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ABSTRACT

UTADIS BASED MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS
FOR MEDICAL DIAGNOSIS PROBLEMS

Mahmutoğulları, Halenur Şahin

Ph.D., Department of Industrial Engineering

Supervisor: Prof. Dr. Serhan Duran

Co-Supervisor: Assoc. Prof. Dr. Ertan Yakıcı

December 2019, 268 pages

We develop hybrid methods that integrate multi-criteria decision making, evolution-

ary algorithms and machine learning to be used in medical diagnosis problems. The

proposed models classify patients into two categories according to their disease status

with the aim of obtaining high classification performances both classes under consid-

eration.

First, we develop a Mixed-Integer Linear Programming approach, Parametrized Clas-

sification Model (PCM), which is based on UTADIS. By solving PCM multiple times

with various values of a specific parameter, we obtain a set of solutions spread over the

Pareto-optimal front in the space of true positive and true negative responses. Then,

to combine strong aspects of these solutions, we integrate PCM with evolutionary

algorithms, NSGA-II and RECGA, to tune the classification parameters acquired by

PCM. NSGA-II favors non-dominated solutions in terms of sensitivity and specificity

and RECGA aims to perform well particularly in situations where the incidence of

the disease may be relatively low, such as general screening. We call the developed

integrated models as PCM+NSGA-II and PCM+RECGA, respectively.
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In order to observe the model performances, we try them with three different datasets

which are about coronary stent patients and breast cancer. Furthermore, we apply

several well-known machine learning algorithms to these datasets and compare the

results with the results of PCM+NSGA-II and PCM+RECGA. Additionally, for the

coronary stent dataset, the model performances are compared with those of cardiolo-

gists.

The results indicate that PCM+NSGA-II and PCM+RECGA are promising classifica-

tion algorithms that can be used in medical decision support tools by medical experts.

Keywords: multi-criteria decision making, evolutionary algorithms, machine learn-

ing, medical diagnosis, rare event classification
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ÖZ

TIBBİ TEŞHİS PROBLEMLERİ İÇİN UTADIS TEMELLİ ÇOK AMAÇLI
EVRİMSEL ALGORİTMALAR

Mahmutoğulları, Halenur Şahin

Doktora, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Serhan Duran

Ortak Tez Yöneticisi: Doç. Dr. Ertan Yakıcı

Aralık 2019 , 268 sayfa

Bu çalışmada, tıbbi tanı problemleri alanında kullanılmak üzere, çok kriterli karar

verme, evrimsel algoritmalar ve makine öğrenmesi yöntemlerini birleştiren hibrit

yöntemler geliştiriyoruz. Önerilen modeller, incelenen her iki sınıfta da yüksek sı-

nıflandırma performansları elde etmeyi amaçlayarak, hastaları durumlarına göre iki

kategoride sınıflandırıyor.

İlk olarak, PCM olarak adlandırdığımız, UTADIS temelli bir karma tamsayılı prog-

ramlama modeli geliştiriyoruz. PCM’i spesifik bir parametrenin çeşitli değerleri için

birçok kez çözerek, doğru pozitif ve doğru negatif yanıtların alanında Pareto-optimal

cepheye yayılmış bir dizi çözüm elde ediyoruz. Bu çözümlerin güçlü yönlerini birleş-

tirmek için PCM ve evrimsel algoritmaları beraber kullanıyoruz. Bu amaçla, PCM’den

elde edilen sınıflandırma parametrelerinin değerlerini, NSGA-II ve RECGA adlı ev-

rimsel algoritmalar kullanarak ayarlıyoruz. NSGA-II, doğru pozitif ve doğru negatif

sınıflandırma performansları açısından bir çözümün Pareto-optimalitesini yansıtan,

baskılanamayan çözümleri öncelemektedir. RECGA ise, genel tarama gibi hastalığın

görülme oranının göreceli olarak düşük olabileceği durumlarda özellikle iyi perfor-
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mans göstermesini hedeflediğimiz bir başka evrimsel algoritmadır. PCM ile evrimsel

algoritmaların entegrasyonu sonucu elde ettiğimiz modelleri, sırasıyla, PCM+NSGA-

II ve PCM+RECGA olarak adlandırıyoruz.

Önerdiğimiz modellerin deneysel analizini üç farklı veri seti üzerinde yapıyoruz. Bu

veri setlerinden ilki koroner stent implantasyonu yapılmış hastalar ile ilgili iken diğer

iki veri seti ise meme kanseri ile ilgilidir. Buna ek olarak, bu veri setlerine bazı makine

öğrenmesi yöntemlerini uyguluyoruz ve performanslarını önerilen modellerin perfor-

mansları ile kıyaslıyoruz. Ayrıca, koroner stent veri seti için model performanslarını

kardiyologların performansı ile karşılaştırıyoruz.

Elde ettiğimiz sonuçları incelediğimizde, PCM+NSGA-II ve PCM+RECGA’nın tıbbi

karar destek aracı olarak kullanılabilecek, güvenilir ve etkin sınıflandırma yöntemleri

olduğunu gözlemliyoruz.

Anahtar Kelimeler: çok kriterli karar verme, evrimsel algoritmalar, makine öğren-

mesi, tıbbi teşhis, nadir olay sınıflandırma
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CHAPTER 1

INTRODUCTION AND MOTIVATION

Predicting the existence or absence of a disease has a crucial importance in health-

care. There are various medical methods of diagnosis such as biopsy, ultrasound,

MRI etc. However, most of these methods are expensive and/or carry risks for the

patients. Moreover, some cases may have no apparent symptoms or clinical findings.

Instead of using expensive methods or medical tests, operations research techniques

and machine learning methods can be employed in medical decision support tools.

These applications may help doctors to make predictions without creating additional

risk and cost for patients. Moreover, for the cases where a general screening test is

conducted among a population, the number of people carrying the disease is expected

to be rare. For such cases, identifying the existence of the disease is harder and has

greater importance.

For this purpose, in this thesis, we develop hybrid methods which integrate multi-

criteria decision analysis, evolutionary algorithms and machine learning to be used in

medical diagnosis problems and also perform good when incidence of the disease is

relatively low in the population.

In Chapter 2, we give a literature review which covers studies on machine learning,

prediction models in health-care, multi-criteria decision analysis, rare event classifi-

cation and role of evolutionary algorithms in machine learning and multi-objective

decision analysis.

In Chapter 3, we propose predictive classification methods where the patients are

classified into two sets according to their disease status. The objective is to obtain

high classification performances on both classes under consideration.
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First, we propose the Parametrized Classification Model (PCM). It is a Mixed-Integer

Programming (MIP) model and a variant of multi-criteria decision analysis method,

UTADIS (UTilités Additives DIScriminantes)[3]. The objective of the model is to

assign the best possible values to the decision variables with respect to the classifica-

tions given in the training set, in order to develop a set of additive utility functions.

These additive utility functions are then used to classify patients into the predefined

classes.

Unlike a classical UTADIS model, PCM has a parametric nature and it aims to min-

imize the number of false negative classification while keeping the number of false

positive classification under a specified level of a parameter. Since, there is a trade-off

between obtaining highest true positive and true negative responses from the model,

changing this level and solving the linear programming model to optimality favors

one objective while deteriorating the other. Thus, different levels for true positive and

true negative responses are obtained each time. Therefore, the linear model creates

a set of solutions spread over the Pareto-optimal front in the two dimensional space

of true positive and true negative responses. In other words, PCM is used to obtain a

set of solutions, some of which have high true positive and some have high true neg-

ative classification performances. Then, to combine the strong aspects of these solu-

tions, we utilize evolutionary algorithms to tune the model parameters. By integrating

multi-criteria decision analysis model, PCM, with evolutionary algorithms, we aim to

develop models that have high classification performances in complex problems. To

do so, first, the evolutionary algorithms derive new solutions through genetic oper-

ations, using the set of solutions obtained from PCM. Then, for each generation of

solutions, they test the classification performances of the solutions with a validation

set. Next, the evolutionary algorithms update the existing solutions by selecting the

ones that can achieve good classification results in some aspects, where the goodness

of a solution can be represented in many different ways (eg. high accuracy, high true

positive rate, high positive predictive rate etc.). By this way, we aim to obtain novel

combinations of model parameters such that their resulting classification have high

true positive and true negative responses, simultaneously.

The first evolutionary algorithm developed to integrate with PCM is a multi-objective

evolutionary algorithm, based on NSGA-II (Non-dominated Sorting Genetic Algo-
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rithm II) [4]. It favors non-dominated solutions in terms of true positive and true neg-

ative classification performances. The purpose of the algorithm is to obtain solutions

which can minimize false positive and false negative classification errors, simultane-

ously. The proposed algorithm is called as PCM+NSGA-II.

We also develop another solution method which is suitable for the problems with class

imbalance. For such problems, when one class of observations is significantly less

than the other, achieving high accuracy is possible by assigning all the observations to

the class that constitutes the majority. In this case, a model would be totally inefficient

to classify the rare observation. To overcome this drawback, we again consider using

an evolutionary algorithm, called Rare Event Classifier Genetic Algorithm, (RECGA)

together with the Mixed-Integer Linear Programming model PCM, and we call it as

PCM+RECGA. It aims to achieve high true positive and true negative classification

rates, even in the cases where one class of observations is significantly rare.

We apply PCM+NSGA-II and PCM+RECGA to three medical datasets and give the

results of this experimental analysis. Additionally, to see the effect of integrating

evolutionary algorithms with PCM, we compare the performances of PCM+NSGA-

II and PCM+RECGA with the algorithms whose initial solutions are not obtained

with PCM but random (Random+NSGA-II and Random+RECGA). Finally, we com-

pare the performances of PCM+NSGA-II and PCM+RECGA with several machine

learning algorithms.

In Chapter 4, we provide the results of the experimental analyses conducted in patient

classification in terms of risk of restenosis after coronary stent implantation. In this

context, we first determine the predictors by investigating the relevant literature and

consulting with the experts. Then, we apply feature selection to find the most related

set of coronary in-stent-restenosis predictors to build the simplest model and improve

the prediction ability. We gather the data based on existing records of patients with

coronary stents, from Ondokuz Mayıs University Hospital, Cardiology Department.

We scan the records of 10,435 patients between the years 2005 and 2016 to find a

set of patients who are eligible to be included in this study. The final dataset includes

303 observations. We test the performances of the models on this dataset, and also we

compare them with the predictions of 15 cardiologists. We observe that the suggested

3



methods are effective and reliable decision support tools to classify patients in terms

of in-stent-restenosis.

In Chapter 5, we report the results of the experimental analyses on two well-studied

datasets about breast cancer (Wisconsin Breast Cancer Original Dataset [5] and Wis-

consin Breast Cancer Diagnostic Dataset [6]). For both datasets, it is assumed that,

the independent and dependent variables are the breast cancer predictors and the type

of tumor (malignant or benign), respectively. By adjusting the rareness of malignant

observations in the population from 35%-37% to 1%, we test the model performances

in case of rare events. We observed that, our algorithms are promising classification

algorithms and they are stronger alternatives when one class of observations is rare.

In Chapter 6, we propose concluding remarks as well as the possible future extensions

of the existing study.

Part of the study reported in Chapters 3 and 4 is published in a relevant respected

scientific journal [7], indexed by SCI.
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CHAPTER 2

LITERATURE REVIEW

Since the proposed algorithms in this study are based on a multi-criteria decision

analysis method, evolutionary algorithms and machine learning, our literature review

focuses on these fields.

In the following subsections, first we review the machine learning literature in general

and continue with prediction models in health-care, multi-criteria decision analysis

literature, rare event classification models and the role of evolutionary algorithms in

machine learning and multi-objective decision analysis, respectively.

2.1 Machine Learning

Machine learning has a vast area of application. Finance, manufacturing, medicine,

medical diagnosis, telecommunication, chemistry, cognitive modeling, image recog-

nition and speech recognition are some examples of these areas [8, 9].

A machine learning model is about experience, task and performance measure. Au-

thor Tom Mitchell states that “a computer program is said to learn from experience E

with respect to some class of tasks T and performance measure P , if its performance

at task in T , as measured by P , improved with experience E ”[10].

Machine learning algorithms are categorized into groups of supervised, unsupervised

and reinforcement learning methods. In the supervised learning, both input and out-

put values are given where the latter are provided by a supervisor. The aim of the

supervised learning algorithm is learning a mapping from the input to the output. In

unsupervised algorithms, we only have input data and the aim is to discover some pat-

5



terns in it. In the reinforcement learning, the objective of the algorithm is to generate a

policy, which is comprised of sequences of actions, by learning from past good action

sequences. Some examples to reinforcement learning algorithms are game playing

and robot navigating [8].

The models proposed in this study can be considered to be in the class of supervised

learning algorithms. In the supervised learning, the given data set contains infor-

mation about how a correct output should look like [10]. Therefore, the algorithm

utilizes a training set to fit the parameters of the model. After the model parameters

are obtained, a test set is used to measure the performance of the model. In some

cases, a validation set is also used in order to tune the parameters [11].

Depending on the type of the output, supervised learning algorithms are classified as

regression and classification. In regression problems, the algorithm provides continu-

ous outcomes, whereas the outcomes are discrete in classification problems. The main

supervised classification techniques are logic-based algorithms [12], perceptron-based

techniques [12], statistical learning algorithms [12], kernel-based algorithms [12, 8],

linear discrimination [8], and instance-based (non-parametric) learning [12].

In this study, the input is represented by a training set, which makes the proposed

algorithms instance-based. They are used to classify the observations in two classes,

thus they can be categorized also as classification algorithms.

2.2 Prediction Models In Health-care

In this section, we review the prediction models used in the field of health-care with a

special emphasis on disease diagnosis. We find that the studies mainly focus on data

driven, intelligent methodologies.

Statistical methods were commonly used on disease diagnosis in previous studies.

However, due to their limitations on nonlinear and dependent data, data mining tech-

niques and artificial intelligence become prominent [13, 14]. Data mining is defined

as “the extraction of implicit, previously unknown, and potentially useful informa-

tion from data [15]” and the process of discovering attractive patterns among the data
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which makes sense in the decision making [16]. Data mining is utilized in some

studies related with cardiac SPECT (single photon emission computed tomography)

diagnosis, quality assessment of hemodialysis services and survival time prediction

for kidney dialysis patients [16]. Machine learning is referred as the provider of the

technical basis of data mining and it is used to extract information from the raw data

[15]. It is also stated that, besides association, clustering, sequential patterns and

similar time sequences, data mining can also be practiced through classification and

prediction [17]. For classification purposes, statistics, decision trees, fuzzy sets, rough

sets, neural networks and linear programming are widely used techniques [18, 19].

Tom Mitchell states that “although machine learning algorithms are central to the

data mining process, it is important to note that the data mining process also includes

other important steps such as building and maintaining the database, data formatting

and cleansing, data visualization and summarization, the use of human expert knowl-

edge to formulate the inputs to the learning algorithm and to evaluate the empirical

regularities it discovers, and the eventual deployment of results. Thus data mining

bridges many technical areas including databases, human-computer interaction, sta-

tistical analysis and machine learning algorithms” [20].

Appropriate computer-based information and decision support systems can help mak-

ing clinical medical diagnosis at a reduced cost and they are valuable aids in achieving

accurate results in medical diagnosis [21, 22]. The aim of these systems is enhancing

rather than replacing the medical diagnosis decision of the physician [22].

One of the suggested approaches for this purpose is the K-nearest neighbors, which

is a non-parametric pattern recognition method [16, 22]. The K-nearest neighbor ap-

proach is used in the diagnosis of lower back disorders, 30-day mortality and survival

following acute myocardial infarction, and separating cancerous and non-cancerous

breast cancer tumor masses [22].

Other pattern recognition methods that are used in the medical diagnosis are discrim-

inant analysis [16] and Bayesian classifiers [16, 14], where naïve Bayes classifier is

mentioned as a linear classifier in [23, 21, 24].

Meta-heuristic algorithms are also considered in medical diagnosis. Genetic algo-
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rithm is referred as a data mining technique in some studies [16, 13, 25]. Neshat et

al. propose a combination of particle swarm optimization and case-base reasoning for

diagnosis of hepatitis disease [25].

Huang et al., Lin and Uzoka et al. consider case-base reasoning, which is defined as

using old experiences to suggest solutions for the new cases [16, 13, 14]. These stud-

ies are about diagnosis and analysis of dysmorphic syndromes, assistance in making

diagnosis and selection of a course of therapy. In their study, Huang et al. introduce

a model which is developed for diagnosis and prognosis of chronic diseases. The

proposed model integrates data mining and case-base reasoning [16].

Decision trees are referred as non-parametric supervised learning methods used for

classification. They are also defined as inductive learning of symbolic rules, data

mining tools and multi-stage decision making approaches [16, 21, 25]. A decision tree

classifies the observations in the training set by construction and pruning operations.

By this way, a decision tree classifier is able to find meaningful relations between

the class labels and the set of observations which are used for training. Then, the

acquired information is used to classify subsequent observations [26, 27]. Some of

the areas where decision trees are used in medical literature are diagnosis of breast

tumor in medical ultrasonic images [28], heart disease prediction [29] and diagnosis

of type-II diabetes [30]. A study suggests a model for the liver disease diagnosis [13].

The proposed model is comprised of classification and regression tree (CART) and

case-base reasoning. By the CART model, it is determined whether the patient suffers

from the liver disease and by the case-base reasoning, the type of the liver disease is

identified.

A collection of decision trees is called as random forest, which is an ensemble ap-

proach to build predictive models. Mangiameli et al. indicate that the predictive

success of ensemble models is more accurate than single models [22]. The reason

behind this idea is based upon the instable nature of single models due to changes

in the learning set. The authors claim that ensemble of models are more robust. By

combining a series of decision trees, random forest aims to increase prediction accu-

racy [31]. Lee et al. deal with the use of random forest for a lung nodule classification

problem [32].

8



Another study that introduces ensemble strategies for medical diagnosis focuses on

early detection and diagnosis of breast cancer. The authors analyze selection strate-

gies of classification models to form ensembles and they compare the performances

of a single model and ensemble of models [33].

Another method that can be used as a medical diagnosis aid is decision rules, which is

an inductive learning of symbolic rules [16]. Moreover, Uzoka et al. [14] and Malmir

et al. [34] consider rule-based programming and fuzzy rule-based decision support

system, respectively.

It is claimed that, among the computer intelligence based methods used in med-

ical diagnosis, neural networks are the most widely used [25]. Artificial neural

network (ANN) is a non-parametric data mining technique and it is addressed in

[16, 13, 22, 23] and [25] as a medical diagnosis tool. ANN has powerful pattern clas-

sification and pattern recognition capabilities, developed with the inspiration from the

human brain neurological system as a data-driven self adaptive method and referred

as a multivariate, non-linear, non-parametric statistical method [35]. Breast cancer,

acute myocardial infarction, colorectal cancer, lower back disorders, drug/plasma

concentration levels, hepatic cancer, sepsis, cytomegalovirus retinopathy, ovarian

cancer, acute pulmonary embolism, micro calcification classification in digital mam-

mograms and control of blood transfusion costs for surgery are some of the areas that

neural networks are utilized [22]. Wu et al. suggest a three layer feedforward neural

network with a back-propagation algorithm as a decision making tool for the analysis

of mammographic data [36]. Malmir et al. discuss an adaptive neural-fuzzy inference

system [34].

Another data mining technique, fuzzy sets, is addressed in [16] and [13]. Malmir et

al. [34] propose online diagnostic application that uses fuzzy expert systems, fuzzy

C-mean clustering method along with pattern recognition and adaptive neuro-fuzzy

inference system along with the ANNs. The experiments of the models are conducted

for diagnosis of kidney stone and kidney infection.

Huang et al. [16] and Lin [13] refer the inductive logic programming as another

data mining technique and inductive learning of symbolic rules. Carrault et al. [37]

address the use of inductive logic programming in arrhythmia recognition from elec-
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trocardiograms.

Conforti and Guido propose a kernel-based support vector machine for medical diag-

nostic decision making problems. They propose an optimization based approach to

learn the kernel function of support vector machine that performs best. They test the

performance of their suggested model on breast cancer, heart disease, thyroid, ovarian

cancer, leukemia and colon tumor datasets [38].

Some other studies consider rough sets [13], hypertext based systems, knowledge

based technology, discriminant analysis and utility theory in the field of medical di-

agnosis [14].

Mangiameli et al. propose logistic regression to predict or diagnose acute myocardial

infarction, coronary artery disease, liver metastases, gallstones, ulcers, mortality risk

for reactive airway disease and breast cancer [22]. Logistic regression is a mathemat-

ical modeling approach which is used to identify relationship of several independent

variables to a dichotomous dependent variable. In this way, it accomplishes predic-

tive analysis [39]. A variant of it, the penalized logistic regression, is a combination

of the logistic regression with a penalization of the L2 norm of the coefficients. Due

to quadratic penalization, it is expected to achieve a more robust fit when there is

collinearity among variables, levels of discrete factors are sparse or high-order inter-

action terms exist [40]. It is also a promising tool when class imbalance is present

(see [41, 42]).

Other medical diagnosis methods are Fisher linear discriminant analysis and kernel

density. Fisher linear discriminant analysis is employed in diagnosis of coronary

artery disease, acute myocardial infarction and breast cancer. Kernel density is uti-

lized to differentiate malignant and benign cells taken from fine needle aspirates of

breast tumors [22] .

Mangasarian et al. [43] proposed a breast cancer diagnosis tool based on image pro-

cessing. The proposed classification procedure is a linear programming approach

which separates malignant and benign samples. It is named as MSM-Tree since it is

a variant of multi-surface method (MSM).

Zhang et al. introduce a rough set-based multi-criteria linear programming approach
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for medical diagnosis. They are motivated by the shortcoming of multi-criteria linear

programming model in reducing the dimension of input information space. Therefore,

they integrate the rough set approach to the multi-criteria linear programming model

to discover the hidden patterns among data and to eliminate the redundant dimensions

of the information. The proposed approach is employed in diagnosis of breast cancer,

heart disease and lung cancer [19].

The Analytic Hierarchy Process (AHP) is introduced by Saaty as a multi-criteria de-

cision making approach, where the factors are arranged in a hierarchical manner [44].

Liberatore and Nydick deal with the usage of AHP in the field of medical diagno-

sis. They address its application to the sequential selection of diagnostic tests for the

analysis of upper abdominal path and determining the overuse of endoscopy for low

risk patients with acute upper gastrointestinal bleeding [45]. Uzoka et al. focus on

the effectiveness of fuzzy and the AHP methods in diagnosis of malaria [14].

Pinheiro et al. and Brasil Filho et al. provide multi-criteria models as an aid to

diagnose the Alzheimer’s disease [46, 47]. Pinheiro et al. use the MACHBETH multi-

criteria decision analysis method [46] and Brasil Filho et al. utilize two multi-criteria

decision analysis classification approaches, PROAFTN and ELECTRE IV [47]. In

the latter study, a genetic algorithm is applied for parameter optimization and its

authors indicate that, in the multi-criteria decision analysis field, genetic algorithms

are primarily used to control parameter optimization.

Feature extraction and hidden Markov models are other tools that are utilized to im-

prove diagnostic systems [23], whereas discretization method and genetic search are

available to eliminate redundant factors [24].

2.3 Multi-Criteria Decision Analysis

Our problem can also be investigated under multi-criteria classification/sorting prob-

lems. A classification/sorting problem aims to assign a set of alternatives into prede-

fined groups. In the case of sorting, there is a preference relation among classes.

The main application areas of classification/sorting problems are medicine, pattern
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recognition, human resources management, production systems management and tech-

nical diagnosis, marketing, environmental and energy management, ecology, financial

management and economics. A detailed discussion on these application areas can be

found in [48].

Criteria aggregation models and model development techniques are the two main

issues that should be considered in the construction of a classification/sorting model.

Outranking relation and utility function are referred as the main criteria aggregation

models.

Ug =
∑m

j=1 uj(gj), uj(gj) ∈ [0, 1], represents the simplest form of additive utility

function where uj(gj) is the marginal utility function of criterion gj representing the

“worth” of corresponding criterion in terms of utility term. In order to measure the

performance of an alternative when all criteria are considered, the global utility U(ai)

of an alternative ai is calculated. Global utility values of alternatives are the measures

which are used in classification/sorting of the alternatives into predefined groups.

There are also utility thresholds representing a lower bound for belonging a specific

class. The classification of an alternative is done by comparing the global utilities of

an alternative with the utility threshold of each class under consideration [48]. This

approach is called as UTADIS [49].

The other issue, model development technique, has two alternatives: direct and in-

direct model estimations. Model development includes specifications of weights of

the evaluation criteria, preference-indifferences and veto thresholds. The preferences

among the alternatives can be specified directly by the decision maker. These tech-

niques are called as direct procedures. Whereas, in indirect procedures, the aim is

to find preferential parameters which are as consistent as the decision maker’s pref-

erences with respect to previous decisions. In a similar manner, a training sample,

which consists of previous decisions can be used. This approach is called as prefer-

ence disaggregation analysis (PDA) and it uses regression-based techniques [50, 48].

In their study, Zopounidis and Doumpos stated that, within the multi-criteria deci-

sion analysis (MCDA) context, mathematical programming is a way to determine the

optimal model parameters. The optimality measures for these mathematical models

could be classification/sorting error rate of the alternatives and magnitude of viola-
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tion/satisfaction of classification/sorting rules [48].

UTADIS is a supervised machine learning algorithm, which is also used in this thesis.

More specifically, it is one of the instance based (non-parametric) MCDA approach

developed to solve classification problems [3].

In the literature, variants of UTADIS are proposed for several problems such as, min-

imization of classification errors, maximizing the distances of correctly classified al-

ternatives from the thresholds between classes, minimizing the number of misclassi-

fied alternatives. A variation of UTADIS is Multi-group Hierarchical Discrimination

(M.H.DIS) method. M.H.DIS adapts the UTADIS model for more complex prob-

lems that have multiple groups and utilizes three mathematical models consecutively.

The first model minimizes the magnitude of classification errors, the second model

minimizes the number of misclassifications and the last one sharpens the acquired

classification [49].

M.H.DIS is developed for sorting purposes and unlike the general form of a UTADIS

model, instead of a single additive utility function for an alternative, there are 2(q−1)
additive utility functions, in the existence of q classes[48]. M.H.DIS method deter-

mines the class of alternatives in a hierarchical manner by calculating utilities of the

decision to classify an alternative into a specific class and a class lower than it. Then,

by comparing these utility pairs, M.H.DIS determines the class which the alterna-

tives under consideration must belong to. The procedure proceeds q − 1 times until

all groups are considered [51]. Note that, since the decision is based upon the com-

parison of utility pairs, unlike a classical UTADIS model, there is no threshold in

M.H.DIS.

In a UTADIS model, which uses additive utility functions as the criteria aggregation

method and PDA as the model development technique, the optimal values of the

decision variables must be consistent with respect to the decision maker’s preferences

which are expressed in terms of previous decisions or a training sample [48]. Once the

optimal values of the decision variables are found, they could be used to classify/sort

new alternatives. Linear interpolation can be used to calculate the marginal utilities of

new alternatives in test set by utilizing marginal utilities of alternatives in the training

set [51].
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2.4 Rare Event Classification

The success of a classification algorithm can be evaluated by the number of correctly

classified alternatives, number of misclassified alternatives, classification errors and

overall prediction accuracy. If there are only two classes (positive and negative) under

consideration, the possible results of a classification should be one of these four cases:

true positive, true negative, false positive, false negative. Then, the performance of

a classification model under this setting can be measured with the true positive rate

(sensitivity), true negative rate (specificity) as well as overall prediction ability (accu-

racy). However, in case of rare events, if the success of a prediction model depends

on just the accuracy without consideration of sensitivity and specificity together, it is

possible to obtain high accuracy rates by making correct predictions for the class of

which members are frequently encountered in the population. Therefore, this situa-

tion may cause low prediction accuracy for the observations that belong to the class

of rarely observed members. There are several studies in the literature which aim to

overcome this problem caused by the class imbalance. Among them, many studies

employ weighted support vector machine algorithms.

Support vector machine (SVM) is developed by Cortes and Vapnik, for two-group

classification problems. The main objective is finding a linear hyperplane that dis-

tinctly classifies given data points [52]. Huang and Du propose a weighted SVM with

different penalties of misclassifications for each class in the training sample. The au-

thors claim that, “the equal penalty of misclassification for each training sample is

one of reasons why the uneven training class sizes will result in classification biases”.

To overcome this drawback, they define penalties such that the ratio of penalties for

different classes are equal to the inverse ratio of the training class sizes. They conduct

experiments on Wisconsin Breast Cancer Diagnostic dataset [6], where the number

of total observations is 569 with 357 benign and 212 malignant samples. 200 benign

and 20 malignant samples are used to train the proposed algorithm, i.e. malignant

observations are rare compared to benign observations where rareness level is 9%

(malignant:benign = 20:200 = 1:10), and the rest of the observations are used in the

test set [1].

Du and Chen [2] extend the work of Huang and Du [1] and they propose another
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weighted SVM, v-SVM, where the misclassification penalties are different for each

class in training sample as in [1]. The authors conduct experiments on the Wisconsin

Breast Cancer Diagnostic dataset [6], with the same training and test configuration of

[1].

Liu et al. state that when the class sizes in training sets are uneven, with SVM, un-

desirably biased classification errors found for the class with fewer observations in

training set. To overcome this bias problem, a weighted SVM with genetic algorithm

based parameter selection is proposed. The genetic algorithm determines the parame-

ters related to regularization and the kernel function. Proposed algorithm is based on

the idea of assigning larger weight factor corresponding to the class with fewer obser-

vations. The experimental analysis is conducted with IRIS dataset of UCI Repository

[53]. The class sizes are 1000, 2000 and 3000 for class 1, class 2 and class 3; and the

classification accuracies are 89.46%, 92.34% and 96.57%, respectively [54].

Yang et al. also propose a weighted SVM where the weights of the algorithm are

generated by a robust fuzzy clustering technique, namely kernel-based probabilistic

c-means algorithm. The problem is addressed as the outlier sensitivity problem. The

experiments are conducted with an artificial data set and a benchmark dataset called

“Twonorm”, from the IDA benchmark repository [55]. The proposed algorithm is

compared with SVM in terms of test error, for different number of mislabeled data

points. It is observed that, as the mislabeled data points increase, the rate of increase

in test error of proposed algorithm is slower than that of SVM [56].

There are methods in the literature used in the case of class imbalance other than

weighted SVM. Li et al. propose particle swarm optimization, bat algorithm, and

adaptive swarm balancing algorithm for imbalanced datasets. To reduce the imbal-

ance in data, they introduce an algorithm called as SMOTE (Synthetic Minority Over-

Sampling Technique). Experiments are conducted on ten datasets from UCI machine

learning repository [57]. The imbalance ratios between majority class and minority

class of these datasets range from 2.05:1 to 955.62:1. Rather than handling the im-

balance in the original data set, they mainly focus on removing the imbalance in data

to obtain high prediction accuracies for both classes [58] .

Wankhade et al. propose a hybrid of classification and clustering-based method for
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problems with imbalanced classes. They use k-means, boosting and divide and merge

methods. Suggested approaches are tested on KDDCup’99 [59], Car Evaluation

[60], Cardiac Arrhythmia [61], Yeast [62], Adult [63], Shuttle [64] and Abalone [65]

datasets from UCI machine learning repository. The proposed algorithm is able to

deal with problems that have more than two classes. The majority class contains

about more than 90% of the samples compared to the minority class. Average detec-

tion rate of the algorithm is 95% and its average false alarm rate is 0.4% [66].

2.5 Role of Evolutionary Algorithms in Machine Learning and Multi-Objective

Decision Analysis

There is a wide application area of evolutionary algorithms, such as combinatorial

optimization, expert systems, engineering applications, wired and wireless communi-

cation systems, medicine [67], design optimization, machine learning and parameter

estimation problems [68]. Zhang et al. refer evolutionary computation as an opti-

mization methodology inspired by the evolutionary mechanisms in the nature. The

authors claim that, in the literature, while there are studies that consider evolutionary

computing algorithms as a form of machine learning techniques, there are also studies

that use machine learning techniques to enhance evolutionary computing algorithms

[69].

Genetic algorithms, a subgroup of evolutionary algorithms, are mostly used to im-

prove the prediction performances of machine learning methodologies either by fea-

ture elimination or parameter estimation. On the other hand, there are also many

works that consider genetic algorithms as machine learning techniques rather than as

an approach to enhance them.

As a parameter optimization tool, genetic algorithms can be employed by encoding

a set of parameter values as a form of chromosome. The system optimizes the set

of parameters which are represented by these chromosomes [70]. Goletsis et al. and

Guvenir et al. use genetic algorithms in multi-criteria classification [68, 70]. Goletsis

et al. discuss a multi-criteria sorting method to classify the cardiac beats as ischemic

or not. In this work, genetic algorithm is applied in the training phase to determine
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the model parameters, namely the thresholds and weight values [68]. In another study

that uses genetic algorithm for parameter estimation, Guvenir et al. employ a multi-

criteria inventory model and they determine the weights of criteria by a genetic al-

gorithm [70]. De Jong also discusses the use of genetic algorithms as a parameter

optimization/estimation tool [71]. The study of Kim et al. and the references therein

propose genetic algorithm as a parameter estimation tool for ANN approach. Deter-

mining parameters of back-propagation network and training the weights of neural

network are introduced as the genetic algorithm’s two potential areas of usage [72].

Some works in the literature employ genetic algorithms as a feature elimination tool.

Huang and Wang propose a SVM algorithm and they discuss the utilization of genetic

algorithm as a feature selection tool and parameter optimization methodology. The

proposed algorithm optimizes kernel and SVM regularization parameters and designs

the fitness function by considering classification accuracy, the number of selected fea-

tures and the feature cost such that a chromosome with high classification accuracy,

a small number of features and low total feature cost reach a high fitness value [73].

Deekshatulu et al. propose a classification algorithm based on the K-nearest neigh-

bor and genetic algorithm for heart disease. In this study, genetic algorithm is used

as a feature elimination method and as a tool to rank the features which are used in

classification [67].

Genetic algorithms are usually used to improve the performances of artificial intel-

ligence techniques and to determine the architectural factors such as feature subset,

number of hidden layers, activation functions and the connection weights between

layers. For example, genetic algorithm can be used to feature discretization and de-

termination of connection weights for ANN [74].

Chen refers evolutionary-based genetic algorithms as a machine learning and an ar-

tificial intelligence-based inductive learning technique [75]. Smith et al. propose an

evolutionary algorithm as a classification method for the Parkinson’s patients. The

evolutionary algorithm employed in this study is referred as an implicit context rep-

resentation of a Cartesian genetic programming [76].

Padgorolec and Kokol provide a self-adapting evolutionary algorithm for the induc-

tion of decision trees. The suggested model is used for diagnostic process optimiza-
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tion. The model intends to minimize the number of examinations, select the most

appropriate examination for a specific patient, optimize examination schedule and

maximize the equipment reliability. Diversity of genetic preservation is considered as

one of the most significant features of a successful evolutionary algorithm [77]. An-

other study that deals with the use of genetic algorithm for a decision tree induction

algorithm is conducted by Turney [78]. In this study, each individual in the population

represents one set of biases and genetic algorithm is used to evolve a population of

biases for a decision tree induction algorithm. Corcoran and Sen propose a supervised

classification problem. It is an optimization problem whose aim is to develop a rule

set that maximizes the number of correct classifications of training set instances. The

authors use genetic algorithm to evolve structures representing sets of classification

rules [79].

In multi objective programming, genetic algorithms are used to identify non-dominated

(Pareto-optimal) solutions [68]. In the existence of multiple objectives, the concepts

of dominance and Pareto-optimality take the place of the conventional optimality

theories. A solution x said to dominate solution y if and only if x is as good as y

in terms of all objectives and better in at least one objective. Pareto-optimal set is

the non-dominated subset of all feasible solutions [80]. Convergence to the Pareto-

optimal front and maintaining a diverse set of solutions are the two main goals of

multi-objective optimization algorithms. Evolutionary approaches suit well to the

multi-objective problem characteristics [81]. Multi-objective evolutionary algorithms

(MOEAs) work with a population of solutions and while preserving the diversity of

solutions, they find multiple non-dominated solutions in a single run [4].

There are various types of MOEAs such as penalty based approaches, non-elitist and

elitist MOEAs. Their application areas are also various. In their book, Coello et al.

categorize these application areas as engineering, scientific, industrial and miscella-

neous. Medicine is identified as a sub-category of scientific applications where clas-

sification and prediction is considered under miscellaneous applications [82]. Among

MOEAs, elitist approaches have certain advantages. As a part of elitism, the solutions

of current generation are compared with previously found best non-dominated solu-

tions. By this way, it helps to obtain better convergence by ensuring the preservation

of good solutions once they have been found. Additionally, elitism results in positive
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contribution to the speed of genetic algorithm [4]. NSGA-II [4], strength Pareto evo-

lutionary algorithm (SPEA)[83], Pareto archived evolution strategy (PAES) [84] and

multi-objective messy genetic algorithm (MOMGA) [85] are the main elitist MOEAs.

NSGA-II is an elitist non-dominated sorting based multi-objective evolutionary algo-

rithm in which solutions are ranked according to their non-domination and assigned to

the fronts. The aim of the algorithm is to converge near the true Pareto-optimal set in

the presence of multiple objectives in the problem. Together with non-domination, the

algorithm also promotes diversity preservation using crowding comparison. If two so-

lutions have different non-domination ranks (i.e. belongs to different non-dominated

fronts), the solution with the lower (better) rank is given priority to be selected for the

next generation. If two solutions have the same non-domination ranks (i.e. belong

to the same front), the solution which is located in a less crowded region is favored

in order to preserve diversity. Due to the elitist approach, the solutions of current

generation are compared with previously found best non-dominated solutions. The

algorithm aims to terminate with a set of solutions that converge to the true Pareto-

optimal front [4].

After the literature review presented above, we can now state the position of our study

in the literature. In this study, we develop methods for binary classification that inte-

grates multi-criteria decision analysis and evolutionary algorithms. When the position

of PCM utilized in this thesis is investigated in the context of MCDA in detail, it can

be said that, type of the problem it addresses is classification/sorting and as the criteria

aggregation model it uses additive utility functions. To specify the model parameters,

PCM uses Mixed-Integer Linear Programming as the mathematical programming for-

mulation. In order to measure the classification/sorting optimality with respect to the

given classifications of alternatives, it evaluates the number of false positive and false

negative classifications. In particular, while it minimizes the number of false neg-

ative classifications in the objective function, via a constraint, it forces to keep the

number of false positive classifications under a certain level. However, as it is indi-

cated by Conway et al. the linear models’ classification performances are promising

only if the alternatives are perfectly separable [86]. Thus, to develop classification

algorithms which also perform good in the existence of more complex problems, we

introduce a novel approach that integrates MCDA with evolutionary algorithms.

19



In this context, we develop PCM as a parametric model. In this way, PCM returns a set

of solutions (instead of a single solution) spread over the Pareto-optimal front in the

space of true positive and true negative responses. Thus, while some of these solutions

have high sensitivity, some have high specificity. Then, the evolutionary algorithms

are used to diversify the solutions and improve the classification performances.

Throughout this study, we look for answers to the following research questions:

• Does the integration of evolutionary algorithms with the Mixed-Integer Linear

Programming model PCM provide better results than just randomly generating

the initial solution set of evolutionary algorithms?

• Can the proposed classification algorithms compete with the well-known method-

ologies in the literature, in terms of prediction performance?

• What are the pros and cons of using the proposed classification methods? Are

they promising for the cases where one class of observations is rare compared

to other, such as general screening?
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CHAPTER 3

MODEL DEVELOPMENT

We begin this chapter with definitions and descriptions of performance measures used

to evaluate a classification algorithm. Then, we outline the prediction procedure of

the classification algorithms developed in this study. Next, we explain the PCM in

detail. After that, we discuss the basic characteristics of the proposed evolutionary

algorithms and we explain PCM+NSGA-II and PCM+RECGA as classification algo-

rithms, in a comprehensive manner. At the end of the chapter, the hyper-parameter

optimization process conducted for the proposed model is explained, as well.

Throughout this chapter, the existence and absence of a disease is numerically repre-

sented by 1 and 0 as the values of the binary response variable for each of the patients

(observations), whereas the words “positive” or “negative” define the same status,

respectively. Possible results of classification are presented in Table 3.1.

Table 3.1: Possible Results of Classification (Contingency Matrix)

Actual Class

1 0

Predicted Class
1 True Positive (TP) False Positive (FP)

0 False Negative (FN) True Negative (TN)

We define sensitivity (true positive rate), specificity (true negative rate), accuracy,

Positive Predictive Value (PPV), Negative Predictive Value (NPV), False Positive Ra-

tio (FPR) and False Negative Ratio (FNR) which will be used to evaluate the success

of the classification algorithms. These values are calculated as indicated in Equations

3.1 - 3.7 below, where TP (True Positive) and TN (True Negative) are the sets of pa-
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tients that are classified accurately, and FP (False Positive) and FN (False Negative)

are the sets of patients that are classified incorrectly.

Sensitivity =
|TP|

|TP|+ |FN|
. (3.1)

Sensitivity is defined as the proportion of true positives that are correctly identified

by a model and it represents the success of the model in detecting the existence of a

disease [87].

Specificity =
|TN|

|TN|+ |FP|
. (3.2)

Specificity is the proportion of the true negatives that are correctly identified by a

classifier and it estimates the success of the model to identify negative observations

[87].

A good classifier is the one that has both high sensitivity and specificity. As the

classifier’s ability to differentiate the classes correctly increases, its sensitivity and

specificity increases, too. [88]. Sensitivity and specificity are inversely proportional

[89].

Accuracy =
|TP + TN|

|TP + TN + FP + FN|
. (3.3)

Accuracy represents the rate of correct classifications [87].

PPV =
|TP|

|TP|+ |FP|
. (3.4)

Positive predictive value of a classifier is the likelihood that an observation classified

as positive actually has the disease [88], [89].

NPV =
|TN|

|TN|+ |FN|
. (3.5)

Negative predictive value of a classifier is the likelihood that an observation classified
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as negative actually does not have the disease [88], [89].

FPR = 1− Specificity. (3.6)

FNR = 1− Sensitivity. (3.7)

To incorporate sensitivity and specificity values in a single measure, we define a com-

bined performance measure, Fscore:

Fscore =
2× Sensitivity × Specificity
Sensitivity + Specificity

=
2× |TP| × |TN|

2× |TP| × |TN|+ |TP| × |FP|+ |TN| × |FN|
.

Fscore is the harmonic mean of sensitivity and specificity. Fscore = 0, whenever

sensitivity or specificity is zero, and Fscore = 1, when sensitivity and specificity

are one. Thus, it takes a value in the interval of [0, 1]. It takes lower values as the

difference between sensitivity and specificity grows.

In the literature, another combined performance measure, Fmeasure is commonly

used. It is defined as

Fmeasure =
2× Precision×Recall
Precision+Recall

,

where Precision = PPV and Recall = Sensitivity, according to the given termi-

nology. Thus,

Fmeasure =
2× |TP|

2× |TP|+ |FP|+ |FN|
.

However, there are some shortcomings of the Fmeasure. It does not take into account

the true negatives. It focuses on one class only and it is biased by the class that

constitutes majority [90].

Let us clarify these shortcomings with the following examples.
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Example 1: Assume that, there are 100 positive and 100 negative observations in

Case #1. In Case #2, the number of positive observations is equal to the previous

case, but there are one million additional negative observations. Assume that, Table

3.2 presents the contingency matrices after classification of the observations for both

cases:

Table 3.2: Contingency Matrices of Example 1

Actual Class Actual Class

Case #1 1 0 Case #2 1 0

Pr
ed

ic
te

d

C
la

ss 1 100 50
Pr

ed
ic

te
d

C
la

ss 1 100 50

0 0 50 0 0 1000050

Some performance indicators for Case #1 are as follows:

Sensitivity = Recall = 1,

Specificity = 0.50,

Accuracy = 0.75,

P recision = 0.67,

Fmeasure = 0.80,

Fscore = 0.67.

However, the same performance indicators for Case #2 are:

Sensitivity = Recall = 1,

Specificity = 1,

Accuracy = 1,

P recision = 0.67,

Fmeasure = 0.80,

Fscore = 1.

Note that, in Case #2, even the model correctly classifies one million additional obser-

vations, Fmeasure does not change. This is because its formulation does not consider
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true negatives. However, Fscore properly reflects the models’ capability of classifying

negative observations, for both cases.

Example 2: Assume there are 100 positive and 10 negative observations and a model

classifies all of them as positive. Table 3.3 presents the contingency matrix.

Table 3.3: Contingency Matrix of Example 2

Actual Class

1 0

Predicted Class
1 100 10

0 0 0

According to the given classifications, the relevant performance indicators are as fol-

lows:

Sensitivity = Recall = 1,

Specificity = 0

Accuracy = 0.91,

P recision = 0.91,

Fmeasure = 0.95,

Fscore = 0.

As it is observed, even when none of the negative observations are classified properly,

Fmeasure is quite high. However, Fscore takes value of zero which indicates this

absolute misclassification.

Example 3: Assume in Case #1 and Case #2, there are one million negative and

10 positive observations. In both cases, the models’ performances on positives are

perfect. In Case #1 and Case #2, two and 10 negative observations are classified

incorrectly, respectively.

The contingency matrices for this example are given in Table 3.4.
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Table 3.4: Contingency Matrices of Example 3

Actual Class Actual Class

Case #1 1 0 Case #2 1 0
Pr

ed
ic

te
d

C
la

ss 1 10 2

Pr
ed

ic
te

d

C
la

ss 0 10 10

0 0 999998 0 0 999990

According to the given classifications, the performance indicators for Case #1 are as

follows:

Sensitivity = Recall = 1,

Specificity = 1,

Accuracy = 1,

P recision = 0.83,

Fmeasure = 0.91,

Fscore = 1.

However, same performance indicators for Case #2 are:

Sensitivity = Recall = 1,

Specificity = 1,

Accuracy = 1,

P recision = 0.50,

Fmeasure = 0.67,

Fscore = 1.

Even though there is no significant amount of difference in the models’ successes for

these two cases, Fmeasure performances of the models are significantly different.

Example 4: There are one positive and 150 negative observations. Assume that, the
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model classifies the only positive observation correctly, and it misclassifies only three

of the 150 negative observations.

The contingency matrix of the given classification is presented in Table 3.5.

Table 3.5: Contingency Matrix of Example 4

Actual Class

1 0

Predicted Class
1 1 3

0 0 147

The performance indicators are:

Sensitivity = Recall = 1,

Specificity = 0.98,

Accuracy = 0.98,

P recision = 0.25,

Fmeasure = 0.40,

Fscore = 0.99.

Since precision is low, Fmeasure also takes a low value. The precision of 0.25 indi-

cates that, the probability that a patient classified as positive by the model actually has

the disease is 25%. Even this rate is quite low, there is no false negative observation.

Thus, there is no risk in terms of human health but only financial burden occurs. This

indicates that, for three patients who actually do not have the disease, since the model

indicates them as positive they have to go under further investigation.

Our priority in this study is human health rather than the financial burden. Thus,

Fscore is selected to be used in this thesis. Also, Fscore is more successful to evaluate

the models’ capability of distinguishing between classes, as seen clearly in Examples

1-4.

There are some other studies in the literature that evaluate the model performances

using the harmonic mean of sensitivity and specificity (Fscore) [91], [92], [93], [94].
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The measures which consider sensitivity and specificity together are generally used

to evaluate performance of a model in separating positive and negative observations.

In one of these studies, the author specifies that the harmonic mean of sensitivity

and specificity is a ROC (receiver operating curve) based measure where it reflects

the trade-off between true positive and false positive rate (i.e. sensitivity and 1-

specificity) and it is desirable to deal with imbalanced data [92]. In another study,

the authors refer harmonic mean of sensitivity and specificity as one of the operating

point selection strategies to seek the point that maximizes the harmonic mean on the

ROC curve [91].

In the following paragraphs, we give an overview of the algorithms proposed in this

study. Recall that, PCM tries to fit its model parameters consistent as much as possible

with the given classifications in the training set. By solving PCM, we obtain a set of

solutions which consists of factor weights to be used in the utility functions to classify

the patients. We run the model with different L values, where L stands for the number

of false positive classifications that the model allows. Thus, for different values of L,

the solutions have different sensitivity and specificity values. For small values of

L, PCM allows less false positive classifications and thus the solutions have higher

sensitivity. However, since there is a trade-off between sensitivity and specificity,

specificity values of these solutions are relatively low. For the cases where L takes

larger values, the model finds solutions with high specificity and low sensitivity. Since

some of these solutions are characterized with their high sensitivity and the others

with their high specificity, we utilize evolutionary algorithms NSGA-II and RECGA

after PCM to achieve good solutions with both high sensitivity and high specificity,

simultaneously. Thus, note that, PCM is not developed for prediction purposes, but

only to generate the initial solution set which is then improved by the evolutionary

algorithms.

Once the integrated algorithms, PCM+NSGA-II and PCM+RECGA provide a set of

solutions, these solutions are used to classify a set of patients that the models have

never seen before. For this purpose, the factor weights for the patients in test set

are calculated by linear interpolation. Then, their additive utilities of having and not

having the disease are found (U and Ũ , respectively). The additive utility values

of a patient are associated with the values that he/she has in terms of each disease
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predictor. Final class prediction of a patient p is made by comparing these additive

utility pairs for each solution. If the number of solutions where U(p) ≥ Ũ(p) is

greater than U(p) ≤ Ũ(p), the final prediction for the patient p becomes positive. In

other words, the final class prediction of an observation is made by majority voting.

Since the final decision is not based on a single solution, it can be said that, majority

voting can contribute to have a more robust decision making process.

All of the notations used in the introduced models are listed in Table 3.6. The pseudo-

code given in Algorithms 1 and 2 summarize the general prediction procedure of the

classification algorithms developed in this study and the Figure 3.1 illustrates the

procedure followed in Algorithm 1.
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Table 3.6: Table of Notations for PCM, NSGA-II and RECGA

F set of factors, F = {1, 2, ..., F}

S training set

S+ set of positive observations in training set

S− set of negative observations in training set

V validation set

V+ set of positive observations in validation set

V− set of negative observations in validation set

S̃ test set

Of set of all values of factor f that appear in S,

Of = {of1 , of2 , ..., ofdf } s.t of1 < of2 < ... < ofdf

ofi : i
th value of factor f , when factor values are in ascending order

xf (p) value of factor f for observation p

x(p) vector of factors of observation p

x(p) = (x1(p), x2(p)..., xF (p))

uf (.) utility function of factor f for positive classification

uf (of1) = 0 ∀f ∈ F , uf (ofi) = uf (ofi−1) + wf(i−1) ∀i ∈ 2, ..., df

ũf (.) utility function of factor f for negative classification

ũf (ofdf ) = 0 ∀f ∈ F , ũf (ofi) = ũf (ofi+1
) +mf(i) ∀i ∈ df − 1, ..., 1

U(p) utility function of observation p for positive classification,

that is U(p) =
∑F

f=1 uf (.)

Ũ(p) utility function of observation p for negative classification,

that is Ũ(p) =
∑F

f=1 ũf (.)

wfi weight increase in utility uf due to the ith interval of factor f

wfi ≥ t and wfi = uf (ofi+1)− uf (ofi)

mfi weight increase in utility ũf () due to the ith interval of factor f

mfi ≥ t and mfi = ũf (ofi)− ũf (ofi+1
)

W set of weight vectors: W = {wf : f ∈ {1, ..., F}}

where wf = (wf1, wf2, ..., wdf−1)

M set of weight vectors: M = {mf : f ∈ {1, ..., F}}

where mf = (mf1,mf2, ...,mdf−1)
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Table 3.6: Table of Notations for PCM, NSGA-II and RECGA

Ind(p) false classification indicator for observation p

Ind(p) = 1 if classification is false; 0 o.w.

e(p) error term for observation p, e(p) ∈ R+

s, t small positive constants

L false positive classification allowance

PCM(L) PCM model with false positive classification allowance of L

(W∗(L),M∗(L)) Optimal solution of PCM(L)

y(p) actual value for the response variable of observation p, y(p) ∈ {0, 1}

ỹ(p) predicted value for the response variable of observation p, ỹ(p) ∈ {0, 1}

prc probability of real crossover

plc probability of linear crossover

pm probability of mutation

Pt set of parent solutions at generation t

Qt set of offspring that derived from Pt, at generation t

Rt combined set of parent and offspring population at generation t

Fr set of all fronts

Frk kth front

PopulationSize size of a generation of NSGA-II

GenerationSize size of solutions selected to be carried to next generation

NumberOfGenerations generation number of NSGA-II until termination

threshold threshold for fitness function (Fscore) to be carried to next generation

minFinalSetSize lower limit of number of final set of solutions of RECGA

PopulationSize size of a generation of RECGA

X a set of solutions

CP (p) counter for positive predictions

CN(p) counter for negative predictions
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Algorithm 1 General Prediction Procedure of a Classification Algorithm

1: for each p ∈ S̃ do

2: Initialize the counter for positive and negative predictions CP (p) = 0 and

CN(p) = 0, respectively.

3: end for

4: Solve the classification algorithm, and let (W i,M i), i ∈ {0, 1, ...n} be the final

set of solutions generated by the classification algorithm.

5: for each (W i,M i) do

6: Calculate utility functions uf (·) and ũf (·) for each factor using the procedure

GenerateUtilityFunctions

7: for p ∈ S̃ do

8: Set total utility value U(p) = 0 and total disutility value Ũ(p) = 0

9: for each f ∈ F do

10: Calculate utility functions uf (xf (p)) and ũf (xf (p)) for each factor

using the procedure GenerateUtilityFunctions

11: U(p)← U(p) + uf (xf (p))

12: Ũ(p)← Ũ(p) + ũf (xf (p))

13: end for

14: if U(p) ≥ Ũ(p) then

15: CP (p)← CP (p) + 1

16: else

17: CN(p)← CN(p) + 1

18: end if

19: end for

20: end for

21: for p ∈ S̃ do

22: if CP (p) ≥ CN(p) then

23: Prediction for observation p is positive, that is, ỹ(p) = 1

24: else

25: Prediction for observation p is negative, that is, ỹ(p) = 0

26: end if

27: end for
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Algorithm 2 GenerateUtilityFunctions
1: for each f ∈ F do

2: uf (of1) = 0

3: ũf (ofdf ) = 0

4: for each i ∈ {2, . . . , df} do

5: uf (ofi) = uf (ofi−1
) + wf(i−1)

6: end for

7: for each i ∈ {df − 1, . . . , 1} do

8: ũf (ofi) = uf (ofi+1
) +mfi

9: end for

10: end for

11: for each i ∈ {1, 2, . . . , df − 1} do

12: For any a ∈ R, with ofi < a < ofi+1
, calculate γ ∈ (0, 1) that satisfies

a = γofi + (1− γ)ofi+1

13: uf (a) = γuf (ofi) + (1− γ)uf (ofi+1
)

14: ũf (a) = γũf (ofi) + (1− γ)ũf (ofi+1
)

15: end for

16: For any real number a /∈ [of1 , ofdf ], calculate uf (a) and ũ by lin-

ear regression using points (of1 , uf (of1)), (of2 , uf (of2)), . . . , (ofdf , uf (ofdf )) and

(of1 , ũf (of1)), (of2 , ũf (of2)), . . . , (ofdf , ũf (ofdf )), respectively.
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The Figure 3.2 illustrates GenerateUtilityFunctions algorithm for an example. Sup-

pose the only factor to consider is body mass index (BMI) and there are three observa-

tions in the training set. Assume a classification algorithm gives a solution (W ∗,M∗)

due to the classifications of observations given in the training set. The resulting solu-

tion (W ∗,M∗)=
[
w∗BMI,1 w∗BMI,2

]
,
[
m∗BMI,1 m∗BMI,2

]
represents the incremental

weights correspond to each factor value.

Due to the monotonicity assumption (which will be explained later) higher factor

values are more likely to have the disease. Then, the thinnest patients’ utility for pos-

itive classification and the fattest patients’ utility for negative classification are zero

(i.e. uBMI(16) = 0, ũBMI(40) = 0). Once the GenerateUtilityFunctions algorithm

assigns these values, it calculates the utilities of each factor value for negative and

positive classification, by summing up the incremental weights. Since the BMI of

the patient in the test sample is different than the BMIs of patients in training sam-

ple, his corresponding utilities are calculated by linear interpolation that is part of the

GenerateUtilityFunctions algorithm.

Now, let us explain the Parametrized Classification Model (PCM), which is solved

to bring a set of solutions. Note that, a solution is represented with (W,M) and it is

comprised of weights wfi and mfi, which are the decision variables of the PCM.

3.1 Parametrized Classification Model (PCM)

PCM is a UTADIS based MCDA classification model, where UTADIS is a method

which aims to determine the thresholds of groups in a way to minimize the classifi-

cation error. However, since PCM identifies the class of an alternative by comparing

utility pairs, there is no threshold to be determined. According to this characteris-

tic, the model can also be considered as a variant of M.H.DIS method. Recall that,

M.H.DIS creates 2(q − 1) additive utility functions to classify alternatives into q

classes. In our problem, since there are two classes under consideration (existence

of the disease and absence of the disease), two utility functions, U and Ũ , which rep-

resent the utility function that characterizes the category of patients with and without

disease, respectively, are defined. Since the model determines the class of an alter-
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native by comparing the corresponding global utility pairs in a hierarchical manner,

the classification problem we are dealing is addressed as a sorting problem with two

classes.

This approach aims to find preferential parameters consistent with the decision maker’s

preferences in terms of previous decisions, as much as possible. Thus, a training sam-

ple is used as a model of decision maker’s preferences as in [50], [48].

Using the notations defined at Table 3.6, PCM is formulated as follows:

min zPCM(L) =
∑
p∈S+

Ind[p] (3.8)

s.t.
F∑
f=1

j−1∑
i=1

wfi −
F∑
f=1

df−1∑
i=j

mfi + e(p) ≥ s ∀p ∈ S+, j : xf (p) = ofj ∈ Of

(3.9)
F∑
f=1

df−1∑
i=j

mfi −
F∑
f=1

j−1∑
i=1

wfi + e(p) ≥ s ∀p ∈ S−, j : xf (p) = ofj ∈ Of

(3.10)

e(p)−M · Ind[p] ≤ 0 ∀p ∈ S, (3.11)∑
p∈S−

Ind[p] ≤ L (3.12)

e(p) ≥ 0 (3.13)

wfi ≥ t, mfi ≥ t (3.14)
F∑
f=1

df−1∑
i=1

wfi = 1,
F∑
f=1

df−1∑
i=1

mfi = 1 (3.15)

where M is a large positive number.

The observations are described with F factors, and each factor is assumed to have

df different levels. The number of levels for a specific factor is defined with respect

to the values observed in the training set. Note that, for an observation, as the value

of a factor takes higher values, it is assumed that, it has a greater potential to be

classified as positive. Therefore, the relation between the factor values and the given

classification of an observation in training set is represented with a monotonically

increasing function. We also call these factor values (wfi and mfi) as incremental

variables.
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The model aims to develop a set of additive utility functions, such that, the values of

the decision variables (wfi and mfi) are consistent with the objective of the model.

In Constraint sets (3.9 - 3.10), an error term e is used and when e(p) takes a positive

value, then the observation p is noted as misclassified. The error term e(p) is equal

to zero, if the observation p is classified correctly. These constraint sets can also be

given as follows:

U(p)− Ũ(p) + e(p) ≥ s ∀p ∈ S+, j : xf (p) = ofj ∈ Of (3.16)

Ũ(p)− U(p) + e(p) ≥ s ∀p ∈ S−, j : xf (p) = ofj ∈ Of (3.17)

where U(p) and Ũ(p) are utility functions of observation p for positive and negative

classifications, respectively.

For a misclassified observation p ∈ S+, when U(p) ≤ Ũ(p), the error term is equal

to Ũ(p)−U(p) + s. Similarly, when Ũ(p) ≤ U(p), for this misclassified observation

p ∈ S−, the error term is equal to U(p)−Ũ(p)+s. Note that, a small positive constant

s ensures strict inequality.

For a misclassified observation with a positive error term (e(p)), corresponding indi-

cator variable Ind[p] is equal to 1. Constraint (3.12) forces that at most L number of

observations in set S− can be misclassified. In other words, it ensures to keep false

positive classification error below a certain level, while objective function minimizes

the number of false negative classification error.

The non-negativity and monotonicity requirements of the model are ensured in Con-

straints (3.13) and (3.14), respectively. The Constraint (3.15) normalizes the global

utilities in the interval [0,1].

It is important to note that, the proposed model is able to deal with categorical, dis-

crete and continuous predictor (independent) variables.

In short, with respect to the given classifications of patients in the training sample,

PCM(L) finds the optimal values for the incremental variables (wfi and mfi). Its

objective is minimizing number of false negative classification while keeping the

number of false positive classification below the specified level L. Solving PCM
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for different values of parameter L results in solutions with different number of false

positive and false negative classifications. For bigger values of the parameter L, PCM

allows greater amount of false positive misclassification and achieves smaller false

negative classification. Thus, for each L value, PCM finds different optimal values of

decision variables, wfi and mfi and the initial populations of evolutionary algorithms

are obtained by these different L levels.

The Figure 3.3 describes the sensitivity and specificity values of the solutions ob-

tained by solving PCM with different values of L. Assume the training set consists

of 10 patients with and 10 patients without the disease. Since the objective function

minimizes the number of false negative classifications and by means of a constraint,

it is intended to keep the number of false negative classification under the given value

of L, solving PCM with L ∈ {0, 1, ..., 10} brings different number of false positive

and false negative classifications. In the figure, these are represented with |FP | and

|FN |. The graph at the bottom of Figure 3.3 illustrates the two dimensional space of

true positive and true negative responses that the solution set spread over the Pareto-

optimal front.
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Figure 3.3: Example: Set of Solutions Obtained by PCM
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3.2 Basic Characteristics of the Proposed Evolutionary Algorithms NSGA-II

and RECGA

Each individual (W,M) pair in the initial population acquired by PCM, is a candi-

date parent to produce an offspring. Except the first generation, population size is

set to the PopulationSize for each generation. Therefore, the number of solutions

is increased up to the PopulationSize by crossover and mutation mechanisms. The

crossover probability is 100% since both offspring and parent populations are carried

to the next generation and the selection is made from all of these solutions. Real and

linear crossover operations are used randomly.

We have designed genetic operators RealCrossover (Algorithm 3), LinearCrossover

(Algorithm 4) and Mutation (Algorithm 5) in specific to our problem characteristics.

Now, let us explain these operators with a small example. Consider a small instance

having four factors (F = {1, 2, 3, 4}), where they have two, four, three and five

distinct values, respectively. Hence, the sizes of weight vectors (w1,m1), (w2,m2),

(w3,m3), and (w4,m4) are one, three, two and four, respectively. Let (W p1,Mp1)

and (W p2,Mp2) be two parent solutions and are given as follows:

W p1 =


w1 = 0.20

w2 = 0.05 0.18 0.02

w3 = 0.09 0.03

w4 = 0.10 0.17 0.14 0.2

Mp1 =


m1 = 0.01

m2 = 0.02 0.12 0.05

m3 = 0.19 0.08

m4 = 0.13 0.10 0.23 0.07



W p2 =


w1 = 0.03

w2 = 0.08 0.17 0.04

w3 = 0.09 0.14

w4 = 0.07 0.12 0.15 0.11

Mp2 =


m1 = 0.12

m2 = 0.15 0.17 0.11

m3 = 0.04 0.04

m4 = 0.07 0.05 0.17 0.08



Assuming the crossover point is between 3rd and 4th rows, the real crossover takes

w1, w2 and w3 from one parent and w4 from the other parent for both of the weight

vector sets W and M . The resulting offspring (W o1,M o1) is as follows:

W o1 =


w1 = 0.20

w2 = 0.05 0.18 0.02

w3 = 0.09 0.03

w4 = 0.07 0.12 0.15 0.11

Mo1 =


m1 = 0.01

m2 = 0.02 0.12 0.05

m3 = 0.19 0.08

m4 = 0.07 0.05 0.17 0.08


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The linear crossover mechanism produces a convex combination of parents using a

randomly chosen multiplier, γ ∈ (0, 1). If we employ the same parents (W p1,Mp1)

and (W p2,Mp2), the vectors of the child are given as follows:

W o2 =


w1 = γ0.20 + (1− γ)0.03

w2 = γ0.05 + (1− γ)0.08 γ0.18 + (1− γ)0.17 γ0.02 + (1− γ)0.04

w3 = γ0.09 + (1− γ)0.09 γ0.03 + (1− γ)0.14

w4 = γ0.10 + (1− γ)0.07 γ0.17 + (1− γ)0.12 γ0.14 + (1− γ)0.15 γ0.2 + (1− γ)0.11



Mo2 =


m1 = γ0.01 + (1− γ)0.12

m2 = γ0.02 + (1− γ)0.15 γ0.12 + (1− γ)0.17 γ0.05 + (1− γ)0.11

m3 = γ0.19 + (1− γ)0.04 γ0.08 + (1− γ)0.04

m4 = γ0.13 + (1− γ)0.07 γ0.10 + (1− γ)0.05 γ0.23 + (1− γ)0.17 γ0.07 + (1− γ)0.08



The mutation operator randomly chooses a factor and changes its weights by adding

a randomly chosen value δ from a given continuous interval. Note that, since wfi and

mfi are allowed to take only positive values, if any of them is changed to a negative

value, it is reset to the small positive constant, t. Assume that the second factor is

chosen (k = 2) and let δ chosen from the range [−0.5, 0.5] be equal to −0.4. If we

apply the mutation operator on (W o1, M o1), then it will be changed to the following

mutated individual.

W o3 =


w1 = 0.20

w2 = 0.01 0.14 t

w3 = 0.09 0.03

w4 = 0.07 0.12 0.15 0.11

Mo3 =


m1 = 0.01

m2 = t 0.08 0.01

m3 = 0.19 0.08

m4 = 0.07 0.05 0.17 0.08



Either it is mutated or not, a new offspring should be normalized before it is added to

the population. In other words, the equalities
∑F

f=1

∑df
i=1wfi = 1 and∑F

f=1

∑df
i=1mfi = 1 must hold. Algorithms 3 - 6, illustrate real crossover, linear

crossover, mutation and normalization procedures, respectively.
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Algorithm 3 RealCrossover
1: for f ∈ F do

2: for i ∈ {1, 2, . . . , df − 1} do

3: wfi = 0,mfi = 0

4: end for

5: end for

6: Randomly choose a crossover point cp from the set {1, 2, . . . , F}
7: for f ∈ {1, 2, . . . , F} do

8: if f ≤ cp then

9: for i ∈ {1, 2, . . . , df − 1} do

10: wfi = w1
fi,mfi = m1

fi

11: end for

12: else

13: for i ∈ {1, 2, . . . , df − 1} do

14: wfi = w2
fi,mfi = m2

fi

15: end for

16: end if

17: end for

18: Normalize the weights of (W,M)
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Algorithm 4 LinearCrossover
1: for f ∈ F do

2: for i ∈ {1, 2, . . . , df − 1} do

3: wfi = 0,mfi = 0

4: end for

5: end for

6: Randomly choose a multiplier γ ∈ [0, 1]

7: for f ∈ {1, 2, . . . , F} do

8: for i ∈ {1, 2, . . . , df − 1} do

9: wfi = γw1
fi + (1− γ)w2

fi

10: mfi = γm1
fi + (1− γ)m2

fi

11: end for

12: end for

13: Normalize the weights of (W,M)

Algorithm 5 Mutation

1: Randomly choose a mutation point k from the set {1, 2, . . . , F},
2: for i ∈ {1, 2, . . . , df − 1} do

3: Randomly choose a number γ ∈ [−0.5, 0.5],
4: wki = max{wki + γ, t},
5: mki = max{mki + γ, t},
6: end for

7: Normalize the weights of (W,M)
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Algorithm 6 Normalize

1: Input: A solution (W,M),

2: Let sumw = 0 and summ = 0,

3: for f ∈ F do

4: for i ∈ {1, 2, . . . , df − 1} do

5: sumw ← sumw + wfi

6: summ← summ+mfi

7: end for

8: end for

9: for f ∈ F do

10: for i ∈ {1, 2, . . . , df − 1} do

11: wfi ← wfi/sumw

12: mfi ← mfi/summ

13: end for

14: end for

15: Output: Normalized solution (W,M).

In the following section we describe the use of genetic operators in the evolutionary

algorithm NSGA-II and we also explain PCM+NSGA-II as a classification algorithm.

3.3 PCM+NSGA-II

NSGA-II algorithm starts with a random initial parent population and by performing

crossover and mutation operations on randomly chosen two parents from this set, an

offspring is created. We refer this procedure as GenerateOffspring (Algorithm 7).

The offspring generation procedure iterates until the union of existing and new solu-

tions, Rt, reaches to a predetermined size. Through non-dominated sorting approach

(referred as fast-non-dominated-sort in [4]) each solution in set Rt is assigned to a

front. Solutions belonging to the first front Fr1, are the non-dominated solutions of

the set Rt. Once these solutions are found, they are set apart. Non-dominated solu-

tions of the remaining set assigned to second front, Fr2. This procedure continues

until all front members are found. To compose the set of solutions to be carried to the
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next generation, individuals are selected starting with the first front, where the solu-

tions with lower (better) rank are preferred. This procedure is followed until there is

no more front whose all members can be carried to the next generation without ex-

ceeding predetermined population size. At this point, if the selected solutions did not

reach the population size, the solutions of the next front is sorted by their crowding

distances which are based on crowding-distance-assignment in [4]. Then the solu-

tions are selected based on crowding comparison approach which favors the solutions

located in less crowded regions. The solutions are selected according to this method

as members of next generation, to preserve diversity of solutions.

Once a population is formed, selection, crossover and mutation mechanisms are per-

formed to create the new population and the procedure iterates in a similar manner

until a termination criterion is satisfied.

As previously mentioned, the initial population of NSGA-II algorithm is obtained by

solving PCM for different values of parameter L. The aim of employing NSGA-II is

to achieve a better population (solutions) in terms of both sensitivity and specificity.

To measure the quality of new solutions, (w,m) values are utilized to identify the

classes of the patients in a sample, V , which has no common members with the train-

ing set, S. Performance of a solution is evaluated through its sensitivity and speci-

ficity values. Namely, we validate the solutions in a generation by using a dataset of

new members that are not used in the training set that we have utilized before, in order

to avoid overfitting. Then, a selected subset of solutions (of a size that is at most equal

to GenerationSize) is carried to the next generation. Selection of solutions is made by

utilizing fast-non-dominated- sort and crowding-distance-assignment operations.

In non-domination ranking, the criteria are sensitivity and specificity. Assume that,

(W,M) is a solution and sensitivity(W,M) and specificity(W,M) are true positive and

true negative rates obtained by this solution, respectively. Then, (W 1,M1) dominates

(W 2,M2) if

sensitivity(W 1,M1) ≥ sensitivity(W 2,M2)

and

specificity(W 1,M1) > specificity(W 2,M2)
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or

sensitivity(W 1,M1) > sensitivity(W 2,M2)

and

specificity(W 1,M1) ≥ specificity(W 2,M2).

In this case, (W,M) is called as non-dominated if no other solution dominates it.

Figure 3.4 illustrates the flow chart of PCM+NSGA-II.
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Figure 3.4: Flow Chart of PCM+NSGA-II
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In our problem setting, there are finitely many different values of sensitivity and speci-

ficity pairs. Therefore, there may exist many solutions which have the same sensitiv-

ity and specificity values. Thus, as the number of generations increases, the diversity

of solutions decreases. To preserve diversity, we keep one solution from the set of

solutions which have the same sensitivity and specificity values. Otherwise, as the

generation number increases the diversity is lost. Besides that, the crowding distance

operator is another diversity preservation mechanism of the algorithm. We encourage

the preservation of diversity in each iteration to have a greater chance of finding better

solutions at the end of the algorithm.

When the algorithm terminates, we obtain a set of solutions which is comprised of

the variables (w,m). Then, the classification of a new patient from the test sample is

determined with the same methodology that is used before (see Algorithm 1), where

the incremental values for the patients in test sample, S̃, are found by linear interpo-

lation. Their global utilities, U and Ũ are calculated. Each solution makes a decision

by comparing these global utilities. The counters that counts number of votes for

positive and negative prediction for a patient are kept and the final classification of

a new patient is determined by comparing these counter values, based upon majority

voting.

In a nutshell, first, PCM provides the initial parameters and then the evolutionary

algorithm NSGA-II tunes these parameter values using a separate set. Finally, the

resulting solutions are tested with a test set to measure the performance of the model.

Prediction procedure with PCM +NSGA-II is given in Algorithm 8. The computer

code of PCM+NSGA-II is available in [95].

Like PCM, PCM+NSGA-II is also able to deal with categorical, discrete and contin-

uous predictor (independent) variables.

Algorithm 7 GenerateOffspring(Pt)
1: Randomly choose two parents (W 1,M1) ∈ Pt and (W 2,M2) ∈ Pt
2: Perform either a RealCrossover or LinearCrossover with probabilities prc and

plc, respectively to obtain a new offspring (W 3,M3)

3: Perform mutation on (W 3,M3) with probability pm
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Algorithm 8 Prediction with PCM+NSGA-II
1: for each p ∈ S̃ do

2: Initialize the counter for positive and negative predictions CP (p) = 0 and CN(p) = 0, respectively.

3: end for

4: Initialize t = 0 and Pt = (wset,mset) = ∅

5: for each L ∈ {0, 1, . . . , |S−|} do

6: Solve PCM(L) and let ((W ∗(L),M∗(L)) be an optimal solution,

7: Pt ← Pt ∪ {(W ∗(L),M∗(L))}

8: end for

9: while t < NumberOfGenerations do

10: Qt ← ∅

11: while |Pt|+ |Qt| < PopulationSize do

12: (W ′,M ′)← GenerateOffspring(Pt ∪Qt)

13: if All weights (wfi and mfi) of offspring (W ′,M ′) > 0 then

14: Qt ← Qt

⋃
{(W ′,M ′)}

15: end if

16: end while

17: Rt = Pt ∪Qt

18: for each (W i,M i) ∈ Rt do

19: Initialize sensitivity(i) = specificity(i) = 0

20: Calculate utility functions uf (·) and ũf (·) for each factor using the procedure

GenerateUtilityFunctions,

21: for p ∈ V do

22: Set total utility value U(p) = 0 and total disutility value Ũ(p) = 0,

23: for each f ∈ F do

24: U(p)← U(p) + uf (xf (p)),

25: Ũ(p)← Ũ(p) + ũf (xf (p)),

26: end for

27: if U(p) ≥ Ũ(p) then

28: ỹ(p) = 1

29: else

30: ỹ(p) = 0

31: end if

32: end for

33: Let sensitivity(i) = number of obervation p in V + with ỹ(p)=1

|V +| ,

34: specificity(i) = number of obervation p in V − with ỹ(p)=0

|V −|

35: Fr = fast-non-dominated-sort (Rt)

36: Eliminate duplicate solutions in the same front in Fr

37: Pt+1 = ∅ and k = 1
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Algorithm 8 continues
38: if |Pt+1|+ |Frk| ≤ GenerationSize then

39: Pt+1 = Pt+1 ∪ Frk

40: k = k + 1

41: end if

42: Apply crowding-distance-assignment(Frk)

43: Sort solutions in Frk in a descending order of crowding distances

44: Pt+1 = Pt+1 ∪ Frk[1 : GenerationSize− |Pt+1|)]

45: Qt+1 = GenerateOffspring(Pt+1)

46: t = t+ 1

47: end for

48: end while

49: for each (W,M) ∈ PNumberOfGenerations do

50: Apply GenerateUtilityFunctions to calculate uf (·) and ũf (·)

51: for p ∈ S̃ do

52: U(p) := 0 and Ũ(p) := 0

53: for each f ∈ F do

54: U(p)← U(p) + uf (xf (p)),

55: Ũ(p)← Ũ(p) + ũf (xf (p))

56: end for

57: if U(p) ≥ Ũ(p) then

58: CP (p)← CP (p) + 1

59: else

60: CN(p)← CN(p) + 1

61: end if

62: end for

63: end for

64: for p ∈ S̃ do

65: if CP (p) ≥ CN(p) then

66: ỹ(p) = 1

67: else

68: ỹ(p) = 0

69: end if

70: end for
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3.4 PCM+RECGA

Since a model can easily achieve high overall prediction rates just by assigning all the

observations to the class of the majority, for problems where the number of positive

observations is significantly smaller than the number of negative observations, achiev-

ing high true positive and true negative predictions simultaneously is more important.

To detect the presence or absence of a disease and develop a robust rare event clas-

sification algorithm for medical usage, we combine PCM with another evolutionary

algorithm, Rare Event Classifier Genetic Algorithm (RECGA).

The RECGA starts with an initial solution set X . The algorithm starts with ran-

domly choosing two parents from X and it performs either a real crossover or linear

crossover according to their probabilities of selection prc and plc, respectively. Then,

the offspring is subject to mutation with a given mutation probability pm. This pro-

cess is repeated until the number of solutions in the current generation reaches to the

PopulationSize. The solutions are evaluated by the fitness function, Fscore. Fitness

function of a solution is calculated due to its classification performance in set V . The

set V has no members from S, which is utilized by PCM as the training sample. Un-

til the number of solutions, whose fitness value is greater than a specific threshold

value, become greater than or equal to minFinalSetSize, the algorithm continues to

produce solutions via genetic operations.

Note that, the fitness value (Fscore) of a solution is calculated as a combination of

its classification ability in both classes under consideration. Thus, fitness function

ensures that, the classification of rare events is as important as the classification of

frequent events.

The RECGA is expressed in Algorithm 9 which utilizes the RealCrossover, Lin-

earCrossover, and Mutation genetic operations given in Section 3.3.
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Algorithm 9 RareEventClassifierGeneticAlgorithm (RECGA)
1: Let X be an initial solution set.

2: continue← true

3: while continue=true do

4: while |X | < PopulationSize do

5: (W ′,M ′)← GenerateOffspring(X )

6: if All weights (wfi and mfi) of offspring (W ′,M ′) > 0 then

7: X ← X ∪ {(W 3,M3)}

8: end if

9: end while

10: for each (W i,M i) ∈ X do

11: Initialize sensitivity(i) = specificity(i) = Fscore(i) = 0

12: Calculate utility functions uf (.) and ũf (.) for each factor using the procedure GenerateUtilityFunc-

tions

13: for p ∈ V do

14: Set U(p) := 0 , Ũ(p) := 0

15: for each f ∈ F do

16: U(p)← U(p) + uf (xf (p))

17: Ũ(p)← Ũ(p) + ũf (xf (p))

18: end for

19: if U(p) ≥ Ũ(p) then

20: ỹ(p) = 1

21: else

22: ỹ(p) = 0

23: end if

24: end for

25: Let sensitivity(i) = number of obervation p in V + with ỹ(p)=1

|V +| ,

26: specificity(i) = number of obervation p in V − with ỹ(p)=0

|V −|

27: Fscore(i) = 2×sensitivity(i)×specificty(i)
sensitivity(i)+specificity(i)

28: newSet← ∅, threshold← 1
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Algorithm 9 continues
29: while newSet = ∅ and threshold ≥ 0 do

30: for each (W i,M i) ∈ X do

31: if Fscore(i) ≥ threshold then

32: newSet← newSet ∪{(W i,M i)}

33: end if

34: end for

35: threshold← threshold - 0.1

36: end while

37: X ← ∅

38: X ← newSet

39: if |X | ≥minFinalSetSize then

40: continue← false

41: end if

42: end for

43: end while

Like PCM+NSGA-II, we propose PCM+RECGA as a two-phase algorithm. In the

first phase, PCM provides diverse initial solutions by changing the levels of param-

eter L. In the second phase, RECGA utilizes this diverse set of initial solutions to

create offspring solutions via genetic operations until the number of solutions equal

to the PopulationSize. Each solution on hand are used to classify the observations in

a validation set, V that has no common members with S, to avoid overfitting. Each

solution has a sensitivity and specificity rate. The fitness function, Fscore, of each

solution is calculated through these measures as previously explained. Only the solu-

tions whose fitness value exceeds a threshold value are carried to the next generation.

If there is no such solution, threshold value is decreased by a certain amount until

a number of solutions are found that satisfy the criteria. Until the number of solu-

tions reaches the predetermined minFinalSetSize, the algorithm continues to create

new offspring. By this way, the algorithm is able to create solutions that have high

fitness values. Thus, the selected solutions are likely to achieve high sensitivity and

specificity, simultaneously.

PCM+RECGA is able to deal with categorical, discrete and continuous predictor (in-

dependent) variables. Figure 3.5 illustrates the flow chart of PCM+RECGA.
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Figure 3.5: Flow Chart of PCM+RECGA
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Algorithm 10 Prediction with PCM+RECGA

1: for each p ∈ S̃ do

2: CP (p) := 0; CN(p) := 0

3: end for

4: X ′ := ∅
5: for each L ∈ {0, 1, . . . , |S−|} do

6: Solve PCM(L)

7: X ′ ← X ′ ∪ {(W ∗(L),M∗(L))}
8: end for

9: Apply RareEventClassifierGeneticAlgorithm (RECGA) to X ′ to obtain X
10: for each (W,M) ∈ X do

11: Apply GenerateUtilityFunctions to calculate uf (·) and ũf (·)
12: for p ∈ S̃ do

13: U(p) := 0 and Ũ(p) := 0

14: for each f ∈ F do

15: U(p)← U(p) + uf (xf (p)),

16: Ũ(p)← Ũ(p) + ũf (xf (p))

17: end for

18: if U(p) ≥ Ũ(p) then

19: CP (p)← CP (p) + 1

20: else

21: CN(p)← CN(p) + 1

22: end if

23: end for

24: end for

25: for p ∈ S̃ do

26: if CP (p) ≥ CN(p) then

27: ỹ(p) = 1

28: else

29: ỹ(p) = 0

30: end if

31: end for
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Once PCM+RECGA terminates with a final set of solutions, they are used to clas-

sify patients in the test set, S̃. Note that, S̃, S and V are mutually exclusive sets.

Algorithm 10 gives the outline of PCM+RECGA and how PCM+RECGA works is

explained with a simple example in the Appendix (Section A).

3.5 Hyper-parameter Optimization for PCM+NSGA-II and PCM+RECGA

For the suggested models, there are some hyper-parameters whose values must be

specified externally by the user. The hyper-parameters of each model/algorithm are

listed in Table 3.7.

Table 3.7: Hyper-parameters of the Models/Algorithms

PCM NSGA-II RECGA

t = 10−16 PopulationSize PopulationSize

s = 0.0001 GenerationSize minFinalSetSize

NumberOfGenerations prc, plc

prc, plc pm

pm

Among the given hyper-parameters, t is related with the monotonically increasing

assumption of PCM. Besides it ensures that incremental variables should take values

greater than zero, it also provides a lower bound for the difference between the incre-

mental variables of the consecutive factor levels. Since finding contributions of each

factor level to the utility functions is the main concern of the model, we choose a very

small value of t in our computational experiments, to minimize its effect on the val-

ues of incremental variables. Hyper-parameter s is used in the first two constraints of

PCM and it ensures strict inequality between global utility pairs. We use a relatively

higher value of s compared to t, to avoid an erroneous classification decision when

the difference between U and Ũ is small. The values of these two hyper-parameters

are chosen as indicated in Table 3.7.

To find the optimal values of the remaining hyper-parameters, we applied hyper-

parameter optimization. In this process, we run the model with different combina-
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tions of the values of hyper-parameters, and select the best combination according to

models’ classification performances. It is important to note that, hyper-parameter val-

ues should be determined by an unbiased estimate of the generalization performance

of the model [96]. In accordance with this purpose, we apply nested cross validation,

where it is referred as a common approach for hyper-parameter optimization [97],

[98], [99].

Nested cross validation is defined as two nested loops of cross validation. Due to

the inner cross validation performance, the hyper-parameter values are set and the

outer loop evaluates the generalization ability of the model with the selected val-

ues of hyper-parameters on an independent set of observations [96], [97]. By this

way, nested cross validation ensures that, the model do not use the observations re-

served for outer loop to tune the hyper-parameters. The detailed explanation of hyper-

parameter tuning process can be found in the Appendix (Section B). Note that, the

hyper-parameter optimization process is repeated for each model and for each dataset.

In the following chapter, we discuss the application of PCM+NSGA-II and

PCM+RECGA in the problem of classification of patients due to the risk of restenosis

after coronary stent implantation.
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CHAPTER 4

PATIENT CLASSIFICATION CONSIDERING THE RISK OF RESTENOSIS

AFTER CORONARY STENT IMPLANTATION

4.1 Coronary In-Stent-Restenosis

As a result of aging and due to some life style habits, plaque accumulates in the

blood vessels of the heart. This accumulation causes narrowing of these vessels and

impedes the flow of the blood through them. This narrowing of the arteries is called

as atherosclerosis [100]. For patients who suffer from the narrowing of coronary

arteries, namely coronary heart disease patients; stents are used as one of the main

therapeutic procedures [101]. By a balloon catheter, the stent is inserted into the

clogged artery, and with the inflation of the balloon, the stent, which is a “tiny wire

mesh tube”, expands to open the artery. Stent stays in this artery permanently to keep

it open in order to ensure the flow of blood and reduce the risk of heart attack [102].

There is re-narrowing risk of arteries after the balloon angioplasty and other proce-

dures that use catheters. Although the acute operation success of stents is very high

and usage of stents reduces this risk [102], the possibility of re-narrowing (in-stent-

restenosis) in the following period is still an issue.

“Restenosis is defined as a section of blocked artery that was opened up with an

angioplasty or a stent narrowed again” [103]. From a more medical point of view, it

is defined as “either a luminal narrowing of at least 50% of the vessel diameter with

associated evidence of functional significance by symptoms of ischemia or abnormal

fractional flow reserve, or luminal narrowing of at least 70% or greater in the absence

of ischemic symptoms” [104].
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It is important to note that, narrowing of arteries in the case of restenosis is not caused

by plaques, differently from the case of atherosclerosis. Restenosis is a recovery

response of the stented artery, where the stent implantation traumatized the surface of

the relevant vessel [105].

Our focus in this chapter is in-stent-restenosis, where re-narrowing of the artery oc-

curs after the stent implantation. In-stent-restenosis usually occurs within the first six

months after the initial procedure and “symptoms are very similar to the symptoms

that initially brought the patients to the interventional cardiologist”. It is detected

via the follow-ups conducted by the medical expert [106]. When it is detected, the

main objective is to open the relevant artery before the patient has heart attack and

gets irreversible myocardial tissue damage. Therefore, it has an utmost importance

to foresee the restenosis risk of the patient. After investigating the relevant literature

and making interviews with experts, potential predictors of in-stent-restenosis are

identified as given in Table 4.1. The main determinants of the process leading to in-

stent-restenosis can be categorized as factors related to the patient, disease, procedure

and lesion. Time passed after the stent implantation is not included in the predictors

given in Table 4.1 since it is known that the risk of observing in-stent-restenosis does

not change with time.

The objective of this chapter is to classify patients according to their in-stent-restenosis

risk without performing selective coronary angiography, which is an accurate, but

also an expensive and risky procedure. For this purpose, we utilize patient, disease,

procedure and lesion related predictors listed in Table 4.1.
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The other tools that doctors can use in diagnosis of in-stent-restenosis are clinical

evaluation, exercise stress test, computerized tomography angiography, myocardial

perfusion scintigraphy and stress echocardiography. Clinically, one or more of these

methods are used to detect the status of a patient. Andersen et al. claim that sensitivity

and specificity of clinical evaluation are 26% and 84%, respectively [110]. Dori et al.,

Andersen et al. and Garzon and Eisenberg analyze the ability of exercise stress test

in detection of in-stent-restenosis. Sensitivity of the method ranges from 26% to 54%

and its specificity is between 70% and 77% [111, 110, 112]. Kósa et al. consider the

exercise stress test and clinical evaluation together, which has a sensitivity between

21% and 26% a specificity between 68% and 86% [113]. Yang et al., Carrabba et

al. and Gaspar et al. discuss the success of computerized tomography in detection

of in-stent-restenosis. Sensitivity and specificity range from 86% to 89% and from

81% to 93%, respectively [114, 115, 116]. Elhendy et al., Dori et al., Kósa et al.

and Garzon and Eisenberg give sensitivity and specificity of myocardial perfusion

scintigraphy. These rates take values between 79% and 87% and between 78% and

83%, respectively [117, 111, 113, 112]. Finally, Dori et al. and Garzon and Eisenberg

analyze the performance of stress echocardiography [111, 112]. Its sensitivity ranges

from 63% to 82% where its specificity is about 87%.

These methodologies can be utilized only if the patient developed symptoms of the

disease. However, some patients may not show any apparent symptoms or clinical

findings of the restenosis. Therefore, a methodology that can classify the patients

before the symptoms of the disease is developed helps to protect these patients from

experiencing an emergency case, using more medication than necessary and losing

the benefit of the treatment in the long run.

4.2 Data

After investigating the relevant literature and making interviews with the experts,

among the 37 potential in-stent restenosis predictors listed in Table 4.1, we have de-

cided to focus on 22 predictors given in Table 4.2. As claimed by Koller and Sahami

[118] and as expected, reducing the number of irrelevant features reduces the running

time of the algorithm. Blumer et al. indicate that, "given two explanations of the
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data, all other things being equal, the simpler explanation is preferable." This prin-

ciple is called as Occam’s Razor and implies building the simplest model is better

[119]. In this regard, random forest, stepwise regression, Boruta feature selection and

LASSO (least absolute shrinkage and selection) feature selection methods are applied

to increase the prediction ability by selecting the most relevant predictors of in-stent-

restenosis. For this purpose, we create five different instances which are comprised of

various subsets of all observations. Then we apply the given feature selection meth-

ods to these instances in order not to overfit to a specific instance. These methods are

applied by the statistical software, R. Predictors that are found significant by each of

these methods are marked in Table 4.2.

Table 4.2: Significant Predictors Due to Various Feature Selection Methodologies
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Random

X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X X

Forest
X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X

Stepwise

X X X X X X

X X X X X X X

X X X X X X X X X X X X

Regression
X X X X X X X X X

X X X X X X X X X

Boruta

X X X

X X X

X X X X X X

X X X X X X X

X X X X X X

LASSO

X X

X X

X X X

X X X X

X X X

After this preliminary analysis, we have determined that following 8 factors (shown

bold in Table 4.2) are the most relevant predictors: stent type, existence of calcific

lesion, existence of prior percutaneous transluminal coronary angioplasty (PTCA),

existence of prior myocardial infarction (MI), stent size, existence of chronic renal

disease, hyperlipidemia and target vessel.
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The relevance of these factors with the disease can be explained from a medical point

of view. Restenosis rate in drug-eluting stents compared to bare metal stents is 70-

80% lower (25%-40% vs. 5%-10%). Therefore, the majority of stents used today

are drug-eluting stents. The high calcification rate of the lesion adversely affects the

stent placement in the vein and the development of restenosis. Patients who have ex-

perienced percutaneous transluminal coronary angiography and developed coronary

restenosis have a higher rate of in-stent-restenosis due to neointimal proliferation in

the same lesions, while patients with previous myocardial infarction have a weak

relationship with in-stent-restenosis. Restenosis rate in patients with chronic renal

disease is significantly higher than that of the patients without kidney disease and

there is a negative correlation between stent diameter and restenosis. As the diameter

increases, the chance of restenosis is reduced. The link between hyperlipidemia and

in-stent-restenosis is relatively weak. Hyperlipidemia may accelerate atherosclerosis

rather than restenosis, leading to the development of new lesions and restenosis is

more likely to occur in saphenous vein grafts than in native veins [109].

Note that, the features selected by the feature selection methodologies may not ex-

actly match the features found most relevant by medical professionals. For exam-

ple, while the link between hyperlipidemia and stent-restenosis is found weak by

experts, feature selection methods place hyperlipidemia among the most relevant fac-

tors. In this study, while we pay attention to the medical professionals’ suggestions,

we mainly rely on the statistical and mathematical methods in feature selection pro-

cess.

The final set of predictors included in the models are given in Table 4.3. The second

column of Table 4.3 indicates type of variables (categorical, integer, continuous) and

the last column gives potential values. The response (dependent variable) is a binary

variable which indicates whether a restenosis is expected to exist (1) or not (0) within

the period of 36-month beginning with a coronary stent implantation.
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Table 4.3: Set of Selected Factors: Cardiac In-Stent-Restenosis Predictors

Name Type Values

F1 Stent Type Categorical Bare Metal Stent (BMS)=1 Drug Eluting Stent (DES)=0

F2 Calcific Lesion 0/1 Categorical Existence=1 Absence=0

F3 Prior PTCA 0/1 Categorical Existence=1 Absence=0

F4 Prior MI 0/1 Categorical Existence=1 Absence=0

F5 Stent Size Continuous [2mm, 4mm]

F6 Chronic Renal Disease 0/1 Categorical Existence=1 Absence=0

F7 Hyperlipidemia 0/1 Categorical Existence=1 Absence=0

F8 Target Vessel Categorical Saphenous Vein Graft (SVG)=1 Native=0

The data used in this study is obtained from Ondokuz Mayıs University Hospital,

Cardiology Department, based on the records of coronary stented cardiac patients of

Prof. Dr. Mahmut Şahin, MD. A total of 10,435 records of cardiac patients between

the years of 2005 and 2016 are scanned. Only the patients that are diagnosed with

coronary heart disease, had coronary angiography operation, have at least one stented

lesion and have at least six months of (mostly one year, maximum of three years)

clinical and/or angiographical follow up period are eligible to be included in this

study. The observations that satisfy all these conditions simultaneously in our dataset

is 420. There are cases where a patient has more than one lesion that satisfy these

conditions, however we use only one lesion from each patient to have independent

observations. Therefore, number of observations decreases to 303. Among them, 63

lesions have in-stent-restenosis.

Before we apply our method, if a factor under consideration is continuous, observed

patient value with respect to this factor is scaled to the interval [0,1] as follows in

order to normalize its effect in the model:

Xscaled =
X −Xmin

Xmax −Xmin

. (4.1)

Since the categorical factors take values in interval [0,1], no action is needed. Ad-

ditionally, to satisfy the monotonicity assumption of the model, the factor values are

adjusted in such a way that higher values are more likely to have in-stent-restenosis.
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4.3 Computational Analysis

In this section, we discuss the performances of the proposed algorithms on the in-

stent-restenosis data mentioned in Section 4.2. To see the effect of integrating evolu-

tionary algorithms with PCM, we begin by comparing the performances of

PCM+NSGA-II and PCM+RECGA with Random+NSGA-II and Random+RECGA,

respectively. The computational experiments of these models are conducted with Net-

Beans IDE 7.3 and CPLEX 12.6 on an Intel(R) Core(TM) i5-2410M 2.3GHz PC with

4 GB RAM, running under the Windows operating system.

Next, we compare the performances of PCM+NSGA-II and PCM+RECGA with

some widely known machine learning methods: Logistic Regression (LR), Penal-

ized Logistic Regression (pen-LR), Support Vector Machine (SVM), Artificial Neu-

ral Network (ANN), Decision Tree (DT) and Random Forest (RF). We conduct the

experiments of LR and pen-LR on R and the other machine learning methods on

MATLAB.

The classification threshold is determined as 0.5 in LR and pen-LR (i.e. they clas-

sify an observation as positive if the resulting probability of the algorithm is greater

than 0.5). In SVM, the model trains itself using the radial basis kernel and utilizes

an automatic hyper-parameter optimization, which selects the hyper-parameters that

minimize 5-fold CV loss. There are two hidden layers in ANN.

Henceforth, these models are referred as competitor models, because we compare

their performances with PCM+NSGA-II and PCM+RECGA.

We test the model performances by randomly splitting the data into mutually exclu-

sive training set (S), validation set (V) and test set (S̃), and we repeat this procedure

100 times, where each instance is generated by a different random seed. Then, we

report the average performances of these 100 instances and their standard deviations.

For comparability, the experimental analysis of each model is conducted with the

same 100 instances.

Note that, PCM+NSGA-II and PCM+RECGA first utilize S to generate initial set of

solutions using PCM, and then they tune these solutions with V via evolutionary algo-
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rithms. On the other hand, since Random+NSGA-II and Random+RECGA generate

the initial solutions randomly, they just use V for training. Competitor models utilize

S ∪ V as the training set. All the models’ performances are tested in S̃.

Sensitivity, specificity and accuracy are identified as performance indicators and Fs-

core is reported as an indicator of balance between sensitivity and specificity. Besides

them, Fmeasure is also reported.

We created two different settings, which are differentiated by the ratio of the number

of patients with and without restenosis in training, validation and test samples. The

details of the settings are given in Table 4.4.

Table 4.4: In-Stent-Restenosis Dataset, Settings

Setting 1 Setting 2

S V S̃ S V S̃

# of patients with restenosis 24 24 12 24 24 12

# of patients without restenosis 96 96 48 24 24 12

Total # of patients 120 120 60 48 48 24

L for PCM {0, . . . , 96} {0, . . . , 24}

For the instances for which Setting 1 is applied, there are 24 positive and 96 negative

observations in training (S) and validation (V) samples, where the number of positive

and negative observations in test sample (S̃) are 12 and 48, respectively. On the other

hand, for each instance created as in Setting 2, there are 24 positive and 24 negative

observations in training (S) and validation (V) sets, and the test set (S̃) is comprised

of 12 positive and 12 negative observations.

Recall that, PCM is trained with S and it is solved for different values of parameter L.

Since L represents the number of false positive observations that the model allows,

it takes values between 0 and number of negative observations in sample S. The last

row of Table 4.4 indicates the values that the parameter L of PCM takes for the given

settings.

Model hyper-parameters are set according to previously explained hyper-parameter
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optimization process and they are given in Table 4.5. A detailed explanation of hyper-

parameter tuning process, conducted with in-stent-restenosis dataset, can be found in

the Appendix (Section C).

Table 4.5: Optimal Values of Hyper-parameters with Respect to In-Stent-Restenosis

Dataset

Setting 1 Setting 2

N
SG

A
-I

I

PopulationSize 1000 1000

GenerationSize 50 100

NumberOfGenerations 5 100

prc, plc 0.5, 0.5 0.5, 0.5

pm 0.01 0.01

R
E

C
G

A

PopulationSize 250 150

minFinalSetSize 100 50

prc, plc 1.0, 0.0 0.5, 0.5

pm 0.5 0.01

4.4 Results

4.4.1 Role of PCM to Generate Initial Solutions to the Evolutionary Algorithms

In order to evaluate the effect of generating initial solutions of the evolutionary algo-

rithms via PCM or random, Tables 4.6 and 4.7 give the training and test performances

of PCM+NSGA-II, Random+NSGA-II, PCM+RECGA and Random+RECGA.

The tables indicate that the performances of Random+NSGA-II and

Random+RECGA are biased towards one of the classes and they have highly unbal-

anced classification results. High specificity and poor sensitivity rates of these models

imply that, Random+NSGA-II and Random+RECGA tend to classify most of the pa-

tients as negative, for this dataset. Similar results are observed for training and test

performances for both settings.
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Table 4.6: Training Performances: PCM+NSGA-II vs. Random+NSGA-II and

PCM+RECGA vs. Random+RECGA

PCM+NSGA-II Random+NSGA-II PCM+RECGA Random+RECGA

AVERAGE PERFORMANCE RESULTS

Setting1

Sensitivity 0.64 0.26 0.75 0.46

Specificity 0.81 0.92 0.71 0.84

Accuracy 0.78 0.79 0.71 0.76

Fscore 0.71 0.40 0.72 0.58

Fmeasure 0.55 0.33 0.51 0.43

Setting2

Sensitivity 0.66 0.46 0.77 0.37

Specificity 0.70 0.79 0.69 0.87

Accuracy 0.68 0.62 0.73 0.62

Fscore 0.67 0.57 0.72 0.48

Fmeasure 0.67 0.54 0.74 0.47

STANDARD DEVIATIONS OF PERFORMANCE INDICATORS

Setting1

Sensitivity 0.10 0.12 0.08 0.12

Specificity 0.10 0.10 0.07 0.08

Accuracy 0.09 0.08 0.05 0.05

Fscore 0.08 0.15 0.04 0.10

Fmeasure 0.08 0.13 0.05 0.08

Setting2

Sensitivity 0.16 0.15 0.09 0.20

Specificity 0.17 0.18 0.09 0.11

Accuracy 0.15 0.14 0.06 0.08

Fscore 0.15 0.15 0.06 0.19

Fmeasure 0.15 0.15 0.06 0.19
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Table 4.7: Test Performances: PCM+NSGA-II vs. Random+NSGA-II and

PCM+RECGA vs. Random+RECGA

PCM+NSGA-II Random+NSGA-II PCM+RECGA Random+RECGA

AVERAGE PERFORMANCE RESULTS

Setting1

Sensitivity 0.58 0.24 0.71 0.45

Specificity 0.79 0.91 0.68 0.82

Accuracy 0.75 0.78 0.69 0.74

Fscore 0.65 0.36 0.68 0.55

Fmeasure 0.48 0.29 0.47 0.40

Setting2

Sensitivity 0.63 0.44 0.72 0.39

Specificity 0.66 0.76 0.61 0.85

Accuracy 0.65 0.60 0.66 0.62

Fscore 0.62 0.53 0.64 0.49

Fmeasure 0.63 0.51 0.68 0.47

STANDARD DEVIATIONS OF PERFORMANCE INDICATORS

Setting1

Sensitivity 0.17 0.15 0.15 0.18

Specificity 0.11 0.10 0.09 0.10

Accuracy 0.09 0.09 0.07 0.07

Fscore 0.13 0.18 0.08 0.16

Fmeasure 0.11 0.14 0.09 0.13

Setting2

Sensitivity 0.20 0.19 0.15 0.21

Specificity 0.20 0.21 0.16 0.14

Accuracy 0.16 0.15 0.10 0.08

Fscore 0.16 0.18 0.11 0.20

Fmeasure 0.17 0.18 0.10 0.20
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Table 4.8 gives solution times of PCM+NSGA-II, Random+NSGA-II, PCM+RECGA

and Random+RECGA.

Table 4.8: Solution Times (in sec.)

PCM+NSGA-II Random+NSGA-II PCM+RECGA Random+RECGA

Setting 1

AVG. 14.3 6.75 8.25 0.83

STD.DEV. 1.79 0.16 1.86 0.31

Setting 2

AVG. 103.65 104.3 0.86 0.23

STD.DEV. 3.02 3.71 0.35 0.06

4.4.2 Comparison of PCM+NSGA-II, PCM+RECGA and Competitor Models

In this subsection, we compare the performances of PCM+NSGA-II and

PCM+RECGA with those of competitor models. Their training and test performances

are given in Tables 4.9 and 4.10, respectively. The training performance of a model

evaluates its fit to the dataset given to tune the model parameters. Then, to see the

performance of a model on a dataset which is comprised of previously unseen ob-

servations, we test it on a test set. The models’ performance to react to new data

represents is generalization ability. Note that, a high training and low test perfor-

mance indicate that the model overfits to the training set and its generalization ability

is poor.

The model performances are investigated under two different settings, as explained

previously. The ratio of positive observations to all observations are 20% and 50%,

in Setting 1 and Setting 2, respectively. The number of positive observations do not

change and number of negative observations used in Setting 1 is higher than that of

Setting 2.
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Table 4.9: Training Performances

PCM+NSGA-II PCM+RECGA LR pen-LR SVM ANN DT RF

AVERAGE PERFORMANCE RESULTS

Setting 1

Sensitivity 0.64 0.75 0.31 0.31 0.16 0.35 0.43 0.56

Specificity 0.81 0.71 0.98 0.98 0.99 0.98 0.97 0.97

Accuracy 0.78 0.71 0.85 0.85 0.83 0.86 0.86 0.88

Fscore 0.71 0.72 0.47 0.47 0.23 0.51 0.59 0.71

Fmeasure 0.55 0.51 0.45 0.45 0.23 0.49 0.54 0.66

Setting 2

Sensitivity 0.66 0.77 0.75 0.75 0.85 0.83 0.82 0.90

Specificity 0.70 0.69 0.73 0.74 0.73 0.75 0.80 0.84

Accuracy 0.68 0.73 0.74 0.74 0.79 0.79 0.81 0.87

Fscore 0.67 0.72 0.74 0.74 0.78 0.78 0.81 0.86

Fmeasure 0.67 0.74 0.74 0.75 0.80 0.79 0.81 0.87

STANDARD DEVIATIONS OF PERFORMANCE INDICATORS

Setting 1

Sensitivity 0.10 0.08 0.04 0.04 0.17 0.10 0.07 0.07

Specificity 0.10 0.07 0.01 0.01 0.01 0.02 0.01 0.01

Accuracy 0.09 0.05 0.01 0.01 0.03 0.01 0.01 0.01

Fscore 0.08 0.04 0.05 0.05 0.25 0.09 0.07 0.05

Fmeasure 0.08 0.05 0.04 0.04 0.24 0.07 0.05 0.04

Setting 2

Sensitivity 0.16 0.09 0.05 0.05 0.06 0.11 0.05 0.05

Specificity 0.17 0.09 0.06 0.06 0.11 0.10 0.05 0.05

Accuracy 0.15 0.06 0.04 0.04 0.07 0.04 0.02 0.03

Fscore 0.15 0.06 0.04 0.04 0.08 0.06 0.03 0.03

Fmeasure 0.15 0.06 0.04 0.03 0.06 0.06 0.03 0.02
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Table 4.10: Test Performances

PCM+NSGA-II PCM+RECGA LR pen-LR SVM ANN DT RF

AVERAGE PERFORMANCE RESULTS

Setting 1

Sensitivity 0.58 0.71 0.32 0.31 0.11 0.27 0.32 0.34

Specificity 0.79 0.68 0.97 0.97 0.98 0.95 0.93 0.91

Accuracy 0.75 0.69 0.84 0.84 0.81 0.82 0.81 0.80

Fscore 0.65 0.68 0.46 0.45 0.16 0.40 0.45 0.47

Fmeasure 0.48 0.47 0.43 0.42 0.15 0.36 0.39 0.38

Setting 2

Sensitivity 0.63 0.72 0.73 0.73 0.78 0.71 0.67 0.73

Specificity 0.66 0.61 0.66 0.67 0.59 0.65 0.68 0.66

Accuracy 0.65 0.66 0.69 0.70 0.68 0.68 0.68 0.69

Fscore 0.62 0.64 0.67 0.68 0.65 0.65 0.65 0.67

Fmeasure 0.63 0.68 0.70 0.70 0.71 0.68 0.67 0.70

STANDARD DEVIATIONS OF PERFORMANCE INDICATORS

Setting 1

Sensitivity 0.17 0.15 0.13 0.13 0.14 0.14 0.14 0.15

Specificity 0.11 0.09 0.03 0.03 0.03 0.05 0.04 0.04

Accuracy 0.09 0.07 0.03 0.03 0.02 0.04 0.04 0.04

Fscore 0.13 0.08 0.15 0.15 0.20 0.16 0.16 0.17

Fmeasure 0.11 0.09 0.14 0.14 0.19 0.14 0.14 0.14

Setting 2

Sensitivity 0.20 0.15 0.14 0.14 0.13 0.17 0.16 0.15

Specificity 0.20 0.16 0.15 0.15 0.16 0.18 0.15 0.16

Accuracy 0.16 0.10 0.09 0.09 0.09 0.10 0.10 0.09

Fscore 0.16 0.11 0.11 0.10 0.11 0.13 0.11 0.11

Fmeasure 0.17 0.10 0.10 0.10 0.09 0.12 0.11 0.10
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According to the performances given in Tables 4.9 and 4.10, Figure 4.1 illustrates the

training and test performances of the models together.

It is observed that, for Setting 1, the competitor models’ sensitivity values are con-

siderably low and specificity values are extremely high, in both training and test.

This implies that, the classification ability of these models, under Setting 1, is poor.

In terms of Fscore, training performances of PCM+NSGA-II (0.71), PCM+RECGA

(0.72) and RF (0.71) are the highest. For the test performances, the best Fscore of

Setting 1 belongs to PCM+RECGA (0.68), followed by PCM+NSGA-II (0.65). How-

ever, despite its high training performance, RF’s Fscore in test is weak (0.47).

In Setting 2, the performances of the competitor models are more promising than Set-

ting 1, yet, the performances of PCM+NSGA-II and PCM+RECGA do not change

significantly. Thus, we can say that, our models are more robust than the competi-

tor models, in spite of the changes in number of positive and negative observations

in training sample. In terms of Fscore, highest training performances of Setting 2

belong to RF, DT, SVM, ANN, LR, pen-LR, PCM+RECGA and PCM+NSGA-II, re-

spectively. For test performances, it is observed that, the Fscore values of all models

are close to each other and ranging between 0.62 to 0.68.

As previously mentioned, in Setting 1, where the ratio of positive observations is 20%,

the sensitivity values of competitor models in training are extremely low while they

have high specificity values. This may indicate that, their training phase terminates

when a certain level of training accuracy is satisfied. Since negative observations

constitutes the majority class in the training sample, classifying most of the observa-

tions as negative yields high accuracy values even the sensitivity is low. In Setting

2, despite the number of observations in training set is fewer than Setting 1, there

are equal number of positive and negative observations. Thus, to keep the training

accuracy high, the competitor models have to obtain high classification results for

both classes. This may be the reason why the competitor models have high Fscore

performances in Setting 2.

It is also observed that, for Setting 1, for both of training and test, the specificity

performance of each model is higher than Setting 2. In a similar manner, for Setting 2,

the sensitivity performances are higher than that of Setting 1. In a medical diagnosis
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problem, the ideal case is to have extremely high values of sensitivity and specificity,

simultaneously. If this is not possible, lower specificity for the sake of high sensitivity

is the second best option. This is because, while a false negative classification may

result in serious health problems, a false positive classification causes just financial

burden.

Considering all these arguments, it can be said that, if it is possible, having a training

sample as large as possible which contains balanced amount of observations from

each class may result in high classification performances. However, if the number

of positive observations is few but there are many negative observations, by keeping

the number of positive and negative observations equal in training sets, a model can

provide higher sensitivity rates.

Note that, since Fmeasure is not one of our performance indicators, we do not give

a detailed analysis about it. Yet still it can be said that, our model performances can

compete with those of the competitor models.
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Figure 4.1: Training vs. Test Performances
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Figure 4.2 illustrates the gaps between the models’ training and test performances.

The yellow line in the graphics indicates the average gap of the models. Note that, the

gap refers to how much the training performance is greater than the test performance

and if the training performance lags behind the test, the gap is expressed as zero.

It is observed that, for both settings, the models whose training and test gaps are al-

ways below the average gap are PCM+NSGA-II, PCM+RECGA, LR and pen-LR.

High gaps between training and test indicate that, even if a model has a good perfor-

mance in training, its test performance is low. Thus, the model overfits to the training

set and the generalization ability (which refers the ability of the model in adapting to

new observations represented by the test set) of such a model is poor because it does

not perform well to predict the classes of unseen observations. Although the compati-

bility of training and test performances of a model reflects its level of generalizability,

having high performances in training and test is a must for good generalization. How-

ever, the performances of LR and pen-LR, in Setting 1, are quite poor.

We can say that, PCM+NSGA-II and PCM+RECGA are reliable and successful mod-

els both because of their robustness against the configuration of samples and their gen-

eralization ability. All competitor models solve an instance within a minute, mostly

in seconds. Thus, we do not give their specific solution times.

When the performances of PCM+NSGA-II and PCM+RECGA are compared, it can

be observed that, even though the Fscore values of PCM+NSGA-II and PCM+RECGA

are similar, PCM+RECGA has higher sensitivity and lower specificity compared

to PCM+NSGA-II. Additionally, PCM+RECGA has lower standard deviations, and

more robust against the changes in number of observations in training, validation and

test samples.

Detailed tables that give the performances of the models, PCM+NSGA-II and

PCM+RECGA in S, V and S̃; and Random+NSGA-II and Random+RECGA in S, V
and S̃, separately, can be found in the Appendix (Section I). Besides the ratios of cor-

rect classifications, number of true positive, true negative and total true classifications

are also given in these tables.
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Figure 4.2: Gap Between Training and Test Performances
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4.5 Prediction Performances of Cardiologists vs. PCM+NSGA-II and

PCM+RECGA

In this section, to evaluate the efficiency of PCM+NSGA-II and PCM+RECGA, we

report the experimental analysis where we compare the classification performance

of these models and a group of doctors who are specialized in the area of coronary

in-stent-restenosis.

It is crucial to have high sensitivity in the case where the diagnosis test is used to

detect a serious but treatable disease. In the cases where the sensitivity of the test is

high but specificity is low, there will be patients who do not actually have the disease

but undergone further investigation, due to false positive results [120].

In this classification problem, our model prioritizes correct classification of the pa-

tients who has restenosis in reality. It also gives particular importance to having a

true negative rate as high as possible.

As it is discussed in Section 4.3, having a training set as large as possible which

contains balanced amount of positive and negative observations may result in high

classification performances. Therefore, the training sample of this study is created as

the most crowded training set in which the observations in the two classes are equal.

Recall that, the dataset is comprised of 63 patients with in-stent restenosis, and 240

patients without in-stent-restenosis. Therefore, 124 patients are randomly selected

in order to construct the samples S and V , such that each sample has equal number

of patients from each side and equal number of observations are included in both

samples.

In this setting, we run PCM+NSGA-II and PCM+RECGA to classify a single patient

in the test set and we repeat this procedure for 100 times. In half of the experiments,

test set, S̃, comprised of a positive observation. Therefore, models make predictions

for 50 patients with restenosis and 50 patients without restenosis. At each run, models

randomly construct mutually exclusive S , V and S̃. Thus, the training (S), validation

(V) and test (S̃) samples of this study are created as it is shown in Table 4.11.

Since, the sample configurations of the experiment resembles Setting 2, the hyper-
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parameter values of the models are set, accordingly.

Table 4.11: Sample Configurations of the Experiment

Dataset S V S̃

Total 303 62 62 1

# patients with restenosis 63 31 31 1
OR

0

# patients without restenosis 240 31 31 0 1

15 cardiologists have participated in this study. They are employed in cardiology de-

partments of universities, public or private hospitals. We assume that their experience

in the field of medicine is proportional to the years since their graduation from med-

ical school. Similarly, their experience in the field of cardiology is defined with the

years since they get their graduate degree in cardiology. In this context, the experi-

ence of the doctors who have joined our study ranges between 9 to 35 years, with an

average of 17.8 years, while their experience in the field of cardiology ranges between

3 to 27 years, with an average of 11.47 years.

Note that, medical experiences of the cardiologists serve like a training set. Consid-

ering the given years of experiences, it is expected that each medical doctor joined in

this study have seen more patients with and without restenosis compared to number

of observations used to train the models (which consists of 124 patients, 62 with and

62 without in-stent-restenosis, i.e. |S ∪ V |).

We have provided the data of the 100 test patients to the 15 cardiologists and asked

them to make predictions about their restenosis status by using the given values of

predictors as given in Table 4.3. The predictor values and actual situations of these

100 patients can be found in Table J.1 in the Appendix (Section J).

Table 4.12 summarizes the prediction performances of medical doctors, PCM+NSGA-

II and PCM+RECGA.
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Table 4.12: Prediction Performances of Medical Doctors, PCM+NSGA-II and

PCM+RECGA

Sensitivity Specificity Accuracy PPV NPV FPR FNR Fscore Fmeasure

MD1 0.42 0.86 0.64 0.75 0.60 0.14 0.58 0.56 0.54

MD2 0.32 0.92 0.62 0.80 0.58 0.08 0.68 0.47 0.46

MD3 0.22 0.94 0.58 0.79 0.55 0.06 0.78 0.36 0.34

MD4 0.22 0.96 0.59 0.85 0.55 0.04 0.78 0.36 0.35

MD5 0.08 1.00 0.54 1.00 0.52 0.00 0.92 0.15 0.15

MD6 0.34 0.98 0.66 0.94 0.60 0.02 0.66 0.50 0.50

MD7 0.72 0.44 0.58 0.56 0.61 0.56 0.28 0.55 0.63

MD8 0.40 0.96 0.68 0.91 0.62 0.04 0.60 0.56 0.56

MD9 0.48 0.70 0.59 0.62 0.57 0.30 0.52 0.57 0.54

MD10 0.44 0.96 0.70 0.92 0.63 0.04 0.56 0.60 0.59

MD11 0.30 1.00 0.65 1.00 0.59 0.00 0.70 0.46 0.46

MD12 0.64 0.82 0.73 0.78 0.69 0.18 0.36 0.72 0.70

MD13 0.48 0.70 0.59 0.62 0.57 0.30 0.52 0.57 0.54

MD14 0.44 0.88 0.66 0.79 0.61 0.12 0.56 0.59 0.56

MD15 0.64 0.80 0.72 0.76 0.69 0.20 0.36 0.71 0.70

AVG. of MD 0.41 0.86 0.64 0.80 0.60 0.14 0.59 0.52 0.51

STD.DEV. of MD 0.17 0.15 0.05 0.13 0.05 0.15 0.17 0.14 0.14

PCM+NSGA-II 0.64 0.78 0.71 0.74 0.68 0.22 0.36 0.70 0.69

PCM+RECGA 0.70 0.68 0.69 0.69 0.69 0.32 0.30 0.69 0.69
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Figure 4.3 graphs the sensitivity, specificity, accuracy and Fscore values for each

medical doctor, PCM+NSGA-II and PCM+RECGA. It clearly shows the robustness

of PCM+NSGA-II and PCM+RECGA in classification of patients.

Figure 4.3: Prediction Performances - Medical Doctors vs. PCM+NSGA-II and

PCM+RECGA

Results (Table 4.12 and Figure 4.3) indicate that sensitivity of medical doctors ranges

between 0.08 and 0.72 with an average value of 0.41. Specificity of medical doctors

ranges between 0.44 and 1.00 with the average of 0.86. Sensitivity and specificity of

PCM+NSGA-II and PCM+RECGA are 0.64, 0.78, 0.70 and 0.68, respectively.

Overall prediction accuracy of medical doctors takes values between 0.54 and 0.73

with an average of 0.64. Prediction accuracy of PCM+NSGA-II and PCM+RECGA

are 0.71 and 0.69, respectively. The performance of PCM+NSGA-II is greater than

13 out of 15 medical doctors’ prediction accuracy. The accuracy results of the other

two cardiologists are 0.72 and 0.73. The accuracy performance of PCM+RECGA is

greater than 12 out of 15 medical doctors’ prediction accuracy, where the accuracy

results of the other three cardiologists are 0.70, 0.72 and 0.73.

It is important to note that since we need high values of sensitivity and specificity si-

multaneously, the performance indicator Fscore, combining the sensitivity and speci-

ficity into a single measure, is important for us. In terms of Fscore values, the score of

medical doctors ranges between 0.15 and 0.72 with an average of 0.52. On the other

hand, Fscore of PCM+NSGA-II and PCM+RECGA are 0.70 and 0.69, respectively.
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Models’ performances are better than 13 out of 15 medical doctors’ scores.

It is observed that, medical doctors have high specificity values in general. However,

for the ones whose specificity values are high, the maximum value of sensitivity is

0.64. Highest sensitivity achieved by a medical doctor is 0.72, but in this case, the

specificity value is only 0.44. Also, note that, for only two doctors (MD12 and MD15)

both sensitivity and specificity are above 0.5 (i.e. better than a random classifier).

When we evaluate the performance of PCM+NSGA-II in terms of the same perfor-

mance indicators, we observe that, compared to most of the medical doctors, model

achieves relatively balanced sensitivity and specificity rates. Its Fscore value is higher

than 13 out of all the medical doctors’.

PCM+RECGA achieves high sensitivity and specificity rates, too. The performances

of PCM+RECGA is much more balanced compared to the performances of

PCM+NSGA-II. Its Fscore value is also higher than 13 out of all of the medical

doctors’.

Figure 4.4: False Prediction Performances - Medical Doctors vs. PCM+NSGA-II and

PCM+RECGA

Figure 4.4 gives the false positive and false negative ratios together with their average.

False positive ratio of medical doctors ranges between 0 and 0.56 with an average of

0.14. False negative ratio of medical doctors takes values between 0.28 and 0.92

with an average of 0.59. It is worth to note that, low FPR and high FNR of medical
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doctors are indications of their small number of positive and large number of negative

classifications. FPR and FNR of PCM+NSGA-II are 0.22 and 0.36, respectively. For

PCM+RECGA, FPR is 0.32 and FNR is 0.30.

We combine the FPR and FNR into a single measure by taking average of these two

values. It is desired to have simultaneously low values of FPR and FNR. Combined

measure of medical doctors takes values between 0.27 and 0.46, with the average

value of 0.36, while the same measure of PCM+NSGA-II and PCM+RECGA are

0.29 and 0.31, respectively. The performance of PCM+NSGA-II is better than 13

out of the 15 medical doctors’ values. The value of this measure for the remaining

doctors are 0.27 and 0.28. For PCM+RECGA, the same performance indicator is

better than 12 out of the 15 medical doctors’ values. For the remaining three doctors,

this measure takes values of 0.27, 0.28 and 0.30.

Figure 4.5: Positive and Negative Predictive Values - Medical Doctors vs.

PCM+NSGA-II and PCM+RECGA

Figure 4.5 gives the graphs of the positive and negative predictive values. PPV of

medical doctors takes values between 0.56 and 1 with an average value of 0.80. NPV

of medical doctors ranges between 0.52 and 0.69 with an average of 0.60. PPV

and NPV of PCM+NSGA-II are 0.74 and 0.68, respectively. This indicates that,

among the patients whom PCM+NSGA-II classified as positive, 74% correctly have

the restenosis, and among the patients whom PCM+NSGA-II classified as negative,

68% correctly do not have the disease. For PCM+RECGA, PPV and NPV are both
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Figure 4.6: Classification Numbers: PCM+NSGA-II vs. Medical Doctors - Patients

Without Restenosis

0.69.

Figures 4.6 and 4.7 (Figures 4.8 and 4.9) illustrate the prediction performances of

medical doctors and PCM+NSGA-II (PCM+RECGA), respectively. We can divide

the predictions into four groups based on the decisions of the doctors and the model.

First and second group of Figures 4.6, 4.7, 4.8 and 4.9 represent the number of pa-

tients that are classified correctly and incorrectly both by the medical doctors and the

model, respectively. Third group represents the number of patients that are classified

correctly by the medical doctors but incorrectly by the model, and fourth group stands

for the number of patients that are classified correctly by the model but incorrectly by

the medical doctors. Each indicator under a group corresponds to a medical doctor.

For example, the data represented by the leftmost sign of first group of Figure 4.6 rep-

resent that there are 36 patients classified correctly both by MD1 and PCM+NSGA-II.

For the patients whose real restenosis status are negative, number of patients who

are incorrectly classified by PCM+NSGA-II but correctly classified by the medical

doctors takes values between 4 and 11 with an average of 7.9, and number of pa-
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Figure 4.7: Classification Numbers: PCM+NSGA-II vs. Medical Doctors - Patients

with Restenosis

tients who are incorrectly classified by the medical doctors but correctly classified by

PCM+NSGA-II ranges between 0 and 21 with an average of 3.87.

For the patients with a positive restenosis status in reality, number of patients who

are incorrectly classified by PCM+NSGA-II but correctly classified by the medical

doctors takes values between 0 and 7 with an average of 1.87, and number of pa-

tients who are incorrectly classified by the medical doctors but correctly classified by

PCM+NSGA-II takes values between 3 and 28 with an average of 13.4.

For the patients whose real restenosis status are negative, number of patients who are

incorrectly classified by PCM+RECGA but correctly classified by the medical doctors

takes values between 5 and 16 with an average of 12, and number of patients who are

incorrectly classified by the medical doctors but correctly classified by PCM+RECGA

ranges between 0 and 17 with an average of 3.

For the patients with a positive restenosis status in reality, number of patients who are

incorrectly classified by PCM+RECGA but correctly classified by the medical doctors

takes values between 0 and 7 with an average of 2.33, and number of patients who are

incorrectly classified by the medical doctors but correctly classified by PCM+RECGA
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Figure 4.8: Classification Numbers: PCM+RECGA vs. Medical Doctors - Patients

Without Restenosis

Figure 4.9: Classification Numbers: PCM+RECGA vs. Medical Doctors - Patients

with Restenosis
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takes values between 3 and 32 with an average of 16.87.

This indicates that, the number of patients who carries the disease and disregarded

by the models, but correctly identified by the doctors, is very low. However, the

number of patients in the opposite situation is quite high. This shows the strength

of PCM+NSGA-II and PCM+RECGA against the medical specialists in detecting

patients with the disease.

When PCM+NSGA-II and PCM+RECGA are compared, it is observed that,

PCM+NSGA-II has higher specificity but lower sensitivity.

Note that, even though it can achieve better performances than most of the medical

doctors, PCM+NSGA-II is dominated by MD12 and MD15. However, none of the

medical doctors can dominate the performances of PCM+RECGA.

4.6 Conclusion

Since PCM+NSGA-II and PCM+RECGA are suggested as medical diagnostic mod-

els, our aim is to demonstrate that they are effective and reliable decision support

tools for classification of patients. The experimental results indicate that, sensitivity,

specificity and accuracy rates achieved by PCM+NSGA-II and PCM+RECGA are

quite promising compared to the clinical detection methodologies, when their perfor-

mance measures, risks and costs are considered together. Also they provide a great

advantage by foreseeing the risk of restenosis at the time of stent implantation. In

clinical situations, cardiologists recommend a course of action to a patient to con-

firm or deny the existence of the disease. Therefore, we can position our models as

medical decision aids which assist experts in recommending the course of action by

classifying patients according to their risk of the disease.

We have also compared the model performances with the classifications made by

experts who utilized only the given values of in-stent-restenosis predictors and their

personal experiences. As it is indicated before, the main objective of this problem

is predicting the correct class of restenosis of patients in test set and it is impor-

tant to achieve this with both high and balanced prediction results for the patients
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with and without the disease. In this context, the comparison results of cardiologists,

PCM+NSGA-II and PCM+RECGA indicate that, the proposed models achieve the

above mentioned objectives and surpass the prediction abilities of majority of the

medical doctors. The analysis of the performance indicators as a whole suggests that,

even when half of the patients in test set have restenosis, the medical doctors have

classified relatively low number of patients as positive and they have classified most

of them as negative. This leads to an imbalanced performance in terms of true posi-

tive and true negative classifications. Thus, it is observed that, in general the medical

doctors achieve higher prediction performances in specificity, however their sensitiv-

ity rates are quite low. The strongest feature of PCM+NSGA-II and PCM+RECGA

is their balanced and simultaneously high classification performances of positive and

negative observations. It is observed that, considering Fscore, PCM+NSGA-II and

PCM+RECGA outperform almost all the cardiologists participated in this study. Just

two cardiologists perform slightly better performances than the proposed models.

The comparison results of PCM+NSGA-II, PCM+RECGA and the competitor mod-

els suggest that, the proposed models are robust against the variations in samples used

for training. Additionally, since their training and test performances are compatible

with each other and promising, they are reliable and also their generalization ability

(performance in test sample) is higher.

Thus, by evaluating all these findings together, we can say that, PCM+NSGA-II and

PCM+RECGA are reliable and effective tools that are used for classification pur-

poses. Specific to this problem, it can be concluded that, the given algorithms are

promising decision support tools for cardiologists in the process of determining po-

tential restenosis status of a patient and recommending a course of action.

Note that, the study in Chapter 4 was conducted in accordance with the Declearation

of Helsinki, and the protocol was approved by the Ethics Committee of Ondokuz

Mayıs University at date 07/27/2017 with project identification code of OMÜ-KAEK

2017/272.
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CHAPTER 5

RARE EVENT CLASSIFICATION MODELS FOR MEDICAL DIAGNOSIS

PROBLEM APPLIED TO BREAST CANCER

Breast cancer is the most common cancer in women, worldwide [121]. It can be

seen in both women and men, but its frequency in women is much more higher.

Even though it is identified that hormonal, lifestyle and environmental factors may

affect the risk of developing breast cancer, its cause may be a complex interaction

of genetic and environmental factors [122]. Mammograms, breast ultrasound, breast

MRI scans or some other recently developed imaging tests can be utilized as the

diagnosis methodologies of breast cancer. However, the gold standard is biopsy to

diagnose or reject the existence of the disease [123].

In the literature, there are well studied, structured, proper and large size datasets about

breast cancer. Two of them are Wisconsin Breast Cancer Original dataset (WBCO)

[5] and Wisconsin Breast Cancer Diagnostic dataset (WBCD) [6] which are available

in UCI Machine Learning Repository. The datasets are comprised of dichotomous

dependent variables, that identifies the status of a tumor (malignant or benign).

In this part of our study, we test the performances of the developed models on these

datasets. For the cases where the incidence of a disease among the population is

low, it is harder to identify the existence of the disease. In this context, to evaluate

the model performances when one class of observations are rare compared to other,

we create class imbalance between the class of malignant and benign tumors and we

test our models to see their performances in classifying observations that belong to

class of rarely found members. We prefer to perform this analysis on WBCO and

WBCD datasets based on the fact that these datasets are well structured and contains

substantial amount of observations.
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Following two sections give a brief literature review about the machine learning ap-

plications which employs WBCO and WBCD datasets, respectively.

5.1 Machine Learning Applications with the Wisconsin Breast Cancer Original

Dataset

In the literature, there are many studies that work with the WBCO dataset that can

be obtained from the Original Wisconsin Breast Cancer Database maintained by Dr.

William H. Wolberg from University of Wisconsin. It is a well structured data includ-

ing the breast cancer predictors and the class of the tumors (malignant or benign).

There exists 699 instances (458 benign, 241 malignant) and 9 predictors in the dataset.

The predictors are defined as the cytological characteristics of breast fine-needle as-

pirates, and are valued on an integer scale between 1 and 10, where a higher value is

closer to malignancy. Table 5.1 shows the predictors of the dataset [5].

Table 5.1: Predictors of the WBCO Dataset

1. Clump thickness

2. Uniformity of cell size

3. Uniformity of cell shape

4. Marginal adhesion

5. Single epithelial cell

6. Bare nuclei

7. Bland chromatin

8. Normal nuclei

9. Mitoses

Table 5.2 summarizes the studies that work with this dataset. None of these studies

consider the case where positive observations are rare in the population. The rarity

of positive observations in the original dataset is 35% (malign:benign = 241:458 =

1.0:1.9), and the rarity of positive observations in training set is above 30% for most

of the studies.

Rareness level of positive observations to all observations in the training and test sets
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are given in fifth and sixth columns of Table 5.2, respectively, for the studies that

report this information. Rest of the studies in Table 5.2 use samples disregarding this

ratio. They create training and test samples by randomly choosing observations from

all observations due to the predetermined training-test partition.

It is observed that, many of the studies conducted experiments with various training-

test partitions (e.g. 80-20%, 70-30%, 50-50%), feature selection is conducted in some

studies and most of the studies use cross-validation in the experiments. Since the

classification performance of a model can be effected by these factors, we only state

the maximum accuracy that a classifier achieved, in Table 5.2. Although most of

the studies interested in the classification accuracy, Table 5.2 includes sensitivity and

specificity for the studies which report these values.

Setiano conduct one of the earliest studies and propose an algorithm to prune a stan-

dard three-layer feed forward neural network (NN). The experiments are conducted

on a single configuration where training set consists of 229 benign and 121 malignant

observations. The rest of the data is used as test sample [124].

Another study of Setiano also utilizes neural networks. First, the author propose a

neural network with one hidden unit for attribute selection. Then, experiments for

breast cancer diagnosis are conducted with hundred neural networks each with three

hidden units and hundred neural networks each with five hidden units. The training

set includes 119 malignant and 222 benign observations, and the rest of the data is

reserved for the test sample [125].

Pena-Reyes and Sipper propose a binary diagnosis algorithm and provides a numeric

value that represents the confidence level of the system about the response variable.

The experiments are conducted with three different configurations. Training set in

the first configuration contains all cases and test set is empty, second configuration

contains 75% of the cases and test set has 25% and third configuration contains 50%

of the cases and the test set has 50% [126].
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Table 5.2: Various Machine Learning Applications to the WBCO Dataset

Source Method Classification Training-Test Malignant Ratio Malignant Ratio Sensitivity Specifictiy

Accuracy (%) Partition(%) in Training Set in Test Set (%) (%)

[124] Pruned-NN 96.56 50-50 0.35 0.34 96.67 96.51

[127] C4.5 94.74 10-fold CV

[128] RIAC 94.99 Leave one out CV

[129] Fisher LDA 96.8 10-fold CV

[130] SVM 97.2 5-fold CV

[131] NEFCLASS 95.06 10-fold CV

[126] Fuzzy-Genetic Algorithm 97.8 100-0 97.07 98.7

[125] Neuro-rule 2a 98.24 50-50 0.35 0.35 99.1 97.75

[132]

Optimized-LVQ 96.7 10-fold CV

Big LVQ 96.8 10-fold CV

AIRS 97.2 10-fold CV

[133] LSA with Perceptron Algorithm 98.8 50-50/75-25 0.55/0.73 0.65/0.65

[134] Supervised Fuzzy Clustering 95.57 10-fold CV

[135] LS-SVM
97.08 80-20 0.35 0.34 97.87 97.77

98.53 10-fold CV

[136]

SVM 99.54 37-63 0.32 0.37 99.37 99.64

RNN 98.61 37-63 0.32 0.37 98.11 98.91

PNN 98.15 37-63 0.32 0.37 97.48 98.54

CNN 97.46 37-63 0.32 0.37 96.86 97.81

MLPNN 91.92 37-63 0.32 0.37 91.19 92.34

[137] F-score+SVM 99.51 80-20 0.35 0.35 100 97.91

[138] RS_SVM 96.87 80-20 0.35 0.34

[139] Hybrid DT 97.85 10-fold CV

[140] RS-BPNN 98.6 80-20 98.76 98.57

[141]
RIW-BPNN 99.03 55-45 0.36 0.34 99.13 98.97

DBN-NN 99.68 55-45 0.33 0.36 100 99.47

[142]

SVM 97.13 10-fold CV

C4.5 95.13 10-fold CV

Naïve Bayes 95.99 10-fold CV

K-NN 95.27 10-fold CV

[38]
SVM-Convex comb. of kernels 96.79 3-fold CV

SVM-Affine comb. of kernels 96.58 3-fold CV
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Ubeyli compares different classifiers (multilayer perceptron neural network

(MLPNN), combined neural network (CNN), probabilistic neural network (PNN), re-

current neural network (RNN), support vector machine (SVM)) with respect to their

classification accuracies. The author claims that, SVM obtains the highest classifi-

cation accuracies. For experiments, only one configuration is used, where training

set has 80 malignant and 170 benign observations. The rest of the observations are

reserved for test set [136].

Akay implements SVM to the breast cancer data and he also applies feature selection.

The highest classification accuracies are found to be 98.53%, 99.02% and 99.51% for

50-50%, 70-30%, and 80-20% of training-test partition, respectively. These results

are obtained by SVM using five features. Other than classification accuracies, sensi-

tivity, specificity, positive predictive value and negative predictive value of the models

are reported. The author reports that, as the size of training set increases, false positive

and false negative results decrease [137].

Chen et al. propose a rough set-based SVM (RS_SVM) to diagnose breast cancer.

The authors utilize a rough set reduction algorithm for feature selection. As the per-

formance indicators, classification accuracy, sensitivity and specificity are used. The

experiments are conducted on three different categories based on training-test set par-

tition: 50-50%, 70-30% and 80-20%. It is concluded that the highest average clas-

sifications are obtained with these five features: clump thickness, uniformity of cell

shape, marginal adhesion, bare nuclei, and mitoses [138].

Conforti and Guido introduce a kernel-based SVM via semidefinite programming.

Their aim is to find the best kernel function for the SVM through an optimization

based approach. In their study, they compare the classification accuracies of SVM

with convex and affine combinations of kernels. It is observed that, the mean accuracy

is almost 97% for both cases [38].

Polat and Gunes conduct a least square SVM (LS-SVM) model and they evaluate it

with respect to the classification accuracy, sensitivity and specificity. The experiments

are repeated with 50-50%, 70-30% and 80-20% training-test partitions. The authors

find that, the classification accuracy of the model is 98.53% [135].
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Asri et al. compare the performances of SVM, decision tree, naïve Bayes and K-

nearest neighbors (K-NN) on the WBCO dataset [142]. Lavanya and Rani address

CART classifier with feature selection and bagging technique. They evaluate the

classification performance of the model with respect to accuracy and run time [139].

Abdel-Zaher and Eldeib propose a deep belief network (DBN) unsupervised path fol-

lowed by back propagation supervised path. Experiments are repeated with three dif-

ferent algorithms: deep belief etwork path (DBN-NN) conjugate gradient back prop-

agation, randomly initialized weight back-propagation neural network (RIW-BPNN)

Levenberg-Marquardt and DBN-NN Levenberg-Marquardt. All algorithms achieve

classification accuracies higher than 99% [141].

5.2 Machine Learning Applications with the Wisconsin Breast Cancer Diag-

nostic Dataset

WBCD is another well structured dataset where the breast cancer predictors and the

class of tumors (malignant or benign) are included. The number of observations is

569 (212 malignant, 357 benign) and there are 30 predictors under consideration. The

predictors are defined as the features that are computed from a digitized image of a

fine needle aspirate of a breast mass describing the characteristics of the cell nuclei

present in the image. These predictors take values from different scales, thus each

factor should be scaled to interval [0,1] to normalize their effects. Table 5.3 shows

the predictors of the dataset [6].
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Table 5.3: Predictors of the WBCD Dataset

Mean Radius Radius Standard Error Worst Radius

Mean Texture Texture Standard Error Worst Texture

Mean Perimeter Perimeter Standard Error Worst Perimeter

Mean Area Area Standard Error Worst Area

Mean Smoothness Smoothness Standard Error Worst Smoothness

Mean Compactness Compactness Standard Error Worst Compactness

Mean Concavity Concavity Standard Error Worst Concavity

Mean Concave points Concave points Standard Error Worst Concave points

Mean Symmetry Symmetry Standard Error Worst Symmetry

Mean Fractal dimension Fractal dimension Standard Error Worst Fractal dimension

Table 5.4 summarizes the studies that work with this dataset. None of these studies

consider the case where positive observations are rare in the population. The rarity

of the positive observations in the original dataset is 37%, and none of these studies

specifies the rarity of positive observations in the training set.
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Table 5.4: Various Machine Learning Applications to the WBCD Dataset

Source Method Classification Training-Test Sensitivity Specificity

Accuracy (%) Partition(%) (%) (%)

[143]

PSO-w/o Feature Selection 96.4

80-20

98.6 93.1

GA-w/o Feature Selection 96.1 97.8 92.9

ANN-w/o Feature Selection 96.5 98.2 96

PSO-with Feature Selection 97.2 98 95.6

GA-with Feature Selection 96.6 97.5 93.7

ANN-with Feature Selection 97.3 98.4 95.1

[144] Linear Regression 96.09

70-30

100 89.8

MLP 99.04 99.21 98.73

L1(Manhattan)-NN 93.57 93.46 93.75

L2(Euclidean)-NN 94.74 97.2 90.63

Softmax Regression 97.66 100 94.23

SVM 96.09 97.53 93.62

GRU-SVM 93.75 100 83.33

[145] MSM-Tree 97 10-fold CV

[146]
CART-w/o Feature Selection 92.97

CART- SymmetricUncertAttributesetEval 94.72

[147]

NB 92.97

10-fold CV

MLP 96.66

J48 93.15

SMO 97.72

IBK 95.96

NB and SMO 97.54

MLP and SMO 97.72

J48 and SMO 94.09

IBK and SMO 97.72

SMO, IBK and NB 97.36

SMO, IBK and MLP 97.18

SMO, IBK and J48 97.36

SMO, IBK,NB and MLP 97.54

SMO, IBK, NB and J48 97.01

[139]

CART 92.97

10-fold CVCART with Feature Selection 94.72

Hybrid Approach 95.96

[148] A-SFM 96.01 5-fold CV
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Aalaei et al. focus on feature selection for diagnosis of breast cancer. The proposed

model uses a genetic algorithm based feature selection and it also employs Particle

Swarm Optimization algorithm. The authors employ three different classifiers to eval-

uate the effectiveness of proposed feature selection method: artificial neural network

(ANN), particle swarm optimization-based classifier (PSO) and genetic algorithm-

based classifier (GA). The experiments are conducted with 80%-20% training-test

partition. The results suggest that feature selection improves accuracy. Best accuracy

(97.3) is achieved by ANN after feature selection, where the acquired sensitivity and

specificity values are 98.4 and 95.1, respectively [143].

Agarap and Fred compare six machine learning algorithms using the WBCD dataset:

linear regression, multilayer perceptron (MLP), nearest neighbor search (NN), soft-

max regression, support vector machine (SVM) and the proposed model, GRU-SVM,

which combines a type of recurrent neural network, the Gated Recurrent Unit (GRU),

with the support vector machine. 70% and 30% of the data is allocated to training

and test sets, respectively [144].

Street et al. address a linear programming-based classification procedure, named

MSM-Tree, to find the separating planes for a pattern separation problem. The authors

state that MSM-Tree is a variant of the multi-surface method (MSM). 10-fold cross

validation accuracy of 97% is achieved with one separating plane and three features:

mean texture, worst area and worst smoothness [145] .

Lavanya and Rani analyse the performance of decision tree classifier–CART with

and without feature selection on WBCD dataset. According to results, the authors

claim that, the best feature selection approach for a particular dataset depends on the

number of attributes, attribute type and instances [146].

Salama et al. compare decision tree (J48), multilayer perceptron (MLP), naïve Bayes

(NB), sequential minimal optimization (SMO) and instance-based K-nearest neigh-

bor (IBK) using the WBCD dataset. They utilize 10-fold cross validation method

and they consider combining multiple classifiers to improve the accuracy. The results

show that classification using SMO or fusion of SMO and MLP or fusion of SMO

and IBK dominates the other classification methodologies [147].
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Fan and Chaovalitwongse propose an optimization framework called support fea-

ture machine (SFM) to improve feature selection in medical data classification. The

proposed model provides classification and feature selection, simultaneously. SFM

works based on voting and averaging schemes. The authors apply their proposed

method on different datasets including WBCD. It is observed that, for WBCD dataset,

among the proposed models, the highest mean accuracy is achieved with averaging

based SFM (96.01%) [148].

Lavanya and Rani address CART classifier with feature selection and bagging tech-

nique in classification of tumors. The authors indicate that the best feature selection

method for the given dataset is found by evaluating the worth of a feature by measur-

ing the symmetrical uncertainty with respect to the class. The classification accuracies

of CART algorithm, CART algorithm with feature selection and a hybrid approach

are discussed. Best accuracy is acquired with hybrid approach, which is a combina-

tion of the best feature selection method, bagging and decision tree algorithms [139].

Huang and Du [1] and Du and Chen [2] also work on WBCD dataset. Their focus

is on classification with uneven training class sizes as it is mentioned in Section 2.4.

Remember that, the ratio of positive observations to the whole set of observations is

9% in these studies. Experimental results of of these studies are illustrated in Table

5.5.

Table 5.5: Experimental Results of [1] and [2]

Accuracy Accuracy Total

for Benign % for Malignant % Accuracy %

Huang and Du
Standard SVM 94.27 89.1 91.69

Weighted SVM1 93.63 89.58 91.4

[1] Weighted SVM2 92.99 90.1 91.4

Du and Chen
Standard V-SVM 98.09 87.5 92.26

Weighted V-SVM1 97.45 88.54 92.55

[2] Weighted V-SVM2 96.82 89.06 92.55
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5.3 Data

5.3.1 Wisconsin Breast Cancer Original Dataset

After the elimination of the observations with missing values and the removal of cor-

related factors, a set of 683 observations (239 positive, 444 negative) and 8 factors

are found appropriate. The factors are presented in Table 5.6. If there are some pre-

dictors whose values are extremely large compared to the others, their values might

affect the result more due to larger values even if they are not more important as pre-

dictors. However, since all of the factors are in similar ranges, no scaling is necessary.

The binary response variable indicates whether a tumor is expected to be malign (1)

or not (0).

Table 5.6: Set of Factors: WBCO Dataset

F1 Clump thickness

F2 Uniformity of cell shape

F3 Marginal adhesion

F4 Single epithelial cell

F5 Bare nuclei

F6 Bland chromatin

F7 Normal nuclei

F8 Mitoses

5.3.2 Wisconsin Breast Cancer Diagnostic Dataset

After the elimination of correlations, there remains 21 appropriate factors which are

illustrated in Table 5.7.
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Table 5.7: Set of Factors: WBCD Dataset

F1 Mean Radius F12 Concavity Standard Error

F2 Mean Texture F13 Concave points Standard Error

F3 Mean Smoothness F14 Symmetry Standard Error

F4 Mean Compactness F15 Fractal dimension

F5 Mean Concavity F16 Worst Smoothness

F6 Mean Symmetry F17 Worst Compactness

F7 Mean Fractal dimension F18 Worst Concavity

F8 Radius Standard Error F19 Worst Concave points

F9 Texture Standard Error F20 Worst Symmetry

F10 Smoothness Standard Error F21 Worst Fractal dimension

F11 Compactness Standard Error

We apply feature selection to reduce the number of factors in consistent with the

Occam’s Razor principle [119]. The purpose of the feature selection is to eliminate

redundant features which gives little or no information about the response variable

(i.e. type of tumor). Therefore, we first apply t-test on each feature and compare

p-value of each feature to measure its effectiveness at group separation. We apply

holdout method [149] to the data where the training set size is 400 and test set size

is 169. We sort p-values of features in five different instances in order not to favor a

specific instance. Then, as another feature selection method, we apply stepwise re-

gression on the same five instances that we have used before. Table 5.8 summarizes

the feature selection procedure which employs most significant factors due to both

p-value and stepwise regression. First part of Table 5.8 indicates the rank of factors

due to p-value for each instance and most significant 10 factors are marked with an

asteriks symbol (*). In the second part, factors found significant by stepwise regres-

sion for each instance are marked with a star symbol (?). In the third part, the findings

of both feature selection methodologies are combined. At the end of the table, final

set of selected features are indicated and these factors are shown in Table 5.9, as well.
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Table 5.9: Set of Factors After Feature Selection: WBCD Dataset

Mean Radius

Mean Texture

Mean Compactness

Mean Concavity

Radius Standard Error

Concave points Standard Error

Worst Smoothness

Worst Concavity

Worst Concave points

Worst Symmetry

Their values are normalized as follows:

Xscaled =
X −Xmin

Xmax −Xmin

. (5.1)

The values are arranged such that, higher values are indication of malignancy. There

is no missing information, and the number of observations under consideration is 569

(212 positive, 357 negative).

5.4 Computational Analysis

In this section, we discuss the results of the models PCM+NSGA-II and

PCM+RECGA. To analyze the effect of integrating evolutionary algorithms with

PCM, first we compare the performances of PCM+NSGA-II and PCM+RECGA with

Random+NSGA-II and Random+RECGA, respectively. The computational experi-

ments of these models are conducted with NetBeans IDE 7.3 and CPLEX 12.6 on an

Intel(R) Core(TM) i5-2410M 2.3GHz PC with 4 GB RAM, running under the Win-

dows operating system. Next, we compare the performances of PCM+NSGA-II and

PCM+RECGA with that of competitor models. They are implemented with the same

specifications given in Section 4.3.
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We test the model performances by randomly splitting the data into mutually exclu-

sive training (S), validation (V) and test (S̃) sets. This procedure is repeated 100

times and their average performances are reported.

Recall that, PCM+NSGA-II and PCM+RECGA first utilize S to generate the ini-

tial set of solutions, and then these solutions are tuned with V . Random+NSGA-II

and Random+RECGA just use V and competitor models utilize S ∪ V as the train-

ing set. Note that, as the training sample grows with the inclusion of the validation

set, this provides an advantage to competitor models against PCM+NSGA-II and

PCM+RECGA. To test the performance of a model, S̃ is used, any time.

To observe the performances of the suggested models in the existence of class imbal-

ance, we create configurations (collection of sets), which simulate different levels of

rarity of positive observations.

With this design, we repeat the experiments for the rareness levels ranging between

1% to 35% and 1% to 37% for WBCO dataset and for WBCD dataset, respectively.

Note that, number of negative observations is constant, but by eliminating positive

observations, rare cases are created.

Table 5.10 and 5.11 show the dataset configurations used in our experiments. The last

row of each table indicates the interval of values that the parameter L of PCM can

take. Columns "Malign" and "Benign" of Tables 5.10 and 5.11 indicate the number

of positive and negative observations in training (S), validation (V ) and test samples

(S̃). "Rareness level" indicates the ratio of positive observations to all observations.

The given rareness level is the same both for all observations and for observations

that are not used for test purposes. Therefore rareness level is mathematically given

as follows: |S
+∪V+|
|S∪V| = |S+∪V+∪S̃+|

|S∪V∪S̃|
. Note that, while the expression of "low levels of

rareness" implies the cases where the ratio of positive observations to all observations

is low, the expression "high levels of rareness" refers the opposite.
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Table 5.10: Experimental Settings for the WBCO Dataset

Malign Benign
Rareness

Malign Benign
Rareness

level level

S 2 148

1%

S 17 148

10%
V 2 148 V 17 148

S̃ 2 148 S̃ 17 148

Total 6 444 Total 51 444

S 5 148

3%

S 26 148

15%
V 5 148 V 26 148

S̃ 5 148 S̃ 26 148

Total 15 444 Total 78 444

S 8 148

5%

S 49 148

25%
V 8 148 V 49 148

S̃ 8 148 S̃ 49 148

Total 24 444 Total 147 444

S 11 148

7%

S 79 148

35%
V 11 148 V 79 148

S̃ 11 148 S̃ 79 148

Total 33 444 Total 237 444

L for PCM {0,. . . ,148}
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Table 5.11: Experimental Settings for the WBCD Dataset

Malign Benign
Rareness

Malign Benign
Rareness

level level

S 1 119

1%

S 13 119

10%
V 1 119 V 13 119

S̃ 1 119 S̃ 13 119

Total 3 357 Total 39 357

S 4 119

3%

S 21 119

15%
V 4 119 V 21 119

S̃ 4 119 S̃ 21 119

Total 12 357 Total 63 357

S 6 119

5%

S 40 119

25%
V 6 119 V 40 119

S̃ 6 119 S̃ 40 119

Total 18 357 Total 120 357

S 9 119

7%

S 70 119

37%
V 9 119 V 70 119

S̃ 9 119 S̃ 70 119

Total 27 357 Total 210 357

L for PCM {0,. . . ,119}

We utilize sensitivity, specificity and Fscore as the main performance indicators. Note

that, when occurrence of positive observations in the population are rare, obtaining

high true positive rates is more important. High Fscore values are possible only when

both of the true positive and true negative classification performances are high. More-

over, we also report accuracy and Fmeasure for the sake of completeness.

Hyper-parameters for the datasets are set due to the previously explained hyper-

parameter optimization process. Note that, for both datasets, there are eight different

configurations each representing a level of rareness. However, it is computationally

expensive to repeat the hyper-parameter optimization process for each rareness level

of a dataset. Since it is relatively easy to achieve high prediction results when the

classes under consideration are balanced, we focus on the configurations where class
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imbalance is significant. Thus, we tune the hyper-parameters using the configurations

with 1% and 10% rareness levels in both datasets.

The values stand for hyper-parameters are given in Table 5.12 and 5.13, respectively.

Note that, in reporting experimental results, models implemented with the hyper-

parameter values corresponding to rareness levels of 1% and 10% will be indicated

with H1 and H2, respectively.

A more detailed explanation of hyper-parameter tuning process for the WBCO and

WBCD datasets can be found in the Appendix (Section E and G).

Table 5.12: Optimal Values of Hyper-parameters with Respect to the WBCO Dataset

Rareness level

1% 10%

N
SG

A
-I

I

PopulationSize 1000 500

GenerationSize 50 5

NumberOfGenerations 5 5

prc, plc 0.5, 0.5 0.5, 0.5

pm 0.01 0.01

R
E

C
G

A

PopulationSize 150 250

minFinalSetSize 50 200

prc, plc 0.4, 0.6 0.8, 0.2

pm 0.01 0.01
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Table 5.13: Optimal Values of Hyper-parameters with Respect to the WBCD Dataset

Rareness level

1% 10%

N
SG

A
-I

I

PopulationSize 150 250

GenerationSize 50 200

NumberOfGenerations 5 10

prc, plc 0.5, 0.5 0.6, 0.4

pm 0.1 0.01

R
E

C
G

A

PopulationSize 1000 250

minFinalSetSize 50 200

prc, plc 0.0, 1.0 0.5, 0.5

pm 0.01 0.01

5.5 Results

5.5.1 Wisconsin Breast Cancer Original Dataset

5.5.1.1 Role of PCM to Generate Initial Solutions to the Evolutionary Algo-

rithms

To evaluate the effect of initial solutions given to the evolutionary algorithms, we

compare the performances of the models PCM+NSGA-II, Random+NSGA-II,

PCM+RECGA and Random+RECGA. Tables 5.14, 5.15, 5.16 and 5.17 give the train-

ing and test performances of these models, respectively.

In the comparison of PCM+NSGA-II and Random+NSGA-II, it is observed that, (re-

gardless of whether the hyper-parameter set is H1 or H2) for all levels of rareness,

both models have extremely high specificity performances, which takes values be-

tween 0.93 and 1.00. However, in terms of sensitivity values, the performance of

the Random+NSGA-II lags behind PCM+NSGA-II. The difference is less in cases

where the rareness level is low (1%, 3%, 5%), but as the rareness level increases, the

performance of Random+NSGA-II is further impaired. Since Fscore is the harmonic
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mean of sensitivity and specificity, the last observation is also true for Fscore perfor-

mances. The standard deviations of Random+NSGA-II are always higher than that of

PCM+NSGA-II, for sensitivity. However, the standard deviation values in specificity

are either very close for both models or they are slightly smaller for Random+NSGA-

II. These observations are true for both training and test performances. When they are

evaluated together, it can be concluded that, it is better to obtain the initial solution

set by PCM.

When the same analysis is conducted for PCM+RECGA and Random+RECGA, al-

most identical observations are obtained. Both in training and test, the specificity

values for all levels of rareness are notably high. However, in general, the specificity

values are slightly better for Random+RECGA. In training, the sensitivity perfor-

mances of PCM+RECGA outperforms that of Random+RECGA. The difference in

their performances is relatively low when the rareness level is low (1%, 3%, 5%).

However, as the rareness level increases, the performance of Random+RECGA de-

creases. In test, while the sensitivity performance of Random+RECGA is better than

PCM+RECGA for rareness levels of 1% and 3%, it lags behind the performance of

PCM+RECGA for the remaining configurations (5%, 7%, 10%, 15%, 25% and 35%).

The observations given for sensitivity are true for Fscore, as well. In terms of standard

deviations, we observed that, either the two models have close values or the standard

deviation of Random+RECGA is lower. Thus, although Random+RECGA seems

to achieve good performances when the rareness level is very low, its performance

deteriorates significantly for slightly higher values of rareness (starting from 5%).

Therefore, we can conclude that, in general, generating initial solutions of the RECGA

algorithm with PCM yields better results.
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Table 5.14: Average Training Performances: PCM+NSGA-II vs. Random+NSGA-II

and PCM+RECGA vs. Random+RECGA (WBCO Dataset)

PCM+NSGA-II Random+NSGA-II PCM+RECGA Random+RECGA

H1 H2 H1 H2 H1 H2 H1 H2

Rareness level = 1%

Sensitivity 0.93 0.70 0.88 0.81 0.92 0.93 0.87 0.87

Specificity 0.93 0.98 0.95 0.99 0.96 0.97 0.99 0.99

Accuracy 0.93 0.98 0.95 0.98 0.96 0.97 0.98 0.98

Fscore 0.92 0.79 0.89 0.87 0.92 0.94 0.90 0.90

Fmeasure 0.31 0.66 0.38 0.59 0.56 0.59 0.62 0.62

Rareness level = 3%

Sensitivity 0.86 0.82 0.80 0.81 0.86 0.89 0.81 0.81

Specificity 0.96 1.00 0.98 0.99 0.97 0.97 0.99 0.99

Accuracy 0.96 0.99 0.97 0.99 0.97 0.97 0.98 0.98

Fscore 0.90 0.89 0.87 0.88 0.90 0.92 0.88 0.88

Fmeasure 0.62 0.84 0.67 0.81 0.68 0.70 0.77 0.77

Rareness level = 5%

Sensitivity 0.77 0.84 0.66 0.76 0.82 0.86 0.70 0.70

Specificity 0.98 0.99 0.98 0.99 0.96 0.97 0.99 0.99

Accuracy 0.97 0.98 0.97 0.98 0.95 0.96 0.98 0.98

Fscore 0.86 0.91 0.78 0.85 0.88 0.90 0.81 0.81

Fmeasure 0.74 0.84 0.68 0.80 0.69 0.72 0.77 0.77

Rareness level = 7%

Sensitivity 0.80 0.88 0.67 0.79 0.85 0.88 0.72 0.72

Specificity 0.99 0.99 0.99 0.99 0.96 0.96 1.00 1.00

Accuracy 0.97 0.98 0.97 0.98 0.96 0.96 0.98 0.98

Fscore 0.88 0.93 0.79 0.87 0.90 0.91 0.83 0.83

Fmeasure 0.80 0.89 0.72 0.84 0.75 0.76 0.81 0.81

Rareness level = 10%

Sensitivity 0.84 0.90 0.64 0.79 0.84 0.87 0.68 0.68

Specificity 0.99 0.99 0.99 1.00 0.97 0.97 1.00 1.00

Accuracy 0.97 0.98 0.96 0.97 0.96 0.96 0.97 0.97

Fscore 0.90 0.94 0.77 0.88 0.89 0.91 0.80 0.80

Fmeasure 0.85 0.91 0.74 0.86 0.80 0.81 0.80 0.80

Rareness level = 15%

Sensitivity 0.89 0.92 0.62 0.79 0.86 0.87 0.68 0.68

Specificity 0.98 0.99 1.00 1.00 0.96 0.97 1.00 1.00

Accuracy 0.97 0.98 0.94 0.96 0.95 0.95 0.95 0.95

Fscore 0.93 0.95 0.76 0.87 0.90 0.91 0.81 0.81

Fmeasure 0.90 0.93 0.75 0.87 0.83 0.84 0.80 0.80

Rareness level = 25%

Sensitivity 0.94 0.93 0.61 0.77 0.85 0.86 0.62 0.62

Specificity 0.98 0.99 1.00 1.00 0.97 0.97 1.00 1.00

Accuracy 0.97 0.97 0.90 0.94 0.94 0.94 0.90 0.90

Fscore 0.96 0.96 0.75 0.86 0.89 0.90 0.76 0.76

Fmeasure 0.94 0.94 0.75 0.86 0.86 0.87 0.76 0.76

Rareness level = 35%

Sensitivity 0.96 0.94 0.66 0.78 0.90 0.91 0.64 0.64

Specificity 0.98 0.98 1.00 0.99 0.96 0.96 1.00 1.00

Accuracy 0.97 0.97 0.88 0.92 0.94 0.94 0.87 0.87

Fscore 0.97 0.96 0.79 0.87 0.92 0.93 0.78 0.78

Fmeasure 0.96 0.95 0.79 0.87 0.91 0.91 0.78 0.78
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Table 5.15: Standard Deviations of Training Performance Indicators: PCM+NSGA-II

vs. Random+NSGA-II and PCM+RECGA vs. Random+RECGA (WBCO Dataset)

PCM+NSGA-II Random+NSGA-II PCM+RECGA Random+RECGA

H1 H2 H1 H2 H1 H2 H1 H2

Rareness level = 1%

Sensitivity 0.17 0.25 0.24 0.23 0.17 0.19 0.22 0.22

Specificity 0.04 0.10 0.01 0.04 0.05 0.07 0.01 0.01

Accuracy 0.03 0.10 0.01 0.04 0.05 0.07 0.01 0.01

Fscore 0.11 0.18 0.16 0.16 0.11 0.12 0.15 0.15

Fmeasure 0.14 0.19 0.21 0.17 0.28 0.28 0.20 0.20

Rareness level = 3%

Sensitivity 0.14 0.11 0.14 0.17 0.15 0.16 0.15 0.15

Specificity 0.03 0.00 0.01 0.02 0.03 0.03 0.01 0.01

Accuracy 0.02 0.01 0.01 0.02 0.03 0.03 0.01 0.01

Fscore 0.08 0.07 0.09 0.11 0.08 0.09 0.09 0.09

Fmeasure 0.12 0.09 0.11 0.13 0.16 0.17 0.12 0.12

Rareness level = 5%

Sensitivity 0.14 0.11 0.15 0.17 0.14 0.15 0.16 0.16

Specificity 0.01 0.02 0.01 0.01 0.04 0.05 0.01 0.01

Accuracy 0.01 0.02 0.01 0.01 0.04 0.04 0.01 0.01

Fscore 0.09 0.07 0.11 0.13 0.08 0.09 0.12 0.12

Fmeasure 0.10 0.11 0.11 0.11 0.12 0.13 0.12 0.12

Rareness level = 7%

Sensitivity 0.10 0.08 0.13 0.15 0.14 0.15 0.14 0.14

Specificity 0.01 0.01 0.01 0.01 0.04 0.04 0.00 0.00

Accuracy 0.01 0.01 0.01 0.01 0.03 0.03 0.01 0.01

Fscore 0.06 0.05 0.09 0.11 0.09 0.09 0.10 0.10

Fmeasure 0.07 0.06 0.09 0.09 0.13 0.12 0.10 0.10

Rareness level = 10%

Sensitivity 0.08 0.07 0.11 0.12 0.14 0.15 0.12 0.12

Specificity 0.01 0.01 0.01 0.01 0.03 0.03 0.00 0.00

Accuracy 0.01 0.01 0.01 0.01 0.03 0.03 0.01 0.01

Fscore 0.05 0.04 0.07 0.09 0.09 0.10 0.09 0.09

Fmeasure 0.06 0.06 0.07 0.08 0.10 0.10 0.09 0.09

Rareness level = 15%

Sensitivity 0.06 0.07 0.11 0.11 0.16 0.17 0.09 0.09

Specificity 0.01 0.01 0.00 0.01 0.03 0.06 0.00 0.00

Accuracy 0.01 0.01 0.02 0.01 0.02 0.05 0.01 0.01

Fscore 0.03 0.05 0.07 0.09 0.10 0.11 0.07 0.07

Fmeasure 0.04 0.05 0.07 0.08 0.09 0.11 0.07 0.07

Rareness level = 25%

Sensitivity 0.03 0.07 0.12 0.09 0.18 0.18 0.07 0.07

Specificity 0.01 0.01 0.00 0.00 0.03 0.04 0.00 0.00

Accuracy 0.01 0.02 0.03 0.02 0.04 0.04 0.02 0.02

Fscore 0.02 0.04 0.09 0.07 0.12 0.12 0.06 0.06

Fmeasure 0.02 0.04 0.09 0.07 0.12 0.12 0.06 0.06

Rareness level = 35%

Sensitivity 0.02 0.07 0.05 0.05 0.13 0.12 0.11 0.06

Specificity 0.01 0.03 0.00 0.00 0.03 0.03 0.01 0.00

Accuracy 0.01 0.03 0.02 0.02 0.04 0.04 0.04 0.02

Fscore 0.01 0.04 0.04 0.04 0.08 0.08 0.07 0.05

Fmeasure 0.01 0.04 0.04 0.04 0.08 0.08 0.07 0.05
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Table 5.16: Average Test Performances: PCM+NSGA-II vs. Random+NSGA-II and

PCM+RECGA vs. Random+RECGA (WBCO Dataset)

PCM+NSGA-II Random+NSGA-II PCM+RECGA Random+RECGA

H1 H2 H1 H2 H1 H2 H1 H2

Rareness level = 1%

Sensitivity 0.93 0.65 0.81 0.73 0.74 0.73 0.84 0.84

Specificity 0.93 0.98 0.95 0.98 0.95 0.96 0.98 0.98

Accuracy 0.93 0.97 0.94 0.97 0.95 0.96 0.98 0.98

Fscore 0.91 0.73 0.83 0.80 0.76 0.76 0.88 0.88

Fmeasure 0.31 0.54 0.34 0.46 0.40 0.42 0.51 0.51

Rareness level =3%

Sensitivity 0.85 0.67 0.81 0.74 0.75 0.76 0.82 0.82

Specificity 0.96 0.99 0.98 0.99 0.97 0.97 0.99 0.99

Accuracy 0.96 0.98 0.97 0.98 0.96 0.96 0.98 0.98

Fscore 0.89 0.77 0.87 0.83 0.82 0.83 0.89 0.89

Fmeasure 0.61 0.64 0.67 0.71 0.59 0.60 0.75 0.75

Rareness level =5%

Sensitivity 0.82 0.76 0.79 0.75 0.79 0.80 0.77 0.77

Specificity 0.98 0.98 0.98 0.99 0.96 0.96 0.99 0.99

Accuracy 0.97 0.97 0.97 0.98 0.95 0.95 0.98 0.98

Fscore 0.89 0.84 0.87 0.85 0.85 0.86 0.86 0.86

Fmeasure 0.76 0.72 0.77 0.77 0.65 0.66 0.81 0.81

Rareness level =7%

Sensitivity 0.78 0.76 0.68 0.70 0.80 0.82 0.69 0.69

Specificity 0.98 0.98 0.99 0.99 0.96 0.96 1.00 1.00

Accuracy 0.97 0.97 0.97 0.97 0.95 0.95 0.97 0.97

Fscore 0.86 0.84 0.79 0.81 0.85 0.87 0.80 0.80

Fmeasure 0.77 0.75 0.73 0.76 0.69 0.70 0.78 0.78

Rareness level =10%

Sensitivity 0.78 0.80 0.56 0.64 0.79 0.81 0.62 0.62

Specificity 0.98 0.98 0.99 0.99 0.97 0.96 1.00 1.00

Accuracy 0.96 0.96 0.95 0.96 0.95 0.95 0.96 0.96

Fscore 0.86 0.87 0.70 0.77 0.85 0.87 0.76 0.76

Fmeasure 0.80 0.80 0.67 0.74 0.76 0.76 0.75 0.75

Rareness level =15%

Sensitivity 0.84 0.84 0.57 0.68 0.82 0.83 0.64 0.64

Specificity 0.98 0.98 1.00 0.99 0.96 0.96 1.00 1.00

Accuracy 0.96 0.96 0.93 0.95 0.94 0.94 0.95 0.95

Fscore 0.90 0.90 0.72 0.80 0.87 0.88 0.78 0.78

Fmeasure 0.86 0.85 0.71 0.79 0.80 0.81 0.77 0.77

Rareness level =25%

Sensitivity 0.93 0.90 0.63 0.74 0.86 0.86 0.68 0.68

Specificity 0.97 0.97 1.00 0.99 0.96 0.96 1.00 1.00

Accuracy 0.96 0.96 0.90 0.93 0.93 0.94 0.92 0.92

Fscore 0.95 0.93 0.77 0.84 0.89 0.90 0.81 0.81

Fmeasure 0.92 0.91 0.76 0.83 0.86 0.86 0.81 0.81

Rareness level =35%

Sensitivity 0.94 0.91 0.61 0.73 0.91 0.91 0.62 0.62

Specificity 0.97 0.97 1.00 0.99 0.95 0.95 1.00 1.00

Accuracy 0.96 0.95 0.86 0.90 0.93 0.93 0.87 0.87

Fscore 0.96 0.94 0.75 0.83 0.92 0.92 0.76 0.76

Fmeasure 0.94 0.92 0.75 0.83 0.90 0.90 0.76 0.76
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Table 5.17: Standard Deviations of Test Performance Indicators: PCM+NSGA-II vs.

Random+NSGA-II and PCM+RECGA vs. Random+RECGA (WBCO Dataset)

PCM+NSGA-II Random+NSGA-II PCM+RECGA Random+RECGA

H1 H2 H1 H2 H1 H2 H1 H2

Rareness level =1%

Sensitivity 0.19 0.33 0.30 0.28 0.34 0.34 0.25 0.25

Specificity 0.05 0.10 0.01 0.05 0.05 0.08 0.01 0.01

Accuracy 0.05 0.10 0.01 0.05 0.05 0.08 0.01 0.01

Fscore 0.14 0.30 0.24 0.22 0.31 0.31 0.19 0.19

Fmeasure 0.16 0.26 0.23 0.19 0.26 0.25 0.18 0.18

Rareness level =3%

Sensitivity 0.19 0.23 0.20 0.18 0.23 0.23 0.18 0.18

Specificity 0.03 0.01 0.01 0.02 0.03 0.04 0.01 0.01

Accuracy 0.03 0.01 0.01 0.02 0.03 0.03 0.01 0.01

Fscore 0.12 0.19 0.15 0.11 0.18 0.18 0.12 0.12

Fmeasure 0.14 0.18 0.15 0.14 0.17 0.18 0.13 0.13

Rareness level =5%

Sensitivity 0.14 0.18 0.15 0.15 0.18 0.19 0.14 0.14

Specificity 0.02 0.02 0.01 0.02 0.05 0.06 0.01 0.01

Accuracy 0.01 0.02 0.01 0.02 0.04 0.05 0.01 0.01

Fscore 0.09 0.12 0.11 0.10 0.12 0.13 0.09 0.09

Fmeasure 0.10 0.13 0.11 0.12 0.13 0.15 0.10 0.10

Rareness level =7%

Sensitivity 0.15 0.16 0.16 0.18 0.18 0.19 0.15 0.15

Specificity 0.01 0.01 0.01 0.01 0.05 0.04 0.01 0.01

Accuracy 0.01 0.01 0.01 0.01 0.04 0.04 0.01 0.01

Fscore 0.10 0.11 0.11 0.13 0.12 0.12 0.11 0.11

Fmeasure 0.09 0.11 0.10 0.12 0.13 0.13 0.11 0.11

Rareness level =10%

Sensitivity 0.12 0.14 0.14 0.17 0.18 0.19 0.12 0.12

Specificity 0.01 0.01 0.01 0.01 0.03 0.03 0.00 0.00

Accuracy 0.01 0.02 0.01 0.01 0.03 0.03 0.01 0.01

Fscore 0.08 0.09 0.11 0.14 0.12 0.13 0.10 0.10

Fmeasure 0.08 0.09 0.11 0.13 0.11 0.12 0.10 0.10

Rareness level =15%

Sensitivity 0.09 0.10 0.11 0.12 0.16 0.16 0.10 0.10

Specificity 0.01 0.01 0.01 0.01 0.03 0.06 0.00 0.00

Accuracy 0.01 0.02 0.02 0.02 0.03 0.05 0.02 0.02

Fscore 0.05 0.06 0.08 0.10 0.10 0.11 0.08 0.08

Fmeasure 0.06 0.06 0.08 0.10 0.09 0.11 0.08 0.08

Rareness level =25%

Sensitivity 0.05 0.07 0.12 0.11 0.17 0.17 0.06 0.06

Specificity 0.02 0.02 0.01 0.00 0.03 0.04 0.00 0.00

Accuracy 0.01 0.02 0.03 0.03 0.04 0.04 0.02 0.02

Fscore 0.02 0.04 0.09 0.09 0.11 0.11 0.04 0.04

Fmeasure 0.03 0.03 0.09 0.09 0.10 0.10 0.04 0.04

Rareness level =35%

Sensitivity 0.04 0.08 0.12 0.08 0.14 0.14 0.05 0.05

Specificity 0.02 0.03 0.01 0.00 0.04 0.04 0.00 0.00

Accuracy 0.01 0.03 0.04 0.03 0.04 0.04 0.02 0.02

Fscore 0.02 0.05 0.09 0.07 0.09 0.09 0.04 0.04

Fmeasure 0.02 0.05 0.09 0.07 0.09 0.09 0.04 0.04
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Table 5.18 gives the solution times of PCM+NSGA-II, Random+NSGA-II,

PCM+RECGA and Random+RECGA.

Table 5.18: Solution Times (in sec.) (WBCO Dataset)

PCM+NSGA-II Random+NSGA-II PCM+RECGA Random+RECGA

H1 H2 H1 H2 H1 H2 H1 H2

Rareness level =1%

AVG 12.37 8.80 8.64 4.28 4.59 7.87 0.99 1.61

STD.DEV 0.51 0.61 0.17 0.22 1.31 0.42 0.11 0.07

Rareness level =3%

AVG 12.44 8.89 8.69 4.36 4.57 6.52 1.03 1.64

STD.DEV 0.25 0.27 0.09 0.17 0.70 0.20 0.06 0.08

Rareness level =5%

AVG 12.73 9.08 8.87 4.46 4.76 6.39 1.10 1.77

STD.DEV 0.27 0.32 0.09 0.13 0.36 0.23 0.09 0.07

Rareness level =7%

AVG 13.05 13.14 9.01 4.58 4.97 10.53 1.11 1.80

STD.DEV 0.55 14.13 0.07 0.16 14.42 0.47 0.06 0.03

Rareness level =10%

AVG 15.17 58.75 9.28 4.79 6.55 56.39 1.18 1.92

STD.DEV 0.73 19.17 0.09 0.18 19.28 0.67 0.07 0.04

Rareness level =15%

AVG 16.36 67.18 9.82 5.11 7.26 64.78 1.25 2.06

STD.DEV 0.33 2.20 0.11 0.15 1.94 0.25 0.07 0.04

Rareness level =25%

AVG 18.57 69.49 11.07 5.85 8.47 66.94 1.47 2.44

STD.DEV 0.48 2.31 0.09 0.14 1.64 0.31 0.06 0.04

Rareness level =35%

AVG 21.32 73.63 12.54 6.78 10.06 69.25 1.75 2.90

STD.DEV 0.63 6.53 0.11 0.15 1.90 0.50 0.07 0.04
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5.5.1.2 Comparison of PCM+NSGA-II, PCM+RECGA and Competitor Mod-

els

In this section, we compare the performances of PCM+NSGA-II and

PCM+RECGA with those of competitor models. Tables 5.19, 5.21, 5.20 and 5.22

summarize average performances and standard deviations of performance indicators

for training and test, respectively.

Figure 5.1 illustrates the training and test performances of the models based on the

results given in Tables 5.19 and 5.21. Figure 5.2 shows the gaps between the models’

training and test performances. Note that, the gap refers to how much the training

performance is greater than the test performance and if the training performance lags

behind the test, the gap is expressed as zero.
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Table 5.19: Average Training Performances (WBCO Dataset)

PCM+NSGA-IIH1 PCM+NSGA-IIH2 PCM+RECGAH1 PCM+RECGAH2 LR pen-LR SVM ANN DT RF

Rareness level =1%

Sensitivity 0.93 0.70 0.92 0.93 0.97 0.94 0.69 0.96 0.84 1.00

Specificity 0.93 0.98 0.96 0.97 1.00 1.00 1.00 1.00 1.00 1.00

Accuracy 0.93 0.98 0.96 0.97 1.00 1.00 1.00 1.00 0.99 1.00

Fscore 0.92 0.79 0.92 0.94 0.98 0.96 0.71 0.97 0.87 1.00

Fmeasure 0.31 0.66 0.56 0.59 0.98 0.95 0.71 0.97 0.79 1.00

Rareness level =3%

Sensitivity 0.86 0.82 0.86 0.89 0.91 0.88 0.79 0.97 0.87 1.00

Specificity 0.96 1.00 0.97 0.97 1.00 1.00 1.00 1.00 1.00 1.00

Accuracy 0.96 0.99 0.97 0.97 0.99 0.99 0.99 1.00 0.99 1.00

Fscore 0.90 0.89 0.90 0.92 0.95 0.93 0.86 0.98 0.92 1.00

Fmeasure 0.62 0.84 0.68 0.70 0.92 0.90 0.83 0.97 0.87 1.00

Rareness level =5%

Sensitivity 0.77 0.84 0.82 0.86 0.89 0.87 0.83 0.97 0.86 1.00

Specificity 0.98 0.99 0.96 0.97 1.00 1.00 1.00 1.00 1.00 1.00

Accuracy 0.97 0.98 0.95 0.96 0.99 0.99 0.99 1.00 0.99 1.00

Fscore 0.86 0.91 0.88 0.90 0.94 0.93 0.90 0.98 0.92 1.00

Fmeasure 0.74 0.84 0.69 0.72 0.90 0.89 0.86 0.96 0.89 1.00

Rareness level =7%

Sensitivity 0.80 0.88 0.85 0.88 0.90 0.89 0.88 0.98 0.90 1.00

Specificity 0.99 0.99 0.96 0.96 0.99 0.99 0.99 1.00 0.99 1.00

Accuracy 0.97 0.98 0.96 0.96 0.99 0.99 0.98 1.00 0.99 1.00

Fscore 0.88 0.93 0.90 0.91 0.94 0.94 0.93 0.99 0.94 1.00

Fmeasure 0.80 0.89 0.75 0.76 0.91 0.90 0.89 0.97 0.90 1.00

Rareness level =10%

Sensitivity 0.84 0.90 0.84 0.87 0.92 0.91 0.91 0.99 0.93 1.00

Specificity 0.99 0.99 0.97 0.97 0.99 0.99 0.99 0.99 0.99 1.00

Accuracy 0.97 0.98 0.96 0.96 0.98 0.98 0.98 0.99 0.98 1.00

Fscore 0.90 0.94 0.89 0.91 0.95 0.95 0.95 0.99 0.96 1.00

Fmeasure 0.85 0.91 0.80 0.81 0.92 0.92 0.91 0.97 0.93 1.00

Rareness level =15%

Sensitivity 0.89 0.92 0.86 0.87 0.93 0.92 0.94 0.99 0.95 1.00

Specificity 0.98 0.99 0.96 0.97 0.99 0.99 0.99 0.99 0.99 1.00

Accuracy 0.97 0.98 0.95 0.95 0.98 0.98 0.98 0.99 0.98 1.00

Fscore 0.93 0.95 0.90 0.91 0.96 0.95 0.96 0.99 0.97 1.00

Fmeasure 0.90 0.93 0.83 0.84 0.93 0.93 0.93 0.97 0.94 1.00

Rareness level =25%

Sensitivity 0.94 0.93 0.85 0.86 0.95 0.94 0.96 1.00 0.97 1.00

Specificity 0.98 0.99 0.97 0.97 0.98 0.98 0.98 0.98 0.98 1.00

Accuracy 0.97 0.97 0.94 0.94 0.97 0.97 0.98 0.99 0.98 1.00

Fscore 0.96 0.96 0.89 0.90 0.96 0.96 0.97 0.99 0.98 1.00

Fmeasure 0.94 0.94 0.86 0.87 0.95 0.94 0.95 0.98 0.96 1.00

Rareness level =35%

Sensitivity 0.96 0.94 0.90 0.91 0.96 0.96 0.97 1.00 0.98 1.00

Specificity 0.98 0.98 0.96 0.96 0.98 0.98 0.98 0.98 0.98 1.00

Accuracy 0.97 0.97 0.94 0.94 0.97 0.97 0.97 0.99 0.98 1.00

Fscore 0.97 0.96 0.92 0.93 0.97 0.97 0.97 0.99 0.98 1.00

Fmeasure 0.96 0.95 0.91 0.91 0.96 0.96 0.96 0.98 0.97 1.00
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Table 5.20: Standard Deviations of Training Performance Indicators (WBCO Dataset)

PCM+NSGA-II H1 PCM+NSGA-II H2 PCM+RECGA H1 PCM+RECGA H2 LR pen-LR SVM ANN DT RF

Rareness level =1%

Sensitivity 0.17 0.25 0.17 0.19 0.10 0.14 0.41 0.12 0.27 0.00

Specificity 0.04 0.10 0.05 0.07 0.00 0.00 0.00 0.00 0.00 0.00

Accuracy 0.03 0.10 0.05 0.07 0.00 0.00 0.01 0.00 0.00 0.00

Fscore 0.11 0.18 0.11 0.12 0.07 0.09 0.41 0.08 0.24 0.00

Fmeasure 0.14 0.19 0.28 0.28 0.08 0.10 0.41 0.09 0.22 0.00

Rareness level =3%

Sensitivity 0.14 0.11 0.15 0.16 0.10 0.11 0.23 0.05 0.12 0.00

Specificity 0.03 0.00 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.00

Accuracy 0.02 0.01 0.03 0.03 0.01 0.01 0.01 0.00 0.00 0.00

Fscore 0.08 0.07 0.08 0.09 0.06 0.06 0.21 0.03 0.07 0.00

Fmeasure 0.12 0.09 0.16 0.17 0.09 0.09 0.21 0.04 0.07 0.00

Rareness level =5%

Sensitivity 0.14 0.11 0.14 0.15 0.09 0.08 0.15 0.05 0.10 0.00

Specificity 0.01 0.02 0.04 0.05 0.00 0.00 0.00 0.00 0.00 0.00

Accuracy 0.01 0.02 0.04 0.04 0.01 0.01 0.01 0.00 0.00 0.00

Fscore 0.09 0.07 0.08 0.09 0.05 0.05 0.13 0.03 0.06 0.00

Fmeasure 0.10 0.11 0.12 0.13 0.08 0.07 0.13 0.04 0.05 0.00

Rareness level =7%

Sensitivity 0.10 0.08 0.14 0.15 0.06 0.06 0.08 0.04 0.07 0.00

Specificity 0.01 0.01 0.04 0.04 0.00 0.00 0.00 0.00 0.01 0.00

Accuracy 0.01 0.01 0.03 0.03 0.01 0.01 0.01 0.01 0.00 0.00

Fscore 0.06 0.05 0.09 0.09 0.04 0.04 0.05 0.02 0.04 0.00

Fmeasure 0.07 0.06 0.13 0.12 0.05 0.05 0.06 0.04 0.04 0.00

Rareness level =10%

Sensitivity 0.08 0.07 0.14 0.15 0.04 0.04 0.06 0.03 0.04 0.00

Specificity 0.01 0.01 0.03 0.03 0.00 0.00 0.01 0.01 0.01 0.00

Accuracy 0.01 0.01 0.03 0.03 0.01 0.01 0.01 0.01 0.01 0.00

Fscore 0.05 0.04 0.09 0.10 0.02 0.02 0.03 0.01 0.02 0.00

Fmeasure 0.06 0.06 0.10 0.10 0.04 0.04 0.05 0.03 0.03 0.00

Rareness level =15%

Sensitivity 0.06 0.07 0.16 0.17 0.03 0.03 0.04 0.02 0.03 0.00

Specificity 0.01 0.01 0.03 0.06 0.00 0.00 0.01 0.01 0.01 0.00

Accuracy 0.01 0.01 0.02 0.05 0.01 0.01 0.01 0.01 0.01 0.00

Fscore 0.03 0.05 0.10 0.11 0.02 0.02 0.02 0.01 0.02 0.00

Fmeasure 0.04 0.05 0.09 0.11 0.02 0.02 0.03 0.02 0.02 0.00

Rareness level =25%

Sensitivity 0.03 0.07 0.18 0.18 0.01 0.02 0.02 0.01 0.02 0.00

Specificity 0.01 0.01 0.03 0.04 0.00 0.00 0.01 0.01 0.01 0.00

Accuracy 0.01 0.02 0.04 0.04 0.01 0.01 0.01 0.01 0.01 0.00

Fscore 0.02 0.04 0.12 0.12 0.01 0.01 0.01 0.01 0.01 0.00

Fmeasure 0.02 0.04 0.12 0.12 0.01 0.01 0.02 0.01 0.01 0.00

Rareness level =35%

Sensitivity 0.02 0.07 0.13 0.12 0.01 0.01 0.01 0.00 0.01 0.00

Specificity 0.01 0.03 0.03 0.03 0.00 0.00 0.01 0.01 0.01 0.00

Accuracy 0.01 0.03 0.04 0.04 0.01 0.01 0.00 0.00 0.01 0.00

Fscore 0.01 0.04 0.08 0.08 0.01 0.01 0.01 0.00 0.01 0.00

Fmeasure 0.01 0.04 0.08 0.08 0.01 0.01 0.01 0.01 0.01 0.00
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Table 5.21: Average Test Performances (WBCO Dataset)

PCM+NSGA-IIH1 PCM+NSGA-IIH2 PCM+RECGAH1 PCM+RECGAH2 LR pen-LR SVM ANN DT RF

Rareness level =1%

Sensitivity 0.93 0.65 0.74 0.73 0.50 0.52 0.29 0.58 0.47 0.46

Specificity 0.93 0.98 0.95 0.96 0.99 0.99 1.00 0.99 0.99 0.99

Accuracy 0.93 0.97 0.95 0.96 0.98 0.99 0.99 0.99 0.99 0.99

Fscore 0.91 0.73 0.76 0.76 0.57 0.61 0.32 0.64 0.54 0.53

Fmeasure 0.31 0.54 0.40 0.42 0.42 0.46 0.28 0.52 0.42 0.43

Rareness level =3%

Sensitivity 0.85 0.67 0.75 0.76 0.63 0.63 0.56 0.64 0.63 0.63

Specificity 0.96 0.99 0.97 0.97 0.99 0.99 0.99 0.99 0.98 0.99

Accuracy 0.96 0.98 0.96 0.96 0.98 0.98 0.98 0.98 0.97 0.98

Fscore 0.89 0.77 0.82 0.83 0.74 0.75 0.66 0.74 0.74 0.74

Fmeasure 0.61 0.64 0.59 0.60 0.63 0.64 0.60 0.62 0.59 0.62

Rareness level =5%

Sensitivity 0.82 0.76 0.79 0.80 0.73 0.73 0.71 0.71 0.66 0.70

Specificity 0.98 0.98 0.96 0.96 0.99 0.99 0.99 0.98 0.98 0.98

Accuracy 0.97 0.97 0.95 0.95 0.97 0.97 0.98 0.97 0.97 0.97

Fscore 0.89 0.84 0.85 0.86 0.83 0.83 0.80 0.81 0.77 0.80

Fmeasure 0.76 0.72 0.65 0.66 0.73 0.73 0.73 0.69 0.65 0.69

Rareness level =7%

Sensitivity 0.78 0.76 0.80 0.82 0.75 0.73 0.76 0.73 0.68 0.75

Specificity 0.98 0.98 0.96 0.96 0.98 0.99 0.99 0.98 0.98 0.98

Accuracy 0.97 0.97 0.95 0.95 0.97 0.97 0.97 0.96 0.96 0.96

Fscore 0.86 0.84 0.85 0.87 0.84 0.83 0.85 0.82 0.79 0.84

Fmeasure 0.77 0.75 0.69 0.70 0.76 0.75 0.78 0.73 0.69 0.74

Rareness level =10%

Sensitivity 0.78 0.80 0.79 0.81 0.81 0.79 0.83 0.82 0.78 0.80

Specificity 0.98 0.98 0.97 0.96 0.98 0.98 0.98 0.97 0.97 0.98

Accuracy 0.96 0.96 0.95 0.95 0.97 0.96 0.97 0.96 0.95 0.96

Fscore 0.86 0.87 0.85 0.87 0.89 0.87 0.90 0.88 0.86 0.87

Fmeasure 0.80 0.80 0.76 0.76 0.83 0.82 0.84 0.80 0.77 0.80

Rareness level =15%

Sensitivity 0.84 0.84 0.82 0.83 0.88 0.87 0.91 0.89 0.83 0.89

Specificity 0.98 0.98 0.96 0.96 0.98 0.98 0.98 0.97 0.97 0.98

Accuracy 0.96 0.96 0.94 0.94 0.97 0.96 0.97 0.96 0.95 0.96

Fscore 0.90 0.90 0.87 0.88 0.93 0.92 0.94 0.93 0.89 0.93

Fmeasure 0.86 0.85 0.80 0.81 0.89 0.88 0.89 0.87 0.82 0.88

Rareness level =25%

Sensitivity 0.93 0.90 0.86 0.86 0.94 0.94 0.96 0.95 0.92 0.95

Specificity 0.97 0.97 0.96 0.96 0.98 0.98 0.97 0.96 0.96 0.97

Accuracy 0.96 0.96 0.93 0.94 0.97 0.97 0.97 0.96 0.95 0.97

Fscore 0.95 0.93 0.89 0.90 0.96 0.96 0.96 0.96 0.94 0.96

Fmeasure 0.92 0.91 0.86 0.86 0.94 0.93 0.94 0.92 0.90 0.93

Rareness level =35%

Sensitivity 0.94 0.91 0.91 0.91 0.95 0.95 0.96 0.97 0.93 0.97

Specificity 0.97 0.97 0.95 0.95 0.97 0.97 0.97 0.96 0.95 0.96

Accuracy 0.96 0.95 0.93 0.93 0.97 0.97 0.97 0.96 0.95 0.97

Fscore 0.96 0.94 0.92 0.92 0.96 0.96 0.97 0.96 0.94 0.97

Fmeasure 0.94 0.92 0.90 0.90 0.95 0.95 0.95 0.95 0.92 0.95
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Table 5.22: Standard Deviations of Test Performance Indicators (WBCO Dataset)

PCM+NSGA-IIH1 PCM+NSGA-IIH2 PCM+RECGA H1 PCM+RECGA H2 LR pen-LR SVM ANN DT RF

Rareness level =1%

Sensitivity 0.19 0.33 0.34 0.34 0.37 0.34 0.39 0.37 0.37 0.36

Specificity 0.05 0.10 0.05 0.08 0.01 0.01 0.00 0.01 0.01 0.01

Accuracy 0.05 0.10 0.05 0.08 0.01 0.01 0.00 0.01 0.01 0.01

Fscore 0.14 0.30 0.31 0.31 0.38 0.34 0.42 0.36 0.38 0.38

Fmeasure 0.16 0.26 0.26 0.25 0.31 0.28 0.36 0.31 0.32 0.33

Rareness level =3%

Sensitivity 0.19 0.23 0.23 0.23 0.23 0.22 0.30 0.25 0.22 0.23

Specificity 0.03 0.01 0.03 0.04 0.01 0.01 0.01 0.01 0.01 0.01

Accuracy 0.03 0.01 0.03 0.03 0.01 0.01 0.01 0.01 0.01 0.01

Fscore 0.12 0.19 0.18 0.18 0.20 0.18 0.30 0.22 0.19 0.19

Fmeasure 0.14 0.18 0.17 0.18 0.19 0.18 0.27 0.19 0.17 0.19

Rareness level =5%

Sensitivity 0.14 0.18 0.18 0.19 0.17 0.16 0.21 0.20 0.20 0.19

Specificity 0.02 0.02 0.05 0.06 0.01 0.01 0.01 0.01 0.01 0.01

Accuracy 0.01 0.02 0.04 0.05 0.01 0.01 0.01 0.01 0.01 0.01

Fscore 0.09 0.12 0.12 0.13 0.13 0.12 0.19 0.15 0.16 0.14

Fmeasure 0.10 0.13 0.13 0.15 0.13 0.12 0.18 0.14 0.14 0.14

Rareness level =7%

Sensitivity 0.15 0.16 0.18 0.19 0.15 0.16 0.14 0.18 0.15 0.14

Specificity 0.01 0.01 0.05 0.04 0.01 0.01 0.01 0.01 0.01 0.01

Accuracy 0.01 0.01 0.04 0.04 0.01 0.01 0.01 0.01 0.01 0.01

Fscore 0.10 0.11 0.12 0.12 0.10 0.11 0.12 0.14 0.11 0.09

Fmeasure 0.09 0.11 0.13 0.13 0.11 0.11 0.11 0.13 0.10 0.10

Rareness level =10%

Sensitivity 0.12 0.14 0.18 0.19 0.09 0.10 0.09 0.13 0.11 0.11

Specificity 0.01 0.01 0.03 0.03 0.01 0.01 0.01 0.01 0.02 0.01

Accuracy 0.01 0.02 0.03 0.03 0.01 0.01 0.01 0.01 0.02 0.02

Fscore 0.08 0.09 0.12 0.13 0.05 0.06 0.06 0.08 0.07 0.07

Fmeasure 0.08 0.09 0.11 0.12 0.06 0.07 0.06 0.08 0.07 0.08

Rareness level =15%

Sensitivity 0.09 0.10 0.16 0.16 0.07 0.07 0.06 0.09 0.09 0.07

Specificity 0.01 0.01 0.03 0.06 0.01 0.01 0.01 0.02 0.02 0.01

Accuracy 0.01 0.02 0.03 0.05 0.01 0.01 0.01 0.02 0.02 0.01

Fscore 0.05 0.06 0.10 0.11 0.04 0.04 0.03 0.05 0.06 0.04

Fmeasure 0.06 0.06 0.09 0.11 0.04 0.04 0.04 0.05 0.06 0.05

Rareness level =25%

Sensitivity 0.05 0.07 0.17 0.17 0.03 0.03 0.03 0.04 0.05 0.03

Specificity 0.02 0.02 0.03 0.04 0.01 0.01 0.01 0.02 0.02 0.01

Accuracy 0.01 0.02 0.04 0.04 0.01 0.01 0.01 0.01 0.02 0.01

Fscore 0.02 0.04 0.11 0.11 0.01 0.02 0.01 0.02 0.03 0.02

Fmeasure 0.03 0.03 0.10 0.10 0.02 0.02 0.02 0.03 0.03 0.02

Rareness level =35%

Sensitivity 0.04 0.08 0.14 0.14 0.02 0.02 0.02 0.02 0.04 0.02

Specificity 0.02 0.03 0.04 0.04 0.01 0.01 0.01 0.01 0.02 0.01

Accuracy 0.01 0.03 0.04 0.04 0.01 0.01 0.01 0.01 0.02 0.01

Fscore 0.02 0.05 0.09 0.09 0.01 0.01 0.01 0.01 0.02 0.01

Fmeasure 0.02 0.05 0.09 0.09 0.01 0.02 0.01 0.02 0.02 0.02
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When the model performances in training and test are observed, the experimental

analysis suggest that, in terms of specificity, all models are quite successful, in all

levels of rareness. However, even if some of the competitor models’ training perfor-

mances in sensitivity are high, their performances in test is poor and this incompat-

ibility is explicit for low levels of rareness. For example, in training, the sensitivity

performance of RF is 1.00 for all configurations, but in test, its sensitivity in 1%, 3%,

5%, 7% and 10% rareness are 0.46, 0.63, 0.70, 0.75 and 0.80, respectively. As it

can be observed from Figure 5.2, for all models, the gap between training and test is

very small for specificity. Additionally, as the rareness level grows, the gap dimin-

ishes for sensitivity and Fscore. The reason is that, for the configurations where the

rareness level is high, there are more positive observations in the training sets. Thus,

the models are able to learn the specifications of these observations more accurately.

For rareness levels less than 10% (i.e. 1%, 3%, 5% and 7%), the gap between training

and test performances of PCM+NSGA-II and PCM+RECGA are always less than the

average gap of the models, in terms of sensitivity and Fscore.

Therefore, it can be claimed that, while most of the competitor models tend to overfit

to the training sample, PCM+NSGA-II and PCM+RECGA are much more generaliz-

able, when one class of observations are rare compared to other.
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The graphics in Figure 5.3 give the average test performances and standard deviations

of sensitivity, specificity and Fscore.

As it is observed from Table 5.21 and Figure 5.3, PCM+RECGA is less sensitive

than PCM+NSGA-II to the changes in hyper-parameter choices. Its performance

does not change significantly for hyper-parameter sets H1 and H2, at any level of

rareness. However, for low levels of rarity, the hyper-parameter set represented with

H1 gives strongly better results for PCM+NSGA-II. Recall that, H1 is determined

with the dataset where the positive observations are extremely rare in the population.

Therefore, this result is not surprising. It is also expected that, if the hyper-parameter

optimization process is repeated for all levels of rarity, the model performances could

be better. It is also observed that, for high levels of rareness, the hyper-parameter

selection does not change model performances as much as it does in the low levels of

rareness.

The graphics also indicate that, for high levels of rareness, all models perform good

and regardless of the ratio of positive observations in the population, the specificity

performances are high, in general. However, in terms of sensitivity and Fscore,

PCM+NSGA-II and PCM+RECGA are far better than all the competitor models for

1% of rarity. The most successful model, PCM+NSGA-IIH1, has quite high perfor-

mances with 0.93 of sensitivity, 0.93 of specificity and 0.91 of Fscore. The superiority

of the suggested models proceeds for the rareness levels of 3% and 5%. They have a

strong ability to discriminate positive and negative cases even the number of positive

observations in training set is significantly few.

As the rarity of positive observations becomes greater than 10%, the performances

of competitor models strengthen. However, we must note that, PCM+NSGA-II and

PCM+RECGA are still good classifier algorithms.

The figures also show that, as the proportion of positive cases decreases in the pop-

ulation, standard deviations of sensitivity and Fscore of all models tend to grow.

PCM+NSGA-II is one of the most robust models where the standard deviations do

not change significantly for rare cases. On the other hand, especially in competitor

models, significant amount of increase is observed. For rareness level of 1%, among

the competitor models, the lowest standard deviations of sensitivity and Fscore are
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observed in pen-LR with the value of 0.34. In the same rarity level, the correspond-

ing values for PCM+NSGA-IIH1 are 0.19 and 0.14; and for PCM+RECGAH1 they are

0.34 and 0.31, respectively. For 3% and 5% of rarity, similar results are observed.

PCM+NSGA-IIH1 and PCM+RECGAH1 have the lowest standard deviations, in gen-

eral.

We do not give a detailed analysis about Fmeasure performances since it is not one

of our performance indicators. Also, due to the facts that are explained in Section 3,

Fmeasure is not a meaningful measure when one class of observations are extremely

rare compared to other. However, for the configurations where the positive observa-

tions are not extremely rare, the performances of PCM+NSGA-II and PCM+RECGA

compete well with the competitor models. Since all the competitor models solve an

instance within a minute, we do not report their solution times in detail.

When we compare the sensitivity and Fscore performances of PCM+NSGA-II and

PCM+RECGA (since the specificity values of both models are high, we do not com-

pare their specificity values), it is observed that, for low levels of rareness (i.e. 1%,

3%, 5%) PCM+NSGA-IIH1 outperforms PCM+RECGAH1 while their results are much

closer for the remaining configurations. However, for 15%, 25% and 35%,

PCM+NSGA-IIH2 again has slightly better performances, compared to

PCM+RECGAH2.

More detailed tables that summarize the performances of suggested and compared

models can be found in the Appendix (Section K). These tables also include the num-

ber of correct classifications as well as the ratio of correct classifications.
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Figure 5.3: Performances for Different Rareness Levels (WBCO Dataset)
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Remember that, in Section 5.1 we report the performances of the experiments in the

literature which are conducted with the WBCO dataset. None of these experiments

consider the rare event classification and most of them train a model with the original

level of rarity of the dataset. The accuracy results range between 94-74% and 99-

68%, and in most of these studies, sensitivity and specificity rates are above 96%.

In the corresponding setting (when rareness level = 35%), accuracy, sensitivity and

specificity performances of PCM+NSGA-IIH2 and PCM+RECGAH2 are 95%, 91%,

97% and 93%, 91%, 95%, respectively. Hence, in the original rarity of the dataset,

PCM+NSGA-II and PCM+RECGA can compete with the models suggested in the

literature.

5.5.2 Wisconsin Breast Cancer Diagnostic Dataset

5.5.2.1 Role of PCM to Generate Initial Solutions to the Evolutionary Algo-

rithms

As in the previous sections, we start with analyzing the performances of PCM+NSGA-

II, Random+NSGA-II, PCM+RECGA and Random+RECGA, to evaluate the effect

of generating initial solutions of evolutionary algorithms via the MILP model, PCM,

or random. Tables 5.28, 5.29, 5.30 and 5.31 summarize the training and test perfor-

mances of these models.

It is observed that, both in training and test, Random+NSGA-II has higher sensitivity

values compared to PCM+NSGA-II. However, its specificity values are poor. The bi-

ased results are observed in the Fscore performances, as well. That is, PCM+NSGA-

II has much better Fscore values than Random+NSGA-II (regardless of whether the

hyper-parameter set is H1 or H2). For the configurations where the rareness level

is low, the performance of Random+NSGA-II in specificity are quite low, but as the

rareness level grows, its performance improves. However, it still lags behind the

PCM+NSGA-II both in terms of specificity and Fscore.

The same analyses conducted for PCM+RECGA and Random+RECGA give simi-

lar results. Both in training and test, although the sensitivity performances of Ran-

dom+RECGA is higher than that of PCM+RECGA, it has poor performance in speci-
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ficity. Thus, regardless of whether the experiments are conducted with the hyper-

parameter set H1 or H2, Fsore values of PCM+RECGA are almost always better

than Fscore of Random+RECGA. For low levels of rareness, the failure of Ran-

dom+RECGA is much more obvious. As the rareness grows it can achieve better

performances, nevertheless, PCM+RECGA outperforms Random+RECGA in speci-

ficity and Fscore.

These results indicate that, in the experiments conducted with the WBCD dataset,

Random+NSGA-II and Random+RECGA tend to classify most of the patients as

positive, yielding poor performances in specificity and Fscore. Thus, we can conclude

that it is preferable to obtain the initial solution set of evolutionary algorithms via

PCM rather than to randomly generate it.
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Table 5.23: Average Training Performances: PCM+NSGA-II vs.

Random+NSGA-II and PCM+RECGA vs. Random+RECGA (WBCD Dataset)

PCM+NSGA-II Random+NSGA-II PCM+RECGA Random+RECGA

H1 H2 H1 H2 H1 H2 H1 H2

Rareness level= 1%

Sensitivity 0.89 1.00 0.99 1.00 1.00 1.00 1.00 1.00

Specificity 0.78 0.54 0.50 0.48 0.89 0.89 0.56 0.49

Accuracy 0.78 0.54 0.51 0.48 0.89 0.89 0.56 0.49

Fscore 0.77 0.69 0.66 0.64 0.93 0.94 0.72 0.65

Fmeasure 0.08 0.04 0.03 0.03 0.37 0.39 0.04 0.03

Rareness level=3%

Sensitivity 0.84 0.94 0.95 0.98 0.97 0.95 1.00 1.00

Specificity 0.95 0.78 0.53 0.49 0.92 0.94 0.56 0.52

Accuracy 0.94 0.79 0.54 0.51 0.93 0.94 0.58 0.53

Fscore 0.88 0.85 0.67 0.65 0.94 0.94 0.72 0.68

Fmeasure 0.52 0.24 0.12 0.12 0.56 0.59 0.13 0.12

Rareness level=5%

Sensitivity 0.81 0.92 0.95 0.97 0.94 0.93 0.99 0.99

Specificity 0.96 0.82 0.56 0.51 0.93 0.94 0.57 0.53

Accuracy 0.96 0.82 0.58 0.53 0.93 0.94 0.59 0.55

Fscore 0.87 0.86 0.70 0.67 0.93 0.93 0.72 0.69

Fmeasure 0.66 0.35 0.18 0.17 0.65 0.69 0.19 0.18

Rareness level=7%

Sensitivity 0.76 0.90 0.95 0.97 0.91 0.89 0.98 0.99

Specificity 0.97 0.86 0.59 0.54 0.92 0.93 0.59 0.55

Accuracy 0.96 0.87 0.62 0.57 0.92 0.93 0.61 0.58

Fscore 0.85 0.88 0.73 0.69 0.91 0.90 0.73 0.71

Fmeasure 0.73 0.51 0.26 0.24 0.65 0.66 0.26 0.25

Rareness level=10%

Sensitivity 0.82 0.91 0.96 0.97 0.91 0.91 0.99 0.99

Specificity 0.98 0.89 0.63 0.56 0.93 0.93 0.60 0.59

Accuracy 0.96 0.89 0.66 0.60 0.93 0.93 0.64 0.63

Fscore 0.89 0.89 0.76 0.71 0.92 0.92 0.74 0.73

Fmeasure 0.81 0.63 0.36 0.33 0.73 0.75 0.35 0.35

Rareness level=15%

Sensitivity 0.85 0.87 0.96 0.98 0.90 0.91 0.98 0.98

Specificity 0.98 0.93 0.69 0.60 0.93 0.94 0.65 0.63

Accuracy 0.96 0.92 0.73 0.66 0.92 0.93 0.70 0.68

Fscore 0.91 0.90 0.80 0.74 0.91 0.92 0.78 0.77

Fmeasure 0.86 0.77 0.52 0.46 0.78 0.80 0.50 0.49

Rareness level=25%

Sensitivity 0.91 0.89 0.96 0.98 0.92 0.92 0.96 0.96

Specificity 0.97 0.94 0.77 0.68 0.93 0.93 0.72 0.70

Accuracy 0.95 0.93 0.82 0.76 0.93 0.93 0.78 0.77

Fscore 0.93 0.91 0.86 0.80 0.92 0.92 0.82 0.81

Fmeasure 0.90 0.86 0.73 0.67 0.86 0.87 0.69 0.68

Rareness level=37%

Sensitivity 0.94 0.92 0.97 0.98 0.95 0.94 0.96 0.96

Specificity 0.96 0.94 0.86 0.77 0.91 0.92 0.83 0.83

Accuracy 0.95 0.93 0.90 0.85 0.92 0.93 0.88 0.87

Fscore 0.95 0.93 0.91 0.86 0.93 0.93 0.89 0.89

Fmeasure 0.93 0.91 0.87 0.83 0.90 0.91 0.86 0.85
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Table 5.24: Standard Deviations of Training Performance Indicators: PCM+NSGA-II

vs. Random+NSGA-II and PCM+RECGA vs. Random+RECGA (WBCD Dataset)

PCM+NSGA-II Random+NSGA-II PCM+RECGA Random+RECGA

H1 H2 H1 H2 H1 H2 H1 H2

Rareness level=1%

Sensitivity 0.00 0.31 0.00 0.10 0.00 0.00 0.00 0.00

Specificity 0.07 0.13 0.05 0.07 0.15 0.14 0.06 0.05

Accuracy 0.07 0.13 0.05 0.07 0.15 0.14 0.06 0.05

Fscore 0.06 0.28 0.05 0.09 0.10 0.09 0.06 0.04

Fmeasure 0.01 0.06 0.00 0.01 0.32 0.31 0.00 0.00

Rareness level=3%

Sensitivity 0.12 0.16 0.07 0.11 0.12 0.08 0.02 0.00

Specificity 0.08 0.04 0.05 0.06 0.06 0.08 0.06 0.05

Accuracy 0.08 0.04 0.05 0.06 0.06 0.07 0.06 0.05

Fscore 0.07 0.09 0.05 0.05 0.08 0.06 0.05 0.04

Fmeasure 0.08 0.14 0.01 0.02 0.24 0.24 0.01 0.02

Rareness level=5%

Sensitivity 0.10 0.14 0.07 0.09 0.10 0.09 0.05 0.04

Specificity 0.06 0.03 0.06 0.06 0.07 0.07 0.06 0.05

Accuracy 0.05 0.03 0.05 0.06 0.06 0.07 0.06 0.04

Fscore 0.06 0.09 0.05 0.05 0.06 0.05 0.05 0.04

Fmeasure 0.08 0.14 0.02 0.02 0.22 0.22 0.02 0.02

Rareness level=7%

Sensitivity 0.09 0.11 0.05 0.06 0.10 0.07 0.04 0.05

Specificity 0.06 0.02 0.06 0.05 0.06 0.06 0.06 0.05

Accuracy 0.06 0.02 0.06 0.05 0.06 0.06 0.05 0.04

Fscore 0.05 0.07 0.05 0.04 0.06 0.04 0.05 0.04

Fmeasure 0.10 0.10 0.03 0.03 0.14 0.15 0.02 0.02

Rareness level=10%

Sensitivity 0.08 0.08 0.04 0.04 0.08 0.08 0.03 0.02

Specificity 0.05 0.02 0.06 0.05 0.06 0.05 0.05 0.05

Accuracy 0.04 0.02 0.05 0.05 0.05 0.04 0.05 0.05

Fscore 0.04 0.05 0.05 0.04 0.05 0.04 0.04 0.04

Fmeasure 0.09 0.08 0.03 0.04 0.13 0.11 0.03 0.03

Rareness level=15%

Sensitivity 0.07 0.04 0.03 0.03 0.06 0.07 0.03 0.03

Specificity 0.03 0.02 0.06 0.05 0.04 0.03 0.05 0.05

Accuracy 0.03 0.02 0.05 0.04 0.03 0.03 0.04 0.04

Fscore 0.04 0.03 0.05 0.03 0.04 0.03 0.04 0.04

Fmeasure 0.07 0.05 0.04 0.04 0.07 0.06 0.04 0.04

Rareness level=25%

Sensitivity 0.04 0.03 0.02 0.02 0.04 0.05 0.02 0.02

Specificity 0.03 0.02 0.05 0.05 0.04 0.04 0.05 0.04

Accuracy 0.02 0.02 0.04 0.04 0.03 0.02 0.03 0.03

Fscore 0.02 0.02 0.04 0.03 0.03 0.02 0.03 0.03

Fmeasure 0.04 0.03 0.04 0.04 0.04 0.04 0.03 0.03

Rareness level=37%

Sensitivity 0.03 0.02 0.02 0.02 0.03 0.03 0.02 0.02

Specificity 0.03 0.02 0.05 0.03 0.03 0.03 0.03 0.03

Accuracy 0.02 0.02 0.03 0.02 0.02 0.01 0.02 0.02

Fscore 0.02 0.02 0.03 0.02 0.02 0.01 0.02 0.02

Fmeasure 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.03

134



Table 5.25: Average Test Performances: PCM+NSGA-II vs. Random+NSGA-II and

PCM+RECGA vs. Random+RECGA (WBCD Dataset)

PCM+NSGA-II Random+NSGA-II PCM+RECGA Random+RECGA

H1 H2 H1 H2 H1 H2 H1 H2

Rareness level=1%

Sensitivity 0.94 0.99 0.98 0.99 0.77 0.72 0.94 1.00

Specificity 0.78 0.56 0.52 0.50 0.88 0.89 0.56 0.51

Accuracy 0.79 0.56 0.52 0.50 0.88 0.89 0.56 0.52

Fscore 0.82 0.71 0.67 0.66 0.70 0.67 0.67 0.68

Fmeasure 0.10 0.04 0.03 0.03 0.24 0.26 0.04 0.03

Rareness level=3%

Sensitivity 0.79 0.92 0.95 0.98 0.76 0.75 0.97 1.00

Specificity 0.95 0.81 0.54 0.52 0.92 0.94 0.57 0.54

Accuracy 0.95 0.81 0.56 0.53 0.92 0.93 0.58 0.56

Fscore 0.85 0.85 0.69 0.67 0.80 0.80 0.71 0.70

Fmeasure 0.54 0.26 0.12 0.12 0.43 0.46 0.13 0.13

Rareness level=5%

Sensitivity 0.77 0.94 0.95 0.99 0.80 0.77 0.99 1.00

Specificity 0.97 0.84 0.57 0.54 0.93 0.94 0.57 0.55

Accuracy 0.96 0.85 0.59 0.56 0.92 0.93 0.59 0.57

Fscore 0.84 0.88 0.71 0.69 0.84 0.82 0.72 0.71

Fmeasure 0.65 0.39 0.18 0.18 0.56 0.57 0.19 0.19

Rareness level=7%

Sensitivity 0.76 0.92 0.95 0.99 0.85 0.84 0.98 0.99

Specificity 0.98 0.87 0.60 0.56 0.92 0.93 0.59 0.58

Accuracy 0.96 0.88 0.62 0.59 0.92 0.92 0.62 0.61

Fscore 0.84 0.89 0.73 0.71 0.87 0.87 0.74 0.73

Fmeasure 0.73 0.54 0.26 0.25 0.62 0.63 0.27 0.26

Rareness level=10%

Sensitivity 0.75 0.89 0.93 0.97 0.83 0.82 0.98 0.98

Specificity 0.98 0.90 0.63 0.59 0.93 0.93 0.61 0.61

Accuracy 0.95 0.90 0.66 0.63 0.92 0.92 0.65 0.65

Fscore 0.84 0.89 0.75 0.73 0.87 0.87 0.75 0.75

Fmeasure 0.76 0.65 0.35 0.34 0.68 0.69 0.35 0.35

Rareness level=15%

Sensitivity 0.81 0.87 0.96 0.98 0.87 0.87 0.98 0.98

Specificity 0.97 0.93 0.69 0.63 0.93 0.94 0.67 0.66

Accuracy 0.95 0.92 0.73 0.69 0.92 0.93 0.71 0.71

Fscore 0.88 0.90 0.80 0.77 0.90 0.90 0.79 0.79

Fmeasure 0.83 0.78 0.52 0.49 0.77 0.78 0.51 0.50

Rareness level=25%

Sensitivity 0.88 0.88 0.97 0.99 0.91 0.90 0.98 0.98

Specificity 0.96 0.94 0.78 0.70 0.93 0.93 0.73 0.73

Accuracy 0.94 0.93 0.83 0.77 0.92 0.93 0.79 0.79

Fscore 0.92 0.91 0.86 0.82 0.92 0.92 0.83 0.83

Fmeasure 0.88 0.86 0.74 0.69 0.86 0.86 0.70 0.70

Rareness level=37%

Sensitivity 0.92 0.91 0.95 0.97 0.94 0.93 0.95 0.95

Specificity 0.95 0.95 0.85 0.79 0.91 0.93 0.84 0.84

Accuracy 0.94 0.93 0.89 0.86 0.92 0.93 0.88 0.88

Fscore 0.93 0.93 0.90 0.87 0.93 0.93 0.89 0.89

Fmeasure 0.92 0.91 0.87 0.83 0.90 0.91 0.86 0.85
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Table 5.26: Standard Deviations of Test Performance Indicators: PCM+NSGA-II vs.

Random+NSGA-II and PCM+RECGA vs. Random+RECGA (WBCD Dataset)

PCM+NSGA-II Random+NSGA-II PCM+RECGA Random+RECGA

H1 H2 H1 H2 H1 H2 H1 H2

Rareness level=1%

Sensitivity 0.10 0.24 0.10 0.14 0.45 0.42 0.00 0.24

Specificity 0.08 0.13 0.05 0.06 0.15 0.14 0.06 0.07

Accuracy 0.08 0.13 0.05 0.06 0.15 0.14 0.06 0.06

Fscore 0.10 0.22 0.08 0.11 0.42 0.39 0.05 0.18

Fmeasure 0.01 0.10 0.00 0.01 0.31 0.28 0.00 0.01

Rareness level=3%

Sensitivity 0.13 0.19 0.06 0.11 0.25 0.24 0.04 0.10

Specificity 0.07 0.04 0.05 0.06 0.05 0.08 0.05 0.06

Accuracy 0.07 0.04 0.05 0.06 0.05 0.07 0.05 0.06

Fscore 0.07 0.13 0.05 0.06 0.19 0.17 0.05 0.05

Fmeasure 0.08 0.18 0.01 0.02 0.19 0.17 0.01 0.02

Rareness level=5%

Sensitivity 0.10 0.21 0.05 0.10 0.22 0.21 0.02 0.05

Specificity 0.06 0.02 0.05 0.06 0.06 0.07 0.06 0.06

Accuracy 0.06 0.02 0.05 0.05 0.06 0.07 0.05 0.06

Fscore 0.06 0.15 0.05 0.06 0.16 0.15 0.05 0.05

Fmeasure 0.09 0.14 0.02 0.03 0.20 0.19 0.02 0.02

Rareness level=7%

Sensitivity 0.09 0.17 0.04 0.09 0.14 0.15 0.04 0.06

Specificity 0.07 0.03 0.06 0.06 0.06 0.06 0.05 0.05

Accuracy 0.06 0.02 0.05 0.05 0.05 0.05 0.05 0.05

Fscore 0.05 0.12 0.05 0.05 0.08 0.09 0.04 0.04

Fmeasure 0.12 0.12 0.03 0.04 0.14 0.14 0.03 0.03

Rareness level=10%

Sensitivity 0.10 0.13 0.05 0.07 0.13 0.13 0.04 0.04

Specificity 0.05 0.02 0.05 0.06 0.05 0.05 0.05 0.05

Accuracy 0.04 0.02 0.05 0.05 0.05 0.04 0.04 0.05

Fscore 0.06 0.08 0.04 0.04 0.07 0.07 0.04 0.04

Fmeasure 0.10 0.10 0.03 0.04 0.12 0.11 0.03 0.03

Rareness level=15%

Sensitivity 0.10 0.10 0.03 0.05 0.10 0.10 0.03 0.03

Specificity 0.04 0.02 0.05 0.05 0.04 0.03 0.05 0.05

Accuracy 0.03 0.02 0.04 0.04 0.03 0.03 0.04 0.04

Fscore 0.05 0.06 0.04 0.04 0.05 0.05 0.03 0.04

Fmeasure 0.08 0.07 0.03 0.05 0.08 0.07 0.03 0.04

Rareness level=25%

Sensitivity 0.06 0.05 0.02 0.03 0.05 0.06 0.02 0.02

Specificity 0.03 0.02 0.04 0.05 0.04 0.04 0.04 0.04

Accuracy 0.02 0.02 0.03 0.04 0.03 0.03 0.03 0.03

Fscore 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02

Fmeasure 0.04 0.04 0.03 0.04 0.05 0.04 0.03 0.03

Rareness level=37%

Sensitivity 0.04 0.04 0.02 0.02 0.04 0.03 0.02 0.02

Specificity 0.03 0.03 0.04 0.04 0.04 0.03 0.03 0.03

Accuracy 0.02 0.02 0.03 0.03 0.03 0.02 0.02 0.02

Fscore 0.02 0.02 0.03 0.02 0.03 0.02 0.02 0.02

Fmeasure 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02
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Table 5.27 summarizes the solution times of PCM+NSGA-II, Random+NSGA-II,

PCM+RECGA and Random+RECGA.

Table 5.27: Solution Times (in sec.) (WBCD Dataset)

PCM+NSGA-II Random+NSGA-II PCM+RECGA Random+RECGA

H1 H2 H1 H2 H1 H2 H1 H2

Rareness level=1%

AVG 59.64 84.31 12.22 38.24 86.47 89.73 50.76 16.58

STD.DEV 7.07 1.75 1.53 0.45 22.61 13.44 0.41 8.40

Rareness level=3%

AVG 61.97 113.70 13.10 40.36 96.40 90.01 52.06 17.68

STD.DEV 6.29 0.77 1.51 0.47 10.72 34.06 1.07 8.01

Rareness level=5%

AVG 63.48 89.07 13.65 41.29 89.29 91.25 52.55 18.72

STD.DEV 1.39 1.00 1.41 0.40 4.23 16.15 1.73 8.29

Rareness level=7%

AVG 66.34 91.93 14.23 43.40 92.60 93.47 54.81 18.67

STD.DEV 1.53 6.71 1.36 0.36 5.28 15.75 0.40 7.91

Rareness level=10%

AVG 67.00 96.44 15.13 46.29 95.87 99.32 56.06 19.81

STD.DEV 2.14 1.68 1.37 0.37 5.66 15.90 0.46 6.06

Rareness level=15%

AVG 74.46 107.15 16.89 53.04 102.98 108.84 62.51 22.25

STD.DEV 2.81 2.49 1.71 0.39 6.95 18.66 0.45 7.57

Rareness level=25%

AVG 103.45 142.66 21.45 70.18 132.02 150.12 79.98 27.85

STD.DEV 8.17 10.94 1.77 0.42 10.13 23.40 0.43 6.79

Rareness level=37%

AVG 144.35 203.53 30.00 104.17 180.83 209.12 113.11 39.31

STD.DEV 13.88 10.04 5.56 0.59 15.49 26.60 0.55 10.69
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5.5.2.2 Comparison of PCM+NSGA-II, PCM+RECGA and Competitor Mod-

els

In this section, to compare PCM+NSGA-II, PCM+RECGA and the competitor mod-

els, we summarize the average performances and standard deviations of performance

indicators in Tables 5.28, 5.29, 5.30 and 5.31 for training and test, respectively.

Based on the results given in Tables 5.28 and 5.30, Figure 5.4 shows the training and

test performances of the models and Figure 5.5 illustrates the gaps between the mod-

els’ training and test performances. Note that, the gap refers to how much the training

performance is greater than the test performance and if the training performance lags

behind the test, the gap is expressed as zero.
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Table 5.28: Average Training Performances (WBCD Dataset)

PCM+NSGA-IIH1 PCM+NSGA-IIH2 PCM+RECGAH1 PCM+RECGAH2 LR pen-LR SVM ANN DT RF

Rareness level=1%

Sensitivity 0.89 1.00 1.00 1.00 1.00 0.95 0.64 1.00 0.86 1.00

Specificity 0.78 0.54 0.89 0.89 1.00 1.00 1.00 1.00 1.00 1.00

Accuracy 0.78 0.54 0.89 0.89 1.00 1.00 1.00 1.00 1.00 1.00

Fscore 0.77 0.69 0.93 0.94 1.00 0.96 0.64 1.00 0.90 1.00

Fmeasure 0.08 0.04 0.37 0.39 1.00 0.96 0.64 1.00 0.87 1.00

Rareness level=3%

Sensitivity 0.84 0.94 0.97 0.95 1.00 0.97 0.89 1.00 0.90 1.00

Specificity 0.95 0.78 0.92 0.94 1.00 1.00 1.00 1.00 1.00 1.00

Accuracy 0.94 0.79 0.93 0.94 1.00 1.00 1.00 1.00 0.99 1.00

Fscore 0.88 0.85 0.94 0.94 1.00 0.98 0.92 1.00 0.94 1.00

Fmeasure 0.52 0.24 0.56 0.59 1.00 0.98 0.92 1.00 0.91 1.00

Rareness level=5%

Sensitivity 0.81 0.92 0.94 0.93 0.99 0.97 0.90 1.00 0.89 1.00

Specificity 0.96 0.82 0.93 0.94 1.00 1.00 1.00 1.00 1.00 1.00

Accuracy 0.96 0.82 0.93 0.94 1.00 1.00 1.00 1.00 0.99 1.00

Fscore 0.87 0.86 0.93 0.93 1.00 0.98 0.93 1.00 0.94 1.00

Fmeasure 0.66 0.35 0.65 0.69 1.00 0.98 0.93 1.00 0.93 1.00

Rareness level=7%

Sensitivity 0.76 0.90 0.91 0.89 0.99 0.96 0.89 1.00 0.90 1.00

Specificity 0.97 0.86 0.92 0.93 1.00 1.00 1.00 1.00 1.00 1.00

Accuracy 0.96 0.87 0.92 0.93 1.00 1.00 0.99 1.00 0.99 1.00

Fscore 0.85 0.88 0.91 0.90 1.00 0.98 0.93 1.00 0.95 1.00

Fmeasure 0.73 0.51 0.65 0.66 1.00 0.98 0.93 1.00 0.93 1.00

Rareness level=10%

Sensitivity 0.82 0.91 0.91 0.91 0.98 0.95 0.92 1.00 0.91 1.00

Specificity 0.98 0.89 0.93 0.93 1.00 1.00 1.00 1.00 1.00 1.00

Accuracy 0.96 0.89 0.93 0.93 1.00 1.00 0.99 1.00 0.99 1.00

Fscore 0.89 0.89 0.92 0.92 0.99 0.98 0.95 1.00 0.95 1.00

Fmeasure 0.81 0.63 0.73 0.75 0.99 0.97 0.95 1.00 0.94 1.00

Rareness level=15%

Sensitivity 0.85 0.87 0.90 0.91 0.98 0.96 0.94 1.00 0.94 1.00

Specificity 0.98 0.93 0.93 0.94 1.00 1.00 1.00 1.00 0.99 1.00

Accuracy 0.96 0.92 0.92 0.93 1.00 0.99 0.99 1.00 0.99 1.00

Fscore 0.91 0.90 0.91 0.92 0.99 0.98 0.97 1.00 0.97 1.00

Fmeasure 0.86 0.77 0.78 0.80 0.99 0.98 0.97 1.00 0.95 1.00

Rareness level=25%

Sensitivity 0.91 0.89 0.92 0.92 0.96 0.96 0.95 0.99 0.97 1.00

Specificity 0.97 0.94 0.93 0.93 0.99 1.00 1.00 1.00 0.99 1.00

Accuracy 0.95 0.93 0.93 0.93 0.99 0.99 0.99 1.00 0.98 1.00

Fscore 0.93 0.91 0.92 0.92 0.98 0.98 0.97 1.00 0.98 1.00

Fmeasure 0.90 0.86 0.86 0.87 0.97 0.97 0.97 1.00 0.97 1.00

Rareness level=37%

Sensitivity 0.94 0.92 0.95 0.94 0.97 0.97 0.97 0.99 0.98 1.00

Specificity 0.96 0.94 0.91 0.92 0.99 0.99 1.00 1.00 0.99 1.00

Accuracy 0.95 0.93 0.92 0.93 0.98 0.98 0.98 0.99 0.98 1.00

Fscore 0.95 0.93 0.93 0.93 0.98 0.98 0.98 0.99 0.98 1.00

Fmeasure 0.93 0.91 0.90 0.91 0.98 0.98 0.98 0.99 0.98 1.00
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Table 5.29: Standard Deviations of Training Performance Indicators (WBCD Dataset)

PCM+NSGA-IIH1 PCM+NSGA-IIH2 PCM+RECGAH1 PCM+RECGAH2 LR pen-LR SVM ANN DT RF

Rareness level=1%

Sensitivity 0.00 0.31 0.00 0.00 0.00 0.17 0.47 0.00 0.24 0.00

Specificity 0.07 0.13 0.15 0.14 0.00 0.00 0.00 0.00 0.00 0.00

Accuracy 0.07 0.13 0.15 0.14 0.00 0.00 0.00 0.00 0.00 0.00

Fscore 0.06 0.28 0.10 0.09 0.00 0.13 0.47 0.00 0.17 0.00

Fmeasure 0.01 0.06 0.32 0.31 0.00 0.13 0.47 0.00 0.17 0.00

Rareness level=3%

Sensitivity 0.12 0.16 0.12 0.08 0.00 0.06 0.19 0.00 0.12 0.00

Specificity 0.08 0.04 0.06 0.08 0.00 0.00 0.00 0.00 0.00 0.00

Accuracy 0.08 0.04 0.06 0.07 0.00 0.00 0.01 0.00 0.00 0.00

Fscore 0.07 0.09 0.08 0.06 0.00 0.03 0.17 0.00 0.07 0.00

Fmeasure 0.08 0.14 0.24 0.24 0.00 0.03 0.17 0.00 0.08 0.00

Rareness level=5%

Sensitivity 0.10 0.14 0.10 0.09 0.04 0.06 0.18 0.01 0.09 0.00

Specificity 0.06 0.03 0.07 0.07 0.00 0.00 0.00 0.00 0.00 0.00

Accuracy 0.05 0.03 0.06 0.07 0.00 0.00 0.01 0.00 0.01 0.00

Fscore 0.06 0.09 0.06 0.05 0.02 0.03 0.16 0.00 0.06 0.00

Fmeasure 0.08 0.14 0.22 0.22 0.03 0.03 0.16 0.01 0.06 0.00

Rareness level=7%

Sensitivity 0.09 0.11 0.10 0.07 0.02 0.04 0.15 0.00 0.07 0.00

Specificity 0.06 0.02 0.06 0.06 0.00 0.00 0.00 0.00 0.00 0.00

Accuracy 0.06 0.02 0.06 0.06 0.00 0.00 0.01 0.00 0.00 0.00

Fscore 0.05 0.07 0.06 0.04 0.01 0.02 0.14 0.00 0.04 0.00

Fmeasure 0.10 0.10 0.14 0.15 0.02 0.03 0.14 0.00 0.04 0.00

Rareness level=10%

Sensitivity 0.08 0.08 0.08 0.08 0.03 0.04 0.11 0.00 0.07 0.00

Specificity 0.05 0.02 0.06 0.05 0.00 0.00 0.00 0.00 0.00 0.00

Accuracy 0.04 0.02 0.05 0.04 0.00 0.00 0.01 0.00 0.01 0.00

Fscore 0.04 0.05 0.05 0.04 0.02 0.02 0.10 0.00 0.04 0.00

Fmeasure 0.09 0.08 0.13 0.11 0.02 0.02 0.10 0.00 0.04 0.00

Rareness level=15%

Sensitivity 0.07 0.04 0.06 0.07 0.03 0.03 0.04 0.02 0.04 0.00

Specificity 0.03 0.02 0.04 0.03 0.00 0.00 0.00 0.00 0.01 0.00

Accuracy 0.03 0.02 0.03 0.03 0.01 0.01 0.01 0.00 0.01 0.00

Fscore 0.04 0.03 0.04 0.03 0.02 0.02 0.02 0.01 0.02 0.00

Fmeasure 0.07 0.05 0.07 0.06 0.02 0.02 0.02 0.01 0.02 0.00

Rareness level=25%

Sensitivity 0.04 0.03 0.04 0.05 0.02 0.02 0.02 0.01 0.02 0.00

Specificity 0.03 0.02 0.04 0.04 0.00 0.00 0.00 0.00 0.01 0.00

Accuracy 0.02 0.02 0.03 0.02 0.01 0.01 0.01 0.00 0.01 0.00

Fscore 0.02 0.02 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.00

Fmeasure 0.04 0.03 0.04 0.04 0.01 0.01 0.01 0.01 0.01 0.00

Rareness level=37%

Sensitivity 0.03 0.02 0.03 0.03 0.01 0.01 0.01 0.01 0.01 0.00

Specificity 0.03 0.02 0.03 0.03 0.00 0.00 0.00 0.00 0.01 0.00

Accuracy 0.02 0.02 0.02 0.01 0.00 0.00 0.00 0.01 0.01 0.00

Fscore 0.02 0.02 0.02 0.01 0.01 0.00 0.01 0.01 0.01 0.00

Fmeasure 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.00
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Table 5.30: Average Test Performances (WBCD Dataset)

PCM+NSGA-IIH1 PCM+NSGA-IIH2 PCM+RECGAH1 PCM+RECGAH2 LR pen-LR SVM ANN DT RF

Rareness level=1%

Sensitivity 0.94 0.99 0.77 0.72 0.76 0.59 0.32 0.76 0.55 0.53

Specificity 0.78 0.56 0.88 0.89 1.00 0.99 1.00 1.00 1.00 1.00

Accuracy 0.79 0.56 0.88 0.89 1.00 0.99 0.99 0.99 0.99 0.99

Fscore 0.82 0.71 0.70 0.67 0.76 0.59 0.32 0.76 0.55 0.53

Fmeasure 0.10 0.04 0.24 0.26 0.70 0.49 0.32 0.69 0.50 0.47

Rareness level=3%

Sensitivity 0.79 0.92 0.76 0.75 0.72 0.66 0.66 0.77 0.58 0.56

Specificity 0.95 0.81 0.92 0.94 0.99 0.99 1.00 0.99 0.99 0.99

Accuracy 0.95 0.81 0.92 0.93 0.99 0.98 0.99 0.99 0.98 0.98

Fscore 0.85 0.85 0.80 0.80 0.81 0.76 0.75 0.84 0.69 0.67

Fmeasure 0.54 0.26 0.43 0.46 0.74 0.69 0.72 0.79 0.61 0.59

Rareness level=5%

Sensitivity 0.77 0.94 0.80 0.77 0.84 0.77 0.75 0.84 0.65 0.70

Specificity 0.97 0.84 0.93 0.94 0.99 0.99 1.00 0.99 0.99 0.99

Accuracy 0.96 0.85 0.92 0.93 0.98 0.98 0.98 0.98 0.97 0.97

Fscore 0.84 0.88 0.84 0.82 0.90 0.86 0.83 0.90 0.76 0.80

Fmeasure 0.65 0.39 0.56 0.57 0.84 0.81 0.80 0.84 0.69 0.71

Rareness level=7%

Sensitivity 0.76 0.92 0.85 0.84 0.89 0.87 0.81 0.90 0.72 0.73

Specificity 0.98 0.87 0.92 0.93 0.99 0.99 1.00 0.99 0.98 0.98

Accuracy 0.96 0.88 0.92 0.92 0.98 0.98 0.98 0.98 0.96 0.97

Fscore 0.84 0.89 0.87 0.87 0.93 0.92 0.88 0.94 0.82 0.83

Fmeasure 0.73 0.54 0.62 0.63 0.86 0.87 0.86 0.87 0.74 0.75

Rareness level=10%

Sensitivity 0.75 0.89 0.83 0.82 0.89 0.87 0.82 0.89 0.71 0.74

Specificity 0.98 0.90 0.93 0.93 0.98 0.99 0.99 0.98 0.98 0.98

Accuracy 0.95 0.90 0.92 0.92 0.97 0.98 0.98 0.98 0.95 0.96

Fscore 0.84 0.89 0.87 0.87 0.93 0.92 0.89 0.93 0.81 0.84

Fmeasure 0.76 0.65 0.68 0.69 0.87 0.89 0.87 0.88 0.75 0.76

Rareness level=15%

Sensitivity 0.81 0.87 0.87 0.87 0.91 0.90 0.88 0.90 0.79 0.81

Specificity 0.97 0.93 0.93 0.94 0.98 0.99 0.99 0.98 0.97 0.97

Accuracy 0.95 0.92 0.92 0.93 0.97 0.97 0.98 0.97 0.94 0.95

Fscore 0.88 0.90 0.90 0.90 0.94 0.94 0.93 0.94 0.87 0.88

Fmeasure 0.83 0.78 0.77 0.78 0.90 0.91 0.92 0.89 0.80 0.83

Rareness level=25%

Sensitivity 0.88 0.88 0.91 0.90 0.94 0.94 0.93 0.93 0.86 0.88

Specificity 0.96 0.94 0.93 0.93 0.98 0.98 0.99 0.97 0.95 0.97

Accuracy 0.94 0.93 0.92 0.93 0.97 0.97 0.98 0.96 0.93 0.95

Fscore 0.92 0.91 0.92 0.92 0.96 0.96 0.96 0.94 0.91 0.93

Fmeasure 0.88 0.86 0.86 0.86 0.94 0.94 0.95 0.92 0.86 0.90

Rareness level=37%

Sensitivity 0.92 0.91 0.94 0.93 0.94 0.94 0.94 0.93 0.91 0.93

Specificity 0.95 0.95 0.91 0.93 0.98 0.98 0.99 0.96 0.94 0.97

Accuracy 0.94 0.93 0.92 0.93 0.96 0.96 0.97 0.95 0.93 0.96

Fscore 0.93 0.93 0.93 0.93 0.96 0.96 0.96 0.95 0.93 0.95

Fmeasure 0.92 0.91 0.90 0.91 0.95 0.95 0.95 0.93 0.91 0.94

141



Table 5.31: Standard Deviations of Test Performance Indicators (WBCD Dataset)

PCM+NSGA-IIH1 PCM+NSGA-IIH2 PCM+RECGAH1 PCM+RECGAH2 LR pen-LR SVM ANN DT RF

Rareness level=1%

Sensitivity 0.10 0.24 0.45 0.42 0.43 0.49 0.47 0.43 0.50 0.50

Specificity 0.08 0.13 0.15 0.14 0.01 0.01 0.00 0.01 0.01 0.01

Accuracy 0.08 0.13 0.15 0.14 0.01 0.01 0.00 0.01 0.01 0.01

Fscore 0.10 0.22 0.42 0.39 0.43 0.49 0.47 0.43 0.50 0.50

Fmeasure 0.01 0.10 0.31 0.28 0.42 0.44 0.46 0.42 0.47 0.47

Rareness level=3%

Sensitivity 0.13 0.19 0.25 0.24 0.23 0.27 0.28 0.23 0.26 0.25

Specificity 0.07 0.04 0.05 0.08 0.01 0.01 0.01 0.01 0.01 0.01

Accuracy 0.07 0.04 0.05 0.07 0.01 0.01 0.01 0.01 0.01 0.01

Fscore 0.07 0.13 0.19 0.17 0.18 0.22 0.26 0.16 0.25 0.24

Fmeasure 0.08 0.18 0.19 0.17 0.18 0.22 0.25 0.18 0.24 0.24

Rareness level=5%

Sensitivity 0.10 0.21 0.22 0.21 0.15 0.19 0.23 0.15 0.22 0.21

Specificity 0.06 0.02 0.06 0.07 0.01 0.01 0.01 0.01 0.01 0.01

Accuracy 0.06 0.02 0.06 0.07 0.01 0.01 0.01 0.01 0.01 0.01

Fscore 0.06 0.15 0.16 0.15 0.09 0.13 0.20 0.09 0.18 0.16

Fmeasure 0.09 0.14 0.20 0.19 0.11 0.15 0.20 0.12 0.17 0.16

Rareness level=7%

Sensitivity 0.09 0.17 0.14 0.15 0.11 0.12 0.18 0.10 0.17 0.16

Specificity 0.07 0.03 0.06 0.06 0.01 0.01 0.01 0.01 0.02 0.01

Accuracy 0.06 0.02 0.05 0.05 0.02 0.01 0.01 0.01 0.02 0.01

Fscore 0.05 0.12 0.08 0.09 0.07 0.07 0.16 0.06 0.13 0.11

Fmeasure 0.12 0.12 0.14 0.14 0.10 0.10 0.16 0.09 0.13 0.11

Rareness level=10%

Sensitivity 0.10 0.13 0.13 0.13 0.09 0.11 0.15 0.10 0.15 0.13

Specificity 0.05 0.02 0.05 0.05 0.01 0.01 0.01 0.01 0.01 0.01

Accuracy 0.04 0.02 0.05 0.04 0.01 0.02 0.02 0.01 0.02 0.02

Fscore 0.06 0.08 0.07 0.07 0.05 0.07 0.12 0.06 0.10 0.09

Fmeasure 0.10 0.10 0.12 0.11 0.07 0.08 0.12 0.07 0.10 0.10

Rareness level=15%

Sensitivity 0.10 0.10 0.10 0.10 0.07 0.08 0.09 0.07 0.11 0.09

Specificity 0.04 0.02 0.04 0.03 0.01 0.01 0.01 0.02 0.02 0.02

Accuracy 0.03 0.02 0.03 0.03 0.02 0.01 0.01 0.02 0.02 0.02

Fscore 0.05 0.06 0.05 0.05 0.04 0.04 0.06 0.04 0.07 0.06

Fmeasure 0.08 0.07 0.08 0.07 0.05 0.05 0.06 0.05 0.07 0.07

Rareness level=25%

Sensitivity 0.06 0.05 0.05 0.06 0.04 0.04 0.04 0.05 0.06 0.05

Specificity 0.03 0.02 0.04 0.04 0.02 0.01 0.01 0.02 0.03 0.02

Accuracy 0.02 0.02 0.03 0.03 0.02 0.01 0.01 0.02 0.02 0.02

Fscore 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.03 0.03 0.03

Fmeasure 0.04 0.04 0.05 0.04 0.03 0.03 0.03 0.03 0.04 0.04

Rareness level=37%

Sensitivity 0.04 0.04 0.04 0.03 0.03 0.03 0.06 0.03 0.04 0.03

Specificity 0.03 0.03 0.04 0.03 0.02 0.02 0.01 0.02 0.02 0.01

Accuracy 0.02 0.02 0.03 0.02 0.01 0.01 0.02 0.02 0.02 0.01

Fscore 0.02 0.02 0.03 0.02 0.01 0.02 0.05 0.02 0.02 0.02

Fmeasure 0.03 0.03 0.03 0.03 0.02 0.02 0.05 0.02 0.03 0.02
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It is observed that, for all rarity levels, the specificity of competitor models, both

in training and test, are extremely high. However, for the configurations with low

rareness levels, although some competitor models have very high sensitivity perfor-

mances in training, their values in test are poor. For example, for rareness level of 1%,

LR, ANN and RF have sensitivity of 1.00 in training but their performances in test

are 0.76, 0.76 and 0.53, respectively. Fscore performances of the competitor models

reflect the incompatibility between training and test performances, as well. Especially

for low levels of rarity, although the training performances of the competitor models

are high, their Fscore in test are not as promising as their training results. For exam-

ple, while the training Fscore values of LR, pen-LR, ANN, DT and RF are 1.00, 0.96,

1.00, 0.90 and 1.00 their test results are 0.76, 0.59, 0.76, 0.55 and 0.53, respectively.

Figure 5.5 shows the gap between training and test performances and average gap of

the models. It is observed that, for all models, the gap between training and test is

quite small for specificity. Figure 5.5 also suggests that, as the rareness level grows,

the corresponding gaps diminish for sensitivity and Fscore. Due to the fact that, since

more observations are utilized in training, models learn the specifications of both

classes better and their generalization error (test error) decreases.
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For the rareness levels less than 10% (i.e. 1%, 3%, 5%, 7%), the only models whose

gap between training and test performances are always below the average, in terms of

sensitivity and Fscore, are PCM+NSGA-II (regardless of whether the hyperparameter

set is H1 or H2) and PCM+RECGAH1. For the remaining configurations (i.e. 10%,

15%, 25%, 37%), the gap between training and test performances of LR, pen-LR

and SVM, along with the PCM+NSGA-II and PCM+RECGA, are below the average

gap, as well. In addition to the fact that the test performances of PCM+NSGA-II and

PCM+RECGA are compatible with those of training, they provide high classification

performances. For 1%, 3%, 5% and 7% rareness levels, Fscore of PCM+NSGA-IIH1

and PCM+RECGAH1 are 0.82, 0.85, 0.84 and 0.84 and 0.70, 0.80, 0.84 and 0.87,

respectively. For the remaining configurations (10%, 15%, 25%, 37%), Fscore values

of PCM+NSGA-IIH2 and PCM+RECGAH2 are 0.89, 0.90, 0.91 and 0.93 and 0.87,

0.90, 0.92 and 0.93, respectively.

Therefore, it can be claimed that, PCM+NSGA-II and PCM+RECGA are strong al-

ternatives with high generalization ability, especially when one class of observations

are rare compared to other.

The graphics in Figure 5.6 give the average test performances and standard devia-

tions of sensitivity, specificity and Fscore. As it can be observed from Table 5.30 and

Figure 5.6, the performance of PCM+RECGA does not change significantly whether

the experiments are conducted with hyper-parameter sets H1 or H2. The same analy-

sis for PCM+NSGA-II suggests that, in general, the model performances are similar

for H1 and H2. However, when the positive cases are extremely rare, selecting op-

timal model parameters provides great advantage. That is, in 1% of rareness level,

PCM+NSGA-IIH1 has far better Fscore value than that of PCM+NSGA-IIH2. Note

that, we expect that, the model performances could improve if the hyper-parameter

optimization is conducted for each configuration of rareness.

The graphics also indicate that, when the rareness level is higher than 10%, the Fscore

of PCM+NSGA-IIH2 and PCM+RECGAH2 are not worse than 0.90. The competitor

models have Fscore values between 0.87 and 0.96 in these configurations. Thus, we

can claim that, the developed models are able to compete with well-known machine

learning models, when the distribution of positive and negative observations are bal-
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anced and when one class of observations becomes extremely rare in the population,

the suggested models outperforms most of the competitor models.

In 1% of rarity, the best Fscore values belong to PCM+NSGA-IIH1 (0.82), LR (0.76),

ANN (0.76) and PCM+RECGAH1 (0.70), respectively. Their closest rival is pen-

LR which is far behind them with an Fscore value of 0.59. In 3% of rareness, the

ranking remains the same. PCM+NSGAH1 is the best model with its Fscore value

of 0.85 and it is followed by ANN (0.84), LR (0.81) and PCM+RECGAH1 (0.80),

respectively. In rareness level of 5%, the competitor models’ Fscore ranges between

0.76 and 0.90, where the performances of the proposed models (PCM+NSGA-IIH1

and PCM+NSGA-IIH2) are 0.84. When the rarity becomes 7%, Fscore performances

of the competitor models are between 0.82 and 0.93. PCM+RECGAH1 has an Fscore

of 0.87 and the same performance indicator of PCM+NSGA-IIH1 is 0.84. Finally, in

10% of rareness, Fscore values of PCM+NSGA-IIH2 and PCM+RECGAH2 are 0.89

and 0.87, respectively, where the competitor models’ values are between 0.81 and

0.93.

These results indicate that, PCM+NSGA-II and PCM+RECGA are promising classi-

fication algorithms, and they are more robust, compared to some well-known machine

learning algorithms, especially under the conditions of class imbalance.

The graphics in Figure 5.6 also indicate that, for high levels of rareness, the stan-

dard deviations are small and as the proportion of positive cases decreases in the

population, standard deviations of sensitivity and Fscore of all models tend to grow.

PCM+NSGA-II is one of the most robust models where the standard deviations do

not change significantly for the cases with low rarity levels. On the other hand, es-

pecially for the competitor models, a significant amount of increase is observed in

standard deviation.

As in the previous cases, we do not give a detailed analysis about Fmeasure per-

formances since it is not one of our performance indicators and it does not have an

interpretation for the configurations where one class of observations are rare com-

pared to other. However, it can be said that, in terms of Fmeasure, the proposed

models are able to compete with the competitor models for the configurations where

the positive and negative observations have a relatively balanced distribution. Since
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all the competitor models solve an instance within a minute, we do not report their

solution times in detail.

The comparison of the proposed models, PCM+NSGA-II and PCM+RECGA indi-

cates that, except the extremely rare cases (1% and 3%), models have close perfor-

mances. However, in these configurations, PCM+NSGA-IIH1 has higher average per-

formances and lower standard deviations in Fscore than those of PCM+RECGAH1.

For detailed tables that give performances of the suggested and the compared models

see the Appendix (Section L). The tables also give the number of correct classifica-

tions as well as ratio of correct classifications.
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Figure 5.6: Performances for Different Rareness Levels (WBCD Dataset)
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When the model performances are compared with those of the models that exist in

the literature, among studies discussed in Section 5.2, only two of them ([1], [2])

consider class imbalance with 9% rarity. In the original data, the accuracy results

reported in the literature varies between 92.97% and 99.04%, and for most of them,

sensitivity and specificity rates are above 90%. In the corresponding setting (rareness

level = 37%) accuracy, sensitivity and specificity performances of PCM+NSGA-IIH2

are 93%, 91% and 95%, respectively, while the same performance indicators are 93%

for PCM+RECGAH2.

When we analyze the studies that test their models with a rarity around 10%, it is

observed that maximum accuracy is 92.55%. The best sensitivity and specificity rates

are above 87% and 96%, respectively. Accuracy, sensitivity and specificity values are

90%, 89%, 90% and 92%, 82%, 93% for PCM+NSGA-IIH2 and PCM+RECGAH2, re-

spectively. Thus, it can be seen that, our models can compete with successful models

of the literature.

Finally, when we compare the performances of models in WBCO and WBCD datasets,

it is observed that, no specific model shows different performances for these two sets

of data. However, in general, while the competitor models perform better in WBCD

dataset than WBCO, for PCM+NSGA-II and PCM+RECGA the opposite is true. One

of the explicit differences of WBCO and WBCD datasets is that, while the former

consists of categorical factors, the latter has continuous factor values. Therefore,

the reason behind the observation mentioned above may be better performance of

PCM+NSGA-II and PCM+RECGA in categorical datasets.

5.6 Conclusion

In medical diagnosis problems, the goal is to achieve high sensitivity and specificity,

simultaneously. As one class of observations becomes rare compared to the other,

classification becomes harder. If the negative (positive) observations constitute the

majority, standard classification algorithms achieve high specificity (sensitivity) rates

but their ability in sensitivity (specificity) stays limited. In this study, by integrat-

ing a Mixed-Integer Linear Model, PCM, with evolutionary algorithms, we develop
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promising classification models, which are robust in the existence of significant class

imbalance.

Using WBCO and WBCD datasets, we conduct numerical experiments with eight

levels of rarity of positive observations, ranging between 1% to 35% and 1% to 37%,

respectively. The experimental analysis suggests that, generating initial solutions of

the evolutionary algorithms with PCM yields better results than random generation

of initial solutions. Then, the performances of suggested models are compared with

several well-known machine learning methods. It is observed that, proposed models

are promising classification algorithms and they are stronger when one class of obser-

vations are rare compared to other. In other words, as the malignant tumors become

rare in the population, although the competitor models lose their ability of detecting

positive (malignant) cases, PCM+NSGA-II and PCM+RECGA preserve their capa-

bility of detecting positive observations without sacrificing too much from their high

detection ability of negative cases.

However, we must note that, the competitor models applied in this study are in the

most classical forms suggested in the literature. That is, they are not designed specif-

ically for rare events. For example, determining the hyper-parameters of the competi-

tor models, such as the kernel parameter in SVM or the number of hidden layers in

ANN, with the aim of good performances in rare cases (i.e. high Fscore) may improve

the performance of these models when one class of observations are rare compared to

other.

The comparison of PCM+NSGA-II and PCM+RECGA suggests that, they have close

performances in general. However, in the extremely rare cases, PCM+NSGA-II per-

form better than PCM+RECGA with its higher average results and lower standard

deviations. On the other hand, PCM+RECGA is more robust against the changes in

hyper-parameter choices. According to results of our experiments, we can claim that,

both models are able to compete with the studies existing in the literature.

155



156



CHAPTER 6

CONCLUSION

It is very important to estimate the presence or absence of a disease. There are var-

ious medical diagnostic methods used for this purpose. However, these methods are

often expensive and/or risky for the patients. Moreover, in some cases no obvious

symptoms or clinical signs are observed in the presence of a disease. Instead of using

expensive diagnostic methods or clinical tests, decision support tools employing op-

erations research techniques and machine learning methods can be developed. They

can certainly help medical doctors make true diagnostic predictions without creating

additional risks and costs for the patients.

In this study, we aim to develop methods which classify patients in two categories

of disease status correctly. For this purpose, we develop hybrid methods which inte-

grates multi-criteria decision making, evolutionary algorithms and machine learning.

The suggested classification algorithms are designed to be used by medical experts

as a decision support tool. We give priority to obtaining high sensitivity, provided

that the specificity values are also reasonable. Thus, we aim to minimize the risks

associated with human life in return for financial burden resulting from further inves-

tigation.

Since the proposed methodologies lie in the intersection of many disciplines, we pro-

vide a broad literature review, which includes an overview of machine learning, pre-

diction models in health-care, multi-criteria decision analysis, rare event classification

and role of evolutionary algorithms in machine learning and multi-objective decision

analysis.

First, we develop a Mixed-Integer Linear Programming model, PCM. It is a variant
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of multi-criteria decision analysis method, UTADIS, and we specifically design it for

medical classification problems. After solving PCM with various values of a specific

parameter, we obtain a set of solutions spread over the Pareto-optimal front in the two

dimensional space of true positive and true negative responses. That is, it creates a set

of solutions where some of them have the capacity to achieve high sensitivity while

some have the capacity to achieve high specificity. Then, we integrate PCM with

evolutionary algorithms, such that, by tuning the solutions (parameters) obtained from

PCM, they aim to find hybrid solutions that can have high sensitivity and specificity,

simultaneously. These methods provide more precise classification of the patients in

accordance with the specified classification objectives.

The first evolutionary algorithm integrated with PCM is NSGA-II. It is a multi-

objective evolutionary algorithm that prefers non-dominated solutions to be trans-

ferred to the next generation. This method aims to obtain solutions whose true pos-

itive and true negative classification performances are good, simultaneously. The

proposed algorithm is named as PCM+NSGA-II. Then, we develop another classi-

fication algorithm, RECGA, to integrate with PCM. It only favors solutions whose

sensitivity and specificity are simultaneously high. Therefore, the fitness function of

the algorithm evaluates a solution by its Fscore value. The suggested algorithm is

called as PCM+RECGA. The experimental analyses of these methods are performed

on three medical datasets.

Before starting the experimental analyses, we perform hyper-parameter tuning to

choose the set of optimal hyper-parameter values for each model and we repeat this

process for each datasets.

The problem with the first dataset addresses patient classification considering the risk

of restenosis after coronary stent implantation. The objective of this study is to clas-

sify patients according to the in-stent-restenosis risk utilizing patient, disease, pro-

cedure and lesion related parameters to support doctors in their diagnosis decision.

In this context, we first determine the related predictors by investigating the relevant

medical literature and consulting with experts. Then, we apply feature selection to

find the most related predictors to build the most effective model in prediction ability.

The response is the cardiac restenosis status of the patients which indicates whether a
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restenosis is expected to exist or not within the period of 36-month beginning with a

coronary stent implantation. We gather the data by scanning the records of 10,435 pa-

tients between the years 2005 and 2016. 303 observations are found eligible. We test

the models’ performances through two different settings, where the ratio of positive

and negative observations in training, validation and test samples change.

In order to observe the effectiveness of integrating evolutionary algorithms with PCM,

we compare the performances of PCM+NSGA-II and PCM+RECGA with the mod-

els where the initial solution sets are randomly generated. Then, we compare the

proposed models’ performances with widely known machine learning methods (com-

petitor models). It is observed that, the models whose initial solution set are randomly

generated have biased and highly unbalanced classification results. Thus, they are not

reliable and it is clearly better to generate the initial solutions of the evolutionary

algorithms with the Mixed-Integer Linear model, PCM. It is also observed that, clas-

sification performances of the models are affected by the amount of positive and neg-

ative observations used for training. We have seen that, the proposed models are more

robust than the competitor models. Additionally, if there are relatively few amount

of positive observations and it is more important to correctly identify the presence of

a disease, keeping the number of positive and negative observations equal in training

sets yields higher sensitivity rates. Furthermore, the experimental analysis suggests

that, PCM+NSGA-II and PCM+RECGA have high training and test performances,

which indicates their generalization ability. It is also worth to note that, sensitivity,

specificity, and accuracy rates of PCM+NSGA-II and PCM+RECGA are promising,

compared to the clinical detection methods used by medical experts. Additionally,

the proposed algorithms provide great advantage to the medical experts to foresee the

risk of in-stent-restenosis at the time of the stent implantation operation.

Then, to show the efficiency of the models from another aspect, we have designed an

experimental setting to compare classification performances of the proposed models

with a group of medical doctors who are specialized in the area of coronary in-stent-

restenosis. 15 cardiologists have participated in this study.

The results of the analyses suggest that, PCM+NSGA-II and PCM+RECGA are reli-

able and effective decision support techniques for cardiologists in determining poten-
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tial restenosis status of a patient.

In the second part of our study, we test the proposed models in two, well studied,

structured, large size datasets: WBCO and WBCD datasets. To see the classification

performances of the proposed models when the incidence of the disease among the

population is low, we perform experimental analysis by creating class imbalance be-

tween malignant and benign tumors. The datasets are preprocessed by eliminating

correlated factors. We also conduct feature elimination on WBCD dataset.

We repeat the analysis about effectiveness of generating initial solutions of evo-

lutionary algorithms with PCM and we find that, PCM yields better results than

randomly generating. Then, we compare the performances of PCM+NSGA-II and

PCM+RECGA with those of competitor models.

We conclude that, PCM+NSGA-II and PCM+RECGA are good classification al-

gorithms that can compete with well-known machine learning models when obser-

vations of both classes under consideration are close to each other. On the other

hand, when one class of observations becomes extremely rare, the proposed mod-

els outperform most of the competitor models. It is also observed that, although

PCM+RECGA is more robust to the changes in hyper-parameters, conducting the ex-

periments of PCM+NSGA-II with the hyper-parameter values specifically determined

to the given rarity level gives better results (especially in low levels of rarities), in gen-

eral. The experimental analysis suggests that, PCM+NSGA-II and PCM+RECGA

mostly have close performances, but in the cases where rarity level is extremely low,

PCM+NSGA-II performs better. In comparison of competitor models and proposed

algorithms, it is observed that, while the former perform better in WBCD dataset,

the latter has higher performances in WBCO dataset. Thus, we conclude that, the

proposed models may be better options when the dataset comprised of categorical

factors.

In summary, we develop two hybrid methods which integrates multi-criteria decision

making, evolutionary algorithms and machine learning. Both models are applied on

real data and the experimental analyses suggest that they are promising classification

models that can be used by medical experts as decision support tools. One of the

distinguishing features of these models is their flexibility. Suggested models focus
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on problems where response is represented with a dichotomous variable, however,

they can be extended to perform classification in the existence of multiple classes,

as well. The models give the classification decision through majority voting, which

makes them robust to the variations either in data or generated solution set. Variations

of the models can be developed by changing this to consensus voting or assigning a

threshold to the number of votes to win. Additionally, in predicting the class of a

specific individual, a decision mechanism which assigns probabilities of risk rather

than giving binary decisions can be developed. In this case, the risk of the existence

of the disease can be determined based on the amount of difference between global

utilities that correspond to positive and negative classifications. Integration of feature

selection process and the models can be another extension of this study. In this way,

it may be possible to make classification decisions faster and more accurate. Finally,

integration of PCM with some other evolutionary algorithms can also be considered

as a future research direction.
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APPENDICES

A A Simple Example Explaining PCM+RECGA

Let |S| = 2 where |S−| = 1 and |S+| = 1; |V| = 2 where |V−| = 1 and |V+| = 1;

|S̃| = 2 where |S̃−| = 1 and |S̃+| = 1. In other words, training, validation and test

samples consist of two observations where one of them is positive and the other one

is negative. Assume |F| = 2 and F = {1, 2}. i.e. there are two factors.

Recall that Of is the set of all values of factor f that appear in S. Then, let |O1| = 2

and |O2| = 2. Since both factors that appear in S take two different values, there is

one interval for each factor. Then, the decision variables of are w11, m11 and w21,

m21.

Since training set has only one negative observation, then false negative classification

allowance, L, can be 0 and 1. Thus PCM is solved for L = 0 and L = 1.

Let (W 0,M0) be the solution obtained from PCM(0), and (W 1,M1) be the solu-

tion obtained from PCM(1). Then X = {(W 0,M0), (W 1,M1)}. Also, let Pop-

ulationSize be 5. Then using (W 0,M0) and (W 1,M1) as parents, the algorithm

generates a new offspring by performing genetic operations. Let the new solution

be (W 2,M2). Now, X = {(W 0,M0), (W 1,M1), (W 2,M2)}. Then, by select-

ing randomly two parents from X , the algorithm generates another offspring, say

(W 3,M3). Now, X = {(W 0,M0), (W 1,M1), (W 2,M2), (W 3,M3)}. The pro-

cess is repeated one more time, that is, randomly selected two parents generates an

offspring, (W 4,M4). Now the predetermined PopulationSize is reached and X =

{(W 0,M0), (W 1,M1), (W 2,M2), (W 3,M3), (W 4,M4)}.

For each (W i,M i) ∈ X and for patients in V , U(p) and Ũ(p) values are calculated

to classify patients in the validation set. Then, according to the classification per-

formance of the model in the validation set, sensitivity, specificity and Fscore values
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of each solution are calculated. Thus, we have Fscore(0), Fscore(1), Fscore(2), Fs-

core(3) and Fscore(4) corresponding to (W 0,M0), (W 1,M1), (W 2,M2), (W 3,M3)

and (W 4,M4), respectively. Assume Fscore(0) = 0.7, Fscore(1) = 0.8 , Fscore(2) =

0.7, Fscore(3) = 0.4 and Fscore(4) = 0.2 and let minFinalSetSize = 2.

Let newSet be an emptyset and threshold =1. While newSet is empty and threshold

≥ 1, the algorithm seeks a solution whose Fscore≥ 1. Since there is no such solution,

newSet remains empty and threshold is set to 0.9. Now, the algorithm seeks a solution

whose Fscore ≥ 0.9. However, again, there is no such solution, thus newSet still

remains empty and threshold is set to 0.8. Now the algorithm seeks for a solution

with an Fscore ≥ 0.8. Eventually, the algorithm finds a solution satisfying the given

condition. Then, the solution whose Fscore is 0.8 is added to the newSet. i.e. newSet

= {(W 1,M1)}, X ← ∅,and X ← {(W 1,M1)}.

Now newSet is no longer empty, but since |X | < minFinalSetSize, new solutions

should be generated by genetic operators. Note that X = {(W 1,M1)}. Then the

algorithm uses (W 1,M1) ∈ X to generate offspring by performing genetic operators.

Let new solutions be (W 5,M5), (W 6,M6), (W 7,M7) and (W 8,M8). Then X =

{(W 1,M1), (W 5,M5), (W 6,M6), (W 7,M7), (W 8,M8)}. For each (W i,M i) ∈ X
and for patients in V , U(p) and Ũ(p) values are calculated to classify patients in

the validation set. Then, due to the classification performance of the model in the

validation set, sensitivity, specificity and Fscore values of each solution are calculated.

Thus we have Fscore(1), Fscore(5), Fscore(6), Fscore(7) and Fscore(8) corresponding

to (W 1,M1), (W 5,M5), (W 6,M6), (W 7,M7) and (W 8,M8), respectively. Assume

Fscore(1) = 0.8, Fscore(5) = 0.9 , Fscore(6) = 0.9 , Fscore(7) = 0.8 and Fscore(8) =

0.9.

Let newSet be an emptyset and threshold =1. While newSet is empty and threshold

≥ 1, the algorithm seeks a solution whose Fscore≥ 1. Since there is no such solution,

newSet remains empty and threshold is set to 0.9. Now, the algorithm seeks a solution

with an Fscore ≥ 0.9. Since a solution that satisfies the given condition exists, this

solution is added to newSet. i.e. newSet = {(W 5,M5), (W 6,M6), (W 8,M8)}, X ←
∅, and

X ← {(W 5,M5), (W 6,M6), (W 8,M8)}.
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Now newSet is no longer empty, and |X | ≥ minFinalSetSize. Thus final set of solu-

tions that will be used for classifying observations in S̃ are obtained. Let ptest1 and

ptest2 be the patients in test set, S̃. For each p ∈ S̃, the initial values of counters for

positive and negative classification are zero. i.e. CP (ptest1) = 0, CN(ptest1) = 0,

CP (ptest2) = 0 and CN(ptest2) = 0.

For each (W i,M i) ∈ X and for each patient in S̃, U(p) and Ũ(p) values are calcu-

lated. That is, by applying GenerateUtilityFunctions, U(ptest1), Ũ(ptest1), U(ptest2)

and Ũ(ptest2) are calculated for each solution.

Assume that for (W 5,M5), the global utilities for the patients in test set are as fol-

lows: U(ptest1)= 0.7, Ũ(ptest1)=0.75 andU(ptest2)=0.4, Ũ(ptest2)=0.8. Since Ũ(ptest1)

≥ U(ptest1) and Ũ(ptest2) ≥ U(ptest2), the classification of both ptest1 and ptest2 are

determined as negative by this solution. That is, CN(ptest1) = 1, CP (ptest1) = 0,

CN(ptest2) = 1 and CP (ptest2) = 0. The same procedure is repeated for other

solutions in X . Assume, for (W 6,M6), patients ptest1 and ptest2 are classified as

positive and negative respectively. In that case, the counters take the following val-

ues: CN(ptest1) = 1, CP (ptest1) = 1, CN(ptest2) = 2 and CP (ptest2) = 0. Fi-

nally, for the solution (W 8,M8), both patients are classified as negative. That is

CN(ptest1) = 2, CP (ptest1) = 1, CN(ptest2) = 3 and CP (ptest2) = 0.

The final classification decision is performed by comparing the counter values of a

solution. That is, since CN(ptest1) = 2 and CP (ptest1) = 1, in consistent with

majority voting, ptest1 is classified as negative. The final class decision of ptest2 is

determined in a similar manner. That is, since CN(ptest2) = 3 and CP (ptest2) = 0,

ptest2 is classified as negative.
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B Hyper-parameter Optimization Procedure

B.1 Nested Cross Validation

To find the optimal values of the hyper-parameters, we applied hyper-parameter op-

timization. To do so, we run the model with different combinations of the values of

hyper-parameters, and select the best combination according to model’s classification

performances. To determine the hyper-parameter values by an unbiased estimate of

the generalization performance of the model, we apply 5-fold nested cross validation

[96], where it is a common approach for hyper-parameter optimization [97, 98, 99].

It is defined as two nested loops of cross validation. Due to the inner cross valida-

tion performance, the hyper-parameter values are set and the outer loop evaluates the

generalization ability of the model with the selected values of hyper-parameters on

an independent set of observations [96, 97]. By this way, nested cross validation en-

sures that, the model do not use the observations reserved for outer loop to tune the

hyper-parameters.

Once we divide the data into five folds, one fold is reserved for test and one fold

of the remaining four folds are reserved for validation. For each combination of

hyper-parameters, the model is trained with the remaining three folds and evaluated

on the validation fold. This procedure should be repeated four times by rotating

the validation fold among training folds. Thus, for a reserved test fold, and for a

combination of hyper-parameters, there are four evaluations (i.e. Fscore). Then, the

average of these four Fscore values of the inner loop are reported. This procedure is

repeated five times, by having each fold as the test fold. The optimal hyper-parameter

combination is the one whose reported average inner Fscore values are promising for

all choices of the reserved test fold.

A set of hyper-parameter values are preferable if their inner loop performances are

among the top one for all reserved test folds. However, if there is no such hyper-

parameter set, we look for the one whose inner loop performances are among the top

two, top three, top four etc. If there are more than one hyper-parameter set that satisfy

the required conditions, we make the selection based on the higher average values or
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lower standard deviations.

B.2 Hyper-parameter Optimization for PCM+NSGA-II

Table B.1 lists the potential values for the hyper-parameters of PCM+NSGA-II, which

selected in a way that each hyper-parameter takes relatively low and high values.

Table B.1: Potential Values of Hyper-parameters of PCM+NSGA-II

PopulationSize 150, 250, 500, 1000

GenerationSize 5, 50, 100, 200

s.t. PopulationSize ≥ GenerationSize

NumberOfGenerations 5, 10, 50, 100

prc, plc (0.5, 0.5), (0.6, 0.4), (0.8, 0.2), (1, 0), (0.4, 0.6) ,(0.2, 0.8), (0,1)

s.t. prc + plc = 1

pm 0.01, 0.05, 0.1, 0.5

Under the given number of hyper-parameters and the given potential values, there

are 1344 different combinations. Since it is computationally too expensive, we set

their optimal values hierarchically. We first determine the values for PopulationSize,

GenerationSize and NumberOfGenerations while fixing the values of prc = 0.5, plc =

0.5 and pm = 0.01. Once the best values for these hyper-parameters are decided, we

repeat the procedure to find the best value for prc and plc pair. Finally, we tune the

pm.

We apply 5-fold nested cross validation, and use Fscore to evaluate the performances

of the different hyper-parameter choices.

B.3 Hyper-parameter Optimization for PCM+RECGA

Table B.2 lists the potential values for the hyper-parameters of PCM+RECGA, which

selected in a way that each hyper-parameter takes relatively low and high values.
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Table B.2: Potential Values of Hyper-parameters of PCM+RECGA

PopulationSize 150, 250, 500, 1000

minFinalSetSize 5, 50, 100, 200

s.t. PopulationSize ≥ minFinalSetSize

prc, plc (0.5, 0.5), (0.6, 0.4), (0.8, 0.2), (1, 0), (0.4, 0.6) ,(0.2, 0.8), (0,1)

s.t. prc + plc = 1

pm 0.01, 0.05, 0.1, 0.5

Under the given number of hyper-parameters and the given potential values, there

are 420 different combinations. Since it is computationally too expensive, we set

their optimal values hierarchically. We first determine the values for PopulationSize,

GenerationSize and NumberOfGenerations while fixing the values of prc = 0.5, plc =

0.5 and pm = 0.01. Once the best values for these hyper-parameters are decided, we

repeat the procedure to find the best value for prc and plc pair. Finally, we tune the

pm.

We apply 5-fold nested cross validation, and use Fscore to evaluate the performances

of the different hyper-parameter value choices.
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C Hyper-parameter Optimization for the In-Stent-Restenosis Dataset

For the experiments conducted with in-stent-restenosis dataset, we created two differ-

ent settings. Settings are differentiated by the ratio of the number of patients with and

without restenosis in training, validation and test samples. The corresponding folds

are created as given in Table C.1.

Table C.1: Content of a Fold for Setting 1 and Setting 2

Setting 1 Setting 2

# of patients with restenosis 12 12

# of patients without restenosis 48 12

C.1 Hyper-parameter Optimization for PCM+NSGA-II

C.1.1 Setting 1

Table C.2 indicates the Fscore performances of inner cross validation for different

values of PopulationSize, GenerationSize and NumberOfGenerations.

There is no hyper-parameter set whose inner cross validation performances are among

the top one, top two or top three for all repetition, thus, the hyper-parameter values

whose inner cross validation performances are among the top four for all the given

test folds are marked with **** in the last column.

Thus, the PopulationSize, GenerationSize and NumberOfGenerations are set to 1000,

50 and 5, respectively. Once these values are set, we repeat the same analysis for prc

and plc.

The hyper-parameter values whose inner cross validation performances are among the

top three for all the given test folds are marked with *** in the last column of Table

C.3. Their average Fscore values are also indicated in parenthesis. Since they are

equal, we prefer to set prc = 0.5 and plc = 0.5 due to their lower standard deviation

among five runs.
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Finally, we tune the value of pm by following the same procedure. The hyper-

parameter value whose inner cross validation performance is among the top two for

all the given test folds are marked with ** in the last column of Table C.4. Thus we

set pm=0.01.
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Table C.3: Inner Loop Performances for prc, plc (PCM+NSGA-II, Setting 1)

prc-plc Te
st

fo
ld

=#
1

Te
st

fo
ld

=#
2

Te
st

fo
ld

=#
3

Te
st

fo
ld

=#
4

Te
st

fo
ld

=#
5

0.5-0.5 0.75 0.71 0.71 0.69 0.74 ***(0.72)

0.6-0.4 0.74 0.70 0.69 0.68 0.73

0.8-0.2 0.68 0.72 0.72 0.69 0.75

1.0-0.0 0.72 0.71 0.72 0.69 0.74

0.4-0.6 0.74 0.69 0.65 0.64 0.69

0.2-0.8 0.73 0.74 0.71 0.68 0.74 ***(0.72)

0.0-1.0 0.68 0.70 0.71 0.66 0.72

Table C.4: Inner Loop Performances for pm (PCM+NSGA-II, Setting 1)

pm Te
st

fo
ld

=#
1

Te
st

fo
ld

=#
2

Te
st

fo
ld

=#
3

Te
st

fo
ld

=#
4

Te
st

fo
ld

=#
5

0.01 0.75 0.71 0.71 0.69 0.74 **(0.72)

0.05 0.69 0.71 0.71 0.68 0.74

0.10 0.71 0.71 0.66 0.65 0.72

0.50 0.70 0.73 0.71 0.69 0.74

C.1.2 Setting 2

Table C.5 indicates the Fscore performances of inner cross validation for different

values of PopulationSize, GenerationSize and NumberOfGenerations.

The hyper-parameter values whose inner cross validation performances are among

the top three for all the given test folds are marked with *** in the last column. Due

to its higher average value, we select the hyper-parameter set of 1000, 100, 100 for

PopulationSize, GenerationSize and NumberOfGenerations.
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Then we repeat the same analysis for prc and plc.

The hyper-parameter values whose inner cross validation performances are among

the top two for all the given test folds are marked with ** in the last column of Table

C.6. We set prc = 0.5 and plc = 0.5.

Finally, we tune the value of pm by following the same procedure.

The hyper-parameter value whose inner cross validation performance is among the

top two for all the given test folds are marked with ** in the last column of Table C.7.

Thus we set pm=0.01.
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Table C.6: Inner Loop Performances for prc, plc (PCM+NSGA-II, Setting 2)

prc-plc Te
st

fo
ld

=#
1

Te
st

fo
ld

=#
2

Te
st

fo
ld

=#
3

Te
st

fo
ld

=#
4

Te
st

fo
ld

=#
5

0.5-0.5 0.72 0.69 0.75 0.73 0.76 **(0.73)

0.6-0.4 0.71 0.63 0.69 0.65 0.70

0.8-0.2 0.69 0.68 0.72 0.70 0.73

1.0-0.0 0.62 0.70 0.72 0.72 0.75

0.4-0.6 0.68 0.68 0.69 0.67 0.71

0.2-0.8 0.71 0.64 0.70 0.68 0.70

0.0-1.0 0.68 0.67 0.70 0.69 0.73

Table C.7: Inner Loop Performances for pm (PCM+NSGA-II, Setting 2)

pm Te
st

fo
ld

=#
1

Te
st

fo
ld

=#
2

Te
st

fo
ld

=#
3

Te
st

fo
ld

=#
4

Te
st

fo
ld

=#
5

0.01 0.72 0.69 0.75 0.73 0.76 **(0.73)

0.05 0.74 0.64 0.65 0.61 0.67

0.10 0.67 0.63 0.65 0.61 0.67

0.50 0.66 0.63 0.68 0.66 0.68

C.2 Hyper-parameter Optimization for PCM+RECGA

C.2.1 Setting 1

Table C.8 indicates Fscore performances of inner cross validation for different values

of PopulationSize and minFinalSetSize.

The hyper-parameter values whose inner cross validation performances are among

the top two for all the given test folds are marked with ** in the last column. We set

191



PopulationSize, and NumberOfGenerations as 250 and 100, respectively.

Then we repeat the same analysis for prc and plc. The hyper-parameter values whose

inner cross validation performances are among the top two for all the given test folds

are marked with ** in the last column of Table C.9. Here, we have an exceptional

case. Even their inner cross validation performance are not in top one or top two for

all the given test folds, due to their remarkably high performance on four out of five

iterations of inner cross validation we set prc and plc as 1.0 and 0.0.

Finally, we tune the value of pm by following the same procedure. The hyper-

parameter value whose inner cross validation performance is among the top two for

all the given test folds are marked with ** in the last column of Table C.10. Thus we

set pm = 0.50.
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Table C.8: Inner Loop Performances for PopulationSize and minFinalSetSize

(PCM+RECGA, Setting 1)

Po
pu

la
tio

nS
iz

e

m
in

Fi
na

lS
et

Si
ze

Te
st

fo
ld

=#
1

Te
st

fo
ld

=#
2

Te
st

fo
ld

=#
3

Te
st

fo
ld

=#
4

Te
st

fo
ld

=#
5

150 5 0.71 0.69 0.67 0.65 0.69

150 50 0.71 0.69 0.67 0.65 0.69

150 100 0.71 0.69 0.67 0.65 0.69

250 5 0.69 0.69 0.67 0.65 0.69

250 50 0.69 0.69 0.67 0.65 0.69

250 100 0.70 0.69 0.67 0.65 0.69 **(0.68)

250 200 0.70 0.69 0.67 0.65 0.69 **(0.68)

500 5 0.67 0.69 0.67 0.65 0.69

500 50 0.67 0.69 0.67 0.65 0.69

500 100 0.67 0.69 0.67 0.65 0.69

500 200 0.69 0.70 0.67 0.65 0.69

1000 5 0.67 0.69 0.67 0.65 0.69

1000 50 0.67 0.69 0.67 0.65 0.69

1000 100 0.67 0.69 0.67 0.65 0.69

1000 200 0.68 0.69 0.67 0.65 0.69
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Table C.9: Inner Loop Performances for prc, plc (PCM+RECGA, Setting 1)

prc-plc Te
st

fo
ld

=#
1

Te
st

fo
ld

=#
2

Te
st

fo
ld

=#
3

Te
st

fo
ld

=#
4

Te
st

fo
ld

=#
5

0.5-0.5 0.70 0.69 0.67 0.65 0.69 **(0.68)

0.6-0.4 0.69 0.68 0.67 0.64 0.68

0.8-0.2 0.66 0.69 0.67 0.65 0.69

1.0-0.0 0.66 0.71 0.72 0.70 0.75 !(0.71)

0.4-0.6 0.70 0.68 0.67 0.65 0.69

0.2-0.8 0.69 0.69 0.67 0.65 0.69

0.0-1.0 0.72 0.66 0.67 0.64 0.68

Table C.10: -Inner Loop Performances for pm (PCM+RECGA, Setting 1)

pm Te
st

fo
ld

=#
1

Te
st

fo
ld

=#
2

Te
st

fo
ld

=#
3

Te
st

fo
ld

=#
4

Te
st

fo
ld

=#
5

0.01 0.66 0.71 0.72 0.70 0.75

0.05 0.66 0.69 0.70 0.70 0.73

0.10 0.70 0.69 0.66 0.64 0.69

0.50 0.71 0.70 0.70 0.69 0.75 **(0.71)

C.2.2 Setting 2

Table C.11 indicates the Fscore performances of inner cross validation for different

values of PopulationSize and minFinalSetSize.

The hyper-parameter values whose inner cross validation performances are among

the top one for all the given test folds are marked with * in the last column. We set

PopulationSize, and NumberOfGenerations as 150 and 50, respectively.
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Then we repeat the same analysis for prc and plc. The hyper-parameter values whose

inner cross validation performances are among the top two for all the given test folds

are marked with ** in the last column of Table C.12 and we set prc and plc as 0.5.

Finally, we tune the value of pm by following the same procedure. The hyper-

parameter value whose inner cross validation performance is among the top one for

all the given test folds are marked with * in the last column of Table C.13. Thus we

set pm = 0.01.

Table C.11: -Inner Loop Performances for PopulationSize and minFinalSetSize

(PCM+RECGA, Setting 2)

Po
pu

la
tio

nS
iz

e

m
in

Fi
na

lS
et

Si
ze

Te
st

fo
ld

=#
1

Te
st

fo
ld

=#
2

Te
st

fo
ld

=#
3

Te
st

fo
ld

=#
4

Te
st

fo
ld

=#
5

150 5 0.70 0.68 0.70 0.70 0.73

150 50 0.74 0.68 0.70 0.70 0.73 *(0.71)

150 100 0.74 0.68 0.70 0.70 0.73 *(0.71)

250 5 0.71 0.68 0.70 0.70 0.73

250 50 0.70 0.68 0.70 0.70 0.73

250 100 0.70 0.68 0.70 0.70 0.73

250 200 0.70 0.68 0.70 0.70 0.73

500 5 0.65 0.67 0.69 0.70 0.73

500 50 0.73 0.67 0.69 0.70 0.73

500 100 0.73 0.67 0.69 0.70 0.73

500 200 0.73 0.67 0.69 0.70 0.73

1000 5 0.64 0.68 0.69 0.70 0.73

1000 50 0.71 0.68 0.69 0.70 0.73

1000 100 0.71 0.68 0.69 0.70 0.73

1000 200 0.71 0.68 0.69 0.70 0.73
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Table C.12: -Inner Loop Performances for prc, plc (PCM+RECGA, Setting 2)

prc-plc Te
st

fo
ld

=#
1

Te
st

fo
ld

=#
2

Te
st

fo
ld

=#
3

Te
st

fo
ld

=#
4

Te
st

fo
ld

=#
5

0.5-0.5 0.74 0.68 0.70 0.70 0.73 **(0.71)

0.6-0.4 0.74 0.68 0.70 0.70 0.73

0.8-0.2 0.57 0.63 0.66 0.66 0.69

1.0-0.0 0.62 0.63 0.66 0.66 0.69

0.4-0.6 0.67 0.68 0.70 0.70 0.73 **(0.69)

0.2-0.8 0.66 0.69 0.70 0.70 0.73

0.0-1.0 0.63 0.68 0.70 0.70 0.73

Table C.13: -Inner Loop Performances for pm (PCM+RECGA, Setting 2)

pm Te
st

fo
ld

=#
1

Te
st

fo
ld

=#
2

Te
st

fo
ld

=#
3

Te
st

fo
ld

=#
4

Te
st

fo
ld

=#
5

0.01 0.74 0.68 0.70 0.70 0.73 *(0.71)

0.05 0.64 0.63 0.66 0.66 0.69

0.10 0.61 0.65 0.63 0.65 0.69

0.50 0.65 0.63 0.70 0.65 0.69
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D Generalization Performances of the Models for the In-Stent-Restenosis

Dataset: 5-fold Cross Validation

Recall that, in each iteration of inner cross validation, a fold is reserved for test, which

is not used in the hyper-parameter tuning process. To see the generalization perfor-

mance of the models with the selected hyper-parameter values, we test the model in

outer loop of the nested cross validation. Thus, we test the model performances with

5-fold cross validation.

The details of the settings are given in Table D.1. The table indicates that, in Setting

1, for each run of cross validation, there are 24 positive and 96 negative observations

in S and V , and there are 12 positive and 48 negative observations in S̃. In a sim-

ilar manner, in Setting 2, for each run of cross validation, there are 24 positive and

24 negative observations in S and V , and the S̃ is comprised of 12 positive and 12

negative observations.

The last row of Table D.1 indicates the interval of values that the parameter L of PCM

can take.

Table D.1: In-Stent-Restenosis Dataset, Settings

Setting 1 Setting 2

S V S̃ S V S̃

# of patients with restenosis 24 24 12 24 24 12

# of patients without restenosis 96 96 48 24 24 12

Total # of patients 120 120 60 48 48 24

L {0, . . . , 96} {0, . . . , 24}

Other than PCM+NSGA-II and PCM+RECGA, we also repeat the experiments of

5-fold cross validation for the competitor models for the sake of completeness. Note

that, PCM+NSGA-II and PCM+RECGA first utilize S to generate initial set of so-

lutions, and then they tune these solutions with V . On the other hand, competitor

models use S ∪ V for training. All the models’ performances are tested in S̃.
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Tables D.2 and D.3, D.4 and D.4 summarize the 5-fold CV performances of the mod-

els on in-stent-restenosis dataset.

Table D.2: Average Training Performance Results (5-fold CV)

PCM+NSGA-II PCM+RECGA LR pen-LR SVM ANN DT RF

Setting 1

Sensitivity 0.65 0.77 0.34 0.34 0.20 0.40 0.45 0.55

Specificity 0.85 0.70 0.98 0.98 1.00 0.98 0.96 0.97

Accuracy 0.81 0.71 0.85 0.85 0.84 0.86 0.86 0.89

Fscore 0.73 0.72 0.50 0.50 0.29 0.56 0.61 0.70

Fmeasure 0.58 0.52 0.47 0.47 0.29 0.53 0.56 0.66

Setting 2

Sensitivity 0.72 0.77 0.77 0.77 0.85 0.85 0.77 0.92

Specificity 0.72 0.64 0.70 0.70 0.64 0.76 0.83 0.81

Accuracy 0.72 0.70 0.74 0.74 0.75 0.81 0.80 0.87

Fscore 0.71 0.70 0.73 0.73 0.73 0.79 0.80 0.86

Fmeasure 0.72 0.72 0.75 0.75 0.77 0.81 0.79 0.87

Table D.3: Standard Deviations of Training Performance Indicators (5-fold CV)

PCM+NSGA-II PCM+RECGA LR pen-LR SVM ANN DT RF

Setting 1

Sensitivity 0.06 0.09 0.03 0.03 0.16 0.10 0.07 0.04

Specificity 0.06 0.09 0.01 0.01 0.00 0.02 0.01 0.01

Accuracy 0.05 0.06 0.01 0.01 0.03 0.01 0.01 0.01

Fscore 0.04 0.03 0.04 0.04 0.24 0.09 0.07 0.03

Fmeasure 0.08 0.04 0.03 0.03 0.24 0.07 0.05 0.03

Setting 2

Sensitivity 0.04 0.03 0.03 0.03 0.05 0.13 0.03 0.04

Specificity 0.05 0.03 0.05 0.05 0.09 0.08 0.02 0.05

Accuracy 0.01 0.02 0.03 0.03 0.05 0.03 0.01 0.02

Fscore 0.01 0.02 0.03 0.03 0.06 0.02 0.01 0.02

Fmeasure 0.01 0.02 0.02 0.02 0.04 0.04 0.01 0.01
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Table D.4: Average Test Performance Results (5-fold CV)

PCM+NSGA-II PCM+RECGA LR pen-LR SVM ANN DT RF

Setting 1

Sensitivity 0.58 0.65 0.33 0.33 0.10 0.25 0.33 0.30

Specificity 0.83 0.69 0.98 0.98 0.98 0.95 0.93 0.92

Accuracy 0.78 0.68 0.85 0.85 0.81 0.81 0.81 0.79

Fscore 0.67 0.65 0.49 0.49 0.17 0.39 0.48 0.44

Fmeasure 0.51 0.45 0.46 0.46 0.16 0.35 0.40 0.36

Setting 2

Sensitivity 0.62 0.72 0.75 0.73 0.80 0.77 0.63 0.77

Specificity 0.73 0.65 0.72 0.72 0.53 0.62 0.73 0.67

Accuracy 0.68 0.68 0.73 0.73 0.67 0.69 0.68 0.72

Fscore 0.65 0.67 0.72 0.71 0.63 0.62 0.67 0.70

Fmeasure 0.64 0.69 0.73 0.72 0.70 0.71 0.66 0.73

Table D.5: Standard Deviations of Test Performance Indicators (5-fold CV)

PCM+NSGA-II PCM+RECGA LR pen-LR SVM ANN DT RF

Setting 1

Sensitivity 0.17 0.14 0.07 0.07 0.08 0.05 0.12 0.08

Specificity 0.04 0.10 0.02 0.02 0.02 0.02 0.04 0.04

Accuracy 0.05 0.06 0.02 0.02 0.01 0.02 0.04 0.03

Fscore 0.12 0.04 0.08 0.08 0.14 0.07 0.13 0.10

Fmeasure 0.12 0.05 0.09 0.09 0.13 0.06 0.13 0.08

Setting 2

Sensitivity 0.17 0.15 0.14 0.15 0.11 0.18 0.12 0.10

Specificity 0.10 0.06 0.11 0.11 0.12 0.23 0.08 0.12

Accuracy 0.07 0.06 0.08 0.09 0.07 0.04 0.06 0.04

Fscore 0.08 0.05 0.07 0.08 0.08 0.12 0.07 0.05

Fmeasure 0.10 0.08 0.09 0.10 0.07 0.05 0.08 0.04

Note that the given performances of PCM+NSGA-II and PCM+RECGA under the

experimental setting with 5-fold cross validation are similar to the performances when

the experimental analysis conducted with randomly generated 100 instances.

199



E Hyper-parameter Optimization for the Wisconsin Breast Cancer Original

Dataset

Table E.1 summarizes the content of a fold. Note that, the positive and negative

observations in a fold are arranged to satisfy predetermined rareness levels. Columns

"Malign" and "Benign" of Table E.1 indicate the number of positive and negative

observations in a fold and "Rareness level" indicates the ratio of positive observations

to all observations.

Table E.1: Content of a Fold for Different Rareness Levels- WBCO Dataset

Malign Benign

R
ar

en
es

sl
ev

el

1% 1 88

3% 3 88

5% 5 88

7% 7 88

10% 10 88

15% 16 88

25% 30 88

35% 47 88

E.1 Hyper-parameter Optimization for PCM+NSGA-II

E.1.1 Rareness Level = 1%

Table E.2 indicates the Fscore performances of inner cross validation for different

values of PopulationSize, GenerationSize and NumberOfGenerations.

The hyper-parameter values whose inner cross validation performances are among

the top two for all the given test folds are marked with ** in the last column. Thus,

the PopulationSize, GenerationSize and NumberOfGenerations are set to 1000, 50

and 5, respectively. Once these values are set, we repeat the same analysis for prc

and plc. The hyper-parameter values whose inner cross validation performances are
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among the top one for all the given test folds are marked with * in the last column of

Table E.3. Their average Fscore values are also indicated in parenthesis. Since they

are equal, we set prc = 0.5 and plc = 0.5.

Finally, we tune the value of pm by following the same procedure. The hyper-

parameter value whose inner cross validation performance is among the top one for

all the given test folds are marked with * in the last column of Table E.4. Thus we set

pm=0.01.
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Table E.3: Inner Loop Performances for prc, plc (PCM+NSGA-II, Rareness

Level=1%)

prc-plc Te
st

fo
ld

=#
1

Te
st

fo
ld

=#
2

Te
st

fo
ld

=#
3

Te
st

fo
ld

=#
4

Te
st

fo
ld

=#
5

0.5-0.5 0.98 0.99 0.99 0.99 0.99 *(0.99)

0.6-0.4 0.97 0.49 0.50 0.74 0.74

0.8-0.2 0.98 0.74 0.74 0.99 0.74

1.0-0.0 0.98 0.99 0.99 0.99 0.99 *(0.99)

0.4-0.6 0.96 0.50 0.50 0.75 0.75

0.2-0.8 0.74 0.99 0.99 0.99 0.99

0.0-1.0 0.96 0.98 0.98 0.98 0.98

Table E.4: Inner Loop Performances for pm (PCM+NSGA-II, Rareness Level=1%)

pm Te
st

fo
ld

=#
1

Te
st

fo
ld

=#
2

Te
st

fo
ld

=#
3

Te
st

fo
ld

=#
4

Te
st

fo
ld

=#
5

0.01 0.98 0.99 0.99 0.99 0.99 *(0.99)

0.05 0.97 0.74 0.74 0.99 0.75

0.10 0.97 0.99 0.99 0.99 0.99

0.50 0.95 0.49 0.49 0.74 0.74

E.1.2 Rareness Level = 10%

Table E.5 indicates the Fscore performances of inner cross validation for different

values of PopulationSize, GenerationSize and NumberOfGenerations.

The hyper-parameter values whose inner cross validation performances are among

the top two for all the given test folds are marked with ** in the last column.
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Thus, the PopulationSize, GenerationSize and NumberOfGenerations are set to 500,

5 and 5, respectively. Once these values are set, we repeat the same analysis for prc

and plc.

The hyper-parameter values whose inner cross validation performances are among

the top two for all the given test folds are marked with ** in the last column of Table

E.6. Their average Fscore values are also indicated in parenthesis. Due to their higher

average value, we set prc = 0.5 and plc = 0.5.

Finally, we tune the value of pm by following the same procedure. The hyper-

parameter value whose inner cross validation performance is among the top one for

all the given test folds are marked with * in the last column of Table E.7. Thus we set

pm=0.01.

204



Ta
bl

e
E

.5
:I

nn
er

L
oo

p
Pe

rf
or

m
an

ce
sf

or
Po

pu
la

tio
nS

iz
e,

G
en

er
at

io
nS

iz
e

an
d

N
um

be
rO

fG
en

er
at

io
ns

(P
C

M
+N

SG
A

-I
I,

R
ar

en
es

sL
ev

el
=1

0%
)

PopulationSize

GenerationSize

NumberOfGenerations

Testfold=#1

Testfold=#2

Testfold=#3

Testfold=#4

Testfold=#5

PopulationSize

GenerationSize

NumberOfGenerations

Testfold=#1

Testfold=#2

Testfold=#3

Testfold=#4

Testfold=#5

PopulationSize

GenerationSize

NumberOfGenerations

Testfold=#1

Testfold=#2

Testfold=#3

Testfold=#4

Testfold=#5

15
0

5
5

0.
96

0.
96

0.
97

0.
97

0.
97

25
0

10
0

5
0.

99
0.

96
0.

94
0.

95
0.

94
50

0
20

0
5

0.
97

0.
97

0.
95

0.
95

0.
95

15
0

5
10

0.
97

0.
96

0.
99

0.
99

0.
99

25
0

10
0

10
0.

96
0.

96
0.

94
0.

95
0.

94
50

0
20

0
10

0.
94

0.
97

0.
96

0.
97

0.
96

15
0

5
50

0.
98

0.
96

0.
98

0.
98

0.
98

25
0

10
0

50
0.

92
0.

95
0.

88
0.

91
0.

89
50

0
20

0
50

0.
96

0.
97

0.
95

0.
95

0.
95

15
0

5
10

0
0.

98
0.

91
0.

93
0.

93
0.

90
25

0
10

0
10

0
0.

93
0.

96
0.

88
0.

91
0.

88
50

0
20

0
10

0
0.

91
0.

98
0.

95
0.

95
0.

95

15
0

50
5

0.
99

0.
98

0.
95

0.
95

0.
95

25
0

20
0

5
0.

99
0.

97
0.

95
0.

95
0.

94
10

00
5

5
0.

92
0.

96
0.

99
0.

99
0.

99

15
0

50
10

0.
98

0.
95

0.
95

0.
95

0.
95

25
0

20
0

10
0.

96
0.

97
0.

95
0.

95
0.

94
10

00
5

10
0.

93
0.

96
0.

98
0.

98
0.

98

15
0

50
50

0.
97

0.
93

0.
95

0.
94

0.
94

25
0

20
0

50
0.

91
0.

98
0.

94
0.

94
0.

93
10

00
5

50
0.

93
0.

99
0.

98
0.

98
0.

98

15
0

50
10

0
0.

96
0.

92
0.

94
0.

94
0.

93
25

0
20

0
10

0
0.

90
0.

98
0.

94
0.

94
0.

94
10

00
5

10
0

0.
95

0.
99

0.
98

0.
98

0.
98

15
0

10
0

5
0.

99
0.

97
0.

95
0.

95
0.

95
50

0
5

5
0.

98
0.

98
0.

98
0.

98
0.

98
**

(0
.9

8)
10

00
50

5
0.

98
0.

95
0.

94
0.

94
0.

93

15
0

10
0

10
0.

97
0.

98
0.

95
0.

95
0.

95
50

0
5

10
0.

98
0.

98
0.

97
0.

97
0.

96
10

00
50

10
0.

95
0.

95
0.

94
0.

94
0.

93

15
0

10
0

50
0.

94
0.

98
0.

95
0.

95
0.

95
50

0
5

50
0.

97
0.

96
0.

96
0.

96
0.

94
10

00
50

50
0.

97
0.

95
0.

94
0.

94
0.

93

15
0

10
0

10
0

0.
94

0.
98

0.
96

0.
96

0.
96

50
0

5
10

0
0.

98
0.

94
0.

96
0.

96
0.

94
10

00
50

10
0

0.
94

0.
94

0.
94

0.
94

0.
93

25
0

5
5

0.
96

0.
98

0.
99

0.
99

0.
99

50
0

50
5

0.
95

0.
97

0.
96

0.
94

0.
94

10
00

10
0

5
0.

92
0.

94
0.

91
0.

91
0.

91

25
0

5
10

0.
97

0.
94

0.
94

0.
96

0.
93

50
0

50
10

0.
91

0.
97

0.
95

0.
94

0.
94

10
00

10
0

10
0.

94
0.

95
0.

91
0.

92
0.

92

25
0

5
50

0.
98

0.
94

0.
94

0.
96

0.
93

50
0

50
50

0.
93

0.
97

0.
93

0.
94

0.
92

10
00

10
0

50
0.

94
0.

97
0.

92
0.

92
0.

94

25
0

5
10

0
0.

94
0.

94
0.

94
0.

96
0.

93
50

0
50

10
0

0.
94

0.
97

0.
96

0.
97

0.
95

1,
00

0
10

0
10

0
0.

96
0.

95
0.

93
0.

94
0.

94

25
0

50
5

0.
99

0.
97

0.
94

0.
95

0.
94

50
0

10
0

5
0.

97
0.

98
0.

95
0.

95
0.

95
10

00
20

0
5

0.
93

0.
97

0.
93

0.
93

0.
93

25
0

50
10

0.
96

0.
97

0.
94

0.
95

0.
94

50
0

10
0

10
0.

94
0.

98
0.

95
0.

95
0.

95
10

00
20

0
10

0.
92

0.
98

0.
93

0.
93

0.
93

25
0

50
50

0.
97

0.
95

0.
94

0.
94

0.
93

50
0

10
0

50
0.

93
0.

95
0.

94
0.

93
0.

94
10

00
20

0
50

0.
94

0.
98

0.
94

0.
94

0.
95

25
0

50
10

0
0.

96
0.

93
0.

93
0.

94
0.

93
50

0
10

0
10

0
0.

90
0.

98
0.

95
0.

95
0.

95
10

00
20

0
10

0
0.

95
0.

95
0.

93
0.

93
0.

93

205



Table E.6: Inner Loop Performances for prc, plc (PCM+NSGA-II, Rareness

Level=10%)

prc-plc Te
st

fo
ld

=#
1

Te
st

fo
ld

=#
2

Te
st

fo
ld

=#
3

Te
st

fo
ld

=#
4

Te
st

fo
ld

=#
5

0.5-0.5 0.98 0.98 0.98 0.98 0.98 **(0.98)

0.6-0.4 0.95 0.99 0.98 0.98 0.98 **(0.97)

0.8-0.2 0.95 0.97 0.98 0.98 0.98

1.0-0.0 0.95 0.95 0.97 0.98 0.97

0.4-0.6 0.95 0.95 0.98 0.98 0.98

0.2-0.8 0.92 0.96 0.97 0.97 0.96

0.0-1.0 0.94 0.96 0.96 0.96 0.97

Table E.7: Inner Loop Performances for pm (PCM+NSGA-II, Rareness Level=10%)

pm Te
st

fo
ld

=#
1

Te
st

fo
ld

=#
2

Te
st

fo
ld

=#
3

Te
st

fo
ld

=#
4

Te
st

fo
ld

=#
5

0.01 0.98 0.98 0.98 0.98 0.98 *(0.98)

0.05 0.90 0.95 0.97 0.96 0.95

0.10 0.94 0.98 0.97 0.97 0.97

0.50 0.94 0.80 0.78 0.80 0.78

E.2 Hyper-parameter Optimization for PCM+RECGA

E.2.1 Rareness Level = 1%

Table E.8 indicates the Fscore performances of inner cross validation for different

values of PopulationSize and minFinalSetSize.

The hyper-parameter values whose inner cross validation performances are among
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the top two for all the given test folds are marked with ** in the last column. Among

the set of hyper-parameters that has highest average performances, PopulationSize,

and NumberOfGenerations are set to 150 and 50, respectively.

Then we repeat the same analysis for prc and plc. The hyper-parameter values whose

inner cross validation performances are among the top two for all the given test folds

are marked with ** in the last column of Table E.9 and we set prc and plc as 0.4 and

0.6, respectively.

Finally, we tune the value of pm by following the same procedure. The hyper-

parameter value whose inner cross validation performance is among the top two for

all the given test folds are marked with ** in the last column of Table E.10. Due to

its higher average performance, we set pm = 0.01.
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Table E.8: Inner Loop Performances for PopulationSize and minFinalSetSize

(PCM+RECGA, Rareness Level=1%)

Po
pu

la
tio

nS
iz

e

m
in

Fi
na

lS
et

Si
ze

Te
st

fo
ld

=#
1

Te
st

fo
ld

=#
2

Te
st

fo
ld

=#
3

Te
st

fo
ld

=#
4

Te
st

fo
ld

=#
5

150 5 0.98 0.98 0.98 0.98 0.98 **(0.98)

150 50 0.98 0.98 0.98 0.98 0.98 **(0.98)

150 100 0.98 0.98 0.98 0.98 0.98 **(0.98)

250 5 0.75 0.99 0.98 0.98 0.98 **(0.94)

250 50 0.75 0.99 0.98 0.98 0.98 **(0.94)

250 100 0.75 0.98 0.98 0.98 0.98 **(0.94)

250 200 0.75 0.98 0.98 0.98 0.98 **(0.94)

500 5 0.75 0.99 0.98 0.99 0.99 **(0.94)

500 50 0.75 0.99 0.98 0.99 0.99 **(0.94)

500 100 0.75 0.99 0.98 0.99 0.99 **(0.94)

500 200 0.75 0.99 0.98 0.99 0.99 **(0.94)

1000 5 0.75 0.99 0.98 0.99 0.98 **(0.94)

1000 50 0.50 0.99 0.98 0.99 0.98

1000 100 0.50 0.99 0.98 0.99 0.98

1000 200 0.50 0.99 0.98 0.99 0.99
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Table E.9: Inner Loop Performances for prc, plc (PCM+RECGA, Rareness

Level=1%)

prc-plc Te
st

fo
ld

=#
1

Te
st

fo
ld

=#
2

Te
st

fo
ld

=#
3

Te
st

fo
ld

=#
4

Te
st

fo
ld

=#
5

0.5-0.5 0.98 0.98 0.98 0.98 0.98 *(0.98)

0.6-0.4 0.74 0.98 0.98 0.98 0.98

0.8-0.2 0.74 0.98 0.98 0.98 0.98

1.0-0.0 0.98 0.98 0.98 0.98 0.98 *(0.98)

0.4-0.6 0.98 0.98 0.98 0.98 0.98 *(0.98)

0.2-0.8 0.98 0.98 0.98 0.98 0.98 *(0.98)

0.0-1.0 0.98 0.98 0.98 0.98 0.98 *(0.98)

Table E.10: -Inner Loop Performances for pm (PCM+RECGA, Rareness Level=1%)

pm Te
st

fo
ld

=#
1

Te
st

fo
ld

=#
2

Te
st

fo
ld

=#
3

Te
st

fo
ld

=#
4

Te
st

fo
ld

=#
5

0.01 0.98 0.98 0.98 0.98 0.98 **(0.98)

0.05 0.74 0.98 0.98 0.98 0.98 **(0.93)

0.10 0.74 0.99 0.98 0.99 0.99 **(0.94)

0.50 0.74 0.98 0.98 0.98 0.98 **(0.93)

E.2.2 Rareness Level = 10%

Table E.11 indicates Fscore performances of inner cross validation for different values

of PopulationSize and minFinalSetSize.

The hyper-parameter values whose inner cross validation performances are among

the top one for all the given test folds are marked with * in the last column. Popula-

tionSize, and NumberOfGenerations are set to 250 and 200, respectively.
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Then we repeat the same analysis for prc and plc. The hyper-parameter values whose

inner cross validation performances are among the top one for all the given test folds

are marked with * in the last column of Table E.12 and we set prc and plc as 0.8 and

0.2, respectively.

Finally, we tune the value of pm by following the same procedure. The hyper-

parameter value whose inner cross validation performance is among the top one for

all the given test folds are marked with * in the last column of Table E.13 and we set

pm = 0.01.

Table E.11: -Inner Loop Performances for PopulationSize and minFinalSetSize

(PCM+RECGA, Rareness Level=10%)

Po
pu

la
tio

nS
iz

e

m
in

Fi
na

lS
et

Si
ze

Te
st

fo
ld

=#
1

Te
st

fo
ld

=#
2

Te
st

fo
ld

=#
3

Te
st

fo
ld

=#
4

Te
st

fo
ld

=#
5

150 5 0.94 0.94 0.94 0.94 0.93 *(0.94)

150 50 0.94 0.94 0.94 0.94 0.93 *(0.94)

150 100 0.94 0.94 0.94 0.94 0.93 *(0.94)

250 5 0.94 0.94 0.94 0.94 0.93 *(0.94)

250 50 0.94 0.94 0.94 0.94 0.93 *(0.94)

250 100 0.94 0.94 0.94 0.94 0.93 *(0.94)

250 200 0.94 0.94 0.94 0.94 0.93 *(0.94)

500 5 0.92 0.94 0.94 0.94 0.93

500 50 0.92 0.94 0.94 0.94 0.93

500 100 0.92 0.94 0.94 0.94 0.93

500 200 0.92 0.94 0.94 0.94 0.93

1000 5 0.94 0.94 0.94 0.94 0.93 *(0.94)

1000 50 0.94 0.94 0.94 0.94 0.93 *(0.94)

1000 100 0.94 0.94 0.94 0.94 0.93 *(0.94)

1000 200 0.94 0.94 0.94 0.94 0.93 *(0.94)
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Table E.12: -Inner Loop Performances for prc, plc (PCM+RECGA, Rareness

Level=10%)

prc-plc Te
st

fo
ld

=#
1

Te
st

fo
ld

=#
2

Te
st

fo
ld

=#
3

Te
st

fo
ld

=#
4

Te
st

fo
ld

=#
5

0.5-0.5 0.94 0.94 0.94 0.94 0.93

0.6-0.4 0.94 0.94 0.94 0.94 0.93

0.8-0.2 0.94 0.95 0.95 0.95 0.95 *(0.95)

1.0-0.0 0.94 0.95 0.95 0.95 0.94

0.4-0.6 0.94 0.94 0.94 0.94 0.93

0.2-0.8 0.94 0.94 0.94 0.94 0.93

0.0-1.0 0.94 0.95 0.95 0.95 0.95 *(0.95)

Table E.13: -Inner Loop Performances for pm (PCM+RECGA, Rareness Level=10%)

pm Te
st

fo
ld

=#
1

Te
st

fo
ld

=#
2

Te
st

fo
ld

=#
3

Te
st

fo
ld

=#
4

Te
st

fo
ld

=#
5

0.01 0.94 0.95 0.95 0.95 0.95 *(0.95)

0.05 0.94 0.89 0.90 0.90 0.91

0.10 0.94 0.94 0.93 0.94 0.93

0.50 0.94 0.84 0.87 0.88 0.87

211



F Generalization Performances of the Models for the Wisconsin Breast Cancer

Original Dataset: 5-fold Cross Validation

To see the generalization performance of the models with the selected hyper-parameter

values, we test the models in outer loop of the nested cross validation. Thus, we test

the model performances with 5-fold cross validation. We repeat the experiments for

the rareness levels ranging between 1% to 35%.

Table F.1 shows the dataset configurations used in the experiments which are con-

ducted with 5-fold CV.

Table F.1: Experimental Settings for the WBCO Dataset (5-fold CV)

Malign Benign
Rareness

Malign Benign
Rareness

level level

S 2 176

1%

S 20 176

10%

V 2 176 V 20 176

S̃ 1 88 S̃ 10 88

Total 5 440 Total 50 440

S 6 176

3%

S 32 176

15%

V 6 176 V 32 176

S̃ 3 88 S̃ 16 88

Total 15 440 Total 80 440

S 10 176

5%

S 60 176

25%

V 10 176 V 60 176

S̃ 5 88 S̃ 30 88

Total 25 440 Total 150 440

S 14 176

7%

S 94 176

35%

V 14 176 V 94 176

S̃ 7 88 S̃ 47 88

Total 35 440 Total 235 440

L {0,. . . 176}

Tables F.2 and F.3 summarize the average performance results and standard deviations

of performance indicators for PCM+NSGA-II and PCM+RECGA. The performances
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are given for both sets of hyper-parameters, that are the hyper-parameters determined

with rareness level 1% and 10%.

We also report the performances of the competitor models under the experimental set-

ting with 5-fold cross validation, for the sake of completeness. Their average training

and test performances are given in Table F.4 and standard deviations of performance

indicators for training and test are given in Table F.5.
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Table F.2: Performances of PCM+NSGA-II (5-fold CV, WBCO Dataset)

PCM+NSGA-II 1% 3% 5% 7% 10% 15% 25% 35%

H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2

AVERAGE PERFORMANCE RESULTS

S

Sensitivity 1.00 0.90 0.80 0.50 0.92 0.72 0.66 0.84 0.73 0.83 0.97 0.95 0.97 0.82 0.95 0.93

Specificity 0.94 0.99 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.98 0.97 0.98

Accuracy 0.94 0.99 0.97 0.97 0.98 0.97 0.97 0.98 0.96 0.97 0.98 0.98 0.97 0.94 0.97 0.96

Fscore 0.97 0.93 0.86 0.65 0.95 0.83 0.76 0.90 0.84 0.90 0.97 0.96 0.97 0.88 0.96 0.95

Fmeasure 0.29 0.59 0.64 0.50 0.81 0.73 0.72 0.84 0.80 0.84 0.93 0.92 0.95 0.86 0.95 0.94

V

Sensitivity 1.00 0.50 0.77 0.83 0.84 0.88 0.84 0.93 0.84 0.91 0.91 0.97 0.93 0.84 0.94 0.92

Specificity 0.96 1.00 0.98 1.00 0.98 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.98 0.98 0.98 0.99

Accuracy 0.96 0.99 0.97 0.99 0.98 0.99 0.98 0.99 0.98 0.98 0.97 0.99 0.97 0.95 0.96 0.96

Fscore 0.98 0.67 0.86 0.91 0.90 0.93 0.91 0.96 0.91 0.95 0.95 0.98 0.95 0.90 0.96 0.95

Fmeasure 0.35 0.55 0.62 0.89 0.79 0.89 0.84 0.92 0.87 0.92 0.91 0.96 0.93 0.88 0.95 0.94

S̃

Sensitivity 1.00 0.60 0.87 0.67 0.84 0.80 0.80 0.86 0.78 0.84 0.85 0.90 0.93 0.81 0.95 0.90

Specificity 0.95 0.99 0.96 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.98 0.98 0.97 0.98 0.97 0.97

Accuracy 0.95 0.98 0.96 0.97 0.97 0.97 0.96 0.97 0.96 0.96 0.96 0.97 0.96 0.94 0.96 0.94

Fscore 0.97 0.60 0.90 0.75 0.89 0.87 0.87 0.91 0.85 0.90 0.91 0.94 0.95 0.88 0.96 0.93

Fmeasure 0.31 0.37 0.60 0.58 0.76 0.75 0.76 0.81 0.80 0.81 0.88 0.90 0.92 0.86 0.95 0.92

STANDARD DEVIATIONS OF PERFORMANCE INDICATORS

S

Sensitivity 0.00 0.20 0.24 0.15 0.07 0.12 0.24 0.15 0.09 0.09 0.02 0.04 0.02 0.15 0.02 0.03

Specificity 0.03 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.02

Accuracy 0.03 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.00 0.01 0.01 0.04 0.01 0.01

Fscore 0.01 0.13 0.16 0.13 0.04 0.08 0.18 0.09 0.06 0.06 0.01 0.02 0.01 0.10 0.01 0.01

Fmeasure 0.09 0.10 0.08 0.13 0.08 0.08 0.16 0.09 0.05 0.08 0.01 0.02 0.01 0.10 0.01 0.01

V

Sensitivity 0.00 0.00 0.08 0.00 0.08 0.04 0.03 0.05 0.10 0.06 0.03 0.00 0.01 0.13 0.01 0.05

Specificity 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Accuracy 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.03 0.01 0.02

Fscore 0.01 0.00 0.05 0.00 0.05 0.02 0.02 0.02 0.06 0.03 0.02 0.00 0.01 0.08 0.01 0.03

Fmeasure 0.07 0.10 0.03 0.03 0.05 0.02 0.03 0.04 0.06 0.03 0.02 0.01 0.01 0.08 0.01 0.02

S̃

Sensitivity 0.00 0.49 0.16 0.30 0.20 0.18 0.15 0.09 0.19 0.08 0.06 0.03 0.05 0.13 0.02 0.06

Specificity 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Accuracy 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.01 0.01

Fscore 0.01 0.49 0.10 0.22 0.12 0.11 0.09 0.05 0.14 0.05 0.04 0.02 0.02 0.08 0.01 0.03

Fmeasure 0.07 0.31 0.13 0.14 0.05 0.08 0.08 0.08 0.12 0.04 0.04 0.02 0.02 0.07 0.01 0.02
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Table F.3: Performances of PCM+RECGA (5-fold CV, WBCO Dataset)

PCM+RECGA 1% 3% 5% 7% 10% 15% 25% 35%

H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2

AVERAGE PERFORMANCE RESULTS

S

Sensitivity 1.00 1.00 0.73 0.70 0.86 0.86 0.87 0.89 0.67 0.70 0.99 0.99 0.99 0.99 0.98 0.98

Specificity 0.96 0.96 1.00 1.00 0.97 0.97 0.98 0.96 0.98 0.97 0.90 0.90 0.94 0.94 0.95 0.95

Accuracy 0.96 0.96 0.99 0.99 0.97 0.96 0.97 0.96 0.95 0.95 0.91 0.91 0.95 0.95 0.96 0.96

Fscore 0.98 0.98 0.84 0.82 0.90 0.90 0.92 0.92 0.79 0.81 0.94 0.94 0.96 0.96 0.97 0.97

Fmeasure 0.37 0.37 0.78 0.76 0.73 0.73 0.80 0.76 0.72 0.73 0.78 0.78 0.92 0.92 0.95 0.95

V

Sensitivity 1.00 1.00 0.93 0.93 0.96 0.98 0.89 0.90 0.77 0.81 0.95 0.95 0.93 0.93 0.94 0.94

Specificity 0.96 0.96 0.98 0.98 0.96 0.96 0.97 0.97 0.98 0.98 0.91 0.91 0.93 0.92 0.96 0.96

Accuracy 0.96 0.96 0.98 0.98 0.96 0.96 0.97 0.97 0.96 0.96 0.91 0.91 0.93 0.93 0.95 0.95

Fscore 0.98 0.98 0.95 0.95 0.96 0.97 0.92 0.93 0.85 0.88 0.93 0.93 0.93 0.93 0.95 0.95

Fmeasure 0.36 0.36 0.74 0.75 0.74 0.74 0.79 0.80 0.78 0.81 0.78 0.78 0.87 0.87 0.93 0.93

S̃

Sensitivity 1.00 1.00 0.80 0.60 0.84 0.88 0.86 0.89 0.78 0.80 0.96 0.96 0.95 0.95 0.94 0.94

Specificity 0.95 0.95 0.98 0.98 0.95 0.95 0.97 0.97 0.98 0.97 0.90 0.90 0.91 0.91 0.97 0.96

Accuracy 0.95 0.95 0.97 0.97 0.95 0.95 0.96 0.96 0.96 0.95 0.91 0.91 0.92 0.92 0.96 0.96

Fscore 0.98 0.98 0.85 0.69 0.88 0.91 0.90 0.92 0.86 0.87 0.93 0.93 0.93 0.93 0.95 0.95

Fmeasure 0.33 0.33 0.64 0.51 0.64 0.67 0.74 0.77 0.79 0.77 0.78 0.78 0.87 0.86 0.94 0.94

STANDARD DEVIATIONS OF PERFORMANCE INDICATORS

S

Sensitivity 0.00 0.00 0.08 0.12 0.17 0.17 0.07 0.07 0.06 0.00 0.03 0.03 0.01 0.01 0.00 0.00

Specificity 0.01 0.01 0.00 0.00 0.02 0.02 0.01 0.02 0.01 0.00 0.06 0.06 0.03 0.04 0.01 0.01

Accuracy 0.01 0.01 0.00 0.01 0.02 0.02 0.00 0.02 0.00 0.00 0.05 0.05 0.02 0.02 0.01 0.01

Fscore 0.00 0.00 0.05 0.09 0.11 0.10 0.04 0.04 0.04 0.00 0.03 0.03 0.02 0.02 0.00 0.01

Fmeasure 0.05 0.05 0.07 0.11 0.15 0.14 0.02 0.08 0.02 0.02 0.10 0.10 0.04 0.04 0.01 0.01

V

Sensitivity 0.00 0.00 0.08 0.08 0.05 0.04 0.09 0.10 0.18 0.12 0.04 0.04 0.02 0.02 0.03 0.04

Specificity 0.01 0.01 0.00 0.00 0.02 0.02 0.01 0.01 0.01 0.01 0.05 0.05 0.05 0.04 0.01 0.01

Accuracy 0.01 0.01 0.00 0.00 0.02 0.02 0.00 0.00 0.01 0.01 0.04 0.04 0.03 0.03 0.01 0.01

Fscore 0.01 0.01 0.04 0.04 0.02 0.02 0.05 0.05 0.12 0.07 0.02 0.02 0.02 0.02 0.01 0.01

Fmeasure 0.07 0.07 0.02 0.02 0.09 0.09 0.01 0.03 0.09 0.04 0.08 0.08 0.05 0.04 0.01 0.01

S̃

Sensitivity 0.00 0.00 0.27 0.33 0.20 0.16 0.16 0.17 0.17 0.14 0.05 0.05 0.03 0.03 0.05 0.05

Specificity 0.01 0.01 0.00 0.00 0.03 0.03 0.00 0.00 0.01 0.01 0.05 0.05 0.06 0.05 0.01 0.01

Accuracy 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.02 0.05 0.05 0.05 0.04 0.02 0.01

Fscore 0.01 0.01 0.19 0.24 0.11 0.09 0.10 0.10 0.11 0.09 0.04 0.04 0.04 0.04 0.02 0.02

Fmeasure 0.05 0.05 0.14 0.19 0.07 0.10 0.09 0.11 0.08 0.10 0.09 0.09 0.07 0.07 0.02 0.02
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Table F.4: Average Performance Results of Competitor Models (5-fold CV, WBCO

Dataset)

LR pen-LR SVM ANN DT RF LR pen-LR SVM ANN DT RF

S ∪ V S̃

1%

Sensitivity 1.00 0.80 0.35 1.00 0.35 1.00 0.60 0.60 0.00 0.80 0.00 0.00

Specificity 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 1.00 0.99 0.99 0.99

Accuracy 1.00 1.00 0.99 1.00 0.99 1.00 0.98 0.99 0.98 0.99 0.98 0.98

Fscore 1.00 0.89 0.37 1.00 0.41 1.00 0.60 0.60 0.00 0.79 0.00 0.00

Fmeasure 1.00 0.84 0.37 0.96 0.37 1.00 0.50 0.50 0.00 0.58 0.00 0.00

3%

Sensitivity 0.92 0.92 0.73 0.97 0.92 1.00 0.60 0.67 0.47 0.67 0.53 0.67

Specificity 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99 0.99 0.98 1.00 1.00

Accuracy 0.99 0.99 0.99 1.00 1.00 1.00 0.97 0.98 0.97 0.97 0.98 0.98

Fscore 0.95 0.95 0.76 0.98 0.95 1.00 0.71 0.77 0.58 0.78 0.56 0.72

Fmeasure 0.91 0.91 0.73 0.97 0.94 1.00 0.56 0.64 0.46 0.65 0.50 0.67

5%

Sensitivity 0.95 0.94 0.93 0.98 0.92 1.00 0.84 0.76 0.80 0.88 0.72 0.72

Specificity 0.99 0.99 0.99 1.00 0.99 1.00 0.99 0.99 0.99 0.99 0.98 0.99

Accuracy 0.99 0.99 0.99 1.00 0.99 1.00 0.98 0.98 0.98 0.98 0.97 0.97

Fscore 0.97 0.97 0.96 0.99 0.95 1.00 0.91 0.84 0.87 0.93 0.81 0.81

Fmeasure 0.93 0.92 0.90 0.96 0.89 1.00 0.84 0.78 0.78 0.83 0.69 0.72

7%

Sensitivity 0.92 0.93 0.88 0.95 0.96 1.00 0.86 0.83 0.91 0.83 0.80 0.77

Specificity 0.99 0.99 0.99 0.99 0.99 1.00 0.98 0.99 0.98 0.99 0.98 0.98

Accuracy 0.99 0.99 0.98 0.99 0.99 1.00 0.97 0.97 0.98 0.97 0.97 0.96

Fscore 0.95 0.96 0.93 0.97 0.97 1.00 0.91 0.90 0.95 0.90 0.87 0.81

Fmeasure 0.90 0.92 0.88 0.94 0.91 1.00 0.83 0.83 0.87 0.83 0.78 0.71

10%

Sensitivity 0.95 0.95 0.94 0.98 0.96 1.00 0.86 0.84 0.92 0.86 0.74 0.82

Specificity 0.99 0.99 0.99 0.99 0.99 1.00 0.98 0.98 0.99 0.98 0.99 0.98

Accuracy 0.98 0.99 0.98 0.99 0.99 1.00 0.97 0.97 0.98 0.97 0.96 0.97

Fscore 0.97 0.97 0.96 0.99 0.97 1.00 0.91 0.90 0.95 0.91 0.83 0.89

Fmeasure 0.93 0.93 0.91 0.96 0.94 1.00 0.86 0.84 0.90 0.85 0.79 0.83

15%

Sensitivity 0.93 0.92 0.93 0.99 0.96 1.00 0.89 0.86 0.94 0.86 0.84 0.93

Specificity 0.98 0.99 0.98 0.99 0.99 1.00 0.99 0.99 0.98 0.98 0.98 0.98

Accuracy 0.98 0.98 0.98 0.99 0.98 1.00 0.97 0.97 0.98 0.96 0.96 0.97

Fscore 0.96 0.95 0.95 0.99 0.97 1.00 0.93 0.92 0.96 0.92 0.90 0.95

Fmeasure 0.92 0.92 0.92 0.96 0.95 1.00 0.91 0.89 0.92 0.87 0.85 0.91

25%

Sensitivity 0.95 0.94 0.95 1.00 0.95 1.00 0.92 0.91 0.93 0.95 0.91 0.92

Specificity 0.98 0.98 0.98 0.98 0.99 1.00 0.98 0.98 0.97 0.95 0.96 0.97

Accuracy 0.97 0.97 0.97 0.98 0.98 1.00 0.96 0.96 0.96 0.95 0.95 0.96

Fscore 0.96 0.96 0.97 0.99 0.97 1.00 0.95 0.94 0.95 0.95 0.93 0.94

Fmeasure 0.95 0.95 0.95 0.97 0.96 1.00 0.93 0.92 0.92 0.91 0.90 0.92

35%

Sensitivity 0.96 0.96 0.97 1.00 0.98 1.00 0.95 0.94 0.96 0.96 0.94 0.97

Specificity 0.98 0.98 0.97 0.98 0.98 1.00 0.97 0.97 0.97 0.96 0.96 0.97

Accuracy 0.97 0.97 0.97 0.99 0.98 1.00 0.96 0.96 0.97 0.96 0.95 0.97

Fscore 0.97 0.97 0.97 0.99 0.98 1.00 0.96 0.96 0.96 0.96 0.95 0.97

Fmeasure 0.96 0.96 0.96 0.98 0.97 1.00 0.95 0.94 0.95 0.94 0.93 0.96
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Table F.5: Standard Deviations of Performance Indicators of Competitor Models (5-

fold CV, WBCO Dataset)

LR pen-LR SVM ANN DT RF LR pen-LR SVM ANN DT RF

S ∪ V S̃

1%

Sensitivity 0.00 0.10 0.44 0.00 0.37 0.00 0.49 0.49 0.00 0.40 0.00 0.00

Specificity 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01

Accuracy 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01

Fscore 0.00 0.06 0.46 0.00 0.39 0.00 0.49 0.49 0.00 0.40 0.00 0.00

Fmeasure 0.00 0.05 0.46 0.05 0.33 0.00 0.45 0.45 0.00 0.38 0.00 0.00

3%

Sensitivity 0.05 0.05 0.37 0.04 0.09 0.00 0.25 0.21 0.27 0.21 0.45 0.37

Specificity 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.01 0.02 0.01 0.01

Accuracy 0.00 0.00 0.01 0.00 0.00 0.00 0.02 0.01 0.01 0.02 0.01 0.01

Fscore 0.03 0.03 0.38 0.02 0.05 0.00 0.19 0.16 0.31 0.16 0.46 0.37

Fmeasure 0.06 0.04 0.36 0.03 0.04 0.00 0.19 0.12 0.24 0.21 0.43 0.37

5%

Sensitivity 0.03 0.02 0.04 0.02 0.07 0.00 0.08 0.20 0.18 0.10 0.20 0.24

Specificity 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.02 0.01

Accuracy 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.02

Fscore 0.02 0.01 0.02 0.01 0.04 0.00 0.04 0.14 0.11 0.05 0.14 0.16

Fmeasure 0.04 0.02 0.06 0.02 0.03 0.00 0.07 0.12 0.13 0.09 0.10 0.19

7%

Sensitivity 0.01 0.02 0.02 0.04 0.04 0.00 0.09 0.06 0.07 0.11 0.17 0.33

Specificity 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.00

Accuracy 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.02

Fscore 0.01 0.01 0.01 0.02 0.02 0.00 0.05 0.03 0.04 0.06 0.10 0.29

Fmeasure 0.01 0.01 0.02 0.01 0.01 0.00 0.06 0.03 0.06 0.08 0.08 0.25

10%

Sensitivity 0.01 0.01 0.01 0.02 0.04 0.00 0.10 0.14 0.04 0.12 0.16 0.13

Specificity 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01

Accuracy 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.01 0.01 0.01 0.02

Fscore 0.01 0.01 0.01 0.01 0.02 0.00 0.06 0.09 0.02 0.07 0.10 0.08

Fmeasure 0.01 0.01 0.02 0.01 0.02 0.00 0.09 0.11 0.04 0.07 0.08 0.10

15%

Sensitivity 0.01 0.01 0.01 0.03 0.02 0.00 0.03 0.03 0.04 0.06 0.05 0.03

Specificity 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01

Accuracy 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01

Fscore 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.02 0.02 0.03 0.03 0.01

Fmeasure 0.01 0.01 0.01 0.01 0.02 0.00 0.03 0.04 0.04 0.04 0.04 0.03

25%

Sensitivity 0.01 0.01 0.01 0.00 0.02 0.00 0.05 0.04 0.04 0.03 0.02 0.03

Specificity 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.02 0.01 0.01

Accuracy 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01

Fscore 0.01 0.01 0.00 0.00 0.01 0.00 0.02 0.02 0.02 0.01 0.01 0.01

Fmeasure 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.02 0.02 0.02 0.01 0.01

35%

Sensitivity 0.01 0.01 0.01 0.00 0.01 0.00 0.03 0.04 0.01 0.03 0.03 0.02

Specificity 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.02 0.01 0.02 0.02 0.01

Accuracy 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.01 0.01

Fscore 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.01 0.01 0.01 0.01

Fmeasure 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.02 0.01 0.02 0.02 0.01
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Note that the given performances of PCM+NSGA-II and PCM+RECGA are similar

to those of the results of experimental analyses performed with randomly generated

100 instances, except for configurations where the rareness level is extremely low.

For such configurations, since the samples consist of very few positive observations

and the experiments are repeated only five times in 5-fold cross validation, the results

are susceptible to these factors. For such configurations, repeating the experiments as

much as possible reflects the model performances’ better.
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G Hyper-parameter Optimization for the Wisconsin Breast Cancer Diagnostic

Dataset

Table G.1 summarizes the content of a fold. Note that, the positive and negative

observations in a fold are arranged to satisfy predetermined rareness levels. Columns

"Malign" and "Benign" of Table G.1 indicate the number of positive and negative

observations in a fold and "Rareness level" indicates the ratio of positive observations

to all observations.

Table G.1: Content of a Fold for Different Rareness Levels - WBCD Dataset

Malign Benign

R
ar

en
es

sl
ev

el

1% 1 70

3% 2 70

5% 4 70

7% 5 70

10% 8 70

15% 12 70

25% 23 70

37% 41 70

G.1 Hyper-parameter Optimization for PCM+NSGA-II

G.1.1 Rareness Level = 1%

Table G.2 indicates the Fscore performances of inner cross validation for different

values of PopulationSize, GenerationSize and NumberOfGenerations.

The hyper-parameter values whose inner cross validation performances are among the

top three for all the given test folds are marked with *** in the last column. Due to the

higher average value, the PopulationSize, GenerationSize and NumberOfGenerations

are set to 150, 50 and 5, respectively. Once these values are set, we repeat the same

analysis for prc and plc.
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The hyper-parameter values whose inner cross validation performances are among

the top three for all the given test folds are marked with *** in the last column of

Table G.3. Since it provides a higher average performance, we set prc = 0.5 and

plc = 0.5.

Finally, we tune the value of pm by following the same procedure. The hyper-

parameter value whose inner cross validation performance is among the top one for

all the given test folds are marked with * in the last column of Table G.4. Thus we set

pm=0.10.
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Table G.3: Inner Loop Performances for prc, plc (PCM+NSGA-II, Rareness

Level=1%)

prc-plc Te
st

fo
ld

=#
1

Te
st

fo
ld

=#
2

Te
st

fo
ld

=#
3

Te
st

fo
ld

=#
4

Te
st

fo
ld

=#
5

0.5-0.5 0.97 0.98 0.98 0.99 0.99 ***(0.98)

0.6-0.4 0.98 0.99 0.74 0.74 0.75 ***(0.84)

0.8-0.2 0.98 0.74 0.49 0.24 0.25

1.0-0.0 0.99 0.99 0.49 0.49 0.50

0.4-0.6 0.97 0.98 0.73 0.73 0.74

0.2-0.8 0.96 0.97 0.98 0.99 0.99

0.0-1.0 0.96 0.98 0.98 0.98 0.98

Table G.4: Inner Loop Performances for pm (PCM+NSGA-II, Rareness Level=1%)

pm Te
st

fo
ld

=#
1

Te
st

fo
ld

=#
2

Te
st

fo
ld

=#
3

Te
st

fo
ld

=#
4

Te
st

fo
ld

=#
5

0.01 0.97 0.98 0.98 0.99 0.99

0.05 0.98 0.99 0.74 0.74 0.75

0.10 0.98 0.99 0.99 0.99 0.99 *(0.99)

0.50 0.95 0.97 0.98 0.99 0.99

G.1.2 Rareness Level = 10%

Table G.5 indicates the Fscore performances of inner cross validation for different

values of PopulationSize, GenerationSize and NumberOfGenerations.

The hyper-parameter values whose inner cross validation performances are among the

top four for all the given test folds are marked with **** in the last column. Due to the

higher average value, the PopulationSize, GenerationSize and NumberOfGenerations
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are set to 250, 200 and 10, respectively. Once these values are set, we repeat the same

analysis for prc and plc.

The hyper-parameter values whose inner cross validation performances are among

the top two for all the given test folds are marked with ** in the last column of Table

G.6. Since it is distinguished with lower standard deviation, we set prc = 0.6 and

plc = 0.4.

Finally, we tune the value of pm by following the same procedure. The hyper-

parameter value whose inner cross validation performance is among the top one for

all the given test folds are marked with * in the last column of Table G.7. Thus we set

pm=0.01.
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Table G.6: Inner Loop Performances for prc, plc (PCM+NSGA-II, Rareness

Level=10%)

prc-plc Te
st

fo
ld

=#
1

Te
st

fo
ld

=#
2

Te
st

fo
ld

=#
3

Te
st

fo
ld

=#
4

Te
st

fo
ld

=#
5

0.5-0.5 0.94 0.95 0.96 0.95 0.96 **(0.95)

0.6-0.4 0.95 0.95 0.96 0.95 0.95 **(0.95)

0.8-0.2 0.94 0.91 0.90 0.92 0.90

1.0-0.0 0.95 0.92 0.94 0.96 0.93

0.4-0.6 0.94 0.95 0.96 0.95 0.96 **(0.95)

0.2-0.8 0.93 0.92 0.93 0.92 0.94

0.0-1.0 0.94 0.92 0.93 0.92 0.93

Table G.7: Inner Loop Performances for pm (PCM+NSGA-II, Rareness Level=10%)

pm Te
st

fo
ld

=#
1

Te
st

fo
ld

=#
2

Te
st

fo
ld

=#
3

Te
st

fo
ld

=#
4

Te
st

fo
ld

=#
5

0.01 0.95 0.95 0.96 0.95 0.95 *(0.95)

0.05 0.92 0.89 0.91 0.91 0.89

0.10 0.91 0.91 0.89 0.92 0.90

0.50 0.83 0.85 0.84 0.86 0.86

G.2 Hyper-parameter Optimization for PCM+RECGA

G.2.1 Rareness Level = 1%

Table G.8 indicates the Fscore performances of inner cross validation for different

values of PopulationSize and minFinalSetSize.

The hyper-parameter values whose inner cross validation performances are among
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the top one for all the given test folds are marked with * in the last column. We set

PopulationSize and minFinalSetSize as 1000 and 50, respectively.

Once these values are set, we repeat the same analysis for prc and plc. The hyper-

parameter values whose inner cross validation performances are among the top one

for all the given test folds are marked with * in the last column of Table G.9. Then,

prc = 0.0 and plc = 1.0.

Finally, we tune the value of pm by following the same procedure. The hyper-

parameter value whose inner cross validation performance is among the top one for

all the given test folds are marked with * in the last column of Table G.10. Thus we

set pm=0.01.
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Table G.8: Inner Loop Performances for PopulationSize and minFinalSetSize

(PCM+RECGA, Rareness Level=1%)

Po
pu

la
tio

nS
iz

e

m
in

Fi
na

lS
et

Si
ze

Te
st

fo
ld

=#
1

Te
st

fo
ld

=#
2

Te
st

fo
ld

=#
3

Te
st

fo
ld

=#
4

Te
st

fo
ld

=#
5

150 5 0.94 0.93 0.93 0.94 0.94

150 50 0.94 0.93 0.93 0.94 0.94

150 100 0.94 0.93 0.93 0.94 0.94

250 5 0.94 0.93 0.93 0.94 0.95

250 50 0.94 0.93 0.93 0.94 0.95

250 100 0.94 0.93 0.93 0.94 0.95

250 200 0.94 0.93 0.93 0.94 0.95

500 5 0.94 0.93 0.93 0.94 0.95

500 50 0.94 0.93 0.93 0.94 0.95

500 100 0.94 0.93 0.93 0.94 0.95

500 200 0.94 0.93 0.93 0.94 0.95

1000 5 0.94 0.93 0.94 0.95 0.95 *(0.94)

1000 50 0.94 0.93 0.94 0.95 0.95 *(0.94)

1000 100 0.94 0.93 0.94 0.95 0.95 *(0.94)

1000 200 0.94 0.93 0.94 0.95 0.95 *(0.94)
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Table G.9: Inner Loop Performances for prc, plc (PCM+RECGA, Rareness

Level=1%)

prc-plc Te
st

fo
ld

=#
1

Te
st

fo
ld

=#
2

Te
st

fo
ld

=#
3

Te
st

fo
ld

=#
4

Te
st

fo
ld

=#
5

0.5-0.5 0.94 0.93 0.94 0.95 0.95

0.6-0.4 0.70 0.93 0.94 0.95 0.95

0.8-0.2 0.75 0.95 0.94 0.94 0.95

1.0-0.0 0.75 0.95 0.94 0.95 0.95

0.4-0.6 0.95 0.94 0.94 0.95 0.95

0.2-0.8 0.96 0.95 0.96 0.96 0.96

0.0-1.0 0.98 0.98 0.98 0.98 0.99 *(0.98)

Table G.10: -Inner Loop Performances for pm (PCM+RECGA, Rareness Level=1%)

pm Te
st

fo
ld

=#
1

Te
st

fo
ld

=#
2

Te
st

fo
ld

=#
3

Te
st

fo
ld

=#
4

Te
st

fo
ld

=#
5

0.01 0.98 0.98 0.98 0.98 0.99 *(0.98)

0.05 0.94 0.94 0.95 0.96 0.96

0.10 0.93 0.93 0.94 0.94 0.95

0.50 0.93 0.92 0.93 0.93 0.94

G.2.2 Rareness Level = 10%

Table G.11 indicates the Fscore performances of inner cross validation for different

values of PopulationSize and minFinalSetSize.

The hyper-parameter values whose inner cross validation performances are among

the top two for all the given test folds are marked with ** in the last column. Due to

the lower standard deviation, we set PopulationSize and minFinalSetSize as 250 and
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200, respectively.

Once these values are set, we repeat the same analysis for prc and plc. The hyper-

parameter values whose inner cross validation performances are among the top two

for all the given test folds are marked with ** in the last column of Table G.12. Then,

prc = 0.5 and plc = 0.5.

Finally, we tune the value of pm by following the same procedure. The hyper-

parameter value whose inner cross validation performance is among the top two for

all the given test folds are marked with ** in the last column of Table G.13. Thus we

set pm=0.01.
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Table G.11: -Inner Loop Performances for PopulationSize and minFinalSetSize

(PCM+RECGA, Rareness Level=10%)

Po
pu

la
tio

nS
iz

e

m
in

Fi
na

lS
et

Si
ze

Te
st

fo
ld

=#
1

Te
st

fo
ld

=#
2

Te
st

fo
ld

=#
3

Te
st

fo
ld

=#
4

Te
st

fo
ld

=#
5

150 5 0.96 0.93 0.95 0.96 0.94

150 50 0.96 0.92 0.95 0.96 0.94

150 100 0.96 0.92 0.95 0.96 0.94

250 5 0.97 0.95 0.96 0.95 0.95 **(0.956)

250 50 0.97 0.94 0.96 0.96 0.95 **(0.956)

250 100 0.97 0.94 0.96 0.96 0.95 **(0.956)

250 200 0.96 0.95 0.97 0.96 0.960 **(0.96)

500 5 0.97 0.95 0.97 0.95 0.96 **(0.960)

500 50 0.96 0.95 0.96 0.95 0.95 **(0.954)

500 100 0.96 0.95 0.96 0.95 0.95 **(0.954)

500 200 0.96 0.95 0.96 0.95 0.95 **(0.954)

1000 5 0.97 0.94 0.94 0.94 0.93

1000 50 0.96 0.94 0.94 0.94 0.93

1000 100 0.96 0.92 0.94 0.96 0.93

1000 200 0.96 0.92 0.94 0.96 0.93
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Table G.12: -Inner Loop Performances for prc, plc (PCM+RECGA, Rareness

Level=10%)

prc-plc Te
st

fo
ld

=#
1

Te
st

fo
ld

=#
2

Te
st

fo
ld

=#
3

Te
st

fo
ld

=#
4

Te
st

fo
ld

=#
5

0.5-0.5 0.96 0.95 0.97 0.96 0.96 **(0.960)

0.6-0.4 0.97 0.95 0.96 0.95 0.96 **(0.958)

0.8-0.2 0.97 0.95 0.96 0.95 0.96 **(0.958)

1.0-0.0 0.94 0.89 0.92 0.94 0.93

0.4-0.6 0.96 0.95 0.96 0.95 0.95 **(0.954)

0.2-0.8 0.95 0.95 0.97 0.96 0.96

0.0-1.0 0.96 0.92 0.94 0.96 0.93

Table G.13: -Inner Loop Performances for pm (PCM+RECGA, Rareness Level=1%)

pm Te
st

fo
ld

=#
1

Te
st

fo
ld

=#
2

Te
st

fo
ld

=#
3

Te
st

fo
ld

=#
4

Te
st

fo
ld

=#
5

0.01 0.96 0.95 0.97 0.96 0.96 **(0.960)

0.05 0.95 0.93 0.95 0.96 0.94 **(0.946)

0.10 0.95 0.92 0.94 0.97 0.93

0.50 0.95 0.93 0.95 0.96 0.94 **(0.946)
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H Generalization Performances of the Models for the Wisconsin Breast Cancer

Diagnostic Dataset: 5-fold Cross Validation

To see the generalization performance of the models with the selected hyper-parameter

values, we evaluate the models in the outer loop of the nested cross validation. Thus,

we test the model performances with 5-fold cross validation. We repeat the experi-

ments for the rareness levels ranging between 1% to 37%.

Table H.1 shows the dataset configurations used in the experiments which are con-

ducted with 5-fold CV.

Table H.1: Experimental Settings for the WBCD Dataset (5-fold CV)

Malign Benign
Rareness

Malign Benign
Rareness

level level

S 2 140

1%

S 16 140

10%
V 2 140 V 16 140

S̃ 1 70 S̃ 8 70

Total 5 350 Total 40 350

S 4 140

3%

S 24 140

15%
V 4 140 V 24 140

S̃ 2 70 S̃ 12 70

Total 10 350 Total 60 350

S 8 140

5%

S 46 140

25%
V 8 140 V 46 140

S̃ 4 70 S̃ 23 70

Total 20 350 Total 115 350

S 10 140

7%

S 82 140

37%
V 10 140 V 82 140

S̃ 5 70 S̃ 41 70

Total 25 350 Total 205 350

L {0,. . . ,140}

Tables H.2 and H.3 summarize the average performance results and standard devia-

tions of performance indicators of PCM+NSGA-II and PCM+RECGA. The perfor-
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mances are given for both of the hyper-parameters determined for rareness levels 1%

and 10%.

For the sake of completeness, we also report the performances of competitor mod-

els when the experiments are conducted with 5-fold cross validation. Their average

training and test performances are given in Table H.4 and standard deviations of per-

formance indicators for training and test are given in Table H.5.
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Table H.2: Performances of PCM+NGSA-II (5-fold CV, WBCD Dataset)

PCM+NSGA-II 1% 3% 5% 7% 10% 15% 25% 37%

H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2

AVERAGE PERFORMANCE RESULTS

S

Sensitivity 0.80 1.00 0.85 1.00 0.95 1.00 0.92 0.94 0.81 0.98 0.80 0.98 0.97 0.97 0.98 1.00

Specificity 0.96 0.78 0.99 0.85 0.99 0.92 0.98 0.89 0.99 0.97 0.98 0.99 0.98 0.97 0.98 0.98

Accuracy 0.96 0.78 0.98 0.85 0.99 0.92 0.98 0.89 0.97 0.97 0.95 0.98 0.97 0.97 0.98 0.99

Fscore 0.85 0.87 0.91 0.92 0.97 0.96 0.95 0.91 0.89 0.97 0.87 0.98 0.97 0.97 0.98 0.99

Fmeasure 0.37 0.13 0.73 0.28 0.88 0.59 0.85 0.55 0.86 0.87 0.83 0.95 0.95 0.94 0.97 0.98

V

Sensitivity 0.70 1.00 0.70 0.90 0.75 0.85 0.76 0.92 0.78 0.85 0.78 0.86 0.89 0.87 0.95 0.94

Specificity 0.96 0.76 0.98 0.86 0.98 0.87 0.96 0.88 0.99 0.91 0.97 0.93 0.95 0.95 0.97 0.95

Accuracy 0.96 0.76 0.97 0.86 0.96 0.87 0.95 0.88 0.96 0.91 0.94 0.92 0.93 0.93 0.96 0.95

Fscore 0.79 0.86 0.81 0.87 0.85 0.86 0.84 0.90 0.87 0.88 0.86 0.89 0.92 0.91 0.96 0.95

Fmeasure 0.36 0.12 0.63 0.26 0.69 0.42 0.66 0.51 0.82 0.65 0.80 0.76 0.87 0.86 0.95 0.93

S̃

Sensitivity 0.80 0.80 0.80 1.00 0.70 0.95 0.80 0.96 0.75 0.88 0.73 0.83 0.87 0.87 0.93 0.94

Specificity 0.93 0.76 0.99 0.85 0.98 0.90 0.97 0.89 0.98 0.91 0.95 0.93 0.95 0.93 0.96 0.96

Accuracy 0.93 0.76 0.98 0.85 0.97 0.90 0.96 0.89 0.96 0.91 0.92 0.91 0.93 0.92 0.95 0.95

Fscore 0.77 0.67 0.86 0.92 0.80 0.92 0.86 0.92 0.84 0.89 0.82 0.87 0.91 0.90 0.95 0.95

Fmeasure 0.29 0.08 0.73 0.29 0.70 0.53 0.71 0.56 0.78 0.67 0.73 0.74 0.86 0.84 0.93 0.94

STANDARD DEVIATIONS OF PERFORMANCE INDICATORS

S

Sensitivity 0.00 0.24 0.00 0.12 0.00 0.06 0.05 0.04 0.03 0.09 0.03 0.17 0.03 0.03 0.00 0.03

Specificity 0.10 0.02 0.02 0.01 0.03 0.01 0.02 0.01 0.02 0.01 0.00 0.02 0.02 0.00 0.01 0.01

Accuracy 0.10 0.02 0.02 0.01 0.03 0.00 0.02 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.01

Fscore 0.06 0.15 0.01 0.07 0.02 0.03 0.03 0.02 0.02 0.05 0.02 0.10 0.02 0.02 0.01 0.02

Fmeasure 0.06 0.08 0.02 0.05 0.09 0.04 0.07 0.04 0.07 0.06 0.02 0.08 0.03 0.02 0.01 0.02

V

Sensitivity 0.00 0.24 0.12 0.10 0.05 0.08 0.07 0.10 0.05 0.05 0.07 0.08 0.03 0.03 0.01 0.01

Specificity 0.09 0.03 0.03 0.02 0.04 0.01 0.02 0.01 0.01 0.00 0.04 0.01 0.01 0.01 0.01 0.00

Accuracy 0.09 0.03 0.03 0.02 0.03 0.01 0.02 0.01 0.01 0.01 0.03 0.02 0.01 0.01 0.01 0.00

Fscore 0.06 0.15 0.05 0.07 0.03 0.05 0.04 0.06 0.03 0.03 0.03 0.05 0.02 0.02 0.01 0.00

Fmeasure 0.04 0.16 0.03 0.15 0.06 0.06 0.04 0.06 0.04 0.05 0.07 0.06 0.02 0.02 0.01 0.01

S̃

Sensitivity 0.40 0.40 0.00 0.24 0.10 0.19 0.08 0.18 0.08 0.14 0.12 0.14 0.05 0.05 0.04 0.05

Specificity 0.09 0.05 0.05 0.02 0.05 0.02 0.05 0.01 0.03 0.01 0.03 0.03 0.03 0.03 0.02 0.02

Accuracy 0.09 0.04 0.05 0.02 0.04 0.02 0.04 0.01 0.02 0.01 0.02 0.01 0.03 0.03 0.01 0.02

Fscore 0.34 0.38 0.03 0.16 0.03 0.13 0.03 0.11 0.04 0.09 0.06 0.09 0.04 0.04 0.02 0.02

Fmeasure 0.04 0.23 0.07 0.17 0.11 0.16 0.08 0.08 0.05 0.07 0.05 0.06 0.06 0.06 0.02 0.03
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Table H.3: Performances of PCM+RECGA (5-fold CV, WBCD Dataset)

PCM+RECGA 1% 3% 5% 7% 10% 15% 25% 37%

H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2

AVERAGE PERFORMANCE RESULTS

S

Sensitivity 1.00 1.00 1.00 1.00 0.93 0.93 0.90 0.90 0.93 0.89 0.98 0.98 0.98 0.98 1.00 1.00

Specificity 0.93 0.91 0.96 1.00 0.96 0.95 0.92 0.93 0.99 0.95 0.97 0.95 0.97 0.98 0.95 0.96

Accuracy 0.93 0.91 0.97 1.00 0.96 0.95 0.92 0.93 0.98 0.95 0.97 0.96 0.97 0.98 0.97 0.98

Fscore 0.96 0.95 0.98 1.00 0.94 0.93 0.91 0.91 0.95 0.92 0.98 0.97 0.97 0.98 0.98 0.98

Fmeasure 0.31 0.28 0.83 0.96 0.75 0.72 0.70 0.70 0.92 0.80 0.91 0.88 0.94 0.96 0.96 0.97

V

Sensitivity 1.00 1.00 1.00 0.90 0.83 0.85 0.80 0.82 0.84 0.90 0.87 0.86 0.90 0.90 0.97 0.96

Specificity 0.89 0.86 0.96 0.98 0.95 0.95 0.91 0.93 0.95 0.93 0.91 0.90 0.93 0.94 0.91 0.93

Accuracy 0.89 0.86 0.96 0.98 0.94 0.94 0.90 0.92 0.94 0.93 0.91 0.89 0.92 0.93 0.93 0.94

Fscore 0.94 0.93 0.98 0.93 0.88 0.90 0.84 0.86 0.89 0.91 0.89 0.88 0.92 0.92 0.94 0.95

Fmeasure 0.21 0.18 0.76 0.78 0.63 0.64 0.55 0.58 0.74 0.73 0.74 0.71 0.85 0.87 0.91 0.93

S̃

Sensitivity 0.80 0.80 0.80 0.80 0.70 0.75 0.72 0.80 0.85 0.85 0.83 0.85 0.89 0.87 0.96 0.96

Specificity 0.88 0.87 0.96 0.99 0.97 0.96 0.92 0.92 0.95 0.91 0.90 0.89 0.91 0.94 0.93 0.95

Accuracy 0.88 0.86 0.96 0.99 0.95 0.95 0.91 0.91 0.94 0.91 0.89 0.89 0.91 0.92 0.94 0.95

Fscore 0.75 0.74 0.85 0.86 0.77 0.82 0.80 0.85 0.89 0.87 0.86 0.87 0.90 0.90 0.94 0.95

Fmeasure 0.16 0.15 0.68 0.75 0.59 0.63 0.56 0.58 0.75 0.70 0.69 0.69 0.83 0.85 0.92 0.94

STANDARD DEVIATIONS OF PERFORMANCE INDICATORS

S

Sensitivity 0.00 0.00 0.00 0.00 0.10 0.10 0.06 0.06 0.08 0.05 0.02 0.02 0.02 0.02 0.00 0.00

Specificity 0.06 0.03 0.01 0.07 0.05 0.03 0.07 0.11 0.05 0.02 0.03 0.02 0.01 0.01 0.02 0.01

Accuracy 0.05 0.03 0.01 0.07 0.05 0.03 0.07 0.10 0.04 0.01 0.03 0.01 0.01 0.01 0.01 0.01

Fscore 0.03 0.02 0.00 0.04 0.05 0.05 0.05 0.07 0.04 0.02 0.02 0.01 0.01 0.01 0.01 0.01

Fmeasure 0.10 0.07 0.08 0.29 0.19 0.15 0.19 0.21 0.12 0.04 0.07 0.03 0.02 0.02 0.02 0.01

V

Sensitivity 0.00 0.00 0.20 0.00 0.05 0.06 0.15 0.13 0.08 0.08 0.06 0.06 0.02 0.01 0.01 0.01

Specificity 0.04 0.02 0.02 0.07 0.03 0.03 0.03 0.07 0.05 0.03 0.04 0.03 0.01 0.01 0.02 0.02

Accuracy 0.04 0.02 0.02 0.06 0.03 0.03 0.02 0.06 0.04 0.02 0.04 0.03 0.01 0.01 0.01 0.01

Fscore 0.02 0.01 0.13 0.04 0.04 0.04 0.08 0.07 0.03 0.04 0.04 0.03 0.01 0.01 0.01 0.01

Fmeasure 0.04 0.04 0.28 0.31 0.15 0.15 0.06 0.12 0.09 0.08 0.09 0.06 0.02 0.01 0.01 0.01

S̃

Sensitivity 0.40 0.40 0.24 0.24 0.22 0.29 0.13 0.10 0.12 0.12 0.10 0.12 0.05 0.06 0.03 0.04

Specificity 0.04 0.02 0.01 0.07 0.03 0.03 0.06 0.08 0.09 0.05 0.04 0.03 0.02 0.05 0.03 0.02

Accuracy 0.04 0.02 0.01 0.07 0.03 0.02 0.05 0.07 0.07 0.04 0.03 0.03 0.03 0.04 0.02 0.02

Fscore 0.37 0.38 0.16 0.15 0.14 0.22 0.06 0.06 0.06 0.07 0.05 0.06 0.04 0.04 0.02 0.02

Fmeasure 0.09 0.09 0.17 0.30 0.12 0.17 0.11 0.15 0.15 0.11 0.07 0.07 0.05 0.07 0.03 0.02
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Table H.4: Average Performance Results of Competitor Models (5-fold CV, WBCD

Dataset)

LR pen-LR SVM ANN DT RF LR pen-LR SVM ANN DT RF

S ∪ V S̃

1%

Sensitivity 1.00 1.00 0.90 1.00 0.80 1.00 0.80 0.60 0.80 0.80 0.60 0.40

Specificity 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99

Accuracy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.99 0.99

Fscore 1.00 1.00 0.94 1.00 0.89 1.00 0.80 0.60 0.80 0.80 0.60 0.40

Fmeasure 1.00 1.00 0.94 1.00 0.89 1.00 0.80 0.53 0.80 0.80 0.53 0.33

3%

Sensitivity 1.00 1.00 0.80 1.00 0.90 1.00 0.70 0.70 0.50 0.70 0.60 0.50

Specificity 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99

Accuracy 1.00 1.00 0.99 1.00 0.99 1.00 0.99 0.99 0.99 0.99 0.98 0.98

Fscore 1.00 1.00 0.80 1.00 0.94 1.00 0.73 0.73 0.53 0.73 0.60 0.60

Fmeasure 1.00 1.00 0.80 1.00 0.88 1.00 0.73 0.73 0.53 0.73 0.56 0.57

5%

Sensitivity 1.00 0.94 0.73 1.00 0.94 1.00 0.85 0.85 0.60 0.80 0.70 0.80

Specificity 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 1.00 0.99 0.97 0.98

Accuracy 1.00 1.00 0.99 1.00 1.00 1.00 0.98 0.98 0.98 0.98 0.95 0.97

Fscore 1.00 0.97 0.78 1.00 0.97 1.00 0.90 0.90 0.68 0.87 0.81 0.88

Fmeasure 1.00 0.97 0.78 1.00 0.96 1.00 0.81 0.84 0.68 0.80 0.65 0.75

7%

Sensitivity 1.00 0.96 0.89 1.00 0.91 1.00 0.76 0.76 0.76 0.80 0.72 0.72

Specificity 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99 0.99 0.98 0.97 0.97

Accuracy 1.00 1.00 0.99 1.00 0.99 1.00 0.96 0.98 0.97 0.97 0.95 0.95

Fscore 1.00 0.98 0.94 1.00 0.95 1.00 0.83 0.84 0.84 0.86 0.81 0.80

Fmeasure 1.00 0.98 0.94 1.00 0.94 1.00 0.73 0.81 0.79 0.77 0.69 0.69

10%

Sensitivity 0.96 0.97 0.97 0.99 0.92 1.00 0.83 0.85 0.83 0.83 0.75 0.83

Specificity 1.00 1.00 1.00 1.00 0.99 1.00 0.98 0.99 1.00 0.98 0.96 0.99

Accuracy 0.99 1.00 1.00 1.00 0.99 1.00 0.96 0.98 0.98 0.96 0.94 0.97

Fscore 0.98 0.98 0.98 1.00 0.95 1.00 0.88 0.90 0.90 0.88 0.84 0.89

Fmeasure 0.97 0.98 0.98 1.00 0.93 1.00 0.82 0.87 0.89 0.82 0.74 0.85

15%

Sensitivity 0.96 0.96 0.97 0.99 0.95 1.00 0.90 0.90 0.92 0.90 0.77 0.85

Specificity 1.00 1.00 1.00 1.00 0.99 1.00 0.99 0.99 1.00 0.98 0.95 0.97

Accuracy 0.99 0.99 0.99 1.00 0.98 1.00 0.97 0.98 0.99 0.97 0.93 0.96

Fscore 0.98 0.98 0.98 1.00 0.97 1.00 0.94 0.94 0.96 0.94 0.85 0.91

Fmeasure 0.97 0.98 0.98 0.99 0.95 1.00 0.91 0.92 0.96 0.89 0.76 0.85

25%

Sensitivity 0.95 0.95 0.93 0.98 0.97 1.00 0.93 0.93 0.90 0.94 0.77 0.86

Specificity 0.99 0.99 1.00 1.00 0.99 1.00 0.98 0.99 0.99 0.96 0.97 0.99

Accuracy 0.98 0.98 0.98 0.99 0.99 1.00 0.97 0.97 0.97 0.96 0.92 0.96

Fscore 0.97 0.97 0.97 0.99 0.98 1.00 0.96 0.96 0.94 0.95 0.86 0.92

Fmeasure 0.96 0.97 0.96 0.99 0.97 1.00 0.94 0.94 0.93 0.92 0.83 0.91

37%

Sensitivity 0.97 0.97 0.97 0.98 0.98 1.00 0.96 0.96 0.95 0.95 0.91 0.93

Specificity 0.99 0.99 1.00 1.00 0.99 1.00 0.98 0.98 0.97 0.97 0.96 0.98

Accuracy 0.98 0.98 0.99 0.99 0.99 1.00 0.97 0.97 0.96 0.96 0.94 0.96

Fscore 0.98 0.98 0.98 0.99 0.99 1.00 0.97 0.97 0.96 0.96 0.93 0.95

Fmeasure 0.98 0.98 0.98 0.99 0.98 1.00 0.96 0.96 0.95 0.95 0.92 0.95
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Table H.5: Standard Deviations of Performance Indicators of Competitor Models (5-

fold CV, WBCD Dataset)

LR pen-LR SVM ANN DT RF LR pen-LR SVM ANN DT RF

S ∪ V S̃

1%

Sensitivity 0.00 0.00 0.12 0.00 0.10 0.00 0.40 0.49 0.40 0.40 0.49 0.49

Specificity 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.01

Accuracy 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01

Fscore 0.00 0.00 0.07 0.00 0.06 0.00 0.40 0.49 0.40 0.40 0.49 0.49

Fmeasure 0.00 0.00 0.07 0.00 0.06 0.00 0.40 0.45 0.40 0.40 0.45 0.42

3%

Sensitivity 0.00 0.00 0.40 0.00 0.05 0.00 0.40 0.40 0.45 0.40 0.49 0.32

Specificity 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01

Accuracy 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.01

Fscore 0.00 0.00 0.40 0.00 0.03 0.00 0.39 0.39 0.45 0.39 0.49 0.33

Fmeasure 0.00 0.00 0.40 0.00 0.05 0.00 0.39 0.39 0.45 0.39 0.46 0.33

5%

Sensitivity 0.00 0.04 0.34 0.00 0.04 0.00 0.20 0.20 0.34 0.19 0.10 0.10

Specificity 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.00 0.02 0.03 0.01

Accuracy 0.00 0.00 0.02 0.00 0.00 0.00 0.01 0.01 0.02 0.02 0.03 0.01

Fscore 0.00 0.02 0.33 0.00 0.02 0.00 0.13 0.13 0.35 0.12 0.07 0.05

Fmeasure 0.00 0.02 0.33 0.00 0.03 0.00 0.12 0.14 0.35 0.14 0.11 0.06

7%

Sensitivity 0.00 0.02 0.10 0.00 0.06 0.00 0.23 0.23 0.23 0.22 0.20 0.24

Specificity 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.02 0.02 0.04 0.03

Accuracy 0.00 0.00 0.01 0.00 0.00 0.00 0.02 0.02 0.03 0.03 0.03 0.03

Fscore 0.00 0.01 0.06 0.00 0.03 0.00 0.16 0.16 0.16 0.16 0.14 0.16

Fmeasure 0.00 0.01 0.06 0.00 0.02 0.00 0.17 0.17 0.21 0.19 0.17 0.19

10%

Sensitivity 0.04 0.02 0.02 0.01 0.06 0.00 0.19 0.18 0.13 0.19 0.08 0.10

Specificity 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.01 0.02 0.03 0.02

Accuracy 0.01 0.00 0.00 0.00 0.01 0.00 0.03 0.02 0.01 0.03 0.04 0.02

Fscore 0.02 0.01 0.01 0.01 0.03 0.00 0.12 0.12 0.08 0.12 0.06 0.06

Fmeasure 0.03 0.01 0.01 0.01 0.05 0.00 0.14 0.11 0.07 0.14 0.12 0.08

15%

Sensitivity 0.02 0.01 0.01 0.02 0.03 0.00 0.06 0.06 0.05 0.06 0.08 0.08

Specificity 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.02 0.03 0.02

Accuracy 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.02 0.01 0.02 0.02 0.02

Fscore 0.01 0.01 0.01 0.01 0.02 0.00 0.03 0.03 0.03 0.04 0.04 0.04

Fmeasure 0.01 0.01 0.01 0.01 0.02 0.00 0.05 0.05 0.03 0.07 0.05 0.05

25%

Sensitivity 0.01 0.01 0.03 0.02 0.01 0.00 0.03 0.03 0.05 0.03 0.07 0.06

Specificity 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.02 0.02 0.02 0.02 0.01

Accuracy 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.02 0.03 0.02 0.02 0.02

Fscore 0.01 0.01 0.02 0.01 0.00 0.00 0.02 0.02 0.04 0.03 0.05 0.03

Fmeasure 0.01 0.01 0.02 0.02 0.01 0.00 0.03 0.04 0.05 0.05 0.05 0.04

37%

Sensitivity 0.01 0.01 0.01 0.01 0.00 0.00 0.02 0.02 0.03 0.03 0.03 0.03

Specificity 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.02 0.04 0.01 0.03 0.02

Accuracy 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.01 0.01 0.02

Fscore 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.01 0.02 0.01 0.01 0.02

Fmeasure 0.01 0.00 0.01 0.01 0.00 0.00 0.01 0.01 0.02 0.01 0.02 0.02
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Note that the given performances of PCM+NSGA-II and PCM+RECGA are similar

to those of the results of experimental analyses performed with randomly generated

100 instances, except for configurations where the rareness level is extremely low.

For such configurations, since the samples consist of very few positive observations

and the experiments are repeated only five times in 5-fold cross validation, the results

are susceptible to these factors. For such configurations, repeating the experiments as

much as possible reflects the model performances’ better.
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I Detailed Results of the Models Applied to the In-Stent-Restenosis Dataset

The average model performances in randomly generated 100 instances are given in

the Tables I.1, I.2, I.3 and I.4 for Setting 1, and I.5, I.6, I.7 and I.8 for Setting 2.

Note that, PCM+NSGA-II and PCM+RECGA first utilize S to generate initial set

of solutions, and then they tune these solutions with V . On the other hand, since

Random+NSGA-II and Random+RECGA generate the initial solutions randomly,

they only use V for training. All the models’ performances are tested in S̃ .

Table I.1: Performances of PCM+NSGA-II (Setting 1)

PCM+NSGA-II
S V S̃

AVG STD.DEV AVG STD.DEV AVG STD.DEV

N
um

be
r True positive 14.02 3.21 15.43 2.29 6.97 2.10

True negative 76.64 9.56 78.11 9.23 37.85 5.38

True classification 90.66 10.08 93.54 10.55 44.82 5.65

R
at

io

True positive 0.58 0.13 0.64 0.10 0.58 0.17

True negative 0.80 0.10 0.81 0.10 0.79 0.11

True classification 0.76 0.08 0.78 0.09 0.75 0.09

Fscore 0.66 0.10 0.71 0.08 0.65 0.13

Fmeasure 0.49 0.08 0.55 0.08 0.48 0.11

Time (sec.)

AVG 14.3

STD.DEV 1.79
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Table I.2: Performances of Random+NSGA-II (Setting 1)

Random+NSGA-II
V S̃

AVG STD.DEV AVG STD.DEV
N

um
be

r True positive 6.36 2.85 2.90 1.75

True negative 88.67 9.17 43.61 4.88

True classification 95.03 9.96 46.51 5.13

R
at

io

True positive 0.26 0.12 0.24 0.15

True negative 0.92 0.10 0.91 0.10

True classification 0.79 0.08 0.78 0.09

Fscore 0.40 0.15 0.36 0.18

Fmeasure 0.33 0.13 0.29 0.14

Time (sec.)

AVG 6.75

STD.DEV 0.16

Table I.3: Performances of PCM+RECGA (Setting 1)

PCM+RECGA
S V S̃

AVG STD.DEV AVG STD.DEV AVG STD.DEV

N
um

be
r True positive 19.17 2.34 17.92 1.99 8.48 1.83

True negative 67.97 6.57 67.70 6.37 32.64 4.15

True classification 87.14 5.62 85.62 5.73 41.12 4.04

R
at

io

True positive 0.80 0.10 0.75 0.08 0.71 0.15

True negative 0.71 0.07 0.71 0.07 0.68 0.09

True classification 0.73 0.05 0.71 0.05 0.69 0.07

Fscore 0.74 0.04 0.72 0.04 0.68 0.08

Fmeasure 0.54 0.05 0.51 0.05 0.47 0.09

Time (sec.)

AVG 8.25

STD.DEV 1.86
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Table I.4: Performances of Random+RECGA (Setting 1)

Random+RECGA
V S̃

AVG STD.DEV AVG STD.DEV

N
um

be
r True positive 11.14 2.91 5.37 2.16

True negative 80.18 7.69 39.19 4.97

True classification 91.32 6.25 44.57 4.40

R
at

io
True positive 0.46 0.12 0.45 0.18

True negative 0.84 0.08 0.82 0.10

True classification 0.76 0.05 0.74 0.07

Fscore 0.58 0.10 0.55 0.16

Fmeasure 0.43 0.08 0.40 0.13

Time (sec.)

AVG 0.83

STD.DEV 0.31
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Table I.5: Performances of PCM+NSGA-II (Setting 2)

PCM+NSGA-II
S V S̃

AVG STD.DEV AVG STD.DEV AVG STD.DEV

N
um

be
r True positive 15.18 4.32 15.81 3.86 7.54 2.37

True negative 15.96 4.48 16.83 4.00 7.94 2.40

True classification 31.14 7.15 32.64 7.26 15.48 3.80

R
at

io

True positive 0.63 0.18 0.66 0.16 0.63 0.20

True negative 0.67 0.19 0.70 0.17 0.66 0.20

True classification 0.65 0.15 0.68 0.15 0.65 0.16

Fscore 0.63 0.15 0.67 0.15 0.62 0.16

Fmeasure 0.64 0.15 0.67 0.15 0.63 0.17

Time (sec.)

AVG 103.65

STD.DEV 3.02

Table I.6: Performances of Random+NSGA-II (Setting 2)

Random+NSGA-II
V S̃

AVG STD.DEV AVG STD.DEV

N
um

be
r True positive 10.93 3.51 5.27 2.33

True negative 18.95 4.21 9.14 2.47

True classification 29.88 6.76 14.41 3.71

R
at

io

True positive 0.46 0.15 0.44 0.19

True negative 0.79 0.18 0.76 0.21

True classification 0.62 0.14 0.60 0.15

Fscore 0.57 0.15 0.53 0.18

Fmeasure 0.54 0.15 0.51 0.18

Time (sec.)

AVG 104.3

STD.DEV 3.71
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Table I.7: Performances of PCM+RECGA (Setting 2)

PCM+RECGA
S V S̃

AVG STD.DEV AVG STD.DEV AVG STD.DEV

N
um

be
r True positive 18.48 2.79 18.39 2.20 8.63 1.76

True negative 15.60 3.41 16.60 2.27 7.30 1.88

True classification 34.08 3.58 34.99 2.65 15.93 2.36

R
at

io

True positive 0.77 0.12 0.77 0.09 0.72 0.15

True negative 0.65 0.14 0.69 0.09 0.61 0.16

True classification 0.71 0.07 0.73 0.06 0.66 0.10

Fscore 0.69 0.09 0.72 0.06 0.64 0.11

Fmeasure 0.72 0.07 0.74 0.06 0.68 0.10

Time (sec.)

AVG 0.86

STD.DEV 0.35
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Table I.8: Performances of Random+RECGA (Setting 2)

Random+RECGA
V S̃

AVG STD.DEV AVG STD.DEV

N
um

be
r True positive 8.98 4.69 4.69 2.50

True negative 20.90 2.65 10.20 1.66

True classification 29.88 3.63 14.89 2.00

R
at

io

True positive 0.37 0.20 0.39 0.21

True negative 0.87 0.11 0.85 0.14

True classification 0.62 0.08 0.62 0.08

Fscore 0.48 0.19 0.49 0.20

Fmeasure 0.47 0.19 0.47 0.20

Time (sec.)

AVG 0.23

STD.DEV 0.06
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J Predictor Values and Real Restenosis Status of 100 Patients in Test Sample

Table J.1: Predictor Values and Real Restenosis Status of 100 Patients in Test Sample

F1 F2 F3 F4 F5 F6 F7 F8 Real status

of restenosis

0 0 0 0 2.75 0 1 0 0

1 1 0 0 3 0 1 0 1

1 1 0 1 3 0 0 0 0

1 1 0 1 3.1 1 1 0 1

1 0 0 1 2 0 1 0 1

1 1 1 1 3.5 0 1 0 1

1 0 1 0 2.5 0 0 0 1

1 0 0 1 3 0 0 0 0

1 0 0 0 2.75 0 0 0 1

1 0 0 0 3 0 0 0 1

0 0 0 0 2.75 0 0 0 0

1 0 0 0 3.5 0 0 0 0

1 0 0 0 3 0 0 0 0

1 0 0 0 2.75 0 1 0 1

0 0 0 0 3.5 0 1 0 0

1 0 0 0 2.75 0 1 1 1

1 0 0 0 4.5 0 1 0 1

1 0 0 1 4 0 0 1 1

0 0 0 0 3 0 0 0 0

0 0 0 0 3 0 1 0 0

0 0 0 0 3 0 0 0 0

1 0 0 0 3 0 1 0 0

0 0 0 0 2.9 0 0 0 0

0 0 0 0 3.5 0 1 0 1

1 0 0 0 3 0 1 0 1

1 0 0 0 2.75 0 0 0 1

1 0 0 0 2.75 1 0 0 1
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0 0 0 0 2.75 0 0 0 0

1 0 0 0 4 0 1 0 1

1 0 1 1 3.5 0 0 1 1

1 0 0 0 2.75 1 0 0 1

1 0 0 1 2.75 0 0 1 1

0 0 1 1 3 0 0 0 1

1 0 0 0 4 0 0 0 1

1 0 0 0 3.5 0 1 0 1

0 0 0 0 2.75 0 0 0 0

1 0 0 0 3.5 0 1 0 0

1 0 0 0 3 0 0 0 1

0 0 0 0 2.75 0 1 0 0

1 0 0 0 3.5 0 0 0 0

1 0 0 0 3.5 0 1 0 0

1 0 0 0 3.5 0 1 0 1

0 0 0 0 2.75 0 0 0 0

1 0 0 0 3.5 0 1 0 0

0 0 0 0 2.75 0 0 0 0

1 0 0 0 3.5 0 0 0 1

1 0 0 0 3.5 0 0 0 0

0 0 0 0 2.75 0 0 0 0

1 0 0 0 3.5 0 1 0 0

1 1 1 0 3 0 0 0 1

0 1 0 0 2.5 0 1 0 1

1 0 0 1 3.5 0 0 0 0

0 0 0 0 2.75 0 0 0 0

0 0 0 0 2.75 0 1 0 0

0 0 0 0 3 0 1 0 0

1 0 0 0 3 0 0 0 0

1 0 0 0 3 0 0 0 0

1 0 0 0 3 0 0 0 1

1 0 0 0 2.75 0 1 0 0
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1 0 0 0 2.75 0 0 0 0

1 0 0 0 3.5 0 1 0 0

0 0 0 0 3 0 1 0 0

1 0 0 0 2.75 0 0 0 0

1 0 0 0 4 0 0 0 0

1 1 0 0 3 1 0 0 1

0 0 0 1 3 0 1 0 1

1 0 0 0 2.75 0 1 0 1

0 0 0 0 2.75 0 1 0 0

1 0 0 0 3 0 0 0 1

1 0 0 1 3 0 0 0 0

0 0 0 0 3 0 0 0 0

1 0 0 0 3 0 1 0 0

1 0 0 0 2.75 0 1 0 0

1 0 0 0 3.5 0 1 0 0

0 0 0 0 2.75 0 1 0 0

1 0 0 0 4 0 1 0 0

1 0 0 0 3 0 1 0 0

1 0 0 0 2.75 0 1 0 0

1 0 1 0 2.75 0 1 0 1

1 0 0 0 3 1 0 0 1

1 0 0 0 4 0 1 0 1

1 0 0 1 3 0 1 1 1

1 0 0 0 2.75 0 1 0 1

1 0 0 1 2.75 0 1 0 1

0 0 0 1 3 0 1 0 1

1 0 0 0 3 0 1 0 1

1 0 0 0 2.75 0 1 0 1

0 1 1 0 3 1 1 0 1

1 0 0 0 2.75 0 1 0 1

1 0 0 0 3 0 0 0 1

1 0 0 0 3 0 1 0 1
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1 0 0 0 2.75 0 0 0 1

1 1 0 0 2.75 0 1 0 1

1 0 0 1 2.75 0 1 0 1

0 0 0 0 2.5 0 1 0 1

0 0 0 0 2.5 0 1 0 0

1 0 1 0 3 0 1 0 1

1 0 0 0 3.5 0 1 0 0

0 0 0 0 2.75 0 1 0 0

1 0 0 0 3.5 0 1 0 0
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K Detailed Results of the Models Applied to the Wisconsin Breast Cancer Orig-

inal Dataset

The average model performances in randomly generated 100 instances are given in

the Tables K.1, K.2, K.3, K.4, K.5, K.6, K.7 and K.8.
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L Detailed Results of the Models Applied to the Wisconsin Breast Cancer Di-

agnostic Dataset

The average model performances in randomly generated 100 instances are given in

the Tables L.1, L.2, L.3, L.4, L.5, L.6, L.7 and L.8.
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