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Mechanical Engineering Department, METU

Assoc. Prof. Dr. Hüsnü Dal
Mechanical Engineering Department, METU

Prof. Dr. Raif Orhan Yıldırım
Mechanical Engineering Department, METU

Assist. Prof. Dr. Sezer Özerinç
Mechanical Engineering Department, METU

Assist. Prof. Dr. Omer Music
Mechanical Engineering Department, TED University

Date: 28.08.2019



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: Ateş Koral
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ABSTRACT

NON-LINEAR VISCOELASTICITY FOR EPOXY-BASED POLYMERS :
THEORETICAL MODELING AND NUMERICAL IMPLEMENTATION

Koral, Ateş
M.S., Department of Mechanical Engineering
Supervisor : Assoc. Prof. Dr. Hüsnü Dal
Co-Supervisor : Prof. Dr. Raif Orhan Yıldırım

August 2019, 119 pages

The present thesis aims at modeling creep behaviour under hydrostatic and uniaxial

loadings of a certain silica filled epoxy compound at various temperatures with nu-

merical implementation of algorithms into finite element method. Time dependent

behaviour of polymers has been examined and many approaches have been proposed

by researchers. Some of the models are inspired from micro-mechanical structure of

polymers. These models generally take relaxation of a single entangled chain in a

polymer gel matrix upon loading into account. In this thesis, a finite viscoelasticity

model, which takes into account volumetric and isochoric creep/relaxation phenom-

ena, is developed for epoxy-based compounds over glass transition temperature. De-

formation gradient is multiplicatively split into elastic and inelastic parts and related

with associated stretches of the single chain. In this thesis, the non-linear viscous

evolution law proposed by Dal [1] is adopted. As a novel aspect, apart from equilib-

rium bulk modulus parameter, in order to simulate time dependent volumetric creep

behaviour of the epoxy compound, a viscous bulk modulus parameter is included in

the proposed free energy function. Hence, volumetric effects in viscoelastic behavior

is also taken into consideration without needing to split free energy function into vol-
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umetric and isochoric parts. Proposed model properly predicts behaviour of epoxy

compound above 110◦C in the rubbery state and also in the transition range. It has

been demonstrated that the model prediction is quite satisfactory around and above

the glass transition temperature, whereas the constitutive behaviour of the epoxy-

moulding compounds at temperatures well below the glass transition temperature can

not be captured as expected. The model parameters are identified from the exper-

imental results. The algorithmic implementation of the model is carried out in the

Eulerian setting in the sense of Dal and Kaliske [2] and the computational perfor-

mance is demonstrated through representative boundary value problem.

Keywords: viscoelasticity, creep, stress relaxation, inelastic stretch, finite element

method, non-linear viscoelasticity, epoxy, polymer, material modelling,continuum

mechanics, computational mechanics, volumetric effects, time dependent, free en-

ergy function, uniaxial, hydrostatic
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ÖZ

EPOKSİ TABANLI POLİMERLER İÇİN DOĞRUSAL OLMAYAN
VİSKOELASTİSİTE: TEORİK MODELLEME VE NÜMERİK UYGULAMA

Koral, Ateş
Yüksek Lisans, Makina Mühendisliği Bölümü
Tez Yöneticisi : Doç. Dr. Hüsnü Dal
Ortak Tez Yöneticisi : Prof. Dr. Raif Orhan Yıldırım

Ağustos 2019 , 119 sayfa

Bu tez belirli bir silika dolgulu epoksi bileşiminin çeşitli sıcaklıklarda, hidrostatik ve

tek yönlü yüklemeler altındaki sünme davranışını modellemeyi ve türetilen algorit-

maların sonlu elemanlar metoduna nümerik olarak uygulanmasını hedeflemektedir.

Polimer malzemelerin zamana bağlı davranışı, araştırmacılar tarafından incelenmiş

ve birçok model geliştirilmiştir. Bu modellerin bazıları polimerlerin mikro-mekanik

yapısından esinlenilmiştir. Söz konusu modeller genellikle polimer jelin içinde do-

laşmış şekilde bulunan tek bir zincirin yükleme üzerine yumuşama hareketini göz

önünde bulundurur. Bu tezde, epoksi tabanlı bir bileşim için hacimsel ve şekilsel sün-

me/yumuşama davranışlarını hesaba katan bir viskoelastik model, camsı geçiş bölge-

sinin üstündeki sıcaklıklar için geliştirilmiştir. Deformasyon gradyan matrisi elastik

ve inelastik kısımlara çarpımsal olarak ayrılmış ve bahsedilen tek bir zincirin karşılık

gelen gerilme oranlarıyla ilişkilendirilmiştir. Tezde, Dal [1] tarafından öne sürülmüş

doğrusal olmayan viskoz gelişim denklemi kullanılmıştır. Tezin özgün bir yönü ola-

rak, denge hacimsel modülünün yanı sıra, viskoz hacimsel modülü önerilen serbest

enerji fonksiyonuna zamana bağlı hacimsel sünme davranışını modellemek için dahil

edilmiştir. Bu nedenle, malzemenin visckoelastik davranışında hacimsel deformasyon
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etkileri de serbest enerji fonksiyonunu hacimsel ve şekilsel deformasyon kısımlarına

ayırma gereği duymadan hesaba katılmıştır. Önerilen model epoksi bileşiminin 110◦C

üstünde olan lastiksi bölgesindeki ve geçiş bölgesindeki davranışını oldukça iyi bir

şekilde tahmin etmektedir. Modelin tahmin yeteneğinin geçiş bölgesi etrafında ve üs-

tünde oldukça tatmin edici olduğu gösterilmekle birlikte, camsı geçiş sıcaklığının ol-

dukça altındaki sıcaklıklar için davranışın model tarafından yakalanması beklenildiği

gibi değildir. Modelin içerdiği parametreler deney sonuçları ile model sonuçlarının

karşılaştırılması ile elde edilmiştir. Modelin algoritmik uygulanması Eulerian kon-

figürasyonunda, Dal and Kaliske [2] makalesine benzer şekilde gerçekleştirilmiş ve

hesaplama performansı sınır değer problemi ile gösterilmiştir.

Anahtar Kelimeler: viskoelastisite, sünme, stres yumuşaması, inelastik uzama, sonlu

elemanlar metodu, doğrusal olmayan viskoelastisite, epoksi, polimer, malzeme mo-

delleme, sürekli ortamlar mekaniği, hesaplamalı mekanik, hacimsel etki, zamana bağlı,

serbest enerji fonksiyonu, tek yönlü, hidrostatik
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CHAPTER 1

INTRODUCTION AND OVERVIEW

1.1 Polymeric materials

Polymer mechanics has been an active research area by virtue of the fact that polymers

such as epoxy, natural rubber and other elastomers are widely used in industrial appli-

cations. Tires, seals, conveyor belts, damping devices, structural components of au-

tomobiles, aircrafts and missiles, packages and casings of electronics, which perform

in wide range of temperature environment, are some of the industrial applications

where polymers are largely used and the role of the material response is very impor-

tant in terms of performing their functions properly. Although they are used largely

in non-structural commercial products, since weight of high performance composite

polymers are low compared to the metals and it is possible to obtain the required

mechanic properties, polymers are also taking place of metals in some load bearing

applications [4]. Besides, there are some industrial applications where the deflection

of the material should be within a certain tolerance range upon loading. It is critical

to design these materials in an economic and accurate way. For these reasons, since

the beginning of the last century, scientists have been trying to simulate real stress-

strain, stress-time, strain-time behaviour of these materials using phenomenological

modelling approaches which do not have any physical interpretation or kinetic theo-

ries which are related with molecular chain deformations. The mechanical behaviour

of a polymer may be complicated, non-linear inelastic in large strain region while it

can exhibit linear elastic behaviour in small strain region. In large strain region, it is

harder to predict the mechanical behaviour since there are differences in stress-strain

response of a polymer due to the differences in chemical composition and loading

conditions applied. In addition to the highly non-linear response of the polymeric ma-
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terials, modeling inelastic behaviour such as viscoelastic, rate dependent behaviour

upon a loading condition is also a challenge.

Internal stress or strain like tensorial variables concepts are widely used to form a

viscoelastic model by many researchers. Some examples of the models that con-

tain stress like internal variables are proposed by Govindjee and Simo (1992) [6],

Holzapfel and Simo (1996) [7], Lion (1996) [8], Kaliske and Rothert (1997) [9].

Generally, in constitutive modeling, inelastic (or viscoelastic) effects are taken into

account via superposition of the viscoelastic response (non-equilibrium) with elastic

(equilibrium) response. In other words, elastic and inelastic effects are considered

separately and superimposed. This decomposition principle has been proposed by

Green and Tobolsky (1946) [10] and applied by Lion (1997) [11], Dal and Kaliske

(2009) [2], Lubliner (1985) [12], Reese and Govindjee (1998) [13], Reese (2003)

[14], Bergström and Boyce (1998) [15], Haupt and Sedlan (2001) [16] with many

other researchers in the concept of nonlinear viscoelasticity. In this manner, defor-

mation gradient is split into elastic and inelastic parts with latter being strain-like

tensorial variable. Thus, mechanical response can be subdivided into two different

branches as equilibrium and viscoelastic to predict the overall response of a poly-

mer. The first branch is ground elastic stress response of the polymer in equilibrium

corresponding to large elastic strains. The second branch is viscoelastic over stress

response (non-equilibrium response) related with rate-dependent (or time dependent)

effects such as relaxation and creep behaviour. In terms of thermodynamical point of

view, strain-like variable concept is more appropriate since a theory similar to plas-

ticity theory can be applied to integrate inelastic strain variable [17].

1.1.1 Ground state elastic response

In the last century, many researchers have investigated elastic response (or equilib-

rium) of polymers experimentally and theoretically and the results were represented

by classical finite hyperelasticity models such as Mooney-Rivlin, generalized Neo-

Hookean etc. Some of the researches related to experimental characteristics of poly-

mers are found in Treloar (1944) [18], James and Green (1975) [19]. Elastic response

of polymers is also investigated based on micro-mechanical structure of polymers.

Molecular chain deformation of polymers upon loading is exploited for instance by
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Arruda and Boyce (1993a) [20], Anand (1996) [21] using principles of kinetic theory,

statistical mechanics and thermodynamic consistency to obtain theoretical constitu-

tive models. Thus, parameters in micro-structure level are utilized in these mod-

els. There are also purely phenomenological models developed without considering

molecular chain kinetics for instance by Mooney (1940) [22], Blatz and Ko (1962)

[23]. The micro-sphere model of Miehe et al. (2004) [24] and Miehe and Göktepe

(2005) [25] are more recent micro-mechanically based non-affine models. In these

models, tube-like constraints are used and motion of a single free chain is restricted

by the surrounding chains that are assumed to move along the tube with a diameter

d and length r. They utilized constraint release effects proposed by Marrucci (1996)

[26]. In [24], average network stretch is linked to the macro stretches in discrete ori-

entations by using the principle of p− root averaging method. Also, see the extended

tube model of Kaliske and Heinrich (1999) [27]. Strain energy functions developed

by these models are generally in terms of principle stretches or invariants. One of

the most well-known model has been proposed by Bergström and Boyce (1998)[15].

To model elastic response of rubber-like materials, it considers an elastic spring in an

elastic branch parallel to viscous branch and contains a micro-mechanical free energy

function corresponding to the elastic spring developed by Arruda and Boyce (1993a)

[20]. This model was also implemented by [2] in the context of finite element anal-

ysis with a precise description of algorithmic setting of non-linear evolution law. In

the content of this thesis, the same free energy function will be used by small mod-

ifications and a quadratic volumetric free energy function extension to it in order to

take viscous volumetric creep into account.

1.1.2 Viscoelastic over-stress response

Prediction of the viscoelastic behaviour is important in terms of many aspects of me-

chanics. For example, fracture prediction of viscoelastic materials can be simulated

by the usage of suitable viscoelastic model [28]. Viscoelastic behaviour of polymeric

materials can be observed in experiments where the material is subjected to relaxation

and creep or cyclic loading. In contrast to cyclic behaviour of metals, stress-strain

curve of polymeric materials exhibit hysteresis on loading and unloading portions of

the material which means that there is an energy dissipation proportional to area under
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the curve. Such a curve can be seen in Fig. 1.1.2. To observe viscoplastic response,

stress relaxation is allowed at certain intermediate constant strains and the terminal

points at the relaxed state are recorded for loading/unloading conditions. As stated in

Figure 1.1: Four types of material behaviours taken from Haupt (1993) [3] (a) elas-

ticity, (b) plasticity, (c) viscoelasticity, (d) viscoplasticity

the reports of Bergström and Boyce [15] and Haupt and Sedlan (2001) [16], presence

of an equilibrium hysteresis after cyclic loading corresponds to viscoplastic response

while equilibrium response without hysteresis corresponds to viscoelastic behaviour

of the material tested. Viscoelastic over-stress response of the material is generally

represented by a viscous branch containing a spring and a viscous dashpot. Same

as ground state elastic part, viscoelasticity can be predicted with purely phenomeno-

logical approaches (without physical parameters) such as Lubliner (1985) [12], Lion

(1987) [11], Reese and Govindjee (1998) [13] or micro-mechanically motivated ap-

proaches such as Johnson et al. (1995) [29], Bergström and Boyce (1998) [15], Miehe

and Göktepe (2005) [25]. In the micro-mechanical theories, inelastic strain-like ten-

sorial variable related with the viscous dashpot is a function of time. Evolution of

this variable with time is associated with molecular theories, which consider viscous

behaviour of polymer segments in cross-linked polymer networks. These molecular

approaches can be split into three groups : the bead-spring models, the reptation-

type tube models and the transient network model. The first one is developed by

Rouse (1953) [30] and Zimm (1956) [31] and is not mentioned here. The second
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one (the reptation-type tube models) is proposed by Doi and Edwards (1986) [32].

In this molecular theory, relaxation of a single chain with time is investigated un-

der the scope of relaxation times. In this manner, the concept of a free chain on a

cross-linked polymer network with superimposed entanglements under a sudden load

is used and the relaxation of the free chain is denoted as a function of time in certain

time domains. Bergström and Boyce (1998) [15] derived the evolution of creep rate

as function of certain parameters, inelastic chain stretch and stress by using this time

function. The third model was proposed by Green and Tobolsky (1946) [10] and was

revised by Tanaka and Edwards (1992a,b) in [33], [34]. In this last approach, break-

age and reformation of the polymer segments during deformation are considered to

obtain a formulation. This approach was used, for example, in Reese (2003) [14] and

in others.

1.1.3 Modeling epoxy-based polymers

In this section, literature search regarding behaviour of epoxy-based materials is pre-

sented since current thesis is intended to model the mechanical behaviour of a certain

epoxy compound. Epoxy is a thermosetting material with high density of cross-links.

Epoxy types are used, for instance, in applications such as adhesive bonding, cas-

ing of electronics (semi-conductors), new technology asphalt and also in automotive

and aerospace industry. The reason for selecting cross-linked epoxy materials for

these kind of applications is that they possess high strength, high elastic modulus,

good heat and solvent resistances and relatively low price. Similar to rubbers, epox-

ies also show nonlinear inelastic thermo-mechanical material behaviour with depen-

dence on strain-rate as stated in [35]. This nonlinearity is also distinct in high stress

values and temperatures around and above glass transition temperature. Therefore,

although linear viscoelastic models and constitutive equations are well understood

in the literature, nonlinear viscoelastic models are more efficient in terms of pre-

dicting mechanical behaviour of polymeric materials in large strain region. Wide

use of these materials in load bearing applications make them important and pre-

dicting their long term deformation behaviour is an asset in terms of predicting their

warpage, creep-relaxation, residual stress characteristics via implementation of these

models into finite element analysis softwares. Most of the researchers in this area con-
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ducted experiments to understand various behaviours and they formulated linear and

non-linear viscoelastic-viscoplastic models to predict these various behaviours [36].

Some examples of experiments of epoxies under various loading conditions are found

in Xinghe and Xia [37], Hu, Yafei and Xia [38], Xia, Zihui and Shen [39], Ferknand

and Xia [40], Pandini, Stefano and Pegoretti [41]. In the article [38], an epoxy resin

(Epon 826) was studied to investigate the behaviour of this material under multiaxial

loading, dependence of hydrostatic pressure and load path on general deformation.

From the tests, it is observed that the material shows slight increment in shear stress

response corresponding to the same value of applied strain if a hydrostatic load is also

applied simultaneously and it (shear and axial strain) also increases with loading rate.

However, these effects are not distinct below a certain strain value. Another studied

item was the influence of loading path on axial and shear stress response. In this man-

ner, shear strain was first applied to the material. Then, axial strain was applied and

shear strain was kept constant at the same strain value (shear-axial test) or vice versa

(axial-shear test). According to the experiments, presence of a prior shear stress leads

to a lower axial stress value in a shear-axial strain driven test, which means that axial

stiffness of the material is lower while vice versa is valid for the other loading path

(axial-shear). These tests display the importance of loading history applied to poly-

meric materials. This is due to the fact that polymer chains are more restricted in the

case of multi-axial loading resulting in less viscosity. Besides, it was demonstrated

that increasing applied stress value also increases strain recovery rate, magnitude in

a stress recovery test and creep compliance value in a creep test. These effects are

more distinct after a certain value of applied stress is reached. In the article [37],

cyclic deformation tests performed were given. The test were performed for many

cyclic loadings under different mean strain values. According to the tests, for higher

values of mean strain values, stress-strain curve is more non-linear than that of low

mean strain values. Besides, it becomes less non-linear and have a slimmer hystere-

sis with increasing the number of applied cycles. After a certain number of cycles,

hysteresis becomes stable with a lower stiffness for higher mean stress values but this

effect is not observable for lower mean stress values. A further observation is that

material displays more resistance to creep under uniaxial compressive load compared

to tensile load. Similar results to [38] were found in [40]. However, there are further

observations. Presence of a tensile hydrostatic pressure increases creep deformation
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since there is more volume for molecules to move and this decreases the resistance

to the inelastic creep deformation. Presence of a compressive hydrostatic pressure

influences in opposite way. Moreover, a superimposed shear stress enhances creep

deformation in axial direction.

In article [41], two epoxy resins with different cross-link densities were compared

at various temperatures, especially in terms of their Poisson’s ratio ν. According to

experiments, mechanical properties of the epoxy with less cross-link density varies

with temperature greatly while the other epoxy has slight variance in these properties

for the temperature range of tests. Therefore, epoxy with high cross-link density is

more resistant to viscoelastic flow as expected. In the tests, Poisson’s ratio increases

with increasing temperature and this means that epoxy resin reaches a nearly incom-

pressible rubbery state with a high Poisson’s ratio (close to 0.5) above glass transition

temperature. This increment rate in Poisson’s ratio is more pronounced around glass

transition temperature. Besides, resin with low cross-link density possesses higher

Poisson’s ratio in the examined temperature range. Increasing strain value applied

to epoxy resins enhances Poisson’s ratio. Transition from linear to non-linear stress-

strain response of the epoxy with high cross-link density is reached at smaller strain

values. Around this transition region, Poisson’s ratio increment rate is very high

compared to that of other epoxy for the same strain value. It is also worth mention-

ing that, for high values of applied strain, increment in Poisson’s ratio with time is

more pronounced. Some of the reasonings from these experimental results will be

compared with the experimental and numerical results of the silica filled epoxy com-

pound modelled in this thesis. In literature, previously mentioned experiments were

used to validate nonlinear viscoelastic constitutive model of Xia and Ellyin [35], Xia

and Shen [42] and Xia and Shen [39]. They proposed a nonlinear viscoelastic model

in differential form, which uses a branch with a spring and Kelvin elements connected

in series. The distinctive property of the model is that it is capable of predicting un-

loading behaviour of the material in cyclic tests using a switching rule. According to

this rule, stiffness of springs located in kelvin elements are a function of an equivalent

stress that contains a constant R. This R value is defined as the ratio of the yield stress

in compression to yield stress in tension. A shape memory surface is described by a

function of maximum equivalent stress during deformation and it updates itself each

time stress reaches its maximum value. Stiffness of springs are a function of equiva-

7



lent stress during loading (on the shape memory surface) while stiffness keeps its last

value during unloading (inside of the shape memory domain). By this way, unloading

stress-strain curve of the experiments is predicted as concave upward shape properly.

In the case of same stiffness values used in loading period, this behaviour is not pre-

dicted by any of the viscoelastic models. In [42], Xia and Shen applied the switch rule

to 3 well-known viscoelastic models of the same epoxy resin (Epon 826) for cyclic

tests : Schapery model (Non-equilibrium thermodynamics approach), Knauss-Emri

free volume model (nonlinear free volume approach) and Xia et al. model (a mechan-

ical analogue model in differential form). Upon incorporation of switching rule to the

models, their prediction capability improved reasonably although free volume model

predictions for unloading were not quite satisfactory. Observations in the previously

mentioned experiments of epoxy are also evaluated with the model in the articles

[38] and [35]. Creep recovery and compliance tests and effect of stress magnitude on

linearity-nonlinearity response in these tests, interaction of shear and normal stress,

hydrostatic pressure influence on shear and axial stiffness, shear-axial load path de-

pendence and strain rate dependence were investigated and prediction capabilities of

the model were fairly good for all. In cyclic tests, stress relaxation leads to slim-

mer hysteresis curves with increasing number of cycles and estimated response is in

agreement with tests.

In another works for modeling epoxy [43],[44],[45],[5] and in other sources, it is

stated that linear viscoelasticity methods are only valid for small strain range while

nonlinear viscoelasticity model proposed by Bergström and Boyce [15] has better

predictions for all strain regime. Besides, according to the comparisons of LVE and

NVLE in [43], LVE is not capable of predicting stress relaxation above a certain strain

value (0.001). In the same article, temperature and strain-rate dependence of an epoxy

compound were investigated since it is used as encapsulation of semi-conductors in

automotive industry and it functions temperatures between -40◦C and 250◦C, which

covers glassy solid and rubbery state of the epoxy. Step-wise strain was applied at

various temperatures and strain was kept constant for 120 seconds in every 20 per-

cent of the maximum strain to observe stress dependent intermediate relaxation. In

the LVE case, relaxation modulus (creep compliance) is strain independent resulting

in worse results while NLVE model gives quite satisfactory results. From these tests,

it was observed that stresses were very high even at low strains and low temperatures
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below Tg while the material was easily stretched without increasing stress very much

at high temperatures. Also, maximum stress relaxation was observed to be around Tg

while less amount of stress relaxation was observed at temperatures below Tg. These

reasonings were also indicated in [44] and this implies that temperature and strain

are two important factors that lead to nonlinearity. Thus, deformation of the epoxy

should be handled in the concept of nonlinear models. In the same article and also

in [5], linear elastic assumption was used for small strains and this assumption was

validated by examining Boltzmann superposition principle (valid in linear regime),

successive stress test results and also stress dependence of relaxation modulus.

Jakup and Prisacaru [44] states that BB model is not capable of predicting time depen-

dent large volumetric deformations observed in epoxy compound under hydrostatic

load. Free energy function of viscous branch in BB does not include volumetric

terms. Therefore, hydrostatic pressure can not be calculated as a function of time. In

this contribution, viscous bulk modulus is also included to the free energy function of

viscous part and a quadratic volumetric free energy function is proposed to take time

dependent volumetric effects into account. In this manner, initial total bulk modulus

equal to the sum of equilibrium and viscous bulk modulus values and it converges to

equilibrium bulk modulus at the end of the deformation. It is important to empha-

size that BB model is actually developed for hyperelastic rubber like materials which

are considered to be incompressible in many cases. Consequently, BB model does

not take decrease of bulk modulus with time into account. Further tests (three point

bending and uniaxial) and comparisons of LVE and NLVE are found in Hong and

Gromala [45]. Time-temperature superposition, prony series fitting of bulk modulus

and shear modulus parameters, variation of Poisson’s ratio with temperature and uni-

axial and hydrostatic test results of an epoxy compound can be seen in Lee and Sun

[5].

Pap, Kästner and Müller [46] performed displacement controlled step-wise tensile

tests and identified viscoplastic behaviour of an epoxy-based adhesive since it dis-

played equilibrium hysteresis. However, they proposed a nonlinear viscoelastic model

with a non-linear elastic stress-strain relation and an overstress. Also, viscosity of the

model contains exponential dependence on overstress. This is because the magnitude

of overstress affects how fast relaxation behaviour occurs as observed from experi-

ments. In the model of the current thesis, magnitude of overstress is also included
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in the evolution equation of viscous strain. Since they were mainly interested in the

strain rate dependence of the material, they selected this model. As stated in the ar-

ticle, monotonic relaxation results were adequate but cyclic deformation could not

be accurately estimated with the viscoelastic model since there was also plasticity in

experiments. Since they observed viscoplastic response, which was deducted from

non-equilibrium hysteresis of intermediate stress relaxations tests, they also included

a branch with plastic element for equilibrium response and generalized nonlinear elas-

tic behaviour to three dimensional case incorporating bulk and shear modulus and de-

viatoric and volumetric tensors as stated in[47]. In the model, plastic strain’s temporal

change is a function of arclength, total strain, a parameter controlling non-linearity

of the relation and plastic strain. Material parameters of the equilibrium part were

determined by comparing equilibrium stress and the terminal points reached during

intermediate relaxation test. The remaining parameters associated with overstress part

were determined from monotonic relaxation tests. Results of monotonic tension and

relaxation simulations were reasonably in agreement with experiments. Path depen-

dence, interaction of shear and axial stress and cyclic tests were also studied. Results

were similar to the ones in [38], [42]. Same tests were compared with a small strain

fractional non-linear model proposed by Kästner and Müller [48]. It was found that

fractional model gives good results for all type of tests except cyclic loading and un-

loading tests with intermediate holding times.

There are also other worthwhile works. Ryther, Chad E used the viscoplasticity based

on overstress model developed by Krempl and co-workers [49] to simulate PMR-15

material, which is a high-temperature thermosetting polymer, at a certain temperature

range, at which the material shows viscoplastic behaviour. They improved the model

by making certain parameters involved in the model such as Young Modulus, tangent

modulus, viscosity and a function of temperature based on the experimental behaviour

of these parameters with temperature. Experimental procedure of the article included

relaxation drop, creep with prior strain-rate and temperature dependence. Results of

the relaxation tests indicated that stress relaxation drop was greater for higher prior

strain values. Initial modulus was also greater for higher prior strain values. At high

temperatures, both of them were lower for the same prior-strain rates, which was the
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reason of the decrease in the flow stress as stated by the author. It was also observed

that increasing temperature or prior strain-rate made creep accumulation greater. The

comparisons of the simulations and the experiments were fairly sufficient for both

relaxation and creep.

Bardella [50] proposed a phenomenological non-linear viscoelastic model for epoxy

resins. The model includes a linear spring connected to a nonlinear Kelvin element

in series. For the spring of Kelvin element, phenomenological non-linear Ramber-

Osgood relation (based on equivalent stress and some parameters) and, for the dash-

pot, Eyring theory were employed. Eyring theory includes a molecular transformation

relation between equivalent stress and strain rate, which contains an energy barrier

term for molecule crosses, absolute temperature, Boltzmann factor, equivalent vis-

cous stress, and action volume of polymer segments. Energy barrier and absolute

temperature make the model a thermomechanical one and it can be used to predict

temperature dependence. However, dependence of the material parameters on tem-

perature are also required for this purpose. As stated in the article, using this theory

and a tensorial stress-strain law for the dashpot, one can determine time dependent

response of the dashpot. Creep tests under various stress levels were in good agree-

ment with simulations only for certain stress levels. The other results were not good

because of the deviation of stiffness in the epoxy material tested and some technical

issue as stated by Bardella. The unloading behaviour of the model during the cyclic

test was also simulated properly. Lastly, as stated in [42], combination manner of

springs and dashpot also affects capability of simulations.

1.1.4 Aim of thesis

Viscoelastic materials are largely used in industry for different purposes and it is im-

portant to predict their life cycles, deformation characteristics and residual stresses on

them to design products properly. The stress caused by the mismatch of the coefficient

of thermal expansion (CTE) between epoxy based compound EMC and adjacent ma-

terials is one of the major causes for premature failure. Numerical methods are critical

since they are used largely to decrease time spent in product development process.

However, material characterization is a critical stage in product development. The

product works under large strain regime with non-linear effects and high temperature
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differences. Linear viscoelasticity theories are valid only for small strain regimes and

temperatures close to Tg. Therefore, a complete non-linear material theory formed

for the special material is required after the characterization of the material is done.

The utilized material can be subjected to high hydrostatic loadings especially after

molding process and other types of varying thermo-mechanical loadings during prod-

uct’s life cycle. For this reason, the material exhibits significant volumetric viscosity

in addition to shear viscosity.

Thus, the aim of this thesis is to simulate uniaxial and volumetric creep behaviour of

an epoxy compound and determining dependence of the response on temperature so

that we form a model that can be implemented into commercial finite element soft-

wares to predict three dimensional response of similar materials considering viscous

volumetric effects. Experimental characterization of the epoxy compound indicates

that there is also significant non-linear volumetric creep behaviour under hydrostatic

loading. As indicated earlier in this chapter, viscous volumetric response of epoxy

materials are not considered in BB model and in other rubber models since they dis-

play nearly incompressible behaviour. However, in this thesis, viscous bulk modulus

value is also included and the epoxy material has a variable bulk modulus value be-

tween the sum of equilibrium and viscous bulk modulus value at the initial instant, and

equilibrium bulk modulus value after deformation which leads to the time dependent

volumetric response. Besides, the proposed model is implemented into FEAP (open

source Finite Element Analysis Program) and various mechanical material properties

and their alteration with temperature are investigated by comparison of the simula-

tions and the experiments.

Another distinctive contribution is the application of a new evolution equation pro-

posed by Dal [1] for the evolution of the viscous deformations. It is developed based

on the inelastic and elastic molecular motion of a single chain in a chain forest.

The proposed model is proven to be a very powerful tool for accelerating the develop-

ment process of electronic control units and power modules by better prediction and

evaluation of the limits.
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1.1.5 Structure of the work

Chapter 2 outlines viscoelastic behaviour of polymers. Moreover, one-dimensional

basic viscoelasticity is introduced and then it is extended to three dimensional meth-

ods in the framework of larger strain continuum mechanics. Proposed evolution law

of creep rate, rheological model, proposed free energy based on micro-structure is

also presented in this chapter. Chapter 3 is devoted to Kirchoff stress and consis-

tent tangent modulus derivations along with the algorithmic structure of the proposed

model in Eulerian setting. Uniaxial and volumetric tests conducted by Maryland

University are explained in Chapter 4. Besides, comparisons of numerical and ex-

perimental results, effects of the parameters on simulation results are presented in

Chapter 4. Chapter 5 is devoted to conclusion.
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CHAPTER 2

2.1 Characteristics and mechanical properties of polymers

Polymeric materials are used in all type of products. For example, basic structure

of biological tissues are similar to structure of synthetic polymers. Chemical engi-

neers or chemists formulates the synthetic polymer in accordance with requirements

of a product. Other engineers who design certain engineering components of a prod-

uct use these polymers in their design due to their particular properties. Polymeric

materials are preferred because of their properties such as lack of heat and electrical

conductivity, toughness, resistance to corrosion, low cost. They also may be deformed

up to a few times of their initial length due to their long chain molecular structure.

Stress and strain in most of the polymeric materials shows time-dependent behaviour.

Loading and unloading response of the material may be very different since dissi-

pation occurs during the deformation. This chapter covers up these issues regarding

polymers.

2.1.1 Types of polymeric materials

Although there are many ways to classify polymers, two general polymer types are

thermosets and thermoplastics. Difference between them can be explained by look-

ing at their bond structure which holds molecular chains of polymers together and

determines the mechanical properties of polymers. In thermosets, there are primary

bonds (or crosslinks) between molecular chains, which are stronger than secondary

bonds (Van Der Waals) found in thermoplastics. Due to weak strength of secondary

bonds, thermoplastics can be melted or molded while thermosets can not be melted
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at least in a general way. Thus, thermosetting polymers are used in products that

perform within large temperature ranges. They should also satisfy dimensional re-

quirements and polymer degradation (change in properties such as strength, shape,

color) should be avoided during service life duration. Some application examples of

these materials are electronic packages (where there is a need for electrical and ther-

mal insulation, high strength, low warpage), adhesives, composites, seals, automobile

bumpers, tires. Some of the thermosetting materials used for this purposes are epox-

ides, aminos, polyesters, etc. Besides, fiber reinforced polymers takes the place of

metals in structural applications due to their high modulus and strength.

2.1.2 Mechanical properties of polymeric materials

Polymers show quite different response compared to metals when they are subjected

to loads in various conditions. Metals show resistance to the applied load by attrac-

tive and repulsive forces in inter-atomic bonds which are related with interaction of

electron shells of atoms and these forces vary depending upon the distance between

the atoms [4]. Therefore, yield point of metals is reached for low strain values. In

contrast to metals, polymers are more complicated with long chain molecules in a

polymer gel matrix. Because of their molecular structure, they can be deformed up

to large strains which also varies for all polymers. Many researchers [2], [25] explain

viscoelastic or time-dependent properties of polymers by using crosslinked strong

network and the superimposed entanglements of a free chain as shown in Fig. 2.1.

Free chains are sometimes called elastically inactive since they carry less load and
2

(a) (b) (c)

Figure 2.1: Micromechanical representation of superimposed free chains in (a) unde-

formed, (b) deformed state after sudden loading and (c) deformed and relaxed state.
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tend to change their conformation during loading. Same as network, free chains also

carry load when a sudden load is applied to the material. These chains entangling

around other chains start to loosen if the sudden applied load is held constant for a

certain amount of time. Temperature also plays a role in this loosening process since

reptational and Brownian motions of a free chain as described by Doi and Edwards

[32] are triggered in an easier way at high temperatures leading to variations in stress

and strain with time. After this process, the material reaches a more relaxed state

with less stress. Bergström and Boyce [15] developed an evolution equation relat-

ing stretch and creep rate using governing reptational motion of the free chain as a

function of time, which is described by Doi and Edwards [32].

2.1.2.1 Temperature and time dependence of polymers

It is shown by many researchers that the mechanical response of the many polymeric

materials are strain-rate and temperature dependent as shown in Fig. 2.2. Strain-

Figure 2.2: Typical temperature (on the left) and strain-rate (on the right) dependent

stress-strain response [4].

rate dependence of polymeric materials can basically be explained by the fact that

at high strains, chains immediately align themselves in the direction of loading since
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there is no time for entanglements to loosen with reptational motion. At low loading

rates, there is more time for entanglements to become loose easily leading to lower

resistance shown by free chains to the applied load compared to higher loading rates.

On the other hand, as temperature increases, fluctuations of polymer chains increase

making motion of them easier within the network. As a result, they disentangle from

the network in an easier way compared to low temperatures reducing the load carrying

capability of the material. It should be also noted that the dependence on temperature

and strain rate are more pronounced at large strains. In Fig. 2.3, stress-strain re-

sponse of a brittle epoxy material is shown. At low temperatures, the epoxy exhibits

a glassy behaviour with linearly increasing stress with strain and it ruptures at rela-

tively low stress values. At high temperatures, the epoxy behaves more like a rubber

showing high stretch values with nearly constant stress before failure. Obviously, a

transition region from rubbery to glassy behaviour exists in all polymeric materials

although temperature range of the transition region observed is different for all mate-

rials. Therefore, at room temperature, a polymeric material displays glassy behaviour

while another polymeric material displays rubbery behaviour. It is engineer’s respon-

sibility to select the compatible polymer by taking the working conditions such as

temperature, mechanical loadings into account.

2.1.3 Viscoelastic properties of polymers

Rate and temperature dependence or viscoelasticity of polymeric materials are ex-

plained in the previous sections departing from their unique molecular structure. Be-

cause of this molecular structure, polymers exhibit viscoelastic behaviour and behave

as elastic solids or viscous fluids at certain times while they behave as both in some

instances. For this reason, they can not be represented by the mathematical laws of

elastic solids or fluids purely. Amount of strength and modulus shown by the mate-

rial generally depends on the micro-structure and ambient temperature although there

can be other factors such as corrosion, moisture and other environmental effects. As

mentioned previously, network of the polymer is brittle as a glassy solid, shows re-

sistance to fluid like flow (high viscosity) and it has high strength and modulus at

lower temperatures. At high temperatures, viscosity of fluid type response decreases

and strength and modulus are lower showing rubbery response. These transition from
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Figure 2.3: Temperature dependent stress-strain response of a typical brittle epoxy

[4].

glassy to rubbery state will be explained later in this section. Firstly, relaxation and

creep behaviours of polymers will be mentioned.

2.1.3.1 Relaxation and creep

Relaxation and creep behaviours are the most known behaviours used for character-

izing time dependent response of polymers. In a relaxation process, as shown in Fig.

2.4, a constant strain ε0 applied to the material uniaxially and in a quasi-static way

(no inertia effects) at t = t0 leading to a sudden stress σ0, which decreases with time

to the equilibrium value σ∞. This is an ideal case since loading a material instanta-

neously would not be possible in the real life. Relaxation of stress takes place due

to the fact that chains in the polymer change their conformation to a more relaxed

state with time. As a result, compared to the deformed state, free chains no more

carry load resulting in a lower load carrying capacity of the material at constant strain
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value. Another fact is that thermosetting materials converge to a constant stress value

while ideal thermoplastic materials converge to zero stress value. The reason for this

kind of behaviour is because of the difference in dominant bonds between monomers.

In thermosetting materials, there are primary bonds between the monomers, which

are also called cross-links. Primary bonds found in thermosets give rise to a more

solid behaviour. Accordingly, the material can not flow after some limit time due to

the applied force. Density of cross-links in the material determines the magnitude

of equilibrium stress. Thermosets with highly cross-linked micro structure display

a high equilibrium stress value. Besides, there are filler particles used in the micro-

structure for increasing modulus and strength of polymers. In contrast to thermosets,

there are weaker secondary bonds (or Van Der Waals) between monomers of thermo-

plastics. These weak bonds break with time upon loading since monomers slide past

each other and this leads to a reduction in viscosity. In other words, thermoplastics

behave like a liquid and there is not a limit value for this flow. Liquid-like behaviour

is especially dominant for high temperature ranges as the secondary bonds between

monomers break easily (melt) unlike primary bonds. A relaxation modulus (t) can be

defined for this relaxation process since stress is rate-dependent and strain is constant,

E(t) =
σ(t)

ε0

(2.1)

which is only valid for constant strain values. The other important time dependent

σ

σ0

σ∞

t t

ε0

ε

Thermoset

Thermoplastic

Figure 2.4: Strain input (on the left) and corresponding relaxation behaviour of ther-

moset and thermoplastic (on the right)

behaviour of polymers is creep behaviour. Creep occurs if a sudden and constant
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stress is applied uniaxially (or in another deformation mode) to the material. In a

creep test, load should be applied quasi-statically to prevent inertia effects so that

there is no prior history since viscoelastic materials are history dependent unlike met-

als. Under this stress, strain increases with time to a constant value for thermosets

as observed from Fig. 2.5. In the case of thermoplastics, there is no limit for the

strain value to reach since monomers slide past each other continuously similar to a

liquid due to lack of primary bonds (cross-links). Again, creep observed at a certain

time is higher for higher temperatures for both thermosets and thermoplastics with

secondary bonds. A new quantity called creep compliance D(t) can be defined for

σ

σ0

tt

ε0

ε∞

ε

Thermoset

Thermoplastic

Figure 2.5: Stress input (on the left) and corresponding creep behaviour of thermoset

and thermoplastic (on the right)

creep behaviour, which gives information about the sensitivity of strain to the applied

constant stress. In this sense, it is like relaxation modulus E(t).

D(t) =
ε(t)

σ0

(2.2)

Of course, it can be extended to non-constant load cases, however, with integral rep-

resentations.

Another important mechanical property of polymers is creep recovery. If the stress

is removed suddenly as shown in Fig. 2.6, strain will decay to zero in a long time.

At the first instant, elastic strain decreases rapidly with 90 degree to time axis. Af-

terwards, viscous part of the strain decays to zero or to a constant strain value (εp)
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Figure 2.6: Stress input (on the left) and creep recovery behaviour (on the right) of

thermoset and thermoplastic

for thermosets or thermoplastics, respectively. Again, a permanent or plastic strain

exists in equilibrium of thermoplastics. All in all, initial moduli of thermosets is re-

lated with cross-links (primary bonds) and entanglements while equilibrium moduli

is related with only crosslinks. Thermoplastics behave more like a fluid in terms of

the mechanical response.

2.1.3.2 Isochronus modulus vs temperature

In Fig. 2.7, variation of relaxation modulus at the instant of 10th second E(t =

10[sec]) = σ(10[sec])
ε0

is shown as a function of temperature for amorphous, crys-

talline and cross-linked polystyrene materials. The figure is separated into 5 regions

as glassy, transition, rubbery plateau, rubbery flow and liquid flow, respectively. Flow

region is only valid for thermoplastics since thermosets does not exhibit any flow un-

less temperature is very high. For very high temperatures and long durations, some

degradation and fluid time flow along with change in color can be observed in ther-

mosets, as well. The first observation from Fig. 2.7 is that there is a transition re-

gion between glassy and rubbery regions where E(10) drops rapidly corresponding

to temperature Tg. The transition region can be explained from the free volume vs
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temperature in Fig. 2.8. Free volume can be defined as the volume that is not occu-

pied by the main molecular mass of the material while occupied volume is the volume

occupied by molecular mass or atoms and quantum shells of atoms. The slope of the

Vr vs T curve gives the coefficient of thermal expansion. As we observe from the

figure, with increasing temperature, free volume also increases. At some point called

glass transition temperature Tg (may be temperature range instead of a point), free

volume increases with a steeper line. In other words, there is a discontinuity in the

free volume increment at point Tg. The polymer behaves like a glassy solid before the

Tg. When temperature is around the range of Tg for that polymer, it shows more pro-

nounced viscoelastic response as we can understand from the rapid drop in relaxation

modulus. This is related to the change in free volume around Tg since molecular

Figure 2.7: E(10 Sec.) for a crystalline polystyrene, A, a lightly cross-linked poly-

styrene, B, and amorphous polystyrene, C, [4].

chains find more free volume to vibrate freely. Thus, translational and configurational

motions of chains take place in an easier way compared to the glassy phase where this

molecular motions take place only in some local regions. Frequency and amplitude of

motion increase as temperature increases. These motions cause chains to reach a more

relaxed state decreasing the stress required for holding the constant strain. Below Tg

(in glassy region), these motions and amplitude of vibrations are very small. There-

fore, stretching, changing bond angles and change in length of the bonds (primary and
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Figure 2.8: Relative volume vs. temperature

secondary bonds for thermosets and only secondary bonds for thermoplastics) under

the applied load are the basic reasons for viscoelastic behaviour of glassy region and

the behaviour is mostly associated with side polymer groups. Molecular motions of

rubbery region are similar to the transition region except for smaller time duration of

creep or relaxation. This effect can be observed in Fig. 2.9 from creep response of the

test at 170◦C with smaller retardation time compared to smaller temperatures. Thus,

in rubbery region around 170◦C , limit strain value is reached within a few minutes

while it may take weeks in glassy region around 155◦C. Another important difference

between glassy and rubbery (or liquid) range is that permanent deformations due to

fluid-like flow may occur in the latter since secondary (sometimes primary) bonds

can be ruptured and reformed during deformation. This case is more pronounced for

thermoplastics as a result of the denstiy of secondary bonds between chains. Liquid

phase can be considered to exist only for thermoplastics. In Fig. 2.8, melting temper-

ature Tm is also shown, at which polymers exhibit a high drop in relaxation modulus.

All polymers have different glass transition temperature range. Therefore, a material

may behave like a glassy solid at the temperature, at which another material behaves

like a rubber.
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Figure 2.9: Creep of an epoxy at various temperatures [4].

2.1.3.3 Linearity of viscoelastic materials

It is very important to know whether a polymer shows linear or non-linear response

under thermo-mechanical loading. Applicability of some rules valid for linear vis-

coelasticity is evaluated with such knowledge. In contrast to metals, linearity of

polymeric materials can not be understood from stress-strain curve since stress (or

strain) changes with time and the relation between them is always non-linear in such

a curve. Therefore, stress (or strain) independence of creep compliance or relaxation

modulus should be checked by testing methods. Creep or stress relaxation tests can

be conducted at different values of stress (or strain). One sample is shown in Fig.

2.10. At least three test at different stress values should be done. If the ratio of stress

to strain is the same for all three cases at a certain time as shown, the material is said

to be linear. Otherwise, it is non-linear.

2.2 Mechanical modelling of one dimensional linear viscoelasticity

2.2.1 Phenomenological models

This section is devoted to the mechanical models created for representing some as-

pects of viscoelastic materials without considering molecular structure of the mate-
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Figure 2.10: Linearity of material indicated by using creep tests with different stress

levels

rial. In this manner, some important rate-dependent behaviour of the material such

as stress relaxation and creep will be explained. Generally, springs and dashpots are

used in the mathematical models of viscoelastic materials. Springs usage is necessary

for modeling energy storage (elastic behaviour) and dashpot is necessary for model-

ing energy dissipating (viscous behaviour) properties of the material. One can assume

a linear or nonlinear spring element to represent the behaviour of the material. A lin-

ear spring behaves in accordance with Hooke’s law stating that stress is proportional

to strain with Young Modulus E as σ = Eε. Thus, the energy stored in the spring

element is 1
2
Eε2. On the other hand, stress on a linear dashpot element is propor-

tional to strain rate with viscosity µ since the dashpot behaves in accordance with the

Newtonian law of viscosity, τ = µε̇. By looking Newtonian law, one can realize that

the dashpot element becomes stiffer for high strain rates compared to low strain rates.

Hence, the dashpot is used to model strain rate dependent materials such as polymers.

Spring and dashpot elements can be combined in a variety of combinations to repre-

sent real viscous material behaviour. The early basic combinations are Kelvin and

Maxwell models.
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2.2.2 Kelvin model

Kelvin model is used to describe the creep behaviour of the material. Fig. 2.11 shows

the Kelvin solid model, which combines a spring and a dashpot in parallel. Total

Figure 2.11: Kelvin model

stress is sum of the stresses in two branches and strain is the same for both branches.

σ(t) = σe(t) + σv(t) = Eε(t) + µ
∂ε(t)

∂t
(2.3)

ε = εv (2.4)

By applying a sudden stress to the solid model and keeping it constant as σ0 and

solving the ODE for the strain ε(t)

ε(t) =
σ0

E
(1− exp(−(

t

τ
))

where τ =
µ

E
is relaxation time

(2.5)

This equation and stress on both elements can be plotted for certain values of the

parameters as follows, which is creep behaviour of the Kelvin solid model. Creep

response with time is due to the expansion of the dashpot under constant load. As

shown in Fig. 2.12, stress on the dashpot decreases with time while it increases on

the spring. This keeps the load on the total solid model constant for all times.

Kelvin model can not be used to describe stress relaxation behaviour. According to

the Newtonian law of viscosity, a sudden strain applied to the model is not possible
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Figure 2.12: Stress on dashpot and spring (on the left) and creep (on the right) on

Kelvin model

since it results in infinite stress in the dashpot branch. However, by adding a spring in

series to the dashpot, the spring takes the instantaneous strain by storing energy and

that prevents infinite stress.

2.2.3 Maxwell model

A
µ

E
σσ

εe εv

ε

Figure 2.13: Maxwell model

In Maxwell model, the spring and the dashpot are combined in series as demonstrated

in Fig. 2.13. In this model, stresses in the spring and the dashpot are same and the

total strain is the sum of the strains in the elements.

σ(t) = σe(t) = σv(t)

= σ(t) = E(ε(t)− εv(t)) = µ
∂εv(t)

∂t

(2.6)

ε = εe + εv (2.7)

If a sudden strain ε0 is applied and kept constant for a certain amount of time, relax-

ation of the model occurs due to the expansion of the dashpot. Arranging equation
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2.6 and taking ε(t) = ε0

∂εv(t)

∂t
+
E

µ
εv(t) =

E

µ
ε0 (2.8)

Solving the ODE

εv(t) = ε0(1− exp(−(
t

τ
))) (2.9)

is obtained. It can be used in σ(t) = E(ε0 − εv(t)) to find stress.

σ(t) = Eε0 exp(−(
t

τ
)) (2.10)

At the time t = τ , which is called relaxation time and used as an indicator of how

fast relaxation occurs, it takes a value of σ0
e

. Stress relaxation behaviour of Maxwell

model is shown in Fig. 2.14.
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Figure 2.14: Stress relaxation on Maxwell model

2.2.4 Viscoelastic material model

Above described models can not be used to predict the behaviour of a real viscoelas-

tic material since they are given to show the relaxation and creep processes. For

instance, Kelvin model does not show any permanent strain after unloading. In the

same manner, Maxwell model does not show time-dependent recovery and can not

be used to model primary creep behaviour. A more realistic model will be used in

the thesis to simulate the viscoelastic materials. Thus, the one dimensional version

of the proposed model includes two branches as shown in Fig 2.15. The first branch

includes only a spring and associated with the equilibrium response, which is reached
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after a certain amount of time has passed while the second branch parallel to the first

one includes a dashpot in series with another spring. The second branch is used to

simulate viscous behaviour. When a sudden load is applied to the material model,

Figure 2.15: Rheological finite viscoelastic model

first branch reacts immediately by storing energy in the spring element. Similarly, the

spring in the viscous branch expands in the same way and the dashpot acts as a rigid

element since there is no time for it to elongate. After keeping the load constant for

a certain amount of time, the dashpot deforms in accordance with Newtonian law of

viscosity increasing viscous strain εv(t) and reducing elastic strain. Tension in the

spring is no longer available due to the released end of the spring by the dashpot.

Hence, strain of spring in the viscous branch decreases and energy stored by that ele-

ment is released. In other words, the energy of the spring is wasted by the dissipation

element, the dashpot. As a result of this process, creep is observed in the model.

Instead, if a sudden strain is applied to the model, dashpot does not immediately react

to the sudden strain and it takes time for viscous strain εv(t) to increase up to the

level of applied strain, ε0. However, strain in the first branch immediately reaches the

applied strain value by storing energy. Since the total strain in two branches must be

the same, the spring in the second branch also reaches the same value. As time passes

by, the dashpot becomes less stiff because of decreasing stress carrying capacity of

the second spring with expansion of the dashpot and the stress on the second branch

decreases. Eventually, viscous strain in the dashpot reaches the value of applied strain

with a zero slope (σd = µ∂εv
∂t

= 0) and the only stress remaining in the model is the
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equilibrium stress in the first branch although the same strain value ε0 is applied.

2.2.4.1 Creep behaviour of the model

For the creep process, total applied stress σ0 is the sum of two branches

σ0 = E1(ε(t)− εv(t)) + E2ε(t) (2.11)

Also, the spring and the dashpot of the viscous branch are connected in series meaning

that the stress on them should be equal.

µ
∂εv(t)

∂t
= E1(ε(t)− εv(t)) (2.12)

Solving for ε(t) in the first equation and inserting it into the second equation

∂εv(t)

∂t
+
E1εv(t)

µ
=
E1

µ
(
σ0 + E1εv(t)

E2 + E1

)

=
∂εv(t)

∂t
+

E1E2

(E1 + E2)µ
εv(t) =

E1

µ

σ0

E2 + E1

(2.13)

Solution of the above equation can be found easily as x(t) = B
A

(1−exp(−(At)) since

it is in the form of ẋ+ Ax = B. Hence,

εv(t) =
σ0

E2

[1− exp(−(
E1E2

(E1 + E2)µ
)t] (2.14)

Solving equation 2.11 for ε(t) in terms of εv(t)

ε(t) =
σ0 + E1εv(t)

E1 + E2

(2.15)

This result is plotted along with εv(t) in Fig. 2.16. Constants of the springs and the

dashpot are taken asE1 = 1000 MPa,E2 = 3000 MPa, µ = 20000 MPa.s and applied

constant stress is σ0 = 3000 MPa. In accordance with the previous comments, the

dashpot starts with zero strain while the spring of first branch start with a strain σ0
E1+E2

,

which is also equal to the total strain. Then, the dashpot elongates and strain of both

branches reaches the equilibrium value. During this process, stress on the first branch

spring increases taking the load carried by the second branch spring as a function of

time.
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Figure 2.16: Stress on dashpot and equilibrium spring (on the left) and creep of dash-

pot and equilibrium spring (on the right)

2.2.4.2 Relaxation behaviour of the model

For the relaxation of the model, a sudden constant strain ε0 is applied. Thus, total

stress becomes

σ(t) = E1(ε0 − εv(t)) + E2ε0 (2.16)

Also, stress in the dashpot and the viscous spring is same

µ
∂εv(t)

∂t
= E1(ε0 − εv(t))

∂εv(t)

∂t
+
E1

µ
εv(t) =

E1

µ
ε0

(2.17)

Solving eq. 2.17 for εv(t), we find

εv(t) = ε0[1− exp(−(
t

τ
))] (2.18)

Inserting it into the equation 2.16, we find total stress as

σ(t) = E1ε0 exp(−(
t

τ
)) + E2ε0 (2.19)

Using the same parameters in the creep part and taking constant strain ε0 = 1

[mm/mm], we can plot the following relaxation Fig. 2.17. The total stress amount is

reduced at the same amount initially carried by viscous branch.
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Figure 2.17: Stress relaxation of the model

2.2.5 Prony series representation

As stated earlier, Maxwell and Kelvin models have limited usage in representing

real behaviour of most viscoelastic materials. A more realistic model is obtained

using prony series approach in which a series of Maxwell model is used along with

a equilibrium spring to obtain equilibrium response at infinite time. It is usually not

possible to represent the behaviour with only one Maxwell element. Thus, as shown

in Fig. 2.18, n Maxwell elements can be used in parallel, which is called Generalized

Maxwell model or Prony series representation. Prony series representation is used in

representing behaviour of thermoplastics. However, in Fig. 2.18, a spring is added

to represent the behaviour of a thermoset with a residual stress at infinity, which is

known as Wiechert model. Generally, 5-15 elements are used in Generalized Maxwell

model.

Considering the Prony series representation for only 2 branch Maxwell elements, we

can define kinetic relations as

σ = σ1 + σ2 (2.20)

ε = ε1 = ε2 (2.21)

Using the previously shown constitutive equations for Maxwell elements

σ1 +
µ1

E1

∂σ1

∂t
= µ1

∂ε1

∂t

σ2 +
µ2

E2

∂σ2

∂t
= µ2

∂ε2

∂t

(2.22)
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Figure 2.18: Wiechert model

Since strain is same for all branches, solving above equations for stress, substituting

into kinetic relations and rearranging, we obtain a partial differential relation contain-

ing total stress and strains as

σ + a1σ̇ + a2σ̈ = b1ε̇+ b2ε̈ (2.23)

where

a1 = τ1 + τ2 a2 = τ1τ2

b1 = µ1 + µ2 b2 = µ1τ2 + τ1µ2

(2.24)

Solution of the single differential equations or the equation 2.23 gives the stress as a

function of time for a given strain input. First order differential equations have the
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following form for a constant strain ε0 input

σ1(t) = ε0E1 exp(
−t
τ1

)

σ2(t) = ε0E2 exp(
−t
τ2

)
(2.25)

For a n element Maxwell model, first order equations takes the form

σi + τi
∂σi
∂t

= µi
∂εi(t)

∂t
(2.26)

Since the total stress is the sum of the all stresses in all branches, we obtain the total

stress and relaxation modulus as

σ(t) = ε0[E∞ +
n∑
i=1

Ei exp(
−t
τi

)] (2.27)

E(t) = [E∞ +
n∑
i=1

Ei exp(
−t
τi

)] (2.28)

At t = ∞, relaxation modulus takes the value of E∞ meaning that only the equilib-

rium spring contributes to stiffness of the material. The Prony series representation

is useful in the case of simulating behaviour of real viscoelastic materials since the

parameters entering the equation is easy to interpret by relating them to the springs

and the dahspots. Each branch is represented by an exponential, which models the

time-dependent behaviour within 1 decade of time. Each spring represents elastic re-

sponse while each dashpot represents viscous response.

Solving the nth order differential equation or n number of first order differential equa-

tion for stress is decided based on the particular loading history. In the case of com-

plicated strain driven loadings, it may be more advantageous to solve nth order differ-

ential equation using numerical approaches. Also, if the stress is applied, it is easier

to solve higher order differential equation since σi(t) values are not known in ODE.

2.3 Finite viscoelasticity with volumetric effects

Adopting the same approach as in the previous chapter, three dimensional viscoelastic

model can be depicted. Fig. 2.19 describes the rheological model, which differs

from one dimensional model in that it contains stretches instead of one dimensional
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strains and tensors are used to represent three dimensional deformations. Besides,

volume change of the deformed body is also taken into account using determinant of

deformation tensor J = detF in free energy function.

Rheological model contains two branches. Second branch is viscous (or non-

Figure 2.19: Rheological finite viscoelastic model

equilibrium) branch while the first branch is elastic (or equilibrium) branch. Again,

the dashpot is used as a dissipative element while springs are used to store energy

(free energy) during deformation. Total free energy (stored energy) of the system is

summation of the free energies associated with the springs of these two branches.

Hence, one can split the total free energy into equilibrium Ψe and viscous Ψve parts

as follows

Ψ = Ψe(F ) + Ψve(F e) (2.29)

where F = ∂x
∂X

is the deformation gradient and it basically transforms a particular

point P from reference configuration positionX to the current configuration position

x. It can also be written in spectral decomposition in terms of eigenvalues λa and

eigenvectors nA (in current configuration) andN a (in reference configuration).

F =
3∑

a=1

λa(na ⊗N a) (2.30)
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λa can be one of the three eigenvalues λ1, λ2 and λ3. It is common to decompose

F = F eF v in a multiplicative way, where F e represents elastic deformation and

F v represents viscous deformation in the viscous branch. We should also define left

Cauchy-Green strain tensor b = FF T in spectral decomposition as

b =
3∑

a=1

λ2
a(na ⊗ na) (2.31)

from which we can define first invariant using trace of b as

tr(b) = λ2
a = λ2

1 + λ2
2 + λ2

3 = I1 (2.32)

In following chapters, focusing on molecular level 8-chain model, the relation
√

I1
3

=

λ between first invariant and chain stretch λ in the rheological model of Fig. 2.19 will

be derived, which was developed by Arruda and Boyce [20]. Network stretch λ can be

also decomposed in a multiplicative way as λ = λeλv. Thus, total stretch in viscous

branch is equal to the first branch stretch from rheological model and it is composed

of elastic stretch λe in the spring and viscous stretch λv in the dashpot. Since elastic

part contains only the equilibrium spring and it elongates in the amount of total stretch

λ (ratio of final to initial length), we can associate the equilibrium contribution of free

energy with I1. However, viscous contribution of free energy depends on elastic first

invariant Ie1 = tr(F eF eT ) = tr(be) since viscoelastic stretch is related with elastic

stretch as

λv =
λ

λe
=

√
I1

Ie1
(2.33)

Volume change from infinite small volume dV in reference configuration to current

volume dv during a deformation process is mapped using J = detF as previously

stated.

dv = JdV (2.34)

The Jacobian related with volumetric effects can be also split into two parts as elastic

and viscous Jacobians.

Je = det(F e) Jv = det(F v) J = JeJv (2.35)

Within the concept of many articles, volumetric effects are not taken into account

for modeling viscoelastic behaviour of polymeric materials since it is assumed that
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viscoelasticity is mostly related with isochoric (constant volume) deformation. How-

ever, in this thesis, it will be taken into consideration. Hence, based on the above

mentioned statements, we come up with the following generalized specific form of

the free energy function

Ψ = Ψe(J, I1) + Ψve(Je, Ie1) (2.36)

In the following chapters, free energy functions for equilibrium and viscous contri-

butions will be given. By taking the derivative of the free energy function, stress

contribution of both branches can be obtained, which will be derived in chapter 3.

2.4 The new evolution law

A new evolution law will be used in this thesis to integrate Kernel relation, which was

derived by Reese and Govindjee [13]. The new evolution law was proposed by Dal

in [1]. A single free chain in the polymer matrix is shown in Fig. 2.20. Both ends of

the single chain entangled around obstacles. In the single chain, there are N number

Figure 2.20: Stretch and relaxation of a single chain entangled around an obstacle:

(a) undeformed state, (b) deformed state after rapid stretch, (c) deformed and fully

relaxed state [1].

of rigid links or segments with each of them having a length of l. Upon straining,

these rigid links demonstrate rigid body motion. From random walk consideration

mentioned at [20], the initial length of chain is estimated as

r0 =
√
N0l (2.37)
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which is also shown at part (a) of Fig. 2.20. Similarly, at the fully strained state, all

of the rigid links is aligned back to back. Hence, at this state, end to end distance of

the free chain can be estimated as

r = Nl (2.38)

Besides, upon a sudden loading, these rigid links take a more ordered conformation,

which causes the entropy of the chain to decrease and free energy to increase. At this

state, the single chain obtains its maximum stretch value λmax, which is the ratio of

final length to initial length.

λmax =
r

r0

=
Nl√
Nl

=
√
N (2.39)

Additionally, we can normalize the stretch ratio λ compared to the maximum stretch

ratio as

λr =
λ

λmax
=

λ√
N

(2.40)

which is called relative stretch. It takes values between 0 corresponding to unde-

formed configuration and 1 corresponding to fully deformed configuration. Thus,

ranges of the stretches are λr = [0, 1] and λ = [0, λmax]. Keeping the load constant

for a while causes the free ends of the chain to loosen by moving due to reptational

and Brownian motion combinations during which elastic stretch decreases and vis-

cous stretch increases. Consequently, distance between free ends takes the most fa-

vorable or stable value r =
√
N∞l due to loosening of entanglements at the final

state with a pure viscous stretch. This state is shown in part (c) of Fig. 2.20. N∞

here denotes segment number at deformed and fully relaxed state. It can be related to

initial segment number N0 and stretch λ

N∞ = λ2N0 where λ =
r

r0
(2.41)

Furthermore, an intermediate state between the states at part (b) and part (c) of Fig.

2.20 can be defined. The intermediate state is reached when the load is removed and is

called most preferable state of the chain with distance between free ends being r̄(t) =√
N(t)l. Hence, upon removel of load, elastic deformation λe(t) = r

r̄(t)
disappears

and r reaches to the most preferable length r̄(t). Therefore, we can decompose the

total stretch into elastic and inelastic components in a multiplicative way as follows

λ =
r

r0

=
r

r̄(t)

r̄(t)

r0

= λe(t)λv(t) (2.42)
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We should deduce from this equation that at the initial state (t = 0) and r̄(0) = r0

meaning that deformation is purely elastic λ = λe while at the fully stretched and

relaxed state (t =∞) and r̄(t = t∞) = r meaning that deformation is purely inelastic

λ = λv.

To derive the evolution equation, we firstly write segment number of free chain at a

random time in the rate form as

˙N(t) =
1

τ
[N∞ −N(t)] (2.43)

where τ is relaxation time as mentioned in [1]. Equation 2.43 is a simple first order

differential equation, which has the following analytical solution

N(t) = (N∞ −N0)[1− exp(
−t
τ

)] +N0 (2.44)

Taking time derivative of λv and using 2.37, 2.42

λ̇v =
∂ r̄(t)
r0

∂t
=

1

2
√
N(t)N0

˙N(t) (2.45)

Using 2.43 in λ̇v leads to

λv =
1

2τ

1√
N0

[
N∞√
N(t)

−
√
N(t)] (2.46)

Following relations are necessary to simplify above equation

λe =

√
N∞√
N(t)

and λ =

√
N∞√
N0

(2.47)

Hence,

λ̇v =
1

2τ
λ[λe −

1

λe
] =

1

2τ
λv[λ

2
e − 1] (2.48)

If we divide with λv and replace 1
2τ

with creep constant γ̇0, we get

λ̇v
λv

= γ̇0[λ2
e − 1] (2.49)

This equation shows that creep is faster for smaller relaxation times as expected.

Besides, initially elastic strain is high, which results in a high creep rate. Creep

rate is zero when elastic stretch reaches its equilibrium value 1. Creep process of

viscoelastic materials depends also on energy activation, which motivates us to add a

multiplicative power term ( τv
τ̂

)m. This is also observed in experiments in which the
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higher applied stress or strain, the higher creep rate or stress relaxation rate. Thus, we

finally end up with the following creep rate function

γ̇ = γ̇0[λe
2

n − 1](
τv
τ̂

)m (2.50)

where τ̂ is added to make the expression unitless. It should be noticed that effects of

both hydrostatic pressure and deviatoric stress are considered in the equivalent vis-

cous stress τv term of the energy activation term. Therefore, both of these components

affects the creep rate in contrast to conventional viscoelasticity models including only

deviatoric stress. Note that stretch of the single chain λe is replaced with network

stretch of 8-chain model, λe2n .

2.5 Free energy function

In this section, free energy function Ψ(J, I1) for finite viscoelasticity with the volu-

metric effects will be proposed for equilibrium and viscous branches. We will use

quadratic version of previously defined Generalized neo-Hookean model for the vol-

umetric free energy function. Then, we will extend this free energy function with

three dimensional 8-Chain model proposed by Arruda and Boyce [20].

2.5.1 Generalized neo-Hookean model

In order to derive free energy function for compressible finite viscoelasticity, we start

with the generalized quadratic compresible neo-Hookean model, of which free energy

function for equilibrium part in terms of J, and first invariant I1 is as follows

Ψe(J, I1) =
λe

4
[(ln(J))2] +

µe

2
(I1 − 2 ln(J)− 3) (2.51)

where λ and µ are lame parameter and shear modulus, respectively. They are related

to the bulk modulus with the relation κ = λ+ 2µ
3

. Bulk modulus κ is used as a measure

of resistance of the body against volume change. In incompressible rubber assump-

tion, it is taken large enough to enforce incompressibility of rubber-like materials.

However, this is not the case of this thesis since we are dealing with compressible

finite viscoelasticity for epoxy based materials. The Kirchhoff stress derived from
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this free energy function is

τ e = [(
λe

2
(ln(J))− µe]g−1 + µeb = p̂eg−1 + µeb (2.52)

The Cauchy stress is

σe =
1

J
[
λe

2
(ln(J))− µe]g−1 +

1

J
µeb =

1

J
p̂eg−1 +

1

J
µeb (2.53)

The neo-Hookean free energy function and Kirchhoff stress are zero in the ground

state (undeformed configuration), in which b = I , J = 1, I1 = tr(C) = 3, which

are called ground conditions. In the above equation p̂e is the hydrostatic pressure

or negative pressure associated with dilatational (volume expansion or contraction)

elastic response. In other words, a change in the volume of the body during deforma-

tion is resisted by the associated hydrostatic pressure no matter whether the deforma-

tion tends to increase or decrease the volume of the body. Thus, when volume ratio

det(F ) = J = V
V0

increases or decreases infinitely, hydrostatic pressure must also

take infinite values to resist volume change. In Fig. 2.21, pressure term of equations

2.52 and 2.53 are plotted. Although at small deformations around J = 1 pressure acts

as expected, at large deformations around J = 3, pressure does not increase towards

infinity. In other words, plot does not obey monotonic growth condition of pressure

term. This is due to linear logarithmic term in volumetric part of the free energy func-

tion. Hence, by adding a quadratic term (J − 1)2 to the volumetric free energy part,

we can guarantee that the hydrostatic pressure is linear and increases with volume

change J .

Ψe(J, I1) =
λe

4
[(ln(J))2 + (J − 1)2] +

µe

2
(I1 − 2 ln(J)− 3) (2.54)

The pressure term p̂e derived from this free energy function obeys the monotonic

growth condition (p̂e → ∞ as J → ∞ and p̂e → −∞ as J → −∞) as observed in

Fig. 2.22.

2.5.2 8-chain model

The neo-Hookean model is an idealization, which assumes that there are finite seg-

ment numbersN e in a single chain. Arruda and Boyce [20] using the macromoleculer

network structure of the rubber-like materials proposed three dimensional 8-chain
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Figure 2.21: Logarithmic and linear free energy function (K = 1)
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Figure 2.22: Logarithmic and quadratic free energy function (K = 1)

model, which is one of the best models having the capability of capturing network

deformation and requiring only two parameters. It is better in terms of effectiveness

to predict the behaviour of the rubber-like materials than earlier proposed models

such as three chain model of James and Guth [51].

8-chain model considers eight chain orientations in three dimensional space of a cube

as shown in Fig. 2.23 in the undeformed and deformed configurations. Each chain is

linked to the center of the cube with distance between free ends being r0 initially.

The edges of the cube remain aligned with the principal stretch directions of right
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Figure 2.23: 8-chain model representation of rubber network in the undeformed (on

the left) and deformed (on the right) configuration [2]

Cauchy-Green tensorC during deformation. Directions on which stretches act rotate

with deformation, which proves usefulness of the model. In other words, a principal

stretch frame exist in any deformation. Hence, chains in the reference frame will

stretch proportional to principal stretch values (square root of eigenvalues of C), λ1,

λ2, λ3 and edge lengths take values λ1a0, λ2a0, λ3a0 after deformation. Also, after

deformation edges of the deformed cube will be aligned with eigenvector space of

right Cauchy-Green tensor C as shown in the Fig. 2.23

From the geometry of the cube, we obtain

(2ro)2 = (a0

√
2)2 + a2

0 (2.55)

a0 =
2√
3
r0 (2.56)

After deformation, since edges will expand proportional to square root of principal

stretch values and first invariant I1 = λ2
1 + λ2

2 + λ2
3, we can define a vector extending

through any of the single chains from center to the corner as follows,

c =
a0

2
λ1i+

a0

2
λ2j +

a0

2
λ3k with a length of

r =
a0

2

√
(λ2

1 + λ2
2 + λ2

3) =
a0

2

√
I1

(2.57)
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Using equations 2.56, 2.57 and knowing that stretch is the ratio of final r to initial r0

distance between the ends of the chain, we obtain chain stretch λ as

λ =
r

r0

=
a0
2

√
I1

√
3

2
a0

=

√
I1

3
(2.58)

and from equation 2.40 relative stretch λr as

λr =

√
I1

3N e
(2.59)

in terms of first invariant I1 = trC, which is the trace of right Cauchy-Green tensor.

Micro-macro transition is obtained by relating the stretch λ of the single chain relax-

ing in the polymer matrix to the tensor trC of the continuum.

Accordingly, Arruda and Boyce [20] proposed the following model as a function

of the previously defined stretches λ and λr. We will exchange µe

2
I1 term of neo-

Hookean model with the following free energy function proposed by Arruda and

Boyce,

Ψ(λr) = µN [λrL−1(λr) + ln
L−1(λr)

sinhL−1(λr)
] (2.60)

Hence, based on the viscoelastic split equation 2.29, elastic part of extension of the

quadratic version of the volumetric 8-chain model can be represented with the free

energy function using 2.54 and 2.60

Ψe(J, I1) =
λe

4
[(ln(J))2 + (J − 1)2]− µe

3

3N e − 1

N e − 1
(ln J)

+µeN e[λrL−1(λr) + ln
L−1(λr)

sinhL−1(λr)
]

(2.61)

It should be noted that the terms that include J is used in volumetric part of 2.61. µe

shear modulus is replaced with µ̃e = µe

3
3Ne−1
Ne−1

. One should note that when segment

number of chain N e converges to infinity, µ̃e converges to µe and the neo-Hookean

model is recovered. Thus, this model is a generalized version of the neo-Hookean

model. In the free energy function, inverse Langevin function L−1(λr) can be ap-

proximated from the Padé approximation as

L−1(λr) ≈ λr
3− λ2

r

1− λ2
r

(2.62)

proposed by Cohen [52]. Padé approximation is known to give exact results at λr = 0

and worst result around λr = 0.8.
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Following the same approach and using viscous parameters, previously defined scalars

and tensors of viscous branch, the viscous part of the free energy function can be writ-

ten as

Ψve(Je, Ie1) =
λv

4
[(ln(Je))2 + (Je − 1)2]− µv

3

3N v − 1

N v − 1
(ln Je)

+µvN v[λerL−1(λer) + ln
L−1(λer)

sinhL−1(λer)
]

(2.63)
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CHAPTER 3

ALGORITHMIC SETTING FOR THE CONSITUTIVE MODEL

3.1 Kirchhoff stresses

3.1.1 Elastic and viscoelastic Kirchhoff stress expressions

The equilibrium response of the material is represented by a branch including a spring

and viscous (inelastic) response is represented by a parallel branch including a spring

and a dashpot in series. The total Kirchhoff stress is summation of the stresses in

these branches. Thus, the Kirchhoff stress can be decomposed into equilibrium and

viscoelastic parts.

τ = τ e + τ ν where

τ e = 2∂gΨ
e(J, I1) and τ v = 2∂gΨ

ve(Je, Ie1) or

τ e = 2b∂bΨ
e(J, I1) and τ v = 2be∂beΨ

ve(Je, Ie1)

(3.1)

Elastic contribution of the Kirchhoff stress is found by taking derivative of elastic

part of Helmholtz free energy function with respect to metric tensor g, ∂gΨ
e(J, I1).

To evaluate this derivative, one needs ∂λrΨ
e(J, I1). For the sake of simplicity, we will

first take derivative of the third term in the equation 2.61 with respect to g. Thereafter,

other two terms assosicated with U(J) will be taken into consideration in order to

derive remaning part of the elastic Kirchhoff stress. Using L−1(λr) = β

∂[µeN e(λrL−1(λr) + ln L−1(λr)
sinhL−1(λr)

)]

∂λr

= µeN e(β + λrβ
′ + sinhβ

β
[ 1
sinhβ

− β coshβ
sinhβ2 ]β′)

= µeN e(β + λrβ
′ + [

1

β
− coth β]β′)

(3.2)
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Using the relations−L(β) = [ 1
β
−coth(β)] and−L(L−1(λr)) = −λr, this expression

can be further simplified into

∂[µeN e(λrL−1(λr) + ln L−1(λr)
sinhL−1(λr)

)]

∂λr
= µeN e(β + λrβ

′ − λrβ′)

= µeN eβ

(3.3)

Using chain rule, (2.58), (2.59) and the following derivatives

∂λr
∂λ

=
1√
N e

(3.4)

∂λ

∂I1

=
1

6
(
I1

3
)−1/2 =

1

6λ
=

1

6λr
√
N e

(3.5)

∂I1

∂g
=
∂tr(b)

∂g
=
∂(b : g)

∂g
= b : I = b (3.6)

first part of the elastic Kirchhoff stress can be obtained as follows

2
∂Ψ(λr)

∂λr

∂λr
∂λ

∂λ

∂I1

∂I1

∂b
=
µe

3

L−1(β)

λr
b = µ̂eb with

µ̂e =
µ

3

3− λ2
r

1− λ2
r

(3.7)

Volumetric part of the elastic component can be found by taking derivative of elastic

part of volumetric free energy function and using chain rule

2∂gU(J) = 2
∂U(J)

∂J

∂J

∂g
= p̂eg−1 (3.8)

where the following identities are used.

∂J

∂g
=
J

2
g−1 (3.9)

∂U(J)

∂J
=
λ

2
[ln(J)

1

J
+ (J − 1)]− µ̃e 1

J
(3.10)

p̂e = J
∂U(J)

∂J
=
λe

2
(ln(J) + J(J − 1))− µ̃e (3.11)

In this equation, scalar quantity J ∂Ψe

∂J
= p̂e denotes elastic hydrostatic (negative)

pressure. Finally, total elastic Kirchhoff stress is obtained by summing these two

derived stress parts.

τ e = p̂eg−1 + µ̂eb = [
λe

2
(ln(J) + J(J − 1))− µ̃e]g−1 + µ̂eb (3.12)
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Adopting the same approach with viscoelastic parameters p̂v, µ̂v, viscoelastic (inelas-

tic) Kirchhoff stress can be obtained as follows

τ v = p̂vg−1 + µ̂vbe = [
λv

2
(ln(Je) + Je(Je − 1))− µ̃v]g−1 + µ̂vbe (3.13)

Viscoelastic Kirchhoff stress contains be and Je instead of b and J respectively due

to the reasons mentioned in chapter 2.

3.2 Eulerian moduli expressions

3.2.1 Elastic moduli expression

Eulerian moduli of volumetric part for equilibrium (elastic) response can be defined

as

Cvol = 4
∂2U(J)

∂g2
= 2

∂(p̂eg−1)

∂g
(3.14)

Using the chain rule, Cvol can be derived as

Cvol = 2[
∂p̂e

∂g
⊗ g−1 + p̂e

∂g−1

∂g
] = (p̂e + ŝe)g−1 ⊗ g−1 − 2p̂eI (3.15)

where the fourth order tensor is defined as

Iabcdg−1 := [δacδbd + δadδbc]/2 (3.16)

Note that the following derivation for ∂p̂e

∂g
is used in equation 3.15

∂p̂e

∂g
=
∂(J ∂U(J)

∂J
)

∂J

∂J

∂g
= [

∂U(J)

∂J
+ J

∂U2(J)

∂J2
]
J

2
g−1 =

1

2
(p̂e + ŝe)g−1

where ŝe = J2∂U
2(J)

∂J2

(3.17)

Substitution of equation 3.17 into equation left part of 3.15, we can find Cvol. To find

the total equilibrium response, one needs also an additional eulerian moduli expres-

sion associated with remaining Kirchhoff stress term µeb, which can be derived by

taking derivative of 2µeb with respect to g.

2
∂(µeb)

∂g (3.18)
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To find equation 3.18, we must use chain rule and equation 3.7.

2
∂(µ̂eb)

∂g
= 2

∂(µ
e

3
3−λ2r
1−λ2r

b)

∂g
= 2

∂(µ
e

3
3−λ2r
1−λ2r

)

∂λr

∂λr
∂I1

∂I1

∂g
⊗ b+ 2(

µe

3

3− λ2
r

1− λ2
r

)
∂b

∂g
(3.19)

The following derivations and equation 3.6 are required in order to simplify this form.

∂λr
∂I1

=
∂λ

∂λr

∂λr
∂I1

=
1

6λrN e (3.20)

where we have used equations 3.4 and 3.5.

∂b

∂g
=
∂(FG−1F T )

∂g
= 0 (3.21)

By substituting 3.6, 3.20, 3.21 into 3.19 and taking derivative with respect to λr, 3.19

simplifies into

2
∂(µ

e

3
3−λ2r
1−λ2r

)

∂λr

∂λr
∂I1

∂I1

∂g
⊗ b = 2

µe

3

4λr
(1− λ2

r)
2

1

6λrN e
b⊗ b (3.22)

Hence, one can find the final form after simplifications as follows

2
∂(µ̂eb)

∂g
=

4

9

µe

N e

1

(1− λ2
r)

2
b⊗ b (3.23)

Total eularian equilibrium moduli is summation of volumetric modulus and 2∂(µ̂eb)
∂g

,

which represents stress sensivity of elastic branch with respect to elastic strain.

Ce = (p̂e + ŝe)g−1 ⊗ g−1 − 2p̂eI +
4

9

µe

N e

1

(1− λ2
r)

2
b⊗ b (3.24)

3.2.2 Integration of the new evolution equation

Before proceeding to algorithmic moduli for the viscous part, we need the current

value of elastic left Cauchy-Green deformation tensor be at time t = tn+1 since it is

related to non-equilibrium deformation. be is also required for computing the value

of viscous Kirchhoff stress contribution, equation 3.13. Therefore, we need to use

nonlinear Kernel relation in equation, which is derived in [13]. Result of solution is

also dependent on the proposed evolution law.

−1

2
£νbe · b−1

e = d̃i (3.25)
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Since inelastic rate of deformation tensor, d̃i, is also proportional to the effective creep

rate, γ̇, in the direction of Kirchhoff stress, we can also find the following relation.

−1

2
£νbe · b−1

e = γ̇N = d̃i (3.26)

where stress flow is defined as

N =
τ v

‖τ v‖
(3.27)

We should first determine ḃe. Rate of be = F eF
T
e can be derived as

ḃe = Ḟ eF
T
e + F eḞ

T

e (3.28)

By substituting Ḟ e =
˙

FF−1
i = Ḟ F−1

i + F Ḟ
−1

i and Ḟ
T

e = Ḟ
−T
i F T + F−Ti Ḟ

T
into

equation 3.28 and using F = F eF i, li = Ḟ iF
−1
i , l−Ti = Ḟ

−T
i F T

i relations

ḃe = (Ḟ F−1
i + F Ḟ

−1

i )F T
e + F e(Ḟ

−T
i F T + F−Ti Ḟ

T
)

= Ḟ F−1F eF iF
−1
i F

T
e + F el

−1
i F

T
e + F el

−T
i F T

e + F eF
−T
i F TF−T Ḟ

T

= lbe + bel
T + F e(l

−1
i + l−Ti )F T

e

(3.29)

Second part of this equation can be further simplified using l−1
i = F iḞ

−1

i , l−Ti =

Ḟ
−T
i F T

i relations in equation 3.29

F e(l
−1
i + l−Ti )F T

e = F eF i(Ḟ
−1

i F
−T
i + F−1

i Ḟ
−T
i )F T

i F
T
e

= F (
˙

F−1
i F

−T
i )F T = F (

˙
C−1
i )F T

(3.30)

Using equation 3.30 in equation 3.29, we finally end up with

ḃe = lbe + bel
T︸ ︷︷ ︸

E

+F
˙

(C−1
i )F T︸ ︷︷ ︸
I

or ḃe = lbe + bel
T︸ ︷︷ ︸

E

+£νbe︸ ︷︷ ︸
I

(3.31)

First term of the equation 3.31 denoted with E is called elastic predictor and the

second term denoted with I is called inelastic corrector. In analogy to elastoplastic-

ity, such a split of the be is used since it is easy to integrate the evolution law in

this form by sequentially freezing one of the terms E and I in each trial step. For a

time increment tn+1 − tn during the deformation, current value of be can be calcu-

lated approximately using Newton-Raphson iteration and taking advantage of above-

mentioned operator split method. In this sense, during elastic trial step, the inelastic

term
˙

C−1
i is zero, which implies that there is no change in inelastic stretch λi or in
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C−1
i . Therefore, inverse of trial inelastic right Cauchy-Green tensor (C−1

i )tr is equal

to its previous value at t = tn.

(C−1
i )tr = (C−1

i )tn → be
tr = F (C−1

i )tnF
T . (3.32)

In the same manner, in the inelastic corrector step, l := ∇v is equal to zero simpli-

fying equation 3.31 into ḃe = £νbe. This simpler form can be integrated using the

so-called exponential mapping method as folows.

Using equation 3.26 and ḃe = £νbe, we obtain

ḃe = £νbe = [−2γ̇N ]be
tr (3.33)

We can integrate this expression utilizing the so-called exponential mapping in the

time domain [tn, tn+1]

be = exp

[
−2

∫ tn+1

tn

γ̇Ndt

]
be
tr (3.34)

Approximating this equation, we obtain

be ≈ exp [−2γ̇N∆t] be
tr . (3.35)

Since material is assumed to be isotropic, τ e and therebyN are in the same eigenspace

with be and with betr. Hence, they can be written in the principal stretch directions by

exploiting spectral decomposition property of symmetric tensors be = λea
2na ⊗ na,

be
tr = λea

tr2
na ⊗ na and τ v = τana ⊗ na.

λe2a ≈ exp[−2∆tγ̇
τa
‖τ v‖

]λea
tr2

. (3.36)

Taking logarithm of both sides to eliminate exponential, dividing by 2 both sides,

defining ‖τ v‖ =
√
τ v : τ v =

√
2τv and defining principal logarithmic stretches as

ln(λea) = εa, ln(λea
tr) = εtra

εa ≈ −
∆tγ̇√

2τv
τa + εtra (3.37)

By noting that τa and γ̇ also depends on principal stretches λa, one can immediately

realizes that 3.37 is a nonlinear equation. By taking the terms at the right side to the

left side, one can obtain a nonlinear resiual expression ra, which should be solved

using a iterative algorithm such as Newton-Raphson.

ra = εa +
∆tγ̇√

2τv
τa − εtra = 0 (3.38)
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After solving equation 3.38 for ∆εa using a iterative method, we can update εa and

all the other terms including it for the current time step.

In the context of Newton Raphson iteration, we firstly linearize the residual expres-

sion as follows

Lin ra = ra|εk +
∂ra
∂εb

∣∣∣∣
ε=εk

∆εkb = 0 (3.39)

After finding the ∆εkb value that satisfies equation 3.39, εkb is updated and value of ra

is recalculated and checked whether it is below the tolerance or not. If it is not below

tolerance, iteration number is increased and equation 3.39 is forced to become a value

close to zero at the new εkb value (at iteration k + 1) in order to find new ∆εkb . This

loop continues until ra value is within a tolerance around zero determined by the user.

To solve equation 3.39 for ∆εkb , it is written in the following form

∆εkb = −(
∂ra
∂εb

)−1ra = −K−1
ab ra (3.40)

Slope of the residual equation Kab can be derived from equation 3.38 using ∂εa
∂εb

= δab

and ∂εtra
∂εb

= 0 as follows

Kab =
∂ra
∂εb

= δab +
∆t√

2

∂( γ̇
τv

)

∂εb
τa +

∆t√
2

γ̇

τv

∂τa
∂εb

(3.41)

Using equation 2.50, second term of equation 3.41 can be expanded as

∆t√
2

∂( γ̇
τv

)

∂εb
τa =

∆t√
2
τaγ̇0[(λ2 − 1)c

∂τ
(m−1)
v

∂εb
+ τ (m−1)

v

∂(λ2 − 1)c)

∂εb
] (3.42)

where the first term of equation 3.42 can be expanded using the following derivations

∂τv
∂εb

=
∂ ‖τ

v‖√
2

∂εb
=

1√
2

τc
‖τ v‖

∂τc
∂εb

=
1√
2

τc
‖τ v‖

Tcb =
1

2τv
(

3∑
c=1

τcTcb)

where
∂ ‖τ v‖
∂τ v

=
∂
√
τ v : τ v

∂τ v
=

1

2

1

‖τ v‖
2(I : τ v)

or in indicial notation
∂ ‖τ v‖
∂τ v

=
τc
‖τ v‖

(3.43)

In the above equation, there is a summation over c from 1 to 3. Then, the first term of

equation 3.42 simplifies into

∆t√
2
τaγ̇0(λ2 − 1)c

∂τ
(m−1)
v

∂εb
=

∆t√
2
τaγ̇0(λ2 − 1)c

∂τ
(m−1)
v

∂τv

∂τv
∂εb

= (
∆t

2
√

2
(m− 1)γ̇0(λ2 − 1)cτ (m−3)

v )τa(
3∑
c=1

τcTcb) = β1τaD
(3.44)
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Using the following relation

∂λ

∂λa
=
∂(

λ21+λ22+λ23
3

)
1
2

∂λa
=

2λa
3

1

2λ
=
λa
3λ

(3.45)

second term of equation 3.42 can be simplified as

∆t√
2
τaγ̇0τ

(m−1)
v

∂(λ2 − 1)c

∂λ
=

∆t√
2
γ̇0τ

(m−1)
v τa[c(λ

2 − 1)(c−1)2λ
∂λ

∂εb
]

=
∆t√

2
γ̇0τ

(m−1)
v τa[c(λ

2 − 1)(c−1)2λ
∂λ

∂λa

∂λa
∂ ln(λa)

∂ ln(λa)

∂ ln(λb)

∂ ln(λb)

∂εb
]

=
∆t√

2
γ̇0τ

(m−1)
v τa[c(λ

2 − 1)(c−1)2λ
λa
3λ
λaδab1]

= (
2

3

∆t√
2
γ̇0τ

(m−1)
v c(λ2 − 1)(c−1))τaλ

2
b = β2τaλ

2
b

(3.46)

Third term of equation 3.41 can be simplified as β3Tab. Thus, using the equations

3.44 and 3.46in equation 3.41 we can define Kab as

Kab = δab + β1τaD + β2τaλ
2
b + β3Tab (3.47)

Lastly, we need to derive Tab before using Kab in NR-iteration algoritm.

Tab =
∂τa
∂εb

=
∂(µv

3
3−λ2r
1−λ2r

λ2
a)

∂εb

=
µv
3

[
∂(3−λ2r

1−λ2r
)

∂εb
λ2
a +

∂λ2
a

∂εb

3− λ2
r

1− λ2
r

]

(3.48)

where using the previously derived expressions, the first term of equation 3.48 sim-

plifies into

µv
3
λ2
a

∂(3−λ2r
1−λ2r

)

∂εb
=
µv
3
λ2
a[
∂(3−λ2r

1−λ2r
)

∂λr

∂λr
∂λ

∂λ

∂λa

∂λa
∂ln(λa)

∂ln(λa)

∂ln(λb)

∂ ln(λb)

∂εb
]

=
µv
3
λ2
a[

4λr
(1− λ2

r)
2

1√
Nv

λa

3λr
√
Nv

λaδab] =
4

9

µv
Nv

1

(1− λ2
r)

2
λ2
aλ

2
b

(3.49)

and the second term is obtained as

µv
3

3− λ2
r

1− λ2
r

∂λ2
a

∂εb
=
µv
3

3− λ2
r

1− λ2
r

[
∂λ2

a

∂λa

∂λa
∂λb

∂λb
∂ ln(λb)

∂ ln(λb)

∂εb
]

=
µv
3

3− λ2
r

1− λ2
r

[2λaδabλb] =
2

3
µv

(3− λ2
r)

(1− λ2
r)
λ2
a

(3.50)
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Substituting above expressions into 3.48, we finally obtain Tab as follows, which is

used in calculating equation 3.47.

Tab =
4

9

µv
Nv

1

(1− λ2
r)

2
λ2
aλ

2
b +

2

3
µv

(3− λ2
r)

(1− λ2
r)
λ2
a (3.51)

The steps of the local Newton iteration are summarized in table 3.1.

Table 3.1: Steps of local Newton iteration

1. Set initial values k = 0, εka = εtra

DO

2. Residual equation ra := εa +
∆t√

2

γ̇

τv
dev τa − εtra = 0

3. Linearization Lin ra = ra|εk +
∂ra
∂εb

∣∣∣∣
ε=εk

∆εkb = 0

4. Compute Kab :=
∂ra
∂εb

∣∣∣∣
ε=εk

5. Solve ∆εka = −K−1
ab ra

6. Update εk+1
a ← εka + ∆εka

k ← k + 1

WHILE TOL ≤ ‖ra‖

After the update of logarithmic stretch, one can update elastic stretch λea = exp(εea),

which is used in updating be = λe
2

a na ⊗ na and C−1
i = F−1beF

−T .

3.2.3 Algorithmic moduli for the viscous part

Derivations of previous section are needed for deriving algorithmic moduli for vis-

cous part, which will be derived in this section. Firstly, the spectral decomposition of

the trial elastic deformation tensor is

F tr
e =

3∑
a=1

λea
trna ⊗N a (3.52)
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Kirchhoff stress and second Piola-Kirchhoff stress is related to F tr
e as follows

S̃ = F tr−1

e τ vF tr−T

e (3.53)

where Kirchhoff stress and second Piola-Kirchhoff stress are defined as

τ v =
3∑

a=1

τana ⊗ na (3.54)

S̃ =
3∑

a=1

saN a ⊗N a (3.55)

Using the relation in equation 3.53, we get the following relation between indicial

coefficients τa and sa.

sa =
τa
λetr2a

(3.56)

We can derive Cv
algo from the stress increment ∆S̃ due to the increment in trial right

Cauhcy-Green tensor Ctr
e . Incremental rate equation can be defined as

2∆S̃ = Cv
algo : ∆Ctr

e

where C
v
algo = 2∂

Ctr
e
S̃

(3.57)

Using 3.56 in 3.55 and examining, we can deduce thatCv
algo is a two term expression.

First term is due to derivative of coefficient of S̃, while the second term is due to

derivative of dyadic multiplication with respect toCtr
e . Thus, using the multiplicative

rule
C
algo
v = 2∂Ctr

e
sa(N a ⊗N a) + 2sa∂Ctr

e
(N a ⊗N a)

C
algo
v = 2

∂( τa
λetr2a

)

∂Ctr
e

N a ⊗N a + 2(
τa
λetr2a

)∂Ctr
e

(N a ⊗N a)
(3.58)

The first term of equation 3.58 can be expanded by using chain rule.

2
∂( τa

λetr
2

a

)

∂Ctr
e

N a ⊗N a = 2
∂( τa

λetr
2

a

)

∂λetr
2

b

N a ⊗N a ⊗
∂λetr

2

b

∂Ctr
e

where

2
∂( τa

λetr2a

)

∂λetr
2

b

= 2[
1

λetr2a

∂τa
∂εtrb

∂εtrb
∂ ln(λetrb )

∂ ln(λetrb )

∂λetrb

∂λetrb
∂λetr

2

b

+ τa(
∂( 1

λetr2a

)

∂λetrb
)
∂λetrb
∂λetra

∂λetra
∂λetr2a

]

= 2[
1

λetr2a

cab
1

λetrb

1

2λetrb
+ τa

−2

λetr3a

δabδba
1

2λetra
]

=
cab − 2τaδab

λetr2a λetr
2

b

(3.59)
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and since Ctr
e = λetr

2

b N b ⊗N b

∂Ctr
e
λetr

2

b = N b ⊗N b (3.60)

Then, the first term of Calgo
v is found by substituting 3.59 and 3.60 into first term

of 3.58. Since there is a summation over a and b, we also add previously omitted

summation symbol.
3∑

a=1

3∑
b=1

[
cab − 2τaδab

λetr2a λetr
2

b

]N a ⊗N a ⊗N b ⊗N b (3.61)

or if define fourth order tensor

M a = N a ⊗N a and M b = N b ⊗N b

or in indicial notation

M IJ
a = N I

aN
J
a and MKL

b = NK
b N

L
b

(3.62)

M IJ
a has 27 elements since a, I and J take values between 1 and 3. SimilarlyM IJ

a MKL
b

has 729 elements. They can be easily calculated and stored using a programming lan-

guage. Hence, it is possible to express 3.61 as
3∑

a=1

3∑
b=1

[
cab − 2τaδab

λetr2a λetr
2

b

]M IJ
a MKL

b (3.63)

As observed from equation 3.61, we should also derive cab. Since it is defined as ∂τa
∂εtrb

if we take a intermediate derivative with respect to εc as follows

cab =
∂τa
∂εtrb

=
∂τa
∂εc

∂εc
∂εtrb

= Tac
∂εc
∂εtrb

(3.64)

where we used the definition of Tac, which is equation 3.51. Now, in order to derive
∂εc
∂εtrb

, we can take the total derivative of residual expression ra with respect to εtrb and

equate it to zero since ra is zero. Using the intermediate partial derivative with respect

to εc, we obtain the total derivative as

dra
dεtrb

=
∂ra
∂εtrb

+
∂ra
∂εc

∂εc
∂εtrb

= 0

= −δab +Kac
∂εc
∂εtrb

= 0

=
∂εc
∂εtrb

= K−1
ac δab

=
∂εc
∂εtrb

= K−1
cb

(3.65)
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Hence, inserting the equation 3.65 into the definition of cab 3.64, we finally end up

with

cab = TacK−1
cb (3.66)

which is used in the first part of Calgo
v . For deriving second term of Calgo

v , we should

adopt the first part of equation 3.57. Hence, using spectral decomposition expression

of S and multiplicative rule of infinite-small increment

2∆S̃ = 2∆[(saN a ⊗N a)] = 2∆sa(N a ⊗N a) + 2sa(∆N a ⊗N a +N a ⊗∆N a)

(3.67)

where the first term of above equation has been already found. Therefore, our interest

is on the second term. To simplify this form, we should use skew-symmetric spin

tensor expression ∆N a =
3∑
b=1

ΩabN b. Substituting this expression into second term

of 3.67

2sa(ΩabN b ⊗N a +N a ⊗ ΩabN b) (3.68)

By exchanging a and b in the first part of the above equation and using the property

Ωab = −Ωba for skew-symmetric tensors, it simplifies into

2(sa − sb)Ωab(N a ⊗N b) (3.69)

Similarly, we can express the second part of ∆Ctr
e , using spectral decomposition

(λetr
2

a − λetr2b )Ωab(N a ⊗N b) (3.70)

Since (λetr
2

a − λetr2b )Ωab denotes off-diagonal elements Ctr
eab

of Ctr
e , we can express

Ωab alternatively as

Ωab =
Ctr
eab

(λetr2a − λetr2b )
(3.71)

Since ∆Ctr
e = Ctr

eaa(N a ⊗N a) + Ctr
eab

(N a ⊗N b), Ctr
eab

can be expressed as

Ctr
eab

=
(N a ⊗N b +N b ⊗N a)

2
: ∆Ctr

e (3.72)

Inserting above equation into equation 3.71,

Ωab =
(N a ⊗N b +N b ⊗N a)

2(λetr2a − λetr2b )
: ∆Ctr

e (3.73)
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Now, substituting equation 3.73 into equation 3.69, and noting that there is summation

over a and b,

2(sa − sb)Ωab(N a ⊗N b)

=
3∑
a6=b

3∑
b=1

sa − sb
(λetr2a − λetr2b )

(N a ⊗N b ⊗N a ⊗N b +N b ⊗N a ⊗N a ⊗N b) : ∆Ctr
e

(3.74)

where in the summation, a 6= b is added due to the fact that expression is derived

from the skew-symmetric tensor Ωab, of which diagonal elements are zero. Since it is

easier to implement, this expression can be written in indicial notation as follows
3∑
a6=b

3∑
b=1

sa − sb
(λetr2a − λetr2b )

(N I
aN

J
b N

K
a N

L
b +N I

bN
J
aN

K
a N

L
b )

=
3∑
a6=b

3∑
b=1

sa − sb
(λetr2a − λetr2b )

(M IK
a MJL

b +MJK
a M IL

b )

=
3∑
a6=b

3∑
b=1

sa − sb
(λetr2a − λetr2b )

(Gab)

(3.75)

Hence, we finally come up with the expression of Calgo
v by summing equations 3.63

and 3.75

C
algo
v =

3∑
a=1

3∑
b=1

[
cab − 2τaδab

λetr2a λetr
2

b

]M IJ
a MKL

b +
3∑
a6=b

3∑
b=1

sa − sb
(λetr2a − λetr2b )

(Gab +Gba)

2

(3.76)

Here, we have used (Gab+Gba)
2

instead of Gab in order to make sure that the tensor

is symmetric. However, expression 3.76 is still in the fictitious intermediate config-

uration. By executing the push-forward operation via F tr
e , the algorithmic moduli

expression in the current configuration is obtained as

Cv
algo

ijkl = F tr
e
i

I F
tr
e
j

J F
tr
e
k

K F tr
e
l

L C
v
algo

IJKL (3.77)

Terms τa, cab, λetr
2

a , sa can be calculated using previously derived expressions after

NR algorithm converges and update logarithmic stretches for a certain time interval.

This is repeated for each time increment.

Equation 3.76 possesses singularity when trial eigenvalues are equal to each other,

λea
tr = λeb

tr. Hence, we must apply L’Hospital’s rule :

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
if lim

x→a

f(x)

g(x)
=

0

0
(3.78)
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Hence, by applying the rule, one can obtain

lim
λea

tr→λeb
tr

sa − sb
λea

tr2 − λeb
tr2 =

1

2

caa − 2τa

λea
tr4 . (3.79)
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CHAPTER 4

VALIDATION OF THE MODEL AND IDENTIFICATION OF THE

MATERIAL PARAMETERS

4.1 Uniaxial and volumetric experiments

To validate the model proposed in the previous section, experiments performed by a

research group at University of Maryland were used. In the uniaxial and volumetric

compression experiments, a silica filled epoxy molding compound (EMC) specimen

was used and it is exposed to constant stress values at various temperatures, which

covers all transition ranges of the material (above and below Tg) as stated in [5]. Ac-

cording to test results, EMC shows viscoelastic response in hydrostatic and uniaxial

loading conditions. EMC is a thermosetting polymer and mostly used as casing of

some semiconductors apart from its usage in other products. Hence, it is important to

predict stress-strain behaviour of EMC as a function of time via FEA programs.

In both test types, a cylindrical specimen made up of EMC was used. Cylindrical

specimen with a radius of 31.75 mm was cured by applying large pressure through a

mechanical plunger. Curing temperature was achieved by arranging temperature of

a hot plate connected to the mold, within which specimen was located. After cur-

ing temperature was reached, required pressure was applied in uniaxial direction via

pneumatic cylinder. Then, the specimen was released from mold for 5-min curing

time. Finally, post-mold curing process (same temperature without pressure) was ap-

plied to the specimen for 2 hours as stated in [5]. A fiber Bragg grating (FBG) sensor

was used to measure the strain as a function of time during loading. The sensor was

inserted inside the cylinder through a hole located at the center of the cylinder.
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4.1.1 Uniaxial compression test

Uniaxial tests were performed in the same test set-up used in the fabrication process,

which is shown in Fig. 4.1. Diameter of the chamber is larger than that of specimen to

allow radial deformation without shear stress under compression load. Via pneumatic

cylinder, air is compressed so that plunger applies a constant compressive pressure

to the specimen. The mold assembly is mounted on high precision hot plate so that

required temperature is reached. During deformation, data is collected and transferred

from the FBG sensor. Specimen was subjected to 1 MPa constant pressure and it is

reached in 1 seconds.

Figure 4.1: Mold assembly for uniaxial compression test [5]

4.1.2 Hydrostatic pressure test

The required pressure to deform the specimen under hydrostatic load is higher than

that of uniaxial loading. Thus, a different set-up is used as shown in Fig. 4.2. In

this set-up, the specimen is placed in a smaller cylindrical chamber so that the small

amount of air (900 mm3) surrounding the specimen can be compressed in an easier

way. Hence, a high constant pressure can be applied. Due to high pressure applied,

sealing around the fiber is done by utilizing a deformable sealant so that it applies

pressure to prevent leakage. Gas inlet to the chamber is achieved by the usage of
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a gas tank and pressure regulator. Pressure is controlled with feedback to the main

computer via a transducer that belongs to pressure regulator. Specimen was subjected

to 1 MPa constant pressure and it is reached in 1 seconds.

Figure 4.2: Setup for hydrostatic test [5]

4.2 Implementation of the model

To validate the model, same stress conditions should be generated in the finite ele-

ment model. For this purpose, the model was implemented in FEAP (Finite Element

Analysis Program), which is an open source program. A quarter of a complete cube

is used by making use of the symmetry about x-y and x-z planes so that internal areas

of the complete cube is restricted to move in y and z directions. The unit cube with 1

mm edge length in all three eigenvector directions was meshed with one element so

that there is not a displacement gradient throughout the load application area. 1 mm

edge length was used so that strain values was easier to interpret since displacements

are presented in out.dat file produced by FEAP and they are same as strain values.

Besides, the load is divided by an area of 1 mm2 so that load is equal to the stress.

Single element is good enough for this geometry and results are obtained in a more

rapid way. Simulations with up to 100 elements were tested to see displacement dif-

ference. With more elements, simulation takes too much time and except the corner

parts, displacements are close enough to one element case. Corners of the cube de-
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flects more while center part of the cube deflects less. This is due to boundary effect.

In one element case, all points of the top surface area deflect same amount, which

makes easier to interpret data without lack of precision. Two of the cube’s internal

Time = 2.00E+02

-4.32E-04

-3.93E-04

-3.54E-04

-3.15E-04

-2.75E-04

-2.36E-04

-1.97E-04

-1.57E-04

-1.18E-04

-7.86E-05

-3.93E-05

-4.72E-04

 0.00E+00

_________________ DISPLACEMENT 1 

Time = 2.00E+02

Time = 2.00E+02Time = 2.00E+02Time = 2.00E+02Time = 2.00E+02Time = 2.00E+02Time = 2.00E+02

X

Y Z

Fixed surf. in X

Fixed surf. in Y and Z

Figure 4.3: Uniaxial deformation of the cube

side surfaces were restricted to deflect in y and z directions (uy = 0, uz = 0) while the

opposite surfaces were free to deflect. In this way, symmetry with respect to x-y and

x-z planes was exploited to obtain the same boundary conditions in the experiment.

Bottom surface was also restricted to move in x direction (ux = 0). Uniaxial load

was applied in negative x direction and it was applied to 4 nodes on the top surface.

To apply a total pressure of -1 MPa on the top of the cube with a cross-section area

of 1 mm2, -0.25 N force was applied to each one of four nodes within 1 seconds and

then it was kept constant. Thus, the same stress conditions were established as the

specimen tested. With deformation, cross-section area of the cube increases in this

case and this leads to a decrease in stress as opposed to volumetric test. However,

since variation of area was small, a variable load was not applied. In the left part of

Fig. 4.3, deformed and undeformed meshes can be observed with a scaling factor of

100.

Same boundary conditions were applied for the hydrostatic analysis. -1 MPa load was

applied to all three perpendicular surfaces and they were applied to 4 nodes on the

surfaces as -0.25 N. In this case,the cube was forced to deflect in all directions, which

decreases its volume as shown in Fig. 4.4. Deformation is shown with a scaling factor

of 500 as it is much smaller than reality in this case. Deflection is same for all three

directions due to the symmetrical loading and geometry.
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4.3 Sensitivity of the constitutive model to material parameters

In this section, parameters of the model developed in chapter 3 will be investigated

and effect of each parameter will be explained relating them to the rheological vis-

coelastic model in Fig. 2.19. In accordance with this purpose, volumetric and uniaxial

creep responses of the silica filled epoxy compound at 145◦C are plotted for various

values of each parameter and keeping other parameters constant. This temperature is

selected since it is close to the glass transition temperature of the material and creep

responses of both volumetric and uniaxial tests are distinct. Moreover, the model is

also investigated by simulating other viscoelastic behaviours although there are not

experimental data for some of these behaviours. Parameters of the epoxy used in

cyclic loading with intermediate stress relaxation steps are used for demonstrating

effects of creep rate parameter γ̇0, power term m and viscous shear modulus µv on

cyclic loading.

4.3.1 Effect of equilibrium bulk modulus κe

Bulk modulus κe can be considered as the resistance to the volumetric change. A

bigger bulk modulus means that forcing a body to deform by changing its volume is

harder compared to the lower values of κe since hydrostatic pressure p on the surface

of the body reaches to very high values. During deformation of the body, the free

energy function (or stored energy) due to volumetric effects increases with determi-
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nant of deformation tensor det(F ) = J . Equilibrium bulk modulus determines the

stiffness of the material at time t = t∞, at which the material comes to an equilibrium

and strain reaches its maximum value ε∞. Thus, by changing κe, stored volumet-
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Figure 4.5: Effect of equilibrium bulk modulus κe on volumetric (on the left) and

uniaxial (on the right) creep at 145◦C

ric energy of the material under the hydrostatic pressure can be changed. This can

be observed in Fig. 4.5. For higher values of κe, equilibrium value of volumetric

creep is smaller compared to lower values since the material behaves stiffer to the ap-

plied constant load. We can think of this process from the rheological model in Fig.

2.19. Equilibrium branch of the model carries most of the suddenly applied load by

stretching in small amounts initially. The rest of the load is carried by the spring (or

the dashpot since they are connected in series) of viscous branch since the dashpot is

stiff and does not expand much due to its viscosity upon suddenly applied load. In

other words, two branches shares the applied load in accordance with their stiffness

ratio. As time passed by, the dashpot expands (associated with relaxing chains and

related with creep rate formula) by releasing the tip of the viscous spring and conse-

quently reducing the carried load by viscous branch and increasing the carried load by

the equilibrium spring. Hence, equilibrium strain value is reached when whole load

is carried by equilibrium branch. This time dependent behaviour is observed in Fig.

4.5 between 1-200 seconds. Another important observation from the figure is that

difference between initial and equilibrium is smaller for higher values of κe. This is

because of the fact that the equilibrium spring takes most of the applied load initially
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and importance of the dashpot is reduced with less amount of load on it. Thus, it

expands in a smaller amount to come to the equilibrium since viscoelastic strain mea-

sure be on dashpot is already small. Therefore, transition from initial to equilibrium

strain value within first 20 seconds is with a smaller strain rate as can be observed

from the curvature with very small radius of dotted blue line (κe × 2) in Fig. 4.5.

In polymers, deforming the body in uniaxial direction (tension or compression) mostly

leads to shear deformation (shape dependent or isochoric) rather than volumetric de-

formation, which makes shear modulus µ a more important parameter in terms of time

dependent and equilibrium response. Thus, in many cases under the uniaxial loading,

rubber-like materials tend to deform without changing their volume (ν = 0.5) and

they are assumed to be incompressible by many researchers. Uniaxial creep also de-

pends on κe but not as much as volumetric creep and this can be understood from less

dominant above-mentioned behaviours in uniaxial creep response of Fig. 4.5.

4.3.2 Effect of equilibrium shear modulus µe

Equilibrium shear modulus µe is related with the spring of equilibrium branch and

denotes the elastic stiffness of the material. It influences creep behaviour in the same

manner with κe except that it stores energy due to shape change deformation (iso-

choric) and stored energy can be considered as a function of total strain measure b.

In a hydrostatic test, volumetric deformation is only related with bulk modulus. The

material is forced to deform by shearing in uniaxial deformation. As a result of this,

various values of µe make only a difference in uniaxial creep behaviour as illustrated

in Fig. 4.6. Creep behaviour shown with dotted red line has less shear modulus

value meaning that equilibrium branch carries a lower amount of load. Thus, the vis-

cous branch initially takes significant amount of the applied load compared to higher

µe values. Initial elastic strain is also higher in magnitude due to lower stiffness of

equilibrium branch. Then, as the dashpot relaxes, the change in strain is more distinct

and converges to greater (in magnitude) equilibrium strain value with higher rate for

low µe. Creep rate or ḃe is higher especially between 1-20th seconds due to dominant

elastic stretch in creep rate law. This difference in creep rate reduces as strain gets

close to the equilibrium value regardless of value of parameters.
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Figure 4.6: Effect of equilibrium shear modulus µe on uniaxial creep at 145◦C

4.3.3 Effect of viscous shear modulus µv

Viscous shear modulus µv denotes the stiffness of the spring in the viscous branch of

the rheological model. As always, as we increase the value of µv, a greater portion of

load is carried by the dashpot or the spring initially. Higher values of viscous shear

modulus can be selected in order for the viscous branch to carry more load. Thus, the

remaining smaller amount of load results in a smaller initial elastic straining (shown

in dotted blue line with µv × 2). However, equilibrium load or final strain value

must be same regardless of µv and this is also shown in the result of Fig. 4.7 via

convergence of all lines to the same final strain value. Creep rate γ̇ is high for greater

µv values since magnitude of stress carried by the dashpot increases. Also, elastic

stretch λe initially takes greater portion of total stretch λ leading to greater creep rate

at stretched state for all µv values. This fact can be observed from the part where

creep rate equation derived. Elastic stretch, λe takes smaller values at the stretched

and relaxed state resulting in a smaller creep rate γ̇ and consequently smaller rate of

elastic part of left Cauchy-Green tensor ḃe (measure of strain on the viscous spring)

around equilibrium point. As elastic strain λe on the viscous branch spring is greater,

initial change in strain is steeper for µv×2 compared to other curves. At equilibrium,

whole applied load is carried by the equilibrium spring. Differences between all three

curves are only how fast they reach equilibrium value and magnitude of initial elastic
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Figure 4.7: Effect of viscous shear modulus µv on uniaxial creep at 145◦C

strain.

4.3.4 Effect of viscous bulk modulus κv

Response of the model to the changes in viscous bulk modulus κv is the same with vis-

cous shear modulus except that it generally affects volumetric behaviour and affects

uniaxial behaviour in a smaller amount. From rheological model point of view, small

values of κv transfers all the applied load to the equilibrium branch, which causes the

initial total strain to be greater in magnitude as shown in Fig. 4.8. Also, relatively

low stress on the dashpot minimise creep rate and strain rate resulting in very long

volumetric creep duration as observed from green line(κv × 0.2). An increment in κv

brings along greater changes in strain in first 20 seconds because of the same reason

mentioned for µv. After 20 seconds, this is not apparent since elastic stretch, λe is

close to 1.

Another important observation is that making κv very large does not influence creep

behaviour significantly. This is probably because of high initial creep rate observed in

the dashpot due to significant amount of viscous stress applied to it so that it quickly

creeps although initial strain is small. Same reasoning also applies to very large val-

ues of viscous shear modulus µv.
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(on the right) creep at 145◦C

4.3.5 Effect of creep rate parameter γ̇0

Creep rate parameter γ̇0 directly affects viscosity of the dashpot as shown in Fig. 4.9.

Very small values of γ̇0 decreases evolution of creep γ̇ and thereby strain rate (dotted

blue line (γ̇0 × 0.005). Thus, one can say that the dashpot has high viscosity for

very small values of γ̇0 and vice versa. Also, dotted blue curve starts to decline at

a lower total strain value because of the stiffer dashpot while there is not a distinct

difference in other curves. Slope of strain for dotted blue curve stays nearly constant

since evolution of elastic stretch λe and stress is small for longer durations in contrast

to the other cases.

4.3.6 Effect of power term m

Evolution equation is also dependent on power term m due to the energy or stress

dependence term ( τv
τ̂

)m added to it. Since τv is smaller than 1 MPa, increasing m

value decreases creep rate and makes the dashpot very stiff as shown in Fig. 4.10.

However, slope of strain is constant for longer durations as previously mentioned.

Taking m small cause the dashpot to have low viscosity and the equilibrium spring

reaches equilibrium strain at the instant of loading (green line m× 0.2).
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right) creep at 145◦C

4.3.7 Cyclic behaviour

Zig-zag strain input is generally applied to polymeric materials to observe their dis-

sipative nature and behaviour under load that alters direction. In Fig 4.11, area under

the stress-strain curve gives the energy dissipated by the material during deformation.

Input strain value is varied between -0.01 and 0.01 in 2 cycles and duration is 200

seconds. Stress during loading is higher than unloading. When strain value reaches

zero after first half cycle (t = 50 s), there is still negative stress in the material due

to relaxation. When the material is loaded in the negative direction, residual stress
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is positive. Besides, during the initial part of unloading in the opposite direction (t =

25 s), slope of the curve is steeper since the dashpot resists to shrink and therefore, it

directly makes viscous branch more stiffer under compressive load. Then, stress de-

creases with a smaller constant slope as the dashpot shrinks. Cyclic behaviour of the
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Figure 4.11: Input strain (on the left) and cyclic behaviour (on the right) at 145◦C

previously mentioned epoxy compound is examined with various values of important

viscous parameters : µv, m and γ̇0. The effects of parameters are associated with the

elements of rheological model and are used to make fitting process easier.

4.3.8 Effect of viscous shear modulus µv on cyclic behaviour with intermediate

relaxation steps

The first parameter examined is µv, which influences amount of initial stress produced

in the spring of viscous branch. In progress of time, stress in the spring relaxes

due to the elongation of the dashpot reducing consistent tangent moduli. This is

observed in Fig. 4.12 as both stress and slope converging to the same values for two

different values of µv although more energy dissipation occurs when we double µv.

At a constant strain of 0.01, the model is allowed to relax with a duration of 800

seconds in both loading and unloading. It is observed that 800 seconds is not enough

for the model to relax completely as terminal points of loading and unloading does

not meet in an equilibrium line. However, we should expect such a line since model

is viscoelastic. It is possible for the model to reach this line sooner by increasing
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relaxation rate or in other words power term m and creep rate parameter γ̇0.
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Figure 4.12: Effect of parameter µv on cyclic behaviour with intermediate relaxation

steps at 150◦C

4.3.9 Effect of power term m on cyclic behaviour with intermediate relaxation

steps

Power term parameterm enhances relaxation rate especially when high viscous stress

exists as m is a power term of viscous stress. In Fig. 4.13, the effect of m on cyclic

deformation is shown. Relaxation rate is smaller for m× 0.95, therefore, at the same

strain, total stress is higher with higher dissipation.

4.3.10 Effect of creep rate parameter γ̇0 on cyclic behaviour with intermediate

relaxation steps

Same as m, creep rate parameter γ̇0 also affects relaxation rate but in a linear rela-

tionship. Besides, it reduces stress in all strain regime same amount while m affects

stress at large strain regime in a greater amount.
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4.3.11 Effect of strain rate

Viscoelastic materials are known to have a dependency on strain-rate. Applying load

in a very fast way increases resistance shown by the material. In other words, the

dashpot in viscous branch becomes stiffer as can be understood from the evolution

law of be. This is shown in Fig. 4.15 with high stress values at the same strain value

for faster loadings. Thus, the material has path dependency. Moreover, history of

deformation is important for the material.
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Figure 4.15: Input strain (on the left) and effect of strain rate (on the right) at 145◦C

4.3.12 Creep recovery

If the material is loaded up to some constant stress value and then load is removed

suddenly, the material does not return to its unloaded state as an elastic material as

shown in Fig. 4.16. Instead, elastic part of strain returns to zero rapidly. Then,

remaining inelastic strain starts to decline with time and altering rate. During this

process, the dashpot returns to its original position as chain segments start to unwind

and rotate at junction points. This process may be very slow. Since the material is a

thermoset with crosslinks, there is not permanent strain value unlike thermoplastics.
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Figure 4.16: Input strain (on the left) and creep recovery (on the right) at 145◦C

4.4 Comparison of LVE and NLVE models

In order to observe capability difference between linear and non-linear viscoelastic

models, the evolution law of the viscous deformation (creep rate equation) is made

linear, which is accomplished by making m equal to 1 and power of the bracket term

equal to 0 in the evolution equation 2.50. In Fig. 4.17, the dotted red lines corre-

sponds to the linear viscoelastic simulation response while straight lines corresponds

to the non-linear viscoelastic simulation response for both volumetric and uniaxial

creep. To observe better with a closer view, creep responses for 40 seconds are also

presented. Creep rate is a function of stress amplitude and amount of viscous stretch

in the dashpot which are considered in NLVE model. This gives the ability of captur-

ing slope of creep curve (or rate) at each strain-time point in an easier way compared

to LVE model. Stress and amount of strain dependence of creep rate can not be taken

into consideration in LVE model. Thus, creep response of the conducted tests are

better predicted with NLVE model.

4.5 Parameter identification from creep tests

In this section, experimental results mentioned in the previous section are simulated

with model by taking the effect of 6 parameters on creep behaviour into consideration.

Tests are performed at 18 different temperatures. Around glass transition temperature
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Figure 4.17: Comparison of LVE model and NLVE model for uniaxial creep (on the

top), volumetric creep (on the bottom) and for 40 seconds (on the left), 200 seconds

(on the right) at 145◦C

(130◦C), tests are performed for each 5◦C temperature difference. Temperatures are

between 45◦C and 235◦C for the performed tests. Only 5 comparison will be given in

this chapter and the remaining comparisons are available in appendix A.

Strain values are normalized by dividing the strain by maximum strain reached dur-

ing 200 seconds since test conductor that supplied data keeps them private. Uniaxial

strain values are greater in absolute magnitude than volumetric strain values as ex-

pected. This is because of the fact that deforming polymeric material’s body in all

directions (hydrostatic deformation) is very hard. On the contrary, it is easy to deform

by applying the force (isochoric deformation) in one direction. In general, there is

4-5 times of magnitude difference between the creep results of uniaxial and volumet-

ric tests. However, in test results below 110◦, uniaxial strain value in magnitude is

smaller than volumetric strain value reached at equilibrium and also at initial load-
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Figure 4.18: Volumetric (on the left) and uniaxial (on the right) creep test at 235◦C

ing. Also, change of the uniaxial strain data with 5◦C temperature drops are higher

in magnitude than it should be at temperatures below 120◦. This is not appropriate

considering the natural response of epoxy based material. From the tests performed

Time [s]Time [s]

S
tr
a
in
/
M
a
x
S
tr
a
in

S
tr
a
in
/
M
a
x
S
tr
a
in

Volumetric creep Uniaxial creep

Exp. 145◦CExp. 145◦C

Model 145◦CModel 145◦C
−0.2−0.2

−0.4−0.4

−0.6−0.6

−0.8−0.8

−1−1

−1.2−1.2
0

0

0

0

4040 8080 120120 160160 200200

Figure 4.19: Volumetric (on the left) and uniaxial (on the right) creep test at 145◦C

at different temperatures in figures 4.18, 4.19, 4.20, 4.21, 4.22, it is observed that

viscoelastic time dependent behaviour is more apparent around glass transition tem-

perature (Tg = 130◦C) as time dependent behaviour starts at a lower strain/max. strain

value and continues up to the normalized value of -1 (equilibrium value). In the range

of high temperatures, as mentioned in the second chapter, the curve rapidly declines

to a strain close to the equilibrium value and slope of strain curve becomes constant

after a rapid transition from vertical part to horizantal part of the curve. On the con-
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trary, creep response around Tg still has a negative slope after 200 seconds, which

shows that viscoelastic effects are maximum around Tg and have not diminished yet.

This is due to the mobility of molecular chains of the material and the significant free

volume at high temperatures. At high temperatures, the material is in a rubbery state

and free volume is so large that viscoelastic effects occurs instantaneously. However,

there is a limit that strain value of the material can reach since epoxy based polymers

are thermosets with primary bonds (entanglements and crosslinks).
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Figure 4.20: Volumetric (on the left) and uniaxial (on the right) creep test at 130◦C
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Figure 4.21: Volumetric (on the left) and uniaxial (on the right) creep test at 125◦C

Below Tg in Fig. 4.22, the free volume and slope of it (thermal expansion) are rela-
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tively smaller. Consequently, viscoelastic effects are little (like a solid) and the ma-

terial behaves like a glassy solid, of which equilibrium and initial strain values are

close to each other.
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Figure 4.22: Volumetric (on the left) and uniaxial (on the right) creep test at 95◦C

Parameters used in fitting for simulation at each temperature are tabulated in table

4.1.

4.6 Variation of material parameters with temperature

Variation of some parameters and ratio of that parameters with temperature are im-

portant to understand the response. Thus, in this section, Poisson’s ratio, ratio of

viscous bulk modulus to equilibrium bulk modulus, ratio of viscous shear modulus to

equilibrium shear modulus will be presented as functions of temperature.

4.6.1 Variation of Poisson’s ratio over temperature

As observed in Fig. 4.23, initial Poisson’s ratio νinst and equilibrium Poisson’s ratio

of the characterized material are nearly constant for temperatures above 160◦C and

they decline rapidly around Tg. This is an expected variation and also common in

literature since around Tg there is a sudden drop in all parameters as stated in [41].

Poisson’s ratio is obtained from the κ and µ values using the following well-known
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Table 4.1: Identified parameters from creep tests at various temperatures

Temperature [◦C] κe [MPa] µe [MPa] κv [MPa] µv [MPa] γ̇0 m

45 5100 17600 4200 16000 2.1 3.1

65 4700 16900 4100 15000 2.1 3.4

85 4400 14000 4100 14000 1.1 3.7

95 4200 12600 3900 13000 1.1 3.7

105 3237.5 5630 3600 6000 0.1 3.6

110 2713.02 2620 3300 4500 0.05 3.59

115 2590 1530 3000 2000 0.049 2.5

120 2160.8 784 2200 1100 0.048 2.68

125 1700 547 1900 800 0.75 4.88

130 1550 487 1600 480 0.73 3.98

135 1460 482 1100 400 2.18 4.35

140 1430 414 1000 200 8 4.25

145 1425 352 500 150 20 4

155 1380 272 250 80 15 2.5

175 1360 240 120 54 14.4 2.05

195 1285 215 160 43 12 2.23

215 1200 197 100 37 15 2.2

235 1189 193 96 23.6 15 2.3

elastic relation.

ν =
3κ− 2µ

2(3κ+ µ)
(4.1)

It can be also found from the following equation since we know strain values in all

directions. The equations give nearly same results.

ν = −εy
εx

= −εz
εx

(4.2)

It is clear that Poisson’s ratio takes values close to 0.5 at high temperatures. This

indicates that material is close to becoming incompressible at rubbery state, which is

in agreement with incompressible assumption of rubbery materials.

Below 110◦C, Poisson’s ratio becomes smaller than 0.2 and even negative values be-

low 105◦C. This is not reasonable obviously. Volumetric strain is greater than uniaxial
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Figure 4.23: Variation of Poisson’s ratio over temperature

strain below this temperature. Hence, it is probably due to the unreasonable drop in

uniaxial strain below 110◦C as previously mentioned. Fitting experimental data is

very hard below this temperature since µe values must be very large to fit small uni-

axial strain. Taking high values of µ keeping other parameters nearly constant leads to

negative Poisson’s ratio, which is probably an experimental error. This situation also

affects fitting quality. However, this might be probably because of the fact that the

micro-molecular structure of the epoxy material is very different than rubbery state

behaviour at high temperatures. Thus, using a material model developed for rubber-

like materials may not be suitable for temperatures below Tg, which motivates us to

develop a more suitable one as a future work.

It is also observed that equilibrium Poisson’s ratio is a bit greater than instantaneous

Poisson’s ratio for all temperature values. This is again in agreement with literature

[41].

4.6.2 Variation of viscous and elastic parameters E, κ and µ over temperature

Variation of the material parameters is important to understand the complete be-

haviour. As shown in the left figure of 4.24, ratio of viscous shear/bulk modulus

to equilibrium shear/bulk modulus are given with temperature. This figure gives idea
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about viscoelastic behaviour. At high temperatures, this ratio is small since the mate-

rial reaches equilibrium strain quickly and viscous branch’s effect is weak compared

to equilibrium branch. The r atio is high around glass transition temperature and de-

clines again in glassy state. However, data taken below 110◦C is not reliable as stated

earlier. It should be also noted that effect of shear modulus is more dominant than

bulk modulus.

All three modulus decline with temperature and stay virtually constant above 140◦C.

Viscous parameters also display same kind of variation although they are not shown

in this figure for the sake of simplicity.
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Figure 4.24: Variation of elastic and viscous parameters E, κ and µ over temperature

4.7 Relaxation behaviour of an epoxy compound

This section is devoted to relaxation behaviour of a different epoxy compound sub-

jected to cyclic loading with intermediate relaxation steps. This epoxy compound

is different than the one mentioned in the previous section and its tests are used to

show stress relaxation and cyclic loading-unloading capability of the model. In this

manner, using FEAP, material is loaded upto relatively low strain value (0.004) and

it is allowed to relax for a certain amount of time. Tests were repeated at 4 different

temperatures : 75◦C, 100◦C, 125◦C, 150◦C. The results are shown in figures 4.25,

4.26, 4.27 and 4.28. Besides, the parameters used for fitting are given in table 4.2.
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Figure 4.25: Stress relaxation (on the left) and stress vs. strain (on the right) for cyclic

behaviour with intermediate relaxation steps at 75◦C
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Figure 4.26: Stress relaxation (on the left) and stress vs. strain (on the right) for cyclic

behaviour with intermediate relaxation steps at 100◦C

If a constant strain value is applied to the material in uniaxial direction, an initial

stress value is obtained. Then, chain segments start to rotate and unwind. As a result,

same level of strain value is maintained by less stress level. From rheological model

point of view, whole initial strain value is in the spring of the viscous branch and it

is equal to total strain value or strain value of the equilibrium branch. With time,

the dashpot takes a fraction of this strain reducing the stress in the viscous branch.

This process is dependent on the evolution law and the parameters included in the

equation. It is possible for the dashpot to elongate in a slower way and become stiffer
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Figure 4.27: Stress relaxation (on the left) and stress vs. strain (on the right) for cyclic

behaviour with intermediate relaxation steps at 125◦C
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Figure 4.28: Stress relaxation (on the left) and stress vs. strain (on the right) for cyclic

behaviour with intermediate relaxation steps at 150◦C

for long durations by making creep rate parameter γ̇0 and power term m smaller in

the evolution equation. However, m is more efficient in higher stress values since it

is power term of viscous stress while γ̇0 is efficient for all strain regime and affects

linearly the relaxation rate. Hence, total stress decreases to maintain the same strain

value. Stress relaxation tests are common to see how stress varies with time.

The results of the simulations are in well agreement with experiments for both stress-

time and stress-strain curves. It is observed from the figures and the variation of

viscous and equilibrium parameters that the viscous behaviour is more dominant
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Table 4.2: Identified parameters from cyclic tension tests at various temperatures

Temperature [◦C] κe [MPa] µe [MPa] κv [MPa] µv [MPa] γ̇0 m

75 4000 3200 4600 2600 3.3×10−13 10.5

100 3700 2400 4700 3000 1.2×10−13 10.3

125 2500 1900 5100 3100 9×10−8 5.9

150 2000 1100 6000 3800 3×10−10 7.15

at temperatures 125◦C and 150◦C while stiffness of material is higher at 75◦C and

100◦C, which is a similar result to that of the other epoxy compound used in the

creep tests. Furthermore, related with area under the stress-strain curves, dissipation

increases with temperature and residual strain at zero stress is the highest at the 150◦C

test temperature while maximum stress reached is lowest at that temperature. Lastly,

the non-linear regime in stress-strain curve is reached earlier and more pronounced

at higher temperatures. This non-linear shape is obtained with higher values of the

viscous parameters and the parameters of evolution equation.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this study, a new model is presented to predict viscoelastic behaviour of a cer-

tain epoxy-based material (although it can be applied to any viscoelastic material).

The EMC material was tested under uniaxial compression and hydrostatic loading

conditions for various temperatures that cover below and above of glass transition

temperature Tg. In this manner, being different than previous models which do not

take volumetric time-dependent behaviour into consideration, two different free en-

ergy functions of the same form but with the corresponding elastic and viscous κ and

µ parameters for equilibrium and viscous branches were used without needing to split

them into isochoric and volumetric parts. Model could successfully fit results of volu-

metric and uniaxial compression tests in the rubbery range and around glass transition

range (Tg = 130◦C). However, when the results below 110◦C were tried to be fitted,

although fitting quality was not poor, there were unreasonable increment in equilib-

rium and viscous shear modulus values with fitting results being worse than the ones

around and above Tg. As a result, one can end up with the idea that epoxy-based ma-

terial changes its molecular structure below glass transition temperature. This makes

the proposed free energy function (which is based on 8-chain model used predomi-

nantly for rubber-like materials) unreasonable since EMC takes a glassy-solid state

with less mobile chain segments in a much more compact form. Therefore, we need

a new free energy function below 110◦C to capture behaviour with coherent parame-

ters.

Moreover, a new evolution equation developed by Dal and Kaliske [2] for creep rate

was used for updating elastic part of rate of left Cauchy-Green tensor. This evolu-
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tion equation includes square of elastic stretch and differs from the one proposed by

Bergström and Boyce [15].

In chapter 1, general constitutive models of viscoelasticity and a literature survey of

epoxy-based materials are given. Similarly, polymeric materials, their well-known

behaviours such as creep, relaxation, strain-rate and temperature dependence are ex-

plained with relations to their molecular bonding structure in chapter 2. One dimen-

sional rheological models with spring and dashpot are also given to demonstrate the

importance of each element in terms of predicting real material’s time dependent be-

haviour and how the parameters of these elements change prediction characteristics

of the model. Besides, evolution of creep and free energy function are also given in

this chapter. Both of these constitutive equations are explained with their relations to

molecular chain stretch. In chapter 3, one dimensional rheological model is extended

to three dimensional case with associated deformation tensors as tensorial counter-

parts of strain values. Deformation tensors, Kirchhoff stresses and consistent tan-

gent moduli are decoupled into elastic and viscoelastic parts to represent equilibrium

and viscous branches in rheological model. A residual equation consisting of elastic

stretch is formed and solved with NR-iteration algorithm. Algorithm implemented

in FEAP is based on the derived equations of chapter 3. In chapter 4, the numerical

results are compared with experimental results performed at various temperatures. To

demonstrate effects of each parameter, a parametric study is also performed. Lastly,

simulation results are given for linear evolution law along with its comparison with

non-linear one.

5.2 Future works

As a future work, the proposed model should be improved in order to simulate re-

sponse below 110◦C with a different free energy function and evolution law as ma-

terial’s micro-structure probably changes in a considerable manner. Besides, new

tests such as relaxation tests, cyclic deformation and tests with intermediate periods

at certain stresses or strains should be performed to characterize material in a more

appropriate way. In this manner, viscoplastic response and any other material be-

haviours can be taken into consideration. Moreover, more inclusive models can be
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formed by accounting these behaviours if needed. Since behaviour of the material at

various temperatures is wanted to be predicted, evolution equation of creep rate can

be reformed to make it dependent on temperature. In this case, there is no need to fit

experimental results for each temperature as only one parameter set can be used to

predict behaviour at each temperature range. Lastly, the current model can be tried

with three dimensional loading and complex geometry cases.
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APPENDIX A
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Figure A.1: Volumetric (on the left) and uniaxial (on the right) creep test at 215◦C
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Figure A.2: Volumetric (on the left) and uniaxial (on the right) creep test at 195◦C
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Figure A.3: Volumetric (on the left) and uniaxial (on the right) creep test at 175◦C
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Figure A.4: Volumetric (on the left) and uniaxial (on the right) creep test at 155◦C
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Figure A.5: Volumetric (on the left) and uniaxial (on the right) creep test at 140◦C
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Figure A.6: Volumetric (on the left) and uniaxial (on the right) creep test at 135◦C
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Figure A.7: Volumetric (on the left) and uniaxial (on the right) creep test at 120◦C
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Figure A.8: Volumetric (on the left) and uniaxial (on the right) creep test at 115◦C
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Figure A.9: Volumetric (on the left) and uniaxial (on the right) creep test at 110◦C
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Figure A.10: Volumetric (on the left) and uniaxial (on the right) creep test at 105◦C
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Figure A.11: Volumetric (on the left) and uniaxial (on the right) creep test at 85◦C
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Figure A.12: Volumetric (on the left) and uniaxial (on the right) creep test at 65◦C
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Figure A.13: Volumetric (on the left) and uniaxial (on the right) creep test at 45◦C
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