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ABSTRACT

FEEDBACK MOTION PLANNING OF UNMANNED UNDERWATER
VEHICLES VIA RANDOM SEQUENTIAL COMPOSITION

Ege, Emre

Ph.D., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Umut Orguner

Co-Supervisor: Assist. Prof. Dr. M. Mert Ankaralı

September 2019, 93 pages

In this thesis, we propose a new motion planning method to robustly and computation-

ally efficiently solve (probabilistic) coverage, path planning, and navigation problems

for unmanned underwater vehicles (UUVs). Our approach is based on synthesiz-

ing two existing methodologies: sequential decomposition of dynamic behaviors and

rapidly exploring random trees. The main motivation for this integrated solution is a

robust feed-back based and computationally feasible motion planning and navigation

algorithm that takes advantage of these two planning approaches. To illustrate the

main approach and show the feasibility of the method, we first performed 2D simula-

tions in MATLAB. We then implemented our method using a realistic fully dynamic

3D UUV simulation environment based on a platform built on the Robot Operating

System (ROS)/Gazebo interface to test the overall performance and applicability for

real applications. We also tested the robustness of the method under extreme environ-

mental uncertainty (water current that is half the maximum speed of the UUV). 2D

and realistic 3D simulation results indicate that our method can produce robust and

computationally feasible solutions for a broad class of UUVs and Unmanned Surface

v



Vehciles (USVs).

Keywords: Unmanned Underwater Vehicles(UUV), Feedback Motion Planning; UUV

Simulation, Sequential Composition, RRT, ROV, AUV
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ÖZ

İNSANSIZ SUALTI ARAÇLARININ RASTSAL SIRALI BİLEŞİM METODU
ARACILIĞIYLA GERİBESLEMELİ HAREKET PLANLAMASI

Ege, Emre

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Umut Orguner

Ortak Tez Yöneticisi: Dr. Öğr. Üyesi. M. Mert Ankaralı

Eylül 2019 , 93 sayfa

Tez çalışması kapsamında, insansız sualtı araçlarında tarama, yol planlama ve sey-

rüsefer problemlerinin çözümünde kullanılabilecek gürbüz ve hesap etkin yeni bir

hareket planlama algoritması önerilmiştir. Yaklaşımımız literatüre yer alan iki faklı

teknikiğin sentezlenmesi üzerine kurulmuştur: dinamik denetleyicilerin sıralı dizimi

ve hızlı büyüyen rastlantısal ağaçlar. Birleştirilmiş metodun temel motivasyonu, bu

iki metodun avantajlarını kullanan yeni bir gürbüz, geri-beslemeli ve hesaplama etkin

yeni bir metod oluşturmaktır. Önerilen metodun uygunluğunu göstermek amacıyla

ilk olarak MATLAB’da iki boyutlu benzetimler gerçekleştirilmiştir. Ardından, metod

ROS/Gazebo arayüzü üzerinde, gerçekçi ve tam dinamik üç boyutlu sualtı aracı ben-

zetiminde gerçek hayat uygulamalarına uygunluğu test edilmiştir. Ayrıca, metodun

gürbüzlüğü, uç çevresel belirsizlikler (su akıntısının araç hızının yarısı kadar olduğu

durumlarda) altında test edilmiştir. İki boyutlu ve üç boyutlu benzetim sonuçları öne-

rilen metodun sualtı ve suüstü araçları gürbüz ve hesap etkin bir yöntem olduğunu

doğrulamıştır.
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that is covered with the grey circles, which is the main reason for the
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funnels in a 3D environment. The darkest red point (at the bottom of the

figure) is the outlet of the master funnel (i.e., the global goal state). Due
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sition of the robot. (C) This figure illustrates the temporal evolution of
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Figure 5.3 This figure illustrates the simulation results of the implementa-
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CHAPTER 1

INTRODUCTION

Motion and path planning is a mature field in the robotics community and has been

practically used for many applications, from aerial vehicles to underwater vehicles,

which are the main application domain for this thesis. There are numerous different

definitions for motion and path planning. One definition can be summarized as fol-

lows: given a robot (or group of robots), model of the environment, initial conditions,

and goal task (this can be a final position, set of positions or desired trajectories), find

a set of inputs that will achieve the goal task such that the robot(s) will not collide

with any of the obstacles in the environment.

Numerous planning algorithms have been developed in the last decade, each hav-

ing different advantages and disadvantages, from the naive bug algorithms to more

advanced approaches such as sampling-based methods [3].

Our goal in this thesis is to develop a computationally feasible, robust feedback-based

motion planning algorithm for a class of unmanned underwater (and surface) vehicles.

A huge majority of planning studies concentrate on generating “open-loop” trajecto-

ries that are then presumably tracked using separate feedback controllers. Even the

definition of motion planning is based on an open-loop like navigation methodology.

Such a decoupling or separation can be problematic in the sense that resulting trajec-

tories can be difficult to navigate and control, and non-robustness can be unavoidable

to external uncertainties. In the end, the main disadvantage of open-loop solutions–

compared to closed-loop solutions– in all engineering fields is their general relative

lack of robustness.

Another well-known problem associated with many planning algorithms is their com-
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putational and practical complexity, which is of course highly dependent on the nature

of the problem, robot, and environment. For example, there are some methods [4] that

solve the well-known piano movers problem [5], but many of the solutions suffer from

computational complexity and are not feasible for hardware-based applications. An-

other interesting example is the method of cell decompositions [6], which provides

powerful solutions and performance for limited configuration spaces and relatively

simple environments, since it relies on explicit representations of the obstacles in the

configuration space.

There are also many feedback-based methods that provide effective solutions for

many problems, such as potential field approaches [7] or navigation functions [8].

The main drawback of the potential field approach is the existence of local minima

[9], which are unavoidable for high-dimensional problems, whereas navigation func-

tions could easily add substantial computational burden for even fairly complex envi-

ronments and robots.

In this respect, our goal is to develop a computationally feasible and robust feedback

based motion planning method that solves planning, navigation, and control problems

for a class of unmanned underwater or surface vehicles.

1.1 Background I: Sampling-Based Methods

Deterministic motion planning methods that guarantee a solution rely on explicit rep-

resentation of the environment to solve the planning problem. As mentioned before,

this type of approach can result in an excessive computational burden in high dimen-

sional configuration spaces, and relatively complex environments.

To overcome the limitations of such deterministic algorithms, a variety of sampling-

based methods have been developed in the last 20 to 30 years [10, 3], including very

recent work [11, 12]. These algorithms produce effective solutions even in high-

dimensional spaces. For this reason, such methods have gained great popularity in

the robotics community.

Unlike deterministic approaches, sampling-based planners rely on a module that checks
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for collisions (between a “sample” and the obstacles). Planning algorithms use this

module to find a set of collision-free points, which are then connected to construct a

roadmap [10] or a tree [3] of collision-free (generally open-loop) trajectories. Such

a graph or tree can be used to find one or more solution for the motion-planning

paradigm. These methods can provide a probabilistically guaranteed completeness to

the problem.

1.1.1 Rapidly Exploring Random Trees

Rapidly exploring random tree (RRT) is a popular sampling-based planning algo-

rithm that can effectively search complex, high-dimensional configuration spaces by

randomly building a tree of samples [3]. The original RRT algorithm constructs a tree

incrementally from an initial condition toward a goal state by sampling the configura-

tion space. Due to the nature of the RRT algorithm, the tree is biased to grow toward

untouched regions of the space. The RRT tree is then used to construct an open-loop

trajectory for the robot. Given the incremental structure of the original algorithm, it

provides only a single path between the initial and goal states.

At each sampling instant, a connected path is constructed between the random sam-

ple and the nearest node/state in the tree. If the connected path is collision-free and

feasible then this new node is added to the tree with the established connection. The

distance between the new sample and existing nodes is limited by a threshold. If the

distance is above this threshold, a new node candidate is created at the maximum dis-

tance threshold in the same direction as the original sample from the nearest existing

node. This new candidate is used to construct a path and grow the tree. In this context,

the random samples from the environment indeed control the direction of the growth,

while the threshold controls the growth rate. This property specifically results in the

space-filling bias of the RRT. The RRT algorithm for a given configuration space C
is given in Algorithm 1. There are some extensions of the original algorithm in the

literature [13, 14, 15] to improve the performance for specific settings. Our method

also extends the RRT algorithm by combining it with a feedback-based navigation

and planning method.
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Algorithm 1: Basic RRT Algorithm
Input : Initial configuration qinit, number of vertices in RRT K, incremental

distance ∆q

Output: RRT graph G
1 G.init(qinit);

2 for k = 1 to K do

3 qrand ←RAND_CONF() ;

4 qnear ←NEAREST_VERTEX(G, qrand);
5 qnew ←NEW_CONF(qnear,∆q);

6 G.add_vertex(qnew);

7 G.add_edge(qnear, qnew);

8 end

9 return G

1.2 Background II: Sequential Composition of Robot Behaviors

One of the pioneering concepts in feedback-based motion planning for robotic sys-

tems is the idea of sequential composition of a set of feedback control policies intro-

duced by [1]. This idea has been applied (with some extensions and modifications) to

a variety of robotic applications [16, 17, 18, 19]. This study uses the funnel abstrac-

tion [1, 20] for describing the individual feedback control policies. In this abstraction,

for a dynamical robot behavior that is controlled via a stabilizing feedback controller,

the funnel inlet and outlet correspond to metaphors for basins of attraction and stable

equilibrium respectively. The major problem is that it is in general very difficult (or

sometimes impossible according to [21]) to find a single control policy that will at-

tract all the initial states of a robotic system to the goal state in a relatively complex

environment with obstacles and other constraints.

The idea behind this approach is introducing a palette of different funnels (control

policies) whose inlets and outlets are located inside obstacle-free and unconstrained

regions of the state space such that the union of inlets (domains of attraction) of all

funnels will cover all the regions of interest (presumably large) and each funnel’s

outlet is placed inside another funnel.
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a b

Figure 1.1: Illustrative comparison of global control policy and sequential compo-

sition of control policies approaches. Both figures have been acquired from [1]. a)

A single “global” funnel, the inlet of which is the whole obstacle-free region of the

space. As illustrated in the figure, the shape of the funnel is very complex. b) One

method for sequential composition of funnels. A particular funnel is activated based

on the location and priority queue. As illustrated, the system can reach the goal state

with this approach by combining simpler control policies.

Using such a funnel (control policy) palette, it would be possible to bring any state

inside the combined region of attraction to the goal state through a backchaining op-

eration based on proper activation and switching operations among different funnels.

Figure 1.1 compares the global control policy approach and the sequential composi-

tion of controllers (SCC) approach for a sample environment.

The main disadvantage of the implementation of sequentially combined controllers

for planning is the computational complexity. The majority of applications of this

idea rely on explicit representations of the obstacles in the state space and finite-

element-like numerical discretization [16].
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CHAPTER 2

FEEDBACK MOTION PLANNING USING RANDOM SEQUENTIAL

COMPOSITION

2.1 Introduction

The core goal of this thesis is to develop a robust, computationally feasible, and sparse

methodology for the motion planning problem for a class of unmanned surface ve-

hicles. Our main approach is combining two different planning approaches, RRT

and SCC, by eliminating the respective disadvantages of both worlds and taking into

account the specific application domain of unmanned underwater vehicles (UUVs).

Most RRT-based planners determine discretized open-loop trajectories. Indeed, there

exist closed-loop RRT extensions [22, 23], which basically adopt an integrated feedback-

based approach and enhance the robustness of the RRT. However, neither of these

extensions addresses the concept of sparsity. One of the main objectives of this study

is obtaining a relatively sparse random tree structure from the environment by inte-

grating the idea of SCC. We believe that sparsity is desirable for remotely operated

vehicles (ROV)/ autonomous underwater vehicles (AUV) applications, since it is en-

tirely unnecessary to fill empty regions with dense samples. The methods proposed

in [24], [25] and [26], extend the RRT algorithm to cover the configuration space

sparsely but they generate open-loop paths.

An important difference between RRT-based methods (open- or closed- loop) and

SCC is that RRT-like methods rely on sampling points from the configuration space,

whereas SCC involves designing a set of funnels (or regions). Due to nature of the

sampling strategy, RRT-like methods densely fill the state-space with state samples

(which also can require significant storage and computational complexity for some
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problems), whereas the SCC method can cover a region with sparse funnels. In other

words, robustness and sparsity constitute the strength of SCC. However, RRT-like

approaches have gained their popularity because of their relative computational fea-

sibility.

It should be also noted that some recent studies combine the fundamental idea of

sequential composition with other sampling-based planning approaches [27, 28, 12].

Although our approach shares similarities with these studies, we present important

differences and methods in this study. We also aim to develop an effective method

specifically for ROV/AUV applications.

Key differences exist between our approach and the methods developed by Tedrake

and his colleagues [29, 27, 11, 12]. They mainly developed their techniques to solve

motion control problems for highly dynamic and non-linear robotic systems that is,

systems in which second-order dynamics are critical. In this respect, they adopted a

three-step motion planning strategy. In the first step, using some existing path plan-

ning techniques, they generate an open-loop trajectory between the initial and goal

configurations. In the second stage, they generate a sparse feedback policy around

this trajectory. In the third step, they generate random trajectories and feedback con-

trol policies that connect to the main branch to form a sparse tree structure. This class

of methods, because of their multi-staged nature and other features, require heavy

optimization and numerical steps to solve the motion planning problem. Practical

implementation of our method is significantly more feasible, and computational com-

plexity is greatly reduced. Moreover, the main limitation of this approach (from our

perspective) is its dependence on pre-generated open-loop trajectories. Our goal in

this study is to develop a standalone feedback motion planning approach that is free

from open-loop trajectories. For these reasons, the methods in this class are funda-

mentally different from what we describe in our study.

The method most relevant for our study is one developed by [28]. Similar to our mo-

tion planning solution, these authors also utilize randomly generated and connected

regions (these are circular regions in both their method and our) and generate feed-

back motion strategies inside these regions. However, they build a random connected

graph structure, whereas we generate a connected tree structure. Probabilistic graphs
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and random trees are widely used in the sampling-based motion planning literature,

and they both bring advantages and disadvantages. Thus, from this limited perspec-

tive, our approach can be considered as an RRT extension of the approach of [28],

which is also important for the robotics community. However, there is another signif-

icant difference between our study and that done by [28]. In their paper, they consider

only robotic systems that are fully holonomic, and thus, they use navigation functions

[8] for their feedback control policy inside each region. However, the ROV model

that we adopt in this study is a non-holonomic model and we use a Lyapunov-based

feedback control policy for navigation.

2.2 Problem Definition and Algorithm

The aim of our new motion planning algorithm is to allow a UUV in a given envi-

ronment to navigate from any initial state (position and orientation) to a desired goal

position. In our solution, we prioritize robustness and sparsity such that, instead of

relying on open-loop trajectories, we develop a feedback-based method that covers

large regions inside the space.

The basic idea in our method is to generate random sequentially attached sparse fun-

nels, where the probabilistic tree generation idea is borrowed from the original RRT.

Similar to [27], we grow the tree starting from the goal state, since our aim is to find

a set of funnels that will eventually drive covered states to the goal position.

In classical sampling-based methods, the first step is drawing a sample from the state

space to start growing the tree or roadmap. Our goal, however, is finding funnels,

and thus we start by constructing a funnel for which the outlet is the goal position.

In other words, the goal position is the ultimate equilibrium of the dynamical sys-

tem structure that we want to construct. The fundamental approach in the methods

deployed by [27], [28] and [12] is to first generate a control policy and then try to

generate a funnel (a basin of attraction) using optimization techniques. The numer-

ical and optimization steps of these other methods make them computationally less

feasible than our approach. In contrast, we design a region of attraction first and later

define a set of possible control policies that guarantee the asymptotical stability of the
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equilibrium (under some assumptions). Considering the typical 2D environments for

ROV applications, we use circles as our funnel inlets (or the region of attraction). As-

suming a circular funnel provides us two main advantages: relative ease of finding a

set of controllers with guaranteed stability inside the funnel (i.e., compared to funnels

with polygonal shapes) and computational feasibility of finding collision-free regions

(compared to, for example, funnels with ellipsoid shapes).

We name the first generated funnel the master funnel. The creation of the master

funnel is illustrated in Figure 2.1(b) for a sample environment. After that, we start the

random funnel generation process by sampling a data point inside the Cartesian space.

Note that unlike similar methods in [27], we do not sample from the whole state space.

Instead, we reduce the sampling space by omitting the angular coordinates, since

our control policies (See Section 2.3) guarantee convergence for all initial angular

positions. If the random sample is located inside the basin of attraction of one of

the funnels then we omit the sample, which is one of the main differences from the

classical RRT approaches. We then find the closest funnel (which minimizes the

distance between its boundary and the sample) and draw a line between the outlet

(center) of this funnel and the sample point. We create a new point along this line

such that the distance between the new point and funnel outlet is equal to d = ηrf ,

where rf is the radius of the funnel, and η ∈ (0, 1) is a predefined threshold. We

generally prefer values between [0.8, 0.9]. In other words, we locate the new point

inside the funnel but close to the boundary to increase the sparsity of the funnel tree.

This process is illustrated in Figure 2.1(c & d). We then generate a new collision-free

funnel by using this point as its center/outlet. This new funnel is added to our tree

structure with a proper connection to the connected funnel. It is obvious that similar

to RRT the initial sample indeed controls the growth direction and size of the funnels

(which depends on the sparsity of the region) defines the growth rate. Thus, inside

sparse regions this method greatly reduces the density compared to RRT.

We repeat this sampling and funnel tree generation process until some user-defined

stopping condition is triggered. In the simulation results that we present in this study,

we stop the process when the new funnel covers the initial condition. It is also pos-

sible to continue the process until the whole region of interest is probabilistically

covered. Algorithm 2 details the algorithmic steps of our method, and Figure 2.1

10



Algorithm 2: Random Sparse Funnel Tree Generation

1 G ← INITIALIZE_TREE();

2 G ← INSERT_NODE(qgoal, Rattr);

3 for k = 1 to K do

4 qrand ← RAND_CONF();

5 qnearest ← NEAREST_VERTEX(G, qrand);

6 if qrand /∈ B then

7 qnew ← EXTEND(qnearest, qrand, α);

8 rnew ← COMPUTE_ATTRACTION_REGION(qnew);

9 G ← INSERT_NODE(qnew, Rnew);

10 if qinit ∈ B then

11 return G

12 return G

illustrates the algorithmic steps for a sample environment.

2.3 Control Policy and Stability Analysis

In this section, we propose our velocity-based control policy for planar (2D) environ-

ments. The goal of a control policy in the motion planning algorithm is to produce

a set of velocity commands. This approach relies on a key assumption that first-

order dynamics of the ROV/AUV and environment dominate the system behavior.

This assumption is reasonable under several conditions: high damping generated by

an underwater environment, slow operating speeds, and a high-gain low-level veloc-

ity controller. Note that this assumption depends on a low-level velocity controller,

which we utilize in the 3D simulation environment (see Chapter 4).

These conditions are also satisfied by many of the commercial ROV/AUV applica-

tions [30]. Here, we also concentrate on UUV systems in which the vehicle is not

capable of a lateral direction thrust force. Clearly adding like these degrees of free-

dom (DOF) would simplify the control problem. Under these assumptions and con-

straints, we can simplify and reduce the 2D dynamics to a first-order unicycle model,
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(d) (e) (f)

(g) (h)

Figure 2.1: Illustration of proposed method for a sample environment. a) Initial

configuration. Black solid circles, and the outer hollow circle denote the obstacles

and boundary, respectively. b) An obstacle-free funnel (green) is created, centered on

the GOAL node. c) A new sample is drawn from the 2D Cartesian space. d) The new

sample is projected into the nearest funnel. e) The basin of attraction of the new node

is computed, and this node is added to the tree. f) Steps c, d, and e are repeated to

create the new funnel shown in red. Again, steps c, d, and e are repeated to create a

new funnel. Note that both this funnel and previous funnel are connected to the master

funnel, thus they are at the same level of the tree. g) Steps c, d, and e are repeated

again to create a new funnel shown in blue. Note that this funnel is connected to one

of the red funnels, thus it is located at a lower level of the tree. h) Overall view of the

funnel tree. The green (master) funnel has the highest priority, the red funnels are at

the second level of the priority queue, and the blue funnel has the lowest priority.
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illustrated in Figure 2.2, where the inputs to the 2D ROV/AUV model are the forward

speed, v, and angular speed, ω, of the model.

y

xW

B

(xg,yg)

Figure 2.2: Illustration of the 2D unicycle model

The simplified dynamics of the unicycle with respect to the world-fixed reference

frame takes the form


ẋ

ẏ

θ̇

 =


v cos θ

v sin θ

ω

 (2.1)

For each funnel (or region), the goal of the control policy is this: from any initial

condition inside the funnel, the trajectory will converge to the equilibrium of that

funnel and the trajectories will strictly stay inside the basins of attraction. The second

condition is necessary to avoid collisions, since the funnels define safe (collision-free)

regions. Note that the control policy will directly stabilize only the Cartesian position

not the angle at the equilibrium point.

Since we do not directly control the heading angle at the equilibrium, this generates

a dynamical symmetry and thus if we rewrite the dynamics w.r.t to the instantaneous

body-fixed reference frame (using polar coordinates), we can reduce the number of

states to two, which is helpful for presenting and proving the stability of our simple

control policy. The illustration of the model in polar coordinates with respect to the

body-fixed reference frame can be seen in Figure 2.3.

In the model, ρ represents the distance between the body center and the outlet (equi-
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Figure 2.3: Unicycle model and coordinates with respect to body-fixed reference

frame.

librium) of the funnel, and φ represents the angle between the ROV heading and the

vector from the body center to the goal point. In polar coordinates, the target control

policy is simply finding a controller that drives ρ and θ to zero as well as ρ̇ < 0 in

order to strictly stay inside funnel. Before we pursue the details of the control policy,

we first write the dynamics with respect to state variables ρ and φ as

 ρ̇

φ̇

 =

 v cosφ 0

sinφ
ρ

1

 v

ω

 (2.2)

Our simple non-linear control policy (for all funnels) is as follows: v

ω

 =

 Kvρ cosφ

−Kφφ

 (2.3)

Before presenting a stability proof, we must understand the function of the control

policy. Angular speed is simply given by a linear proportional control law to minimize

the angular heading error. On the other hand, the forward velocity controller uses a

non-linear control policy that depends on ρ and cosφ. We first analyze the extreme

cases of cosφ. When φ = 0, v = rKv, which means that the ROV/AUV heading is

perfectly aligned with the target, so it moves at its maximum speed. When φ = ±π/2,

v = 0, which means that the ROV/AUV moves neither forward nor backward. This

is an important behavior, since in this case any kind of forward or backward motion

would increase the radius, allowing the ROV to leave the region if it is close to the

boundary. However, since there is an error between heading angle and target angle,

the angular speed controller will apply an input for correction, thus as soon as the

ROV leaves this singular point, it will again move toward the goal point. When

φ = ±π, v = −rKv, which means that the angle difference between the ROV heading
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and target is 180o. In this case, and in general ∀φ, cosφ < 0, the ROV/AUV will move

to the target by going backwards. However as soon as the φ drops to the interval of

π/2 < φ < π/2, the vehicle will move only in a forward direction. In practice,

backward motion is very limited (but necessary).

Next, we prove the stability of the controller using a Lyapunov-like stability analysis.

Let the candidate Lyapunov function be

V (ρ, φ) = αρ2 + φ2, α > 0 (2.4)

V (ρ, φ) = 0 ⇐⇒ (ρ, φ) = (0, 0) (2.5)

The derivative of the Lyapunov function then takes the form

V̇ = 2αρρ̇+ 2φφ̇ (2.6)

= −2αKvρ
2(cosφ)2 − 2Kφφ

2 +Kvφ sin(2φ) (2.7)

It is easy to show that

Kφ

Kv

> 1 =⇒ V̇ < 0,∀(ρ, φ) 6= 0 (2.8)

In conclusion, if we select a pair of Kv and Kφ values such that Kφ
Kv

> 1, then we

guarantee the stability of each funnel using Lyapunov’s second method (note that this

stability analysis is potentially conservative). This is an interesting and yet intuitive

result. This stability condition simply states that the controller should prioritize cor-

recting the errors in relative angle between the robot and the target rather than the

relative distance. If we combine the dynamics in (2.2) and the controller in (2.3) and

concentrate on only the dynamics in the φ direction we obtain

φ̇ = KV
sin(2φ)

2
−Kφφ (2.9)

When φ ∈ (−π/2,−pi/2), Kφ has a stabilizing effect, whereas KV has a destabiliz-

ing effect on the angular dynamics. For this reason, one can easily deduce that ifKphi

is sufficiently larger than KV s.t. Kφφ > KV
sin(2φ)

2
, ∀φ ∈ (−π/2,−pi/2), then the

dynamics in angular direction become stable. Indeed, this condition has already been

found based on Lyapunov analysis.

Since the outlet of each funnel is connected to a parent funnel and the master funnel

drives the initial conditions to the goal position, we can say that each initial condition
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that is inside at least one funnel is guaranteed to converge to the goal state asymptot-

ically.

2.4 Sparsity Enhancement

In this section, sparsity enhancement methods are described.

One of the powerful aspects of the proposed motion planning algorithm is its sparsity

compared with other random sampling methods such as RRT. Sparse methods are

more computationally efficient than dense methods, which enables the use of such

algorithms in real-life applications. In the developed algorithm, the nodes are repre-

sented as circles, as shown in Figure 2.1. In the algorithm to append a new node to

the tree, the radius of the new node is enlarged until it hits an obstacle or boundary.

Examples can be seen in Figure 2.1(e) and Figure 2.1(f).

The main disadvantage of this method is that we stop increasing the radius of the

circle when it hits a boundary or an obstacle. However, it is still possible to grow the

circle in the direction opposite the collision. In this way, it is possible to obtain nodes

with a greater radius, which means they cover larger areas, and we can cover the area

with a smaller number of nodes.

Two methods are described for enlarging the covering area of a new node. In the first

method, the circles are enlarged using an elliptical shape. In the second method, the

nodes are enlarged keeping the shape as circular but increasing the radius.

2.4.1 Elliptical Nodes

In the standard algorithm, the enlargement of a circle stops when the boundary of a

new node collides with either the boundary of a region or an obstacle. It is possible

to enlarge the circular funnel without changing the place of the outlet point, which

guarantees that the outlet of the new funnel remains inside the previous funnel.

In this algorithm, we first find a circular node as described in Algorithm 2. After

finding the new node, we enlarge it in parallel with the tangent that passes through the
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intersection of the obstacle and the node. The original node and elliptically enlarged

node are given in Figure 2.4.

Figure 2.4: Illustration of elliptical enlargement. The green circle denotes the node

generated with the original algorithm and the gray ellipse denotes the elliptical en-

larged node.

2.4.2 Enlarged Circular Nodes

In this method, basically, the new node is appended to ensure that it covers the largest

area and that the outlet of the funnel is still inside the parent funnel. The method is
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illustrated in Figure 2.5.

Figure 2.5: Illustration of circular enlargement. The yellow circle denotes the node

generated with the original algorithm and the green circle denotes the circular en-

larged node. Note that the origin of the new node is also changed but it is still in the

previous connected funnel which is the gray one in the figure.

2.5 Extension of the Feedback Motion Planning Method to 3D

In this section, we extend the proposed algorithm to the more realistic and practically

important 3D case. The class of underwater vehicles that we consider in this study are

assumed to have independent vertical thrusters [30]; thus we omit the class of UUVs

that have a single thruster at the back and in which the direction of thrust force is con-

trolled via the regulation of fins. Note that our main motion planning approach can

also be extended to this class, which is among our goals in the near future. Indeed the

fundamental algorithm that is proposed in Algorithm 2 is directly applicable to the

3D case and also to different types of robotic systems, including the class of UUVs

described in the previous paragraph. The main differences between 3D and 2D meth-

ods are that the shape of funnels, distance function, method for extending random

samples, and control policy are adjusted to take into account the 3D kinematics and
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dynamics.

In 3D case, the basins of attraction of the funnels should be of volumetric shape

(since we sample only from Cartesian coordinates). One obvious candidate shape

is the sphere, which would certainly produce effective results. However, one should

note the fact that z-axis of the ROV/AUV can be controlled independently. Thus, if

one uses cylinders instead of spheres as the basins of attraction, then it is possible to

cover larger areas and thus boost the sparsity.

For a given 3D environment with obstacles and boundaries, the generation of a funnel

around a selected equilibrium point is illustrated in Figure 2.6. We begin the process

(Figure 2.6(b)) by generating an obstacle-free 2D disk in the X–Y plane that passes

through the selected equilibrium point. Then we vertically extrude this disk in both

directions until the cylinder hits an obstacle or constraint. This 3D cylinder forms the

basin of attraction of the funnel. Note that the equilibrium point is not at the center

of the volume in the z-direction. Indeed, due to independent control of the z-axis, we

can even change the z position of the equilibrium point, which we will use for height

smoothing described in the following steps.

a) b) c) d)

Figure 2.6: Illustration of funnel generation in 3D. a) Example 3D environment where

black solid cylinders and red dot illustrate the obstacles and the funnel outlet (equilib-

rium), respectively. b) An obstacle-free 2D disk (blue) is generated around the funnel

outlet. c) The 2D disk is extruded vertically in both directions to form an obstacle-free

cylinder (green), which corresponds to the basins of attraction of the funnel. At the

bottom, an obstacle defines the lower limit, whereas from the top, the sea level is the

limit. d) The blue disk is removed to better illustrate the funnel’s basins of attraction.
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We start the method for 3D environments by generating a funnel around the goal

position of the UUV. After that we draw a sample from 3D Cartesian space, similar

to the 2D case. If the drawn sample is inside one of the funnels then we discard the

sample. Otherwise, we find the closest funnel by computing the minimum Euclidean

distance between the sample point and cylinder.

We perform this operation by projecting the point to the funnel boundary. Based

on the location of the point there are three possibilities for this projection: onto the

surface of the cylinder, onto the surface of one of the circles, or onto the perimeter of

one of the circles.

The next step is finding a point inside the target funnel that will be the outlet of this

new funnel candidate. To find such a point, we draw a line from the projection to the

funnel equilibrium and then find the projection inside the funnel along this line such

that the distance to the equilibrium will be d = η||p||2, where ||p||2 is the distance

of the original projection to the equilibrium and η ∈ (0, 1) is a predefined threshold.

Once we locate the new outlet (equilibrium), we construct the basins of attraction of

this new node using the procedure above and this node is then connected to the funnel

tree.

We perform one more step after this operation, which we call height “smoothing”.

We observed that if we do not perform such a smoothing, there can be unnecessary

oscillations in the z-axis of the ROV/AUV. Indeed, for the class of UUVs that we

consider, it is generally less desirable to move in the z-direction frequently, because

of practical problems such as higher drag and less thrust force. In this smoothing

operation, we take advantage of the fact that we can change the z position of the

funnel equilibrium point even after we have generated basins of attraction. Basically,

if the z-axis coordinate of the equilibrium of the connected funnel is inside the z-

axis boundaries of the new funnel, then we equalize the z-axis coordinates of the

connected funnels by moving the new equilibrium.

As in the 2D case, this combined sampling, projection, funnel generation and height

smoothing process is repeated until the one of the funnels includes the initial condi-

tion, or the union of the funnels sufficiently covers the regions of interest.
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2.5.1 Control Policy in 3D

From the perspective of the motion controller, we rely on same assumptions used with

the 2D case. The only difference is the addition of a vertical degree of freedom. In

this extended model of the UUV, the inputs will be the forward speed, vp, angular

speed, ω, and vertical speed, vv. Under these inputs, the simplified 3D dynamics of

the model with respect to the world-fixed reference frame take the form
ẋ

ẏ

ż

θ̇

 =


vp cos θ

vp sin θ

vv

ω


Again, by taking into account the dynamical symmetry in the X–Y plane, we can

rewrite the dynamics w.r.t. the instantaneous body-fixed reference frame using cylin-

drical coordinates:


ρ̇

φ̇

ḣ

 =


v cosφ 0 0

sinφ
ρ

1 0

0 0 1



vp

ω

vv


In the 3D model, ρ represents the distance between the body center and the outlet

(equilibrium) of the funnel in the X–Y plane, φ represents the angle between the

ROV heading and the X–Y projection of the vector from the body center to the goal

point, and h is the vertical position with respect to the funnel outlet. The extended

control policy is simply


vp

ω

vv

 =


Kvρ cosφ

−Kφφ

−Kh


Since the z-axis dynamics and control are independent from other coordinates, to

have a stable complete system we need to make sure of the stability in this coordinate.
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Simple scalar linear dynamics make it easy to see that if Kh > 0 and we satisfy the

conditions for the 2D case, the simplified model is guaranteed to strictly stay inside

the funnel and asymptotically converge to the funnel outlet.
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CHAPTER 3

MATHEMATICAL MODELING OF SAGA ROV

3.1 Introduction

To develop our motion planning algorithm, we made some claims regarding the dy-

namics of the vehicle. We assumed a velocity-based kinematic model and motion

controller that produced a set of velocity commands that were assumed to be con-

trolled independently and reactively. However, even if our assumptions were rea-

sonable, it is important to extend and test the methods to handle full (second-order)

dynamic models and systems. We derive the model of our own SAGA ROV,1 since

its motion capabilities and constraints closely reflect the class of UUVs that we want

to control.

When developing a controller for any system, constructing a mathematical model

of the system must be the first step. The controller algorithms may be tested on

the simulator using the model and the performance of the controller can be easily

assessed. The simulation approach is typically cheaper and easier. The robustness

of the controller can be readily tested using simulation that takes disturbances into

account. However, the most critical part of simulating any system is obtaining an

accurate mathematical model of the system being controlled.

The main difficulty in mathematical modeling is obtaining a realistic model. There are

many components in ROV modeling. To model all of the forces affecting a vehicle

underwater is very difficult and may not actually be possible, which means some

assumptions should be made to simplify the modeling.
1 www.desistek.com
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3.2 Mathematical Modeling of SAGA ROV

Basically, the SAGA ROV has a differential drive thruster structure in the X–Y plane

that can be used to control the angular velocity and forward speed. SAGA also has

a single vertical thruster that is controlled to regulate vertical speed. The simulation

environment utilizes the full 6DOF non-linear dynamics of the vehicle. The mathe-

matical model based on parametric system identification using experimental data is

presented in [31] and [32]. The simulation package [33] adopts this model and its

parameters inside its physics engine.

An accurate dynamical model is required for obtaining realistic results. This is dif-

ficult, however, for underwater vehicles which include many modeling uncertainties

and nonlinearities. During the modeling process, some reasonable assumptions must

be made for the sake of simplicity while not moving far from the vehicle’s true be-

havior.

In this study, the underwater vehicle SAGA, which is an inspection class ROV manu-

factured by Desistek (Figure 3.1) is used. The dimensions of this vehicle are 420 mm

× 330 mm × 270 mm. The mass of the vehicle is 10 kg, and maximum depth is 250 m.

Maximum surge speed is 3 knots and maximum heave speed is 1 knot. The vehicle

has three thrusters, which supply a maximum force of 10 N. One of these thrusters is

directed vertically, while the other two are located at the right and left sides and are

directed horizontally.

The dynamics of the vehicle can be obtained in two stages: the kinematic model

and the dynamic model [34]. The kinematic model considers the geometrical aspects

of the motion, while the dynamic model analyzes the forces that cause the motion.

In this study, the ROV is assumed to be a rigid body, meaning that while operating

under water, no deformation occurs in the vehicle. The following sections present the

kinematic and dynamic modeling of the ROV.
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Figure 3.1: SAGA ROV vehicle manufactured by Desistek Robotics.

3.3 Kinematic Modeling

3.3.1 Reference Frames

Two reference frames are used in this study, as proposed in [35]: the north-east-down

(NED) and the body-fixed coordinate frames. The definitions are given as follows.

NED: The earth-fixed frame is denoted as North-East-Down and usually defined as

the tangent plane on the surface of the Earth. The origin is positioned at the sea

surface, possibly the position of the surface vehicle and the x-axis points north, the

y-axis points east and the z-axis points down. This coordinate system is denoted as

{n} = {xn, yn, zn} with the origin on (Figure 3.2).

BODY: The body-fixed reference frame is a moving coordinate frame that is fixed to

the ROV. The x-axis is the longitudinal axis directed from aft to fore, y-axis is the

transversal axis directed to starboard and z-axis is the normal axis directed from top

to bottom. This coordinate system is denoted as {b} = {xb, yb, zb} with the origin ob

(Figure 3.3). The notation used in the modeling is given in Table 3.1. Using the

notation in [35], the kinematics can be described as:
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Figure 3.2: NED reference frame.

Figure 3.3: Body-fixed reference frame.
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Table 3.1: The notation of SNAME (1950) for marine vessels.

DOF Forces and

moments

Linear and an-

gular velocities

Positions and

Euler angles

1 Motions in the x

direction(surge)

X u x

2 Motions in the y

direction(sway)

Y v y

3 Motions in the z

direction(heave)

Z w x

4 Rotations in the x

axis(roll)

K p φ

5 Rotations in the y

axis(pitch)

M q θ

6 Rotations in the z

axis(yaw)

N r ψ

NED Position P n
b/n = [x, y, z]T ∈ R3

Attitude (Euler Angles) Θbn = [φ, θ, ψ]T ∈ S3

Body-fixed linear velocity vbb/n = [u, v, w]T ∈ R3

Body-fixed angular velocity ωbb/n = [p, q, r]T ∈ R3

Forces and moments τ =
[
X Y Z K M N

]T
∈ R6

where R3 is the Euclidean space of dimension three and S3 denotes a sphere defined

by three angles on the interval [0, 2π]. The general motion for a marine craft in 6-DOF

is described by the following vectors [36]:

η =

 P n
b/n

Θbn

 , v =

 vbb/n

ωbb/n

 (3.1)

where:

P n
b/n: Position of body frame with respect to NED frame expressed in NED frame

vbb/n: Linear velocity of body frame with respect to NED-frame expressed in body

frame

τ : Forces and moments acting on the craft in the body-fixed frame
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The kinematic relation between the body-fixed velocity v and the position η in the

NED frame is expressed as:

η̇ = J(Θnb)v (3.2)

where J(Θnb) ∈ R6x6 is the transformation matrix given as:

J (Θnb) =

 R (Θnb) 03x3

03x3 T (Θnb)

 (3.3)

The matrices R (Θnb) and T (Θnb) are given as:

R (Θnb) =


cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ

sψcθ cψcφ+ sφsθsψ −cψsφ+ sθsψcφ

−sθ cθsφ cθcφ

 (3.4)

T (Θnb) =


1 sφtθ cφtθ

0 cφ −sφ
0 sφ/cθ cφ/cθ

 , θ 6= π

2
(3.5)

where s(.) = sin(.), c(.) = cos(.), t(.) = tan(.).

3.4 Dynamic Modeling

In this section, the forces and moments caused by the rigid-body inertia and the hy-

drodynamics effects due to the movement of the ROV under water are modeled. First,

rigid-body dynamics are derived

3.4.1 Rigid-Body Dynamics

In this section, the rigid-body dynamics of a marine vehicle are given as derived in

[35]. The derivation is based on Newton’s second law, which specifies the force acting

on a system is equal to the product of the mass and acceleration of the system:
∑
F =

ma. Euler’s axioms state that this is also valid for angular momentum [35, 37]. Using

Newton’s laws and Euler’s axioms, the rigid-body equations of motions around an
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arbitrary origin (CO) can be expressed as follows:

Translational:

m
[
v̇bb/n + ω̇bb/n × rbg + ωbb/n × vbb/n + ωbb/n ×

(
ωbb/n × rbg

)]
= f bb (3.6)

Rotational:

Ibω̇
b
b/n + ωbb/n × Ibωbb/n +mrbg ×

(
v̇bb/n + ωbb/n × vbb/n

)
= mb

b (3.7)

The equations 3.6 and 3.7 are usually written in component form according to SNAME

(1950) notation by defining the following:

f bb = [X, Y, Z]T Force through ob in {b} (body-fixed coordinate system)

mb
b = [K,M,N ]T Moment about ob in {b}

vbb/n = [u, v, w]T Linear velocity ob relative to on expressed in{b}
ωbb/n = [p, q, r]T Angular velocity of b relative to n (NED coordinate system)

expressed in {b}
rbg = [xg, yg, zg]

T Vector from ob to CG expressed in {b}

Applying this notation, 3.6 and 3.7 become

m [u̇− vr + wq − xg(q2 + r2) + yg(pq − ṙ) + zg(pr + q̇)] = X

m [v̇ − wp+ ur − yg(r2 + p2) + zg(qr − ṗ) + xg(qp+ ṙ)] = Y

m [ẇ − uq + vp− zg(p2 + q2) + xg(rp− q̇) + yg(rq + ṗ)] = Z

Ixṗ+ (Iz − Iy)qr − (ṙ + pq)Ixz + (r2 − q2)Iyz + (pr − q̇)Ixy+
m [yg(ẇ − uq + vp)− zg(v̇ − wp+ ur)] = K

Iy q̇ + (Ix − Iz)rp− (ṗ+ qr)Ixy + (p2 − r2)Izx + (qp− ṙ)Iyz+
m [zg(u̇− vr + wq)− xg(ẇ − uq + vp)] = M

Iz ṙ + (Iy − Ix)pq − (q̇ + rp)Iyz + (q2 − p2)Ixy + (rp− ṗ)Izx+
m [xg(v̇ − wp+ ur)− yg(u̇− vr + wq)] = N

(3.8)

The first three equations represent translational motion, while the last three repre-

sent rotational motion. The rigid-body kinetics can be expressed in vectorial form as

follows:

MRB v̇ + CRB(v)v = τRB (3.9)

where v = [u, v, w, p, q, r]T is the generalized velocity vector expressed in {b} (body-

fixed coordinate system), and τRB = [X, Y, Z,K,M,N ]T is a generalized vector of
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external forces and moments. The matrixMRB is the rigid-body mass matrix andCRB

is the rigid-body Coriolis and centripetal matrix due to the rotation of the body frame

about the inertial frame. These matrices contain coefficients that can be determined

based on gravity and the inertial properties of the vehicle. The representation of MRB

is unique and satisfies

MRB = MT
RB > 0, ṀRB = 06x6 (3.10)

where

MRB =

 M11 M12

M21 M22



=



m 0 0 0 mzg −myg
0 m 0 −mzg 0 mxg

0 0 m myg mxg 0

0 −mzg myg Ix −Ixy −Ixx
mzg 0 −mxg −Iyx Iy −Iyz
−myg mxg 0 −Izx −Izy Iz



(3.11)

Here rbg := [xg, yg, zg]
T is the position of the CG with respect to the body-fixed frame

origin. According to [34], the Coriolis and centripetal matrix can be parameterized

such that CRB(v) = −CRB(v) by choosing

CRB(v) =

 03×3 −S (M11v1 +M12v2)

−S (M11v1 +M12v2) −S (M21v1 +M22v2)

 (3.12)

where v1 = vbb/n, v2 = ωbb/n and S is the skew symmetric matrix

S([a, b, c]) =


0 −c b

c 0 −a
−b a 0

 (3.13)

In the current study, the body-fixed frame is chosen to be coincident with the three

principal axes of the SAGA (Figure 3.1). As a result of this property, Ixz = Iyz =
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Ixy = 0. For SAGA, the MRB and CRB matrices are defined as follows:

MRB =



m 0 0 0 mzg −myg
0 m 0 −mzg 0 mxg

0 0 m myg −mxg 0

0 −mzg myg Ixx 0 0

mzg 0 −mxg 0 Iyy 0

−myg mxg 0 0 0 Izz


(3.14)

CRB(v) =



0 0 0

0 0 0

0 0 0

−m(ygq + zgr) m(ygp+ w) m(zgp− v)

m(xgq − w) −m(zgr + xgp) −m(zgq + u)

m(xgr + v) m(ygr − u) −m(xgp+ ygq)

m(ygq + zqr) −m(xgp− w) −m(xgr + v)

−m(xgq + w) m(zgr + xgp) −m(ygr − u)

−m(xgr − v) −m(zgq + u) m(xgp+ ygq)

0 Izzq −Iyyp
−Izzq 0 Ixxp

Iyyq −Ixxp 0



(3.15)

3.4.2 Hydrodynamic Forces and Moments

The hydrodynamic forces acting on the vehicle can be listed as follows [38]:

• Added mass is a concept of pressure-induced forces and moments due to a

forced harmonic motion of the body. These are proportional to the acceleration

of the body.

• Hydrodynamic damping due to effects such as skin friction, vortex shedding

and energy carried away by generated surface waves. The hydrodynamic damp-

ing forces usually consist of linear and quadratic damping terms. These are in

a direction opposite to the vehicle’s velocity.
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• Restoring forces due to the vehicle’s weight and buoyancy. Restoring forces

consist of gravity and buoyancy forces.

• Currents.

• Thruster/propeller forces.

• Control surface/rudder forces.

All of these effects are included in Fossen’s equations of motion for marine crafts as

described in equation 8.151 in [35]:

Mv̇ + C(v)v +D(v)v + g(η) + g0 (vr) vr = τwind + τwave + τRB (3.16)

where

M = MRB +MA - system inertia matrix (including added mass)

C(v) = CRB(v) + CA(v) - Coriolis-centripetal matrix (including added mass)

D(v) - damping matrix

g(η) - vector of gravitational/buoyancy forces and moments

go - vector used for pertrimming (ballast control)

τ - vector of control inputs

τwind - vector of wind forces

τwave - vector of wave-induced forces

τwind and τwave are forces and torques due to wind and waves, which we disregard

and assume to be 0, since we focus solely on the underwater case.

3.4.3 SAGA Mathematical Model

The mathematical model parameters for the SAGA vehicle are obtained from [31],

[39], and [32]. In these studies, the system identification is performed using two

methods: acoustic-based and vision-based. These methods are used to find the po-

sition of the vehicle. In future studies, it may possible to use Ultra Short Baseline

Tracking System (USBL) to estimate the position of the vehicle more accurately. In

many ROV applications, the vehicle usually moves at low speeds. If the vehicle also
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has three planes of symmetry, this suggests that we can neglect the contributions from

the off-diagonal elements in the added inertia MA. The mass matrix of the vehicle is

the sum of the rigid-body mass and the added inertia matrices:

M = MRB +MA (3.17)

The rigid-body mass is a diagonal matrix since the vehicle is assumed to have three

symmetry planes. The off-diagonal contributions are neglected. The simplified rigid-

body mass matrix is defined as

MRB =



m 0 0 0 0 0

0 m 0 0 0 0

0 0 m 0 0 0

0 0 0 Ix 0 0

0 0 0 0 Iy 0

0 0 0 0 0 Iz


(3.18)

The following simple expressions for MA and CA are preferred for SAGA:

MA = − diag {Xu̇, Yv̇, Zẇ, Kṗ,Mq̇, Nṙ} (3.19)

CA(v) =



0 0 0 0 −Zẇw Yv̇v

0 0 0 Zẇw 0 −Xu̇u

0 0 0 −Yv̇v Xu̇u 0

0 −Zẇw Yiv 0 −Nir Mq̇q

Zẇw 0 −Xu̇u Nir 0 0

−Yv̇v Xu̇u 0 −Mq̇q 0 0


(3.20)

The rigid-body Coriolis and centripetal matrix is related to the speed of the vehicle

and is defined as

CRB(v) =



0 0 0 0 m(w) −m(v)

0 0 0 m(−w) 0 m(u)

0 0 0 m(v) m(−u) 0

0 m(w) −m(v) 0 Izr −Iyq
m(−w) 0 m(u) −Izr 0 0

m(v) m(−u) 0 Iyq 0 0


(3.21)
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The gravitational force fG acts through the center of gravity rG of the vehicle. Simi-

larly, the buoyancy force fG acts through the center of buoyancy rB. For SAGA, the

center of gravity and buoyancy are chosen respectively as

rG =
[
xG yG zG

]
=
[

0 0 0
]

(3.22)

rB =
[
xB yB zB

]
=
[

0 0 zB

]
(3.23)

The restoring force and moment matrix is defined as

g(η) =



(W −B)sθ

−(W −B)cθsφ

−(W −B)cθcφ

−cθcφ (yGW − yBB) + cθsφ (zGW − zBB)

cθcφ (xGW − xBB) + sθ (zGW − zBB)

−cθsφ (xGW − xBB)− sθ (yGW − yBB)


(3.24)

where

W is the weight of body

B is the buoyancy force, and

ZB is the z-axis component of the buoyancy center.

The damping force matrix is assumed to consist of only linear terms, since the vehicle

is able to move only at low speeds. The contribution of the quadratic damping terms

is neglected. Hence, the following simple expression for D for SAGA is obtained:

D = − diag {Xu, Yv, Zw, Kp,Mq, Nr} (3.25)
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CHAPTER 4

REALISTIC DYNAMIC SIMULATION OF UUV

4.1 Introduction

In this section, we describe how our motion controller can be used for more realistic

scenarios using a high-fidelity simulation infrastructure build on top of the Gazebo

and robot operating system (ROS) packages [33].

4.2 Simulation Environment

The employment of a simulation environment in the development and optimization

process for subsea applications allows an early evaluation of both the vehicle’s system

and the mission strategy. The aim of this section is to provide a simulation environ-

ment for the underwater vehicles and the scenarios in which they will be deployed.

Upon evaluation of the requirements, the following functional requirements are iden-

tified:

• The simulation should be able to communicate with external programs (such

as MATLAB) using ROS messages and modules. This includes the implemen-

tation of ROS communication interfaces for all simulated vehicles, sensors,

actuators, control systems and environment scenarios.

• It must be possible to simulate multiple instances of underwater vehicles in one

scenario to allow the simulation of their interaction in cooperative missions.

• The simulation must include in its physics engine the simulation of rigid-body
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dynamics, hydrodynamic and hydrostatic forces and contact forces.

• The inclusion of new vehicles and scenarios should be possible without changes

to the source code by combining sensor, actuator and hydrodynamic modules

in a standard configuration file.

• The simulator should provide a graphic interface with a rendering engine for

visualization of the current scenario.

Since there is already a range of robotics simulation software solutions that provide

both physics and rendering engines in the literature, the focus is to extend an existing

robotics simulation tool and adapt it for the needs of underwater robotics simulation.

The comparison of simulation platforms and justification for the chosen solution can

be found in the next section.

4.2.1 Selection of Suitable Environment

To select a suitable robotics simulation environment to fulfill the requirements in the

previous section, a survey of existing solutions was made based on the evaluation

criteria given in [40] for a similar survey. The adapted criteria are listed below

• Physical fidelity for simulation of rigid-body dynamics and collisions,

• Programmatic interface with external clients,

• Possibility of extensibility for inclusion of new dynamic models for sensor,

vehicle and environment modules,

• Adequate documentation,

• Previous use in research,

• Regularity of further development and maintenance.

In Table 4.1, a preliminary list of benchmarked simulators is presented with the cor-

responding license, the maintainer and a short description. The most relevant features

of these environments are described in the following sections and they are compared

as well.
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Table 4.1: List of robotics simulation environments.

Simulator License Maintainer Description

V-REP Dual license

possibility

(Commercial

or GNU/GPL)

Coppelia

Robotics

General purpose robotics simulator

with a ROS interface with a plug-

in-based extendibility framework in

several programming languages.

UWSim BSD IRSLab,

Jaume-I

University,

Spain

A ROS-based simulation environ-

ment for underwater robotics that

uses OpenSceneGraph for render-

ing underwater environments.

MORSE BSD LAAS-

CNRS,France

General purpose robotics simulator

based on the Blender Game Engine

and Bullet as the physics engine

with interfaces to six middlewares

including ROS.

Gazebo Apache 2.0 OSRF

(Open

Source

Robotics

Founda-

tion)

Open-source general purpose

robotics simulator with a plugin-

based extendibility framework and

fully integrated with ROS.

4.2.1.1 V-REP

V-REP is a general purpose robot simulator developed by Coppelia Robotics. V-Rep

EP uses a custom rendering engine (Bullet, ODE and Vertex) which can be changed

at run-time. It allows simulations to be programmed using plug-ins, embedded scripts

or ROS nodes and includes an API for C++. Proximity and vision sensors are already

implemented in the simulator and the other sensors can be implemented via plug-ins.

According to our research, no AUV simulation is implemented using V-REP. The

simulator supports underwater robots in general and simulation of an underwater ve-
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hicle is possible by creating the appropriate underwater environment with the use of

plug-ins.

4.2.1.2 UWSim

This underwater simulator is an open-source project from the University Jaume I,

Castellón, Spain, built in the scope of marine robotics research and development [41].

It uses OpenSceneGraph and its physics engine, Bullet, as the simulation backend

and provides an interface with external clients using the ROS middleware [40]. It

provides very realistic visual fidelity to underwater environments (see Figure 4.1), the

possibility for multi-robot simulations, sensor modules out-of-the-box and dynamic

modeling based on Fossen’s equations of motion for marine crafts [35].

Figure 4.1: UWSim scenario with Girona 500 AUV

New scenes and vehicles can be created through an extensible markup language

(XML) file. The vehicle is described in the usual unified robot description format

(URDF) format from ROS. Sensor modules include camera, pressure sensor, Doppler

velocity logger (DVL), inertial measurement unit (IMU), among others. The simu-

lation of the vehicle dynamics is implemented in a monolithic Python script config-
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urable through a YAML file, making the internal physics engine responsible only for

the contact physics. This simulator has been widely used in the field of underwater

robotics, including the RAUVI and the EU-funded TRIDENT projects.

The drawbacks of UWSim involve the extendibility of the simulation environment

to other purposes. Although the simulation of multiple robots is supported, this has

to be manually configured in the scenario’s XML file along with settings for the en-

vironment, vehicles and other objects, which is a tedious and error-prone task [40].

Furthermore, modifications and/or extensions to other dynamic, actuator and sensor

models must be done directly in the code. Although documentation is available, the

simulator suffers from long periods of time without maintenance and/or development

of additional features.

4.2.1.3 MORSE

MORSE [42] is a general purpose simulator developed by the LAAS-CNRS labora-

tory. It provides a library of sensor, actuator and robot models ready to use and is

based on the Blender Game Engine for rendering and Bullet for the physics simula-

tion (See Figure 4.2). It can be extended with Python plug-ins and supports the use

of six different open-source middlewares, including ROS.

Figure 4.2: Simulation of a submarine in MORSE.
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Although not configured specifically for underwater robotics simulation, it can be

extended for this purpose by adding the necessary plug-ins and using the game engine

for rendering.

The Blender engine has also a drawback in that the configuration of new scenarios is

quite difficult if the user is not familiar with the Blender rendering software for the

creation of the correct shaders [40].

4.2.1.4 Gazebo

Gazebo [43] is a general purpose robotics simulator developed and maintained by the

Open Source Robotics Foundation (OSRF) and is, at the time of this study, one the

most popular open-source platforms for robotics simulation. It gives the option of

interfacing with any of four physics engines (ODE, Bullet, Simbody, or DART) and

uses OGRE for the visualization rendering.

Figure 4.3: ATLAS humanoid robot from the DARPA Robotics Challenge in the

Gazebo simulator environment.

This platform allows the development of custom plug-ins for building new features

and modules for sensors, environments and dynamics using its C++ API, which al-
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lows a high degree of modularization of the simulation. The interface between plug-

ins is a socket-based approach that uses Google’s Protobufs, allowing the server to

run remotely from the graphical user interface (GUI). Multi-robot simulation is also

supported and all entities in the simulation environment can be configured through an

XML-based SDF format. ROS also has bindings to Gazebo, making extension of the

simulation to the ROS middleware quite straightforward.

Gazebo delivers a vast library of sensor, actuator and robot models, having also sev-

eral other contributions from the robotics community. It has also been employed in

projects such as the DARPA Robotics Challenge, which has played a large role in

spurring investment in further improvements to the software. Although it offers no

specific applications for underwater robotics, implementations of plug-ins extending

Gazebo’s functionalities to this purpose have been published in [44]. However, there

is great interest in extending the platform for underwater robotics with the release of

new drag, lift and buoyancy plug-ins.

Furthermore, the project features a clear roadmap and simulation schedule and a clear

code and integration standard for new contributions delivered by developers external

to OSRF. This ensures that Gazebo is continuously under improvement, and new

features and bug fixes are officially released every six months.

The drawbacks of the platform are the lack of official plug-ins for the computation of

hydrodynamic forces and the lack of visual features for a more realistic depiction of

underwater scenarios. This last issue, however, is expected soon to be solved given

the current development of a generic interface for multiple graphics engines.

4.2.1.5 Discussion and Selection of a Simulation Environment

The benchmarking for choosing a simulation environment showed that all open-

source options require some level of adaptation to fulfill the requirements listed in

Section 4.2. A detailed list of the advantages and disadvantages of each simulation

platform is presented in Table 4.2.
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Table 4.2: Comparison of the analyzed simulation platforms.

Simulator Advantages Disadvantages

V-REP

• Cross-platform (Win-

dows,Linux and Mac),

• Interface with ROS,

• Multiple physics engines to

choose,

• User-friendly GUI,

• Particle dynamics already

available.

• Would require a commer-

cial license to all involved

in the implementation

of this simulation envi-

ronment (only free for

educational purposes and

for the visualization tool)

UWSim

• Good visualization of un-

derwater environments (e.g.

floating particles, light damp-

ing),

• Several examples of publica-

tions using the simulator as

proof-of-concept for different

algorithms,

• Several implementations of

underwater sensors already

available,

• Interface with ROS.

• Requires manual editing of

a single XML file to de-

fine new simulation scenar-

ios (environment, vehicles,

objects) – bad modulariza-

tion,

• Monolithic implementa-

tion of the dynamic model

for vehicle and actuators,

• Physics engine used mostly

for contact physics,

• Unstable maintenance

schedule.
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MORSE

• Allows use of six different

robotics middleware solutions

(including ROS),

• Has examples of implementa-

tions for underwater environ-

ments,

• Extendible through plugins

(modular simulation concept).

• Requires knowledge of us-

age of Blender.

Gazebo

• Extendible through plugins

(modular simulation concept),

• Vast library of sensors and ac-

tuator out-of-the-box,

• Interface with ROS,

• Multi-robot simulation is pos-

sible,

• A new simulation scenario

can be built out of modular

configuration files,

• Regular and clear roadmap for

new software releases,

• Extensive contribution from

the robotics community for

new modules and bug fixes,

• Good documentation,

• Big community (several

sources of information when

searching for examples for

new implementations).

• Underwater worlds are not

available, have to be imple-

mented,

• Underwater visualization

effects like light damping

and floating particles are

hard to implement in the

current stage,

• GUI for construction of

new models still very prim-

itive.
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Gazebo is a general purpose, accurate and effective simulation environment that offers

high degree of fidelity physics in simulation, several sensors, and interfaces for users

and developers.It is obvious that physically realistic simulations are desirable for all

robotics applications but they are particularly critical for underwater systems due to

the high equipment and operational costs.

The Gazebo simulation environment is compatible with ROS which is now the most

popular software and communication framework in the robotics community. The

advantages of Gazebo and the support for it make it desirable for us as a simulation

environment. For these reasons, we selected the Gazebo as simulation environment.

4.3 Extending Gazebo to Subsea Robotics Simulation

As explained in the previous section, Gazebo is a powerful simulation tool, but it does

not support underwater simulation out-of-the-box. Missing features that are important

for underwater simulation are buoyancy, damping forces, underwater current, and

added mass. These features can be added by implementing model plug-ins using the

Gazebo API to simulate additional forces acting on underwater objects.

An ROV is a tethered, unmanned, remotely operated underwater vehicle. In general,

an operator controls the ROV from an operator console on the surface with the help

of feedback from onboard sensors such as camera, sonar, depth sensor and compass.

The ROV may also feature manipulators to perform underwater tasks such as cutting

and welding. Controlling an ROV to perform a specific task can be difficult and time

consuming due to the harsh underwater environment. The success of such missions

depends greatly on the experience of the ROV operator. In many situations, an op-

erator alone would not be able to achieve the mission goals within the allotted time

frame, thus a degree of ROV autonomy becomes critical. Increasing the level of au-

tonomy can save time and money in underwater operations. Controlling an ROV with

a control system with feedback from sensors reduces the dependency on the opera-

tor’s skills, thus increasing efficiency. Operators can then focus on the mission itself

rather than on controlling the vehicle. Developing such a control system, however, is

not easy. The performance of the control system depends greatly on parameters such
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as the accuracy of the sensors and the parameters of the autopilot.

There may be many sensors on an ROV, depending on its mission. Sensor options

include camera (mono, stereo, multiple cameras), sonar (Side Scan Sonar, Forward-

Looking Sonar), depth sensor, IMU, gyro, USBL, acoustic modem, conductivity tem-

perature and depth (CTD) probe and altimeter. One of the most frequently performed

tasks with ROVs is inspection of underwater objects such as pipelines or shipwrecks

[45]. The difficulty in these tasks is that the operator should focus on the target rather

than controlling the underwater vehicle [46]. In such a task, a control for holding the

ROV in the right position is very important. Currents in the underwater environment

make such control difficult for operators, so an autopilot plays a crucial role.

4.4 Implementation in Gazebo

The simulator environment that is used in this study is presented in [33]. This sim-

ulation environment enables the modeling of multiple types of underwater vehicles,

sensors and environments. We integrated our SAGA ROV model, its dynamics and

basic control algorithms into this simulation environment. The main purpose in using

this simulation environment is to develop a solution that is compatible with ROS and

the other frameworks that can be integrated with the Gazebo framework. To achieve

this goal, the simulation is implemented in a modular way with plug-in modules.

There are two types of plug-in modules developed in the simulator. The first type

is used for modeling vehicles, sensors and the environment. These plug-ins extend

functionalities that are currently available in Gazebo. The second type is used to

interact with ROS. These plug-ins exchange data between Gazebo and ROS via ROS

topics and are used as bridges to implement control and navigation algorithms.

The simulation environment also has rendering and collision-detection capabilities.

The objects, vehicles, and worlds are described in a Gazebo-specific format called

SDF format, which is similar to XML format. The applications that use the ROS

framework use URDF format (which is also similar to XML) to describe the robot’s

features.
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The SDF files store information on all aspects of a robot, such as kinematic and dy-

namic attributes, sensors, surface properties, textures, joint friction, and many other

properties. In the simulator, the vehicle and sensor descriptions must also contain a

geometry file to be used in rendering and collision detection. The properties used in

rendering are stored in COLLADA format and the properties stored for collision de-

tection are in STL format. Two different formats are used to distinguish the rendering

and collision detection-jobs. Since collision detection can take considerable time for

larger geometries, its properties are supplied in a different file.

We implemented an UnderwaterWorld world plug-in that simulates underwater cur-

rent and distributes it to all underwater objects by publishing it via a Gazebo topic.

We simulate underwater current to either be constant or vary randomly by following

a Gauss-Markov process.

The modified equations of motion described above were implemented within an Un-

derwaterObject model plug-in that is instantiated for each rigid body that should

experience underwater effects.

The UnderwaterObject plug-in requires its physical parameters to be set when instan-

tiated via URDF and it subscribes to the underwater current Gazebo topic published

by an UnderwaterWorld to compute the relative velocity of the object with respect to

the surrounding water. An example instantiation is shown below.
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   <gazebo>
      <plugin name="uuv_plugin" filename="libunderwater_object_ros_plugin.so">
        <!-- Fluid density required to compute buoyancy force -->
        <fluid_density>1028.0</fluid_density>
        <!-- Topic where current underwater flow velocity is published. -->
        <flow_velocity_topic>/hydrodynamics/flow_velocity</flow_velocity_topic>
        <link name="${namespace}/base_link">
          <!-- Volume required to compute buoyancy force. -->
          <volume>${volume}</volume>
          <!-- Center of buoyancy: Position at which buoyancy force acts. -->
          <center_of_buoyancy>${cob}</center_of_buoyancy>
          <hydrodynamic_model>
            <type>fossen</type>
            <!-- Added mass matrix -->
            <added_mass>
               779.79 -6.8773 -103.32 8.5426 -165.54 -7.8033
              -6.8773 1222 51.29 409.44 -5.8488 62.726
                -103.32 51.29 3659.9 6.1112 -386.42 10.774
                8.5426 409.44 6.1112 534.9 -10.027 21.019
                -165.54 -5.8488 -386.42 -10.027 842.69 -1.1162
                -7.8033 62.726 10.775 21.019 -1.1162 224.32
            </added_mass>
            <!-- Linear damping coefficients on diagonal of D -->
            <linear_damping>-75 -69 -728 -269 -310 -105</linear_damping>
            <!-- Quadratic damping coefficients on diagonal of D -->
            <quadratic_damping>-748 -993 -1821 -672 -774 -523</quadratic_damping>
          </hydrodynamic_model>
        </link>
      </plugin>
    </gazebo>

There are different physics engines in the Gazebo package, but they do not support

underwater dynamic effects directly. These effects are integrated by developing plug-

ins for hydrodynamic and hydrostatic forces. In the following sections, important

plug-ins in the simulator are described.

4.4.1 Thruster Plug-Ins

Thrusters are the essential means of locomotion of ROVs and AUVs: they are a com-

bination of motors and propellers that can often be operated in both directions and

produce a thrust force parallel to the rotation axis of the propeller. This phenomenon

is simulated using newly-implemented thruster plug-ins for both Gazebo alone and

Gazebo in conjunction with ROS. These include a variety of steady-state conversion

functions from angular velocity to obtained thrust forces and a dynamic model to ac-

count for the limited rate of change of the angular velocity of the thruster. The thrust
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force computed by the physical model is then applied to the thruster link at the correct

pose of the thruster.

Figure 4.4: Overview simulation of thrust force.

Thrusters can be controlled either via Gazebo directly or via ROS-topics when using

the Gazebo/ROS plug-in libThrusterROSPlugin.so.

An example of an instantiation of a thruster using this thruster plug-in is shown be-

low:

    <gazebo>
      <plugin name="thruster_model" filename="libThrusterROSPlugin.so">
        <linkName>thruster_link_name</linkName>
        <jointName>thruster_joint_name</jointName>
        <thrustTopic>thruster_thrust_topic</thrustTopic>
        <inputTopic>thruster_input_topic</inputTopic>
        <conversion>
          <type>Basic</type>
          <rotorConstant>0.00031</rotorConstant>
        </conversion>
        <dynamics>
          <type>FirstOrder</type>
          <timeConstant>0.05</timeConstant>
        </dynamics>
      </plugin>
     <gazebo>

The parameter linkName refers to the link model used to describe the visual, collision

and rigid-body model of the rotating part of the thruster object. It is connected to the

fixed part through a joint, the label for which should be given in jointName. This joint

lets the propeller rotate according to the angular velocity of the thruster.

If the ROS version of the plug-in is used, two further arguments must be provided

for the necessary ROS topics. thrustTopic is the output topic that publishes the thrust
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force generated of type std_msgs::Float64 and inputTopic is reserved to receive the

input command, also as std_msgs::Float64. The configuration of the conversion and

dynamics blocks are described in the following sections.

4.4.1.1 Conversion Curve

The conversion curve maps the angular velocity of the thruster to the actual amount of

thrust force it produces. This relation is often provided by manufacturers and shown

as a plot within the technical specifications. If it is not available, it can be determined

experimentally by connecting the thruster to a force sensor. The relationship between

angular velocity and produced thrust is often a simple quadratic one (Basic) or is

quadratic with a dead-zone interval (Bessa). We can, however, also model arbitrarily

complex conversion curves using linear interpolation.

4.4.1.1.1 Basic Conversion The basic conversion curve assumes that the control

input is the angular velocity of the rotor and the thrust force is proportional to the

angular velocity squared. Since most thrusters can be operated in both directions, it

follows for the thrust equations that

T = kΩ|Ω| (4.1)

where k is a rotor constant and Ω is the input command, the angular velocity of the

rotor. An example URDF configuration is shown below.

<conversion>
  <type>Basic</type>
  <rotorConstant>0.00031</rotorConstant>
</conversion>

4.4.1.1.2 Bessa Conversion The Bessa conversion function is the implementation

of the dead-zone function described in [2] and depicted in Figure 4.5. Except for the

added dead-zone interval, it is identical to the basic conversion function described
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above:

(Ω|Ω|) =


kl (Ω|Ω| − δl) , Ω|Ω| ≤ δl

0, δl < Ω|Ω| < δr

kr (Ω|Ω| − δr) , Ω|Ω| ≥ δr

(4.2)

Figure 4.5: Dead-zone nonlinearity[2].

kl and kr are rotor constants for the reverse and forward motion, respectively, and δl

and δr delimit the range of the dead-zone for the input Ω|Ω|, Ω being the propeller’s

angular velocity.

An example of how the Bessa conversion function can be instantiated within a URDF

description is shown below.

<conversion>
  <type>Bessa</type>
  <rotorConstantL>0.00031</rotorConstantL>
  <rotorConstantR>0.00031</rotorConstantR>
  <deltaL>0.5</deltaL>
  <deltaR>0.5</deltaR>
</conversion>

4.4.1.1.3 Linear Interpolation Finally, the most general conversion function lin-

early interpolates an arbitrary conversion function, given enough interpolation points.

It takes a list of input/output pairs which may be provided by the manufacturer of a

thruster, taken from a conversion function plot, or measured in experiments, and in-

terpolates between these points. Input values that fall outside of the provided interval
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(above the maximum or below the minimum input values) are simulated by copying

the nearest neighbor.

An example instantiation of the linear interpolation conversion function with only five

interpolation points is shown below.

<conversion>
  <type>LinearInterp</type>
  <inputValues>-10 -1 0 1 10</inputValues>
  <outputValues>-5 -1 0 1 5</outputValues>
</conversion>

4.4.1.2 Dynamics

Considering the conversion function of a thruster alone is often not enough: particu-

larly for large vehicles, the propeller of a thruster cannot instantaneously accelerate

from one angular velocity to another. We simulate this effect using one of the follow-

ing dynamics models.

4.4.1.2.1 Zero Order This dynamic model corresponds to not simulating dynam-

ics at all. Instead, the angular velocity of the thruster immediately jumps to the latest

commanded value and thus does not require any additional parameter. It can be in-

stantiated from URDF with the following block.

<dynamics>
  <type>ZeroOrder</type>
</dynamics>

4.4.1.2.2 First Order The first-order dynamic model lets the angular velocity fol-

low the commanded value with a first-order behavior. It requires as its only parameter

the time constant in s−1. This option is configured as follows:

<dynamics>
  <type>ZeroOrder</type>
  <timeConstant>0.2</timeConstant>
</dynamics>
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4.4.1.2.3 Yoerger’s Model Whereas the previous two models assumed that the in-

put command is the desired angular velocity of the thruster, the following two models

are different: Yoerger’s model for the energy-based approach for propeller dynamics

described in [47] considers a commanded torque as input and can be expressed using

the following differential equation:

Ω̇ = βτinput − αΩ|Ω| (4.3)

where τinput is the commanded input torque, and β and α are constant model param-

eters (for a detailed explanation of this model, see [47]). This option is configured as

follows.

<dynamics>
  <type>Yoerger</type>
  <alpha>0.2</alpha>
  <beta>0.3</beta>
</dynamics>

4.4.1.2.4 Bessa’s Model Motivated by experimental results, Bessa proposed a

slightly refined model in [48], which is there called Model 2 (Yoerger’s model is

called Model 1):

JmspΩ̇ +Kv1Ω +Kv2Ω|Ω| =
Kt

Rm

Vm (4.4)

where voltage Vm is the input command. The motor torque constant Kt, winding

resistance Rm are constructive characteristics that need to be experimentally deter-

mined. Kv1 and Kv2s are model parameters.

<dynamics>
   <type>Bessa</type>
   <Jmsp>0.2</Jmsp>
   <Kv1>0.3</Kv1>
   <Kv2>0.3</Kv2>
   <Kt>0.3</Kt>
   <Rm>0.3</Rm>
</dynamics>

4.4.2 Sensor Plug-Ins

There are already many sensor models in Gazebo, but they are mostly suitable for

ground and air applications. In the UUV simulator package, some of these sensors
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are extended to be used as underwater sensors. The IMU model used in the UUV

simulator is based on the work given in [49]. The default IMU sensor model does not

take bias into account. The sensor in the simulator includes a zero-mean Gaussian

noise and a bias that follows a random walk with a zero-mean white Gaussian noise.

There is a default compass plug-in in Gazebo which was developed in [50]. In the

future, we will integrate sensors such as 2D imaging sonar and mechanical scanning

sonar into our SAGA ROV model in the environment.

4.4.3 SAGA Implementation

The underwater vehicles are composed of the vehicle’s base link, actuators (thruster

and/or fins), sensors and, if available, manipulators. The body of the vehicle is con-

figured so that the hydrodynamic and hydrostatic forces and moments are generated

by the underwater object plug-in, which implements Fossen’s equations of motion.

The vehicle’s main body is considered a single link with its sensors and actuators

attached to it through fixed joints. This configuration simplifies the generation of hy-

drodynamic and hydrostatic forces, since they have to be applied then only on the

main body link.

To allow the use of the NED coordinates, a NED link is also available in addition to

the base link (which, under ROS standards, must always be created for a robot model),

which is represented in the conventional east-north-up (ENU) coordinate frame con-

vention, which is the only one available in Gazebo currently.

Adding the thrusters as separated and individual links attached to the main body al-

lows the automatic computation of thrust allocation matrices for the vehicles in the

simulation without the need to add them to a configuration file. It also allows the

simulation of a vehicle with multiple thruster configurations, for example, with no

changes to the source code. It is important to highlight that the actuator and sensor

links are only place holders for a frame; they have no physical importance to the body

of the vehicle. This is done in this manner because of the fact that many vehicle mod-

els require sensors and actuators to be positioned inside of the collision geometry of

the vehicle’s main body. This can lead to errors at the initialization of the simulation

because of internal collisions.
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The SAGA vehicle model is included in the models folder with the following folder

structure:

• launch contains the ROS launch files that will upload the SAGA vehicle model

and respective plug-ins to Gazebo at a user-defined world position.

• mesh contains the Collada and STL files necessary to describe both visual and

collision geometries, respectively.

• robots contains the full URDF description of each available robot configurations,

having at least one with the label default as the standard configuration. File names

have to be set in the standard <robot_name>_<configuration_name>.urdf.xacro

format to allow automation of the construction of new simulation scenarios.

• urdf contains the URDF robot description files with vehicle description, actua-

tors, sensors and plug-ins to be loaded. The vehicles main description file must be

named <robot_name>_base.xacro.

An example of the folder standard folder structure for a simulated SAGA can be seen

in Figure 4.6.

Figure 4.6: Standard folder structure for simulated SAGA.
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ROS and Gazebo integration provides an effective simulation solution for integration

and communication between different platforms in a modular way. We effectively

use this modularity by constructing a closed loop communication protocol between

MATLAB and the Gazebo simulation. Our motion controller and high-level control

policy are built in MATLAB and this communicates with the SAGA ROV in Gazebo

in real (soft) time.

The low-level modularity is established through plug-in modules. Some modules

are used for modeling vehicles, sensors and the environment, whereas other types of

plug-in modules are used to interact with ROS. These types of plug-ins exchange data

between Gazebo and ROS via ROS topics and services. The ROS modules are used as

a bridge between ROS, Gazebo and MATLAB to implement control and navigation

algorithms in the ROS framework. We provide a screen shot from our SAGA ROV in

the simulation environment in Figure 4.7.

Figure 4.7: Screenshot of our SAGA ROV in the simulation environment

4.5 Control and Navigation

The simulation package [33] allows us to implement algorithms using the ROS frame-

work and communicate with Gazebo via plug-ins. We control the dynamics of the

vehicle using this communication framework. To implement our motion planning

methodology inside a dynamic underwater environment (simulation or real experi-

ment), we adopted a two-level (cascaded) control policy to navigate the vehicle in

this simulation environment.
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The two-level controller has two components. The low-level (inner-loop) module is

a PID-based high-gain speed controller implemented inside the ROS/Gazebo UUV

simulator [33]. This controller is shown as the inner-loop controller in Figure 4.8.

Inputs to this block are a set of desired velocity and speed commands with respect

to body fixed reference frame, whereas the output is the thrust force commands. A

high-gain controller is used to minimize the error between the commanded and ac-

tual speeds. Indeed this block together with other properties (damping in underwater

environments and slow operating speeds) ensures the feasibility of our assumptions

in the motion controller. The high-level controller basically corresponds to our pro-

posed motion planning controller. The nonlinear motion controller produces a set of

velocity commands based on the proposed feedback rule given the current state of the

robot. Produced commands are then fed to the low-level speed controller.

The complete closed-loop control diagram is illustrated in Figure 4.8. The qd =

[xd yd zd]
T denotes the desired global Cartesian coordinates in the 3D world coor-

dinate system, which serves as the input for the motion planner. The motion plan-

ner then produces a set of control polices using our random sequential composition

methodology to produce the output of [vdp ω
d vdv ]

T , which denotes the desired velocity

commands to be sent to the low-level controller. In the combined simulation environ-

ment, this step is performed inside MATLAB, and the velocity commands are sent to

the ROS/Gazebo package using ROS topics. The low-level speed controller takes the

error signal between the reference speed signals and the actual speed of the ROV and

produces a thruster speed signal, uT = [ur ul uv] (right, left and vertical thruster’s val-

ues in revolutions per minute), using a high-gain PID control policy. This controller

plug-in sends commands to the vehicle dynamics plug-in which integrates the ROV

parameters with the Gazebo’s physics engine. The output of the Dynamics block is

sent to the Kinematics block, which produces the kinematic parameters of the SAGA

ROV in the world-fixed reference frame. Using another ROS topic, we send these

parameters to the Motion Controller to close the outer-loop. This block diagram runs

until the ROV reaches the desired goal point.
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Inner-loop

Outer-loop

Dynamics Kinematics
Low-level Speed 

Controller
Motion Planning 

Controller

Figure 4.8: Illustration of the control loop for motion planning and navigation of the

SAGA model. There are two loops inside this closed-loop system structure. The

inner-loop actively regulates the error signal between the desired and actual veloci-

ties with respect to the body-fixed reference frame using a fast PID controller. The

Dynamics and Low-Level Speed Controller blocks correspond to the plant and con-

troller blocks of this inner-loop, respectively. Both blocks are realized inside the

ROS/Gazebo package, and reference velocity inputs are received from MATLAB.

The outer-loop is responsible for the navigation of the ROV to the desired goal state

in the underwater environment. The control block of the outer-loop is the non-linear

Motion Planning Controller, which basically executes our new random sequential

composition algorithm. This component is realized in MATLAB and the communi-

cation between other blocks running in the ROS/Gazebo package is achieved using

ROS topics. The plant of the outer-loop is the combined closed-loop system that in-

cludes the Low-Level Speed Controller, Dynamics, and Kinematics blocks along with

tracking.
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CHAPTER 5

RESULTS

5.1 2D Kinematic Simulations in MATLAB

To illustrate the important principles and properties of our new motion planning algo-

rithm, we performed several MATLAB simulations. The equations of motion of the

simplified ROV model were integrated using MATLAB’s ode45 solver. We illustrate

the simulation results in Figure 5.1. The simulation environment is composed of cir-

cular obstacles with a diameter of 1.5 m and a circular boundary with a diameter of

25 m for the sake of simplicity and clarity.

We performed simulations using two different initial and goal configuration sets

((qstart, qgoal)1 = ([−15 5]T , [5 −5]T ) and (qstart, qgoal)2 = ([15 15]T , [−15 −15]T )).

The motion planning algorithm generated the random funnels for these two sets in ap-

proximately 0.2s and 0.8s, respectively. These computation times are very promising

for real-time ROV/AUV applications.

In both configurations, after generating the funnel trees, two different paths were

generated using different angular velocity gains. The light blue path has a higher gain

that executes sharper turns than the dark blue path. We show only paths that originated

from the initial configuration. Our method, however, can drive any initial condition

in the environment that is covered by at least one funnel to the goal condition. It is

important to note that there is no “trajectory” that we generate during the planning

phase. Thus, resulting paths are the outputs of control policies that depend on the

selected gains.

Figure 5.1(b & d) illustrates the 3D funnel abstractions, as in Figure 1.1 specific to
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Figure 5.1: This figure illustrates the simulation results of the implementation of our

motion planning algorithm in a sample environment. Upper (a & b) and bottom (c &

d) rows belong to different initial and goal configurations. The first column (i.e., a &

c) illustrates the environment, the basins of attraction of the random funnels, the initial

and goal configurations (green and red markers, respectively), and two sample paths

(dark and light blue). Black solid circles denote the obstacles, whereas the outer circle

is the environment boundary. Light gray circles with dark grey perimeters illustrate

the regions of attraction of the funnels. Each funnel control policy is responsible for

navigating the initial conditions that are visible in the illustration. In other words,

the sequence of circles acts like a ladder that illustrates the priority queue. The dark

blue and light blue paths are the result of two different dynamic solutions and the

only difference between them is in the angular velocity gain. The dark blue path

has a lower gain, and thus follows a smoother path compared to the light blue path.

One should note the fact that this motion planning policy can reach the goal state

from any point that is covered with the grey circles, which is the main reason for the

robustness. The second column (i.e., b & d) illustrates the metaphoric funnels in a

3D environment. The darkest red point (at the bottom of the figure) is the outlet of

the master funnel (i.e., the global goal state). Due to the sequential composition of

funnels, a metaphoric “ball” dropped inside any funnel can reach the bottom (i.e., the

goal).
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these simulated examples. Each inverted cone illustrates a funnel. It can be seen that

each funnel except the master funnel at the bottom drops inside another funnel. By

tracking this funnel tree structure, we can reach the bottom from any point that is

covered by one of the funnels. The z-axis of these illustrations can be considered to

be a “time” or priority queue.

In addition to spatial illustrations, in Figure 5.2, we also illustrate the temporal evo-

lutions of the position and speed of the robot with respect to time. It can be seen that

robot reaches the goal position in approximately 80 s. One can also observe from the

speed plots (i.e., main control effort) there are spikes in the speed of the robot. This

is an expected result because, when the robot enters a new funnel, feedback control

policy changes based on sequential composition strategy.
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Figure 5.2: This figure illustrates the evolution of the Cartesian position and the speed

of the robot with respect to time. (A) This figure shows the path of the robot inside the

tested environment. (B) This figure illustrates the time dependent trajectories of the

horizontal and vertical position of the robot. (C) This figure illustrates the temporal

evolution of the speed of the robot (i.e., the main control effort) with respect to time.

We also tested the navigation method under a relatively extreme environmental un-

certainty. In these simulations, we added an “environmental” (constant) velocity un-
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certainty with respect to the world-fixed reference frame to simulate possible water

current uncertainty. These results are illustrated in Figure 5.3. In these simulations,

the speed of the added uncertainty is equal to one-half of the maximum speed of

the ROV. We applied the uncertainty in two different directions specifically, along

u1 = [1 0]T and u−1 = [−1 0]T . These simulations use the same environment and

initial state/goal position configurations used in Figure 5.1. The algorithm generated

the random funnels in these simulations in approximately 0.1s and 0.4s, respectively.

The results show that the method is robust in the face of the applied uncertainties,

since in all cases the ROV robustly converges to the goal position. One of the im-

portant features of our method is that based on the structure of the funnels and the

behavior of the noise and uncertainties in the system, the ROV may follow a signifi-

cantly different path. This is an expected property, because under such highly uncer-

tain conditions trying to follow a pre-defined open-loop path may be infeasible and

sometimes impossible. Instead, our method robustly and reactively finds a different

solution which is one of the important features of the idea of sequential composition

of controllers [16].

In addition to these simulation studies, we also compared our method to classical

RRT in terms of computational complexity and sparsity. Figure 5.4 illustrates an

example comparative result in the sample environment with same initial and goal

configurations. In this example, our approach reduces both the computation time and

the number of nodes in the resultant tree. However, to ensure fair comparisons, we

performed 1.000 Monte Carlo simulations using the same environment and the same

initial and goal configuration set. In these Monte Carlo simulation tests, we observed

that for the original RRT the average computation time was 3.4 s and the average

number of nodes was 971. For our method, by contrast, the average computation

time and node count were 0.1 s and 134 respectively. It is clear that for our test

environment our method both reduces the computational complexity and enhances

sparsity.
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a)

b)

Figure 5.3: This figure illustrates the simulation results of the implementation of

our motion planning algorithm in the same sample environment under a simulated

environmental uncertainty. Upper (a) and bottom (b) figures display different initial

and goal configurations, and these configurations match those tested in Figure 5.1. In

this figure, we illustrate three different paths (solid blue, dashed dark blue, and dashed

light blue), where each path belongs to a different uncertainty condition. The solid

blue path represents the case in which there is no uncertainty. The dashed dark blue

and light blue paths belong to the cases where the directions of the added velocity

uncertainty are equal to u1 = [1 0]T and u−1 = [−1 0]T , respectively. We can

observe that all paths converge to the goal position whether there is uncertainty or

not. Clearly, in the case of added uncertainty, the ROV follows a different path. Since

our method does not rely on tracking a trajectory, it can be seen that based on the

structure of the funnel tree and the nature of the uncertainty, the ROV can follow

substantially different paths. For example, in Figure 5.3(a), the light blue path is

structurally different than other paths, whereas in Figure 5.3(b), the dark blue path

follows a different funnel branch in the middle of the navigation.
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a)

b)

Figure 5.4: This figure illustrates the comparative simulation results of the imple-

mentation of our motion planning algorithm and the original RRT algorithm in the

same sample environment. The upper (a) and bottom (b) rows represent the results of

the original RRT algorithm and our method, respectively. In these results, the RRT

method finds a solution (a path between the start and goal configurations) in 2.2 s and

with 1.127 nodes. On the other hand, our method finds a solution in 0.11 s and with

just 150 nodes. It this example, both computation time and sparsity are substantially

enhanced with our method.

64



5.1.1 Performance Comparisons

This section provides the test results for different methods in different environments.

The proposed methods are probabilistic methods, so we performed Monte Carlo tests

to evaluate the performance of the algorithms. For each environment, the methods

were tested for the same area with the same configuration of obstacles, but at each

iteration the start and goal configurations were changed. An important parameter in

the algorithm is the probability of sampling the goal node. This parameter tends the

tree toward the goal node, which may prevent coverage of the map. If the probability

of sampling the goal node is high, it means that the goal point is sampled frequently

as a new node candidate. We tested the methods in three different environments

with different number of obstacles. The number of obstacles increases in consecutive

scenarios.

5.1.1.1 Scenario 1

In this scenario we constructed an environment with a few number obstacles. In

Figure 5.6, three methods with same initial and goal configurations are given. As can

be seen, the node shapes and numbers differ for different node models.

Table 5.1 lists the results from the compared methods. All tests were performed 1.000

times on the same map but with different start and goal configurations.

As can be readily seen from Table 5.1, if the probability of sampling the goal node

is set to 1, the performance of both circular nodes and elliptic nodes decreases dras-

tically. Setting the probability to 0 also decreases the performance. Figure 5.7 com-

pares the computation performance of three node generation methods, and Figure 5.8

compares the numbers of generated nodes. In Figure 5.5, the average computation

performances and node counts are given. Here, the outliers in the probability of sam-

pling the goal node –0 and 1– are discarded. The sparsity enhancement methods,

elliptical and circular enlargement, decreases the computation time and number of

nodes.
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Table 5.1: Performance results of different methods for scenario 1.

Probability Time (seconds) Number of Nodes

Circle

Nodes

Elliptic

Nodes

Enlarged

Circles

Circle

Nodes

Elliptic

Nodes

Enlarged

Circles

0 0.08798 0.06787 0.04384 79 46 41

0.1 0.01060 0.00525 0.00749 30 17 17

0.2 0.00961 0.00373 0.00569 26 14 13

0.3 0.00738 0.00338 0.00539 23 13 12

0.4 0.00798 0.00461 0.00442 23 13 10

0.5 0.00876 0.00354 0.00437 24 13 10

0.6 0.00956 0.00508 0.00409 24 15 9

0.7 0.01078 0.00645 0.00361 28 16 9

0.8 0.02213 0.00984 0.00332 38 19 8

0.9 0.04205 0.02430 0.00322 57 33 8

1 0.50448 1.42686 0.321 342 400 52

(a)

(b)

Figure 5.5: Comparison of computational performance and node count by method for

scenario 1.
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(a)

(b)

(c)

Figure 5.6: This figure illustrates the node styles and numbers of different node shapes

for scenario 1. In (a), the algorithm uses standard circular nodes (Section 2.2). In (b),

the algorithm uses elliptical nodes (Section 2.4.1). In (c), the algorithm uses enlarged

circular nodes (Section 2.4.2).
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Figure 5.7: Computation performance comparison of circular, elliptic and enlarged

circular nodes for scenario 1.

Figure 5.8: Node number comparison of circular, elliptic and enlarged circular nodes

for scenario 1.

5.1.1.2 Scenario 2

In this scenario we constructed an environment with a moderate number obstacles. In

Figure 5.11, three methods with same initial and goal configurations are given. As

can be seen, the node shapes and numbers differ for different node models.

Table 5.2 lists the results from the compared methods. All tests were performed 1.000

times on the same map but with different start and goal configurations.

As can be readily seen from Table 5.2, if the probability of sampling the goal node

is set to 1, the performance of both circular nodes and elliptic nodes decreases drasti-
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cally. Setting the probability to 0 also decreases the performance. Figure 5.10 com-

pares the computation performance of three node generation methods, and Figure

5.12 compares the numbers of generated nodes. In Figure 5.9, the average computa-

tion performances and node counts are given. Here, the outliers in the probability of

sampling the goal node –0 and 1– are discarded. The sparsity enhancement methods,

elliptical and circular enlargement, decreases the computation time and number of

nodes.

Table 5.2: Performance results of different methods for scenario 2.

Probability Time (seconds) Number of Nodes

Circle

Nodes

Elliptic

Nodes

Enlarged

Circles

Circle

Nodes

Elliptic

Nodes

Enlarged

Circles

0 0.08510 0.15399 0.04223 44 86 31

0.1 0.06551 0.09882 0.05212 30 64 25

0.2 0.05434 0.15049 0.04531 26 76 22

0.3 0.07999 0.33842 0.05645 23 107 24

0.4 0.07805 0.55547 0.05179 24 171 20

0.5 0.14273 0.56870 0.06325 30 153 19

0.6 0.14727 0.64839 0.07951 27 157 20

0.7 0.23469 1.33188 0.11047 32 240 22

0.8 0.29518 3.48141 0.13055 26 325 19

0.9 0.66765 4.62356 0.27694 31 359 21
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(a)

(b)

Figure 5.9: Comparison of computational performance and node count by method for

scenario 2.

Figure 5.10: Computation performance comparison of circular, elliptic and enlarged

circular nodes for scenario 2.
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(a)

(b)

(c)

Figure 5.11: This figure illustrates the node styles and numbers of different node

shapes for scenario 2. In (a), the algorithm uses standard circular nodes (Section 2.2).

In (b), the algorithm uses elliptical nodes (Section 2.4.1). In (c), the algorithm uses

enlarged circular nodes (Section 2.4.2).
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Figure 5.12: Node number comparison of circular, elliptic and enlarged circular nodes

for scenario 2.

As one can see from the performance comparison figures, the performance of the el-

liptical enlargement method degrades in this scenario. The potential reason of this

degradation is, it is hard for elliptical shapes to cover narrow passages such as the

space between an obstacle and boundary. Thus, this method generates a lot of el-

liptical funnels to cover those small regions. In elliptical enlargement method, the

funnels are stretched only in one direction and coverage of narrow regions can only

be obtained with so many funnels.

5.1.1.3 Scenario 3

In this scenario we constructed an environment with great number obstacles. In Fig-

ure 5.15, three methods with same initial and goal configurations are given. As can

be seen, the node shapes and numbers differ for different node models.

Table 5.3 lists the results from the compared methods. All tests were performed 1.000

times on the same map but with different start and goal configurations.

As can be readily seen from Table 5.3, if the probability of sampling the goal node

is set to 1, the performance of both circular nodes and elliptic nodes decreases drasti-

cally. Setting the probability to 0 also decreases the performance. Figure 5.14 com-

pares the computation performance of three node generation methods, and Figure
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5.16 compares the numbers of generated nodes. In Figure 5.13, the average computa-

tion performances and node counts are given. Here, the outliers in the probability of

sampling the goal node –0 and 1– are discarded. The sparsity enhancement methods,

elliptical and circular enlargement, decreases the computation time and number of

nodes.

Table 5.3: Performance results of different methods for scenario 3.

Probability Time (seconds) Number of Nodes

Circle

Nodes

Elliptic

Nodes

Enlarged

Circles

Circle

Nodes

Elliptic

Nodes

Enlarged

Circles

0 0.39462 1.25341 0.18056 99 268 92

0.1 0.34531 0.91296 0.17515 75 241 80

0.2 0.33227 1.29547 0.22814 70 271 79

0.3 0.44360 2.15521 0.21168 70 370 71

0.4 0.52551 2.09334 0.30338 70 325 79

0.5 0.57983 2.46551 0.43366 70 390 91

0.6 0.81922 3.72874 0.53514 60 464 86

0.7 0.96941 4.29960 0.79843 61 573 87

0.8 1.71260 5.87946 1.20366 69 701 83

0.9 4.44837 10.55910 1.71435 84 915 68
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(a)

(b)

Figure 5.13: Comparison of computational performance and node count by method

for scenario 3.

Figure 5.14: Computation performance comparison of circular, elliptic and enlarged

circular nodes for scenario 3.
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(a)

(b)

(c)

Figure 5.15: This figure illustrates the node styles and numbers of different node

shapes for scenario 3. In (a), the algorithm uses standard circular nodes (Section 2.2).

In (b), the algorithm uses elliptical nodes (Section 2.4.1). In (c), the algorithm uses

enlarged circular nodes (Section 2.4.2).
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Figure 5.16: Node number comparison of circular, elliptic and enlarged circular nodes

for scenario 3.

As discussed above, the performance of elliptical enlargement method degrades in

this scenario too. The reason of this degradation is, again, related with the structure

of obstacles.

As can be seen from the figures, the enlarged circles method gives the best perfor-

mance in all scenarios. We used this method for the 3D simulation.

5.2 3D Dynamic Simulation Results

To test the robustness and full practical applicability of our approach, we performed

simulated tests using the simulation infrastructure built using MATLAB and the ROS/

Gazebo package.

The first results are illustrated in Figure 5.17. The whole simulation package works

based on following process. The 3D environment is first created inside MATLAB.

The black cylinders in Figure 5.17 correspond to the obstacles in the environment.

It can be seen that the height of some obstacles rises above sea level (as would be

the case with wind turbines), while others do not. We then run our motion planning

algorithm to generate sparse random funnel trees until the basis of attraction of one of

the funnels covers the initial condition. We illustrate the hypothetical funnels using

transparent green cylinders in Figure 5.17. After this, based on the kinematic 3D
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model and the associated control policy (explained in Section 2.5), we perform a

MATLAB simulation using ode45 to find the path shown in the solid red line. At

this point, our custom MATLAB code communicates with the UUV simulator and

re-creates the same environment inside the fully dynamic UUV simulation package.

This environment can be seen in Figure 5.18.

Figure 5.17: This figure illustrates the 3D simulation results of the implementation

of our motion planning algorithm in a sample 3D environment. This figures includes

both the kinematic simulation performed only inside MATLAB and the fully dynamic

simulation package that runs on ROS/Gazebo and MATLAB. The top figure is the

3D (isometric) view of the environment. The bottom left and bottom right figures

correspond to the top and side views, respectively. The black solid cylinders are the

obstacles, whereas the outer cylinder is the imaginary boundary that we chose based

on the tethering capabilities. The green cylinders illustrate the basins of attraction of

funnels. They are most clear in the top view. The solid red path is the path generated

by the kinematic model in MATLAB, whereas the dashed blue path represents the

dynamic 3D simulation. The motion controller can reach to the goal state in both

cases.

After the creation of the environment, the SAGA ROV and its initial conditions are

initialized which triggers the closed-loop control and simulation physics. The Gaze-

bo/ROS UUV simulator receives the reference velocity commands from the motion
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controller running in MATLAB and executes the physics. The motion controller re-

ceives the states of the SAGA ROV from the Gazebo/ROS simulator and based on

the funnel structure, generates sets of velocity commands. This closed-loop real-time

simulation continues until the SAGA ROV reaches the goal point. The resultant 3D

path is plotted with blue dashed lines in Figure 5.17. It can be seen that the motion

controller is robust when subject to the uncertainties that arise from the unmodeled

full 6-DOF dynamics of the SAGA ROV. The two paths are close to each other, with

only small gaps in several regions. Note that the real-time dynamic simulation does

not try to track the trajectory in red.

Figure 5.18: Snapshot of the Gazebo environment used for 3D simulations.

We also tested the controller under severe environmental uncertainty in the 3D dy-

namical simulation package. These results are illustrated in Figure 5.19. In a specific

prismatic region (shown in red in Figure 5.19), we applied a water current in the di-
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rection of [1 0 0]T with a strength of 1 m/s, with maximum forward speed in this

simulation set to 2 m/s. It is clear that the gap between the path found by MATLAB

based on the kinematic model and the path found by the dynamic simulation with ex-

ternal disturbances is larger inside the red region. However, due to the robustness of

the feedback-based motion planning, the ROV reached the goal position successfully.

Figure 5.19: This figure illustrates the 3D simulation results with a specific environ-

mental disturbance (water current). The environment presented in Figure 5.17 is also

used here. Note that we have not included the illustration of funnels. However, the

funnels and undisturbed paths are different compared to Figure 5.17, due to the prob-

abilistic nature of our method. Even though the gaps between the paths are higher,

the method robustly finds a path and reaches to the goal.

5.2.1 Performance Comparisons

In this section, the test results for different methods for the 3D environment are given.

The proposed methods are probabilistic, so we performed Monte Carlo testing to

assess the performance of the algorithms. All tests used the same area with same

configuration of obstacles, but at each iteration the start and goal configurations were

changed. An important parameter in the algorithm is the probability of sampling the

goal node. This parameter tends the tree toward the goal node, which may prevent the

coverage of the map. If the probability of the sampling goal node is high, it means
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that the goal point is sampled frequently as a new node candidate.

Table 5.4 lists the results from different methods. All the tests were performed 1.000

times on the same map but with different start and goal configurations.

Table 5.4: Performance results of different methods in 3-D environment

Probability Time Number of Nodes

Cylinder

Nodes

Enlarged

Cylinders

Cylinder

Nodes

Enlarged

Cylinders

0 0.205888 0.066909 122 64

0.1 0.015793 0.010836 44 26

0.2 0.010887 0.006781 36 20

0.3 0.009072 0.00507 31 16

0.4 0.008493 0.004018 28 14

0.5 0.008453 0.003475 26 12

0.6 0.01122 0.003005 25 11

0.7 0.009971 0.002659 23 10

0.8 0.014667 0.002436 21 9

0.9 0.013953 0.002226 18 9

1 0.001235 0.001963 10 8
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CHAPTER 6

CONCLUSION

The major goal of this study was to develop a new robust and computationally feasible

motion planning method for a class of UUV systems. Motion and path planning is a

very mature field, and there are many solutions for the problem of motion and path

planning for robotic systems.

As a basis for our work, we combined different planning approaches: sampling-based

planning and sequential composition. Our goal was simply to obtain an effective

planning solution for a class of UUV systems by taking advantage of both planning

methods and attempting to eliminate the disadvantages of each.

The keywords that we need for understanding the proposed method are robustness

and computational cost. Generally, path planning studies rely on generating “open-

loop” trajectories, which are not practically valuable. Open-loop trajectories gener-

ated with such planners are tracked using sets of control laws. However, this may not

be a very robust solution in all cases, especially when the disturbances and uncertain-

ties are great. In such cases, feedback control can reduce uncertainty and increase the

robustness of engineering solutions. For these reasons, the idea of sequential com-

position of feedback-based dynamic behaviors for robotic planning proposed in the

literature. RRT and other sampling-based methods are widely popular because they

are relatively easy to implement and they provide fast and effective solutions from the

perspective of computational costs.

As mentioned before, there are different studies which synthesized sequential com-

position with random sampling-based methods. However, there are some important

differences and key contributions of our study, especially considering our applica-
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tion domain of underwater systems. The other studies mainly attempted to develop

motion control solutions for highly dynamic systems–that is, where second-order dy-

namics are critical. As we discussed, however, for underwater environments and the

class of UUV vehicles that we consider, first-order dynamics dominate behavior. We

suspect that for underwater environments, external uncertainties are more severe than

possible internal dynamical uncertainties and effects. Given this main application do-

main difference, previously developed methods that rely on heavy optimization and

numerical techniques are computationally very costly for our application.

Based on our operating conditions and specific constraints, we first proposed the basic

principles of our motion planning algorithm. Indeed, this planner can be applied to

a wide variety of systems with some modifications (such as the shape of funnels or

different control polices). The inputs for our motion planner are the environment

(with obstacles), the goal position, and the initial configuration(s). The algorithm

starts by constructing a funnel around the goal position, with the basins of attraction

defined in Cartesian space (a circle for 2D environments and a cylinder for 3D). Since

the proposed high-level control policy has guaranteed stability and strictly remains

inside the funnel, any initial condition inside this master funnel can be driven to the

goal position.

The goal of randomly building a sequentially composed controller is building a fun-

nel tree such that initial conditions inside wide regions can be eventually sent to the

goal state by backtracking the sequentially attached funnels. Each funnel is controlled

by similar control policies and the goal is always sending the robot to the next fun-

nel. The simulation results show that the method successfully finds solutions that are

robust and computationally cheap.

The high-level motion controller assumes a dynamic model that can be controlled

with velocity inputs (forward, vertical, and angular). However, even if this assump-

tion may be feasible under some conditions and constraints, a different low-level con-

trol policy is required to realize and test the feasibility. The second-order dynamics

of the system bring some uncertainty but we showed that in a realistic, fully dynamic

simulation, our feedback policy is very robust given such effects. We further tested

the entire closed-loop control and planning policy under severe water flow uncertainty

82



and showed that the inherent robustness of the policy is effective in reaching the goal

state.
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based Navigation and System Identification of an Unmanned Underwater Sur-

vey Vehicle (SAGA)," Transactions of the Institute of Measurement and Con-

trol, vol.40, no.8, pp. 2476-2487, 2018.

4. S. K. Kartal, E. Ege, and M. K. Leblebicioğlu, “Optimal Autopilot and Guid-
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lanılarak Gazebo Simülatöründe Kontrolü,” 7. Ulusal Savunma Uygulamaları

Modelleme ve Simülasyon Konferansı (USMOS), Ankara, 2017.
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