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ABSTRACT

MATHEMATICAL MODELLING OF BLOOD FLOW THROUGH
ARTERIES AND INVESTIGATION OF SOME PATHOLOGICAL CASES IN
CARDIOVASCULAR SYSTEM USING GRAD-DIV STABILIZATION

Kokten, Ismail Tahir
M.S., Department of Mathematics

Supervisor: Prof. Dr. Songiil Kaya Merdan

December 2019, 87 pages

In this thesis, we investigate the grad-div stabilization method and its feasibility on
the cardiovascular system. Governing equations on blood flow is chosen to be Navier-
Stokes and numerical solution is obtained by Galerkin finite element approximation.
Grad-div stabilization is known as an effective residual based stabilization method
and no study exists about its effect on the cardiovascular system. In this thesis, we
present a grad-div stabilized fully discrete scheme with backward Euler time dis-
cretization, then present its stability and error analysis. To understand its effect on
the cardiovascular system, we investigate some numerical cases such as stenosis,
aneurysm and branching arteries by considering the changes in velocity, pressure and
wall shear stress values. We also numerically investigate the pulsatile nature of blood
flow and present some remarks on grad-div stabilization technique. With selection of
a O(1) stabilization parameter, the grad-div stabilization method validate the physical
expectations in all the experiments, and contribute observable improvement in eccen-
tric stenosis and rate of stenosis problems. We conclude that the grad-div stabilization

method is efficient for the cardiovascular system and promising for future studies.



Keywords: Cardiovascular system, Navier-Stokes equations, backward Euler’s method,

error analysis, grad-div stabilization
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0z

ATARDAMARLARDAKI KAN AKISININ GRAD-DiV
KARARLILASTIRMA YONTEMI KULLANILARAK MATEMATIKSEL
MODELLENMESI VE KARDIYOVASKULER SISTEMDEKI BAZI
PATOLOJIK DURUMLARIN INCELENMESI

Kokten, Ismail Tahir
Yiiksek Lisans, Matematik Bolimiu

Tez Yoneticisi: Prof. Dr. Songiil Kaya Merdan

Aralik 2019 , 87 sayfa

Bu tezde grad-div kararlilagtirma metodunu ve bu metodun kardiyovaskiiler sistem
izerindeki uygulanabilirligini incelendik. Kan akisi tizerinde etkin olmasi i¢cin Navier-
Stokes denklemleri secildi ve niimerik ¢oziimler Galerkin sonlu elemanlar yontemi
ile elde edildi. Grad-div metodu, etkili bir kalan tabanli kararlilastirma metodu ola-
rak bilinmekte ve kardiyovaskiiler sistem iizerindeki etkisini inceleyen herhangi bir
calisma bulunmamaktadir. Biz bu tezde grad-div kararlilastirmali geri Euler metodu
ile tam ayrik ¢6ziim semasi, sonrasinda da bunun kararlhilik ve hata analizini sun-
duk. Kardiyovaskiiler sistem iizerindeki etkisini incelemek i¢in, hiz, basing ve duvar
kayma gerilimi degerlerini kullanarak stenoz, anevrizma ve arter dallanmas1 durum-
larini inceledik. Ayn1 zamanda kan akisinin vurmali yapisini da inceledik ve grad-div
stabilizasyon yontemi hakkinda bazi sonuglar1 paylastik. O(1) olarak segilen stabili-
zasyon parametresi icin grad-div stabilizasyonunun tiim deneylerde fiziksel beklenti-
leri karsiladig1, eksantrik stenoz ve stenoz orani problemlerinde gézlemlenebilir katki

sagladig1 goriilmiistiir. Grad-div stabilizasyon metodunun kardiyovaskiiler sistemin
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incelenmesinde etkili oldugu ve ileriki ¢aligmalar icin imit verici oldugu sonucuna

varimigtir.

Anahtar Kelimeler: Kardiyovaskiiker sistem, Navier-Stokes denklemleri, geri Euler

metodu, hata analizi, grad-div kararhilastirma metodu
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CHAPTER 1

INTRODUCTION

The cardiovascular system circulates the blood and transport oxygen, nutrients, hor-
mones, waste products and various chemicals around the body. While it acts as a
transportation system, it also regulates pH, body temperature, hemostasis and work
as a repair and immune system. Cardiovascular system involves three main compo-
nents; heart, blood and the blood vessels. Blood is the fluid that contains materials to
transport, blood vessels are the channels that carries blood and those materials to dif-
ferent body parts and the heart creates the pressure gradient to push the blood through
the body.

Cardiovascular diseases can be defined as the dysfunctioning in heart, vessels and
blood. Those cases involve narrowed, plugged, weakened or expanded vessels, heart
failure and stroke. According to data from World Health Organization, cardiovascular
diseases are the leading cause of death globally. 17.9 millon people die every year,
which corresponds to 31 percent of all deaths worldwide and it is primarily caused by

tobacco and harmful use of alcohol, sedentary life style and unhealthy eating habits

[1].

While statistics on cardiovascular diseases clearly shows that it does really matter, a
better understanding of cardiovascular system also matters. Mathematical models are
useful to describe some cases in terms of mathematical concepts, while algorithms
and simulations are useful to visualize these behaviors. Mathematical modeling and
simulation of blood flow aims to understand the conditions that are effecting the func-
tioning of cardiovascular system in different situations such as stenosis, atherosclero-
sis and other types of anomalies that occur in cardiovascular system. These applica-

tions are also useful to optimize surgical procedures and designing medical devices.



With advancement of more powerful computers, image processing and geometry ex-
traction techniques, and studies to develop better algortihms, the demand for blood

flow modeling is increased among researchers [2].

The most famous and accepted equation to model the blood flow is the Navier-Stokes
equations, which were derived in 1820’s by Navier and Stokes to describe how ve-
locity, pressure and density of a fluid are connected. These equations are very hard to
solve and admits very narrow range of analytic solutions. For complex domains, prob-
lem becomes harder to solve, however, with development of numerical algorithms and
advancements in computer systems, we are now able to solve these equations in many

complex domains and boundary conditions.

The most popular method to solve not only Navier-Stokes, but many other partial
differential equations numerically is the finite element method, which involves sepa-
rating the domain into elements and approximate the solution as a linear combination
of basis functions on these elements. In this formulization, large variations in some
fluid properties may cause some instabilities. The grad-div stabilization is one of the
methods to prevent instabilities stemming from conservation of mass, by adding an

extra penalty term in finite element formulization of Navier-Stokes equations [3].

Together with solutions of velocity, pressure fields and streamlines, we may also ob-
tain wall shear stress by post processing the solution data, and those information
gives a reasonably good clue to understand the blood flow phenomenon. A consis-
tently low or oscillating shear stress proved to be signs of vessel anomalies due to
constant damage on endothelial cells and it is really difficult to measure these values
in a real patient, while modeling is really easier and can be integrated to diagnosis

and prognosis process of patients [2, 4, 5].

This thesis has two main goals, first is to construct a numerically stable algorithm
to solve Navier-Stokes equations together with grad-div stabilization. Another goal
is to investigate how effective is the grad-div stabilization in cardiovascular system,
since it has not been studied in this perspective in the literature yet. To investigate

this properly, this thesis is organized as follows;

Chapter 2 : A brief introduction of cardiovascular system is presented to link the

anatomy, physiology and pathology with mathematics and to get acquainted with



some important concepts so as to understand the phenomenon more holistically .

Chapter 3 : A brief introduction of mathematical aspects on cardiovascular system is
presented to see the phenomenon in different perspectives, therefore one shall locate

our study in whole frame.

Chapter 4 : Some inequalities, theorems and lemmas which are used in stability and

error analysis of the proposed scheme are presented.

Chapter 5 : Navier-Stokes equations are presented and grad-div stabilized fully dis-

crete scheme 1s obtained.
Chapter 6 : Stability and error analysis of proposed scheme is investigated.

Chapter 7 : The proposed method is used to numerically solve the equations and sim-
ulate some dysfunctionings in cardiovascular system, such as stenosis and aneurysm.
Furthermore, the behavior of blood flow in arterial bifurcations presented and pul-

satile nature of the blood flow is also investigated.

Chapter 8 : Some conclusions and remarks on grad-div stabilization and remarks on

its feasibility in cardiovascular system are presented.






CHAPTER 2

CARDIOVASCULAR SYSTEM IN A NUTSHELL

In this chapter, we briefly introduce some concepts on cardiovascular system. Since
we are interested in mathematics of the cardiovascular system, without giving much
detail, we prefer to present a brief introduction to readers so as to introduce the whole

system in a nutshell.

Anatomy, physiology and pathology are branches of biology and medicine. Anatomy
refers to investigating structures of the living bodies; details about their structure, mi-
crostructure, sizes and locations, while physiology is interested in their functioning
and the relationships between the components. Lastly, the dysfunctionings such as
stenosis and aneurysm refer to the pathology of the cardiovascular system. Investiga-
tion of the cardiovascular system on these three branches are important to understand

the mechanics behind it, and come up with more accurate models and solutions.

The cardiovascular system consists of three main components, the heart, vessels and

the blood. Let us briefly introduce some main concepts and features.

2.1 Heart

The heart is a muscular organ, and its main goal is to pump the blood through the
body and maintain the pressure gradient required to constantly circulate the blood
through the circulatory system. The heart is located in the mediastinum area i.e. be-
tween two lungs, and most of its mass is generally at the left of the mid line [6]. It
is also described in Figure that the heart is encircled with two layered sac, the
outer part is called the fibrous pericardium, protects the heart and prevents it from
steep stretching and the inner part serous pericardium consists of parietal and visceral

layers ,and there is a space called pericardial cavity between them, which contains

5



serous fluid that prevents friction during the heart beat.

Inside this sac, there is the heart wall consisting of three layers: epicardium; a thin

Pericardial cavity

Endocardium

Fibrous pericardium
Myocardium —m8 —mrow——f——

Parietal layer of serous
pericardium

Epicardium (viceral layer
of serous pericardium)

Figure 2.1: Image from [53], illustrates a cross-section of the heart. It is surrounded with a two layered

sac, and there is a three layered wall beneath this sac; see also [2, 7].

layer that slicks and protects the heart, myocardium; the thick muscular layer con-
taining cardiac muscles and endocardium; a thin layer consisting of endothelial cells,

constitute the innermost surface of the heart [2, 7].

The heart is divided into two parts by the septum: right and left, and each part con-
sists of ventricles and atrium. This division constitutes four chambers of the heart: the
right ventricle (RV) and the left ventricle (LV) are the inferior chambers, which are
high pressure points that the blood is released, and right atrium (RA) and left atrium
(LA) are the low pressure points where the blood is received [2, 7]. Four chambers of
the heart and their connecting vessels are decribed in Figure[2.2] The heart maintains
this pressure gradient so that blood can move from the high pressure regions (ventri-
cles) to the low pressure regions(atria). Ventricles have thick walls since they are high

pressure points, and discharging of these chambers need more muscle activity [2, 8].

The heart is connected to the body with two types of vessels. With a couple ex-
ceptions, arteries carry the oxygenated blood away from the heart, and veins carry
the deoxyganeted blood through the heart. Blood moving away from heart have two
types of circulations: the first is the pulmonary circulation, which cleanses the blood
in the lungs, and the second is the systemic circulation, which delivers the oxygenated

blood through the body and gather waste products and deoxygenated blood into the
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heart [2].

The pulmonary circulation starts from contraction of right ventricles and the opening

Arch of Aorta

F Pulmonary
scendin artery

aorta

€ ) Aortic \valve

valve
Right atrium

Tn'cuséd

valve

© MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH. ALL RIGHTS RESERVED

Figure 2.2: Image from [54], illustrates chambers and valves of the heart, together with the vessels
connecting with body. The deoxygenated blood leaves the heart from the pulmonary artery to the
lungs, while oxygenated blood leaves from the aorta to the body. Blood receives to the atria, and

leaves the heart from the ventricles with a ventricular contraction; see also [2, 7].

of pulmonary valves. The blood discharges through pulmonary artery, deoxygenated
blood gets oxygenated from the lungs. After that, the oxygenated blood arrives into
low pressure point the LA through pulmonary veins. Finally, the blood moves to the
LV through mitral valve by contraction of the LA. Secondly, the systemic circulation
starts from contraction of the LV, the blood moves through aortic valves to the aorta.
It moves all around the body and reaches to the low pressure area, RA through the
superior and inferior venacava. After that, it moves to the RV through the tricuspid

valve [2]. A sketch for two circulations is given in Figure [2.3]

In this process, valves (see the valves in Figure 2.2) helps the heart to maintain its
high and low pressure in the chambers by preventing backflow during the transitions,
therefore maintains the pressure gradient. The systole and the diastole are two im-
portant concepts to understand the pulsatile nature of the heart. When the pulmonary
and aortic valves are close, and tricuspid valve and mitral valves are open, ventri-
cles are relaxed and ready to receive blood. This relaxed state, resulting in ventri-

cles filled with blood is called diastole. Once the mithral and tricuspid valves close,
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ventricles are contracted to create pressure and pump the blood through the body,
then pulmonary and the aortic valves open. This contracted state is called systole

[2,9, 10, 11]. Systole and diastole phases of the cardiac cycle is given in Figure 2.4

Capillary bed of lungs where
gas exchange ocours

Pulmonary arteries Pulmonary veins

Aorta and branches

Vena cavae
Left atrium

L— Left ventricle
Right atrium

Right ventricle t— Systemic arteries

Systemic veins

W Oxygen poor,
GO, - rich blood

W Oxygen rich,
€0, - poor blood

Capillary bed
of all body
tissues where
gas exchange
occurs

Figure 2.3: Image from [55], illustrates two types of circulations. The pulmonary circulation results
with oxygenation of the blood through the lungs. In the systemic circulation, oxygen and various
nutrients are delivered the body tissues and wastes are gathered from the body tissues. The red vessels

indicate oxygenated blood and the blue vessels indicate deoxygenated blood; see also [2].

Understanding the blood pressure is important to investigate the mechanics of the car-
diovascular system, especially the vascular system. The blood pressure is defined as
the pressure made by the blood through the vessel walls. Measuring the blood pres-
sure in the arteries when the ventricles are relax (diastole), we obtain diastolic blood
pressure, and the peak pressure produced by contracted ventricles (systole) is called

systolic blood pressure [2, 11].

The cardiac output, the heart rate and the stroke volume are three important concepts
to understand the heart physiology and the heart mechanics. The heart rate is defined
as the number of heart beats per minute, and the stroke volume is defined as the vol-
ume of the blood pumped by the heart per beat. Finally, the cardiac output is defined
as the volume of the blood pumped by the heart in a time interval. The cardiac output
is evaluated by the product of heart rate and the stroke volume [2, 12]. The cardiac

output of a young adult is about 6 L/min with a heart rate of typically 1.25 Hz (75
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Heart muscles Heart muscles
Contract . Relax

Figure 2.4: Image from [56], illustrates the diastole and the systole. The relaxed state of the ventricles
is called diastole. In this phase, ventricles fills with blood. The contracted state of the ventricles is

called systole. In systole, blood filled in the ventricles is pumped; see also [2, 11].

beats/min). The stroke volume of a young adult is typically 80 mL/beat, and abnor-

mal measure of cardiac output can be an indication of a cardiovascular disease [2].

To beat the heart, it creates electrical impulses which are constantly generated peri-

Bundle of His
(left bundle)

SA node

AV node

Bundle of His
(right bundle)

Figure 2.5: Image from [57], illustrates the elements of intrinsic cardiac conduction system. The pulse
is generated at the SA nodes by pacemaker cells, then arrives to AV node. After a small delay it arrives

to the ventricles through the bundle of his, and contracts the ventricles; see also [13].

odically by pacemaker cells, and heart rate is controlled by these impulses. The pace-
maker cells are a type of cardiac myocytes that can make their own depolarization,
while other cells need an initial stimulation for depolarization. Therefore pacemaker
cells create the hearts intrinsic electrical activity, and this autonomous pacemaking
process is the key to understand the pulsatile nature of the blood flow and the cardiac

cycle. Sinoatrial node (SA node) and atrioventricular node (AV node) (highlighted in
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Figure 2.3) in the heart contains pacemaker cells [13].

The cardiac cycle, detalied in Figure @, starts with stimulus of the SA node, that
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Figure 2.6: Image from [58], illustrates important variations during the cardiac cycle. At systole,
ventricular and aortic pressure is increased with ventricular contraction, and ventricular volume is
decreased with ejection. Diastole is the relaxed state of ventricles with low ventricular pressure. At
diastole, ventricular volume increases and aortic pressure decreases. Electrocardiogram is mainly
used to understand irregularities in the rhythm of the heart. With stimulation of SA node, atria are
depolarized, therefore discharges the blood. This depolarization is shown in P wave. The delay in AV
node is apparent between P wave and Q wave. The QRS wave represents the pulse that reaches from
bundle of his and causes ventricular contraction. After a delay between ST segment, ventricles start to

repolarize; see also [2, 8, 14].

starts the contraction of the atria (P wave on the electrocardiogram). Then the pres-
sure in the atria increased, and the ventricles starts to fill. Once the phase starts to
end, atrial contraction also ends. After that, the pressure at the atria starts to decrease,
then the valves gets closed and contraction of ventricles starts to increase (QRS com-
lex), and the semilunar valves gets closed for some time. After the pressure increased
enough to open the aortic and pulmonary valves, the blood is pushed from the heart
(T wave). Together with the ejection, the pressure decreases and semilunar valve gets

closed and one cardiac cycle ends [2, 8, 14].
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2.2 Vessels

Vessels deliver oxygen and nutrients through the body, carry waste products and con-
tributes to the blood pressure by dilation and contraction. Blood leaving the heart to
deliver oxygen to a body part, leaves heart from an artery, then moves into smaller
arteries called arterioles, and then capillaries to deliver oxygen and nutrients to the tis-
sues. After that, the deoxygenated blood with waste products moves to the venules,
which are small vein components takes the blood from capillaries, then to the veins
and reaches to the heart from the superior and the inferior vena cava. The vessels and
their connections are given in Figure [2.7] Since the pressure gradient between the
ventricles and the capillaries is higher than the capillaries to the atrias, the veins have

valves to prevent backflow of the blood in the veins [2].

Inside of a blood vessel, where the blood flows is called lumen and the blood vessels

Artery
carries blood
Capillary ! from the
network
VYein
carries
blood back

Thick, elastic
muscular wall

Thin, elastic
muscular wall

Figure 2.7: Image from [59], illustrates different types of vessels. Blood leaves heart through arteries,
then moves through smaller branches of arteries called arterioles, then flows through very small ves-
sels called capillaries for exchange of nutrients and waste products. Deoxygenated blood then moves
through small vessels called venules. The blood then flows through larger vessels called veins, finally

reaches to the heart; see also [2].

consists of three layers: Tunica adventitia constitutes the most outer layer and is made
of collagen fibers, thus provides protection and resists agains the pressure. The tunica
media constitutes the middle layer, made of smooth muscle cells and elastic fibers. It
allows the vessels to dilate or constricts to adjust based on the blood volume needed to
carry, and finally the tunica intima is the innermost layer, consists of endothelial cells
that makes the first contact with the blood [2]. A detailed sketch is given in Figure
2.8|to compare the wall anatomy of artery and veins. To understand the variability of

vessels in number, size and pressure, some features of important vessels are given in

Table 2.1land 2.2
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Figure 2.8: Image from part of [60], illustrates anatomy of arteries and veins. In both types of vessels,
the outer layer provides protection, the middle layer contain muscles, and provides mobility, while the
innermost layer provides the contact and the exchange with the blood. Since arteries are closer to the
heart and imposed to greater pressure and need more elasticity, they have a thicker wall. Veins have

smaller lumen since they move from a smaller pressure gradient; see also [2].

Table 2.1: Some properties of systemic vessels are introduced. Adapted from [2], p.
6.

H Vessel Diameter of Lumen(mm) Wall Thickness(mm) Mean Pressure(kPa) Number of Vessels H
Aorta 25 2 12.5 1
Large Arteries 1-10 1 12 50
Small Arteries 5-1 1 12 103
Arteriole 01-5 0.03 7 10*
Capillary .006-.01 0.001 3 108
Venule .01-.5 0.003 1.5 10*
Vein .5-15 0.5 1 10°
Vena cava 30 1.5 0.5 2

The endothelial cells are one of the basic components of the cardiovascular system.
They are small and stand between the blood and the vessel wall as endothelium layer,
it basically turns shear stress from blood into biochemical signals [2, 15]. The en-
dothelial cells are exposed to shear stress due to friction of the blood, and normal
stress due to blood pressure. It takes action on the control of the exchange between
blood and the vessel wall and immune responses. Wall shear stress is one important

feature to study the effects of fluid forces into the endothelial cells, on drug secretion
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Table 2.2: Some properties of pulmonary vessels are introduced. Adapted

from [2], p. 6.

Diameter of Lumen(mm) Number of Vessels Mean Velocity(mm/s)
30 1 110
8-30 10 155
1-8 103 104
0.1-1 0.25 x 10° 44
0.02-0.1 0.20 x 106 23
0.01 300 x 10° 2

or deterring adhesiveness of the wall and some complications such as extravasation

[2].

A very important molecule that takes place on adhesiveness and dilation of vessel is
nitric oxide (NO). It is released by endothelial cells to arrange contraction of vessels,
it also decreases platelet aggregation. Endothelial cells sense increased blood pres-
sure by shear stress, and trigger NO production. NO relaxes the smooth muscle cells
and dilates the vessel to regulate the blood pressure as a local response for high blood
pressure and high shear stress. A dysfunction in endothelial layer and deterioration
on endothelium line-up effects discharging of NO, and cause aggregation of materials

into vessel wall, therefore causes narrowing of blood vessel [2].

Depending on the flow over the vessel, shape of endothelial cells may be circular
(low flow) and wider for high and undirectional flow. They change their orientation
depending on magnitude and direction of the flow. It is also very important for in-
vestigation of the vascular pathology, e.g. possibility of atherosclerosis formation
increases as endothelial cells fail to align in the flow direction, while this situation is

caused by oscillating or low shear stress [15, 2].

Depending on the changes in blood pressure, shear stress and tension, vessels rebuild
the accustomed condition either applying some changes in the whole cardiovascular

system or remodelling their wall. Since wall shear stress is related with accumu-
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lated fatty deposits, it is one of the first things to investigate for such changes. Also
due to the pulsatile nature of the blood flow, wall shear stress values experience high
fluctuations. Also due to wobbly nature of pressure pulses and anisotropic structure
of vessel walls and complicated geometries such as branching vessels, high pressure
fluctuations occurs and this may lead some complications, and cardiovascular system

has some natural response for that [2].

Vessels responds to increased pressure and flow by increasing its diameter, and de-

Pressure

Figure 2.9: Image from [61], illustrates patterns in vessel wall remodelling. Classification of vessel
wall remodelling is based on the blood pressure, the flow patterns and anomalies on the vessel. Re-
modelling on vessel wall are expressed in terms of media to lumen ratio (M/L). A shows an increased
ratio while B shows a decreased ratio. C and D happens due to flow patterns, D maybe caused by some
anomalies such as arteriovenous fistula or cellular loss and may cause development of an aneurysm,
while C leads a continued low blood flow. E and F may be caused by a abnormal response to a vascular

injury; see also [2, 16].

creased pressure and flow by decreasing the diameter. High blood pressure leads
thickened arterial walls of the vessel, as an adverse affect of these pressure changes.
Also an increased wall shear stress triggers restructuring of the vessel walls [2]. Some

remodeling patterns are given in Figure [2.9]

2.3 Blood

Blood is a very important liquid, it helps to maintain and regulate body temperature,
pH levels. It contributes to the protection from infections, and repair of the body.
Understanding the structure and the ingredients of the blood is important for accurate

modeling of blood flow phenomena. Blood consists 45 % of red blood cells and 55 %
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of plasma. The plasma is approximately 92 % of water, the remaining is electrolytes,
hormones, proteins, gases and waste products. This suspending nature of the blood
forces us to choose between Newtonian and non-Newtonian models, depending on

the vessel geometry that we are studying on. Blood for a healthy person is given in

Table 2.3

Table 2.3: Some properties for blood for a healthy person are introduced. Adapted
from [2], p. 23.

H Density Viscosity Mean Velocity(mm/s) H
Viscosity 1 64
Osmotic Pressure 10 21
pH 10? 37
0.1-1 0.25 x 10° 19
0.02-0.1 0.20 x 10° 5
0.01 300 x 10° 5

2.4 Cardiovascular Diseases

Dysfunctions (morphological changes on vessels, vessels walls or mechanical changes
such as hypertension) on cardiovascular system are called cardiovascular diseases.
Heart attack, heart failure, heart valve disease, heart muscle disease (cardiomyopa-
thy) and vascular diseases are some important cardiovascular diseases and they are
the number one cause of death worldwide [2]. Atherosclerosis and aneurysm are two
of the most common vascular diseases and many studies on the literature exists on

those problems.

2.4.1 Atherosclerosis

Arteries are blood vessels that generally carry oxygen-rich blood from the heart to
other parts of the body. Plaque builts inside arteries are called Atherosclerosis. Fat,
cholesterol, calcium or other substances may cause plaque development. A plaque de-
velops in decades, the early stages of this development is benign. However, it should
invade the vessel lumen and disturb the blood flow as it gets bigger. Development of

a thrombi or a rupture is more dangerous and unwanted scenario; it may cause stroke,
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heart attack or more serious problems. Together they comprise approximately half of

all the deaths in developed countries[17]. Development stages of an atherosclerosis

is given in Figure

Normal Fatty Fibrofatty Advanced/vulnerable
vessel streak plaque plaque

Figure 2.10: Image from [62], illustrates the progression of atherosclerosis and endothelial dysfunc-

tion, mainly due to accumulation of lipids; see also [18].

2.4.2 Aneurysm

Dilation of a vessel and as a baloon like shape over years is called aneurysm. Aneurysm
occurs due to weakening of vessel walls as well as some other diseases. There are two
types of aneurysm: saccular and fusiform (see Figure [2.T1). If whole vessel circum-
ference is weakened and dilation becomes at all sides, it is called fusiform aneurysm.
If only one side of a vessel is weakened and the dilation becomes into one side, it is
called saccular aneurysm. Its rupture may lead to haemorrhage, while a rupture in the

brain may lead to lethal vasospasm [2].

a

Saccular Aneurysm

Fusiform Aneurysm

Figure 2.11: Image from [63], illustrates two kinds of aneurysm. In saccular aneurysm, local dilation
occurs and the deformed vessel takes a saccular shape. In fusiform aneurysm, vessel takes a balloon

like shape, and dilation occurs from all sides of vessel; see also [2].



CHAPTER 3

MATHEMATICS OF CARDIOVASCULAR SYSTEM

In this section, we will introduce some mathematical aspects and motivations on car-
diovascular system. In general, modeling of any phenomena comes from an observed
problem. To understand the problem, a mathematical model needs to be established,
which involves defining appropriate geometry, picking appropriate equations, apply-
ing suitable numerical methods and simulating the results in order to compare them

with actual experimental data [23].

When we compare with actual experimental data in modeling of cardiovascular sys-
tem, there are two types of data: in vivo, which is taken from real patients, more
reliable but costly and time consuming, and in vitro, which is generated from a con-
trolled environment which is less precise but less costly and time saving. Using any
of those types, a researcher can understand whether the model is reliable, otherwise

it needs to be pivoted [2].

Before we start mathematical modeling of a phenomenon, we need to establish the
geometry where the equations going to be solved. One possible way is to draw it
manually, where as with development of image segmentation techniques it is possi-
ble to extract a realistic and proper geometry from medical images such as CT and
MRI. The extracted edge map is smoothed and reconstructed with interpolation, and
developing robust algortihms to obtain sufficiently smooth shapes with as less user

interaction as possible is another concern of the literature [2, 19].

From specific to more general, investigation of fluid in single artery is called local
flow analysis, while investigation of the interaction of fluid and the arterial deforma-
tion is called fluid-structure interaction. Understanding the behavior of whole system

from modeling of single artery is called geometric multiscale modeling, and under-
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standing of a global scenario is the desired aim of mathematical modeling [23, 20].

Talking on a local level, before modeling of a single artery representation of fluid
field is important. At one side Lagrangian representation aims to follow single fluid
particle which is not appropriate due to complex pattern of cardiovascular system. On
the other side, Eulerian approach aims to investigate behavior of fluid particles in a
specific part of an artery, which miss the deformation of an artery. One very common
approach is the Arbitrary Lagrangian-Eulerian (ALE) approach which fixes inlet and
outlet of a specific domain of the artery and allow the walls to deform, by combining

both of the representations [2].

Blood is a suspending plasma mainly consisting of water, and includes blood cells in-
side. One apparent effect of this is so-called share-thinning, which can be described
as the behavior of fluids, whose viscosity decreases under shear strain (see Figure

). That is to say, with increased rate of deformation, a shear-thinning fluid be-
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Figure 3.1: Image from [64], illustrates the effect of shear stress on viscosity; see also [2].

comes more fluent. With decreasing vessel diameter, shear-thinning effect increases
[2]. Shear-thinning is essential for blood to perfuse into the body, and red blood cells
are the most important component of blood that is related to shear-thinning property

of blood [21, 22].

For vessels that has diameter of less than about 1mm, viscosity of the blood decreases
and becomes dependent on the vessel diameter. In such small vessels, plasma contacts
with vessel wall, and erythrocytes moves from center of the vessel easily. Therefore
viscosity decreases abruptly, this is known as Fahraeus-Lindqvist effect.

What’s more, erythrocytes should be bigger than the smallest capillaries. At that
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Figure 3.2: Image from [65], illustrates Fahraeus-Lindqvist effect stating the accumulation of red

blood cells into the center of the vessel; see also [2].

point, erythrocytes goes under deformation, which is another viscoelastic behaviour
of the blood that needs to be investigated. In that case the blood may not be treated as
a continuous fluid. Understanding these properties, we can split mathematical models
of blood flow as: Newtonian models, neglecting shear-thinning and viscoelastic ef-
fects, applicable in large vessels, and non-Newtonian models, viscoelastic effects are
taken into account and is appropriate for vessels of diameter less than 1mm. Since
non-Newtonian behavior makes the viscosity dependent on shear rate, it increases the

computational cost. Newtonian models usually used for the sake of simplicity [2].

The incompressible Navier-Stokes equations which governs the flow of blood is given
by
uw+ (u-Vyu—vAu+Vp=f, in (0,T] xQ
Vou=0 (0,T] xQ
u(z,0) = ug(x) for xefd
u=0 on Twau (3.1)
n-c=0 on T,

u=c on I}y,

Given a vessel domain (2, the inlet I';, is called a proximal boundary since it is close
to heart and the outlet I',,; is called a distal boundary since it is farther from the

heart. I'yy,; are assumed to be fixed with no-slip boundary condition and normal
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stress o - n at distal boundaries [2]. The initial condition of velocity needs to be de-
termined wisely, since V - uy = 0 needs to be satisfied. A very common approach
to decrease the effect of wrong initial data is to solve stationary Stokes problem, and

use the solutions as initial condition in Navier-Stokes equations[2].

The convective term (u - V)u in Navier-Stokes equations may cause instabilities
such as turbulence, which may occur in CVS in small scales. Reynolds number (Re)
is very important for flow characteristics: a flow with Re < 1000 is to remain stable
and is called laminar flow regime where as higher Reynolds numbers may cause tur-
bulence. Reynolds number in different vessels is given in Table [3.1]to understand the

scale of Reynolds number in the cardiovascular system more clearly.

Table 3.1: Reynolds numbers for different vessels are introduced. Adapted from [2],

p. 31.

Vessel Reynolds Number (Re)

Ascending aorta 4000
Thoracic aorta 2500
Brachial artery 1000
Common carotid artery 800
LAD coronary artery 400
Small artery 100

Capillary 0.003

Large vein 1700

Even though, some instabilities at systolic phase may occur at the exit of the aorta,
a full scale turbulence does not occur in the cardiovascular system [23]. Other pos-
sible cases of turbulence shall be increased heart rate, existence of stenosis, implant,
aneurysm, branching arteries and decreased viscosity in special conditions such as

anemia.

Another important calculation in CVS is wall shear stress (WSS), which corresponds
to force per unit area caused by the friction of the blood into the vessel wall or tan-
gential component of the stress on endothelial surface. It is well known that WSS
and atherosclerosis formation has a significant relationship [4]. Low and oscillating

WSS regions are to be susceptible places for plaque formation, due to alteration in
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endothelium and aggregation of blood cells [2, 24]. Besides, on the stenosis region,
large spatial WSS values together with fluctiating pressure is known to weaken the

stenosis and may cause a rupture of the plaque [25].

Navier-Stokes equations involves information about pressure and velocity and allows
us to compute in vitro shear stress values with some post processing. 0.5 to 1.2Pa of
WSS values are acknowledged as normal, while values out of this range are regarded
as low and high wall shear stress values. In case of pulsatile flow in straight geometry

with laminar flow regime, WSS values changes between 1.7 — 7Pa [24]. Pulsatility

Pulsatile inlet velocity waveform Pulsatile outlet pressure waveform
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Figure 3.3: Image from [66], illustrates the inlet velocity profile and the outlet pressure profile.
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of blood flow may promote plaque formation by causing reverse flow, and recircu-
lations adversely affects the endothelium. Even though we use a periodic boundary
condition to represent pulsatile nature of blood flow, this choice is not true in general.
In Figure [3.3] the centerline velocity in a cardiac cycle is given to express pulsatile
nature more clearly for different phases of contractions of the heart. With different
physical activities, metabolic disorders, vasoconstriction or vasocontraction may oc-
cur and amount of blood sending different organs or heart rythm may change, which
is a different area of research. Neglecting the pulsatile nature in peripheral arteries,
veins and the capillary bed is somewhat reasonable since pulsatility of the flow is re-

duced due to regularity effects [2].

Local changes in body temperature may also effect flow patterns. In large and medium
vessels, the effects should be less but in smaller vessels blood viscosity may be ef-
fected by temperature changes. Normally describing temperature change require an-

other PDE coupled with NSE [2].
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Throughout the thesis, we assume that, the blood is a homogeneous fluid. It is Newto-
nian with constant viscosity 0.0035Pa-s and vessel radius are selected large enough to
make Newtonian flow justifiable. Also, blood density is chosen constant with 1060%

with a constant temperature of general body temperature.
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CHAPTER 4

MATHEMATICAL PRELIMINARIES

In this chapter, we will discuss some important definitions, lemmas and theorems that
are used in mathematical analysis (Chapter 6) of this thesis. We have used mostly the

references from [3, 26, 27, 28].

Definition 4.0.1 (Hilbert Spaces) A complete normed vector space is called a Banach

space and is called a Hilbert space if it is equipped with inner product.

Remark 4.0.1 In finite element approximation, we aim to find an approximate solu-
tion. Completeness of Hilbert space guarantees that the approximation will converge

to a constructed sequence.

We will now define the most important and commonly used Hilbert and Banach

spaces consisting of functions and some special cases of these function spaces.

Definition 4.0.2 (Lebesgue Spaces (L*(€)))) Let Q) C R", defining the norms
[0l o) = (/ Ivlpdm) , 1<p<oo
Q

[0l zee(e) = sup [v(z)|, p= o0
e

and

then LP(Q) function space is described as

LP(Q) = {v Q=R o] ) < oo}

We have the only Hilbert space L*(f2), since we have (u,v).2q) = [, uvdz is the

inner product in this space. For other cases, L”({)) spaces are Banach spaces.
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Definition 4.0.3 Let multi-index o = (o, aa, ..., aq) be d-tuple of non-negative in-

tegers a;. The order of « is defined by

d
al=>_a
i=1

and the classical partial derivative is defined by

N || a a;

=1

Definition 4.0.4 (Weak Derivative) Let the space of locally integrable functions be
L) ={v:ve LYK),VK cCc Q}

foru € L, .(Q) and ¢ be an infinitely differentiable compactly supported function, if

loc

there is a function g € Lj},.(Q) such that,

loc

/ngsd;c: (—1)|a/ﬂuDagbdx,

then we call g as weak derivative D™ of u.

Definition 4.0.5 (Sobolev Spaces) Assuming all the weak derivatives D of u &
LP(Q) exists, then the Sobolev space W} (2) is defined by

WP(Q) = {u € LP(Q) : D*u € LP(Q), |a| < k:}

with the norms

3 =

lallwpe = [ 321Dl | 1 <p< oo
|| <K

and

||U||W,f(9) = ‘I;l'i)g ||DO‘U||L0<>(Q),1? = 0Q.

Remark 4.0.2 One of the mostly used Sobolev space is W} which is a Hilbert space.
H*(Q) = W2(Q) is to be used to show the relationship. We shall define

HY(Q) =W Q) = {ue L*(Q) : D'u e L*(Q)}
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using the norm

”uH?ﬁ(Q) = HUH%Q(Q) + ”VUH%2(9)

and the inner product

(u, U)?ﬂ(ﬂ) = (u, U)L2(Q) + (VU, VU)Lz(Q)

Definition 4.0.6 The constrained Hilbert space H} can be defined as,

HY(Q) = {u e H(Q) : v|gq = 0}.
Definition 4.0.7 (Dual Norm) The norm of the dual space H™' of H} is denoted by
|| - [|-1. For f € L*(Q), the dual norm of f is defined by,

)
= S Tl

Lemma 4.0.1 (Ladyzhenskaya inequality) For a vector function u : RY — IR with

compact support and the indicated LP norms finite, the following inequalities hold;
1
el oty < 23 llul gy 10l 2 e

[lul| s (rey < \/—I|UH [Vul| ¥, (d = 3)

Lemma 4.0.2 (Poincaré-Friedrichs inequality) Let Q) a bounded set. As v € H} ()
vllz2@) < ClIVV[L2()
for a positive constant C independent of v.

Theorem 4.0.1 (Holder’s inequality) Let f € LP() and g € LY(Q) with  + ¢ =1
where p, q € [0,00). Then

1fgllzr) < N flle@llgllze-

Remark 4.0.3 Setting p=q=2 in Holder’s inequality gives the Cauchy-Schwarz in-
equality,
1fallzr@) < [1fllr2@llgllz2)
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Definition 4.0.8 (Young’s inequality) For a,b,e > 0 and % + % =1,1<p,q < o0
the inequality

-p

ab S Eap + 1aq
p q

holds.

Lemma 4.0.3 For any v € H' (), the following inequality holds

IV 0| < Vd| V|

Definition 4.0.9 The space L?(0,T; W} (Q)) can be defined by;
LP(0,T; Wf(Q)) ={¢:(0,T) — W;(Q% H(/bH%q(o,T;W;(Q)) < oo}

for ¢(x,t), with the norm

T
1
Jollusorsgion = ([ 106y )*
0

Lemma 4.0.4 (Discrete Gronwall inequality) For n > 0 and non-negative integers

an, bn7 Cn, dn7 Ay, l.f

N+1 N+1 N+1
ansi + ALY by SALY and, +AtY ¢, +B N >0,
n=1 n=1 n=1
holds, then
N+1 N+l N+1
Atd b, < At " At w + B N >0,
for kay, < 1.
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CHAPTER 5

NAVIER-STOKES EQUATIONS

Navier-Stokes equations are the most famous and accepted equation to model the
fluid flow, stem from Newton’s second law of motion and are widely used to describe
motion of blood. It combines the concepts of velocity, momentum and conservation
of mass, for some given initial conditions [3]. It is derived in 1820’s by Navier and
Stokes to describe how velocity, pressure and density of a fluid are connected. Un-
fortunately, Navier-Stokes equations are hard to solve and admits limited number of
analytic solutions, and it gets harder for complex domains. Fortunately, with advance-
ments in computer systems and development of numerical algorithms, it is solvable

in many complex domains with more complicated boundary conditions.

Finite difference method (FDM), finite volume method (FVM) and Finite element
method (FEM) are three popular methods to numerically solve partial differential
equations. In solution of Navier-Stokes equations, FDM and FVM are used to ap-
proximate the so-called strong form of the Navier-Stokes equations with an easy im-
plementation. However, they do not yield good results in curved boundaries and
admits difficult convergence analysis. The most popular method is the FEM, approx-
imates the so-called weak form of the Navier-Stokes equations, therefore it requires
less assumptions on the domain and boundary conditions, and admits a greater range

of approximate solutions [29, 30].

In this chapter, we first introduce the Navier-Stokes equations, which govern the blood
motion. After that we obtain weak formulization of Navier-Stokes equations, then we
introduce FEM to numerically solve them. We finally present the grad-div stabilized
FEM formulation of Navier-Stokes equations. [31] by J. Donea and [3] by V. John

are commonly used for the organization of this chapter.
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Let Q C RY d = {2,3} and the domain is bounded and the boundary I' = 91 is

Lipschitz continuous. Then the time dependent Navier-Stokes equations are given by

plus+ (u-Vu) =V-o+pf in (0,7] x (5.1)
Vou=0 (0,T]xQ

here w is the velocity, p is the fluid density, f is the body force per unit mass of fluid

and o is the Cauchy stress tensor.

Before we decompose the Cauchy stress tensor, let us start by defining velocity gra-
dient which describes how magnitude of velocity v = (v, v2, v3)? changes with dis-
tance x = (1, T2, x3)" and therefore cause a rotation or deformation on a single fluid
particle,

Jui du1 du
le 612 82?3

= | Qv OGva Ova
Vo Ox1 Oxo Ox3 (52)

Ouvz  Ouvz  Oug
8:1)1 312 8:)33

It can be decomposed into symetric and skew-symetric parts

1
VY= 5(vU + Vol) (5.3)

1
vW= §(Vv — vol)
where V* is called the rate of deformation or velocity deformation tensor (strain rate)

of the fluid and V" is called vorticity (spin) tensor which describes local spinning

motion of fluid particles.

If the fluid is not moving, then only normal forces of stress exists and it can be stated
as 0;; = —po;; where 0;; is the Kronecker delta and p is the fluid pressure at rest. If it
is not at rest, then tangential stresses becomes nonzero, in this case the Cauchy stress

tensor is stated as 0;; = —pd;; + s; ; where s; ; is called the deviatoric stress tensor.

If the fluid of interest is Newtonian, the stress tensor and rate of deformation tensor

(symmetric part of velocity gradient) assumed to be linearly related with the equation

Ou a”j) v, (5.4)

= — DO "k
i PO+ 1 (835]- + ox; oxy,
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2

8%_) is the shear stress i.e. tangential com-

1 s the dynamic viscosity and p (gT”j_ +
ponent of stress tensor. Evaluation of this relation at wall, one shall obtain the wall
shear stress, which has too many application on physics, and its applications on the
cardiovascular system is mentioned in Chapter 4, and we will use this formula for the

numerical simulations in Chapter 7.

Using V - v = 0, we obtain

oij = —pl + 21V (5.5)
011 012 013 1 00
g91 0O o3| =—-p|0 1 0
031 032 033 0 0 1
ouL 1 (8_ I 6_> 1 (8_ i b) (56)
oz 2\ 022 T 0z, ) 2\ 025 T Omy
la(gmegs) 2 (o)

Here, using the equation (5.5) for o in equation (5.1), dividing both sides to p and

substituting v = % , we have the Navier-Stokes equations
u+ (u-Vu—20V -V +Vp=f in (0,T] x Q (5.7)
Vou=0 (0,7] xQ

Here, v = % is the fluid kinematic viscosity and p is the kinematic pressure. The term
u; + (u - V)u here represents the inertial (momentum) forces, vV - V°u represents the
viscous forces, Vp represents the pressure forces and f represents the external forces

which is applied on fluid particles.
Substituting V°u and rewritting it as

u + (u-V)u —vViu—vV(V-u)+Vp=f (5.8)
under incompressibility assumption we can rewrite it as

w+ (u-Vyu—vAu+Vp=f, in (0,7T] xQ (5.9)

which is the mostly used version of momentum equations.
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Conservation of mass equations are coupled with conservation of momentum equa-

tions

dp
E—FV-(pu)—O.

We are working with incompressible fluids means constant density, i.e. effects of
pressure on the fluid density is neglected. In the equation, assuming Zt = 0, we

obtain the coupled incompressibility condition
V.u=0. (5.10)
Together with normalization of pressure with a mean of zero, in this thesis we con-
sider the following incompressible Navier-Stokes equations governing the blood mo-
tion;
w+ (u-Vyu—vAu+Vp=f in (0,7] x
Vou=0 in (0,7 xQ
u(z,0) = ug(x) for x €
u=0 on Twau (5.11)
n-c=0 on Dy

u=c on I}y,

/pdx:O in (0,T7.
Q

To introduce the weak form of equation (5.11)), we first need to introduce the velocity

and pressure spaces

X = Hy(Q)":={v e H'(Q)*: v]pq = 0},
Q=1L3Q) :={qe L*Q): / qdx = 0}.
Q
The divergence free space is also defined by

Vi={veX:(¢,V-v)=0,Yq e Q}.

We multiply both sides of with v € X and integrate over the domain, then the

diffusive term becomes
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(Au,v):/Vqudx:/V-Vuvdx:/Vu-Vvdx+/ n - Vuvds.
Q Q Q o9

Similarly for the pressure term, divergence theorem and the definition of X gives

(Vp,v) = (p, V- v).
Thus multiplying (5.9) with v and incompressibility constraint (5.10) with ¢ yields
(ug,v) + v(Vu, Vo) + (u - Vu,v) — (p, Vo) = (f,v), YveX, (5.12)
(V-u,q) =0, VYgeQ.
To write Galerkin finite element formulation of the Navier-Stokes equations, we

choose finite element spaces (Xj, @) satisfying the following inf-sup (Ladyzhen-
skaya—BabuSka—Brezzi(LBB)) condition

>8>0 (5.13)
1 €Qn v,ex,, || Vunll|lgnl]

with a constant 3, to ensure well-posedness of the discrete Galerkin finite element

formulation [32].
Discretely divergence free space is defined as
v, = {’Uh e Xy (qh,V . Uh) = O,th € Qh}

Since V}, ¢ V in general, we cannot say that V}, is completely divergence free. There-
fore we define the skew-symetric form to overcome any difficulty regarding this situ-

ation.

Lemma 5.0.1 (Skew-symmetry) If v-n = 00n 0Q, v,Vv € L*(Q) and V - v = 0,

then for such u, v, w, we have

/um'wdx:—/u-w-vdx.
0 Q

Definition 5.0.1 The skew-symetric trilinear form is defined as

b*(u,v,w) = %((u -V)v,w) — %((u -V)w,v).
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The following inequalities will be used through error analysis. We now state the

following results.

Lemma 5.0.2 Given that Vu,v,w € X, the following inequalities holds
b*(u, v, w) < M[|Vul[[|Vol[[[Vuwl],
« 1 1
b*(u, v, w) < M|lull>[[Vul[> [[Vo[ | Vw]].

Proof:

. 1 1
By applying Holder’s inequality, we obtain
< Cllull sl Voll 2@ llwl[pa@) + llull s IVwll@llvllivg . (5.15)

By using the second Ladyzenskaya inequality (4.0.1), we obtain

4C 1 3 1 3 4C 1 3 1 3
< —= || ][Vl [3[| Vol [lw][#[|[Vw[|F + —=[[ul[5][[Vul[5|[Vw|[|Jo]|7][Vo][5.
3v/3 3v/3
(5.16)
Finally, using Poincaré-Friedrichs inequality (4.0.2), we get
b (u, v, w) < M|Vull[|[Vol|[[Vw]|.
Proof of the second statement follows from
. 1 1
b (u, v, w)| = §|((u -V)v,w)| + |§((u -V)w,v)|. (5.17)
By applying Hélder’s inequality, we obtain
< COlul L@ [ Voll 2@ lwl| @) + [[ull s VWl 2@l o] La)- (5.18)

Next, by using the first statement in the Ladyzenskaya inequality (4.0.1), we obtain

1oL 1 1 1 1 1 1 1 1
< 25| [ul [V ul[2 [Vl |[Jw][2 [[Vw[[2 + 25 [u][2 [[Val 2 [[Vw][] ][ 2 [[ V][>
(5.19)

Finally, using Poincaré-Friedrichs inequality (4.0.2), we get
0" (u, v, w) < Mlful|z[[Vul]z [ Vo[l [Vw].

32



O

By using the skew symmetric form, the Galerkin finite element approximation can be

written as, find (up, pr) € (X4, @) such that,
(Opup, vp) + v(Vup, Vog) + b (up, up, vy) — (pn, V.op) = (f, vn), (5.20)

(V * Up, Qh) = 07

for (vp, qn) € (Xpn, Qp).

5.1 The Grad-div Stabilization

Although finite element discretization is a very efficient tool to numerically solve par-
tial differential equations, this formulation may lead some instabilities in the solution
of Navier-Stokes equations. In case of high Reynolds number, the flow becomes con-
vection dominated, and it becomes turbulent. Violation of inf-sup condition is another
reason for instability which causes oscillations especially in pressure field. We can
overcome this by automatically choosing appropriate FE spaces satisfying this condi-

tion.

While SUPG, PSGS and VMS are most popular stabilization methods to solve first
type of instability, this thesis concerns about another residual based stabilization
method, grad-div stabilization, that is first introduced in [33], works by adding an ex-
tra term to weak formulization accompanied with a penalty term v(V -u,, V- vy,), and
helps to control the effect of pressure on velocity error due to lack of conservation. In
[34], steady Stokes equations and in [35], steady Navier-Stokes equations are studied.
In [36], grad-div stabilized time-dependent Oseen problem with the fully discrete and
the continuous-in-time cases of backward Euler method, BDF2, and Crank—Nicolson
schemes are studied for small viscosity. In [37], a grad-div stabilized fully discrete
implicit Euler method is used to analyse inf-sup stable finite element discretizations
of the evolutionary Navier-Stokes equations. Choice of the grad-div parameter 7 is
an open problem; in [38, 39], it is studied that a choice of penalty parameter of O(1)
is a good choice, in general. In [40], the limit of the solutions of grad-div stabilized
Navier-Stokes equations with Taylor-Hood elements converges to solutions of Navier-
Stokes equations with Scott-Vogelius elements, and a good performance is reported

as the stabilization parameter v goes to co. This implies picking large parameter

33



values would not damage the solutions.

To obtain the grad-div stabilized finite element formulation, one adds the penalty term
Y(V - up, V - ;) to weak formulation (5.20)), then the weak formulization of grad-div
stabilized Navier-Stokes should be stated as: Find (up, py) € (X, Qp) such that,

(Opup, vp) + v(Vup, Vo) + b (up, up, vp) — (pry V- vn) +7(V - up, V - o)

+(V - un, qn) = (f,on)
(5.21)

for (vp, qn) € (X, Qn)

In this thesis, these equations are used to approximate to the solution of Navier-Stokes
equations to govern the blood flow phenomena. In our numerical experiments, we
compare the effect of the grad-div stabilization parameter into finite element approx-

imations of Navier-Stokes equations.
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CHAPTER 6

NUMERICAL ANALYSIS OF THE GRAD-DIV STABILIZED
NAVIER-STOKES EQUATIONS

In this chapter, we present a finite element approximation of time dependent Navier-
Stokes equations using backward Euler’s method. First, we present the stability anal-
ysis of the grad-div stabilized Navier-Stokes equations with fully discrete scheme
using backward Euler’s method, then discuss existence and uniqueness of the ap-
proximate solution. Then we present error analysis of the same scheme. Let us first

present the fully discretized Navier-Stokes equations with grad-div stabilization.

Let the time interval [0, 7] is discretized by 0 =ty < t; < ... <ty =T < ©

with At = ¢, —t,,_1, (ul, pI') € (X}, Qy) are approximations of the pressure and the

h

velocity. Given u,,

, we have the time discrete problem: find (u”_,, p/. ;) such that

h h

Upp1 — Uy h «/ h h h h
—_ = \V4 AV b V-
( At U ) + V( Upt1s vh) + (unJrl? Upi1s Uh) + (anrl? un) (61)

_<V ’ UZ+1> qh> =+ ’Y(V ' UZJFD % Uh) = (fn+17 Uh)

for all (v, ¢") € (X5, Qn).

For numerical analysis, we consider the equivalent formulation in V", We note that,

under inf-sup condition (5.13)), the following formulation
—UhH U h h h h h
(-2 = 20") + v(Vuy g, Vo) + 0" (up g, g, v) +9(V - up o, V- 0")

= (fn+17 Uh)
(6.2)

for all v* € V", and the formulation (6.1 in X" are equivalent. We note that, nu-

merical analysis of the grad-div stabilized Navier-Stokes equations has been studied
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extensively in [36, 37, 40]. We now review this analysis.

6.1 Stability Analysis

Lemma 6.1.1 (Stability of the Solutions) Let f € L*(0,T; H='(Q)) ,the scheme

is unconditionally stable, and for any h, k,~ > 0, it satisfies the following bound:
N-1

1 AL N 1
Sl ]2+ Z Vel a2+ 3 IV | < 2 P +—Z 1l

n=0
Proof: Suppose that u” and p” are approximations of velocity and pressure respec-
tively. In (6.2) let v, = ul’., and ¢" = p!' |, we get
(Uﬁﬂv UZH) (Ufu un+1) + Aty(vun-i-l’ Vun+1) + ALV - Un+1a V- Un+1)
= At(fn-i-lv un+1)'

Application of Cauchy-Schwarz inequality (4.0.3) and definition of norms gives
||uﬁ+1||2—|—Aty||VuZ+1||2—|—7At||v-uﬁ+1||2 < |At(fn+1=UZ+1)|+|(UZ>UZ+1)|‘ (6.3)

To bound right hand side, we use the definition of the dual norm (4.0.7) on Young’s
inequality (4.0.8)

1
(Frrrtnin) < F 1l Vel < o ILFI20+ HV nall”

Applying Cauchy Schwards inequality and Young’s inequality gives
1
(up, upr) < sllupll + 5 llub -
2 2
Substitute this last estimate in (6.3) we get the following inequality
1 1 vAt At
S a2 = S + Z Tl P 4 AT P < S

Summing over times steps from n = 0 to NV — 1, we obtain

1 24 VAL 2 -« 2 - 1 2 2
Sl —ZHV%HH ALY Vel < 5 llug +—Zan+1H

n=0 n=0

Corollary 6.1.1 Lemma implies that the approximate solution u is bounded by
data. Thus, the velocity solution exists and unique. For pressure, the inf-sup condition

implies that, the pressure solution exists and unique [41].
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6.2 Error Analysis

Along with the discrete inf-sup condition, we also assume the following approxima-

tions hold for our choice of the velocity-pressure spaces [42]
1nf} lu —wvp|| < ChF M ulpyr, u € H1(Q),
v €X
inf [lp— qnll < Ch* M ulosr,p € HFHQ), (6.4)
aneQ
inf IV (u— )| < Ch*|ulpsr, u € H Q).
veX

We also adopt the following discrete norms:

Ilollloe i= 33 1ol

1
ol = Atz lonlli) 7,

and regularity assumptions
u € L40,T; H(Q)Y) N L0, T; L*(2)) N L™=(0,T; L*()),
p € L*(0,T; H*(2)),
uy € L(0,T; L*(Q)).

Lemma 6.2.1 (Error analysis) Let (u, p) be solution of Navier-Stokes equations (5.11),

then the error e = u(t,) — ul of the scheme (6.2) satisfies the following bound:

N-—1
’7
llen !+ lents — eall + A152|!V6n+1||2+ ZHV entill?
n=0

< lleol* + Cw + MR ulll3 441 + CE* 7 (g + 11V ulll3o)

+CR* T (3 pgr + v A 1+ 2 LA, -0)

N-1

+AE Y CvH[pass — "1+ CRF2([[[ul[13 40)

n=0
N—-1
At)? - [in
T ”(/ 1Ol dt).
tn
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Proof:

Let us denote the true solution of Navier-Stokes equations u, 11 = u(t,.1) att =
t,n+1. Subtracting the true solution of Navier-Stokes equations at ¢t = ¢,,.1 from (6.2),

we obtain

UZH_UZ hy L g h b (uh h h
AL 0") + 0" (Uny1, Uny1, V") — (un+17un+17v )

+ V(v<un+1 n+1) V'U ) (pn+1 - qh7 % Uh) + ’Y(v : (Un+1 n+1) Vv )
= (fn—i-l: Uh)‘

(atun+1 -

(6.5)
Further, adding and subtracting terms gives
h h h h
Up g — Uy Uptl —Upn  Unpyl —Up Uy — Uy g
Orliy, —L,vh = (Oyuuy, + — — , U
(Dptins1 Al ) = (Orttny1 + AL AL N )
€ntl — €n Unp4+1 — Un p
=(—: + (O — ———,
(CBELE ) o (g — o)

Then, the equation (6.3 can be written as

En —€n * *
(%, ")+ U (U 1y Ung 1, ") — b5 (Ul ul 0" + (e, VO©)
t (6.6)

+ (V" poir — @) +9(V 041, V- 0") = (g1, 0") 4 7(un, v")

with the consistency error term

Up+1 — Un

T(unavh) = (atun—i-l - At ) h)'

Decomposing error as
en = (U — Uy) — (u —Un)=77n—¢ﬁ

where U, is approximation of u,, in V". Then, set v" = ¢!, | in , we obtain

nn n th *
(%a ¢n+1) ( +1At ) qbn—‘,—l) + b (un-i-la Unp41, ¢Z+1)

b*( Up 11, n+17 ¢n+1) + V(V(nn—s-l - ¢Z+1)a V¢Z+1) (pn+1 - q % ¢n+1)

- ’Y(V : (77n+1 - ¢n+1>7 V- ¢Z+1) + 7 (Un, ¢Z+1)-
(6.7)
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Using a® — ab = %

(Gny1 — O i) = (H¢ nell” + 1000 — onll* = llgnll®).

Also using Cauchy-Schwarz inequality and definition of norms gives

g
5z (18nal® + 10nes = @l = 1001%) + vIVOLAl® + IV - Sl

= V(Vnn-i—lv V¢Z+1) + b*(un+17 Unp+1, ¢Z+1) b*( n+17 n+17 ¢n+l)

+ (V : Uhapn-i-l - qh) - 7(V *Mn+1, % ¢Z+1) - (nn-i-l — N, ¢n+1) + T(um ¢Z+1)'
(6.8)

it follows that

For the nonlinear terms, we add and subtract terms as:

b (Uns1, Upg1, v ) b*( Ut 15 24—17 h)

= 0" (Un 41, Unt1,V ) + 6" (u n+17u7"b+17 h) - b*(uz-f—lv Un+1, Uh) - b*(UZH,UZH,vh)
= b*(uph Upy1s 41 — ¢Z+1a ¢n+1) + 0" (g1 — ¢Z+1> Un+1, ¢Z+1)
= b*< n+1a77n+1 ¢n+1) b*( n+17¢ +1>¢n+1)

+ 0" (Nnt15 Unt1, ¢n+1) b*( 411 Unt1; ¢Z+1)~
(6.9

Using skew symmetry property b*(u,,, ¢}, ¢h1) = 0, and substituting this in

(6.9) gives
1 gl
oazlon mllP A llon = o1 = 110hl1?) + vV P + SV on
= V(Vnn+1, V¢Z+1) + (V : Uh>pn+1 - qh) - (V N1, Vo ¢Z+1)

b (nn-&-l? un+1> ¢n+1) + b*( n+1» un+17 d)’/};-i-l) b*( n+17 77n+17 ¢n+1)

(6.10)

— (Mng1 = Mo ¢n+l) + 7 (Un, ¢Z+1)'
We now bound all of the terms in the right hand side of (6.10). For v(V,41, V! ),

using Cauchy-Schwarz and Young’s inequalities gives

YV, VOh1) < VIV [Vl | < IV 2+ Crl Va2

< 12
For the term (p,4+1 — ¢", V - ¢/'.,), using Cauchy-Schwarz inequality and Lemma
4.0.3)

(Prs1—4", V0" 1) < Cllpnsi—d" IV || < 12||V¢ P +Cr  ppa — ")

Similarly for the term y(V - 7,1, V - ¢" +1), using Cauchy-Schwarz inequality and
Lemma (4.0.3)

YV i1, Vo ) < IIV S ll® + OV |1®
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To bound nonlinear terms, we first use Lemma (5.0.2) and Young’s inequalities

b*<77n+17un+17¢n+1) < Cllsa 2 [V |12 [ Vit | [V

) " ) (6.11)
< ZIVEh I + O s s |Vt
Similarly we get
X 1 1
0 (st s nga) < Clldn 121Vl I Vunsa [V | 6.12)
1 3 )
< Clléna 121V ll2 Vel
Using (4.0.8), picking p = 4 and ¢ = %, we get
v _
< SIVenall® + Crllon P Vanall”
For the last nonlinear term, again using (5.0.2) and Young’s inequality yields
D (U1, Tt Sr) < Cllulp 2 [V 12V [ [ V0| 6.13)

14
< SIVenall? + Cv Hlun Ve [V

Finally for the term (7),, .1 — 7, ¢! ), using Cauchy-Schwarz, Young’s and Poincaré-

Friedrichs inequalities gives,
_ h < _ h
(g1 = s D) < Mnr = Ml
-1 2 ¥ hoop2
S Cv ||77n+1 - 7771” + E||v¢n+1|| )
< OV ([nsal® + lImall*) + —IIVcb 4

Combining all the estimates, we obtain the following inequality

1 2 h2 B2 v nop2 hooq12
Q—At(llcb lP ek — o — (ol )+§IIV¢R+1II +§IIV-¢n+1II

< CWH NIVl + Cv  pnsr — 17 + Cv 0l Vs [ Vitnga ||
+ Cv | oh A PN Vunga |+ Cv gl 1Vl [V |

+ 10 |12+ Nnall® + 7 (un, @ 4y),
(6.14)
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and summing fromn = 0to N — 1, we obtain

N-1
1 v Aty
Sk al® + ZH% OLIP+5At Y Ve + = ZHV O
n=0

N-1 N-1
1
§|l¢o||2 +AtZCV Va0 I +Atz Cv + CY)|[ Vi |
N-1 N-1
+ ALY CU MV [ Vit |+ A~ Co [k 1V [V 4 |
n=0 n=0
N-1 N—-1 N-1
+ ALY Cv M pnr = @17+ A (g 1+ ) + A 7 (un, ¢y
n=0 n=0

n=0

(6.15)
We continue the proof by estimating right hand side of the inequality. Using assump-
tion (6.4)),

N-1

ALY (CW + M)Vl < AUC +7) 3 1932

6.16
< AtC(v +7) Z h%lun!iﬂ ( )

n=0
< Cw + A ful 3 441

‘We also have the term

N-1

ALY O eIVl Vi
n=0
N-1
< Ch%ﬂul{m > |un+1r2uwmu2}
n=0

Then using the the Cauchy-Schwarz and Young’s inequalities,
N N
1 1
< CRFYTHAEY " [ua )2 (ALY [V, [*)2
n=0 n=0

< R (ullla e + 11Vulllio).

For the other term, using the estimate for ||u”|| in stability Lemma 6.1.1,

N-1 N-1

ALY v up IVl Va1 < ACY Y [Vl Vi
n=0 n=0
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and using assumption (6.4), we get

N-1
< Cr*tv! {At Z |un+1’i+1 HVUZHH }

n=0

Using Cauchy-Schwarz and Young’s inequalities, we obtain the following bounds

N—-1 N—-1
< Ch*u (ALY b)) T (ALY [Vl %)z
n=0 n=0

N
< CR*v ([fulllf s + A8 [Vl ]?)
n=0
< P (lulllg gy + v W12+ v ).
and using Young’s inequality, we get the following bound,

N-1

< OB (ulll3 ey + A Y N5 l)

n=0

In addition, for the next term we use the assumption (6.4) and obtain

N-1 N-1
ALY (s |+ IalD il < BFFAEY - (luna i + funDisa 6l
n=0 n=0
N-1
ALY~ (msll® + 7all?) < CR*F2([|[ul 13 411)-
n=0

Finally, to further investigate the consistency error, using fundamental theorem of

calculus and integration by parts, one has

tn41
= s = MO+ [ (¢ )0
tn

Unp, — Un 1 bnt1
atunJrl - HT == E/ (t - tn)aﬁu dt.
tn

For the consistency error, we first use Cauchy-Schwarz and Young’s inequality along
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with Taylor remainder term.

Upt1 — Un4+1 —

Twmﬁﬂwﬂ@%ﬂ——ﬂzfﬂ 1) < 10t = = [ ¢
U+1

S—H (] —H¢ nell®

tn+1
< <||l— t—tnaudt2+—¢2 2
JALL (t — ) (@) ]+ 5 16%,
1 tnt1 ) N tnt1 - 1 L )
t—t,)"dt)?2 dt)z —
sl [ a7 awant s St

1 o 2 it Loow g2
— t—t,)"dt // Opudtdz) + —||o,
st nran[ [ autdn) + Sk

At [t 1 At [ [t
< S [owutsan + Jietl < globalt+ 5 ([ 10wl )
6 " Ji, 0 2 6 b
(6.17)

IN

IN

Substituting all the estimates, we obtain

N—-1
1 Aty
§II¢>’X4H2 ZII%H nll + AtZHV¢n+1||2+ ZHV S ll”

N—-1

1

§|I¢o|!2+AtZCV Ve | l” + Cw + )R [ull[3 441
n=0

+ CR*w ([lullli gy + 1Vull30)
N-1

+ CR* (Nl + v (1P + v A -0) + A CvHipn — ¢
n=0
N— 1 N-1

+Ch2’”2\HUHIzk+1+AtZ o0l + >

At 2 tn+1
( 6) (/ H(?ttqudt).
n=0 n

(6.18)

Combining the right hand side,

1 1 N-—1 U N-—1 At'y N-—1
SOk + 5 D7 0 = ol + 586D Ikl + 52 IV - gl
n=0 n=0 n=0

N-1

1

§|I¢0H2+NZ (Cv= [V ||* + )II¢Z+1II2+C(V+7)h2’“HIUIH§,k+1
n=0

+ CR* = (ullli s + 1Vull30)
N-1

+ CH*u ([[Jull e + v 1P+ 275 20) + A Y CvHipa — ")

n=0
tn+1
(/ |Buet2 dt) .
tTL
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Now let
K

K,
Gr=exp() 117
n=0 n

and
1
5)

Assuming AtK,, < 1, applying discrete Gronwall lemma (4.0.4), we obtain

Ky = (7 [Vuna | +

N-1

1 v Aty

Sllehl® + ZH% Ol + Aty Vel l* + =~ ZHV D
n=0

—_

_||¢0||2 +C(v + 7)h2k|HU|H2 kg1 T Ch* 'y _1(|||U|||4 kg1 T |||VU|||4 0)
N-1

+ CH*v ([Julli g + v U 1P+ w75 20) + Ay CvHlpa — "I

n=0
N— 1
Ch2k+2 ft1 a 2dt
+ (Iull13 1) +Z 6 | :
n=0 tn

[\]

(6.20)

Using triangle inequality,

leall = l1mn = @nll < lImall + lIgn]

yields the stated result.

Remark 6.2.1 The error analysis states that, as h, At — 0 approximate solutions u"

converges to true solution.
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CHAPTER 7

NUMERICAL EXPERIMENTS

In this chapter, we introduce the application of Navier-Stokes equations with grad-div
stabilization to investigate its effect on flow patterns on different types of pathologies

of cardiovascular system, such as different shapes of stenosis and aneurysm.

We first apply the steady Navier-Stokes equations to investigate the effect of grad-
div term in Section [7.1] and verify behavior of blood flow phenomena. We then
apply grad-div stabilized time dependent Navier-Stokes equations in Section 7.2.
Finally, we introduce periodic boundary conditions on the time dependent Navier-

Stokes equations to investigate the pulsatile nature of the blood in Section 7.3.

In this thesis, all the simulations are made using Freefem++ [43]. In the experiments;

e Blood density(p) assumed to be constant with 1060%
e Blood viscosity(u) assumed to be constant with 0.0035m Pa - s.
e Therefore blood assumed to be a Newtonian fluid.
e Blood temperature assumed to be constant, body temperature.
e Blood assumed to be an incompressible fluid.
e No-slip boundary condition is imposed at artery walls.
e The inlet velocity is taken

Rep
c=—-

pl

where [ is the lumen diameter and Re is Reynolds number and is taken as a

control parameter.
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e Inf-sup stable Taylor-Hood (P2, P1) elements are used for all the discretiza-
tions. Grad-div stabilized backward Euler time scheme is applied for finite

element discretization of time dependent Navier-Stokes equations.

7.1 Steady Navier-Stokes Equations With Grad-div Stabilization

For problems in subsections to 7.1.5, the steady Navier-Stokes equations are

given as;

—vAu+ (u-Vu+Vp=f, in
V-u=0 in
(7.1)

In [44], stenosis, shifted stenosis and narrow stenosis are studied with velocity mag-
nitudes and pressure profiles. For the problems from Section to 7.1.5, we have
used the similar geometry with different parameters, therefore we investigate more
complex domains and more advanced problems, together with wall shear stress val-

ues.

For the problems in Sections 7.1.2 and 7.1.3 we introduced stenosis geome-
tries. In this geometries, the expectation is to observe increased velocity magnitudes
and decreased pressure, together with increased wall shear stress values around the
stenosis. For the problems in Sections 7.1.4 and 7.1.5, we introduce aneurysm ge-
ometries. The expectation is to observe smaller velocity magnitudes and wall shear

stress values, together with increased pressure values around the aneurysm dilation.

7.1.1 Eccentric Stenosis

In [44], concentric stenosis problem is investigated. We have changed the geometry
with a one sided geometry to investigate its effect on both the straight wall and the

constrained wall.
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Figure 7.1: Velocity magnitudes for v = 1 for different values of Reynolds number. In this figure,
x axis indicates vessel lenght (m), y axis lumen diameter (m), and the colorbar indicates velocity

magnitudes (m/s).
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Figure 7.2: Pressure profiles for v = 1 for different values of Reynolds number. In this figure, x

axis indicates vessel lenght (m), y axis lumen diameter (1m), and the colorbar indicates pressure values

(Pa).
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Figure 7.3: WSS values for v = 1 for different values of Reynolds number. In this figure, x axis

indicates vessel length (m) and y axis indicates WSS values (Pa).

Table 7.1: Maximum and minimum WSS (Pa) values for Figure ﬁ

Re =100 Re =200 Re =400

Upper Wall
Maximum WSS (Pa)  1.3355 3.3093 8.4466
Minimum WSS (Pa)  0.1758 0.0312 0.1041

bottom wall
Maximum WSS (Pa)  2.6666 6.6767 16.9900
Minimum WSS (Pa) 0.0047 0.0042 0.0062
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e The tests are conducted for Re = 100,200,400, 600,1000 and 1200. For
Reynolds number more than 400, we cannot get meaningful results and observe
lack of convergence of the results. Sudden expansion of stenosis is known to
be a hard geometry to solve, and lack of convergence usually occur. Therefore

a suitable stabilization is needed.

From Figure 7.11, and it is observed that, maximum flow velocity
increases abruptly just before and around the stenosis, this increased part of the

velocity field is sometimes called a flow jet.

The velocity magnitude increases with increasing Reynolds number, and back
flow occurs close to the wall after the stenosis. In addition to that, a recir-
culation region occurs right after the constriction. With increasing Reynolds
number, the flow jet increases and its angle with longitudinal axis decreases,
therefore the recirculation region expands. It is observed in Figure that,
Jjust after the recirculation, there exists a stagnant point where WSS is 0. This

point corresponds to the point there the recirculation ends.

Redevelopment of the flow should be described as restoring of the flow to its
initial state. From velocity magnitude and WSS plots we can see that the rede-
velopment length is the smallest for Re = 100, and it increases with increasing

Reynolds number.

In Figure [7.24] [7.2b] and [7.2¢] it is observed that the amplitude of the pres-

sure field increases remarkably with increasing Reynolds number. Pressure
decreases significantly at narrow region due to the sudden increase in the ve-
locity magnitude. The decrease gets higher with increasing Reynolds Number,
and focal (focus center) points occur in the pressure field due to pressure drop.
It is stated in [44] that this pressure drop would lead the stenosis tempted to get

€ven narrower.

The magnitudes of pressure drops are not linearly dependent on Reynolds num-
ber and the inlet velocity. Before stenosis, the pressure is significantly high.

After the abrupt drop at the constriction, it increases slowly through the outlet.

We can see from Figure [7.3a] and [7.3b] and Table [7.1] that, WSS increases with

increasing Reynolds number. At constriction regions it demonstrates an in-
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crease since the constriction reroutes the flow through the upper wall. This
leads an increased friction, and WSS values reaches up to 8.4466 Pa for Re =

400 at the upper wall.

e As for the bottom wall with stenosis, the WSS shows a first increase due to
the first contact of the flow. After that it shows an enormous increase at the
constriction, reaches up to 16.99 Pa for Re = 400, decreases to around zero
through the stagnant point. After the stagnant point, it gets stabilized to its

natural value.
e With increasing Reynolds number, WSS values increases almost linearly.

e For the upper wall, the stenosis leads the flow through the upper wall and the

friction at the upper wall in that region increases, and WSS also increases.

e The results are consistent with [44].

7.1.1.1 Effect of Stabilization

For Re = 600 , we are unable to get meaningful results without stabilization, due
to the lack of convergence of the results caused by the stenosis geometry. But with

~v = 10000, the methods gives meaningful results.

2 T
by %
A
i i

H
2 2 L
0 002 0004 006 008 001 0012 00M 00 0018 002 0 002 0004 006 008 001 002  00M 001 0018 002

(a) Velocity magnitude for v = 10000 and Re = 600 (b) Pressure profile for vy = 10000 and Re = 600

Figure 7.4: v = 10000 and Re = 600. The axis x indicates vessel length (m), y axis lumen diameter

(m), the colorbar in (a) indicates velocity magnitudes (m/s), and (b) indicates pressure values (Pa).

Using the results, with increasing Reynolds number we can again validate that,
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Figure 7.5: WSS values for v = 10000 and Re = 600. In this figure, x axis indicates vessel length

(m) and y axis indicates WSS values (Pa).

Table 7.2: Maximum and minimum WSS values (Pa) for Figure

Re = 600

upper wall
maximum WSS (Pa) 14.2500
minimum WSS (Pa) 0.0272

bottom wall
maximum WSS (Pa) 26.0317
minimum WSS (Pa) 0.0286

e From Figure we can see that the velocity magnitude increases.

e The flow jet region increases and its angle with longitudinal axis decreases,

therefore the recirculation region expands.
e Recirculation region and redevelopment length increases.

e From Figure we can see that the pressure field amplitude increases re-

markably. Pressure drops are observed again, just as expected.

e From Figure[7.5|and Table [7.2] we can see that WSS increases around the con-
striction at the upper wall, and reaches up to 14.25 Pa, and at the bottom wall

it reaches up to 26.0317 Pa.
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7.1.2 Shifted Stenosis

Since a symmetric stenosis is not always the case, a small shift between two con-
strictions are considered to show the effect of asymmetry in a stenosis problem in
[44]. We have investigated a more remarkable shift, and introduced a more detailed

investigation on velocity magnitudes and pressure profiles, together with WSS values.

0 0002 0004 0.006 0.008 001 0012 0.014 0.016 0018 0.02 ’ 0 0002 0.004 0.006 0.008 001 0012 0014 0.016 0018 0.02

(a) Re = 100 (b) Re = 200

: 0 0002 0004 0.006 0.008 001 0012 0.014 0.016 0018 0.02 ’ 0 02 0004 0.006 0.008 001 0012 0.014 0.016 0.018 0.02

(c) Re =400 (d) Re = 600

Figure 7.6: Velocity magnitudes for v = 1 for different values of Reynolds number. In this figure,

x axis indicates vessel lenght (m), y axis lumen diameter (m), and the colorbar indicates velocity

magnitudes (m/s).
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(c) Pressure values for v = 1 and Re = 400 (d) Re = 600

Figure 7.7: Pressure profiles for v = 1 for different values of Reynolds number. In this figure, x
axis indicates vessel lenght (m), y axis lumen diameter (1m), and the colorbar indicates pressure values

(Pa).

—Re=100
—Re =200
12r ~=Re=400| -

WSS values.

0 T L L T T
0 0002 0.004 0006 0.008 001 0012 0014 0016 0018 002 0 0002 0004 0006 0.008 001 0012 0014 0016 0018 002
Vessel Length Vessel Length

(a) Upper Wall (b) Bottom Wall

Figure 7.8: WSS values for v = 1 for different values of Reynolds number. In this figure, x axis

indicates vessel length (m) and y axis indicates WSS values (Pa).
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Table 7.3: Maximum and minimum WSS values (Pa) for Figure|7.8

Re =100 Re =200 Re =400

upper wall
maximum WSS (Pa)  1.5164 3.6773 9.2063
minimum WSS (Pa) 0.0066 0.0051 0.0576

bottom wall
maximum WSS (Pa)  1.8642 4.8646 12.8926
minimum WSS (Pa) 0.0039 0 0.0161

The tests are conducted for Re = 100, 200, 400, 600, 1000 and 1200.

From Figure [7.64 [7.6b] and [7.6d], it is observed that flow jet follows more com-

plex path. Right after the constriction in the upper wall, a recirculation (vortex)

occurs, this can also be validated from the WSS plot in Figure

Right after the constriction in the bottom wall, an apparent recirculation occurs

for Re > 200. This can also be observed from the stagnant point on WSS plot

in Figure

Right after the constriction in the upper wall, an apparent recirculation occurs

for all the cases. This can also be observed from the stagnant point on WSS

plot on Figure

Similar with problem in Section 7.1.1, velocity magnitude and length of the
flow jet increase, angle of the jet flow with longitudinal axis decrease, recir-
culation region in both walls expands and redevelopment length increases with

increasing Reynolds number.

From Figure [7.74 [7.7b| and [7.7c| we can again see that the pressure field am-

plitude increases remarkably with increasing Reynolds number. Pressure de-
creases significantly at narrow region, and the decrease gets higher with in-
creasing Reynolds Number. A higher drop occurs in the second stenosis, and
focal pressure points are observed in the pressure map on the both stenosis due

to pressure drops. The magnitudes of pressure drops seem not to be linearly
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dependent on inlet flow and the Reynolds number.

e Similar with first problem, pressure is significantly high before both of the

stenosis constrictions.

o WSS values increases linearly with increasing Reynolds number. It is given in
Table [7.3| that, it reaches up to 9.2063 Pa at the upper wall, and 12.8926 Pa at
the bottom wall for Re = 400.

7.1.3 Different Rates Of Stenosis

Effect of rate of stenosis is studied in [44], as well as [45] and [46]. In [45], the
rate of stenosis studied with different hemodynamic features such as WSS, time av-
eraged wall shear stress gradient (TAWSSG) and oscillatory shear index (OSI), with
assumption that blood is non-Newtonian. In [46], the rate of stenosis is studied in
curved vessels with steady and pulsatile flow with a constant viscosity using WSS
distributions along the vessel. In [44], velocity and pressure profiles for limited num-
ber of different rates are studied with steady Navier-Stokes equations with a constant
viscosity. In this problem we investigate a stenosis of rates of %25, %50 and %75
with grad-div stabilized steady Navier-Stokes equations, using the geometry from

[44].
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Figure 7.9: Velocity magnitudes for v = 1 and Re = 200 for different rates of stenosis. In this figure,

x axis indicates vessel lenght (m), y axis lumen diameter (1), and the colorbar in a, b and ¢ indicates

velocity magnitudes (m/s), d, e and f indicates pressure values (Pa).
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Figure 7.10: WSS values for v = 1 and Re = 200 for different rates of stenosis

Table 7.4: Maximum and minimum WSS values (Pa) for Figure[7.10

%25 Stenosis %50 Stenosis %75 Stenosis
upper wall
maximum WSS (Pa) 2.0451 5.2211 18.0553
minimum WSS (Pa) 0.1490 0.0030 -0.0330
bottom wall
maximum WSS (Pa) 2.0039 5.5439 17.8878
minimum WSS (Pa) 0.1532 0.0038 0.1006
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e Itis observed from Figure[7.9a, [7.9b|and[7.9¢|that, velocity magnitude increases

with increased rate of stenosis.

e Maximum velocity (flow jet) becomes apparent for stenosis rate of %50 and
more, and gets higher in magnitude as stenosis gets more severe. In case of

higher stenosis rate the length of the jet gets smaller.

e It is observed from Figure [7.9d} [7.9¢| and [7.91] that, pressure before the stenosis

increases enormously with increasing rate of stenosis. With increased veloc-
ity magnitude at constriction, pressure drops significantly, and focal pressure

points occur in both sides.

e It is observed from Figure that, WSS increases at the constriction
region significantly. The maximum WSS increases as the rate of stenosis in-
creases. In Table maximum WSS value of 18.0553 Pa is observed for %75

rate of stenosis.

7.1.3.1 Effect of Stabilization

Without stabilization, we cannot obtain meaningful numerical results for a stenosis
rate of more than %75. In the figures, we can see the velocity, pressure and WSS

distribution for a rate of %85 stenosis.

Table 7.5: Maximum and minimum WSS values (Pa) of the case Re = 600 for

Figure

upper wall
maximum WSS (Pa) 46.4068
minimum WSS (Pa) -0.0330

bottom wall
maximum WSS (Pa) 42.2058
minimum WSS (Pa) 0.0177

While we can make same comments for increasing rate of stenosis, here we can see

an asymmetry in the velocity, pressure and WSS distributions. If we look at first
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Figure 7.11: Effect of stabilization for %85 rate of stenosis.

half length of the vessel, the asymmetry is not observable, but for the remaining half,
asymmetry is visible and expands through the outlet. This is probably caused by the
contribution of the grad-div term and propagates as the length increases. Other than

that, one can observe that;

e From Figure[7.1Ta] we can see that the method does not give meaningful results

without any stabilization.

e From Figure we can see that the velocity magnitude increases with in-

creasing stenosis severity.

e Maximum velocity (flow jet) gets higher for higher stenosis severities, but the

length of the jet gets smaller for higher stenosis severities.

e From Figure we can see that the pressure before the stenosis increases

dramatically with increasing rate of stenosis.
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7.1.4 Saccular Aneurysm

In [47], a fusiform aneurysm is studied with Navier-Stokes equations with both New-
tonian and non-Newtonian behavior of the blood. To investigate the effect of aneurysm
on flow patterns, different hemodynamic features such as WSS, time averaged wall
shear stress gradient (TAWSSG) and oscillatory shear index (OSI) are considered. In
[48], WSS and velocity fields are used to investigate the flow patterns on a fusiform
aneurysm, assuming the blood is Newtonian. For problem 4 and 5, we have inspired
from this two studies, and obtained the geometry with some variations from the ge-

ometry given in [44].

Table 7.6: Maximum and minimum WSS values (Pa) for Figure[7.14

Re =100 Re =200 Re=400 Re=600 Re=1000 Re= 1200

Upper Wall
Maximum WSS (Pa)  0.3019 0.6082 1.2184 1.8269 3.0388 3.6437
Minimum WSS (Pa)  0.2461 0.5005 1.0205 1.5484 2.6170 3.1553

Bottom Wall
Maximum WSS (Pa)  0.4379 0.9072 1.8477 2.7746 4.6341 5.5643
Minimum WSS (Pa) 0.0013 0.0048 0.0099 0.0270 0.0622 0.0706
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Figure 7.12: Velocity magnitudes for v = 1 for different values of Reynolds number. In this figure,
x axis indicates vessel lenght (m), y axis lumen diameter (m), and the colorbar indicates velocity

magnitudes (m/s).
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Figure 7.13: Pressure profiles for v = 1 for different values of Reynolds number. In this figure, x

axis indicates vessel lenght (m), y axis lumen diameter (m), and the colorbar indicates pressure values

(Pa).
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Figure 7.14: Wall shear stress values for v = 1 for different values of Re. In this figure, x axis

indicates vessel length (m) and y axis indicates WSS values (Pa).

e The tests are conducted for Re = 100,200,400, 600,1000 and 1200. This
geometry is less complex than the stenosis type, therefore we have been able to

reach Re = 1200 in the experiments.

e In Figure[7.12a]to[7.12] one can see that the velocity magnitude increases with

increasing Reynolds number.

e Recirculation region occurs in the aneurysm region, this can be understood

from WSS plot in Figure[7.14b]

e In Figure[7.13a)to[7.131] one can see that, the pressure field amplitude increases
remarkably with increasing Reynolds number. Pressure is significantly higher

at expanded region, and it gets higher with increasing Reynolds Number.

e In Figure and Table one can see that WSS at upper wall de-

creased with the effect of aneurysm dilation. This means a disturbance in the

endothelial line-up and will result with a cardiovascular dysfunction [49].

e Two focal pressure centers in the pressure field occurs at the beginning and end

of the aneurysm.

e With increasing Reynolds number, the focal pressure centers at the end of

aneurysm becomes more visible.

e For the bottom wall Figure[7.14b]indicates that, WSS is decreased at the aneurysm

region. The friction and WSS shows a fast increase, then goes to stable state.
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7.1.5 Asymmetric Fusiform Aneurysm

This is a fusiform aneurysm with different lengths of dilation along both sides, and
similar studies were presented in the introduction of Section 7.1.4. In this study, we
aimed to investigate the flow patterns in a fusiform aneurysm, as well as the effect of

asymmetric dilation on flow patterns. This geometry is obtained with some variations

on the geometry from [44], and is not studied in this paper.
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Figure 7.15: Velocity magnitudes for v = 1 for different values of Reynolds number. In this figure,

x axis indicates vessel lenght (m), y axis lumen diameter (m), and the colorbar indicates velocity

magnitudes (m/s).
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Figure 7.17: WSS values for v = 1 for different values of Reynolds number. In this figure, x axis

indicates vessel length (m) and y axis indicates WSS values (Pa).

Table 7.7: Maximum and minimum WSS values (Pa) for Figure(7.17

Re =100 Re=200 Re=400 Re=0600 Re=1000 Re= 1200

Upper Wall
Maximum WSS (Pa)  0.3739 0.7741 1.5980 24332 4.1150 4.9564
Minimum WSS (Pa)  0.1198 0.2459 0.5017 0.7577 1.2687 1.5146

bottom wall
Maximum WSS (Pa)  0.4172 0.8661 1.7721 2.6758 4.4892 5.4082
Minimum WSS (Pa) 0.0018 0.0052 0.0096 0.0091 0.0073 0.0067

e From Figure to [7.15f] we can see that the velocity magnitude increases

with increasing Reynolds number.

e Weak recirculation regions occurs in the aneurysm region, this can be validated

from Figures [7.17al and [7.170]

e The flow goes to redevelopment state very fast.

e From Figure [7.162to we observe that the amplitude of the pressure field

increases remarkably with increasing Reynolds number.

e Pressure increases significantly at expanded regions, and the decrease gets higher
with increasing Reynolds Number. The pressure at the more expanded region

is slightly higher than the upper aneurysm.
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e Four focal points in the pressure field occurs at the beginning and end of both

of the aneurysm, and it gets visible with increasing Reynolds number.

e From Figure and[7.7] we can see that the bottom line is exposed to
higher WSS.

e WSS values increases linearly with increasing Reynolds number.

7.2 Time-Dependent Navier Stokes Equations

In this section, time dependent Navier-Stokes equations

u+ (u-Vyu—vAu+Vp=f, in (0,7] x
Vou=0 in (0,7]xQ
u(z,0) =up(x) for xzef
u=0 on Twau (7.2)
n-cg=0 on Dy

u=c on I}y,

were implemented using grad-div stabilized Backward Euler fully discrete scheme.
In the remaining sections, applications of time dependent Navier-Stokes equations
are introduced. In Section 7.2.1, we introduce an asymmetric branching artery. The
expection in this problem is to observe a drop in wall shear stress values through the
branch, and a stabilization through the outlet. In Section 7.3.1, a branching geometry
together with an aneurysm (Cerebral Aneurysm) is introduced. The expectation here
is to observe lower velocity magnitudes and higher pressure values at the aneurysm.
Since periodic boundary conditions are used here, another expectation is to observe
velocity magnitudes to be maximum at the systolic phase, and minimum at the dias-
tolic phase. Finally in Section 7.3.2, we introduce a symmetric branching artery. The
expectation in this problem is to observe smaller wall shear stress values around the

branching region and a stabilization through the outlet. Again, due to the periodic
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boundary conditions, observing maximum velocity magnitudes at the systolic phase,

and minimum at the diastolic phase is another expectation in this problem.

7.2.1 Asymmetric Branching Artery

Arteries spread through the whole body with branches and this system is some-
times called as arterial tree. Even though plaque formation has major causes such
as obesity and malnutrition, the plaque mostly forms in particular places in the artery.
Atherosclerosis occurs in branching regions of the artery, in general [50]. Therefore,
investigation of branches is an important problem of cardiovascular modelling. Ge-
ometry of branching arteries should be classified as asymmetric branches, such as in
[51] and [52], and symmetric branches such as in [4]. In this geometry, we have in-
spired from [51], by picking 24 mm of main vessel diameter and 14 mm of branching
vessel diameter and a 45 degree angle with longitudinal axis. We have implemented

the geometry by ourselves and the codes are given at the end of the thesis.
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(a) Velocity magnitude for vy = 1,Re = 820 (b) Pressure field for v = 1,Re = 820

Figure 7.18: Velocity and pressure values for v = 1. In this figure, x axis indicates vessel lenght
(m), y axis lumen diameter (m), the colorbar « indicates velocity magnitudes (1 /s), and the colorbar

b indicates pressure values (Pa).
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Figure 7.19: WSS values for Re = 820 and v =1

e Observing from Figure[7.184] it takes time for flow to develop due to the inlet
velocity profile. After it is developed, the regions close to the boundary forms

a boundary layer to adapt the no slip boundary condition.

e After the branch, the maximum velocity at the main vessel decreases through

the outlet, since some part of the flow goes through the branching vessel.
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e Observing from Figure we can say that the pressure decreases through
the outlet.

e Observing from Figure we can see that the WSS is decreased to a sta-
bilized level until the flow is fully developed. After development, it becomes

stable through the branching region.

e Observing from Figure [7.19b, the flow first rerouted through the wall C, and
the stabilization length of B is higher than of C.

e Observing from Figure after the flow routes to the intersection of C and
D, it gets decreased and stabilized through the outlet.

e Observing from Figure[7.19d, WSS increases significantly and stabilizes through
the outlet after the branch at wall D.

e Observing from Figure we can see that the WSS is decreased to a sta-
bilized level until the flow fully developed. At the branching region it shows
a remarkable decrease and stabilized after the branching region. This decrease
around the branching region causes continually low WSS values, therefore this

part of the branch is susceptible to plaque formation.

7.3 Pulsating Flow

To simulate more realistic flow, we have used the boundary conditions from the study

(1],

n-c=0 on Dy
u = Asin*(wt) on Ty,

which is a time dependent periodic boundary condition, a period represents one car-
diac cycle. For the following experiments, we have introduced four different subim-
ages for velocity, pressure and WSS profiles, each representing different phases of

cardiac cycle each representing i cardiac cycle ahead of the previous.
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7.3.1 Cerebral Aneurysm

This geometry is given in [44] and no comments were introduced on the results. This

is a saccular aneurysm, occured in cerebral artery in the brain, therefore called as

cerebral aneurysm.
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Figure 7.20: Velocity magnitudes for v = 1 for different phases of cardiac cycle. In this figure, x and

y axes indicates vessel lenght (m), and the colorbar indicates velocity magnitudes (m/s).
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Figure 7.21: Pressure profiles for v = 1 for different phases of cardiac cycle. In this figure, x and y

axes indicates vessel lenght (m), and the colorbar indicates pressure values (Pa).

e Figure [7.20c| and [7.21¢| represent the beginning of the systole. In that phase,

maximum velocity at the inlet occurs due to the contraction of the ventricles.
Figure[7.20aland Figure[7.2Ic|represent the beginning of diastole. In this phase,

minimum velocity at the inlet occurs since ventricles are relaxed.
e One can observe from Figure [7.20a] that, backflow occurs at the end of systole.

e One can observe from Figure velocity field and maximum velocity is
much higher at the beginning of the systole due to the contraction of the ventri-

cles, and high flow rate is apparent through the inlet.

e One can observe from [7.20a] that, vortex occurs in the aneurysm region at the

end of systole.

73



e The pressure at the cerebral aneurysm is higher then its surrounding.

e One can observe from Figure that, once the velocity becomes zero, back
flow and vortex occurs due to the energy in the system. As the flow contin-

ues through the systolic phase, the energy is distributed inside, and this yields

regular flows, seen in Figure[7.20b] [7.20c| and [7.20d]

7.3.2 Symmetric Branching Artery

In Section [7.2.1], we have introduced an asymmetric branching artery. Symmetric
branches, as well as asymmetric ones, are also concern of literature, e.g. [4]. In this
problem we introduce a symmetric branch of vessels, introduce their velocity magni-
tudes and pressure values, together with WSS values, to investigate their patterns in

different phases of cardiac cycle.
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Figure 7.22: Velocity Profiles for v = 1 for different phases of cardiac cycle. In this figure, x axis

indicates vessel lenght (m), y axis lumen diameter (m), and the colorbar indicates velocity magnitudes

(m/s).
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Figure 7.24: The wall labels of the geometry to indicate where the WSS values belong to in Figure
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Figure 7.22c and 7.23c represent the beginning of the systole. In that phase,
maximum velocity at the inlet occurs due to the contraction of the ventricles.
Figure 7.22a and Figure 7.23c represent the beginning of diastole. In this phase,

minimum velocity at the inlet occurs since ventricles are relaxed.

One can observe from Figure 7.22a that, once the velocity becomes zero, back
flow and vortex occurs due to the energy in the system (also see stagnant points
in 7.25c and 7.25d). As the flow continues through the systolic phase, the
energy is distributed inside, and this yields regular flows, seen in Figure 7.22b,
7.22c and 7.22d. In Figure 7.22c, high flow rate is apparent through the inlet at
the systolic phase.

Observing from Figure 7.22b, 7.22¢ and 7.22d, it takes time for flow to develop
due to the inlet velocity profile. After it is developed, the regions close to the

boundary forms a boundary layer to adapt the no slip boundary condition.

After the branch, the maximum velocity at branching vessels are more than the

main vessel due to the less diameter of the lumen.

Observing from Figure 7.25a and 7.25f, we can see that the WSS is decreased
to a stabilized level until the flow is fully developed. After development, it

becomes stable through the branching region.

In Figure 7.25b and 7.25e, we observe a decrease in wall shear stress values

and stabilize through the outlet for walls B and E.

In Figure 7.25b and 7.25e, we observe low wall shear stress values around the

bifurcation. It a increases and stabilize through the outlet for walls C and D.
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CHAPTER 8

CONCLUSIONS

This thesis aims to study two main goals, first is to give a numerical algorithm to solve
Navier-Stokes equations governing the blood motion, and second is to investigate
its feasibility on the cardiovascular system. For the first goal, we present grad-div
stabilized fully discrete Navier-Stokes equations with backward Euler’s method and
present its stability and error analysis, and discuss existence and uniqueness of the
approximate solutions. For the second goal, we present its numerical simulations
such as stenosis, aneurysm and some other possible cases in cardiovascular system,
since the effect of grad-div stabilization on the cardiovascular system has not been
investigated in the literature. To understand its effect on cardiovascular system, we
use the information from velocity and pressure fields, together with wall-shear stress
values. Pulsatile nature of blood flow is also considered and the effect of grad-div

stabilization parameter is investigated.

In our study, we find that

e Grad-div stabilized Navier-Stokes equations with backward Euler’s method is

unconditionally stable, and it admits a unique solution.

e With regularity assumptions, the error is bounded, thus the algorithm is conver-

gent.

e The method provides observable mass conservation. In stenosis geometry, it
allows to observe the results for higher Reynolds numbers than of without any

stabilization.

e The stabilization allows to observe stenosis for higher severities.
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Since the method suggests observable improvement in our applications in the car-
diovascular system, it is promising for future studies. In [37], the study suggest that
the grad-div stabilization allows more stable simulations in case of turbulent flows.
For higher Reynolds numbers such as aorta at the systolic phase, turbulence partially
occurs in cardiovascular system, and effect of grad-div stabilization should be inves-
tigated in such cases. In [4], the researchers study a branching vessel for different
angles of bifurcation, and another study should be conducted on the effect of stabi-
lization for different angles of branches, especially for higher angles since they are

more susceptible for turbulence.

As a future research, a higher order algorithm, such as grad-div stabilized Navier-
Stokes equations with Crank-Nicolson method should also be implemented and its
effect on cardiovascular system should also be investigated. Finally, more complex
geometries in cardiovascular system, such as more sudden expanding stenosis, or a

branching artery for higher bifurcation angles should be investigated.
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