Fuzzy-Genetic Algorithm 97.8 100-0 97.07 98.7
11251 Neuro-rule 2a 98.24 50-50 0.35 0.35 99.1 97.75
Optimized-LVQ 96.7 10-fold CV
{32 Big LVQ 96.8 10-fold CV
AIRS 97.2 10-fold CV
[133] LSA with Perceptron Algorithm  98.8 50-50/75-25 0.55/0.73 0.65/0.65
[134] Supervised Fuzzy Clustering 95.57 10-fold CV
97.08 80-20 0.35 0.34 97.87 97.77
Ll LSsvM 98.53 10-fold CV
SVM 99.54 37-63 0.32 0.37 99.37 99.64
RNN 98.61 37-63 0.32 0.37 98.11 98.91
(136 PNN 98.15 37-63 0.32 0.37 97.48 98.54
CNN 97.46 37-63 0.32 0.37 96.86 97.81
MLPNN 91.92 37-63 0.32 0.37 91.19 92.34
[137] F-score+SVM 99.51 80-20 0.35 0.35 100 97.91
[138] RS_SVM 96.87 80-20 0.35 0.34
[139] Hybrid DT 97.85 10-fold CV
[140] RS-BPNN 98.6 80-20 98.76 98.57
RIW-BPNN 99.03 55-45 0.36 0.34 99.13 98.97
U4 peNNN 99.68 55.45 0.33 0.36 100 99.47
SVM 97.13 10-fold CV
C4.5 95.13 10-fold CV
1421 Naive Bayes 95.99 10-fold CV
K-NN 95.27 10-fold CV
SVM-Convex comb. of kernels 96.79 3-fold CV
18] SVM-Affine comb. of kernels 96.58 3-fold CV
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Ubeyli compares different classifiers (multilayer perceptron neural network

(MLPNN), combined neural network (CNN), probabilistic neural network (PNN), re-
current neural network (RNN), support vector machine (SVM)) with respect to their
classification accuracies. The author claims that, SVM obtains the highest classifi-
cation accuracies. For experiments, only one configuration is used, where training
set has 80 malignant and 170 benign observations. The rest of the observations are

reserved for test set [[136]].

Akay implements SVM to the breast cancer data and he also applies feature selection.
The highest classification accuracies are found to be 98.53%, 99.02% and 99.51% for
50-50%, 70-30%, and 80-20% of training-test partition, respectively. These results
are obtained by SVM using five features. Other than classification accuracies, sensi-
tivity, specificity, positive predictive value and negative predictive value of the models
are reported. The author reports that, as the size of training set increases, false positive

and false negative results decrease [137].

Chen et al. propose a rough set-based SVM (RS_SVM) to diagnose breast cancer.
The authors utilize a rough set reduction algorithm for feature selection. As the per-
formance indicators, classification accuracy, sensitivity and specificity are used. The
experiments are conducted on three different categories based on training-test set par-
tition: 50-50%, 70-30% and 80-20%. It is concluded that the highest average clas-
sifications are obtained with these five features: clump thickness, uniformity of cell

shape, marginal adhesion, bare nuclei, and mitoses [138].

Conforti and Guido introduce a kernel-based SVM via semidefinite programming.
Their aim is to find the best kernel function for the SVM through an optimization
based approach. In their study, they compare the classification accuracies of SVM
with convex and affine combinations of kernels. It is observed that, the mean accuracy

1s almost 97% for both cases [38]].

Polat and Gunes conduct a least square SVM (LS-SVM) model and they evaluate it
with respect to the classification accuracy, sensitivity and specificity. The experiments
are repeated with 50-50%, 70-30% and 80-20% training-test partitions. The authors
find that, the classification accuracy of the model is 98.53% [133]].

95



Asri et al. compare the performances of SVM, decision tree, naive Bayes and K-
nearest neighbors (K-NN) on the WBCO dataset [142]. Lavanya and Rani address
CART classifier with feature selection and bagging technique. They evaluate the

classification performance of the model with respect to accuracy and run time [139].

Abdel-Zaher and Eldeib propose a deep belief network (DBN) unsupervised path fol-
lowed by back propagation supervised path. Experiments are repeated with three dif-
ferent algorithms: deep belief etwork path (DBN-NN) conjugate gradient back prop-
agation, randomly initialized weight back-propagation neural network (RIW-BPNN)
Levenberg-Marquardt and DBN-NN Levenberg-Marquardt. All algorithms achieve

classification accuracies higher than 99% [141]].

5.2 Machine Learning Applications with the Wisconsin Breast Cancer Diag-

nostic Dataset

WBCD is another well structured dataset where the breast cancer predictors and the
class of tumors (malignant or benign) are included. The number of observations is
569 (212 malignant, 357 benign) and there are 30 predictors under consideration. The
predictors are defined as the features that are computed from a digitized image of a
fine needle aspirate of a breast mass describing the characteristics of the cell nuclei
present in the image. These predictors take values from different scales, thus each
factor should be scaled to interval [0,1] to normalize their effects. Table [5.3] shows

the predictors of the dataset [|6].
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Table 5.3: Predictors of the WBCD Dataset

Mean Radius Radius Standard Error Worst Radius

Mean Texture Texture Standard Error Worst Texture

Mean Perimeter Perimeter Standard Error Worst Perimeter

Mean Area Area Standard Error Worst Area

Mean Smoothness Smoothness Standard Error Worst Smoothness

Mean Compactness Compactness Standard Error Worst Compactness
Mean Concavity Concavity Standard Error Worst Concavity

Mean Concave points Concave points Standard Error Worst Concave points
Mean Symmetry Symmetry Standard Error Worst Symmetry

Mean Fractal dimension | Fractal dimension Standard Error | Worst Fractal dimension

Table [5.4] summarizes the studies that work with this dataset. None of these studies
consider the case where positive observations are rare in the population. The rarity
of the positive observations in the original dataset is 37%, and none of these studies

specifies the rarity of positive observations in the training set.
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Table 5.4: Various Machine Learning Applications to the WBCD Dataset

Source  Method Classification  Training-Test Sensitivity — Specificity
Accuracy (%) Partition(%) (%) (%)
PSO-w/o Feature Selection 96.4 98.6 93.1
GA-w/o Feature Selection 96.1 97.8 929
ANN-w/o Feature Selection 96.5 98.2 96
143 PSO-with Feature Selection 97.2 80-20 98 95.6
GA-with Feature Selection 96.6 97.5 93.7
ANN-with Feature Selection 97.3 98.4 95.1
[T44]  Linear Regression 96.09 100 89.8
MLP 99.04 99.21 98.73
L1(Manhattan)-NN 93.57 93.46 93.75
L2(Euclidean)-NN 94.74 70-30 97.2 90.63
Softmax Regression 97.66 100 94.23
SVM 96.09 97.53 93.62
GRU-SVM 93.75 100 83.33
[145] MSM-Tree 97 10-fold CV
CART-w/o Feature Selection 92.97
[146) CART- SymmetricUncertAttributesetEval ~ 94.72
NB 92.97
MLP 96.66
J48 93.15
SMO 97.72
IBK 95.96
NB and SMO 97.54
MLP and SMO 97.72
J48 and SMO 94.09 10-fold €V
IBK and SMO 97.72
SMO, IBK and NB 97.36
SMO, IBK and MLP 97.18
SMO, IBK and J48 97.36
SMO, IBK,NB and MLP 97.54
SMO, IBK, NB and J48 97.01
CART 92.97
139] CART with Feature Selection 94.72 10-fold CV
Hybrid Approach 95.96
[T48] A-SFM 96.01 5-fold CV
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Aalaei et al. focus on feature selection for diagnosis of breast cancer. The proposed
model uses a genetic algorithm based feature selection and it also employs Particle
Swarm Optimization algorithm. The authors employ three different classifiers to eval-
uate the effectiveness of proposed feature selection method: artificial neural network
(ANN), particle swarm optimization-based classifier (PSO) and genetic algorithm-
based classifier (GA). The experiments are conducted with 80%-20% training-test
partition. The results suggest that feature selection improves accuracy. Best accuracy
(97.3) is achieved by ANN after feature selection, where the acquired sensitivity and

specificity values are 98.4 and 95.1, respectively [143]].

Agarap and Fred compare six machine learning algorithms using the WBCD dataset:
linear regression, multilayer perceptron (MLP), nearest neighbor search (NN), soft-
max regression, support vector machine (SVM) and the proposed model, GRU-SVM,
which combines a type of recurrent neural network, the Gated Recurrent Unit (GRU),
with the support vector machine. 70% and 30% of the data is allocated to training

and test sets, respectively [144]].

Street et al. address a linear programming-based classification procedure, named
MSM-Tree, to find the separating planes for a pattern separation problem. The authors
state that MSM-Tree is a variant of the multi-surface method (MSM). 10-fold cross
validation accuracy of 97% is achieved with one separating plane and three features:

mean texture, worst area and worst smoothness [145]] .

Lavanya and Rani analyse the performance of decision tree classifier—CART with
and without feature selection on WBCD dataset. According to results, the authors
claim that, the best feature selection approach for a particular dataset depends on the

number of attributes, attribute type and instances [[146]].

Salama et al. compare decision tree (J48), multilayer perceptron (MLP), naive Bayes
(NB), sequential minimal optimization (SMO) and instance-based K -nearest neigh-
bor (IBK) using the WBCD dataset. They utilize 10-fold cross validation method
and they consider combining multiple classifiers to improve the accuracy. The results
show that classification using SMO or fusion of SMO and MLP or fusion of SMO

and IBK dominates the other classification methodologies [[147].
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Fan and Chaovalitwongse propose an optimization framework called support fea-
ture machine (SFM) to improve feature selection in medical data classification. The
proposed model provides classification and feature selection, simultaneously. SFM
works based on voting and averaging schemes. The authors apply their proposed
method on different datasets including WBCD. It is observed that, for WBCD dataset,
among the proposed models, the highest mean accuracy is achieved with averaging

based SFM (96.01%) [148].

Lavanya and Rani address CART classifier with feature selection and bagging tech-
nique in classification of tumors. The authors indicate that the best feature selection
method for the given dataset is found by evaluating the worth of a feature by measur-
ing the symmetrical uncertainty with respect to the class. The classification accuracies
of CART algorithm, CART algorithm with feature selection and a hybrid approach
are discussed. Best accuracy is acquired with hybrid approach, which is a combina-

tion of the best feature selection method, bagging and decision tree algorithms [[139].

Huang and Du [1]] and Du and Chen [2] also work on WBCD dataset. Their focus
is on classification with uneven training class sizes as it is mentioned in Section [2.4
Remember that, the ratio of positive observations to the whole set of observations is

9% in these studies. Experimental results of of these studies are illustrated in Table
5.5

Table 5.5: Experimental Results of [[1]] and [2]

Accuracy Accuracy Total
for Benign % for Malignant %  Accuracy %
Standard SVM 94.27 89.1 91.69
Huang and Du .
Weighted SVM1 93.63 89.58 914
[ Weighted SVM2 92.99 90.1 914
Standard V-SVM 98.09 87.5 92.26
Du and Chen
Weighted V-SVM1 | 97.45 88.54 92.55
[21 Weighted V-SVM2 | 96.82 89.06 92.55
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5.3 Data

5.3.1 Wisconsin Breast Cancer Original Dataset

After the elimination of the observations with missing values and the removal of cor-

related factors, a set of 683 observations (239 positive, 444 negative) and 8 factors

are found appropriate. The factors are presented in Table[5.6] If there are some pre-

dictors whose values are extremely large compared to the others, their values might

affect the result more due to larger values even if they are not more important as pre-

dictors. However, since all of the factors are in similar ranges, no scaling is necessary.

The binary response variable indicates whether a tumor is expected to be malign (1)

or not (0).

Table 5.6: Set of Factors: WBCO Dataset

F1
F2
F3
F4
F5
F6
F7
F8

Clump thickness
Uniformity of cell shape
Marginal adhesion
Single epithelial cell
Bare nuclei

Bland chromatin
Normal nuclei

Mitoses

5.3.2 Wisconsin Breast Cancer Diagnostic Dataset

After the elimination of correlations, there remains 21 appropriate factors which are

illustrated in Table[53.7]
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Table 5.7: Set of Factors: WBCD Dataset

F1  Mean Radius F12  Concavity Standard Error
F2  Mean Texture F13 Concave points Standard Error
F3  Mean Smoothness F14 Symmetry Standard Error
F4  Mean Compactness F15 Fractal dimension

F5  Mean Concavity F16  Worst Smoothness

F6  Mean Symmetry F17 Worst Compactness

F7  Mean Fractal dimension F18 Worst Concavity

F8  Radius Standard Error F19 Worst Concave points

F9 Texture Standard Error F20 Worst Symmetry

F10 Smoothness Standard Error F21  Worst Fractal dimension
F11 Compactness Standard Error

We apply feature selection to reduce the number of factors in consistent with the
Occam’s Razor principle [119]. The purpose of the feature selection is to eliminate
redundant features which gives little or no information about the response variable
(i.e. type of tumor). Therefore, we first apply ¢-test on each feature and compare
p-value of each feature to measure its effectiveness at group separation. We apply
holdout method [149] to the data where the training set size is 400 and test set size
is 169. We sort p-values of features in five different instances in order not to favor a
specific instance. Then, as another feature selection method, we apply stepwise re-
gression on the same five instances that we have used before. Table summarizes
the feature selection procedure which employs most significant factors due to both
p-value and stepwise regression. First part of Table [5.8]indicates the rank of factors
due to p-value for each instance and most significant 10 factors are marked with an
asteriks symbol (*). In the second part, factors found significant by stepwise regres-
sion for each instance are marked with a star symbol (x). In the third part, the findings
of both feature selection methodologies are combined. At the end of the table, final

set of selected features are indicated and these factors are shown in Table[5.9] as well.
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Table 5.9: Set of Factors After Feature Selection: WBCD Dataset

Mean Radius

Mean Texture

Mean Compactness

Mean Concavity

Radius Standard Error
Concave points Standard Error
Worst Smoothness

Worst Concavity

Worst Concave points

Worst Symmetry

Their values are normalized as follows:

X — X,
X = ‘T 1
scaled Xmax _ szn (5 )

The values are arranged such that, higher values are indication of malignancy. There
is no missing information, and the number of observations under consideration is 569

(212 positive, 357 negative).

5.4 Computational Analysis

In this section, we discuss the results of the models PCM+NSGA-II and

PCM+RECGA. To analyze the effect of integrating evolutionary algorithms with
PCM, first we compare the performances of PCM+NSGA-II and PCM+RECGA with
Random+NSGA-II and Random+RECGA, respectively. The computational experi-
ments of these models are conducted with NetBeans IDE 7.3 and CPLEX 12.6 on an
Intel(R) Core(TM) 15-2410M 2.3GHz PC with 4 GB RAM, running under the Win-
dows operating system. Next, we compare the performances of PCM+NSGA-II and
PCM+RECGA with that of competitor models. They are implemented with the same

specifications given in Section

104



We test the model performances by randomly splitting the data into mutually exclu-
sive training (S), validation () and test (5) sets. This procedure is repeated 100

times and their average performances are reported.

Recall that, PCM+NSGA-II and PCM+RECGA first utilize S to generate the ini-
tial set of solutions, and then these solutions are tuned with V. Random+NSGA-II
and Random+RECGA just use V and competitor models utilize S U V as the train-
ing set. Note that, as the training sample grows with the inclusion of the validation
set, this provides an advantage to competitor models against PCM+NSGA-II and
PCM+RECGA. To test the performance of a model, S is used, any time.

To observe the performances of the suggested models in the existence of class imbal-
ance, we create configurations (collection of sets), which simulate different levels of

rarity of positive observations.

With this design, we repeat the experiments for the rareness levels ranging between
1% to 35% and 1% to 37% for WBCO dataset and for WBCD dataset, respectively.
Note that, number of negative observations is constant, but by eliminating positive

observations, rare cases are created.

Table[5.10]and [5.11]show the dataset configurations used in our experiments. The last
row of each table indicates the interval of values that the parameter L of PCM can
take. Columns "Malign" and "Benign" of Tables and indicate the number
of positive and negative observations in training (S), validation () ) and test samples
(g). "Rareness level" indicates the ratio of positive observations to all observations.
The given rareness level is the same both for all observations and for observations

that are not used for test purposes. Therefore rareness level is mathematically given
[STUVT| _ |STuvtusT|
|SUV| |SUVUS|

rareness" implies the cases where the ratio of positive observations to all observations

as follows:

. Note that, while the expression of "low levels of

is low, the expression "high levels of rareness" refers the opposite.
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Table 5.10: Experimental Settings for the WBCO Dataset

Rareness Rareness
Malign Benign Malign Benign
level level

S 2 148 S 17 148
1% 2 148 % 17 148
S 2 148 1% S 17 ug  10%
Total 6 444 Total 51 444
S 5 148 S 26 148
1% 148 % 26 148
S 5 148 3% S 26 g 15%
Total 15 444 Total 78 444
S 8 148 S 49 148
4 8 148 v 49 148
S 8 148 S% S 49 ug 5%
Total 24 444 Total 147 444
S 11 148 S 79 148
v 11 148 % 79 148
S 11 148 7% S 79 g 3%
Total 33 444 Total 237 444
L for PCM {0,...,148}
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Table 5.11: Experimental Settings for the WBCD Dataset

Rareness Rareness
Malign Benign Malign Benign
level level

S 1 119 S 13 119
v 1 119 )% 13 119
S 1 119 1% S 13 19 10%
Total 3 357 Total 39 357
S 4 119 S 21 119
% 4 119 )% 21 119
S 4 119 3% S 21 g 5%
Total 12 357 Total 63 357
S 6 119 S 40 119
)% 6 119 % 40 119
S 6 119 5% S 40 g B%
Total 18 357 Total 120 357
S 9 119 S 70 119
)% 9 119 )% 70 119
S 9 119 7% S 70 g 7%
Total 27 357 Total 210 357
L for PCM {0,...,119}

We utilize sensitivity, specificity and Fscore as the main performance indicators. Note
that, when occurrence of positive observations in the population are rare, obtaining
high true positive rates is more important. High Fscore values are possible only when
both of the true positive and true negative classification performances are high. More-

over, we also report accuracy and Fmeasure for the sake of completeness.

Hyper-parameters for the datasets are set due to the previously explained hyper-
parameter optimization process. Note that, for both datasets, there are eight different
configurations each representing a level of rareness. However, it is computationally
expensive to repeat the hyper-parameter optimization process for each rareness level
of a dataset. Since it is relatively easy to achieve high prediction results when the

classes under consideration are balanced, we focus on the configurations where class
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imbalance is significant. Thus, we tune the hyper-parameters using the configurations

with 1% and 10% rareness levels in both datasets.

The values stand for hyper-parameters are given in Table[5.12]and [5.13] respectively.
Note that, in reporting experimental results, models implemented with the hyper-
parameter values corresponding to rareness levels of 1% and 10% will be indicated

with H1 and H2, respectively.
A more detailed explanation of hyper-parameter tuning process for the WBCO and

WBCD datasets can be found in the Appendix (Section [E] and [G).

Table 5.12: Optimal Values of Hyper-parameters with Respect to the WBCO Dataset

Rareness level

1% 10%
PopulationSize 1000 500
= | GenerationSize 50 5
é NumberOfGenerations 5 5
% Dres Ple 0.5,0.5 0.5,0.5
Dm 0.01 0.01
PopulationSize 150 250
§ minFinalSetSize 50 200
% | Dres Pic 0.4,0.6 0.8,0.2
Dm 0.01 0.01
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Table 5.13: Optimal Values of Hyper-parameters with Respect to the WBCD Dataset

Rareness level

1% 10%
PopulationSize 150 250
= | GenerationSize 50 200
é NumberOfGenerations 5 10
% Dres Ple 0.5,0.5 0.6,0.4
Dm 0.1 0.01
PopulationSize 1000 250
§ minFinalSetSize 50 200
2 | Pres Dic 0.0, 1.0 0.5,0.5
Dm 0.01 0.01

5.5 Results

5.5.1 Wisconsin Breast Cancer Original Dataset

5.5.1.1 Role of PCM to Generate Initial Solutions to the Evolutionary Algo-

rithms

To evaluate the effect of initial solutions given to the evolutionary algorithms, we
compare the performances of the models PCM+NSGA-II, Random+NSGA-II,
PCM+RECGA and Random+RECGA. Tables[5.14}[5.13] [5.16|and[5.17| give the train-

ing and test performances of these models, respectively.

In the comparison of PCM+NSGA-II and Random+NSGA-II, it is observed that, (re-
gardless of whether the hyper-parameter set is H1 or H2) for all levels of rareness,
both models have extremely high specificity performances, which takes values be-
tween 0.93 and 1.00. However, in terms of sensitivity values, the performance of
the Random+NSGA-II lags behind PCM+NSGA-II. The difference is less in cases
where the rareness level is low (1%, 3%, 5%), but as the rareness level increases, the

performance of Random+NSGA-II is further impaired. Since Fscore is the harmonic
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mean of sensitivity and specificity, the last observation is also true for Fscore perfor-
mances. The standard deviations of Random+NSGA-II are always higher than that of
PCM+NSGA-II, for sensitivity. However, the standard deviation values in specificity
are either very close for both models or they are slightly smaller for Random+NSGA-
II. These observations are true for both training and test performances. When they are
evaluated together, it can be concluded that, it is better to obtain the initial solution

set by PCM.

When the same analysis is conducted for PCM+RECGA and Random+RECGA, al-
most identical observations are obtained. Both in training and test, the specificity
values for all levels of rareness are notably high. However, in general, the specificity
values are slightly better for Random+RECGA. In training, the sensitivity perfor-
mances of PCM+RECGA outperforms that of Random+RECGA. The difference in
their performances is relatively low when the rareness level is low (1%, 3%, 5%).
However, as the rareness level increases, the performance of Random+RECGA de-
creases. In test, while the sensitivity performance of Random+RECGA is better than
PCM+RECGA for rareness levels of 1% and 3%, it lags behind the performance of
PCM+RECGA for the remaining configurations (5%, 7%, 10%, 15%, 25% and 35%).
The observations given for sensitivity are true for Fscore, as well. In terms of standard
deviations, we observed that, either the two models have close values or the standard
deviation of Random+RECGA is lower. Thus, although Random+RECGA seems
to achieve good performances when the rareness level is very low, its performance

deteriorates significantly for slightly higher values of rareness (starting from 5%).

Therefore, we can conclude that, in general, generating initial solutions of the RECGA

algorithm with PCM yields better results.
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Table 5.14: Average Training Performances: PCM+NSGA-II vs. Random+NSGA-II
and PCM+RECGA vs. Random+RECGA (WBCO Dataset)

PCM+NSGA-II Random+NSGA-II PCM+RECGA Random+RECGA
H1 H2 H1 H2 H1 H2 H1 H2

Rareness level = 1%

Sensitivity 0.93 0.70 0.88 0.81 0.92 0.93 0.87 0.87
Specificity 0.93 0.98 0.95 0.99 0.96 0.97 0.99 0.99
Accuracy 0.93 0.98 0.95 0.98 0.96 0.97 0.98 0.98
Fscore 0.92 0.79 0.89 0.87 0.92 0.94 0.90 0.90
Fmeasure 031 0.66 0.38 0.59 0.56 0.59 0.62 0.62

Rareness level = 3%

Sensitivity 0.86 0.82 0.80 0.81 0.86 0.89 0.81 0.81
Specificity 0.96 1.00 0.98 0.99 0.97 0.97 0.99 0.99
Accuracy 0.96 0.99 0.97 0.99 0.97 0.97 0.98 0.98
Fscore 0.90 0.89 0.87 0.88 0.90 0.92 0.88 0.88
Fmeasure 0.62 0.84 0.67 0.81 0.68 0.70 0.77 0.77

Rareness level = 5%

Sensitivity 0.77 0.84 0.66 0.76 0.82 0.86 0.70 0.70
Specificity 0.98 0.99 0.98 0.99 0.96 0.97 0.99 0.99
Accuracy 0.97 0.98 0.97 0.98 0.95 0.96 0.98 0.98
Fscore 0.86 0.91 0.78 0.85 0.88 0.90 0.81 0.81
Fmeasure 0.74 0.84 0.68 0.80 0.69 0.72 0.77 0.77

Rareness level = 7%

Sensitivity 0.80 0.88 0.67 0.79 0.85 0.88 0.72 0.72
Specificity 0.99 0.99 0.99 0.99 0.96 0.96 1.00 1.00
Accuracy 0.97 0.98 0.97 0.98 0.96 0.96 0.98 0.98
Fscore 0.88 0.93 0.79 0.87 0.90 091 0.83 0.83
Fmeasure 0.80 0.89 0.72 0.84 0.75 0.76 0.81 0.81

Rareness level = 10%

Sensitivity 0.84 0.90 0.64 0.79 0.84 0.87 0.68 0.68
Specificity 0.99 0.99 0.99 1.00 0.97 0.97 1.00 1.00
Accuracy 0.97 0.98 0.96 0.97 0.96 0.96 0.97 0.97
Fscore 0.90 0.94 0.77 0.88 0.89 091 0.80 0.80
Fmeasure 0.85 091 0.74 0.86 0.80 0.81 0.80 0.80

Rareness level = 15%

Sensitivity 0.89 0.92 0.62 0.79 0.86 0.87 0.68 0.68
Specificity 0.98 0.99 1.00 1.00 0.96 0.97 1.00 1.00
Accuracy 0.97 0.98 0.94 0.96 0.95 0.95 0.95 0.95
Fscore 0.93 0.95 0.76 0.87 0.90 0.91 0.81 0.81
Fmeasure 0.90 0.93 0.75 0.87 0.83 0.84 0.80 0.80

Rareness level = 25%

Sensitivity 0.94 0.93 0.61 0.77 0.85 0.86 0.62 0.62
Specificity 0.98 0.99 1.00 1.00 0.97 0.97 1.00 1.00
Accuracy 0.97 0.97 0.90 0.94 0.94 0.94 0.90 0.90
Fscore 0.96 0.96 0.75 0.86 0.89 0.90 0.76 0.76
Fmeasure 0.94 0.94 0.75 0.86 0.86 0.87 0.76 0.76

Rareness level = 35%

Sensitivity 0.96 0.94 0.66 0.78 0.90 091 0.64 0.64
Specificity 0.98 0.98 1.00 0.99 0.96 0.96 1.00 1.00
Accuracy 0.97 0.97 0.88 0.92 0.94 0.94 0.87 0.87
Fscore 0.97 0.96 0.79 0.87 0.92 0.93 0.78 0.78
Fmeasure 0.96 0.95 0.79 0.87 091 091 0.78 0.78
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Table 5.15: Standard Deviations of Training Performance Indicators: PCM+NSGA-II
vs. Random+NSGA-II and PCM+RECGA vs. Random+RECGA (WBCO Dataset)

PCM+NSGA-II Random+NSGA-II PCM+RECGA Random+RECGA
H1 H2 H1 H2 H1 H2 H1 H2

Rareness level = 1%

Sensitivity 0.17 0.25 0.24 0.23 0.17 0.19 0.22 0.22
Specificity 0.04 0.10 0.01 0.04 0.05 0.07 0.01 0.01
Accuracy 0.03 0.10 0.01 0.04 0.05 0.07 0.01 0.01
Fscore 0.11 0.18 0.16 0.16 0.11 0.12 0.15 0.15
Fmeasure 0.14 0.19 0.21 0.17 0.28 0.28 0.20 0.20

Rareness level = 3%

Sensitivity 0.14 0.11 0.14 0.17 0.15 0.16 0.15 0.15
Specificity 0.03 0.00 0.01 0.02 0.03 0.03 0.01 0.01
Accuracy 0.02 0.01 0.01 0.02 0.03 0.03 0.01 0.01
Fscore 0.08 0.07 0.09 0.11 0.08 0.09 0.09 0.09
Fmeasure 0.12 0.09 0.11 0.13 0.16 0.17 0.12 0.12

Rareness level = 5%

Sensitivity 0.14 0.11 0.15 0.17 0.14 0.15 0.16 0.16
Specificity 0.01 0.02 0.01 0.01 0.04 0.05 0.01 0.01
Accuracy 0.01 0.02 0.01 0.01 0.04 0.04 0.01 0.01
Fscore 0.09 0.07 0.11 0.13 0.08 0.09 0.12 0.12
Fmeasure 0.10 0.11 0.11 0.11 0.12 0.13 0.12 0.12

Rareness level = 7%

Sensitivity 0.10 0.08 0.13 0.15 0.14 0.15 0.14 0.14
Specificity 0.01 0.01 0.01 0.01 0.04 0.04 0.00 0.00
Accuracy 0.01 0.01 0.01 0.01 0.03 0.03 0.01 0.01
Fscore 0.06 0.05 0.09 0.11 0.09 0.09 0.10 0.10
Fmeasure 0.07 0.06 0.09 0.09 0.13 0.12 0.10 0.10

Rareness level = 10%

Sensitivity 0.08 0.07 0.11 0.12 0.14 0.15 0.12 0.12
Specificity 0.01 0.01 0.01 0.01 0.03 0.03 0.00 0.00
Accuracy 0.01 0.01 0.01 0.01 0.03 0.03 0.01 0.01
Fscore 0.05 0.04 0.07 0.09 0.09 0.10 0.09 0.09
Fmeasure 0.06 0.06 0.07 0.08 0.10 0.10 0.09 0.09

Rareness level = 15%

Sensitivity 0.06 0.07 0.11 0.11 0.16 0.17 0.09 0.09
Specificity 0.01 0.01 0.00 0.01 0.03 0.06 0.00 0.00
Accuracy 0.01 0.01 0.02 0.01 0.02 0.05 0.01 0.01
Fscore 0.03 0.05 0.07 0.09 0.10 0.11 0.07 0.07
Fmeasure 0.04 0.05 0.07 0.08 0.09 0.11 0.07 0.07

Rareness level = 25%

Sensitivity 0.03 0.07 0.12 0.09 0.18 0.18 0.07 0.07
Specificity 0.01 0.01 0.00 0.00 0.03 0.04 0.00 0.00
Accuracy 0.01 0.02 0.03 0.02 0.04 0.04 0.02 0.02
Fscore 0.02 0.04 0.09 0.07 0.12 0.12 0.06 0.06
Fmeasure 0.02 0.04 0.09 0.07 0.12 0.12 0.06 0.06

Rareness level = 35%

Sensitivity 0.02 0.07 0.05 0.05 0.13 0.12 0.11 0.06
Specificity 0.01 0.03 0.00 0.00 0.03 0.03 0.01 0.00
Accuracy 0.01 0.03 0.02 0.02 0.04 0.04 0.04 0.02
Fscore 0.01 0.04 0.04 0.04 0.08 0.08 0.07 0.05
Fmeasure 0.01 0.04 0.04 0.04 0.08 0.08 0.07 0.05
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Table 5.16: Average Test Performances: PCM+NSGA-II vs. Random+NSGA-II and
PCM+RECGA vs. Random+RECGA (WBCO Dataset)

PCM+NSGA-II Random+NSGA-II PCM+RECGA Random+RECGA
H1 H2 H1 H2 H1 H2 H1 H2

Rareness level = 1%

Sensitivity 0.93 0.65 0.81 0.73 0.74 0.73 0.84 0.84
Specificity 0.93 0.98 0.95 0.98 0.95 0.96 0.98 0.98
Accuracy 0.93 0.97 0.94 0.97 0.95 0.96 0.98 0.98
Fscore 0.91 0.73 0.83 0.80 0.76 0.76 0.88 0.88
Fmeasure 0.31 0.54 0.34 0.46 0.40 0.42 0.51 0.51

Rareness level =3%

Sensitivity 0.85 0.67 0.81 0.74 0.75 0.76 0.82 0.82
Specificity 0.96 0.99 0.98 0.99 0.97 0.97 0.99 0.99
Accuracy 0.96 0.98 0.97 0.98 0.96 0.96 0.98 0.98
Fscore 0.89 0.77 0.87 0.83 0.82 0.83 0.89 0.89
Fmeasure 0.61 0.64 0.67 0.71 0.59 0.60 0.75 0.75

Rareness level =5%

Sensitivity 0.82 0.76 0.79 0.75 0.79 0.80 0.77 0.77
Specificity 0.98 0.98 0.98 0.99 0.96 0.96 0.99 0.99
Accuracy 0.97 0.97 0.97 0.98 0.95 0.95 0.98 0.98
Fscore 0.89 0.84 0.87 0.85 0.85 0.86 0.86 0.86
Fmeasure 0.76 0.72 0.77 0.77 0.65 0.66 0.81 0.81

Rareness level =7%

Sensitivity 0.78 0.76 0.68 0.70 0.80 0.82 0.69 0.69
Specificity 0.98 0.98 0.99 0.99 0.96 0.96 1.00 1.00
Accuracy 0.97 0.97 0.97 0.97 0.95 0.95 0.97 0.97
Fscore 0.86 0.84 0.79 0.81 0.85 0.87 0.80 0.80
Fmeasure 0.77 0.75 0.73 0.76 0.69 0.70 0.78 0.78

Rareness level =10%

Sensitivity 0.78 0.80 0.56 0.64 0.79 0.81 0.62 0.62
Specificity 0.98 0.98 0.99 0.99 0.97 0.96 1.00 1.00
Accuracy 0.96 0.96 0.95 0.96 0.95 0.95 0.96 0.96
Fscore 0.86 0.87 0.70 0.77 0.85 0.87 0.76 0.76
Fmeasure 0.80 0.80 0.67 0.74 0.76 0.76 0.75 0.75

Rareness level =15%

Sensitivity 0.84 0.84 0.57 0.68 0.82 0.83 0.64 0.64
Specificity 0.98 0.98 1.00 0.99 0.96 0.96 1.00 1.00
Accuracy 0.96 0.96 0.93 0.95 0.94 0.94 0.95 0.95
Fscore 0.90 0.90 0.72 0.80 0.87 0.88 0.78 0.78
Fmeasure 0.86 0.85 0.71 0.79 0.80 0.81 0.77 0.77

Rareness level =25%

Sensitivity 0.93 0.90 0.63 0.74 0.86 0.86 0.68 0.68
Specificity 0.97 0.97 1.00 0.99 0.96 0.96 1.00 1.00
Accuracy 0.96 0.96 0.90 0.93 0.93 0.94 0.92 0.92
Fscore 0.95 0.93 0.77 0.84 0.89 0.90 0.81 0.81
Fmeasure 0.92 091 0.76 0.83 0.86 0.86 0.81 0.81

Rareness level =35%

Sensitivity 0.94 091 0.61 0.73 091 091 0.62 0.62
Specificity 0.97 0.97 1.00 0.99 0.95 0.95 1.00 1.00
Accuracy 0.96 0.95 0.86 0.90 0.93 0.93 0.87 0.87
Fscore 0.96 0.94 0.75 0.83 0.92 0.92 0.76 0.76
Fmeasure 0.94 0.92 0.75 0.83 0.90 0.90 0.76 0.76
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Table 5.17: Standard Deviations of Test Performance Indicators: PCM+NSGA-II vs.
Random+NSGA-II and PCM+RECGA vs. Random+RECGA (WBCO Dataset)

PCM+NSGA-II Random+NSGA-II PCM+RECGA Random+RECGA
H1 H2 H1 H2 H1 H2 H1 H2

Rareness level =1%

Sensitivity 0.19 0.33 0.30 0.28 0.34 0.34 0.25 0.25
Specificity 0.05 0.10 0.01 0.05 0.05 0.08 0.01 0.01
Accuracy 0.05 0.10 0.01 0.05 0.05 0.08 0.01 0.01
Fscore 0.14 0.30 0.24 0.22 0.31 0.31 0.19 0.19
Fmeasure 0.16 0.26 0.23 0.19 0.26 0.25 0.18 0.18

Rareness level =3%

Sensitivity 0.19 0.23 0.20 0.18 0.23 0.23 0.18 0.18
Specificity 0.03 0.01 0.01 0.02 0.03 0.04 0.01 0.01
Accuracy 0.03 0.01 0.01 0.02 0.03 0.03 0.01 0.01
Fscore 0.12 0.19 0.15 0.11 0.18 0.18 0.12 0.12
Fmeasure 0.14 0.18 0.15 0.14 0.17 0.18 0.13 0.13

Rareness level =5%

Sensitivity 0.14 0.18 0.15 0.15 0.18 0.19 0.14 0.14
Specificity 0.02 0.02 0.01 0.02 0.05 0.06 0.01 0.01
Accuracy 0.01 0.02 0.01 0.02 0.04 0.05 0.01 0.01
Fscore 0.09 0.12 0.11 0.10 0.12 0.13 0.09 0.09
Fmeasure 0.10 0.13 0.11 0.12 0.13 0.15 0.10 0.10

Rareness level =7%

Sensitivity 0.15 0.16 0.16 0.18 0.18 0.19 0.15 0.15
Specificity 0.01 0.01 0.01 0.01 0.05 0.04 0.01 0.01
Accuracy 0.01 0.01 0.01 0.01 0.04 0.04 0.01 0.01
Fscore 0.10 0.11 0.11 0.13 0.12 0.12 0.11 0.11
Fmeasure 0.09 0.11 0.10 0.12 0.13 0.13 0.11 0.11

Rareness level =10%

Sensitivity 0.12 0.14 0.14 0.17 0.18 0.19 0.12 0.12
Specificity 0.01 0.01 0.01 0.01 0.03 0.03 0.00 0.00
Accuracy 0.01 0.02 0.01 0.01 0.03 0.03 0.01 0.01
Fscore 0.08 0.09 0.11 0.14 0.12 0.13 0.10 0.10
Fmeasure 0.08 0.09 0.11 0.13 0.11 0.12 0.10 0.10

Rareness level =15%

Sensitivity 0.09 0.10 0.11 0.12 0.16 0.16 0.10 0.10
Specificity 0.01 0.01 0.01 0.01 0.03 0.06 0.00 0.00
Accuracy 0.01 0.02 0.02 0.02 0.03 0.05 0.02 0.02
Fscore 0.05 0.06 0.08 0.10 0.10 0.11 0.08 0.08
Fmeasure 0.06 0.06 0.08 0.10 0.09 0.11 0.08 0.08

Rareness level =25%

Sensitivity 0.05 0.07 0.12 0.11 0.17 0.17 0.06 0.06
Specificity 0.02 0.02 0.01 0.00 0.03 0.04 0.00 0.00
Accuracy 0.01 0.02 0.03 0.03 0.04 0.04 0.02 0.02
Fscore 0.02 0.04 0.09 0.09 0.11 0.11 0.04 0.04
Fmeasure 0.03 0.03 0.09 0.09 0.10 0.10 0.04 0.04

Rareness level =35%

Sensitivity 0.04 0.08 0.12 0.08 0.14 0.14 0.05 0.05
Specificity 0.02 0.03 0.01 0.00 0.04 0.04 0.00 0.00
Accuracy 0.01 0.03 0.04 0.03 0.04 0.04 0.02 0.02
Fscore 0.02 0.05 0.09 0.07 0.09 0.09 0.04 0.04
Fmeasure 0.02 0.05 0.09 0.07 0.09 0.09 0.04 0.04
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Table [5.18] gives the solution times of PCM+NSGA-II, Random+NSGA-II,
PCM+RECGA and Random+RECGA.

Table 5.18: Solution Times (in sec.) (WBCO Dataset)

PCM+NSGA-II  Random+NSGA-II | PCM+RECGA  Random+RECGA
Hl1 H2 HI1 H2 H1 H2 HI1 H2

‘ Rareness level =1%

AVG 12.37  8.80 8.64 428 4.59 7.87 099 161
STD.DEV | 0.51 0.61 0.17  0.22 1.31 042 0.11 0.07

‘ Rareness level =3%

AVG 1244  8.89 8.69 4.36 4.57 652 103 1.64
STD.DEV | 0.25 0.27 0.09 0.17 0.70 020 0.06 0.08

‘ Rareness level =5%

AVG 1273 9.08 8.87 4.46 4.76 639 1.10 1.77
STD.DEV | 0.27 0.32 0.09 0.13 0.36 023  0.09 0.07

‘ Rareness level =7%

AVG 13.05 13.14 9.01 458 497 1053 111 1.80
STD.DEV | 0.55 14.13 0.07 0.16 14.42 047 0.06 0.03

‘ Rareness level =10%

AVG 15.17  58.75 9.28 4.79 6.55 5639 1.18 1.92
STD.DEV | 0.73 19.17 0.09 0.18 19.28 0.67 007 0.04

‘ Rareness level =15%

AVG 16.36  67.18 9.82 5.1 726 6478 125 2.06
STD.DEV | 0.33 2.20 0.11  0.15 1.94 025 007 0.04

‘ Rareness level =25%

AVG 18.57  69.49 11.07  5.85 847 6694 147 244
STD.DEV | 0.48 2.31 0.09 0.14 1.64 031 006 0.04

‘ Rareness level =35%

AVG 21.32  73.63 12.54  6.78 10.06 6925 1.75 290
STD.DEV | 0.63 6.53 0.11  0.15 1.90 050 0.07 0.04
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5.5.1.2 Comparison of PCM+NSGA-II, PCM+RECGA and Competitor Mod-

els

In this section, we compare the performances of PCM+NSGA-II and
PCM+RECGA with those of competitor models. Tables [5.19] [5.21] [5.20] and [5.22

summarize average performances and standard deviations of performance indicators

for training and test, respectively.

Figure [5.1] illustrates the training and test performances of the models based on the
results given in Tables[5.19and [5.21] Figure[5.2]shows the gaps between the models’
training and test performances. Note that, the gap refers to how much the training
performance is greater than the test performance and if the training performance lags

behind the test, the gap is expressed as zero.
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Table 5.19: Average Training Performances (WBCO Dataset)

‘ PCM+NSGA-ITH!  PCM+NSGA-TM?  pCM+RECGAH!  PCM+RECGAM? LR penLR  SVM ANN DT RF
‘ Rareness level =1%
Sensitivity 0.93 0.70 0.92 0.93 0.97 0.94 0.69 0.96 0.84 1.00
Specificity 0.93 0.98 0.96 0.97 1.00 1.00 1.00 1.00 1.00 1.00
Accuracy 0.93 0.98 0.96 0.97 1.00 1.00 1.00 1.00 0.99 1.00
Fscore 0.92 0.79 0.92 0.94 0.98 0.96 0.71 0.97 0.87 1.00
Fmeasure 0.31 0.66 0.56 0.59 0.98 0.95 0.71 0.97 0.79 1.00
Rareness level =3%
Sensitivity 0.86 0.82 0.86 0.89 0.91 0.88 0.79 0.97 0.87 1.00
Specificity 0.96 1.00 0.97 0.97 1.00 1.00 1.00 1.00 1.00 1.00
Accuracy 0.96 0.99 0.97 0.97 0.99 0.99 0.99 1.00 0.99 1.00
Fscore 0.90 0.89 0.90 0.92 0.95 0.93 0.86 0.98 0.92 1.00
Fmeasure 0.62 0.84 0.68 0.70 0.92 0.90 0.83 0.97 0.87 1.00
Rareness level =5%
Sensitivity 0.77 0.84 0.82 0.86 0.89 0.87 0.83 0.97 0.86 1.00
Specificity 0.98 0.99 0.96 0.97 1.00 1.00 1.00 1.00 1.00 1.00
Accuracy 0.97 0.98 0.95 0.96 0.99 0.99 0.99 1.00 0.99 1.00
Fscore 0.86 0.91 0.88 0.90 0.94 0.93 0.90 0.98 0.92 1.00
Fmeasure 0.74 0.84 0.69 0.72 0.90 0.89 0.86 0.96 0.89 1.00
Rareness level =7%
Sensitivity 0.80 0.88 0.85 0.88 0.90 0.89 0.88 0.98 0.90 1.00
Specificity 0.99 0.99 0.96 0.96 0.99 0.99 0.99 1.00 0.99 1.00
Accuracy 0.97 0.98 0.96 0.96 0.99 0.99 0.98 1.00 0.99 1.00
Fscore 0.88 0.93 0.90 0.91 0.94 0.94 0.93 0.99 0.94 1.00
Fmeasure 0.80 0.89 0.75 0.76 0.91 0.90 0.89 0.97 0.90 1.00
Rareness level =10%
Sensitivity 0.84 0.90 0.84 0.87 0.92 0.91 0.91 0.99 0.93 1.00
Specificity 0.99 0.99 0.97 0.97 0.99 0.99 0.99 0.99 0.99 1.00
Accuracy 0.97 0.98 0.96 0.96 0.98 0.98 0.98 0.99 0.98 1.00
Fscore 0.90 0.94 0.89 0.91 0.95 0.95 0.95 0.99 0.96 1.00
Fmeasure 0.85 091 0.80 0.81 0.92 0.92 0.91 0.97 0.93 1.00
Rareness level =15%
Sensitivity 0.89 0.92 0.86 0.87 0.93 0.92 0.94 0.99 0.95 1.00
Specificity 0.98 0.99 0.96 0.97 0.99 0.99 0.99 0.99 0.99 1.00
Accuracy 0.97 0.98 0.95 0.95 0.98 0.98 0.98 0.99 0.98 1.00
Fscore 0.93 0.95 0.90 0.91 0.96 0.95 0.96 0.99 0.97 1.00
Fmeasure 0.90 0.93 0.83 0.84 0.93 0.93 0.93 0.97 0.94 1.00
Rareness level =25%
Sensitivity 0.94 0.93 0.85 0.86 0.95 0.94 0.96 1.00 0.97 1.00
Specificity 0.98 0.99 0.97 0.97 0.98 0.98 0.98 0.98 0.98 1.00
Accuracy 0.97 0.97 0.94 0.94 0.97 0.97 0.98 0.99 0.98 1.00
Fscore 0.96 0.96 0.89 0.90 0.96 0.96 0.97 0.99 0.98 1.00
Fmeasure 0.94 0.94 0.86 0.87 0.95 0.94 0.95 0.98 0.96 1.00
Rareness level =35%
Sensitivity 0.96 0.94 0.90 0.91 0.96 0.96 0.97 1.00 0.98 1.00
Specificity 0.98 0.98 0.96 0.96 0.98 0.98 0.98 0.98 0.98 1.00
Accuracy 0.97 0.97 0.94 0.94 0.97 0.97 0.97 0.99 0.98 1.00
Fscore 0.97 0.96 0.92 0.93 0.97 0.97 0.97 0.99 0.98 1.00
Fmeasure 0.96 0.95 0.91 0.91 0.96 0.96 0.96 0.98 0.97 1.00
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Table 5.20: Standard Deviations of Training Performance Indicators (WBCO Dataset)

‘ PCM+NSGA-TH!  pCM+NSGA-TH2  pCM+RECGA ™' PCM+RECGA™2 LR pen-LR SVM  ANN DT RF
‘ Rareness level =1%
Sensitivity 0.17 0.25 0.17 0.19 0.10 0.14 041 0.12 0.27 0.00
Specificity 0.04 0.10 0.05 0.07 0.00 0.00 0.00 0.00 0.00 0.00
Accuracy 0.03 0.10 0.05 0.07 0.00 0.00 0.01 0.00 0.00 0.00
Fscore 0.11 0.18 0.11 0.12 0.07 0.09 0.41 0.08 0.24 0.00
Fmeasure 0.14 0.19 0.28 0.28 0.08 0.10 0.41 0.09 0.22 0.00
Rareness level =3%
Sensitivity 0.14 0.11 0.15 0.16 0.10 0.11 0.23 0.05 0.12 0.00
Specificity 0.03 0.00 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.00
Accuracy 0.02 0.01 0.03 0.03 0.01 0.01 0.01 0.00 0.00 0.00
Fscore 0.08 0.07 0.08 0.09 0.06 0.06 0.21 0.03 0.07 0.00
Fmeasure 0.12 0.09 0.16 0.17 0.09 0.09 0.21 0.04 0.07 0.00
Rareness level =5%
Sensitivity 0.14 0.11 0.14 0.15 0.09 0.08 0.15 0.05 0.10 0.00
Specificity 0.01 0.02 0.04 0.05 0.00 0.00 0.00 0.00 0.00 0.00
Accuracy 0.01 0.02 0.04 0.04 0.01 0.01 0.01 0.00 0.00 0.00
Fscore 0.09 0.07 0.08 0.09 0.05 0.05 0.13 0.03 0.06 0.00
Fmeasure 0.10 0.11 0.12 0.13 0.08 0.07 0.13 0.04 0.05 0.00
Rareness level =7%
Sensitivity 0.10 0.08 0.14 0.15 0.06 0.06 0.08 0.04 0.07 0.00
Specificity 0.01 0.01 0.04 0.04 0.00 0.00 0.00 0.00 0.01 0.00
Accuracy 0.01 0.01 0.03 0.03 0.01 0.01 0.01 0.01 0.00 0.00
Fscore 0.06 0.05 0.09 0.09 0.04 0.04 0.05 0.02 0.04 0.00
Fmeasure 0.07 0.06 0.13 0.12 0.05 0.05 0.06 0.04 0.04 0.00
Rareness level =10%
Sensitivity 0.08 0.07 0.14 0.15 0.04 0.04 0.06 0.03 0.04 0.00
Specificity 0.01 0.01 0.03 0.03 0.00 0.00 0.01 0.01 0.01 0.00
Accuracy 0.01 0.01 0.03 0.03 0.01 0.01 0.01 0.01 0.01 0.00
Fscore 0.05 0.04 0.09 0.10 0.02 0.02 0.03 0.01 0.02 0.00
Fmeasure 0.06 0.06 0.10 0.10 0.04 0.04 0.05 0.03 0.03 0.00
Rareness level =15%
Sensitivity 0.06 0.07 0.16 0.17 0.03 0.03 0.04 0.02 0.03 0.00
Specificity 0.01 0.01 0.03 0.06 0.00 0.00 0.01 0.01 0.01 0.00
Accuracy 0.01 0.01 0.02 0.05 0.01 0.01 0.01 0.01 0.01 0.00
Fscore 0.03 0.05 0.10 0.11 0.02 0.02 0.02 0.01 0.02 0.00
Fmeasure 0.04 0.05 0.09 0.11 0.02 0.02 0.03 0.02 0.02 0.00
Rareness level =25%
Sensitivity 0.03 0.07 0.18 0.18 0.01 0.02 0.02 0.01 0.02 0.00
Specificity 0.01 0.01 0.03 0.04 0.00 0.00 0.01 0.01 0.01 0.00
Accuracy 0.01 0.02 0.04 0.04 0.01 0.01 0.01 0.01 0.01 0.00
Fscore 0.02 0.04 0.12 0.12 0.01 0.01 0.01 0.01 0.01 0.00
Fmeasure 0.02 0.04 0.12 0.12 0.01 0.01 0.02 0.01 0.01 0.00
Rareness level =35%
Sensitivity 0.02 0.07 0.13 0.12 0.01 0.01 0.01 0.00 0.01 0.00
Specificity 0.01 0.03 0.03 0.03 0.00 0.00 0.01 0.01 0.01 0.00
Accuracy 0.01 0.03 0.04 0.04 0.01 0.01 0.00 0.00 0.01 0.00
Fscore 0.01 0.04 0.08 0.08 0.01 0.01 0.01 0.00 0.01 0.00
Fmeasure 0.01 0.04 0.08 0.08 0.01 0.01 0.01 0.01 0.01 0.00
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Table 5.21: Average Test Performances (WBCO Dataset)

‘PCM+NSGA»II"“ PCM+NSGA-II"2  PCM+RECGAM!  PCM+RECGAM? LR penlR SVM  ANN DT RF

Rareness level =1%

Sensitivity 0.93 0.65 0.74 0.73 0.50 0.52 0.29 0.58 0.47 0.46
Specificity 0.93 0.98 0.95 0.96 0.99 0.99 1.00 0.99 0.99 0.99
Accuracy 0.93 0.97 0.95 0.96 0.98 0.99 0.99 0.99 0.99 0.99
Fscore 091 0.73 0.76 0.76 0.57 0.61 0.32 0.64 0.54 0.53
Fmeasure 0.31 0.54 0.40 0.42 0.42 0.46 0.28 0.52 0.42 0.43

Rareness level =3%

Sensitivity 0.85 0.67 0.75 0.76 0.63 0.63 0.56 0.64 0.63 0.63
Specificity 0.96 0.99 0.97 0.97 0.99 0.99 0.99 0.99 0.98 0.99
Accuracy 0.96 0.98 0.96 0.96 0.98 0.98 0.98 0.98 0.97 0.98
Fscore 0.89 0.77 0.82 0.83 0.74 0.75 0.66 0.74 0.74 0.74
Fmeasure 0.61 0.64 0.59 0.60 0.63 0.64 0.60 0.62 0.59 0.62

Rareness level =5%

Sensitivity 0.82 0.76 0.79 0.80 0.73 0.73 0.71 0.71 0.66 0.70
Specificity 0.98 0.98 0.96 0.96 0.99 0.99 0.99 0.98 0.98 0.98
Accuracy 0.97 0.97 0.95 0.95 0.97 0.97 0.98 0.97 0.97 0.97
Fscore 0.89 0.84 0.85 0.86 0.83 0.83 0.80 0.81 0.77 0.80
Fmeasure 0.76 0.72 0.65 0.66 0.73 0.73 0.73 0.69 0.65 0.69

Rareness level =7%

Sensitivity 0.78 0.76 0.80 0.82 0.75 0.73 0.76 0.73 0.68 0.75
Specificity 0.98 0.98 0.96 0.96 0.98 0.99 0.99 0.98 0.98 0.98
Accuracy 0.97 0.97 0.95 0.95 0.97 0.97 0.97 0.96 0.96 0.96
Fscore 0.86 0.84 0.85 0.87 0.84 0.83 0.85 0.82 0.79 0.84
Fmeasure 0.77 0.75 0.69 0.70 0.76 0.75 0.78 0.73 0.69 0.74

Rareness level =10%

Sensitivity 0.78 0.80 0.79 0.81 0.81 0.79 0.83 0.82 0.78 0.80
Specificity 0.98 0.98 0.97 0.96 0.98 0.98 0.98 0.97 0.97 0.98
Accuracy 0.96 0.96 0.95 0.95 0.97 0.96 0.97 0.96 0.95 0.96
Fscore 0.86 0.87 0.85 0.87 0.89 0.87 0.90 0.88 0.86 0.87
Fmeasure 0.80 0.80 0.76 0.76 0.83 0.82 0.84 0.80 0.77 0.80

Rareness level =15%

Sensitivity 0.84 0.84 0.82 0.83 0.88 0.87 091 0.89 0.83 0.89
Specificity 0.98 0.98 0.96 0.96 0.98 0.98 0.98 0.97 0.97 0.98
Accuracy 0.96 0.96 0.94 0.94 0.97 0.96 0.97 0.96 0.95 0.96
Fscore 0.90 0.90 0.87 0.88 0.93 0.92 0.94 0.93 0.89 0.93
Fmeasure 0.86 0.85 0.80 0.81 0.89 0.88 0.89 0.87 0.82 0.88

Rareness level =25%

Sensitivity 0.93 0.90 0.86 0.86 0.94 0.94 0.96 0.95 0.92 0.95
Specificity 0.97 0.97 0.96 0.96 0.98 0.98 0.97 0.96 0.96 0.97
Accuracy 0.96 0.96 0.93 0.94 0.97 0.97 0.97 0.96 0.95 0.97
Fscore 0.95 0.93 0.89 0.90 0.96 0.96 0.96 0.96 0.94 0.96
Fmeasure 0.92 0.91 0.86 0.86 0.94 0.93 0.94 0.92 0.90 0.93

Rareness level =35%

Sensitivity 0.94 0.91 091 091 0.95 0.95 0.96 0.97 0.93 0.97
Specificity 0.97 0.97 0.95 0.95 0.97 0.97 0.97 0.96 0.95 0.96
Accuracy 0.96 0.95 0.93 0.93 0.97 0.97 0.97 0.96 0.95 0.97
Fscore 0.96 0.94 0.92 0.92 0.96 0.96 0.97 0.96 0.94 0.97
Fmeasure 0.94 0.92 0.90 0.90 0.95 0.95 0.95 0.95 0.92 0.95
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Table 5.22: Standard Deviations of Test Performance Indicators (WBCO Dataset)

‘ PCM+NSGA-TIM!  PCM+NSGA-2  PCM+RECGA ™! PCM+RECGAM2 LR pen-lR SVM  ANN DT RF
Rareness level =1%
Sensitivity 0.19 0.33 0.34 0.34 0.37 0.34 0.39 0.37 0.37 0.36
Specificity 0.05 0.10 0.05 0.08 0.01 0.01 0.00 0.01 0.01 0.01
Accuracy 0.05 0.10 0.05 0.08 0.01 0.01 0.00 0.01 0.01 0.01
Fscore 0.14 0.30 0.31 0.31 0.38 0.34 0.42 0.36 0.38 0.38
Fmeasure 0.16 0.26 0.26 0.25 0.31 0.28 0.36 0.31 0.32 0.33
Rareness level =3%
Sensitivity 0.19 0.23 0.23 0.23 0.23 0.22 0.30 0.25 0.22 0.23
Specificity 0.03 0.01 0.03 0.04 0.01 0.01 0.01 0.01 0.01 0.01
Accuracy 0.03 0.01 0.03 0.03 0.01 0.01 0.01 0.01 0.01 0.01
Fscore 0.12 0.19 0.18 0.18 0.20 0.18 0.30 0.22 0.19 0.19
Fmeasure 0.14 0.18 0.17 0.18 0.19 0.18 0.27 0.19 0.17 0.19
Rareness level =5%
Sensitivity 0.14 0.18 0.18 0.19 0.17 0.16 0.21 0.20 0.20 0.19
Specificity 0.02 0.02 0.05 0.06 0.01 0.01 0.01 0.01 0.01 0.01
Accuracy 0.01 0.02 0.04 0.05 0.01 0.01 0.01 0.01 0.01 0.01
Fscore 0.09 0.12 0.12 0.13 0.13 0.12 0.19 0.15 0.16 0.14
Fmeasure 0.10 0.13 0.13 0.15 0.13 0.12 0.18 0.14 0.14 0.14
Rareness level =7%
Sensitivity 0.15 0.16 0.18 0.19 0.15 0.16 0.14 0.18 0.15 0.14
Specificity 0.01 0.01 0.05 0.04 0.01 0.01 0.01 0.01 0.01 0.01
Accuracy 0.01 0.01 0.04 0.04 0.01 0.01 0.01 0.01 0.01 0.01
Fscore 0.10 0.11 0.12 0.12 0.10 0.11 0.12 0.14 0.11 0.09
Fmeasure 0.09 0.11 0.13 0.13 0.11 0.11 0.11 0.13 0.10 0.10
Rareness level =10%
Sensitivity 0.12 0.14 0.18 0.19 0.09 0.10 0.09 0.13 0.11 0.11
Specificity 0.01 0.01 0.03 0.03 0.01 0.01 0.01 0.01 0.02 0.01
Accuracy 0.01 0.02 0.03 0.03 0.01 0.01 0.01 0.01 0.02 0.02
Fscore 0.08 0.09 0.12 0.13 0.05 0.06 0.06 0.08 0.07 0.07
Fmeasure 0.08 0.09 0.11 0.12 0.06 0.07 0.06 0.08 0.07 0.08
Rareness level =15%
Sensitivity 0.09 0.10 0.16 0.16 0.07 0.07 0.06 0.09 0.09 0.07
Specificity 0.01 0.01 0.03 0.06 0.01 0.01 0.01 0.02 0.02 0.01
Accuracy 0.01 0.02 0.03 0.05 0.01 0.01 0.01 0.02 0.02 0.01
Fscore 0.05 0.06 0.10 0.11 0.04 0.04 0.03 0.05 0.06 0.04
Fmeasure 0.06 0.06 0.09 0.11 0.04 0.04 0.04 0.05 0.06 0.05
Rareness level =25%
Sensitivity 0.05 0.07 0.17 0.17 0.03 0.03 0.03 0.04 0.05 0.03
Specificity 0.02 0.02 0.03 0.04 0.01 0.01 0.01 0.02 0.02 0.01
Accuracy 0.01 0.02 0.04 0.04 0.01 0.01 0.01 0.01 0.02 0.01
Fscore 0.02 0.04 0.11 0.11 0.01 0.02 0.01 0.02 0.03 0.02
Fmeasure 0.03 0.03 0.10 0.10 0.02 0.02 0.02 0.03 0.03 0.02
Rareness level =35%
Sensitivity 0.04 0.08 0.14 0.14 0.02 0.02 0.02 0.02 0.04 0.02
Specificity 0.02 0.03 0.04 0.04 0.01 0.01 0.01 0.01 0.02 0.01
Accuracy 0.01 0.03 0.04 0.04 0.01 0.01 0.01 0.01 0.02 0.01
Fscore 0.02 0.05 0.09 0.09 0.01 0.01 0.01 0.01 0.02 0.01
Fmeasure 0.02 0.05 0.09 0.09 0.01 0.02 0.01 0.02 0.02 0.02
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When the model performances in training and test are observed, the experimental
analysis suggest that, in terms of specificity, all models are quite successful, in all
levels of rareness. However, even if some of the competitor models’ training perfor-
mances in sensitivity are high, their performances in test is poor and this incompat-
ibility is explicit for low levels of rareness. For example, in training, the sensitivity
performance of RF is 1.00 for all configurations, but in test, its sensitivity in 1%, 3%,
5%, 7% and 10% rareness are 0.46, 0.63, 0.70, 0.75 and 0.80, respectively. As it
can be observed from Figure[5.2] for all models, the gap between training and test is
very small for specificity. Additionally, as the rareness level grows, the gap dimin-
ishes for sensitivity and Fscore. The reason is that, for the configurations where the
rareness level is high, there are more positive observations in the training sets. Thus,

the models are able to learn the specifications of these observations more accurately.

For rareness levels less than 10% (i.e. 1%, 3%, 5% and 7%), the gap between training
and test performances of PCM+NSGA-II and PCM+RECGA are always less than the

average gap of the models, in terms of sensitivity and Fscore.

Therefore, it can be claimed that, while most of the competitor models tend to overfit
to the training sample, PCM+NSGA-II and PCM+RECGA are much more generaliz-

able, when one class of observations are rare compared to other.
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The graphics in Figure[5.3] give the average test performances and standard deviations

of sensitivity, specificity and Fscore.

As it is observed from Table [5.21] and Figure [5.3] PCM+RECGA is less sensitive
than PCM+NSGA-II to the changes in hyper-parameter choices. Its performance
does not change significantly for hyper-parameter sets HI and H2, at any level of
rareness. However, for low levels of rarity, the hyper-parameter set represented with
HI1 gives strongly better results for PCM+NSGA-II. Recall that, H1 is determined
with the dataset where the positive observations are extremely rare in the population.
Therefore, this result is not surprising. It is also expected that, if the hyper-parameter
optimization process is repeated for all levels of rarity, the model performances could
be better. It is also observed that, for high levels of rareness, the hyper-parameter
selection does not change model performances as much as it does in the low levels of

rareness.

The graphics also indicate that, for high levels of rareness, all models perform good
and regardless of the ratio of positive observations in the population, the specificity
performances are high, in general. However, in terms of sensitivity and Fscore,
PCM+NSGA-II and PCM+RECGA are far better than all the competitor models for
1% of rarity. The most successful model, PCM+NSGA-II'!!, has quite high perfor-
mances with 0.93 of sensitivity, 0.93 of specificity and 0.91 of Fscore. The superiority
of the suggested models proceeds for the rareness levels of 3% and 5%. They have a
strong ability to discriminate positive and negative cases even the number of positive

observations in training set is significantly few.

As the rarity of positive observations becomes greater than 10%, the performances
of competitor models strengthen. However, we must note that, PCM+NSGA-II and
PCM+RECGA are still good classifier algorithms.

The figures also show that, as the proportion of positive cases decreases in the pop-
ulation, standard deviations of sensitivity and Fscore of all models tend to grow.
PCM+NSGA-II is one of the most robust models where the standard deviations do
not change significantly for rare cases. On the other hand, especially in competitor
models, significant amount of increase is observed. For rareness level of 1%, among

the competitor models, the lowest standard deviations of sensitivity and Fscore are

128



observed in pen-LR with the value of 0.34. In the same rarity level, the correspond-
ing values for PCM+NSGA-II""! are 0.19 and 0.14; and for PCM+RECGA!! they are
0.34 and 0.31, respectively. For 3% and 5% of rarity, similar results are observed.
PCM+NSGA-ITH! and PCM+RECGA!! have the lowest standard deviations, in gen-

eral.

We do not give a detailed analysis about Fmeasure performances since it is not one
of our performance indicators. Also, due to the facts that are explained in Section [3]
Fmeasure is not a meaningful measure when one class of observations are extremely
rare compared to other. However, for the configurations where the positive observa-
tions are not extremely rare, the performances of PCM+NSGA-II and PCM+RECGA
compete well with the competitor models. Since all the competitor models solve an

instance within a minute, we do not report their solution times in detail.

When we compare the sensitivity and Fscore performances of PCM+NSGA-II and
PCM+RECGA (since the specificity values of both models are high, we do not com-
pare their specificity values), it is observed that, for low levels of rareness (i.e. 1%,
3%, 5%) PCM+NSGA-II"! outperforms PCM+RECGAH!! while their results are much
closer for the remaining configurations. However, for 15%, 25% and 35%,
PCM+NSGA-II*2 again has slightly better performances, compared to
PCM+RECGAM,

More detailed tables that summarize the performances of suggested and compared
models can be found in the Appendix (Section[K)). These tables also include the num-

ber of correct classifications as well as the ratio of correct classifications.
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Figure 5.3: Performances for Different Rareness Levels (WBCO Dataset)
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Remember that, in Section [5.1| we report the performances of the experiments in the
literature which are conducted with the WBCO dataset. None of these experiments
consider the rare event classification and most of them train a model with the original
level of rarity of the dataset. The accuracy results range between 94-74% and 99-
68%, and in most of these studies, sensitivity and specificity rates are above 96%.
In the corresponding setting (when rareness level = 35%), accuracy, sensitivity and
specificity performances of PCM+NSGA-II"? and PCM+RECGA™ are 95%, 91%,
97% and 93%, 91%, 95%, respectively. Hence, in the original rarity of the dataset,
PCM+NSGA-II and PCM+RECGA can compete with the models suggested in the

literature.

5.5.2 Wisconsin Breast Cancer Diagnostic Dataset

5.5.2.1 Role of PCM to Generate Initial Solutions to the Evolutionary Algo-

rithms

As in the previous sections, we start with analyzing the performances of PCM+NSGA-
II, Random+NSGA-II, PCM+RECGA and Random+RECGA, to evaluate the effect
of generating initial solutions of evolutionary algorithms via the MILP model, PCM,
or random. Tables [5.28] [5.29] [5.30] and [5.31] summarize the training and test perfor-

mances of these models.

It is observed that, both in training and test, Random+NSGA-II has higher sensitivity
values compared to PCM+NSGA-II. However, its specificity values are poor. The bi-
ased results are observed in the Fscore performances, as well. That is, PCM+NSGA-
IT has much better Fscore values than Random+NSGA-II (regardless of whether the
hyper-parameter set is H1 or H2). For the configurations where the rareness level
is low, the performance of Random+NSGA-II in specificity are quite low, but as the
rareness level grows, its performance improves. However, it still lags behind the

PCM+NSGA-II both in terms of specificity and Fscore.

The same analyses conducted for PCM+RECGA and Random+RECGA give simi-
lar results. Both in training and test, although the sensitivity performances of Ran-

dom+RECGA is higher than that of PCM+RECGA, it has poor performance in speci-
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ficity. Thus, regardless of whether the experiments are conducted with the hyper-
parameter set HI or H2, Fsore values of PCM+RECGA are almost always better
than Fscore of Random+RECGA. For low levels of rareness, the failure of Ran-
dom+RECGA is much more obvious. As the rareness grows it can achieve better
performances, nevertheless, PCM+RECGA outperforms Random+RECGA in speci-

ficity and Fscore.

These results indicate that, in the experiments conducted with the WBCD dataset,

Random+NSGA-II and Random+RECGA tend to classify most of the patients as
positive, yielding poor performances in specificity and Fscore. Thus, we can conclude
that it is preferable to obtain the initial solution set of evolutionary algorithms via

PCM rather than to randomly generate it.
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Table 5.23: Average Training Performances: PCM+NSGA-II vs.
Random+NSGA-II and PCM+RECGA vs. Random+RECGA (WBCD Dataset)

PCM+NSGA-II Random+NSGA-II ‘ PCM+RECGA Random+RECGA
H1 H2 H1 H2 ‘ H1 H2 H1 H2

Rareness level= 1%

Sensitivity 0.89 1.00 0.99 1.00 1.00 1.00 1.00 1.00
Specificity 0.78 0.54 0.50 0.48 0.89 0.89 0.56 0.49
Accuracy 0.78 0.54 0.51 0.48 0.89 0.89 0.56 0.49
Fscore 0.77 0.69 0.66 0.64 0.93 0.94 0.72 0.65
Fmeasure 0.08 0.04 0.03 0.03 0.37 0.39 0.04 0.03

Rareness level=3%

Sensitivity 0.84 0.94 0.95 0.98 0.97 0.95 1.00 1.00
Specificity 0.95 0.78 0.53 0.49 0.92 0.94 0.56 0.52
Accuracy 0.94 0.79 0.54 0.51 0.93 0.94 0.58 0.53
Fscore 0.88 0.85 0.67 0.65 0.94 0.94 0.72 0.68
Fmeasure 0.52 0.24 0.12 0.12 0.56 0.59 0.13 0.12

Rareness level=5%

Sensitivity 0.81 0.92 0.95 0.97 0.94 0.93 0.99 0.99
Specificity 0.96 0.82 0.56 0.51 0.93 0.94 0.57 0.53
Accuracy 0.96 0.82 0.58 0.53 0.93 0.94 0.59 0.55
Fscore 0.87 0.86 0.70 0.67 0.93 0.93 0.72 0.69
Fmeasure 0.66 0.35 0.18 0.17 0.65 0.69 0.19 0.18

Rareness level=7%

Sensitivity 0.76 0.90 0.95 0.97 0.91 0.89 0.98 0.99
Specificity 0.97 0.86 0.59 0.54 0.92 0.93 0.59 0.55
Accuracy 0.96 0.87 0.62 0.57 0.92 0.93 0.61 0.58
Fscore 0.85 0.88 0.73 0.69 0.91 0.90 0.73 0.71
Fmeasure 0.73 0.51 0.26 0.24 0.65 0.66 0.26 0.25

Rareness level=10%

Sensitivity 0.82 091 0.96 0.97 091 091 0.99 0.99
Specificity 0.98 0.89 0.63 0.56 0.93 0.93 0.60 0.59
Accuracy 0.96 0.89 0.66 0.60 0.93 0.93 0.64 0.63
Fscore 0.89 0.89 0.76 0.71 0.92 0.92 0.74 0.73
Fmeasure 0.81 0.63 0.36 0.33 0.73 0.75 0.35 0.35

Rareness level=15%

Sensitivity 0.85 0.87 0.96 0.98 0.90 091 0.98 0.98
Specificity 0.98 0.93 0.69 0.60 0.93 0.94 0.65 0.63
Accuracy 0.96 0.92 0.73 0.66 0.92 0.93 0.70 0.68
Fscore 0.91 0.90 0.80 0.74 0.91 0.92 0.78 0.77
Fmeasure 0.86 0.77 0.52 0.46 0.78 0.80 0.50 0.49

Rareness level=25%

Sensitivity 0.91 0.89 0.96 0.98 0.92 0.92 0.96 0.96
Specificity 0.97 0.94 0.77 0.68 0.93 0.93 0.72 0.70
Accuracy 0.95 0.93 0.82 0.76 0.93 0.93 0.78 0.77
Fscore 0.93 091 0.86 0.80 0.92 0.92 0.82 0.81
Fmeasure 0.90 0.86 0.73 0.67 0.86 0.87 0.69 0.68

Rareness level=37%

Sensitivity 0.94 0.92 0.97 0.98 0.95 0.94 0.96 0.96
Specificity 0.96 0.94 0.86 0.77 091 0.92 0.83 0.83
Accuracy 0.95 0.93 0.90 0.85 0.92 0.93 0.88 0.87
Fscore 0.95 0.93 091 0.86 0.93 0.93 0.89 0.89
Fmeasure 0.93 091 0.87 0.83 0.90 0.91 0.86 0.85
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Table 5.24: Standard Deviations of Training Performance Indicators: PCM+NSGA-II
vs. Random+NSGA-II and PCM+RECGA vs. Random+RECGA (WBCD Dataset)

PCM+NSGA-II Random+NSGA-II ‘ PCM+RECGA Random+RECGA
H1 H2 H1 H2 ‘ H1 H2 H1 H2

Rareness level=1%

Sensitivity 0.00 0.31 0.00 0.10 0.00 0.00 0.00 0.00
Specificity 0.07 0.13 0.05 0.07 0.15 0.14 0.06 0.05
Accuracy 0.07 0.13 0.05 0.07 0.15 0.14 0.06 0.05
Fscore 0.06 0.28 0.05 0.09 0.10 0.09 0.06 0.04
Fmeasure 0.01 0.06 0.00 0.01 0.32 0.31 0.00 0.00

Rareness level=3%

Sensitivity 0.12 0.16 0.07 0.11 0.12 0.08 0.02 0.00
Specificity 0.08 0.04 0.05 0.06 0.06 0.08 0.06 0.05
Accuracy 0.08 0.04 0.05 0.06 0.06 0.07 0.06 0.05
Fscore 0.07 0.09 0.05 0.05 0.08 0.06 0.05 0.04
Fmeasure 0.08 0.14 0.01 0.02 0.24 0.24 0.01 0.02

Rareness level=5%

Sensitivity 0.10 0.14 0.07 0.09 0.10 0.09 0.05 0.04
Specificity 0.06 0.03 0.06 0.06 0.07 0.07 0.06 0.05
Accuracy 0.05 0.03 0.05 0.06 0.06 0.07 0.06 0.04
Fscore 0.06 0.09 0.05 0.05 0.06 0.05 0.05 0.04
Fmeasure 0.08 0.14 0.02 0.02 0.22 0.22 0.02 0.02

Rareness level=7%

Sensitivity 0.09 0.11 0.05 0.06 0.10 0.07 0.04 0.05
Specificity 0.06 0.02 0.06 0.05 0.06 0.06 0.06 0.05
Accuracy 0.06 0.02 0.06 0.05 0.06 0.06 0.05 0.04
Fscore 0.05 0.07 0.05 0.04 0.06 0.04 0.05 0.04
Fmeasure 0.10 0.10 0.03 0.03 0.14 0.15 0.02 0.02

Rareness level=10%

Sensitivity 0.08 0.08 0.04 0.04 0.08 0.08 0.03 0.02
Specificity 0.05 0.02 0.06 0.05 0.06 0.05 0.05 0.05
Accuracy 0.04 0.02 0.05 0.05 0.05 0.04 0.05 0.05
Fscore 0.04 0.05 0.05 0.04 0.05 0.04 0.04 0.04
Fmeasure 0.09 0.08 0.03 0.04 0.13 0.11 0.03 0.03

Rareness level=15%

Sensitivity 0.07 0.04 0.03 0.03 0.06 0.07 0.03 0.03
Specificity 0.03 0.02 0.06 0.05 0.04 0.03 0.05 0.05
Accuracy 0.03 0.02 0.05 0.04 0.03 0.03 0.04 0.04
Fscore 0.04 0.03 0.05 0.03 0.04 0.03 0.04 0.04
Fmeasure 0.07 0.05 0.04 0.04 0.07 0.06 0.04 0.04

Rareness level=25%

Sensitivity 0.04 0.03 0.02 0.02 0.04 0.05 0.02 0.02
Specificity 0.03 0.02 0.05 0.05 0.04 0.04 0.05 0.04
Accuracy 0.02 0.02 0.04 0.04 0.03 0.02 0.03 0.03
Fscore 0.02 0.02 0.04 0.03 0.03 0.02 0.03 0.03
Fmeasure 0.04 0.03 0.04 0.04 0.04 0.04 0.03 0.03

Rareness level=37%

Sensitivity 0.03 0.02 0.02 0.02 0.03 0.03 0.02 0.02
Specificity 0.03 0.02 0.05 0.03 0.03 0.03 0.03 0.03
Accuracy 0.02 0.02 0.03 0.02 0.02 0.01 0.02 0.02
Fscore 0.02 0.02 0.03 0.02 0.02 0.01 0.02 0.02
Fmeasure 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.03

134



Table 5.25: Average Test Performances: PCM+NSGA-II vs. Random+NSGA-II and
PCM+RECGA vs. Random+RECGA (WBCD Dataset)

PCM+NSGA-II Random+NSGA-II ‘ PCM+RECGA Random+RECGA
H1 H2 H1 H2 ‘ H1 H2 H1 H2

Rareness level=1%

Sensitivity 0.94 0.99 0.98 0.99 0.77 0.72 0.94 1.00
Specificity 0.78 0.56 0.52 0.50 0.88 0.89 0.56 0.51
Accuracy 0.79 0.56 0.52 0.50 0.88 0.89 0.56 0.52
Fscore 0.82 0.71 0.67 0.66 0.70 0.67 0.67 0.68
Fmeasure 0.10 0.04 0.03 0.03 0.24 0.26 0.04 0.03

Rareness level=3%

Sensitivity 0.79 0.92 0.95 0.98 0.76 0.75 0.97 1.00
Specificity 0.95 0.81 0.54 0.52 0.92 0.94 0.57 0.54
Accuracy 0.95 0.81 0.56 0.53 0.92 0.93 0.58 0.56
Fscore 0.85 0.85 0.69 0.67 0.80 0.80 0.71 0.70
Fmeasure 0.54 0.26 0.12 0.12 0.43 0.46 0.13 0.13

Rareness level=5%

Sensitivity 0.77 0.94 0.95 0.99 0.80 0.77 0.99 1.00
Specificity 0.97 0.84 0.57 0.54 0.93 0.94 0.57 0.55
Accuracy 0.96 0.85 0.59 0.56 0.92 0.93 0.59 0.57
Fscore 0.84 0.88 0.71 0.69 0.84 0.82 0.72 0.71
Fmeasure 0.65 0.39 0.18 0.18 0.56 0.57 0.19 0.19

Rareness level=7%

Sensitivity 0.76 0.92 0.95 0.99 0.85 0.84 0.98 0.99
Specificity 0.98 0.87 0.60 0.56 0.92 0.93 0.59 0.58
Accuracy 0.96 0.88 0.62 0.59 0.92 0.92 0.62 0.61
Fscore 0.84 0.89 0.73 0.71 0.87 0.87 0.74 0.73
Fmeasure 0.73 0.54 0.26 0.25 0.62 0.63 0.27 0.26

Rareness level=10%

Sensitivity 0.75 0.89 0.93 0.97 0.83 0.82 0.98 0.98
Specificity 0.98 0.90 0.63 0.59 0.93 0.93 0.61 0.61
Accuracy 0.95 0.90 0.66 0.63 0.92 0.92 0.65 0.65
Fscore 0.84 0.89 0.75 0.73 0.87 0.87 0.75 0.75
Fmeasure 0.76 0.65 0.35 0.34 0.68 0.69 0.35 0.35

Rareness level=15%

Sensitivity 0.81 0.87 0.96 0.98 0.87 0.87 0.98 0.98
Specificity 0.97 0.93 0.69 0.63 0.93 0.94 0.67 0.66
Accuracy 0.95 0.92 0.73 0.69 0.92 0.93 0.71 0.71
Fscore 0.88 0.90 0.80 0.77 0.90 0.90 0.79 0.79
Fmeasure 0.83 0.78 0.52 0.49 0.77 0.78 0.51 0.50

Rareness level=25%

Sensitivity 0.88 0.88 0.97 0.99 0.91 0.90 0.98 0.98
Specificity 0.96 0.94 0.78 0.70 0.93 0.93 0.73 0.73
Accuracy 0.94 0.93 0.83 0.77 0.92 0.93 0.79 0.79
Fscore 0.92 091 0.86 0.82 0.92 0.92 0.83 0.83
Fmeasure 0.88 0.86 0.74 0.69 0.86 0.86 0.70 0.70

Rareness level=37%

Sensitivity 0.92 091 0.95 0.97 0.94 0.93 0.95 0.95
Specificity 0.95 0.95 0.85 0.79 091 0.93 0.84 0.84
Accuracy 0.94 0.93 0.89 0.86 0.92 0.93 0.88 0.88
Fscore 0.93 0.93 0.90 0.87 0.93 0.93 0.89 0.89
Fmeasure 0.92 091 0.87 0.83 0.90 0.91 0.86 0.85
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Table 5.26: Standard Deviations of Test Performance Indicators: PCM+NSGA-II vs.
Random+NSGA-II and PCM+RECGA vs. Random+RECGA (WBCD Dataset)

PCM+NSGA-II Random+NSGA-II ‘ PCM+RECGA Random+RECGA
H1 H2 H1 H2 ‘ H1 H2 H1 H2

Rareness level=1%

Sensitivity 0.10 0.24 0.10 0.14 0.45 0.42 0.00 0.24
Specificity 0.08 0.13 0.05 0.06 0.15 0.14 0.06 0.07
Accuracy 0.08 0.13 0.05 0.06 0.15 0.14 0.06 0.06
Fscore 0.10 0.22 0.08 0.11 0.42 0.39 0.05 0.18
Fmeasure 0.01 0.10 0.00 0.01 031 0.28 0.00 0.01

Rareness level=3%

Sensitivity 0.13 0.19 0.06 0.11 0.25 0.24 0.04 0.10
Specificity 0.07 0.04 0.05 0.06 0.05 0.08 0.05 0.06
Accuracy 0.07 0.04 0.05 0.06 0.05 0.07 0.05 0.06
Fscore 0.07 0.13 0.05 0.06 0.19 0.17 0.05 0.05
Fmeasure 0.08 0.18 0.01 0.02 0.19 0.17 0.01 0.02

Rareness level=5%

Sensitivity 0.10 0.21 0.05 0.10 0.22 0.21 0.02 0.05
Specificity 0.06 0.02 0.05 0.06 0.06 0.07 0.06 0.06
Accuracy 0.06 0.02 0.05 0.05 0.06 0.07 0.05 0.06
Fscore 0.06 0.15 0.05 0.06 0.16 0.15 0.05 0.05
Fmeasure 0.09 0.14 0.02 0.03 0.20 0.19 0.02 0.02

Rareness level=7%

Sensitivity 0.09 0.17 0.04 0.09 0.14 0.15 0.04 0.06
Specificity 0.07 0.03 0.06 0.06 0.06 0.06 0.05 0.05
Accuracy 0.06 0.02 0.05 0.05 0.05 0.05 0.05 0.05
Fscore 0.05 0.12 0.05 0.05 0.08 0.09 0.04 0.04
Fmeasure 0.12 0.12 0.03 0.04 0.14 0.14 0.03 0.03

Rareness level=10%

Sensitivity 0.10 0.13 0.05 0.07 0.13 0.13 0.04 0.04
Specificity 0.05 0.02 0.05 0.06 0.05 0.05 0.05 0.05
Accuracy 0.04 0.02 0.05 0.05 0.05 0.04 0.04 0.05
Fscore 0.06 0.08 0.04 0.04 0.07 0.07 0.04 0.04
Fmeasure 0.10 0.10 0.03 0.04 0.12 0.11 0.03 0.03

Rareness level=15%

Sensitivity 0.10 0.10 0.03 0.05 0.10 0.10 0.03 0.03
Specificity 0.04 0.02 0.05 0.05 0.04 0.03 0.05 0.05
Accuracy 0.03 0.02 0.04 0.04 0.03 0.03 0.04 0.04
Fscore 0.05 0.06 0.04 0.04 0.05 0.05 0.03 0.04
Fmeasure 0.08 0.07 0.03 0.05 0.08 0.07 0.03 0.04

Rareness level=25%

Sensitivity 0.06 0.05 0.02 0.03 0.05 0.06 0.02 0.02
Specificity 0.03 0.02 0.04 0.05 0.04 0.04 0.04 0.04
Accuracy 0.02 0.02 0.03 0.04 0.03 0.03 0.03 0.03
Fscore 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02
Fmeasure 0.04 0.04 0.03 0.04 0.05 0.04 0.03 0.03

Rareness level=37%

Sensitivity 0.04 0.04 0.02 0.02 0.04 0.03 0.02 0.02
Specificity 0.03 0.03 0.04 0.04 0.04 0.03 0.03 0.03
Accuracy 0.02 0.02 0.03 0.03 0.03 0.02 0.02 0.02
Fscore 0.02 0.02 0.03 0.02 0.03 0.02 0.02 0.02
Fmeasure 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02
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Table [5.27] summarizes the solution times of PCM+NSGA-II, Random+NSGA-II,
PCM+RECGA and Random+RECGA.

Table 5.27: Solution Times (in sec.) (WBCD Dataset)

PCM+NSGA-II Random+NSGA-II PCM+RECGA Random+RECGA
HI1 H2 H1 H2 H1 H2 HI1 H2

‘ Rareness level=1%

AVG 59.64 84.31 1222 38.24 86.47 89.73  50.76 16.58
STD.DEV | 7.07 1.75 1.53 045 22.61 1344 041 8.40

‘ Rareness level=3%

AVG 61.97 113.70  13.10 40.36 96.40 90.01  52.06 17.68
STD.DEV | 6.29 0.77 1.51 047 10.72 34.06 1.07 8.01

‘ Rareness level=5%

AVG 63.48 89.07 13.65 41.29 89.29 9125 52.55 18.72
STD.DEV | 1.39 1.00 141 040 423 16.15 1.73 8.29

‘ Rareness level=7%

AVG 66.34 91.93 1423 43.40 92.60 93.47 54.81 18.67
STD.DEV | 1.53 6.71 1.36 036 5.28 15.75 040 791

‘ Rareness level=10%

AVG 67.00 96.44 15.13  46.29 95.87 99.32  56.06 19.81
STD.DEV | 2.14 1.68 1.37 037 5.66 1590 046 6.06

‘ Rareness level=15%

AVG 74.46 107.15  16.89  53.04 102.98  108.84  62.51 22.25
STD.DEV | 2.81 2.49 .71 0.39 6.95 18.66  0.45 7.57

‘ Rareness level=25%

AVG 103.45 14266 2145 70.18 132.02  150.12  79.98 27.85
STD.DEV | 8.17 10.94 177 042 10.13 2340 043 6.79

‘ Rareness level=37%

AVG 14435 203.53 30.00 104.17 180.83  209.12  113.11 3931
STD.DEV | 13.88 10.04 556 059 15.49 26.60 0.55 10.69
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5.5.2.2 Comparison of PCM+NSGA-II, PCM+RECGA and Competitor Mod-

els

In this section, to compare PCM+NSGA-II, PCM+RECGA and the competitor mod-
els, we summarize the average performances and standard deviations of performance

indicators in Tables [5.28] [5.29] [5.30| and [5.3T] for training and test, respectively.

Based on the results given in Tables [5.28] and [5.30} Figure [5.4] shows the training and
test performances of the models and Figure[5.5]illustrates the gaps between the mod-
els’ training and test performances. Note that, the gap refers to how much the training
performance is greater than the test performance and if the training performance lags

behind the test, the gap is expressed as zero.
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Table 5.28: Average Training Performances (WBCD Dataset)

‘ PCM+NSGA-ITH!  PCM+NSGA-TM?  pCM+RECGAH!  PCM+RECGAM? LR penLR  SVM ANN DT RF
‘ Rareness level=1%
Sensitivity 0.89 1.00 1.00 1.00 1.00 0.95 0.64 1.00 0.86 1.00
Specificity 0.78 0.54 0.89 0.89 1.00 1.00 1.00 1.00 1.00 1.00
Accuracy 0.78 0.54 0.89 0.89 1.00 1.00 1.00 1.00 1.00 1.00
Fscore 0.77 0.69 0.93 0.94 1.00 0.96 0.64 1.00 0.90 1.00
Fmeasure 0.08 0.04 0.37 0.39 1.00 0.96 0.64 1.00 0.87 1.00
Rareness level=3%
Sensitivity 0.84 0.94 0.97 0.95 1.00 0.97 0.89 1.00 0.90 1.00
Specificity 0.95 0.78 0.92 0.94 1.00 1.00 1.00 1.00 1.00 1.00
Accuracy 0.94 0.79 0.93 0.94 1.00 1.00 1.00 1.00 0.99 1.00
Fscore 0.88 0.85 0.94 0.94 1.00 0.98 0.92 1.00 0.94 1.00
Fmeasure 0.52 0.24 0.56 0.59 1.00 0.98 0.92 1.00 0.91 1.00
Rareness level=5%
Sensitivity 0.81 0.92 0.94 0.93 0.99 0.97 0.90 1.00 0.89 1.00
Specificity 0.96 0.82 0.93 0.94 1.00 1.00 1.00 1.00 1.00 1.00
Accuracy 0.96 0.82 0.93 0.94 1.00 1.00 1.00 1.00 0.99 1.00
Fscore 0.87 0.86 0.93 0.93 1.00 0.98 0.93 1.00 0.94 1.00
Fmeasure 0.66 0.35 0.65 0.69 1.00 0.98 0.93 1.00 0.93 1.00
Rareness level=7%
Sensitivity 0.76 0.90 0.91 0.89 0.99 0.96 0.89 1.00 0.90 1.00
Specificity 0.97 0.86 0.92 0.93 1.00 1.00 1.00 1.00 1.00 1.00
Accuracy 0.96 0.87 0.92 0.93 1.00 1.00 0.99 1.00 0.99 1.00
Fscore 0.85 0.88 0.91 0.90 1.00 0.98 0.93 1.00 0.95 1.00
Fmeasure 0.73 0.51 0.65 0.66 1.00 0.98 0.93 1.00 0.93 1.00
Rareness level=10%
Sensitivity 0.82 0.91 0.91 0.91 0.98 0.95 0.92 1.00 0.91 1.00
Specificity 0.98 0.89 0.93 0.93 1.00 1.00 1.00 1.00 1.00 1.00
Accuracy 0.96 0.89 0.93 0.93 1.00 1.00 0.99 1.00 0.99 1.00
Fscore 0.89 0.89 0.92 0.92 0.99 0.98 0.95 1.00 0.95 1.00
Fmeasure 0.81 0.63 0.73 0.75 0.99 0.97 0.95 1.00 0.94 1.00
Rareness level=15%
Sensitivity 0.85 0.87 0.90 0.91 0.98 0.96 0.94 1.00 0.94 1.00
Specificity 0.98 0.93 0.93 0.94 1.00 1.00 1.00 1.00 0.99 1.00
Accuracy 0.96 0.92 0.92 0.93 1.00 0.99 0.99 1.00 0.99 1.00
Fscore 0.91 0.90 0.91 0.92 0.99 0.98 0.97 1.00 0.97 1.00
Fmeasure 0.86 0.77 0.78 0.80 0.99 0.98 0.97 1.00 0.95 1.00
Rareness level=25%
Sensitivity 0.91 0.89 0.92 0.92 0.96 0.96 0.95 0.99 0.97 1.00
Specificity 0.97 0.94 0.93 0.93 0.99 1.00 1.00 1.00 0.99 1.00
Accuracy 0.95 0.93 0.93 0.93 0.99 0.99 0.99 1.00 0.98 1.00
Fscore 0.93 091 0.92 0.92 0.98 0.98 0.97 1.00 0.98 1.00
Fmeasure 0.90 0.86 0.86 0.87 0.97 0.97 0.97 1.00 0.97 1.00
Rareness level=37%
Sensitivity 0.94 0.92 0.95 0.94 0.97 0.97 0.97 0.99 0.98 1.00
Specificity 0.96 0.94 0.91 0.92 0.99 0.99 1.00 1.00 0.99 1.00
Accuracy 0.95 0.93 0.92 0.93 0.98 0.98 0.98 0.99 0.98 1.00
Fscore 0.95 0.93 0.93 0.93 0.98 0.98 0.98 0.99 0.98 1.00
Fmeasure 0.93 091 0.90 0.91 0.98 0.98 0.98 0.99 0.98 1.00
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Table 5.29: Standard Deviations of Training Performance Indicators (WBCD Dataset)

‘PCM+NSGA-II"“ PCM+NSGA-II"2  PCM+RECGAM!  PCM+RECGAM? LR penlR SVM  ANN DT RF

‘ Rareness level=1%

Sensitivity 0.00 0.31 0.00 0.00 0.00 0.17 0.47 0.00 0.24 0.00
Specificity 0.07 0.13 0.15 0.14 0.00 0.00 0.00 0.00 0.00 0.00
Accuracy 0.07 0.13 0.15 0.14 0.00 0.00 0.00 0.00 0.00 0.00
Fscore 0.06 0.28 0.10 0.09 0.00 0.13 0.47 0.00 0.17 0.00
Fmeasure 0.01 0.06 0.32 0.31 0.00 0.13 0.47 0.00 0.17 0.00

Rareness level=3%

Sensitivity 0.12 0.16 0.12 0.08 0.00 0.06 0.19 0.00 0.12 0.00
Specificity 0.08 0.04 0.06 0.08 0.00 0.00 0.00 0.00 0.00 0.00
Accuracy 0.08 0.04 0.06 0.07 0.00 0.00 0.01 0.00 0.00 0.00
Fscore 0.07 0.09 0.08 0.06 0.00 0.03 0.17 0.00 0.07 0.00
Fmeasure 0.08 0.14 0.24 0.24 0.00 0.03 0.17 0.00 0.08 0.00

Rareness level=5%

Sensitivity 0.10 0.14 0.10 0.09 0.04 0.06 0.18 0.01 0.09 0.00
Specificity 0.06 0.03 0.07 0.07 0.00 0.00 0.00 0.00 0.00 0.00
Accuracy 0.05 0.03 0.06 0.07 0.00 0.00 0.01 0.00 0.01 0.00
Fscore 0.06 0.09 0.06 0.05 0.02 0.03 0.16 0.00 0.06 0.00
Fmeasure 0.08 0.14 0.22 0.22 0.03 0.03 0.16 0.01 0.06 0.00

Rareness level=7%

Sensitivity 0.09 0.11 0.10 0.07 0.02 0.04 0.15 0.00 0.07 0.00
Specificity 0.06 0.02 0.06 0.06 0.00 0.00 0.00 0.00 0.00 0.00
Accuracy 0.06 0.02 0.06 0.06 0.00 0.00 0.01 0.00 0.00 0.00
Fscore 0.05 0.07 0.06 0.04 0.01 0.02 0.14 0.00 0.04 0.00
Fmeasure 0.10 0.10 0.14 0.15 0.02 0.03 0.14 0.00 0.04 0.00

Rareness level=10%

Sensitivity 0.08 0.08 0.08 0.08 0.03 0.04 0.11 0.00 0.07 0.00
Specificity 0.05 0.02 0.06 0.05 0.00 0.00 0.00 0.00 0.00 0.00
Accuracy 0.04 0.02 0.05 0.04 0.00 0.00 0.01 0.00 0.01 0.00
Fscore 0.04 0.05 0.05 0.04 0.02 0.02 0.10 0.00 0.04 0.00
Fmeasure 0.09 0.08 0.13 0.11 0.02 0.02 0.10 0.00 0.04 0.00

Rareness level=15%

Sensitivity 0.07 0.04 0.06 0.07 0.03 0.03 0.04 0.02 0.04 0.00
Specificity 0.03 0.02 0.04 0.03 0.00 0.00 0.00 0.00 0.01 0.00
Accuracy 0.03 0.02 0.03 0.03 0.01 0.01 0.01 0.00 0.01 0.00
Fscore 0.04 0.03 0.04 0.03 0.02 0.02 0.02 0.01 0.02 0.00
Fmeasure 0.07 0.05 0.07 0.06 0.02 0.02 0.02 0.01 0.02 0.00

Rareness level=25%

Sensitivity 0.04 0.03 0.04 0.05 0.02 0.02 0.02 0.01 0.02 0.00
Specificity 0.03 0.02 0.04 0.04 0.00 0.00 0.00 0.00 0.01 0.00
Accuracy 0.02 0.02 0.03 0.02 0.01 0.01 0.01 0.00 0.01 0.00
Fscore 0.02 0.02 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.00
Fmeasure 0.04 0.03 0.04 0.04 0.01 0.01 0.01 0.01 0.01 0.00

Rareness level=37%

Sensitivity 0.03 0.02 0.03 0.03 0.01 0.01 0.01 0.01 0.01 0.00
Specificity 0.03 0.02 0.03 0.03 0.00 0.00 0.00 0.00 0.01 0.00
Accuracy 0.02 0.02 0.02 0.01 0.00 0.00 0.00 0.01 0.01 0.00
Fscore 0.02 0.02 0.02 0.01 0.01 0.00 0.01 0.01 0.01 0.00
Fmeasure 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.00
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Table 5.30: Average Test Performances (WBCD Dataset)

‘PCM+NSGA»II"“ PCM+NSGA-II"2  PCM+RECGAM!  PCM+RECGAM? LR penlR SVM  ANN DT RF

Rareness level=1%

Sensitivity 0.94 0.99 0.77 0.72 0.76 0.59 0.32 0.76 0.55 0.53
Specificity 0.78 0.56 0.88 0.89 1.00 0.99 1.00 1.00 1.00 1.00
Accuracy 0.79 0.56 0.88 0.89 1.00 0.99 0.99 0.99 0.99 0.99
Fscore 0.82 0.71 0.70 0.67 0.76 0.59 0.32 0.76 0.55 0.53
Fmeasure 0.10 0.04 0.24 0.26 0.70 0.49 0.32 0.69 0.50 0.47

Rareness level=3%

Sensitivity 0.79 0.92 0.76 0.75 0.72 0.66 0.66 0.77 0.58 0.56
Specificity 0.95 0.81 0.92 0.94 0.99 0.99 1.00 0.99 0.99 0.99
Accuracy 0.95 0.81 0.92 0.93 0.99 0.98 0.99 0.99 0.98 0.98
Fscore 0.85 0.85 0.80 0.80 0.81 0.76 0.75 0.84 0.69 0.67
Fmeasure 0.54 0.26 0.43 0.46 0.74 0.69 0.72 0.79 0.61 0.59

Rareness level=5%

Sensitivity 0.77 0.94 0.80 0.77 0.84 0.77 0.75 0.84 0.65 0.70
Specificity 0.97 0.84 0.93 0.94 0.99 0.99 1.00 0.99 0.99 0.99
Accuracy 0.96 0.85 0.92 0.93 0.98 0.98 0.98 0.98 0.97 0.97
Fscore 0.84 0.88 0.84 0.82 0.90 0.86 0.83 0.90 0.76 0.80
Fmeasure 0.65 0.39 0.56 0.57 0.84 0.81 0.80 0.84 0.69 0.71

Rareness level=7%

Sensitivity 0.76 0.92 0.85 0.84 0.89 0.87 0.81 0.90 0.72 0.73
Specificity 0.98 0.87 0.92 0.93 0.99 0.99 1.00 0.99 0.98 0.98
Accuracy 0.96 0.88 0.92 0.92 0.98 0.98 0.98 0.98 0.96 0.97
Fscore 0.84 0.89 0.87 0.87 0.93 0.92 0.88 0.94 0.82 0.83
Fmeasure 0.73 0.54 0.62 0.63 0.86 0.87 0.86 0.87 0.74 0.75

Rareness level=10%

Sensitivity 0.75 0.89 0.83 0.82 0.89 0.87 0.82 0.89 0.71 0.74
Specificity 0.98 0.90 0.93 0.93 0.98 0.99 0.99 0.98 0.98 0.98
Accuracy 0.95 0.90 0.92 0.92 0.97 0.98 0.98 0.98 0.95 0.96
Fscore 0.84 0.89 0.87 0.87 0.93 0.92 0.89 0.93 0.81 0.84
Fmeasure 0.76 0.65 0.68 0.69 0.87 0.89 0.87 0.88 0.75 0.76

Rareness level=15%

Sensitivity 0.81 0.87 0.87 0.87 091 0.90 0.88 0.90 0.79 0.81
Specificity 0.97 0.93 0.93 0.94 0.98 0.99 0.99 0.98 0.97 0.97
Accuracy 0.95 0.92 0.92 0.93 0.97 0.97 0.98 0.97 0.94 0.95
Fscore 0.88 0.90 0.90 0.90 0.94 0.94 0.93 0.94 0.87 0.88
Fmeasure 0.83 0.78 0.77 0.78 0.90 0.91 0.92 0.89 0.80 0.83

Rareness level=25%

Sensitivity 0.88 0.88 0.91 0.90 0.94 0.94 0.93 0.93 0.86 0.88
Specificity 0.96 0.94 0.93 0.93 0.98 0.98 0.99 0.97 0.95 0.97
Accuracy 0.94 0.93 0.92 0.93 0.97 0.97 0.98 0.96 0.93 0.95
Fscore 0.92 091 0.92 0.92 0.96 0.96 0.96 0.94 0.91 0.93
Fmeasure 0.88 0.86 0.86 0.86 0.94 0.94 0.95 0.92 0.86 0.90

Rareness level=37%

Sensitivity 0.92 0.91 0.94 0.93 0.94 0.94 0.94 0.93 091 0.93
Specificity 0.95 0.95 0.91 0.93 0.98 0.98 0.99 0.96 0.94 0.97
Accuracy 0.94 0.93 0.92 0.93 0.96 0.96 0.97 0.95 0.93 0.96
Fscore 0.93 0.93 0.93 0.93 0.96 0.96 0.96 0.95 0.93 0.95
Fmeasure 0.92 0.91 0.90 0.91 0.95 0.95 0.95 0.93 091 0.94
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Table 5.31: Standard Deviations of Test Performance Indicators (WBCD Dataset)

‘ PCM+NSGA-IM!  PCM+NSGA-TH2  PCM+RECGAM!  PCM+RECGAM2 LR pen-LR  SVM  ANN DT RF
Rareness level=1%
Sensitivity 0.10 0.24 0.45 0.42 043 0.49 047 043 0.50 0.50
Specificity 0.08 0.13 0.15 0.14 0.01 0.01 0.00 0.01 0.01 0.01
Accuracy 0.08 0.13 0.15 0.14 0.01 0.01 0.00 0.01 0.01 0.01
Fscore 0.10 0.22 0.42 0.39 0.43 0.49 0.47 0.43 0.50 0.50
Fmeasure 0.01 0.10 0.31 0.28 0.42 0.44 0.46 0.42 0.47 0.47
Rareness level=3%
Sensitivity 0.13 0.19 0.25 0.24 0.23 0.27 0.28 0.23 0.26 0.25
Specificity 0.07 0.04 0.05 0.08 0.01 0.01 0.01 0.01 0.01 0.01
Accuracy 0.07 0.04 0.05 0.07 0.01 0.01 0.01 0.01 0.01 0.01
Fscore 0.07 0.13 0.19 0.17 0.18 0.22 0.26 0.16 0.25 0.24
Fmeasure 0.08 0.18 0.19 0.17 0.18 0.22 0.25 0.18 0.24 0.24
Rareness level=5%
Sensitivity 0.10 0.21 0.22 0.21 0.15 0.19 0.23 0.15 0.22 0.21
Specificity 0.06 0.02 0.06 0.07 0.01 0.01 0.01 0.01 0.01 0.01
Accuracy 0.06 0.02 0.06 0.07 0.01 0.01 0.01 0.01 0.01 0.01
Fscore 0.06 0.15 0.16 0.15 0.09 0.13 0.20 0.09 0.18 0.16
Fmeasure 0.09 0.14 0.20 0.19 0.11 0.15 0.20 0.12 0.17 0.16
Rareness level=7%
Sensitivity 0.09 0.17 0.14 0.15 0.11 0.12 0.18 0.10 0.17 0.16
Specificity 0.07 0.03 0.06 0.06 0.01 0.01 0.01 0.01 0.02 0.01
Accuracy 0.06 0.02 0.05 0.05 0.02 0.01 0.01 0.01 0.02 0.01
Fscore 0.05 0.12 0.08 0.09 0.07 0.07 0.16 0.06 0.13 0.11
Fmeasure 0.12 0.12 0.14 0.14 0.10 0.10 0.16 0.09 0.13 0.11
Rareness level=10%
Sensitivity 0.10 0.13 0.13 0.13 0.09 0.11 0.15 0.10 0.15 0.13
Specificity 0.05 0.02 0.05 0.05 0.01 0.01 0.01 0.01 0.01 0.01
Accuracy 0.04 0.02 0.05 0.04 0.01 0.02 0.02 0.01 0.02 0.02
Fscore 0.06 0.08 0.07 0.07 0.05 0.07 0.12 0.06 0.10 0.09
Fmeasure 0.10 0.10 0.12 0.11 0.07 0.08 0.12 0.07 0.10 0.10
Rareness level=15%
Sensitivity 0.10 0.10 0.10 0.10 0.07 0.08 0.09 0.07 0.11 0.09
Specificity 0.04 0.02 0.04 0.03 0.01 0.01 0.01 0.02 0.02 0.02
Accuracy 0.03 0.02 0.03 0.03 0.02 0.01 0.01 0.02 0.02 0.02
Fscore 0.05 0.06 0.05 0.05 0.04 0.04 0.06 0.04 0.07 0.06
Fmeasure 0.08 0.07 0.08 0.07 0.05 0.05 0.06 0.05 0.07 0.07
Rareness level=25%
Sensitivity 0.06 0.05 0.05 0.06 0.04 0.04 0.04 0.05 0.06 0.05
Specificity 0.03 0.02 0.04 0.04 0.02 0.01 0.01 0.02 0.03 0.02
Accuracy 0.02 0.02 0.03 0.03 0.02 0.01 0.01 0.02 0.02 0.02
Fscore 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.03 0.03 0.03
Fmeasure 0.04 0.04 0.05 0.04 0.03 0.03 0.03 0.03 0.04 0.04
Rareness level=37%
Sensitivity 0.04 0.04 0.04 0.03 0.03 0.03 0.06 0.03 0.04 0.03
Specificity 0.03 0.03 0.04 0.03 0.02 0.02 0.01 0.02 0.02 0.01
Accuracy 0.02 0.02 0.03 0.02 0.01 0.01 0.02 0.02 0.02 0.01
Fscore 0.02 0.02 0.03 0.02 0.01 0.02 0.05 0.02 0.02 0.02
Fmeasure 0.03 0.03 0.03 0.03 0.02 0.02 0.05 0.02 0.03 0.02

142



1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

143

0.10

0.00

EX]

1a

NNV

INAS

y1-uad

ol

TH Y9234+ADd
TH V9234+NDd
CH I'VOSN+Dd
TH II'¥OSN+ADd

EE]

1a

NNV

INAS

y1-uad

ol

CH V9234+NDd
TH Y9234+ADd
CH I'VOSN+Dd
TH II'¥OSN+ADd

EE]

1a

NNV

INAS

y1-uad

ol

CH V9234+NDd
TH V9234+NDd
TH 1I-YOSN+ADd
TH II'¥OSN+AIDd

EE]

1a

NNV

WAS

y1-uad

ol

CH V9234+NDd
TH V9234+NDd
CH I'VOSN+Dd
TH 1I"V9SN+ADd

EE]

1a

NNV

INAS

y1-ued

ol

CH V9234+NDd
TH V9234+NDd
CH I'VOSN+Dd
TH II'¥OSN+ADd

EE]

1a

NNV

INAS

y1-uad

41

CH V9234+NDd
TH V9234+NDd
CH I'VOSN+Dd
TH II'¥OSN+AIDd

EX|

1a

NNV

INAS

y1-uad

ol

CH V9234+NDd
TH V9234+NDd
CH I'VOSN+Dd
TH II'¥OSN+ADd

EE]

1a

NNV

INAS

y1-uad

ol

CH V9234+NDd
TH V9234+NDd
CH I'VOSN+Dd
TH II'¥OSN+AIDd

37%

25%

15%

10%

7%

5%

3%

1%

® Sensit

T
el
[

. Test Performances (WBCD Dataset)

ining vs

Tra

Figure 5.4



EL]

1d

NNV

INAS
y1-uad

37%

d1
TH V9D3d+ADd

TH V9234+NDd

CH II'VOSN+ADd
TH II-'VOSN+ADd

ER|
1a

NNV

INAS

y1-uad

25%

ol

CH V923¥+NDd

TH V9D34+ADd

CH II'VOSN+ADd

TH II-'VOSN+ADd

ER]

1d

NNY

INAS

y1-uad

15%

ol

CH V923¥+NDd

TH V9234+NDd

TH IIF'VOSN+ANDd

TH II-'VOSN+ADd

ER]

1d

NNV

NAS

y1-uad

10%

ol

CH V923¥+NDd
TH V9234+NDd

CH II'VOSN+ADd

TH IF'VOSN+NDd

ER]

1d

NNV

INAS

y1-uad

7%

ol

CH V923¥+NDd

TH V9234+NDd

CH II'VOSN+ADd
TH II-'VOSN+ADd

ER]

1d

NNV

INAS
y1-uad

5%

<l

CH V923¥+NDd

TH V9234+NDd

CH II'VOSN+ADd

TH II-'VOSN+ADd

ER|

1d

NNV

INAS
y1-uad

3%

ol

CH V9D34+INDd

TH V9234+NDd

CH II'VOSN+ADd

TH II-'VOSN+ADd

ER]

1d

NNV

INAS
y1-uad

1%

ol

1.00

CH V923¥+NDd

TH V9234+NDd

0.90

CH II'VOSN+ADd

0.80

0.70

0.60

0.50

0.40

0.30

TH II-'VOSN+ADd

0.20
0.10
0.00

144

® Spe.

y-TRAIN

. Test Performances (WBCD Dataset)

ining vs

Tra

Figure 5.4



ER]

1d

NNV

INAS
y1-uad

37%

d1
CH V9234+IADd

TH V9234+ADd

CH II-'VOSN+ADd
TH II-'VOSN+ADd

ER|
1a

NNV

INAS

y1-uad

25%

ol

CH V9234+INDd

TH V9234+ADd

CH II-'VOSN+ADd

TH II-'VOSN+ADd

ER]

1d

NNY

INAS

y1-uad

15%

ol

CH V9234+INDd

TH V9234+ADd

CH II"'VOSN+INDd

TH II-'VOSN+ADd

ER]

1d

NNV

NAS

y1-uad

10%

ol

CH V9234+INDd
TH V9234+ADd

CH II-'VOSN+ADd

TH I'VOSN+ADd

ER]

1d

NNV

INAS

y1-uad

7%

ol

CH V9234+INDd

TH V9234+ADd

CH II-'VOSN+ADd
TH II-'VOSN+ADd

ER]

1d

NNV

INAS
y1-uad

5%

<l

CH V9234+INDd

TH V9234+ADd

CH II-'VOSN+ADd

TH II-'VOSN+ADd

ER|

1d

NNV

INAS
y1-uad

3%

ol

CH V9234+ADd

TH V9234+ADd

CH II-'VOSN+ADd

TH II-'VOSN+ADd

ER]

1d

NNV

INAS
y1-uad

1%

ol

1.00

CH V9234+INDd

TH V9234+ADd

0.90

0.80

CH II-'VOSN+ADd

0.70

0.60

0.50

0.40

0.30

TH II-'VOSN+ADd

0.20
0.10
0.00

145

W Fscore-TRAIN @ Fscore-TEST

. Test Performances (WBCD Dataset)

ining vs

Tra

Figure 5.4



It is observed that, for all rarity levels, the specificity of competitor models, both
in training and test, are extremely high. However, for the configurations with low
rareness levels, although some competitor models have very high sensitivity perfor-
mances in training, their values in test are poor. For example, for rareness level of 1%,
LR, ANN and RF have sensitivity of 1.00 in training but their performances in test
are 0.76, 0.76 and 0.53, respectively. Fscore performances of the competitor models
reflect the incompatibility between training and test performances, as well. Especially
for low levels of rarity, although the training performances of the competitor models
are high, their Fscore in test are not as promising as their training results. For exam-
ple, while the training Fscore values of LR, pen-LR, ANN, DT and RF are 1.00, 0.96,
1.00, 0.90 and 1.00 their test results are 0.76, 0.59, 0.76, 0.55 and 0.53, respectively.

Figure [5.5] shows the gap between training and test performances and average gap of
the models. It is observed that, for all models, the gap between training and test is
quite small for specificity. Figure [5.5|also suggests that, as the rareness level grows,
the corresponding gaps diminish for sensitivity and Fscore. Due to the fact that, since
more observations are utilized in training, models learn the specifications of both

classes better and their generalization error (test error) decreases.
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For the rareness levels less than 10% (i.e. 1%, 3%, 5%, 7%), the only models whose
gap between training and test performances are always below the average, in terms of
sensitivity and Fscore, are PCM+NSGA-II (regardless of whether the hyperparameter
set is HI or H2) and PCM+RECGAH!!. For the remaining configurations (i.e. 10%,
15%, 25%, 37%), the gap between training and test performances of LR, pen-LR
and SVM, along with the PCM+NSGA-II and PCM+RECGA, are below the average
gap, as well. In addition to the fact that the test performances of PCM+NSGA-II and
PCM+RECGA are compatible with those of training, they provide high classification
performances. For 1%, 3%, 5% and 7% rareness levels, Fscore of PCM+NSGA-IIH!
and PCM+RECGAM! are 0.82, 0.85, 0.84 and 0.84 and 0.70, 0.80, 0.84 and 0.87,
respectively. For the remaining configurations (10%, 15%, 25%, 37%), Fscore values
of PCM+NSGA-II"? and PCM+RECGA™ are 0.89, 0.90, 0.91 and 0.93 and 0.87,
0.90, 0.92 and 0.93, respectively.

Therefore, it can be claimed that, PCM+NSGA-II and PCM+RECGA are strong al-
ternatives with high generalization ability, especially when one class of observations

are rare compared to other.

The graphics in Figure [5.6] give the average test performances and standard devia-
tions of sensitivity, specificity and Fscore. As it can be observed from Table[5.30/and
Figure[5.6] the performance of PCM+RECGA does not change significantly whether
the experiments are conducted with hyper-parameter sets H1 or H2. The same analy-
sis for PCM+NSGA-II suggests that, in general, the model performances are similar
for HI and H2. However, when the positive cases are extremely rare, selecting op-
timal model parameters provides great advantage. That is, in 1% of rareness level,
PCM+NSGA-II"! has far better Fscore value than that of PCM+NSGA-II'2. Note
that, we expect that, the model performances could improve if the hyper-parameter

optimization is conducted for each configuration of rareness.

The graphics also indicate that, when the rareness level is higher than 10%, the Fscore
of PCM+NSGA-II"? and PCM+RECGA! are not worse than 0.90. The competitor
models have Fscore values between 0.87 and 0.96 in these configurations. Thus, we
can claim that, the developed models are able to compete with well-known machine

learning models, when the distribution of positive and negative observations are bal-
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anced and when one class of observations becomes extremely rare in the population,

the suggested models outperforms most of the competitor models.

In 1% of rarity, the best Fscore values belong to PCM+NSGA-II!'! (0.82), LR (0.76),
ANN (0.76) and PCM+RECGA!! (0.70), respectively. Their closest rival is pen-
LR which is far behind them with an Fscore value of 0.59. In 3% of rareness, the
ranking remains the same. PCM+NSGAH!! is the best model with its Fscore value
of 0.85 and it is followed by ANN (0.84), LR (0.81) and PCM+RECGA"!! (0.80),
respectively. In rareness level of 5%, the competitor models’ Fscore ranges between
0.76 and 0.90, where the performances of the proposed models (PCM+NSGA-IIH!
and PCM+NSGA-II"?) are 0.84. When the rarity becomes 7%, Fscore performances
of the competitor models are between 0.82 and 0.93. PCM+RECGA"! has an Fscore
of 0.87 and the same performance indicator of PCM+NSGA-II"! is 0.84. Finally, in
10% of rareness, Fscore values of PCM+NSGA-II"? and PCM+RECGA!? are 0.89
and 0.87, respectively, where the competitor models’ values are between 0.81 and

0.93.

These results indicate that, PCM+NSGA-II and PCM+RECGA are promising classi-
fication algorithms, and they are more robust, compared to some well-known machine

learning algorithms, especially under the conditions of class imbalance.

The graphics in Figure [5.6] also indicate that, for high levels of rareness, the stan-
dard deviations are small and as the proportion of positive cases decreases in the
population, standard deviations of sensitivity and Fscore of all models tend to grow.
PCM+NSGA-II is one of the most robust models where the standard deviations do
not change significantly for the cases with low rarity levels. On the other hand, es-
pecially for the competitor models, a significant amount of increase is observed in

standard deviation.

As in the previous cases, we do not give a detailed analysis about Fmeasure per-
formances since it is not one of our performance indicators and it does not have an
interpretation for the configurations where one class of observations are rare com-
pared to other. However, it can be said that, in terms of Fmeasure, the proposed
models are able to compete with the competitor models for the configurations where

the positive and negative observations have a relatively balanced distribution. Since
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all the competitor models solve an instance within a minute, we do not report their

solution times in detail.

The comparison of the proposed models, PCM+NSGA-II and PCM+RECGA indi-
cates that, except the extremely rare cases (1% and 3%), models have close perfor-

IHI

mances. However, in these configurations, PCM+NSGA-II""" has higher average per-

formances and lower standard deviations in Fscore than those of PCM+RECGAH!,

For detailed tables that give performances of the suggested and the compared models
see the Appendix (Section [[J). The tables also give the number of correct classifica-

tions as well as ratio of correct classifications.
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When the model performances are compared with those of the models that exist in
the literature, among studies discussed in Section [5.2] only two of them ([1]], [2])
consider class imbalance with 9% rarity. In the original data, the accuracy results
reported in the literature varies between 92.97% and 99.04%, and for most of them,
sensitivity and specificity rates are above 90%. In the corresponding setting (rareness
level = 37%) accuracy, sensitivity and specificity performances of PCM+NSGA-II'2
are 93%, 91% and 95%, respectively, while the same performance indicators are 93%

for PCM+RECGA™,

When we analyze the studies that test their models with a rarity around 10%, it is
observed that maximum accuracy is 92.55%. The best sensitivity and specificity rates
are above 87% and 96%, respectively. Accuracy, sensitivity and specificity values are
90%, 89%, 90% and 92%, 82%, 93% for PCM+NSGA-II"> and PCM+RECGA!?, re-
spectively. Thus, it can be seen that, our models can compete with successful models

of the literature.

Finally, when we compare the performances of models in WBCO and WBCD datasets,
it is observed that, no specific model shows different performances for these two sets
of data. However, in general, while the competitor models perform better in WBCD
dataset than WBCO, for PCM+NSGA-II and PCM+RECGA the opposite is true. One
of the explicit differences of WBCO and WBCD datasets is that, while the former
consists of categorical factors, the latter has continuous factor values. Therefore,
the reason behind the observation mentioned above may be better performance of

PCM+NSGA-II and PCM+RECGA in categorical datasets.

5.6 Conclusion

In medical diagnosis problems, the goal is to achieve high sensitivity and specificity,
simultaneously. As one class of observations becomes rare compared to the other,
classification becomes harder. If the negative (positive) observations constitute the
majority, standard classification algorithms achieve high specificity (sensitivity) rates
but their ability in sensitivity (specificity) stays limited. In this study, by integrat-
ing a Mixed-Integer Linear Model, PCM, with evolutionary algorithms, we develop
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promising classification models, which are robust in the existence of significant class

imbalance.

Using WBCO and WBCD datasets, we conduct numerical experiments with eight
levels of rarity of positive observations, ranging between 1% to 35% and 1% to 37%,
respectively. The experimental analysis suggests that, generating initial solutions of
the evolutionary algorithms with PCM yields better results than random generation
of initial solutions. Then, the performances of suggested models are compared with
several well-known machine learning methods. It is observed that, proposed models
are promising classification algorithms and they are stronger when one class of obser-
vations are rare compared to other. In other words, as the malignant tumors become
rare in the population, although the competitor models lose their ability of detecting
positive (malignant) cases, PCM+NSGA-II and PCM+RECGA preserve their capa-
bility of detecting positive observations without sacrificing too much from their high

detection ability of negative cases.

However, we must note that, the competitor models applied in this study are in the
most classical forms suggested in the literature. That is, they are not designed specif-
ically for rare events. For example, determining the hyper-parameters of the competi-
tor models, such as the kernel parameter in SVM or the number of hidden layers in
ANN, with the aim of good performances in rare cases (i.e. high Fscore) may improve
the performance of these models when one class of observations are rare compared to

other.

The comparison of PCM+NSGA-II and PCM+RECGA suggests that, they have close
performances in general. However, in the extremely rare cases, PCM+NSGA-II per-
form better than PCM+RECGA with its higher average results and lower standard
deviations. On the other hand, PCM+RECGA is more robust against the changes in
hyper-parameter choices. According to results of our experiments, we can claim that,

both models are able to compete with the studies existing in the literature.
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CHAPTER 6

CONCLUSION

It is very important to estimate the presence or absence of a disease. There are var-
1ous medical diagnostic methods used for this purpose. However, these methods are
often expensive and/or risky for the patients. Moreover, in some cases no obvious
symptoms or clinical signs are observed in the presence of a disease. Instead of using
expensive diagnostic methods or clinical tests, decision support tools employing op-
erations research techniques and machine learning methods can be developed. They
can certainly help medical doctors make true diagnostic predictions without creating

additional risks and costs for the patients.

In this study, we aim to develop methods which classify patients in two categories
of disease status correctly. For this purpose, we develop hybrid methods which inte-
grates multi-criteria decision making, evolutionary algorithms and machine learning.
The suggested classification algorithms are designed to be used by medical experts
as a decision support tool. We give priority to obtaining high sensitivity, provided
that the specificity values are also reasonable. Thus, we aim to minimize the risks
associated with human life in return for financial burden resulting from further inves-

tigation.

Since the proposed methodologies lie in the intersection of many disciplines, we pro-
vide a broad literature review, which includes an overview of machine learning, pre-
diction models in health-care, multi-criteria decision analysis, rare event classification
and role of evolutionary algorithms in machine learning and multi-objective decision

analysis.

First, we develop a Mixed-Integer Linear Programming model, PCM. It is a variant

157



of multi-criteria decision analysis method, UTADIS, and we specifically design it for
medical classification problems. After solving PCM with various values of a specific
parameter, we obtain a set of solutions spread over the Pareto-optimal front in the two
dimensional space of true positive and true negative responses. That is, it creates a set
of solutions where some of them have the capacity to achieve high sensitivity while
some have the capacity to achieve high specificity. Then, we integrate PCM with
evolutionary algorithms, such that, by tuning the solutions (parameters) obtained from
PCM, they aim to find hybrid solutions that can have high sensitivity and specificity,
simultaneously. These methods provide more precise classification of the patients in

accordance with the specified classification objectives.

The first evolutionary algorithm integrated with PCM is NSGA-II. It is a multi-
objective evolutionary algorithm that prefers non-dominated solutions to be trans-
ferred to the next generation. This method aims to obtain solutions whose true pos-
itive and true negative classification performances are good, simultaneously. The
proposed algorithm is named as PCM+NSGA-II. Then, we develop another classi-
fication algorithm, RECGA, to integrate with PCM. It only favors solutions whose
sensitivity and specificity are simultaneously high. Therefore, the fitness function of
the algorithm evaluates a solution by its Fscore value. The suggested algorithm is
called as PCM+RECGA. The experimental analyses of these methods are performed

on three medical datasets.

Before starting the experimental analyses, we perform hyper-parameter tuning to
choose the set of optimal hyper-parameter values for each model and we repeat this

process for each datasets.

The problem with the first dataset addresses patient classification considering the risk
of restenosis after coronary stent implantation. The objective of this study is to clas-
sify patients according to the in-stent-restenosis risk utilizing patient, disease, pro-
cedure and lesion related parameters to support doctors in their diagnosis decision.
In this context, we first determine the related predictors by investigating the relevant
medical literature and consulting with experts. Then, we apply feature selection to
find the most related predictors to build the most effective model in prediction ability.

The response is the cardiac restenosis status of the patients which indicates whether a
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restenosis is expected to exist or not within the period of 36-month beginning with a
coronary stent implantation. We gather the data by scanning the records of 10,435 pa-
tients between the years 2005 and 2016. 303 observations are found eligible. We test
the models’ performances through two different settings, where the ratio of positive

and negative observations in training, validation and test samples change.

In order to observe the effectiveness of integrating evolutionary algorithms with PCM,
we compare the performances of PCM+NSGA-II and PCM+RECGA with the mod-
els where the initial solution sets are randomly generated. Then, we compare the
proposed models’ performances with widely known machine learning methods (com-
petitor models). It is observed that, the models whose initial solution set are randomly
generated have biased and highly unbalanced classification results. Thus, they are not
reliable and it is clearly better to generate the initial solutions of the evolutionary
algorithms with the Mixed-Integer Linear model, PCM. It is also observed that, clas-
sification performances of the models are affected by the amount of positive and neg-
ative observations used for training. We have seen that, the proposed models are more
robust than the competitor models. Additionally, if there are relatively few amount
of positive observations and it is more important to correctly identify the presence of
a disease, keeping the number of positive and negative observations equal in training
sets yields higher sensitivity rates. Furthermore, the experimental analysis suggests
that, PCM+NSGA-II and PCM+RECGA have high training and test performances,
which indicates their generalization ability. It is also worth to note that, sensitivity,
specificity, and accuracy rates of PCM+NSGA-II and PCM+RECGA are promising,
compared to the clinical detection methods used by medical experts. Additionally,
the proposed algorithms provide great advantage to the medical experts to foresee the

risk of in-stent-restenosis at the time of the stent implantation operation.

Then, to show the efficiency of the models from another aspect, we have designed an
experimental setting to compare classification performances of the proposed models
with a group of medical doctors who are specialized in the area of coronary in-stent-

restenosis. 15 cardiologists have participated in this study.

The results of the analyses suggest that, PCM+NSGA-II and PCM+RECGA are reli-

able and effective decision support techniques for cardiologists in determining poten-
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tial restenosis status of a patient.

In the second part of our study, we test the proposed models in two, well studied,
structured, large size datasets: WBCO and WBCD datasets. To see the classification
performances of the proposed models when the incidence of the disease among the
population is low, we perform experimental analysis by creating class imbalance be-
tween malignant and benign tumors. The datasets are preprocessed by eliminating

correlated factors. We also conduct feature elimination on WBCD dataset.

We repeat the analysis about effectiveness of generating initial solutions of evo-
lutionary algorithms with PCM and we find that, PCM yields better results than
randomly generating. Then, we compare the performances of PCM+NSGA-II and
PCM+RECGA with those of competitor models.

We conclude that, PCM+NSGA-II and PCM+RECGA are good classification al-
gorithms that can compete with well-known machine learning models when obser-
vations of both classes under consideration are close to each other. On the other
hand, when one class of observations becomes extremely rare, the proposed mod-
els outperform most of the competitor models. It is also observed that, although
PCM+RECGA is more robust to the changes in hyper-parameters, conducting the ex-
periments of PCM+NSGA-II with the hyper-parameter values specifically determined
to the given rarity level gives better results (especially in low levels of rarities), in gen-
eral. The experimental analysis suggests that, PCM+NSGA-II and PCM+RECGA
mostly have close performances, but in the cases where rarity level is extremely low,
PCM+NSGA-II performs better. In comparison of competitor models and proposed
algorithms, it is observed that, while the former perform better in WBCD dataset,
the latter has higher performances in WBCO dataset. Thus, we conclude that, the
proposed models may be better options when the dataset comprised of categorical

factors.

In summary, we develop two hybrid methods which integrates multi-criteria decision
making, evolutionary algorithms and machine learning. Both models are applied on
real data and the experimental analyses suggest that they are promising classification
models that can be used by medical experts as decision support tools. One of the

distinguishing features of these models is their flexibility. Suggested models focus
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on problems where response is represented with a dichotomous variable, however,
they can be extended to perform classification in the existence of multiple classes,
as well. The models give the classification decision through majority voting, which
makes them robust to the variations either in data or generated solution set. Variations
of the models can be developed by changing this to consensus voting or assigning a
threshold to the number of votes to win. Additionally, in predicting the class of a
specific individual, a decision mechanism which assigns probabilities of risk rather
than giving binary decisions can be developed. In this case, the risk of the existence
of the disease can be determined based on the amount of difference between global
utilities that correspond to positive and negative classifications. Integration of feature
selection process and the models can be another extension of this study. In this way,
it may be possible to make classification decisions faster and more accurate. Finally,
integration of PCM with some other evolutionary algorithms can also be considered

as a future research direction.
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APPENDICES

A A Simple Example Explaining PCM+RECGA

Let |S| = 2 where |[S™| = 1 and |ST| = 1; [V| = 2 where |[V7| = 1 and |VT| = 1;
|S| = 2 where |S™| = 1 and |S*| = 1. In other words, training, validation and test
samples consist of two observations where one of them is positive and the other one

is negative. Assume |F| = 2 and F = {1, 2}. i.e. there are two factors.

Recall that Oy is the set of all values of factor f that appear in S. Then, let |O;| = 2
and |O,| = 2. Since both factors that appear in S take two different values, there is
one interval for each factor. Then, the decision variables of are w;, m;; and wsyy,

moq.

Since training set has only one negative observation, then false negative classification

allowance, L, can be 0 and 1. Thus PCM is solved for L = O0and L = 1.

Let (W, M?) be the solution obtained from PC'M (0), and (W', M) be the solu-
tion obtained from PCM(1). Then X = {(W° M°), (W', M*")}. Also, let Pop-
ulationSize be 5. Then using (W° M°) and (W', M) as parents, the algorithm
generates a new offspring by performing genetic operations. Let the new solution
be (W2 M?). Now, X = {(W° M%), (W' M*'), (W? M?)}. Then, by select-
ing randomly two parents from X', the algorithm generates another offspring, say
(W3, M?). Now, X = {(W° M°), (W' MY, (W2 M?),(W3, M?)}. The pro-
cess is repeated one more time, that is, randomly selected two parents generates an
offspring, (W*, M*). Now the predetermined PopulationSize is reached and X =
{(WO, M), (W, M), (W2, M2), (W#, M*), (W4, M)},

For each (W, M) € X and for patients in V, U(p) and U(p) values are calculated
to classify patients in the validation set. Then, according to the classification per-

formance of the model in the validation set, sensitivity, specificity and Fscore values
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of each solution are calculated. Thus, we have Fscore(0), Fscore(1), Fscore(2), Fs-
core(3) and Fscore(4) corresponding to (WO, M), (W M), (W2 M?), (W3, M3)
and (W4, M 4), respectively. Assume Fscore(0) = 0.7, Fscore(1) = 0.8 , Fscore(2) =
0.7, Fscore(3) = 0.4 and Fscore(4) = 0.2 and let minFinalSetSize = 2.

Let newSet be an emptyset and threshold =1. While newSet is empty and threshold
> 1, the algorithm seeks a solution whose Fscore > 1. Since there is no such solution,
newSet remains empty and threshold is set to 0.9. Now, the algorithm seeks a solution
whose Fscore > 0.9. However, again, there is no such solution, thus newSet still
remains empty and threshold is set to 0.8. Now the algorithm seeks for a solution
with an Fscore > 0.8. Eventually, the algorithm finds a solution satisfying the given
condition. Then, the solution whose Fscore is 0.8 is added to the newSet. i.e. newSet

={(WH, M"Y}, X + D,and X + {(W', M")}.

Now newSet is no longer empty, but since |X| < minFinalSetSize, new solutions
should be generated by genetic operators. Note that X = {(W1' M")}. Then the

algorithm uses (W?, M) € X to generate offspring by performing genetic operators.

Let new solutions be (W?®, M?), (W M®), (W7, M7) and (W?®, M?®). Then X =
{(W, MYy, (W2, M), (WS M), (W7, M"), (W83 M®)}. For each (W' M) € X
and for patients in V, U(p) and U (p) values are calculated to classify patients in
the validation set. Then, due to the classification performance of the model in the
validation set, sensitivity, specificity and Fscore values of each solution are calculated.
Thus we have Fscore(1), Fscore(5), Fscore(6), Fscore(7) and Fscore(8) corresponding
to (W MY), (W?>, M5), (WS M), (WT, M7) and (W8, M?®), respectively. Assume
Fscore(1) = 0.8, Fscore(5) = 0.9 , Fscore(6) = 0.9 , Fscore(7) = 0.8 and Fscore(8) =
0.9.

Let newSet be an emptyset and threshold =1. While newSet is empty and threshold
> 1, the algorithm seeks a solution whose Fscore > 1. Since there is no such solution,
newSet remains empty and threshold is set to 0.9. Now, the algorithm seeks a solution
with an Fscore > 0.9. Since a solution that satisfies the given condition exists, this
solution is added to newSet. i.e. newSet = {(W?3, M®), (WS, M%) (W8 M?®)}, X +
(), and

X {(W5, M>), (W M), (W83, M8}
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Now newSet is no longer empty, and |X'| > minFinalSetSize. Thus final set of solu-
tions that will be used for classifying observations in S are obtained. Let Dtest; and
Drest, D€ the patients in test set, S. For each p € S. , the initial values of counters for
positive and negative classification are zero. i.e. C'P(piest;) = 0, O N (Prest,) = 0,

Cp(ptestg) = (0 and CN(ptestg) = 0.

For each (W', M) € X and for each patient in S, U(p) and U (p) values are calcu-

lated. That is, by applying GenerateUtilityFunctions, U (Diest,)s U (Dtest,)s U (Drest,)

and U (Prest, ) are calculated for each solution.

Assume that for (W5, M?®), the global utilities for the patients in test set are as fol-
lows: U (prest, )= 0.7, U (prest, )=0.75 and U (prest, )=0.4, U (prest, )=0.8. Since U (prest, )
> U(piest, ) and U (Ptesty) = U(Prest, )» the classification of both pyes;, and pyess, are
determined as negative by this solution. That is, C' N (psest,) = 1, CP(DPiest;) = 0,
CN (prest,) = 1 and CP(pyest,) = 0. The same procedure is repeated for other
solutions in X. Assume, for (W M°®), patients py.s;, and ps.., are classified as
positive and negative respectively. In that case, the counters take the following val-
ues: CN(prest;) = 1, CP(prest,) = 1, CN(prest,) = 2 and CP(pyess,) = 0. Fi-
nally, for the solution (W¥ M?), both patients are classified as negative. That is
CN (presty) = 2, CP(Presty) = 1, CN (Prest,) = 3 and C P (pyest,) = 0.

The final classification decision is performed by comparing the counter values of a
solution. That is, since C'N(piest;) = 2 and CP(pgest,) = 1, in consistent with
majority voting, p.s:, 1S classified as negative. The final class decision of pies, 18
determined in a similar manner. That is, since CN (psest,) = 3 and C' P (pest,) = 0,

Drest, 18 classified as negative.
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B Hyper-parameter Optimization Procedure

B.1 Nested Cross Validation

To find the optimal values of the hyper-parameters, we applied hyper-parameter op-
timization. To do so, we run the model with different combinations of the values of
hyper-parameters, and select the best combination according to model’s classification
performances. To determine the hyper-parameter values by an unbiased estimate of
the generalization performance of the model, we apply 5-fold nested cross validation

[96], where it is a common approach for hyper-parameter optimization [97, 98, 99].

It is defined as two nested loops of cross validation. Due to the inner cross valida-
tion performance, the hyper-parameter values are set and the outer loop evaluates the
generalization ability of the model with the selected values of hyper-parameters on
an independent set of observations [96, 97]. By this way, nested cross validation en-
sures that, the model do not use the observations reserved for outer loop to tune the

hyper-parameters.

Once we divide the data into five folds, one fold is reserved for test and one fold
of the remaining four folds are reserved for validation. For each combination of
hyper-parameters, the model is trained with the remaining three folds and evaluated
on the validation fold. This procedure should be repeated four times by rotating
the validation fold among training folds. Thus, for a reserved test fold, and for a
combination of hyper-parameters, there are four evaluations (i.e. Fscore). Then, the
average of these four Fscore values of the inner loop are reported. This procedure is
repeated five times, by having each fold as the test fold. The optimal hyper-parameter
combination is the one whose reported average inner Fscore values are promising for

all choices of the reserved test fold.

A set of hyper-parameter values are preferable if their inner loop performances are
among the top one for all reserved test folds. However, if there is no such hyper-
parameter set, we look for the one whose inner loop performances are among the top
two, top three, top four etc. If there are more than one hyper-parameter set that satisfy

the required conditions, we make the selection based on the higher average values or
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lower standard deviations.

B.2 Hyper-parameter Optimization for PCM+NSGA-II

Table B.1]lists the potential values for the hyper-parameters of PCM+NSGA-II, which

selected in a way that each hyper-parameter takes relatively low and high values.

Table B.1: Potential Values of Hyper-parameters of PCM+NSGA-II

PopulationSize 150, 250, 500, 1000
GenerationSize 5, 50, 100, 200

s.t. PopulationSize > GenerationSize

NumberOfGenerations 5, 10, 50, 100
Pre, Ple (0.5, 0.5), (0.6, 0.4), (0.8, 0.2), (1, 0), (0.4, 0.6) ,(0.2, 0.8), (0,1)

S.t. Pre +pre =1
Pm 0.01, 0.05, 0.1, 0.5

Under the given number of hyper-parameters and the given potential values, there
are 1344 different combinations. Since it is computationally too expensive, we set
their optimal values hierarchically. We first determine the values for PopulationSize,
GenerationSize and NumberOfGenerations while fixing the values of p,.. = 0.5, p;. =
0.5 and p,, = 0.01. Once the best values for these hyper-parameters are decided, we

repeat the procedure to find the best value for p,. and p;. pair. Finally, we tune the

Pm-

We apply 5-fold nested cross validation, and use Fscore to evaluate the performances

of the different hyper-parameter choices.

B.3 Hyper-parameter Optimization for PCM+RECGA

Table[B.2]lists the potential values for the hyper-parameters of PCM+RECGA, which

selected in a way that each hyper-parameter takes relatively low and high values.
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Table B.2: Potential Values of Hyper-parameters of PCM+RECGA

PopulationSize 150, 250, 500, 1000
minFinalSetSize 5, 50, 100, 200
s.t. PopulationSize > minFinalSetSize

Pre, Dic (0.5, 0.5), (0.6, 0.4), (0.8, 0.2), (1, 0), (0.4, 0.6) ,(0.2, 0.8), (0,1)

S.t. Pre + Pic = 1
Pm 0.01, 0.05, 0.1, 0.5

Under the given number of hyper-parameters and the given potential values, there
are 420 different combinations. Since it is computationally too expensive, we set
their optimal values hierarchically. We first determine the values for PopulationSize,
GenerationSize and NumberOfGenerations while fixing the values of p,.. = 0.5, p;. =
0.5 and p,, = 0.01. Once the best values for these hyper-parameters are decided, we

repeat the procedure to find the best value for p,.. and p;. pair. Finally, we tune the

Pm-

We apply 5-fold nested cross validation, and use Fscore to evaluate the performances

of the different hyper-parameter value choices.
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C Hyper-parameter Optimization for the In-Stent-Restenosis Dataset

For the experiments conducted with in-stent-restenosis dataset, we created two differ-
ent settings. Settings are differentiated by the ratio of the number of patients with and
without restenosis in training, validation and test samples. The corresponding folds

are created as given in Table[C.I]

Table C.1: Content of a Fold for Setting 1 and Setting 2

Setting 1  Setting 2

# of patients with restenosis 12 12

# of patients without restenosis 48 12

C.1 Hyper-parameter Optimization for PCM+NSGA-II

C.1.1 Setting 1

Table [C.2] indicates the Fscore performances of inner cross validation for different

values of PopulationSize, GenerationSize and NumberOfGenerations.

There is no hyper-parameter set whose inner cross validation performances are among
the top one, top two or top three for all repetition, thus, the hyper-parameter values
whose inner cross validation performances are among the top four for all the given

test folds are marked with **** in the last column.

Thus, the PopulationSize, GenerationSize and NumberOfGenerations are set to 1000,
50 and 5, respectively. Once these values are set, we repeat the same analysis for p,..

and pe.

The hyper-parameter values whose inner cross validation performances are among the
top three for all the given test folds are marked with *** in the last column of Table
[C.3] Their average Fscore values are also indicated in parenthesis. Since they are
equal, we prefer to set p,. = 0.5 and p;. = 0.5 due to their lower standard deviation

among five runs.
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Finally, we tune the value of p,, by following the same procedure. The hyper-
parameter value whose inner cross validation performance is among the top two for
all the given test folds are marked with ** in the last column of Table [C.4] Thus we
set p,,,=0.01.
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Table C.3: Inner Loop Performances for p,.., pj. (PCM+NSGA-II, Setting 1)

— o on <t w
SH I (S A
e e e e e
p— p— p— p— p—
£ 8 8 £ £
- - - - -
#) #) 5 5 5
pre-ple | = ] ] = =

0.5-0.5 | 0.75 0.71 0.71 0.69 0.74 ***¥(0.72)
0.6-0.4 | 0.74 0.70 0.69 0.68 0.73
0.8-0.2 | 0.68 0.72 0.72 0.69 0.75
1.0-0.0 | 0.72 0.71 0.72 0.69 0.74
0.4-0.6 | 0.74 0.69 0.65 0.64 0.69
0.2-0.8 | 0.73 0.74 0.71 0.68 0.74 ***(0.72)
0.0-1.0 | 0.68 0.70 0.71 0.66 0.72

Table C.4: Inner Loop Performances for p,, (PCM+NSGA-II, Setting 1)

- o o™ @t
LT R A I
ST T T O
p— e e e g
e £ £ & &
Er-d - -
nn n [75] 2 [75]
(D) (D)
pm | E = B B =

0.01 | 0.75 0.71 0.71 0.69 0.74 *%(0.72)
0.05 | 0.69 0.71 0.71 0.68 0.74
0.10 | 0.71 0.71 0.66 0.65 0.72
0.50 | 0.70 0.73 0.71 0.69 0.74

C.1.2 Setting 2

Table indicates the Fscore performances of inner cross validation for different

values of PopulationSize, GenerationSize and NumberOfGenerations.

The hyper-parameter values whose inner cross validation performances are among
the top three for all the given test folds are marked with *** in the last column. Due
to its higher average value, we select the hyper-parameter set of 1000, 100, 100 for

PopulationSize, GenerationSize and NumberOfGenerations.
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Then we repeat the same analysis for p,.. and p;..

The hyper-parameter values whose inner cross validation performances are among
the top two for all the given test folds are marked with ** in the last column of Table

[C.6l We set p,. = 0.5 and p;. = 0.5.
Finally, we tune the value of p,, by following the same procedure.

The hyper-parameter value whose inner cross validation performance is among the
top two for all the given test folds are marked with ** in the last column of Table

Thus we set p,,=0.01.
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Table C.6: Inner Loop Performances for p,.., pjc (PCM+NSGA-II, Setting 2)

Test fold =#1
Test fold =#2
Test fold =#3
Test fold =#4
Test fold =#5

pre-plc

0.5-0.5 | 0.72 0.69 0.75 0.73 0.76 *%(0.73)
0.6-0.4 | 0.71 0.63 0.69 0.65 0.70
0.8-0.2 | 0.69 0.68 0.72 0.70 0.73
1.0-0.0 | 0.62 0.70 0.72 0.72 0.75
0.4-0.6 | 0.68 0.68 0.69 0.67 0.71
0.2-0.8 | 0.71 0.64 0.70 0.68 0.70
0.0-1.0 | 0.68 0.67 0.70 0.69 0.73

Table C.7: Inner Loop Performances for p,, (PCM+NSGA-II, Setting 2)

Test fold =#1
Test fold =#2
Test fold =#3
Test fold =#4
Test fold =#5

pm

0.01 | 0.72 0.69 0.75 0.73 0.76 *%(0.73)
0.05 | 0.74 0.64 0.65 0.61 0.67
0.10 | 0.67 0.63 0.65 0.61 0.67
0.50 | 0.66 0.63 0.68 0.66 0.68

C.2 Hyper-parameter Optimization for PCM+RECGA

C.2.1 Setting 1

Table [C.§|indicates Fscore performances of inner cross validation for different values

of PopulationSize and minFinalSetSize.

The hyper-parameter values whose inner cross validation performances are among

the top two for all the given test folds are marked with ** in the last column. We set
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PopulationSize, and NumberOfGenerations as 250 and 100, respectively.

Then we repeat the same analysis for p,.. and p;.. The hyper-parameter values whose
inner cross validation performances are among the top two for all the given test folds
are marked with ** in the last column of Table [C.9] Here, we have an exceptional
case. Even their inner cross validation performance are not in top one or top two for
all the given test folds, due to their remarkably high performance on four out of five

iterations of inner cross validation we set p,.. and p;. as 1.0 and 0.0.

Finally, we tune the value of p,, by following the same procedure. The hyper-
parameter value whose inner cross validation performance is among the top two for
all the given test folds are marked with ** in the last column of Table Thus we
set p,, = 0.50.
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Table C.8: Inner Loop Performances for PopulationSize and minFinalSetSize

(PCM+RECGA, Setting 1)

S
S 7
7) ~— — o o <t w
= 73 3 EN Y 3+ 3
S 72} i i i i i
= o] = = = k=) =)
s = o o o o o
= = e e e e e
o [= - - Y Y -
S = #) #) #) #) #)
=~ = = = = = =

150 51071 0.69 0.67 0.65 0.69
150 50 | 0.71 0.69 0.67 0.65 0.69
150 100 | 0.71 0.69 0.67 0.65 0.69
250 51069 0.69 0.67 0.65 0.69
250 50| 0.69 0.69 0.67 0.65 0.69
250 100 | 0.70 0.69 0.67 0.65 0.69 **(0.68)
250 200 | 0.70 0.69 0.67 0.65 0.69 **(0.68)
500 51067 0.69 0.67 0.65 0.69
500 50 |0.67 069 0.67 0.65 0.69
500 100 | 0.67 0.69 0.67 0.65 0.69
500 200 | 0.69 0.70 0.67 0.65 0.69
1000 51067 0.69 0.67 0.65 0.69
1000 50| 0.67 0.69 0.67 0.65 0.69
1000 100 | 0.67 0.69 0.67 0.65 0.69
1000 200 | 0.68 0.69 0.67 0.65 0.69

193



Table C.9: Inner Loop Performances for p,.., p;. (PCM+RECGA, Setting 1)

Test fold =#1
Test fold =#2
Test fold =#3
Test fold =#4
Test fold =#5

pre-ple

0.5-0.5 | 0.70 0.69 0.67 0.65 0.69 **(0.68)
0.6-0.4 | 0.69 0.68 0.67 0.64 0.68

0.8-0.2 | 0.66 0.69 0.67 0.65 0.69

1.0-0.0 | 0.66 0.71 0.72 0.70 0.75 !(0.71)
0.4-0.6 | 0.70 0.68 0.67 0.65 0.69

0.2-0.8 | 0.69 0.69 0.67 0.65 0.69

0.0-1.0 | 0.72 0.66 0.67 0.64 0.68

Table C.10: Inner Loop Performances for p,, (PCM+RECGA, Setting 1)

— o on <t w
3 3 3 3* 3
I I I I I
o o = = =
) e ) ° o
S S S S S
- - - - -
#} f} #} #} #}
pm | F E E B K

0.01 | 0.66 0.71 0.72 0.70 0.75
0.05 | 0.66 0.69 0.70 0.70 0.73
0.10 | 0.70 0.69 0.66 0.64 0.69
0.50 | 0.71 0.70 0.70 0.69 0.75 **(0.71)

C.2.2 Setting 2

Table [C.11] indicates the Fscore performances of inner cross validation for different

values of PopulationSize and minFinalSetSize.

The hyper-parameter values whose inner cross validation performances are among
the top one for all the given test folds are marked with * in the last column. We set

PopulationSize, and NumberOfGenerations as 150 and 50, respectively.
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Then we repeat the same analysis for p,.. and p;.. The hyper-parameter values whose
inner cross validation performances are among the top two for all the given test folds

are marked with ** in the last column of Table[C.12]and we set p,. and p;. as 0.5.

Finally, we tune the value of p,, by following the same procedure. The hyper-
parameter value whose inner cross validation performance is among the top one for
all the given test folds are marked with * in the last column of Table [C.13] Thus we
set p,, = 0.01.

Table C.11: Inner Loop Performances for PopulationSize and minFinalSetSize

(PCM+RECGA, Setting 2)

PopulationSize
minFinalSetSize

Test fold =#1
Test fold =#2
Test fold =#3
Test fold =#4
Test fold =#5

150 51070 0.68 0.70 0.70 0.73

150 50| 0.74 0.68 0.70 0.70 0.73 *(0.71)
150 100 | 0.74 0.68 0.70 0.70 0.73 *(0.71)
250 51071 068 0.70 0.70 0.73

250 50| 0.70 068 0.70 0.70 0.73

250 100 | 0.70 0.68 0.70 0.70 0.73

250 200 | 0.70 0.68 0.70 0.70 0.73

500 51065 067 0.69 0.70 0.73

500 50|073 0.67 0.69 0.70 0.73

500 100 | 0.73 0.67 0.69 0.70 0.73

500 200 | 0.73 0.67 0.69 0.70 0.73
1000 51064 068 0.69 0.70 0.73
1000 50 | 0.71 0.68 0.69 0.70 0.73
1000 100 | 0.71 0.68 0.69 0.70 0.73
1000 200 | 0.71 0.68 0.69 0.70 0.73
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Table C.12: Inner Loop Performances for p,., p;,. (PCM+RECGA, Setting 2)

— N o < el

** ** ** #* **

I I I I I

= = s = =

£ £ £ £ £

- - - - -

b b 6 6 6

prc-ple | & = = = =

0.5-0.5 | 0.74 0.68 0.70 0.70 0.73 *%(0.71)
0.6-0.4 | 0.74 0.68 0.70 0.70 0.73
0.8-0.2 | 0.57 0.63 0.66 0.66 0.69
1.0-0.0 | 0.62 0.63 0.66 0.66 0.69
0.4-0.6 | 0.67 0.68 0.70 0.70 0.73 **(0.69)
0.2-0.8 | 0.66 0.69 0.70 0.70 0.73
0.0-1.0 | 0.63 0.68 0.70 0.70 0.73

Table C.13: Inner Loop Performances for p,, (PCM+RECGA, Setting 2)

Test fold =#1
Test fold =#2
Test fold =#3
Test fold =#4
Test fold =#5

pm

0.01 | 0.74 0.68 0.70 0.70 0.73 *(0.71)
0.05 | 0.64 0.63 0.66 0.66 0.69
0.10 | 0.61 0.65 0.63 0.65 0.69
0.50 | 0.65 0.63 0.70 0.65 0.69
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D Generalization Performances of the Models for the In-Stent-Restenosis

Dataset: 5-fold Cross Validation

Recall that, in each iteration of inner cross validation, a fold is reserved for test, which
is not used in the hyper-parameter tuning process. To see the generalization perfor-
mance of the models with the selected hyper-parameter values, we test the model in
outer loop of the nested cross validation. Thus, we test the model performances with

5-fold cross validation.

The details of the settings are given in Table The table indicates that, in Setting
1, for each run of cross validation, there are 24 positive and 96 negative observations
in § and V, and there are 12 positive and 48 negative observations in S. In a sim-
ilar manner, in Setting 2, for each run of cross validation, there are 24 positive and
24 negative observations in S and V), and the S is comprised of 12 positive and 12

negative observations.

The last row of TableD.I|indicates the interval of values that the parameter L of PCM

can take.

Table D.1: In-Stent-Restenosis Dataset, Settings

Setting 1 Setting 2

s v s|S v S

# of patients with restenosis 24 24 12|24 24 12
# of patients without restenosis 96 96 48 | 24 24 12

Total # of patients 120 120 60 | 48 48 24

L {0,...,96} | {0,... .24}

Other than PCM+NSGA-II and PCM+RECGA, we also repeat the experiments of
5-fold cross validation for the competitor models for the sake of completeness. Note
that, PCM+NSGA-II and PCM+RECGA first utilize S to generate initial set of so-
lutions, and then they tune these solutions with V. On the other hand, competitor

models use S U V for training. All the models’ performances are tested in S.
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Tables[D.2]and [D.3] [D.4] and [D.4] summarize the 5-fold CV performances of the mod-

els on in-stent-restenosis dataset.

Table D.2: Average Training Performance Results (5-fold CV)

PCM+NSGA-II PCM+RECGA LR pen-LR SVM ANN DT RF
Setting 1
Sensitivity 0.65 0.77 0.34 0.34 0.20 0.40 045 0.55
Specificity 0.85 0.70 0.98 0.98 1.00 0.98 0.96 0.97
Accuracy 0.81 0.71 0.85 0.85 0.84 0.86 0.86 0.89
Fscore 0.73 0.72 0.50 0.50 0.29 0.56 0.61 0.70
Fmeasure 0.58 0.52 0.47 047 0.29 0.53 0.56 0.66
Setting 2
Sensitivity 0.72 0.77 0.77 0.77 0.85 0.85 0.77 0.92
Specificity 0.72 0.64 0.70 0.70 0.64 0.76 0.83 0.81
Accuracy 0.72 0.70 0.74 0.74 0.75 0.81 0.80 0.87
Fscore 0.71 0.70 0.73 0.73 0.73 0.79 0.80 0.86
Fmeasure 0.72 0.72 0.75 0.75 0.77 0.81 0.79 0.87

Table D.3: Standard Deviations of Training Performance Indicators (5-fold CV)

PCM+NSGA-II PCM+RECGA LR pen-LR SVM ANN DT RF
Setting 1
Sensitivity 0.06 0.09 0.03 0.03 0.16 0.10 0.07 0.04
Specificity 0.06 0.09 0.01 0.01 0.00 0.02 0.01 0.01
Accuracy 0.05 0.06 0.01 0.01 0.03 0.01 0.01 0.01
Fscore 0.04 0.03 0.04 0.04 0.24 0.09 0.07 0.03
Fmeasure 0.08 0.04 0.03 0.03 0.24 0.07 0.05 0.03
Setting 2
Sensitivity 0.04 0.03 0.03 0.03 0.05 0.13 0.03 0.04
Specificity 0.05 0.03 0.05 0.05 0.09 0.08 0.02 0.05
Accuracy 0.01 0.02 0.03 0.03 0.05 0.03 0.01 0.02
Fscore 0.01 0.02 0.03 0.03 0.06 0.02 0.01 0.02
Fmeasure 0.01 0.02 0.02 0.02 0.04 0.04 0.01 0.01
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Table D.4: Average Test Performance Results (5-fold CV)

PCM+NSGA-II PCM+RECGA LR pen-LR SVM ANN DT RF
Setting 1
Sensitivity 0.58 0.65 0.33 0.33 0.10 0.25 0.33 0.30
Specificity 0.83 0.69 0.98 0.98 0.98 0.95 0.93 0.92
Accuracy 0.78 0.68 0.85 0.85 0.81 0.81 0.81 0.79
Fscore 0.67 0.65 0.49 0.49 0.17 0.39 0.48 0.44
Fmeasure 0.51 0.45 0.46 0.46 0.16 0.35 0.40 0.36
Setting 2
Sensitivity 0.62 0.72 0.75 0.73 0.80 0.77 0.63 0.77
Specificity 0.73 0.65 0.72 0.72 0.53 0.62 0.73 0.67
Accuracy 0.68 0.68 0.73 0.73 0.67 0.69 0.68 0.72
Fscore 0.65 0.67 0.72 0.71 0.63 0.62 0.67 0.70
Fmeasure 0.64 0.69 0.73 0.72 0.70 0.71 0.66 0.73

Table D.5: Standard Deviations of Test Performance Indicators (5-fold CV)

PCM+NSGA-II PCM+RECGA LR pen-LR SVM ANN DT RF
Setting 1
Sensitivity 0.17 0.14 0.07 0.07 0.08 0.05 0.12 0.08
Specificity 0.04 0.10 0.02 0.02 0.02 0.02 0.04 0.04
Accuracy 0.05 0.06 0.02 0.02 0.01 0.02 0.04 0.03
Fscore 0.12 0.04 0.08 0.08 0.14 0.07 0.13 0.10
Fmeasure 0.12 0.05 0.09 0.09 0.13 0.06 0.13 0.08
Setting 2
Sensitivity 0.17 0.15 0.14 0.15 0.11 0.18 0.12 0.10
Specificity 0.10 0.06 0.11 0.11 0.12 0.23 0.08 0.12
Accuracy 0.07 0.06 0.08 0.09 0.07 0.04 0.06 0.04
Fscore 0.08 0.05 0.07 0.08 0.08 0.12 0.07 0.05
Fmeasure 0.10 0.08 0.09 0.10 0.07 0.05 0.08 0.04

Note that the given performances of PCM+NSGA-II and PCM+RECGA under the
experimental setting with 5-fold cross validation are similar to the performances when

the experimental analysis conducted with randomly generated 100 instances.
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E Hyper-parameter Optimization for the Wisconsin Breast Cancer Original

Dataset

Table summarizes the content of a fold. Note that, the positive and negative
observations in a fold are arranged to satisfy predetermined rareness levels. Columns
"Malign" and "Benign" of Table indicate the number of positive and negative
observations in a fold and "Rareness level" indicates the ratio of positive observations

to all observations.

Table E.1: Content of a Fold for Different Rareness Levels- WBCO Dataset

Malign Benign

1% 1 88
3% 3 88
3| 5% 5 88
2| 7% 7 88
2 | 10% 10 88
g 15% 16 88
25% 30 88
35% 47 88

E.1 Hyper-parameter Optimization for PCM+NSGA-II

E.1.1 Rareness Level =1%

Table [E.2] indicates the Fscore performances of inner cross validation for different

values of PopulationSize, GenerationSize and NumberOfGenerations.

The hyper-parameter values whose inner cross validation performances are among
the top two for all the given test folds are marked with ** in the last column. Thus,
the PopulationSize, GenerationSize and NumberOfGenerations are set to 1000, 50
and 5, respectively. Once these values are set, we repeat the same analysis for p,.

and p;.. The hyper-parameter values whose inner cross validation performances are
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among the top one for all the given test folds are marked with * in the last column of
Table Their average Fscore values are also indicated in parenthesis. Since they

are equal, we set p,.. = 0.5 and p;. = 0.5.

Finally, we tune the value of p,, by following the same procedure. The hyper-
parameter value whose inner cross validation performance is among the top one for
all the given test folds are marked with * in the last column of Table [E.4] Thus we set
pm=0.01.
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Table E.3: Inner Loop Performances for p,.,p,. (PCM+NSGA-II, Rareness
Level=1%)

— N o < v
K A A
= = = = =
= =
- N N N N
3 3 3 3 3
pre-ple | &= = = = =

0.5-0.5 [ 0.98 0.99 0.99 0.99 099 *(0.99)
0.6-04 | 097 049 050 0.74 0.74
0.8-0.2 | 098 0.74 0.74 099 0.74
1.0-0.0 | 098 099 099 099 0.99 *(0.99)
0.4-0.6 | 0.96 0.50 0.50 0.75 0.75
0.2-0.8 | 0.74 0.99 0.99 099 0.99
0.0-1.0 | 0.96 0.98 098 0.98 0.98

Table E.4: Inner Loop Performances for p,,, (PCM+NSGA-II, Rareness Level=1%)

- o o @
AT T T A
= = N e e
8 © © © ©
R e = . R
B .
b b b 3 3
pm | E = B B H

0.01 | 0.98 0.99 0.99 0.99 0.99 *(0.99)
0.05 | 097 0.74 0.74 0.99 0.75
0.10 | 0.97 099 0.99 099 0.99
0.50 | 095 049 049 0.74 0.74

E.1.2 Rareness Level = 10%
Table [E.5] indicates the Fscore performances of inner cross validation for different
values of PopulationSize, GenerationSize and NumberOfGenerations.

The hyper-parameter values whose inner cross validation performances are among

the top two for all the given test folds are marked with ** in the last column.
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Thus, the PopulationSize, GenerationSize and NumberOfGenerations are set to 500,
5 and 5, respectively. Once these values are set, we repeat the same analysis for p,.

and py..

The hyper-parameter values whose inner cross validation performances are among
the top two for all the given test folds are marked with ** in the last column of Table
Their average Fscore values are also indicated in parenthesis. Due to their higher

average value, we set p,. = 0.5 and p;. = 0.5.

Finally, we tune the value of p,, by following the same procedure. The hyper-
parameter value whose inner cross validation performance is among the top one for
all the given test folds are marked with * in the last column of Table Thus we set
Pm=0.01.
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Table E.6: Inner Loop Performances for p,.,p,. (PCM+NSGA-II, Rareness
Level=10%)

Test fold =#1
Test fold =#2
Test fold =#3
Test fold =#4
Test fold =#5

pre-ple

0.5-0.5 | 0.98 098 0.98 098 0.98 *%(0.98)
0.6-0.4 | 095 099 098 098 0098 **(0.97)
0.8-0.2 | 095 097 098 098 0.98
1.0-0.0 | 095 095 097 098 0.97
0.4-0.6 | 095 095 098 098 0.98
0.2-0.8 | 0.92 096 097 097 0.96
0.0-1.0 | 0.94 096 096 096 0.97

Table E.7: Inner Loop Performances for p,,, (PCM+NSGA-II, Rareness Level=10%)

Test fold =#1
Test fold =#2
Test fold =#3
Test fold =#4
Test fold =#5

pm

0.01 | 0.98 0.98 0.98 0.98 0.98 *(0.98)
0.05 | 090 095 097 096 0.95
0.10 | 0.94 098 097 097 097
0.50 | 0.94 0.80 0.78 0.80 0.78

E.2 Hyper-parameter Optimization for PCM+RECGA

E.2.1 Rareness Level =1%

Table [E.§] indicates the Fscore performances of inner cross validation for different

values of PopulationSize and minFinalSetSize.

The hyper-parameter values whose inner cross validation performances are among
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the top two for all the given test folds are marked with ** in the last column. Among
the set of hyper-parameters that has highest average performances, PopulationSize,

and NumberOfGenerations are set to 150 and 50, respectively.

Then we repeat the same analysis for p,.. and p;.. The hyper-parameter values whose
inner cross validation performances are among the top two for all the given test folds
are marked with ** in the last column of Table and we set p,.. and p;. as 0.4 and
0.6, respectively.

Finally, we tune the value of p,, by following the same procedure. The hyper-
parameter value whose inner cross validation performance is among the top two for
all the given test folds are marked with ** in the last column of Table Due to

its higher average performance, we set p,,, = 0.01.
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Table E.8: Inner Loop Performances for PopulationSize and minFinalSetSize

(PCM+RECGA, Rareness Level=1%)

S
S 7
N ~— — o o <t v
= 73 3 EN 3 3+ 3t
s ) i i I i i
= o] = = = e e
< R s o o o o
= = e e e e e
o [= - i - - -
S = 5 $ & 5 5
~ = = = = = =

150 51098 098 098 098 098 **(0.98)
150 50| 098 0.98 098 0.98 0.98 *%(0.98)
150 100 | 0.98 0.98 098 098 0.98 **(0.98)
250 51075 099 098 098 098 **%(0.94)
250 50| 075 099 098 098 0.98 **%(0.94)
250 100 | 0.75 098 098 098 0.98 **%(0.94)
250 200 | 0.75 098 098 098 0.98 **(0.94)
500 51075 099 098 099 0.99 **(0.94)
500 S50|075 099 098 099 0.99 **%(0.94)
500 100 | 0.75 099 098 0.99 0.99 **(0.94)
500 200|075 099 098 0.99 0.99 **¥(0.94)

1000 51075 099 098 099 0.98 **%(0.94)

1000 50| 0.50 099 098 099 0.98

1000 100 | 0.50 099 098 0.99 0.98

1000 200 | 0.50 0.99 0.98 0.99 0.99
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Table E.9: Inner Loop Performances for p,.,p,. (PCM+RECGA, Rareness
Level=1%)

— N o < v
K A A
= = = = =
= =
- N N N N
3 3 3 3 3
pre-ple | &= = = = =

0.5-0.5 | 0.98 0.98 098 098 098 *(0.98)
0.6-0.4 | 0.74 098 098 098 0.98

0.8-0.2 | 0.74 0.98 098 0.98 0.98

1.0-0.0 | 098 098 098 098 0.98 *(0.98)
0.4-0.6 | 0.98 0.98 098 098 098 *(0.98)
0.2-0.8 | 0.98 0.98 098 098 098 *(0.98)
0.0-1.0 | 0.98 0.98 098 098 0098 *(0.98)

Table E.10: Inner Loop Performances for p,, (PCM+RECGA, Rareness Level=1%)

Test fold =#1
Test fold =#2
Test fold =#3
Test fold =#4
Test fold =#5

pm

0.01 | 0.98 098 098 0.98 0.98 *%(0.98)
0.05 | 0.74 098 098 098 0.98 **(0.93)
0.10 | 0.74 0.99 098 0.99 0.99 *%(0.94)
0.50 | 0.74 098 098 098 098 **(0.93)

E.2.2 Rareness Level = 10%

Table[E.TT]indicates Fscore performances of inner cross validation for different values

of PopulationSize and minFinalSetSize.

The hyper-parameter values whose inner cross validation performances are among
the top one for all the given test folds are marked with * in the last column. Popula-

tionSize, and NumberOfGenerations are set to 250 and 200, respectively.
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Then we repeat the same analysis for p,.. and p,.. The hyper-parameter values whose
inner cross validation performances are among the top one for all the given test folds
are marked with * in the last column of Table [E.12]and we set p,.. and p;. as 0.8 and
0.2, respectively.

Finally, we tune the value of p,, by following the same procedure. The hyper-
parameter value whose inner cross validation performance is among the top one for
all the given test folds are marked with * in the last column of Table [E.13]and we set
Pm = 0.01.

Table E.11: Inner Loop Performances for PopulationSize and minFinalSetSize

(PCM+RECGA, Rareness Level=10%)

8
S 7

pré= — @\l on <t ')
F2 o ** 3+ ** * 3
g 72 I I I I I
= S = = = = 3
= i 5 & 5 L L
Q : R N N N N
s = 3 s s o o
- g = = = = =

150 51094 094 094 094 093 *(0.94)
150 50 | 094 094 094 094 0093 *(0.94)
150 100 | 0.94 094 094 094 093 *(0.94)
250 51094 094 094 094 093 *(0.94)
250 50| 094 094 094 094 093 *(0.94)
250 100 | 094 094 094 094 093 *(0.94)
250 200 | 094 094 094 094 093 =*(0.949)
500 51092 094 094 094 0.93
500 50|092 094 094 094 0.93
500 100 | 092 094 094 094 093
500 200|092 094 094 094 093
1000 51094 094 094 094 093 *(0.94)
1000 50 | 094 094 094 094 093 *(0.94)
1000 100 | 0.94 094 094 0.94 0.93 *(0.94)
1000 200 | 0.94 094 094 0.94 0.93 *(0.94)
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Table E.12: Inner Loop Performances for p,.,p,. (PCM+RECGA, Rareness
Level=10%)

— N o < v
K A A
= = = = =
= =
- N N N N
3 3 3 3 3
pre-ple | &= = = = =

0.5-0.5 | 0.94 094 094 094 0.93
0.6-0.4 | 094 094 094 094 0.93
0.8-0.2 [ 0.94 095 095 095 095 *(0.95)
1.0-0.0 | 094 095 095 095 094
0.4-0.6 | 0.94 094 094 094 0.93
0.2-0.8 | 0.94 094 094 094 0.93
0.0-1.0 | 094 095 095 095 0095 *(0.95)

Table E.13: Inner Loop Performances for p,,, (PCM+RECGA, Rareness Level=10%)

— I o < s
L (A S N
o o o o o
p— p— p— p— p—
& & & & &
- - - +— -
b b 6 6 6
pm = = = = =

0.01 [ 0.94 0.95 095 095 095 *(0.95)
0.05 | 0.94 0.89 090 0.90 0091
0.10 | 094 094 093 094 0.93
0.50 | 0.94 0.84 0.87 0.88 0.87

211



F Generalization Performances of the Models for the Wisconsin Breast Cancer

Original Dataset: 5-fold Cross Validation

To see the generalization performance of the models with the selected hyper-parameter
values, we test the models in outer loop of the nested cross validation. Thus, we test
the model performances with 5-fold cross validation. We repeat the experiments for

the rareness levels ranging between 1% to 35%.

Table [F.1] shows the dataset configurations used in the experiments which are con-

ducted with 5-fold CV.

Table F.1: Experimental Settings for the WBCO Dataset (5-fold CV)

Rareness Rareness
Malign Benign Malign Benign
level level

S 2 176 S 20 176
1% 2 176 v 20 176
S 1 88 1% S 10 88  10%
Total 5 440 Total 50 440
S 6 176 S 32 176
1% 6 176 1% 32 176
S 3 88 3% |S 16 88  15%
Total 15 440 Total 80 440
S 10 176 S 60 176
vV 10 176 1% 60 176
S 5 88 59 |S 30 88  25%
Total 25 440 Total 150 440
S 14 176 S 94 176
v 14 176 1% 94 176
S 7 88 7% |S 47 88  35%
Total 35 440 Total 235 440
L {0,...176}

Tables[F.2]and [F.3|summarize the average performance results and standard deviations

of performance indicators for PCM+NSGA-II and PCM+RECGA. The performances
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are given for both sets of hyper-parameters, that are the hyper-parameters determined

with rareness level 1% and 10%.

We also report the performances of the competitor models under the experimental set-
ting with 5-fold cross validation, for the sake of completeness. Their average training
and test performances are given in Table [F.4| and standard deviations of performance

indicators for training and test are given in Table
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Table F.2: Performances of PCM+NSGA-II (5-fold CV, WBCO Dataset)

PCM+NSGA-IT 1% 3% 5% 7% 10% 15% 25% 35%
H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 HI H2
AVERAGE PERFORMANCE RESULTS
S
Sensitivity 1.00 0.90 0.80 0.50 0.92 0.72 0.66 0.84 0.73 0.83 0.97 0.95 0.97 0.82 0.95 0.93
Specificity 0.94 0.99 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.98 0.97 0.98
Accuracy 0.94 0.99 0.97 0.97 0.98 0.97 0.97 0.98 0.96 0.97 0.98 0.98 0.97 0.94 0.97 0.96
Fscore 0.97 0.93 0.86 0.65 0.95 0.83 0.76 0.90 0.84 0.90 0.97 0.96 0.97 0.88 0.96 0.95
Fmeasure 0.29 0.59 0.64 0.50 0.81 0.73 0.72 0.84 0.80 0.84 0.93 0.92 0.95 0.86 0.95 0.94
\4
Sensitivity 1.00 0.50 0.77 0.83 0.84 0.88 0.84 0.93 0.84 0.91 0.91 0.97 0.93 0.84 0.94 0.92
Specificity 0.96 1.00 0.98 1.00 0.98 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.98 0.98 0.98 0.99
Accuracy 0.96 0.99 0.97 0.99 0.98 0.99 0.98 0.99 0.98 0.98 0.97 0.99 0.97 0.95 0.96 0.96
Fscore 0.98 0.67 0.86 091 0.90 0.93 0.91 0.96 0.91 0.95 0.95 0.98 0.95 0.90 0.96 0.95
Fmeasure 0.35 0.55 0.62 0.89 0.79 0.89 0.84 0.92 0.87 0.92 0.91 0.96 0.93 0.88 0.95 0.94
S
Sensitivity 1.00 0.60 0.87 0.67 0.84 0.80 0.80 0.86 0.78 0.84 0.85 0.90 0.93 0.81 0.95 0.90
Specificity 0.95 0.99 0.96 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.98 0.98 0.97 0.98 0.97 0.97
Accuracy 0.95 0.98 0.96 0.97 0.97 0.97 0.96 0.97 0.96 0.96 0.96 0.97 0.96 0.94 0.96 0.94
Fscore 0.97 0.60 0.90 0.75 0.89 0.87 0.87 0.91 0.85 0.90 091 0.94 0.95 0.88 0.96 0.93
Fmeasure 0.31 0.37 0.60 0.58 0.76 0.75 0.76 0.81 0.80 0.81 0.88 0.90 0.92 0.86 0.95 0.92
STANDARD DEVIATIONS OF PERFORMANCE INDICATORS
S
Sensitivity 0.00 0.20 0.24 0.15 0.07 0.12 0.24 0.15 0.09 0.09 0.02 0.04 0.02 0.15 0.02 0.03
Specificity 0.03 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.02
Accuracy 0.03 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.00 0.01 0.01 0.04 0.01 0.01
Fscore 0.01 0.13 0.16 0.13 0.04 0.08 0.18 0.09 0.06 0.06 0.01 0.02 0.01 0.10 0.01 0.01
Fmeasure 0.09 0.10 0.08 0.13 0.08 0.08 0.16 0.09 0.05 0.08 0.01 0.02 0.01 0.10 0.01 0.01
v
Sensitivity 0.00 0.00 0.08 0.00 0.08 0.04 0.03 0.05 0.10 0.06 0.03 0.00 0.01 0.13 0.01 0.05
Specificity 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Accuracy 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.03 0.01 0.02
Fscore 0.01 0.00 0.05 0.00 0.05 0.02 0.02 0.02 0.06 0.03 0.02 0.00 0.01 0.08 0.01 0.03
Fmeasure 0.07 0.10 0.03 0.03 0.05 0.02 0.03 0.04 0.06 0.03 0.02 0.01 0.01 0.08 0.01 0.02
S
Sensitivity 0.00 0.49 0.16 0.30 0.20 0.18 0.15 0.09 0.19 0.08 0.06 0.03 0.05 0.13 0.02 0.06
Specificity 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Accuracy 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.01 0.01
Fscore 0.01 0.49 0.10 0.22 0.12 0.11 0.09 0.05 0.14 0.05 0.04 0.02 0.02 0.08 0.01 0.03
Fmeasure 0.07 0.31 0.13 0.14 0.05 0.08 0.08 0.08 0.12 0.04 0.04 0.02 0.02 0.07 0.01 0.02
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Table F.3: Performances of PCM+RECGA (5-fold CV, WBCO Dataset)

PCM+RECGA 1% 3% 5% 7% 10% 15% 25% 35%
H1 H2 HI H2 H1 H2 H1 H2 H1 H2 H1 H2 HI H2 H1 H2
AVERAGE PERFORMANCE RESULTS
S
Sensitivity 1.00 1.00 0.73 0.70 0.86 0.86 0.87 0.89 0.67 0.70 0.99 0.99 0.99 0.99 0.98 0.98
Specificity 0.96 0.96 1.00 1.00 0.97 0.97 0.98 0.96 0.98 0.97 0.90 0.90 0.94 0.94 0.95 0.95
Accuracy 0.96 0.96 0.99 0.99 0.97 0.96 0.97 0.96 0.95 0.95 0.91 091 0.95 0.95 0.96 0.96
Fscore 0.98 0.98 0.84 0.82 0.90 0.90 0.92 0.92 0.79 0.81 0.94 0.94 0.96 0.96 0.97 0.97
Fmeasure 0.37 0.37 0.78 0.76 0.73 0.73 0.80 0.76 0.72 0.73 0.78 0.78 0.92 0.92 0.95 0.95
v
Sensitivity 1.00 1.00 0.93 0.93 0.96 0.98 0.89 0.90 0.77 0.81 0.95 0.95 0.93 0.93 0.94 0.94
Specificity 0.96 0.96 0.98 0.98 0.96 0.96 0.97 0.97 0.98 0.98 0.91 091 0.93 0.92 0.96 0.96
Accuracy 0.96 0.96 0.98 0.98 0.96 0.96 0.97 0.97 0.96 0.96 0.91 0.91 0.93 0.93 0.95 0.95
Fscore 0.98 0.98 0.95 0.95 0.96 0.97 0.92 0.93 0.85 0.88 0.93 0.93 0.93 0.93 0.95 0.95
Fmeasure 0.36 0.36 0.74 0.75 0.74 0.74 0.79 0.80 0.78 0.81 0.78 0.78 0.87 0.87 0.93 0.93
S
Sensitivity 1.00 1.00 0.80 0.60 0.84 0.88 0.86 0.89 0.78 0.80 0.96 0.96 0.95 0.95 0.94 0.94
Specificity 0.95 0.95 0.98 0.98 0.95 0.95 0.97 0.97 0.98 0.97 0.90 0.90 091 0.91 0.97 0.96
Accuracy 0.95 0.95 0.97 0.97 0.95 0.95 0.96 0.96 0.96 0.95 091 091 0.92 0.92 0.96 0.96
Fscore 0.98 0.98 0.85 0.69 0.88 091 0.90 0.92 0.86 0.87 0.93 0.93 0.93 0.93 0.95 0.95
Fmeasure 0.33 0.33 0.64 0.51 0.64 0.67 0.74 0.77 0.79 0.77 0.78 0.78 0.87 0.86 0.94 0.94
STANDARD DEVIATIONS OF PERFORMANCE INDICATORS
S
Sensitivity 0.00 0.00 0.08 0.12 0.17 0.17 0.07 0.07 0.06 0.00 0.03 0.03 0.01 0.01 0.00 0.00
Specificity 0.01 0.01 0.00 0.00 0.02 0.02 0.01 0.02 0.01 0.00 0.06 0.06 0.03 0.04 0.01 0.01
Accuracy 0.01 0.01 0.00 0.01 0.02 0.02 0.00 0.02 0.00 0.00 0.05 0.05 0.02 0.02 0.01 0.01
Fscore 0.00 0.00 0.05 0.09 0.11 0.10 0.04 0.04 0.04 0.00 0.03 0.03 0.02 0.02 0.00 0.01
Fmeasure 0.05 0.05 0.07 0.11 0.15 0.14 0.02 0.08 0.02 0.02 0.10 0.10 0.04 0.04 0.01 0.01
\Z
Sensitivity 0.00 0.00 0.08 0.08 0.05 0.04 0.09 0.10 0.18 0.12 0.04 0.04 0.02 0.02 0.03 0.04
Specificity 0.01 0.01 0.00 0.00 0.02 0.02 0.01 0.01 0.01 0.01 0.05 0.05 0.05 0.04 0.01 0.01
Accuracy 0.01 0.01 0.00 0.00 0.02 0.02 0.00 0.00 0.01 0.01 0.04 0.04 0.03 0.03 0.01 0.01
Fscore 0.01 0.01 0.04 0.04 0.02 0.02 0.05 0.05 0.12 0.07 0.02 0.02 0.02 0.02 0.01 0.01
Fmeasure 0.07 0.07 0.02 0.02 0.09 0.09 0.01 0.03 0.09 0.04 0.08 0.08 0.05 0.04 0.01 0.01
S
Sensitivity 0.00 0.00 0.27 0.33 0.20 0.16 0.16 0.17 0.17 0.14 0.05 0.05 0.03 0.03 0.05 0.05
Specificity 0.01 0.01 0.00 0.00 0.03 0.03 0.00 0.00 0.01 0.01 0.05 0.05 0.06 0.05 0.01 0.01
Accuracy 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.02 0.05 0.05 0.05 0.04 0.02 0.01
Fscore 0.01 0.01 0.19 0.24 0.11 0.09 0.10 0.10 0.11 0.09 0.04 0.04 0.04 0.04 0.02 0.02
Fmeasure 0.05 0.05 0.14 0.19 0.07 0.10 0.09 0.11 0.08 0.10 0.09 0.09 0.07 0.07 0.02 0.02
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Table F.4: Average Performance Results of Competitor Models (5-fold CV, WBCO
Dataset)

LR penlR SVM ANN DT RF | LR penLR SVM ANN DT  RF
Suv 5
1%
Sensitivity | 100 0.80 035 100 035 100 | 060  0.60 000 080 000  0.00
Specificity | 1.00 1.00 100 100 100 100 | 099 0.99 100 099 099 099
Accuracy | 1.00 1.00 099 100 099 100 | 098 0.99 098 099 098 098
Fscore 100 089 037 100 041 100 | 060 0.0 000 079 000  0.00
Fmeasure | 1.00  0.84 037 096 037 100 | 050  0.50 000 058 000  0.00
3%
Sensitivity | 092 092 073 097 092 100 | 060 067 047 067 053 067
Specificity | 1.00 1.00 100 100 100  1.00 | 098 0.99 099 098  1.00  1.00
Accuracy | 0.99 0.99 099 100 100  1.00 | 097 0.98 097 097 098 098
Fscore 095 095 076 098 095 1.00 | 071 077 058 078 056 072
Fmeasure | 0.91 091 073 097 094 100 | 056  0.64 046 065 050 067
5%
Sensitivity | 0.95 0.94 093 098 092 100 | 084 076 080 088 072 072
Specificity | 099 099 099 100 099  1.00 | 099 0.99 099 099 098 099
Accuracy | 099 099 099 100 099 1.00 | 098 098 098 098 097 097
Fscore 097 097 096 099 095  1.00 | 091 0.84 087 093 081 08I
Fmeasure | 0.93 0.92 090 096 089 100 | 084 078 078 083 069 072
7%
Sensitivity | 092 093 088 095 096 100 | 086 083 091 083 080 077
Specificity | 099 099 099 099 099 100 | 098 0.99 098 099 098 098
Accuracy | 099 099 098 099 099 100 | 097 097 098 097 097 096
Fscore 095 0.96 093 097 097 100 | 091 0.90 095 090 087 081
Fmeasure | 090 092 088 094 091  1.00 | 083 0.83 087 08 078 071
10%
Sensitivity | 0.95 095 094 098 096 100 | 086 084 092 086 074 082
Specificity | 0.99 0.99 099 099 099  1.00 | 098 0.98 099 098 099 098
Accuracy | 0.98 0.99 098 099 099  1.00 | 097 097 098 097 096 097
Fscore 097 097 096 099 097  1.00 | 091 0.90 095 091 083 089
Fmeasure | 0.93 093 091 096 094 100 | 086 084 090 085 079  0.83
15%
Sensitivity | 0.93 0.92 093 099 096 1.00 | 089 0.86 094 086 084 093
Specificity | 0.98 0.99 098 099 099 1.00 | 099 0.99 098 098 098 098
Accuracy | 0.98 098 098 099 098 1.00 | 097 097 098 096 096 097
Fscore 096 095 095 099 097 100 | 093 0.92 096 092 090 095
Fmeasure | 092 092 092 096 095  1.00 | 091 0.89 092 087 085 009l
25%
Sensitivity | 0.95 0.94 095 100 095 100 | 092 0091 093 095 091 092
Specificity | 0.98 098 098 098 099 1.00 | 098 098 097 095 096 097
Accuracy | 0.97 097 097 098 098 100 | 096 096 096 095 095 096
Fscore 096 096 097 099 097 100 | 095 0.94 095 095 093 094
Fmeasure | 0.95 095 095 097 096 1.00 | 093 0.92 092 091 090 092
35%
Sensitivity | 096 096 097 100 098  1.00 | 095 0.94 096 096 094 097
Specificity | 0.98 0.98 097 098 098  1.00 | 097 097 097 096 096 097
Accuracy | 0.97 097 097 099 098 100 | 096 096 097 096 095 097
Fscore 097 097 097 099 098 100 | 096 096 096 096 095 097
Fmeasure | 096 096 096 098 097 100 | 095 0.94 095 094 093 096
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Table F.5: Standard Deviations of Performance Indicators of Competitor Models (5-

fold CV, WBCO Dataset)

LR pen-LR SVM ANN DT RF | LR  penLR SVM ANN DT RF
Suv 5
1%
Sensitivity | 0.00  0.10 044 000 037 000 | 049 049 000 040 000  0.00
Specificity | 0.00 0.0 000 000 000 000 | 001 001 001 001 001 00l
Accuracy | 0.00  0.00 000 000 000 000 | 001 001 001 001 001 001
Fscore 000 006 046 000 039 000 | 049 049 000 040 000  0.00
Fmeasure | 000 005 046 005 033 000 | 045 045 000 038 000  0.00
3%
Sensitivity | 0.05 0.05 037 004 009 000 | 025 021 027 021 045 037
Specificity | 0.00 0.0 000 000 000 000 | 002 001 001 002 001 001
Accuracy | 0.00  0.00 001 000 000 000 | 002 001 001 002 001 001
Fscore 0.03 0.03 038 002 005 000 | 019 016 031 016 046 037
Fmeasure | 006 004 036 003 004 000 | 019 012 024 021 043 037
5%
Sensitivity | 0.03 0.02 004 002 007 000 | 008 0.20 018 010 020 024
Specificity | 0.00 0.0 001 000 001 000 | 001 001 001 001 002 001
Accuracy | 0.00  0.00 001 000 000 000 | 001 001 001 001 001 002
Fscore 002 001 002 001 004 000 | 004 014 011 005 014 0.6
Fmeasure | 0.04 0.2 006 002 003 000 | 007 0.12 013 009 010 0.9
7%
Sensitivity | 0.01 0.02 002 004 004 000 | 009 006 007 011 017 033
Specificity | 0.00 0.0 000 000 000 000 | 001 001 001 001 001  0.00
Accuracy | 0.00  0.00 000 000 000 000 | 001 001 001 001 001 002
Fscore 0.01 0.01 001 002 002 000 | 005 0.03 004 006 010 029
Fmeasure | 0.01 0.01 002 001 001 000 | 006 003 006 008 008 025
10%
Sensitivity | 0.01 0.01 001 002 004 000 | 010 014 004 012 016 013
Specificity | 0.00 0.0 000 000 000 000 | 001 0.01 001 001 001 001
Accuracy | 000  0.00 000 000 000 000 | 002 002 001 001 001 002
Fscore 0.01 0.01 001 001 002 000 | 006 009 002 007 010 008
Fmeasure | 0.01 0.01 002 001 002 000 | 009 0.1l 004 007 008  0.10
15%
Sensitivity | 0.01 0.01 001 003 002 000 | 003 0.03 004 006 005 003
Specificity | 0.00 0.0 000 000 000 000 | 001 001 001 001 001 001
Accuracy | 000  0.00 000 000 000 000 | 001 001 001 001 001 001
Fscore 0.01 0.01 001 001 001 000 | 001 0.02 002 003 003 00l
Fmeasure | 0.01 0.01 001 001 002 000 | 003 0.04 004 004 004 003
25%
Sensitivity | 0.01 001 001 000 002 000 | 005 0.04 004 003 002 003
Specificity | 0.00 0.0 000 000 001 000 | 001 001 001 002 001 001
Accuracy | 0.00  0.00 000 000 000 000 | 001 001 001 001 001 001
Fscore 0.01 0.01 000 000 001 000 | 002 002 002 001 001 001
Fmeasure | 0.01 0.01 000 001 001 000 | 002 002 002 002 001 001
35%
Sensitivity | 0.01 0.01 001 000 001 000 | 003 0.04 001 003 003 002
Specificity | 0.00 0.0 000 001 000 000 | 002 002 001 002 002 001
Accuracy | 0.00  0.00 000 000 000 000 | 001 0.01 000 001 001 001
Fscore 000 000 000 000 000 000 | 001 0.02 001 001 001 001
Fmeasure | 000  0.00 000 000 001 000 | 001 0.02 001 002 002 001
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Note that the given performances of PCM+NSGA-II and PCM+RECGA are similar
to those of the results of experimental analyses performed with randomly generated
100 instances, except for configurations where the rareness level is extremely low.
For such configurations, since the samples consist of very few positive observations
and the experiments are repeated only five times in 5-fold cross validation, the results
are susceptible to these factors. For such configurations, repeating the experiments as

much as possible reflects the model performances’ better.
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G Hyper-parameter Optimization for the Wisconsin Breast Cancer Diagnostic

Dataset

Table summarizes the content of a fold. Note that, the positive and negative
observations in a fold are arranged to satisfy predetermined rareness levels. Columns
"Malign" and "Benign" of Table [G.1] indicate the number of positive and negative
observations in a fold and "Rareness level" indicates the ratio of positive observations

to all observations.

Table G.1: Content of a Fold for Different Rareness Levels - WBCD Dataset

Malign Benign

1% 1 70
3% 2 70
3| 5% 4 70
2| 1% 5 70
£ | 10% 8 70
2| 15% 12 70
25% 23 70
37% 41 70

G.1 Hyper-parameter Optimization for PCM+NSGA-II
G.1.1 Rareness Level =1%

Table [G.2] indicates the Fscore performances of inner cross validation for different

values of PopulationSize, GenerationSize and NumberOfGenerations.

The hyper-parameter values whose inner cross validation performances are among the
top three for all the given test folds are marked with *** in the last column. Due to the
higher average value, the PopulationSize, GenerationSize and NumberOfGenerations
are set to 150, 50 and 5, respectively. Once these values are set, we repeat the same

analysis for p,.. and p..
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The hyper-parameter values whose inner cross validation performances are among
the top three for all the given test folds are marked with *** in the last column of
Table [G.3] Since it provides a higher average performance, we set p,. = 0.5 and

Pie = 0.5.

Finally, we tune the value of p,, by following the same procedure. The hyper-
parameter value whose inner cross validation performance is among the top one for
all the given test folds are marked with * in the last column of Table [G.4] Thus we set
Pm=0.10.
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Table G.3: Inner Loop Performances for p,.,p,. (PCM+NSGA-II, Rareness
Level=1%)

— N o < v
L A ]
= = = = =
e £ &£ & &
N N N N N
3 3 3 3 3
pre-ple | &= = = = =

0.5-0.5 | 0.97 0.98 098 0.99 0.99 ***¥(0.98)
0.6-0.4 | 098 0.99 0.74 0.74 0.75 ***(0.84)
0.8-0.2 | 098 0.74 049 024 0.25
1.0-0.0 | 0.99 099 0.49 049 0.50
0.4-0.6 | 097 098 0.73 0.73 0.74
0.2-0.8 | 096 097 098 0.99 0.99
0.0-1.0 | 0.96 0.98 098 0.98 0.98

Table G.4: Inner Loop Performances for p,, (PCM+NSGA-II, Rareness Level=1%)

Test fold =#1
Test fold =#2
Test fold =#3
Test fold =#4
Test fold =#5

pm

0.01 | 0.97 0.98 098 0.99 0.99
0.05 | 098 0.99 0.74 0.74 0.75
0.10 | 0.98 0.99 0.99 0.99 0.99 *(0.99)
0.50 | 0.95 0.97 098 0.99 0.99

G.1.2 Rareness Level = 10%

Table [G.5] indicates the Fscore performances of inner cross validation for different

values of PopulationSize, GenerationSize and NumberOfGenerations.

The hyper-parameter values whose inner cross validation performances are among the
top four for all the given test folds are marked with **** in the last column. Due to the

higher average value, the PopulationSize, GenerationSize and NumberOfGenerations
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are set to 250, 200 and 10, respectively. Once these values are set, we repeat the same

analysis for p,.. and py.

The hyper-parameter values whose inner cross validation performances are among
the top two for all the given test folds are marked with ** in the last column of Table
Since it 1s distinguished with lower standard deviation, we set p,. = 0.6 and
pre = 0.4.

Finally, we tune the value of p,, by following the same procedure. The hyper-
parameter value whose inner cross validation performance is among the top one for
all the given test folds are marked with * in the last column of Table Thus we set
Pm=0.01.
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Table G.6: Inner Loop Performances for p,.,p,. (PCM+NSGA-II, Rareness
Level=10%)

Test fold =#1
Test fold =#2
Test fold =#3
Test fold =#4
Test fold =#5

pre-ple

0.5-0.5 | 0.94 095 096 095 096 **(0.95)
0.6-0.4 | 095 095 096 095 095 *%(0.95)
0.8-0.2 | 0.94 091 090 0.92 0.90
1.0-0.0 | 095 092 094 096 0.93
0.4-0.6 | 0.94 095 096 095 096 **(0.95)
0.2-0.8 | 0.93 092 093 092 0.94
0.0-1.0 | 094 092 093 092 093

Table G.7: Inner Loop Performances for p,, (PCM+NSGA-II, Rareness Level=10%)

— o o T N
L (A R A
s 02 =2 =2 =
s = =
- - ]
) & b b b
pm | & = = = =

0.01 [ 095 095 096 0.95 095 *(0.95)
0.05 092 0.89 091 091 0.89
0.10 | 091 091 0.89 0.92 0.90
0.50 | 0.83 0.85 0.84 0.86 0.86

G.2 Hyper-parameter Optimization for PCM+RECGA

G.2.1 Rareness Level =1%

Table [G.§] indicates the Fscore performances of inner cross validation for different

values of PopulationSize and minFinalSetSize.

The hyper-parameter values whose inner cross validation performances are among
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the top one for all the given test folds are marked with * in the last column. We set

PopulationSize and minFinalSetSize as 1000 and 50, respectively.

Once these values are set, we repeat the same analysis for p,. and p;.. The hyper-
parameter values whose inner cross validation performances are among the top one
for all the given test folds are marked with * in the last column of Table Then,
Pre = 0.0 and p;. = 1.0.

Finally, we tune the value of p,, by following the same procedure. The hyper-
parameter value whose inner cross validation performance is among the top one for
all the given test folds are marked with * in the last column of Table [G.10] Thus we
set p,,,=0.01.
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Table G.8: Inner Loop Performances for PopulationSize and minFinalSetSize

(PCM+RECGA, Rareness Level=1%)

PopulationSize
minFinalSetSize
Test fold =#1
Test fold =#2
Test fold =#3
Test fold =#4
Test fold =#5

150 51094 093 093 094 0.94
150 50 | 094 093 093 094 094
150 100 | 0.94 093 093 094 0.94
250 51094 093 093 094 0.95
250 50| 094 093 093 094 0.95
250 100 | 0.94 093 093 094 0.95
250 200 | 094 093 093 094 0.95
500 51094 093 093 094 0.95
500 50|094 093 093 094 0.95
500 100 | 094 093 093 094 0.95
500 200 | 094 093 093 094 0.95
1000 51094 093 094 095 095 *(0.94)
1000 50 | 094 093 094 095 095 *(0.94)
1000 100 | 094 093 094 0.95 095 *(0.94)
1000 200 | 094 093 094 0.95 095 *(0.94)
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Table G.9: Inner Loop Performances for p,.,p,. (PCM+RECGA, Rareness
Level=1%)

— N o < Rl
K A
= = = = =
g £ & & &
- - - - -
3 3 3 3 3
pre-ple | &= = = = =

0.5-0.5 | 0.94 093 094 095 0.95
0.6-0.4 | 0.70 093 094 095 0.95
0.8-0.2 | 0.75 095 094 094 0.95
1.0-0.0 | 0.75 095 094 095 0.95
0.4-0.6 | 095 094 094 095 0.95
0.2-0.8 | 0.96 0.95 096 096 0.96
0.0-1.0 | 0.98 0.98 0.98 098 0.99 *(0.98)

Table G.10: Inner Loop Performances for p,, (PCM+RECGA, Rareness Level=1%)

Test fold =#1
Test fold =#2
Test fold =#3
Test fold =#4
Test fold =#5

pm

0.01 | 0.98 0.98 0.98 0.98 0.99 *(0.98)
0.05 | 094 094 095 096 0.96
0.10 | 0.93 093 094 094 0.95
0.50 | 0.93 0.92 093 093 0.94

G.2.2 Rareness Level =10%

Table [G.TT] indicates the Fscore performances of inner cross validation for different

values of PopulationSize and minFinalSetSize.

The hyper-parameter values whose inner cross validation performances are among
the top two for all the given test folds are marked with ** in the last column. Due to

the lower standard deviation, we set PopulationSize and minFinalSetSize as 250 and
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200, respectively.

Once these values are set, we repeat the same analysis for p,. and p;.. The hyper-
parameter values whose inner cross validation performances are among the top two
for all the given test folds are marked with ** in the last column of Table[G.12] Then,

pre = 0.5 and p;. = 0.5.

Finally, we tune the value of p,, by following the same procedure. The hyper-
parameter value whose inner cross validation performance is among the top two for
all the given test folds are marked with ** in the last column of Table [G.13] Thus we
set p,,=0.01.
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Table G.11: Inner Loop Performances for PopulationSize and minFinalSetSize

(PCM+RECGA, Rareness Level=10%)

8
S 7
%) ~— — o [an) <t w
= 73 3 EN Y 3+ 3
S ) i i i i I
- p—
: F0z % § %
= = e e e e [
o [= - i i i -
S = 5 5 5 5 #)
~ = = = = = =

150 5109 093 095 096 094
150 50 {096 092 095 096 0.94
150 100 | 0.96 0.92 095 096 0.94
250 51097 095 096 095 095 **%(0.956)
250 501|097 094 096 096 095 **(0.956)
250 100 | 097 094 096 096 095 **(0.956)
250 200 | 096 095 097 0.96 0.960 **(0.96)
500 51097 095 097 095 096 **(0.960)
500 50|09 095 096 095 095 **(0.954)
500 100 | 096 095 096 095 095 **(0.954)
500 200|096 095 096 095 095 **%(0.954)

1000 51097 094 094 094 093

1000 50| 096 094 094 094 093

1000 100 | 096 092 094 096 093

1000 200 | 096 092 094 096 093
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Table G.12: Inner Loop Performances for p,.,p,. (PCM+RECGA, Rareness
Level=10%)

— N o = v
K A R ]
=2 =2 = =2 =2
= =
N - - - -
3 3 3 3 3
pre-ple | &= = = = =

0.5-0.5 [ 0.96 0.95 0.97 096 0.96 **(0.960)
0.6-0.4 | 0.97 095 096 095 096 *%*(0.958)
0.8-0.2 | 0.97 0.95 096 095 096 **(0.958)
1.0-0.0 | 094 0.89 092 0.94 0.93
0.4-0.6 | 096 095 096 095 0095 **(0.954)
0.2-0.8 | 095 095 097 096 0.96
0.0-1.0 | 096 0.92 094 096 0.93

Table G.13: Inner Loop Performances for p,,, (PCM+RECGA, Rareness Level=1%)

— [\ o < Al
+H + +H ++ +H
I I I I I
=] =] =] =] =]
S ° ° ° °
S~ S~ S~ S~ S~
~ ~ ~ ~ ~
b b b b b
pm | F = = = E

0.01 [ 0.96 0.95 097 096 0.96 *%(0.960)
0.05 | 095 093 095 096 094 *%(0.946)
0.10 | 095 092 094 097 0.93

0.50 | 095 093 095 096 094 *%(0.946)
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H Generalization Performances of the Models for the Wisconsin Breast Cancer

Diagnostic Dataset: 5-fold Cross Validation

To see the generalization performance of the models with the selected hyper-parameter
values, we evaluate the models in the outer loop of the nested cross validation. Thus,
we test the model performances with 5-fold cross validation. We repeat the experi-

ments for the rareness levels ranging between 1% to 37%.

Table [H.1] shows the dataset configurations used in the experiments which are con-

ducted with 5-fold CV.

Table H.1: Experimental Settings for the WBCD Dataset (5-fold CV)

Rareness Rareness
Malign Benign Malign Benign
level level
S 2 140 S 16 140
)% 2 140 1% 16 140
~ 1% ~ 10%
S 1 70 S 8 70
Total 5 350 Total 40 350
S 4 140 S 24 140
% 4 140 1% 24 140
S 2 70 3% S 12 70 15%
Total 10 350 Total 60 350
S 8 140 S 46 140
1% 8 140 % 46 140
S 4 70 S% S 23 70 2%
Total 20 350 Total 115 350
S 10 140 S 82 140
Y 10 140 % 82 140
S 5 70 7% S 41 70 3%
Total 25 350 Total 205 350
L {0,...,140}

Tables [H.2] and [H.3| summarize the average performance results and standard devia-

tions of performance indicators of PCM+NSGA-II and PCM+RECGA. The perfor-
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mances are given for both of the hyper-parameters determined for rareness levels 1%

and 10%.

For the sake of completeness, we also report the performances of competitor mod-
els when the experiments are conducted with 5-fold cross validation. Their average
training and test performances are given in Table [H.4|and standard deviations of per-

formance indicators for training and test are given in Table
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Table H.2: Performances of PCM+NGSA-II (5-fold CV, WBCD Dataset)

PCM+NSGA-IT 1% 3% 5% 7% 10% 15% 25% 37%
H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 HI H2
AVERAGE PERFORMANCE RESULTS
S
Sensitivity 0.80 1.00 0.85 1.00 0.95 1.00 0.92 0.94 0.81 0.98 0.80 0.98 0.97 0.97 0.98 1.00
Specificity 0.96 0.78 0.99 0.85 0.99 0.92 0.98 0.89 0.99 0.97 0.98 0.99 0.98 0.97 0.98 0.98
Accuracy 0.96 0.78 0.98 0.85 0.99 0.92 0.98 0.89 0.97 0.97 0.95 0.98 0.97 0.97 0.98 0.99
Fscore 0.85 0.87 0.91 0.92 0.97 0.96 0.95 0.91 0.89 0.97 0.87 0.98 0.97 0.97 0.98 0.99
Fmeasure 0.37 0.13 0.73 0.28 0.88 0.59 0.85 0.55 0.86 0.87 0.83 0.95 0.95 0.94 0.97 0.98
\4
Sensitivity 0.70 1.00 0.70 0.90 0.75 0.85 0.76 0.92 0.78 0.85 0.78 0.86 0.89 0.87 0.95 0.94
Specificity 0.96 0.76 0.98 0.86 0.98 0.87 0.96 0.88 0.99 0.91 0.97 0.93 0.95 0.95 0.97 0.95
Accuracy 0.96 0.76 0.97 0.86 0.96 0.87 0.95 0.88 0.96 091 0.94 0.92 0.93 0.93 0.96 0.95
Fscore 0.79 0.86 0.81 0.87 0.85 0.86 0.84 0.90 0.87 0.88 0.86 0.89 0.92 0.91 0.96 0.95
Fmeasure 0.36 0.12 0.63 0.26 0.69 0.42 0.66 0.51 0.82 0.65 0.80 0.76 0.87 0.86 0.95 0.93
S
Sensitivity 0.80 0.80 0.80 1.00 0.70 0.95 0.80 0.96 0.75 0.88 0.73 0.83 0.87 0.87 0.93 0.94
Specificity 0.93 0.76 0.99 0.85 0.98 0.90 0.97 0.89 0.98 0.91 0.95 0.93 0.95 0.93 0.96 0.96
Accuracy 0.93 0.76 0.98 0.85 0.97 0.90 0.96 0.89 0.96 091 0.92 0.91 0.93 0.92 0.95 0.95
Fscore 0.77 0.67 0.86 0.92 0.80 0.92 0.86 0.92 0.84 0.89 0.82 0.87 0.91 0.90 0.95 0.95
Fmeasure 0.29 0.08 0.73 0.29 0.70 0.53 0.71 0.56 0.78 0.67 0.73 0.74 0.86 0.84 0.93 0.94
STANDARD DEVIATIONS OF PERFORMANCE INDICATORS
S
Sensitivity 0.00 0.24 0.00 0.12 0.00 0.06 0.05 0.04 0.03 0.09 0.03 0.17 0.03 0.03 0.00 0.03
Specificity 0.10 0.02 0.02 0.01 0.03 0.01 0.02 0.01 0.02 0.01 0.00 0.02 0.02 0.00 0.01 0.01
Accuracy 0.10 0.02 0.02 0.01 0.03 0.00 0.02 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.01
Fscore 0.06 0.15 0.01 0.07 0.02 0.03 0.03 0.02 0.02 0.05 0.02 0.10 0.02 0.02 0.01 0.02
Fmeasure 0.06 0.08 0.02 0.05 0.09 0.04 0.07 0.04 0.07 0.06 0.02 0.08 0.03 0.02 0.01 0.02
v
Sensitivity 0.00 0.24 0.12 0.10 0.05 0.08 0.07 0.10 0.05 0.05 0.07 0.08 0.03 0.03 0.01 0.01
Specificity 0.09 0.03 0.03 0.02 0.04 0.01 0.02 0.01 0.01 0.00 0.04 0.01 0.01 0.01 0.01 0.00
Accuracy 0.09 0.03 0.03 0.02 0.03 0.01 0.02 0.01 0.01 0.01 0.03 0.02 0.01 0.01 0.01 0.00
Fscore 0.06 0.15 0.05 0.07 0.03 0.05 0.04 0.06 0.03 0.03 0.03 0.05 0.02 0.02 0.01 0.00
Fmeasure 0.04 0.16 0.03 0.15 0.06 0.06 0.04 0.06 0.04 0.05 0.07 0.06 0.02 0.02 0.01 0.01
S
Sensitivity 0.40 0.40 0.00 0.24 0.10 0.19 0.08 0.18 0.08 0.14 0.12 0.14 0.05 0.05 0.04 0.05
Specificity 0.09 0.05 0.05 0.02 0.05 0.02 0.05 0.01 0.03 0.01 0.03 0.03 0.03 0.03 0.02 0.02
Accuracy 0.09 0.04 0.05 0.02 0.04 0.02 0.04 0.01 0.02 0.01 0.02 0.01 0.03 0.03 0.01 0.02
Fscore 0.34 0.38 0.03 0.16 0.03 0.13 0.03 0.11 0.04 0.09 0.06 0.09 0.04 0.04 0.02 0.02
Fmeasure 0.04 0.23 0.07 0.17 0.11 0.16 0.08 0.08 0.05 0.07 0.05 0.06 0.06 0.06 0.02 0.03
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Table H.3: Performances of PCM+RECGA (5-fold CV, WBCD Dataset)

PCM+RECGA 1% 3% 5% 7% 10% 15% 25% 37%
H1 H2 HI H2 H1 H2 H1 H2 H1 H2 H1 H2 HI H2 H1 H2
AVERAGE PERFORMANCE RESULTS
S
Sensitivity 1.00 1.00 1.00 1.00 0.93 0.93 0.90 0.90 0.93 0.89 0.98 0.98 0.98 0.98 1.00 1.00
Specificity 0.93 091 0.96 1.00 0.96 0.95 0.92 0.93 0.99 0.95 0.97 0.95 0.97 0.98 0.95 0.96
Accuracy 0.93 091 0.97 1.00 0.96 0.95 0.92 0.93 0.98 0.95 0.97 0.96 0.97 0.98 0.97 0.98
Fscore 0.96 0.95 0.98 1.00 0.94 0.93 0.91 0.91 0.95 0.92 0.98 0.97 0.97 0.98 0.98 0.98
Fmeasure 031 0.28 0.83 0.96 0.75 0.72 0.70 0.70 0.92 0.80 091 0.88 0.94 0.96 0.96 0.97
v
Sensitivity 1.00 1.00 1.00 0.90 0.83 0.85 0.80 0.82 0.84 0.90 0.87 0.86 0.90 0.90 0.97 0.96
Specificity 0.89 0.86 0.96 0.98 0.95 0.95 0.91 0.93 0.95 0.93 0.91 0.90 0.93 0.94 091 0.93
Accuracy 0.89 0.86 0.96 0.98 0.94 0.94 0.90 0.92 0.94 0.93 0.91 0.89 0.92 0.93 0.93 0.94
Fscore 0.94 0.93 0.98 0.93 0.88 0.90 0.84 0.86 0.89 0.91 0.89 0.88 0.92 0.92 0.94 0.95
Fmeasure 0.21 0.18 0.76 0.78 0.63 0.64 0.55 0.58 0.74 0.73 0.74 0.71 0.85 0.87 0.91 0.93
S
Sensitivity 0.80 0.80 0.80 0.80 0.70 0.75 0.72 0.80 0.85 0.85 0.83 0.85 0.89 0.87 0.96 0.96
Specificity 0.88 0.87 0.96 0.99 0.97 0.96 0.92 0.92 0.95 091 0.90 0.89 091 0.94 0.93 0.95
Accuracy 0.88 0.86 0.96 0.99 0.95 0.95 091 0.91 0.94 0.91 0.89 0.89 0.91 0.92 0.94 0.95
Fscore 0.75 0.74 0.85 0.86 0.77 0.82 0.80 0.85 0.89 0.87 0.86 0.87 0.90 0.90 0.94 0.95
Fmeasure 0.16 0.15 0.68 0.75 0.59 0.63 0.56 0.58 0.75 0.70 0.69 0.69 0.83 0.85 0.92 0.94
STANDARD DEVIATIONS OF PERFORMANCE INDICATORS
S
Sensitivity 0.00 0.00 0.00 0.00 0.10 0.10 0.06 0.06 0.08 0.05 0.02 0.02 0.02 0.02 0.00 0.00
Specificity 0.06 0.03 0.01 0.07 0.05 0.03 0.07 0.11 0.05 0.02 0.03 0.02 0.01 0.01 0.02 0.01
Accuracy 0.05 0.03 0.01 0.07 0.05 0.03 0.07 0.10 0.04 0.01 0.03 0.01 0.01 0.01 0.01 0.01
Fscore 0.03 0.02 0.00 0.04 0.05 0.05 0.05 0.07 0.04 0.02 0.02 0.01 0.01 0.01 0.01 0.01
Fmeasure 0.10 0.07 0.08 0.29 0.19 0.15 0.19 0.21 0.12 0.04 0.07 0.03 0.02 0.02 0.02 0.01
\Z
Sensitivity 0.00 0.00 0.20 0.00 0.05 0.06 0.15 0.13 0.08 0.08 0.06 0.06 0.02 0.01 0.01 0.01
Specificity 0.04 0.02 0.02 0.07 0.03 0.03 0.03 0.07 0.05 0.03 0.04 0.03 0.01 0.01 0.02 0.02
Accuracy 0.04 0.02 0.02 0.06 0.03 0.03 0.02 0.06 0.04 0.02 0.04 0.03 0.01 0.01 0.01 0.01
Fscore 0.02 0.01 0.13 0.04 0.04 0.04 0.08 0.07 0.03 0.04 0.04 0.03 0.01 0.01 0.01 0.01
Fmeasure 0.04 0.04 0.28 0.31 0.15 0.15 0.06 0.12 0.09 0.08 0.09 0.06 0.02 0.01 0.01 0.01
S
Sensitivity 0.40 0.40 0.24 0.24 0.22 0.29 0.13 0.10 0.12 0.12 0.10 0.12 0.05 0.06 0.03 0.04
Specificity 0.04 0.02 0.01 0.07 0.03 0.03 0.06 0.08 0.09 0.05 0.04 0.03 0.02 0.05 0.03 0.02
Accuracy 0.04 0.02 0.01 0.07 0.03 0.02 0.05 0.07 0.07 0.04 0.03 0.03 0.03 0.04 0.02 0.02
Fscore 0.37 0.38 0.16 0.15 0.14 0.22 0.06 0.06 0.06 0.07 0.05 0.06 0.04 0.04 0.02 0.02
Fmeasure 0.09 0.09 0.17 0.30 0.12 0.17 0.11 0.15 0.15 0.11 0.07 0.07 0.05 0.07 0.03 0.02
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Table H.4: Average Performance Results of Competitor Models (5-fold CV, WBCD
Dataset)

LR pen-LR SVM ANN DT RF | LR  penLR SVM ANN DT RF
Suv 5
1%
Sensitivity | 1.00 100 090 100 080 100 | 080 060 080 080 060 040
Specificity | 1.00 100 100 100 100 100 | 1.00 100 100 100 100 099
Accuracy | 1.00 100 100 100 100 100 | 1.00 099 100 100 099 099
Fscore 1.00 100 094 100 089 100 | 080 060 080 080 060 040
Fmeasure | 1.00 100 094 100 089 100 | 080 053 080 080 053 033
3%
Sensitivity | 1.00 100 080 100 090 100 | 070 070 050 070 060 050
Specificity | 1.00 100 100 100 100 1.00 | 1.00 100 100 100 099 099
Accuracy 1.00 100 099 100 099 100 | 0.99 099 099 099 098 098
Fscore 1.00 100 080 100 094 100 | 073 073 053 073 060 060
Fmeasure | 1.00 100 08 100 08 100 | 073 073 053 073 056 057
5%
Sensitivity | 1.00 094 073 100 094 100 | 085 085 060 080 070 080
Specificity | 1.00 100 100 100 100 100 | 0.99 099 100 099 097 098
Accuracy 1.00 100 099 100 100 100 | 098 098 098 098 095 097
Fscore 1.00 097 078 100 097 100 | 090 090 068 087 081 088
Fmeasure | 1.00 097 078 100 096 100 | 08I 084 068 080 065 075
7%
Sensitivity | 1.00 096 08 100 091 100 | 076 076 076 080 072 072
Specificity | 1.00 100 100 100 100 100 | 098 099 099 098 097 097
Accuracy | 1.00 100 099 100 099 100 | 096 098 097 097 095 095
Fscore 1.00 098 094 100 095 100 | 083 084 084 08 081 080
Fmeasure | 1.00 098 094 100 094 100 | 073 081 079 077 069 069
10%
Sensitivity | 0.96 097 097 099 092 100 | 083 085 08 083 075 083
Specificity | 1.00 100 100 100 099 100 | 098 099 100 098 096 099
Accuracy | 0.99 100 100 100 099 100 | 096 098 098 096 094 097
Fscore 098 098 098 100 095 1.00 | 088 090 090 088 084 089
Fmeasure | 0.97 098 098 100 093 100 | 082 087 08 08 074 085
15%
Sensitivity | 0.96 096 097 099 095 100 | 090 090 092 090 077 085
Specificity | 1.00 100 100 100 099 100 | 0.99 099 100 098 095 097
Accuracy | 0.99 099 099 100 098  1.00 | 097 098 099 097 093 096
Fscore 098 098 098 100 097 100 | 094 094 096 094 085 091
Fmeasure | 0.97 098 098 099 095 100 | 091 092 096 089 076 085
25%
Sensitivity | 0.95 095 093 098 097 1.00 | 093 093 090 094 077 086
Specificity | 0.99 099 100 100 099  1.00 | 098 099 099 096 097 099
Accuracy | 0.98 098 098 099 099 100 | 097 097 097 096 092 096
Fscore 097 097 097 099 098 100 | 096 096 094 095 086 092
Fmeasure | 0.96 097 096 099 097 100 | 094 094 093 092 083 091
37%
Sensitivity | 0.97 097 097 098 098 100 | 096 096 095 095 091 093
Specificity | 0.99 099 100 100 099  1.00 | 098 098 097 097 096 098
Accuracy | 0.98 098 099 099 099  1.00 | 097 097 096 096 094 096
Fscore 098 098 098 099 099  1.00 | 097 097 096 096 093 095
Fmeasure | 0.98 098 098 099 098 100 | 096 096 095 095 092 095
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Table H.5: Standard Deviations of Performance Indicators of Competitor Models (5-

fold CV, WBCD Dataset)

LR pen-LR SVM ANN DT RF | LR  penLR SVM ANN DT RF
Suv 5
1%
Sensitivity | 0.00 0.0 002 000 010 000 | 040 049 040 040 049 049
Specificity | 0.00 0.0 000 000 000 000 | 000 00l 000 000 001 00
Accuracy | 0.00  0.00 000 000 000 000 | 001 001 001 001 001 001
Fscore 000 000 007 000 006 000 | 040 049 040 040 049 049
Fmeasure | 0.00  0.00 007 000 006 000 | 040 045 040 040 045 042
3%
Sensitivity | 0.00 0.0 040 000 005 000 | 040 040 045 040 049 032
Specificity | 0.00 0.0 000 000 000 000 | 000 000 000 000 001 001
Accuracy | 0.00  0.00 001 000 000 000 | 001 0.01 001 001 002 001
Fscore 000 000 040 000 003 000 | 039 039 045 039 049 033
Fmeasure | 000  0.00 040 000 005 000 | 039 039 045 039 046 033
5%
Sensitivity | 0.00  0.04 034 000 004 000 | 020 020 034 019 010 0.10
Specificity | 0.00 0.0 000 000 000 000 | 002 001 000 002 003 001
Accuracy | 0.00  0.00 002 000 000 000 | 001 001 002 002 003 001
Fscore 000 002 033 000 002 000 | 013 0.13 035 012 007 005
Fmeasure | 000 0.2 033 000 003 000 | 012 014 035 014 011 006
7%
Sensitivity | 0.00 0.2 0.0 000 006 000 | 023 023 023 022 020 024
Specificity | 0.00 0.0 000 000 000 000 | 002 00l 002 002 004 003
Accuracy | 0.00  0.00 001 000 000 000 | 002 002 003 003 003 003
Fscore 000 001 006 000 003 000 | 016 016 016 016 014  0.16
Fmeasure | 000 001 006 000 002 000 | 017 0.17 021 019 017 0.9
10%
Sensitivity | 0.04 0.2 002 001 006 000 | 019 0.8 013 019 008  0.10
Specificity | 0.00 0.0 000 000 000 000 | 002 001 001 002 003 002
Accuracy | 0.01 0.00 000 000 001 000 | 003 0.02 001 003 004 002
Fscore 002 001 001 001 003 000 | 012 012 008 012 006 006
Fmeasure | 0.03 0.01 001 001 005 000 | 014 0.1l 007 014 012 008
15%
Sensitivity | 0.02 001 001 002 003 000 | 006 006 005 006 008 008
Specificity | 0.00 0.0 000 000 000 000 | 002 002 000 002 003 002
Accuracy | 000  0.00 000 000 001 000 | 002 002 001 002 002 002
Fscore 0.01 0.01 001 001 002 000 | 003 0.03 003 004 004 004
Fmeasure | 0.01 0.01 001 001 002 000 | 005 0.05 003 007 005 005
25%
Sensitivity | 0.01 001 003 002 001 000 | 003 0.03 005 003 007 006
Specificity | 0.00 0.0 000 000 001 000 | 001 0.02 002 002 002 001
Accuracy | 0.00  0.00 001 001 000 000 | 001 0.02 003 002 002 002
Fscore 0.01 0.01 002 001 000 000 | 002 002 004 003 005 003
Fmeasure | 0.01 0.01 002 002 001 000 | 003 0.04 005 005 005 004
37%
Sensitivity | 0.01 0.01 001 001 000 000 | 002 002 003 003 003 003
Specificity | 0.00 0.0 000 000 001 000 | 002 002 004 001 003 002
Accuracy | 0.00  0.00 000 000 000 000 | 001 0.01 002 001 001 002
Fscore 000 000 001 001 000 000 | 001 0.01 002 001 001 002
Fmeasure | 0.01 0.00 001 001 000 000 | 001 001 002 001 002 002
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Note that the given performances of PCM+NSGA-II and PCM+RECGA are similar
to those of the results of experimental analyses performed with randomly generated
100 instances, except for configurations where the rareness level is extremely low.
For such configurations, since the samples consist of very few positive observations
and the experiments are repeated only five times in 5-fold cross validation, the results
are susceptible to these factors. For such configurations, repeating the experiments as

much as possible reflects the model performances’ better.
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I Detailed Results of the Models Applied to the In-Stent-Restenosis Dataset

The average model performances in randomly generated 100 instances are given in

the Tables [T} [.2] [.3] and [[.4] for Setting 1, and and [L.§| for Setting 2.

Note that, PCM+NSGA-II and PCM+RECGA first utilize S to generate initial set
of solutions, and then they tune these solutions with V. On the other hand, since
Random+NSGA-II and Random+RECGA generate the initial solutions randomly,

they only use V for training. All the models’ performances are tested in S.

Table I.1: Performances of PCM+NSGA-II (Setting 1)

S v S
PCM+NSGA-II AVG STD.DEV | AVG STD.DEV | AVG STD.DEV
.. True positive 14.02 321 | 1543 2.29 6.97 2.10
Q
é True negative 76.64 9.56 | 78.11 9.23 | 37.85 5.38
7 True classification | 90.66 10.08 | 93.54 10.55 | 44.82 5.65
True positive 0.58 0.13 0.64 0.10 0.58 0.17
°
5 True negative 0.80 0.10 0.81 0.10 0.79 0.11
True classification 0.76 0.08 0.78 0.09 0.75 0.09
Fscore 0.66 0.10 0.71 0.08 0.65 0.13
Fmeasure 0.49 0.08 0.55 0.08 0.48 0.11
Time (sec.)
AVG 14.3
STD.DEV 1.79
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Table 1.2: Performances of Random+NSGA-II (Setting 1)

v S
Random+NSGA-Il | \yG  STDDEV | AVG ~ STD.DEV
.. True positive 6.36 2.85 2.90 1.75
Q
"% True negative 88.67 9.17 | 43.61 4.88
% True classification | 95.03 9.96 | 46.51 5.13
True positive 0.26 0.12 0.24 0.15
o
E True negative 0.92 0.10 0.91 0.10
True classification 0.79 0.08 0.78 0.09
Fscore 0.40 0.15 0.36 0.18
Fmeasure 0.33 0.13 0.29 0.14
Time (sec.)
AVG 6.75
STD.DEV 0.16

Table 1.3: Performances of PCM+RECGA (Setting 1)

S v S
PCM+RECGA AVG STD.DEV | AVG STD.DEV | AVG  STD.DEV

.. True positive 19.17 234 | 17.92 1.99 8.48 1.83

Q

—g True negative 67.97 6.57 | 67.70 6.37 | 32.64 4.15

z True classification | 87.14 5.62 | 85.62 5.73 | 41.12 4.04
True positive 0.80 0.10 0.75 0.08 0.71 0.15

]

E True negative 0.71 0.07 0.71 0.07 0.68 0.09
True classification 0.73 0.05 0.71 0.05 0.69 0.07
Fscore 0.74 0.04 0.72 0.04 0.68 0.08
Fmeasure 0.54 0.05 0.51 0.05 0.47 0.09

Time (sec.)
AVG 8.25
STD.DEV 1.86
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Table 1.4: Performances of Random+RECGA (Setting 1)

% S
Random+RECGA | \yG  STDDEV | AVG  STD.DEV
.. True positive 11.14 291 5.37 2.16
Q
g True negative 80.18 7.69 | 39.19 4.97
“ True classification | 91.32 6.25 | 44.57 4.40
True positive 0.46 0.12 0.45 0.18
o
E True negative 0.84 0.08 0.82 0.10
True classification 0.76 0.05 0.74 0.07
Fscore 0.58 0.10 0.55 0.16
Fmeasure 0.43 0.08 0.40 0.13
Time (sec.)
AVG 0.83
STD.DEV 0.31
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Table 1.5: Performances of PCM+NSGA-II (Setting 2)

S % S
PCM+NSGA-II AVG STD.DEV | AVG STD.DEV | AVG STD.DEV
.. True positive 15.18 432 | 15.81 3.86 7.54 2.37
Q
é True negative 15.96 4.48 | 16.83 4.00 7.94 2.40
z True classification | 31.14 7.15 | 32.64 7.26 | 15.48 3.80
True positive 0.63 0.18 0.66 0.16 0.63 0.20
°
E True negative 0.67 0.19 0.70 0.17 0.66 0.20
True classification 0.65 0.15 0.68 0.15 0.65 0.16
Fscore 0.63 0.15 0.67 0.15 0.62 0.16
Fmeasure 0.64 0.15 0.67 0.15 0.63 0.17
Time (sec.)
AVG 103.65
STD.DEV 3.02

Table 1.6: Performances of Random+NSGA-II (Setting 2)

1% S
Random+NSGA-Il | \yG  STDDEV | AVG ~ STD.DEV
.. True positive 10.93 3.51 5.27 2.33
Q
g True negative 18.95 4.21 9.14 247
“ True classification | 29.88 6.76 | 14.41 3.71
True positive 0.46 0.15 0.44 0.19
o
5 True negative 0.79 0.18 0.76 0.21
True classification 0.62 0.14 0.60 0.15
Fscore 0.57 0.15 0.53 0.18
Fmeasure 0.54 0.15 0.51 0.18
Time (sec.)
AVG 104.3
STD.DEV 3.71
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Table 1.7: Performances of PCM+RECGA (Setting 2)

S % S
PCM+RECGA AVG STD.DEV | AVG STD.DEV | AVG  STD.DEV
.. True positive 18.48 2.79 18.39 2.20 8.63 1.76
[}
g True negative 15.60 3.41 16.60 2.27 7.30 1.88
z True classification | 34.08 3.58 | 34.99 2.65 15.93 2.36
True positive 0.77 0.12 0.77 0.09 0.72 0.15
o
E True negative 0.65 0.14 0.69 0.09 0.61 0.16
True classification 0.71 0.07 0.73 0.06 0.66 0.10
Fscore 0.69 0.09 0.72 0.06 0.64 0.11
Fmeasure 0.72 0.07 0.74 0.06 0.68 0.10
Time (sec.)
AVG 0.86
STD.DEV 0.35
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Table 1.8: Performances of Random+RECGA (Setting 2)

% S
Random+RECGA | \yG  STDDEV | AVG  STD.DEV
.. True positive 8.98 4.69 4.69 2.50
L
% True negative 20.90 2.65 | 10.20 1.66
Z True classification | 29.88 3.63 14.89 2.00
True positive 0.37 0.20 0.39 0.21
o
5 True negative 0.87 0.11 0.85 0.14
True classification 0.62 0.08 0.62 0.08
Fscore 0.48 0.19 0.49 0.20
Fmeasure 0.47 0.19 0.47 0.20
Time (sec.)
AVG 0.23
STD.DEV 0.06
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J Predictor Values and Real Restenosis Status of 100 Patients in Test Sample

Table J.1: Predictor Values and Real Restenosis Status of 100 Patients in Test Sample

F1 F2 F3 F4 F5 F6 F7 F8 Real status

of restenosis
o o0 o0 o0 275 0 1 0 O
1 1 0 0 3 0o 1 0 1
1 1 0 1 3 0O 0 0 O
1 1t o 1 31 1 1 0 1
1 0 0 1 2 0O 1 0 1
1 1 1 1 35 0 1 0 1
1 0o 1 0 25 O 0 0 1
1 0 0 1 3 0O 0 0 O
1 0 0 0 275 0 0 O 1
1 0 0 0 3 0 0 0 1
O 0 o O 275 0 O 0 O
1 0 0 O 35 0 O O O
1 0 0 0 3 0O 0 0 O
1 0 0 0 275 0 1 0 1
O 0 0O O 35 0 1 O O
1 0 0 0 275 0 1 1 1
1 0 0 0 45 O 1 0 1
1 0 0 1 4 0o o 1 1
0O 0 0 o0 3 0O 0 0 0
0O 0 0 o0 3 0O 1 0 0
0O 0 0 o0 3 0O 0 0 O
1 0 0 0 3 0O 1 0 0
o 0o o0 o0 29 0O O O0 O
O 0 0 O 35 O 1 0 1
1 0 0 O 3 0 1 0 1
1 0 0 0 275 0 0 0 1
1 0 0 O 275 1 0 0 1
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K Detailed Results of the Models Applied to the Wisconsin Breast Cancer Orig-

inal Dataset

The average model performances in randomly generated 100 instances are given in

the Tables [K.1] [K.2] K.3] K.4] [K.5] [K.6} [K.7] and [K.8]
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L. Detailed Results of the Models Applied to the Wisconsin Breast Cancer Di-

agnostic Dataset

The average model performances in randomly generated 100 instances are given in

the Tables[L. 1] [L.2] [L.3] [L.4] [L.5] [L.6] [L.7]and [L.8§]
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