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ABSTRACT

VALUE OF MODELING UNCERTAINTY IN MULTI-OBJECTIVE
PROGRAMMING

Yiğit, Ece

M.S., Department of Industrial Engineering

Supervisor: Assist. Prof. Dr. Melih Çelik

Co-Supervisor : Assist. Prof. Dr. Sakine Batun

September 2019, 74 pages

In this thesis, the value of modeling uncertainty in multi-objective problems is inves-

tigated. First, a mathematical model for a general two-stage multi-objective stochas-

tic problems is introduced. Then, a new approach is presented for calculating the

value of the stochastic solution and the expected value of perfect information for such

problems. Computational experiments are provided to test the validity and the perfor-

mance of the proposed methodology considering a bi-objective problems that involve

uncertainty.

Keywords: stochastic programming, multi-objective programming, value of stochas-

tic solution, expected value of perfect information
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ÖZ

ÇOK AMAÇLI PROGRAMLAMADA BELİRSİZLİĞİ MODELLEMENİN
DEĞERİ

Yiğit, Ece

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Melih Çelik

Ortak Tez Yöneticisi : Dr. Öğr. Üyesi. Sakine Batun

Eylül 2019 , 74 sayfa

Bu çalışma ile, çok amaçlı problemlerde belirsizliği modellemenin önemi araştırıl-

mıştır. Öncelikle, iki aşamalı çok amaçlı genel bir problemin matematiksel modeli

sunulmuştur. Daha sonra, çok amaçlı iki aşamalı problemlerde stokastik çözümün

değeri ve mükemmel bilginin beklenen değeri hesaplamaları için yeni bir yaklaşım

sunulmuştur. Önerilen yöntemin geçerliliğini test etmek için, belirsizlik içeren iki

amaçlı bir sırt çantası problemi üzerinde hesaplamalar yapılmıştır.

Anahtar Kelimeler: stokastik programlama, çok amaçlı programlama, stokastik çözü-

mün değeri, mükemmel bilginin beklenen değeri
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CHAPTER 1

INTRODUCTION

Most of the real-world problems involve more than one objective and have uncer-

tainty in their nature. In order to model uncertainty in such problems, stochastic

programming can be used. Two-stage stochastic programming is one of the most pre-

ferred structures in stochastic programming. There are many applications of stochas-

tic programming in real life, such as in scheduling, routing, workforce planning, path

planning, and so on.

Even though multi-objective stochastic programming is well studied in the literature,

there does not exist much work regarding the value of modeling uncertainty in such

problems. Our main motivation to conduct this study is to propose and test measures

that can be used to assess this value. The proposed measures are applied to a Two-

Stage Multi-Objective Stochastic Knapsack Problem with two objectives. We first

provide a description of the problem and the corresponding stochastical model, along

with the models for the Mean Value Problem and the Wait-and-See Problem. Follow-

ing this, we present the result of our computational experiments, mainly focusing on

the Value of Stochastic Solution (VSS) and Expected Value of Perfect Information

(EVPI) measures. We also analyze the validity of our measures by testing them under

cases where the decision maker’s preferences follow an underlying utility function.

The remainder of the thesis is organized as follows; in Chapter 2, preliminaries on

stochastic programming and multi-objective optimization are provided. Chapter 3

provides a literature review regarding multi-objective stochastic programming. In

Chapter 4, the proposed measures are described. In Chapter 5, the details of our

computational experiments and the results are presented. Finally, in Chapter 6, the

conclusions of the study and the summary of the insights are pointed out.
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CHAPTER 2

PRELIMINARIES

In this chapter, we briefly present the preliminaries on stochastic programming and

multi-objective optimization that are most relevant to this thesis. For more com-

prehensive information on stochastic programming, we refer to Birge and Louveaux

(2011) and Kall and Wallace (1994), whereas for a more detailed information on

multi-objective optimization, we refer to Ehrgott (2005), Rardin (1998) and Köksalan

and Wallenius (2012).

2.1 Preliminaries on Stochastic Programming

Most of the real life decision making situations involve uncertainty. In order to model

such problems in an accurate way, uncertainty in problem parameters should be con-

sidered carefully. Stochastic programming, which could be briefly defined as math-

ematical programming with random problem parameters, provides a framework to

capture uncertainty when only imperfect information (rather than perfect informa-

tion) about parameters is available through a probability distribution. The interest

in stochastic programming has increased significantly due to the importance of un-

certainty in and accessibility of parameters as a result of technological developments

particularly in recent years. There are many applications of stochastic programming

in real life, such as scheduling problems, routing problems, assignment problems and

shortest path problems.

The availability of information over time is explicitly captured through stages in

stochastic programs (SPs). A two-stage stochastic program (Beale (1955), Dantzig

(1955)) is the simplest and most commonly used structure in stochastic programming.
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There are two decision stages in a two-stage SP and the objective is to optimize a

function which is composed of a first-stage component and the expected value of a

second-stage component. The first stage decisions (x) are made before the resolution

of the uncertainty and the availability of the complete information on random param-

eters. Given the first-stage decisions, the second-stage decisions (y) are made after

the random scenario (ω ∈ Ω) is realized (i.e., uncertainty is resolved) and the values

of random parameters (ξ(ω)) become known (Beale (1955), Dantzig (1955)).

A general two-stage stochastic problem can be formulated in the deterministic equiv-

alent form as follows:

(SP ) maximize z = cᵀx +Q(x)

subject to Ax = b

x ∈ X

(2.1)

where Q(x) = Eξ
[
Q(x, ξ(ω))

]
and

Q(x, ξ(ω)) = maximize
y(ω)

q(ω)ᵀy(ω)

subject to W (ω)y(ω) + T (ω)x = h(ω),

y(ω) ∈ Y.

In this formulation, x and y(ω) are the first-stage and second-stage decision vectors,

respectively, where ω represents the uncertainty. ξ(ω) is the vector of all random pa-

rameters, so is composed of the components of the second-stage objective coefficient

vector q(ω), constraint coefficients for the second- and first-stage variables in the sec-

ond stage, denoted by W (ω), T (ω), respectively, and the right-hand side vector for

the second-stage constraints, represented by h(ω). The objective is to find the solu-

tion that maximizes the sum of the first-stage objective and the expected second-stage

objective. Here, Eξ
[
Q(x, ξ(ω))

]
is the expected optimal objective function value of

the second-stage problem given the first-stage decisions x.

Each possible realization of ω (and hence ξ(ω)) is called a scenario. In the case where

the set of possible scenarios is discrete, letting k ∈ K be the scenario index and πk

be the probability of scenario k, the above SP can represented in its extensive form as

follows:

4



(SP) maximize z = cᵀx +
∑
k∈K

πkqkyk

subject to Ax = b

Wkyk + Tkx = hk ∀k,

x ∈ X,

yk ∈ Y ∀k.

(2.2)

Under the availability of perfect information on the scenario (i.e., ω) and hence the

problem parameters (i.e., ξ(ω)) to be realized, the optimal solution could be found by

solving the following deterministic version of the two-stage stochastic program for

the known scenario ω.

(WSP) maximize z(x, ξ(ω)) = cᵀx(ω) + q(ω)ᵀy(ω)

subject to Ax(ω) = b,

W (ω)y(ω) + T (ω)x(ω) = h(ω),

x(ω) ∈ X,

y(ω) ∈ Y.

(2.3)

This problem is known as the wait-and-see problem (WSP) and the expected value of

the wait-and-see solution can be represented as zWS = Eξ[max z(x, ξ(ω))].

Since the WSP is a relaxation of the SP, we have zWS ≥ zSP , where zSP represents

the optimal objective function value of the SP. Expected value of perfect information

(EVPI) is defined as EV PI = zWS − zSP and can be interpreted as the amount

by which having perfect information on the uncertain parameters would improve the

expected optimal objective value of the stochastic problem. In other words, it is the

maximum value that the decision maker would agree to pay in order to obtain perfect

information.

The expected value problem (EVP) (mean value problem) is the following determin-

istic version of the stochastic problem where the parameter values are set as their

expected values (W̃ , T̃ , h̃, q̃). The corresponding scenario is known as the expected

5



value scenario (mean value scenario).

(EVP) maximize z(x, ξ̃) = cᵀx+ q̃ᵀy

subject to Ax = b

W̃y + T̃x = h̃

x ∈ X

y ∈ Y

(2.4)

Because of the number of possible scenarios and the complexity of the model itself,

solving the SP is often computationally demanding and the corresponding EVP is

solved instead in practice. The optimal solution of the EVP is known as the expected

value solution. Letting xEV denote the optimal solution of the EVP, the expected

value of using xEV can be represented as zEV P = Eξ[max z(xEV , ξ(ω))].

The solution of the EVP is a solution to the SP, but not necessarily the optimal so-

lution. Therefore, we have zSP ≥ zEV P . As indicated by this relation, the expected

objective value could be improved by by formulating and solving the SP rather than

using the expected value solution. The difference is known as the value of the stochas-

tic solution (VSS) and represented as V SS = zSP − zEV P . The VSS provides an

insight about the importance of explicitly modeling the uncertainty in mathematical

programming framework and solving the corresponding SP. The VSS can also be

interpreted as the price of ignoring uncertainty in problem parameters.

2.2 Preliminaries on Multi-Objective Optimization

Multi-objective optimization is used when there exists more than one objective that

the decision maker (DM) wants to optimize simultaneously. A general multi-objective

program (MOP) with p objectives can be formulated as follows:

(MOP) "maximize" z(x) =
{
z1(x), z2(x), . . . , zp(x)

}
subject to x ∈ X

(2.5)

In the above formulation, x is the decision vector and z(x) is the corresponding ob-

jective vector. The aim in multi-objective optimization is to generate a set of efficient

6



solutions, which corresponds to a set of non-dominated points in the objective space,

so that the DM can choose one among them according to his/her preferences.

A point z(x) said to dominate the point z(x̃) if zi(x) ≥ zi(x̃) for all i = 1, 2, . . . , p

and zi(x) > zi(x̃) for at least one i. If there does not exist such x ∈ X , then x̃ is said

to be an efficient solution and z(x̃) is a non-dominated point. A point z(x) in objective

space is strictly dominated by another point z(x) if and only if zi(x) > zi(x) for all

i = 1, 2, . . . , p. If there does not exist such x, then z(x) is said to be weakly non-

dominated.

In multi-objective optimization, the point whose components are the best values of

each objective is called the ideal point and represented as zIP =
{
z1
IP , z

2
IP , . . . , z

p
IP

}
where ziIP = max

x∈E

{
zi(x)

}
, and E denotes the set of all efficient solutions. The

nadir point is the point whose components are the worst objective value components

of the nondominated vectors and is denoted as zNP =
{
z1
NP , z

2
NP , . . . , z

p
NP

}
where

ziNP = min
x∈E

{
zi(x)

}
. The ideal and nadir points determine the range of the objective

values.

One of the most known and used methods for solving multi-objective problems is

ε-constraint method (Haimes et al., 1971). In ε-constraint method, multi-objective

problems are converted to single objective sub-problems, where all objectives except

one is treated as constraints. Since the main focus on this thesis study is bi-objective

problems, we provide an ε-constraint method for such problems in Table 2.1.

Consider sub-problem of SP, denoted by SP(ε):

(SP(ε)) "maximize" z1(x) + 0.00001z2(x)

subject to z2(x) ≥ ε

x ∈ X.

(2.6)

Here, sub-problems are provided for SP only. The algorithm is applied to EVP and

WSP also. It is shown that a similar method provided by Bérubé et al. (2009) can be

used to find exact efficient solution set of bi-objective problems.

The function that can be used as a representation of the preferences of the DM on the

values of each objective is called the utility function (or value function if there is no

uncertainty), represented by f(z). When the utility function is unknown, the set (or a
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Table 2.1: Epsilon-Constraint Algorithm for Bi-Objective Stochastic Problems

Algorithm

Step 0. (Initialization)

Compute ideal (zIP ) and nadir (zNP ) points of SP.

Let E be the set of efficient solutions and N be the

corresponding non-dominated points.

Note that the points (z1
IP , z

2
NP ) and (z1

NP , z
2
IP ) ∈ N .

Set ε = z2
NP .

Step 1. (Find a new point)

While ε < z2
IP solve SP(ε) and add optimal solution x∗

to E and corresponding point on objective space z(x∗) to N.

Set ε = z2(x∗)−∆.

Step 2. (Stop)

subset) of all efficient solutions can be generated and presented to the DM for further

evaluation.
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CHAPTER 3

LITERATURE REVIEW

Both multi-objective optimization and stochastic programming have extensive appli-

cation areas and theoretical foundations in operations research. Consequently, these

are very well-studied areas and a comprehensive literature review of these areas is

well outside the scope of this thesis work. Reviews on the foundations and solution

methods for multi-objective optimization include Köksalan and Wallenius (2012),

Ehrgott and Gandibleux (2000) , Deb (2001) ,whereas Birge and Louveaux (2011),

Kall and Wallace (1994) provide an extensive overview of the theory and solution

approaches for stochastic programming.

Many real-life problems that can be tackled by operations research methods involve

multiple objectives and uncertainty in their nature. In this chapter, we present a review

of the relevant literature on studies that incorporate both of these aspects.

R. Caballero and Rey (2004) discuss a two-step transformation procedure in order to

find efficient solutions of a stochastic multi-objective problem. These steps include

transformation of the objectives to a single objective and establishing deterministic

equivalent of stochastic problem. A widely-used method is to transform the stochastic

program with multiple objectives into a single-objective version by means of scalar-

ization in the objective function (e.g., by means of using weights for each objective)

to reduce the problem to a single-objective version and solving the resulting stochas-

tic program. Such a process is called the stochastic approach or scalarizing method.

We do not consider such methods in our review, as these are essentially for single-

objective models. A review of this stream of literature is provided in Ben Abdelaziz

(2012).
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Despite the wide range potential applications of multi-objective stochastic program-

ming in areas such as manufacturing and production planning, supply chain manage-

ment, humanitarian logistics, health care management and finance, the literature on

studies applying the multi-objective approach or non-scalarizing method, i.e., those

retaining the multi-objective structure in the stochastic program, is quite limited. In

the remainder of this chapter, we classify those studies into two groups, namely stud-

ies that focus on providing solution approaches for multi-objective stochastic pro-

gramming in general and those that address specific problems in different application

areas.

3.1 Studies on the modeling and solution methods for multi-objective stochastic

programming

A recent and extensive survey of the non-scalarizing modeling and solution approaches

for multi-objective stochastic programming is given by J. Gutjahr and Pichler (2013).

The paper provides the generic modeling approach and discusses the exact, approxi-

mate, and metaheuristic-based approaches for both risk-neutral and risk-averse cases.

In doing so, the authors point to a number of computational issues. Despite the exten-

sive coverage of solution methods, no discussion on the performance measurement

aspects is provided.

A general-purpose algorithm called Adaptive Pareto-Sampling (APS) to determine

the set of efficient solutions of two-objective optimization problems involving un-

certainty is proposed by Gutjahr (2009). The algorithm is iterative and it combines

the solution of corresponding deterministic two-objective problem with random sam-

pling. Especially, the problems whose corresponding deterministic bi-objective prob-

lem can be formulated as a bi-objective integer linear problem are investigated; how-

ever, in theory, the algorithm can be applied to ordinary combinatorial problems. It is

proven that, under mild conditions, the proposed solution set converges to the true set

of Pareto-optimal solutions. Computational experiments are conducted on a stochas-

tic bicriteria knapsack problem and a discussion on the runtime complexity of the

approaches is also provided.
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Norkin (2014) describes an approximation technique for solving multiobjective stochas-

tic optimization problems of "input - random output" systems. An interactive multi-

criteria controlled random search method is analyzed, where the decision maker de-

fines the region for new random search by considering visual analysis of previous

iterations’ non-dominated points set. In order to estimate performance indicators, par-

allel Monte Carlo simulations are used. On an insurance multicriteria optimization

support system the technique is demonstrated. Convergence analysis is conducted

and the conditions in order to assure the convergence with probability one under ap-

propriate adjustment of sampling parameters are provided.

In his paper, Norkin (2017) extends the stochastic branch and bound method, which is

used for solving scalar global and integer stochastic programming, to multiobjective

stochastic problems, called stochastic vector branch and bound method. For sets

of optimal values of subproblems, vector lower and upper bounds are established.

Vector upper bounds are obtained by means of finding ideal point, and a feasible

point’s vector objective function is used as a lower bound. A general framework for

both discrete and continuous optimization problems is provided and the convergence

of those algorithms to set of approximate solutions are proved.

Whereas the focus in this thesis is not on the solution approaches on multi-objective

stochastic programming, we make use of a part of these solution approaches (particu-

larly the adaptive epsilon-constraint method) in the following chapters. Furthermore,

none of the papers we discuss in this section propose any specific measures for eval-

uating the value of considering stochasticity or that of perfect information in their

approaches, which is a gap we aim to bridge in this thesis.

3.2 Studies on addressing specific problems modeled by multi-objective stochas-

tic programming

There exist a limited number of studies that apply the aforementioned solution ap-

proaches on specific problems in the operations research literature. In what follows,

we provide a discussion of recent papers in this area.
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Gutjahr and Reiter (2010) study a bi-objective two-stage stochastic portfolio selec-

tion problem. The uncertainty in such problems might arise from the risks related to

a project and the amount of time needed to complete tasks of the project. The spe-

cific objectives considered in this study are the expected total economic and strategic

gains and the expected total overtime cost. A procedure called adaptive Pareto sam-

pling, previously developed by the authors, combined with the non-dominated sorting

genetic algorithm II (NSGA-II) as an auxiliary procedure, is followed. For the esti-

mation of expectations, importance sampling approach is used and a deterministic

multi-objective problem is obtained. As a result of computational experiments, the

authors conclude that the proposed methodology practically performs equally well

compared to an approach including complete enumeration with extensive simulation.

Furthermore, the run-time of the former is only 1% of the latter.

In their paper, Cardona-Valdes et al. (2011) study the design of a two-echelon distri-

bution system where a number of candidate distribution centers, multiple customers,

and production plants exist. In this supply chain, both the total cost and maximum ser-

vice time is to be minimized simultaneously. The problem is formulated as a stochas-

tic bi-objective mixed integer linear program where uncertainty in customer demand

is modeled by scenarios. The solution approach uses the epsilon-constraint method,

where a transformation of the stochastic bi-objective program into a single objective

stochastic problem is made, followed by solving the deterministic equivalent of the

stochastic program using the L-shaped method. The performance of the method is

tested using randomly generated instances.

Fonseca et al. (2010) consider a bi-objective model for reverse logistics planning

problem. They propose a two-stage stochastic bi-objective mixed-integer program-

ming formulation where the strategic and operational decisions are made in the first

and second stages, respectively. The objective is to minimize first-stage cost and ex-

pected second stage cost while minimizing the financial risk. The authors present the

proposed stochastic model in its extensive form and test their model on a set of differ-

ent scenarios using a case study based on data from the province of Cordoba in Spain.

It is observed that non-dominated solutions to the problem on the case study can be

obtained in a reasonable computational time by using an iterative method (Ross and

Soland, 1980).
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Tricoire et al. (2012) formulate a two-objective stochastic covering tour problem con-

cerned with disaster management. The uncertainty of beneficiary demand in the pop-

ulation centers is modeled by random variables. The first objective in the model is

to minimize the total cost of opening distribution centers and that of travel between

centers. The second objective is to minimize the expected uncovered demand. In

the first-stage, the decisions to open which distribution centers as well as the delivery

tours are made. At the beginning of the second-stage, actual demands become known,

and the actual supply values are determined. The authors use a branch-and-cut algo-

rithm within an epsilon-constraint method in order to solve the resulting bi-objective

two-stage stochastic program with recourse. While the deterministic single-objective

Covering Tour Problem is NP-hard, the complexity of the problem is increased even

further in bi-objective stochastic extension. The solution approach is tested on real-

world data from rural communities in Senegal.

For solving stochastic multiobjective combinatorial optimization problems, a meta-

heuristics algorithm is proposed by Gannouni et al. (2017). The authors extend the

main components of multi-objective evolutionary algorithms such as dominance cri-

teria, elitism and diversification for the stochastic case. They establish their approach

by using a hybridization of probabilistic programming with metaheuristic. The pro-

posed algorithm is tested on a bi-objective stochastic vehicle routing problem and it

is shown that the algorithm is able to generate a set of well-distributed probabilistic

efficient solutions.

In the job-scheduling problem parameters such as the processing time of tasks, avail-

ability of resources, and deadlines of each stage are assumed to be known with cer-

tainty. However, these parameters might not be known precisely in real-life decision

making problems. Therefore, stochastic programming is used in order to model such

uncertainties.

Hao et al. (2015) study the bi-criteria stochastic job-shop scheduling problem where

processing times are not known, and the objectives are to minimize expected aver-

age makespan and total tardiness. The authors propose a multi-objective estimation

of distribution algorithm for this problem. First, the probability model of operation

order is estimated. Using Monte-Carlo methods, sampling of processing time of op-
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erations are performed and then total tardiness of each sampling and the expected

makespan are calculated. Using numerical experiments, the authors conclude that the

algorithm obtains efficient solutions with acceptable schedule quality within a reason-

able amount of computational time. Zehetner and J. Gutjahr (2018) assert that due

to the complexity of the bi-objective stochastic covering tour problem, solving large

instances using method of Tricoire et al. (2012) may not be possible.

Preserving the problem definition in Tricoire et al. (2012), Zehetner and J. Gutjahr

(2018) use the NSGA-II algorithm to tackle the multi-objectivity of the model. Three

different methods are considered to work around the stochastic aspect, namely a fixed

random sample, a sample which is exchanged in each iteration, and APS. Experi-

ments are conducted for the same test benchmarks as in Tricoire et al. (2012) and it

is concluded that the NSGA-II-based solution and its computation time are always

better than those of Tricoire et al. (2012).

To the best of our knowledge, the only study on multi-objective stochastic program-

ming that involves performance measurement is by Rath et al. (2015), where the

authors consider the location of humanitarian depots and the subsequent relief dis-

tribution under the uncertainty of the road network condition and with the objectives

of maximizing expected demand coverage and minimizing budget use. The authors

measure the VSS and the EVPI after transforming the multi-objective model to a

single-objective one using the epsilon-constraint method. However, under such an

approach, the measures are taken in terms of only one of the objectives. In this thesis

work, we put forward alternative ways to measure the VSS and the EVPI, so that all

objectives can be taken into account.The details of the VSS and EVPI measurement

method by Rath et al. (2015) will be provided in the subsequent chapters of the thesis.

Rath et al. (2015) study a two-stage bi-objective stochastic programming for deter-

mining depot locations in disaster relief operations. In their study, they analyze sev-

eral variants of the model. Using an adaptive Epsilon-constraint method, they obtain

efficient solutions for the problem. When calculating the VSS and EVPI, they only

consider improvement of objective function value in one objective, whereas, in our

proposed method, both objectives are taken into account. They present average and

maximum values of the VSS and EVPI. In our approach, we provide to the decision
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maker bounds of those values considering all of the objectives.
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CHAPTER 4

VALUE OF THE STOCHASTIC SOLUTION AND THE EXPECTED VALUE

OF PERFECT INFORMATION IN MULTI-OBJECTIVE STOCHASTIC

PROGRAMMING

Many problems in practice involve both conflicting objectives and uncertain parame-

ters. Our focus in this study is on proposing measures that can be used to assess the

value of modeling uncertainty and having perfect information about how uncertainty

will unfold in such problems. Using the same notation in Chapter 2, a multi-objective

stochastic program (MOSP) with p objectives can be represented as follows:

(MOSP) "max"
{
c1>x +Q1(x), ..., cp>x +Qp(x)

}
subject to Ax = b

x ∈ X,

(4.1)

where, for each objective m = 1, 2, . . . , p, Qm(x) = Eξ
[
Qm(x, ξ(ω))

]
and

Qm(x, ξ(ω)) = max
y(ω)

qm(ω)>y(ω)

subject to Wm(ω)y(ω) + Tm(ω)x = hm(ω)

y(ω) ∈ Y

(4.2)

Although the value of modeling uncertainty and perfect information about uncertainty

is well studied for single-objective problems (e.g., Birge and Louveaux (2011)), to the

best of our knowledge, there is only a single study (Rath et al., 2015) regarding the

calculation of VSS and EVPI of MOSPs in the literature. Rath et al. (2015) formu-

late depot location problem in disaster relief operations as a bi-objective stochastic

program by incorporating the uncertainty in road accessibility through a discrete set

of scenarios. To compute VSS for every solution on the non-dominated frontier, they

generate a corresponding solution for the expected value problem by optimizing one
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of the objectives and treating the other one (which only involves a first-stage com-

ponent) as a constraint. They compare the expected value of the objective (which

is treated through the objective function) of these two solutions and refer to the dif-

ference as the VSS. In doing so, they define and compute a single VSS value for

every point on the non-dominated frontier of the stochastic program. In other words,

handling one of the objectives as a constraint, they use the same framework used

for single-objective problems. They measure the EVPI value of the non-dominated

points in a similar manner, using the wait-and-see problem instead of the expected

value problem. For the problem instances considered in the study, they report the av-

erage and maximum values across the solutions on the non-dominated frontier. Using

the results, they analyze areas of the objective space where it is advantageous to solve

the stochastic problem, where the deterministic problem has solutions almost as good

as stochastic model.

Using the VSS and EVPI calculation framework by Rath et al. (2015) ignores the

multi-objective nature of the problems modeled by the MOSP, as the measurement

is made from the perspective of only one of the objectives. Hence, there is need for

a performance measurement framework that incorporates the existence of multiple

objectives into the measurement process. Motivated by this, in this thesis, we aim to

provide a new framework to estimate the VSS and EVPI in MOSPs where the impact

of modeling uncertainty and having perfect information on uncertain parameters on

each objective is explicitly considered. We assume that the relative importance of the

objectives for the DM is unknown.

In the remainder of this chapter, three efficient frontiers are generated by solving the

expected value problem, stochastic problem, and wait-and-see problem. Let EEEV ,

ESP and EWSP represent the set of efficient solutions on these frontiers, respectively.

The corresponding objective function values of these solutions generate three non-

dominated frontiers, denoted by SEEEV , SESP and SEWSP , respectively. In other words,

the sets SEEEV , SESP and SEWSP represent the non-dominated points of the EVP, SP and

WSP, respectively.

Considering that the scales of objectives might be different, normalized objective val-

ues are used to calculate the VSS and EVPI. For an objective vector z = (z1, ..., zp),
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the mth (where m = 1, ..., p) component of the corresponding normalized objective

vector znorm = (z1
norm, ..., z

p
norm) is found by:

zmnorm =
zm − zmworst
zmbest − zmworst

where zmbest and zmworst are the best and worst values, respectively, of the mth objective

function values of the points in EEEV ∪ ESP ∪ EWSP . Note that, the best value of

the mth objective is determined by the components of the ideal points of these three

frontiers as:

zmbest = max
{
zmEEV,IP , z

m
SP,IP , z

m
WSP,IP

}
,

and the worst value is determined by the components of the nadir points as:

zmworst = min
{
zmEEV,NP , z

m
SP,NP , z

m
WSP,NP

}
.

4.1 VSS in Multi-Objective Stochastic Programming

For an optimization problem with a single objective, VSS is estimated by comparing

the expected objective values of the solutions obtained by solving the EVP and SP.

In the case of the MOSP, even if the DM indicates her most preferred non-dominated

point of the EVP frontier, her preferred point on the SP frontier is still not certain.

Consequently, calculation of the VSS is no longer straightforward. Considering the

possible points that may be desirable for the DM on the SP frontier, we determine

lower and upper bounds for the VSS, instead of a single scalar value. Furthermore,

to limit the search, we only consider the points on the SP frontier that dominate the

most preferred point on the EVP frontier. Using this idea, we extend the definition of

the VSS of a non-dominated point on the EVP frontier to the VSS of the whole EVP

frontier.

In what follows, we provide the mathematical basis for the calculation of these inter-

vals.

4.1.1 VSS of an Efficient Solution

Assume that the DM’s preferences are not available and she is interested in an efficient

solution A on EEEV . Let DE
SP,A be the set of efficient SP solutions that dominate A.
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Without sacrificing from any of the objectives, by replacing A by a solution B ∈
DE
SP,A, the DM can improve at least one of the objectives by

u(A,B) = max
p

{
zp(B)norm − zp(A)norm

}
,

which is the Tchebycheff distance between z(A) and z(B).

Which efficient solution the DM would pick among the ones in DE
SP,A to replace A

by depends on her preferences. Therefore, the value of replacing A and hence the

VSS for A, which we refer to as V SSA hereafter, could actually be estimated as an

interval rather than a single value. We calculate the lower and upper bounds (V SSLA
and V SSUA ) of this interval using the following equations:

V SSLA =


min

x∈DE
SP,A

{
u(A, x),

}
if DE

SP,A 6= ∅,

0, otherwise.

=


min

x∈DE
SP,A

{
max
p

{
zp(x)norm − zp(A)norm

}}
, if DE

SP,A 6= ∅,

0, otherwise.

V SSUA =


max

x∈DE
SP,A

{
u(A, x),

}
if DE

SP,A 6= ∅,

0, otherwise.

=


max

x∈DE
SP,A

{
max
p

{
zp(x)norm − zp(A)norm

}}
, if DE

SP,A 6= ∅,

0, otherwise.

Calculating those values for A, we are able to claim that the minimum and maximum

improvement on either of the objectives (without sacrificing from the other ones)

that can be obtained by formulating and solving the problem as a SP are V SSLA and

V SSUA , respectively.

Note that, if DE
SP,A = ∅, A cannot be improved in any of the objectives (without

sacrificing from the other ones) by modeling the uncertainty, and hence is also an

efficient solution to the SP. Accordingly, we have V SSLA = V SSUA = 0 by definition.

It should be noted here that the DM may prefer a point on the EVP frontier that may

not dominate point A. Hence, the interval we provide for the VSS is an approximation,
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and the actual VSS value may be outside this interval. In the next chapter, we test the

validity of our intervals by performing tests under various utility functions to observe

how frequently the VSS is outside the determined interval, and the amount of under-

or overestimation.

4.1.2 VSS of an Efficient Frontier

In the case where the DM’s preference on the EVP efficient frontier is not available,

one may be interested in calculating the VSS of the whole EVP efficient frontier as

well. The lower (upper) bound of the VSS of an efficient frontier is determined by the

smallest (largest) VSS value of the points on the frontier. Accordingly, we calculate

lower and upper bounds on the VSS of an efficient frontier as follows:

V SSL = min
x′∈EEEV

{
V SSLx′

}

V SSU = max
x′∈EEEV

{
V SSUx′

}
Note that, the bounds we define on the VSS of an efficient frontier is preference-

independent. In other words, by using this interval estimate, we are able to state the

minimum and maximum gain that the DM can have by solving the SP (rather than

EVP) regardless of her preferences.

Remark. If lower bound on the VSS of efficient frontier EEV is 0, that is V SSL = 0,

then there exists A ∈ EEEV and B ∈ ESP , such that zp(B) = zp(A) for all m =

1, ..., p.

4.2 EVPI in Multi-Objective Stochastic Programming

Our analysis for calculating the VSS of a point and the EVP efficient frontier can

be extended to the case of the EVPI of a point on the SP frontier and the whole SP

frontier.
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4.2.1 EVPI of an Efficient Point

Let C be a point on the SP efficient frontier ESP and DE
WSP,C be the set of efficient

solutions of the WSP that dominateC. The DM’s gain can be improved at least one of

the objectives (while loss of any of the objectives is not allowed) by the Tchebycheff

distance between z(C) and z(D), which is calculated by

u(C,D) = max
p

{
zp(D)norm − zp(C)norm

}
.

In accordance with her preferences, the DM chooses a solution from DE
WSP,C instead

of efficient solution C. The value of replacing solution C should be provided as an

interval, instead of a single value. The lower and upper bounds, denoted by EV PILC
and EV PIUC , respectively, are calculated by equations below:

EV PILC =


min

x∈DE
WSP,C

{
u(C, x)

}
, if DE

WSP,C 6= ∅,

0, otherwise.

=


min

x∈DE
WSP,C

{
max
p

{
zp(x)norm − zp(C)norm

}}
, if DE

WSP,C 6= ∅,

0, otherwise.

EV PIUC =


max

x∈DE
WSP,C

{
u(C, x)

}
, if DE

WSP,C 6= ∅,

0, otherwise.

=


max

x∈DE
WSP,C

{
max
p

{
zp(x)norm − zp(C)norm

}}
, if DE

WSP,C 6= ∅,

0, otherwise.

EV PILC andEV PIUC are the least and the most improvement on any of the objectives

(where sacrifice from the other objectives is forbidden) by modelling and solving the

problem as a WSP, rather than the SP.

4.2.2 EVPI of an Efficient Frontier

After providing the DM all efficient solutions on the SP frontier, the DM chooses an

alternative according to her preferences. In the case where the DM’spreference on the
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SP frontier is not known, it is sensible to provide the DM bounds on EVPI which are

calculated considering all efficient solutions of the SP.

An efficient frontier’s lower and upper bounds on the EVPI can be calculated as fol-

lows:

EV PIL = min
x′∈ESP

{
EV PILx′

}
EV PIU = max

x′∈ESP

{
EV PIUx′

}
Since the definitions of these bounds are independent from preferences of the DM,

she can be informed about the minimum and maximum gain that can be obtained by

solving the WSP, instead of the SP, without having information about her preferences.

4.3 Numerical Example

Suppose that the EVP, SP and WSP non-dominated frontiers of a bi-objective problem

is obtained. Assume that the DM pays attention to points A, B, C, D and E. Let

A = (3365.0, 4072.0), B = (3827.0, 3760.0) and C = (3582.0, 3958.0) be points on

SEWSP and D = (3185.0, 3723.0) and E = (3516.0, 3474.0) be points on SESP , which

are plotten in Figure 4.1. In calculation of bounds of EVPI of D, points A, B and

Figure 4.1: Calculation of EVPI - example instance.

C considered, where as, for point E, only points B and C are taking into account.

Using below equations, lower and upper bounds on EVPI of points D and E can be
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found:

EV PILD = min
x∈{A,B,C}

{
u(D, x)

}
= min

x∈{A,B,C}

{
max
i=1,2

{
zi(x)norm − zi(D)norm

}}
EV PIUD = max

x∈{A,B,C}

{
u(D, x)

}
= max

x∈{A,B,C}

{
max
i=1,2

{
zi(x)norm − zi(D)norm

}}
and

EV PILE = min
x∈{B,C}

{
u(E, x)

}
= min

x∈{B,C}

{
max
i=1,2

{
zi(x)norm − zi(E)norm

}}
EV PIUE = max

x∈{B,C}

{
u(E, x)

}
= max

x∈{B,C}

{
max
i=1,2

{
zi(x)norm − zi(E)norm

}}
Let F = (3271.6, 3676.4), G = (3380.7, 3601.9) and H = (3493.1, 3499.0) be

points on SESP and assume that the DM is interested in points I = (3160.3, 3571.4),

J = (3333.4, 3446.8) and K = (3390.7, 3393.7) on SEEV P , which are plotten in

Figure 4.2. In order to calculate VSS of points I the points F and G are considered.

Figure 4.2: Calculation of VSS - example instance.

V SSLI = min
x∈{F,G}

{
u(I, x)

}
= min

x∈{F,G}

{
max
i=1,2

{
zi(x)norm − zi(I)norm

}}
V SSUI = max

x∈{F,G}

{
u(I, x)

}
= max

x∈{F,G}

{
max
i=1,2

{
zi(x)norm − zi(I)norm

}}
Likewise, the points G and H are taking into account to find VSS lower and upper

bound of point J .

V SSLJ = min
x∈{G,H}

{
u(J, x)

}
= min

x∈{G,H}

{
max
i=1,2

{
zi(x)norm − zi(J)norm

}}
V SSUJ = max

x∈{G,H}

{
u(J, x)

}
= max

x∈{G,H}

{
max
i=1,2

{
zi(x)norm − zi(J)norm

}}
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Since there is only one non-dominated point on SESP (which is H) that the DM is

interested in and dominates point K, VSS upper and lower bound of point K is found

by below equation:

V SSLK = V SSUK = u(H,K)
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CHAPTER 5

COMPUTATIONAL RESULTS

In this section, we apply the performance measures defined in the preceding section

on a Two-Stage Multi-Objective Stochastic Knapsack Problem with two objectives

(i.e., a bi-objective stochastic knapsack problem).

We first provide a description of the problem and the corresponding mathematical

model, along with the Expected Value Problem and the Wait-and-See Problem. Fol-

lowing this, we present the results of our computational experiments, mainly focusing

on an analysis of the VSS and EVPI measures.

In the problem we consider, the second-stage problem always has a feasible solution

for any feasible first stage decision vector. In the literature, these problems are called

two-stage stochastic problems with relatively complete recourse. By working with

such problems, we can ensure that the corresponding Expected Value Problem is

always feasible, and thus the VSS measures can be readily obtained. In cases where

the Expected Value Problem is infeasible, we may assume the VSS to be equal to∞.

5.1 The Two-Stage Multi-Objective Knapsack Problem

The general knapsack problem is a well-known combinatorial optimization problem

to model transportation, scheduling, production and network optimization problems.

In the deterministic knapsack problem, given a set of items, each with a weight and

a reward, the objective is to find a subset, such that total reward of the subset is

maximized, while its total weight does not exceed certain knapsack capacity.
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In many real-life applications of the Knapsack Problem, the "weights" of the "items"

may not be known in advance with certainty. An example application may be in

project selection, where the costs and/or durations of the projects to be undertaken in

sequence are not known in advance, whereas there is a fixed budget and/or time limit.

Such applications motivate the modeling of the multi-objective and stochastic version

of the Knapsack Problem (the MOSKP).

The single-objective version of the Stochastic Knapsack Problem we consider is

based on Kosuch (2014) and consists of deterministic rewards ri and stochastic weights

wi for each item i in a set I of available items, subject to a deterministic knapsack

capacity C. Once the item selection is made in the first stage, item weights become

known, and a penalty is incurred for each unit of exceeded capacity (overage). With-

out loss of generality, we assume a single unit of penalty for each unit of overage.

The first-stage decisions for the two-stage stochastic programming formulation are

denoted by vector x = {x1, x2, ..., x|I|}, where binary decision variable xi, i ∈ I

takes value 1 if the item is selected in the knapsack, and takes value 0 otherwise.

The objective is to maximize expected net profit, which is given by the difference

between the expected total reward of selected items and expected overage. The sets,

parameters, and decision variables we use in the two-stage stochastic programming

formulation are as follows:

Sets

I: items

Ω: scenarios

Parameters

ri: reward of item i ∈ I
wik: weight of item i in scenario k ∈ Ω

C: capacity
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Decision Variables

xi =

1, if item i ∈ I is selected,

0, otherwise.

yk : capacity overage in scenario k ∈ Ω

Based on these definitions, the single-objective version of the problem can be stated

as below:
max
x

∑
i∈I

rixi − E[h(x, k)]

subject to xi ∈ {0, 1} ∀ i ∈ I
(5.1)

where
h(x, k) = min yk

subject to
∑
i∈I

wikxi ≤ C + yk

yk ≥ 0.

In the existence of multiple objectives, the the MOSKP can then be modeled using

multiple rewards for each item and multiple capacities for each knapsack in each ob-

jective. For the project selection example, these corresponds to different project costs

and durations, and separate financial budget and makespan deadline, respectively.

The additional parameters for the the MOSKP model are as follows:

rmi : reward of item i ∈ I in objective m = 1, 2.

Cm: capacity of knapsack for objective m = 1, 2.

"max"
x

{∑
i∈I

r1
i xi − E[h1(x, k)],

∑
i∈I

r2
i xi − E[h2(x, k)]

}
subject to xi ∈ {0, 1} ∀ i ∈ I

where for m = 1, 2,

hm(x, k) = min
y
yk

subject to
∑
i∈I

wikxi ≤ Cm + yk

yk ≥ 0.

The corresponding Expected Value Problem for the the MOSKP is given as follows:
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"max"
x

{∑
i∈I

r1
i xi − E[g1(x)],

∑
i∈I

r2
i xi − E[g2(x)]

}
subject to xi ∈ {0, 1} ∀ i ∈ I

(5.2)

where for m = 1, 2,

gm(x) = min ỹ

subject to
∑
i∈I

w̃ixi ≤ Cm + ỹ,

ỹ ≥ 0.

where w̃i = Ek[wik] and let x̃i be the optimal first-stage decision variables of above

problem. The EVP is found by solving:

"max"
x

{∑
i∈I

r1
i x̃i − E[h1(x, k)],

∑
i∈I

r2
i x̃i − E[h2(x, k)]

}
(5.3)

where for m = 1, 2,

hm(x, k) = min
y
yk

subject to
∑
i∈I

wikx̃i ≤ Cm + yk,

yk ≥ 0.

The corresponding WSP for the MOSKP can be constructed by defining a first-stage

decision variable for each scenario and taking an expectation over the net profits for

each scenario.

xk: the first-stage decision vector in scenario k ∈ Ω.

"max"
x

{
E

[∑
i∈I

r1
i xik − h1(x, k)

]
, E

[∑
i∈I

r2
i xik − h2(x, k)

]}
subject to xik ∈ {0, 1} ∀ i ∈ I

(5.4)

where for m = 1, 2.,

hm(x, k) = min
y
yk

subject to
∑
i∈I

wikxik ≤ Cm + yk,

yk ≥ 0.
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5.2 Analysis of the VSS and EVPI Values

5.2.1 Numerical Example

We consider a two-stage bi-objective knapsack problem where |I| = 30 and |Ω| = 2.

The weight and reward parameters for each item are generated as integer from a

discrete uniform distribution in the interval [1,100]. The capacities are calculated as∑
(i∈I)

∑
(k∈Ω)w

m
ik

2|Ω| for each objective function m = 1, 2.

In order to solve corresponding EVP, the parameter values are set as their expected

values. First, model 5.2 is solved and an efficient solution (x∗) is obtained. Next,

fixing (x) values to (x∗) in model 5.3, efficient solutions to SP are attained. Likewise,

the model 5.4 is used in order to obtain the non-dominated points of WSP.

Using the epsilon-constraing method provided in Chapter 2, the non-dominated effi-

cient frontiers are generated. The number of efficient solutions for the EVP, SP and

WSP are 42, 75 and 193, respectively.

The EEV, SP, and WSP non-dominated frontiers for example problem are shown in

Figure 5.1.

Figure 5.1: Non-dominated frontiers of example problem.

The upper and lower VSS bounds for the example instance are plotted in Figure 5.2.

Please note that the points on Figure 5.2 correspond to each solution on SEEEV . Along

the x-axis, z1 values of efficient solutions decrease as z2 values increase. The last
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point on the figure is (z1
NP , z

2
IP ).

Figure 5.2: VSS upper and lower bounds of example problem.

For this example instance, it is observed that for most of the non-dominated points

with high z1 values, lower and upper bounds of VSS are 0. However, lower and upper

bounds of VSS tend to take positive values when z2 values are high.

Figure 5.3 shows the lower and upper bounds of EVPI values of the example instance.

As in the case of VSS, the x-axis corresponds to solutions of SESP .

Figure 5.3: EVPI upper and lower bounds of example instance.
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5.2.2 Results of Experiments

In this section, the analysis of the MOSKP is provided. Instance parameters are pre-

sented first, followed by a discussion of the results of the analysis.

Using the epsilon constraint method provided in Chapter 2, all non-dominated fron-

tiers for EEV, SP and WSP are obtained for each instance. We coded the algorithm in

GAMS using and using CPLEX 12.4.0.1 as the solver. We executed our experiments

on a on 64-bit Microsoft 10 Enterprise installed Intel(R) Core (TM) i7-4770S CPU

@ 3.10 GHz computer with 16.00 GB RAM.

The frontier graphs for each instance are plotted using the objective vector of every

efficient solution obtained to the corresponding EVP, SP and WSP. In addition, the

VSS and EVPI intervals of these solutions are also provided. The objective function

values (z1, z2) are plotted in non-dominated frontiers. However, normalized values

of the objective function values are used in the calculation of the VSS and EVPI.

In each of these plots, the x-axis corresponds to each solution on SEEEV and SESP ,

respectively. The first solution in each plot attains the maximum value of the first

objective (z1 value), whereas the last solution has maximum z2 value. Please note

that the number of solutions on the VSS and EVPI graphs are equal to number of

efficient solutions obtained by solving the EVP and SP, respectively.

In the figures provided, some portions of the plots may appear as flat lines, which is

due to the scaling of the graph and does not necessarily indicate that the value remains

constant.

We conduct experiments on the MOSKP with 100 nodes and 10 scenarios. The re-

wards of items for 10 instances are retrieved from input files available at Köksalan

(2016). From the parameters given for 100 nodes and three objectives, first two co-

efficients of objectives are used. The weight parameter for each item is generated

as an integer value from a discrete uniform distribution in the interval [1,100]. The

capacities are calculated as
∑

(i∈I)

∑
(k∈Ω)w

m
ik

2|Ω| for each objective function m = 1, 2.

The number of efficient solutions generated for each instance is provided in Table 5.1.
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Table 5.1: The number of efficient solutions for all instances for the MOSKP.

EVP SP WSP

Instance 1 206 450 2357

Instance 2 103 471 2010

Instance 3 92 510 2433

Instance 4 72 356 2102

Instance 5 164 380 2323

Instance 6 429 598 2624

Instance 7 96 572 2518

Instance 8 308 495 2305

Instance 9 53 406 2128

Instance 10 446 465 2731

The number of efficient solutions of the WSP is higher than that of the SP. Likewise,

the number of efficient solutions of the SP is higher than that of the EVP. Over all

instances, the number of efficient solutions on any frontier ranges from 53 to 2731.

The computational time (in CPU seconds) to obtain the efficient solutions of the EVP,

SP and WSP for the MOSKP are provided in Table 5.2. It is observed that SP fron-

tier is generated faster than both EVP and WSP frontiers.. This may seem counter-

intuitive, as the EVP and WSP frontiers are the results of deterministic models, which

are expected to run faster than the SP. The reason behind this discrepancy is due to

the fact that obtaining the efficient solutions for the EVP requires the solutions of two

different models, as opposed to a single model for the SP. The solutions are obtained

by solving the EVP and their actual objective values are obtained by solving a modi-

fied version of the SP that includes the EVP solution as a constraint on the first-stage

decision variables. Moreover, the computational time reported for generating the effi-

cient solutions for the EVP also includes the time spent on eliminating the dominated

solutions based on their actual objective values.

Although the efficient frontier of the WSP is generated by solving a deterministic

model, the model needs to be solved for every scenario, which increases the required

computational effort. Moreover, the number of efficient solutions obtained for the

WSP is significantly higher since its feasible region is larger than that of the SP as

the nonanticipativity constraints are relaxed in WSP (i.e., the first-stage variables can

take different values in different scenarios). This also affects the computational time.
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Table 5.2: The computational time (in CPU seconds) to obtain efficient solutions of

the EVP, SP and WSP for the MOSKP.

EVP SP WSP

Instance 1 316.68 106.70 1752.42

Instance 2 125.68 167.39 1442.41

Instance 3 187.78 163.00 2033.85

Instance 4 106.11 60.803 1400.34

Instance 5 100.88 59.29 1564.432

Instance 6 171.70 94.97 1846.97

Instance 7 161.68 89.39 1493.08

Instance 8 132.70 78.08 1468.58

Instance 9 97.86 68.538 1765.59

Instance 10 123.03 72.90 1524.32

It should be noted that, the solutions obtained by solving the WSP problem is not

implementable since they do not satisfy the nonanticipativity constraint. They are

obtained not for practical purposes but for estimating the EVPI.

The EVPI values for all instances for the MOSKP is provided in Table 5.3. As can

be observed from Table 5.3, the EVPI values range between 15.78% (Instance 1 and

Instance 6) and 72.46% (Instance 2), which indicates that the DM can benefit from

a more accurate estimation of the random problem parameters. For a solution on the

SP frontier, the width of the lower bound - upper bound interval (i.e., the range) for

the EVPI is less than 24.88% (Instance 2) on average. Lower width values indicate

narrower intervals and hence more accurate estimates for the EVPI.

The VSS values for all instances for the MOSKP is provided in Table 5.4. The VSS

values range between 0% (indicated by the lower bound for many instances) and

19.32% (Instance 3). The low average range values indicate the high accuracy of our

VSS estimates for most of the instances.

To detail our findings on the EVPI and VSS values, non-dominated frontiers, EVPI,

and VSS plots for Instance 7 are given in Figures 5.4, 5.5 and 5.6, respectively. The

graphs for the remaining instances are provided in Appendix A.

Unlike in other non-dominated frontier graphs provided in Appendix A, a remark-
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Table 5.3: The EVPI values for all instances of the MOSKP.

Lower Bound Upper Bound Range

Min Avg Max Min Avg Max Min Avg Max

Instance 1 15.78% 16.96% 21.82% 28.82% 37.85% 64.16% 12.82% 20.89% 42.45%

Instance 2 21.07% 22.04% 25.57% 37.40% 46.92% 72.46% 16.04% 24.88% 46.89%

Instance 3 17.38% 18.61% 19.43% 34.00% 42.35% 60.20% 15.18% 23.74% 41.17%

Instance 4 17.66% 19.05% 24.71% 33.27% 43.00% 70.45% 14.27% 23.95% 45.74%

Instance 5 15.99% 18.14% 22.31% 32.10% 39.35% 62.45% 14.51% 21.21% 40.17%

Instance 6 15.78% 16.96% 21.82% 28.82% 37.85% 64.16% 12.82% 20.89% 42.45%

Instance 7 18.73% 19.94% 20.56% 35.99% 43.30% 62.15% 15.76% 23.36% 42.00%

Instance 8 17.27% 17.65% 19.37% 30.97% 40.34% 65.58% 13.52% 22.69% 46.21%

Instance 9 18.97% 19.53% 22.93% 33.69% 43.11% 70.89% 14.47% 23.58% 47.96%

Instance 10 15.85% 19.42% 23.32% 35.48% 42.11% 65.95% 15.60% 22.69% 42.63%

Table 5.4: The VSS values for all instances of the MOSKP.

Lower Bound Upper Bound Range

Min Avg Max Min Avg Max Min Avg Max

Instance 1 0.00% 0.03% 0.62% 0.00% 0.07% 1.59% 0.00% 0.04% 1.15%

Instance 2 0.00% 0.80% 2.98% 0.00% 2.54% 14.95% 0.00% 1.75% 12.01%

Instance 3 0.00% 0.62% 4.09% 0.00% 1.72% 19.32% 0.00% 1.10% 15.23%

Instance 4 0.00% 0.67% 1.89% 0.00% 1.55% 4.49% 0.00% 0.88% 3.24%

Instance 5 0.00% 0.09% 1.58% 0.00% 0.29% 5.67% 0.00% 0.20% 4.09%

Instance 6 0.00% 0.01% 0.72% 0.00% 0.03% 2.80% 0.00% 0.02% 2.34%

Instance 7 1.20% 4.04% 5.43% 4.62% 9.36% 16.05% 3.24% 5.32% 10.94%

Instance 8 0.00% 0.04% 1.14% 0.00% 0.15% 5.98% 0.00% 0.10% 4.98%

Instance 9 0.41% 1.60% 2.51% 0.69% 4.29% 9.74% 0.28% 2.69% 8.01%

Instance 10 0.00% 0.00% 1.00% 0.00% 0.01% 3.53% 0.00% 0.01% 2.53%

able distance from EVP curve to SP curve is observed in Instance 7. The lower

and upper EVPI bounds of non-dominated SP frontier are EV PIL = 18.73% and

EV PIU = 62.15%. The solution with maximum EVPI upper bound value is the first

solution on the x-axis. EVPI upper bound reaches its maximum where the difference

between the first and the second objective function values of the efficient solutions

on SP are high (i.e., in the extreme portions of the non-dominated frontier), whereas,

36



Figure 5.4: Non-dominated frontiers of the MOSKP - Instance 7.

EVPI upper bound reaches its minimum where the difference is low (i.e., in the mid-

dle portion of the non-dominated frontier). In the extreme portions of the efficient

frontier, the emphasis on one of the objectives is significantly higher. Therefore, the

EVPI at the extreme portions is mostly due to the uncertainty in one of the objectives.

More explicitly, in the extreme portion of the non-dominated frontier with lower z1

values, EVPI is mostly attributable to the uncertainty related to z2. EVPI is generated

mainly due to the uncertainty in z1 in the other extreme portion of the frontier. In

the middle portion, we observe lower EVPI values due to relatively close importance

levels of the objectives. When the problem is solved for each scenario, the solution

that optimizes z1 does not necessarily optimizes z2 as well. Therefore, availability of

perfect information does not improve the solution in this middle portion as much as

it improves the solutions in the extreme portions.

Figure 5.6 represents lower and upper bounds on VSS of non-dominated EEV frontier

of Instance 7.

As can be seen in Figure 5.6, the lower and upper bounds on VSS are 1.20% and

16.05% for Instance 7. Since V SSL 6= 0, it is guaranteed that solving SP instead of

EVP would yield higher objective function values.
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Figure 5.5: EVPI values of the MOSKP - Instance 7.

Figure 5.6: VSS values of the MOSKP - Instance 7.

5.3 Utility Function Analysis

In the preceding section, our definition of the VSS and EVPI lower and upper bounds

depends on the condition that no sacrifice is made from any objectives while calcu-

lating these. Hence, for the VSS (EVPI), we only check points on the SP (WSP)

efficient frontier that dominate a given point on the EEV (SP) efficient frontier. On

the other hand, it is possible that a decision maker that prefers a given point on the

EEV (SP) efficient frontier may prefer one on the SP (WSP) efficient frontier that

does not dominate the former point. In other words, the decision maker may prefer to

balance the trade-off between the two objectives in a way that she improves some of
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Table 5.5: The weights used in simulating DM’s value function.

w1 0.98 0.02

w2 0.90 0.10

w3 0.80 0.20

w4 0.70 0.30

w5 0.60 0.40

w6 0.50 0.50

w7 0.40 0.60

w8 0.30 0.70

w9 0.20 0.80

w10 0.10 0.90

w11 0.02 0.98

the objectives while sacrificing from the other ones. In such a case, the Tchebycheff

distance between the solutions chosen by the decision maker on the EEV frontier and

SP frontier may be larger than the upper bound defined on the VSS, which implies

that the upper bound for the actual VSS may not be valid for this decision maker.

When the utility function of the decision maker is known, it is possible to identify

whether the preferred points of the decision maker on each frontier. In this part, for

both VSS and EVPI, we compare the utilities of the points we use in our VSS and

EVPI calculations to those that yield the highest utility. If our points coincide with

those that maximize the utility on each frontier, the differences will be zero, which is

the most desirable case. However, when the points are different, we would like the

difference to be as small as possible.

We use the following set of utility functions from Lokman et al. (2016). The weight

combinations are given in Table 5.5.

Linear: max
p∑
i=1

wizi

Quadratic: max
p∑
i=1

−w2
i

(
zi − zIPi

)2

Tchebycheff: max
{

mini=1,...,p

(
wi(zi − zIPi )

)}
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5.3.1 VSS when the Utility Function of the Decision Maker is Known

Suppose that it is possible to represent the DM’s underlying preferences by a utility

function, f(z). The values of f(z) for all z ∈ SEEEV and z ∈ SESP are calculated.

Let EEV∗ and SP∗ be the most preferred solution of the DM from the EEV and SP

frontiers, respectively. More formally,

f(EEV∗) = max
z∈SE

EEV

f(z)

and

f(SP∗) = max
z∈SE

SP

f(z).

In the first approach, if the point SP∗ dominates the pointEEV∗, the VSS is computed

as below:

V SS = max {SP 1
∗ − EEV 1

∗ , SP
2
∗ − EEV 2

∗ }

The VSS cannot be computed if EEV∗ is not dominated by the point SP∗ because it

violates the dominance restriction in the definition of VSS.

In the second approach, in finding the point maximizing utility function on the effi-

cient frontier of SP, we only consider the points that dominate the point EEV∗ . Let

DEEV∗ be all the points on SP efficient frontier that dominate EEV∗. For every point

z ∈ DEEV∗ , f(z) is calculated. Let SPEEV∗ ∈ DEEV∗ be the most preferred solution

of the DM in this approach, where

f(SPEEV∗) = max
z∈DEEV ∗

f(z).

Then, we calculate the VSS using the following equation:

V SS = max {SP 1
EEV∗ − EEV

1
∗ , SP

2
EEV∗ − EEV

2
∗ }

5.4 EVPI when the Utility Function of the Decision Maker is Known

Assuming DM’s value function f(z) is known or can be simulated. First, the values

of f(z) for all z ∈ SESP and z ∈ SEWSP are calculated and the most preferred solutions
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that maximizes f are denoted by SP∗, WSP∗, respectively.

f(SP∗) = max
z∈SE

SP

f(z)

and

f(WSP∗) = max
z∈SE

WSP

f(z).

In the first approach, EVPI is calculated as below if the point SP∗ is dominated by

the point WSP∗.

EV PI = max {WSP 1
SP∗ − SP

1
∗ ,WSP 2

SP∗ − SP
2
∗ }.

If SP∗ is not dominated by the point WSP∗, the EVPI is cannot be calculated.

In the second approach, after finding SP∗ by using above definition, only points con-

sidered in calculation of EVPI are the ones that dominate SP∗. Let DSP∗ to be the

set of all points on SEWSP dominating SP∗. Then, we find WSPSP∗ ∈ DSP∗ that

maximizes f.

f(WSP∗) = max
z∈DSP∗

f(z)

and in the second approach EVPI is found by

EV PI = max {WSP 1
SP∗ − SP

1
∗ ,WSP 2

SP∗ − SP
2
∗ }.

5.4.1 Numerical Example

Let us consider the same example given in Section 4.3. Assume that the DM’s

preferences are consistent with an underlying utility function which maximizes a

weighted linear combination of objective function values using the weight vector

w5 = (0.6, 0.4), that is, f(z) = max 0.6z1 + 0.4z2.

First, the utility function values of solutions on the EVP, SP and WSP frontiers are

calculated. The EVP solution that maximizes f(z) is zEV P∗ = (707.0, 497.0). In

the first approach, the dominance relation is relaxed. Therefore, a solution on the SP

frontier that maximizes her utility function is of concern. The point on the SP frontier

with the maximum f(z) value is zSP1 = (720.0, 479.5).
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In the second approach, we consider the points on the SP frontier that dominate

zEV P∗. There does not exist any solution on SP frontier that dominates zEV P∗, that

is, DE
SP,zEV P∗

= ∅, and zEV P∗ is also an efficient solution of SP. Therefore, the

non-dominated point on SP frontier that maximizes the utility function is zSP2 =

(707.0, 497.0).

The utility loss from the dominance restriction when calculating the VSS is evaluated

by f(zSP1)− f(zSP2).

For this utility function, the utility loss in percentage when calculating the VSS is
(623.8−623.0)

623.8
= 0.13%. The utility loss in percentage when calculating the VSS for all

weight vectors and functions are provided in the Table 5.6. The utility loss is very low

(less than 1.60%) for the linear utility function with different weight values. For the

quadratic and the Tchebycheff utility function, the loss can be significant for some

weight values.

Table 5.6: The utility loss in percentage when calculating the VSS for the example

instance

First Approach Second Approach Difference

Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff

w1 777.39 -71.40 508.13 777.39 -71.40 427.28 0.00% 0.00% 15.91%

w2 738.95 -1585.83 466.65 738.95 -1585.83 392.40 0.00% 0.00% 15.91%

w3 690.90 -4894.76 414.80 690.90 -4894.76 348.80 0.00% 0.00% 15.91%

w4 648.20 -7802.13 362.95 648.20 -7980.16 305.20 0.00% 2.28% 15.91%

w5 623.80 -10254.24 311.10 623.00 -10318.48 261.60 0.13% 0.63% 15.91%

w6 609.25 -11394.81 259.25 609.25 -11394.81 218.00 0.00% 0.00% 15.91%

w7 600.50 -11592.25 253.50 598.30 -12810.85 253.50 0.37% 10.51% 0.00%

w8 617.05 -9551.31 295.75 607.20 -9903.17 295.75 1.60% 3.68% 0.00%

w9 646.00 -5670.01 338.00 643.80 -6373.45 338.00 0.34% 12.41% 0.00%

w10 683.70 -1883.81 380.25 680.40 -2017.60 380.25 0.48% 7.10% 0.00%

w11 719.79 -101.16 414.05 709.68 -214.34 414.05 1.40% 111.87% 0.00%

Please note that since zSP does not dominate the point zEV P , bounds of VSS cannot

be calculated using the definitions given in Chapter 4 in the first approach. In the

second approach, however, the VSS is calculated as u(zEV P∗, zSP2) = max (707.0−
707.0, 497.0− 497.0) = 0.
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The VSS values calculated applying the first and the second approach are listed in

Table 5.7.

Table 5.7: The VSS values for example instance using first and second approaches.

First Approach Second Approach

Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff

w1 0.00% 0.00% NDN 0.00% 0.00% 0.00%

w2 0.00% 0.00% NDN 0.00% 0.00% 0.00%

w3 0.00% 0.00% NDN 0.00% 0.00% 0.00%

w4 0.00% NDN NDN 0.00% 0.00% 0.00%

w5 NDN NDN NDN 0.00% 0.00% 0.00%

w6 0.00% 0.00% NDN 0.00% 0.00% 0.00%

w7 NDN NDN 0.00% 0.00% 0.00% 0.00%

w8 NDN NDN 0.00% 0.00% 1.21% 0.00%

w9 NDN NDN 0.00% 0.00% 1.97% 0.00%

w10 NDN NDN 0.00% 0.00% 0.00% 0.00%

w11 NDN NDN 0.00% 0.00% 0.00% 0.00%

The efficient solution of SP that maximizes f(z) is zSP∗ = (707.0, 497.0). Without

considering dominance relation, the efficient solution of WSP that maximizes f(z) is

zWSP1 = (797.0, 517.0). Please note that the point zWSP1 dominates the point zSP∗ =

(707.0, 497.). Hence, the point obtained on the WSP frontier using both approaches

is zWSP1 . As a result, there is no utility loss in the example when calculating the

EVPI.

The utility loss in percentage when calculating the EVPI for this utility function is
(623.8−623.0)

623.8
= 0.13%. The utility loss in percentage when calculating the EVPI for

all weight vectors and functions are provided in the Table 5.8. As summarized in this

table, the utility loss is less than 0.47% and 0.71% for the linear and the quadratic

utility function with all weight values except for one. However, the utility loss is

significant for the Tchebycheff utility function.

Since the point zSP∗ = (707.0, 497.) is dominated by the point zWSP1 = (797.0, 517.0),

the EVPI can be calculated by definitions provided in Chapter 4. Note that the EVPI

values calculated by applying both approaches are the same. The EVPI values calcu-

lated using both approaches are listed in Table 5.9.
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Table 5.8: The utility loss in percentage when calculating the EVPI for the example

instance.

First Approach Second Approach Difference of Approaches

Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff

w1 881.73 -132.57 621.32 869.21 -325.80 590.94 1.42% 145.77% 4.89%

w2 828.25 -2390.98 570.60 824.35 -2390.98 542.70 0.47% 0.00% 4.89%

w3 770.50 -7130.24 507.20 770.50 -7180.96 482.40 0.00% 0.71% 4.89%

w4 722.55 -12066.03 443.80 721.10 -12066.03 422.10 0.20% 0.00% 4.89%

w5 685.00 -15548.41 380.40 685.00 -15548.41 361.80 0.00% 0.00% 4.89%

w6 665.25 -17080.63 317.00 665.25 -17080.63 301.50 0.00% 0.00% 4.89%

w7 665.10 -15819.85 372.60 665.10 -15819.85 292.50 0.00% 0.00% 21.50%

w8 685.30 -12392.10 434.70 685.30 -12392.10 341.25 0.00% 0.00% 21.50%

w9 714.10 -7159.36 496.80 714.10 -7159.36 390.00 0.00% 0.00% 21.50%

w10 752.35 -2468.43 558.90 752.35 -2468.43 438.75 0.00% 0.00% 21.50%

w11 792.80 -141.26 608.58 792.80 -141.26 477.75 0.00% 0.00% 21.50%

Table 5.9: The EVPI values for the example instance using the first and the second

approaches.

First Approach Second Approach

Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff

w1 NDN NDN NDN 14.75% 14.75% 11.92%

w2 NDN 16.17% NDN 14.59% 16.17% 11.92%

w3 13.56% NDN NDN 13.56% 16.32% 11.92%

w4 NDN 14.12% NDN 16.32% 14.12% 11.92%

w5 12.15% 14.27% NDN 12.15% 14.27% 11.92%

w6 9.23% 9.23% NDN 9.23% 9.23% 11.92%

w7 13.37% 13.09% NDN 13.37% 13.09% 14.75%

w8 12.32% 13.96% NDN 12.32% 13.96% 14.75%

w9 14.91% 12.70% NDN 14.91% 12.70% 14.75%

w10 11.84% 14.91% NDN 11.84% 14.91% 14.75%

w11 11.92% 11.84% NDN 11.92% 11.84% 14.75%

5.4.2 Results of Experiments

The loss on utility function value is ignorable when underlying function is linear or

quadratic. That is, using second approach instead of first one does not give rise to

a significant loss in utility function value. If Tchebycheff function is used in order
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to represent the DM’s utility function, an average loss from 0.903% to 2.671% is

observed.

The average loss of all 10 instances on utility function value by applying the second

approach is provided in Table 5.10.

Table 5.10: The average utility loss when calculating the EVPI.

Linear Quadratic Tchebycheff

w1 0.002% 0.014% 0.903%

w2 0.005% 0.000% 0.903%

w3 0.009% 0.000% 0.903%

w4 0.000% 0.000% 0.903%

w5 0.000% 0.000% 0.903%

w6 0.000% 0.000% 2.671%

w7 0.000% 0.000% 0.619%

w8 0.000% 0.000% 0.619%

w9 0.000% 0.000% 0.619%

w10 0.000% 0.000% 0.619%

w11 0.004% 0.000% 0.619%

The average loss on 10 instances on utility function value by applying the second

approach when calculating the VSS are given in Table 5.11.

Observe that, if the underlying function representing the DM’s preferences is linear,

utility function value loss due to applying the second approach is ignorable. On aver-

age, a loss from 0.344% to 83.841% is presence when the utility function is assumed

to be quadratic. Please note that, using w1 (w11) means that the DM gives much

importance on the first (the second) objective function. In such cases, the problem is

almost like a single-objective problem. Therefore, high percentage of utility function

value loss observed on such extreme points. In the case where the utility function is

simulated by Tchebycheff distance function, an average loss from 7.563% to 11.204%

is calculated.
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Table 5.11: The average utility loss when calculating the VSS.

Linear Quadratic Tchebycheff

w1 0.263% 83.841% 7.563%

w2 0.073% 5.067% 7.563%

w3 0.076% 1.681% 7.563%

w4 0.012% 0.948% 7.563%

w5 0.077% 1.218% 7.563%

w6 0.016% 0.456% 9.116%

w7 0.025% 0.344% 11.204%

w8 0.055% 0.527% 11.204%

w9 0.040% 1.430% 11.204%

w10 0.044% 1.439% 11.204%

w11 0.110% 14.785% 11.204%
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CHAPTER 6

CONCLUSION

In this thesis, we study the value of capturing uncertainty in two-stage multi-objective

stochastic programs. We propose measures that can be used to estimate the lower and

upper bounds on the VSS and EVPI when the preferences of the decision maker

is unknown. VSS bounds are proposed for every solution on the efficient frontier

generated by solving the expected value problem and for the frontier itself. Similarly,

EVPI bounds are proposed for every efficient solution and for the efficient frontier of

the stochastic program.

We test the performance of our bounds for a knapsack problem, which is one of the

well studied problems in multi-objective programming literature. Using our results,

we are able to identify the regions along the efficient frontier where the maximum

value of modeling uncertainty is attained. We observe from our results that, maximum

VSS values occur in one extreme portion of the frontier whereas high EVPI values

are attained in both extreme portions of the frontier and hence the maximum EVPI

value may be in either of these regions.

By using our results, we also discuss the validity of our bounds in the presence the

decision maker’s preferences by considering various utility functions with different

objective weights. We measure the validity of our bounds by using the difference be-

tween the utility values of the solutions considered in our approach and the solutions

selected based on the utility function of the decision maker. We observe from our

results that this gap is negligibly small for linear utility functions but could be large

for other utility functions with certain objective weights.
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APPENDIX A

RESULTS OF INSTANCES ON MOSKP

Figure A.1: Non-dominated frontiers of the MOSKP - Instance 1.

Figure A.2: The EVPI bounds of the MOSKP - Instance 1.
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Figure A.3: The VSS bounds of the MOSKP - Instance 1.

Figure A.4: Non-dominated frontiers of the MOSKP - Instance 2.

Figure A.5: The EVPI bounds of the MOSKP - Instance 2.

54



Figure A.6: The VSS bounds of the MOSKP - Instance 2.

Figure A.7: Non-dominated frontiers of the MOSKP - Instance 3.

Figure A.8: The EVPI bounds of the MOSKP - Instance 3.
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Figure A.9: The VSS bounds of the MOSKP - Instance 3.

Figure A.10: Non-dominated frontiers of the MOSKP - Instance 4.

Figure A.11: The EVPI bounds of the MOSKP - Instance 4.
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Figure A.12: The VSS bounds of the MOSKP - Instance 4.

Figure A.13: Non-dominated frontiers of the MOSKP - Instance 5.

Figure A.14: The EVPI bounds of the MOSKP - Instance 5.
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Figure A.15: The VSS bounds of the MOSKP- Instance 5.

Figure A.16: Non-dominated frontiers of the MOSKP - Instance 6.

Figure A.17: The EVPI bounds of the MOSKP - Instance 6.
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Figure A.18: The VSS bounds of the MOSKP - Instance 6.

Figure A.19: Non-dominated frontiers of the MOSKP - Instance 8.

Figure A.20: The EVPI bounds of the MOSKP - Instance 8.
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Figure A.21: The VSS bounds of the MOSKP - Instance 8.

Figure A.22: Non-dominated frontiers of the MOSKP - Instance 9.

Figure A.23: The EVPI bounds of the MOSKP - Instance 9.
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Figure A.24: The VSS bounds of the MOSKP - Instance 9.

Figure A.25: Non-dominated frontiers of the MOSKP - Instance 10.

Figure A.26: The EVPI bounds of the MOSKP - Instance 10.
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Figure A.27: The VSS bounds of the MOSKP - Instance 10.
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APPENDIX B

EVALUATING THE UTILITY LOSS FROM THE DOMINANCE

RESTRICTION WHEN CALCULATING THE VSS
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Table B.1: The utility function values for calculating the VSS of the MOSKP Instance

1.

First Approach Second Approach Difference

Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff

w1 3685.66 -445.37 1102.40 3635.74 -3473.81 892.19 1.35% 679.99% 19.07%

w2 3611.19 -7858.36 1012.41 3590.34 -9889.14 819.36 0.58% 25.84% 19.07%

w3 3534.68 -21157.34 899.92 3532.34 -22902.75 728.32 0.07% 8.25% 19.07%

w4 3486.67 -35208.18 787.43 3485.99 -36215.95 637.28 0.02% 2.86% 19.07%

w5 3452.62 -45429.84 674.94 3452.62 -46119.36 546.24 0.00% 1.52% 19.07%

w6 3447.00 -50283.81 562.45 3447.00 -50283.81 455.20 0.00% 0.00% 19.07%

w7 3465.94 -48057.82 658.98 3465.94 -48248.01 445.68 0.00% 0.40% 32.37%

w8 3520.92 -37588.49 768.81 3520.92 -37588.49 519.96 0.00% 0.00% 32.37%

w9 3606.98 -22946.29 878.64 3606.98 -23053.06 594.24 0.00% 0.47% 32.37%

w10 3704.30 -7648.30 988.47 3703.24 -7652.65 668.52 0.03% 0.06% 32.37%

w11 3792.62 -408.35 1076.33 3784.70 -592.49 727.94 0.21% 45.09% 32.37%

Table B.2: The utility function values for calculating the VSS of the MOSKP Instance

2.

First Approach Second Approach Difference

Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff

w1 3751.26 -315.08 1016.75 3748.71 -315.08 829.86 0.07% 0.00% 18.38%

w2 3683.72 -6209.68 933.75 3683.72 -6649.59 762.12 0.00% 7.08% 18.38%

w3 3607.52 -17969.24 830.00 3599.10 -17969.24 677.44 0.23% 0.00% 18.38%

w4 3551.24 -31655.02 726.25 3551.24 -33886.42 592.76 0.00% 7.05% 18.38%

w5 3509.62 -41005.08 622.50 3494.98 -44443.18 508.08 0.42% 8.38% 18.38%

w6 3499.30 -43517.00 518.75 3498.10 -43933.35 437.10 0.03% 0.96% 15.74%

w7 3517.60 -40516.59 580.08 3515.04 -40516.59 524.52 0.07% 0.00% 9.58%

w8 3563.87 -32236.97 676.76 3562.66 -32236.97 611.94 0.03% 0.00% 9.58%

w9 3634.48 -19267.29 773.44 3632.96 -19407.84 699.36 0.04% 0.73% 9.58%

w10 3721.03 -6463.06 870.12 3720.16 -6626.91 786.78 0.02% 2.54% 9.58%

w11 3798.38 -364.46 947.46 3791.26 -435.98 856.72 0.19% 19.62% 9.58%
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Table B.3: The utility function values for calculating the VSS of the MOSKP Instance

3.

First Approach Second Approach Difference

Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff

w1 4065.74 -574.27 1266.26 4063.39 -574.27 1266.26 0.06% 0.00% 0.00%

w2 3951.73 -12722.91 1162.89 3951.73 -12781.95 1162.89 0.00% 0.46% 0.00%

w3 3813.42 -42067.56 1033.68 3812.16 -42099.51 1033.68 0.03% 0.08% 0.00%

w4 3682.48 -72680.78 904.47 3680.84 -72680.78 904.47 0.04% 0.00% 0.00%

w5 3581.68 -97170.84 775.26 3581.68 -99405.06 775.26 0.00% 2.30% 0.00%

w6 3539.15 -101988.22 646.05 3538.00 -103263.49 646.05 0.03% 1.25% 0.00%

w7 3551.52 -90079.55 748.68 3545.70 -90127.92 710.64 0.16% 0.05% 5.08%

w8 3606.89 -68380.34 873.46 3600.05 -71779.7 829.08 0.19% 4.97% 5.08%

w9 3683.32 -38945.6 998.24 3679.04 -40676.53 947.52 0.12% 4.44% 5.08%

w10 3775.3 -12236.29 1123.02 3775.30 -12429.97 1065.96 0.00% 1.58% 5.08%

w11 3858.46 -618.73 1222.84 3858.46 -618.73 1160.71 0.00% 0.00% 5.08%

Table B.4: The utility function values for calculating the VSS of the MOSKP Instance

4.

First Approach Second Approach Difference

Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff

w1 3885.74 -381.40 969.91 3862.22 -1092.74 852.40 0.61% 186.51% 12.11%

w2 3798.48 -6299.03 890.73 3795.12 -6743.61 782.82 0.09% 7.06% 12.11%

w3 3711.24 -18811.01 791.76 3711.24 -19083.41 695.84 0.00% 1.45% 12.11%

w4 3634.72 -32975.56 692.79 3634.72 -32975.56 608.86 0.00% 0.00% 12.11%

w5 3572.34 -44425.96 593.82 3572.12 -44941.02 521.88 0.01% 1.16% 12.11%

w6 3539.50 -47725.05 522.60 3535.50 -48973.06 434.90 0.11% 2.61% 16.78%

w7 3546.72 -43454.03 627.12 3546.72 -43744.93 447.60 0.00% 0.67% 28.63%

w8 3577.45 -33168.41 731.64 3576.07 -33168.41 522.20 0.04% 0.00% 28.63%

w9 3629.08 -20012.67 836.16 3629.08 -20241.56 596.80 0.00% 1.14% 28.63%

w10 3703.66 -6994.91 940.68 3697.89 -7040.17 671.40 0.16% 0.65% 28.63%

w11 3768.86 -348.38 1024.30 3752.94 -641.08 731.08 0.42% 84.02% 28.63%
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Table B.5: The utility function values for calculating the VSS of the MOSKP Instance

5.

First Approach Second Approach Difference

Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff

w1 3970.80 -453.44 1043.41 3962.07 -509.43 1043.41 0.22% 12.35% 0.00%

w2 3890.40 -9079.01 958.23 3888.35 -9861.95 958.23 0.05% 8.62% 0.00%

w3 3798.82 -28047.02 851.76 3790.60 -29525 851.76 0.22% 5.27% 0.00%

w4 3721.60 -45978.17 745.29 3721.60 -45978.17 745.29 0.00% 0.00% 0.00%

w5 3681.20 -59495.85 638.82 3681.20 -59495.85 638.82 0.00% 0.00% 0.00%

w6 3667.10 -64772.36 542.50 3667.10 -64772.36 532.35 0.00% 0.00% 1.87%

w7 3697.36 -58333.90 651.00 3697.36 -58364.69 601.14 0.00% 0.05% 7.66%

w8 3759.87 -45095.37 759.50 3759.87 -45095.37 701.33 0.00% 0.00% 7.66%

w9 3842.68 -26133.82 868.00 3842.68 -26133.82 801.52 0.00% 0.00% 7.66%

w10 3947.45 -8915.71 976.5 3947.45 -8962.08 901.71 0.00% 0.52% 7.66%

w11 4038.21 -453.43 1063.3 4038.21 -453.43 981.86 0.00% 0.00% 7.66%

Table B.6: The utility function values for calculating the VSS of the MOSKP Instance

6.

First Approach Second Approach Difference

Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff

w1 3734.66 -394.80 1115.53 3733.88 -394.80 967.36 0.02% 0.00% 13.28%

w2 3662.25 -7919.27 1024.47 3662.25 -7919.27 888.39 0.00% 0.00% 13.28%

w3 3578.90 -23993.13 910.64 3577.00 -24245.75 789.68 0.05% 1.05% 13.28%

w4 3510.99 -40006.64 796.81 3510.79 -40006.64 690.97 0.01% 0.00% 13.28%

w5 3474.94 -49730.61 682.98 3473.76 -49739.93 592.26 0.03% 0.02% 13.28%

w6 3468.30 -54256.29 569.15 3468.30 -54256.29 493.55 0.00% 0.00% 13.28%

w7 3495.68 -50375.31 655.92 3494.96 -50375.31 604.86 0.02% 0.00% 7.78%

w8 3551.47 -38137.29 765.24 3545.39 -38294.54 705.67 0.17% 0.41% 7.78%

w9 3629.58 -22799.46 874.56 3625.28 -23241.10 806.48 0.12% 1.94% 7.78%

w10 3728.02 -7919.93 983.88 3728.02 -8266.83 907.29 0.00% 4.38% 7.78%

w11 3814.82 -413.96 1071.34 3812.16 -413.96 987.94 0.07% 0.00% 7.78%
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Table B.7: The utility function values for calculating the VSS of the MOSKP Instance

7.

First Approach Second Approach Difference

Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff

w1 3796.31 -575.65 1172.86 3791.11 -575.65 1090.05 0.14% 0.00% 7.06%

w2 3721.35 -11364.42 1077.12 3721.35 -11461.73 1001.07 0.00% 0.86% 7.06%

w3 3639.14 -35792.51 957.44 3637.66 -35792.51 889.84 0.04% 0.00% 7.06%

w4 3571.06 -63180.75 837.76 3569.13 -63281.64 778.61 0.05% 0.16% 7.06%

w5 3524.96 -84268.65 718.08 3512.58 -84268.65 667.38 0.35% 0.00% 7.06%

w6 3518.65 -92912.4 611.35 3518.65 -92912.4 556.15 0.00% 0.00% 9.03%

w7 3571.52 -85885.66 733.62 3571.52 -88067.72 692.46 0.00% 2.54% 5.61%

w8 3675.45 -65238.9 855.89 3675.45 -65238.9 807.87 0.00% 0.00% 5.61%

w9 3800.22 -37226.22 978.16 3798.44 -39113.95 923.28 0.05% 5.07% 5.61%

w10 3937.01 -11460.85 1100.43 3925.97 -11658.68 1038.69 0.28% 1.73% 5.61%

w11 4054.2 -555.90 1198.25 4044.13 -633.18 1131.02 0.25% 13.9% 5.61%

Table B.8: The utility function values for calculating the VSS of the MOSKP Instance

8.

First Approach Second Approach Difference

Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff

w1 3799.62 -630.87 1188.94 3786.74 -819.08 1188.94 0.34% 29.83% 0.00%

w2 3721.39 -11324.49 1091.88 3720.15 -11913.32 1091.88 0.03% 5.20% 0.00%

w3 3642.28 -34228.74 970.56 3637.3 -34686.70 970.56 0.14% 1.34% 0.00%

w4 3580.06 -55236.55 849.24 3580.06 -55431.84 849.24 0.00% 0.35% 0.00%

w5 3555.02 -71070.20 727.92 3555.02 -71070.2 727.92 0.00% 0.00% 0.00%

w6 3564.00 -75758.23 683.3 3564.00 -75905.45 606.60 0.00% 0.19% 11.22%

w7 3611.72 -70254.72 819.96 3611.72 -70301.42 671.46 0.00% 0.07% 18.11%

w8 3702.96 -53860.85 956.62 3702.96 -53860.85 783.37 0.00% 0.00% 18.11%

w9 3813.44 -30939.16 1093.28 3813.44 -30939.16 895.28 0.00% 0.00% 18.11%

w10 3940.18 -9993.19 1229.94 3940.18 -9993.19 1007.19 0.00% 0.00% 18.11%

w11 4054.98 -540.90 1339.27 4054.98 -540.90 1096.72 0.00% 0.00% 18.11%
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Table B.9: The utility function values for calculating the VSS of the MOSKP Instance

9.

First Approach Second Approach Difference

Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff

w1 3734.66 -394.80 1115.53 3733.88 -394.80 967.36 0.02% 0.00% 13.28%

w2 3662.25 -7919.27 1024.47 3662.25 -7919.27 888.39 0.00% 0.00% 13.28%

w3 3578.90 -23993.13 910.64 3577.00 -24245.75 789.68 0.05% 1.05% 13.28%

w4 3510.99 -40006.64 796.81 3510.79 -40006.64 690.97 0.01% 0.00% 13.28%

w5 3474.94 -49730.61 682.98 3473.76 -49739.93 592.26 0.03% 0.02% 13.28%

w6 3468.30 -54256.29 569.15 3468.30 -54256.29 493.55 0.00% 0.00% 13.28%

w7 3495.68 -50375.31 655.92 3494.96 -50375.31 604.86 0.02% 0.00% 7.78%

w8 3551.47 -38137.29 765.24 3545.39 -38294.54 705.67 0.17% 0.41% 7.78%

w9 3629.58 -22799.46 874.56 3625.28 -23241.10 806.48 0.12% 1.94% 7.78%

w10 3728.02 -7919.93 983.88 3728.02 -8266.83 907.29 0.00% 4.38% 7.78%

w11 3814.82 -413.96 1071.34 3812.16 -413.96 987.94 0.07% 0.00% 7.78%

Table B.10: The utility function values for calculating the VSS of the MOSKP In-

stance 10.

First Approach Second Approach Difference

Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff

w1 4092.50 -524.64 1396.11 4089.61 -595.85 1396.11 0.07% 14.00% 0.00%

w2 3985.38 -10184.62 1282.14 3983.25 -10246.40 1282.14 0.05% 1.00% 0.00%

w3 3864.18 -32212.02 1139.68 3864.18 -32212.02 1139.68 0.00% 0.00% 0.00%

w4 3757.19 -58494.67 997.22 3757.19 -58494.67 997.22 0.00% 0.00% 0.00%

w5 3665.10 -83534.15 854.76 3665.10 -83534.15 854.76 0.00% 0.00% 0.00%

w6 3593.45 -98127.65 712.30 3593.45 -98127.65 712.30 0.00% 0.00% 0.00%

w7 3570.08 -96468.10 704.88 3570.08 -96468.10 700.38 0.00% 0.00% 0.64%

w8 3622.99 -76912.94 822.36 3622.99 -76912.94 817.11 0.00% 0.00% 0.64%

w9 3707.50 -45006.38 939.84 3707.50 -450006.38 933.84 0.00% 0.00% 0.64%

w10 3814.49 -14791.59 1057.32 3814.49 -14791.59 1050.57 0.00% 0.00% 0.64%

w11 3909.94 -743.43 1151.30 3909.94 -743.43 1143.95 0.00% 0.00% 0.64%
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Table C.1: The utility function values for calculating the EVPI of the MOSKP In-

stance 1.

First Approach Second Approach Difference

Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff

w1 4060.78 -746.97 1494.40 4060.74 -748.12 1476.76 0.00% 0.15% 1.18%

w2 3955.05 -14298.98 1372.41 3953.36 -14298.98 1356.21 0.04% 0.00% 1.18%

w3 3837.54 -41398.89 1219.92 3833.58 -41398.89 1205.52 0.10% 0.00% 1.18%

w4 3750.03 -66998.16 1067.43 3750.03 -66998.16 1054.83 0.00% 0.00% 1.18%

w5 3700.50 -84897.80 914.94 3700.50 -84897.80 904.14 0.00% 0.00% 1.18%

w6 3683.35 -92276.76 762.45 3683.35 -92276.76 753.45 0.00% 0.00% 1.18%

w7 3705.12 -86637.49 882.48 3705.12 -86637.49 847.02 0.00% 0.00% 4.02%

w8 3770.39 -68196.50 1029.56 3770.39 -68196.50 988.19 0.00% 0.00% 4.02%

w9 3866.14 -41106.56 1176.64 3866.14 -41106.56 1129.36 0.00% 0.00% 4.02%

w10 3990.08 -14234.22 1323.72 3990.08 -14234.22 1270.53 0.00% 0.00% 4.02%

w11 4105.54 -801.12 1441.38 4104.97 -801.12 1383.47 0.01% 0.00% 4.02%

Table C.2: The utility function values for calculating the EVPI of the MOSKP In-

stance 2.

First Approach Second Approach Difference

Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff

w1 4138.97 -550.35 1269.20 4138.97 -550.35 1269.20 0.00% 0.00% 0.00%

w2 4046.64 -10278.61 1165.59 4046.64 -10278.61 1165.59 0.00% 0.00% 0.00%

w3 3946.10 -30597.31 1036.08 3946.10 -30597.31 1036.08 0.00% 0.00% 0.00%

w4 3864.93 -50632.89 906.57 3864.93 -50632.89 906.57 0.00% 0.00% 0.00%

w5 3814.74 -64989.69 777.06 3814.74 -64989.69 777.06 0.00% 0.00% 0.00%

w6 3793.40 -71840.16 647.55 3793.40 -71840.16 647.55 0.00% 0.00% 0.00%

w7 3807.68 -68087.81 751.80 3807.68 -68087.81 751.80 0.00% 0.00% 0.00%

w8 3860.36 -53947.51 877.10 3860.36 -53947.51 877.10 0.00% 0.00% 0.00%

w9 3946.20 -32842.52 1002.40 3946.20 -32842.52 1002.40 0.00% 0.00% 0.00%

w10 4055.97 -11157.20 1127.70 4055.97 -11157.20 1127.70 0.00% 0.00% 0.00%

w11 4153.99 -579.05 1227.94 4153.99 -579.05 1227.94 0.00% 0.00% 0.00%

70



Table C.3: The utility function values for calculating the EVPI of the MOSKP In-

stance 3.

First Approach Second Approach Difference

Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff

w1 4380.89 -889.99 1503.52 4380.73 -889.99 1503.52 0.00% 0.00% 0.00%

w2 4243.73 -16365.34 1380.78 4243.73 -16365.34 1380.78 0.00% 0.00% 0.00%

w3 4093.38 -47445.67 1227.36 4093.38 -47445.67 1227.36 0.00% 0.00% 0.00%

w4 3973.84 -79747.06 1073.94 3973.84 -79747.06 1073.94 0.00% 0.00% 0.00%

w5 3883.04 -102998.38 920.52 3883.04 -102998.38 920.52 0.00% 0.00% 0.00%

w6 3836.95 -111138.85 784.55 3836.95 -111138.85 767.10 0.00% 0.00% 2.22%

w7 3842.92 -101582.28 941.46 3842.92 -101582.28 931.56 0.00% 0.00% 1.05%

w8 3886.49 -78681.86 1098.37 3886.49 -78681.86 1086.82 0.00% 0.00% 1.05%

w9 3966.74 -47530.51 1255.28 3966.74 -47530.51 1242.08 0.00% 0.00% 1.05%

w10 4076.00 -16046.34 1412.19 4076.00 -16046.34 1397.34 0.00% 0.00% 1.05%

w11 4174.18 -823.06 1537.72 4174.18 -823.06

Table C.4: The utility function values for calculating the EVPI of the MOSKP In-

stance 4.

First Approach Second Approach Difference

Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff

w1 4262.41 -617.13 1369.55 4262.41 -617.13 1343.48 0.00% 0.00% 1.90%

w2 4145.76 -11326.68 1257.75 4145.24 -11326.68 1233.81 0.01% 0.00% 1.90%

w3 4017.64 -33794.81 1118.00 4017.64 -33794.81 1096.72 0.00% 0.00% 1.90%

w4 3909.79 -55985.34 978.25 3909.79 -55985.34 959.63 0.00% 0.00% 1.90%

w5 3834.20 -71098.77 838.50 3834.20 -71098.77 822.54 0.00% 0.00% 1.90%

w6 3797.30 -75694.26 698.75 3797.30 -75694.26 648.45 0.00% 0.00% 7.20%

w7 3792.06 -70498.21 778.14 3792.06 -70498.21 778.14 0.00% 0.00% 0.00%

w8 3818.84 -56438.21 907.83 3818.84 -56438.21 907.83 0.00% 0.00% 0.00%

w9 3879.44 -35059.78 1037.52 3879.44 -35059.78 1037.52 0.00% 0.00% 0.00%

w10 3968.03 -12360.48 1167.21 3968.03 -12360.48 1167.21 0.00% 0.00% 0.00%

w11 4056.40 -699.21 1270.96 4056.25 -699.21 1270.96 0.00% 0.00% 0.00%
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Table C.5: The utility function values for calculating the EVPI of the MOSKP In-

stance 5.

First Approach Second Approach Difference

Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff

w1 4345.07 -712.94 1476.08 4344.58 -712.94 1417.67 0.00% 0.00% 3.96%

w2 4236.21 -13148.29 1355.58 4236.21 -13148.29 1301.94 0.00% 0.00% 3.96%

w3 4119.00 -39075.58 1204.96 4119.00 -39075.58 1157.28 0.00% 0.00% 3.96%

w4 4024.72 -66638.88 1054.34 4024.72 -66638.88 1012.62 0.00% 0.00% 3.96%

w5 3956.32 -88654.24 903.72 3956.32 -88654.24 867.96 0.00% 0.00% 3.96%

w6 3921.35 -98308.77 753.10 3921.35 -98308.77 688.50 0.00% 0.00% 8.58%

w7 3932.78 -93361.49 840.84 3932.78 -93361.49 826.20 0.00% 0.00% 1.74%

w8 3990.13 -74077.96 980.98 3990.13 -74077.96 963.90 0.00% 0.00% 1.74%

w9 4086.78 -45242.67 1121.12 4086.78 -45242.67 1101.60 0.00% 0.00% 1.74%

w10 4211.40 -15376.17 1261.26 4211.40 -15376.17 1239.30 0.00% 0.00% 1.74%

w11 4323.78 -806.19 1373.37 4322.71 -806.19 1349.46 0.00% 0.00% 1.74%

Table C.6: The utility function values for calculating the EVPI of the MOSKP In-

stance 6.

First Approach Second Approach Difference

Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff

w1 4051.94 -702.71 1354.36 4051.82 -702.71 1354.36 0.00% 0.00% 0.00%

w2 3955.78 -12376.00 1243.80 3955.78 -12376.00 1243.80 0.00% 0.00% 0.00%

w3 3858.46 -34643.38 1105.60 3858.46 -34643.38 1105.60 0.00% 0.00% 0.00%

w4 3790.77 -55754.13 967.40 3790.77 -55754.13 967.40 0.00% 0.00% 0.00%

w5 3752.94 -70848.45 829.20 3752.94 -70848.45 829.20 0.00% 0.00% 0.00%

w6 3746.30 -76555.39 713.90 3746.30 -76555.39 691.00 0.00% 0.00% 3.21%

w7 3774.44 -71431.16 856.68 3774.44 -71431.16 856.68 0.00% 0.00% 0.00%

w8 3837.02 -56505.21 999.46 3837.02 -56505.21 999.46 0.00% 0.00% 0.00%

w9 3930.82 -34877.46 1142.24 3930.82 -34877.46 1142.24 0.00% 0.00% 0.00%

w10 4052.81 -12266.47 1285.02 4052.81 -12266.47 1285.02 0.00% 0.00% 0.00%

w11 4167.19 -680.83 1399.24 4167.19 -680.83 1399.24 0.00% 0.00% 0.00%
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Table C.7: The utility function values for calculating the EVPI of the MOSKP In-

stance 7.

First Approach Second Approach Difference

Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff

w1 4142.01 -855.33 1560.16 4142.01 -855.33 1515.08 0.00% 0.00% 2.88%

w2 4047.26 -16389.35 1432.80 4047.26 -16389.35 1391.40 0.00% 0.00% 2.88%

w3 3945.26 -48994.28 1273.60 3945.26 -48994.28 1236.80 0.00% 0.00% 2.88%

w4 3869.11 -81007.29 1114.40 3869.11 -81007.29 1082.20 0.00% 0.00% 2.88%

w5 3832.86 -102619.79 955.20 3832.86 -102619.79 927.60 0.00% 0.00% 2.88%

w6 3839.75 -110804.88 796.00 3839.75 -110804.88 765.85 0.00% 0.00% 3.78%

w7 3894.06 -101813.65 919.02 3894.06 -101813.65 919.02 0.00% 0.00% 0.00%

w8 3988.31 -79367.11 1072.19 3988.31 -79367.11 1072.19 0.00% 0.00% 0.00%

w9 4117.94 -47841.95 1225.36 4117.94 -47841.95 1225.36 0.00% 0.00% 0.00%

w10 4276.74 -16269.98 1378.53 4276.74 -16269.98 1378.53 0.00% 0.00% 0.00%

w11 4416.86 -858.37 1501.07 4416.86 -858.37 1501.07 0.00% 0.00% 0.00%

Table C.8: The utility function values for calculating the EVPI of the MOSKP In-

stance 8.

First Approach Second Approach Difference

Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff

w1 4100.21 -847.16 1435.99 4100.21 -847.16 1435.99 0.00% 0.00% 0.00%

w2 4008.95 -14945.00 1318.77 4008.95 -14945.00 1318.77 0.00% 0.00% 0.00%

w3 3919.10 -42699.54 1172.24 3919.10 -42699.54 1172.24 0.00% 0.00% 0.00%

w4 3858.73 -69537.54 1025.71 3858.73 -69537.54 1025.71 0.00% 0.00% 0.00%

w5 3831.50 -88152.68 879.18 3831.50 -88152.68 879.18 0.00% 0.00% 0.00%

w6 3843.80 -94727.94 773.90 3843.80 -94727.94 773.90 0.00% 0.00% 0.00%

w7 3895.98 -88031.48 928.68 3895.98 -88031.48 928.68 0.00% 0.00% 0.00%

w8 3990.09 -68340.57 1083.46 3990.09 -68340.57 1083.46 0.00% 0.00% 0.00%

w9 4113.30 -40936.73 1238.24 4113.30 -40936.73 1238.24 0.00% 0.00% 0.00%

w10 4263.20 -13919.82 1393.02 4263.20 -13919.82 1393.02 0.00% 0.00% 0.00%

w11 4397.86 -751.09 1516.84 4397.86 -751.09 1516.84 0.00% 0.00% 0.00%
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Table C.9: The utility function values for calculating the EVPI of the MOSKP In-

stance 9.

First Approach Second Approach Difference

Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff

w1 4051.94 -702.71 1354.36 4051.82 -702.71 1354.36 0.00% 0.00% 0.00%

w2 3955.78 -12376.00 1243.80 3955.78 -12376.00 1243.80 0.00% 0.00% 0.00%

w3 3858.46 -34643.38 1105.60 3858.46 -34643.38 1105.60 0.00% 0.00% 0.00%

w4 3790.77 -55754.13 967.40 3790.77 -55754.13 967.40 0.00% 0.00% 0.00%

w5 3752.94 -70848.45 829.20 3752.94 -70848.45 829.20 0.00% 0.00% 0.00%

w6 3746.30 -76555.39 713.90 3746.30 -76555.39 691.00 0.00% 0.00% 3.21%

w7 3774.44 -71431.16 856.68 3774.44 -71431.16 856.68 0.00% 0.00% 0.00%

w8 3837.02 -56505.21 999.46 3837.02 -56505.21 999.46 0.00% 0.00% 0.00%

w9 3930.82 -34877.46 1142.24 3930.82 -34877.46 1142.24 0.00% 0.00% 0.00%

w10 4052.81 -12266.47 1285.02 4052.81 -12266.47 1285.02 0.00% 0.00% 0.00%

w11 4167.19 -680.83 1399.24 4167.19 -680.83 1399.24 0.00% 0.00% 0.00%

Table C.10: The utility function values for calculating the EVPI of the MOSKP In-

stance 10.

First Approach Second Approach Difference

Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff Linear Quadratic Tchebycheff

w1 4422.01 -890.60 1655.42 4422.01 -890.60 1655.42 0.00% 0.00% 0.00%

w2 4293.16 -17069.92 1520.28 4293.16 -17069.92 1520.28 0.00% 0.00% 0.00%

w3 4148.52 -51787.43 1351.36 4148.52 -51787.43 1351.36 0.00% 0.00% 0.00%

w4 4027.75 -87597.62 1182.44 4027.75 -87597.62 1182.44 0.00% 0.00% 0.00%

w5 3942.28 -113530.30 1013.52 3942.28 -113530.30 1013.52 0.00% 0.00% 0.00%

w6 3902.75 -123759.79 844.60 3902.75 -123759.79 844.60 0.00% 0.00% 0.00%

w7 3910.92 -116626.50 935.22 3910.92 -116626.50 935.22 0.00% 0.00% 0.00%

w8 3966.05 -91697.52 1091.09 3966.05 -91697.52 1091.09 0.00% 0.00% 0.00%

w9 4064.74 -56229.54 1246.96 4064.74 -56229.54 1246.96 0.00% 0.00% 0.00%

w10 4193.27 -19101.19 1402.83 4193.27 -19101.19 1402.83 0.00% 0.00% 0.00%

w11 4313.03 -1023.66 1527.53 4313.03 -1023.66 1527.53 0.00% 0.00% 0.00%
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