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ABSTRACT 

 

INVESTIGATION OF DYNAMIC WAKE THEORY WITH RUN-TIME 

VARYING NUMBER OF DYNAMIC INFLOW STATES 

 

Karakaya, Ali 

Master of Science, Aerospace Engineering 

Supervisor: Assoc. Prof. Dr. İlkay Yavrucuk 

 

November 2019, 125 pages 

 

The effect of number of inflow states to inflow distribution is investigated when 

dynamic wake inflow is used to represent the rotor inflow. A simulation is set-up to 

be able to change the number of inflow states in run-time. The number of inflow states 

are changed with respect to advance ratio and the controls to the rotor. In this thesis, 

a new method to compute inflow distribution is proposed. The number of inflow states 

are decreased during run-time to reduce computation time when the higher state inflow 

models are not required. When conditions on the rotor requires higher state inflow 

models, the number of inflow states are increased to calculate inflow distribution.  

 

Keywords: Helicopter, Rotor, Inflow, Peters – He, Rotor Simulation, Dynamic Wake 

Theory  
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ÖZ 

 

DİNAMİK KUYRUKLU İÇ AKIŞ TEORİSİNİN DURUM DEĞİŞKENLERİ 

SAYISININ GERÇEK-ZAMANLI OLARAK DEĞİŞTİRİLEREK 

İNCELENMESİ 

 

Karakaya, Ali 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği 

Tez Danışmanı: Doç. Dr. İlkay Yavrucuk 

 

Kasım 2019, 125 sayfa 

 

Helikopter rotorlarının iç akışlarının modellenmesi için dinamik kuyruklu iç-akış 

teorisi kullanilmasi durumda, dinamik iç-akış durum değişkenlerinin sayısının iç-akış 

dağılımına etkisi incelenmektedir. İç-akış değişkenlerinin koşu-zamanında 

değiştirelebileceği bir simülasyon ortamı hazırlanmıştır. Durum değişkenlerinin sayısı 

helikopterin hızına ve rotora verilen kontrollere göre değiştirilmiştir. Bu tezde, iç-akış 

dağılımının hesaplanması için yeni bir method önerilmektedir. Yüksek durum 

değişkeni kullanan iç akış modellerine ihtiyaç duyulmadığı zamanlarda, durum 

değişkeni sayısının düşürülerek işlem süresinin kısaltılması sağlanmıştır. Uçuş 

koşulları yüksek durum değişkenli inflow modeli kullanılmasını gerektirdiği 

durumlarda ise durum değişkeni sayısı artırılarak iç-akış dağılımının hesaplanması 

sağlanmıştır.  

 

Anahtar Kelimeler: Helikopter, Rotor, İç-Akış, Peters – He, Dinamik iç-akış kuyruk 

teorisi  
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  𝜒 wake skew angle 

  𝜃 blade pitch angle, 𝜃 =  𝜃0 + 𝜃1𝑐 sin(𝜓) + 𝜃1𝑠 cos(𝜓) 

  𝜃0, 𝜃1𝑐 , 𝜃1𝑠 collective blade pitch angle, lateral blade pitch angle, 

longitudinal blade pitch angle 

 𝜆 
non-dimensional total inflow through rotor disc, 𝜆 =

𝜆𝑣∞ + 𝜆𝑚  

  𝜆𝑣∞  
non-dimensional inflow through rotor disc due to incoming 

velocity 

  𝜆𝑚 non-dimensional mean inflow, 𝜆𝑚 = √3 𝑎1
0 

  𝜇 advance ratio of rotor 

  𝑣, 𝜂, 𝜓̅ ellipsoidal coordinate system 

  𝜉  coordinate along free-stream, positive to upstream 

  𝜌 density 

  𝜎 rotor solidity 

𝜏𝑛
𝑚𝑐 , 𝜏𝑛

𝑚𝑠  cosine and sine parts of pressure coefficients 



 

 

 

xxi 

 

 

Φ pressure function 

𝜓   azimuth location on rotor disc 

Ψ𝑗
𝑟(𝑟̅) general expression function 

Ω rotational speed 

Superscripts  

(∙)(𝑐) cosine element 

(∙)(𝑠) sine element 

(∙)(𝑡𝑖𝑚𝑒) time element 

(∙)(𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛) convection element 

(∙)̇ time derivative 
𝜕(∙)

𝜕𝑡
 

(∙)∗ non-dimensional time derivative 
𝜕(∙)

𝜕𝑡̅
 

Subscripts  

(∙)𝑞 q’th blade element 

(∙)𝑛 n’th blade 
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CHAPTER 1  

 

1. INTRODUCTION 

 

1.1. Introduction 

Mathematical modeling of physical systems come to play a significant role in design 

and development of electro-mechanical systems. Especially in aerospace applications, 

due to its expensive development and operational costs, engineers mostly rely on 

computer simulations to drive their overall designs and control systems. In addition, 

these simulations are used extensively used to train operators of these aerospace 

platforms. 

In rotorcraft applications, the main contributor to system behavior is its rotor. Thus, 

engineers are researching more reliable, more accurate models to represent rotor 

dynamics realistically. Modeling of a rotor is mainly centered around the flapping of 

the rotor blades and the inflow motion through the rotor disc. The differential 

equations representing these dynamics do not have explicit solutions and they are 

required to be solved simultaneously. However, for such solutions there are two 

options besides the dynamic wake inflow model.[6][7] First one is the quasi-steady, 

two-dimensional momentum theory which results in static inflow with crude 

approximation, and the second one is the highly sophisticated computation intensive 

three-dimensional vortex theory. The latter includes a full aerodynamic analysis of the 

flow in and around the rotor and capable of predicting fuselage interactions. Therefore, 

it is impractical for real-time applications. In the middle ground, there is the dynamic 

inflow theory of Peters – He. It is basically a theory of an unsteady aerodynamics over 

the actuator disc exited by the rotor lift. The number of the states which used to 

represent Peters – He inflow is dictated by the engineer with respect to the application 

type. 
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1.2. Literature Review 

The behavior of a generic helicopter mainly depends on the behavior of its main rotor.  

This led scientist and engineers to develop sophisticated models for blade motion 

during its operation.  However, the mathematical rotor models of the past were lacking 

the comparable level of detail in its aerodynamic counterpart. In the core of rotor 

aerodynamic lies the induced inflow at the rotor and its proximity.[7] In the past, most 

models used the uniform inflow approach to reduce the computational intensity to stay 

relevant in the real-time simulations. However, the exponential growth of the 

computational capabilities of the last decades enabled more detailed and complex 

inflow representations to be implemented for real-time environments. 

The methods of representing the induced inflow are categorized like the following 

figure. 

 

Figure 1.1. Methods of Inflow Modeling 
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In the early days of inflow modelling, the uniform inflow was the only options.  In 

hovering conditions, the performance of the uniform inflow is relatively good due to 

the symmetrical conditions on the rotor. [12] In the forward flight conditions, this 

inflow becomes highly asymmetrical due to the relative velocities experienced by the 

blade along the radius. In order to better represent the inflow, in 1926 Glauert[13] 

suggested a longitudinal variation using the following formula: 

 𝑣𝑖 = 𝑣0(1 + 𝑟̅ 𝑘𝑥 cos (𝜓)) 
 

(1.1) 

Where the 𝑣0 is the uniform inflow, 𝑟̅ is the non-dimensional distance from root to 

blade location, 𝑘𝑥 is the variation coefficient in the longitudinal axis and 𝜓 is the 

azimuthal location on the rotor. 

 This formula is merely a geometrical remapping of the uniform inflow on the rotor 

disc meaning that the overall integration of the non-uniform inflow is same as that of 

the uniform inflow. This formula is the root of the non-uniform, static inflow. After 

this formulation, a great effort is made determine the value of the 𝑘𝑥 value. In 1934 

Wheatley [45] suggested that using 𝑘𝑥 = 0.5 results better correlation with the 

experimental data. Wheatley also stated that without an accurate inflow distribution 

model, the motion of the model cannot be determined. Then, in his paper Coleman et. 

al. [8] a cylindrical rotor wake and linked the 𝑘𝑥 value with the skew angle of the rotor 

wake. They proposed a longitudinal variation 𝑘𝑥 = tan (
𝜒

2
)  Figure 2.2. However, 

Brotherhood [5] investigated the flight tests and showed that the value for 𝑘𝑥 was in 

the range from 1.3 to 1.6 for advance ratios 0.14 to 0.19. This study showed that 

Coleman underestimated the values of 𝑘𝑥 meaning that the longitudinal variation was 

greater than initially thought. Later Drees [10] proposed a variation which accounts 

for the advance ratio of the helicopter rotor. He also proposed a variation in the lateral 

axis in the following form. 

 𝑣𝑖 = 𝑣0(1 + 𝑟̅ 𝑘𝑥 cos(𝜓) + 𝑟̅ 𝑘𝑦 sin(𝜓)) 

 
(1.2) 

He suggested the following values for 𝑘𝑥 and 𝑘𝑦: 
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𝑘𝑥 =

4

3
 (1 − cos (𝜒) − 1.8𝜇2) / sin (𝜒) 

 
(1.3) 

 𝑘𝑦 = −2𝜇 

 
(1.4) 

 

For a period, the only way to estimate inflow was to find these 𝑘𝑥 and 𝑘𝑦 . The 

following table shows some suggested values for 𝑘𝑥 throughout the inflow modeling 

history.  

Table 1.1 Suggested kx values  

Authors 𝑘𝑥 

Payne [33] 
4

3

𝜇

𝜆0

1

(1 +
𝜇
𝜆
)
  

White & Blake [46] √2 sin(𝜒)  

Pitt & Peters [39] (
15𝜋

23
) tan (

𝜒

2
) 

Howlett[22] sin2(𝜒) 
 

Using the table above, the static prediction of the inflow can be made at different flight 

conditions. The skew angle greatly affected by the angle of attack of the rotor disc 

plane and forward velocities of the helicopter. The detailed comparison of these static 

models at different flight conditions are presented in the Chen’s paper. [7].  

Although static models were widely used, they lack the transient behavior which 

observed in the experiments. This lead the study of Carpenter and Fridovich [7]. They 

observed the time delay between the sudden pitch changes on the blade and the thrust 

and inflow response. Inflow was lagging behind the inputs. This clearly showed that 

the induced inflow created inertia effects. Therefore, the requirement for a dynamic 

inflow theory arose. These inertial effects were named as apparent mass of the flow 

which then used to account for the acceleration of the stagnant flow. The inclusion of 

these dynamic effects resulted better correlation with the experimental data especially 

below 0.4 advance ratios [2]. 
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The early work on the dynamic inflow was made by Sissingh. [42] He employed the 

instantaneous thrust and inflow perturbations to deduce the linear relations between 

two phenomena. He also showed that the dynamic effects of inflow improved the 

damping of helicopter during pitch and roll maneuvers. Later, Curtiss and Shupe [9] 

formulated the dynamic relation between the induced inflow and the flapping behavior 

using equivalent Lock number. 

 𝛾̇ =
𝛾

1 +
𝜕𝜎
𝜕𝑣𝑖

 

 

(1.5) 

 

Where 𝛾 is the equivalent Lock number and 𝜎 is the rotor solidity. However, the first 

formulation of the dynamic inflow as it is known made by the Ormiston and Peters 

[31]. They expressed the dynamic inflow in the following matrix form: 

 

{

𝑤0
𝑤𝑠
𝑤𝑐
} =

1

𝜇
 

[
 
 
 
 
 
1

2
0 0

0 −
3

2
0

0 0 −
3

2]
 
 
 
 
 

 {
𝐶𝑇
𝐶𝐿
𝐶𝑀

} 

 

(1.6) 

Where 𝐾𝑚 =
8

3𝜋
, 𝐾𝐼 =

16

45𝜋
 , and 

𝑉 =
𝜇2 + 𝜆(𝜆 + 𝜆𝑚𝑒𝑎𝑛)

√(𝜇2 + 𝜆2)
 

 

Above values are the empirical observations made by Pitt and Peters. Following this 

new method, Peters work on a generalized version of this three-state dynamic inflow 

model. [35][37] The general form of the generalized dynamic wake theory is in the 

following form: 
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[𝑀𝑛𝑗
𝑚𝑟] {

⋮
{𝑎𝑗
𝑟}

⋮

}

∗

 + [𝐿𝑛𝑗
𝑚𝑟(𝑐)]

−1

{
⋮

{𝑎𝑗
𝑟}

⋮

} =  {
⋮

{𝜏𝑛
𝑚(𝑐)}
⋮

} (1.7) 

[𝑀𝑛𝑗
𝑚𝑟] {

⋮
{𝑏𝑗
𝑟}

⋮

}

∗

 + [𝐿𝑛𝑗
𝑚𝑟(𝑠)]

−1

{
⋮

{𝑏𝑗
𝑟}

⋮

} =  {
⋮

{𝜏𝑛
𝑚(𝑠)}
⋮

} (1.8) 

 

The detailed derivation of this theory is given in the Chapter 2.  This solution 

formulated by Peters and He rely on the acceleration potential on the elliptic 

coordinates and assumes the wake as a cylindrical dynamic wake. This theory offers 

a solution for inflow which is expressed by Fourier series in azimuth variation and 

Legendre functions in radial variation. [14] 

In 2009, Van Hoydonck et.al.[43] reviewed the modern solutions for inflow which use 

the free-vortex computation. Free-Vortex method makes less assumption about the 

wake and let it evolve freely in its own influence. They concluded that a completely-

free-vortex theory took multiple days to compute a 10 seconds maneuver. As the 

constraints on the wake are increased, the solution time is shortened to real-time. In 

addition, they also stated that the dynamic inflow models still have their use in the 

flight simulator models.  

Murakami [29] extended the usage of Peters – He dynamic wake theory to be 

applicable on autorotation.  

Guner et.al. [15] compared the fidelity of the above-mentioned inflow models. They 

concluded that the greater number of inflow states increased the correleation between 

experimental data in high asymmetry flight conditions such as high advance ratio 

conditions. They also concluded that during symmetrical flight condition, such as 

hovering flight, the higher number of inflow states do not contribute to the fidelity of 

the inflow model. 
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1.3. Objective of the Thesis 

The inflow models that are mentioned in the literature survey section have their usage 

in the rotor simulations. These models are implemented beforehand the simulations 

and do not change throughout the simulation run. High state models take more time to 

compute whereas low-state models can not cover all flight conditions in acceptable 

fidelity. Therefore, a problem of simulation fidelity and computation time arise. 

In this thesis, a new method to implement dynamic wake theory is proposed which 

changes its active inflow states during run-time with respect to some flight conditions. 

Objective of this work is to construct a logic to adjust the number of dynamic inflow 

states to reduce computation time while keeping a low deviation from high-state 

inflow models. In this new method, the switching logic of the dynamic inflow states 

are investigated with respect to advance ratio and with respect to pilot controls, 

collective and cyclics. 

The number of inflow states greatly affect the distribution of inflow over the rotor 

disc. Especially in highly asymmetric conditions, low-state dynamic inflow models 

deviates from the high-state models. In this thesis, these conditions are tried to be 

isolated and investigated. Main contributor to this asymmetry is found to be the 

advance ratio and cyclic & collective control inputs. The state-number switching logic 

is emerged from these isolated tests and depends on the thresholds for advance ratio 

and controls.  

In this thesis, a varying state inflow model is employed to represent the induced 

velocity field over an actuator disc. Two simulations which represent a flight envelope 

are run. The computation times of these simulations are compared. 

1.4.  Organization of the Thesis 

In chapter 1, a brief introduction to thesis is made. Also, the objective of the thesis and 

the organization of the thesis are included in this section. In chapter 2, the analytical 

derivation to the generalized dynamic wake inflow model is made. In Chapter 3, an 
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attempt is made to generate a procedure to implement varying-state dynamic inflow 

model. In Chapter 4, the simple rotor model is introduced. In Chapter 5, total of 96 

simulation runs are made and presented. These tests are used to create a state-number 

switching logic. In Chapter 6, the state-number switching logic is explained and two 

long simulations are made to assess the performance of varying-state inflow model. 

In Chapter 7, the conclusion to the thesis is made. 
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CHAPTER 2  

 

2. FORMULATION OF DYNAMIC WAKE INFLOW THEORY 

 

2.1. Background and Fundamental Equations 

The dynamic wake inflow theory is a rotor disk inflow theory that is based on 

conservation of mass (continuity equation) and conservation momentum [35]. The 

continuity equation is given as follows:  

 𝜕𝜌

𝜕𝑡
+ ∇ ∙ (ρV) = 0   (2.1) 

 

where 𝜌 is the density, 𝑡 is time and V is the flow velocity vector field. However, in 

dynamic wake inflow theory, the fluid is assumed to be incompressible meaning that 

the density is constant. Therefore the Eq. (2.1) can be written as: 

 
∇ ∙ V = 0   (2.2) 

The behavior of flow is described by Navier – Stokes equation: 

 𝜕𝑉

𝜕𝑡
+ (𝑉 ∙ ∇)𝑉 =  −∇Φ+ 𝜈Δ𝑉    (2.3) 

 

where the 𝜈 is viscosity. However, fluid is assumed to be inviscid meaning that 𝜈 = 0 

and the flow is governed by the Euler equation given in Eq. (2.4) 

 𝜕𝑉

𝜕𝑡
+ (𝑉 ∙ ∇)𝑉 =  −∇Φ   (2.4) 

   

where Φ is the pressure potential function driving the flow.  The dynamic inflow 

model is basically a set of linear equations. However, the Eq. (2.4) represents a non-

linear behavior that requires to be linearized.  
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It is beneficial to divide Eq. (2.4) into two terms, time derivative term (unsteadiness) 

and spatial derivate term (convection). In order to linearize the non-linear convection 

term, (𝑉 ∙ ∇)𝑉, the flow velocity is written as 𝑉 = 𝑉𝑠 + 𝑣 where 𝑉𝑠 is the steady flow 

and 𝑣 is the perturbation.   

 (𝑉 ∙ ∇)𝑉 = 0  can be expanded as, 

 

(𝑉 ∙ ∇)𝑉 = ((𝑉𝑠 + 𝑣) ∙ ∇ )(𝑉𝑠 + 𝑣) 
 
(𝑉 ∙ ∇)𝑉 = 𝑉𝑠 ∙ ∇𝑉𝑠 + 𝑣 ∙ ∇𝑉𝑠 + 𝑉𝑠 ∙ ∇𝑣 + 𝑣 ∙ ∇𝑣 

  (2.5) 

 

since the 𝑉𝑠 is the steady flow (e.g. ∇𝑉𝑠 = 0 ), Eq. (2.5) can be rearranged as following: 

 (𝑉 ∙ ∇)𝑉 = 𝑉𝑠 ∙ ∇𝑣 + 𝑣 ∙ ∇𝑣   (2.6) 

 

The term (𝑣 ∙ ∇𝑣) is a higher order error which can be neglected for this context. [11] 

In addition, the time derivative term can be written as: 

 𝜕𝑉

𝜕𝑡
=
𝜕(𝑉𝑠 + 𝑣)

𝜕𝑡
 

 

(2.7) 

 𝜕𝑉

𝜕𝑡
=
𝜕(𝑉𝑠)

𝜕𝑡
+ 
𝜕(𝑣)

𝜕𝑡
 , 𝑎𝑛𝑑

𝜕𝑉𝑠
𝜕𝑡

= 0 

 

  

(2.8) 

Finally, the combining Eq. (2.6)  and (2.8) into Eq. (2.4): 

 𝜕(𝑣)

𝜕𝑡
+ 𝑉𝑠 ∙ ∇𝑣 =  −∇Φ   (2.9) 

 

In Eq. (2.9), it is easier to see that the 𝑣 is the induced velocity in the rotor disc. 

Basically, the equation defines that, for a velocity field over the rotor disc, the change 

of the momentum of the flow is caused by the change in the pressure field, namely the 

lift force generated by the rotor disc.[35] This lift can be better explained as a 
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discontinuous momentum change in the upper & lower sides of the rotor disc. The 

Peters – He inflow model is based on this principle. 

 

From Eq. (2.9) both unsteadiness of the flow and the spatial variation of the flow 

contribute to the spatial variation of the pressure gradient. Therefore, the pressure 

difference can be written as: 

 Φ = Φ(time) + Φ(𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛) 
(2.10) 

   

where Φ(𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛) is the pressure gradient that is generated by the spatial variation 

of the velocity field and Φ(𝑡𝑖𝑚𝑒) is the pressure gradient that is generated by the time 

derivative of the velocity field. 

In references [19], [29], [35], [38] and [39] it is suggested that the Eq. (2.10) shall be 

written as follows: 

 𝜕(𝑣)

𝜕𝑡
= −∇Φ(𝑡𝑖𝑚𝑒)   ,        𝑉𝑠 ∙ ∇𝑣 = ∇Φ(𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛) (2.11) 

 

 When both equations in Eq. (2.11) are multiplied by ∇ Eq. (2.12) are obtained. 

 
∇(
𝜕(𝑣)

𝜕𝑡
) = −∇2Φ(𝑡𝑖𝑚𝑒)    (2.12) 

 ∇(𝑉𝑠 ∙ ∇𝑣) = ∇2Φ(𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛) 
(2.13) 

 

In Eq. (2.12) left – hand side is the time dependent derivative of the velocity field. 

Therefore, the spatial derivation of the term is zero. In addition, combining the 

Eq. (2.13) with the Eq. (2.2),  for incompressible flow,  the term  ∇(𝑉𝑠 ∙ ∇𝑣) becomes 

zero.  Finally, following Laplace’s equations for the pressure potential function can 

be written. 
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 ∇2Φ(𝑡𝑖𝑚𝑒)    = 0 
(2.14) 

 ∇2Φ(𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛) = 0 
(2.15) 

 ∇2Φ = ∇2Φ(𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛) + ∇2Φ(𝑡𝑖𝑚𝑒) = 0 
(2.16) 

 

The Eq. (2.14) and (2.15) are in the form of an acceleration potential and there exist 

an analytical solution to acceleration potential function [44]. Thus, the derivation of 

the Eq.  (2.16) are essential for the formulation of Peters – He inflow. In order to solve 

these equations, following boundary conditions are defined [36]. 

❖ The pressure distribution is required to be linearly proportional to the disc 

loading. Since the Eq. (2.9) is linearized, disc loading is directly proportional 

to the induced velocity [28]. 

 

❖  The Pressure distribution is required to be zero at infinity. 

 

❖ Becomes zero at the edge of the rotor. 

 

In refs. [19], [29], [35] and [36] it is stated that when the Laplace’s equation is written 

in ellipsoidal coordinate system (see the Appendix A), the Eq. (2.16) defining a 

pressure distribution on a circular disc can be solved by using the separation of 

variables method.  When the boundary conditions are applied in ellipsoidal coordinate 

system, following solution for the pressure distribution is proposed from Prandtl’s 

potential function. 

Φ(𝑣, 𝜂, 𝜓̅, 𝑡̅) = 

 

∑ ∑ 𝑃𝑛
𝑚(𝑣)𝑄𝑛

𝑚(𝑖𝜂)[𝐶𝑛
𝑚(𝑡)̅ cos(𝑚𝜓̅) + 𝐷𝑛

𝑚(𝑡)̅ sin(𝑚𝜓̅)]

∞

𝑛=𝑚+1,𝑚+3,…

∞

𝑚=0

 (2.17) 

 

where 𝑣, 𝜂 and 𝜓̅ are the coordinates of ellipsoidal coordinate system.  
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Note that the variables  𝑃𝑛
𝑚(𝑣) and  𝑄𝑛

𝑚(𝑖𝜂) are called associated Legendre function 

of the first and second kind respectively. 𝐶𝑛
𝑚(𝑡) and 𝐷𝑛

𝑚(t) are arbitrary coefficients 

of the harmonics.  

 

 

 

Figure 2.1. Rotor Disc Frame Cylindrical and Cartesian Coordinate System  

 

The Eq. (2.17) defines the pressure field around the rotor. The difference of the 

pressure between upper and lower surfaces of the rotor results in the lift generated by 

the rotor. Therefore, upper and lower surfaces of the rotor need to be represented in 

the elliptical coordinate system.  

 

In Figure 2.1, the cylindrical coordinate system is given where “r” represents rotor 

radius and “𝜓” is the counter-clockwise azimuth angle.  In both cartesian and 
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cylindrical coordinate system, z-axis is pointing downward through the vehicle body. 

In elliptical coordinates, rotor disc is represented as 𝜂 = 0, 𝑣 = √1 − 𝑟̅2 and 𝜓̅ = 𝜓, 

the region above the rotor disc is where 𝑣 < 0 and the region below the rotor 

 disc is where 𝑣 > 0. Therefore, the pressure discontinuity on rotor disc is represented 

using appropriate 𝜂 and 𝑣 .  

 

In elliptical coordinates the lower and upper surfaces can be represented as,  

❖ Φ(𝑢𝑝𝑝𝑒𝑟) = Φ(𝑟̅, 𝜓, 𝑡̅) where 𝜂 = 0, 𝑣 → 0− 

❖ Φ(𝑙𝑜𝑤𝑒𝑟) = Φ(𝑟̅, 𝜓, 𝑡̅) where 𝜂 = 0, 𝑣 → 0+ 

Then the rotor load can be written as: 

 𝑃(𝑟̅, 𝜓, 𝑡̅) =  Φ(𝑢𝑝𝑝𝑒𝑟) − Φ(𝑙𝑜𝑤𝑒𝑟) (2.18) 

 

Plugging Eq. (2.17) into Eq. (2.18): 

P(𝑣, 𝜓̅, 𝑡̅) = 

−2∑ ∑ 𝑃𝑛
𝑚(𝑣)𝑄𝑛

𝑚(𝑖0)[𝐶𝑛
𝑚(𝑡)̅ cos(𝑚𝜓̅) + 𝐷𝑛

𝑚(𝑡)̅ sin(𝑚𝜓̅)]

∞

𝑛=𝑚+1,𝑚+3,…

∞

𝑚=0

 (2.19) 

 

Rewriting the Eq. (2.19) in the following format [11]: 

P(𝑣, 𝜓̅, 𝑡̅) = 

∑ ∑ 𝑃̅𝑛
𝑚(𝑣)[𝜏𝑛

𝑚𝑐(𝑡̅) cos(𝑚𝜓̅) + 𝜏𝑛
𝑚𝑠(𝑡)̅ sin(𝑚𝜓̅)]

∞

𝑛=𝑚+1,𝑚+3,…

∞

𝑚=0

 (2.20) 

 

Where the term (−2 ∙ 𝑄𝑛
𝑚(𝑖0)) is plugged in the coefficient terms 𝐶𝑛

𝑚(𝑡)̅ and 𝐷𝑛
𝑚(𝑡)̅. 

These terms are renamed as 𝜏𝑛
𝑚𝑐(𝑡̅) and 𝜏𝑛

𝑚𝑠(𝑡̅) and given as follows: 

 
𝑃̅𝑛
𝑚(𝑣) = (−1)𝑚

𝑃̅𝑛
𝑚(𝑣)

𝜌𝑛
𝑚   (2.21) 
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𝜌𝑛
𝑚 =

1

2𝑛 + 1

(𝑛 + 𝑚)!

(𝑛 − 𝑚)!
  (2.22) 

 𝜏𝑛
𝑚𝑐 = (−1)𝑚+12𝑄𝑛

𝑚(𝑖0)𝜌𝑛
𝑚𝐶𝑛

𝑚 (2.23) 

 𝜏𝑛
𝑚𝑠 = (−1)𝑚+12𝑄𝑛

𝑚(𝑖0)𝜌𝑛
𝑚𝐷𝑛

𝑚 (2.24) 

 

 

The Eq. (2.20) can be divided into time – dependent contributions and convection 

contributions. 

P(time)(𝑣, 𝜓̅, 𝑡̅) = 

∑ ∑ 𝑃̅𝑛
𝑚(𝑣)[𝜏𝑛

𝑚𝑐(𝑡)̅(𝑡𝑖𝑚𝑒) cos(𝑚𝜓̅) + 𝜏𝑛
𝑚𝑠(𝑡)̅(time) sin(𝑚𝜓̅)]

∞

𝑛=𝑚+1,𝑚+3,…

∞

𝑚=0

 

 

(2.25) 

  

P(conv)(𝑣, 𝜓̅, 𝑡̅) = 

∑ ∑ 𝑃̅𝑛
𝑚(𝑣)[𝜏𝑛

𝑚𝑐(𝑡)̅(conv) cos(𝑚𝜓̅) + 𝜏𝑛
𝑚𝑠(𝑡)̅(conv) sin(𝑚𝜓̅)]

∞

𝑛=𝑚+1,𝑚+3,…

∞

𝑚=0

 

 

(2.26) 

  

In Eq. (2.25) and Eq. (2.26) terms 𝜏𝑛
𝑚𝑐(𝑡)̅(𝑡𝑖𝑚𝑒), 𝜏𝑛

𝑚𝑠(𝑡̅)(time),  𝜏𝑛
𝑚𝑐(𝑡̅)(conv) and 

𝜏𝑛
𝑚𝑠(𝑡̅)(conv) are the Fourier coefficients. In order to determine these coefficients, the 

rotor loading, namely the lift, needs to be calculated.  

In the context of induced inflow, the induced inflow, 𝑣, is a vector which have three 

induced inflow components in space such that 𝑣⃗ = (𝑢, 𝑣, 𝑤). The radial and azimuthal 

components of the induced inflow, 𝑢 and 𝑣 respectively, are negligible compared to 

the normal component of the inflow, namely 𝑤. In fact, in the literature the term 

induced inflow directly refers to the 𝑤 of 𝑣⃗. [19][35] 
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In the equations, (2.17) to (2.26), the effort is to determine ∇Φ(𝑡𝑖𝑚𝑒)   and 

 ∇Φ(𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛)  . However, to establish a link between induced inflow and pressure 

potential, Eq. (2.11)  is addressed below.  

Firstly, the time dependent term of Eq. (2.11) is rewritten using only the normal 

component of the induced inflow. 

 𝜕(𝑤)

𝜕𝑡
= −

∂Φ(𝑡𝑖𝑚𝑒)

𝜕𝑧
  , 𝑎𝑡 𝜂 = 0 , (𝑎𝑐𝑟𝑜𝑠𝑠 𝑡ℎ𝑒 𝑟𝑜𝑡𝑜𝑟 𝑑𝑖𝑠𝑐) (2.27) 

 

Note that Eq. (2.27) fundamentally implies that the difference in time – dependent 

component  of pressure distribution above and below of the surface of the rotor disc 

gives the acceleration of the induced inflow. 

 

Figure 2.2. Streamline Coordinate System 

 

In (Figure 2.2) 𝛼 is the angle between rotor disc and the free-stream velocity. The flow 

passing through the rotor disc combined with the induced inflow skews into the normal 

of the disc. Therefore, the angle between normal of the rotor disc and the flow below 

the rotor is called the skew angle ( 𝜒 ) .   
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Secondly, when written in the streamline coordinate system, the inflow through the 

rotor disc becomes a scalar, because the direction of the inflow is selected as the 

 𝜉 − 𝑎𝑥𝑖𝑠 by definition. Therefore, the convection term of the Eq. (2.11) becomes as 

follows: 

 
𝑉𝑠 ∙

𝜕𝑤

𝜕𝜉
= −

𝜕Φ(𝑐𝑜𝑛𝑣)

𝜕𝑧
 , 𝑎𝑡 𝜂 = 0, (𝑎𝑐𝑟𝑜𝑠𝑠 𝑡ℎ𝑒 𝑟𝑜𝑡𝑜𝑟 𝑑𝑖𝑠𝑐) (2.28) 

 

Equations  (2.27) and (2.28) are the differential equations which relates the lift to the 

inflow distribution across the rotor disc. The solutions to these differential equations 

complete the Peters – He inflow model. 

 𝜕(𝑤)

𝜕𝑡
= −

∂Φ(𝑡𝑖𝑚𝑒)

𝜕𝑧
 |
𝜂=0

 (2.29) 

 
𝑤 =

1

𝑉𝑠
 ∫

𝜕Φ(𝑐)

𝜕𝑧
 𝜕𝜉

0

∞

 (2.30) 

 

The pressure discontinuity functions defined in Eq. (2.25) and (2.26) are  linear 

functions that are generated by the superposition of the  𝜏𝑛
𝑚𝑐(𝑡)(𝑡𝑖𝑚𝑒), 

𝜏𝑛
𝑚𝑠(𝑡)(time),  𝜏𝑛

𝑚𝑐(𝑡)(conv) . Therefore, the mapping of these equations can be 

represented by linear operations 𝒜[Φ(𝑡)] and ℬ[Φ(𝑐)]. Note that the set (𝜏𝑛
𝑚𝑐(𝑡)(𝑡𝑖𝑚𝑒), 

𝜏𝑛
𝑚𝑠(𝑡)(time),  𝜏𝑛

𝑚𝑐(𝑡)(conv)) consists of linearly independent elements, since they are 

generated by the  associated Legendre function of the second kind which itself defines  

an orthonormal set [30]. 

The Eq. (2.29) and Eq. (2.30) can be rewritten as: 

 𝜕(𝑤)

𝜕𝑡
≡ −

∂Φ(𝑡𝑖𝑚𝑒)

𝜕𝑧
 |
𝜂=0

      ≡  𝒜[Φ(𝑡𝑖𝑚𝑒)] (2.31) 

 
𝑤 =

1

𝑉𝑠
 ∫

𝜕Φ(𝑐𝑜𝑛𝑣)

𝜕𝑧
 𝜕𝜉

0

∞

      ≡    ℬ[Φ(𝑐𝑜𝑛𝑣)] (2.32) 
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When a proper series is selected in order to expand the induced flow, the linear 

mapping  𝒜[Φ(𝑡)] and ℬ[Φ(𝑐)] becomes invertible [19][35]. Then Eq. (2.29) and  

Eq. (2.30) are rearranged as follows: 

 
𝒜−1[𝑤̇] = Φ(𝑡𝑖𝑚𝑒), 𝑤ℎ𝑒𝑟𝑒 𝑤̇ =  

𝜕𝑤

𝜕𝑡̅
  (2.33) 

 ℬ−1[𝑤] = Φ(conv) 
(2.34) 

 𝒜−1[𝑤̇] + ℬ−1[𝑤] = Φ(𝑡𝑖𝑚𝑒) +Φ(conv) = Φ  (2.35) 

 

2.2.  Matrix Form 

The Inflow distribution can be expanded as the pressure distribution formulated by 

Eq. (2.17) . Such expansion of the inflow accounts for the radial distribution and 

harmonic distribution on azimuth. The Fourier series expansion of the induced inflow 

is given as follows: 

𝑤(𝑟̅, 𝜓, 𝑡̅) =  
 

∑ ∑ Ψ𝑗
𝑟(𝑟̅)[𝑎𝑗

𝑟(𝑡)̅ cos(𝑟𝜓) + 𝑏𝑗
𝑟(𝑡)̅ sin(𝑟𝜓)]

∞

𝑗=𝑟+1,𝑟+3,…

∞

𝑟=0

 (2.36) 

 

In Eq. (2.36) the well-known Peters – He induced inflow is formulated. Where, 

Ψ𝑗
𝑟 ∶ The radial distribution function, 

𝑎𝑗
𝑟  : Time dependent cosine coefficient state of inflow, 

𝑏𝑗
𝑟  : Time dependent sine coefficient state of inflow. 

Note that the values r and j in above equation (2.36) dictates the final state number of 

the Peters – He inflow model, whose effects are investigated throughout this thesis. 

The radial distribution function, Ψ𝑗
𝑟(𝑟̅), can be chosen as: 
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Ψ𝑗
𝑟(𝑟̅) =

1

 𝑣
 𝑃̅𝑗
𝑟(𝑣) (2.37) 

 

which is expanded as follows: 

Ψ𝑗
𝑟(𝑟̅) = √(2𝑗 + 1)𝐻𝑗

𝑟  ∑ 𝑟−𝑞
(−1)

(𝑞−𝑟)
2 (𝑗 + 𝑞)‼

(𝑞 − 𝑟)‼ (𝑞 + 𝑟)‼ (𝑗 − 𝑞 − 1)‼

𝑗−1

𝑞=𝑟,𝑟+2,…

  (2.38) 

 

Note that the radial expansion function has either only even or only odd power of 𝑟̅. 

where, 

 
𝐻𝑗
𝑟 =

(𝑗 + 𝑟 − 1)‼ (𝑗 − 𝑟 − 1)‼

(𝑗 + 𝑟)‼ (𝑗 − 𝑟)‼
 (2.39) 

 

In Eq. (2.35) the equation Φ(𝑡𝑖𝑚𝑒) +Φ(conv) = Φ  is defined. Plugging Eq.(2.33) and 

(2.34) , and decoupling cosine and sine equations, the Eq. (2.35) can be rearranged in 

the following form: 

 

𝒜(𝑐)−1 {
⋮

{𝑎𝑗
𝑟}

⋮

}

∗

+ℬ(𝑐)−1 {
⋮

{𝑎𝑗
𝑟}

⋮

} =  {
⋮

{𝜏𝑛
𝑚(𝑐)}
⋮

} (2.40) 

 

𝒜(𝑠)−1 {
⋮

{𝑏𝑗
𝑟}

⋮

}

∗

+ ℬ(𝑠)−1 {
⋮

{𝑏𝑗
𝑟}

⋮

} = {
⋮

{𝜏𝑛
𝑚(𝑠)}
⋮

} (2.41) 

 

With the Eq. (2.40) and (2.41), the well-known Peters – He inflow model can be 

written as: 

 

[𝑀𝑛𝑗
𝑚𝑟] {

⋮
{𝑎𝑗
𝑟}

⋮

}

∗

 + [𝐿𝑛𝑗
𝑚𝑟(𝑐)]

−1

{
⋮

{𝑎𝑗
𝑟}

⋮

} =  {

⋮

{𝜏𝑛
𝑚(𝑐)}
⋮

} (2.42) 

 

[𝑀𝑛𝑗
𝑚𝑟] {

⋮
{𝑏𝑗
𝑟}

⋮

}

∗

 + [𝐿𝑛𝑗
𝑚𝑟(𝑠)]

−1

{
⋮

{𝑏𝑗
𝑟}

⋮

} =  {
⋮

{𝜏𝑛
𝑚(𝑠)}
⋮

} (2.43) 
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where 𝑀𝑛𝑗
𝑚𝑟represents the inverse of linear operator 𝒜, and the operators 𝐿𝑛𝑗

𝑚𝑟 (c) and 

𝐿𝑛𝑗
𝑚𝑟 (s)  are the linear operator ℬ defined in the Eq.(2.31) and (2.32) respectively. Note 

that the [𝑀𝑛𝑗
𝑚𝑟] matrix does not change for sine and cosine equations, since it is a 

mapping in time [29]. Furthermore, the behavior of the L-operators for sine and cosine 

matrices are uncoupled. This is explained in ref. [19] by the neglect of wake rotation 

effects.  

In the next section computation of these matrices are investigated. 

2.2.1. Computation of Apparent Mass Matrix [M] 

The matrix [M] is the part that is associated with the acceleration of the flow, since it 

is the coefficient matrix of the time derivative of the velocity field states. Therefore, 

it is called as apparent mass matrix in this context.  

In order to compute the elements of [M] matrix, the Eq. (2.29) is needed to be carried 

out. The Eq. (2.29) is written in the ellipsoidal coordinate system. Therefore, the 

operator 
𝜕

𝜕𝑧
  is redefined in the ellipsoidal coordinate system (See the appendix A) as: 

 
𝜕

𝜕𝑧
=  −

1

𝑣2 + 𝜂2
 [(𝜂(1 − 𝑣2)

𝜕

𝜕𝑣
) + (𝑣(1 + 𝜂2)

𝜕

𝜕𝜂
)] (2.44) 

 

when 𝜂 = 0 is applied in Eq. (2.44), equation reduced to following form: 

 𝜕

𝜕𝜂
=  −

1

𝑣

𝜕

𝜕𝜂
 (2.45) 

 

When Eq. (2.27) is solved with help of Eq. (2.17), (2.37), (2.45) following relations 

are obtained [23][11][19]. 

 
𝛼̇𝑛
𝑚 =

𝑑𝑄̅𝑛
𝑚(𝑖𝜂)

𝜕𝜂
|
𝜂=0

(𝜏𝑛
𝑚𝑐)(𝑡𝑖𝑚𝑒)    (2.46) 
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𝛽̇𝑛
𝑚 =

𝑑𝑄̅𝑛
𝑚(𝑖𝜂)

𝜕𝜂
|
𝜂=0

(𝜏𝑛
𝑚𝑠)(𝑡𝑖𝑚𝑒)    (2.47) 

 

Note that 𝛼𝑗
𝑟 and 𝛽𝑗

𝑟 are the induced inflow states (𝑎𝑗
𝑟 and 𝑏𝑗

𝑟) represented in 
1

𝑣
𝑃̅𝑛
𝑚 

orthonormal set such that: 

 {𝑎𝑗
𝑟} = [𝑌]{𝛼𝑗

𝑟}, 𝑎𝑛𝑑 {𝑏𝑗
𝑟} = [𝑌]{𝛽𝑗

𝑟}, (2.48) 

 

where [Y] is the mapping from the basis 
1

𝑣
𝑃̅𝑛
𝑚 to basis 

1

 𝑣
 𝑃̅𝑗
𝑟(𝑣), given in Eq. (2.37). 

Note that the basis selection to solve Eq.(2.45) is identical to radial distribution 

function in Eq. (2.37) except the harmonics subscript.  

 

In addition, the derivative which used in Eq.(2.47) and (2.48) evaluated as: 

 

 −
𝑑𝑄̅𝑛

𝑚(𝑖𝜂)

𝜕𝜂
|
𝜂=0

=
𝜋

2
 (𝐻𝑛

𝑚)−1 ≡ (𝐾𝑛
𝑚)−1  (2.49) 

 

Thus, the relation between 𝑎̇𝑛
𝑚 and (𝜏𝑛

𝑚𝑐)(𝑡𝑖𝑚𝑒), and 𝑏̇𝑛
𝑚 and (𝜏𝑛

𝑚𝑠)(𝑡𝑖𝑚𝑒)    is shown. 

Finally, the mass matrix [M] can be written as: 

 

[𝑀𝑗𝑛
𝑟𝑚] = [

⋱
𝑀𝑗𝑛
𝑟𝑚

⋱

]  (2.50) 

 𝑀𝑗𝑛
𝑟𝑚 = 𝐾𝑗𝑛

𝑟𝑚𝛿𝑗𝑛𝛿𝑟𝑚 (2.51) 

where, 

 𝛿𝑗𝑛 = 1 when j = n, and 𝛿𝑗𝑛 = 0 elsewhere (2.52) 

 
𝑀𝑗𝑛
𝑟𝑚 = 𝐾𝑗𝑛

𝑟𝑚𝛿𝑗𝑛𝛿𝑟𝑚 =  𝐾𝑛
𝑚 =

2

𝜋
 𝐻𝑛

𝑚  (2.53) 
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Note that the matrix [M] is purely in diagonal form due to the terms 𝛿𝑗𝑛𝛿𝑟𝑚 in 

Eq.(2.51). As a result, there is no radial or harmonic coupling in this operator. This 

property of the mass matrix [M] simplifies the computation of time-response of the 

states and eigenvalue analysis [19]. 

 

 

 

2.2.2. Computation of Gain Matrix [L] 

The [L] matrix is divided into two square matrices due to its uncoupled structure, [L(c)] 

and [L(s)] for the harmonic terms that are multiplying cosine and sine terms 

respectively. In order to compute matrix [L], Eq.(2.17) and (2.36) are substituted into 

Eq. (2.32).  and multiplied by either  𝑃̅𝑛
𝑚(𝑣) cos(𝑟𝜓) or  

1

𝑣
𝑃̅𝑛
𝑚(𝑣) sin(𝑟𝜓).  

In addition, elements in [L] matrix are divided by the free – stream velocity, such that 

the governing equation becomes: 

{𝑐𝑗
𝑟} =

1

𝑉∞
[𝐿̅] {𝜏𝑛

𝑚(𝑐)𝑉}, where superscript V indicates the division by V. (2.54) 

{𝑑𝑗
𝑟} =

1

𝑉∞
[𝐿̅] {𝜏𝑛

𝑚(𝑠)𝑉} (2.55) 

 

Note that 𝑐𝑗
𝑟 and 𝑑𝑗

𝑟 are the induced inflow states (𝑎𝑗
𝑟 and 𝑏𝑗

𝑟) represented in 𝑃̅𝑛
𝑚 

orthonormal set. The following transformation relation in Eq. (2.58) can be made 

between given basis sets. 

{𝑎𝑗
𝑟} = [𝑍]{𝑐𝑗

𝑟}, 𝑎𝑛𝑑 {𝑏𝑗
𝑟} = [𝑍]{𝑐𝑗

𝑟}, 

 
(2.56) 

where [Z] is the mapping from the basis 𝑃̅𝑗
𝑟(𝑣) to basis 

1

 𝑣
 𝑃̅𝑗
𝑟(𝑣), given in Eq. (2.37),  

These operation results in definition of following integrals. 
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𝐿̅𝑗𝑛
0𝑚𝑐 =

1

4𝜋
 ∫ ∫ 𝑃̅𝑗

0(𝑣)∫
𝜕

𝜕𝑧
[𝑃̅𝑗

0(𝑣)𝑄̅𝑗
𝑚(𝑖𝜂)] cos(𝑚𝜓) 𝑑𝜂 𝑑𝑣 𝑑𝜓 

∞

0

1

0

2𝜋

0

 
(2.57) 

𝐿̅𝑗𝑛
𝑟𝑚(𝑐) = 

1

2𝜋
 ∫ ∫ 𝑃̅𝑗

0(𝑣) cos(rψ)∫
𝜕

𝜕𝑧
[𝑃̅𝑗

0(𝑣)𝑄̅𝑗
𝑚(𝑖𝜂)] cos(𝑚𝜓) 𝑑𝜂 𝑑𝑣 𝑑𝜓 

∞

0

1

0

2𝜋

0

 (2.58) 

  

𝐿̅𝑗𝑛
𝑟𝑚(𝑠) = 

1

2𝜋
 ∫ ∫ 𝑃̅𝑗

0(𝑣) sin(rψ)∫
𝜕

𝜕𝑧
[𝑃̅𝑗

0(𝑣)𝑄̅𝑗
𝑚(𝑖𝜂)] sin(𝑚𝜓) 𝑑𝜂 𝑑𝑣 𝑑𝜓 

∞

0

1

0

2𝜋

0

 (2.59) 

 

The solutions to these integrals are highly complex, and it is out of the scope of this 

thesis. In the Refs. [19] and [28] a rigorous solution of these integrals is carried out 

and the results are presented below. 

 
[ 𝐿̅𝑗𝑛

0𝑚 ]
(𝑐)
= (𝑋𝑚) [𝛬𝑗𝑛

0𝑚] 
(2.60) 

 
[ 𝐿̅𝑗𝑛

𝑟𝑚 ]
(𝑐)
= (𝑋|𝑚−𝑟| + (−1)ℓ𝑋|𝑚+𝑟|) [𝛬𝑗𝑛

𝑟𝑚] 
(2.61) 

 
[ 𝐿̅𝑗𝑛

𝑟𝑚 ]
(𝑠)
= (𝑋|𝑚−𝑟| − (−1)ℓ𝑋|𝑚+𝑟|) [𝛬𝑗𝑛

𝑟𝑚] 
(2.62) 

 

where ℓ = min(𝑟,𝑚) and 𝑋 = tan |
𝜒

2
| . Note that, 𝜒 is the skew angle given in  

Figure 2.2 . 

 
𝜒 =

𝜋

2
− tan−1 |

𝜆

𝜇
| 

(2.63) 

where 𝜆 is the total inflow due to both oncoming flow and induced inflow, and 𝜇 is 

the advance ratio of the rotor. 

Generation of the gain matrix depends on the computation of variable Λ𝑗𝑛
𝑟𝑚.  

The function Λ𝑗𝑛
𝑟𝑚 is defined as follows [28][29][35]: 

For r + m is odd, and n < r, 
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Λ𝑗𝑛
rm = 0 (2.64) 

For r + m is odd, and n ≥ r, and r > m, 

Λ𝑗𝑛
rm = (−1)

𝑛+𝑗−2𝑟−1
2   

𝜋𝐻𝑛
𝑟

(2√𝐻𝑛
𝑚𝐻𝑗

𝑟)

√(2𝑗 + 1)(2𝑛 + 1)

(𝑗 − 𝑛)(𝑛 + 𝑗 + 1)
 

(2.65) 

  

For r + m is odd, and n ≥ r, and r < m, 

Λ𝑗𝑛
rm = (−1)

𝑛+𝑗−2𝑟+1
2   

𝜋𝐻𝑛
𝑟

(2√𝐻𝑛
𝑚𝐻𝑗

𝑟)

√(2𝑗 + 1)(2𝑛 + 1)

(𝑗 − 𝑛)(𝑛 + 𝑗 + 1)
 

(2.66) 

For r + m is even, and n < r, 

Λ𝑗𝑛
rm =

(−1)
𝑛+𝑗−2𝑟

2

√𝐻𝑛
𝑚𝐻𝑗

𝑟

  
(𝑚 + 𝑟 − 1)‼ (𝑟 − 𝑛 − 2)‼

(𝑛 + 𝑟)‼ (𝑟 − 𝑛 − 1)‼

√(2𝑗 + 1)(2𝑛 + 1)

(𝑗 − 𝑛)(𝑛 + 𝑗 + 1)
 

(2.67) 

 

For r + m is even, and n ≥ r, 

Λ𝑗𝑛
rm = 𝛿𝑗𝑛√

𝐻𝑗
𝑟

𝐻𝑛
𝑚 (2.68) 

  

2.2.3.  Combined Inflow Theory 

In sections (2.2.1) and (2.2.2) the computation of matrices [𝑀] in basis 
1

 𝑣
 𝑃̅𝑗
𝑟(𝑣),  and 

[𝐿̅] in 𝑃̅𝑗
𝑟(𝑣) is made. In addition, the transformation matrix [Y], from basis 

1

 𝑣
 𝑃̅𝑗
𝑟(𝑣),  

to basis 
1

 𝑣
 𝑃̅𝑗
𝑟(𝑣), and transformation matrix [Z], from basis  𝑃̅𝑗

𝑟(𝑣) to basis 
1

 𝑣
 𝑃̅𝑗
𝑟(𝑣), 

are given in Eq. (2.48) and (2.56).  Using these matrices, matrix form of the Peters – 

He inflow can be constructed. 

      [
⋱

𝑀
⋱

] {{𝛼, 𝑏}}

∗

+ 𝑉∞ [
⋮

⋯ 𝐿̅ ⋯
⋮

]

−1

{{𝑐, 𝑑}}  = {{𝜏}}   (2.69) 
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Note that the states are not in the form of 𝑎 and 𝑏 . Therefore, Eq. (2.69) is expanded 

to give: 

      [
⋱

𝑀
⋱

] [
⋱

𝑌
⋱

] {{𝑎, 𝑏}}

∗

+ 

 

𝑉∞ [
⋮

⋯ 𝐿̅ ⋯
⋮

] [
⋮

⋯ 𝑍 ⋯
⋮

] {{𝑎, 𝑏}}  = {{𝜏}} (2.70) 

 

Rearranging Eq.(2.70) such that, 

[𝑀][𝑌] = [𝑀],  (2.71) 

[𝐿̅][𝑍]    = [𝐿] (2.72) 

Substituting Eq.(2.71) and (2.72) into Eq.(2.70), well-known Peters – He inflow 

equations in matrix form is obtained. 

[
⋱

𝐾𝑛
𝑚

⋱

] {{𝛼𝑗
𝑟}}

∗

+ [𝑉] [

⋮

⋯ 𝐿𝑗𝑛
𝑟𝑚(𝑐) ⋯

⋮

]

−1

{𝛼𝑗
𝑟}  = {{𝜏𝑗

𝑟(𝑐)}}   

 

(2.73) 

[
⋱

𝐾𝑛
𝑚

⋱

] {{𝛼𝑗
𝑟}}

∗

+ [𝑉] [

⋮

⋯ 𝐿𝑗𝑛
𝑟𝑚(𝑠) ⋯

⋮

]

−1

{𝑏𝑗
𝑟}  = {{𝜏𝑗

𝑟(𝑠)}}   
(2.74) 

  

where 𝐾𝑛
𝑚 is computed as in Eq. (2.53), and [𝐿𝑗𝑛

𝑟𝑚] are computed as: 

[𝐿𝑗𝑛
0𝑚]

(𝑐)
= 𝑋𝑚[Γ𝑗𝑛

0𝑚] (2.75) 

[𝐿𝑗𝑛
𝑟𝑚]

(𝑐)
= [𝑋|𝑚−𝑟|  + (−1)ℓ𝑋|𝑚+𝑟|] [Γ𝑗𝑛

𝑟𝑚] (2.76) 

[𝐿𝑗𝑛
𝑟𝑚]

(𝑠)
= [𝑋|𝑚−𝑟| − (−1)ℓ𝑋|𝑚+𝑟|] [Γ𝑗𝑛

𝑟𝑚] (2.77) 

where ℓ = min(𝑚, 𝑟) and 𝑋 = tan (
𝜒

2
). In addition, the Γ function is given below: 
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for r + m is even: 

Γ𝑗𝑛
𝑟𝑚 =

(−1)
𝑛+𝑗−2𝑟

2

√(𝐻𝑛
𝑚)(𝐻𝑗

𝑟)

2√(2𝑛 + 1)(2𝑗 + 1)

(𝑗 + 𝑛)(𝑗 + 𝑛 + 2)[(𝑗 − 𝑛)2 − 1]
 

(2.78) 

for r + m is odd and 𝑗 = 𝑛 ± 1: 

Γ𝑗𝑛
𝑟𝑚 = −

𝜋

2√(𝐻𝑛
𝑚)(𝐻𝑗

𝑟)

𝑠𝑔𝑛(𝑟 −𝑚)

√(2𝑛 + 1)(2𝑗 + 1)
 

(2.79) 

 

For r + m is odd and 𝑗 ≠ 𝑛 ± 1 ∶ 

Γ𝑗𝑛
𝑟𝑚 = 0 (2.80) 

The forcing term of the dynamic inflow differential equation is 𝜏𝑗
𝑟(𝑠)

and 𝜏𝑗
𝑟(𝑐)

 which 

needs to be computed using a proper lift theory. (See Chapter 4) 

 

2.2.4.  V∞ Contributions 

In Eq. (2.54) and (2.55) the gain matrix [L] is divided by free stream velocity. In 

addition, in Eq. (2.73) and (2.74) V∞ is replaced with an equivalent V matrix. This 

refinement of the theory accounts for the energy discontinuity in rotor.   

In Ref. [25] it is suggested to use V as following: 

 

[𝑉] =

[
 
 
 
𝑉𝑡𝑜𝑡𝑎𝑙

𝑉𝑠
𝑉𝑠

⋱ ]
 
 
 
 

(2.81) 

 

where, 

 
𝑉𝑡𝑜𝑡𝑎𝑙 = √(𝜇2 + 𝜆2) 

(2.82) 
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𝑉𝑠 =

𝜇2 + (𝜆 + 𝜆𝑚)𝜆

𝑉𝑡𝑜𝑡𝑎𝑙
 

 

(2.83) 

where, 

𝜆: non-dimensional total inflow through rotor disc, 𝜆 = 𝜆𝑉∞ + 𝜆𝑚 

𝜆𝑉∞: non-dimensional inflow through rotor disc due to oncoming flow of air. 

𝜆𝑚: non-dimensional mean induced inflow given as follows: 

𝜆𝑚 = √3𝛼1
0, where 𝑎1

0 is the Peters – He inflow state for r = 0 and j =1 

𝜇:  advance ratio of rotor 

The coupling between the state 𝑎1
0 and the 𝑉𝑡𝑜𝑡𝑎𝑙 introduces non-linearity to the inflow 

theory, such that 𝑉𝑡𝑜𝑡𝑎𝑙 becomes dependent on the inflow states. 
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CHAPTER 3  

 

3. IMPLEMENTATION OF PETERS – HE INFLOW THEORY 

 

3.1. Introduction  

In Chapter 2 theoretical background of the Peters – He inflow theory is briefly 

revisited. In Refs. [14],[19],[28],[29],[34],[35],[36],[38],[39] and [47] the details of 

the theory are rigorously studied, and the implementation of the theory is shown. 

However, where the mathematical rigor and complexity are increased in these studies, 

implementation clarity and simplicity fall short. Therefore, an attempt is made to 

generate a procedure which can be followed step-by-step and yield a complete inflow 

model. 

3.2. Implementation of inflow theory 

3.2.1. Selection of State Number 

The number of Peters – He inflow states are dictated by the requirements of the 

application in which the model is generated. In Refs. [15] and [16], authors rigorously 

investigated the advantages and disadvantages of using different number of states 

while constructing Peters – He inflow model and break down the flight condition with 

respect to the fidelity compared to the number of inflow states. However, at this point 

of the thesis, the selection of the number of inflow states is merely to demonstrate the 

implementation and it is selected 21 – state arbitrarily. 

In the Peters – He inflow model, the final inflow at station 𝑟̅, 𝜓 and at time = t, is given 

in the Eq. (2.36). 

𝑤(𝑟̅, 𝜓, 𝑡̅) =  ∑ ∑ Ψ𝑗
𝑟(𝑟̅)[𝑎𝑗

𝑟(𝑡̅) cos(𝑟𝜓) + 𝑏𝑗
𝑟(𝑡̅) sin(𝑟𝜓)]

∞

𝑗=𝑟+1,𝑟+3,…

∞

𝑟=0
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The inflow 𝑤(𝑟̅, 𝜓, 𝑡̅) is represented as an infinite Fourier expansion. For practical 

purposes, Fourier expansion of the inflow function is required to be finite. Therefore, 

the harmonic expansion is determined using following table for r and j. 

Table 3.1. Choice for the Number of Spatial Modes  

Highest 

Power of r 
j Total Inflow 

States 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 1             1 

1 1 1            3 

2 2 1 1           6 

3 2 2 1 1          10 

4 3 2 2 1 1         15 

5 3 3 2 2 1 1        21 

6 4 3 3 2 2 1 1       28 

7 4 4 3 3 2 2 1 1      36 

8 5 4 4 3 3 2 2 1 1     45 

9 5 5 4 4 3 3 2 2 1 1    55 

10 6 5 5 4 4 3 3 2 2 1 1   66 

11 6 6 5 5 4 4 3 3 2 2 1 1  78 

12 7 6 6 5 5 4 4 3 3 2 2 1 1 91 

 

 The value of the r determines the harmonic variation in azimuth and radial distribution 

of the inflow. To illustrate, for the selected value of 𝑟 = 7 following row of the Table 

3.1 is of importance: 

Table 3.2. Number of Spatial Modes when r = 5 

Highest 

Power of r 
j Total Inflow 

States 0 1 2 3 4 5 6 7 8 9 10 11 12 

5 3 3 2 2 1 1        21 

 

The selection of the j value dictates the expansion range for the Fourier series. Each 

increment of the j adds a new pair of sine and cosine states. (e.g. 𝑎𝑗
𝑟 cos(𝑟𝜓) +

𝑏𝑗
𝑟 sin(𝑟𝜓)). The values written in the table is the number of spatial variation states 

corresponding the highest values of r.  
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The collective number of the states can be computed as: 

Table 3.3. Total Number of States When r = 5 and j =5 

Value of j Non-Harmonic 

State 

Cosine State Sine State 

0 3 - - 

1 - 3 3 

2 - 2 2 

3 - 2 2 

4 - 1 1 

5 - 1 1 

 

Note that the number of states is determined from the summation (Eq. (2.36) ): 

𝑤(𝑟̅, 𝜓, 𝑡̅) =  ∑ ∑ Ψ𝑗
𝑟(𝑟̅)[𝑎𝑗

𝑟(𝑡)̅ cos(𝑟𝜓) + 𝑏𝑗
𝑟(𝑡)̅ sin(𝑟𝜓)]

∞

𝑗=𝑟+1,𝑟+3,…

∞

𝑟=0

 

Total number of states for r = 5 is given in Table 3.3 is as follows: 

 3 + 3 + 3 + 2 + 2 + 2 + 2 + 1 + 1 + 1 + 1 = 21 

 
(3.1) 

The inflow equation for 21 – state becomes: 

𝑓𝑜𝑟 𝑡 =  𝑡̅, where 𝑡̅ is non-dimensional time  (3.2) 

𝑤(𝑟̅, 𝜓, 𝑡̅) =     Ψ1
0(𝑟̅)𝑎1

0(𝑡)̅ + Ψ3
0(𝑟̅)𝑎3

0(𝑡̅) + Ψ5
0(𝑟̅)𝑎5

0(𝑡)̅

+ Ψ2
1(𝑟̅)[𝑎2

1 (𝑡)̅cos(1𝜓) + 𝑏2
1(𝑡)̅ sin(1𝜓)]

+ Ψ4
1(𝑟̅)[𝑎4

1(𝑡̅) cos(1𝜓) + 𝑏4
1 (𝑡̅)sin(1𝜓)]

+ Ψ6
1(𝑟̅)[𝑎6

1 (𝑡)̅cos(1𝜓) + 𝑏6
1 (𝑡̅)sin(1𝜓)]

+ Ψ3
2(𝑟̅)[𝑎3

2 (𝑡̅)cos(2𝜓) + 𝑏3
2 (𝑡̅)sin(2𝜓)]

+ Ψ5
2(𝑟̅)[𝑎5

2 (𝑡̅)cos(2𝜓) + 𝑏5
2 (𝑡̅)sin(2𝜓)]

+ Ψ4
3(𝑟̅)[𝑎4

3 (𝑡̅)cos(3𝜓) + 𝑏4
3 (𝑡̅)sin(3𝜓)]

+ Ψ6
3(𝑟̅)[𝑎6

3 (𝑡̅)cos(3𝜓) + 𝑏6
3 (𝑡̅)sin(3𝜓)]

+ Ψ5
4(𝑟̅)[𝑎5

4 (𝑡̅)cos(4𝜓) + 𝑏5
4 (𝑡̅)sin(4𝜓)]

+ Ψ6
5(𝑟̅)[𝑎6

5 (𝑡̅)cos(5𝜓) + 𝑏6
5 (𝑡̅)sin(5𝜓)] 
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Table 3.4. State list when r=5 and j=5 

Radial Distribution 

Function  
Ψ𝑗
𝑟(𝑟̅) 

Cosine Coefficients 

𝑎𝑗
𝑟 cos(𝑟𝜓) 

Sine Coefficients 𝑏𝑗
𝑟 

Ψ1
0(𝑟̅) 𝑎1

0(𝑡̅) cos(0𝜓) 𝑏1
0(𝑡)̅ sin(0𝜓) 

Ψ3
0(𝑟̅) 𝑎3

0(𝑡̅) cos(0𝜓) 𝑏3
0(𝑡)̅ sin(0𝜓) 

Ψ5
0(𝑟̅) 𝑎5

0(𝑡̅) cos(0𝜓) 𝑏5
0(𝑡̅) sin(0𝜓) 

Ψ2
1(𝑟̅) 𝑎2

1(𝑡̅) cos(1𝜓) 𝑏2
1(𝑡̅) sin(1𝜓) 

Ψ4
1(𝑟̅) 𝑎4

1(𝑡̅) cos(1𝜓) 𝑏4
1(𝑡)̅ sin(1𝜓) 

Ψ6
1(𝑟̅) 𝑎6

1(𝑡̅) cos(1𝜓) 𝑏6
1(𝑡)̅ sin(1𝜓) 

Ψ3
2(𝑟̅) 𝑎3

2(𝑡̅) cos(2𝜓) 𝑏3
2(𝑡)̅ sin(2𝜓) 

Ψ5
2(𝑟̅) 𝑎5

2(𝑡̅) cos(2𝜓) 𝑏5
2(𝑡)̅ sin(2𝜓) 

Ψ4
3(𝑟̅) 𝑎4

3(𝑡̅) cos(3𝜓) 𝑏4
3(𝑡)̅ sin(3𝜓) 

Ψ6
3(𝑟̅) 𝑎6

3(𝑡̅) cos(3𝜓) 𝑏6
3(𝑡̅) sin(3𝜓) 

Ψ5
4(𝑟̅) 𝑎5

4(𝑡̅) cos(4𝜓) 𝑏5
4(𝑡̅) sin(4𝜓) 

Ψ6
5(𝑟̅) 𝑎6

5(𝑡̅) cos(5𝜓) 𝑏6
5(𝑡)̅ sin(5𝜓) 

 

Note that in Table 3.4 total number of states is 24. However, for the 0th harmonics, 

sin(0) = 0. Thus, the states 𝑏1
0, 𝑏3

0 and 𝑏5
0 disappears from the equation. Also note 

that the cos(0𝜓) = 1, which results in the non-harmonic inflow states 𝑎1
0, 𝑎3

0 and 𝑎5
0 

that when combined with the radial distribution functions, Ψ1
0(𝑟̅),Ψ3

0(𝑟̅)  and Ψ5
0(𝑟̅)  

respectively, give the mean inflow on the rotor disc. 

Throughout the Chapter 2, the state vectors for sine and cosine terms are decoupled. 

In addition, the matrix form of the theory is given as two separate equations in 

Eq.(2.73) and (2.74) for sine and cosine states. Therefore, both equations require to be 

constructed separately. (e.g. [𝐿𝑗𝑛
𝑟𝑚] (𝑐) and [𝐿𝑗𝑛

𝑟𝑚] (𝑠)) 
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3.2.2.  Apparent Mass Matrix [M] 

In order to construct M matrix of a 21–State Peters–He inflow theory, the state vectors 

{𝑎𝑗
𝑟} and {𝑏𝑗

𝑟} are written separately. 

Cosine States: 

 

{𝑎𝑗
𝑟} =

{
 
 
 
 
 
 

 
 
 
 
 
 

 

𝑎1
0

𝑎3
0

𝑎5
0

𝑎2
1

𝑎4
1

𝑎6
1

𝑎3
2

𝑎5
2

𝑎4
3

𝑎6
3

𝑎5
4

𝑎6
5

 

}
 
 
 
 
 
 

 
 
 
 
 
 

 (3.3) 

 

Sine States: 

 

{𝑏𝑗
𝑟} =

{
 
 
 
 
 

 
 
 
 
 

 

𝑏2
1

𝑏4
1

𝑏6
1

𝑏3
2

𝑏5
2

𝑏4
3

𝑏6
3

𝑏5
4

𝑏6
5

 

}
 
 
 
 
 

 
 
 
 
 

 (3.4) 
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Elements of [M](c) and [M](s) the elements given in Eq.(2.53) needs to be computed. 

𝑀𝑗𝑛
𝑟𝑚 = 𝐾𝑗𝑛

𝑟𝑚𝛿𝑗𝑛𝛿𝑟𝑚 =  𝐾𝑛
𝑚 =

2

𝜋
 𝐻𝑛

𝑚 (2.53) 

 

Since the terms 𝛿𝑟𝑚 and 𝛿𝑗𝑛 make matrix M is a purely diagonal one, there is no need 

to compute off – diagonal elements. Therefore, using state vectors given in Eq. (3.3) 

and (3.4) following table can be generated. 

Table 3.5. Elements of Cosine States Apparent Mass Matrix 

𝐾1
0 0 0 0 0 0 0 0 0 0 0 0 

0 𝐾3
0 0 0 0 0 0 0 0 0 0 0 

0 0 𝐾5
0 0 0 0 0 0 0 0 0 0 

0 0 0 𝐾2
1 0 0 0 0 0 0 0 0 

0 0 0 0 𝐾4
1 0 0 0 0 0 0 0 

0 0 0 0 0 𝐾6
1 0 0 0 0 0 0 

0 0 0 0 0 0 𝐾3
2 0 0 0 0 0 

0 0 0 0 0 0 0 𝐾5
2 0 0 0 0 

0 0 0 0 0 0 0 0 𝐾4
3 0 0 0 

0 0 0 0 0 0 0 0 0 𝐾6
3 0 0 

0 0 0 0 0 0 0 0 0 0 𝐾5
4 0 

0 0 0 0 0 0 0 0 0 0 0 𝐾6
5 

 

Using Eq. (2.53), values of the above matrix are calculated as follows: 

[𝑀](𝑐) = 
(3.5) 

[
 
 
 
 
 
 
 
 
 
 
 
0.6366 0 0 0 0 0 0 0 0 0 0 0
0 0.2829 0 0 0 0 0 0 0 0 0 0
0 0 0.1811 0 0 0 0 0 0 0 0 0
0 0 0 0.4244 0 0 0 0 0 0 0 0
0 0 0 0 0.2264 0 0 0 0 0 0 0
0 0 0 0 0 0.1552 0 0 0 0 0 0
0 0 0 0 0 0 0.3395 0 0 0 0 0
0 0 0 0 0 0 0 0.1940 0 0 0 0
0 0 0 0 0 0 0 0 0.2910 0 0 0
0 0 0 0 0 0 0 0 0 0.1725 0 0
0 0 0 0 0 0 0 0 0 0 0.2587 0
0 0 0 0 0 0 0 0 0 0 0 0.2352]
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In order to write apparent mass matrix for the sine states, same procedure is applied. 

Table 3.6. Elements of Cosine States Apparent Mass Matrix 

𝐾2
1 0 0 0 0 0 0 0 0 

0 𝐾4
1 0 0 0 0 0 0 0 

0 0 𝐾6
1 0 0 0 0 0 0 

0 0 0 𝐾3
2 0 0 0 0 0 

0 0 0 0 𝐾5
2 0 0 0 0 

0 0 0 0 0 𝐾4
3 0 0 0 

0 0 0 0 0 0 𝐾6
3 0 0 

0 0 0 0 0 0 0 𝐾5
4 0 

0 0 0 0 0 0 0 0 𝐾6
5 

 

Using Eq. (2.53), values of the above matrix are calculated as follows: 

[𝑀](𝑠) = 
(3.6) 

[
 
 
 
 
 
 
 
 
0.4244 0 0 0 0 0 0 0 0
0 0.2264 0 0 0 0 0 0 0
0 0 0.1552 0 0 0 0 0 0
0 0 0 0.3395 0 0 0 0 0
0 0 0 0 0.1940 0 0 0 0
0 0 0 0 0 0.2910 0 0 0
0 0 0 0 0 0 0.1725 0 0
0 0 0 0 0 0 0 0.2587 0
0 0 0 0 0 0 0 0 0.2352]

 
 
 
 
 
 
 
 

 

 

Note that the sine states apparent mass matrix [𝑀](𝑠) is a submatrix of the matrix 

[𝑀](𝑐). The rows and columns corresponding to cos(0𝜓) multiplying states 𝑎1
0, 𝑎3

0 

and 𝑎5
0 are truncated in sine states mass matrix. The reason for this truncation is that 

the counterparts of  𝑎1
0, 𝑎3

0 and 𝑎5
0  states, namely 𝑏1

0, 𝑏3
0 and 𝑏5

0, are removed from the 

inflow equation. (see Table 3.4) 
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3.2.3. Gain Matrices [L](c) and [L](s) 

The calculation of the elements of [L](c) and [L](s) matrices are given in Eq. (2.75), 

(2.76) and (2.77) as: 

[𝐿𝑗𝑛
0𝑚]

(𝑐)
= 𝑋𝑚[Γ𝑗𝑛

0𝑚] (2.75) 

  

[𝐿𝑗𝑛
𝑟𝑚]

(𝑐)
= [𝑋|𝑚−𝑟|  + (−1)ℓ𝑋|𝑚+𝑟|] [Γ𝑗𝑛

𝑟𝑚] (2.76) 

  

[𝐿𝑗𝑛
𝑟𝑚]

(𝑠)
= [𝑋|𝑚−𝑟| − (−1)ℓ𝑋|𝑚+𝑟|] [Γ𝑗𝑛

𝑟𝑚] (2.77) 

 

where [Γ𝑗𝑛
𝑟𝑚] is given in Eq. (2.78),(2.79) and (2.80). It is important to notice that the 

elements [𝐿𝑗𝑛
𝑟𝑚] are dependent on skew angle.  

Let us rewrite Eq. (2.78),(2.79) and (2.80) in the following form: 

[𝐿𝑗𝑛
0𝑚]

(𝑐)
= 𝜃(0𝑐)(𝜒)[Γ𝑗𝑛

0𝑚], where 𝜃(0𝑐)(𝜒) =  𝑋𝑚 (3.7) 

  

[𝐿𝑗𝑛
𝑟𝑚]

(𝑐)
= 𝜃(𝑐) (𝜒) [Γ𝑗𝑛

𝑟𝑚], where 𝜃(𝑐)(𝜒)   = [𝑋|𝑚−𝑟|  + (−1)ℓ𝑋|𝑚+𝑟|] (3.8) 

  

[𝐿𝑗𝑛
𝑟𝑚]

(𝑠)
= 𝜃(𝑠) (𝜒) [Γ𝑗𝑛

𝑟𝑚], where 𝜃(𝑠)(𝜒)   = [𝑋|𝑚−𝑟| − (−1)ℓ𝑋|𝑚+𝑟|]  (3.9) 

 

where, 

𝑋 = tan (
𝜒

2
) and ℓ = min (𝑟, 𝑚) 

 

Unlike the apparent mass matrix, the [𝐿𝑗𝑛
𝑟𝑚]

(𝑐)
and [𝐿𝑗𝑛

𝑟𝑚]
(𝑠)

matrices are not diagonal, 

and thus there are four variables, namely r, m, j, n, to construct L matrices. The 

determination of the subscripts and superscripts are done in the following manner. 
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Table 3.7. Subscripts and Superscripts of Cosine States L matrix elements 

States 𝒂𝟏
𝟎 𝒂𝟑

𝟎 𝒂𝟓
𝟎 𝒂𝟐

𝟏 𝒂𝟒
𝟏 𝒂𝟔

𝟏 𝒂𝟑
𝟐 𝒂𝟓

𝟐 𝒂𝟒
𝟑 𝒂𝟔

𝟑 𝒂𝟓
𝟒 𝒂𝟔

𝟓 

𝒂𝟏
𝟎 𝐿11

00  𝐿13
00  𝐿15

00  𝐿12
01  𝐿14

01  𝐿16
01  𝐿13

02  𝐿15
02  𝐿14

03  𝐿16
03  𝐿15

04  𝐿16
05  

𝒂𝟑
𝟎 𝐿31

00  𝐿33
00  𝐿35

00  𝐿32
01  𝐿34

01  𝐿36
01  𝐿33

02  𝐿35
02  𝐿34

03  𝐿36
03  𝐿35

04  𝐿36
05  

𝒂𝟓
𝟎 𝐿51

00  𝐿53
00  𝐿55

00  𝐿52
01  𝐿54

01  𝐿56
01  𝐿53

02  𝐿55
02  𝐿54

03  𝐿56
03  𝐿55

04  𝐿56
05  

𝒂𝟐
𝟏 𝐿21

10  𝐿23
10  𝐿25

10  𝐿22
11  𝐿24

11  𝐿26
11  𝐿23

12  𝐿25
12  𝐿24

13  𝐿26
13  𝐿25

14  𝐿26
15  

𝒂𝟒
𝟏 𝐿41

10  𝐿43
10  𝐿45

10  𝐿42
11  𝐿44

11  𝐿46
11  𝐿43

12  𝐿45
12  𝐿44

13  𝐿46
13  𝐿45

14  𝐿46
15  

𝒂𝟔
𝟏 𝐿61

10  𝐿63
10  𝐿65

10  𝐿62
11  𝐿64

11  𝐿66
11  𝐿63

12  𝐿65
12  𝐿64

13  𝐿66
13  𝐿65

14  𝐿66
15  

𝒂𝟑
𝟐 𝐿31

20  𝐿33
20  𝐿35

20  𝐿32
21  𝐿34

21  𝐿36
21  𝐿33

22  𝐿35
22  𝐿34

23  𝐿36
23  𝐿35

24  𝐿36
25  

𝒂𝟓
𝟐 𝐿51

20  𝐿53
20  𝐿55

20  𝐿52
21  𝐿54

21  𝐿56
21  𝐿53

22  𝐿55
22  𝐿54

23  𝐿56
23  𝐿55

24  𝐿56
25  

𝒂𝟒
𝟑 𝐿41

30  𝐿43
30  𝐿45

30  𝐿42
31  𝐿44

31  𝐿46
31  𝐿43

32  𝐿45
32  𝐿44

33  𝐿46
33  𝐿45

34  𝐿46
35  

𝒂𝟔
𝟑 𝐿61

30  𝐿63
30  𝐿65

30  𝐿62
31  𝐿64

31  𝐿66
31  𝐿63

32  𝐿65
32  𝐿64

33  𝐿66
33  𝐿65

34  𝐿66
35  

𝒂𝟓
𝟒 𝐿51

40  𝐿53
40  𝐿55

40  𝐿52
41  𝐿54

41  𝐿56
41  𝐿53

42  𝐿55
42  𝐿54

43  𝐿56
43  𝐿55

44  𝐿56
45  

𝒂𝟔
𝟓 𝐿61

50  𝐿63
50  𝐿65

50  𝐿62
51  𝐿64

51  𝐿66
51  𝐿63

52  𝐿65
52  𝐿64

53  𝐿66
53  𝐿65

54  𝐿66
55  

 

In Table 3.7, the states at first column drive the r and j values of 𝐿𝑗𝑛
𝑟𝑚 in their row. 

Similarly, the states in first row drive m and n values of  𝐿𝑗𝑛
𝑟𝑚 in their column.  

As seen in Eq. (2.75), (2.76) and (2.77) elements can be divided into two parts. The 

part that is independent of the skew angle can directly be computed using the 

definition of Γ function given in Eq. (2.78), (2.79) and (2.80).  

𝐿𝑗𝑛
𝑟𝑚 = 𝜃𝑗𝑛

𝑟𝑚(𝜒)Γ𝑗𝑛
𝑟𝑚 (3.10) 
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The Γ𝑗𝑛
𝑟𝑚 part of the 𝐿𝑗𝑛

𝑟𝑚 for r, m, j, n given in Table 3.7 is calculated as: 

Table 3.8. Column (1-6) of Cosine States Γ Matrix 

 Γ𝑗1
𝑟0 Γ𝑗3

𝑟0 Γ𝑗5
𝑟0 Γ𝑗2

𝑟1 Γ𝑗4
𝑟1 Γ𝑗6

𝑟1 

Γ1𝑛
0𝑚 0.7500 0.1909 -0.0299 -0.4967 0.0000 0.0000 

Γ3𝑛
0𝑚 0.1909 0.6563 0.2057 -0.4878 -0.4978 0.0000 

Γ5𝑛
0𝑚 -0.0299 0.2057 0.6445 0.0000 -0.4964 -0.4988 

Γ2𝑛
1𝑚 0.4967 0.4878 0.0000 0.6250 0.1914 -0.0333 

Γ4𝑛
1𝑚 0.0000 0.4978 0.4964 0.1914 0.6328 0.2041 

Γ6𝑛
1𝑚 0.0000 0.0000 0.4988 -0.0333 0.2041 0.6348 

Γ3𝑛
2𝑚 0.1743 0.5991 0.1877 0.4453 0.4545 0.0000 

Γ5𝑛
2𝑚 -0.0289 0.1987 0.6227 0.0000 0.4796 0.4819 

Γ4𝑛
3𝑚 0.0000 0.4391 0.4378 0.1688 0.5581 0.1800 

Γ6𝑛
3𝑚 0.0000 0.0000 0.4732 -0.0316 0.1936 0.6022 

Γ5𝑛
4𝑚 -0.0250 0.1721 0.5393 0.0000 0.4153 0.4173 

Γ6𝑛
5𝑚 0.0000 0.0000 0.4052 -0.0271 0.1658 0.5157 

 

Table 3.9. Column (7-12) of Cosine States Γ Matrix 

 Γ𝑗3
𝑟2 Γ𝑗5

𝑟2 Γ𝑗4
𝑟3 Γ𝑗6

𝑟3 Γ𝑗5
𝑟4 Γ𝑗6

𝑟5 

Γ1𝑛
0𝑚 0.1743 -0.0289 0.0000 0.0000 -0.025 0.0000 

Γ3𝑛
0𝑚 0.5991 0.1987 -0.4391 0.0000 0.1721 0.0000 

Γ5𝑛
0𝑚 0.1877 0.6227 -0.4378 -0.4732 0.5393 -0.4052 

Γ2𝑛
1𝑚 -0.4453 0.0000 0.1688 -0.0316 0.0000 -0.0271 

Γ4𝑛
1𝑚 -0.4545 -0.4796 0.5581 0.1936 -0.4153 0.1658 

Γ6𝑛
1𝑚 0.0000 -0.4819 0.1800 0.6022 -0.4173 0.5157 

Γ3𝑛
2𝑚 0.5469 0.1814 -0.4008 0.0000 0.1571 0.0000 

Γ5𝑛
2𝑚 0.1814 0.6016 -0.4230 -0.4572 0.5210 -0.3915 

Γ4𝑛
3𝑚 0.4008 0.4230 0.4922 0.1708 -0.3663 0.1462 

Γ6𝑛
3𝑚 0.0000 0.4572 0.1708 0.5713 -0.3959 0.4892 

Γ5𝑛
4𝑚 0.1571 0.5210 0.3663 0.3959 0.4512 -0.3390 

Γ6𝑛
5𝑚 0.0000 0.3915 0.1462 0.4892 0.3390 0.4189 

 

To obtain the gain matrix L for cosine states, the values of [𝜃𝑗𝑛
𝑟𝑚(𝑐)(𝜒)] needs to be 

computed besides the [Γ𝑗𝑛
rm] matrix. Since function [𝜃𝑗𝑛

𝑟𝑚(𝑐)(𝜒)]  is a function of skew 

angle, 𝜒 an arbitrary selection for 𝜒 is made such that: 
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𝜒 = 0.2 𝑟𝑎𝑑𝑖𝑎𝑛𝑠 (3.11) 

For the skew angle selected in Eq.(3.11) the [𝜃𝑗𝑛
𝑟𝑚(𝜒)] is calculated as follow: 

Table 3.10. Column (1-6) of Cosine States θ Matrix 

 θ𝑗1
𝑟0 θ𝑗3

𝑟0 θ𝑗5
𝑟0 θ𝑗2

𝑟1 θ𝑗4
𝑟1 θ𝑗6

𝑟1 

θ1𝑛
0𝑚 1.0000 1.0000 1.0000 0.2000 0.2000 0.2000 

θ3𝑛
0𝑚 1.0000 1.0000 1.0000 0.2000 0.2000 0.2000 

θ5𝑛
0𝑚 1.0000 1.0000 1.0000 0.2000 0.2000 0.2000 

θ2𝑛
1𝑚 0.4000 0.4000 0.4000 0.9600 0.9600 0.9600 

θ4𝑛
1𝑚 0.4000 0.4000 0.4000 0.9600 0.9600 0.9600 

θ6𝑛
1𝑚 0.4000 0.4000 0.4000 0.9600 0.9600 0.9600 

θ3𝑛
2𝑚 0.0800 0.0800 0.0800 0.1920 0.1920 0.1920 

θ5𝑛
2𝑚 0.0800 0.0800 0.0800 0.1920 0.1920 0.1920 

θ4𝑛
3𝑚 0.0160 0.0160 0.0160 0.0384 0.0384 0.0384 

θ6𝑛
3𝑚 0.0160 0.0160 0.0160 0.0384 0.0384 0.0384 

θ5𝑛
4𝑚 0.0032 0.0032 0.0032 0.0077 0.0077 0.0077 

θ6𝑛
5𝑚 0.0006 0.0006 0.0006 0.0015 0.0015 0.0015 

 

Table 3.11. Column (7-12) of Cosine States θ Matrix 

 𝜃𝑗3
𝑟2 𝜃𝑗5

𝑟2 𝜃𝑗4
𝑟3 𝜃𝑗6

𝑟3 𝜃𝑗5
𝑟4 𝜃𝑗6

𝑟5 

θ1𝑛
0𝑚 0.0400 0.0400 0.0080 0.0080 0.0016 0.0003 

θ3𝑛
0𝑚 0.0400 0.0400 0.0080 0.0080 0.0016 0.0003 

θ5𝑛
0𝑚 0.0400 0.0400 0.0080 0.0080 0.0016 0.0003 

θ2𝑛
1𝑚 0.1920 0.1920 0.0384 0.0384 0.0077 0.0015 

θ4𝑛
1𝑚 0.1920 0.1920 0.0384 0.0384 0.0077 0.0015 

θ6𝑛
1𝑚 0.1920 0.1920 0.0384 0.0384 0.0077 0.0015 

θ3𝑛
2𝑚 1.0016 1.0016 0.2003 0.2003 0.0401 0.0080 

θ5𝑛
2𝑚 1.0016 1.0016 0.2003 0.2003 0.0401 0.0080 

θ4𝑛
3𝑚 0.2003 0.2003 0.9999 0.9999 0.2000 0.0400 

θ6𝑛
3𝑚 0.2003 0.2003 0.9999 0.9999 0.2000 0.0400 

θ5𝑛
4𝑚 0.0401 0.0401 0.2000 0.2000 1.0000 0.2000 

θ6𝑛
5𝑚 0.0080 0.0080 0.0400 0.0400 0.2000 1.0000 
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Finally, both functions to construct [𝐿𝑗𝑛
𝑟𝑚]

(𝑐)
, 𝜃𝑗𝑛

𝑟𝑚(𝜒) and Γ𝑗𝑛
𝑟𝑚, are ready. Note that 

the multiplication Γ𝑗𝑛
𝑟𝑚 and 𝜃𝑗𝑛

𝑟𝑚(𝜒) are not a matrix multiplication but an element-

wise multiplication such that: 

[𝐿𝑗𝑛
𝑟𝑚]

(𝑐)
= [𝜃𝑗𝑛

𝑟𝑚(𝜒)]  • [Γ𝑗𝑛
𝑟𝑚] 

(3.12) 

 

 where operator “•” indicates the element – wise multiplication of matrices. 

Exact same procedure is applied for the [𝐿𝑗𝑛
𝑟𝑚]

(𝑠)
 matrix for the r, m, j, n combinations 

given below. 

Table 3.12. Subscripts and Superscripts of Sine States L matrix elements 

States 𝒃𝟐
𝟏 𝒃𝟒

𝟏 𝒃𝟔
𝟏 𝒃𝟑

𝟐 𝒃𝟓
𝟐 𝒃𝟒

𝟑 𝒃𝟔
𝟑 𝒃𝟓

𝟒 𝒃𝟔
𝟓 

𝒃𝟐
𝟏 𝐿22

11  𝐿24
11  𝐿26

11  𝐿23
12  𝐿25

12  𝐿24
13  𝐿26

13  𝐿25
14  𝐿26

15  

𝒃𝟒
𝟏 𝐿42

11  𝐿44
11  𝐿46

11  𝐿43
12  𝐿45

12  𝐿44
13  𝐿46

13  𝐿45
14  𝐿46

15  

𝒃𝟔
𝟏 𝐿62

11  𝐿64
11  𝐿66

11  𝐿63
12  𝐿65

12  𝐿64
13  𝐿66

13  𝐿65
14  𝐿66

15  

𝒃𝟑
𝟐 𝐿32

21  𝐿34
21  𝐿36

21  𝐿33
22  𝐿35

22  𝐿34
23  𝐿36

23  𝐿35
24  𝐿36

25  

𝒃𝟓
𝟐 𝐿52

21  𝐿54
21  𝐿56

21  𝐿53
22  𝐿55

22  𝐿54
23  𝐿56

23  𝐿55
24  𝐿56

25  

𝒃𝟒
𝟑 𝐿42

31  𝐿44
31  𝐿46

31  𝐿43
32  𝐿45

32  𝐿44
33  𝐿46

33  𝐿45
34  𝐿46

35  

𝒃𝟔
𝟑 𝐿62

31  𝐿64
31  𝐿66

31  𝐿63
32  𝐿65

32  𝐿64
33  𝐿66

33  𝐿65
34  𝐿66

35  

𝒃𝟓
𝟒 𝐿52

41  𝐿54
41  𝐿56

41  𝐿53
42  𝐿55

42  𝐿54
43  𝐿56

43  𝐿55
44  𝐿56

45  

𝒃𝟔
𝟓 𝐿62

51  𝐿64
51  𝐿66

51  𝐿63
52  𝐿65

52  𝐿64
53  𝐿66

53  𝐿65
54  𝐿66

55  
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Table 3.13. Column (1-5) of Sine States Γ Matrix 

 𝚪𝒋𝟐
𝒓𝟏 𝚪𝒋𝟒

𝒓𝟏 𝚪𝒋𝟔
𝒓𝟏 𝚪𝒋𝟑

𝒓𝟐 𝚪𝒋𝟓
𝒓𝟐 

𝚪𝟐𝒏
𝟏𝒎 0.6250 0.1914 -0.0333 -0.4453 0.0000 

𝚪𝟒𝒏
𝟏𝒎 0.1914 0.6328 0.2041 -0.4545 -0.4796 

𝚪𝟔𝒏
𝟏𝒎 -0.0333 0.2041 0.6348 0.0000 -0.4819 

𝚪𝟑𝒏
𝟐𝒎 0.4453 0.4545 0.0000 0.5469 0.1814 

𝚪𝟓𝒏
𝟐𝒎 0.0000 0.4796 0.4819 0.1814 0.6016 

𝚪𝟒𝒏
𝟑𝒎 0.1688 0.5581 0.1800 0.4008 0.4230 

𝚪𝟔𝒏
𝟑𝒎 -0.0316 0.1936 0.6022 0.0000 0.4572 

𝚪𝟓𝒏
𝟒𝒎 0.0000 0.4153 0.4173 0.1571 0.5210 

𝚪𝟔𝒏
𝟓𝒎 -0.0271 0.1658 0.5157 0.0000 0.3915 

 

Table 3.14. Column (6-9) of Sine States Γ Matrix 

 𝚪𝒋𝟒
𝒓𝟑 𝚪𝒋𝟔

𝒓𝟑 𝚪𝒋𝟓
𝒓𝟒 𝚪𝒋𝟔

𝒓𝟓 

𝚪𝟐𝒏
𝟏𝒎 0.1688 -0.0316 0.0000 -0.0271 

𝚪𝟒𝒏
𝟏𝒎 0.5581 0.1936 -0.4153 0.1658 

𝚪𝟔𝒏
𝟏𝒎 0.1800 0.6022 -0.4173 0.5157 

𝚪𝟑𝒏
𝟐𝒎 -0.4008 0.0000 0.1571 0.0000 

𝚪𝟓𝒏
𝟐𝒎 -0.4230 -0.4572 0.5210 -0.3915 

𝚪𝟒𝒏
𝟑𝒎 0.4922 0.1708 -0.3663 0.1462 

𝚪𝟔𝒏
𝟑𝒎 0.1708 0.5713 -0.3959 0.4892 

𝚪𝟓𝒏
𝟒𝒎 0.3663 0.3959 0.4512 -0.3390 

𝚪𝟔𝒏
𝟓𝒎 0.1462 0.4892 0.3390 0.4189 

 

Table 3.15. Column (1-5) of Sine States θ Matrix 

 𝛉𝒋𝟐
𝒓𝟏 𝛉𝒋𝟒

𝒓𝟏 𝛉𝒋𝟔
𝒓𝟏 𝜽𝒋𝟑

𝒓𝟐 𝜽𝒋𝟓
𝒓𝟐 

𝛉𝟐𝒏
𝟏𝒎 1.0400 1.0400 1.0400 0.2080 0.2080 

𝛉𝟒𝒏
𝟏𝒎 1.0400 1.0400 1.0400 0.2080 0.2080 

𝛉𝟔𝒏
𝟏𝒎 1.0400 1.0400 1.0400 0.2080 0.2080 

𝛉𝟑𝒏
𝟐𝒎 0.2080 0.2080 0.2080 0.9984 0.9984 

𝛉𝟓𝒏
𝟐𝒎 0.2080 0.2080 0.2080 0.9984 0.9984 

𝛉𝟒𝒏
𝟑𝒎 0.0416 0.0416 0.0416 0.1997 0.1997 

𝛉𝟔𝒏
𝟑𝒎 0.0416 0.0416 0.0416 0.1997 0.1997 

𝛉𝟓𝒏
𝟒𝒎 0.0083 0.0083 0.0083 0.0399 0.0399 

𝛉𝟔𝒏
𝟓𝒎 0.0017 0.0017 0.0017 0.0080 0.0080 
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Table 3.16. Column (6-9) of Sine States θ Matrix 

 𝜽𝒋𝟒
𝒓𝟑 𝜽𝒋𝟔

𝒓𝟑 𝜽𝒋𝟓
𝒓𝟒 𝜽𝒋𝟔

𝒓𝟓 

𝛉𝟐𝒏
𝟏𝒎 0.0416 0.0416 0.0083 0.0017 

𝛉𝟒𝒏
𝟏𝒎 0.0416 0.0416 0.0083 0.0017 

𝛉𝟔𝒏
𝟏𝒎 0.0416 0.0416 0.0083 0.0017 

𝛉𝟑𝒏
𝟐𝒎 0.1997 0.1997 0.0399 0.0080 

𝛉𝟓𝒏
𝟐𝒎 0.1997 0.1997 0.0399 0.0080 

𝛉𝟒𝒏
𝟑𝒎 1.0001 1.0001 0.2000 0.0400 

𝛉𝟔𝒏
𝟑𝒎 1.0001 1.0001 0.2000 0.0400 

𝛉𝟓𝒏
𝟒𝒎 0.2000 0.2000 1.0000 0.2000 

𝛉𝟔𝒏
𝟓𝒎 0.0400 0.0400 0.2000 1.0000 

 

Note that, one can compute 𝐿𝑗𝑛
𝑟𝑚 element without separating skew angle contribution 

and Γ function contribution. If such method is chosen, the computation of Gamma 

function becomes redundant. Because Gamma function only required to be computed 

initially, whereas 𝜃 is a function of skew angle, 𝜒, it can be computed once and then 

use throughout the simulation. Separating 𝜃 and Γ functions is merely to increase 

calculation speed and avoid unnecessary computation of Γ functions. 

 

3.2.4. Velocity [V] Matrix 

In Eq. (2.81) and (2.82), 𝑉𝑡𝑜𝑡𝑎𝑙 and 𝑉𝑠 is computed. The only unknown to compute 𝜆𝑚 

is the inflow state 𝑎1
0. The state is initialized to zero, and as the simulation progress 

replaced with the newly computed 𝑎1
0 state. This yields a relation such that: 

 𝑎1
0 = 𝑎1

0(𝜆𝑚) 
(3.13) 

 𝜆𝑚 = 𝜆𝑚(𝑎1
0) (3.14) 

 

Therefore, there is an iterative relation between the inflow states and the mean inflow, 

which makes this a non-linear theory. 
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3.2.5. Final Equations 

Finally, following equations for Peters – He inflow can be written; 

 [𝑀(𝑐)]{𝑎𝑗
𝑟}
∗
+ [𝑉](𝑐)[𝐿(𝑐)]

−1
{𝑎𝑗
𝑟} =   {𝜏𝑗

𝑟(𝑐)} (3.15) 

 [𝑀(𝑠)]{𝑏𝑗
𝑟}
∗
+ [𝑉](𝑠)[𝐿(𝑠)]

−1
{𝑏𝑗
𝑟} =   {𝜏𝑗

𝑟(𝑠)} (3.16) 

 

Rearranging equations: 

 
[𝑀(𝑐)]{𝑎𝑗

𝑟}
∗
+ [𝑉](𝑐)[𝜃(𝑐)(𝜒) ∙ Γ(𝑐)]

−1
{𝑎𝑗
𝑟} =   {𝜏𝑗

𝑟(𝑐)} 
(3.17) 

 
[𝑀(𝑠)]{𝑏𝑗

𝑟}
∗
+ [𝑉](𝑠)[𝜃(𝑠)(𝜒) ∙ Γ(𝑠)]

−1
{𝑏𝑗
𝑟} =   {𝜏𝑗

𝑟(𝑠)} 
(3.18) 

 

The harmonic and radial expansion for the inflow is selected by using Table 3.1. The 

apparent mass matrices [M(c)] and [M(s)] are computed in Table 3.5, Table 3.6, 

Eq.(3.5) and Eq. (3.6). The skew angle functions of L matrix, θ(c)(χ) and θ(s)(χ)  are 

computed and given in Table 3.10, Table 3.11, Table 3.15 and Table 3.16 . The Γ 

functions of L matrix, Γ(c) and Γ(s) are computed and presented in Table 3.8,  

Table 3.9, Table 3.13 and  

Table 3.14. 

All inflow states are initialized to zero initially. Then, the state derivatives with respect 

to non-dimensional time are calculated. Integration of these derivatives yields to 

inflow states. It is important to note that the derivative is a non-dimensional time 

derivative where: 

 𝑡̅ = Ω𝑡 where Ω is the angular velocity of rotor in radians. (3.19) 

 

Therefore, the Euler integration of that state 𝑎𝑗
𝑟 or 𝑏𝑗

𝑟 looks like as follows: 

 𝑎𝑗
𝑟 = 𝑎𝑗

𝑟 + (𝑎𝐽
𝑟)
∗
 Δ𝑡̅  →  𝑎𝑗

𝑟 = 𝑎𝑗
𝑟 + (𝑎𝐽

𝑟)
∗
 (ΩΔ𝑡) , (3.20) 
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 𝑏𝑗
𝑟 = 𝑏𝑗

𝑟 + (𝑏𝐽
𝑟)
∗
 Δ𝑡̅  →  𝑏𝑗

𝑟 = 𝑏𝑗
𝑟 + (𝑏𝐽

𝑟)
∗
 (ΩΔ𝑡) , (3.21) 

 

In above section, all matrices are calculated except the forcing vector {𝜏𝑗
𝑟} for both 

sine and cosine states. The forcing vector is determined by the lift. One can implement 

any method to calculate lift and generate {𝜏𝑗
𝑟}. The inflow theory is essentially 

independent of the lift theory.  

In Chapter 4, the isolated rotor model and generating forcing vector, {𝜏𝑗
𝑟}, is explained.  
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CHAPTER 4  

 

4. ISOLATED ROTOR MODEL   

 

4.1. Basic Rotor Dynamics 

The helicopter rotor generates lift simply by pulling air from above, accelerating 

through the rotor disc and pushing air below. This simple mechanic is achieved by 

complex inflow dynamics mainly the rotation of the blades and partially by the 

forward velocity of the helicopter.  

A control input given by the pilot that is shown in figure below as the θbl.. This results 

in an angle of attack for the blade. In return a lift is generated on the blade. The 

geometric relations are shown in the figure below. 

 

Figure 4.1. Pitch angle corresponding to control input, 𝜃𝑏𝑙 [16] 

This control input creates and apparent angle of attack with respect to the travel of the 

blade section due to rotation of rotor and motion of the aircraft.  
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The control input is the collective and cyclic inputs given in the following equation. 

 𝜃𝑏𝑙𝑎𝑑𝑒 = 𝜃𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑣𝑒 + 𝜃𝐿𝑎𝑡𝐶𝑦𝑐 ∗ cos(𝜓) + 𝜃𝐿𝑜𝑛𝐶𝑦𝑐 ∗ 𝑠𝑖𝑛(𝜓) 
(4.1) 

 

In order to write infinitesimal lift dL and infinitesimal drag dD given in equations 

below, the effective angle of attack 𝛼𝑒𝑓𝑓  is required to be determined. 

 
𝑑𝐿 =

1

2
∗ 𝜌 ∗ 𝑉2 ∗ 𝐶𝐿(𝛼𝑒𝑓𝑓, 𝜇) ∗ 𝑐 ∗ 𝑑𝑟 (4.2) 

 
𝑑𝐷 =

1

2
∗ 𝜌 ∗ 𝑉2 ∗ 𝐶𝐷(𝛼𝑒𝑓𝑓, 𝜇) ∗ 𝑐 ∗ 𝑑𝑟 

(4.3) 

 

However, the 𝛼𝑒𝑓𝑓 itself depends on the inflow of the rotor. In addition, the inflow 

states are driven by the lift generated by the rotor which depends on the effective angle 

of attack in return where 𝛼𝑒𝑓𝑓 is given as: 

 
𝛼𝑒𝑓𝑓 = 𝜃𝑏𝑙𝑎𝑑𝑒 − atan (

𝑈𝑝

𝑈𝑡
) (4.4) 

 

Where 𝑈𝑝 is the perpendicular velocity on the blade element, 

 𝑈𝑡 is the tangential velocity on the blade element, 

𝜌 is density, 

V is total velocity on blade element, 

𝐶𝐿 and 𝐶𝐷 are lift and drag coefficients respectively, 

c is chord, 

dr is the infinitesimal element length. 
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4.2.  Calculation of Section Velocities 

The determination of lift of the blade is directly depends on the effective angle of 

attack seen by the infinitesimal blade. There are three main contributors to the 

perpendicular velocity.  

 

Figure 4.2. Blade length and angles [16] 

Considering the figure above, the velocities at station “r” from the hinge is given in 

the Ref [16] for an articulated blade as below: 

 𝑈𝑡 = Ω𝑀𝑅(𝑒 + 𝑟) + 𝑢𝑏 sin(𝜓) − 𝑣𝑏 𝑐𝑜𝑠(𝜓) 
(4.5) 

 𝑈𝑝 =  −𝑤𝑏 + 𝑢𝑏𝛽 cos(𝜓) + 𝑣𝑏𝛽 sin(𝜓) + 𝑣𝑖 + 𝛽̇𝑟 

      + (𝑒 + 𝑟)(𝑝𝑠𝑖𝑛(𝜓) − 𝑞𝑐𝑜𝑠(𝜓)) 
(4.6) 

 

Where, 

𝑢𝑏 , 𝑣𝑏 , 𝑤𝑏 are translation velocities of the helicopter in body frame, 

𝑝, 𝑞 are rotational velocities of the helicopter in body frame, 

r is the distance from flapping hinge to blade element, 

e is the distance from rotor hub to flapping hinge, 

 𝑣𝑖 is the induced inflow, 
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𝛽  is the flapping angle of the blade around flapping hinge. 

In order to compute the forcing vector which depends on the lift of the blade, the blade 

element theory is used. The values tables of lift and drag coefficients 𝐶𝐿 and 𝐶𝐷 are 

given in the Appendix C along with the blade element figure. 

It is important to note that “r” and “e” are structural parameters of the helicopter, and 

𝑢𝑏 ,  𝑣𝑏 , 𝑤𝑏 and p, q are states of the helicopter which are calculated by 6-DOF dynamic 

equations. This left with two important values for the calculation of effective angle of 

attack, which are 𝛽 and 𝑣𝑖. These two values are solved simultaneously. The value of 

equation of motion for 𝛽 can be written as [4][24][26][32][40]: 

 

∑[(𝑟𝑞 ∗ 𝑑𝐿𝑞) + (𝑑𝑟 ∗ 𝑤
2𝑟𝑞

2 𝑚𝑏𝛽 ] = 𝐼𝑏𝑙𝑎𝑑𝑒

𝑄

𝑞=0

𝛽̈ (4.7) 
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4.3. Rotor Model Procedure 

 

Figure 4.3. Rotor Model Flowchart 
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In above chart, the basic simulation steps are given for an isolated rotor model. In 

order to compute the inflow, only missing information is the forcing vector. The 

equations to compute forcing vector 𝜏 is given as follows: 

 

𝜏𝑗
0 =

1

(2𝜋)
 ∑𝑑𝐿 ∗ 𝜙𝑗

𝑟(𝑟̅)

𝑄

𝑞=1

 (4.8) 

 

𝜏𝑗
𝑟(𝑐)

=
cos (𝜓𝑞)

𝜋
 ∑𝑑𝐿 ∗ 𝜙𝑗

𝑟(𝑟̅)

𝑄

𝑞=1

 

(4.9) 

 

𝜏𝑗
𝑟(𝑠)

=
sin (𝜓𝑞)

𝜋
 ∑𝑑𝐿 ∗ 𝜙𝑗

𝑟(𝑟̅)

𝑄

𝑞=1

 

(4.10) 

 

Where r and j are the r and j value of the respective inflow states {𝑎𝑗
𝑟} and {𝑏𝑗

𝑟}, 

Q is the total number of blade elements on a blade, 

q is the blade element number, 

𝜓𝑞 is the azimuth angle of the blade in which the blade element resides. 

In the inner-most iteration of the blade element calculations, the forcing vector is 

generated alongside with the infinitesimal lift dL.  

Computation of these 𝜏𝑗
𝑟 completes the Peters – He inflow theory. 
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4.4. Properties of Isolated Rotor Model 

The rotor model used to investigate inflow throughout this thesis is the S-76 helicopter 

rotor with following parameters. 

Table 4.1. Parameters of S-76 Helicopter [41] 

Rotor Radius [m] 6.7056 

Rotor Speed [rpm] 293 

Hinge Offset 0.037 

Solidity Ratio 0.0748 

Airfoil SC1095 

Blade Number 4 

Blade Twist Figure 4.4 

 

pre 

Figure 4.4. Twist along the blade radius [14] 

In the rotor model 16 virtual blade is used. Each blade is divided into 20 blade 

elements. Inflow values are obtained at these stations. An example of the obtained 

inflow distribution for various flight conditions are given in the following figure. 
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Flight Condition 1 : 6 state zero advance ratio at 

neutral controls 

 
Flight Condition 2: 21 state zero advance ratio at 

neutral controls 

 
Flight Condition 3: 6 state 0.15 advance ratio at 

neutral controls 
 

Flight Condition 4: 21 state 0.15 advance ratio at 

neutral controls 

 
Flight Condition 5: 6 state 0.30 advance ratio at 

neutral controls 

 
Flight Condition 6: 6 state 0.30 advance ratio at 

neutral controls 

 

Figure 4.5. Example of inflow distributions 
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4.5. Error Calculation for Difference Analysis 

In the following chapter, a rigorous investigation is made in order to understand the 

effects of state number to inflow distribution under different advance ratios and 

control combinations. Therefore, the following error procedure is used throughout  

Chapter 5 to quantify the difference between two inflow distribution. 

Error is calculated by the following procedure: 

• The inflow distribution with conventional 21 state Peters – He inflow model is 

selected as baseline inflow model and used for the calculation of mean inflow. 

• For 16 virtual blades and 20 blade elements, total 320 sections inflows are calculated 

for each state-number inflow model. 

• The inflow distribution difference is calculated extracting baseline distribution 

model from varying state inflow distribution. 

• An error matrix is obtained for 320 elements at each time step (100 Hz.). 

• Then, using the following error equation, percentage error is calculated. 

 

𝑒𝑡𝑖𝑚𝑒 = 𝑡 = 100 ∗ (∑∑|
(𝜆𝑛
𝑞) − 𝜆𝑛

𝑞

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝜆𝑛
𝑞

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

|

𝑄

𝑞

𝑁

𝑛

) ∗ 
1

𝑁 ∗ 𝑄
  

(4.11) 

 

Where n and q show the blade and blade element number respectively, for N blade 

and Q blade element on each blade. 
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CHAPTER 5  

 

5. DYNAMIC INFLOW DISTRIBUTION SIMULATIONS 

 

5.1. Introduction  

In this chapter, the effects of advance ratio and control inputs to Peters – He inflow 

distribution are thoroughly investigated for 6, 10, 15 and 21 State Peters – He inflow 

models.  

Throughout this chapter, it is assumed that the high-number-state model is better for 

the simulation fidelity [15][16][28][29]. Therefore, a 21 State inflow model is selected 

as the baseline inflow model. All other inflow models such as 6, 10, and 15 inflow 

distributions are compared with the 21 State inflow model. The purpose of this is to 

determine flight condition regions where a low – state inflow distribution do not 

greatly differ from the 21-state model and thus can be employed in that regions 

instead. Furthermore, an error line at 15% percent is drawn in all figures. This error 

limit is utilized in the Chapter 6 to determine a switching logic for varying state inflow 

model. 

5.2. Collective – Inflow Relations 

In this section simulations in Table 5.1 are done in order to determine effects of 

collective to inflow distributions and transition from a state – number to another state 

-number.  

The 8 tests conditions given in Table 5.1 are repeated for 6, 10, 15 and 21 constant state 

inflow models making a total of 32 test combined. The results are presented such that 

for a given advance ratio and collective command 5-State, 10-State and 15-State are 

compared with the 21-State model. An example comparison at t=12 for these tests are 

given in the Appendix B. 
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Table 5.1. Collective Tests 

Collective Simulations 

# 
Collective 

(Deg) 

Long 

Cyclic 

(Deg) 

Lateral 

Cyclic 

(Deg) 

Input Type 
Input Time 

(Second) 

Advance 

Ratio 

1 5 to 20 0.0 0.0 Ramp 
Between 

2 - 12 
0.00 

2 5 to 20 0.0 0.0 Ramp 
Between 

2 - 12 
0.10 

3 5 to 20 0.0 0.0 Ramp 
Between 

2 - 12 
0.20 

4 5 to 20 0.0 0.0 Ramp 
Between 

2 - 12 
0.30 

5 20 to 5 0.0 0.0 Ramp 
Between 

2 - 12 
0.00 

6 20 to 5 0.0 0.0 Ramp 
Between 

2 - 12 
0.10 

7 20 to 5 0.0 0.0 Ramp 
Between 

2 - 12 
0.20 

8 20 to 5 0.0 0.0 Ramp 
Between 

2 - 12 
0.30 

 

5.2.1.  Collective Up 

The following collective input given in Figure 5.1 are given to the simulations run below 

for continuous collective up tests. 

 

Figure 5.1. Collective Up Command for tests in Table 5.1. Collective Tests (1-2-3-4) 
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5.2.1.1. Advance Ratio: 0.0 

The simulation results are presented below. 

 

Figure 5.2. Continuous Collective Up at 0.0 advance ratio 

In the Figure 5.2 the difference from 21-State inflow is same for 6 and 10 state inflow 

models because of the fact that both have the same number of “mean inflow” inflow 

states given in Table 3.1 when r =2 , j = 0 for 6 state and r =3 , j = 0 for 10 state. Same 

holds for 15 and 21 state inflow distributions.   

In the table below, 15% error crossings are given at zero advance ratio for collective 

up input. 

Table 5.2. 15% Error Crossing Collective Values for Zero Advance Ratio 

State Number 15% Error Crossing Collective (deg) 

6 - 

10 - 

15 - 
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Since none of the simulations for given inflow states crosses the 15% error at zero 

advance ratio, for varying-state implementation, during hover, 6 – state inflow model 

can be used for all collective range instead of 21 state.  

 

5.2.1.2. Advance Ratio: 0.1  

The simulation results are presented below. 

 

Figure 5.3. Continuous Collective Up at 0.1 advance ratio 

 

As advance ratio increases, the asymmetry of inflow increases. Therefore, the 

difference between low-state and high-state inflow distribution increases. 
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In the table below, 15% error crossings are given at 0.1 advance ratio for collective up 

input. 

Table 5.3. 15% Error Crossing Collective Values for 0.1 Advance Ratio 

State Number 15% Error Crossing Collective (deg) 

6 12.00 

10 17.00 

15 - 

 

The 6-State crosses 15% error threshold at 11 degrees collective input whereas 10 -

State model crosses the threshold at 16 degrees. Note that 15 – State does not cross 

15% error at 0.1 advance ratio.  

5.2.1.3. Advance Ratio: 0.2 

The simulation results are presented below. 

 

Figure 5.4. Continuous Collective Up at 0.2 advance ratio 
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In the table below, 15% error crossings are given at 0.2 advance ratio for collective up 

input. 

Table 5.4. 15% Error Crossing Collective Values for 0.2 Advance Ratio 

State Number 15% Error Crossing Collective (deg) 

6 8.00 

10 12.00 

15 18.00 

 

5.2.1.4. Advance Ratio: 0.3 

The simulation results are presented below. 

 

Figure 5.5. Continuous Collective Up at 0.3 advance ratio 
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In the table below, 15% error crossings are given at 0.3 advance ratio for collective up 

input. 

Table 5.5. 15% Error Crossing Collective Values for 0.3 Advance Ratio 

State Number 15% Error Crossing Collective (deg) 

6 7.00 

10 10.00 

15 15.00 

 

5.2.2. Collective Down 

The following collective input given in Figure 5.6 are given to the simulations run below 

for continuous collective down tests. 

 

Figure 5.6. Collective Down Command for tests in Table 5.1. Collective Tests (5-6-7-8) 
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5.2.2.1. Advance Ratio: 0.0 

The simulation results are presented below. 

 

Figure 5.7. Continuous Collective Down at 0.0 advance ratio 

 

In the table below, 15% error crossings are given at 0.0 advance ratio for collective 

down input. 

Table 5.6. 15% Error Crossing Collective Values for 0.0 Advance Ratio 

State Number 15% Error Crossing Collective (deg) 

6 - 

10 - 

15 - 
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5.2.2.2. Advance Ratio: 0.1 

The simulation results are presented below. 

 

Figure 5.8. Continuous Collective Down at 0.1 advance ratio 

In the table below, 15% error crossings are given at 0.1 advance ratio for collective 

down input. 

Table 5.7. 15% Error Crossing Collective Values for 0.1 Advance Ratio 

State Number 15% Error Crossing Collective (deg) 

6 13.00 

10 18.00 

15 - 
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5.2.2.3. Advance Ratio: 0.2 

The simulation results are presented below. 

 

Figure 5.9. Continuous Collective Down at 0.2 advance ratio 

 

In the table below, 15% error crossings are given at 0.2 advance ratio for collective 

down input. 

Table 5.8. 15% Error Crossing Collective Values for 0.2 Advance Ratio 

State Number 15% Error Crossing Collective (deg) 

6 8.00 

10 13.00 

15 19.00 
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5.2.2.4. Advance Ratio: 0.3 

The simulation results are presented below. 

 

Figure 5.10. Continuous Collective Down at 0.3 advance ratio 

 

In the table below, 15% error crossings are given at 0.3 advance ratio for collective 

down input. 

Table 5.9. 15% Error Crossing Collective Values for 0.3 Advance Ratio 

State Number 15% Error Crossing Collective (deg) 

6 7.00 

10 11.00 

15 17.00 
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5.3. Lateral Cyclic – Inflow Relations 

In this section simulations in Table 5.10 are done in order to determine effects of lateral 

cyclic to inflow distributions and transition from a state – number to another state -

number.  

The 8 tests conditions given in Table 5.10 are repeated for 6, 10, 15 and 21 constant 

state inflow models making a total of 32 test combined. The results are presented such 

that for a given advance ratio and commands 5-State, 10-State and 15-State are 

compared with the 21-State model. An example comparison at t=12 for these tests are 

given in the Appendix B. 

Table 5.10. Lateral Cyclic Tests 

Lateral Cyclic Simulations 

# 
Collective 

(Deg) 

Long 

Cyclic 

(Deg) 

Lateral 

Cyclic 

(Deg) 

Input Type 
Input Time 

(Second) 

Advance 

Ratio 

1 8.0 0.0 0 to 20 Ramp 
Between 

2 - 12 
0.00 

2 8.0 0.0 0to 20 Ramp 
Between 

2 - 12 
0.10 

3 8.0 0.0 0 to 20 Ramp 
Between 

2 - 12 
0.20 

4 8.0 0.0 0 to 20 Ramp 
Between 

2 - 12 
0.30 

5 8.0 0.0 0 to -20 Ramp 
Between 

2 - 12 
0.00 

6 8.0 0.0 
0 to -20 

Ramp 
Between 

2 - 12 
0.10 

7 8.0 0.0 
0 to -20 

Ramp 
Between 

2 - 12 
0.20 

8 8.0 0.0 
0 to -20 

Ramp 
Between 

2 - 12 
0.30 
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5.3.1.  Lateral Cyclic Right 

The following lateral cyclic input given in Figure 5.11 are given to the simulations run 

below for lateral cyclic right tests. 

 

Figure 5.11. Lateral Cyclic Command for tests in Table 5.10 (Tests 1-2-3-4) 
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5.3.1.1. Advance Ratio: 0.0 

The simulation results are presented below. 

 

Figure 5.12. Lateral Cyclic Right at 0.0 advance ratio  

In the table below, 15% error crossings are given at zero advance ratio for lateral cyclic 

right input. 

 

Table 5.11. 15% Error Crossing Lateral Cyclic Values for Zero Advance Ratio 

State Number 15% Error Crossing Lateral Cyclic (deg) 

6 4.00 

10 4.00 

15 - 
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5.3.1.2. Advance Ratio: 0.1  

The simulation results are presented below. 

 

Figure 5.13. Lateral Cyclic Right at 0.1 advance ratio 

In the table below, 15% error crossings are given at 0.1 advance ratio for lateral cyclic 

right input. 

 

Table 5.12. 15% Error Crossing Lateral Cyclic Values for 0.1 Advance Ratio 

State Number 15% Error Crossing Lateral Cyclic (deg) 

6 2.00  

10 6.00 

15 - 
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5.3.1.3. Advance Ratio: 0.2 

The simulation results are presented below. 

 

Figure 5.14. Lateral Cyclic Right at 0.2 advance ratio 

 

In the table below, 15% error crossings are given at 0.2 advance ratio for lateral cyclic 

right input. 

Table 5.13. 15% Error Crossing Lateral Cyclic Values for 0.2 Advance Ratio 

State Number 15% Error Crossing Lateral Cyclic (deg) 

6 1.00 

10 4.00 

15 12.00 
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5.3.1.4. Advance Ratio: 0.3 

The simulation results are presented below. 

 

Figure 5.15. Lateral Cyclic Right at 0.3 advance ratio 

 

In the table below, 15% error crossings are given at 0.3 advance ratio for lateral cyclic 

right input. 

Table 5.14. 15% Error Crossing Lateral Cyclic Values for 0.3 Advance Ratio 

State Number 15%Error Crossing Lateral Cyclic (deg) 

6 0.00 

10 1.00 

15 4.00 

 

 

 



 

 

 

72 

 

5.3.2. Lateral Cyclic Left 

The following lateral cyclic input given Figure 5.16 are given to the simulations run 

below lateral cyclic left tests. 

 

Figure 5.16. Lateral Cyclic Command for tests in Table 5.10 (Tests 5-6-7-8) 
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5.3.2.1. Advance Ratio: 0.0 

The simulation results are presented below. 

 

Figure 5.17. Lateral Cyclic Left at 0.0 advance ratio 

 

In the table below, 15% error crossings are given at 0.0 advance ratio for lateral cyclic 

left input. 

Table 5.15. 15% Error Crossing Lateral Cyclic Values for 0.0 Advance Ratio 

State Number 15%Error Crossing Lateral Cyclic (deg) 

6 4.00 

10 4.00 

15 - 
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5.3.2.2. Advance Ratio: 0.1 

The simulation results are presented below. 

 

Figure 5.18. Lateral Cyclic Left at 0.1 advance ratio 

 

In the table below, 15% error crossings are given at 0.1 advance ratio for lateral cyclic 

input. 

Table 5.16. 15% Error Crossing Lateral Cyclic Values for 0.1 Advance Ratio 

State Number 15%Error Crossing Lateral Cyclic (deg) 

6 2.00 

10 8.00 

15 - 
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5.3.2.3. Advance Ratio: 0.2 

The simulation results are presented below. 

 

Figure 5.19. Lateral Cyclic Left at 0.2 advance ratio 

 

In the table below, 15% error crossings are given at 0.2 advance ratio for lateral cyclic 

input. 

Table 5.17. 15% Error Crossing Lateral Cyclic Values for 0.2 Advance Ratio 

State Number 15%Error Crossing Lateral Cyclic (deg) 

6 0.00 

10 5.00 

15 20.00 
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5.3.2.4. Advance Ratio: 0.3 

The simulation results are presented below. 

 

Figure 5.20. Lateral Cyclic Left at 0.3 advance ratio 

 

In the table below, 15% error crossings are given at 0.3 advance ratio for lateral cyclic 

input. 

Table 5.18. 15% Error Crossing Lateral Cyclic Values for 0.3 Advance Ratio 

State Number 15%Error Crossing Lateral Cyclic (deg) 

6 0.00 

10 1.50 

15 6.00 
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5.4. Longitudinal Cyclic – Inflow Relations 

In this section simulations in Table 5.19 are done in order to determine effects of 

longitudinal cyclic to inflow distributions and transition from a state – number to 

another state -number.  

The 8 tests conditions given in Table 5.19 are repeated for 6, 10, 15 and 21 constant 

state inflow models making a total of 32 test combined. The results are presented such 

that for a given advance ratio and commands 5-State, 10-State and 15-State are 

compared with the 21-State model. An example comparison at t=12 for these tests are 

given in the Appendix B. 

 

Table 5.19 Longitudinal Cyclic Tests 

Longitudinal Cyclic Simulations 

# 
Collective 

(Deg) 

Long 

Cyclic 

(Deg) 

Lateral 

Cyclic 

(Deg) 

Input Type 
Input Time 

(Second) 

Advance 

Ratio 

1 8.0 0 to 20 0.0 Ramp 
Between 

2 - 12 
0.00 

2 8.0 0to 20 
0.0 

Ramp 
Between 

2 - 12 
0.10 

3 8.0 0 to 20 
0.0 

Ramp 
Between 

2 - 12 
0.20 

4 8.0 0 to 20 
0.0 

Ramp 
Between 

2 - 12 
0.30 

5 8.0 0 to -20 
0.0 

Ramp 
Between 

2 - 12 
0.00 

6 8.0 
0 to -20 0.0 

Ramp 
Between 

2 - 12 
0.10 

7 8.0 
0 to -20 0.0 

Ramp 
Between 

2 - 12 
0.20 

8 8.0 
0 to -20 0.0 

Ramp 
Between 

2 - 12 
0.30 
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5.4.1.  Longitudinal Cyclic Forward 

The following longitudinal cyclic input given in Figure 5.21 are given to the simulations 

run below for longitudinal cyclic forward tests. 

 

Figure 5.21. Longitudinal Cyclic Command for tests in Table 5.19 (Tests 1-2-3-4) 
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5.4.1.1. Advance Ratio: 0.0 

The simulation results are presented below. 

 

Figure 5.22. Longitudinal Cyclic Forward at 0.0 advance ratio  

 

In the table below, 15% error crossings are given at zero advance ratio for longitudinal 

cyclic forward input. 

 

Table 5.20. 15% Error Crossing Long Cyclic Values for Zero Advance Ratio 

State Number 15%Error Crossing Longitudinal Cyclic (deg) 

6 4.00 

10 4.00 

15 - 
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5.4.1.2. Advance Ratio: 0.1  

The simulation results are presented below. 

 

Figure 5.23. Longitudinal Cyclic Forward at 0.1 advance ratio 

In the table below, 15% error crossings are given at 0.1 advance ratio for longitudinal 

cyclic input. 

 

Table 5.21. 15% Error Crossing Long Cyclic Values for 0.1 Advance Ratio 

State Number 15%Error Crossing Longitudinal Cyclic (deg) 

6 2.00 

10 6.00 

15 - 
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5.4.1.3. Advance Ratio: 0.2 

The simulation results are presented below. 

 

Figure 5.24. Longitudinal Cyclic Forward at 0.2 advance ratio 

 

 

In the table below, 15% error crossings are given at 0.2 advance ratio for longitudinal 

cyclic input. 

Table 5.22. 15% Error Crossing Long Cyclic Values for 0.2 Advance Ratio 

State Number 15% Error Crossing Longitudinal Cyclic (deg) 

6 1.00 

10 3.00 

15 7.00 
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5.4.1.4. Advance Ratio: 0.3 

The simulation results are presented below. 

 

Figure 5.25. Longitudinal Cyclic Forward at 0.3 advance ratio 

 

In the table below, 15% error crossings are given at 0.3 advance ratio for longitudinal 

cyclic input. 

Table 5.23. 15% Error Crossing Long Cyclic Values for 0.3 Advance Ratio 

State Number 15% Error Crossing Longitudinal Cyclic (deg) 

6 1.00 

10 2.00 

15 4.00 
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5.4.2. Longitudinal Cyclic Aftward 

The following longitudinal cyclic input in  Figure 5.26 are given to the simulations of 

longitudinal cyclic aftward tests. 

 

Figure 5.26. Longitudinal Cyclic Command for tests in Table 5.19 (Tests 5-6-7-8) 
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5.4.2.1. Advance Ratio: 0.0 

The simulation results are presented below. 

 

Figure 5.27. Longitudinal Cyclic Aftward at 0.0 advance ratio 

 

In the table below, 15% error crossings are given at 0.0 advance ratio for longitudinal 

cyclic input. 

 

Table 5.24. 15% Error Crossing Long Cyclic Values for 0.0 Advance Ratio 

State Number 15%Error Crossing Longitudinal Cyclic (deg) 

6 5.00 

10 5.00 

15 - 
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5.4.2.2. Advance Ratio: 0.1 

The simulation results are presented below. 

 

Figure 5.28. Longitudinal Cyclic Aftward at 0.1 advance ratio 

 

In the table below, 15% error crossings are given at 0.1 advance ratio for longitudinal 

cyclic input. 

Table 5.25. 15% Error Crossing Long Cyclic Values for 0.1 Advance Ratio 

State Number 15% Error Crossing Longitudinal Cyclic (deg) 

6 2.00 

10 8.00 

15 - 
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5.4.2.3. Advance Ratio: 0.2 

The simulation results are presented below. 

 

Figure 5.29. Longitudinal Cyclic Aftward at 0.2 advance ratio 

 

In the table below, 15% error crossings are given at 0.2 advance ratio for longitudinal 

cyclic input. 

Table 5.26. 15% Error Crossing Long Cyclic Values for 0.2 Advance Ratio 

State Number 15% Error Crossing Longitudinal Cyclic (deg) 

6 1.00 

10 3.00 

15 7.00 
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5.4.2.4. Advance Ratio: 0.3 

The simulation results are presented below. 

 

Figure 5.30 Longitudinal Cyclic Aftward at 0.3 advance ratio 

 

In the table below, 15% error crossings are given at 0.3 advance ratio for longitudinal 

cyclic input. 

Table 5.27. 15% Error Crossing Long Cyclic Values for 0.3 Advance Ratio 

State Number 15% Error Crossing Longitudinal Cyclic (deg) 

6 1.00 

10 2.00 

15 5.00 
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CHAPTER 6  

 

6. SIMULATIONS WITH VARYING STATE PETERS – HE MODEL 

 

6.1. State Number Switching Logic 

Throughout the Chapter 6, the limits of the control inputs -at which the respective state 

numbers for Peters – He inflow distribution differentiate from the 21 State inflow- are 

investigated. These limits for given advance ratio and control position combinations 

are given in from Table 5.2 to Table 5.27. These limits are used to determine the Peters – 

He state number for varying state model implementation. 

In following sections, the control position limits for given advance ratios are shown. 

Inside yellow limits 6-state inflow model, inside red limits 10-state inflow model and 

inside blue limits 15-state inflow model is used. Outside these limits 21-state model 

is used to represent inflow distribution. 

 

6.2. Rectangular Cyclic Limits 

In this section, the cyclic limits are given as a rectangle which computed throughout 

the Chapter 5. In the following long tests under this section 6.2 are implemented using 

rectangular limits for cyclic controls. 
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6.2.1. Zero Advance Ratio 

When rotor is at zero advance ratio, for varying number inflow implementation, 

following figures are taken as references. 

 

Figure 6.1. Cyclic limits at zero advance ratio 

 

Figure 6.2. Collective limit at zero advance ratio 
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6.2.2. 0.1 Advance Ratio 

When rotor is at 0.1 advance ratio, for varying state number inflow implementation, 

following figures are taken as references. 

 

Figure 6.3. Cyclic limits at 0.1 advance ratio 

 

Figure 6.4. Collective limit at 0.1 advance ratio 
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6.2.3. 0.2 Advance Ratio 

When rotor is at 0.2 advance ratio, for varying state number inflow implementation, 

following figures are taken as references. 

 

Figure 6.5. Cyclic limits at 0.2 advance ratio 

 

Figure 6.6. Collective limit at 0.2 advance ratio 
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6.2.4. 0.3 Advance Ratio 

When rotor is at 0.3 advance ratio, for varying state number inflow implementation, 

following figures are taken as references. 

 

Figure 6.7. Cyclic limits at 0.3 advance ratio 

 

Figure 6.8. Collective limit at 0.3 advance ratio 
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6.2.5. Simulation Comparison for Rectangular Limits 

A state switching logic is implemented using the control limits at given advance ratios 

given in section 6.2. Then two simulations are made with varying state inflow model. 

First one is a increasing-advance-ratio test where the advance ratio is gradually 

increased and triangle waves with different phases and frequencies are fed as 

collective & longitudinal cyclic & lateral cyclic inputs. A representation of speed up 

maneuver is aimed with such inputs to model. Secondly, a descreasing-advance-ratio 

simulation is run with same inputs for collective and cyclic inputs.  The results are 

investigated below. 

6.2.5.1.  Increasing Advance Ratio Simulation 

In this section, a 140-second-long increasing-advance-ratio simulation is run. 

Advance ratio and collective and cyclic inputs are given in below figures. 

  

  
 

Figure 6.9. Speed Up Test Inputs 
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In the figure below the difference with respect to 21 state inflow is investigated for 

varying state inflow model. 

 

Figure 6.10. Speed up test with varying state inflow model 

 

Figure 6.11. Active State Number 
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When the limits determined in the section 6.1 are applied, above figure is obtained for 

difference from 21-state inflow. At the peak of varying state difference line, it hits 

23% difference at t=117 s.  In the below figure, mean error vs. execution time is 

presented. 

 

Figure 6.12. Mean Error vs. Non-dimensional Execution Time (Speed Up) 

 

The varying-state inflow model run faster and with lower-errors with respect to 15-

state inflow model.  
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6.2.5.2. Decreasing Advance Ratio Simulation 

In this section, a 140-second-long speed down simulation is run. Advance ratio and 

collective and cyclic inputs are given in below figures. 

  

  

 

Figure 6.13. Speed Down Test Inputs 

The varying-state inflow model run faster and with lower-errors with respect to 15-

state inflow model. For this simulation the difference from 21-state inflow distribution 

figure is obtained as follows: 



 

 

 

98 

 

 

Figure 6.14. Speed Down test with varying state inflow model (Speed Down) 

 

Figure 6.15. Active State Number 
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Figure 6.16. Mean Error vs. Non-dimensional Execution Time (Speed Down) 

 

6.2.5.3. Observations for Rectangular Cyclic Limits 

In the above simulations, the error limits in the long tests are exceeded the intended 

limit of 15% error. There are two main reasons for such results. First one is that, the 

combination of longitudinal and lateral cyclic are resulted higher deviations from 21-

state model, even both cyclic inputs are below the limitations. Second one is that the 

input combinations are not appropriate representations of real-life input. Therefore, 

following solutions are suggested to solve these problems, using elliptical limits for 

cyclic in order to change the active inflow states and using sinusoidal inputs for long 

tests.  
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6.3. Ellipsoidal Cyclic Limits 

The cyclic limits presented in the sections 6.2.1, 6.2.2, 6.2.3 and 6.2.4 are the limits 

of cyclic for state-switching mechanism. These limits are computed by using isolated 

inputs for the given channel. For example, in order to determine the deviation from 

21-state inflow with respect to changing longitudinal cyclic, only longitudinal cyclic 

input is applied. However, this reduce the performance of model when combinations 

of lateral and longitudinal cyclic inputs are applied to the model.  Therefore, these 

limits are converted into ellipsoidal limits which are given in the following figures. 

Note that the collective limits are same with section 6.2. 

 

 

Figure 6.17. Cyclic limits at zero advance ratio 
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Figure 6.18. Cyclic limits at 0.1 advance ratio 

 

Figure 6.19. Cyclic limits at 0.2 advance ratio 
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Figure 6.20. Cyclic limits at 0.3 advance ratio 
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6.3.1.  Increasing Advance Ratio with Ellipsoid Cyclic Limits 

In this section, a 140-second-long increasing-advance-ratio simulation is run. 

Advance ratio and collective and cyclic inputs are given in below figures. 

  

  

 

Figure 6.21. Increasing-Advance-Ratio Test Inputs 

 

When the limits in section 6.3 are applied in a test where the advance ratio is increased 

gradually with the given collective and cyclic inputs in Figure 6.21 the following figure 

is obtained.  
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Figure 6.22. Increasing-advance-ratio test with varying state inflow model  

 

Figure 6.23. Active State Number 
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Using the ellipsoidal cyclic limits to switch between states keep the error limits almost 

at required levels at 15%. In addition, in this simulation the inputs are given as 

sinusoidal to be a better representation of real time applications. This resulted in a 

fewer discrete events in the switching mechanism.  

 

Figure 6.24. Mean Deviation vs. Non-Dimensional Execution Time 
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6.3.2. Decreasing Advance Ratio with Ellipsoid Cyclic Limits 

In this section, a 140-second-long decreasing-advance-ratio simulation is run. 

Advance ratio and collective and cyclic inputs are given in below figures. 

  

  
 

Figure 6.25. Decreasing-Advance-Ratio Test Inputs 

When the limits in section 6.3 are applied in a test where the advance ratio is decreased 

gradually with the given collective and cyclic inputs in Figure 6.25 the following figure 

is obtained.  
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Figure 6.26. Decreasing-advance-ratio test with varying state inflow model  

 

Figure 6.27. Active State Number  
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Using the ellipsoidal cyclic limits allow the varying state model to perform below the 

15% deviation range. The following graph shows the mean deviation vs. execution 

time. 

 

Figure 6.28. Mean Deviation vs. Non-Dimensional Execution Time 
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CHAPTER 7  

 

7. CONCLUSIONS 

7.1. Summary 

The modeling of the inflow dynamics of a rotorcraft has been an important topic. 

There are well-established non-uniform inflow theories in the literature mainly 

divided into static and dynamic inflow. In the literature survey section, the studies on 

inflow theories are presented. All dynamic inflow theories that presented have fixed 

number of dynamic states throughout its simulation. In this thesis a new method to 

compute dynamic inflow is proposed that the dynamic inflow states are changed in 

run-time with respect to the changing conditions. The effects of advance ratio and pilot 

inputs are investigated to determine conditions in which the selected number of state 

inflow model operates without deviating from higher number state models.  

7.2. Observations 

In this thesis, the effects of inflow state number in Peters – He inflow models are 

investigated for various advance ratio and control input configurations. Throughout 

Chapter 2 and Chapter 3 a rigorous explanation for analytical background of the theory 

and a clear procedure to implement Peters – He inflow model are aimed.  In Chapter 

4, the method for implementing varying state model with the lift theory is explained 

using a rotor model. In Chapter 5, the model is used to determine the difference 

between 21-State, 15-State, 10-State and 6-State inflow model distributions. These 

differences are used to create a logic to switch between state-numbers when 

implementing the varying state inflow model. From these analyses, following 

conclusions are obtained. 
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❖ The advance ratio is the most dominant parameters which affects the inflow 

distributions between 6, 10, 15, and 21 state dynamic inflow models. As the 

advance ratio is increased, the lateral distribution on actuator disc becomes 

more asymmetrical. The low-state inflow models lack the required states 

which represents the lateral distribution. 

 

❖ In hover and without cyclic inputs, the difference between models are mostly 

negligible. However, when cyclic inputs are applied, there exist distribution 

differences between inflow models. The main observation related to this issue 

is that 6-state and 10-state models are identical whereas 15-state and 21-state 

are identical. 

 

❖ The magnitude of the input directly correlates with the difference between 

inflow models with different state numbers. 

 

❖ The response of the inflow differences of 6, 10,15 state models from 21 state 

model with lateral or longitudinal cyclic inputs are similar.  Especially during 

hover, the responses to longitudinal and lateral cyclic inputs are same. 

However, as advance ratio is increased, the sensitivity to lateral cyclic between 

different-number-state models are increased, due to the already existing lateral 

asymmetry with respect to non-zero advance ratio. 

 

❖ The high number of inflow states implies significantly higher computation 

costs due the matrix inversion made in the inflow calculations. Calculation of 

21 state inflow model took 20 times more time that 6-state. The 28-state inflow 

model is unable to compute real-time at 100 Hz. Therefore, 28 and higher 

states are excluded in this thesis. 

 

 



 

 

 

111 

 

❖ In the Speed Up and Speed Down tests run in Chapter 6, variable-state inflow 

model is run faster and with lower-error than 15 state model. However, one 

should assess the benefits of a variable-state inflow model instead of 15-state 

model considering the implementation effort involved in variable-state inflow 

model. 

❖ The rectangular limits for cyclic given in Chapter 6 were unable to keep the 

deviation below 15% when the lateral and longitudinal cyclics are applied 

simultaneously. Therefore, the limits are mapped as ellipses. In addition, the 

triangle wave inputs are not proper representations of cyclic commands given 

by actual pilot to a rotor. Thus, sinusoidal input tests are made. Those tests 

show that using varying-number state method reduced the computation time 

significantly in mild conditions.  

7.3. Recommendations for Future Work 

There are possible recommendations to improve the varying-state inflow model. 

These recommendations can be listed as follows: 

1. The angular rates (p, q, r) of the rotor can be incorporated into the state number 

selection logic.  

2. The entry and exit of an inflow state can be filtered to reduce discrete events. 

3. This inflow model can be tested with different rotor configurations. 

4. The difference between higher number of inflow states can be investigated. 

5. Varying-state dynamic inflow model can be integrated to a full helicopter 

simulation to assess its fidelity. 
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APPENDICES 

 

A. ELLIPSOIDAL COORDINATE SYSTEM 

Ellipsoidal coordinates (𝑣, 𝜓, 𝜂) are defined by (𝑥, 𝑦, 𝑧) as follows: 

 
𝑥 =  −√1 + 𝜂2√1 − 𝑣2  cos(𝜓) 

(A.1) 

 𝑦 =  √1 + 𝜂2 √1 − 𝑣2 𝑠𝑖𝑛(𝜓)     (A.2) 

 𝑧 = −𝜂𝑣 (A.3) 

 

The upper and lower surfaces of the rotor is given as: 

 𝑣 < 0 : 𝑧 > 0,  lower surface (A.4) 

 𝑣 > 0 : 𝑧 < 0,  upper surface (A.5) 

 

𝑔𝑟𝑎𝑑(𝜙) 

= 𝑒𝑣√
1 − 𝑣2

𝑣2 + 𝜂2
𝜕Φ

𝜕𝑣
+ 𝑒𝜓

1

√(1 + 𝜂2)(1 − 𝑣2)

𝜕𝜙

𝜕𝜓
 + 𝑒𝜂√

1+ 𝜂2

𝑣2 + 𝜂2
𝜕Φ

𝜕𝜂
 

 

(A.6) 

 

 

𝑑𝑖𝑣(𝑉) 

=
1

𝑣2 + 𝜂2
[
𝜕

𝜕𝑣
(√(1 − 𝑣2)(𝑣2 + 𝜂2)  𝑉1)

+ 
𝜕

𝜕𝜓
(

𝜂2 + 𝑣2

√(1 + 𝜂2)(1 − 𝑣2) 
𝑉2)

+ 
𝜕

𝜕𝜂
(√(𝑣2 + 𝜂2)(1 + 𝜂2) 𝑉3)] 

 

(A.7) 
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∇(𝜙) =
1

𝑣2 + 𝜂2
[
𝜕

𝜕𝑣
(1 − 𝑣2) (

𝜕𝜙

𝜕𝑣
) + 

𝜕

𝜕𝜓
(

𝑣2 + 𝜂2

(1 + 𝜂2)(1 − 𝑣2)
) (
𝜕𝜙

𝜕𝜓
)

+ 
𝜕

𝜕𝜂
(1 + 𝜂2) (

𝜕𝜙

𝜕𝜂
)] 

 

(A.8) 

 

Where 𝜙 and 𝑉 = {𝑉1, 𝑉2, 𝑉3} are arbitrary scalar and vector functions respectively. 
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B. INFLOW DISTRIBUTION 

In this section the lateral distribution of the inflow model is investigated at a given 

time t = 12 for Chapter 5.  

 

Figure B.1. 𝜇 = 0.0, 𝜃0 = 20°, 𝜃1𝑐 = 0°, 𝜃1𝑠 = 0°,azimuth 

 

Figure B.2. 𝜇 = 0.1, 𝜃0 = 20°, 𝜃1𝑐 = 0°, 𝜃1𝑠 = 0° 
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Figure B.3. 𝜇 = 0.2, 𝜃0 = 20°, 𝜃1𝑐 = 0°, 𝜃1𝑠 = 0° 

 

 

Figure B.4. 𝜇 = 0.3, 𝜃0 = 20°, 𝜃1𝑐 = 0°, 𝜃1𝑠 = 0° 
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Figure B.5. 𝜇 = 0.1, 𝜃0 = 8°, 𝜃1𝑐 = 0°, 𝜃1𝑠 = 20° 

 

 

Figure B.6. 𝜇 = 0.2, 𝜃0 = 8°, 𝜃1𝑐 = 0°, 𝜃1𝑠 = 20° 
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Figure B.7. 𝜇 = 0.3, 𝜃0 = 8°, 𝜃1𝑐 = 0°, 𝜃1𝑠 = 20° 

 

 

Figure B.8. 𝜇 = 0.1, 𝜃0 = 8°, 𝜃1𝑐 = 20°, 𝜃1𝑠 = 0° 
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Figure B.9. 𝜇 = 0.2, 𝜃0 = 8°, 𝜃1𝑐 = 20°, 𝜃1𝑠 = 0° 

 

 

Figure B.10. 𝜇 = 0.3, 𝜃0 = 8°, 𝜃1𝑐 = 20°, 𝜃1𝑠 = 0° 
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C. ROTOR AIRFOIL SC1095 

 

The airfoil data of the Helicopter S-76 is given as: 

Table C.1 𝐿𝑖𝑓𝑡 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝐷𝑎𝑡𝑎 (𝐶𝐿) 𝑜𝑓 𝑡ℎ𝑒 𝑆𝐶1095 𝐴𝑖𝑟𝑓𝑜𝑖𝑙[23] 

 

 

 

 

 

 

 

 

Aoa \ Mach 0 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9 1 2

-180 0.000 0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-172 0.780 0.780 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78

-160 0.640 0.640 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64

-150 0.950 0.950 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95

-30 -1.000 -1.000 -1.00 -1.00 -1.00 -1.00 -1.00 -0.95 -0.95 -0.95 -0.95

-15 -0.910 -0.910 -0.69 -0.79 -0.66 -0.75 -0.79 -0.81 -0.74 -0.71 -0.71

-10 -0.880 -0.880 -0.58 -0.72 -0.54 -0.66 -0.72 -0.81 -0.74 -0.63 -0.63

-8 -0.760 -0.760 -0.64 -0.72 -0.59 -0.71 -0.73 -0.75 -0.70 -0.62 -0.62

-6 -0.600 -0.600 -0.58 -0.61 -0.61 -0.74 -0.73 -0.69 -0.66 -0.62 -0.62

-5 -0.500 -0.500 -0.52 -0.52 -0.58 -0.72 -0.72 -0.58 -0.58 -0.52 -0.52

-3 -0.300 -0.300 -0.33 -0.48 -0.35 -0.52 -0.52 -0.36 -0.40 -0.33 -0.33

0 0.041 0.041 0.04 -0.04 0.08 -0.26 0.07 0.07 -0.15 -0.05 -0.05

2 0.269 0.269 0.29 0.26 0.36 -0.09 0.48 0.35 0.13 0.20 0.20

4 0.496 0.496 0.53 0.55 0.65 0.08 0.70 0.56 0.39 0.45 0.45

6 0.723 0.723 0.78 0.84 0.86 0.83 0.75 0.71 0.64 0.70 0.70

8 0.951 0.951 1.02 1.03 0.91 0.87 0.79 0.81 0.77 0.81 0.81

9 1.065 1.065 1.12 1.07 0.93 0.89 0.81 0.84 0.79 0.83 0.83

10 1.157 1.157 1.18 1.08 0.95 0.91 0.83 0.84 0.81 0.85 0.85

12 1.200 1.200 1.14 1.05 1.01 0.96 0.87 0.85 0.83 0.87 0.87

15 1.015 1.015 0.99 0.98 1.09 1.03 0.93 0.85 0.86 0.89 0.89

30 1.000 1.000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

150 -0.950 -0.950 -0.95 -0.95 -0.95 -0.95 -0.95 -0.95 -0.95 -0.95 -0.95

156 -0.700 -0.700 -0.70 -0.70 -0.70 -0.70 -0.70 -0.70 -0.70 -0.70 -0.70

158 -0.660 -0.660 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66

160 -0.640 -0.640 -0.64 -0.64 -0.64 -0.64 -0.64 -0.64 -0.64 -0.64 -0.64

172 -0.780 -0.780 -0.78 -0.78 -0.78 -0.78 -0.78 -0.78 -0.78 -0.78 -0.78

180 0.000 0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table C.2 𝐷𝑟𝑎𝑔 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝐷𝑎𝑡𝑎 (𝐶𝐷) 𝑜𝑓 𝑡ℎ𝑒 𝑆𝐶1095 𝐴𝑖𝑟𝑓𝑜𝑖𝑙[23] 

 

 

 

 

Aoa\ Mach 0 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9 1 2

-180 0.020 0.020 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

-179 0.025 0.025 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

-175 0.065 0.065 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07

-172 0.110 0.110 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11

-150 0.642 0.642 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64

-115 1.880 1.880 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88

-90 2.080 2.080 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08

-65 1.880 1.880 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88

-30 0.630 0.630 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63

-10 0.210 0.210 0.22 0.02 0.02 0.21 0.19 0.23 0.26 0.30 0.30

-9 0.102 0.102 0.16 0.03 0.03 0.18 0.16 0.19 0.23 0.27 0.27

-8 0.042 0.042 0.10 0.05 0.04 0.15 0.14 0.16 0.20 0.25 0.25

-7 0.018 0.018 0.05 0.04 0.04 0.13 0.12 0.13 0.18 0.23 0.23

-6 0.011 0.011 0.02 0.02 0.04 0.10 0.09 0.10 0.15 0.20 0.20

-5 0.009 0.009 0.01 0.01 0.03 0.07 0.07 0.08 0.13 0.18 0.18

-4 0.009 0.009 0.01 0.01 0.01 0.04 0.05 0.07 0.12 0.15 0.15

-3 0.008 0.008 0.01 0.01 0.01 0.02 0.03 0.04 0.09 0.14 0.14

-1 0.009 0.009 0.01 0.01 0.01 0.01 0.01 0.03 0.06 0.10 0.10

0 0.008 0.008 0.01 0.01 0.01 0.01 0.01 0.02 0.05 0.09 0.09

1 0.009 0.009 0.01 0.01 0.01 0.01 0.01 0.03 0.06 0.10 0.10

2 0.009 0.009 0.01 0.01 0.01 0.01 0.02 0.04 0.08 0.12 0.12

3 0.009 0.009 0.01 0.01 0.01 0.02 0.05 0.07 0.10 0.14 0.14

4 0.010 0.010 0.01 0.01 0.01 0.04 0.07 0.09 0.12 0.15 0.15

5 0.011 0.011 0.01 0.01 0.02 0.07 0.09 0.11 0.14 0.18 0.18

6 0.014 0.014 0.01 0.01 0.04 0.09 0.11 0.13 0.17 0.20 0.20

7 0.019 0.019 0.01 0.02 0.07 0.12 0.14 0.15 0.19 0.23 0.23

8 0.037 0.037 0.01 0.03 0.09 0.14 0.16 0.17 0.21 0.25 0.25

9 0.100 0.100 0.02 0.06 0.11 0.16 0.18 0.20 0.24 0.27 0.27

10 0.210 0.210 0.02 0.09 0.13 0.19 0.21 0.23 0.26 0.30 0.30

15 0.315 0.315 0.22 0.24 0.23 0.31 0.32 0.34 0.37 0.41 0.38

30 0.630 0.630 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63

65 1.880 1.880 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88

90 2.080 2.080 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08

150 0.640 0.640 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64

172 0.110 0.110 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11

175 0.065 0.065 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07

179 0.025 0.025 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

180 0.020 0.020 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02


