
ATTITUDE AND POSITION CONTROL OF A QUADROTOR USING
ONBOARD VISION SYSTEM

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

MECHANICAL ENGINEERING

DECEMBER 2019

 Ş ERAFETTİN TÜZEL

Approval of the thesis:

ATTITUDE AND POSITION CONTROL OF A QUADROTOR USING
ONBOARD VISION SYSTEM

Examining Committee Members:

Assoc. Prof. Dr. Melik Dölen
Mechanical Engineering, METU

Assoc. Prof. Dr. Ulaş Yaman
Mechanical Engineering, METU

Prof. Dr. M. Kemal Özgören
Mechanical Engineering, METU

Assist. Prof. Dr. Ali Emre Turgut
Mechanical Engineering, METU

Assist. Prof. Dr. Masoud Latifi Navid
Mechatronics Engineering, THK University

Date: 06.12.2019

Supervisor, Mechanical Engineering, METU
Assoc. Prof. Dr. Ulaş Yaman

Head of Department, Mechanical Engineering
Prof. Dr. M. A. Sahir Arıkan

Dean, Graduate School of Natural and Applied Sciences
Prof. Dr. Halil Kalıpçılar

East Technical University by,
the degree of Master of Science in Mechanical Engineering Department, Middle

 submitted by Ş ERAFETTİN TÜZEL in partial fulfillment of the requirements for

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Şerafettin Tüzel

Signature :

iv

ABSTRACT

ATTITUDE AND POSITION CONTROL OF A QUADROTOR USING
ONBOARD VISION SYSTEM

Tüzel, Şerafettin

M.S., Department of Mechanical Engineering

Supervisor: Assoc. Prof. Dr. Ulaş Yaman

December 2019, 119 pages

In this thesis, localization and trajectory following of a quadrotor is obtained with at-

titude and position control along with the help of an onboard monocular camera. Two

control strategies are adopted for this aim, which are well-known PID and nonlinear

backstepping controllers. For the PID algorithm, a cascaded structure is preferred

so that angular rates are regulated as the inner loop of the attitude controller. At the

outer loop of this system, angles are stabilized by producing rate references to the

inner loop. PID is a proven method to control nonlinear systems, giving satisfactory

system performances. Linearised or simplified system models are generally used to

design PID controllers, and implementation is usually straight forward. On the other

side, backstepping controller is selected since it does not cancel nonlinearities of the

system model. The aim of this method is to obtain the final inputs by creating virtual

system inputs in a recursive manner. Since it directly uses system equations of mo-

tion, nonlinearities like coupling between axes and actuator frictions are comprised

by the controller. This also enables better performance in disturbance rejection. If the

strategy is followed properly, backstepping gives satisfactory results.

v

To be able to design these controllers, quadrotor system is modelled within this study.

Equations of motion are obtained and quadrotor behaviour is simulated by using

Simulink. The responses of the controllers to given references are compared with

the usage of this model representation.

A real platform is formed for the verification of the proposed control methods. The

quadrotor uses a Pixhawk board which includes the main control algorithms. These

algorithms are formed in Simulink and Embedded Coder is used to trasfer the pro-

gram to the Pixhawk. For the localization operation, RaspberryPi board is selected

and also used with Simulink application. From the images obtained by the Raspberry,

position errors are propagated so that attitude controllers on the Pixhawk can regu-

late the errors down to zero for stabilization. Serial communication is preferred as

the connection interface and hardware and software schemes are explained along this

study. As the main aim orients, designed localization and path tracking capabilities

are shown on the target platform.

Keywords: Quadrotor, PID, Backstepping Controller, Path Tracking, Image Process-

ing

vi

ÖZ

4 PERVANELİ İHA’NIN YERLEŞİK GÖRÜNTÜ SİSTEMİ KULLANARAK
TUTUM VE KONUM KONTROLÜ

Tüzel, Şerafettin

Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Ulaş Yaman

Aralık 2019 , 119 sayfa

Bu tez çalışmasında, dört rotorlu bir İHA’nın lokalizasyon ve yörünge takibi yerleşik

bir monoküler kamera yardımı ile kontrol edilmiştir. Bu amaç için iyi bilinen PID ve

doğrusal olmayan geri adımlamalı kontrol stratejisleri benimsenmiştir. PID algorit-

ması için kademeli bir yapı tercih edilmiş olup, böylece açısal hızlar durum kontrol-

cüsünün iç döngüsü olarak düzenlenmiştir. Bu sistemin dış döngüsünde, iç döngüye

açısal oran referansları üreterek açılar stabilize edilir. PID, doğrusal olmayan sistem-

leri kontrol etmek için tatmin edici bir sistem performansı sağlayan kanıtlanmış bir

yöntemdir. Doğrusallaştırılmış veya basitleştirilmiş sistem modelleri genellikle PID

denetleyicilerini tasarlamak için kullanılır ve uygulaması genellikle basittir. Diğer ta-

rafta geri adımlamalı kontrol yöntemi, sistem modelinin doğrusal olmayan elemanla-

rını ihmal etmediğinden tercih edilmiştir. Bu yöntemin amacı, yinelemeli bir şekilde

sanal sistem girdileri oluşturarak son girdileri elde etmektir. Doğrudan sistem hareket

denklemlerini kullandığından, eksenler arasındaki ilişkiler ve aktüatör sürtünmeleri

gibi doğrusal olmayan etkenler kontrolcüler tarafından ele alınabilir. Bu aynı zamanda

bozucu etkilere karşı daha iyi performans sağlar. Stratejinin doğru bir şekilde takip

vii

edilmesi durumunda, geri adımlamalı kontrolcü tatmin edici sonuçlar verir.

Bu kontrolcüleri tasarlayabilmek için bu çalışma kapsamında dört rotorlu İHA sis-

temi modellenmiştir. Hareket denklemleri elde edilmiş ve Simulink kullanılarak dört

rotorlu İHA davranışı simüle edilmiştir. Kontrolcülerin verilen referanslara verdiği

cevaplar, bu model gösteriminin kullanımı ile karşılaştırılmıştır.

Önerilen kontrol yöntemlerinin doğrulanması için gerçek bir platform oluşturulmuş-

tur. Dört rotorlu İHA, ana kontrol algoritmalarını içeren bir Pixhawk kartı kullan-

maktadır. Bu algoritmalar Simulink’te oluşturulmaktadır ve programı Pixhawk’a ak-

tarmak için Embedded Coder kullanılmıştır. Pozisyonlama işlemi için RaspberryPi

kartı seçilmiş ve Simulink uygulaması ile de kullanılmıştır. Raspberry tarafından elde

edilen görüntülerden, konum hataları hesaplanır ve böylece Pixhawk üzerindeki yö-

nelim kontrolcüleri bu hataları sıfıra götürecek şekilde kontrol sağlayabilir. Bağlantı

arayüzü olarak seri iletişim tercih edilmiş ve bu çalışmada donanım ve yazılım prog-

ramları açıklanmıştır. Ana hedefin gösterdiği doğrultuda, tasarlanan lokalizasyon ve

yol izleme yetenekleri hedef platformda gösterilmiştir.

Anahtar Kelimeler: 4 Pervaneli İnsansız Hava Aracı, PID, Geri Adımlamalı Kont-

rolcü, Yörünge İzleme, Görüntü İşleme

viii

To my family...

ix

ACKNOWLEDGMENTS

First of all, I would like to express my deepest gratitude to Dear Ulaş Yaman, my

thesis supervisor who has guided and encouraged me throughout my study.

I would like to express my sincere love to my family members, especially my beloved

wife Rana Tüzel and my brother Fatih Tüzel who endured me patiently throughout

my work. Thanks to them I was able to continue this study until the last moment.

I would like to thank my colleague Ersin Gönül in my company who enlightened me

with his unique knowledge about the quadrotor platform and the hardware I was not

familiar with before.

I am also grateful to my colleagues Mustafa Gürler and Ayşe İlden Bayrak for their

advice on control algorithm design.

Finally, I would like to express my gratitude to Semih Arslan, Ali Mert Türker and

Mert Ergürtuna for their help throughout the thesis.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xx

LIST OF SYMBOLS . xxi

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation and Objective . 4

1.2 Structure of the Thesis . 6

2 LITERATURE SURVEY . 7

2.1 Modelling and System Identification 7

2.2 Control Theory . 8

2.3 Vision and Pose Estimation . 11

3 QUADROTOR MODELLING . 15

3.1 Definition of Control Inputs . 16

xi

3.2 Reference Frames and Transformation Matrices 18

3.2.1 Transformation Matrices for Translational Velocities 20

3.2.2 Transformation Matrices for Angular Velocities 22

3.3 Nonlinear Dynamic Model . 23

3.3.1 Forces and Moments Acting on the Quadrotor 24

3.3.2 Rotational Equations of Motion 26

3.3.3 Translational Equations of Motion 28

3.3.4 Rotor Dynamics . 29

3.3.5 State Variables and Equations 31

4 SYSTEM HARDWARE AND SOFTWARE 35

4.1 Hardware Overview . 35

4.1.1 Quadrotor Frame . 36

4.1.2 Propulsion System . 38

4.1.3 Pixhawk . 40

4.1.4 Raspberry Pi . 41

4.1.5 RC Transmitter and Receiver 42

4.1.6 Lidar . 43

4.1.7 Lipo Battery and DC-DC Converters 44

4.1.8 System Layout . 45

4.2 Software Overview . 46

4.3 Physical Parameters of the Quadrotor 56

4.3.1 Mass Moment of Inertia . 57

4.3.2 Propulsion System Parameters 59

xii

4.4 Quadrotor Test Bench . 64

5 CONTROLLER DESIGN AND APPLICATIONS ON QUADROTOR . . . 67

5.1 PID Controller . 67

5.1.1 Attitude Control of Quadrotor 68

5.1.2 Altitude and Position Control of Quadrotor 76

5.1.3 Attitude Performance of PID Controller on Test Bench 79

5.2 Backstepping Controller . 82

5.2.1 Backstepping Control of Rotational Motions 84

5.2.2 Backstepping Control of Translational Motions 87

5.2.3 Attitude Performance of Backstepping Controller on Test Bench 90

5.3 Controller Applications on Quadrotor 94

6 CONCLUSION . 111

REFERENCES . 113

xiii

LIST OF TABLES

TABLES

Table 4.1 Motor Parameter Identification Test for 100% Battery 60

Table 4.2 Motor Parameter Identification Test for 60% Battery 61

xiv

LIST OF FIGURES

FIGURES

Figure 1.1 Quadrotor in construction [1] 3

Figure 1.2 3D printer quadrotor [2] . 4

Figure 2.1 Quadrotor and ground robot system [3] 12

Figure 2.2 PIXHAWK controlled quadrotor [4] 13

Figure 3.1 Quadrotor flight configurations; plus configuration (on the left)

and cross configuration (on the right) [5] 17

Figure 3.2 Quadrotor forces and moments [1] 17

Figure 3.3 Reference Frames . 19

Figure 4.1 Quadrotor platform used in this study 36

Figure 4.2 eCalc - RC Calculator [6] . 37

Figure 4.3 S500 Quadrotor Frame [7] . 37

Figure 4.4 Motor and propeller pair [8] . 38

Figure 4.5 T-motor ESC [8] . 39

Figure 4.6 Pixhawk [9] . 40

Figure 4.7 Raspberry Pi 3 Model B [10] 41

Figure 4.8 Raspberry Pi Camera [11] . 42

xv

Figure 4.9 Taranis X9d Plus Transmitter and Receiver [12] 42

Figure 4.10 Tf Mini Lidar Range Sensor [13] 43

Figure 4.11 Gens Ace 11.1V 3S 4000mAh Lipo Battery [14] 44

Figure 4.12 Diagram of quadrotor components 45

Figure 4.13 Simulink blocks provided by the Support Package [15] 47

Figure 4.14 Pixhawk Simulink model created within the scope of this study . 48

Figure 4.15 Raspberry Pi Simulink model created within the scope of this

study [16] . 50

Figure 4.16 Data packeting and serial sent in Pixhawk Simulink model . . . 51

Figure 4.17 Counter Difference values for Pixhawk and Raspberry Pi boards 51

Figure 4.18 Loop Back Performance of Pixhawk and Raspberry Pi 52

Figure 4.19 Yaw Angle vs time . 52

Figure 4.20 ArucoMarker examples [17] . 53

Figure 4.21 ArucoMarker used in this study 54

Figure 4.22 Example for ArucoMarker detection via Raspberry Pi camera . . 55

Figure 4.23 List of programs or threads that are currently operated by Linux

Kernel of Raspberry Pi . 55

Figure 4.24 Diagram of software architecture 56

Figure 4.25 Setup for Bifular Pendulum Theory [18] 57

Figure 4.26 Yaw angle response to given oscillations in pendulum setup . . . 58

Figure 4.27 Roll and Pitch Angle vs time 59

Figure 4.28 Thrust measurement setup for quadrotor motor-propeller pair . . 60

Figure 4.29 Lipo voltage and thrust relation 61

xvi

Figure 4.30 Relation of thrust and the square of propeller speed 62

Figure 4.31 Relation of torque and the square of propeller speed 63

Figure 4.32 Relation of PWM and propeller speed 63

Figure 4.33 Single axis quadrotor test bench 64

Figure 4.34 Three Axes Test Bench . 65

Figure 5.1 Roll rate step response . 69

Figure 5.2 Closed loop roll rate Bode plot 70

Figure 5.3 Roll angle step response . 71

Figure 5.4 Closed loop roll angle Bode plot 71

Figure 5.5 Pitch angle step response . 72

Figure 5.6 Closed loop pitch angle Bode plot 73

Figure 5.7 Cascaded PID control diagram for pitch and roll axes 73

Figure 5.8 Yaw angle step response . 74

Figure 5.9 Closed loop yaw angle Bode plot 75

Figure 5.10 Cascaded PID control diagram for yaw axis 75

Figure 5.11 Response of X-Position, X-Velocity and Pitch Angle of quadro-

tor to commanded position reference 77

Figure 5.12 Cascaded PID diagram for x/y position control 78

Figure 5.13 PID diagram for altitude control 78

Figure 5.14 Response of quadrotor to given altitude reference 79

Figure 5.15 Simulink model used for quadrotor simulations 80

xvii

Figure 5.16 Response of quadrotor to ramp-wise inputs given in pitch and

roll axes . 81

Figure 5.17 Response of quadrotor to step-wise inputs given in pitch and roll

axes . 81

Figure 5.18 Response of quadrotor to sinusoidal inputs given in pitch and

roll axes . 82

Figure 5.19 Response of roll angle to given step input for changing controller

parameters . 91

Figure 5.20 Commanded PWM to motors by backstepping controller 92

Figure 5.21 Response of quadrotor to stepwise inputs given in pitch and roll

axes . 92

Figure 5.22 Response of quadrotor to ramp-wise inputs given in pitch and

roll axes . 93

Figure 5.23 Control structure used for quadrotor stabilization 94

Figure 5.24 Yaw angle reference management during marker detection 95

Figure 5.25 Roll angle step response . 95

Figure 5.26 Closed loop roll angle Bode plot 96

Figure 5.27 Response of quadrotor system to given pilot inputs in pitch and

roll axes . 97

Figure 5.28 Quadrotor velocity in x/y directions during position hold over

marker . 98

Figure 5.29 Response of quadrotor system during position hold over marker . 99

Figure 5.30 Position and altitude of quadrotor during position hold over marker100

Figure 5.31 Statistical data for the quadrotor that performs position hold over

marker . 101

xviii

Figure 5.32 Quadrotor velocity in x/y directions during position hold over

marker (second flight) . 102

Figure 5.33 Response of quadrotor system during position hold over marker

(second flight) . 103

Figure 5.34 Position and altitude of quadrotor during position hold over

marker (second flight) . 104

Figure 5.35 Statistical data for the quadrotor that performs position hold over

marker (second flight) . 105

Figure 5.36 Position and altitude of quadrotor when a sinus reference is com-

manded for x-position . 106

Figure 5.37 Statistical data for the quadrotor when a sinus reference is com-

manded for x-position . 107

Figure 5.38 Position and altitude of quadrotor when a square path reference

is commanded . 108

Figure 5.39 Statistical data for the quadrotor when a square path reference is

commanded . 109

Figure 5.40 Photo of the quadrotor during path follow 110

xix

LIST OF ABBREVIATIONS

3D 3 Dimensional

AC Alternating Current

AM Additive Manufacturing

BLDC Brushless DC Motor

CAD Computer Aided Design

DC Direct Current

ESC Electronic Speed Controller

FPV First Person View

GNSS Global Navigation Satellite System

GPIO General Purpose Input/Output

GPS Global Positioning System

IMU Inertial Measurement Unit

KV Constant Velocity (of a motor)

LQ Linear Quadratic

PID Proportional Integral Derivative

PWM Pulse Width Modulation

RC Radio Control

RGB Red Green Blue

RPM Revolutions Per Minute

RTOS Real Time Operating System

UART Universal Asynchronous Receiver-Transmitter

UAV Unmanned Air Vehicle

UDP User Datagram Protocol

VTOL Vertical Takeoff and Landing

xx

LIST OF SYMBOLS

b Aerodynamic thrust contribution

Bω Bandwidth

Cτ Aerodynamic thrust coefficient

CD Aerodynamic drag coefficient

d Aerodynamic drag contribution

ei Tracking error for ith state

FB Body reference frame

FE Earth reference frame

Fext Sum of external forces acting on the quadrotor

Fgrav,B Gravitational force expressed in FB

Fgrav,E Gravitational force expressed in FE

Fi Force generated by ith rotor

Fprop,B Total force generated by the propeller expressed in FB

g Gravitational acceleration constant

Ixx, Iyy, Izz Products of inertia

J Inertia matrix

Jr Rotor inertia

Kd Derivative gain

Ki Integral gain

Kp Proportional gain

l Length of the moment arm

m Mass of quadrotor

Mext Sum of external moments acting on the quadrotor

Mgyro,B Gyroscopic moments produced by propellers expressed in FB

Mi Moment exerted on the quadrotor by ith rotor

Mprop,B Total moment acting on the quadrotor system expressed in FB

r Motor gear box reduction ratio

xxi

R Transformation matrix

RBE Transformation matrix from FE to FB

REB Transformation matrix from FB to FE

Rr Angular transformation matrix from FE to FB

Ti Torque generated by ith rotor

U1,U2,U3,U4 Control inputs

V (ei) Lyapunov function for ith tracking error

VB Translational velocity vector of quadrotor expressed in FB

VE Translational velocity vector of quadrotor expressed in FE

xi ith system state

xE ,yE ,zE Earth reference frame axes

xB,yB,zB Body reference frame axes

p,q,r Body angular velocities

u,v,w Body velocities

αi ith control coefficient in backstepping

φ Euler roll angle

θ Euler pitch angle

ψ Euler yaw angle

φ̇ , θ̇ , ψ̇ Euler rates

ξ Position Vector of Quadrotor in FE

η Orientation Vector of Quadrotor in FE

τ Motor time constant

ω Angular velocity vector of quadrotor

ωm Angular speed of the motor

Ω Relative speed of the propellers

Ωi Angular velocity of ith rotor

xxii

CHAPTER 1

INTRODUCTION

Quadrotor is a vertical takeoff and landing (VTOL) aerial vehicle that has four rotors.

This aerial vehicle could change its attitude and altitude by controlling the angular

velocity of each rotor, which are consist of a motor and a propeller group. Most

of the quadrotors have symmetric shapes. In general, four symmetric rotor arms

are combined with a central board, where all the hardware and functional stuff are

located. This symmetry in the shape also simplifies the control of the vehicle, and

quadrotors gain well hovering and vertical movement capabilities.

In recent years, with the development of hardware platforms such as microcontrollers,

motors and sensors, quadrotor systems have gained huge commercial potential and

became worldwide available. Although the first quadrotors were manned, today most

of these robots are unmanned and used with simple controller units. This rapid evo-

lution lies in the advantages of these flying robots in comparison to the conventional

helicopters and aircrafts. These are

• to be able to move in every direction with high manoeuvrability,

• simple mechanical elements, small sizes and less aerodynamic affects,

• simplicity in vehicle control,

• low cost.

Thanks to these factors, the interest in quadrotor systems has grown rapidly, and

nowadays quadrotors have entered our lives within different usage areas. These robots

were initially used for simple photography and video shooting, but now they are used

1

for aerial delivery, communication, mapping, surveillance, search and rescue, border

control, mine detection, and etc. There are lots of commercial products available

on the market such as the products of Chinese and French companies DJI and Parrot.

Some of them have emerged in parallel to the field of use, but a significant portion has

appeared because people liked flying these robots. Since the companies have realized

that the use of drone is fun, they produce different products and continue to grow the

industry. First Person View (FPV) Drones and Racer Drones are the results of this

market.

Although the entertainment business is one of the most important factors shaping the

market, experimental studies could create new features in continuous development

process. From the very beginnings of the quadrotor developments, researchers and

developers have studied things that has not been tried before. This has added different

usage areas to the quadrotors, and will continue to contribute.

In 2011, Lindsey et al. [1], [19] have created a system in which a team of quadro-

tors, that have had grippers on the bottom, could have form a structure by using 2.5D

truss-like elements. The quadrotor could be seen in Figure 1.1. They have performed

several simulations and experiments with real drones on how to built a feasible struc-

ture by considering the assembly constraints, and have brought out an algorithm that

could have construct any special cubic structure. At that point, people have ques-

tioned whether construction with quadrotors are possible or not? That is why these

works are important in shaping the course of events.

Another example could be given on additive manufacturing (AM), where the rapid

evolution of small scale printing have been seen [20]. For the large scale one however,

different research fields should contribute to the subject. There are many suggestions

such as giant printers, cable-suspended printers, swarm robots and automated assem-

bly robots, but some researchers have touched on upon the aerial printing [21] [22],

[23], [24], [20]. Gerling et al. [23] have proposed the idea of self-organized flying

robot systems for the purpose of construction, and have considered the quadrotors as

ideal platforms due to their flexibility and precise control. However, major limitation

comes with the limited battery life and payload capacity as stated in [2]. Thus, there

could be a need of a division of labor between grounded and airborne units [23].

2

Figure 1.1: Quadrotor in construction [1]

Apart from these reviews, there are direct studies and experiments that have been

done on aerial printing [2], [25], [26]. Hunt et al. [2] have combined additive layer

manufacturing with aerial robotics. They have examined the feasibility of flying 3D

printer robots. The designed quadrotor, which can be seen in Figure 1.2, has de-

posited polyurethane expanding foam during the flight. The authors have demon-

strated the capabilities of the system, and have mentioned the potential usage areas.

In another work [25], researchers have formed a cementitious paste solution to be used

by the aerial robots so that these machines can create and repair buildings. They have

successfully demonstrated the cementitious paste solution with an extrusion-printing

mechanism. There is also a patent on aerial printing subject [27], in which drones

have been defined to carry and deposit 3D printing material to construct structures.

As it can be seen, these works have purposed directly aerial printing.

If it is desired to use a stationary printer, the product must be smaller in size compared

to the machine used to form it [26]. Many researchers see this as a major limitation,

which ensures continuous research activities including the aerial printing. There may

also be mixed solutions that combines aerial machines with ground robots or even

with humans. Pothole identification process could be given as an example to this

labour division. In their study, Pan et al. [28] have distinguished the normal pavement

and potholes, damages in the roads due to ageing and deterioration, by using machine

3

Figure 1.2: 3D printer quadrotor [2]

learning algorithms. They have obtained accurate results on identifying the potholes

so that a quick repair action can be taken. This action might be a ground robot or a

person. It is also predictable that there can be repair drones on highways in the near

future. This is all about the area that the technology will flow into.

Whether drones are used in direct construction or not, people will continue to use

them even for terrain and surface investigations. Potential applications include repair,

construction of inaccessible areas, and painting. Although battery life and load ca-

pacity are the main limitations of quadrotor usage, autonomous control and precise

positioning issues can shape the application areas.

1.1 Motivation and Objective

Nowadays, quadrotors appear in different fields with enhanced application capabili-

ties. New interests like aerial printing, painting and object detection require intelligent

4

pose estimation and robust stabilization abilities. Thus, design of control algorithms

takes an important role in designing these autonomous skilled systems. As other re-

searchers focused on this issue, this thesis puts main effort on controller algorithm

design and implementation on a real platform.

A successful control approach can be obtained with a good understanding of the UAV

dynamics. Thus, the initial goal of this study is to obtain the mathematical expressions

of the quadrotor dynamics. Obtained equations can be used to form a simulation

model that represents the motion of the quadrotor in air. There is a real quadrotor

platform made up for this study. The parameters of this platform will be examined

and projected on the simulation models so that a proper algorithm design can be

performed.

The stabilization of a quad-rotor helicopter forms the second aim of this work. There

are different control strategies on the literature. By investigating flight regime and

system dynamics, a controller selection can be made. Two different control methods

are independently intended in our quadrotor’s control. One of the methods is a non-

linear control technique called as Backstepping. The other method is the well known

linear technique, PID. For the applications like aerial printing, painting and monitor-

ing as an assistant system, there is a limit in the speed of application and also the

precision is important. Above mentioned methods will be implemented separately

and performances will be evaluated for low-speed and hover-like conditions.

Control strategy is important in shaping the motion of quadrotor, however stabiliza-

tion is possible with a reasonable localization. There are different techniques for UAV

systems. Our intention is not to use GPS so that the platform can be used both in-

doors and outdoors. To detect the target place and perform a trajectory follow task,

a vision system will be used for this thesis study. As the most significant objective,

both hovering and trajectory following missions are aimed to be demonstrated with

the quadrotor.

Usage of camera feedback in pose estimation will allow localization around a selected

hover point. Our intention is to check the feasibility of aerial printing with an on-

board monocular vision system.

5

1.2 Structure of the Thesis

The contents of the next chapters are summarized below.

• Chapter 2. A concise information about the recent studies will be given.

• Chapter 3. Dynamical model of the quadrotor will be represented.

• Chapter 4. The hardware components and used software will be introduced

with their relation for the purpose of control.

• Chapter 5. Design steps of the controllers will be explained. The results of real

flight performance will be compared for controller implementations and vision

tracking.

• Chapter 6. In the final part, the conclusions of the thesis study will be given.

6

CHAPTER 2

LITERATURE SURVEY

In this chapter, a review of studies related to this thesis work has been investigated.

For hover and trajectory following capabilities, an accurate representation of the

quadrotor dynamics should be obtained in the first place. Then, a proper control law

algorithm can be selected to stabilize the quadrotor in desired environments. Since a

monocular camera will be used to detect the location of the platform, available studies

should also be investigated. There are many different studies and experiments on the

quadrotor platforms in literature. Related researches can be summarized under three

sections.

2.1 Modelling and System Identification

Having a good dynamical model representation of a system is important in design-

ing controllers. The controller could perform as expected if only the mathematical

model represents the real system in a similar behavior. Especially for the nonlin-

ear controller designs, the role of system dynamical model increases. Quadrotor is

a system having relatively simple dynamic interactions such that the simply reduced

models could estimate the behavior in a pretty good manner. There are some studies

on obtaining the quadrotor dynamical model [29], [30]. Although these mathematical

expressions could represent quadrotor’s dynamics, parameters of them depend on the

experimental findings. Thus, they should also be validated.

In some of the studies, researchers have identified and validated their dynamical

model instead of finding those parameters with an experiment. As an example, Gremil-

lion et al. [31] have estimated the linear dynamical model of a quadrotor vehicle by

7

using time domain system identification technique. With a couple of indoor flights,

both IMU and Vicon system data have been collected to obtain model parameters and

the pole locations of the quadrotor vehicle. In the end, researchers have obtained an

accurate estimation of the system.

Another frequency domain estimation have been performed by Niermeyer et al. [32],

and they have used outdoor flights data to identify their linear model, where most of

the researchers have been using indoor data. In the work, they have used only inertial

data and GNSS measurements to estimate the hover dynamics of a quadrotor sys-

tem. They have also used CIFER software to validate the model, and have achieved

individual state space models for yaw axis, vertical motion and combined pitch-roll

behavior.

Sun et al. [33] have performed large-scale wind tunnel tests with a quadrotor to es-

timate the high-speed dynamics model of the vehicle. The authors have marked that

high aerodynamic affects could have dominated the forces and moments on the ve-

hicle body during high-speed regime. Thus, they have suggested a gray-box model

identification, where they have used a model that included these aerodynamic inter-

actions. Considering the results, they have achieved an accurate model, but limited to

the flight regime of interest.

In a study [34], researchers have suggested a method of verifying and validating the

accuracy of a quadrotor model in the linear flight regime. They have applied specific

control inputs in a range of frequencies and tried to fit the known model parame-

ters to the test result. In the end, researchers have successfully extracted the model

parameters that could be used as the initial model during the design process.

2.2 Control Theory

A variety of control methods are applied to achieve the best precision. PID control

method is the most familiar and easy to use method. In their work [35], Bouabdallah

et al. have applied PID and LQ control strategies on a quadrotor restricted on a

test bench. They have used a simple decoupled model for the PID design, and have

used a more complex one for the LQ implementation. They have achieved better

8

performance with the classical controller, and have concluded this as the imperfection

of the complex model.

There is also a study [36], in which the response of the PID controller has been vali-

dated through a series of flights.

As opposed to linear control methods, there are so many works related to nonlinear

control of quadrotor UAV. The most common nonlinear control techniques used to

control the quadrotors are backstepping, sliding mode, and feedback linearization.

In a study [37], backstepping and sliding-mode control strategies have been applied to

a quadrotor on a test bench. The average performance of the sliding-mode have been

based on the switching nature of controller, which actually has increased the vibra-

tions. Backstepping controller has showed a fair performance holding the orientation

of the quadrotor although there has been relatively high disturbances.

In another work [38], researchers have modelled quadrotor dynamics by considering

the aerodynamic affects formed by the vehicle motion. They have used the model

parameters, have designed an Integral-backstepping controller and have made direct

flight experiments without re-tuning the model. The researchers equipped their OS4

quadrotor with a camera system and sonar distance sensors, and in addition they have

also presented take-off, landing, hover and collision avoidance performances of the

quadrotor system.

There is also a study [39], where feedback linearization controller has been combined

with a wind parameter estimation via a Lyapunov function.

Backstepping is based on the Lyapunov stability, and this has been shown in [40],

where the authors have presented a robust backstepping controller design that has

guaranteed the convergence and stability. They have showed that the maximum steady

state error on Euler angle tracking has been in a desired bound.

For the nonlinear controllers, another comparison study has been done by Lee et

al. [41]. In their paper, they have derived a feedback linearization controller that

is derived from the conventional simplified model. Then, they have represented an

adaptive sliding mode controller, which has been more robust to noise and uncertain-

9

ties. The difference has been based on the usage of reduced order of derivatives in

the inputs. The researchers have also achieved a better performance in the estimation

and toleration of ground effects.

In one of the most recent comparisons [42], the authors have designed feedback lin-

earization, backstepping and sliding mode controllers, and have compared the perfor-

mances of each of the proposed methods on a Qball-X4 quadrotor UAV. The authors

have obtained better stability and robustness with sliding mode controller. They have

also noted that backstepping strategy could have been used if decoupling of axes is

required.

There are also less known, successful control techniques that can be used to con-

trol a quadrotor. One of them is the dynamic inversion method. In a study [43],

the researchers have designed a two-loop dynamic inversion controller with an aim

of handling underactuation and coupling between axes. They stabilized the internal

control loop with a robust controller and have suggested a modified inversion loop to

enhance stability and tracking performance. They have explained the stability based

on Lyapunov, and have showed simulation results of the designed system.

Model predictive controller is another algorithm to stabilize the aircraft, where they

are used less due to their high computation power demands compared to simple lin-

ear controllers. Nevertheless, they show successful results when a proper dynamical

model is used. As an example, a switching model predictive controller has been sug-

gested in [44] to reject the wind disturbances that a quadrotor faces during the flight.

The designed controller has used the piecewise model of the quadrotor dynamics, in

which turbulence affects has been included as a disturbance. The authors verified

their algorithm with experimental flights, and have showed the capability of quadro-

tor’s attitude tracking while subjected to the wind disturbances.

Adaptive controllers are the other strategies having high robustness to the distur-

bances. In an experimental study [45], authors have designed a direct approximate-

adaptive control using a nonlinear approximator. The proposed method has updated

the adaptive parameters such that the quadrotor could have hold unknown payloads

and have provided robustness to the disturbances. The authors have performed an on-

line training by varying the weights of the payloads, and have aimed approximately

10

the same outputs. They have also formed a test stand and have validated the perfor-

mance of the proposed controller obtaining successful results.

Another adaptive controller study has been performed in [46], where the authors have

designed a direct and indirect model reference adaptive control based on the Lya-

punov stability. They have carried out indoor flight tests, and have concluded that

combined model reference adaptive control has enabled smother parameter estimates

and has increased the performance of the quadrotor. They have also noted that these

controllers could have tolerate the motor faults and thrust anomalies.

2.3 Vision and Pose Estimation

Vision is one of the most important subjects in pose estimation of a quadrotor. With

the increase in interest on the autonomous flying machines, the need of accurate pose

estimation has emerged. Today, vision systems are being used as the primary estima-

tion sensors to detect objects, determine the device position and holding the orienta-

tion. Thus, there are pretty good number of studies about vision and pose estimation.

Markable first reference on this subject dating back to 2002, when Altuğ et al. [47]

have controlled a cross-type quadrotor using the feedback of a stationary ground cam-

era. They have formed a platform to restrict the vertical and yaw motion, and applied

backstepping and feedback linearization control techniques to stabilize the quadrotor.

They have also concluded that the quadrotor could not be made fully autonomous

with a single camera, and second onboard camera shall be implemented.

In another work [48], the researchers have used a ground camera to compute the X-Y

positions and yaw angle of the quadrotor aerial vehicle. The visual localization results

have been shown as very stable.

Li et al. [3] have developed a vision guided quadrotor system following a ground

robot carrying a visible marker on, Figure 2.1. They have obtained an accurate

path following performance both indoors and outdoors using the onboard camera and

IMUs. A pose estimation algorithm has been proposed and validated with the path

following experiments.

11

Figure 2.1: Quadrotor and ground robot system [3]

Not all researchers have used monocular cameras, but some of them have tried other

commercial products. In a study carried out in 2011, the researchers have used Mi-

crosoft Kinect Sensor to control the altitude of the quadrotor [49]. With the usage of

depth map feedback from the sensor, a successful altitude control performance has

been obtained.

Mier et al. [4] has made a significant contribution by providing both hardware and

software system for the micro-air vehicles. They have created an open-source system,

the PIXHAWK seen in Figure 2.2, that contains microcontroller, IMUs, cameras,

GPS and external interfaces like radio communication so that the system could have

12

localization, obstacle avoidance and pattern recognition features. The system has had

a support for different aerial vehicles such as quadrotors, helicopters and planes. The

developers of PIXHAWK have obtained successful results on localization and path

following during the experiments.

Figure 2.2: PIXHAWK controlled quadrotor [4]

In another work [50], onboard vision system of the commercial AR.Drone has been

used to get X and Y direction feedbacks. Due to the computational restrictions of

the quadrotor, a color based identification method has been adopted to recognize the

marker on the ground. It was shown from the target tracking results that the system

is sensitive and could be easily affected by the noise and disturbance.

Yang et al. [51] have performed a precise position hold and landing to a landing

pad marked with ’H’ letter in their work. By having an onboard vision system, 6

degrees of freedom pose estimation of the vehicle relative to the landing pad has been

obtained in a precise manner.

In another work [52], trajectory tracking and positioning of commercial AR.Drone

has been performed with a Kalman Filter implementation. AR.Drone have sent the

inertial and visual data to a central computer, where the filter fuses the data and feed-

back to the control algorithm. They have used a stability proven nonlinear controller,

and the positioning and path following results have been shown as precise.

13

Pose estimation is generally desired over a target. However, there could be unknown

environments where a respective navigation is needed. In some of the studies [53],

[54], autonomous waypoint navigation and obstacle avoidance has been performed

by the usage of on board cameras and matching algorithms implemented on on-board

controllers.

In a different study [55], indoor localization of the quadrotor has been based on Ultra-

WideBand technology, where the vision is in the second stage. The authors have used

the ranging measurements to reduce the IMU errors and have obtained an accuracy

of 10 cm.

14

CHAPTER 3

QUADROTOR MODELLING

In this chapter, main dynamic model of the quadrotor is provided. Two different

methods can be used to obtain the governing mathematical expressions. One is the

Lagrangian formalism as used in [29]. The other one is the Newton-Euler formal-

ism that is used by most of the researchers [30], [56], [57], [58], [59], [37], [36],

[60]. Since it is more comprehensible, Newton-Euler formalism is followed in the

derivation of quadrotor’s nonlinear expressions.

There are some assumptions prior to the derivation. These are listed below.

• The quadrotor’s centre of gravity coincides with the origin of the body fixed

frame.

• The quadrotor’s structure is rigid and symmetrical.

• Propellers and motors are rigid.

• Thrust and drag forces are proportional to the square of propeller’s speed.

These assumptions are actually important in terms of simplifying the mathematical

model that will be created. However, when considering this simplicity, the dynamics

to be neglected should be taken into consideration. The assumption of rigid body is

one of the most general assumptions. It is assumed that the body is not deformed

under applied forces. Quadrotor housing is rigid and does not deform. If there is

an elastic part in the system, analytical solutions should be applied because there

would be different behaviours to the deflections on the body. The closest part to this

elasticity is the propellers. In fact, the propellers deflect from the connection point

to the end point due to the force they carry. This deflection changes throughout the

15

quadrotor flight envelope and causes different thrust forces. However, this change

is negligible for small parts such as the quadrotor propeller which also carry rela-

tively little loads. For a helicopter blade, large deflections can be mentioned and

this change should also be considered in modelling. With Blade Element Momentum

Theory, this phenomenon can be calculated and reflected in the model, but it causes

additional parameters to be created and complexity of the model. As in the case of

other assumption, if the centre of gravity does not conflict with the origin of the body

fixed frame, a series of operations will be required to express the movement in the

body frame. In order to avoid this burden, adjustments are made such that the centre

of gravity is in the centre of the quadrotor. The small differences are negligible.

The model of the quadrotor should include aerodynamic effects of the propeller rota-

tion, gyroscopic effects due to change in rigid body orientation, inertial effects such

as variation in propeller speed and gravity effect. Before describing these effects,

however, control inputs should be defined in detail.

3.1 Definition of Control Inputs

The quadrotor’s motion is shaped by the lift forces generated by 4 identical propeller

and DC motor pairs. Two opposite side motors rotate clockwise, while the other pair

turn counter-clockwise. This also removes the need of a tail rotor. Used quadrotor

has fixed-pitch propellers which means angle of attack is constant. Thus, motion

can be controlled by only varying the propeller speeds. At that point, there are two

possible control orientations for the quadrotor system. One is the plus configuration

where quadrotor advances in the direction of single rotor, and the other one is the

cross configuration where the system moves in the direction of two rotors. These

configurations have been described in [5] and can be seen in Figure 3.1.

Both of the configurations have been used in previous studies [43], [39], [41], [52],

[47], however a cross type configurations is preferred in this thesis work. This is

because the central board of the quadrotor is a rectangle that extends in the cross

directions. This breaks down the symmetry in inertia calculations if the plus config-

uration is selected. With the cross configuration, body frame is also appointed in the

16

Figure 3.1: Quadrotor flight configurations; plus configuration (on the left) and cross

configuration (on the right) [5]

.

line of choice. This assignment can be seen in Figure 3.2.

Figure 3.2: Quadrotor forces and moments [1]

There are 4 rotors of the quadrotor, which means 4 control inputs can be defined. In

the previous studies [35], [38], [36], [42], [40] and [44], controller designs have been

made individually for basic body motions such as pitch motion, roll motion and yaw

motion. At the end, researchers have combined the outputs of the controllers with

a mixing function to obtain the desired propeller speeds. This brings simplicity in

designing the controller of respective motion since the number of inputs is reduced to

one. With that approach, number of rotors could also be increased because controller

17

will be the same, but the outputs can be distributed over the rotors.

For this thesis work, the same strategy is adopted and control inputs are defined as

• U1: throttle input, which is the total force generated by the propellers.

• U2: roll input, which is the moment difference around x-axis due to left-side

and right-side propellers.

• U3: pitch input, which is the moment difference around y-axis due to front and

rear propellers.

• U4: yaw input, which is the net torque exerted on the system around z-axis by

the 4 propellers.

In accordance with the above descriptions, these inputs are expressed with the fol-

lowing equations:

U1 = F1 +F2 +F3 +F4

U2 = l(F1−F2−F3 +F4)

U3 = l(F1 +F2−F3−F4)

U4 =−M1 +M2−M3 +M4

(3.1)

In Equation 31, l denotes the length of the moment arm for each rotor.

3.2 Reference Frames and Transformation Matrices

There are two coordinate frames to be defined for the ongoing modelling section.

The first one should be an inertial frame so that dynamics model can be derived with

Newton’s laws. This frame can be selected as the Earth reference frame which is

fixed at the ground. The axes of this frame are notated with N, E and D symbols

which indicates that the axes extends in North, East and Downwards directions. Our

quadrotor will fly over this fixed reference frame, and the orientation of it can be ex-

pressed relative to that frame with the usage of Euler angles (φ ,θ ,ψ). Second frame is

the body fixed reference frame that is attached to the centre of gravity of our quadro-

tor. The axes of this frame have already been placed with the choice of cross type

18

configuration as explained in Section 3.1. These two reference frames can be seen in

Figure 3.3.

Figure 3.3: Reference Frames

It is better to represent equations of the quadrotor dynamics in the fixed body frame

because the inertia matrix is time invariant and control inputs are defined on the body

fixed frame [30]. The on-board sensor readings can be easily converted to the body

fixed frame for the calculations. At that point, some transformation matrices can be

defined to relate the body fixed frame to the Earth frame.

The position and orientation of the quadrotor can be defined relative to the ground

with the following notations:

ξ =
[
x y z

]T

η =
[
φ θ ψ

]T (3.2)

In Equation 3.2, ξ is expressed in Earth frame (FE) and represents the absolute po-

sition of the quadrotor centre of gravity relative to the Earth reference frame. Here,

orientation of the quadrotor relative to the Earth frame is also represented with η as

expressed in (FE).

By using these vectors, the positions and orientation of the quadrotor relative to the

Earth reference frame can be identified. In addition to these, one can use ξ̇ and η̇ as

the generalized translational and angular velocity vectors expressed with respect to

FE . If the velocities expressed in the body frame are required, some transformations

should be performed.

19

Derivation can be started with the notations of the velocities (wrt FE) in the body fixed

frame, which are expressed in Equation 3.3 below.

VB =
[
u v w

]T

ω =
[

p q r
]T (3.3)

Although the process looks the same, there is a conversion from inertial to body fixed

frame, and there are differences in obtaining the transformation matrices of angular

and translational velocities. This is due to the fact that not all of the Euler rates are

measured in the inertial frame [60]. It is known that ψ̇ is measured in the inertial

frame, but φ̇ and θ̇ are measured in intermediate reference frames.

3.2.1 Transformation Matrices for Translational Velocities

If the angular velocity case is considered for later, translational one can be investi-

gated. The translational velocity of the body fixed frame can be expressed in terms

of the translational velocity of the Earth frame by making three successive rotations.

These rotations, in combination, describe the orientation of the body frame with re-

spect to the Earth frame. The order of rotations are important, and "yaw, pitch, roll"

order will be followed as used by the researchers in [60], [61], [62] and [30].

As noted in [60], 1→2→3 rotation is expressed as R = R3R2R1 in the matrix multipli-

cation order. Thus, Rφ Rθ Rψ matrix multiplication order should be used to represent

the desired rotation. Following equation can be written down to find the transforma-

tion matrix RBE that transforms Earth frame (FE) to body fixed frame (FB):

RBE = Rφ Rθ Rψ =


1 0 0

0 c(φ) s(φ)

0 −s(φ) c(φ)




c(θ) 0 −s(θ)

0 1 0

s(θ) 0 c(θ)




c(ψ) s(ψ) 0

−s(ψ) c(ψ) 0

0 0 1


(3.4)

For simplicity, cosine and sine functions are denoted with c and s symbols in long

expressions like Equation 3.4. By simplifying Equation 3.4, the final form of the

20

transformation matrix RBE is obtained as follows:

RBE =


c(θ)c(ψ) c(θ)s(ψ) −s(θ)

s(φ)s(θ)c(ψ)− c(φ)s(ψ) s(φ)s(θ)s(ψ)+ c(φ)c(ψ) s(φ)c(θ)

c(φ)s(θ)c(ψ)+ s(φ)s(ψ) c(φ)s(θ)s(ψ)− s(φ)c(ψ) c(φ)c(θ)

 (3.5)

Now, translational velocity of the quadrotor, as expressed in Earth frame FE , can be

represented with the following equation:

VB = RBEVE = RBE ξ̇ (3.6)

In another case, one may need to go from the body fixed frame representation to

the one of Earth. This means, there is a need of an inverse relation as shown in

Equation 3.7.

ξ̇ =VE = REBVB (3.7)

Let’s try to generate the new matrix by manipulating Equation 3.6. By multiplying

both sides of the equation with the inverse of the rotation matrix found in 3.5, an

expression similar to 3.7 is obtained.

VE = RBE
−1VB (3.8)

From Equations 3.7 and 3.8, following result is concluded:

REB = RBE
−1 (3.9)

It is known that the transformation matrix in Equation 3.5 is non-singular, thus the

reverse of it exists, which gives a solution for Equation 3.9. Instead of finding the

reverse of the matrix, the transpose of the matrix can be simply used as its reverse.

This is a useful property of orthogonal matrices. Since the matrices in 3.4 are orthog-

onal, resulting transformation matrix is also orthogonal, and thus, this property may

be used to find matrix REB:

REB = RBE
T =


c(θ)c(ψ) s(φ)s(θ)c(ψ)− c(φ)s(ψ) c(φ)s(θ)c(ψ)+ s(φ)s(ψ)

c(θ)s(ψ) s(φ)s(θ)s(ψ)+ c(φ)c(ψ) c(φ)s(θ)s(ψ)− s(φ)c(ψ)

−s(θ) s(φ)c(θ) c(φ)c(θ)


(3.10)

21

3.2.2 Transformation Matrices for Angular Velocities

As mentioned earlier, not all of the Euler rates are measured in the inertial frame.

Thus, the rotations described in Section 3.2.1 cannot be used directly. Body angular

velocities [p q r] can be related with Euler rates [φ̇ θ̇ ψ̇] by using the following

relation [60]: 
p

q

r

= Rφ Rθ Rψ̇


0

0

ψ̇

+Rφ R
θ̇


0

θ̇

0

+R
φ̇


φ̇

0

0

 (3.11)

Rφ , Rθ and Rψ are already defined in Equation 3.4. Besides, R
φ̇

, R
θ̇

and Rψ̇ can be

accepted as a unit matrix I since φ̇ , θ̇ and ψ̇ are small. By substituting them into

Equation 3.11, the following expression is obtained:
p

q

r

=


1 0 0

0 cos(φ) sin(φ)

0 −sin(φ) cos(φ)




cos(θ) 0 −sin(θ)

0 1 0

sin(θ) 0 cos(θ)




0

0

ψ̇



+


1 0 0

0 cos(φ) sin(φ)

0 −sin(φ) cos(φ)




0

θ̇

0

+


φ̇

0

0



=


−φ̇ − sin(θ)ψ̇

cos(φ)θ̇ + sin(φ)cos(θ)ψ̇

−sin(φ)θ̇ + cos(φ)cos(θ)ψ̇



=


1 0 −sin(θ)

0 cos(φ) sin(φ)cos(θ)

0 −sin(φ) cos(φ)cos(θ)




φ̇

θ̇

ψ̇



(3.12)

By calling the angular transformation matrix with Rr notation, relation of angular

velocities can be expressed as follows:

ω = Rrη̇ (3.13)

where,

Rr =


1 0 −sin(θ)

0 cos(φ) sin(φ)cos(θ)

0 −sin(φ) cos(φ)cos(θ)

 (3.14)

22

Euler rates can also be represented in terms of body angular velocities. Simply mul-

tiplying both sides of the Equation 3.13 with Rr
−1, the following relation is obtained:

η̇ =


1 sin(φ) tan(θ) cos(φ) tan(θ)

0 cos(φ) −sin(φ)

0 sin(φ)/cos(θ) cos(φ)/cos(θ)

ω (3.15)

There is an orthogonal vector of body angular velocities, however it is not true for

Euler rates vector. This brings the following:

η̇ =


φ̇

θ̇

ψ̇

 6=


ωx

ωy

ωz


I

(3.16)

This non-orthogonality brings a singularity in the transformation matrix of Equa-

tion 3.16. Singularity can be seen when θ = ±90°. To avoid this situation, pitch

angle can be limited or a quaternion based vector rotation can be used.

Equation 3.15 may also be simplified because the quadrotor will mainly move around

the hover point, where the angles φ and θ are close to zero. By using the small angle

assumption, Rr simplifies to an identity matrix I3x3. Therefore, the relation between

body angular velocities and Euler rates become:
p

q

r

=


φ̇

θ̇

ψ̇

 (3.17)

Up to this point, reference frames have been described and necessary transformation

matrices have been obtained. Now, the derivation can be carried on with dynamics

modelling.

3.3 Nonlinear Dynamic Model

In order to obtain the representation of quadrotor’s nonlinear model, Newton-Euler

formalism is adopted. Newton’s equations are based on the inertial reference frames.

For our case, additional terms come up due to the selection of body fixed reference

23

frame. Newton’s equations of motion describe the combined rotational and trans-

lational dynamics of a rigid body. These equations can be investigated under two

subsystems: rotational subsystem (roll, pitch and yaw) and the translational one (al-

titude, x and y). According to these, dynamics of the rigid body are expressed under

the following generalized form [62], [60]:

Jω̇ +ω× Jω = ∑Mext (3.18)

mV̇B +ω×mVB = ∑Fext (3.19)

At the right hand side of Equations 3.18 and 3.19, external forces and moments acting

on the quadrotor body are expressed. It is better to start with describing these effects.

3.3.1 Forces and Moments Acting on the Quadrotor

Quadrotor’s motion is shaped by the external forces and moments exerted on the

system. These effects can be expressed in the body fixed reference frame. The main

contribution comes with the propeller rotation. Besides, some of the external effects

can be neglected to form a simpler model. Let’s start with the propeller force and

moments.

As the propellers rotate, aerodynamic forces and moments are produced and exerted

on the system. In Figure 3.2, force and moment of each rotor is indicated. By specify-

ing each rotor with "i" subscript, the following expressions can be written [57], [35],

[29], [40]:
Fi = bΩ

2
i

Mi = dΩ
2
i

(3.20)

In Equation 3.20, force and moments of the ith rotor are expressed. b and d terms rep-

resent the aerodynamic thrust and drag contributions. These factors depend on rotor

blade radius and area, air density, speed of the rotor and experimental aerodynamics

coefficients Cτ and CD. Since the quadrotor’s altitude variation is somehow limited, it

can be assumed that air density is constant. Although b and d are not constant over the

entire flight regime, they are mainly dependent on varying propeller speed Ωi. Thus,

24

these terms can be experimentally determined for propulsion system by scanning the

propeller speed range.

In Section 3.1, the control inputs are defined as U1, U2, U3 and U4 and their relations

have been given in Equation 31. Now, these inputs can be put into vector form to be

able to use in the equations of motion.

The total force generated by the propellers can be written in frame FB as:

Fprop,B =


0

0

−U1

=


0

0

−b(Ω2
1 +Ω2

2 +Ω2
3 +Ω2

4)

 (3.21)

There is also an expression for the moments acting on the quadrotor system, Mprop,B.

If “l” is considered as the moment arm length for each rotor, the following equation

can be written:

Mprop,B =


U2

U3

U4

=


F1l−F2l−F3l +F4l

F1l +F2l−F3l−F4l

−M1 +M2−M3 +M4

=


bl(Ω2

1−Ω2
2−Ω2

3 +Ω2
4)

bl(Ω2
1 +Ω2

2−Ω2
3−Ω2

4)

d(−Ω2
1 +Ω2

2−Ω2
3 +Ω2

4)

 (3.22)

In addition to propeller force and moments, there is a contribution of the gravitational

force. It can be expressed in Earth frame FE as follows:

Fgrav,E = m


0

0

g

 (3.23)

This gravitational force can also be expressed in body fixed frame FB by using the

rotation matrix RBE found in Equation 3.5.

Fgrav,B = mRBE


0

0

g

 (3.24)

Another moment contribution comes from the gyroscopic effects produced by the

propellers. Although quadrotor propellers rotate in opposite directions to balance the

torque, net moment will not be zero for most of the time. There is a fact that pitch and

25

roll rates will not be zero, and thus, the inertia of the rotors Jr should be considered.

Following equation can be written to describe the gyroscopic moment in FB [63], [59],

[30]:

Mgyro,B =−ω×


0

0

JrΩ

 (3.25)

In Equation 3.25, Ω defines the propeller’s relative speed and given as follows:

Ω = Ω1−Ω2 +Ω3−Ω4 (3.26)

In addition to the gyroscopic moment, there is also aerodynamic drag force. In this

thesis study, quadrotor will make position hold most of the time and it will not reach

high speeds. Thus, the drag force might be neglected.

Now, Equations 3.21, 3.22, 3.24 and 3.25 can be combined to obtain ∑Fext and

∑Mext .

∑Fext =


0

0

−U1

+mRBE


0

0

g

 (3.27)

∑Mext =


U2

U3

U4

−ω×


0

0

JrΩ

 (3.28)

3.3.2 Rotational Equations of Motion

Equation 3.18 will be used to derive the rotational equations of motion. On the left

hand side of the equation, ω is already defined in Equation 3.3. ω̇ can also be ex-

pressed as follows:

ω̇ =


ṗ

q̇

ṙ

 (3.29)

Since the derivation has been made in the body fixed frame, a time independent inertia

matrix is obtained. It has been already assumed a symmetric frame. Thus, this will

26

bring a diagonal matrix, whose off-diagonal elements are zero. Finally, quadrotor’s

inertia matrix can be defined as:

J =


Ixx 0 0

0 Iyy 0

0 0 Izz

 (3.30)

In Equation 3.30, Ixx, Iyy and Izz represent the moments of inertia around principle

axes.

The rotational equations of motion can be written with the previously introduced

vectors as:
Ixx 0 0

0 Iyy 0

0 0 Izz




ṗ

q̇

ṙ

+


p

q

r

×


Ixx 0 0

0 Iyy 0

0 0 Izz




p

q

r

=


U2

U3

U4

−


p

q

r

×


0

0

JrΩ

 (3.31)

By rearranging Equation 3.31, the final form of the rotational equations of motion are

obtained as follows:
ṗ

q̇

ṙ

=


(Iyy− Izz)qr/Ixx

(Izz− Ixx)pr/Iyy

(Ixx− Iyy)pq/Izz

+


U2/Ixx

U3/Iyy

U4/Izz

+

−JrqΩ/Ixx

Jr pΩ/Iyy

0

 (3.32)

With the integration of Equation 3.32, body angular rates [p,q,r] are obtained. To

obtain Euler angles, the body rates should be used with transformation matrix Rr that

is found in Equation 3.15:
φ̇

θ̇

ψ̇

=


1 sin(φ) tan(θ) cos(φ) tan(θ)

0 cos(φ) −sin(φ)

0 sin(φ)/cos(θ) cos(φ)/cos(θ)




p

q

r

 (3.33)

Now, Equation 3.33 can be integrated to get the Euler angles [φ ,θ ,ψ]. With this

step, the rotational dynamic model of the quadrotor have been obtained with Equa-

tions 3.32 and 3.33.

Although the rotational equations of motion have been found successfully, they seem

quite complex to use in control algorithm design. Therefore, one might want to sim-

plify these equations. In Section 3.2.2, small angle assumption has been made and

27

Equation 3.17 have been obtained. By using the equality represented there, [p,q,r]

can be replaced with [φ̇ , θ̇ , ψ̇]. With that change, the simplified version of the rota-

tional equations of motion can be found as:
φ̈

θ̈

ψ̈

=


(Iyy− Izz)θ̇ ψ̇/Ixx

(Izz− Ixx)φ̇ ψ̇/Iyy

(Ixx− Iyy)φ̇ θ̇/Izz

+


U2/Ixx

U3/Iyy

U4/Izz

+

−Jrθ̇Ω/Ixx

Jrφ̇Ω/Iyy

0

 (3.34)

In the simulations, Equations 3.32 and 3.33 will be used to represent the rotational

dynamics of the quadrotor. However, Equation 3.34 will be adopted in control law

design process due to its simpler form.

3.3.3 Translational Equations of Motion

Equation 3.19 will be used to derive the rotational equations of motion. ∑Fext has

already been derived on the right hand side of the equation. The only unknown is the

V̇B term that can be found by differentiating Equation 3.7 with respect to time.

ξ̈ = ṘEBVB +REBV̇B (3.35)

There is a need of a representation for ˙REB, which has emerged in Equation 3.35.

Since the transformation matrix REB is orthogonal, the properties of orthogonality

[63] can be used, [62] so that ˙REB can be expressed as the dot product of REB with

the skew symmetric matrix of ω . Then, ˙REB becomes:

ṘEB = REBω̃ (3.36)

It is also known that dot product of any vector with a skew symmetric matrix ω̃ can

be expressed as a cross product of ω with that vector [63], [61], [62]. This can be

expressed with Equation 3.7:

ω̃S = ω×S (3.37)

By substituting Equations 3.36 and 3.37 into Equation 3.35, the following expression

is obtained:

ξ̈ = REB(ω×VB)+REBV̇B (3.38)

28

Finally, V̇B term can be pulled from Equation 3.38 as follows:

V̇B = R−1
EBξ̈ −ω×VB (3.39)

Now, by substituting Equations 3.39 and 3.27 into Equation 3.19, translational equa-

tions of motion are obtained as:
0

0

−U1

+mRBE


0

0

g

= m(REB
−1

ξ̈ −ω×VB)+ω×mVB (3.40)

By multiplying both sides of the Equation 3.40 with REB and simply dividing both

sides with constant m, the following simplified form is obtained:

REB


0

0

−U1/m

+REBRBE


0

0

g

= REBREB
−1

ξ̈ (3.41)

In Equation 3.41, REBREB
−1 and REBRBE terms are simplifies to yield an identity

matrix I3x3. Thus, equation can be rewritten as follows:

ξ̈ = REB


0

0

−U1/m

+


0

0

g

 (3.42)

At the last step, the final version of translational equations of motion can be obtained

by putting [ẍ, ÿ, z̈] into ξ̈ as follows:
ẍ

ÿ

z̈

= REB


0

0

−U1/m

+


0

0

g

 (3.43)

3.3.4 Rotor Dynamics

In Sections 3.3.2 and 3.3.3, rotational and translational equations of motion have

been obtained for the quadrotor. These equations are based on the forces and mo-

ments produced by the propellers. However, there is not a linear relationship between

29

commanded and obtained control inputs on the real platform. Control law algorithm

will calculate the required rotational speed for each rotor to maintain the attitude of

the quadrotor. However this reference cannot be followed by the rotors instantly due

to the dynamics of the rotor.

Today, most of the quadrotor platforms uses Brushless DC Motors (BLDC) as the

hearth of their propulsion system. These motors are practical to use because of high

torque capacity and low friction. In general, DC motors are controlled by varying

the DC voltage on the motor armature. There are two or more permanent magnets

that impose a magnetic field that enables rotor’s rotation. By applying a DC current

to the armature, generated magnetic forces rotate the rotor hub. For the BLDC case,

however, there is a difference in control mechanism. These motors need a electronic

speed controller unit (ESC) to feed the stator unit. These ESC systems create three-

phase AC output (instead of DC power) to rotate the rotor. Although they give AC

output, these units take DC power input. That is why BLDC has slightly different

dynamics than standard brushed DC motor. Even so, the dynamics of a BLDC at

steady state are quite similar to the one of DC motors [64]. Therefore, they can be

modelled similar to DC motors.

In studies [59], [64], [29], [37] and [30], BLDC motor is modeled with the following

equation:

ω̇m =−1
τ

ωm−
d

ηgr3J
ωm

2 +
1

kmτ
u

1
τ
=

km
2

RJ

(3.44)

where:

♦ ωm : motor angular speed

♦ τ : motor time constant

♦ d : drag factor

♦ ηg : gear box efficiency

♦ r : gear box reduction ratio

♦ J : propeller inertia

30

♦ km : torque constant

♦ u : motor input voltage

♦ R : motor internal resistance

Equation 3.44 describes the relation between the input voltage and rotor speed. This

relation adds difficulty to the control algorithm design. In some of the studies [30],

[36], [59] however, corresponding dynamics are neglected. They have considered a

linear relationship between rotor speed and the input voltage, which is a Pulse Width

Modulation Signal (PWM) in most of the cases. This can be done if the system

responds very fast to the applied input. For this thesis study, the response of the

motors should be checked so that these dynamics might be neglected. A transfer

function representing the rotor dynamics can be obtained, so that it can be used in the

simulation models.

3.3.5 State Variables and Equations

Rotational and translational equations of motion have been obtained in Sections 3.3.2

and 3.3.3. They can also be represented in a state space form. There are 12 states for

a quadrotor system, and the state vector can be defined as;

X =
[
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

]T
(3.45)

In simplified rotational equations of motion, Euler angles and their rates are used. For

translational dynamics, the orientation of quadrotor is directly defined with x, y and

z. Thus, the states can be written as;

X =
[
φ φ̇ θ θ̇ ψ ψ̇ z ż x ẋ y ẏ

]T
(3.46)

Control input vector should also be expressed so that the state space model of the

system can be formed. Control inputs have already been defined in Equation 31,

therefore control vector U can be represented as:

U =
[
U1 U2 U3 U4

]T
(3.47)

31

By gathering the control input expressions from Equations 3.21 and 3.22, the control

vector U can be written as follows:
U1

U2

U3

U4

=


b b b b

bl −bl −bl bl

bl bl −bl −bl

−d d −d d




Ω1

2

Ω2
2

Ω3
2

Ω4
2

 (3.48)

Control inputs have been defined in terms of rotor speeds, however there should also

be a reverse relation such that desired propeller speeds can be found corresponding to

the inputs calculated by the control algorithm. The inverse relation can be written as

follows: 
Ω1

2

Ω2
2

Ω3
2

Ω4
2

=


1

4b
1

4bl
1

4bl − 1
4d

1
4b − 1

4bl
1

4bl
1

4d
1
4b − 1

4bl −
1

4bl −
1

4d
1

4b
1

4bl − 1
4bl

1
4d




U1

U2

U3

U4

 (3.49)

Now, derived equations of motion can be revisited. For the rotational dynamics, the

simplified version in Equation 3.34 should be used so that obtained state space model

is simple enough to work on control law design.
φ̈

θ̈

ψ̈

=


(Iyy− Izz)θ̇ ψ̇/Ixx

(Izz− Ixx)φ̇ ψ̇/Iyy

(Ixx− Iyy)φ̇ θ̇/Izz

+


U2/Ixx

U3/Iyy

U4/Izz

+

−Jrθ̇Ω/Ixx

Jrφ̇Ω/Iyy

0

 (3.34)

Separate equations can be written down from each row of Equation 3.34 as follows:

φ̈ =
Iyy− Izz

Ixx
ψ̇θ̇ +

U2

Ixx
− Jr

Ixx
θ̇Ω

θ̈ =
Izz− Ixx

Iyy
φ̇ ψ̇ +

U3

Iyy
− Jr

Iyy
φ̇Ω

ψ̈ =
Ixx− Iyy

Izz
φ̇ θ̇ +

U4

Izz

(3.50)

Equation 3.50 can be further simplified by defining new variables as follows:

φ̈ = a1x4x6 +b1U2−a2x4Ω

θ̈ = a3x2x6 +b2U3−a4x2Ω

ψ̈ = a5x2x4 +b3U4

(3.51)

32

where:

a1 =
Iyy− Izz

Ixx
, a2 =

Jr

Ixx
, a3 =

Izz− Ixx

Iyy
, a4 =

Jr

Iyy
, a5 =

Ixx− Iyy

Izz

b1 =
1

Ixx
, b2 =

1
Iyy

, b3 =
1
Izz

For the translational dynamics, Equation 3.43 can be revisited for state space conver-

sion. 
ẍ

ÿ

z̈

= REB


0

0

−U1/m

+


0

0

g

 (3.43)

where:

REB =


c(θ)c(ψ) s(φ)s(θ)c(ψ)− c(φ)s(ψ) c(φ)s(θ)c(ψ)+ s(φ)s(ψ)

c(θ)s(ψ) s(φ)s(θ)s(ψ)+ c(φ)c(ψ) c(φ)s(θ)s(ψ)− s(φ)c(ψ)

−s(θ) s(φ)c(θ) c(φ)c(θ)

 (3.10)

Separate equations can be written down from each row of Equation 3.43 as follows:

ẍ =−U1

m

(
cos(φ)sin(θ)cos(ψ)+ sin(φ)sin(ψ)

)
ÿ =−U1

m

(
cos(φ)sin(θ)sin(ψ)− sin(φ)cos(ψ)

)
z̈ = g−U1

m

(
cos(φ)cos(θ)

) (3.52)

Equation 3.52 can be further simplified by defining new variables as follows:

ẍ =−U1

m

(
cos(x1)sin(x3)cos(x5)+ sin(x1)sin(x5)

)
ÿ =−U1

m

(
cos(x1)sin(x5)sin(x3)− sin(x1)cos(x5)

)
z̈ = g−U1

m

(
cos(x1)cos(x3)

) (3.53)

As a remark for Equation 3.53, ux and uy terms can also be defined to yield the

following:

ux = cos(φ)sin(θ)cos(ψ)+ sin(φ)sin(ψ)

uy = cos(φ)sin(θ)sin(ψ)− sin(φ)cos(ψ)
(3.54)

33

Finally, the complete state space representation of the quadrotor system can be repre-

sented as follows:

ẋ = f (x,U) =



x2

a1x4x6 +b1U2−a2x4Ω

x4

a3x2x6 +b2U3−a4x2Ω

x6

a5x2x4 +b3U4

x8

g− U1
m

(
cos(x1)cos(x3)

)
x10

−U1
m

(
cos(x1)sin(x3)cos(x5)+ sin(x1)sin(x5)

)
x12

−U1
m

(
cos(x1)sin(x5)sin(x3)− sin(x1)cos(x5)

)



(3.55)

34

CHAPTER 4

SYSTEM HARDWARE AND SOFTWARE

In this chapter, the software elements used for the implementation of the control

system and the hardware elements of the quadrotor platform are explained in de-

tail. Quadrotor platform is a mechatronic system in which multiple electronic devices

work in harmony. The foundation of the system is based on the electrical energy and

the movement of the system is ensured by the rotation of the electric motors. Sys-

tem uses different sensors for motion control and has a central control board. There

are different products and software on the market in terms of actuator, sensor and

controller unit. This chapter describes the hardware and software preferences for the

platform created within the scope of this study.

4.1 Hardware Overview

The quadrotor in Figure 4.1 was created for this thesis study, and has been formed

by the following hardware elements:

• Quadrotor Frame

• Propulsion System

• Pixhawk

• Raspberry Pi

• RC Transmitter and Receiver

• Lidar

35

• Lipo Battery and DC-DC Converters

Figure 4.1: Quadrotor platform used in this study

The hardware of the Quadrotor system has been selected according to the needs of

this study. At the beginning of this work, it was aimed to design a platform that is

able to fly at least 15min with a maximum payload of 500g. In this respect, the com-

patibility of the quadrotor components, especially the propulsion system, with other

components is very important. Each component integrated in the system changes the

weight and inertia, which results in both reduced payload and flight time. In order to

achieve the expected performance, weight-flight time optimization is required so that

the program called eCalc [6] was used. This program gets propulsion system, battery,

frame size, and weight as inputs and produce flight time, power consumption and etc.

as the output. As a result of the optimizations made with this program, a large part of

the equipment to be used in our platform was decided. Entry page eCalc is shown in

Figure 4.2.

At this point, explaining the selected equipments and their properties will provide an

understanding of the effects on the results of this study.

4.1.1 Quadrotor Frame

Quadrotor frame consists of 4 arms, a plate which acts as a connector and also serves

as a power distribution board, and a variety of connecting elements. It is possible

to select two configurations, cross or plus shaped. As explained in Section 3.1, our

36

Figure 4.2: eCalc - RC Calculator [6]

quadrotor is configured as cross shaped. The most important requirements are the

sturdiness and having a light-weight frame. Considering the electronic boards and

batteries to be placed on the system, a medium size frame had to be chosen. Initially,

the F450 frame that is used by many researchers was considered, but it was realized

that the hardware elements would remain very close to the propellers, and therefore

the larger frame S500 was preferred. The centre plate of this frame, seen in Figure

4.3, offers more space for hardware placement and larger motor and propeller con-

figurations might be preferred. In this way, usage of a propulsion system that can

provide a reasonable flight time is possible. In addition, some 3d printed parts are at-

tached to the frame for the placement of electronic boards and a custom frame shape

has been obtained.

Figure 4.3: S500 Quadrotor Frame [7]

37

4.1.2 Propulsion System

The most important equipment group of the Quadrotor system is the propulsion sys-

tem. The flight performance varies hugely depending on the selected brushless motor,

electronic speed controller (ESC) and propeller trio. T-motor [8] products were pre-

ferred for the quadrotor platform used in this thesis. The propulsion system, created

with optimizations from the eCalc program, consists of the following elements:

• T-motor Navigator Type MN3110 KV700 brushless motor (Figure 4.4)

• T-motor 40A 600Hz ESC (Figure 4.5)

• T-motor 12*4 Carbon Fiber Propeller

The motors used on the quadrotor are placed on each arm of the frame so that each

neighbouring motor rotates in the opposite direction to the other. This is to cancel the

net torque around the centre of gravity. Depending on the orientation of the quadrotor

around its axes, each motor is driven with different speed commands. In this way, a

balanced flight is aimed to be achieved.

Figure 4.4: Motor and propeller pair [8]

Brushless Motors are classified according to their stator size. There are also different

’KV’ marked motors of the same size. Here, KV means the constant velocity of a

motor. It is measured by the number of revolutions per minute (RPM) when a motor

turns when 1V (one volt) is applied with no load attached to that motor [65]. With

this stator size and your choice of KV, one can choose how fast the motor will turn

depending on the applied voltage. Of course, there will be different measurement

readings when the motor is loaded. When the propeller is connected, it will generate

38

different thrust forces depending on the propeller properties. For this reason, compa-

nies generally publish the performance values of their motors attached with different

sets of propellers.

Propellers, on the other hand, usually have 2 descriptive numbers. The first one spec-

ifies the diameter of the propeller, while the second denotes the pitch value. Together,

they form the propeller characteristics. Using eCalc, both motor and propeller have

been selected at the same time. With this carbon fibre propeller, the motor is able to

produce a thrust of 890g at full throttle with 3S Lipo battery. In this case, 4 engines

can reach up to a thrust value of 3.5kg. For a quadrotor aimed as 1.6kg, the motors

will rotate with almost half throttle in the case of hover condition. The important

thing here is to keep the throttle value in the hover situation as low as possible, since

the speed of the quadrotor motors are limited to the full throttle and reaching to that

point will bring the loss of control due to speed saturation.

Figure 4.5: T-motor ESC [8]

The last remaining propulsion system component is the electronic speed controller

(ESC). These ESCs are devices that control the rotational speed of the motor. Quadro-

tor autopilot board sends commands to each motor depending on the stability of the

system. These commands are transmitted in the form of Pulse Width Modulation

(PWM) signals. ESC units get these pulses as input, supply the necessary AC Voltage

to the motors and allow them to rotate at the targeted speed. Today’s modern ESCs

are often more sensitive with back emf measurement. The ESC used in this study

can provide continuous current of 40A, and has an update rate of 600Hz. One of the

most vital parameters for the quadrotor system is the response time of the motors. In

order to get a good performance and to increase the actuator bandwidth as much as

possible, low response time values should be obtained. That’s why, T-motor products

have been preferred in this study.

39

4.1.3 Pixhawk

The main focus of this study is the orientation control of a quadrotor. To do this, there

is a need for a microcontroller unit and various sensors for orientation data. There are

a lot of products on the market with different features and prices. Our goal was

to use a board that accommodates several interfaces and supports different software

platforms. That’s why Pixhawk autopilot board, in Figure 4.6, has been chosen as

the main element of this platform.

Figure 4.6: Pixhawk [9]

Pixhawk is an open-hardware autopilot board that is used by researchers, hobby com-

munities and developers. This board is based on 32-bit ARM Cortex M4 micro-

controller equipped with accelerometer, gyroscope, compass and etc. In addition to

having internal sensors, UART serial port, I2C, CAN and S.BUS interfaces are sup-

ported. Multi-functional hardware structure enables communication with different

sensors and boards. In this study, the sensor data on Pixhawk is used as the primary

control source. Besides, Raspberry Pi board and Lidar connections are implemented

through serial interfaces and system orientation and position control is achieved.

This board supports various flight stacks such as Px4 and ArduPilot. Since it is a

Linux based board, it also offers the possibility to develop our own flight stack. One

of the main reasons why this board has been preferred is to be able to run Simulink

models onboard. A Simulink Support Package is available for Pixhawk [15]. In this

thesis, the control algorithms designed in Simulink have been embedded on Pixhawk

autopilot by using provided Support Package. Details about this process will be ex-

40

plained in Section 4.2.

4.1.4 Raspberry Pi

Another focus of this study is to achieve position control with image feedback. The

Pixhawk board is an accomplished board for orientation control, but it does not have

the capability of image processing. It is only possible to control the speed of the

quadrotor using the optical flow kit that can be attached through Pixhawk serial port.

At this point, a second hardware is required to gather position information. For a

precise position control, a reasonable image processing algorithm is necessary. Cur-

rently, there are many open source algorithms and libraries created both in Python

and C++. However, a person may need a small sized computer to use them onboard.

In this context, the Raspberry Pi 3 Model B, in Figure 4.7, was the choice for image

processing root.

Figure 4.7: Raspberry Pi 3 Model B [10]

Raspberry Pi has a very fast microprocessor that you can use with its own camera

or an external one. Both Linux and Windows operating systems are possible to use

with this powerful board. Within the scope of this study, the camera of the Raspberry

Pi, given in Figure 4.8, has been used. Just like Pixhawk, there is a Simulink Sup-

port Package for Raspberry Pi hardware [16], which allows you to benefit from the

simplicity of the Simulink environment. Raspberry Pi also provides serial communi-

cation through its GPIO pins, which indeed enabled contact between boards.

41

Figure 4.8: Raspberry Pi Camera [11]

4.1.5 RC Transmitter and Receiver

Radio Control (RC) systems are devices that are used to control a remote device,

and are based on radio signals. The reference signals are transmitted and converted

into radio signals via the transmitter. The receiver on the other side converts these

signals into meaningful data and transmits them to the relevant device. In this study,

Taranis X9d Plus Transmitter and Receiver pair, given in Figure 4.9, which are used

frequently by hobby community have been preferred.

Figure 4.9: Taranis X9d Plus Transmitter and Receiver [12]

The quadrotor system built within the scope of this study has the ability to perform

autonomous hover and path following with directives of orientation and position con-

trollers. However, pilot intervention may be necessary in some cases due to security

considerations. In addition, some commands like "integral reset" and "mode change"

42

are transmitted via the transmitter. Taranis RC transmitter is an advanced device with

its knobs and switches. In this research, events such as starting the system, stopping

the motor movement, initiating data logging and activating hover / trajectory track-

ing have been managed by switches located on Taranis. In addition, it is possible to

update the gains for particular controller in the air.

4.1.6 Lidar

In order to check the height of the quadrotor from the ground, it needs a sensor that

can measure this height properly. The Pixhawk autopilot has an embedded barometer.

However, this sensor output was not used as a primary source in this study, since it can

vary directly with air pressure and temperature, and thus the target altitude may alter

depending on the conditions. Another way of obtaining height data is by means of

image processing. In this study, position of the quadrotor is obtained by identifying

the Aruco Marker left on the ground. Since there is no reference information for

height control at the point where the marker exits the camera frame, it was considered

unreasonable and it was decided to use an external device. For this reason, a small

and lightweight lidar, which is the Tf Mini Lidar given in Figure 4.10, has been used

as the altitude source. This laser range sensor has a sampling accuracy of ± 1cm. It

is not possible to perform an altitude control with millimetre precision, but quadrotor

may stay within a few centimetres of band.

Figure 4.10: Tf Mini Lidar Range Sensor [13]

43

4.1.7 Lipo Battery and DC-DC Converters

Another product that is important as the propulsion system for the Quadrotor is the

battery. Lipo batteries are commonly used as power supply in UAV applications.

What makes them preferable is that they can provide a constant voltage over a long

period of time. They can also provide high current values. Although the size of

the battery means more flight time, large batteries are not preferred because of their

weight.

Figure 4.11: Gens Ace 11.1V 3S 4000mAh Lipo Battery [14]

Formed platform can be used with 3S or 4S Lipo when the properties of Pixhawk,

power module and motor are considered. For this system, a 3S (11.1V) 4000mAh

Gens Ace product Lipo, in Figure 4.11 was preferred with an eCalc analysis. Fully

charged Lipo can supply 12.6V, while it gives 9.6V close to discharge. This voltage

difference cause the motors slow down and a noticeable amount of thrust is lost to-

wards the end of the flight. Therefore, voltage variation is also included in the control

algorithm.

The platform also includes a power brick to feed the Pixhawk autopilot module and

a DC-DC converter to feed the Raspberry Pi board. The lipo is directly connected

to the power distribution board of the quadrotor frame. Other hardware, especially

ESCs, are supplied from this board.

44

4.1.8 System Layout

The placement of the equipment on the quadrotor frame was made considering the

centre of gravity and inertia. To minimize the energy consumed by the system and

improve control performance, the centre of gravity needs to be in the frame origin.

Otherwise, some motors have to produce more thrust, which increases energy con-

sumption. For this reason, the Pixhawk, Raspberry Pi and the Lipo battery were

placed on top of each other using 3d printed parts, which can be seen in Figure 4.1.

After the installation, the hardware was connected to each other with necessary con-

nectors and soldering. The Pixhawk board is powered by a power brick, and the

Raspberry Pi is powered by a DC-DC converter module. Taranis receiver and Lidar

power up directly from the Pixhawk. ESCs are directly connected to Lipo battery via

the power distribution board. The Pixhawk board communicates with Raspberry Pi

and Lidar via the UART serial port. The receiver module, on the other hand, is con-

nected to the Pixhawk autopilot with S.BUS. In addition, PWM signals are transferred

to ESCs using Pixhawk’s Main Aux ports. This component scheme and connections

can be seen in Figure 4.12.

Figure 4.12: Diagram of quadrotor components

45

4.2 Software Overview

As mentioned in Section 4.1, Pixhawk and Raspberry Pi boards were used in this

thesis study. In order to accurately evaluate the system results, it is important to

understand the models running on the two boards and their communication.

Explanations can be initiated with the Pixhawk autopilot module, which is the root

part of the system. The Pixhawk board is a linux based system and can work with

different open source flight stacks. For example, a drone enthusiast can create a

quadrotor platform, and then use a Pixhawk to fly it rapidly. All it needs is to install

a flight stack like Px4 or Ardupilot. Since these are open source software platforms,

any user can modify the design to reflect their idea. What important is to be aware of

the software architecture.

Pixhawk software functionality is divided into many layers. There is an overall sched-

uler that enable each application run on different layers. Due to this threading, each

application can run at different cycle periods, and communicates by a message proto-

col with others. At the base task layer, there are drivers and RTOS files are running.

Operations such as Attitude, Position, and Trajectory control work on the upper lay-

ers. For example, if a user wants to implement a different controller, he/she only

needs to change the control applications, if unless the desired inputs reach there. For

more extensive changes, it is necessary to learn this threaded structure.

There is also a Simulink Support Package besides to the open source flight stacks.

What this package does is to translate the model you designed in Simulink into a

C++ script and implement it on a stable version of Px4. Then, one can easily transfer

the built files into Pixhawk via a USB cable. Since the current controller design and

system modeling is carried out in Simulink, it is a great convenience to stay in this

environment. At this point, the Simulink needs access to sensor data and interfaces

on the Pixhawk. For this purpose, some Simulink blocks have been created and ready

to use in the Support Package.

By simply adding these blocks to the Simulink model, a user can read Euler angles,

provide serial communication, read receiver data, and generate PWM outputs for the

motors. By giving different priorities to the created Simulink model, model running

46

Figure 4.13: Simulink blocks provided by the Support Package [15]

order in Pixhawk thread can be managed, and it can be run at a sample time deter-

mined by the user. In Figure 4.13, the Simulink blocks for the model are given, and

in Figure 4.14, there is the Simulink model created by using these blocks within the

aim of this study.

The created model works at a sample time of 100Hz on Pixhawk board. Euler angles

and body rates are read from the sensor blocks. The commands from the transmitter

such as system start, rotate/stop motors and algorithm mode change are fed from the

receiver block into the subsystems of algorithm. In addition, the instantaneous voltage

of the battery and how much current the system draws are obtained from the corre-

sponding blocks. At the centre of the model, attitude controller takes place. There

is a cascaded PID structure for pitch, roll and yaw channels. Angle reference is sup-

plied to these controllers. Depending on the selected system mode, these values can

be given from Taranis transmitter (if the pilot wants to control), but mainly gathered

from the position controller. The position controller also has a cascaded structure that

takes x, y and speed data as inputs. Position data is also produced in Raspberry Pi, but

sent to Pixhawk via serial communication. For this reason, data is transmitted from

47

Fi
gu

re
4.

14
:P

ix
ha

w
k

Si
m

ul
in

k
m

od
el

cr
ea

te
d

w
ith

in
th

e
sc

op
e

of
th

is
st

ud
y

48

serial UART block of Simulink model. Attitude controllers convert the commands

they produce into PWM, and these signals are transmitted to the motors via PWM

output block. There is also a buzzer in the platform such that mode transitions, low

voltage warning and etc. can be reflected to the user. Pixhawk also has the ability to

save data to the SD card. However, since it is easier to get the data from Raspberry

Pi, the data logging part was done on it. For this reason, all the important signals

generated in Pixhawk are sent to Raspberry Pi via serial UART block.

While the Pixhawk is as explained, Raspberry Pi also has a similar Support Package

[16]. A simulink model was created for the Raspberry Pi as it is easy to log data on

Simulink and review them again. In this model, the data streamed from Pixhawk can

be saved to the SD card in the form of a mat-file. Since Raspberry Pi has an integrated

Wi-Fi module, it is possible to import the mat-files produced without a physical con-

nection to the board. Furthermore, the Simulink model can be run externally on the

Raspberry Pi, and it is possible to display the signals on the desktop while the model

is running.

Serial pots were used for the communication of these two boards. However, the

devices are not synchronous, and the Raspberry Pi is not a microcontroller. It uses a

software clock, therefore it can be said that it does not support real time. Because of

these differences, some buffer functions were written to handle the data sent by the

two boards so that all data packets can be captured.

With these functions, a header of 4 bytes is added per packaged data and 2 bytes

of checksum is attached to the end of the packet (Figure 4.16). In this way, other

board obtain the correct data package by controlling both the header and checksum.

Although Pixhawk has a buffer reset mechanism in itself, Raspberry Pi does not have

this such that buffer keeps filling up when the model is not running. This causes a

big delay, for which a mechanism is formed to interrupt package delivery in case of

one-sided model action.

A counter mechanism has been established to check whether communication is healthy

or delayed. Each board produces a counter, sends it to the other board and checks the

difference between the data it sends and receives within a feedback loop. In a healthy

communication, this difference is between 3 to 5 steps, which means a maximum

49

Fi
gu

re
4.

15
:R

as
pb

er
ry

Pi
Si

m
ul

in
k

m
od

el
cr

ea
te

d
w

ith
in

th
e

sc
op

e
of

th
is

st
ud

y
[1

6]

50

Figure 4.16: Data packeting and serial sent in Pixhawk Simulink model

delay of 50ms for the model running at 100Hz. Only the position data comes from

Raspberry Pi, and the latency of these data is not a big problem since the system

dynamics is slower in position level.

0 20 40 60 80 100 120

Time (sec)

0

1

2

3

4

5

6

7

8

C
ou

nt
er

 D
iff

er
en

ce

RaspberryPi Counter Diff
Pixhawk Counter Diff

Figure 4.17: Counter Difference values for Pixhawk and Raspberry Pi boards

In some cases, data packet loss has been observed in communication, and thus a sec-

ond counter mechanism has been established. This functionality increases its own

counter in case of a counter value coming from the other computer within 1 second

periods, and produces a value about communication health by looking at the expected

counter and reached counter ratio at the end of the period. In a healthy communica-

tion, this value should be 100%, but in some cases, the Raspberry Pi model was found

to be missing data packets due to non-real-time operation as seen in Figure 4.18.

51

0 20 40 60 80 100 120

Time (sec)

50

55

60

65

70

75

80

85

90

95

100

P
er

ce
nt

ag
e

(%
)

RaspberryPi Loop Back Perf
Pixhawk Loop Back Perf

Figure 4.18: Loop Back Performance of Pixhawk and Raspberry Pi

Pixhawk board, which is used as a master, evaluates both loop back performance and

communication delay, generates a sync fail command and interrupts position control

with audible warning while leaving the controls to the pilot. In Figure 4.19, ’sync-

fail’ signal formation can be seen at the system startup.

0 20 40 60 80 100 120

Time (sec)

0

0.2

0.4

0.6

0.8

1

S
yn

c
F

ai
l

Sync Fail

Figure 4.19: Yaw Angle vs time

It is already mentioned that Simulink is used since it is easy to record data on Rasp-

berry Pi. However, the main software that runs on Raspberry is not the Simulink

52

model, but the Python script used for image processing. Although the Simulink en-

vironment enables us to use the camera, it is only possible to obtain data with simple

RGB-based filtering. Since there is no advanced library structure in this environment,

Python environment was preferred. There are many open source vision libraries, like

OpenCV, available for both Python and C++. OpenCV is an advanced resource that

includes many examples based on vision and machine learning.

In this thesis, a square shaped marker named ArucoMarker, composed of black and

white coded squares representing a binary identifier, is used. Examples of these mark-

ers can be seen in Figure 4.20. A user can detect an ArucoMarker, its orientation and

position by using OpenCV platform, and is able to publish this data to other sources.

By the help of ArucoMarker libraries coded in Python [17], it was aimed to have a

quadrotor able to detect an ArucoMarker and regulate the position with respect to that

stationary marker reference.

Figure 4.20: ArucoMarker examples [17]

There are different sized ArucoMarkers, but an eight by eight marker is used within

the scope of this study. This marker is represented in Figure 4.21.

53

Figure 4.21: ArucoMarker used in this study

Using OpenCV library, marker detection is performed and position information is

gathered according to the camera frame. For quadrotor position control, it is neces-

sary to obtain the position information which is expressed in ground frame. There-

fore, a conversion from camera frame to marker frame is performed. As an example

for marker detection and position stream, the output of the Python script in Figure

4.22 can be visited. With this script, both position and heading information is propa-

gated. Used vision algorithm has a sampling frequency between 20Hz and 30Hz.

The Raspberry Pi board runs both the Simulink model and the Python script simul-

taneously in different threads. In Figure 4.23, working programs are represented

including Python script and Simulink model. The models on both Pixhawk and Rasp-

berry Pi are set to operate in the device power-up, and can be stopped/started via the

Linux terminal whenever desired. The position and heading information generated

from the Python script is transmitted to the Simulink model via local UDP commu-

nication. Then, this data packet is sent to Pixhawk with Simulink serial blocks of

Raspberry Pi model.

54

Figure 4.22: Example for ArucoMarker detection via Raspberry Pi camera

Figure 4.23: List of programs or threads that are currently operated by Linux Kernel

of Raspberry Pi

55

Explained software architecture and communication interfaces described in this sec-

tion are also shown in the diagram of figure 4.24.

Figure 4.24: Diagram of software architecture

4.3 Physical Parameters of the Quadrotor

To be able prepare a controller for a quadrotor system, a person needs a mathematical

model that reflects the system dynamical behavior. Closer the model is to reality,

the better the performance of the designed controller on the quadrotor. In addition,

the created algorithm must use basic parameters, such as motor characteristics, to

produce logical outputs. For this reason, some of the basic quadrotor parameters

should be properly determined and reflected in the mathematical model and control

algorithm.

56

4.3.1 Mass Moment of Inertia

The Quadrotor system has a relatively simple dynamics compared to other aircrafts.

The most dominant element of this dynamic behaviour is the mass moment of iner-

tia. The most reasonable way to determine the inertias around principal axes is to

construct the CAD model of the quadrotor, and obtain the values from here. How-

ever, this solution requires detailed modeling, where too many cables and connectors

exist, and requires a big effort. For this reason, experimental measurement method

was preferred. In this method, called Bifular Pendulum Theory, quadrotor system

is suspended with parallel ropes in order to form oscillations around the axis to be

measured [66], [18]. In Figure 4.25, an example pendulum setup can be seen. The

oscillation period of the suspended object varies depending on the rope length and the

distance between the ropes.

Figure 4.25: Setup for Bifular Pendulum Theory [18]

The period of oscillation is noted after providing random swings with a setup of

known rope length and rotation radius, and a formula is used to calculate the moment

of inertia around that axis. Using this method, the inertia around each axis can be

experimentally calculated.

Quadrotor mass moment of inertia around its principal axes can be calculated using

57

Equation 4.1:

Ixx,yy,zz =
mgr2T 2

x,y,z

4π2l
(4.1)

where:

♦ Ixx,yy,zz : mass moment of inertia of quadrotor around x/y/z axis (kgm2)

♦ Tx,y,z : period of oscillation (sec)

♦ m : mass of quadrotor (kg)

♦ g : acceleration of gravity (m/s2)

♦ r : radius of rotation (m)

♦ l : length of suspension ropes (m)

The quadrotor platform used in this thesis was also suspended from 3 axes separately

and random oscillations were provided. Figure 4.26 shows the oscillations formed in

yaw angle when the quadrotor is suspended from the z-axis.

0 5 10 15 20 25 30 35

Time (sec)

0

20

40

60

80

100

120

Y
aw

 A
ng

le
 (

de
g)

Yaw Angle,

Figure 4.26: Yaw angle response to given oscillations in pendulum setup

It is not easy to give this oscillation from only one axis, and small swings in pitch and

roll dynamics is also observed as seen in Figure 4.27.

58

0 5 10 15 20 25 30 35

Time (sec)

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

A
ng

le
 (

de
g)

Roll Angle,
Pitch Angle,

Figure 4.27: Roll and Pitch Angle vs time

After a few trials, the mass moment of inertia values were found as; Ixx = 0.186kgm2,

Iyy = 0.235kgm2 and Izz = 0.112kgm2.

4.3.2 Propulsion System Parameters

The quadrotor control algorithm generates thrust and moment commands for each

principal axis to stabilize the platform. However, the only communication channel

of the autopilot module with motors is PWM signals. Therefore, the PWM values

corresponding to these signals must be found in order for the motor to reach the

desired thrust values in the generation of these force and moments. As explained in

section 4.1.2, the motor speed varies depending on the voltage applied. Therefore,

Lipo voltage must also be taken into account when determining the PWM-Thrust

relationship, since the battery voltage decreases along the flight envelope. In order

to get the propulsion system properties, a thrust test bench was prepared as seen in

Figure 4.28.

In this setup, varying PWM signals were given at different voltage values, and the mo-

tor speed, current drawn by the system and the produced thrust values were measured.

59

Figure 4.28: Thrust measurement setup for quadrotor motor-propeller pair

In Table 4.1 and 4.2, test results under 12.6V and 11.4V Lipo voltage are shown. In

order to perform healthy experiments, a DC power supply was used instead of Lipo

battery, and PWM signal was not increased beyond 1600 due to 5A current limit of

the DC source.

Table 4.1: Motor Parameter Identification Test for 100% Battery

PWM Voltage (V) Speed (RPM) Current (A) Thrust (N)

1150 12.6 1282 0.45 0.38

1200 12.6 1565 0.56 0.59

1300 12.6 2211 0.94 1.21

1400 12.6 2870 1.66 2.07

1500 12.6 3580 2.82 3.26

1600 12.6 4192 4.35 4.55

60

Table 4.2: Motor Parameter Identification Test for 60% Battery

PWM Voltage (V) Speed (RPM) Current (A) Thrust (N)

1150 11.4 1157 0.44 0.33

1200 11.4 1437 0.53 0.50

1300 11.4 1988 0.85 0.99

1400 11.4 2603 1.44 1.70

1500 11.4 3275 2.44 2.70

1600 11.4 3858 3.70 3.83

For these results, many graphs, showing the relationship of different parameters, can

be plotted. As shown in Figure 4.29, higher motor speed and thrust values are ob-

tained for the same PWM signal under higher voltage values.

1150 1200 1250 1300 1350 1400 1450 1500 1550 1600

PWM

0.5

1

1.5

2

2.5

3

3.5

4

4.5

T
hr

us
t (

N
)

 9.6V
10.2V
10.8V
11.4V
12.0V
12.6V

Figure 4.29: Lipo voltage and thrust relation

In Chapter 3, the relationship between forces and moments causing the movement

of the quadrotor and the motor speed is expressed by Equation 3.48, which is also

61

presented below. As it can be seen here, the forces and moments are directly related

to the square of the motor speeds. In this equation, parameters b (named ’thrust

coefficient’) and d (named ’torque coefficient’) must be found, and the controller

outputs should be subjected to the solution of this equation such that desired motor

speeds shall be obtained.


U1

U2

U3

U4

=


b b b b

bl −bl −bl bl

bl bl −bl −bl

−d d −d d




Ω1

2

Ω2
2

Ω3
2

Ω4
2

 (3.48)

Figures 4.30 and 4.31 show the variation of motor speed square with the generated

thrust and torque. As it can be seen here, there is a linear relationship between them

and the parameters b and d are found to be: b = 2.368 ∗ 10−5Ns2 and d = 4.553 ∗
10−7Nms2.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Propeller Speed Squared (rad2/sec2) 105

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

T
hr

us
t (

N
)

Experimental
Linearized

Figure 4.30: Relation of thrust and the square of propeller speed

62

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Propeller Speed Squared (rad2/sec2) 105

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

T
or

qu
e

(N
.m

)

Experimental
Linearized

Figure 4.31: Relation of torque and the square of propeller speed

100 150 200 250 300 350 400 450

Propeller Speed (rad/sec)

1150

1200

1250

1300

1350

1400

1450

1500

1550

1600

P
W

M

 9.6V
10.2V
10.8V
11.4V
12.0V
12.6V

Figure 4.32: Relation of PWM and propeller speed

63

The force and torque outputs generated by the controller shall now be generated as a

motor speed command, and if the ESCs can capture these motor speeds, the system

will perform reasonably well for stabilization. Finally, the relation between motor

speed and PWM, which is shown in Figure 4.32, should be used and PWM values

should be commanded to the ESCs. In this final relation, voltage drop of Lipo battery

is also taken into consideration.

4.4 Quadrotor Test Bench

Two test benches have been created in order to test whether the designed controller

can really keep this quadrotor in a stable regime. With this way, breakage of quadrotor

after a bad flight can be prevented. First, the setup shown in Figure 4.33, which allows

the quadrotor to rotate only about one axis (pitch/roll motion), was created. The first

performance of the controllers designed with the mathematical model was tested on

this bench for pitch and roll motion.

Figure 4.33: Single axis quadrotor test bench

As the second test bench, a design that allows the quadrotor to move about 3 axes was

preferred, which holds the drone with a universal joint at its centre . Pitch, roll and

yaw movements were tested on this bench at the same time, and pre-flight algorithm

experiments were performed.

64

Figure 4.34: Three Axes Test Bench

65

66

CHAPTER 5

CONTROLLER DESIGN AND APPLICATIONS ON QUADROTOR

This chapter describes the design of two control techniques, one is the linear PID

controller and the other one is the nonlinear Backstepping technique. Two different

control loops can be introduced for the control of quadrotor system. The first one is

attitude hold and the other one is position hold. For the quadrotor system’s ability

to hold an accurate position, a well-designed attitude controller is necessary that is

because the quadrotor system provides position control with thrust vectoring. In this

context, φ and θ angles should be tracked as perfect as possible.

For the design of PID and Backstepping Controllers, mathematical expressions that

reflect quadrotor dynamics have been used, which are already derived in Chapter

3. In the initial design phase, a Simulink model including the quadrotor dynamical

model was created, and the first experiments were performed in this environment.

These trials were then carried out on the three axis test bench to see both the accuracy

of the model being created and the ability of the designed controller to stabilize this

quadrotor system. The main point here was to test designed controllers before a

catastrophic flight that might break down the quadrotor frame.

5.1 PID Controller

Well-known PID controller is the first method tried for the quadrotor system. In this

control strategy, the system regularly tries to bring the error, difference between the

reference signal and the measured value, to zero. This control method uses 3 ele-

ments. The first item, Proportional (P), produces an output proportional to the error,

and increasing the value of this term decreases the rise time, which enables quicker

67

reduction in error. The Integral (I) term of the PID controller responds proportionally

to the integral of the error, and reduces the steady state error. Derivative (D) term, on

the other hand, is used to accelerate the system and create a more stable loop.

The structure of PID controller can be expressed with, reference signal r(t), system

output y(t), error e(t), and the controller output u(t) as follows:

e(t) = r(t)− y(t)

u(t) = KPe(t)+KI

∫ t

0
e(τ)dτ +KD

de(t)
dt

(5.1)

In Laplace domain, this well-known equation can be rewritten according to 5.2:

U(s) = (KP +
KI

s
+ sKD)E(s) (5.2)

5.1.1 Attitude Control of Quadrotor

The quadrotor attitude dynamics allows the quadrotor to be directly controlled by

a PID designed for angle stabilization. However, if such a controller is preferred,

the quadrotor body rates will be uncontrolled, which may result in high rate values

in angle stabilization. Cascaded PID structure has been preferred for this quadrotor

system in order to control the fast rate dynamics and to make angle control easier. In

this context, a PID controller is selected for body rate dynamics and a PI controller is

used for the angle control as in the outer loop.

Design of the attitude controller of the quadrotor can be initiated with a reminder of

rotational equations of motion, which are given according to 3.32.
ṗ

q̇

ṙ

=


(Iyy− Izz)qr/Ixx

(Izz− Ixx)pr/Iyy

(Ixx− Iyy)pq/Izz

+


U2/Ixx

U3/Iyy

U4/Izz

+

−JrqΩ/Ixx

Jr pΩ/Iyy

0

 (3.32)

As it can be seen from the equations, roll, pitch and yaw dynamics of the quadrotor are

coupled so that it is difficult to design a controller for them. Thus, the expressions can

be simplified in a manner keeping the most dominant dynamical element. Inertia is

the most important property that shapes the quadrotor’s rotational behavior. Starting

68

with the roll axis, simplified equation and its Laplace form can be written according

to 5.3:

ṗ =
U2

Ixx
=⇒ P(s) =

U2(s)
Ixxs

(5.3)

The transfer function Gp(s) between input U2(s) and output p(s) is defined according

to 5.4 as follows:

Gp(s) =
p(s)

U2(s)
=

1
Ixxs

(5.4)

The PID structure, for which Laplace form is given in 5.2, will be used for the roll

rate control of the quadrotor system. In this case, the closed loop transfer function

will be obtained according to 5.5:

Gc =
KG

1+KG
(5.5)

Thus, closed loop transfer function for the roll rate subsystem is expressed according

to 5.6 as follows:

Gcp(s) =
Kds2 +Kps+Ki

(Kd + Ixx)s2 +Kps+Ki
(5.6)

With a selection of PID gains as Kp = 1.2, Ki = 0.8 and Kd = 0.04, step response in

Figure 5.1 is obtained.

0 1 2 3 4 5 6 7

Time (sec)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

p
 (

d
e
g
/s

e
c
)

Roll Rate, p

Figure 5.1: Roll rate step response

69

With the selected gains, the system will have a bandwidth of 1.14Hz as it can be seen

from the Bode Plot (Figure 5.2) of the closed loop system.

-15

-10

-5

0

M
a

g
n

it
u

d
e

 (
d

B
)

10-1 100 101 102 103
-60

-30

0

P
h

a
s
e

 (
d

e
g

)

Frequency (rad/s)

System: sys_p

Frequency (rad/s): 7.18

Magnitude (dB): -2.99

Figure 5.2: Closed loop roll rate Bode plot

Now, the outer angle loop can be closed. For the relation of the roll angle φ and roll

rate p, the simple expression given in 5.7 can be used. Here, it should be reminded

that p can be used instead of φ̇ as expressed in Section 3.3.2.

φ̇ = p =
φ(s)
p(s)

=
1
s

(5.7)

For this outer loop of the cascaded structure, PI controller, whose Laplace form is

given according to 5.8, was selected.

Kφ (s) = Kp +
Ki

s
(5.8)

With a selection of PI gains as Kp = 4.0 and Ki = 1.0, step response in Figure 5.3 is

obtained.

70

0 2 4 6 8 10

Time (sec)

0

0.2

0.4

0.6

0.8

1

1.2

R
o

ll
A

n
g

le
 (

d
e

g
)

Roll Angle,

Figure 5.3: Roll angle step response

With the selected gains, the system will have a bandwidth of 0.89Hz as it can be seen

from the Bode Plot (Figure 5.4) of the closed loop system.

-60

-50

-40

-30

-20

-10

0

M
a
g
n
it
u
d
e
 (

d
B

)

10-1 100 101 102 103
-135

-90

-45

0

P
h

a
s
e

 (
d

e
g

)

Frequency (rad/s)

System: roll_closed_loop

Frequency (rad/s): 5.59

Magnitude (dB): -3.01

Figure 5.4: Closed loop roll angle Bode plot

71

The three axis test setup has a metallic structure, and it has been observed that vi-

brations are formed in the quadrotor frame with high gains of PID controllers. These

vibrations cannot be simulated in the Simulink model, and therefore relatively slow

dynamics was preferred with these PID gains to be able to compare the simulation

and test setup results within a healthy procedure. These gains have been updated to

their final values with a couple of flight testing.

Similar to the roll subsystem, the same equations were used for pitch dynamics with

the same control gains since there is no big difference between the inertia values of

the respective axes. In this context, step response graph for pitch angle θ and Bode

Plot of the closed loop system can be seen in Figures 5.5 and 5.6, respectively.

0 2 4 6 8 10

Time (sec)

0

0.2

0.4

0.6

0.8

1

1.2

P
it
c
h
 A

n
g
le

 (
d
e
g
)

Pitch Angle,

Figure 5.5: Pitch angle step response

72

-80

-60

-40

-20

0

M
a

g
n

it
u

d
e

 (
d

B
)

10-1 100 101 102 103
-180

-135

-90

-45

0

P
h

a
s
e

 (
d

e
g

)

Frequency (rad/s)

System: pitch_closed_loop

Frequency (rad/s): 5.5

Magnitude (dB): -2.96

Figure 5.6: Closed loop pitch angle Bode plot

The designed Cascaded PID structure is implemented in the Simulink model as shown

in Figure 5.7. Although not used in simulations, the corresponding external reset

signals are connected to the integral blocks in order to reset the them at the beginning

of the flight and in the necessary situations of real trials.

Figure 5.7: Cascaded PID control diagram for pitch and roll axes

73

The controller of yaw subsystem was designed in the same way as pitch and roll

dynamics. However, a slower dynamic response was preferred for this axis. As men-

tioned earlier, the quadrotor movement is realized with changes in pitch, roll and yaw

angles. For the position control, quadrotor does not need to change its heading, and

can move in 2D-space without rotating about yaw axis. In this study, the yaw axis was

mostly used for the conservation of the existing heading. Therefore, a rapid reference

follow-up was not needed and a simpler structure was preferred.

For yaw rate control, PI controller was preferred with gains Kp = 0.2 and Ki = 0.05.

For the outer angle loop, only a Proportional control is applied with a gain Kp = 2.75.

Step response of yaw angle and Bode Plot of the closed loop yaw angle system can

be seen in Figures 5.8 and 5.9, respectively.

0 1 2 3 4 5 6 7

Time (sec)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Y
a
w

 A
n
g
le

 (
d
e
g
)

Yaw Angle,

Figure 5.8: Yaw angle step response

74

-80

-60

-40

-20

0

M
a

g
n

it
u

d
e

 (
d

B
)

10-1 100 101 102
-180

-135

-90

-45

0

P
h

a
s
e

 (
d

e
g

)

Frequency (rad/s)

System: yaw_closed_loop

Frequency (rad/s): 3.03

Magnitude (dB): -2.99

Figure 5.9: Closed loop yaw angle Bode plot

The designed Cascaded control structure is implemented in the Simulink model as

shown in Figure 5.10.

Figure 5.10: Cascaded PID control diagram for yaw axis

75

5.1.2 Altitude and Position Control of Quadrotor

Design of the position controllers of the quadrotor can be initiated with a reminder of

translational equations of motion, which are given according to 3.52.

ẍ =−U1

m

(
cos(φ)sin(θ)cos(ψ)+ sin(φ)sin(ψ)

)
ÿ =−U1

m

(
cos(φ)sin(θ)sin(ψ)− sin(φ)cos(ψ)

)
z̈ = g−U1

m

(
cos(φ)cos(θ)

) (3.52)

As it can be seen from the equations, X and Y motion is governed by thrust vectoring,

which means the inclination of the U1 component by φ and θ angles gives the relative

motion. Here, ψ angle term can be omitted since the quadrotor will align its heading

with the marker.

If a linearization is performed for X and Y motion equations, the simplified velocity

forms are obtained according to 5.9:

u̇ =−gθ =⇒ u(s)
θ(s)

=
−g
s

v̇ = gφ =⇒ v(s)
φ(s)

=
g
s

(5.9)

There is a need of a velocity loop to be able to control the position in an accurate

manner. This velocity controller should produce angle reference to the attitude con-

trollers. The outer position controller, as in the same manner with velocity, should

produce velocity reference. With this cascaded structure, the velocity and angle vari-

ations of the quadrotor can also be limited.

Unlike the attitude controller design, velocity expressions in 5.9 does not directly

depend on the quadrotor behavior, but depend on the gravitational acceleration. This

is not convenient to design the outer control loop since the results will be different

on the real system. Thus, controller design for position loop will be done using the

closed loop simulation model formed in Simulink.

With linearization, the trigonometric relation between angles and the translational

velocity is lost. Since the design will be based on the control model, this nonlinearity

76

can be introduced into controller with an inverse relation. There are studies [67],

[68] that consider this relation in their controller design. This relation can be given

according to 5.10 as expressed in [67]:

φd = arcsin
uy

g

θd =−arcsin
ux

g

(5.10)

For the velocity loop, a PI controller is used with gains Kp = 0.5 and Ki = 0.1. For

the outer position loop, only a proportional control is applied with a gain Kp = 1.0.

To see the performance of the controllers, a sinusoidal input is given as X position

reference, and pitch angle θ , X velocity vx and X position are monitored as it can be

seen in Figure 5.11.

0 5 10 15 20 25 30 35 40 45 50

Time (sec)

-0.5

0

0.5

1

1.5

2

P
itc

h
 A

n
g

le
 (

d
e

g
)

 - Reference

 - Simulation

0 5 10 15 20 25 30 35 40 45 50

Time (sec)

-0.1

-0.05

0

0.05

0.1

V
e

lo
ci

ty
 (

m
/s

)

V
X
 Ref.

V
X

0 5 10 15 20 25 30 35 40 45 50

Time (sec)

-0.4

-0.2

0

0.2

0.4

P
o

si
tio

n
 (

m
)

X Position Ref.

X Posititon

Figure 5.11: Response of X-Position, X-Velocity and Pitch Angle of quadrotor to

commanded position reference

77

As it can be seen from the responses, both velocity and angle subsystems can track

the commanded references by enabling a proper position control. For the position

control, the diagram shown in Figure 5.12 is applied on Simulink model.

Figure 5.12: Cascaded PID diagram for x/y position control

For the altitude control, the same procedure followed in position control can be pre-

ferred. For the altitude axis, there is no velocity - angle relation, and thus a PID con-

troller can be directly applied through this axis. At the hover condition, the quadrotor

should always balance its weight in a way that the controller should apply a constant

output in addition to the output corresponding to the altitude error. This can be seen

from the linearized relation given in 5.11:

z̈ =−U1

m
+g (5.11)

By considering the gravity term as a constant disturbance, a feed-forward control

structure is preferred. This diagram is shown in Figure 5.13.

Figure 5.13: PID diagram for altitude control

78

The PID controller of the altitude system has gains of Kp = 6, Ki = 8 and Kd = 4. The

response of quadrotor to given altitude reference is given in Figure 5.14.

0 10 20 30 40 50

Time (sec)

0

0.2

0.4

0.6

0.8

1

1.2

A
lt
it
u

d
e

 (
m

)

Ref. Altitude

Altitude

Figure 5.14: Response of quadrotor to given altitude reference

5.1.3 Attitude Performance of PID Controller on Test Bench

Attitude controller design of the quadrotor was the first step of study, and the first ver-

sion of the controller was created by using the expressions coming from the quadrotor

mathematical modeling. The design was then reflected in the Simulink model (Figure

5.15) and the attitude dynamics of the quadrotor were simulated. In order to prove

both the accuracy of the mathematical model and the controller’s ability to stabilize

this quadrotor, some trials were performed on the three axis test bench.

Within the scope of this campaign, 3 main trials were conducted. In the first one,

ramp-wise inputs were given at different times in the pitch and roll axes. While

stepwise inputs are given on the same axes being as the second trials, sinusoidal

inputs were applied in the last attempt. In these three tests, no input was given on the

yaw channel because the quadrotor does not require heading orientation for position

control.

79

Fi
gu

re
5.

15
:S

im
ul

in
k

m
od

el
us

ed
fo

rq
ua

dr
ot

or
si

m
ul

at
io

ns

80

80 90 100 110 120 130 140 150 160 170

Time (sec)

0

2

4

R
o
ll

A
n
g
le

 (
d
e
g
)

 - Reference

 - Simulation

 - Test Bench

80 90 100 110 120 130 140 150 160 170

Time (sec)

0

2

4

P
itc

h
 A

n
g
le

 (
d
e
g
)

 - Reference

 - Simulation

 - Test Bench

80 90 100 110 120 130 140 150 160 170

Time (sec)

102

104

106

Y
a

w
 A

n
g

le
 (

d
e
g

)

 - Reference

 - Simulation

 - Test Bench

Figure 5.16: Response of quadrotor to ramp-wise inputs given in pitch and roll axes

60 70 80 90 100 110 120 130 140

Time (sec)

-4

-2

0

2

4

R
o

ll
A

n
g

le
 (

d
e

g
)

 - Reference

 - Simulation

 - Test Bench

60 70 80 90 100 110 120 130 140

Time (sec)

-4

-2

0

2

4

P
itc

h
 A

n
g

le
 (

d
e

g
)

 - Reference

 - Simulation

 - Test Bench

60 70 80 90 100 110 120 130 140

Time (sec)

110

112

114

Y
a
w

 A
n
g
le

 (
d
e
g
)

 - Reference

 - Simulation

 - Test Bench

Figure 5.17: Response of quadrotor to step-wise inputs given in pitch and roll axes

81

80 85 90 95 100 105 110 115 120 125

Time (sec)

-5

0

5
R

o
ll

A
n

g
le

 (
d

e
g
)

 - Reference

 - Simulation

 - Test Bench

80 85 90 95 100 105 110 115 120 125

Time (sec)

-5

0

5

P
itc

h
 A

n
g

le
 (

d
e

g
)

 - Reference

 - Simulation

 - Test Bench

80 85 90 95 100 105 110 115 120 125

Time (sec)

96

98

100

Y
a
w

 A
n

g
le

 (
d
e

g
)

 - Reference

 - Simulation

 - Test Bench

Figure 5.18: Response of quadrotor to sinusoidal inputs given in pitch and roll axes

As shown in Figures 5.16, 5.17 and 5.18, the designed attitude controllers were

able to follow the given reference commands properly. Since the three axis test setup

has a metallic structure, vibrations were observed in the quadrotor frame if the gains

are increased. For this reason, the experiments were carried out by keeping the gains

at this level. In addition to vibrations, observed overshoot is due to the fact that

the quadrotor cannot be connected to the test setup from the center of gravity, but

is connected 6cm below. For this reason, high overshoot values were observed in

high frequency inputs. The results of the Simulink model were found to be consistent

with the results obtained from the test bench, and flight experiments were started with

these controllers.

5.2 Backstepping Controller

Backstepping is a recursive design process where intermediate control inputs are de-

fined to stabilize subsystems, that are clusters of system states. The procedure gener-

82

ally starts with the smallest feasible subsystem in the whole state-space model. After

stabilizing the smallest cluster, outer subsystems are balanced backwards in an iter-

ative manner. The operation finalizes when the most outer system is stabilized with

the virtual control input.

For most of the control methods, linearization brings simplicity. In the case of back-

stepping, however, there is no need for such simplification and nonlinearities in the

system equations can be used within the process. This also allows the control sys-

tem to react to these nonlinear phenomena. As an example, cross-coupling effects

between axes can be canceled out with the proper implementation of the backstep-

ping controller. There are couple of works on the application of backstepping for

quadrotor systems [37], [38], [40], [42] and [58]. In this chapter, the derivations that

is proposed by these studies will be followed.

The process can be initiated by recalling the equations of motion that have been ob-

tained in Section 3. Complete state space representation of the quadrotor system has

been found in Equation 3.55 as:

ẋ1 = φ̇ = x2

ẋ2 = φ̈ = a1x4x6 +b1U2−a2x4Ω

ẋ3 = θ̇ = x4

ẋ4 = θ̈ = a3x2x6 +b2U3−a4x2Ω

ẋ5 = ψ̇ = x6

ẋ6 = ψ̈ = a5x2x4 +b3U4

ẋ7 = ż = x8

ẋ8 = z̈ = g−U1

m

(
cos(x1)cos(x3)

)
ẋ9 = ẋ = x10

ẋ10 = ẍ =−U1

m

(
cos(x1)sin(x3)cos(x5)+ sin(x1)sin(x5)

)
ẋ11 = ẏ = x12

ẋ12 = ÿ =−U1

m

(
cos(x1)sin(x5)sin(x3)− sin(x1)cos(x5)

)

(3.55)

It is clear that equations representing the rotational motion do not depend on transla-

tional elements x, y, z and their derivatives. As opposed to this, equations of trans-

83

lational motion strictly depend on the rotational components φ , θ and ψ . Thus, the

overall system can be considered as made up of two subsystems that are rotational

and translational ones. Since the angular system is not dependent on the translational

terms, it can be considered as the inner loop of the design and angular system can be

stabilized by taking the desired Euler angles as reference. These angular references

can be produced by the outer translational subsystem, which will also be regulated to

hold the quadrotor’s position.

5.2.1 Backstepping Control of Rotational Motions

Backstepping design process can be initiated with the first two equations seen in the

state space representation of the equations of motion.

ẋ1 = x2

ẋ2 = a1x4x6 +b1U2−a2x4Ω

(5.12)

In Equation 5.12, roll dynamics appears as a simple double integrator system [40].

This is also the case for pitch and yaw dynamics. They all hold the control inputs U

in the expressions so that they can be extracted to find the control inputs.

x1 should be stabilized in the first step, and then x2 can be further regulated. The

tracking error for the roll angle φ can be defined as:

e1 = φd−φ

= x1d− x1

(5.13)

In order to ensure the stability of the equilibrium point where e1 = 0, Lyapunov the-

orem can be used. A positive definite Lyapunov function should be selected for e1

whose derivative with respect to time is negative semi-definite.

V (e1) =
1
2

e2
1 (5.14)

Taking the first derivative of Equation 5.14, the following representation is obtained:

V̇ (e1) = e1ė1

= e1(ẋ1d− ẋ1)

= e1(ẋ1d− x2)

(5.15)

84

With a positive definite Lyapunov function selection, its derivative can be obtained as

negative semi-definite to guarantee the stability of the system [69]. For that purpose,

a virtual control input x2v can be defined that will make ˙V (e1) = 0.

x2v = ẋ1d +α1e1 with α1 > 0 (5.16)

Here, if the real state x2 follows the virtual control input x2v, following is obtained;

V (e1) =−α1e2
1 ≤ 0 (5.17)

Thus, a stable system is obtained for x1 for the case x2 converges to x2v as defined in

Equation 5.16. There should be an outer control loop for that to be happen. It can be

done by introducing the following tracking error as the origin of outer system.

e2 = x2− x2v

= x2− ẋ1d−α1e1

(5.18)

Now, the Lyapunov function defined in Equation 5.14 should be expanded so that it

can enclose both tracking errors e1 and e2.

V (e1,e2) =
1
2

e2
1 +

1
2

e2
2 (5.19)

Before writing the derivative of the new function, derivatives of the tracking errors

can be specified for the ease of calculation:

ė1 = ẋ1d− x2 = (x2− e2−α1e1)− x2 =−e2−α1e1

ė2 = ẋ2− ẍ1d−α1ė1 = a1x4x6 +b1U2−a2x4Ω− ẍ1d +α1(e2 +α1e1)
(5.20)

Then, the first derivative of Lyapunov function becomes:

V̇ (e1,e2) = e1ė1 + e2ė2

= e1(−e2−α1e1)+ e2(ẋ2− ẍ1d−α1ė1)

= e1(−e2−α1e1)

+ e2(a1x4x6 +b1U2−a2x4Ω− ẍ1d +α1(e2 +α1e1))

(5.21)

In Equation 5.21, ẍ1d term can be accepted as 0 since the reference will be changing

slowly.

85

In order to satisfy V̇ (e1,e2)< 0, the control input U2 is extracted as follows:

U2 =
1
b1

(e1−α2e2−a1x4x6 +a2x4Ω−α1(e2 +α1e1)) (5.22)

As Equation 5.22 is put into Equation 5.21, the following expression is obtained:

V̇ (e1,e2) =−α1e1
2−α2e2

2 (5.23)

which is negative definite for α1 > 0 and α2 > 0. Thus, asymptotic stability is ob-

tained for the control of roll angle φ with input U2.

Pitch and yaw dynamics equations are very similar to the ones of roll. Thus, the

same order can be easily followed to obtain related control inputs for the remaining

rotational motions. Let’s first remind the equations of motion for pitch and yaw.

ẋ3 = x4

ẋ4 = a3x2x6 +b2U3−a4x2Ω

ẋ5 = x6

ẋ6 = a5x2x4 +b3U4

(5.24)

As the next step, the tracking errors for inner and outer systems of θ and ψ can be

introduced.

e3 = θd−θ = x3d− x3

e4 = x4− x4v = x4− ẋ3d−α3e3

e5 = ψd−ψ = x5d− x5

e6 = x6− x6v = x6− ẋ5d−α5e5

(5.25)

Similar to the Lyapunov function defined in Equation 5.19, candidate functions for

pitch and yaw can be defined as:

V (e3,e4) =
1
2

e2
3 +

1
2

e2
4

V (e5,e6) =
1
2

e2
5 +

1
2

e2
6

(5.26)

86

Time derivative of Lyapunov function for the pitch motion is obtained as follows:

V̇ (e3,e4) = e3ė3 + e4ė4

= e3(−e4−α3e3)+ e4(ẋ4− ẍ3d−α3ė3)

= e3(−e4−α3e3)

+ e4(a3x2x6 +b2U3−a4x2Ω− ẍ3d +α3(e4 +α3e3))

(5.27)

Finally, let’s extract the pitch control input U3 from Equation 5.27.

U3 =
1
b2

(e3−α4e4−a3x2x6 +a4x2Ω−α3(e4 +α3e3)) (5.28)

For the case of yaw motion, taking the time derivative of Lyapunov function yields:

V̇ (e5,e6) = e5ė5 + e6ė6

= e5(−e6−α5e5)+ e6(ẋ6− ẍ5d−α5ė5)

= e5(−e6−α5e5)

+ e6(a5x2x4 +b3U4− ẍ5d +α5(e6 +α5e5))

(5.29)

As similar to roll and pitch inputs, yaw input can be obtained from Equation 5.29.

U4 =
1
b3

(e5−α6e6−a5x2x4−α5(e6 +α5e5)) (5.30)

Obtained control inputs U3 and U4 ensures asymptotic stability by assuring both

V̇ (e3,e4) < 0 and V̇ (e5,e6) < 0 for which coefficients α3, α4, α5 and α6 are bigger

than zero.

5.2.2 Backstepping Control of Translational Motions

Translational control of the quadrotor system is composed of altitude and horizontal

plane controls. For the case of altitude, there is a direct control input U1 for the

purpose of regulation. In the case of position control, however, there is no direct

control input and thrust vectoring yields the desired motion in the x− y plane. There

is a need to find the desired angles φd , θd and ψd so that they can be fed to the attitude

controllers.

87

Let’s start with a recall of equations representing the altitude motion.

ẋ7 = x8

ẋ8 = g−U1

m

(
cos(x1)cos(x3)

) (5.31)

The tracking error is defined as follows:

e7 = zd− z = x7d− x7 (5.32)

With the virtual control input x8 = ẋ7d +α7e7, the outer loop tracking error is also

defined as:

e8 = x8− ẋ7d−α7e7 (5.33)

Let’s introduce the Lyapunov candidate for the altitude control system:

V (e7,e8) =
1
2

e2
7 +

1
2

e2
8 (5.34)

Taking the derivative of Equation 5.34, the following is obtained:

V̇ (e7,e8) = e7ė7 + e8ė8

= e7(−e8−α7e7)+ e8(ẋ8− ẍ7d−α7ė7)

= e7(−e8−α7e7)

+ e8(g−
U1

m
(cos(x1)cos(x3))− ẍ7d +α7(e8 +α7e7))

(5.35)

At the last step, the control input U1 can be extracted from Equation 5.35 so that

V̇ (e7,e8)< 0 condition is met.

U1 =
m

cos(x1)cos(x3)
(−e7 +α8e8 +g+α7(e8 +α7e7)) (5.36)

With Equation 5.36, all four control inputs of the quadrotor system, that are explained

in Section 3.1, have been obtained. Now, let’s navigate to the virtual control inputs

that should be generated for position control. In Equation 3.54 of Section 3.3.5, ux

and uy virtual inputs have already been defined as follows:

ux = cos(φ)sin(θ)cos(ψ)+ sin(φ)sin(ψ)

uy = cos(φ)sin(θ)sin(ψ)− sin(φ)cos(ψ)
(3.54)

88

Since ux and uy have very similar equation structure, it is enough to get a solution for

one of them. Let’s continue with definitions of tracking errors.

e9 = xd− x = x9d− x9

e10 = x10− x10v = x10− ẋ9d−α9e9 (5.37)

"x− y" motion equations, that are already represented in Equation 3.55, can also be

further simplified with a state-space form.

ẋ9 = ẋ = x10

ẋ10 = ẍ =−U1

m
ux

ẋ11 = ẏ = x12

ẋ12 = ÿ =−U1

m
uy

(5.38)

Defining the Lyapunov function as V (e9,e10) =
1
2

(
e9

2 + 1
2e10

2
)

, the derivative can

be investigated.

V̇ (e9,e10) = e9ė9 + e10ė10

= e9(−e10−α9e9)+ e10(ẋ10− ẍ9d−α9ė9)

= e9(−e10−α9e9)

+ e10(−
U1

m
ux− ẍ9d +α9(e10 +α9e9))

(5.39)

It can be easily shown that the virtual control input

ux =
m
U1

(−e9 +α10e10 +α9(e10 +α9e9)) (5.40)

gives us V̇ (e9,e10)< 0, yielding stability with α9 > 0 and α10 > 0.

For the case of uy, the control input can be written directly using the similarity to ux

as follows:

uy =
m
U1

(−e11 +α12e12 +α11(e12 +α11e11)) (5.41)

Here, α11 > 0 and α12 > 0 conditions should also be satisfied.

89

With Equations 5.40 and 5.41, virtual control inputs that transforms x and y refer-

ence values into control action have been obtained. This action should result in the

desired φ and θ angles so that attitude system can regulate these to ensure position

stabilization. Since ux and uy have been obtained, they can be used in Equation 3.54

to obtain φd and θd . This trigonometric solution have been given in [40] as follows.

φd = x1d = arctan(
ux sin(x5)−uy cos(x5)

(1− sin2(x5)u2
x +2cos(x5)uxuy sin(x5)+u2

y sin2(x5)−u2
y)

1
2
)

θd = x3d = arcsin(
ux cos(x5)+uy sin(x5)

(1− sin2(x5)u2
x +2cos(x5)uxuy sin(x5)+u2

y sin2(x5)−u2
y)

1
2
)

(5.42)

With the usage of Equation 5.42, desired Euler angles can be found for the attitude

controllers to be able to follow x− y position references.

5.2.3 Attitude Performance of Backstepping Controller on Test Bench

Backstepping design is based on the Lyapunov Stability. This process yields a con-

troller with constant parameters, which guarantees stability if the parameters are

grater than zero. In this process, thus, change of the constants does not disturb the

stability (small values may not bring stability due to simplified model and unknown

disturbances), but it affects the performance of the system. For this reason, the pa-

rameters should be chosen in a way that is best for the quadrotor response.

For the roll angle dynamics of the quadrotor, an example of parameter change is given

in Figure 5.19. By increasing two controller constants, the response of the system

can be improved.

However, this is not always true in the real application field. Backstepping controller

becomes more sensitive to errors and noise when the constants are increased. For the

test bench experiments, Backstepping controller parameters are selected as α1 = 4.0

and α2 = 4.0 for pitch, roll and yaw dynamics. PWM values commanded to the first

and second motors are shown in Figure 5.20. As it can be seen from the figure,

controller outputs are noisy, which blocks the increase of controller parameters. This

is not the case in PID control scheme because of the differences among the controllers.

PID control directly depends on the error term. For a rotation axis, there are just angle

90

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (sec)

0

0.5

1

1.5

2

2.5

3

3.5

4

R
o

ll
A

n
g

le
 (

d
e

g
)

 - Reference

 -
1
 = 2,

2
 = 1.5

 -
1
 = 4,

2
 = 3

 -
1
 = 6,

2
 = 4.5

 -
1
 = 8,

2
 = 6

 -
1
 = 10,

2
 = 7.5

 -
1
 = 20,

2
 = 15

Figure 5.19: Response of roll angle to given step input for changing controller pa-

rameters

and body rate errors fed into the controller. On the Backstepping however, the control

scheme differs based upon the selection of Lyapunov function. This function can be

simple enough to yield stability or a complex representation, which directly affects the

output. Besides, Backstepping includes cross-coupling effects and gyroscopic terms

that comes from the modeling part. These terms are included in the control scheme to

improve the behavior of the quadrotor, but this also increases the fluctuations in the

output since the controller try to balance more phenomenon. This situation restricts

the increase of control parameters.

91

35 40 45 50 55 60 65 70 75 80

Time (sec)

1200

1250

1300

1350

1400

1450

1500

1550

1600

1650

1700

P
W

M

Motor 1

Motor 2

Figure 5.20: Commanded PWM to motors by backstepping controller

25 30 35 40 45 50 55 60 65 70

Time (sec)

-5

0

5

R
o

ll
A

n
g

le
 (

d
e

g
) - Reference

 - Test Bench

25 30 35 40 45 50 55 60 65 70

Time (sec)

-4

-2

0

2

4

P
itc

h
 A

n
g

le
 (

d
e

g
) - Reference

 - Test Bench

25 30 35 40 45 50 55 60 65 70

Time (sec)

106

108

110

112

114

116

Y
a

w
 A

n
g

le
 (

d
e

g
)

 - Reference

 - Test Bench

Figure 5.21: Response of quadrotor to stepwise inputs given in pitch and roll axes

92

35 40 45 50 55 60 65 70 75 80

Time (sec)

0

2

4

R
o

ll
A

n
g

le
 (

d
e

g
) - Reference

 - Test Bench

35 40 45 50 55 60 65 70 75 80

Time (sec)

0

2

4

6

P
itc

h
 A

n
g

le
 (

d
e

g
) - Reference

 - Test Bench

35 40 45 50 55 60 65 70 75 80

Time (sec)

100

102

104

106

108

Y
a

w
 A

n
g

le
 (

d
e

g
)

 - Reference

 - Test Bench

Figure 5.22: Response of quadrotor to ramp-wise inputs given in pitch and roll axes

As already done in PID controller tests, stepwise and ramp-wise inputs are given to

pitch and roll channels of the quadrotor for the tests of the Backstepping controller.

As it can be seen from Figures 5.21 and 5.22, there are high overshoots exist on

both channels. This might be dependent on the far center of gravity connection of the

quadrotor to the test setup, which was also seen in PID controller trials. However,

main problem at this issue is the fact that there is a noticeable steady-state error after

a big overshoot. Backstepping controller is like a PD control strategy and does not

contain an integral term. Researchers have added integral terms to the Backstepping,

which is called Integral Backstepping to eliminate the steady-state error. With this

scheme, accurate position control cannot be reached due to weak attitude design.

Thus, position control experiments were conducted with PID controller.

93

5.3 Controller Applications on Quadrotor

After the design steps of attitude and position controllers, real flight test were per-

formed with the quadrotor platform. Pixhawk and Raspberry Pi boards were used as

specified in the Chapter 4, and the position control was performed with a reference of

ArucoMarker. The controller diagram on Pixhawk autopilot board is shown in Figure

5.23.

Figure 5.23: Control structure used for quadrotor stabilization

Yaw attitude controller was designed to hold the initial heading of the quadrotor. To

rotate the quadrotor in the direction of the marker, yaw angle reference is managed

by controlling heading difference between quadrotor and marker. This diagram is

shown in Figure 5.24. The reference value is filtered to slow-down so that quick

yaw responses can be eliminated. In this structure, quadrotor holds the last valid yaw

angle value if the marker goes out of the camera focus.

94

Figure 5.24: Yaw angle reference management during marker detection

In the real flights, it was observed that the frame vibrates less compared to the test

bench situation, thus the controller gains were increased. Final gains of the PID

Attitude Controllers are listed below:

• φ motion: Kp,φ = 20.0, Ki,φ = 3.0, Kp,p = 3.0, Ki,p = 3.0, Kd,p = 0.025

• θ motion: Kp,θ = 18.0, Ki,θ = 3.0, Kp,q = 3.0, Ki,q = 4.0, Kd,q = 0.03

• ψ motion: Kp,ψ = 6.0, Kp,r = 0.2, Ki,r = 0.1

As an example result of the new controllers, roll angle φ step response can be given

as shown in Figure 5.25.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Time (sec)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

R
ol

l A
ng

le
 (

de
g)

Roll Angle,

Figure 5.25: Roll angle step response

95

With the selected gains, the system will have a bandwidth of 3.56Hz as it can be seen

from the Bode Plot (Figure 5.26) of the closed loop system.

-80

-60

-40

-20

0

M
ag

ni
tu

de
 (

dB
)

10-1 100 101 102 103 104
-180

-135

-90

-45

0

P
ha

se
 (

de
g)

Frequency (rad/s)

System: roll_closed_loop
Frequency (rad/s): 22.4
Magnitude (dB): -3.03

Figure 5.26: Closed loop roll angle Bode plot

For the altitude and position control, selected PID gains can be listed as follows:

• x motion: Kp,x = 0.15, Kp,vx = 1.5, Ki,vx = 1.0

• y motion: Kp,y = 0.10, Kp,vy = 1.0, Ki,vy = 1.0

• z motion: Kp = 6.0, Ki = 8.0, Kd = 4.0

To test attitude controller performance of the quadrotor, pilot inputs are given from

the Taranis transmitter. In addition to that, altitude controller was used to hold the

quadrotor height. In Figure 5.27, test results o the pilot controlled quadrotor are

demonstrated.

96

35 40 45 50 55 60 65 70 75

Time (sec)

-2

-1

0

1

2

R
ol

l A
ng

le
 (

de
g)

 - Reference

 - Flight

35 40 45 50 55 60 65 70 75

Time (sec)

-2

-1.5

-1

-0.5

0

0.5

P
itc

h
A

ng
le

 (
de

g)

 - Reference

 - Flight

35 40 45 50 55 60 65 70 75

Time (sec)

-40

-39

-38

-37

-36

-35

Y
aw

 A
ng

le
 (

de
g)

 - Reference

 - Flight

35 40 45 50 55 60 65 70 75

Time (sec)

1.06

1.08

1.1

1.12

1.14

1.16

1.18

A
lti

tu
de

 (
m

)

Ref. Altitude

Altitude

35 40 45 50 55 60 65 70 75

Time (sec)

1400

1500

1600

1700

1800

1900

P
W

M

Motor 1

Motor 2

Figure 5.27: Response of quadrotor system to given pilot inputs in pitch and roll axes

97

As it can be seen from the results, quadrotor can track angle references with a good

performance. In addition to attitude, altitude control performance is satisfactory with

a resolution of±3cm. This accuracy is acceptable since the Lidar output resolution is

±1cm.

After this experiment, position control performance of the system was observed. Two

experiment results will be presented in this section. Both flights were conducted in

a room of 25m2 area by placing the marker at the middle of the space. In both of

them, quadrotor was expected to detect the marker at the ground and position hold

over marker was aimed. For the first position hold trial, commanded and obtained

velocity in x and y directions are represented in Figure 5.28. As it can be seen from

the figures, obtained velocity data is noisy, and the velocity controller cannot track

commanded reference like it was in the attitude controllers.

40 45 50 55 60 65

Time (sec)

-0.04

-0.02

0

0.02

0.04

0.06

V
e

lo
c
it
y
 (

m
/s

)

V
X
 - Ref.

V
X

40 45 50 55 60 65

Time (sec)

-0.04

-0.02

0

0.02

0.04

0.06

V
e

lo
c
it
y
 (

m
/s

)

V
Y
 - Ref.

V
Y

Figure 5.28: Quadrotor velocity in x/y directions during position hold over marker

In Figure 5.29, attitude and altitude results o the quadrotor are demonstrated for the

first position hold demonstration. Since the velocity data is noisy, velocity controller

output reference is noisy, which brings vibrations in the Euler angles by decreasing

98

flight performance. On the other hand, yaw angle and altitude responses are satisfac-

tory.

40 45 50 55 60 65

Time (sec)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

R
o

ll
A

n
g

le
 (

d
e

g
)

 - Reference

 - Flight

40 45 50 55 60 65

Time (sec)

-0.2

0

0.2

0.4

0.6

0.8

P
it
c
h

 A
n

g
le

 (
d

e
g

)

 - Reference

 - Flight

40 45 50 55 60 65

Time (sec)

28

29

30

31

32

Y
a
w

 A
n
g
le

 (
d
e
g
)

 - Reference

 - Flight

40 45 50 55 60 65

Time (sec)

1300

1400

1500

1600

1700

1800

1900

2000

P
W

M

Motor 1

Motor 2

Figure 5.29: Response of quadrotor system during position hold over marker

99

As the main result of this trial, position trajectory of the performed flight is demon-

strated in Figure 5.30. It can be seen that the quadrotor cannot perform an accurate

position control and walk in a square of 15cm side-length.

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Y Position (m)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

X
 P

o
s
it
io

n
 (

m
)

Quadrotor Path

40 45 50 55 60 65

Time (sec)

1.02

1.04

1.06

1.08

1.1

1.12

A
lt
it
u

d
e

 (
m

)

Ref. Altitude

Altitude

Figure 5.30: Position and altitude of quadrotor during position hold over marker

100

At this point, some statistical data can be represented for each motion axis. In Figure

5.31, minimum, maximum and mean values are represented on the plots. There is

also the standard deviation value that has been placed in the text boxes.

40 45 50 55 60 65

time (sec)

-0.05

0

0.05

0.1

X
 P

o
s
it
io

n
 (

m
)

X axis position

Max

Min

Mean

Std = 0.030m

40 45 50 55 60 65

time (sec)

-0.05

0

0.05

0.1

0.15

Y
 P

o
s
it
io

n
 (

m
)

Y axis position

Max

Min

Mean

Std = 0.038m

40 45 50 55 60 65

time (sec)

1.02

1.04

1.06

1.08

1.1

A
lt
it
u
d
e
 (

m
)

Altitude

Max

Min

Mean

Std = 0.013m

Figure 5.31: Statistical data for the quadrotor that performs position hold over marker

As it can be seen from the plots, deviation value obtained for the z-axis is relatively

different compared to the one of positions, that is because altitude and position mo-

101

tions are governed by different sensor sources being as Lidar and Camera.

For the second position hold trial, commanded and obtained velocity in x and y di-

rections are represented in Figure 5.32. As it can be seen from the figures, obtained

velocity data is less noisy compared to the first flight attempt. However, controller

performance is not satisfactory.

36 38 40 42 44 46 48

Time (sec)

-0.04

-0.02

0

0.02

0.04

0.06

V
e
lo

c
it
y
 (

m
/s

)

V
X
 - Ref.

V
X

36 38 40 42 44 46 48

Time (sec)

-0.1

-0.05

0

0.05

0.1

V
e
lo

c
it
y
 (

m
/s

)

V
Y
 - Ref.

V
Y

Figure 5.32: Quadrotor velocity in x/y directions during position hold over marker

(second flight)

In Figure 5.33, attitude and altitude results o the quadrotor are demonstrated for

the second position hold demonstration. Since the velocity data is less noisy, better

attitude performance is observed compared to the first flight.

102

36 38 40 42 44 46 48

Time (sec)

-1

-0.5

0

0.5

1

R
o

ll
A

n
g

le
 (

d
e

g
)

 - Reference

 - Flight

36 38 40 42 44 46 48

Time (sec)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

P
it
c
h

 A
n

g
le

 (
d

e
g

)

 - Reference

 - Flight

36 38 40 42 44 46 48

Time (sec)

32

33

34

35

36

37

Y
a
w

 A
n
g
le

 (
d
e
g
)

 - Reference

 - Flight

36 38 40 42 44 46 48

Time (sec)

1300

1400

1500

1600

1700

1800

1900

2000

P
W

M

Motor 1

Motor 2

Figure 5.33: Response of quadrotor system during position hold over marker (second

flight)

103

As the root result of second trial, position trajectory of the performed flight is demon-

strated in Figure 5.34. It can be seen that the quadrotor can perform a relatively

satisfactory performance by walking in a circle of 10cm diameter.

-0.15 -0.1 -0.05 0 0.05 0.1

Y Position (m)

-0.15

-0.1

-0.05

0

0.05

0.1

X
 P

o
s
it
io

n
 (

m
)

Quadrotor Path

36 38 40 42 44 46 48

Time (sec)

1.12

1.14

1.16

1.18

1.2

1.22

1.24

A
lt
it
u
d
e
 (

m
)

Ref. Altitude

Altitude

Figure 5.34: Position and altitude of quadrotor during position hold over marker (sec-

ond flight)

104

For the second position hold trial, statistical data is also represented as it can be seen

in Figure 5.35. In this trial, standard deviation of the X motion is the lowest among

the axes. This flight demonstrates better results of position hold capability.

36 38 40 42 44 46 48

time (sec)

-0.04

-0.02

0

0.02

0.04

X
 P

o
s
it
io

n
 (

m
)

X axis position

Max

Min

Mean

Std = 0.014m

36 38 40 42 44 46 48

time (sec)

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Y
 P

o
s
it
io

n
 (

m
)

Y axis position

Max

Min

Mean

Std = 0.026m

36 38 40 42 44 46 48

time (sec)

1.14

1.16

1.18

1.2

1.22

A
lt
it
u
d
e
 (

m
)

Altitude

Max

Min

Mean

Std = 0.017m

Figure 5.35: Statistical data for the quadrotor that performs position hold over marker

(second flight)

In the next flight experiment, a sinusoidal input has been given for the X axis motion

so that the path following capability of the quadrotor can be represented. In Figure

5.36, resultant position and altitude response of the quadrotor can be seen.

105

80 100 120 140 160 180 200

time (sec)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
P

o
si

tio
n

 (
m

)

Ref. X Position

X Position

80 100 120 140 160 180 200

time (sec)

-0.4

-0.2

0

0.2

0.4

P
o
s
it
io

n
 (

m
)

Ref. Y Position

Y Position

80 100 120 140 160 180 200

Time (sec)

1.2

1.25

1.3

1.35

A
lt
it
u

d
e

 (
m

)

Ref. Altitude

Altitude

Figure 5.36: Position and altitude of quadrotor when a sinus reference is commanded

for x-position

106

As it can be seen from the statistical data, Figure 5.37, commanded shape is also

visible because of the noticeable delay formed in the velocity control loop.

80 100 120 140 160 180 200

time (sec)

-0.1

-0.05

0

0.05

0.1

X
 P

o
s
it
io

n
 E

rr
o

r
(m

)

X position error

Max

Min

Mean

Std = 0.033m

80 100 120 140 160 180 200

time (sec)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Y
 P

o
s
it
io

n
 E

rr
o

r
(m

)

Y position error

Max

Min

Mean

Std = 0.053m

80 100 120 140 160 180 200

time (sec)

1.22

1.24

1.26

1.28

1.3

A
lt
it
u

d
e

 (
m

)

Altitude

Max

Min

Mean

Std = 0.012m

Figure 5.37: Statistical data for the quadrotor when a sinus reference is commanded

for x-position

As the final flight trial, a square orbit was commanded for the quadrotor for which

position and altitude data can be seen in Figure 5.38.

107

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Y Position (m)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
X

 P
o
s
it
io

n
 (

m
)

Commanded Reference

Quadrotor Path

60 80 100 120 140 160

Time (sec)

1.26

1.28

1.3

1.32

1.34

1.36

A
lt
it
u
d
e
 (

m
)

Ref. Altitude

Altitude

Figure 5.38: Position and altitude of quadrotor when a square path reference is com-

manded

As it can be seen from the plots, quadrotor is capable of following a closed orbit and

able to come back to the start point. However, the accuracy of the formed path is not

satisfactory for which the primary cause is the ineffective use of velocity data.

108

60 80 100 120 140 160

time (sec)

-0.1

-0.05

0

0.05

0.1

X
 P

o
s
it
io

n
 E

rr
o

r
(m

)

X position error

Max

Min

Mean

Std = 0.039m

60 80 100 120 140 160

time (sec)

-0.2

-0.1

0

0.1

0.2

Y
 P

o
s
it
io

n
 E

rr
o
r

(m
)

Y position error

Max

Min

Mean

Std = 0.086m

60 80 100 120 140 160

time (sec)

1.26

1.28

1.3

1.32

1.34

1.36

A
lt
it
u
d
e
 (

m
)

Altitude

Max

Min

Mean

Std = 0.013m

Figure 5.39: Statistical data for the quadrotor when a square path reference is com-

manded

As it can be seen from Figure 5.39, this accuracy has also been reflected in the statis-

tical data. Since the reference line rotates sharply from the corners of the square, the

quadrotor has already turned before the corners and this error is reflected in the plots.

The reason for the apparent difference between the X and Y axes position follow ca-

pabilities is that different inertia values was obtained for pitch and roll channels, and

109

therefore the roll axis gives a worse response.

For the final flight experiment, a photo of the flying quadrotor is also demonstrated in

Figure |5.40.

Figure 5.40: Photo of the quadrotor during path follow

110

CHAPTER 6

CONCLUSION

The main focus of this thesis was to test the aerial printing capability of a quadrotor

system, that is capable of image processing with a monocular camera. A quadrotor

platform was created for this purpose. The equipment of the platform was selected by

monitoring the flight time and payload concerns. Pixhawk and Raspberry Pi boards

have been used as the main components of the control system. The Pixhawk board

have included the control model, while the Raspberry Pi have operated logging and

image processing algorithms. Simulink environment have been preferred both for

controller design and implementation of scripts running on the boards.

Before the design of the controllers, the mathematical model of the quadrotor dy-

namics was created. In order for the model to reflect the actual system, the inertia of

the quadrotor was measured and the motor parameters were identified. A Simulink

model is formed to be able to simulate quadrotor behavior and test the controllers.

Linear PID and nonlinear Backstepping methods were preferred for this quadrotor

platform. For both of the strategies, attitude and position controllers were designed.

The attitude performance of the implemented controllers were tested on a three axis

test bench, and the flight was initiated after this step. The designed Backstepping

controller was found to leave steady-state error with the given reference inputs, and

was therefore not tested in real flight, considering that it could not provide an accurate

position hold performance. As the PID controller performed well for the attitude

behavior, the experiments continued with PID controller. The low gains of PID, held

that way because of vibrations in quadrotor frame, have been updated in real flight,

and a satisfactory attitude performance has been achieved.

111

The reference point required for position control is provided by an ArucoMarker

placed on the ground. The orientation and position of this marker is detected by

Raspberry Pi and shared with Pixhawk via serial communication. In the flight trials,

the position data obtained though image processing was found to be noisy. The sys-

tem does not have a second corrective camera or a speed measuring hardware. For

this reason, the velocity data is obtained by derivative action followed by filtering.

At this point, the performance of the altitude controller was found to be satisfactory

because the Lidar has a resolution of ±1cm.

It is observed that the quadrotor is able to hold the position within a area of 15cm.

This accuracy is not sufficient for aerial printing. This system can carry material in an

outdoor environment, can be used to mark a location, paint a floor or wall, but cannot

be used in printing.

Two main factors can be considered as the reason for the lack of capability. First, the

system does not have a hardware to measure velocity. Velocity measurement can be

corrected by using a separate equipment, such as an optical flow sensor, and the failed

velocity controller can be improved. The second reason is the delay created by serial

communications and filters. There is a delay of 30−50ms during communication be-

tween Pixhawk and Raspberry Pi boards. Due to the noisy position and velocity data,

the delay amount in the control loop is increased with addition of low-pass filters.

Therefore, velocity and position oscillations are evaluated as expected. The hardware

selection can be changed for which the image processing and control algorithm meet

on the same platform. In addition, healthier images can be obtained from the camera

by placing a gimbal under the quadrotor frame.

In conclusion, the quadrotor platform have performed successfully in attitude and

altitude control, but could not reach the desired levels in terms of velocity and position

hold due to above mentioned reasons. It can be stated that the system will gain aerial

printing capability with the specified regulations.

112

REFERENCES

[1] Q. Lindsey, D. Mellinger, and V. Kumar, “Construction of Cubic Structures with

Quadrotor Teams,” in Robotics: Science and Systems VII, Robotics: Science and

Systems Foundation, jun 2011.

[2] G. Hunt, F. Mitzalis, T. Alhinai, P. A. Hooper, and M. Kovaˇ, “3D Printing

with Flying Robots,” in 2014 IEEE International Conference on Robotics &

Automation (ICRA), (Hong Kong), pp. 4493–4499, 2014.

[3] W. Li, T. Zhang, and K. Kuhnlenz, “A vision-guided autonomous quadrotor in

an air-ground multi-robot system,” in 2011 IEEE International Conference on

Robotics and Automation, pp. 2980–2985, IEEE, may 2011.

[4] L. Meier, P. Tanskanen, F. Fraundorfer, and M. Pollefeys, “PIXHAWK: A sys-

tem for autonomous flight using onboard computer vision,” in 2011 IEEE Inter-

national Conference on Robotics and Automation, pp. 2992–2997, IEEE, may

2011.

[5] R. Niemiec and F. Gandhi, “Multirotor Controls, Trim, and Autonomous

Flight Dynamics of Plus- and Cross-Quadcopters,” Journal of Aircraft, vol. 54,

pp. 1910–1920, sep 2017.

[6] “eCalc - RC Calculator.” https://www.ecalc.ch/. Date Accessed:

2019-11-26.

[7] “S500 Quadrotor Frame.” https://www.amazon.com/

Readytosky-Quadcopter-Stretch-Version-Landing/dp/

B01N0AX1MZ. Date Accessed: 2019-11-26.

[8] “T-Motor Propulsion System.” http://store-en.tmotor.com/. Date

Accessed: 2019-11-26.

[9] “Pixhawk.” https://pixhawk.org/. Date Accessed: 2019-11-26.

113

https://www.ecalc.ch/
https://www.amazon.com/Readytosky-Quadcopter-Stretch-Version-Landing/dp/B01N0AX1MZ
https://www.amazon.com/Readytosky-Quadcopter-Stretch-Version-Landing/dp/B01N0AX1MZ
https://www.amazon.com/Readytosky-Quadcopter-Stretch-Version-Landing/dp/B01N0AX1MZ
http://store-en.tmotor.com/
https://pixhawk.org/

[10] “Raspberry Pi 3 Model B.” https://www.raspberrypi.org/

products/raspberry-pi-3-model-b/. Date Accessed: 2019-11-26.

[11] “Raspberry Pi Camera V2.” https://www.raspberrypi.org/

products/camera-module-v2/. Date Accessed: 2019-11-26.

[12] “FrSKY Taranis X9D Plus.” https://www.frsky-rc.com/product/

taranis-x9d-plus-2019/. Date Accessed: 2019-11-26.

[13] “TF Mini LiDAR Laser Range Sensor.” https://www.dfrobot.com/

product-1702.html. Date Accessed: 2019-11-26.

[14] “Gens ace 11.1V 4000mAh 3S Lipo Battery.” https://www.gensace.

de/. Date Accessed: 2019-11-26.

[15] “Pixhawk Pilot Support Package User Guide V2.1,” MathWorks, p. 71, feb 2017.

[16] “Simulink Support Package for Raspberry Pi Hardware.” https://www.

mathworks.com/help/supportpkg/raspberrypi/index.html.

Date Accessed: 2019-11-26.

[17] “OpenCV, Detection of Aruco Markers.” https://docs.opencv.org/

trunk/d5/dae/tutorial_aruco_detection.html. Date Ac-

cessed: 2019-11-26.

[18] M. Behniapoor, “Development and Modeling of a Micro Aerial Vehicle

(MAV),” Master’s thesis, North Carolina A&T State University, 2017.

[19] Q. Lindsey, D. Mellinger, and V. Kumar, “Construction with quadrotor teams,”

Autonomous Robots, vol. 33, pp. 323–336, oct 2012.

[20] H. Al Jassmi, F. Al Najjar, and A.-h. I. Mourad, “Large-Scale 3D Printing: The

Way Forward,” IOP Conference Series: Materials Science and Engineering,

vol. 324, p. 012088, mar 2018.

[21] “Behavioural Production, Autonomous Swarm-Constructed Architecture,”

pp. 54–59, 2015.

[22] N. Labonnote, A. Rønnquist, B. Manum, and P. Rüther, “Additive construc-

tion: State-of-the-art, challenges and opportunities,” Automation in Construc-

tion, vol. 72, pp. 347–366, dec 2016.

114

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/camera-module-v2/
https://www.raspberrypi.org/products/camera-module-v2/
https://www.frsky-rc.com/product/taranis-x9d-plus-2019/
https://www.frsky-rc.com/product/taranis-x9d-plus-2019/
https://www.dfrobot.com/product-1702.html
https://www.dfrobot.com/product-1702.html
https://www.gensace.de/
https://www.gensace.de/
https://www.mathworks.com/help/supportpkg/raspberrypi/index.html
https://www.mathworks.com/help/supportpkg/raspberrypi/index.html
https://docs.opencv.org/trunk/d5/dae/tutorial_aruco_detection.html
https://docs.opencv.org/trunk/d5/dae/tutorial_aruco_detection.html

[23] V. Gerling and S. Von Mammen, “Robotics for Self-Organised Construction,”

in 2016 IEEE 1st International Workshops on Foundations and Applications of

Self* Systems (FAS*W), pp. 162–167, IEEE, sep 2016.

[24] V. M. Pawar, R. Stuart-Smith, and P. Scully, “Toward autonomous architecture:

The convergence of digital design, robotics, and the built environment,” Science

Robotics, vol. 2, p. eaan3686, apr 2017.

[25] B. Dams, Y. Wu, P. Shepherd, and R. J. Ball, “Aerial Additive Building Manu-

facturing of 3D printed Cementitious Structures,” in 37th Cement and Concrete

Science Conference, no. 055, 2017.

[26] P. Shepherd and C. Williams, “Shell Design Considerations for 3D Printing with

Drones,” in IASS Annual Symposium, (Hamburg), 2017.

[27] J. E. Bostick, C. Park, J. M. Ganci, M. G. Keen, and S. K. Rakshit, “Patent

Application Publication,” 2017.

[28] Y. Pan, X. Zhang, G. Cervone, and L. Yang, “Detection of Asphalt Pavement

Potholes and Cracks Based on the Unmanned Aerial Vehicle Multispectral Im-

agery,” IEEE Journal of Selected Topics in Applied Earth Observations and

Remote Sensing, vol. 11, pp. 3701–3712, oct 2018.

[29] S. Bouabdallah, Design and Control of Quadrotors With Application To Au-

tonomous Flying. PhD thesis, 2007.

[30] T. Bresciani, “Modelling, Identification and Control of a Quadrotor UAV,” Mas-

ter’s thesis, Lund University, oct 2008.

[31] G. Gremillion and J. Humbert, “System Identification of a Quadrotor Micro

Air Vehicle,” in AIAA Atmospheric Flight Mechanics Conference, vol. 56,

(Toronto), American Institute of Aeronautics and Astronautics, aug 2010.

[32] P. Niermeyer, T. Raffler, and F. Holzapfel, “Open-Loop Quadrotor Flight Dy-

namics Identification in Frequency Domain via Closed-Loop Flight Testing,” in

AIAA Guidance, Navigation, and Control Conference, no. January, (Reston, Vir-

ginia), pp. 1–14, American Institute of Aeronautics and Astronautics, jan 2015.

115

[33] S. Sun, C. C. de Visser, and Q. Chu, “Quadrotor Gray-Box Model Identification

from High-Speed Flight Data,” Journal of Aircraft, vol. 56, pp. 645–661, mar

2019.

[34] A. C. Schang, A. Hebert, B. L. Berry, M. T. Block, and R. E. Sherrill, “Quadro-

tor Performance Model Verification and Validation,” in 2018 AIAA Modeling

and Simulation Technologies Conference, no. January, (Reston, Virginia), pp. 1–

26, American Institute of Aeronautics and Astronautics, jan 2018.

[35] S. Bouabdallah, A. Noth, and R. Siegwart, “PID vs LQ Control Techniques

Applied to an Indoor Micro Quadrotor,” pp. 2451–2456, 2004.

[36] J. Li and Y. Li, “Dynamic analysis and PID control for a quadrotor,” in 2011

IEEE International Conference on Mechatronics and Automation, pp. 573–578,

IEEE, aug 2011.

[37] S. Bouabdallah and R. Siegwart, “Backstepping and Sliding-mode Techniques

Applied to an Indoor Micro Quadrotor,” Proceedings - IEEE International Con-

ference on Robotics and Automation, no. April, pp. 2247–2252, 2005.

[38] S. Bouabdallah and R. Siegwart, “Full Control of a Quadrotor,” in IEEE/RSJ

International Conference on Intelligent Robots and Systems, vol. TuA5.5, (San

Diego), pp. 153–158, 2007.

[39] A. Mokhtari and A. Benallegue, “Dynamic Feedback Controller of Euler Angles

and Wind parameters estimation for a Quadrotor Unmanned Aerial Vehicle,”

in Proceedings - IEEE International Conference on Robotics and Automation,

(New Orleans), pp. 2359–2366, 2004.

[40] L. Pollini and A. Metrangolo, “Simulation and Robust Backstepping Control of

a Quadrotor Aircraft,” in AIAA Modeling and Simulation Technologies Confer-

ence and Exhibit, (Honolulu), pp. 1–18, American Institute of Aeronautics and

Astronautics, aug 2008.

[41] D. Lee, H. Jin Kim, and S. Sastry, “Feedback linearization vs. adaptive slid-

ing mode control for a quadrotor helicopter,” International Journal of Control,

Automation and Systems, vol. 7, pp. 419–428, jun 2009.

116

[42] T. Li, Y. Zhang, and B. Gordon, “Investigation, Flight Testing, and Compar-

ison of Three Nonlinear Control Techniques with Application to a Quadrotor

Unmanned Aerial Vehicle,” in AIAA Guidance, Navigation, and Control Con-

ference, no. August, (Reston, Virigina), American Institute of Aeronautics and

Astronautics, aug 2012.

[43] F. Lewis, A. Das, and K. Subbarao, “Dynamic inversion with zero-dynamics

stabilisation for quadrotor control,” IET Control Theory & Applications, vol. 3,

pp. 303–314, mar 2009.

[44] K. Alexis, G. Nikolakopoulos, and A. Tzes, “Switching model predictive at-

titude control for a quadrotor helicopter subject to atmospheric disturbances,”

Control Engineering Practice, vol. 19, no. 10, pp. 1195–1207, 2011.

[45] C. Nicol, C. J. MacNab, and A. Ramirez-Serrano, “Robust adaptive control of a

quadrotor helicopter,” Mechatronics, vol. 21, no. 6, pp. 927–938, 2011.

[46] Z. T. Dydek, A. M. Annaswamy, and E. Lavretsky, “Adaptive Control of

Quadrotor UAVs: A Design Trade Study With Flight Evaluations,” IEEE Trans-

actions on Control Systems Technology, vol. 21, pp. 1400–1406, jul 2013.

[47] E. Altuğ, J. P. Ostrowski, and R. Mahony, “Control of a Quadrotor Heli-

copter Using Visual Feedback,” Proceedings - IEEE International Conference

on Robotics and Automation, vol. 1, no. May, pp. 72–77, 2002.

[48] J. Kim, M.-S. Kang, and S. Park, “Accurate Modeling and Robust Hovering

Control for a Quad–rotor VTOL Aircraft,” Journal of Intelligent and Robotic

Systems, vol. 57, pp. 9–26, jan 2010.

[49] J. Stowers, M. Hayes, and A. Bainbridge-Smith, “Altitude control of a quadro-

tor helicopter using depth map from Microsoft Kinect sensor,” in 2011 IEEE

International Conference on Mechatronics, pp. 358–362, IEEE, apr 2011.

[50] C. T. Dang, H. T. Pham, T. B. Pham, and N. V. Truong, “Vision Based Ground

Object Tracking Using AR.Drone Quadrotor,” 2013 International Conference

on Control, Automation and Information Sciences, ICCAIS 2013, pp. 146–151,

2013.

117

[51] S. Yang, S. A. Scherer, and A. Zell, “An onboard monocular vision system for

autonomous takeoff, hovering and landing of a micro aerial vehicle,” Journal

of Intelligent and Robotic Systems: Theory and Applications, vol. 69, no. 1-4,

pp. 499–515, 2013.

[52] L. V. Santana, A. S. Brandao, M. Sarcinelli-Filho, and R. Carelli, “A trajectory

tracking and 3D positioning controller for the AR.Drone quadrotor,” in 2014

International Conference on Unmanned Aircraft Systems (ICUAS), pp. 756–767,

IEEE, may 2014.

[53] S. Shen, N. Michael, and V. Kumar, “Autonomous multi-floor indoor navigation

with a computationally constrained MAV,” in 2011 IEEE International Confer-

ence on Robotics and Automation, pp. 20–25, IEEE, may 2011.

[54] K. Schmid, T. Tomic, F. Ruess, H. Hirschmuller, and M. Suppa, “Stereo vision

based indoor/outdoor navigation for flying robots,” in 2013 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, pp. 3955–3962, IEEE, nov

2013.

[55] A. Benini, A. Mancini, and S. Longhi, “An IMU/UWB/Vision-based Ex-

tended Kalman Filter for Mini-UAV Localization in Indoor Environment Using

802.15.4a Wireless Sensor Network,” Journal of Intelligent and Robotic Sys-

tems: Theory and Applications, vol. 70, no. 1-4, pp. 461–476, 2013.

[56] K. Alexis, Control of Cooperative Unmanned Aerial Vehicles. PhD thesis, Uni-

versity of Patras, 2011.

[57] M. Yıldız, “Effects of Active Landing Gear on the Attitude Dynamics of a

Quadrotor,” Master’s thesis, Atılım University, 2015.

[58] E. C. Suiçmez, “Trajectory Tracking of a Quadrotor Unmanned Aerial Vehicle

(UAV) via Attitude and Position Control,” Master’s thesis, Middle East Techni-

cal University, 2014.

[59] C. Balas, “Modelling and Linear Control of a Quadrotor,” Master’s thesis, Cran-

field University, 2007.

[60] R. Beard, Quadrotor Dynamics and Control Rev 0.1. Brigham Young Univer-

sity, 2008.

118

[61] B. L. Stevens and F. L. Lewis, Aircraft Control and Simulation. Hoboken, New

Jersey: John Wiley & Sons, Inc., 2nd ed. ed., 2003.

[62] B. Etkin, Dynamics of Atmospheric Flight. New York: Dover Publications, Inc.,

2000.

[63] J. H. Ginsberg, Advanced Engineering Dynamics. Cambridge University Press,

second edi ed., 1998.

[64] H. t. M. ElKholy, “Dynamic Modeling and Control of a Quadrotor Using Linear

and Nonlinear Approaches,” Master’s thesis, The American University in Cairo,

2014.

[65] “Constant Velocity of Brushless Motors, KV.” https://www.

rotordronepro.com/understanding-kv-ratings. Date Ac-

cessed: 2019-11-26.

[66] W. Zhong, “Implementation of Simulink controller design on Iris+ quadrotor,”

Master’s thesis, Naval Postgraduate School, 2015.

[67] M. Ireland, A. Vargas, and D. Anderson, “A Comparison of Closed-Loop Per-

formance of Multirotor Configurations Using Non-Linear Dynamic Inversion

Control,” Aerospace, vol. 2, pp. 325–352, jun 2015.

[68] D. F. G. Herrera, “Design, Development and Implementation of Intelligent Al-

gorithms to Increase Autonomy of Quadrotor Unmanned Missions,” 2017.

[69] H. K. Khalil, Nonlinear Systems. Prentice Hall, third edit ed., 2002.

119

https://www.rotordronepro.com/understanding-kv-ratings
https://www.rotordronepro.com/understanding-kv-ratings

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	LIST OF SYMBOLS
	Introduction
	Motivation and Objective
	Structure of the Thesis

	Literature Survey
	Modelling and System Identification
	Control Theory
	Vision and Pose Estimation

	Quadrotor Modelling
	Definition of Control Inputs
	Reference Frames and Transformation Matrices
	Transformation Matrices for Translational Velocities
	Transformation Matrices for Angular Velocities

	Nonlinear Dynamic Model
	Forces and Moments Acting on the Quadrotor
	Rotational Equations of Motion
	Translational Equations of Motion
	Rotor Dynamics
	State Variables and Equations

	System Hardware and Software
	Hardware Overview
	Quadrotor Frame
	Propulsion System
	Pixhawk
	Raspberry Pi
	RC Transmitter and Receiver
	Lidar
	Lipo Battery and DC-DC Converters
	System Layout

	Software Overview
	Physical Parameters of the Quadrotor
	Mass Moment of Inertia
	Propulsion System Parameters

	Quadrotor Test Bench

	Controller Design and Applications on Quadrotor
	PID Controller
	Attitude Control of Quadrotor
	Altitude and Position Control of Quadrotor
	Attitude Performance of PID Controller on Test Bench

	Backstepping Controller
	Backstepping Control of Rotational Motions
	Backstepping Control of Translational Motions
	Attitude Performance of Backstepping Controller on Test Bench

	Controller Applications on Quadrotor

	Conclusion
	REFERENCES

